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Summary

In this thesis, we study classical theorems of recursion theory, effective descriptive set

theory and analysis from the view point of reverse mathematics and higher recursion

theory. Here we consider reverse recursion theory as a part of reverse mathematics

and study problems in two areas of higher recursion theory — hyperarithemtic theory

and α-recursion.

In Chapter 1, we give a brief review of the history and background of the research

areas involved in this thesis and summarize results in Chapter 3 to Chapter 5.

In Chapter 2, we review the basic notions, properties and theorems that will be

needed in subsequent chapters.

In Chapter 3, we study the structure of Turing degrees below 0′ in the theory

that is a fragment of Peano arithmetic without Σ1 induction, with special focus on

proper d-r.e. degrees and non-r.e. degrees. We prove

(1) P− +BΣ1 + Exp ` “There is a proper d-r.e. degree.”

(2) P− +BΣ1 + Exp ` IΣ1 ↔ “There is a proper d-r.e. degree below 0′.”

(3) P− +BΣ1 + Exp 6` “There is a non-r.e. degree below 0′.”

Here all the English sentences can be expressed in the language of PA.

In Chapter 4, we investigate the existence of a Friedberg numbering in fragments

of Peano arithmetic and initial segments of Gödel’s constructible hierarchy Lα, where

α is Σ1 admissible. We prove that

(1) Over P− +BΣ2, the existence of a Friedberg numbering is equivalent to IΣ2,

xi



Summary

and

(2) For Lα, there is a Friedberg numbering if and only if the tame Σ2 projectum

of α equals the Σ2 cofinality of α.

In Chapter 5, we study continuous functions f on [0, 1], the Kechris-Woodin

derivative and the Kechris-Woodin kernel of f . We show that

(1) The set D̂ = {e : Φe describes an everywhere differentiable function on [0, 1]}
is Π1

1 complete.

(2) For any continuous function f on [0, 1], if f has a recursive description, then

the Kechris-Woodin rank of f is less than or equal to ωCK1 .

(3) For any everywhere differentiable function f on [0, 1], if f has a recursive de-

scription, then the Kechris-Woodin rank of f is less than ωCK1 , and conversely,

for any 0 < α < ωCK1 , there is an everywhere differentiable function f on [0, 1]

such that the Kechris-Woodin rank of f is α and f has a recursive description.

(4) Suppose f is continuous on [0, 1]. If the Kechris-Woodin kernel of f is nonempty,

then ATR0 suffices to show the existence of a non-empty subset P of the

Kechris-Woodin kernel of f . Over ACA0, the existence of the Kechris-Woodin

kernel for any continuous function on [0, 1] is equivalent to Π1
1 comprehension.

In Chapter 6, we discuss some open questions left unanswered by the results of

this thesis.
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Chapter 1
Introduction

The study of the properties of the set of natural numbers has a long history, going

back to Euclid and continued in the hands of Fermat, Euler and modern figures

such as Hilbert, Cantor, Gödel, von Neumann, etc. Yet, the investigation of the

computation properties of subsets of natural numbers is relatively new. It was ini-

tiated by Gödel in his famous Incompleteness Theorem [16] in 1931 which launched

a new area of mathematical logic. Nowadays, the study of computational aspects

of numbers and sets of numbers, is known as Recursion (Computability) Theory, a

subject which developed rapidly over the last eighty years.

With the development of mathematical logic, the notion of computation, as well

as notions from other branches of mathematics, was generalized to models other than

the standard model 〈ω,P(ω)〉, where ω is the set of natural numbers and P(ω) is

the power set of ω. The motivations for this were multifolded. One was the desire to

capture essential features of a computation. The basic notions such as computation,

finiteness, relative computation and effectiveness, which lie at the heart of recursion

theory, should not be confined to the consideration of ω alone (Chong, [2]). In

other words, the key properties of a computation should not depend solely on the

underlying structure of the standard model. Therefore, it is necessary and possible to

consider notions of computation in a more general setting. Another motivation was

from the study of the foundations of mathematics. In foundations of mathematics, a

major problem concerns the appropriate axiom systems for mathematics other than

set theory. Given an axiom system, a theorem that is derived from the system shows

the sufficiency of the system to prove the theorem, but it does not demonstrate the

1



Chapter 1. Introduction

necessity of the system for the theorem. To establish the latter, one needs to show

that the axiom system is satisfied in every model in which the theorem is true. In

this sense, models could not be limited to the standard one.

Reverse mathematics (including reverse recursion theory) and higher recursion

theory are typical areas in which the generalization of notions to models other than

〈ω,P(ω)〉 play a central role. This thesis is devoted to the study of classical theorems

from the view point of these two areas. First we study properties in recursion

theory (Chapters 3 and 4) and then investigate the effectiveness of some particular

theorems in analysis and descriptive set theory (Chapter 5). Chapters 3, 4 and

5 are relatively independent, but they are connected by the analysis of models of

computation different from 〈ω, P (ω)〉. In this chapter, we briefly recall the history

of reverse mathematics, reverse recursion theory and higher recursion theory, and

introduce results in this thesis.

1.1 Reverse Mathematics

In reverse mathematics, a basic question concerns set existence axioms that are

needed to prove theorems in ordinary mathematics. By ordinary mathematics, we

mean areas such as number theory, analysis, countable algebra, geometry, combina-

torics, etc. that developed independently of set theory. In ordinary mathematics, the

objects considered are either countable (e.g. the set of natural numbers) or subsets

of a separable structure (in the sense of a topological space). The weakest language

appropriate to the study of these topics is the language of second order arithmetic.

So reverse mathematics is investigated in the setting of second order arithmetic.

The program of reverse mathematics was started by Harvey Friedman [18] in the

1970’s. Many researchers have since contributed to this area and a major systematic

developer as well as expositor of the subject has been Stephen Simpson [44]. The

study of reverse mathematics has proven to be a great success in classifying theorems

of ordinary mathematics. Five subsystems of second order arithmetic of strictly in-

creasing strength (in terms of the strength of set existence assumption) emerged as

the core systems by which many theorems in ordinary mathematics are classified.

The five subsystems are usual axioms for Peano Arithmetic (with Σ1 induction) plus

2



1.1 Reverse Mathematics

Recursive Comprehension Axiom (RCA0), Weak König’s Lemma (WKL0), Arith-

metical Comprehension Axiom (ACA0), Arithmetical Transfinite Recursion (ATR0)

and Π1
1 Comprehension Axiom (Π1

1-CA0) respectively. RCA0, ACA0, and Π1
1-CA0

are systems that restrict the comprehension axiom to ∆0
1, arithmetic and Π1

1 for-

mulas. WLK0 asserts the compactness theorem in the Cantor space 2ω, and ATR0

permits transfinite induction. Specifically, a mathematical statement belongs to

one of these five systems if it is provably equivalent to that system. A classical

introduction to this subject can be found in Simpson [44].

1.1.1 Reverse recursion theory

An area that developed from the general study of reverse mathematics is the clas-

sification of the strength of mathematical induction required in the proof of mathe-

matical theorems. Reverse recursion theory is a nice example of such a study. The

general question it asks is: What is the strength of mathematical induction that

is necessary (and sufficient) to prove theorems in classical recursion theory over a

base theory? Since in classical recursion theory many of the objects studied are

arithmetically definable, we investigate reverse recursion theory in the context of

first order arithmetic. In particular, we use the first order language of arithmetic

and the base theory will usually be a fragment of the axioms of Peano arithmetic

(PA). A detailed introduction to the reverse recursion theory is given in [6, 8].

The theoretical foundation of subsystems of PA (also called fragments of PA)

was established by Paris and Kirby [36] in the late 1970’s. To set the stage, let

P− denote the axioms of PA concerning rules governing the standard arithmetic

operations such as the associative law of “+”, the distributive law with respect to

“+” and “·”, etc, excluding the induction scheme. Paris and Kirby [36] defined

fragments of PA by restricting the induction scheme to instances of bounded logical

complexity and showed the relative logical strengths of the resulted theories. For

n ≥ 1, let IΣn (Σn induction) denote the restriction of the induction scheme to

Σn formulas, and let BΣn (Σn bounding) be the statement saying that every Σn

function maps a finite set in the sense of the model onto a finite set. It is known

that IΣn is strictly stronger than BΣn, and BΣn+1 is strictly stronger than IΣn,

over the base theory P− + IΣ0 + Exp (“Exp” says that x 7→ 2x is a total function,

and is a theorem of P− + IΣ1). It is possible to develop a theory of computation

3



Chapter 1. Introduction

within a weak system of arithmetic. In fact, all the notions of classical recursion

theory concerning primitive recursive functions, partial and total recursive functions,

recursively enumerable (r.e.) sets etc. studied by Kleene and Post have their analogs

in the system P−+BΣ1 + Exp. The research area in which we analyze the strength

of induction required to establish theorems in recursion theory is called reverse

recursion theory.

A Turing degree is r.e. if it contains an r.e. set. The degree of a complete

r.e. set is denoted 0′. In the 1980’s, S. Simpson first proved (unpublished) the

Friedberg-Muchnik Theorem (the existence of a pair of incomparable r.e. degrees,

originally proved in the standard model of PA using the 0′-priority method) within

the system P− + IΣ1. Slaman and Woodin [46] then studied Post’s problem in

models of the weaker theory P−+BΣ1 +Exp. They provided examples of models of

P−+BΣ1 + Exp where the Sacks Splitting Theorem failed. Thus, P−+BΣ1 + Exp

is not strong enough for the implementation of the 0′-priority method involving the

Sacks preservation strategy. Mytilinaios [34] continued the study and proved that

IΣ1 suffices to prove the Sacks Splitting Theorem. Later, Chong and Mourad [6]

showed (without using the priority method) that the Friedberg-Muchnik Theorem

is provable in P− + BΣ1 + Exp. In general, any construction which is priority-

free or involves not more than the use of a 0′-priority argument may be successfully

implemented in a model of P−+IΣ1. Similarly, the 0′′-priority method is applicable

in models of P− + IΣ2 (see [8, 34, 35, 46]). It is reasonable to conjecture, in view

of the success story concerning the Friedberg-Muchnik Theorem, that all theorems

proved by using the 0′-priority method with effective bounds on the number of

injuries for each requirement (a hallmark of the construction of a pair of r.e. sets

with incomparable Turing degrees for the Friedberg-Muchnik Theorem) remain valid

in models of P−+BΣ1 +Exp, even if the original methods of proof do not carry over

in the new setting. This conjecture is, however, false. The existence of a nonrecursive

low set, originally proved using a 0′-priority construction with effective bounds, is

known to be equivalent to IΣ1 over P− +BΣ1 + Exp (see Chong and Yang [10]).

Also, the insights about the inductive principles needed to prove theorems in

ordinary mathematics and recursion theory have been applied to other branches of

reverse mathematics. In reverse mathematics, methods of reverse recursion theory

4



1.2 Higher Recursion Theory

have been used to tackle problems that are of a purely combinatorial nature. For in-

stance, Cholak, Jockusch and Slaman [1] proved that over RCA0, Ramsey’s theorem

of finite colorings for Pairs is strictly stronger than Ramsey’s theorem of 2-coloring

for Pairs by showing that the former could prove Σ3 bounding (Σn bounding is

equivalent to the inductive principle of ∆n formulas for every n, see [45]), but not

the latter. Further examples of this nature can be found in [1, 7, 19, 43].

1.2 Higher Recursion Theory

In the 1960’s, Kreisel suggested the idea of generalizing the syntactic aspects of

classical recursion theory, building on the earlier works of Church, Gandy, Kleene,

Spector and Kreisel himself. Sacks pursued this idea and developed recursion theory

on admissible ordinals [39]. Higher recursion theory includes four main parts —

hyperarithmetic theory, metarecursion, α-recursion and E-recursion theory. In this

thesis, we focus our study on the first and third part.

The study of hyperarithmetic theory began with the work of Church and Kleene

on notation systems and recursive ordinals (see Church-Kleene [14], Church [13],

Kleene [25]). Hyperarithmetic sets are defined by iterating the Turing jump though

recursive ordinals. Kleene’s theorem states that hyperarithmetic sets are exactly

∆1
1 sets. It rises a construction process and hierarchy for the class of ∆1

1 sets and

constitutes the first real breakthrough into second order logic. Correspondingly,

∆1
1 sets (called bold face ∆1

1 sets), which are known as Borel sets, have a parallel

construction hierarchy in descriptive set theory. In fact, hyperarithmetic theory is

often regarded as the source of effective descriptive set theory.

Another approach to generalize recursion theory is α-recursion theory, which

studies the theory of computation over initial segments Lα of Gödel’s constructible

hierarchy. The core of classical recursion theory is the notion of an effective con-

struction (and its relativization). From the set theoretical point of view, an effective

construction is a Σ1 operator definable over the structure of the standard model.

An ordinal α is Σ1 admissible if Lα is a model that is closed under Σ1 definable

operators. In particular, ω is Σ1 admissible.

The generalization of recursion theory to ordinals was introduced by Takeuti [50]

and its set theoretical framework in the context of admissible sets was introduced by

5



Chapter 1. Introduction

Kripke [28] and Platek [38]. Kreisel and Sacks [27] initiated the study of the structure

of recursively enumerable (r.e.) sets over the first admissible ordinal greater than

ω. In general, admissible ordinals lack certain combinatorial properties that come

with the standard model ω and crucial to the construction of r.e. sets. This results

in constructions which are sometimes much more intricate than those for ω, and in

certain cases, the failure of the combinatorial property leads to a negative conclusion.

A key feature in the study of α-recursion theory is the fruitful application of ideas and

methods from Jensen’s work [21] on the fine structure of the constructible universe.

The interplay between fine structure theory and recursion theory provides many new

insights not available previously. Hence the study of generalized recursion theory

elucidates the essence of an effective construction and the nature of notions that are

fundamental to a theory of computation. In 1972, Sacks and Simpson [40] solved

Post’s problem for every Σ1 admissible ordinal. Their proof uses a combination of

the priority method and the fine structure theory of L. Lerman [30] gave a more

recursion theoretic proof by reducing the use of fine structure theory. Both of the two

approaches have proven to be of wide applications in the study of α-recursion theory

(see [39]). In [41], Shore proved the splitting theorem which relies heavily on his

method of Σ2 blocking. Shore’s blocking method has also been applied successfully

in reverse recursion theory. (For instance, Mytilinaios [34] proved Sacks’ splitting

theorem in Σ1 induction.) Shore [42] also showed the density theorem remains valid

for all Σ1admissible ordinals. It is an example of a Σ3 argument of classical recursion

theory lifted to all Σ1 admissible ordinals.

1.3 Results

1.3.1 Chapter 3 – ∆2 degrees

In Chapter 3, we consider problems about non-r.e. sets in the system P−+BΣ1+Exp.

In particular, we study the structure of degrees below 0′. In classical recursion

theory, i.e. in the standard model of PA, these degrees are precisely those which

contain as members only sets that are ∆2 definable, but in models of P−+BΣ1+Exp,

the situation may be different.

For any two r.e. sets A and B, A \ B is said to be a d-r.e. set (difference of two

6



1.3 Results

r.e. sets). A degree is d-r.e. if it contains a d-r.e. set. The degree is called proper

d-r.e., if it is d-r.e. but not r.e. Clearly every r.e. degree is d-r.e., and every d-r.e. set

in a model of P− + BΣ1 + Exp is ∆2 definable. Furthermore, in classical recursion

theory, we have the following result.

Theorem 1.1 (Cooper [12]). There is a proper d-r.e. degree.

In Chapter 3, we first investigate the existence of a proper d-r.e. degree from

the point of view of reverse recursion theory. By the general observation on the

0′-priority method described above, Cooper’s proof of the existence of a proper d-

r.e. degree may be carried out in models of of P− + IΣ1. This result was shown

by Kontostathis [26] in 1993. The situation becomes particularly interesting when

working with a model that precludes the use of a priority construction, such as in a

model where Σ1 induction fails, and so the 0′-priority method fails in general. We

show that in a model of P− + BΣ1 + Exp where IΣ1 fails (called a BΣ1 model),

by adopting a new approach, we can still construct a proper d-r.e. degree. The key

to the new approach is to exploit the definition of Turing reducibility in the setting

of BΣ1 models. In a model of weak induction, finite sets in the sense of the model

are used in place of singletons in the definition of Turing reducibility to ensure the

transitivity of ≤T . This fine difference in the definition of reducibility enables one

to construct a d-r.e. degree d that does not lie below 0′.∗ Such a d is not r.e.,

since every r.e. degree is Turing reducible to 0′. In fact, the existence of a proper

d-r.e. degree not below 0′ is not accidental. In any BΣ1 model, we show that every

d-r.e. degree below 0′ is r.e. Beyond this, we also exhibit a BΣ1 model in which

every degree below 0′ is r.e. The conclusion one draws from these results is that

in the absence of Σ1 induction, the structure of Turing degrees below 0′ presents a

relatively neater picture. The fact that it is possible for 0′ to bound only r.e. degrees

also looks intriguing and calls for further investigation.

1.3.2 Chapter 4 – Friedberg numbering

The idea of coding information using numbers was introduced by Kurt Gödel. In

the proof of his famous Incompleteness Theorem [16], Gödel effectively assigned to

∗In a BΣ1 model, a d-r.e. degree may not be below 0′, yet is still r.e. in 0′. Thus, any d-
r.e. degree is reducible to 0′′.

7



Chapter 1. Introduction

each formula a unique natural number. Generally, any map from ω onto a set of

objects, such as formulas, is called a numbering of the objects. For example, one

can follow Gödel to effectively list all Σ1 formulas, hence all r.e. sets, which we shall

refer to as the Gödel numbering of r.e. sets. In Chapter 4, we focus on numberings

f of recursively enumerable (r.e.) sets such that {(x, e) : x ∈ f(e)} is r.e.

A universal numbering is a recursive list of all r.e. sets. Gödel numbering is

universal. Yet, Gödel numbering is not one-one, as two Σ1 formulas may define

the same r.e. set. A natural question was raised by S. Tennenbaum: “Is there a

recursive list of all r.e. sets without repetition?” Essentially, the question asks for

an effective choice function of r.e. sets. Friedberg [15] gave an affirmative answer

to Tennenbaum’s question for the standard model ω of natural numbers. Thus, a

one-one universal numbering is said to be a Friedberg numbering. In [29], Kummer

simplified Friedberg’s proof by a priority-free argument. Kummer’s proof and Fried-

berg’s proof both use the method of effective approximation to search for the least

index of an r.e. set and obtain as a result a one-one enumeration of r.e. sets.

Our purpose in Chapter 4 is to investigate the existence of Friedberg numbering

in different models of computation: models of fragments of PA and initial segments

Lα of Gödel’s constructible universe, where α is Σ1 admissible.

An intuitive approach to analyzing the existence of a Friedberg numbering in

models of fragments of PA or Lα is illustrated in the following paragraphs.

Let {We} be a Gödel numbering in such a model. Then e is the least index of

We if

∀i < e (Wi 6= We). (1.1)

(1.1) is a Σ2 sentence preceded by a bounded quantifier. A careful examination of

known proofs shows that P−+ IΣ2 and α satisfying Σ2 replacement suffice to prove

the existence of a Friedberg numbering in the model. The most interesting situation

is then when IΣ2 or Σ2 replacement fails.

Though no priority method is required to construct a Friedberg numbering, in-

terestingly, we will show that IΣ2 is in fact necessary for the existence of a Friedberg

numbering in models that satisfy P− + BΣ2. Observe that BΣ2 reduces (1.1) to a

Σ2 formula as in the standard model ω. However, in a model satisfying BΣ2 but not

IΣ2, for an r.e. set W , there may not be an e satisfying (1.1) such that We = W .

Therefore, the straightforward extension of known proofs does not work. In the

8
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other direction, if e is the least index, BΣ2 suffices to establish an upper bound

of the least differences between We and all Wi, i < e. That property provides a

possible way to do a diagonalization argument to show that no one-one numbering

is universal, so that there is no Friedberg numbering.

For an Lα not satisfying Σ2 replacement, the lifting of the construction from

ω to α has another complication. Because of the failure of Σ2 replacement, (1.1)

is in fact Π3 and not Σ2. Hence the least index of an α-r.e. set, while it exists,

may not be effectively approximated. An analysis of this situation leads to different

outcomes. We give two examples to illustrate this point by way of the ordinals:

ωCK1 and ℵLω . Though LωCK1
does not satisfy Σ2 replacement, the collection of α-

r.e. sets can be arranged in order type ω through a Σ1 projection from ωCK1 into

ω. Then the construction may be carried out in the new ordering and yields the

existence of a Friedberg numbering. The second example ℵLω , however, does not have

the advantage of a Σ1 projection into a smaller ordinal, as ℵLω is a cardinal of L.

Here the lack of Σ2 admissibility and a Σ1 projection to a suitably smaller regular

ordinal results in the nonexistence of a Friedberg numbering for LℵLω . Our plan is

to extend the diagonalization argument in BΣ2 models to LℵLω . Since LℵLω does not

satisfy Σ2 replacement, in general, for We from (1.1), the least upper bound of the

least differences of We and all Wi, i < e, may be ℵLω . Nevertheless the situation is

different when We is α-finite. Suppose We is an α-finite set satisfying (1.1), then

ζ = supWe < ℵLω . Therefore for every i < e, if Wi 6⊇ We, then the least difference

between Wi and We is less than ζ. If Wi ) We, then there exists a large enough

ℵLn > ζ such that Wi,ℵLn ) We, since for every m < ω, 〈LℵLm ,∈〉 is a Σ1 elementary

substructure of 〈LℵLω ,∈〉. Also, note that the Π1 function: n 7→ ℵLn , allows an

arrangement of α-r.e. sets in blocks of length ℵL0 ,ℵL1 , . . .. By considering α-finite sets,

the diagonalization strategy for BΣ2 models may be extended to LℵLω block by block.

The argument for LℵLω can be generalized to an arbitrary Σ2 inadmissible cardinal

α. A further analysis leads to the characterization in Chapter 4 of the existence of a

Friedberg numbering in terms of the notions of tame Σ2 projectum (a Σ1 projection is

also tame Σ2) and Σ2 confinality of α (denoted as tσ2p (α) and σ2cf(α) respectively).

The notion of tσ2p (α) was introduced by Lerman [30] and σ2cf(α) was introduced

by Jensen [21] in his study of the fine structure theory of Gödel’s L. The precise

definitions of tσ2p (α) and σ2cf(α) are given in Section 4.2. In the two examples

9



Chapter 1. Introduction

shown here, tσ2p (ωCK1 ) = σ2cf(ωCK1 ) = ω, and tσ2p (ℵLω) = ℵLω > σ2cf(ℵLω) = ω.

They give some hints about the characterization of the existence of a Friedberg

numbering in Lα.

1.3.3 Chapter 5 – Recursive aspects of everywhere differen-

tiable functions

In Chapter 5, we apply results in hyperarithmetic theory and reverse mathematics to

analyze the complexities of everywhere differentiable functions on the closed interval

[0, 1].

Let C[0, 1] be the set of continuous functions on [0, 1] and D ⊂ C[0, 1] be the

collection of everywhere differentiable functions in C[0, 1]. Mazurkiewicz [33] (see

also [24]) proved that D is Π1
1 complete. In a general sense, his method of proof is

effective. In Chapter 5, we apply his method to show D = {e < ω : Φe describes an

everywhere differentiable function on [0, 1]} is Π1
1 complete (for subsets of ω). The

precise definition of “describe an everywhere differentiable function on [0, 1]” is in

Section 5.3.

The rank of an everywhere differentiable function in the context of descriptive

set theory was investigated by Kechris and Woodin [24]. They defined a natural

rank which associates each function in D with a countable ordinal. We call this

ordinal the Kechris-Woodin rank. Kechris-Woodin rank was given two descriptions

— in terms of well founded trees and in terms of Cantor-Bendixson type analysis.

Ranks defined in these two descriptions are essentially the same. For any non-liner

function f in D, the Kechris-Woodin rank of f in the sense of the first description is

ω times of the rank in the sense of the second description. In Chapter 5, we adopt

the latter description and denote the Kechris-Woodin rank of f by |f |KW. Also, we

extend this rank definition so that it applies to every function f in C[0, 1].

Before stating the results, let us review the Cantor-Bendixson analysis of a tree.

Consider the Cantor space 2<ω and let T ⊆ 2<ω be a tree. Let [T ] = {x ∈ 2ω :

∀n (x � n ∈ T ), i.e. x is a path in T}. The Cantor-Bendixson derivative of T ,

denoted as CB(T ), is

CB(T ) = {σ ∈ 2<ω : ∃x, y ∈ [T ] (x 6= y extend σ)}.

We may iteratively apply the Cantor-Bendixson derivative through the ordinals,

10
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i.e. let T0 = T and for every α > 0, let Tα =
⋂
β<α CB(Tβ). Using this hierarchy,

it is shown that any tree T in the Cantor Space, [T ] is either countable, or con-

tains a perfect subset. This result is called the Cantor-Bendixson theorem.
⋂
α Tα

is called the Cantor-Bendixson kernel of T and denoted as KerCB(T ), which is the

largest perfect subset of T . The least ordinal α such that Tα = KerCB(T ) is the

Cantor-Bendixson rank of T , denoted as |T |CB. In descriptive set theory and hyper-

arithmetic theory, we have the following results.

(i) For every α < ℵ1, there is a tree T such that [T ] is countable and |T |CB = α;

if α < ωCK1 , then the tree T can be made recursive.

(ii) For every tree T with [T ] countable, |T |CB < ℵ1; if T is recursive, then |T |CB <

ωCK1 .

(iii) For every tree T , |T |CB < ℵ1; if T is recursive, then |T |CB ≤ ωCK1 .

Given a continuous function f in C[0, 1], the Kechris-Woodin rank |f |KW is

defined in a similar manner. In [24], for every ε ∈ Q+ and closed set P ⊆ [0, 1], the

Kechris-Woodin derivative P ′f,ε of P is defined according to the derivative property

of f (see Chapter 5). We may iterate this operation as follows.

P 0
f,ε = [0, 1]

Pα
f,ε =

⋂
β<α(P β

f,ε)
′
f,ε, α > 0

Let αf (ε) be the least α such that Pα
f,ε =

⋂
β P

β
f,ε and its rank |f |KW = supε αf (ε).

The Kechris-Woodin kernel of f , KerKW(f) =
⋃
ε

⋂
α P

α
f,ε. As for Cantor-Bendixson

rank, the Kechris-Woodin rank satisfies the following properties.

(i) For any α < ℵ1 not zero, there is a function f ∈ D such that |f |KW = α; if

α < ωCK1 , then the function f can be constructed so that f has a recursive

description.

(ii) For any function f ∈ D, |f |KW < ℵ1; if f has a recursive description, then

|f |KW < ωCK1 .

(iii) For any function f ∈ C[0, 1], |f |KW < ℵ1; if f has a recursive description, then

|f |KW ≤ ωCK1 .

In Chapter 5, we discuss the hyperarithmetical aspects of these properties, their

descriptive set theoretic aspect was investigated by Kechris and Woodin [24].

11
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The correspondence between Cantor-Bendixson derivative and Kechris-Woodin

derivative is not coincidental. Clearly, whenever a derivative operation is defined

on a countable structure, the descriptive set theoretic aspects of properties (ii)–

(iii) hold. We prove that if the operation of derivative is hyperarithmetic, then the

hyperarithmetic aspects of properties (ii)–(iii) also hold (see Proposition 2.2.4). On

the other hand, the validity of (i) depends on the operator itself.

In reverse mathematics, it was shown that the existence of KerCB(T ) for every

tree T in a second order arithmetic model is equivalent to Π1
1-CA0. We end Chapter

5 by showing that a similar result for KerKW(f) is true.
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Chapter 2
Preliminaries

In this chapter, we give a summary of the background material involved in this

thesis.

2.1 First Order Arithmetic

Here we recall some useful facts about first order arithmetic. More details can be

found in [9, 22, 34, 36].

2.1.1 Fragments of Peano arithmetic

The language of first order arithmetic L(0, 1,+, ·, <) consists of variables x1, x2, x3 . . .

constants 0, 1, and functions + (plus), · (times).

Atomic formulas are t = s and t < s, where t and s are number theoretic

terms. Formulas are built up from atomic formulas, propositional connectives and

quantifiers. In formulas, we also use t ≤ s to denote (t < s) ∨ (t = s).

A formula of L(0, 1,+, ·, <) is Σn (Πn respectively) if it is of the form ∃x1∀x2 . . . θ

(∀x1∃x2 . . . θ respectively), where ∃x1∀x2 . . . (∀x1∃x2 . . . respectively) is n alternative

blocks of quantifiers, and θ is a formula containing only bounded quantifiers. A

formula is ∆n if it is both Σn and Πn.

P− consists of the usual axioms on arithmetical operations without induction as

13



Chapter 2. Preliminaries

follows.

∀x, y, z ((x+ y) + z = x+ (y + z)) ∀x, y (x+ y = y + x)

∀x, y, z ((x · y) · z = x · (y · z)) ∀x, y (x · y = y · x)

∀x, y, z (x · (y + z) = x · y + x · z)

∀x ((x+ 0 = x) ∧ (x · 0) = 0) ∀x (x · 1 = x)

∀x¬(x < x)

∀x, y, z ((x < y ∧ y < z)→ x < z) ∀x, y (x < y ∨ x = y ∨ y < x)

∀x, y, z (x < y → x+ z < y + z) ∀x, y, z (0 < z ∧ x < y → x · z < y · z)

∀x, y (x < y → ∃z x+ z = y)

0 < 1 ∧ ∀x (x > 0→ x ≥ 1) ∀x (x ≥ 0)

An induction principle may have different forms of expression. One of them,

called induction scheme, is the following:

∀x [(∀y < xϕ(y))→ ϕ(x)]→ ∀xϕ(x),

for every ϕ, possibly with parameters.

Another forms are the bounding scheme:

∀x (∀y < x ∃wϕ(y, w)→ ∃b ∀y < x ∃w < b ϕ(y, w)),

and the least number scheme

∃wψ(w)→ ∃w (ψ(w) ∧ ∀v < w (¬ψ(v))),

for any ϕ, possibly with parameters.

The Σn induction (Σn bounding, Σn least number principle respectively), denoted

by IΣn (BΣn, LΣn, respectively), is the induction scheme (bounding scheme, the

least number principle, respectively) restricted to Σn formulas.

Theorem 2.1. Let n ≥ 1. Assume P−+IΣ0 +Exp, where Exp says that ∀x ∃y (y =

2x).

(1) (Paris and Kirby) The following implications hold:

(a) BΣn ⇔ BΠn−1.

14



2.1 First Order Arithmetic

(b) IΣn ⇔ IΠn ⇔ LΣn ⇔ LΠn.

(c) BΣn+1 ⇒ IΣn ⇒ BΣn. Furthermore, the arrows do not reverse.

(2) (Gandy) BΣn ⇔ L∆n.

(3) (Slaman) BΣn ⇔ I∆n.

By Clause (1) of Theorem 2.1, the hierarchy of restricted induction

· · · ⇒ IΣ2 ⇒ BΣ2 ⇒ IΣ1 ⇒ BΣ1 (2.1)

does not collapse. Other forms of restricted induction, by Theorem 2.1 again, can

be reduced to the ones in (2.1).

2.1.2 Models of fragments of PA

Sets

Let M be a model of P− + IΣ0 + Exp. A subset of M is r.e., if it is Σ1 definable.

If the complement of an r.e. set is also Σ1 definable, then the set is recursive. The

set difference of two r.e. sets is called d-r.e. (difference of r.e. sets). In general, an

n-r.e. set is a set of the form A \D, where A is r.e. and D is (n− 1)-r.e., and n ≥ 2

(d-r.e. sets are 2-r.e. and r.e. sets are 1-r.e.).

A set D ⊂M is bounded, if there is a b ∈M such that D ⊆ [0, b). A bounded set

isM-finite, if it is represented by the binary expansion of some element inM∗. A set

is regular if its intersection with anyM-finite set isM-finite. To distinguish between

sets and numbers, in this chapter, we use lower case letters to denote numbers and

capital letters to denote sets.

Lemma 2.2 (H. Friedman). Let n ≥ 1 and M |= P− + IΣn. Then any Σn subset

of M is regular, and any partial Σn function maps a bounded set to a bounded set.

In particular, if M |= P− + IΣ1, then all r.e. sets and d-r.e. sets of M are regular.

Given an r.e. set A, let As ⊆ A be the collection of numbers enumerated into

A by stage s. Then As is M-finite for any s. For any d-r.e. set D, Ds is defined

similarly.

∗In general, a bounded set may not be M-finite. For instance, in any nonstandard model, the
set ω is bounded but not M-finite (and not regular).
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Suppose f :M2 →M is a partial function. We define its limit at x as follows:

lim
s
f(s, x) = y ↔ ∃t∀s > t (f(s, x) ↓= y).

Clearly, for every x ∈M and r.e. (d-r.e.) set F , lims Fs(x) = F (x).

Computation and degrees

Fix a ∆0 bijection 〈·, ·〉 :M2 →M such that

(i) 〈a, b〉 ≥ max{a, b} for all a, b ∈M, and

(ii) 〈·, ·〉 is strictly increasing with respect to each component.

By Σ1 induction, we define

〈z0, z1, . . . , zn+1〉 = 〈〈z0, z1, . . . , zn〉, zn+1〉,

for every n ∈ M \ {0} and z0, z1, . . . , zn+1 ∈ M. (Without Σ1 induction, functions

〈z0, z1, . . . , zn+1〉 are defined for every n < ω.)

An r.e. set Φ is a Turing functional if it satisfies the universal closure of the

following conditions:

(i) 〈X, z, P,N〉 ∈ Φ → ((z = 0 ∨ z = 1) ∧ (P ∩N = ∅)),

(ii) (〈X, z, P,N〉 ∈ Φ ∧ P ′ ∩N ′ = ∅ ∧ P ′ ⊇ P ∧N ′ ⊇ N ∧X ′ ⊆ X)

→ 〈X ′, z, P ′, N ′〉 ∈ Φ,

(iii) (〈X, z, P,N〉, 〈X, z′, P,N〉 ∈ Φ)→ z = z′.

Here, M-finite sets X, P , N etc. are identified with their representations of binary

expansion. Intuitively, for a Turing functional Φ, 〈X, z, P,N〉 ∈ Φ means the pro-

gram Φ with input X produces output z, whenever P is some positive part of the

oracle and N is some negative part of the oracle.

Let {We}e∈M be an effective enumeration of all r.e. sets. Any We and its enu-

meration could be modified uniformly and recursively to produce an r.e. Turing

functional Φe such that:

(i) If We is a Turing functional, then Φe = We.
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(ii) For every stage s and computation 〈X, z, P,N〉 ∈ Φe,s, the M-finite sets

X,P,N are subsets of [0, s).

(iii) Φe satisfies the local downward closer property with respect to Φe,s:

For any stage s and computation 〈X, z, P,N〉 ∈ Φe,s, if Y is anM-finite subset

of X, then 〈Y, z, P,N〉 ∈ Φe,s.

Note that the modification could be uniformly recursive, so the enumeration of all

r.e. Turing functionals {Φe}e∈M is recursive.

Given A,B ⊆ M, A is said to be Turing reducible (or reducible, for short) to

B, denoted by A ≤T B, if there is an r.e. Turing functional Φ such that for every

M-finite set X,

X ⊆ A ⇔ ∃P ∃N (P ⊆ B ∧ N ⊆ B ∧ 〈X, 1, P,N〉 ∈ Φ),

X ⊆ A ⇔ ∃P ∃N (P ⊆ B ∧ N ⊆ B ∧ 〈X, 0, P,N〉 ∈ Φ).

In the above definition, if Φ = Φe, then we say A ≤T B via Φe (in symbols A = ΦB
e ).

Turing degrees, r.e. degrees, etc, are defined as usual.

Turing reducibility is also called strong reducibility or setwise reducibility. They

are defined so against the notion of weak reducibility or pointwise reducibility (de-

noted by ≤p), which is obtained by substituting an element “x” for anM-finite set

“X” in the definition of Turing functional and Turing reducibility. Turing reducibil-

ity is transitive and stronger than weak reducibility, but weak reducibility needs not

be transitive.

Now we fix the following notations. Suppose Φi is a Turing functional, We is an

r.e. set. Then for any stage s,

ΦWe
i [s] = {〈X, z, P,N〉 ∈ Φi,s : P ⊆ We,s, N ⊆ W e,s}.

That is, ΦWe
i [s] is a collection of computations consistent with We from the view

of stage s. Since Φi is a Turing functional, ΦWe
i [s] is also self consistent, i.e. the

universal closure of the following formula holds:

〈X, z, P,N〉 ∈ ΦWe
i [s] → 〈X, 1− z, P ′, N ′〉 6∈ ΦWe

i [s].

Note that ΦWe
i also satisfies the local downward closure property with respect to

ΦWe
i [s].
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Now suppose M is a model of BΣ1. If 〈X, z, P,N〉 ∈ Φi such that P ⊆ We

and N ⊆ W e, then 〈X, z, P,N〉 ∈ ΦWe
i [s] for all large enough stages s. If M also

satisfies IΣ1, then we can define ΦD
i [s] similarly. Here, IΣ1 is required to ensure

that whenever 〈X, z, P,N〉 ∈ Φi, P ⊆ D, N ⊆ D and s is large enough, we have

P ⊆ Ds and P ⊆ Ds so that 〈X, z, P,N〉 ∈ ΦD
i [s].

BΣn model

Let n ≥ 1. A modelM |= P−+ IΣ0 + Exp is said to be a BΣn model, ifM |= BΣn

and M 6|= IΣn. Clause (1) of Theorem 2.1 asserts that there exists a BΣn model.

An analysis of BΣn models is needed to study the relationship between fragments

of PA and theorems in recursion theory proved under IΣn. A theorem is equivalent

to IΣn over BΣn, if it is provable by IΣn but fails in every BΣn model.

A subset I of M is a cut, if I is a nonempty proper initial segment of M and

closed under successor. A partial function onM is cofinal if its range is unbounded

in M.

Lemma 2.3 ([5]). Let M |= P− + BΣn + Exp. Then M is a BΣn model if and

only if there exists a Σn cut I with a ∆n function f : I →M such that f is strictly

increasing and cofinal.

Assume A ⊆ M. A set G ⊆ A is said to be coded on A if there is an M-finite

set X such that X ∩ A = G. Let n ≥ 1. A set G ⊆ A is ∆n on A if G and A \ G
are both Σn.

Lemma 2.4 (Chong and Mourad [5]). SupposeM |= P−+BΣn+Exp and A ⊆M.

Then every set bounded and ∆n on A is coded on A. In particular, any ∆n set of

M is regular and any bounded ∆n set is M-finite.

The above lemma makes more sense for BΣn models. In a BΣn model, as

its induction principle is weak, classical proofs of a theorem usually do not work.

Nevertheless, by Lemma 2.4, some information, which is ∆n on a Σn cut I, is coded

on I. Such a code is employed as a parameter in a proof of either the theorem or its

negation. An example is Lemma 2.5, which states an induction principle on a Σn

cut. More examples are seen in Sections 3.1, 3.2 and 4.1.
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To fix notations, we use [a, b] ([a, b) respectively), where a < b ∈ M, to denote

the set {x ∈ M : a ≤ x ≤ b} ({x ∈ M : a ≤ x < b} respectively). We use 2I to

represent the set {x ∈ M : x < 2i for some i ∈ I}. If f is a function, we will use

dom(f) to denote the domain of f and use ran(f) to denote the range of f . (The

notations of dom(f) and ran(f) will have the same meaning for functions f in other

sections and chapters).

A number z is said to code a partial function if it codes an M-finite set D and

D is the graph of a partial function.

Lemma 2.5. Suppose M is a BΣn model with n ≥ 2, I ⊂ M is a Σn cut, a0 ∈
{0, 1}, and h : I × 2I → {0, 1} is total on I × 2I and Σn definable. Let G ⊆ I be

defined by iterating h:

G(0) = a0

G(i+ 1) = h(i, G � [0, i]), if i ∈ I and G � [0, i] is M-finite.

Then for every i ∈ I, G(i) is uniquely defined. Thus, G is ∆n on I and coded on I.

Proof. It follows immediately from the definition that

G(i) = y ↔ [(i ∈ I) ∧ ∃z (z codes a partial function∧

z(0) = a0 ∧ ∀j < i (z(j + 1) = h(j, z � [0, j])) ∧ z(i) = y)].

Therefore, G is Σn definable† and dom(G) ⊆ I is a Σn cut of M. By IΣ1 (which

follows from BΣn, for n ≥ 2), G(i) is unique for any i ∈ dom(G).

To see that dom(G) = I, choose an arbitrary i ∈ I, and we only need to show

dom(G) ⊇ [0, i]. For any j ≤ i,

G(j) = y ↔ ∃z < 2i+1 (z codes a partial function∧

z(0) = a0 ∧ ∀k < j (z(k + 1) = hi(j, z � [0, k])) ∧ z(j) = y), (2.2)

where hi = h � [0, i] × [0, 2i+1]. The function hi is total on [0, i] × [0, 2i+1], so hi is

∆n definable. In addition, hi is bounded. Lemma 2.4 implies that hi is M-finite.

Then the right hand side of (2.2) is Σ0. Thus, dom(G) ⊇ [0, i].

†G may not be ∆n definable. In fact, dom(G) = I as we see in the rest of the proof. Therefore,
G(i) may be equal to 1 for all i ∈ I (i.e. as a set, G may be equal to I), in which case G is not Σn
definable.
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Computation and cut

Now we suppose M is a BΣ1 model, I is a Σ1 cut in M, a ∈M is greater than all

numbers in I, and {Φe}e∈M is a recursive enumeration of all r.e. Turing functionals

of M. The following two lemmas are straightforward.

Lemma 2.6. For every nonempty M-finite set X,

X ⊆ I ↔ maxX ∈ I,

X ⊆ I ↔ minX ∈ I,

where maxX (minX, respectively) is the maximum (minimum) element in X.

Lemma 2.7. For any set G ⊆M, I ≤T G if and only if I ≤p G.

For every e, s ∈M, we define

ΨI
e[s] = {〈X, z, n〉 : ∃P ⊆ Is ∃N ⊆ Is (〈X, z, P,N〉 ∈ ΦI

e[s] ∧ n = min(N ∪ {a}))}.
(2.3)

That is, we only consider the minimum element of the negative condition of the

computation. ΨI
e also satisfies local downward closure property with respect to ΨI

e[s].

If G = ΦI
e, then for any M-finite set X,

X ⊆ G ↔ ∃n ∈ I (〈X, 1, n〉 ∈ ΨI
e),

X ⊆ G ↔ ∃n ∈ I (〈X, 0, n〉 ∈ ΨI
e).

Therefore, we also say that G ≤T I via Ψe or G = ΨI
e. {ΨI

e}e∈M can be seen as a

recursive enumeration of all r.e. Turing functionals with oracle I.

2.2 Second Order Arithmetic

In this section, We recall some useful facts about second order arithmetic. The

reader may consult [39, 44] for details.

2.2.1 Language and analytic hierarchy

The language of second order arithmetic is a two sorted language. 0 and 1 are

constant symbols. Variables include number variables m,n, k ranging over ω (the
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set of natural numbers), and set variables X, Y, Z ranging over P(ω) (the power set

of ω). Quantifiers in front of number variables are number quantifiers, and those in

front of set variables are set quantifiers. Functions include + (plus) and · (times).

Atomic formulas are t = s, t < s and X(n) = k, where t and s are number

theoretic terms, n is a number variable and k = 0 or 1. Analytical formulas are

built up from atomic formulas, propositional connectives and quantifiers as usual.

A formula without any quantifier is Σ0. We say a formula ϕ is arithmetic , if ϕ only

contains number quantifiers. An arithmetic formula ϕ is Σ0
n (or Σn for short), if

there is a Πn−1 formula ψ such that ϕ is in the form of ∃nψ(n). A formula is Π0
n (or

Πn for short), if its negation is Σn. A formula is ∆n if it is both Σn and Πn.

Now we define the analytic hierarchy. Let Σ1
0 = Π1

0 denote arithmetic formulas.

As in the arithmetic hierarchy, a formula ϕ is Σ1
n if there is a Π1

n−1 formula ψ such

that ϕ is in the form of ∃Xψ(X). Similarly, we define Π1
n and ∆1

n formulas.

An arithmetical formula R(X,m) is recursive if there is an index e such that ΦX
e

is total and for all X and m,

R(X,m) ↔ ΦX
e (m) = 1.

Proposition 2.2.1 (Kleene, 1955). Every analytical formula ϕ(X,m) can be put in

one of the following forms:

A(X,m) ∃Y ∀nR(X, Y,m, n) ∃Z ∀Y ∃nR(X, Y, Z,m, n) . . .

∀Y ∃nR(X, Y,m, n) ∀Z ∃Y ∀nR(X, Y, Z,m, n) . . .

where A is arithmetic and R is recursive.

2.2.2 Hyperarithemtic theory

Kleene’ s O and hyperarithmetic sets

The well ordering <O over ω is the smallest subset of ω2 such that

(i) 1 <O 2.

(ii) ∀n (n is in the field of <O→ n <O 2n).

(iii) ∀e (Φe is a total function ∧∀n (Φe(n) <O Φe(n+ 1)) → ∀n (Φe(n) <O 3 · 5e)).

(iv) ∀i ∀j ∀k (i <O j ∧ j <O k → i <O k).
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Kleene’ s O is the field of <O. The function | |O : O → Ord, where Ord is the

class of ordinals, is defined by induction as follows.

|1|O = 0

|2n|O = |n|O + 1, n ∈ O

|3 · 5e|O = sup
n
|Φe(n)|O, 3 · 5e ∈ O

Let ωCK1 = sup{|n|O : n ∈ O}.

Now we iterate the Turing jump through O.

H1 = ∅

H2n = (Hn)′ n ∈ O

H3·5e = {(n,m) : m ∈ HΦe(n), 3 · 5e ∈ O}

A set A is hyperarithmetic if A ≤T Hn for some n ∈ O.

Theorem 2.8 (Kleene, [39]). Hyperarithemtic sets are exactly the ∆1
1 sets.

Π1
1 completeness

A Π1
1 set A ⊂ ω is Π1

1 complete if every Π1
1 set is many-one reducible to A.

Lemma 2.9. There is a Π1
1 set that is not Σ1

1. Thus, if A is Π1
1 complete, then A

is not Σ1
1.

Suppose T is a tree. A function f : T → Ord is order preserving if for all

σ, τ ∈ T , σ ( τ implies that f(σ) < f(τ). We say T is well founded if [T ] = {p ∈
ωω : ∀n (p � n ∈ T )} is empty.

Lemma 2.10 ([39]). Suppose T ⊆ ω<ω is a recursive tree. Then T is well founded

if and only if there is an order preserving function f : T → ωCK1 .

Let {Te}e<ω be a recursive list of all (partial) recursive functions from ω<ω to

{0, 1}. For every σ ∈ ω<ω, we say Te,s(σ) = j, if Te(σ) converges within s steps

and is equal to j. Call Te describes a well founded tree if Te is a total function and

{σ ∈ ω<ω : Te(σ) = 1} is a well founded tree. Define

WF = {e < ω : Te describes a well founded tree}.
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Proposition 2.2.2 ([39]). WF and O are Π1
1 complete. Therefore, WF and O are

not Σ1
1.

Lemma 2.11. Suppose <∗ is a Σ1
1 well ordering over ω. Then the order type of <∗

is less than ωCK1 .

Proof. For the sake of a contradiction, we assume <∗ is a Σ1
1 well ordering of order

type at least ωCK1 . Then

n ∈WF ↔ (Tn is total) ∧ {σ ∈ ω<ω : Tn(σ) = 1} is a tree∧

∃f (f : ω<ω → ω ∧ ∀σ ∀τ (σ ( τ ∧ Tn(τ) = 1 → f(σ) <∗ f(τ))).

That is a contradiction since WF is not Σ1
1.

Proposition 2.2.3 ([39]). Given any linear ordering R over ω, WO(R), which states

that R is a well ordering, is Π1
1 not Σ1

1.

Inductive definitions

Suppose A ⊆ ω and Γ(A) = {Γn(A)}n<ω is a sequence of functions from 2ω to

2ω. We define the arithmetic or hyperarithmetic complexity of Γ to be that of the

predicate m ∈ Γn(X). Γ is monotonic if Γn(A) ⊇ Γn(B) for all A ⊇ B and every n.

For each n < ω and ordinal α, define Γαn(A) as follows:

Γ0
n(A) = A

Γα+1
n (A) = Γαn(A)∪Γn(Γα(A))

Γλn(A) =
⋃
α<λΓ

α
n(A) λ is a limit ordinal.

Since ω is countable, there is a least countable ordinal α(Γn, A), such that for all

α ≥ α(Γn, A), Γαn(A) = Γ
α(Γn,A)
n (A) = Γ∞n (A). Let the rank of Γn(A) be |Γn(A)| =

α(Γn, A) and the rank of Γ(A) be |Γ(A)| = the least α ≥ |Γn(A)| for all n. Then

|Γ(A)| < ℵ1.

Proposition 2.2.4 was originally proved by Spector [48] in 1955. His result applies

to any Γ that is Π1
1. Here we give a different but simpler proof for hyperarithmetic

Γ. And that suffices for our discussion in Chapter 5.
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Proposition 2.2.4 (Spector). Suppose Γ is monotonic and hyperarithmetic, and A

is hyperarithmetic. Then |Γ(A)| ≤ ωCK1 . If moreover, Γ∞n (A) = ω for all n, then

|Γ(A)| < ωCK1 .

Proof. Note that we only need to prove the proposition for A = ∅ instead of the

general case. For an arbitrary hyperarithmetic A, we consider Γ∗(∅) = {Γ∗n(∅)}n<ω
defined by m ∈ Γ∗n(X) if and only if m ∈ Γ∗(X) or m ∈ A. Then Γ∗ preserves

hyperarithmetic and monotonic properties, and |Γ∗| = |Γ(A)|, whenever |Γ| ≥ ω.

We may further assume ∀mΓm(A) = Γ0(A) (then |Γ(A)| = |Γ0(A)|) for the

following reason. Let A∗∗ = {(n, x) : x ∈ A}. Then A∗∗ is also hyperarithmetic. For

all m and X, define

Γ∗∗m (X) = {(n, x) ∈ ω2 : x ∈ Γn(X [n])},

where X [n] = {x : (n, x) ∈ X} is the nth column of X. Then Γ∗∗ = {Γ∗∗n }n<ω
preserves hyperarithmetic and monotonic properties, and |Γ∗∗(A∗∗)| = |Γ∗∗0 (A∗∗)| =

|Γ(A)|.

For the rest of this proof, we always assume A = ∅ and ∀nΓn(A) = Γ0(A) with

Γ0(∅) 6= ∅. We denote Γ0(A) by Γ.

For every n ∈ Γ∞, we define its rank by rank(n) = the least α such that n ∈ Γα+1.

Now we define a liner order <∗ over Γ∞:

m <∗ n ↔ (rank(m) < rank(n)) ∨ ( rank(m) = rank(n) ∧ m < n).

Then <∗ is a well ordering over Γ∞ and the order type of <∗ is at least |Γ|.

We claim that for all k ∈ Γ∞,

(m,n ∈ Γ∞ ∧ rank(m), rank(n) < rank(k) ∧ m <∗ n) ↔

∃R ∃X [R ∈ LO0 ∧X [0] = ∅∧∀i ∈ F (R) [i > 0→

(X [i] =
⋃
jRiΓ(X [j])∧ k 6∈

⋃
jRiX

[j])]

∧ [∃i ∈ F (R) (n 6∈ X [i] ∧ m ∈ X [i])

∨ ∀i ∈ F (R) ((m ∈ X [i] ↔ n ∈ X [i]) ∧ m < n)]], (2.1)

where LO0 is the collection of all the linear ordering over ω such that 0 is the least

element, and F (R) = {n < ω : ∃m < ω (mRn ∨ nRm)} is the field of R.
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If (2.1) is true, then any initial segment of <∗ is a Σ1
1 well ordering. By Lemma

2.11, |Γ| ≤ ωCK1 . Suppose Γ∞ = ω and |Γ| is a limit ordinal. Then m <∗ n if and

only if there exists k such that rank(m), rank(n) < rank(k) and m <∗ n. By (2.1),

<∗ is hyperarithmetic and so |Γ| < ωCK1 .

It remains to prove our claim (2.1). The direction from left to right is obvious

and we only check the direction from right to left by showing R is a well ordering.

Suppose R and X satisfy the matrix of the right hand side. Then for every i ∈ F (R),

let α(i) =the least α such that Γα+1 6⊆
⋃
jRiX

[j] (α(i) exists since k ∈ Γ∞\
⋃
jRiX

[j]).

Now we will show that

jRi → α(j) < α(i).

For all j,
⋃
lRj X

[l] ⊇
⋃
α<α(j) Γα+1 = Γα(j). Therefore, for all jRi,

⋃
jRiX

[j] ⊇
Γα(j)+1. Then α(j) < α(i). Thus, R is a well ordering.

Recall in Chapter 1, we defined the Cantor-Bendixson derivative and rank as

follows. Let T ⊆ 2<ω be a tree and [T ] = {x ∈ 2ω : ∀n (x � n ∈ T )}. The

Cantor-Bendixson derivative of T , denoted as CB(T ), is

CB(T ) = {σ ∈ 2<ω : ∃x, y ∈ [T ] (x 6= y extend σ)}.

We may iteratively apply the Cantor-Bendixson derivative through the ordinals,

i.e. let T0 = T and for every α > 0, let Tα =
⋂
β<α CB(Tβ). The least ordinal α such

that Tα =
⋂
β Tβ is the Cantor-Bendixson rank of T (denoted |T |CB).

Consider the Cantor-Bendixson derivative to be on the complement of a tree T .

Then this operation is monotone and hyperarithmetic. Thus, by Proposition 2.2.4,

|T |CB ≤ ωCK1 . If
⋂
α Tα = ∅, then |T |CB < ωCK1 .

2.2.3 Reverse mathematics

The axioms of second order arithmetic are the following.

(i) Basic axioms: P−.

(ii) Induction axiom: (0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X)) → ∀n (n ∈ X).

(iii) Comprehension scheme: ∃X ∀n (n ∈ X ↔ ϕ(n)), where ϕ(n) is an analytic

formula (possibly with parameters).
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Subsystems of second order arithmetic included RCA0, WKL0, ACA0, ATR0 and

Π1
1-CA0 in a strictly increasing logical strength order. In this thesis, we focus on the

last three principles. Each of ACA0, ATR0 and Π1
1-CA0 includes basic axioms and

induction axiom. ACA0 and Π1
1-CA0 contain the comprehension schema restricted to

arithmetic formulas and Π1
1 formulas respectively. ATR0 is ACA0 plus the following

principle

∀R (WO(R) → ∃X Hθ(R,X)),

where θ is arithmetical and Hθ(R,X) is a formula which says that R is a linear

order, and for all i in the field of R, X [i] = {n : θ(n,
⋃
jRi({j} ×X [j]))}.

Proposition 2.2.5 (Simpson, [44]). The following are equivalent over ACA0.

1. Π1
1 comprehension.

2. For any sequence of trees {Tk}k<ω, Tk ⊆ ω<ω, there exists a set X such that

∀k(k ∈ X ↔ Tk has a path).

Recall the Cantor-Bedixson kernel we defined in Chapter 1 (see also Section

2.2.2).

Proposition 2.2.6 (Simpson, [44]). Over ACA0,

(1) ATR0 implies that for any tree T ⊆ ωω either KerCB(T ) = ∅ or T contains a

nonempty perfect subtree.

(2) Π1
1 comprehension holds if and only if KerCB(T ) exists for every T ⊆ ωω.

2.3 α-Recursion

We recall some basic definitions and results in α-recursion theory. A detailed intro-

duction to the subject can be found in [2, 31, 32, 39].

2.3.1 Admissible ordinals

The language of α-recursion theory is the language of Zermelo-Fraenkel set theory

(ZF). Formulas and Levy hierarchy of formulas are defined as usual. Given a formula
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ϕ, we write µxϕ(x) to denote the least ordinal x such that ϕ(x) holds, and [x, y]

([x, y) respectively) to denote {z : x ≤ z ≤ y} ({z : x ≤ z < y} respectively). An

ordinal α is said to be Σ1 admissible if Lα satisfies Σ1 replacement.

Suppose α is a Σ1 admissible ordinal. A set is α-r.e., if it is Σ1 definable over

Lα. If the set is ∆1 definable over Lα, then it is α-recursive. A set is α-finite

if it is in Lα. A set is regular if its intersection with any α-finite set is still α-

finite. For each nonempty α-finite set C ⊂ α, define supC = µy ∀x ∈ C(x < y),

max∗C = µy ∀x ∈ C(x ≤ y), minC = µx (x ∈ C). Given a non-empty α-finite set

C, the least element minC always exists, however there may not be the maximal

element maxC in C. If maxC exists in C, then max∗C = maxC; if there is no

maximal element in C, then by their definitions max∗C = supC.

Suppose β < δ ≤ α. β is said to be δ-stable, if Lβ ≺1 Lδ. β is said to be

an α-cardinal if there is no α-finite one-to-one correspondence between β and any

γ < β. Every α-cardinal greater than ω is α-stable.

Each α-finite set has an α-cardinality. The α-cardinality of an α-finite set C is

denoted by |C|α.

Recall that there exists a one-one, α-recursive (total) function f that maps α

onto Lα. That is, α-finite sets can be effectively coded as ordinals. Thus, there is

no harm in identifying α-finite sets with ordinals below α, and identifying subsets

of Lα with subsets of α. From now on, by an α-r.e. set without specification, we

always mean an α-r.e. subset of α. Also, f yields a recursive bijection from α2 to α.

Fix such a bijection, and denote it by 〈·, ·〉.

It is straightforward to verify that there is a Gödel numbering of α-r.e. sets,

which we denote as {We}e<α. For an arbitrary numbering {Ae}e<α and any stage

η < α, the set Ae,η is defined to be the collection of elements which are less than η

and are enumerated into Ae by stage η. In other words, suppose x ∈ Ae if and only

if ∃y ϕ(e, x, y), where ϕ is Σ0, then Ae,η = {x < η : ∃y < η ϕ(e, x, y)}.

2.3.2 Σn projectum and cofinality

Let n ≥ 1. The Σn projectum of α, denoted by σnp (α), is defined to be the least

ordinal β such that there is a Σn (partial) function from β onto α.

Theorem 2.12 (Jensen, [21]). σnp (α) is the least β such that some Σn (over Lα)
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subset of β is not α-finite. Thus, if I ⊂ α is an α-finite set such that |I|α < σnp (α),

then each Σn subset of I is α-finite.

The Σn cofinality of δ ≤ α, denoted by σncf (δ), is defined to be

µγ ∃f
[
f : γ

one-one−−−−→ δ, (total on γ), is Σn over Lα and f is cofinal (in δ)
]
.

It is obvious that σnp (α) and σncf(α) are α-cardinals.

2.3.3 Tameness

The notion of tameness was introduced by Lerman [30]. It has many applications,

especially in constructions involving Σ2 functions.

Let f : β → α for some β ≤ α. Then f is said to be tame Σ2 if it is total and

there exists an α-recursive f ′ such that

∀γ < β ∃τ ∀x < γ ∀η > τ (f ′(η, x) = f(x)).

Such an f ′ is said to tamely generate f . The tameness of f refers to the way f ′

approximates f on proper initial segments of dom(f). A Σ2 function need not be

tame Σ2.

The tame Σ2 projectum of α, denoted by tσ2p (α), is defined to be

µβ ∃f
[
f : β

one-one−−−−→
onto

α, (total on β), is tame Σ2

]
.

A set is tame Σ2 if its characteristic function is tame Σ2. Analogous to σ2p (α),

we have

Lemma 2.13 (Simpson, [2, 31]). tσ2p (α) is the least β such that not every tame

Σ2 subset of β is α-finite.

Lemma 2.14 ([31]). For all δ ≤ α, there exists a strictly increasing tame Σ2 cofinal

function f : σ2cf(δ)→ δ. Every Σ2 function from ϑ ≤ σ2cf(α) to α is tame.

Corollary 2.15 ([2, 31, 39]). (1) ω ≤ σ2cf(α) ≤ tσ2p (α) ≤ σ1p (α) ≤ α,

(2) σ2cf(σ1p (α)) = σ2cf(tσ2p (α)) = σ2cf(α).
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Corollary 2.16 (Local Σ2 Replacement). Let a < σ2cf (α) and R ⊆ α×α be a Σ2

relation. Then

∀x < a∃y R(x, y)→ ∃z ∀x < a∃y < z R(x, y). (2.1)

Moreover,

∀x < a∃y < σ2cf(α)R(x, y)→ ∃z < σ2cf(α)∀x < a∃y < z R(x, y). (2.2)

Proof. (2.1) is immediate from the definition of σ2cf (α). By Lemma 2.14, it is

straightforward to get (2.2) from (2.1). We omit the details here.
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Chapter 3
Degree Structures Without Σ1 Induction

3.1 Proper D-r.e. Degree and Σ1 Induction

Cooper [12] proved the existence of a proper d-r.e. degree in the standard model ω,

using a 0′-priority construction. As we see in Section 3.1.1, his proof remains valid

under the weaker assumption of Σ1 induction. The remain problem is therefore the

converse: is Σ1 induction necessary for the existence of a proper d-r.e. degree? In

Section 3.1.2, we give a negative answer to this question.

3.1.1 IΣ1 implies the existence of a proper d-r.e. degree

Theorem 3.1 (Kontostathis [26]). Let M |= P− + IΣ1. Then there exists a d-

r.e. set D such that D 6≡T W for any r.e. set W .

Proof. Suppose M |= P− + IΣ1. Let {We}e∈M, {Φe}e∈M, and functions 〈·, . . . , ·〉
be as above. The objective in the construction is to meet, for all e, i, j ∈ M, the

requirement

R〈e,i,j〉 : D 6= ΦWe
i or We 6= ΦD

j .

In M, we can perform Cooper’s construction by Σ1 induction. Moreover, by Σ1

induction again, each requirement R〈e,i,j〉 is injured at most 3〈e,i,j〉 − 1 times. To
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show R〈e,i,j〉 is satisfied, we consider

A〈e,i,j〉 = {〈e′, i′, j′, k〉 : 〈e′, i′, j′〉 < 〈e, i, j〉 ∧R〈e′,i′,j′〉
receives attention at least k times}

is bounded and Σ1, therefore is M-finite by Lemma 2.2. Thus the range of the

recursive function f : A〈e,i,j〉 →M defined by

f(〈e′, i′, j′, k〉) = µs (R〈e′,i′,j′〉 receives attention at least k times by stage s)

is bounded. Suppose ran(f) ⊆ [0, s). Then after stage s, R〈e,i,j〉 is never be injured

and receives attention at most twice and R〈e,i,j〉 is satisfied eventually.

Remark. Let D = A\B, where A and B are r.e. such that B ⊆ A. IΣ1 implies

that A and B are regular. Then by IΣ1,

X ⊆ D ↔ X ⊆ A∧X ⊆ B, (3.1)

X ⊆ D ↔ ∃X1 ⊆ A ∃X2 ⊆ B (X = X1 ∪X2), (3.2)

for everyM-finite set X. Hence, P−+ IΣ1 is sufficient to show that every d-r.e. set

is Turing reducible to ∅′ and that there is a proper d-r.e. degree below 0′ by Theorem

3.1.

Suppose M is a BΣ1 model. Then (3.1) remains valid but (3.2) fails: if X ⊆ D

and A is not regular, then X2 = X ∩ A (a subset of B) may not be M-finite. For

this reason, D may not be reducible to ∅′. The observation here will be important

for our construction of a proper d-r.e. degree (not below 0′) in a BΣ1 model.

3.1.2 BΣ1 implies the existence of a proper d-r.e. degree

Theorem 3.2. IfM |= P−+BΣ1 +Exp, then there is a proper d-r.e. degree inM.

By Theorem 3.1, we only need to show the existence of a proper d-r.e. degree in

any BΣ1 modelM. Suppose I ⊆M is a Σ1 cut, a is an upper bound of all numbers

in I, and f : I →M is a ∆1 strictly increasing cofinal function.

The difficulty of applying the 0′-priority method in a BΣ1 model is as follows.

Fix a requirement Re and suppose each requirement Re′ , e
′ < e is injured only M-

finitely many times. Then the set Ae = {〈e′, n〉 : e′ < e ∧ Re′ requires attention at
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least n times} is r.e. Without IΣ1, the enumeration of Ae may not terminate at any

stage s and there may not be any opportunity to satisfy Re.

Proof of Theorem 3.2. We will construct a d-r.e. set D such that D 6≤T ∅′ in stages

along the cut I, without the use of a priority argument. (At any stage i ∈ I, we

compute f(i) many steps.) For every e ∈M, the requirement is

Qe : D 6= Φ∅
′

e .

The strategy of meeting a requirement Qe is to attach a witness Xe = [ea, (e+ 1)a)

to Qe and to look for a stage i > 0 such that

Φ∅
′

e [f(i− 1)] � Xe = ∅.

If no such stage exists, Qe is automatically satisfied with witness Xe. If i exists,

then we enumerate ea+ i into D at stage i. Now consider whether there is a stage

j > i such that

Φ∅
′

e [f(j − 1)] � Xe = {ea+ i}.

If there is no such stage j, then Qe is satisfied, as Φ∅
′
e � Xe 6= {ea+ i} = D � Xe. If

j exists, then we extract ea+ i from D at stage j, look for a stage k > j such that

Φ∅
′

e [f(k − 1)] � Xe = ∅,

and repeat the strategy over again.

Notice that different requirements here do not conflict with one another and this

strategy allows us to accommodate all requirements simultaneously.

According to the strategy, the function 〈i, e〉 7→ 〈f(i), Df(i) � Xe〉 is recursive,

where e ∈ M and i ∈ I. Thus by BΣ1 which is equivalent to I∆1 according to

Theorem 2.1, we can easily prove the following results:

(i) For every x ∈M, x is enumerated into D at most once and is extracted from

D at most once,

(ii) For every e ∈M and i ∈ I, there is at most one element in Df(i) � Xe.

Therefore, D is d-r.e. and D � Xe contains at most one element.

For the sake of a contradiction, suppose Qe is not satisfied.
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Case 1. D � Xe = Φ∅
′
e � Xe = ∅. Suppose i ∈ I is a stage such that there is a

computation 〈Xe, 0, P,N〉 ∈ Φ∅
′
e [f(i−1)], where P has been enumerated as a subset

of ∅′ by stage f(i− 1) and N ⊆ ∅′. Let j ≥ i be the first stage by which the element

in Df(i) � Xe, if any, is extracted from D (such a stage exists for D � Xe = ∅).
Then at stage j + 1, the element ea+ j + 1 is enumerated into D and will never be

extracted, contradicting the assumption that D � Xe = ∅.

Case 2. D � Xe = Φ∅
′
e � Xe = {ea + i}. Then D � Xe = Df(i) � Xe = Φ∅

′
e [f(j)] �

Xe for some j > i. Thus ea + i is extracted from D at stage j. Again, that is a

contradiction.

The cut I plays a significant role in the proof of Theorem 3.2. It exploits the

recursive cofinal function f and compresses time and space to achieve the diagonal-

ization against Φ∅
′
e for every e. Notice that the set D constructed in the proof of

Theorem 3.2 is unbounded. With the aid of I, we can actually further compress the

space and construct a bounded d-r.e. set D 6≤T ∅′.

3.1.3 Bounded sets

Let M, I, a, f be as in Section 3.1.2. Suppose D = A \ B, where A and B are

bounded r.e. sets and B ⊆ A. Let b be an upper bound of all elements in A. We

may further assume that Af(0) = Bf(0) = ∅ and for all i ∈ I, Bf(i+1) ⊆ Af(i) (this is

to ensure that, along the time axis I, none appears in B before it is enumerated in

A). Since the set

H = {(x, i) : x < b, i ∈ I, x ∈ (Af(i) \ Af(i−1)) ∪ (Bf(i) \Bf(i−1))}, (3.3)

which records the stages of enumeration, is ∆1 on [0, b)× I, H is coded by Lemma

2.4. Suppose Ĥ ⊆ [0, b) × [0, a) is a code of H satisfying for every x < b, there

are exactly two i’s such that (x, i) ∈ Ĥ. Define ix = min{i < a : (x, i) ∈ Ĥ} and

jx = max{i < a : (x, i) ∈ Ĥ}. Then for every x < b,

jx ∈ I → x ∈ D, (ix ∈ I ∧ jx ∈ I) → x ∈ D, ix ∈ I → x ∈ D.

Fix e ∈M. To ensure D 6= Φ∅
′
e , we need to implement a diagonalization strategy

as in Theorem 3.2. Given any r.e. set R, we say x that escapes from computation

ΦR
e at stage s, if x ∈ B and for every computation of the form 〈{x}, 0, P,N〉 in
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ΦR
e [s], N ∩ R 6= ∅. Note that if X ⊆ D is M-finite such that for every stage

s, there is an x ∈ X such that x escapes from computation ΦR
e at stage s, then

ΦR
e � X 6= D � X = ∅ by the local downward closure property of ΦR

e . This idea

leads to the following Lemma.

Lemma 3.3. If R is r.e. and ΦR
e = D, then for some stage s, there is no x < b

with f(ix) ≥ s such that x escapes from computation ΦR
e at stage s.

Proof. We prove this by contradiction. Suppose ΦR
e = D and for every i ∈ I, there

is an x < b with ix ≥ i such that x escapes from computation ΦR
e at stage f(i). Then

the function α : I → I2 defined by i 7→ (ix, jx) where x < b is the first enumerated

number satisfying ix ≥ i, jx ∈ I and x escapes from computation ΦR
e at stage f(i).

The function α is total on I by assumption.

Since α is recursive, α is coded on I3 by a function α̂ : [0, a) → [0, a)2. We

denote the first coordinate of α̂(i) by α̂1(i) and the second by α̂2(i). We may further

assume that for every i < a, α̂2(i) > α̂1(i) ≥ i.

Now let X = {x < b : (ix, jx) ∈ ran(α̂)}. Then for every x ∈ X,

Case 1. There is an i ∈ I such that α̂(i) = (ix, jx). Then α(i) = (ix, jx). Thus,

ix, jx ∈ I.

Case 2. There is an i ∈ I such that α̂(i) = (ix, jx). Then ix, jx ∈ I since ix ≥ i.

Therefore, X ⊆ D. Moreover, by the definition of α, for every stage f(i), there is

an x ∈ X such that x escapes from computation ΦR
e at stage f(i), and so ΦR

e � X 6= ∅,
contradicting the assumption that ΦR

e = D.

Corollary 3.4. If Φ∅
′
e = D, then for some stage s, there is no x < b such that x

escapes from computation Φ∅
′
e at stage s and f(ix) ≥ s.

The above definition can be generalized to computations {Ψe}e∈M. We say an

element x escapes from computation ΨI
e at stage s, if x ∈ B and n ∈ I for all

〈{x}, 0, n〉 in ΨI
e[s].

Corollary 3.5. If ΨI
e = D, then for some i ∈ I, there is no x < b such that x

escapes from computation ΨI
e at stage f(i) and ix ≥ i.

Lemma 3.6. D ≤T ∅′ if and only if D ≤T I.
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Proof. We only need to show the “ only if ” part. Since every M-finite set X,

X ⊆ D ↔ (X ⊆ [0, b) ∧ X ⊆ D),

X ⊆ D ↔ (X ∩ [0, b) ⊆ D),

we only need to consider subsets of [0, b) in the computation of D.

Suppose D = Φ∅
′
e . Define G to be a set that codes the approximation of Φ∅

′
e as

follows:

G = {(X, i, j, z) : X ⊆ [0, b) ∧ i < j ∈ I ∧ (z = 0 ∨ z = 1)∧

∃P ∃N (〈X, z, P,N〉 ∈ Φ∅
′

e [f(i)] ∧ N ⊆ ∅′f(j))}.

That is, (X, i, j, z) ∈ G if and only if the computation Φ∅
′
e (X)[f(i)] = z is still valid

at stage f(j). Since G is ∆1 on [0, 2b)× I × I × [0, 2), by Lemma 2.4, G is coded by

Ĝ ⊆ [0, 2b)× [0, a)× [0, a)× [0, 2).

Suppose X ⊆ [0, b). If X ⊆ D, then there is a quadruple 〈X, 1, P,N〉 ∈ Φ∅
′
e [f(i)]

such thatN ⊆ ∅′. Thus, for every j > i, j ∈ I, we haveN ⊆ ∅′f(j) and (X, i, j, 1) ∈ Ĝ.

Since I is not M-finite,

u = sup{j < a : ∀j′ (i < j′ < j → (X, i, j′, 1) ∈ Ĝ)} ∈ I. (3.4)

Therefore,

∃i ∈ I ∃u ∈ I ∀j (i < j < u → (X, i, j, 1) ∈ Ĝ). (3.5)

Conversely, if (3.5) holds, then there is some 〈X, 1, P,N〉 ∈ Φ∅
′
e [f(i)] such that

N ⊆ ∅′. Thus, for every M-finite set X ⊆ [0, b),

X ⊆ D ↔ ∃i ∈ I ∃u ∈ I ∀j (i < j < u → (X, i, j, 1) ∈ Ĝ),

and similarly,

X ⊆ D ↔ ∃i ∈ I ∃u ∈ I ∀j (i < j < u → (X, i, j, 0) ∈ Ĝ).

To construct a bounded d-r.e. set D 6≤T ∅′, by Lemma 3.6, it is enough to ensure

that D 6≤T I: For each i and e, if there is an x ∈ D with ix ≥ i such that x escapes

from ΨI
e at stage f(i), then D 6= ΨI

e by Corollary 3.5.
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Lemma 3.7. For every e, s ∈M, if ΨI
e = D, then the set

Je,s = {j ∈ I : ∃x < b∃i ∈ I ∃n ∈ I (〈{x}, 0, n〉 ∈ ΨI
e[s]∧ f(i) ≤ s∧ i = ix ∧ j = jx)}

is bounded in I. Moreover, there is a recursive function β : M2 → M such that

whenever ΨI
e = D, β(e, s) ∈ I is an upper bound of all elements in Je,s.

Proof. Fix s and e. Let i∗ ∈ I be the largest i such that f(i∗) ≤ s. Then

Je,s = {j ∈ I : ∃x < b∃i ≤ i∗ ∃n ∈ I (〈{x}, 0, n〉 ∈ ΨI
e[s] ∧ i = ix ∧ j = jx)}

⊆ {j < a : ∃x < b∃i ≤ i∗ ∃n > j (〈{x}, 0, n〉 ∈ ΨI
e[s] ∧ i = ix ∧ j = jx)}.

(3.6)

We denote the set in the second line of (3.6) by J̃e,s, which isM-finite. Let β(e, s) =

sup J̃e,s. We only need to show that if ΨI
e = D, then J̃e,s ⊂ I.

Suppose ΨI
e = D and 〈{x}, 0, n〉 ∈ ΨI

e, where x < b, ix ≤ i∗ and jx < n. Since

ix ∈ I, x ∈ A. If n ∈ I, then x ∈ D, and so x ∈ B with jx ∈ I. If n ∈ I, then jx ∈ I
since jx < n. In any case jx ∈ I, so J̃e,s ⊂ I.

Proof of Theorem 3.2 (bounded set D). I, a, f are defined as above. Let

Ĥ = {(x, i) ∈ [0, 2a)× [0, a) : If the M-finite set X represented by the binary

expansion of x has at least two elements, then i = minX or

i = maxX, and if X has less than two elements, then i = 0 or i = 1}.

That is, for every pair (i, j) ∈ [0, a) × [0, a) with i < j, we have some x < 2a such

that (i, j) = (ix, jx), where

ix = min{i : (x, i) ∈ Ĥ}, jx = max{i : (x, i) ∈ Ĥ}.

Then Ĥ codes the enumeration of a d-r.e. set D:

D = {x < 2a : ix ∈ I, jx ∈ I}.

Let β be defined as in Lemma 3.7.

Now we claim that D 6≤T I, so D 6≤T ∅′ by Lemma 3.6. For the sake of

contradiction, suppose D = ΨI
e. For each i ∈ I, let x(i) be the least such that

(ix(i), jx(i)) = (i, β(e, f(i)) + 1). By Lemma 3.7, x(i) escapes from ΨI
e at stage f(i).

Then by Lemma 3.5, D 6= ΨI
e. That is a contradiction.
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3.1.4 BΣ1 + ¬IΣ1 implies d-r.e. degrees below 0′ are r.e.

In Sections 3.1.2 and 3.1.3, it was shown that in a BΣ1 model, there is a proper

d-r.e. degree not below 0′. In this section, we prove that in any BΣ1 model, it is

impossible to find a proper d-r.e. degree below 0′.

Let M, f, I, a be as in Section 3.1.2 and 3.1.3. Let D = A \ B, where A and

B are r.e. (may not be bounded) and B ⊆ A. As before, we may assume that

Af(0) = Bf(0) = ∅ and for all i ∈ I, Bf(i+1) ⊆ Af(i). If D is recursive, then clearly

deg(D) is r.e. For the rest of this section, we always assume that D = Φ∅
′
e is not

recursive. The object is to construct an r.e. set W ≡T D.

3.1.5 Regular sets

We first consider the case when D is regular. The idea of considering regular and

non-regular sets can be traced back to Chong and Mourad [5].

Lemma 3.8. If D = Φ∅
′
e is regular, then D ≤T I.

Proof. Suppose D is regular. The method here is similar to that in Lemma 3.6. For

each k ∈ I and stage s, we say (E0, E1) is a partition of [0, f(k)) at stage s, if

(i) E0 ∪ E1 = [0, f(k)), E0 ∩ E1 = ∅, and

(ii) There areM-finite sets P0, P1, N0, N1 such that 〈E0, 0, P0, N0〉, 〈E1, 1, P1, N1〉 ∈
Φ∅
′
e [f(i)].

Note that at each stage f(i), there is at most one partition of [0, f(k)). Let

G = {(i, j, k) ∈ I3 : i ≤ j ∧There are partitions of [0, f(k)) at stage f(i) and f(j)

∧ The two partitions are equal}.

By Lemma 2.4, G is coded on I3. Suppose E0,k = D ∩ [0, f(k)) and E1,k = D ∩
[0, f(k)), then there is some i ∈ I such that

∃P0, P1 ⊆ ∅′ ∃N0, N1 ⊆ ∅′ (〈E0,k, 0, P0, N0〉 ∈ Φ∅
′

e [f(i)] ∧ 〈E1,k, 1, P1, N1〉 ∈ Φ∅
′

e [f(i)]).

That is, at stage f(i), Φe correctly computes a partition of [0, f(k)). Then for any

stage s ≥ f(i), the partition of [0, f(k)) at stage smust be (E0,k, E1,k), so (i, j, k) ∈ Ĝ
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for all j ≥ i. Thus for any k ∈ I,

E0,k = D ∩ [0, f(k)) ∧ E1,k = D ∩ [0, f(k)) → ∃i ∈ I ∃i′ ∈ I ∀j ((E0,k, E1,k) is a

partition of [0, f(k)) at stage f(i) ∧ (i ≤ j ≤ i′ → (i, j, k) ∈ Ĝ)). (3.7)

Now suppose the conclusion in (3.7) holds for (E0, E1), and we prove the hypothesis

in (3.7). Thus, the hypothesis and conclusion in (3.7) are actually equivalent and

D ≤T I.

For the sake of a contradiction, we assume thatD ∩[0, f(k)) 6= E0, D ∩[0, f(k)) 6=
E1, i ∈ I, (E0, E1) is a partition of [0, f(k)) at stage f(i), i′ ∈ I, and ∀j (i ≤ j ≤
i′ → (i, j, k) ∈ Ĝ). Let j̃ > i such that j̃ ∈ I and Φe correctly computes a partition

of [0, f(k)) at stage f(j̃). Then (i, j̃, k) 6∈ Ĝ. That is a contradiction.

Lemma 3.9. If D = Φ∅
′
e is regular and non-recursive, then D ≥T I.

Proof. Consider the following set:

G0 = {(i, j, k) ∈ I3 : i < j < k ∧ ∃x ∈ Af(i) (x ∈ Bf(k) \Bf(j))},

i.e. f(k) is a stage that we find Af(i) \ Bf(j) is not a subset of D. By Lemma 2.4,

G0 can by coded on I3 by a set Ĝ0 ⊆ [0, a)3 such that for every (i, j, k) ∈ Ĝ0,

i < j < k and for each i < j ∈ I, there is some k < a such that (i, j, k) ∈ Ĝ0. (If

(i, j, k) ∈ I2 × [0, a) and Af(i) \Bf(j) ⊆ D, then k ∈ I.)

Suppose the set C0 = {k < a : ∃i, j ∈ I (Af(i) \ Bf(j) ⊆ D ∧ (i, j, k) ∈ Ĝ0)} ⊆ I

is unbounded in I, i.e. no i′ ∈ I is a lower bound of numbers in C0, then

i′ ∈ I ↔ ∃k < i′ (k ∈ C0)

It follows that I is r.e. in D. Hence I ≤p D. By Lemma 2.7, I ≤T D.

Now suppose C0 is bounded in I. Then there is an i′ ∈ I such that

∀i, j ∈ I (Af(i) \Bf(j) ⊆ D ↔ ∃k > i′ ((i, j, k) ∈ Ĝ0)).

Furthermore, since D is regular, for every i ∈ I there is j ∈ I such that Af(i)\Bf(j) ⊆
D. Thus, D = {x : ∃i, j ∈ I ∃k > i′ ((i, j, k) ∈ Ĝ0 ∧ x ∈ Af(i) \ Bf(j))} is r.e. In

that case, by modifying the enumeration of D, we may assume that B = ∅. Let

G1 = {(i, j, k) ∈ I3 : i < j ∧ ∃x < f(k) (x ∈ Af(j) \ Af(i))},
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i.e. f(j) is a stage that we find Af(i) � [0, f(k)) is not D � [0, f(k)). Again G1 is

coded by Ĝ1 ⊆ [0, a) in I3. We also assume that for all i < k ∈ I, there is some j

such that (i, j, k) ∈ Ĝ1. (If Af(i) � [0, f(k)) = D � [0, f(k)) and (i, j, k) ∈ Ĝ1, then

j ∈ I.)

Suppose C1 = {j : ∃i, k ∈ I (Af(i) � [0, f(k)) = D � [0, f(k)) ∧ (i, j, k) ∈ Ĝ1)} is

unbounded in I. Then for all i′′,

i′′ ∈ I ↔ ∃i ∈ I ∃k ∈ I ∃j < i′′ (Af(i) � [0, f(k) = D � [0, f(k)) ∧ (i, j, k) ∈ Ĝ1).

Hence, I ≤T D.

If C1 is bounded in I, then for some i′′ ∈ I,

∀i, k ∈ I (Af(i) � [0, f(k)) = D � [0, f(k)) ↔ ∃k > i′′ (i, j, k) ∈ Ĝ1). (3.8)

Again, since D is regular, for all k ∈ I, there is some i ∈ I such that Af(i) �

[0, f(k)) = D � [0, f(k)). Then (3.8) implies that D is recursive. That is a contra-

diction.

Corollary 3.10. If D = Φ∅
′
e is regular and non-recursive, then D ≡T I.

Non-regular sets

Similar to Lemma 3.9, we have

Lemma 3.11. If D is non-regular, then D ≥T I.

Proof. Suppose d ∈M and D � [0, d) is not M-finite. As in Section 3.1.3, let

H = {(x, i) : x < d ∧ i ∈ I ∧ (x ∈ Af(i) \ Af(i−1) ∨ x ∈ Bf(i) \Bf(i−1))},

and let Ĥ ⊆ [0, d) × [0, a) be a code of H in [0, d) × I such that for every x < d,

there are exactly two i’s with (x, i) ∈ Ĥ. Define ix = min{i < a : (x, i) ∈ Ĥ} and

jx = max{i < a : (x, i) ∈ Ĥ}.

For every x < d, if x ∈ D, then ix ∈ I and jx ∈ I. Suppose such jx’s are

unbounded in I, i.e.

∀i′ ∈ I ∃x < d (x ∈ D ∧ jx < i′). (3.9)

Then for any i′,

i′ ∈ I ↔ ∃x < d (x ∈ D ∧ jx < i′).
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Thus, I ≤T D.

If (3.9) fails, then let i′ ∈ I be such that ∀x < d (x ∈ D → jx > i′). Then we

consider the x’s in D such that jx > i′. For such an x, ix ∈ I. If

∀i′′ ∈ I ∃x < d (x ∈ D ∧ jx > i′ ∧ ix < i′′). (3.10)

Then for every i′′,

i′′ ∈ I ↔ ∃x < d (x ∈ D ∧ jx > i′ ∧ ix < i′′).

Thus, I ≤T D.

Suppose (3.10) fails again, and let i′′ ∈ I be such that ∀x < d (x ∈ D ∧ jx >

i′ → ix > i′′). Then for all x < d,

(i) If jx > i′, then x ∈ D if and only if ix < i′′.

(ii) If jx ≤ i′, then x ∈ D.

Thus, D � [0, d) is ∆1. According to Lemma 2.4, D � [0, d) isM-finite, contradicting

our assumption.

Given k ∈ I, we say rk ∈ I is a separating point of [0, f(k)) if

∀x ∈ ([0, f(k)) \ Af(rk)) (x ∈ B → ∃P ⊆ ∅′ ∃N ⊆ ∅′ (〈{x}, 0, P,N〉 ∈ Φ∅
′

e [f(rk)])).

By Corollary 3.4, a separating point of [0, f(k)) exists for every k ∈ I. Moreover,

the predicate “r is not a separating point of [0, f(k))”, whose variables are r and k,

is Σ1, so it is reducible to I by Lemma 3.12.

Lemma 3.12 (Chong and Yang [8]). Every bounded r.e. set is reducible to I.

If B = ∅, then clearly D is of r.e. degree. For the general case, intuitively, we

modify the enumeration of D to be more “ effective”: we enumerate x into D only

if we see that x is enumerated into A at some stage s and all the computations of

the form 〈{x}, 0, P,N〉 ∈ Φ∅
′
e [s] are fake by N ∩ ∅′ 6= ∅. That is, we define

A∗ = {x : ∃s∃t > s [x ∈ As \Bt ∧ ∀P,N (〈{x}, 0, P,N〉 ∈ Φ∅
′

e [s] → N ∩ ∅′t 6= ∅)]}

B∗ = A∗ ∩B.

Then D = A∗ \ B∗. We show that D ≡T A∗ ⊕ B∗ ⊕ I. By Lemma 3.11, D ≥T I.

Thus, we only need to show:
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Lemma 3.13. If D is non-regular, then D ⊕ I ≡T A∗ ⊕B∗ ⊕ I.

Proof. Fix any k ∈ I. By Lemma 3.12, we can get a separating point r (may not

be unique) of [0, f(k)) recursively in I. Then the interval [0, f(k)) is separated into

two parts: [0, f(k)) \ Af(r) and [0, f(k)) ∩ Af(r). By definition of separating point,

∀x ∈ [0, f(k)) \ Af(r) (x ∈ B → ∃P ⊆ ∅′ ∃N ⊆ ∅′ (〈{x}, 0, P,N〉 ∈ Φ∅
′

e [f(r)])).

Therefore,

∀x ∈ [0, f(k)) \ Af(r) (x ∈ B → x 6∈ A∗),

i.e.

D � ([0, f(k))\Af(r)) = A∗ � ([0, f(k))\Af(r)), B∗ � ([0, f(k))\Af(r)) = ∅. (3.11)

In addition, we claim that

A∗ � ([0, f(k)) ∩ Af(r)) is recursive.

For every x ∈ [0, f(k)) ∩ Af(r), since x is enumerated into A at some stage s, there

exists a stage t > s such that either

Case 1. x is enumerated into B at stage t, or

Case 2. All computations of the form 〈{x}, 0, P,N〉 in Φ∅
′
e [s] are fake, i.e. N∩∅′t 6=

∅.

Thus, x ∈ A∗ if and only if Case 2 occurs first, which can be determined recur-

sively. Therefore, to determine whether X is a subset of D � ([0, f(k)) ∩ Af(r)) or

a subset of D � ([0, f(k)) ∩ Af(r)), we only need to take B∗ � ([0, f(k)) ∩ Af(r)) as

an oracle, and vice versa. This property and (3.11) combine to produce D ⊕ I ≡T
A∗ ⊕B∗ ⊕ I.

Theorem 3.14. In a BΣ1 model, every d-r.e. degree below 0′ is r.e.

We therefore have:

Corollary 3.15. Assume P− +BΣ1 + Exp. Then

(1) There is a proper d-r.e. degree;

(2) IΣ1 is equivalent to the existence of a proper d-r.e. degree below 0′.
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3.2 Degrees Below 0′ in a Saturated Model

As shown in Section 3.1, any proper d-r.e. degree in a BΣ1 model is not below 0′.

In this section, we expand our investigation with an analysis of the degrees below

0′ for BΣ1 models. The main result is:

Theorem 3.16. P− +BΣ1 + Exp 6` There is a non-r.e. degree below 0′.

To show this theorem, we consider a BΣ1 modelM with the following properties:

(i) ω ⊂M is a Σ1 cut of M.

(ii) Every subset of ω is coded (on ω) in the model M.

Such a model M is called a saturated BΣ1 (or saturated, for short) model. In [46],

Slaman and Woodin showed that a saturated BΣ1 model exists. Let I denote ω,

a ∈ M be such that I ⊂ [0, a), and f : I → M be a strictly increasing cofinal ∆1

function with f(0) = 0. We may further assume that 〈·, ·〉 � I2 maps onto I.

The proof that every d-r.e. set D = A \ B reducible to ∅′ is of r.e. degree in

Section 3.1.4 could be simplified if M is saturated: Suppose D = Φ∅
′
e and

G = {〈k, r〉 : r is the least separating point of [0, f(k + 1))}.

Then G is coded by Ĝ ⊆ [0, a). For each k < a, let rk be the least r such that

〈k, r〉 ∈ Ĝ and [0, f(k)) can be recursively separated into two parts:

• P0 = {x : ∃k ∈ I (x ∈ [f(k), f(k + 1)) ∧ x 6∈ Af(rk))} and

• P1 = {x : ∃k ∈ I (x ∈ [f(k), f(k + 1)) ∧ x ∈ Af(rk))}.

For any x ∈ [f(k), f(k + 1)),

• If x ∈ Af(rk), then x ∈ D if and only if x 6∈ B.

• If x 6∈ Af(rk), then by the definition of separating point, x ∈ D if and only if all

computations of the form 〈{x}, 0, P,N〉 in Φ∅
′
e [f(rk)] are fake, (i.e. N ∩∅′ 6= ∅)

and x ∈ A.
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Thus, D � P0 is Σ1, D � P1 is Π1 and D is of r.e. degree. Clearly, the key to this

proof is the separating points.

Now suppose V = Φ∅
′
e , which may not be d-r.e. We generalize the notion of

separating points as follows: Let k ∈ I and

Hk = {(x, i) : x ∈ [f(k), f(k + 1)) ∧ i ∈ I ∧ Φ∅
′

e (x)[f(i)] = 1}.

That is, Hk records the approximation of Φ∅
′
e � [f(k), f(k+1)). Since Hk is recursive

on [f(k), f(k + 1))× I, it is coded by some Ĥk ⊆ [f(k), f(k + 1))× [0, a). For each

k, we fix a code Ĥk. For any i < a and x ∈ [f(k), f(k + 1)), we define

Vi(x) =

1 if (x, i) ∈ Ĥk

0 otherwise

and so V (x) = limi∈I Vi(x).

Suppose i ∈ I. Then

(i) x is said to be i-honest, if for any j ∈ I greater than i, Vj(x) = Vi(x); otherwise,

x is an i-liar.

(ii) x is found to be an i-liar by stage j, if x is an i-liar, j ∈ I, j > i and

∃k ≤ j (k > i ∧ Vk(x) 6= Vi(x));

(iii) x is called an i-white liar, if x is an i-liar and V (x) = Vi(x);

(iv) x is an i-malicious liar, if x is an i-liar and V (x) 6= Vi(x).

We observe that white liars correspond to escaping elements in Section 3.1.3. Similar

to Lemma 3.3, we have

Lemma 3.17. For any i, k ∈ I, there is a j > i such that all i-white liars in

[f(k), f(k + 1)) are found by stage j.

Proof. For the sake of a contradiction, we suppose i, k ∈ I and for each j > i in I,

there is an i-white liar not founded by stage j, and without loss of generality, we

assume all such i-white liars are not in V . Then consider the function δ : I\[0, i]→ I,

j 7→ 〈nj, zj0, z
j
1, . . . , z

j
nj−1〉, where

44



3.2 Degrees Below 0′ in a Saturated Model

(i) zj is the first i-white liar not in V that is found at a least stage j′ > j but is

not found by stage j, and

(ii) zj0 < zj1 < . . . < zjnj−1 is a list of all stages l ∈ I such that Vl(z
j) 6= Vl−1(zj).

According to the saturation of M, δ is coded on I2 by an M-finite partial

function δ̂ : [i+ 1, a)→ [0, a) with the following properties:

(i) dom(δ̂) ⊃ dom(δ), and

(ii) For each j ∈ dom(δ̂), δ̂(j) = 〈nj, zj0, z
j
1, . . . , z

j
nj−1〉 for some nj, z

j
0, . . . , z

j
nj−1

such that

(a) zj0 < zj1 < . . . , < zjnj−1 < a− 1, and

(b) ∀m (zjm > i ↔ zjm > j).

Then for any j ∈ dom(δ̂), we may recursively find an x ∈ [f(k), f(k + 1)) with

Vi(x) = 0 such that zj0, . . . , z
j
nj−1 are the first nj many l’s satisfying Vl(x) 6= Vl−1(x)

and the (nj + 1)th l is the largest possible according to Ĥk. This x is said to be

corresponding to j. Notice that if x corresponds to a j ∈ I, then x is also an i-white

liar not found by j, and if x corresponds to a j ∈ I, then x is i-honest.

Now let

X = {x ∈ [f(k), f(k + 1)) : ∃j ∈ dom(δ̂) (x is corresponding to j)}.

Since each x ∈ X is either i-honest or an i-white liar, X ⊆ V . But then there is

some j > i such that Φ∅
′
e [f(j)] � X = ∅. According to the local downward closure

property of Φ∅
′
e , all i-liars in X are found by stage j. That is a contradiction.

Suppose all i-white liars in [f(k), f(k+1)) are found by stage j, x ∈ [f(k), f(k+

1)) and the approximation Vl(x) does not “change its mind” between i and j, i.e. ∀l ∈
[i, j] (Vi(x) = Vl(x)). Then x cannot be an i-white liar. Thus, for all such x’s,

V (x) = Vi(x) ↔ ¬∃j ∈ I (j > i ∧ Vj(x) 6= Vi(x)). (3.1)

Conversely, for any x ∈ [f(k), f(k + 1)), there are i < j ∈ I such that x is

i-honest and all i-white liars in [f(k), f(k + 1)) are found by stage j. Then the

approximation Vl(x) does not “ change its mind” between i and j for all j > i.
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Chapter 3. Degree Structures Without Σ1 Induction

Lemma 3.18. There exists u ∈ I with property ρ(k, u):

For any x ∈ [f(k), f(k + 1)), there are i < j < u such that all i-white liars in

[f(k), f(k + 1)) are found by stage j and Vi(x) = Vl(x) for all l ∈ [i, j].

Proof. Let Tk = {〈i, j〉 ∈ I2 : i < j ∧ All i-white liars in [f(k), f(k+1)) are found by

stage j}. Since M is saturated, Tk is coded by T̂k ⊆ [0, a) so that for all 〈i, j〉 ∈ T̂k,
i < j. Now consider the function ε : [f(k), f(k + 1)) → T̂k, x 7→ µ〈i, j〉(〈i, j〉 ∈
T̂k ∧ ∀l ∈ [i, j]Vi(x) = Vl(x)). For every x in [f(k), f(k + 1)), since 〈·, ·〉 maps I2

onto I and there is a pair 〈i, j〉 ∈ Tk such that ∀l ∈ [i, j] (Vi(x) = Vl(x)), we have

ε(x) ∈ I. By BΣ1, ran(ε) is bounded in I. Let u ∈ I be an upper bound of all

elements in ran(ε) and it is straightforward to verify that ρ(k, u) holds.

For each k ∈ I, let uk be the least u satisfying ρ(k, u) and

F = {〈k, i, j〉 ∈ I3 : i < j < uk ∧ j is the least such that

all i-white liars in [f(k), f(k + 1)) are found by stage j}.

Suppose F̂ ⊆ [0, a) is a code of F such that for all 〈k, i, j〉 ∈ F̂ with k ∈ I, i < j < uk

and 〈k, i, j〉 ∈ F .

We recursively separate M into countably many parts {Ek,i}k∈I,i<uk :

Ek,i = {x ∈ [f(k), f(k+1))\
⋃
i′<iEk,i′ : ∃j (〈k, i, j〉 ∈ F̂ ∧∀l ∈ [i, j] (Vi(x) = Vl(x)))}.

For every k ∈ I with 〈k, i, j〉 ∈ F̂ and every x ∈ Ek,i, x cannot be an i-white liar

since all i-white liars in [f(k), f(k + 1)) are found by stage j. Thus (3.1) holds for

all x ∈ Ek,i. Define the r.e. set A on each Ek,i by

x ∈ A � Ek,i ↔ ∃j ∈ I (j > i ∧ Vj(x) 6= Vi(x)).

By (3.1) again, A ≡T V and deg(V ) is r.e.

Remark. Note that the argument in this section only requires that every arith-

metically definable (in the sense of M) subset of ω is coded on ω. Thus, for a

countable model of P− + BΣ1 + ¬IΣ1+ Exp, if ω is a Σ1 cut and every arithmeti-

cally definable subset of ω is coded, then all degrees below 0′ are r.e.

In general, for a given model of P− + BΣ1 + ¬IΣ1+ Exp, it is still unknown

whether there is a non-r.e. degree below 0′ due to the complexity of coding. In the

above argument, note that in the proof of Lemma 3.17, δ is not ∆1 on I2. More

importantly, the complexity of F defined above is far beyond ∆1 on I3.
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Chapter 4
Friedberg Numbering In Reverse

Recursion Theory And α-Recursion

Theory

4.1 Weak Fragments of PA

The known constructions of a Friedberg numbering ([15, 29]) make strong use of

existence of the least index for each r.e. set, in order to construct a Friedberg num-

bering for ω. This is equivalent to proving the theorem in the theory P− + IΣ2, as

we discuss below. We will prove in this section that over the base theory P−+BΣ2,

IΣ2 is both sufficient and necessary for the existence of such a numbering.∗

4.1.1 Towards Friedberg numbering in fragments of PA

Let {We} be a Gödel numbering in a model of P− + IΣ0 + Exp. Note that the

statement “Wi = We” is Π2. Therefore, LΠ2 suffices to show that every r.e. set has

a least index in {We}. By Theorem 2.1, LΠ2 ⇔ IΣ2. In fact, the induction needed

to carry out the construction of a Friedberg numbering for ω is just IΣ2. Thus,

Lemma 4.1 (P− + IΣ2). There exists a Friedberg numbering.

∗Without BΣ2, a Friedberg numbering may exist. Let M be a model of P− + IΣ1 such that
(i) BΣ2 fails and (ii) there is a Σ2 one-one projection from ω onto M. (The existence of such
a model M was shown by Groszek and Slaman [17].) In M, the construction of a Friedberg
numbering can be carried out by exploiting the existence of the Σ2 projection.
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Chapter 4. Friedberg Numbering

Now we consider the case that IΣ2 fails. From now on in this section, M is a

BΣ2 model and I ⊂M is a Σ2 cut. Let {Ae}e∈M be a one-one numbering of r.e. sets

in M. Our purpose is to construct an r.e. set X such that X 6= Ae, for all e ∈ M.

Hence, {Ae}e∈M is not a Friedberg numbering.

By Lemma 2.3, let f : I → M be a nondecreasing ∆2 cofinal function with

f(0) = 0. That makes it possible to establish a partition ofM, {[f(i), f(i+1)) : i ∈
I}. The interval [f(i), f(i+ 1)) is said to be the ith block (or block i) of M. Then

X is constructed by diagonalizing against Ae’s in each block.

For any a ∈M,

∀d, e < a ∃x (d 6= e → Ad(x) 6= Ae(x)).

Since {Ae}e∈M is a one-one numbering. It follows from BΣ2 that there is a b ∈ M
such that

∀d, e < a ∃x < b (d 6= e → Ad(x) 6= Ae(x)). (4.1)

Here, b is said to be a bound of differences relative to [0, a). (4.1) implies that there

is at most one e < a such that

Ae � [0, b) = X � [0, b). (4.2)

Therefore, diagonalizing against {Ae}e<a amounts to diagonalizing against the sole

Ae satisfying (4.2), if any, by one witness greater than or equal to b. In short, to

diagonalize against one block it suffices to diagonalize against one special r.e. set.

Let us recall the definition of limit as follows. Suppose h : M×M →M is a

total function. Then

lim
s
h(s, a) = n,

if either n ∈M and there exists t such that

∀s > t (h(s, a) = n),

or else n =∞ and

∀m∃t∀s > t (h(s, a) > m).

Since f : I →M is ∆2, (4.1) yields a ∆2 function g : I →M such that g(i) is a

bound of differences relative to [0, f(i)) for each i ∈ I. A careful examination of the

proof of the Limit Lemma [47] in standard model ω shows that the proof of the Limit
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4.1 Weak Fragments of PA

Lemma only requires P− + BΣ1 and the regularity of ∆2 sets. Then in the BΣ2

model M, the Limit Lemma implies that f and g have recursive approximations.

A more precise statement of this situation is that f and g may chosen to have

nondecreasing recursive approximations, as proved in Lemma 4.2. Based on those

approximations, it will be shown later that X can be constructed in an effective

manner.

Lemma 4.2. Let M be a BΣ2 model and I ⊂ M be a Σ2 cut. Then there exist

(total) recursive functions f ′, g′ :M×M→M such that

(i) λs(f ′(s, i)), λi(f ′(s, i)), λs(g′(s, i)) and λi(g′(s, i)) are nondecreasing;

(ii) functions f and g given by f(i) = lims f
′(s, i), g(i) = lims g

′(s, i) are well

defined and less than ∞ on I and equal ∞ on M\ I;

(iii) f : I →M is cofinal;

(iv) ∀i, j, s, t (i 6= j → g′(s, i) 6= g′(t, j)), i.e. ran(λs g′(s, i)) ∩ ran(λs g′(s, j)) = ∅
for any i 6= j;

(v) ∀i ∈ I ∀d, e < f(i)∃x < g(i) (d 6= e → Ad(x) 6= Ae(x)), i.e. g(i) is a bound of

differences relative to [0, f(i)).

Proof. Functions f ′ and f satisfying (i)-(iii) may be defined from the Σ2 definition

of I (See [3, 4]). We omit the details and directly define g′ satisfying (i), (ii) and (v).

Then (i), (ii), (iv) and (v) will be satisfied for g′′, defined by g′′(s, i) = 〈i, g′(s, i)〉
for any s, i ∈M (〈·, ·〉 is a recursive code of pairs).

Now define g′ by induction on s as follows.

g′(0, i) = i

g′(s+ 1, i) =



g′(s, i) if g′(s, i) > f ′(s, i) and

∀d, e < f ′(s, i)∃x < g′(s, i) (d 6= e →

Ad,s(x) 6= Ae,s(x)),

g′(s, i) + 1 otherwise.

By IΣ1, g′ is total recursive and λs(g′(s, i)) is nondecreasing.
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Chapter 4. Friedberg Numbering

To see that λi(g′(s, i)) is nondecreasing, it suffices to show

∀i (g′(s, i+ 1) ≥ g′(s, i)). (4.3)

by induction on s and IΠ1. The induction is straightforward and we omit the details

here.

Observe that a recursive set either has a maximum element or is unbounded

in M by LΠ1. Then it follows immediately from the nondecreasing property of

λs(g′(s, i)) that

lim
s
g′(s, i) <∞↔ {g′(s, i) : s ∈M} is bounded.

Then it is easy to check that (ii) and (v) hold by BΣ2 and the properties of f and

the defintion of g.

4.1.2 Nonexistence of Friedberg numbering

Let M, I and {Ae}e∈M be as in Section 4.1.1. In this section it will be shown that

there exists an r.e. set X 6∈ {Ae}e∈M. The method here converts the diagonalization

strategy in Section 4.1.1 to an effective one so as to obtain an r.e. counterexample

X.

Theorem 4.3. There is no Friedberg numbering in a BΣ2 model.

Proof. Again, M, I and {Ae}e∈M are as in Section 4.1.1. Let f , f ′, g, g′ be as in

Lemma 4.2. The construction below defines X such that

(i) X ⊆ ran(g′);

(ii) ∀i 6∈ I ∀s (g′(s, i) ∈ X)

(iii) ∀i ∈ I ∀s (g′(s, i) < g(i)→ g′(s, i) ∈ X);

(iv) ∀i ∈ I [(g(i) 6∈ X)↔ ∃c < f(i) (Ac � [0, g(i)) = X � [0, g(i)) ∧ g(i) ∈ Ac)].

According to Lemma 4.2, g(i) is a bound of differences relative to [0, f(i)). Then at

most one c < f(i) satisfies

Ac � [0, g(i)) = X � [0, g(i)).
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Thus, (iv) implies X 6= Ac, for any c < f(i), i ∈ I.

Since λs(g′(s, i)) is nondecreasing, (ii) and (iii) are satisfied easily via the ap-

proximation g′. However, that approximation strategy fails for Clause (iv). This is

because in the matrix of (iv), the right hand side of “↔” is ∆2 and so we cannot

recursively determine its truth value. More precisely, at stage s, it is tempting to

(perhaps mistakenly) enumerate g′(s, i) if

¬∃c < f ′(s, i) (Ac,s � [0, g′(s, i)) = Xs � [0, g′(s, i)) ∧ g′(s, i) ∈ Ac,s). (4.4)

By (4.4), guessing whether g′(s, i) should be enumerated into X could be wrong

even if g′(s, i) = g(i) and f ′(s, i) = f(i). We may find a c < f(i) at a later stage

satisfying Ac � [0, g(i)) = X � [0, g(i)) and g(i) ∈ Ac in the sense of that stage. But

once g(i) = g′(s, i) is mistakenly enumerated into X, g(i) cannot be removed from

X.

The problem can be solved with the aid of Lemma 2.5.

A non-effective construction of X is carried out inductively on I, with the inten-

tion of finding a set G such that

G(i) = 0↔ ∃c < f(i) (Ac � [0, g(i)) = X � [0, g(i)) ∧ g(i) ∈ Ac). (4.5)

Define

X0 =
⋃
n∈M{g

′(s, n) : g′(s, n) < g(n)}.

G(0) =

0 if ∃c < f(0) (Ac � [0, g(0)) = X0 � [0, g(0)) ∧ g(0) ∈ Ac),

1 otherwise.

Xi+1 =

Xi if G(i) = 0,

Xi ∪ {g(i)} if G(i) = 1.

G(i+ 1) =


0 if ∃c < f(i+ 1) (Ac � [0, g(i+ 1)) = Xi+1 � [0, g(i+ 1))

∧ g(i+ 1) ∈ Ac),

1 otherwise.

for all i ∈ I. Here, g(n) =∞, if n 6∈ I, by Lemma 4.2.

Let

X =
⋃
i∈IXi.
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It is immediate from Lemma 2.5 that Xi and G(i) are well defined on I, G is ∆2

on I and coded on I. Suppose Ĝ is a code of G on I. Then

X = X0 ∪ (
⋃
i∈I{g(i) : G(i) = 1})

=
⋃
n∈M{g

′(s, n) : ∃t > s (g′(s, n) < g′(t, n)) ∨ Ĝ(n) = 1}.

and X is r.e.

By Lemma 4.2, g is strictly increasing on I. Thus,

X � [0, g(i+ 1)) = Xi+1 � [0, g(i+ 1)).

(4.5) and Clause (iv) are satisfied according to the construction.

Theorem 4.3 and Lemma 4.1 combine to yield

Corollary 4.4 (P− +BΣ2). IΣ2 is equivalent to the existence of a Friedberg num-

bering.

Remark. A numbering {Be}e∈M is acceptable (K-acceptable, respectively) if

for any other numbering {De}e∈M there is a recursive (∅′-recursive, respectively)

function f such that De = Bf(e) for all e. Clearly, Gödel numbering is acceptable.

In classical recursion theory, a Friedberg numbering is an example of non-acceptable

universal numbering and non-K-acceptable universal numbering.

In a BΣ2 model M, no Friedberg numbering exists, but a non-K-acceptable

universal numbering, thus a non-acceptable universal numbering still exists.

For instance, suppose 〈·, ·〉 :M×M→M is a recursive injection, and let

Be =


M if e = 0,

Wi \ {j} if e > 0 and ∃i, j < e (〈i, j〉 = e),

We \ {0} if e > 0 and ¬∃i, j < e (〈i, j〉 = e).

(4.6)

where {We}e∈M is a Gödel numbering. Then {Be}e∈M is a universal numbering and

Be =M⇔ e = 0.

Thus, there is no K-recursive function g :M→M satisfying

We = Bg(e).
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A Ke-numbering {Ce} is a universal numbering for which the grammar equiva-

lence problem {(e, d) : Ce = Cd} is ∅′-recursive (See [20]). A Friedberg numbering

is a Ke-numberings. In a BΣ2 model, no Friedberg numbering exists, and also no

Ke-numbering exists. The reason is as follows. Suppose M is a BΣ2 model and

{Ce}e∈M is a Ke-numbering. Then for each e in M,

{d < e : Cd = Ce}

is a ∆2 set, and has a least element. It follows that the least index exists for

every r.e. set in the numbering {Ce}e∈M, which is not the case for {We}e∈M. By

[29], a Friedberg numbering can be constructed using a priority-free method via the

numbering {Ce}e∈M, a contradiction. Hence,

Corollary 4.5 (P− +BΣ2). IΣ2 is equivalent to the existence of a Ke-numbering.

4.2 Σ1 Admissible Ordinals

In this section, we investigate the problem of the existence of a Friedberg numbering

in the context of admissible ordinals.

4.2.1 Towards Friedberg numbering in α-recursion

Assume {We}e<α is a Gödel numbering. We attempt to lift the construction of a

Friedberg numbering from ω to α. No difficulty arises when Lα satisfies Σ2 replace-

ment. The proof remains valid because Σ2 replacement suffices to show

(e is the least index for We) ⇔

∃b ∃η ∀d < e (Wd � b = Wd,η � b 6= We,η � b = We � b). (4.1)

Therefore the least index can be approximated effectively.

If Lα does not satisfy Σ2 replacement, then the approach above for constructing

a Friedberg numbering fails by noticing that Σ2 replacement is also necessary for

(4.1) to hold. In this situation, the straightforward adaptation of the argument in

BΣ2 models is not applicable neither: Suppose {Ae}e<α is a one-one numbering,

then it is not always true that for an arbitrary β < α,

∃b∀d, e < β (d 6= e → ∃x < b (Ad(x) 6= Ae(x))). (4.2)

53



Chapter 4. Friedberg Numbering

In this chapter, we introduce three strategies which will either yield a successful

construction of a Friedberg numbering for suitable α’s or allow a diagonalization

argument to be implemented showing the nonexistence of such a numbering.

The intuition is that the shorter the list of α-r.e. sets is, the more likely (4.1)

and (4.2) can be made to hold. The first strategy attempts to rearrange the order

of α-r.e. sets so as to produce a short, necessarily non-recursive, list of these sets.

A further idea is to force every proper initial segment of the list to be correctly

approximated from some stage onwards, for the sake of computing the least indices

and upper bounds of differences correctly in the limit. To achieve this, we arrange

for the list of the α-r.e. sets to have length tσ2p(α). More precisely, α-r.e. sets

are listed by a tame Σ2 projection g : tσ2p(α)
one-one−−−−→

onto
α. Thus, for an arbitrary

numbering {Ae}e<α, the set Ad respectively is listed before Ae, if g−1(d) < g−1(e).

The second strategy is to exploit the key property of σ2cf(α), i.e. Corollary 2.16.

According to Corollary 2.16, it is possible to apply Σ2 replacement on lengths less

than σ2cf(α). The first two strategies combine to suggest the possibility that a

Friedberg numbering exists when tσ2p (α) = σ2cf(α). In particular, if Lα satisfies

Σ2 replacement, then tσ2p (α) = σ2cf(α) = α.

If tσ2p (α) > σ2cf(α), then Lemma 2.13 implies that coding a tame Σ2 subset

of σ2cf(α) is possible. The problem left to adapt the proof in BΣ2 models to Lα

is to give an effective method of searching for an upper bound b in (4.2). However,

such an upper bound may not exist.

The third strategy is aimed at devising diagonalization method to show the

nonexistence of a Friedberg numbering in the situation that σ2cf(α) < tσ2p (α).

This is done by analyzing α-finite sets together with a property we call pseudosta-

bility. Pseudostable ordinals will be used to get suitable upper bounds for witnesses

that differentiae two α-r.e. sets in a given α-finite collection for the purpose of a

diagonalization. (See Section 4.2.3 and 4.2.4).

Let C, I ⊂ α be α-finite. If |I|α < σ1p (α), then for any simultaneous enumera-

tion of α-r.e. sets {Ae}e∈I , the set

IC = {e ∈ I : Ae ) C}

is α-finite, by Theorem 2.12. Thus ∃η ∀e ∈ I (e ∈ IC ↔ Ae,η ) C ) by Σ1 replace-

ment. Therefore, any set X ) C such that X � η = C would not be in {Ae}e∈I
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(recall that Ae,η ⊆ [0, η) for every e, η < α).

Note that the recursive search for η strongly relies on the parameter IC . That

would be a problem if C varies, as the parameters of IC may not be recovered

effectively. Nevertheless, there are special cases when the parameter IC can be

omitted (i.e. the ordinal η can be derived directly from C). For example, when

(i) C is never in the list of r.e. sets {Ae}e∈I as C changes,

(ii) a final segment of C is an interval of ordinals with supC = η being an α-stable

ordinal, and

(iii) roughly speaking, supC is large enough,

then we have

∀e ∈ I (Ae ) C ↔ Ae ⊇ C ↔ Ae,supC ⊇ C).

The only problem with the use of α-stable ordinals is that α-stable ordinals

need not be cofinal in α. Therefore, the notion of pseudostablility, a weak form of

α-stability, is introduced. As will be seen in Section 4.2.3 and 4.2.4, pseudostable

ordinals are cofinal in α and enjoy the properties required for our construction.

4.2.2 When tσ2p (α) = σ2cf(α)

The main result of this section is

Theorem 4.6. If tσ2p (α) = σ2cf(α), then there exists a Friedberg numbering.

The strategy here is to adapt Kummer’s construction [29] by introducing a

shorter list of all α-r.e. sets on tσ2p (α) and applying local Σ2 replacement (Corollary

2.16) on σ2cf(α).

Let α̂ = tσ2p (α) = σ2cf(α), f : α̂
strictly increasing−−−−−−−−−−→

cofinal
α and g : α̂

one-one−−−−→
onto

α be tame

Σ2, and f ′, g′ : α× α̂→ α be recursive functions that tamely generate f, g such that

for all η < α̂,

(i) λx (f ′(η, x)) and λx (g′(η, x)) are one-one,

(ii) λx (f ′(η, x)) is strictly increasing, and λx (g′(η, x)) is strictly increasing for

x > η, if any.
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For simplicity, fη, gη will be used to denote functions λx (f ′(η, x)), λx (g′(η, x)) re-

spectively.

Lemma 4.7. Suppose {We}e<α is a Gödel numbering. Then there are numberings

{Pe}e<α and {Qe}e<α such that

(i) {Pe}e<α ∩ {Qe}e<α = ∅;

(ii) {Pe}e<α ∪ {Qe}e<α = {We}e<α;

(iii) Pe 6= Pd whenever e 6= d;

(iv) {e < α : Pe ⊇ C} is cofinal in α, for every α-finite set C.

Proof. Let

Pe = [0, e),

Qe =


α if e = 0,

We′ ∪ {e′′} \ {e′′′} if e = 〈〈e′, e′′〉, e′′′〉 and e′′ > e′′′,

We ∪ {e} \ {0} otherwise.

Then (i)-(iv) are immediate from the definitions of Pe and Qe.

Requirements and strategy

Fix numberings {Pe}e<α and {Qe}e<α as in Lemma 4.7. For any e < α, e is said to

be the least index for {e′ : Qe′ = Qe} via g, if

∃i < α̂ ∀j < i (g(i) = e ∧Qg(i) 6= Qg(j)).

We denote the characteristic function of this predicate by LQ,g(e) (or L(e) for short).

A Friedberg numbering {Ae}e<α will be constructed and the requirements are as

follows.

Requirement e: RP,e : ∃!ρ (Pe = Aρ),

RQ,e : ∃!ρ (Qe = Aρ).

The strategy for satisfying requirement e consists of the following:
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(i) assign a unique follower ρ = F ∗P (e) to Pe with the objective of making AF ∗P (e)

equal to Pe;

(ii) assign a unique follower ρ = F ∗Q(e) toQe, whenever L(e) = 1, with the objective

of making AF ∗Q(e) equal to Qe; and

(iii) for every ρ < α, assign ρ to a unique set from {Pe}e<α ∪ {Qe}e<α,L(e)=1, such

that ρ is the follower of the corresponding set.

More precise definitions of F ∗P and F ∗Q will be given in the part of construction and

the part of verification.

The strategy works effectively, except for the fact that “L(e) = 1” is not a

recursive predicate. Nevertheless, it will soon be seen that “L(e) = 1” has an

effective approximation L′(η, e) (See Lemma 4.9). For the moment assume that

Lemma 4.9 holds, i.e.

L(e) = 1 ↔ lim
η→α

L′(η, e) = 1,

where L′ is α-recursive. Then at each stage η, the construction will proceed as

follows.

Step One assign a follower to Qe, if e < η, Qe has no follower and L′(η, e) = 1;

release the follower of Qe (which was assigned before stage η, if any), whenever

e ≥ η or L′(η, e) = 0;

Step Two assign a follower to Pe, if e < η and Pe has no follower;

Step Three for all ρ ∈ [0, η) ∪ {ρ : ρ is relased at step one}, if ρ has not been

assigned to any set by the end of step two, then assign ρ to some Pd such that

Pd has not been assigned to any follower and Pd ⊇
⋃
δ<η Aρ,δ.

Step Four if FP (η, e) is a follower of Pe and FQ(η, e′) is a follower of Qe′ by the

end of step three, then let AFP (η,e),η = Pe,η and AFQ(η,e′),η = Qe′,η.

This strategy succeeds, because

(i) each Pe has a follower and never releases its follower,

(ii) eventually Qe has a permanent follower after some stage if and only if L(e) = 1,

and
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(iii) each ρ, as a follower, is released at most once, after which it will be a permanent

follower of a P set or a Q set.

More details will be given in the part of verification.

To approximate L(e), the notion of the greatest common length of Qg(i) and Qg(j),

∀j < i will be introduced. To define this notion, we first prove Lemma 4.8. Lemma

4.8 claims that for an i < α̂, the statement that Wg(i) is not equal to Wg(j) for any

j < i is equivalent to the existence of an upper bound b < α̂, such that the least

difference of Wg(i) with any Wg(j) for j < i, after the mapping g−1, lies below b and

is seen by stage f(b).

Lemma 4.8. If i < α̂, then

∀j < i (Qg(i) 6= Qg(j)) ↔ ∃b < α̂∀j < i∃x < b

(Qg(i),f(b)(g(x)) = Qg(i)(g(x)) 6= Qg(j)(g(x)) = Qg(j),f(b)(g(x))). (4.3)

Proof. We only prove the direction from left to right.

Suppose ∀j < i (Qg(i) 6= Qg(j)). Then

∀j < i∃x < α̂ ∃γ < α̂ (Qg(i),f(γ)(g(x)) = Qg(i)(g(x)) 6= Qg(j)(g(x)) = Qg(j),f(γ)(g(x))).

Since the matrix of the above formula is Σ2, Lemma 2.16 provides a b < α̂ such that

the right hand side of (4.3) holds.

In the proof of Theorem 4.6, Lemma 4.8 is the only place where the function

f is involved. In its proof, Lemma 4.8 essentially applies the condition tσ2p (α) =

σ2cf(α). By Lemma 4.8, the greatest common length is measured within α̂ through

the map g. One advantage of this measure has to do with the regularity. That is,

(g−1 � W )∩δ is α-finite for any α-r.e. set W and δ < α̂, since α̂ = tσ2p (α) ≤ σ1p (α)

and g is tame Σ2 (the tame Σ2 property of g ensures that gη � δ = g � δ, so

(g−1 � W ) ∩ δ = (g−1
η � W ) ∩ δ for all sufficiently large η; and δ < α̂ ≤ σ1p (α)

ensures that any α-r.e. subset of g � δ is α-finite). An arbitrary α-r.e. set W ,

however, need not be regular.

Suppose e, η < α. The greatest common length with respect to e through g at
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stage η is defined as

cg(η, e) =



max∗{b < min{α̂, η} : ∃j < g−1
η (e)(Qe,η � ran(gη � b) =

Qgη(j),η � ran(gη � b))}

if e < η and e ∈ ran(gη � min{α̂, η}),

0 otherwise.

Note that cg is an α-recursive function.

The index e is said to be the least index for {e′ : Qe′ = Qe} via g at stage η, if

∃δ < η ∀ρ (δ ≤ ρ ≤ η → cg(ρ, e) = cg(η, e) < α̂),

and the characteristic function of this relation is denoted by L′Q,g(η, e) (or L′(η, e)

for short). Notice that L′Q,g(η, e) (or L′(η, e)) is α-recursive.

Lemma 4.9. L(e) = 1 ↔ limη→α L
′(η, e) = 1.

Proof. Let i = g−1(e) < α̂.

Suppose L(e) = 1. Then ∀j < i (Qg(i) 6= Qg(j)). As in Lemma 4.8, there is a

b0 < α̂ such that

∀j < i∃x < b0 (Qe,f(b0)(g(x)) = Qe(g(x)) 6= Qg(j)(g(x)) = Qg(j),f(b0)(g(x))).

Thus,

∀j < i∀η > f(b0) (Qe,η � ran(g � b0)) 6= Qg(j),η � (ran(g � b0))).

Let η0 be a stage such that

∀η > η0 (gη � (max{i, b0}+ 1) = g � (max{i, b0}+ 1)).

Also, it follow easily from tσ2p (α) ≤ σ1p (α) and Theorem 2.12 that there is an η1

such that

∀j ≤ i (Qg(j) � ran(g � b0) = Qg(j),η1 � ran(g � b0)).

Then for any η > max{η0, η1, f(b0)},

cg(η, e) = max∗{b < min{α̂, η} : ∃j < i (Qe,η � ran(gη � b) = Qgη(j),η � ran(gη � b))}

= max∗{b < b0 : ∃j < i (Qe � ran(g � b) = Qg(j) � ran(g � b))}
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is a constant less than α̂, and so limη→α L
′(η, e) = 1.

Now assume δ is a stage such that ∀η > δ (L′(η, e) = 1). Then ∀η > δ (cg(η, e) =

cg(δ, e) < α̂). For the sake of contradiction, suppose j < i and Qg(j) = Qg(i) = Qe.

Similar to the existence of η0 and η1 above, there is a stage η2 > cg(δ, e) + 1 such

that

∀η > η2 [gη � (max{i, cg(δ, e)}+ 1) = g � (max{i, cg(δ, e)}+ 1)

∧ Qg(j) � ran(g � (cg(δ, e) + 1)) = Qg(j),η � ran(g � (cg(δ, e) + 1))

∧ Qe � ran(g � (cg(δ, e) + 1)) = Qe,η � ran(g � (cg(δ, e) + 1))].

Thus, cg(η, e) ≥ cg(δ, e) + 1 for each η > η2, a contradiction.

Construction

At each stage η, the construction below is carried out in four steps as described

earlier. Two α-recursive functions FP (η, e) and FQ(η, e) are defined to denote the

follower of Pe at stage η and the follower of Qe at stage η respectively. During the

construction, ρ is said to be unused if ρ has not been in the range of FP and FQ

defined so far.

The construction proceeds as follows.

At stage η. Step One. For each e < α,

Case 1.1: e ≥ η or L′(η, e) = 0. Set FQ(η, e) = −1.

Case 1.2: Case 1.1 fails and either η is a limit ordinal such that limγ→η FQ(γ, e) 6=
−1 exists or η = η′ + 1 is a successor ordinal such that FQ(η′, e) ≥ 0. Then let

FQ(η, e) =

limγ→η FQ(γ, e) if η is a limit ordinal,

FQ(η′, e) if η = η′ + 1.

Case 1.3: Case 1.1 and Case 1.2 fail. Let e0 < e1 < . . . < eζ < . . . be a list

of all e’s of Case 1.3 and ρ0 < ρ1 < . . . < ρζ < . . . be a list of all unused ρ. Let

FQ(η, eζ) = ρζ for each eζ .

Step Two. For any e < α,

Case 2.1. Either η is a limit ordinal such that limγ→η FP (γ, e) 6= −1 exists or
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η = η′ + 1 is a successor ordinal such that FP (η′, e) ≥ 0. Then set

FP (η, e) =

limγ→η FP (γ, e) if η is a limit ordinal,

FP (η′, e) if η = η′ + 1.

Case 2.2. Case 2.1 fails and e < η. Similar to Case 1.3, define FP (η, e) to be ρ′ζ ,

whenever e is the ζth ordinal in Case 2.2 and ρ′ζ is the ζth unused ρ by the end of

step one.

Case 2.3. Case 2.1 and Case 2.2 fail. FP (η, e) will be defined in step three.

Step Three. Let ρ′′0 < ρ′′1 < . . . < ρ′′ζ < . . . be a list of ρ’s such that

(i) The ordinal ρ is not FP (η, e) and not FQ(η, e′) for any defined FP (η, e) and

FQ(η, e′), and

(ii) Either ρ < η or ρ ∈ {FP (δ, d) : d < α, δ < η}∪{FQ(δ, d) : d < α, δ < η}\{−1}.

Now recursively define

e′′ζ = the first enumerated e > sup
ζ′<ζ

e′′ζ′ such that Pe ⊇
⋃
δ<ηAρ′′ζ ,δ

and that FP (η, e) is undefined by the end of step two.

Define FP (η, e′′ζ ) to be ρ′′ζ .

Finally, for FP (η, e) still undefined, let FP (η, e) = −1 .

Step Four. For any ρ < α, if ρ = FP (η, e), then let Aρ,η = (
⋃
ζ<ηAρ,ζ) ∪ Pe,η; if

ρ = FQ(η, e), then let Aρ,η = (
⋃
ζ<η Aρ,ζ) ∪Qe,η. Otherwise, let Aρ,η =

⋃
ζ<η Aρ,ζ .

Verification

Clause (iii) of the next lemma implies that the above construction is α-recursive.

Lemma 4.10. Assume η < α.

(i) For all e < η, FP (η, e) ≥ 0 and (FQ(η, e) ≥ 0 ↔ L′(η, e) = 1);

(ii) η ⊆ ran(FP � ({η} × α)) ∪ ran(FQ � ({η} × α)), i.e. each ρ < η becomes a

follower of some set from stage η onwards;
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(iii) {e : FP (η, e) 6= −1}, {e : FQ(η, e) 6= −1}, ran(FP � ({η} × α)) \ {−1} and

ran(FQ � ({η} × α)) \ {−1} are α-finite;

(iv) ∀e, e′ (FP (η, e), FQ(η, e′) ≥ 0 → FP (η, e) 6= FQ(η, e′)) and ∀e, e′ ((FP (η, e) =

FP (η, e′) ≥ 0) ∨ (FQ(η, e) = FQ(η, e′) ≥ 0) → e = e′). In other words, at

stage η, the assignment of followers is one-one;

(v) ∀e (FP (η, e) ≥ 0 → ∀δ > η FP (δ, e) = FP (η, e)), i.e. Pe never releases its

follower for any e;

(vi) ∀e (η > e ∧ ∀δ ≥ η (L′(δ, e) = 1) → ∀δ > η (FQ(δ, e) = FQ(η, e))), i.e. Qe

never release its follower after stage η if e is thought to be the least index via

g from stage η onwards;

(vii) Aρ,η is equal to Pe,η if FP (η, e) = ρ, and is equal to Qe,η if FQ(η, e) = ρ.

Proof. By induction on η and δ (δ is as in Clause (v)-(vi)).

Define F ∗P , F
∗
Q : α→ α ∪ {−1} by

F ∗P (e) = lim
η→α

FP (η, e), F ∗Q(e) = lim
η→α

FQ(η, e).

That is, F ∗P (e) is the permanent follower of Pe; and F ∗Q(e), if defined, is the perma-

nent follower of Qe.

Part (i), (v) and (vi) of Lemma 4.10 together imply that

∀e (F ∗P (e) ↓6= −1), ∀e (L(e) = 1 → F ∗Q(e) ↓6= −1).

For e < α such that L(e) = 0, Lemma 4.9 implies that there are cofinally many

stages η satisfying L′(η, e) = 0, and so there are cofinally many stages η such that

FQ(η, e) = −1. Thus,

∀e (L(e) = 0 → F ∗Q(e) ↑ ∨F ∗Q(e) = −1).

By (iv), the assignment of permanent followers is one-one, i.e.

∀e, e′ [(L(e′) = 1 → F ∗P (e) 6= F ∗Q(e′)) ∧ (e 6= e′ → F ∗P (e) 6= F ∗P (e′))

∧ (e 6= e′ ∧ L(e) = L(e′) = 1 → F ∗Q(e) 6= F ∗Q(e′))]. (4.4)
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According to (vii),

∀e (Pe = AF ∗P (e)), and ∀e (L(e) = 1 → Qe = AF ∗Q(e)).

Consequently, {Ae}e<α is a universal numbering of all α-r.e. sets. To show that

{Ae}e<α is a Friedberg numbering, it is only necessary to show that {Ae}e<α is

one-one. Observe that by (4.4), {Ae}e<α being one-one is immediate once α ⊆
ran(F ∗P )∪ ran(F ∗Q), i.e. each ρ is a permanent follower for someone, has been proved.

Let ρ < α. By (v), if ρ = FP (η, e) for some η, e, then ρ = F ∗P (e) ∈ ran(F ∗P ).

Now suppose ρ 6= FP (η, e) for all η and e. Then at stage ρ + 1, according to (ii),

ρ = FQ(ρ + 1, e′). Moreover, ∀η > ρ + 1 (ρ = FQ(η, e′)). Otherwise, at the least

stage η > ρ+ 1 with ρ 6= FQ(η, e′), it is defined in step three that FP (η, e′′) = ρ for

some e′′, yielding a contradiction. Since ∀η > ρ (ρ = FQ(η, e′)), we immediately get

L(e′) = 1 and ρ = F ∗Q(e′).

4.2.3 Pseudostability

Through out this section of pseudostability, we make the assumption that σ1p (α) >

ω, which is only necessary for Lemma 4.20. In this section, we introduce the notion of

pseudostability and generalize some properties of α-stable ordinals to pseudostable

ordinals. In Section 4.2.4, pseudostability will be used to show the nonexistence of a

Friedberg numbering when tσ2p (α) > σ2cf(α), which is stronger than σ1p (α) > ω

(since σ2cf(α) ≥ ω). Under the assumption that tσ2p (α) > σ2cf(α), all proofs in

this section remain the same.

Suppose {Ae}e<α is an arbitrary numbering. As noticed in Section 4.2.1, α-

stable ordinals are used to obtain, roughly speaking, an upper bound of the least

differences between a given α-finite set C and α-finitely many α-r.e. sets of the

numbering. That idea succeeds mainly because of the following property: for any ζ

and α-finite set C, if δ < σ1p (α) and β is a large enough α-stable ordinal, then

∀e < δ (Ae ⊇ C ∪ [ζ, β) ↔ Ae,β ⊇ C ∪ [ζ, β)).

Pseudostable ordinals are defined mainly by this property.

Lemma 4.11. Suppose {Ae}e<α is a numbering. Then there exists an α-recursive

function h : α4 → α, such that: for any γ < α, α-finite set C ⊂ α, and α-finite

(partial) function p : α
one-one−−−−→ α satisfying |dom(p)|α < σ1p (α), we have
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(i) For each η < α, h(η, γ, C, p) ≤ η is defined.

(ii) The sequence {h(η, γ, C, p)}η<α is nondecreasing.

(iii) There is a β < α such that

β = lim
η→α

h(η, γ, C, p) = h(β, γ, C, p) > max{γ, C, supC, p}, †

and

∀e ∈ ran(p) (Ae ⊇ C ∪ [supC, β) ↔ Ae,β ⊇ C ∪ [supC, β)). (4.5)

The rest of this section is devoted to the proof of Lemma 4.11.

An ordinal β < α is said to be pseudostable relative to the numbering {Ae}e<α, if

β = limη→α h(η, γ, C, p) for some h, γ, C, p satisfying all the requirements in Lemma

4.11. Immediately from the definition, for any C, p as in Lemma 4.11, pseudostable

ordinals {limη→α h(η, γ, C, p) : γ < α} are cofinal in α.

In the construction given in Section 4.2.4, Lemma 4.11 is applied as follows: the

function p is an initial segment of the graph of a tame Σ2 projection from tσ2p (α)

to α, γ is a stage such that all approximations related to the initial segment have

reached their final limit, and C is an initial segment of the set to be constructed.

The method of proof of Lemma 4.11 consists of a Skolem hull argument below α

with respect to the property (4.5) and, roughly speaking, coding the approximation

of the Skolem hull construction into the enumeration of an α-r.e. subset with α-

cardinality less than σ1p (α). By Theorem 2.12, the α-r.e. set is α-finite. Thus, its

enumeration terminates before α. Consequently, the Skolem hull is also below α.

Skolem hull argument

From now on, γ, C, p are as in Lemma 4.11 and fixed. For each n < ω, define the

Skolem function

z0(γ, C, p) = max{γ, C, supC, p}+ 1,

zn+1(γ, C, p) = µz ≥ zn(γ, C, p)(∀e ∈ ran(p) (Ae ⊇ C ∪ [supC, zn(γ, C, p)) →

Ae,z ⊇ C ∪ [supC, zn(γ, C, p))).

†The canonical enumeration of sets in Lα allows a canonical effective coding of α-finite sets (See
[39]). Here, β > C and β > p mean that β is greater than the code of C and p respectively.
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To simply the notation, we suppress the parameters of zn(γ, C, p) unless the possi-

bility of confusion arises. Note that {zn : n < ω} may not be stable or pseudostable

ordinals. In fact, later we will see that max∗n<ω zn is a pseduostable ordinal.

Lemma 4.12. {zn : n < ω} ⊆ α.

Proof. Since p is one-one, | ran(p)|α = |dom(p)|α < σ1p (α). Thus, any α-r.e. subset

of ran(p) is α-finite, by Theorem 2.12.

By induction on n, if zn < α, the set {e ∈ ran(p) : Ae ⊇ C ∪ [supC, zn)} is

α-finite. Hence zn+1 < α by Σ1 replacement. It follows that {zn : n < ω} ⊆ α.

Lemma 4.13. ∀n∀η ≥ zn+1 ∀e ∈ ran(p) (Ae ⊇ C ∪ [supC, zn) ↔ Ae,η ⊇ C ∪
[supC, zn)).

Proof. By the definition of zn+1 and the fact that {Ae}e<α are α-r.e. sets.

Let β(γ, C, p) = max∗n<ω zn(γ, C, p). Again, we suppress parameters of β(γ, C, p)

for simplicity.

Lemma 4.14. ∀e ∈ ran(p) (Ae ⊇ C ∪ [supC, β) ↔ Ae,β ⊇ C ∪ [supC, β)).

Proof. For any e ∈ ran(p),

Ae ⊇ C ∪ [supC, β)

↔∀n < ω (Ae ⊇ C ∪ [supC, zn))

↔∀n < ω (Ae,β ⊇ C ∪ [supC, zn)) by Lemma 4.13

↔Ae,β ⊇ C ∪ [supC, β).

It will be shown later that β < α. For the moment assume that this is true. To

prove Lemma 4.11, it remains to define h by the approximation of {zn}n<ω, so that

β = limη→α h(η, γ, C, p).

At stage η, define the approximation of {zn}n<ω by induction on n < ω as follows:

z0,η = min{z0, η},

zn+1,η = max{max∗η′<ηzn+1,η′ , µz ≤ η[(z ≥ zn,η)∧

∀e ∈ ran(p) (Ae,η ⊇ C ∪ [supC, zn,η)→ Ae,z ⊇ C ∪ [supC, zn,η))]}.
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In the definition of zn+1,η, “max∗η′<η zn+1,η′” ensures that zn+1,η is nondecreasing with

respect to η, and “Ae,η ⊇ C ∪ [supC, zn,η) → Ae,z ⊇ C ∪ [supC, zn,η)” is a Skolem

hull construction.

Lemma 4.15. Suppose n < ω. Then

(i) {zn,η}η<α is a nondecreasing sequence;

(ii) ∀η (zn,η ≤ min{zn, η});

(iii) ∀η ≥ zn (zn,η = zn).

Proof. Clause (i) is immediate from the definition of zn,η. Also from the definition of

zn,η, an induction on η shows ∀η ∀n (zn,η ≤ η). Hence ∀η < zn ∀n (zn,η ≤ min{zn, η}).
Therefore, to prove (ii), only (iii) needs to be shown.

Clause (iii) is proved by induction on n and η. We omit the details.

For any η < α, define

h(η, γ, C, p) = max∗n<ωzn,η.

By Lemma 4.15,

∀η ≥ β (h(η, γ, C, p) = β).

It is easy to check (i)-(iii) of Lemma 4.11. To complete the proof of Lemma 4.11, it

remains only to verify that max∗n<ω zn < α, i.e. β < α. The following lemma deals

with a special case and is straightforward to verify.

Lemma 4.16. If zn+1 = zn, then ∀m < ω (m > n→ zm = zn).

Lemma 4.16 suggests that if zn = zn+1, for some n < ω, then β = max∗m<ω zm =

zn < α. Thus, to show β < α in general, we only need to check the case when

{zn}n<ω is strictly increasing. That case will be addressed in the coding part below.

Coding

Let γ, C, p be given and {zn}n<ω be defined as in previous part of Skolem hull

argument. In this part, we always assume that {zn}n<ω is strictly increasing. Then

it is immediate from the definition of zn that

∀n < ω ∃ e ∈ ran(p) (Ae ⊇ C ∪ [supC, zn)). (4.6)
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With the above formula in mind, it is straightforward to code the approximation

of β by enumerating (n, e) such that, (n, e) is enumerated at stage η if Ae,η ⊇
C ∪ [supC, zn,η). It is tempting to assume (mistakenly) that zn+1,η = zn+1 if and

only if the (n, e)’s have completed their enumeration at stage η. Nevertheless, in

that event, the enumeration of (n, e)’s may terminate before the enumeration of

some (m, e′), m < n, due to the approximation of zn and zm, m < n. The trick to

cover this possibility is to incorporate the enumeration of the (m, e′)’s, for all m < n,

in the enumeration of the (n, e)’s: Suppose at stage η, Ae,η ⊇ C∪ [supC, zn,η). Then

(n, e0, e1, . . . , en) is enumerated if (n − 1, e0, e1, . . . , en−1) is enumerated by stage

η. Then for n > 0, the enumeration of the (n, e0, e1, . . . , en)’s does not terminate

whenever some (n− 1, e′0, e
′
1, . . . , e

′
n−1) is yet to be enumerated.

More precisely, define an α-r.e. set D ⊆
⋃
n<ω({n}× ran(p)n+1) as follows, where⋃

n<ω({n} × ran(p)n+1) = {(n, e0, e1, . . . , en) : n < ω, e0, e1, . . . , en ∈ ran(p)}.

Suppose η < z0. Then let Dη = ∅.

At stage η ≥ z0, the enumeration of Dη is carried out in ω steps. Let

Dη,0 = (
⋃
η′<ηDη′) ∪ {(0, e) : e ∈ ran(p) ∧ Ae,η ⊇ C ∪ [supC, z0)},

and if n > 0,

Dη,n = (
⋃
m<nDη,m) ∪ {(n, e0, e1, . . . , en) : e0, e1, . . . , en ∈ ran(p)∧

Aen,η ⊇ C ∪ [supC, zn,η) ∧ (n− 1, e0, e1, . . . , en−1) ∈ Dη,n−1}.

Dη =
⋃
n<ωDη,n.

Then let D =
⋃
η<αDη.

Lemma 4.17. If n > 0, (n − 1, e0, e1, . . . , en−1) ∈ D and Aen ⊇ C ∪ [supC, zn),

then (n, e0, e1, . . . , en) ∈ D.

Proof. Let η > zn be large enough such that (n− 1, e0, e1, . . . , en−1) ∈ Dη, and

C ∪ [supC, zn) ⊆ Aen,η. Since η > zn, we have zn,η = zn. Thus, (n, e0, e1, . . . , en) ∈
Dη.

Lemma 4.18. For any n < ω and η < α,

η ≥ zn+1 ↔ Dη � ({n} × ran(p)n+1) = D � ({n} × ran(p)n+1). (4.7)
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Proof. The lemma is proved by induction on n.

Let n = 0. By the definition of Dη, for all e ∈ ran(p) and η < α,

(0, e) ∈ Dη ↔ (η ≥ z0 ∧ Ae,η ⊇ C ∪ [supC, z0)).

Thus, for any e ∈ ran(p),

(0, e) ∈ D ↔ Ae ⊇ C ∪ [supC, z0),

According to (4.6), D � ({0} × ran(p)) 6= ∅. Therefore,

D � ({0} × ran(p)) = Dη � ({0} × ran(p))→ η ≥ z1.

The other direction of (4.7) for n = 0 is immediate from the definition of z1.

With the intention of showing (4.7) when n > 0, assume that (4.7) is true for

0, . . . , n− 1. Pick any η < α. We consider three cases.

Case 1. η < zn. Since (4.7) is true for n − 1, let (n − 1, e0, e1, . . . , en−1) ∈
D \ Dη. Let en ∈ dom(p) be any index such that Aen ⊇ C ∪ [supC, zn). Then

(n, e0, e1, . . . , en) ∈ D \Dη. Hence Dη � ({n} × ran(p)n+1) 6= D � ({n} × ran(p)n+1).

Case 2. zn ≤ η < zn+1. Then zn,η = zn and by the definition of zn+1, there is

some en ∈ ran(p) such that Aen ⊇ C ∪ [supC, zn) but Aen,η 6⊇ C ∪ [supC, zn). Let

x ∈ C ∪ [supC, zn) \ Aen,η. Since zn > supC, we have x < zn.

Subcase 2.1. there exists (n− 1, e0, e1, . . . , en−1) ∈ D \
⋃
η′<zn

Dη′ . Then

(i) Since (n− 1, e0, e1, . . . , en−1) 6∈
⋃
η′<zn

Dη′ , (n, e0, e1, . . . , en) 6∈
⋃
η′<zn

Dη′ ;

(ii) For any δ such that zn ≤ δ ≤ η, we have (n, e0, e1, . . . , en) 6∈ Dδ \
⋃
δ′<δDδ′ , as

Aen,δ 6⊇ C ∪ [supC, zn) and zn = zn,δ.

Thus, (n, e0, e1, . . . , en) ∈ D \ Dη. Hence Dη � ({n} × ran(p)n+1) 6= D � ({n} ×
ran(p)n+1).

Subcase 2.2. Subcase 2.1 fails. Then we claim that max∗η′<zn zn,η′ = zn. It will

be proved in a moment. For now assume the claim and let η′ < zn be such that

zn,η′ > x. Since η′ < zn, there is (n− 1, e0, e1, . . . , en−1) ∈ D \Dη′ . Therefore,

(i) If δ ≤ η′, then (n, e0, e1, . . . , en) 6∈ Dδ since (n− 1, e0, e1, . . . , en−1) 6∈ Dδ;
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(ii) If η′ < δ ≤ η, then zn,δ > x and x ∈ C ∪ [supC, zn,δ) \ Aen,δ. Therefore,

Aen,δ 6⊇ C ∪ [supC, zn,δ) and (n, e0, e1, . . . , en) 6∈ Dδ \
⋃
δ′<δDδ′ .

Thus, (n, e0, e1, . . . , en) ∈ D \ Dη. Hence Dη � ({n} × ran(p)n+1) 6= D � ({n} ×
ran(p)n+1).

Case 3. η ≥ zn+1. One can see immediately that zn,η = zn = zn,zn+1 . Suppose

Aen,η ⊇ C∪[supC, zn,η) and (n−1, e0, e1, . . . , en−1) ∈ Dη,n−1. Then, by the definition

of zn+1, Aen,zn+1 ⊇ C∪[supC, zn,zn+1) and by (4.7) for n−1, (n−1, e0, e1, . . . , en−1) ∈
Dzn+1 . Thus, (n, e0, e1, . . . , en) ∈ Dzn+1 . Hence Dη � ({n} × ran(p)n+1) = Dzn+1 �

({n} × ran(p)n+1) = D � ({n} × ran(p)n+1).

Finally, in Subcase 2.2, to see max∗η′<zn zn,η′ = zn, assume for a contradiction that

M = max{zn−1,max∗η′<zn zn,η′} < zn. Then there exists (n − 1, e∗0, e
∗
1, . . . , e

∗
n−1) ∈

D \DM . Let δ be the first stage that (n− 1, e∗0, e
∗
1, . . . , e

∗
n−1) is enumerated into D.

Then by (4.7) for n−1 and the assumption of Subcase 2.2, we conclude M < δ < zn.

Now

(a) If n = 1, then z0 ≤ M < δ < z1 and (0, e∗0) ∈ Dδ \ DM . Since (0, e∗0) ∈ Dδ,

by the definition of Dδ, Ae∗0,δ ⊇ C ∪ [supC, z0). Then by the definition of z1,δ,

Ae∗0,z1,δ ⊇ C ∪ [supC, z0) = C ∪ [supC, z0,δ). Therefore, Ae∗0,M ⊇ C ∪ [supC, z0)

and (0, e∗0) ∈ DM , a contradiction.

(b) If n ≥ 2, then zn−1 ≤M < δ < zn and (n−1, e∗0, e
∗
1, . . . , e

∗
n−1) ∈ Dδ \

⋃
δ′<δDδ′ .

By definition of Dδ, Ae∗n−1,δ
⊇ C ∪ [supC, zn−1,δ) = C ∪ [supC, zn−1) = C ∪

[supC, zn−1,M) and (n− 2, e∗0, e
∗
1, . . . , e

∗
n−2) ∈ Dδ. Similar to the proof in (a),

we have

Ae∗n−1,M
⊇ C ∪ [supC, zn−1,M).

And by (4.7) for n− 2, (n− 2, e∗0, e
∗
1, . . . , e

∗
n−2) ∈ DM . Thus, (n− 1, e∗0, e

∗
1, . . . ,

e∗n−1) is in DM , again a contradiction.

Corollary 4.19. For any η < α,

η ≥ β ↔ Dη = D.

The next task to show that D is α-finite.

Lemma 4.20. Every α-r.e. subset of
⋃
n<ω({n} × ran(p)n+1) is α-finite.
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Proof. Let κ = max{|dom(p)|α, ω}. Since |dom(p)|α, ω < σ1p (α), we have κ <

σ1p (α). Since p is one-one, it follows immediately that | ran(p)|α ≤ κ. Therefore,

|{n} × ran(p)n+1|α ≤ κ for all n < ω. Furthermore, the α-finite bijections from

{n} × ran(p)n+1 to κ may be defined uniformly for all n < ω. Hence |
⋃
n<ω({n} ×

ran(p)n+1)|α ≤ κ < σ1p (α) and the lemma follows by Theorem 2.12.

Lemma 4.19 and 4.20 combine to imply that D is α-finite. Hence

Lemma 4.21. max∗n<ω zn < α, i.e. β < α.

Observe at this point that Lemma 4.11 holds whenever σ1p (α) > ω. Since

no restriction on the numbering is required, if σ1p (α) > ω, then Lemma 4.11 is

applicable for any type of numberings. In particular, Lemma 4.11 is also true for a

Gödel numbering when σ1p (α) > ω. Notice that a Gödel numbering exists in Lα

for all Σ1 admissible ordinal α. Thus, in general, the nonexistence of a Friedberg

numbering when tσ2p (α) > σ2cf(α) (See Section 4.2.4) is not due to the existence

of pseudostable ordinals.

4.2.4 When tσ2p (α) > σ2cf(α)

In this section, we prove

Theorem 4.22. If tσ2p (α) > σ2cf(α), then there is no Friedberg numbering of

α-r.e. sets.

Since tσ2p (α) > σ2cf(α), by Clause (1) of Corollary 2.15 , ω < σ1p (α) and

σ2cf(α) < α. Therefore, in this situation, the notion of pseudostability is applicable

and Σ2 replacement fails.

Let {Ae}e<α be a one-one numbering, and let h be an α-recursive function satisfy-

ing Lemma 4.11. The objective is to construct an α-r.e. set X, so that X 6∈ {Ae}e<α.

Thus, {Ae}e<α is not a Friedberg numbering.

Fix the terminology as follows. Let

g : tσ2p (α)
one-one−−−−→

onto
α

be a tame Σ2 projection, and according to Lemma 2.14 and Clause (2) of Corollary

2.15, let

f : σ2cf(α) → tσ2p (α)
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be a strictly increasing tame Σ2 cofinal function so that f(0) = 0. Moreover, assume

f ′ : α × σ2cf(α) → tσ2p (α), g′ : α × tσ2p (α) → α tamely generate f and g

respectively. As in Section 4.2.2, fη, gη will be used to denote functions λx (f ′(η, x))

and λx (g′(η, x)). Moreover, we assume that for all η < α, fη is nondecreasing and

ran(fη), ran(gη) ⊆ [0, η].

Strategy

As in Section 4.2.2, g makes it possible to arrange the indices of {Ae}e<α on tσ2p (α).

The function f partitions tσ2p (α) into σ2cf(α) many blocks: {[f(i), f(i+ 1)) : i <

σ2cf(α)}. [f(i), f(i + 1))) is said to be the ith block (or block i) of tσ2p (α). By

α-r.e. sets in the ith block (or α-r.e. sets in block i), we mean the α-r.e. sets are from

the collection {Ae : g(e) ∈ [f(i), f(i+1))}. Since the numbering {Ae}e<α is one-one,

each α-r.e. set is in at most one block. The set X is constructed by diagonalizing

against α-r.e. sets in each block.

Suppose i < σ2cf(α), γ < α, C ⊂ α is an α-finite set, and β = β(γ, C, g � f(i))

is the pseudostable ordinal obtained in Lemma 4.11 when p = g � f(i), i.e.

β = lim
η→α

h(η, γ, C, g � f(i)),

and X � β = C ∪ [supC, β). Then it follows from Lemma 4.11 that

∀e ∈ ran(g � f(i)) (Ae ⊇ X � β ↔ Ae,β ⊇ X � β). (4.8)

Since {Ae}e<α is a one-one numbering, there is at most one e in the range of g � f(i)

such that Ae = X � β. Therefore, by (4.8), the set {e ∈ ran(g � f(i)) : Ae ) X � β}
is α-finite. According to Σ1 replacement, let u ≥ β be such that

∀e ∈ ran(g � f(i)) (Ae ) X � β ↔ Ae,u ) X � β). (4.9)

Now suppose e is in the range of g � f(i), then

(i) if Ae 6⊇ X � β, then there is a least w < β such that Ae(w) 6= X(w);

(ii) if Ae ⊇ X � β, then either Ae = X � β or Ae,u ) X � β.

Thus, to diagonalize against Ae in block j for all j < i (i.e. e ∈ ran(g � f(i))),

it suffices to define X � (u + 1) = C ∪ [supC, β) ∪ {u}. In our construction, X is

defined by iterating this strategy through i < σ2cf(α).
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This strategy may be converted to an effective one, largely because f , g and

h are effectively and tamely approximated. The only difficulty concerns obtaining

a nice recursive approximation of u in (4.9) (notice that the intention is to make

X � [β, u) = ∅). A recursive approximation of u requires information regarding

Iβ,i = {e ∈ ran(g � f(i)) : Ae ) X � β}. Lemma 2.13 and Lemma 4.11 provide a

way around this difficulty. Notice that a correct guess of the set I ′β,i = {e ∈ ran(g �

f(i)) : Ae ⊇ X � β} is obtained from stage β onwards. Thus, only a coding of the

existence of an Ae which is equal to X � β, where e is in the range of g � f(i), is

needed to determine Iβ,i: if such an Ae exists, then Iβ,i is obtained by enumerating all

e ∈ I ′β,i such that Ae ) X � β until only one index in I ′β,i remains to be enumerated;

if no such Ae exists, then Iβ,i = I ′β,i. As will be seen in a moment, the coding is

tame Σ2 and hence, by Lemma 2.13, is α-finite.

The above strategy is an analogue of that in BΣ2 models. The difference be-

tween the two constructions mainly arises from the upper bound established in the

constructions. In BΣ2 models, it is an upper bound of the least differences between

any pair of r.e. sets in some blocks; in Lα, since Σ2 replacement fails, the upper

bound is only for the least differences between X and the α-r.e. sets in some α-finite

part of the numbering.

Construction

X is first constructed recursively in ∅′ by induction through σ2cf(α) with the in-

tention of coding the existence of Ae such that Ae is equal to X � βi, where e is in

the range of g � f(i), i < σ2cf(α), and βi is a pseudostable ordinal specified below.

Let i < σ2cf(α). Suppose for all j < i, the values of γj, βj, uj, X[j] and G(j)

have been defined. For i, the values of γi, βi, ui, X[i] and G(i) are defined as follows.

Stage γi is defined to be a stage such that the approximation of f

below i+1 and the approximation of g below f(i)+1 have reached their

limits from stage γi onwards:

γi = max{µζ (∀ζ ′ ≥ ζ (fζ′ � (i+ 1) = f � (i+ 1))),

µζ (∀ζ ′ ≥ ζ (gζ′ � (f(i) + 1) = g � (f(i) + 1))}.

Let Ci be
⋃
j<iX[j]. If Ci is α-finite, then let βi be the pseudostable
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ordinal obtained in Lemma 4.11 when γ = γi, C = Ci, and p = g � f(i),

i.e.

βi = lim
ζ→α

h(ζ, γi, Ci, g � f(i)).

If Ci is not α-finite, then βi, together with ordinals defined below ui, Xi

and G(i), is undefined. It will follow from Lemma 4.23 that Ci is α-finite

for all i < σ2cf(α).

The pseudostable ordinal βi together with an upper bound ui defined

below will be applied to diagonalize Ae in block j for all j < i. Intuitively,

the upper bound ui is a stage at which all α-r.e. sets with indices in the

range of g � f(i) containing Ci∪ [supCi, βi) as a proper subset have been

enumerated. More precisely, we define

ui = µu ≥ βi [∀e ∈ ran(g � f(i)) (Ae ) Ci ∪ [supCi, βi)

→ Ae,u ) Ci ∪ [supCi, βi))].

X[i] is defined to be an end extension of Ci using βi and ui as parameters

with the intention of diagonalizing Ae in block j for all j < i:

X[i] = Ci ∪ [supCi, βi) ∪ {ui}.

X succeeds in diagonalizing Ae in a block j for all j < i if X is an end

extension of X[i], for the reason shown in the part of the strategy.

G(i) is defined below to provide the desired code of the existence of Ae

in a block j < i such that Ae is identical with Ci ∪ [supCi, βi), i.e.

G(i) =

1 if ∃e ∈ ran(g � f(i)) (Ae = Ci ∪ [supCi, βi)),

0 otherwise.

G(i) will be a parameter of the recursive approximation of ui as shown

in the section we described the strategy. We review the idea briefly in

the following.

For the rest of this paragraph we only consider Ae’s such that e is in

the range of g � f(i). Also for simplicity, let Υi denote the α-finite set

Ci ∪ [supCi, βi). Since βi is pseudostable, whether Ae contains Υi as a

subset is determined at stage βi. If G(i) = 0, then all Ae containing Υi
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as a subset will contain Υi as a proper subset. Therefore when G(i) = 0,

to determine ui, one only needs to wait until each Ae containing Υi as

a subset at stage βi has enumerated an element not in Υi. If G(i) = 1,

then all but one Ae containing Υi as a subset would contain Υi as a

proper subset. Thus when G(i) = 1, to determine ui, one only needs

to wait until all but one Ae containing Υi as a subset at stage βi has

enumerated an element not in Υi.

Lemma 4.23. The function q : i 7→ (γi, βi, ui, X[i], G(i)) is tame Σ2 and has domain

σ2cf(α).

Proof. Suppose δ = dom(q) ≤ σ2cf(α). Notice that

(i) f, g are tame Σ2;

(ii) For every i < δ and ζ ≥ βi , h(ζ, γi, Ci, g � f(i)) = βi, where Ci =
⋃
j<iX[j],

i.e. the approximation to βi reaches its limit at stage βi and does not change

thereafter;

(iii) For every i < δ, by Lemma 4.11 and definitions of βi and ui,

G(i) = 0↔

∀e ∈ ran(g � f(i))(Ae,βi ⊇ Ci ∪ [sup(Ci, βi) → Ae,ui ) Ci ∪ [supCi, βi)).

Now it is straightforward to verify that the function q is Σ2.

Moreover, q can be viewed as a (partial) function on σ2cf(α). Since Lemma 2.14

implies that q is tame Σ2, we have q � a is α-finite, whenever a ≤ tσ2p (α).

For the sake of contradiction, assume δ < σ2cf(α). Then q � δ and Cδ are α-

finite. This implies that γδ and βδ are defined. Since f(δ) < tσ2p (α) ≤ σ1p (α) and

g is a tame Σ2 one-one function, by Theorem 2.12, each α-r.e. subset of ran(g � f(δ))

is α-finite. Hence

{e ∈ ran(g � f(δ)) : Ae ) Cδ ∪ [supCδ, βδ)}

is α-finite. Thus, uδ is well defined by Σ1 replacement, and so are X[δ] and G(δ), a

contradiction.
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Lemma 4.24. G : σ2cf(α)→ {0, 1} is α-finite.

Proof. By Lemma 4.23, {i < σ2cf(α) : G(i) = 1} is tame Σ2. Since σ2cf(α) <

tσ2p (α), according to Lemma 2.13, G is α-finite.

Let

X =
⋃
i<σ2cf(α)X[i].

Lemma 4.25. X 6∈ {Ae}e<α.

Proof. Assume X ∈ {Ae}e<α for a contradiction. Since f is cofinal and g is onto,

there is i < σ2cf(α) and e ∈ ran(g � f(i)) such that X = Ae. Let Υi denote the

α-finite set (
⋃
j<iX[j]) ∪ [sup(

⋃
j<iX[j]), βi) for simplicity.

Observe that for every i′ > i, X[i′] is an end extension of X[i]. Hence

Υi = X � ui = Ae � ui.

Since X ) Υi, it follows from the definition of ui that Ae,ui ) Υi. But notice that

Ae,ui ⊆ Ae � ui = Υi, a contradiction.

Verifying that X is α-r.e.

Lemma 4.25 states that X is not in the numbering {Ae}e<α. To see that {Ae}e<α is

not a universal numbering, we only need to show that X is α-r.e. We will effectively

reconstruct the set X as an α-r.e. set using the α-finite code G as a parameter.

Again, let Ci, Υi denote
⋃
j<iX[j] and (

⋃
j<iX[j])∪ [sup(

⋃
j<iX[j]), βi) respec-

tively for simplicity. Note that by Lemma 4.11, for any e ∈ ran(g � f(i)), Ae

contains Υi if and only if Υi is enumerated into Ae by stage βi. Moreover, at most

one e ∈ ran(g � f(i)) satisfies Ae = Υi. And by the definition of G, such an e exists

if and only if G(i) = 1. These observations yield an alternative definition of ui with

parameter G:

ui = µu ≥ βi [G(i) = 0 → ∀e ∈ ran(g � f(i)) (Ae,βi ⊇ Υi → Ae,u ) Υi)

∧ G(i) = 1 → ∀≥1e ∈ ran(g � f(i))(Ae,βi ⊇ Υi → Ae,u ) Υi)]. (4.10)

Here, by “∀≥1e ∈ C ”, where C is any α-finite set, we mean “∃e0 ∈ C ∀e ∈ C \{e0}”.

Definition (4.10) implies that ui is α-recursively defined by βi, g � f(i) and Ci.
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At each stage η < α, the approximation of {X[i]}i<σ2cf(α) inductively for i <

σ2cf(α) is given as follows.

Stage γi,η is defined to be a stage not exceeding η such that the ap-

proximation of f below i+1 and approximation of g below fη(i)+1 have

attained their values at stage η and do not change thereafter until stage

η:

γi,η = max{µζ ≤ η (∀ζ ′ ∈ [ζ, η] (fζ′ � (i+ 1) = fη � (i+ 1))), (4.11)

µζ ≤ η (∀ζ ′ ∈ [ζ, η] (gζ′ � (fη(i) + 1) = gη � (fη(i) + 1)))}.

Let Ci,η be
⋃
j<iXη[j]. Pseudostable ordinal βi is approximated via the

function h, i.e.

βi,η = h(η, γi,η, Ci,η, gη � fη(i)).

An upper bound ui,η < η is defined by substituting βi,η, gη, fη, Xη[j] for

βi, g, f,X[j] respectively and restricting u to the set [supCi,η, η) in (4.10):

Let Υi,η denote Ci,η ∪ [supCi,η, βi,η). Then

ui,η =µu ≥ βi,η [ (u ≥ supCi,η ∧ (u < η)∧

G(i) = 0 → ∀e ∈ ran(gη � fη(i)) (Ae,βi,η ⊇ Υi,η → Ae,u ) Υi,η)∧

G(i) = 1 → ∀≥1e ∈ ran(gη � fη(i))(Ae,βi,η ⊇ Υi,η → Ae,u ) Υi,η)].

For some η, ui,η may be undefined.

Now define

Xη[i] =

Υi,η ∪ {ui,η} if for each j ≤ i, uj,η is defined,

∅ otherwise.

Lemma 4.26. Suppose i < σ2cf(α). Then

lim
η→α

(γi,η, βi,η, ui,η, Xη[i]) = (γi,η0 , βi,η1 , ui,η2 , Xη2 [i]) = (γi, βi, ui, X[i]),

for any η0 ≥ γi, η1 ≥ βi, and η2 > ui.

Proof. All equations are proved simultaneously by induction on i. Suppose Lemma

4.26 is proved for each j < i. Let η < α be a stage. We have
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(i) If η ≥ γi, then the definition of γi implies

fη � (i+ 1) = f � (i+ 1), gη � (f(i) + 1) = g � (f(i) + 1).

Thus, according to (4.11), γi,η = γi.

(ii) Let η ≥ βi. Then by their definitions and Lemma 4.11, βi > max{γi, supj<i uj}.
According to the inductive hyphothesis and (1) of this proof, (γi,η, Ci,η, gη �

fη(i)) = (γi, Ci, g � f(i)). By Lemma 4.11 again, βi,η = βi.

(iii) Now suppose η > ui. Since ui ≥ βi, by (2) of the present proof, (βi,η, γi,η, Ci,η,

gη � fη(i)) = (βi, γi, Ci, g � f(i)). So ui,η is defined and equal to ui. Combine

this with the inductive hypothesis, then we have ∀j ≤ i (uj,η ↓= uj). Hence

Xη[i] = X[i].

Lemma 4.27. Xη[i] ⊆ X for all η < α, i < σ2cf(α).

Proof. Fix a stage η. Lemma 4.11 implies that for every i < σ2cf(α), we have

βi > max{ran(g � (f(i) + 1)), sup
j<i

uj} and ui ≥ βi.

Thus, {βi}i<σ2cf(α) and {ui}i<σ2cf(α) are strictly increasing and cofinal in α.

Let i∗ < σ2cf(α) be the least i that ui ≥ η. Then for every j < i∗, uj < η, and

Lemma 4.26 implies that Xη[j] = X[j] ⊆ X.

Suppose i ≥ i∗. Xη[i] ⊆ X is trivially true if Xη[i] = ∅. Now assume Xη[i] 6= ∅.
Then by its definition, Xη[i] ⊆ η and Xη[i] � supCi∗ = Ci∗ , where Ci∗ =

⋃
j<i∗ X[j].

Case 1. η ≤ βi∗ . By the definition of {Xη[j]}j≤i, we have

Xη[i] ⊆ Ci∗ ∪ [supCi∗ , η) ⊆ X[i∗].

Therefore, Xη[i] ⊆ X.

Case 2. βi∗ < η ≤ ui∗ . By Lemma 4.26, (γi∗,η, βi∗,η, Ci∗,η) = (γi∗ , βi∗ , Ci∗). Then

Υi∗,η = Υi∗ . Since γi∗ = γi∗,η, fη � (i + 1) = f � (i + 1) and gη � f(i) = g � f(i).

Therefore, in the formula of the definition of ui∗,η, every subscript η can be omitted.

Note that η ≤ ui∗ , so ui∗,η is undefined. Therefore Xη[i] = ∅, a contradiction.

Note that the sequence {(γi,η, βi,η, ui,η, Xη[i])}i<σ2cf(α),η<α is α-recursive. Thus,

Lemma 4.26 and Lemma 4.27 combine to produce the following corollary.
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Corollary 4.28. X is α-r.e. Hence {Ae}e<α is not a Friedberg numbering.

Since {Ae}e<α is an arbitrary one-one numbering, Corollary 4.28 implies that

there is no Friedberg numbering when tσ2p (α) > σ2cf(α), proving Theorem 4.22.

The code G plays a significant role in the proof of Theorem 4.22. It exploits the

property that the numbering {Ae}e<α is one-one and makes the use of pseudostable

ordinals to achieve the diagonalization against {Ae}e<α. Pseudostability is applica-

ble for any numbering. Yet, if the numbering is not one-one in some blocks and the

number of such repetitions is cofinal in tσ2p (α) as the number of blocks increases,

then a code such as G may not exist. Therefore, the diagonalization construction

may not be applicable for other types of numberings.

Remark. As in Section 4.1.2, Gödel numbering is a K-acceptable numbering

and (4.6) is still a valid example of non-K-acceptable numbering in Lα, for all Σ1

admissible α, by simply replacing the notations appropriately.

Now we consider Ke-numbering. If tσ2p (α) = σ2cf(α), then the Friedberg

numbering constructed in Section 4.2.1 is a natural example of a Ke-numbering (ref.

Section 4.1.2 and 4.2.1). If tσ2p (α) > σ2cf(α), then there is no Ke-numbering as

the situation of BΣ2 models, but for a different reason: For the sake of contradiction

assume {Ce}e<α is a Ke-numbering. Then {e′ < e : Ce′ = Ce} is ∆2 for every e < α.

Therefore the least indices of {Ce}e<α have an α-recursive approximation. Then the

straightforward adaptation of the proof in [29] provides a Friedberg numbering in

Lα. Hence, we have

Corollary 4.29. If tσ2p (α) > σ2cf(α), there is no Ke-numbering in Lα.

Corollary 4.30. The following are equivalent:

1. tσ2p (α) = σ2cf(α);

2. There is a Friedberg numbering in Lα;

3. There is a Ke-numbering in Lα.

4.3 Friedberg Numbering of N-r.e. Sets

A sequence {De}e∈M of n-r.e. sets is a Friedberg numbering of n-r.e. sets if
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(i) For any n-r.e. set X ⊆ ω, there is a unique e such that De = X, and

(ii) {(x, e) : x ∈ De} is also n-r.e.

Notice that the discussion in Section 4.1 and 4.2.2 is applicable to n-r.e. sets for

every n ≥ 1. Then we get the following results.

Corollary 4.31. Suppose n ≥ 1, M is a BΣ2 model and {De}e∈M is a sequence of

n-r.e. sets without repetition such that {(x, e) : x ∈ De} is also n-r.e. Then there is

an r.e. set X such that X 6= De for all e ∈M.

Corollary 4.32. For every n ≥ 1, the following are equivalent over P− +BΣ2:

1. Σ2 induction.

2. There exists a Friedberg numbering of n-r.e. sets.

Corollary 4.33. If α is admissible and tσ2p (α) = σ2cf(α), then there is a Friedberg

numbering of n-r.e. sets in Lα for any n ≥ 1.

Now suppose α is admissible, {De = Ae \ Be}e<α is a sequence of d-r.e. sets

without repetition such that {(x, e) : x ∈ Ae}, {(x, e) : x ∈ Be} are r.e. Then for

every i < σ2cf(α), we modify the definition of γi as follows:

γi = max{µζ (∀ζ ′ ≥ ζ (fζ′ � (i+ 1) = f � (i+ 1))),

µζ (∀ζ ′ ≥ ζ (gζ′ � (f(i) + 1) = g � (f(i) + 1))

∀e < f(i) (Be ) (supj<iuj \ Ci) →

∃x < ζ (x ∈ Be,ζ \ (supj<iuj) ∨ x ∈ Ci))}.

We modify γi,η accordingly and other definitions are the same as in Section 4.2.4.

Then we get the following results.

Corollary 4.34. There is an r.e. set X such that X 6= De for all e < α.

Corollary 4.35. For every admissible ordinal α, the following are equivalent:

1. tσ2p (α) = σ2cf(α);

2. There exists a Friedberg numbering of d-r.e. sets in Lα.
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Chapter 5
Recursive Aspects Of An Everywhere

Differentiable Function

In this chapter, we investigate properties of everywhere differentiable functions in

the aspect of hyperarithmetic theory and reverse mathematics. The descriptive set

theoretic aspect of this topic was done by Kechris and Woodin [24]. This chapter

can be viewed as an effective version of their results.

To describe intervals, real numbers, subsets of real numbers and functions in our

context, we need to “translate” them into the language of second order arithmetic.

Section 5.2 is devoted to this work. In Section 5.3 and 5.4, we study everywhere

differentiable functions in the context of hyperarithemtic theory. In Section 5.3,

D = {e < ω : Φe describes an everywhere differentiable function on [0, 1]} is proved

to be a Π1
1 complete set. In Section 5.4, to every continuous function on [0, 1],

the Kechris-Woodin rank is assigned in terms of Cantor-Bendixson type analysis,

from which the Kechris-Woodin kernel is defined. In Section 5.4, the existence of

Kechris-Woodin kernel is shown to be equivalent to Π1
1-CA0 in reverse mathematics.

5.1 Convention and Notations

In this chapter, our study involves natural numbers, integers, rational numbers,

real numbers, arithmetic operations of these numbers, sequences of these numbers,

their subsets and functions. For convenience, e, i, j, k, l, m, n are reserved for
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Chapter 5. Recursive Aspects Of An Everywhere Differentiable Function

natural numbers; u, v, w are reserved for integers; a, b, c, d, p, q, r, s, ε are rational

numbers; x, y, z are variables over the set of real numbers; and f , g, h are intended to

denote functions on the closed interval [0, 1]. All these notations allow superscripts

or subscripts. To avoid confusion, in this chapter, we will use ( , ) to denote an

open interval and 〈 , 〉 (〈 , , . . . , 〉, respectively) to denote a pair (a finite sequence,

respectively) of numbers.

In addition, let C[0, 1] be the collection of all continuous functions on [0, 1] and

D be the collection of everywhere differentiable functions on [0, 1]. (At 0 and 1, we

consider the right hand side derivative and the left hand side derivative respectively.)

5.2 Second Order Arithmetic Descriptions

In this section, we set up a system to code numbers, sequences, subsets and functions

in second order arithmetic. In general, we will add an ˆ to denote the codes. For

instance, we denote the set of codes of rational numbers by Q̂.

Let π : ω2 → ω be a recursive bijection such that π〈0, 0〉 = 0. If π〈i, j〉 = k, then

we say k codes the ordered pair 〈i, j〉. We define

Ẑ = {π〈i, 0〉 : i < ω} ∪ {π〈0, j〉 : j < ω}.

The code π〈i, j〉 ∈ Ẑ is to denote the integer i− j, in particular π〈0, 0〉 = 0 denotes

0. The absolute value function, order relation and arithmetic operations over Ẑ are

denoted by |π〈i, j〉|Z, <Z, +Z, −Z, ·Z, ÷Z, respectively. Then,

|π〈i, 0〉|Z = π〈i, 0〉, |π〈0, j〉|Z = π〈j, 0〉

π〈i, j〉 <Z π〈i′, j′〉 ↔ i+ j′ < i′ + j, where π〈i, j〉, π〈i′, j′〉 ∈ Ẑ

π〈i, 0〉+Z π〈i′, 0〉 = π〈i+ i′, 0〉, π〈0, j〉+Z π〈0, j′〉 = π〈0, j + j′〉

π〈i, 0〉+Z π〈0, j〉 =

π〈i− j, 0〉 if i ≥ j,

π〈0, j − i〉 otherwise

π〈i, j〉 −Z π〈i′, j′〉 = π〈i′′, j′′〉 ↔ π〈i′, j′〉+Z π〈i′′, j′′〉 = π〈i, j〉

π〈i, 0〉 ·Z π〈i′, 0〉 = π〈ii′, 0〉, π〈0, j〉 ·Z π〈0, j′〉 = π〈jj′, 0〉

π〈i, 0〉 ·Z π〈0, j〉 = π〈0, ij〉

π〈i, j〉 ÷Z π〈i′, j′〉 = π〈i′′, j′′〉 ↔ ¬(i′ = j′ = 0) ∧ π〈i′, j′〉 ·Z π〈i′′, j′′〉 = π〈i, j〉
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5.2 Second Order Arithmetic Descriptions

Suppose u(m) and u(n) are the integers coded by m and n respectively and

u(n) > 0. Let gcdZ(m,n) be π〈gcd(u(m), u(n)), 0〉, the code of the greatest common

divisor of u(m) and u(n). Now we introduce the field Q. We define

Q̂ = {π〈m,n〉 : m,n ∈ Ẑ ∧ n >Z 0 ∧ gcdZ(m,n) = π〈1, 0〉}

Here π〈m,n〉 ∈ Q̂ codes the rational number u(m)
u(n)

, where u(m) and u(n) are the

integers coded by m and n respectively. In Q̂, we use π〈0, 1〉 to denote 0. Then,

|π〈m,n〉|Q = π〈|m|Z, n〉

π〈m,n〉 <Q π〈m′, n′〉 ↔ m ·Z n′ <Z m
′ ·Z n

π〈m,n〉+Q π〈m′, n′〉 = π〈m′′, n′′〉, where


m′′ = (m ·Z n′ +Z m ·Z n′)÷Z d,

n′′ = (n ·Z n′)÷Z d, and

d = gcdZ(m ·Z n′ +Z m ·Z n′, n ·Z n′)

π〈m,n〉 −Q π〈m′, n′〉 = π〈i′′, j′′〉 ↔ π〈m′, n′〉+Q π〈m′′, n′′〉 = π〈m,n〉

π〈m,n〉 ·Q π〈m′, n′〉 = π〈m ·Z m′, n ·Z n′〉

π〈m,n〉 ÷Q π〈m′, n′〉 = π〈m′′, n′′〉 ↔ ¬(m′ = 0) ∧ π〈m′, n′〉 ·Q π〈m′′, n′′〉 = π〈m,n〉

In the sequel, if l ∈ Q̂, then let a(l) be the rational number coded by l.

This coding of Q provides a way to describe open intervals with rational end

points. We say 〈l, l′〉 describes an open interval (a(l), a(l′)) if l, l′ ∈ Q̂, and l <Q l
′.

A0 ⊂ ω2 describes an open set if

(i) Each 〈l, l′〉 ∈ A0 describes an open interval (a(l), a(l′)).

(ii) If 〈m,m′〉 ∈ A0 and 〈l, l′〉 describes an open interval (a(l), a(l′)) ⊆ (a(m), a(m′)),

then 〈l, l′〉 ∈ A0, i.e. A0 is closed under subsets.

(iii) If for every k < ω, 〈mk,m
′
k〉 ∈ A0, and 〈l, l′〉 describes an open interval

(a(l), a(l′)) =
⋃
k(a(mk), a(m′k)), then 〈l, l′〉 ∈ A0, i.e. A0 is closed under count-

able union.

The open set described by A0 is
⋃
〈l,l′〉∈A0

(a(l), a(l′)). We may also say its comple-

ment,
⋃
〈l,l′〉∈A0

(a(l), a(l′)), is described by A0. If A ⊂ ω, then A describes an open

set if {〈l, l′〉 : π〈l, l′〉 ∈ A} describes an open set.
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Lemma 5.1. Ẑ, Q̂ are recursive subsets of ω. Their absolute value functions, order

relations and arithmetic operations defined above are recursive. Moreover, “A ⊂ ω

describes an open set” is an arithmetic property of A.

Proof. We only need to show that “A0 ⊂ ω2 describes an open set” is arithmetic.

In its definition, Clause (i) and (ii) are clearly arithmetic. So we only need to check

Clause (iii). Notice that (iii) is equivalent to the following statement:

If for every m,m′ ∈ Q̂ with l <Q m <Q m′ <Q l′, there is a finite sequence

{〈mk,m
′
k〉}k<n ⊂ A0 such that {(a(mk), a(m′k)) : k < n} is an open cover of the

closed interval [a(m), a(m′)], then 〈l, l′〉 ∈ A0.

{(a(mk), a(m′k)) : k < n} is an open cover of the closed interval [a(m), a(m′)] if

and only if there is a permutation of these open intervals, say {(a(mk), a(m′k)) : k <

n} itself, such that for all k < n − 1, mk+1 <Q m
′
k <Q m

′
k+1, m0 <Q m <Q m

′
0 and

mn−1 <Q m
′ <Q m

′
n−1.

Remark 5.2. From now on, we we expand the second order language to include

the language for the field of rational numbers. In this expanded language, the

order relation and arithmetic operations without subscribes are the usual ones over

rationals. And the complexity of a formula is determined by coding rational numbers

into natural numbers. Using Lemma 5.1, we may treat rational numbers as natural

numbers in a formula without changing its arithmetic or analytic complexity. In the

following, we will further expand the language to the field of reals with its arithmetic

operations and we may treat real numbers as a sequence of rationals thus as a subset

of ω.

We now introduce R by a sequence of rational numbers. Let

R̂ = {f : f : ω → Q is a function ∧

∀ε ∈ Q+ ∃i < ω ∀m,n < ω (m,n > i → |f(m)− f(n)| < ε)}.

For any f ∈ R̂, {f(n)}n<ω is a Cauchy sequence and has a limit. The intuition is

to denote the real number limn f(n) by f . In particular, we use 0, where 0(n) = 0

for all n, to denote the real number 0. We define the order relation and arithmetic
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operations over R̂ as those over R.

|f |R(n) = |f(n)|, for all n < ω

f =R g ↔ ∀ε ∈ Q+ ∃i < ω ∀m,n < ω (m,n > i → |g(m)− f(n)| < ε)

f <R g ↔ ∃ε ∈ Q+ ∃i < ω ∀m,n < ω (m,n > i → g(m)− f(n) > ε)

(f +R g)(n) = f(n) + g(n), for all n < ω

f −R g = h ↔ g +R h = f

(f ·R g)(n) = f(n) · g(n), for all n < ω

f ÷R g = h ↔ ∀n < ω (g(n) 6= 0) ∧ ¬(g =R 0) ∧ g ·R h = f

Lemma 5.3. “f ∈ R̂” and the arithmetic operations over R̂ are arithmetic.

For continuous functions over R, we may consider using functions over R̂ as their

codes. However, that idea leads to the third order definition of functions on R̂. By

the continuity, we may narrow down the complexity of descriptions of continuous

functions. Intuitively, we may code all quadruple of rational numbers 〈a, b, r, s〉 such

that the function maps real numbers in the open interval (a, b) into (r, s). From this

view point, we say f̂ ⊂ Q4 describes a continuous function on [p, q], where p < q are

rational numbers, if

(i) Any quadruple 〈a, b, r, s〉 ∈ f̂ satisfies a < b, r < s and (a, b) ∩ [0, 1] 6= ∅.

(ii) (Consistency) If 〈a, b, r, s〉, 〈a′, b′, r′, s′〉 ∈ f̂ and (a, b)∩(a′, b′) 6= ∅, then (r, s)∩
(r′, s′) 6= ∅.

(iii) (Preciseness) For every ε ∈ Q+, there is a sequence {〈ai, bi, ri, si〉}i<n in f̂ such

that for all i < n, si − ri < ε, and {(ai, bi)}i<n is an open cover of the interval

[p, q].

Then let

Ĉ[0, 1] = {f̂ ⊂ Q4 : f̂ describes a continuous function on [0, 1]}

Lemma 5.4. “f̂ ∈ Ĉ[0, 1]” is an arithmetic property of f̂ .

Lemma 5.5. If f̂ describes a continuous function on [0, 1], then there is a (unique)

continuous function f : [0, 1]→ R such that

∀〈a, b, r, s〉 ∈ f̂ (ran(f � (a, b)) ⊆ [r, s]). (5.1)
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We say f̂ describes f .

Proof. For every x ∈ [0, 1], pick a sequence {〈ai, bi, ri, si〉}i<ω in f̂ such that x ∈⋂
i(ai, bi) and limi(si − ri) = 0, and we call {〈ai, bi, ri, si〉}i<ω an x-approximation

sequence. Then define

f(x) = lim
i
ri.

Firstly, the function f is well-defined. Note that for every x ∈ [0, 1] there is an

x-approximation sequence {〈ai, bi, ri, si〉}i<ω. And since x ∈
⋂
i(ai, bi), for every i, j,

we have (ai, bi) ∩ (aj, bj) 6= ∅ and so (ri, si) ∩ (rj, sj) 6= ∅. Then limi,j→∞ |ri − rj| ≤
limi,j→∞(si − ri) + (sj − rj) = 0. Thus, limi ri exists.

To see the definition does not depend on the choice of the x-approximation se-

quence, suppose {〈ai, bi, ri, si〉}i<ω, {〈a′i, b′i, r′i, s′i〉}i<ω are x-approximation sequences

in f̂ . Then {〈a′′i , b′′i , r′′i , s′′i 〉}i<ω defined by

〈a′′i , b′′i , r′′i , s′′i 〉 =

〈ai, bi, ri, si〉 if i is even

〈a′i, b′i, r′i, s′i〉 if i is odd.

is also an x-approximation sequence. By the argument in the previous paragraph,

limi r
′′
i exists. Hence, limi ri = limi r

′
i.

Secondly, we show that ∀〈a, b, r, s〉 ∈ f̂ (ran(f � (a, b)) ⊆ [r, s]). Pick any x ∈
[0, 1]∩(a, b) and x-approximation sequence {〈ai, bi, ri, si〉}i<ω in f̂ with 〈a0, b0, r0, s0〉 =

〈a, b, r, s〉. Then f(x) = limi ri = limi(ri + si)/2. Note that for all j > i,

|(rj + sj)/2− (ri + si)/2| ≤ (sj − rj)/2 + (si − ri)/2.

Let j →∞, we have |f(x)−(ri+si)/2| ≤ (si−ri)/2. In particular, |f(x)−(r+s)/2| ≤
(s− r)/2, and so f(x) ∈ [r, s].

Moreover, for each ε ∈ Q+, there is a sequence {〈ai, bi, ri, si〉}i<n in f̂ such

that for all i < n, si − ri < ε, and {(ai, bi)}i<n is an open cover of [0, 1]. Since

ran(f � (ai, bi)) ⊆ [ri, si], f is continuous on [0, 1].

Thirdly, f is unique. Suppose f and g are continuous functions on [0, 1] satisfying

(5.1), and suppose f(x) 6= g(x) for some x ∈ [0, 1]. Let ε ∈ Q+ such that |f(x) −
g(x)| > ε, and 〈a, b, r, s〉 in f̂ such that x ∈ (a, b), s− r < ε. Then f(x), g(x) ∈ [r, s]

and so |f(x)− g(x)| < ε. We get a contradiction.
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1 Completeness of D

Lemma 5.6. If f : [0, 1]→ R is a continuous function, then there is an f̂ ∈ Ĉ[0, 1]

that describes f .

Proof. Consider

f̂ = {〈a, b, r, s〉 ∈ Q4 : a < b, r < s, (a, b) ∩ [0, 1] 6= ∅, ran(f � (a, b)) ⊆ (r, s)}.

It is straightforward to check that f̂ is in Ĉ[0, 1].

For every continuous function f on [0, 1], let f scanp,q ((q − p)x + p) = (q − p)f(x)

for all x ∈ [0, 1], and f scanp,q is called the scanned copy of f on [p, q].

Lemma 5.7. Suppose f̂ describes the continuous function f on [0, 1]. Then

(i) For any rational number l > 0, lf̂ = {〈a, b, lr, ls〉 : 〈a, b, r, s〉 ∈ f̂} describes

lf .

(ii) For any rational numbers p < q, f̂ scanp,q = {〈(q − p)a + p, (q − p)b + p, (q −
p)r, (q − p)s〉 : 〈a, b, r, s〉 ∈ f̂} describes f scanp,q .

If f̂ describes f , then we say f̂ describes an everywhere differentiable function on

[0, 1] if f is everywhere differentiable on [0, 1], i.e. f ∈ D. We say a total function Φe

describes an everywhere differentiable function on [0, 1], if Φe = A for some A ⊂ ω

and

{〈a(i), a(j), a(k), a(l)〉 : π〈i, π〈j, π〈k, l〉〉〉 ∈ A, where a(i), a(j), a(k), a(l)

are the rational numbers coded by i, j, k, l respectively.}

describes an everywhere differentiable function on [0, 1].

Lemma 5.8. D = {e < ω : Φe describes an everywhere differentiable function on

[0, 1]} is Π1
1.

5.3 Π1
1 Completeness of D

Recall that in Section 2.2, we have seen that WF is Π1
1 complete. This section is

devoted to the proof of following theorem. Its proof idea is from Mazurkiewicz [33]

(see also [24]).
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Theorem 5.9. D is Π1
1 complete.

For this purpose, we construct a recursive function χ : ω → ω such that

e ∈WF ↔ χ(e) ∈ D.

For the convenience of further discussion, we first “convert” every partial re-

cursive function Te : ω<ω → {0, 1} to a total recursive function Tg(e) such that

{σ : Tg(e)(σ) = 1} is a tree and e ∈WF ↔ g(e) ∈WF.

Fix a recursive bijection p·q : ω<ω → ω. For every e < ω, define Tg(e)(σ) = 1 if

and only if

(i) σ is the empty string, 〈0〉, 〈1〉 or 〈2〉; or

(ii) (Code whether Te is a total function) σ = 〈0n〉ˆ〈0 . . . 0︸ ︷︷ ︸
m times

〉 and Te,m(n) ↑; or

(iii) (Code whether Te describes a tree) σ = 〈1n〉ˆ〈0 . . . 0︸ ︷︷ ︸
m times

〉 and for some τ and

τ ′ with pτq, pτ ′q < n, τ is an initial segment of τ ′ but Te,n(τ) ↓= 0 and

Te,n(τ ′) ↓= 1 (i.e. at stage n, we find Te does not describe a tree); or

(iv) (Code whether Te describes a well founded tree) σ = 〈2〉ˆτ and for every k

such that 2k + 1 < |τ |, Te,τ(2k)(〈τ(1), τ(3), . . . , τ(2k + 1)〉) = 1 (i.e. an even

digit τ(2k) codes the steps after which the string of odd digits up to τ(2k+ 1)

is computed to be in the tree Te).

Otherwise, define Tg(e)(σ) = 0.

Note that Tg(e) is always total recursive, {σ : Tg(e)(σ) = 1} is a tree, and g(e) ∈
WF ↔ e ∈WF.

Now we construct continous functions on [0, 1]. For any closed interval K =

[a, b] ⊆ [0, 1], a, b ∈ Q, let

ϕ(x;K) =


16(x−a)2(x−b)2

(b−a)3,
if x ∈ K,

0 otherwise.
(5.1)

The graph of ϕ(x;K) is as follows.
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x

y

b− a

a+b
a

a b

ϕ(x;K)

In the following, we construct two sequences {Jσ = (aσ, bσ)}σ∈ω<ω and {Kσ =

[cσ, dσ]}σ∈ω<ω such that:

(i) 0 ≤ aσ < cσ < dσ < bσ ≤ 1 are rational numbers.

(ii) Kσ is concentric with Jσ and the length of Kσ is less than 1
2pσq

of that of Jσ,

i.e. dσ − cσ < 1
2pσq

(bσ − aσ).

(iii) If σ is a proper initial segment of τ , then Jτ ⊂ K
(L)
σ . Here K

(L)
σ = [cσ, (cσ +

dσ)/2] and K
(R)
σ = [(cσ + dσ)/2, dσ].

(iv) If σ and τ are incompatible (i.e. there exists n < min{|σ|, |τ |} such that

σ(n) 6= τ(n)), then Jσ ∩ Jτ = ∅.

Lemma 5.10. For every pair σ 6= τ in ω<ω, K
(R)
σ ∩K(R)

τ = ∅.

Proof. If σ and τ are incompatible, then Jσ ∩ Jτ = ∅. Therefore, K
(R)
σ ∩K(R)

τ = ∅.

If σ is a proper initial segment of τ , since K
(R)
τ ⊂ Jτ ⊂ K

(L)
σ , K

(R)
σ ∩K(R)

τ = ∅.

Lemma 5.11. There are recursive sequences (in the sense of Remark 5.2) {aσ}σ∈ω<ω ,

{bσ}σ∈ω<ω , {cσ}σ∈ω<ω and {dσ}σ∈ω<ω satisfying Clause (i)-(iv).

Proof. If σ is the empty string, then let aσ = 0, bσ = 1, cσ = 1/4, dσ = 3/4.

Inductively, suppose we have defined Jσ and Kσ. Then for every n < ω, let

aσˆ〈n〉 =
n

2(n+ 1)
dσ +

n+ 2

2(n+ 1)
cσ

bσˆ〈n〉 =
n+ 1

2(n+ 2)
dσ +

n+ 3

2(n+ 2)
cσ

cσˆ〈n〉 =
aσˆ〈n〉 + bσˆ〈n〉

2
−
bσˆ〈n〉 − aσˆ〈n〉

2pσq+3

dσˆ〈n〉 =
aσˆ〈n〉 + bσˆ〈n〉

2
+
bσˆ〈n〉 − aσˆ〈n〉

2pσq+3

It is straightforward to check that Clause (i)-(iv) are satisfied.
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We fix sequences {Jσ}σ∈ω<ω and {Kσ}σ∈ω<ω satisfying Lemma 5.11. Define

FT (x) =
∑
σ∈T

ϕ(x;K(R)
σ ),

for any tree T ⊆ ω<ω. Note that FT is continuous since every ϕ(x;K
(R)
σ ) is contin-

uous and

max
x∈[0,1]

ϕ(x;K(R)
σ ) < 2−pσq+1. (5.2)

By Lemma 5.10, for every x ∈ [0, 1], there is at most one σ such that ϕ(x;K
(R)
σ ) 6=

0 and for any σ, FT ((cσ + dσ)/2) = FT (dσ) = 0.

Pick any 〈a, b, r, s〉 ∈ Q such that a < b, r < s and (a, b) ∩ [0, 1] 6= ∅. To

determine whether ran(FT � (a, b)) ⊆ (r, s), we consider the following three cases.

Case 1. s ≤ 0. Then ran(FT � (a, b)) 6⊆ (r, s), since FT (x) ≥ 0 for all x ∈ [0, 1].

Case 2. r < 0 < s. Then

ran(FT � (a, b)) ⊆ (r, s) ↔ max
a<x<b

FT (x) < s.

Let ns be the maximal n such that 2−n+1 ≥ s. Then by (5.2),

max
a<x<b

FT (x) < s ↔ max
a<x<b,

σ∈T ;pσq≤ns

ϕ(x;K(R)
σ ) < s.

Case 3. r ≥ 0. Then

ran(FT � (a, b)) ⊆ (r, s) ↔ ∃σ ∈ T ((a, b) ⊂ K(R)
σ ∧

ran(ϕ(x;K(R)
σ ) � (a, b)) ⊆ (r, s)).

Let nb−a be the maximal n such that 2−n+1 ≥ b − a. Then for all σ ∈ T such that

pσq > nb−a, 1/2(dσ − cσ) < b− a and so (a, b) 6⊆ K(R). Therefore,

ran(FT � (a, b)) ⊆ (r, s) ↔ ∃σ ∈ T (pσq ≤ nb−a ∧

(a, b) ⊂ K(R)
σ ∧ ran(ϕ(x;K(R)

σ ) � (a, b)) ⊆ (r, s)).

Hence, ran(FT � (a, b)) ⊆ (r, s) is uniformly recursive in T . Let

F̂T = {〈a, b, r, s〉 ∈ Q4 : a < b, r < s, (a, b) ∩ [0, 1] 6= ∅, ran(FT � (a, b)) ⊆ (r, s)}

and

Φχ(e) = {π〈i, π〈j, π〈k, l〉〉〉 : 〈a(i), a(j), a(k), a(l)〉 ∈ F̂Tg(e)},
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where a(i), a(j), a(k), a(l) are the rational numbers coded by i, j, k, l respectively

and π is as defined in Section 5.2. Then Φχ(e) describes FTg(e) .

To see that e ∈ WF if and only if χ(e) ∈ D, it suffices to prove the following

lemma.

Lemma 5.12 ([33]). T is a well founded tree if and only if FT is everywhere differ-

entiable on [0, 1].

Proof. For very α ∈ ωω, let xα =
⋂
n<ωKα�n and GT = {xα : α ∈ [T ]}. Then it

suffices to show that

x ∈ GT ↔ F ′T (x) does not exist.

Firstly, if x ∈ GT , then x ∈ K
(L)
α�n for all n. By Lemma 5.10, FT (x) = 0. Let

ηn = 1/4(dα�n − cα�n), (i.e. half of the length of K
(R)
α�n), and ξn = 1/4 cα�n + 3/4 dα�n,

(i.e. the middle point of K
(R)
α�n). Then limn ηn = 0, limn ξn = x. Note that

FT (ξn + ηn)− FT (x)

ξn + ηn − x
= 0,

since ξn + ηn is the right end point of K
(R)
α�n and

FT (ξn)− FT (x)

ξn − x
=

2ηn
ξn − x

≥ 2ηn
3ηn

=
2

3
.

Hence F ′T (x) does not exist.

Secondly, suppose x 6∈ GT . Note that GT =
⋂
n

⋃
σ∈T ;|σ|=n Jσ. So there is some n,

such that x 6∈ Jσ for any σ ∈ T of length at least n. Moreover, for any n′ < n, there

is at most one τ ∈ T of length n′ such that x ∈ Jτ . Therefore, {σ ∈ T : x ∈ Jσ} is

finite. Let N ≥ 2 be large enough such that for all σ ∈ T if pσq ≥ N , then x 6∈ Jσ.

Then for any y ∈ [0, 1], if y ∈ K(R)
σ , pσq ≥ N ,∣∣∣∣∣ϕ(y;K

(R)
σ )− ϕ(x;K

(R)
σ )

y − x

∣∣∣∣∣ ≤ 1/2(dσ − cσ)

1/2(1− 1/2pσq)(bσ − aσ)
<

1

2pσq−1

For n ≥ N , let

FT,n =
∑

σ∈T ;pσq≤n

ϕ(x;K(R)
σ ).
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Then for all n ≥ N , y ∈ [0, 1] \ {x},∣∣∣∣FT (y)− FT (x)

y − x
− FT,n(y)− FT,n(x)

y − x

∣∣∣∣
≤

∑
σ∈T ;pσq>n

∣∣∣∣∣ϕ(y;K
(R)
σ )− ϕ(x;K

(R)
σ )

x− y

∣∣∣∣∣ ≤ 1

2n−1
.

Let y approach x, then∣∣∣∣lim inf
y→x

FT (y)− FT (x)

y − x
− lim sup

y→x

FT (y)− FT (x)

y − x

∣∣∣∣ ≤ 1

2n−2

for any n ≥ N . Thus, F ′T (x) exists.

5.4 Effective Ranks of Continuous Functions

In this section, we study the Kechris-Woodin derivative defined in [24] and assign

a Kechris-Woodin rank to each continuous function. Then we show the correspon-

dence between recursive ordinals and recursively described continuous (including

everywhere differentiable) functions on [0, 1].

For each function f ∈ C[0, 1], ε ∈ Q+ and closed set P ⊆ [0, 1], let the Kechris-

Woodin derivative of P with respect to f and ε be

P ′ε,f = P ′ε = {x ∈ P : For every open neighborhood U of x there are

rational points p < q, r < s in U ∩ [0, 1] with

[p, q] ∩ [r, s] ∩ P 6= ∅ and |∆f (p, q)−∆f (r, s)| > ε},

where

∆f (x, y) =
f(x)− f(y)

x− y
, x, y ∈ [0, 1], x 6= y.

We may iterate the Kechris-Woodin derivative along ordinals as follows.

P 0
ε,f = P 0

ε = [0, 1]

Pα+1
ε,f = Pα+1

ε = (Pα
ε )′ε

P λ
ε,f = P λ

ε =
⋂
α<λP

α
ε , λ is a limit oridinal

By its definition, we have the following properties of the Kechris-Woodin derivative.
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Proposition 5.4.1. For all ordinals α ≤ β, Pα
ε ⊇ P β

ε and for any positive rational

numbers ε ≤ ε′, Pα
ε ⊇ Pα

ε′ .

Thus, there is a least αf (ε) = α(ε) < ℵ1 such that for all α ≥ α(ε), Pα
ε = P

α(ε)
ε =

P∞ε . Let the Kechris-Woodin rank of f ,

|f |KW = µα{α : α ≥ αf (ε), for all ε ∈ Q+},

and the Kechris-Woodin kernel of f ,

KerKW(f) =
⋃
ε∈Q+

⋂
αP

α
ε =

⋃
ε∈Q+P∞ε .

Lemma 5.13 ([24]). f is everywhere differentiable if and only if KerKW(f) = ∅.

Proof. Suppose for some x ∈ [0, 1], f ′(x) does not exist, then for some ε ∈ Q+ we

have the following property:

For every open neighborhood U of x, there are rational numbers r, s, p, q ∈
U ∩ [0, 1] such that r ≤ x ≤ s, p ≤ x ≤ q, |∆f (r, s)−∆f (p, q)| > ε.

By induction, x ∈ Pα
ε for all α and KerKW(f) 6= ∅.

Now we consider the case that f is everywhere differentiable. Then we claim that

for every ε and any nonempty closed set P ⊆ [0, 1], P ′ε 6= P , therefore KerKW(f) = ∅.
For the sake of a contradiction, we assume that P ⊆ [0, 1] is closed and P ′ε = P .

Then by the definition of P ′ε we have for every n < ω, the set

En = {x ∈ P : ∃p, q, r, s ∈ Q ∩ [0, 1] (p < x < q ∧ r < x < s∧

q − p, s− r < 1/n ∧ |∆f (p, q)−∆f (r, s)| > ε)}⋃
{x ∈ P : ∃q, s ∈ Q ∩ [0, 1] (x < q < 1/n ∧ x < s < 1/n∧

|∆f (0, q)−∆f (0, s)| > ε)}⋃
{x ∈ P : ∃p, r ∈ Q ∩ [0, 1] (1− 1/n < p < x∧

1− 1/n < r < x ∧ |∆f (p, 1)−∆f (r, 1)| > ε)}

is open dense in P . By the Baire Category Theorem,
⋂
nEn 6= ∅. Let x ∈

⋂
nEn.

Then f ′(x) does not exist. That is a contradiction.

Proposition 5.4.2. Suppose f is everywhere differentiable on [0, 1]. Then f ′ is

continuous if and only if |f |KW = 1.
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Proof. Assume that f ′ is continuous. Then for every ε ∈ Q+ and x ∈ [0, 1], there is

an open neighborhood U of x, such that for any y ∈ U ∩ [0, 1], |f ′(y)− f ′(x)| < ε/2.

Therefore, if p < q, r < s in U ∩ [0, 1], then |∆f (p, q)−∆f (r, s)| = |f ′(y)−f ′(z)| < ε

for some y, z ∈ U ∩ [0, 1]. Hence P 1
ε = ∅.

Now suppose f ′ is not continuous at x. Then there is an ε ∈ Q+ such that for

all open neighborhood U of x there is a y ∈ U ∩ [0, 1] with |f ′(y) − f ′(x)| > ε.

Therefore, there are rational numbers p < q, r < s in U ∩ [0, 1] with [p, q]∩ [r, s] 6= ∅
and |∆f (p, q)−∆f (r, s)| > ε. Thus, P 1

ε 6= ∅.

Now we consider sets of natural numbers that describe the Kechris-Woodin

derivatives. For any ordinal α, let

P̂α
ε,f = P̂α

ε = {π〈l, l′〉 : l, l′ < ω, a(l) < a(l′), Pα
ε,f ∩ (a(l), a(l′)) = ∅},

where a(l), a(l′) are rational numbers coded by l and l′ respectively and π is defined

as in Section 5.3. Then P̂α
ε describes the closed set Pα

ε . Let

K̂erKW(f) = {π〈e, π〈l, l′〉〉 : e, l, l′ ∈ ω, a(l) < a(l′), a(e) > 0,

π〈l, l′〉 ∈ P̂α
a(e) for some α}.

Then we say K̂erKW(f) describes KerKW(f).

Proposition 5.4.3. For any ordinal α,

P̂α+1
ε,f = Γε,f (P̂

α
ε ),

where for any A ⊆ {π〈l, l′〉 : l, l′ < ω, a(l) < a(l′)},

Γε,f (A) = {π〈l, l′〉 : l, l′ < ω, a(l) < a(l′), and for all rational points p < q,

r < s in (a(l), a(l′)) ∩ [0, 1], if [p, q] ∩ [r, s] ∩
⋃
π〈l,l′〉∈A(a(l), a(l′)) 6= ∅,

then |∆f (p, q)−∆f (r, s)| ≤ ε}.

In particular, if λ > 0 is a limit ordinal, then

P̂ λ+1
ε = Γε,f (

⋃
α<λP̂

α
ε ).

Proof. By the definition of Kechris-Woodin derivative.
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Suppose f̂ ⊂ ω describes f . Then in Proposition 5.4.3 Γε,f is a monotonic

operator arithmetic in f̂ . Therefore, by Proposition 2.2.4, we have Theorem 5.14.

Theorem 5.14. If f has a recursive description, then |f |KW ≤ ωCK1 . Moreover, if

f is everywhere differentiable on [0, 1], then |f |KW < ωCK1 .

The rest of this section is devoted to the proof of Theorem 5.15. Part of the

proof idea can be found in [24].

An everywhere differentiable nonnegative function f on [0, 1] is nice, if

maxx∈[0,1] f(x) < 1, maxx∈[0,1] f
′(x) < 1 and f(0) = f(1) = f ′(0) = f ′(1) = 0.

Theorem 5.15. There is a recursive function F : ω → ω such that if e ∈ O and

e 6= 1, then ΦF (e) describes a nice function f|e|O on [0, 1] such that |f|e|O |KW = |e|O
and if |e|O is a successor, then |f|e|O |KW = αf|e|O (1/9).

Recall ϕ(x;K) in Section 5.3. Let f1(x) = 1/64ϕ(x; [1/4, 3/4]). Then f1 is nice

and by Proposition 5.4.2, |f1|KW = αf1(1/9) = 1. Let e0 be an index such that Φe0

describes f1 (e0 exists by the argument in Section 5.3) and define F (n, 2) = Φ(n, 0) =

e0. Next, we will construct fα inductively and show there is an effective induction

of their recursive descriptions with parameter n. By the Recursion Theorem, the

parameter n could be fixed.

Consider the following picture.

x

y

y = x2

y = −x2

In
Jn

I1

J1
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Lemma 5.16. There are recursive sequences of rational numbers {an}n<ω, {bn}n<ω,

{cn}n<ω, {dn}n<ω such that limn an = 0 and for all n < ω,

(i) If n > 0, then 0 < an < bn < cn < dn < an−1 ≤ a0 < b0 < c0 < d0 < 1. We

denote [an, bn] by In and [cn, dn] by Jn.

(ii) The squares with basis In or Jn are between the graphs of y = x2 and y = −x2,

i.e. dn − cn < (cn)2 and bn − an < (an)2.

(iii) Let the middle point of Jn be ξn. Then dn−cn
ξn−an = 1/4.

Here “recursive” is defined in the sense of Remark 5.2.

Proof. For every n < ω let

an =
1

n+ 2
,

sn = an + (an)2,

bn =
1

4
(sn − an) + an,

cn =
7

16
(sn − an) + an,

dn =
9

16
(sn − an) + an.

sn is applied here for the sake of Clause (ii). It is straightforward to check that

Clause (i) to (iii) are satisfied.

For the rest of this section, we fix sequences {In = [an, bn]}n<ω and {Jn = [cn, dn]}n<ω
as in Lemma 5.16. A function fα is constructed so that fα � In is a scanned copy

of some fα′ , α
′ < α, fα � Jn depends on the property of α, and fα equals 0 on the

complement of
⋃
n In ∪

⋃
n Jn.

We consider the following three cases.

Case 1. α is a limit ordinal and {βn}n<ω is a strictly increasing sequence of

ordinals such that limn βn=α. Define

fα(x) =

(fβn/(n+ 1))scanan,bn
(x) if x ∈ In,

0 otherwise.
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Then fα is nice on [0,1]. Moreover, for every n < ω, maxx∈In((fβn/(n+1))scanan,bn
)′(x) =

maxx∈[0,1] f
′
βn

(x)/(n+1) < 1/(n+1). Then for any ε ∈ Q+ and closed set P ⊆ [0, 1],

we have P ′ε,fα ⊆
⋃

2/(n+1)>ε In. Thus, |fα|KW = supn |fβn/(n+ 1)|KW = α.

Case 2. α = λ+1, where λ is a limit and {βn}n<ω is a strictly increasing sequence

of successor ordinals such that limn βn=λ. Define

fα(x) =

(fβn)scanan,bn
(x) if x ∈ In,

0 otherwise.

Then fα is nice on [0,1]. For any ε ∈ Q+, and closed set P ⊆ [0, 1], P ′ε,fα ⊆⋃
n In ∪ {0}. Thus, |fα|KW ≥ supn |fβn|KW = λ. On the other hand, for all ε ∈ Q+,

P λ
ε,fα
⊆ {0}. To see |fα|KW = αfα(1/9) = λ + 1, it suffices to show that 0 ∈ P λ

1/9,fα
.

Since |fβn|KW = αfβn (1/9) = βn, P β
1/9,fβn

� In 6= ∅ for every β < λ and βn > β.

Therefore, 0 ∈ P β
1/9,fα

for all β < λ. Thus, 0 ∈ P λ
1/9,fα

.

Case 3. α = β + 1, where β is a successor ordinal. Then let

fα(x) =


(fβ)scanan,bn

(x) if x ∈ In,

(ϕ(x; [1/4, 3/4]))scancn,dn
(x) if x ∈ Jn,

0 otherwise.

Then fα is nice on [0,1]. As in Case 2, for any ε ∈ Q+, and closed set P ⊆ [0, 1],

P ′ε,fα ⊆
⋃
n In ∪ {0}. Thus, Pα

ε,fα
⊆ {0}.To see |fα|KW = αfα(1/9) = β + 1, we only

need to show that 0 ∈ P β
1/9,fα

. Suppose β = γ + 1. Then for any n, P γ
1/9,fα

� In 6= ∅.
Let ξn be the middle point of Jn. Note that

∆fα(ξn, an)−∆fα(bn, an) =
1/2(dn − cn)

ξn − an
=

1

8
,

and [an, ξn] ∩ [an, bn] = In. Thus, 0 ∈ P β
1/9,fα

.

Now we consider recursive descriptions of {fα}α<ωCK1
.

Suppose {gn}n<ω and {hn}n<ω are sequences of nice functions on [0, 1], and

{Ψn;g}n<ω, {Ψn;h}n<ω are uniformly recursive sequences of total recursive functions

such that for all n, Ψn;g describes gn and Ψn;h describes hn. Then define

a−1 = 1,

Cn;g = {π〈i, π〈j, π〈l, k〉〉〉 : an − a(i), a(j)− bn < min{an − dn+1, cn − bn}},

Cn;h = {π〈i, π〈j, π〈l, k〉〉〉 : cn − a(i), d(j)− bn < min{cn − bn, an−1 − dn}},
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Ψg = (
⋃
n(Ψn;g)

scan
an,bn
∩ Cn;g) ∪ {π〈i, π〈j, π〈k, l〉〉〉 : a(k) < 0 < a(l)∧

a(i) < a(j)∧ [a(j) ≤ 0 ∨ a(i) ≥ b0

∨ ∃n (a(i) = bn, b(i) = an−1)]}, (5.1)

and

Ψg,h = (
⋃
n(Ψn;g)

scan
an,bn
∩ Cn;g) ∪ (

⋃
n(Ψn;h)

scan
cn,dn
∩ Cn;h) ∪ {π〈i, π〈j, π〈k, l〉〉〉 :

a(k) < 0 < a(l)∧ a(i) < a(j)∧ [a(j) ≤ 0 ∨ a(i) ≥ d0

∨ ∃n [(a(i) = bn, b(i) = cn) ∨ (a(i) = dn, b(i) = an−1)]]}, (5.2)

where a : ω → Q, π : ω2 → ω and ( )scana,b are as defined in Section 5.2 in the sense

of Remark 5.2.

Lemma 5.17. Ψg describes g and Ψg,h describes g ⊕ h, where

g(x) =

gn(x) if x ∈ In,

0 otherwise.
g ⊕ h(x) =


gn(x) if x ∈ In,

hn(x) if x ∈ Jn,

0 otherwise.

Lemma 5.17 is straightforward and we skip its proof.

Now we are back to the proof of Theorem 5.15.

Let |e|O = α > 1. Suppose for all 1O < e′ <O e we have defined F (n, e′), such

that ∀e′ <O e [∀e′′ <O e′ (ΦF (n,e′′) describes f|e′′|O) → ΦF (n,e′) describes f|e′|O ]. Now

we define F (n, e).

Case 1. e = 3 · 5m. Then α is a limit. Let gk = f|Φm(k)|O/(k + 1), Ψk;g =

(1/(k + 1))((ΦF (n,Φm(k)))
scan
ak,bk

) for all k < ω, and ΦF (n,e) = Ψg be defined as in (5.1).

Then ΦF (n,e) describes fα.

Case 2. e = 23·5m . So α = λ + 1, where λ is a limit ordinal. Then let gk =

f|2Φm(k)|O , Ψk;g = (ΦF (n,2Φm(k)))
scan
ak,bk

for all k < ω, and ΦF (n,e) = Ψg be defined as in

(5.1). ΦF (n,e) describes fα.

Case 3. e = 2m, where m 6= 3 · 5m′ for any m′ < m. Then α = β + 1, where β is

a successor ordinal. Then let gk = f|m|O , hk = ϕ( ; [1/4, 3/4]), Ψk;g = (ΦF (n,m))
scan
ak,bk

,

Ψk;h be a recursive description of ϕ( ; [1/4, 3/4]). Define ΦF (n,e) = Ψg,h as in (5.2).

Then ΦF (n,e) describes fα.
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By the Recursion theorem, there is a fixed parameter n0, such that ΦF (e) =

ΦF (n0,e) describes f|e|O for all e ∈ O \ {1}, where F (e) = F (n0, e). The proof of

Theorem 5.15 is complete.

5.5 Kechris-Woodin Kernel and Π1
1-CA0

In this section, we discuss the existence of Kechris-Woodin kernel from the view

point of reverse mathematics. In a model M of second order arithmetic, we say a

continuous function f (a closed set, KerKW(f)) exists, if f (the closed set, KerKW(f),

respectively) has a description in the second order part of M.

Theorem 5.18 (ATR0). For every continuous function f on [0, 1], either KerKW(f) =

∅ or there is a nonempty closed set P ⊆ KerKW(f) 6= ∅.

Proof. Suppose M is a model of ATR0 and f in M is a continuous function on

[0, 1]. And suppose R is a well ordering in M and 0 is the R-least element. Then

there is a sequence of sets {An}n∈F (R) such that A0 = ∅ and

∀n > 0 (n ∈ F (R) → An =
⋃
iRnΓ(Ai)),

where Γ(Ai) =
⋃
n{π〈n, k〉 : a(n) > 0, k ∈ Γa(n),f (A

[n]
i )}, a(n) is the rational number

coded by n and Γa(n),f is defined as in Proposition 5.4.3.

Since “R is an well ordering” is not Σ1
1 property, there is a linear order but

not well ordering R (in the sense of M) such that 0 is the R-least element, and

there exists a sequence of sets A = {An}n∈F (R) satisfying the requirements in last

paragraph and R has no (A,R)-recursive infinite R-decreasing sequence.

For any n ∈ F (R), we say n is nonstandard if there is an infinite R-decreasing

sequence (in the sense of the universe) in {i ∈ F (R) : iRn}.

Pick any nonstandard n. We claim that An ⊇ K̂erKW(f), where K̂erKW(f)

describes KerKW(f). Suppose not, then there is an m ∈ K̂erKW(f) \ An. By the

proof of (2.1) (let k = m in (2.1)), {jRi : iRn} is a well ordering (in the sense of

the universe), deriving a contradiction. Now if An = K̂erKW(f) or KerKW(f) = ∅,
then we are done. Otherwise, suppose k ∈ An \ K̂erKW(f). Then there is an R-least

element n′ ∈ F (R) such that k ∈ An′ (If n′ does not exist, then there is an infinite

(A,R)-recursive infinite R-decreasing sequence). Clearly, n′ is nonstandard. Then
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we have a nonstandard n′′ such that n′′Rn′. Since k 6∈ An′′ and An′′ ⊇ K̂erKW(f),

An′′ describes a nonempty closed subset of KerKW(f).

Theorem 5.19. The existence of Kechris-Woodin kernel is equivalent to Π1
1-CA0

over ACA0

By Proposition 2.2.5, it suffices to show Lemma 5.20.

Lemma 5.20. The following are equivalent over ACA0.

1. For any sequence of trees {Tk}k<ω, Tk ⊆ ω<ω, there exists a set X such that

∀k(k ∈ X ↔ Tk has a path).

2. For every f continuous on [0, 1], KerKW(f) exists.

Proof. (1 → 2). Suppose f continuous in [0, 1]. And A = {〈r, s〉 : 0 ≤ r < s ≤ 1}.
We construct a sequence of trees Tε,f,(a,b) ⊆ A<ω arithmetically in a description of

f , where ε ∈ Q and a < b are rational numbers.

Tε,f,(a,b) = {∅} ∪ {〈r, s〉 ∈ A : a < r < s < b}

∪ {〈〈r0, s0〉, . . . , 〈rn, sn〉〉 ∈ An+1 : ε ∈ Q∧n < ω ∧∀i ≤ n (si − ri < 1
2i

)

∧
⋂n
i=0[ri, si] 6= ∅∧∀i < n (|∆f (ri+1, si+1)−∆f (ri, si)| > ε)}.

To show 1 → 2, it suffices to prove that Tε,f,(a,b) is well founded if and only if

(a, b) ∩ P∞ε,f = ∅.

Suppose Tε,f,(a,b) is not well founded. Let 〈〈r0, s0〉, 〈r1, s1〉, . . . , 〈rn, sn〉, . . .〉 be an

infinite path in Tε,f,(a,b). Then
⋂
n[rn, sn] 6= ∅. Let x0 ∈

⋂
n[rn, sn] ⊂ (a, b). By

induction, x0 ∈ Pα
ε,f for all α. Thus, (a, b) ∩ P∞ε,f 6= ∅.

Now assume P = (a, b) ∩ P∞ε,f 6= ∅. As in the proof of Lemma 5.13, define

En = {x ∈ P : ∃p, q, r, s ∈ Q ∩ [0, 1] (p < x < q ∧ r < x < s∧

q − p, s− r < 1/n ∧ |∆f (p, q)−∆f (r, s)| > ε)}⋃
{x ∈ P : ∃q, s ∈ Q ∩ [0, 1] (x < q < 1/n ∧ x < s < 1/n∧

|∆f (0, q)−∆f (0, s)| > ε)}⋃
{x ∈ P : ∃p, r ∈ Q ∩ [0, 1] (1− 1/n < p < x∧

1− 1/n < r < x ∧ |∆f (p, 1)−∆f (r, 1)| > ε)},
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and En is open and dense in P since (P∞ε,f )
′
ε,f = P∞ε,f . By the Baire Category

Theorem,
⋂
nEn 6= ∅. Let x1 ∈

⋂
nEn. Then by the definition of Tε,f,(a,b), there is

an infinite path 〈〈r0, s0〉, 〈r1, s1〉, . . . , 〈rn, sn〉, . . .〉 such that for all n, rn < x1 < sn.

Then Tε,f,(a,b) is not well founded.

(2 → 1). Suppose {Tn}n<ω is a sequence of trees. Let FTn be defined as in

Section 5.3 and let

pn =
1

4
(

1

n+ 1
− 1

n+ 2
) +

1

n+ 2
,

qn =
3

4
(

1

n+ 1
− 1

n+ 2
) +

1

n+ 2
, ∀n < ω.

F (x) =

(FTn)scanpn,qn(x) if pn ≤ x ≤ qn for some n

0 otherwise

Then for n,

Tn is well founded

↔FTn is everywhere differentiable on [0, 1]

↔∀ε ∈ Q+ ((
1

n+ 2
,

1

n+ 1
) ∩ P∞ε,F = ∅).
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Chapter 6
Open problems

We conclude this thesis with four open problems.

1. In any BΣ1 model, a proper d-r.e. degree exists. Does a proper 3-r.e. degree

exist? In general, is there a proper n-r.e. degree in BΣ1 models, for n ≥ 3? If

R is r.e. and Q is a subset of R, then for all stage s, Q ⊆ Rs. However, if R is

2-r.e. for n ≥ 2 and Q ⊆ R, then Q may not be a subset of Rs for any s and

the computation ΦR
e may not be correctly approximated. This raises a main

difficulty to diagonalize ΦR
e .

2. Is there a BΣ1 model with a non-r.e. degree below 0′? We have seen a BΣ1

model in which every degree below 0′ is r.e. A careful analysis of the proof

shows if BΣ1 model has a Σ1 cut on which every Π2 subset is coded, then in

the model, all degrees below 0′ are r.e. It is tempting to conjecture that there

is a characterization of the existence of non-r.e. degrees below 0′ in terms of

the existence of codes in the model.

3. It is shown that there is no Friedberg numbering in a BΣ2 model. Also, we

have seen that in the projection model which satisfies IΣ1 but not BΣ2, a

Friedberg numbering exists. In general, does a Friedberg numbering exist

when BΣ2 fails?

4. In α-recursion theory, for every admissible ordinal α, tσ2p(α) = σ2cf(α) if and

only if there is a Friedberg numbering of r.e. sets in Lα, if and only if there is

a Friedberg numbering of d-r.e. sets in Lα. Yet, for n ≥ 3, we only know that
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tσ2p(α) = σ2cf(α) implies there is a Friedberg numbering of n-r.e. sets. The

other direction is still open.

For instance, let α = ℵLω and {De}e<α be an effective list of 3-r.e. sets without

repetition. To construct an r.e. set X not in the list, we may still diagonalize

{De}e<α block by block. For one block of 3-r.e. sets, whether one set contains

[0,ℵLn) as a subset may be determined by stage ℵLn if n is large enough. But

if one 3-r.e. set containing [0,ℵLn) enumerates one more element, then that

element may further change its mind two more times. A way to deal with

this difficulty is to let n be large enough such that we have found all indices

in the block, for which the enumeration of De is r.e. or d-r.e. This method

works if the enumeration of De is d-r.e. for all e (see Section 4.3). But it is not

sufficient for 3-r.e. sets. By this method, X � ℵLn = [0,ℵLn) cannot “filtrate”

any set De with a 3-r.e. enumeration. It only filtrates every De with a d-

r.e. enumeration. If we relax the requirement of X, i.e. let X be a d-r.e. or

3-r.e. set, then it seems that the above problem is solved: we may extract one

element from [0,ℵLn), for every 3-r.e. set in the block with a 3-r.e. enumeration.

Yet, in practice, we need to recursively approximate ℵLn , during which we may

mistakenly exhaust all the chances to change one’s mind before getting the

true value of ℵLn . Perhaps there is a Friedberg numbering of 3-r.e. sets in LℵLω .

In any case, some new technic is needed here.
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