CLASSICAL THEOREMS IN REVERSE MATHEMATICS AND HIGHER RECURSION THEORY

LI WEI

(B.Sc., Beijing Normal University, China)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MATHEMATICS NATIONAL UNIVERSITY OF SINGAPORE 2013

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its entirety.

I have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

31 May, 2013

Acknowledgements

Working on a PhD has been a wonderful and unforgettable experience in my life. I would like to thank National University of Singapore for offering me this precious opportunity and thank many people here who have helped me and encouraged me with my research.

I am deeply grateful to my supervisor Professor Yang Yue. Without his help and support, my research would not have progressed to this extent. Among the four logic courses I took in NUS, three of them were taught by him. He is always very gentle and patient with me, answering my, even very basic, questions. That has been a very important part to set up my background for the research. After that, he put a great effort to find me suitable problems to work on (Chapter 3 and Chapter 4) and spent much time helping me read papers and discussing the problems, which often led to the key insights to the solutions. His strict and focused work attitude set a very good example for me. And the friendship has made the research pleasant and enjoyable, and I cherish it very much.

I am very much grateful to Professor Chong Chi Tat. He gave many helpful suggestions from the very beginning of my research. He also participated in the discussions on my research problems. He shared many of his insightful ideas to approaching problems and philosophy behind the ideas. That turned out to be very helpful not only for the study of the thesis problems but also for other investigations. I also thank him for a careful reading of the thesis. I greatly appreciate all the effort he has put in.

It is a pleasure to thank Professor Theodore Slaman of UC Berkeley. He visited NUS every summer and gave many lectures at the Logic Summer Schools. And I benefited greatly from his lectures as well as conversations with him about teaching and research. The problem in Chapter 5 was suggested by him.

I am very grateful to Professor Richard Shore of Cornell University. He kindly offered me the opportunity to visit Cornell for one semester. During my visit, he spent much time discussing with me on the thesis problems. These additional results are incorporated in Chapter 3 and Chapter 4. The discussions with him also broadened my knowledge and deepened my appreciation of the connections between different areas of logic.

I would like to thank other members of the logic group, Professor Feng Qi, Professor Frank Stephen, and Professor Wu Guohua (of Nanyang Technological University), whom I consulted many times. I would also like to thank the teachers at the Department of Mathematics, National University of Singapore for offering wonderful modules, and thank Dr. Jang Kangfeng for offering the thesis LaTeX template.

Finally, I would like to thank my parents for their support and encouragement throughout the years.

Contents

Acknowledgements v
Summary xi
1 Introduction 1
1.1 Reverse Mathematics 2
1.1.1 Reverse recursion theory 3
1.2 Higher Recursion Theory 5
1.3 Results 6
1.3.1 Chapter $|3|-\Delta_{2}$ degrees 6
1.3.2 Chapter 4 - Friedberg numbering 7
1.3.3 Chapter 5-Recursive aspects of everywhere differentiable functions 10
2 Preliminaries 13
2.1 First Order Arithmetic 13
2.1.1 Fragments of Peano arithmetic 13
2.1.2 Models of fragments of PA 15
2.2 Second Order Arithmetic 20
2.2.1 Language and analytic hierarchy 20
2.2.2 Hyperarithemtic theory 21
2.2.3 Reverse mathematics 25
$2.3 \quad \alpha$-Recursion 26
2.3.1 Admissible ordinals 26
2.3.2 $\quad \Sigma_{n}$ projectum and cofinality 27
2.3.3 Tameness 28
3 Degree Structures Without Σ_{1} Induction 31
3.1 Proper D-r.e. Degree and Σ_{1} Induction 31
3.1.1 $\quad I \Sigma_{1}$ implies the existence of a proper d-r.e. degree 31
3.1.2 $B \Sigma_{1}$ implies the existence of a proper d-r.e. degree 32
3.1.3 Bounded sets 34
3.1.4 $B \Sigma_{1}+\neg I \Sigma_{1}$ implies d-r.e. degrees below $\mathbf{0}^{\prime}$ are r.e. 38
3.1.5 Regular sets 38
3.2 Degrees Below $\mathbf{0}^{\prime}$ in a Saturated Model 43
4 Friedberg Numbering 47
4.1 Weak Fragments of PA 47
4.1.1 Towards Friedberg numbering in fragments of PA 47
4.1.2 Nonexistence of Friedberg numbering 50
$4.2 \quad \Sigma_{1}$ Admissible Ordinals 53
4.2.1 Towards Friedberg numbering in α-recursion 53
4.2.2 When $t \sigma 2 p(\alpha)=\sigma 2 c f(\alpha)$ 55
4.2 .3 Pseudostability 63
4.2.4 When $t \sigma 2 p(\alpha)>\sigma 2 c f(\alpha)$ 70
4.3 Friedberg Numbering of N-r.e. Sets 78
5 Recursive Aspects Of An Everywhere Differentiable Function 81
5.1 Convention and Notations 81
5.2 Second Order Arithmetic Descriptions 82
$5.3 \quad \Pi_{1}^{1}$ Completeness of D 87

Contents

5.4 Effective Ranks of Continuous Functions 92
5.5 Kechris-Woodin Kernel and $\Pi_{1}^{1}-\mathrm{CA}_{0}$ 99
6 Open problems 103
Bibliography 104

Summary

In this thesis, we study classical theorems of recursion theory, effective descriptive set theory and analysis from the view point of reverse mathematics and higher recursion theory. Here we consider reverse recursion theory as a part of reverse mathematics and study problems in two areas of higher recursion theory - hyperarithemtic theory and α-recursion.

In Chapter 1. we give a brief review of the history and background of the research areas involved in this thesis and summarize results in Chapter 3 to Chapter 5 .

In Chapter 2, we review the basic notions, properties and theorems that will be needed in subsequent chapters.

In Chapter 3, we study the structure of Turing degrees below 0^{\prime} in the theory that is a fragment of Peano arithmetic without Σ_{1} induction, with special focus on proper d-r.e. degrees and non-r.e. degrees. We prove
(1) $P^{-}+B \Sigma_{1}+\operatorname{Exp} \vdash$ "There is a proper d-r.e. degree."
(2) $P^{-}+B \Sigma_{1}+\operatorname{Exp} \vdash I \Sigma_{1} \leftrightarrow$ "There is a proper d-r.e. degree below 0^{\prime}."
(3) $P^{-}+B \Sigma_{1}+\operatorname{Exp} \nvdash^{\prime}$ "There is a non-r.e. degree below $\mathbf{0}^{\prime}$."

Here all the English sentences can be expressed in the language of PA.
In Chapter 4, we investigate the existence of a Friedberg numbering in fragments of Peano arithmetic and initial segments of Gödel's constructible hierarchy L_{α}, where α is Σ_{1} admissible. We prove that
(1) Over $P^{-}+B \Sigma_{2}$, the existence of a Friedberg numbering is equivalent to $I \Sigma_{2}$,
and
(2) For L_{α}, there is a Friedberg numbering if and only if the tame Σ_{2} projectum of α equals the Σ_{2} cofinality of α.

In Chapter 5, we study continuous functions f on $[0,1]$, the Kechris-Woodin derivative and the Kechris-Woodin kernel of f. We show that
(1) The set $\hat{D}=\left\{e: \Phi_{e}\right.$ describes an everywhere differentiable function on $\left.[0,1]\right\}$ is Π_{1}^{1} complete.
(2) For any continuous function f on $[0,1]$, if f has a recursive description, then the Kechris-Woodin rank of f is less than or equal to $\omega_{1}^{C K}$.
(3) For any everywhere differentiable function f on $[0,1]$, if f has a recursive description, then the Kechris-Woodin rank of f is less than $\omega_{1}^{C K}$, and conversely, for any $0<\alpha<\omega_{1}^{C K}$, there is an everywhere differentiable function f on $[0,1]$ such that the Kechris-Woodin rank of f is α and f has a recursive description.
(4) Suppose f is continuous on $[0,1]$. If the Kechris-Woodin kernel of f is nonempty, then ATR_{0} suffices to show the existence of a non-empty subset P of the Kechris-Woodin kernel of f. Over ACA_{0}, the existence of the Kechris-Woodin kernel for any continuous function on $[0,1]$ is equivalent to Π_{1}^{1} comprehension.

In Chapter 6, we discuss some open questions left unanswered by the results of this thesis.

Chapter

Introduction

The study of the properties of the set of natural numbers has a long history, going back to Euclid and continued in the hands of Fermat, Euler and modern figures such as Hilbert, Cantor, Gödel, von Neumann, etc. Yet, the investigation of the computation properties of subsets of natural numbers is relatively new. It was initiated by Gödel in his famous Incompleteness Theorem [16] in 1931 which launched a new area of mathematical logic. Nowadays, the study of computational aspects of numbers and sets of numbers, is known as Recursion (Computability) Theory, a subject which developed rapidly over the last eighty years.

With the development of mathematical logic, the notion of computation, as well as notions from other branches of mathematics, was generalized to models other than the standard model $\langle\omega, \mathcal{P}(\omega)\rangle$, where ω is the set of natural numbers and $\mathcal{P}(\omega)$ is the power set of ω. The motivations for this were multifolded. One was the desire to capture essential features of a computation. The basic notions such as computation, finiteness, relative computation and effectiveness, which lie at the heart of recursion theory, should not be confined to the consideration of ω alone (Chong, [2]). In other words, the key properties of a computation should not depend solely on the underlying structure of the standard model. Therefore, it is necessary and possible to consider notions of computation in a more general setting. Another motivation was from the study of the foundations of mathematics. In foundations of mathematics, a major problem concerns the appropriate axiom systems for mathematics other than set theory. Given an axiom system, a theorem that is derived from the system shows the sufficiency of the system to prove the theorem, but it does not demonstrate the
necessity of the system for the theorem. To establish the latter, one needs to show that the axiom system is satisfied in every model in which the theorem is true. In this sense, models could not be limited to the standard one.

Reverse mathematics (including reverse recursion theory) and higher recursion theory are typical areas in which the generalization of notions to models other than $\langle\omega, \mathcal{P}(\omega)\rangle$ play a central role. This thesis is devoted to the study of classical theorems from the view point of these two areas. First we study properties in recursion theory (Chapters 3 and 4) and then investigate the effectiveness of some particular theorems in analysis and descriptive set theory (Chapter 5). Chapters 3, 4 and 5 are relatively independent, but they are connected by the analysis of models of computation different from $\langle\omega, P(\omega)\rangle$. In this chapter, we briefly recall the history of reverse mathematics, reverse recursion theory and higher recursion theory, and introduce results in this thesis.

1.1 Reverse Mathematics

In reverse mathematics, a basic question concerns set existence axioms that are needed to prove theorems in ordinary mathematics. By ordinary mathematics, we mean areas such as number theory, analysis, countable algebra, geometry, combinatorics, etc. that developed independently of set theory. In ordinary mathematics, the objects considered are either countable (e.g. the set of natural numbers) or subsets of a separable structure (in the sense of a topological space). The weakest language appropriate to the study of these topics is the language of second order arithmetic. So reverse mathematics is investigated in the setting of second order arithmetic.

The program of reverse mathematics was started by Harvey Friedman [18] in the 1970's. Many researchers have since contributed to this area and a major systematic developer as well as expositor of the subject has been Stephen Simpson [44]. The study of reverse mathematics has proven to be a great success in classifying theorems of ordinary mathematics. Five subsystems of second order arithmetic of strictly increasing strength (in terms of the strength of set existence assumption) emerged as the core systems by which many theorems in ordinary mathematics are classified. The five subsystems are usual axioms for Peano Arithmetic (with Σ_{1} induction) plus

1.1 Reverse Mathematics

Recursive Comprehension Axiom (RCA_{0}), Weak König's Lemma $\left(\mathrm{WKL}_{0}\right)$, Arithmetical Comprehension Axiom $\left(\mathrm{ACA}_{0}\right)$, Arithmetical Transfinite Recursion $\left(\mathrm{ATR}_{0}\right)$ and Π_{1}^{1} Comprehension Axiom ($\Pi_{1}^{1}-\mathrm{CA}_{0}$) respectively. $\mathrm{RCA}_{0}, \mathrm{ACA}_{0}$, and $\Pi_{1}^{1}-\mathrm{CA}_{0}$ are systems that restrict the comprehension axiom to Δ_{1}^{0}, arithmetic and Π_{1}^{1} formulas. WLK_{0} asserts the compactness theorem in the Cantor space 2^{ω}, and ATR_{0} permits transfinite induction. Specifically, a mathematical statement belongs to one of these five systems if it is provably equivalent to that system. A classical introduction to this subject can be found in Simpson [44.

1.1.1 Reverse recursion theory

An area that developed from the general study of reverse mathematics is the classification of the strength of mathematical induction required in the proof of mathematical theorems. Reverse recursion theory is a nice example of such a study. The general question it asks is: What is the strength of mathematical induction that is necessary (and sufficient) to prove theorems in classical recursion theory over a base theory? Since in classical recursion theory many of the objects studied are arithmetically definable, we investigate reverse recursion theory in the context of first order arithmetic. In particular, we use the first order language of arithmetic and the base theory will usually be a fragment of the axioms of Peano arithmetic (PA). A detailed introduction to the reverse recursion theory is given in [6, 8].

The theoretical foundation of subsystems of PA (also called fragments of PA) was established by Paris and Kirby [36] in the late 1970's. To set the stage, let P^{-}denote the axioms of PA concerning rules governing the standard arithmetic operations such as the associative law of " + ", the distributive law with respect to " + " and ".", etc, excluding the induction scheme. Paris and Kirby [36] defined fragments of PA by restricting the induction scheme to instances of bounded logical complexity and showed the relative logical strengths of the resulted theories. For $n \geq 1$, let $I \Sigma_{n}$ (Σ_{n} induction) denote the restriction of the induction scheme to Σ_{n} formulas, and let $B \Sigma_{n}$ (Σ_{n} bounding) be the statement saying that every Σ_{n} function maps a finite set in the sense of the model onto a finite set. It is known that $I \Sigma_{n}$ is strictly stronger than $B \Sigma_{n}$, and $B \Sigma_{n+1}$ is strictly stronger than $I \Sigma_{n}$, over the base theory $P^{-}+I \Sigma_{0}+\operatorname{Exp}$ ("Exp" says that $x \mapsto 2^{x}$ is a total function, and is a theorem of $P^{-}+I \Sigma_{1}$). It is possible to develop a theory of computation
within a weak system of arithmetic. In fact, all the notions of classical recursion theory concerning primitive recursive functions, partial and total recursive functions, recursively enumerable (r.e.) sets etc. studied by Kleene and Post have their analogs in the system $P^{-}+B \Sigma_{1}+$ Exp. The research area in which we analyze the strength of induction required to establish theorems in recursion theory is called reverse recursion theory.

A Turing degree is r.e. if it contains an r.e. set. The degree of a complete r.e. set is denoted $\mathbf{0}^{\prime}$. In the 1980 's, S. Simpson first proved (unpublished) the Friedberg-Muchnik Theorem (the existence of a pair of incomparable r.e. degrees, originally proved in the standard model of PA using the $\mathbf{0}^{\prime}$-priority method) within the system $P^{-}+I \Sigma_{1}$. Slaman and Woodin [46] then studied Post's problem in models of the weaker theory $P^{-}+B \Sigma_{1}+$ Exp. They provided examples of models of $P^{-}+B \Sigma_{1}+$ Exp where the Sacks Splitting Theorem failed. Thus, $P^{-}+B \Sigma_{1}+\operatorname{Exp}$ is not strong enough for the implementation of the $\mathbf{0}^{\prime}$-priority method involving the Sacks preservation strategy. Mytilinaios [34] continued the study and proved that $I \Sigma_{1}$ suffices to prove the Sacks Splitting Theorem. Later, Chong and Mourad [6] showed (without using the priority method) that the Friedberg-Muchnik Theorem is provable in $P^{-}+B \Sigma_{1}+$ Exp. In general, any construction which is priorityfree or involves not more than the use of a $\mathbf{0}^{\prime}$-priority argument may be successfully implemented in a model of $P^{-}+I \Sigma_{1}$. Similarly, the $\mathbf{0}^{\prime \prime}$-priority method is applicable in models of $P^{-}+I \Sigma_{2}$ (see [8, 34, 35, 46]). It is reasonable to conjecture, in view of the success story concerning the Friedberg-Muchnik Theorem, that all theorems proved by using the $\mathbf{0}^{\prime}$-priority method with effective bounds on the number of injuries for each requirement (a hallmark of the construction of a pair of r.e. sets with incomparable Turing degrees for the Friedberg-Muchnik Theorem) remain valid in models of $P^{-}+B \Sigma_{1}+$ Exp, even if the original methods of proof do not carry over in the new setting. This conjecture is, however, false. The existence of a nonrecursive low set, originally proved using a $\mathbf{0}^{\prime}$-priority construction with effective bounds, is known to be equivalent to $I \Sigma_{1}$ over $P^{-}+B \Sigma_{1}+\operatorname{Exp}$ (see Chong and Yang [10]).

Also, the insights about the inductive principles needed to prove theorems in ordinary mathematics and recursion theory have been applied to other branches of reverse mathematics. In reverse mathematics, methods of reverse recursion theory

1.2 Higher Recursion Theory

have been used to tackle problems that are of a purely combinatorial nature. For instance, Cholak, Jockusch and Slaman [1] proved that over RCA_{0}, Ramsey's theorem of finite colorings for Pairs is strictly stronger than Ramsey's theorem of 2-coloring for Pairs by showing that the former could prove Σ_{3} bounding (Σ_{n} bounding is equivalent to the inductive principle of Δ_{n} formulas for every n, see [45]), but not the latter. Further examples of this nature can be found in [1, 7, 19, 43].

1.2 Higher Recursion Theory

In the 1960's, Kreisel suggested the idea of generalizing the syntactic aspects of classical recursion theory, building on the earlier works of Church, Gandy, Kleene, Spector and Kreisel himself. Sacks pursued this idea and developed recursion theory on admissible ordinals [39]. Higher recursion theory includes four main parts hyperarithmetic theory, metarecursion, α-recursion and E-recursion theory. In this thesis, we focus our study on the first and third part.

The study of hyperarithmetic theory began with the work of Church and Kleene on notation systems and recursive ordinals (see Church-Kleene [14], Church [13], Kleene [25]). Hyperarithmetic sets are defined by iterating the Turing jump though recursive ordinals. Kleene's theorem states that hyperarithmetic sets are exactly Δ_{1}^{1} sets. It rises a construction process and hierarchy for the class of Δ_{1}^{1} sets and constitutes the first real breakthrough into second order logic. Correspondingly, Δ_{1}^{1} sets (called bold face Δ_{1}^{1} sets), which are known as Borel sets, have a parallel construction hierarchy in descriptive set theory. In fact, hyperarithmetic theory is often regarded as the source of effective descriptive set theory.

Another approach to generalize recursion theory is α-recursion theory, which studies the theory of computation over initial segments L_{α} of Gödel's constructible hierarchy. The core of classical recursion theory is the notion of an effective construction (and its relativization). From the set theoretical point of view, an effective construction is a Σ_{1} operator definable over the structure of the standard model. An ordinal α is Σ_{1} admissible if L_{α} is a model that is closed under Σ_{1} definable operators. In particular, ω is Σ_{1} admissible.

The generalization of recursion theory to ordinals was introduced by Takeuti 50 and its set theoretical framework in the context of admissible sets was introduced by

Kripke [28] and Platek [38]. Kreisel and Sacks [27] initiated the study of the structure of recursively enumerable (r.e.) sets over the first admissible ordinal greater than ω. In general, admissible ordinals lack certain combinatorial properties that come with the standard model ω and crucial to the construction of r.e. sets. This results in constructions which are sometimes much more intricate than those for ω, and in certain cases, the failure of the combinatorial property leads to a negative conclusion. A key feature in the study of α-recursion theory is the fruitful application of ideas and methods from Jensen's work [21] on the fine structure of the constructible universe. The interplay between fine structure theory and recursion theory provides many new insights not available previously. Hence the study of generalized recursion theory elucidates the essence of an effective construction and the nature of notions that are fundamental to a theory of computation. In 1972, Sacks and Simpson [40] solved Post's problem for every Σ_{1} admissible ordinal. Their proof uses a combination of the priority method and the fine structure theory of L. Lerman [30] gave a more recursion theoretic proof by reducing the use of fine structure theory. Both of the two approaches have proven to be of wide applications in the study of α-recursion theory (see [39]). In [41], Shore proved the splitting theorem which relies heavily on his method of Σ_{2} blocking. Shore's blocking method has also been applied successfully in reverse recursion theory. (For instance, Mytilinaios [34] proved Sacks' splitting theorem in Σ_{1} induction.) Shore [42] also showed the density theorem remains valid for all Σ_{1} admissible ordinals. It is an example of a Σ_{3} argument of classical recursion theory lifted to all Σ_{1} admissible ordinals.

1.3 Results

1.3.1 Chapter $3-\Delta_{2}$ degrees

In Chapter 3, we consider problems about non-r.e. sets in the system $P^{-}+B \Sigma_{1}+\operatorname{Exp}$. In particular, we study the structure of degrees below $\mathbf{0}^{\prime}$. In classical recursion theory, i.e. in the standard model of PA, these degrees are precisely those which contain as members only sets that are Δ_{2} definable, but in models of $P^{-}+B \Sigma_{1}+\operatorname{Exp}$, the situation may be different.

For any two r.e. sets A and $B, A \backslash B$ is said to be a d-r.e. set (difference of two

1.3 Results

r.e. sets). A degree is d-r.e. if it contains a d-r.e. set. The degree is called proper d-r.e., if it is d-r.e. but not r.e. Clearly every r.e. degree is d-r.e., and every d-r.e. set in a model of $P^{-}+B \Sigma_{1}+\operatorname{Exp}$ is Δ_{2} definable. Furthermore, in classical recursion theory, we have the following result.

Theorem 1.1 (Cooper [12). There is a proper d-r.e. degree.

In Chapter 3, we first investigate the existence of a proper d-r.e. degree from the point of view of reverse recursion theory. By the general observation on the $\mathbf{0}^{\prime}$-priority method described above, Cooper's proof of the existence of a proper dr.e. degree may be carried out in models of of $P^{-}+I \Sigma_{1}$. This result was shown by Kontostathis [26] in 1993. The situation becomes particularly interesting when working with a model that precludes the use of a priority construction, such as in a model where Σ_{1} induction fails, and so the $\mathbf{0}^{\prime}$-priority method fails in general. We show that in a model of $P^{-}+B \Sigma_{1}+$ Exp where $I \Sigma_{1}$ fails (called a $B \Sigma_{1}$ model), by adopting a new approach, we can still construct a proper d-r.e. degree. The key to the new approach is to exploit the definition of Turing reducibility in the setting of $B \Sigma_{1}$ models. In a model of weak induction, finite sets in the sense of the model are used in place of singletons in the definition of Turing reducibility to ensure the transitivity of \leq_{T}. This fine difference in the definition of reducibility enables one to construct a d-r.e. degree \mathbf{d} that does not lie below $\mathbf{0}^{\prime} .{ }^{*}$ Such a d is not r.e., since every r.e. degree is Turing reducible to $\mathbf{0}^{\prime}$. In fact, the existence of a proper d-r.e. degree not below 0^{\prime} is not accidental. In any $B \Sigma_{1}$ model, we show that every d-r.e. degree below 0^{\prime} is r.e. Beyond this, we also exhibit a $B \Sigma_{1}$ model in which every degree below $\mathbf{0}^{\prime}$ is r.e. The conclusion one draws from these results is that in the absence of Σ_{1} induction, the structure of Turing degrees below 0^{\prime} presents a relatively neater picture. The fact that it is possible for $\mathbf{0}^{\prime}$ to bound only r.e. degrees also looks intriguing and calls for further investigation.

1.3.2 Chapter 4 - Friedberg numbering

The idea of coding information using numbers was introduced by Kurt Gödel. In the proof of his famous Incompleteness Theorem [16], Gödel effectively assigned to
${ }^{*}$ In a $B \Sigma_{1}$ model, a d-r.e. degree may not be below $\mathbf{0}^{\prime}$, yet is still r.e. in $\mathbf{0}^{\prime}$. Thus, any dr.e. degree is reducible to $0^{\prime \prime}$.
each formula a unique natural number. Generally, any map from ω onto a set of objects, such as formulas, is called a numbering of the objects. For example, one can follow Gödel to effectively list all Σ_{1} formulas, hence all r.e. sets, which we shall refer to as the Gödel numbering of r.e. sets. In Chapter 4, we focus on numberings f of recursively enumerable (r.e.) sets such that $\{(x, e): x \in f(e)\}$ is r.e.

A universal numbering is a recursive list of all r.e. sets. Gödel numbering is universal. Yet, Gödel numbering is not one-one, as two Σ_{1} formulas may define the same r.e. set. A natural question was raised by S. Tennenbaum: "Is there a recursive list of all r.e. sets without repetition?" Essentially, the question asks for an effective choice function of r.e. sets. Friedberg [15] gave an affirmative answer to Tennenbaum's question for the standard model ω of natural numbers. Thus, a one-one universal numbering is said to be a Friedberg numbering. In [29], Kummer simplified Friedberg's proof by a priority-free argument. Kummer's proof and Friedberg's proof both use the method of effective approximation to search for the least index of an r.e. set and obtain as a result a one-one enumeration of r.e. sets.

Our purpose in Chapter 4 is to investigate the existence of Friedberg numbering in different models of computation: models of fragments of PA and initial segments L_{α} of Gödel's constructible universe, where α is Σ_{1} admissible.

An intuitive approach to analyzing the existence of a Friedberg numbering in models of fragments of PA or L_{α} is illustrated in the following paragraphs.

Let $\left\{W_{e}\right\}$ be a Gödel numbering in such a model. Then e is the least index of W_{e} if

$$
\begin{equation*}
\forall i<e\left(W_{i} \neq W_{e}\right) . \tag{1.1}
\end{equation*}
$$

(1.1) is a Σ_{2} sentence preceded by a bounded quantifier. A careful examination of known proofs shows that $P^{-}+I \Sigma_{2}$ and α satisfying Σ_{2} replacement suffice to prove the existence of a Friedberg numbering in the model. The most interesting situation is then when $I \Sigma_{2}$ or Σ_{2} replacement fails.

Though no priority method is required to construct a Friedberg numbering, interestingly, we will show that $I \Sigma_{2}$ is in fact necessary for the existence of a Friedberg numbering in models that satisfy $P^{-}+B \Sigma_{2}$. Observe that $B \Sigma_{2}$ reduces (1.1) to a Σ_{2} formula as in the standard model ω. However, in a model satisfying $B \Sigma_{2}$ but not $I \Sigma_{2}$, for an r.e. set W, there may not be an e satisfying (1.1) such that $W_{e}=W$. Therefore, the straightforward extension of known proofs does not work. In the

1.3 Results

other direction, if e is the least index, $B \Sigma_{2}$ suffices to establish an upper bound of the least differences between W_{e} and all $W_{i}, i<e$. That property provides a possible way to do a diagonalization argument to show that no one-one numbering is universal, so that there is no Friedberg numbering.

For an L_{α} not satisfying Σ_{2} replacement, the lifting of the construction from ω to α has another complication. Because of the failure of Σ_{2} replacement, (1.1) is in fact Π_{3} and not Σ_{2}. Hence the least index of an α-r.e. set, while it exists, may not be effectively approximated. An analysis of this situation leads to different outcomes. We give two examples to illustrate this point by way of the ordinals: $\omega_{1}^{C K}$ and \aleph_{ω}^{L}. Though $L_{\omega_{1}^{C K}}$ does not satisfy Σ_{2} replacement, the collection of α r.e. sets can be arranged in order type ω through a Σ_{1} projection from $\omega_{1}^{C K}$ into ω. Then the construction may be carried out in the new ordering and yields the existence of a Friedberg numbering. The second example \aleph_{ω}^{L}, however, does not have the advantage of a Σ_{1} projection into a smaller ordinal, as \aleph_{ω}^{L} is a cardinal of L. Here the lack of Σ_{2} admissibility and a Σ_{1} projection to a suitably smaller regular ordinal results in the nonexistence of a Friedberg numbering for $L_{\aleph_{\omega}^{L}}$. Our plan is to extend the diagonalization argument in $B \Sigma_{2}$ models to $L_{\aleph_{\omega}^{L}}$. Since $L_{\aleph_{\omega}^{L}}$ does not satisfy Σ_{2} replacement, in general, for W_{e} from (1.1), the least upper bound of the least differences of W_{e} and all $W_{i}, i<e$, may be \aleph_{ω}^{L}. Nevertheless the situation is different when W_{e} is α-finite. Suppose W_{e} is an α-finite set satisfying (1.1), then $\zeta=\sup W_{e}<\aleph_{\omega}^{L}$. Therefore for every $i<e$, if $W_{i} \nsupseteq W_{e}$, then the least difference between W_{i} and W_{e} is less than ζ. If $W_{i} \supsetneq W_{e}$, then there exists a large enough $\aleph_{n}^{L}>\zeta$ such that $W_{i, \aleph_{n}^{L}} \supsetneq W_{e}$, since for every $m<\omega,\left\langle L_{\aleph_{m}^{L}}, \in\right\rangle$ is a Σ_{1} elementary substructure of $\left\langle L_{\aleph_{\omega}^{L}}, \in\right\rangle$. Also, note that the Π_{1} function: $n \mapsto \aleph_{n}^{L}$, allows an arrangement of α-r.e. sets in blocks of length $\aleph_{0}^{L}, \aleph_{1}^{L}, \ldots$. By considering α-finite sets, the diagonalization strategy for $B \Sigma_{2}$ models may be extended to $L_{\aleph_{\omega}^{L}}$ block by block. The argument for $L_{\aleph_{\omega}^{L}}$ can be generalized to an arbitrary Σ_{2} inadmissible cardinal α. A further analysis leads to the characterization in Chapter 4 of the existence of a Friedberg numbering in terms of the notions of tame Σ_{2} projectum (a Σ_{1} projection is also tame Σ_{2}) and Σ_{2} confinality of α (denoted as $t \sigma 2 p(\alpha)$ and $\sigma 2 c f(\alpha)$ respectively). The notion of $t \sigma 2 p(\alpha)$ was introduced by Lerman [30] and $\sigma 2 c f(\alpha)$ was introduced by Jensen [21] in his study of the fine structure theory of Gödel's L. The precise definitions of $t \sigma 2 p(\alpha)$ and $\sigma 2 c f(\alpha)$ are given in Section 4.2. In the two examples
shown here, $\operatorname{t\sigma } 2 p\left(\omega_{1}^{C K}\right)=\sigma 2 c f\left(\omega_{1}^{C K}\right)=\omega$, and $t \sigma 2 p\left(\aleph_{\omega}^{L}\right)=\aleph_{\omega}^{L}>\sigma 2 c f\left(\aleph_{\omega}^{L}\right)=\omega$. They give some hints about the characterization of the existence of a Friedberg numbering in L_{α}.

1.3.3 Chapter 5-Recursive aspects of everywhere differentiable functions

In Chapter 5, we apply results in hyperarithmetic theory and reverse mathematics to analyze the complexities of everywhere differentiable functions on the closed interval $[0,1]$.

Let $\mathbf{C}[0,1]$ be the set of continuous functions on $[0,1]$ and $\mathbf{D} \subset \mathbf{C}[0,1]$ be the collection of everywhere differentiable functions in $\mathbf{C}[0,1]$. Mazurkiewicz [33] (see also [24]) proved that \mathbf{D} is $\boldsymbol{\Pi}_{1}^{1}$ complete. In a general sense, his method of proof is effective. In Chapter 5, we apply his method to show $D=\left\{e<\omega: \Phi_{e}\right.$ describes an everywhere differentiable function on $[0,1]\}$ is Π_{1}^{1} complete (for subsets of ω). The precise definition of "describe an everywhere differentiable function on $[0,1]$ " is in Section 5.3

The rank of an everywhere differentiable function in the context of descriptive set theory was investigated by Kechris and Woodin [24]. They defined a natural rank which associates each function in \mathbf{D} with a countable ordinal. We call this ordinal the Kechris-Woodin rank. Kechris-Woodin rank was given two descriptions - in terms of well founded trees and in terms of Cantor-Bendixson type analysis. Ranks defined in these two descriptions are essentially the same. For any non-liner function f in \mathbf{D}, the Kechris-Woodin rank of f in the sense of the first description is ω times of the rank in the sense of the second description. In Chapter 5, we adopt the latter description and denote the Kechris-Woodin rank of f by $|f|_{\text {Kw }}$. Also, we extend this rank definition so that it applies to every function f in $\mathbf{C}[0,1]$.

Before stating the results, let us review the Cantor-Bendixson analysis of a tree. Consider the Cantor space $2^{<\omega}$ and let $T \subseteq 2^{<\omega}$ be a tree. Let $[T]=\left\{x \in 2^{\omega}\right.$: $\forall n(x \upharpoonright n \in T)$, i.e. x is a path in $T\}$. The Cantor-Bendixson derivative of T, denoted as $\mathrm{CB}(T)$, is

$$
\mathrm{CB}(T)=\left\{\sigma \in 2^{<\omega}: \exists x, y \in[T](x \neq y \text { extend } \sigma)\right\} .
$$

We may iteratively apply the Cantor-Bendixson derivative through the ordinals,

1.3 Results

i.e. let $T_{0}=T$ and for every $\alpha>0$, let $T_{\alpha}=\bigcap_{\beta<\alpha} \mathrm{CB}\left(T_{\beta}\right)$. Using this hierarchy, it is shown that any tree T in the Cantor Space, $[T]$ is either countable, or contains a perfect subset. This result is called the Cantor-Bendixson theorem. $\bigcap_{\alpha} T_{\alpha}$ is called the Cantor-Bendixson kernel of T and denoted as $\operatorname{Ker}_{\mathrm{CB}}(T)$, which is the largest perfect subset of T. The least ordinal α such that $T_{\alpha}=\operatorname{Ker}_{\mathrm{CB}}(T)$ is the Cantor-Bendixson rank of T, denoted as $|T|_{\mathrm{CB}}$. In descriptive set theory and hyperarithmetic theory, we have the following results.
(i) For every $\alpha<\aleph_{1}$, there is a tree T such that $[T]$ is countable and $|T|_{\mathrm{CB}}=\alpha$; if $\alpha<\omega_{1}^{C K}$, then the tree T can be made recursive.
(ii) For every tree T with $[T]$ countable, $|T|_{\mathrm{CB}}<\aleph_{1}$; if T is recursive, then $|T|_{\mathrm{CB}}<$ $\omega_{1}^{C K}$.
(iii) For every tree $T,|T|_{\mathrm{CB}}<\aleph_{1}$; if T is recursive, then $|T|_{\mathrm{CB}} \leq \omega_{1}^{C K}$.

Given a continuous function f in $\mathbf{C}[0,1]$, the Kechris-Woodin rank $|f|_{\mathrm{KW}}$ is defined in a similar manner. In [24], for every $\varepsilon \in \mathbb{Q}^{+}$and closed set $P \subseteq[0,1]$, the Kechris-Woodin derivative $P_{f, \varepsilon}^{\prime}$ of P is defined according to the derivative property of f (see Chapter 5). We may iterate this operation as follows.

$$
\begin{aligned}
& P_{f, \varepsilon}^{0}=[0,1] \\
& P_{f, \varepsilon}^{\alpha}=\bigcap_{\beta<\alpha}\left(P_{f, \varepsilon}^{\beta}\right)_{f, \varepsilon}^{\prime}, \quad \alpha>0
\end{aligned}
$$

Let $\alpha_{f}(\varepsilon)$ be the least α such that $P_{f, \varepsilon}^{\alpha}=\bigcap_{\beta} P_{f, \varepsilon}^{\beta}$ and its rank $|f|_{\mathrm{KW}}=\sup _{\varepsilon} \alpha_{f}(\varepsilon)$. The Kechris-Woodin kernel of $f, \operatorname{Ker}_{\mathrm{KW}}(f)=\bigcup_{\varepsilon} \bigcap_{\alpha} P_{f, \varepsilon}^{\alpha}$. As for Cantor-Bendixson rank, the Kechris-Woodin rank satisfies the following properties.
(i) For any $\alpha<\aleph_{1}$ not zero, there is a function $f \in \mathbf{D}$ such that $|f|_{\mathrm{KW}}=\alpha$; if $\alpha<\omega_{1}^{C K}$, then the function f can be constructed so that f has a recursive description.
(ii) For any function $f \in \mathbf{D},|f|_{\mathrm{KW}}<\aleph_{1}$; if f has a recursive description, then $|f|_{\mathrm{KW}}<\omega_{1}^{C K}$.
(iii) For any function $f \in \mathbf{C}[0,1],|f|_{\mathrm{KW}}<\aleph_{1}$; if f has a recursive description, then $|f|_{\mathrm{KW}} \leq \omega_{1}^{C K}$.

In Chapter 5, we discuss the hyperarithmetical aspects of these properties, their descriptive set theoretic aspect was investigated by Kechris and Woodin [24].

The correspondence between Cantor-Bendixson derivative and Kechris-Woodin derivative is not coincidental. Clearly, whenever a derivative operation is defined on a countable structure, the descriptive set theoretic aspects of properties (ii)(iii) hold. We prove that if the operation of derivative is hyperarithmetic, then the hyperarithmetic aspects of properties (ii)-(iii) also hold (see Proposition 2.2.4). On the other hand, the validity of (i) depends on the operator itself.

In reverse mathematics, it was shown that the existence of $\operatorname{Ker}_{\mathrm{CB}}(T)$ for every tree T in a second order arithmetic model is equivalent to $\Pi_{1}^{1}-\mathrm{CA}_{0}$. We end Chapter 5 by showing that a similar result for $\operatorname{Ker}_{\mathrm{KW}}(f)$ is true.

Chapter

Preliminaries

In this chapter, we give a summary of the background material involved in this thesis.

2.1 First Order Arithmetic

Here we recall some useful facts about first order arithmetic. More details can be found in [9, 22, 34, 36].

2.1.1 Fragments of Peano arithmetic

The language of first order arithmetic $\mathcal{L}(0,1,+, \cdot,<)$ consists of variables $x_{1}, x_{2}, x_{3} \ldots$ constants 0,1 , and functions + (plus), $\cdot($ times $)$.

Atomic formulas are $t=s$ and $t<s$, where t and s are number theoretic terms. Formulas are built up from atomic formulas, propositional connectives and quantifiers. In formulas, we also use $t \leq s$ to denote $(t<s) \vee(t=s)$.

A formula of $\mathcal{L}(0,1,+, \cdot,<)$ is $\Sigma_{n}\left(\Pi_{n}\right.$ respectively) if it is of the form $\exists x_{1} \forall x_{2} \ldots \theta$ ($\forall x_{1} \exists x_{2} \ldots \theta$ respectively), where $\exists x_{1} \forall x_{2} \ldots\left(\forall x_{1} \exists x_{2} \ldots\right.$ respectively) is n alternative blocks of quantifiers, and θ is a formula containing only bounded quantifiers. A formula is Δ_{n} if it is both Σ_{n} and Π_{n}.
P^{-}consists of the usual axioms on arithmetical operations without induction as
follows.

$$
\begin{array}{lr}
\forall x, y, z((x+y)+z=x+(y+z)) & \forall x, y(x+y=y+x) \\
\forall x, y, z((x \cdot y) \cdot z=x \cdot(y \cdot z)) & \forall x, y(x \cdot y=y \cdot x) \\
\forall x, y, z(x \cdot(y+z)=x \cdot y+x \cdot z) & \forall x(x \cdot 1=x) \\
\forall x((x+0=x) \wedge(x \cdot 0)=0) & \\
\forall x \neg(x<x) & \forall x, y(x<y \vee x=y \vee y<x) \\
\forall x, y, z((x<y \wedge y<z) \rightarrow x<z) & \forall x, y, z(0<z \wedge x<y \rightarrow x \cdot z<y \cdot z) \\
\forall x, y, z(x<y \rightarrow x+z<y+z) & \forall x(x \geq 0)
\end{array}
$$

An induction principle may have different forms of expression. One of them, called induction scheme, is the following:

$$
\forall x[(\forall y<x \varphi(y)) \rightarrow \varphi(x)] \rightarrow \forall x \varphi(x),
$$

for every φ, possibly with parameters.
Another forms are the bounding scheme:

$$
\forall x(\forall y<x \exists w \varphi(y, w) \rightarrow \exists b \forall y<x \exists w<b \varphi(y, w)),
$$

and the least number scheme

$$
\exists w \psi(w) \rightarrow \exists w(\psi(w) \wedge \forall v<w(\neg \psi(v)))
$$

for any φ, possibly with parameters.
The Σ_{n} induction (Σ_{n} bounding, Σ_{n} least number principle respectively), denoted by $I \Sigma_{n}\left(B \Sigma_{n}, L \Sigma_{n}\right.$, respectively), is the induction scheme (bounding scheme, the least number principle, respectively) restricted to Σ_{n} formulas.

Theorem 2.1. Let $n \geq 1$. Assume $P^{-}+I \Sigma_{0}+\operatorname{Exp}$, where Exp says that $\forall x \exists y(y=$ $\left.2^{x}\right)$.
(1) (Paris and Kirby) The following implications hold:
(a) $B \Sigma_{n} \Leftrightarrow B \Pi_{n-1}$.

2.1 First Order Arithmetic

(b) $I \Sigma_{n} \Leftrightarrow I \Pi_{n} \Leftrightarrow L \Sigma_{n} \Leftrightarrow L \Pi_{n}$.
(c) $B \Sigma_{n+1} \Rightarrow I \Sigma_{n} \Rightarrow B \Sigma_{n}$. Furthermore, the arrows do not reverse.
(2) (Gandy) $B \Sigma_{n} \Leftrightarrow L \Delta_{n}$.
(3) (Slaman) $B \Sigma_{n} \Leftrightarrow I \Delta_{n}$.

By Clause (1) of Theorem 2.1, the hierarchy of restricted induction

$$
\begin{equation*}
\cdots \Rightarrow I \Sigma_{2} \Rightarrow B \Sigma_{2} \Rightarrow I \Sigma_{1} \Rightarrow B \Sigma_{1} \tag{2.1}
\end{equation*}
$$

does not collapse. Other forms of restricted induction, by Theorem 2.1 again, can be reduced to the ones in (2.1).

2.1.2 Models of fragments of PA

Sets

Let \mathcal{M} be a model of $P^{-}+I \Sigma_{0}+$ Exp. A subset of \mathcal{M} is r.e., if it is Σ_{1} definable. If the complement of an r.e. set is also Σ_{1} definable, then the set is recursive. The set difference of two r.e. sets is called d-r.e. (difference of r.e. sets). In general, an n-r.e. set is a set of the form $A \backslash D$, where A is r.e. and D is $(n-1)$-r.e., and $n \geq 2$ (d-r.e. sets are 2-r.e. and r.e. sets are 1-r.e.).

A set $D \subset \mathcal{M}$ is bounded, if there is a $b \in \mathcal{M}$ such that $D \subseteq[0, b)$. A bounded set is \mathcal{M}-finite, if it is represented by the binary expansion of some element in \mathcal{M}^{*}. A set is regular if its intersection with any \mathcal{M}-finite set is \mathcal{M}-finite. To distinguish between sets and numbers, in this chapter, we use lower case letters to denote numbers and capital letters to denote sets.

Lemma 2.2 (H. Friedman). Let $n \geq 1$ and $\mathcal{M} \models P^{-}+I \Sigma_{n}$. Then any Σ_{n} subset of \mathcal{M} is regular, and any partial Σ_{n} function maps a bounded set to a bounded set. In particular, if $\mathcal{M} \models P^{-}+I \Sigma_{1}$, then all r.e. sets and d-r.e. sets of \mathcal{M} are regular.

Given an r.e. set A, let $A_{s} \subseteq A$ be the collection of numbers enumerated into A by stage s. Then A_{s} is \mathcal{M}-finite for any s. For any d-r.e. set D, D_{s} is defined similarly.

[^0]Suppose $f: \mathcal{M}^{2} \rightarrow \mathcal{M}$ is a partial function. We define its limit at x as follows:

$$
\lim _{s} f(s, x)=y \leftrightarrow \exists t \forall s>t(f(s, x) \downarrow=y) .
$$

Clearly, for every $x \in \mathcal{M}$ and r.e. (d-r.e.) set $F, \lim _{s} F_{s}(x)=F(x)$.

Computation and degrees

Fix a Δ_{0} bijection $\langle\cdot, \cdot\rangle: \mathcal{M}^{2} \rightarrow \mathcal{M}$ such that
(i) $\langle a, b\rangle \geq \max \{a, b\}$ for all $a, b \in \mathcal{M}$, and
(ii) $\langle\cdot, \cdot\rangle$ is strictly increasing with respect to each component.

By Σ_{1} induction, we define

$$
\left\langle z_{0}, z_{1}, \ldots, z_{n+1}\right\rangle=\left\langle\left\langle z_{0}, z_{1}, \ldots, z_{n}\right\rangle, z_{n+1}\right\rangle,
$$

for every $n \in \mathcal{M} \backslash\{0\}$ and $z_{0}, z_{1}, \ldots, z_{n+1} \in \mathcal{M}$. (Without Σ_{1} induction, functions $\left\langle z_{0}, z_{1}, \ldots, z_{n+1}\right\rangle$ are defined for every $n<\omega$.)

An r.e. set Φ is a Turing functional if it satisfies the universal closure of the following conditions:
(i) $\langle X, z, P, N\rangle \in \Phi \rightarrow((z=0 \vee z=1) \wedge(P \cap N=\emptyset))$,
(ii) $\left(\langle X, z, P, N\rangle \in \Phi \wedge P^{\prime} \cap N^{\prime}=\emptyset \wedge P^{\prime} \supseteq P \wedge N^{\prime} \supseteq N \wedge X^{\prime} \subseteq X\right)$ $\rightarrow\left\langle X^{\prime}, z, P^{\prime}, N^{\prime}\right\rangle \in \Phi$,
(iii) $\left(\langle X, z, P, N\rangle,\left\langle X, z^{\prime}, P, N\right\rangle \in \Phi\right) \rightarrow z=z^{\prime}$.

Here, \mathcal{M}-finite sets X, P, N etc. are identified with their representations of binary expansion. Intuitively, for a Turing functional $\Phi,\langle X, z, P, N\rangle \in \Phi$ means the program Φ with input X produces output z, whenever P is some positive part of the oracle and N is some negative part of the oracle.

Let $\left\{W_{e}\right\}_{e \in \mathcal{M}}$ be an effective enumeration of all r.e. sets. Any W_{e} and its enumeration could be modified uniformly and recursively to produce an r.e. Turing functional Φ_{e} such that:
(i) If W_{e} is a Turing functional, then $\Phi_{e}=W_{e}$.

2.1 First Order Arithmetic

(ii) For every stage s and computation $\langle X, z, P, N\rangle \in \Phi_{e, s}$, the \mathcal{M}-finite sets X, P, N are subsets of $[0, s)$.
(iii) Φ_{e} satisfies the local downward closer property with respect to $\Phi_{e, s}$:

For any stage s and computation $\langle X, z, P, N\rangle \in \Phi_{e, s}$, if Y is an \mathcal{M}-finite subset of X, then $\langle Y, z, P, N\rangle \in \Phi_{e, s}$.

Note that the modification could be uniformly recursive, so the enumeration of all r.e. Turing functionals $\left\{\Phi_{e}\right\}_{e \in \mathcal{M}}$ is recursive.

Given $A, B \subseteq \mathcal{M}, A$ is said to be Turing reducible (or reducible, for short) to B, denoted by $A \leq_{T} B$, if there is an r.e. Turing functional Φ such that for every \mathcal{M}-finite set X,

$$
\begin{aligned}
& X \subseteq A \Leftrightarrow \exists P \exists N(P \subseteq B \wedge N \subseteq \bar{B} \wedge\langle X, 1, P, N\rangle \in \Phi) \\
& X \subseteq \bar{A} \Leftrightarrow \exists P \exists N(P \subseteq B \wedge N \subseteq \bar{B} \wedge\langle X, 0, P, N\rangle \in \Phi)
\end{aligned}
$$

In the above definition, if $\Phi=\Phi_{e}$, then we say $A \leq_{T} B$ via Φ_{e} (in symbols $A=\Phi_{e}^{B}$). Turing degrees, r.e. degrees, etc, are defined as usual.

Turing reducibility is also called strong reducibility or setwise reducibility. They are defined so against the notion of weak reducibility or pointwise reducibility (denoted by \leq_{p}), which is obtained by substituting an element " x " for an \mathcal{M}-finite set " X " in the definition of Turing functional and Turing reducibility. Turing reducibility is transitive and stronger than weak reducibility, but weak reducibility needs not be transitive.

Now we fix the following notations. Suppose Φ_{i} is a Turing functional, W_{e} is an r.e. set. Then for any stage s,

$$
\Phi_{i}^{W_{e}}[s]=\left\{\langle X, z, P, N\rangle \in \Phi_{i, s}: P \subseteq W_{e, s}, N \subseteq \bar{W}_{e, s}\right\} .
$$

That is, $\Phi_{i}^{W_{e}}[s]$ is a collection of computations consistent with W_{e} from the view of stage s. Since Φ_{i} is a Turing functional, $\Phi_{i}^{W_{e}}[s]$ is also self consistent, i.e. the universal closure of the following formula holds:

$$
\langle X, z, P, N\rangle \in \Phi_{i}^{W_{e}}[s] \rightarrow\left\langle X, 1-z, P^{\prime}, N^{\prime}\right\rangle \notin \Phi_{i}^{W_{e}}[s] .
$$

Note that $\Phi_{i}^{W_{e}}$ also satisfies the local downward closure property with respect to $\Phi_{i}^{W_{e}}[s]$.

Now suppose \mathcal{M} is a model of $B \Sigma_{1}$. If $\langle X, z, P, N\rangle \in \Phi_{i}$ such that $P \subseteq W_{e}$ and $N \subseteq \bar{W}_{e}$, then $\langle X, z, P, N\rangle \in \Phi_{i}^{W_{e}}[s]$ for all large enough stages s. If \mathcal{M} also satisfies $I \Sigma_{1}$, then we can define $\Phi_{i}^{D}[s]$ similarly. Here, $I \Sigma_{1}$ is required to ensure that whenever $\langle X, z, P, N\rangle \in \Phi_{i}, P \subseteq D, N \subseteq \bar{D}$ and s is large enough, we have $P \subseteq D_{s}$ and $P \subseteq \overline{D_{s}}$ so that $\langle X, z, P, N\rangle \in \Phi_{i}^{D}[s]$.
$B \Sigma_{n}$ model
Let $n \geq 1$. A model $\mathcal{M} \models P^{-}+I \Sigma_{0}+\operatorname{Exp}$ is said to be a $B \Sigma_{n}$ model, if $\mathcal{M} \models B \Sigma_{n}$ and $\mathcal{M} \not \models I \Sigma_{n}$. Clause (1) of Theorem 2.1 asserts that there exists a $B \Sigma_{n}$ model.

An analysis of $B \Sigma_{n}$ models is needed to study the relationship between fragments of PA and theorems in recursion theory proved under $I \Sigma_{n}$. A theorem is equivalent to $I \Sigma_{n}$ over $B \Sigma_{n}$, if it is provable by $I \Sigma_{n}$ but fails in every $B \Sigma_{n}$ model.

A subset I of \mathcal{M} is a cut, if I is a nonempty proper initial segment of \mathcal{M} and closed under successor. A partial function on \mathcal{M} is cofinal if its range is unbounded in \mathcal{M}.

Lemma 2.3 ([5]). Let $\mathcal{M} \models P^{-}+B \Sigma_{n}+\operatorname{Exp}$. Then \mathcal{M} is a $B \Sigma_{n}$ model if and only if there exists a Σ_{n} cut I with a Δ_{n} function $f: I \rightarrow \mathcal{M}$ such that f is strictly increasing and cofinal.

Assume $A \subseteq \mathcal{M}$. A set $G \subseteq A$ is said to be coded on A if there is an \mathcal{M}-finite set X such that $X \cap A=G$. Let $n \geq 1$. A set $G \subseteq A$ is Δ_{n} on A if G and $A \backslash G$ are both Σ_{n}.

Lemma 2.4 (Chong and Mourad [5]). Suppose $\mathcal{M} \models P^{-}+B \Sigma_{n}+\operatorname{Exp}$ and $A \subseteq \mathcal{M}$. Then every set bounded and Δ_{n} on A is coded on A. In particular, any Δ_{n} set of \mathcal{M} is regular and any bounded Δ_{n} set is \mathcal{M}-finite.

The above lemma makes more sense for $B \Sigma_{n}$ models. In a $B \Sigma_{n}$ model, as its induction principle is weak, classical proofs of a theorem usually do not work. Nevertheless, by Lemma 2.4, some information, which is Δ_{n} on a Σ_{n} cut I, is coded on I. Such a code is employed as a parameter in a proof of either the theorem or its negation. An example is Lemma 2.5, which states an induction principle on a Σ_{n} cut. More examples are seen in Sections 3.1, 3.2 and 4.1.

2.1 First Order Arithmetic

To fix notations, we use $[a, b]([a, b)$ respectively), where $a<b \in \mathcal{M}$, to denote the set $\{x \in \mathcal{M}: a \leq x \leq b\}\left(\{x \in \mathcal{M}: a \leq x<b\}\right.$ respectively). We use 2^{I} to represent the set $\left\{x \in \mathcal{M}: x<2^{i}\right.$ for some $\left.i \in I\right\}$. If f is a function, we will use $\operatorname{dom}(f)$ to denote the domain of f and use $\operatorname{ran}(f)$ to denote the range of f. (The notations of $\operatorname{dom}(f)$ and $\operatorname{ran}(f)$ will have the same meaning for functions f in other sections and chapters).

A number z is said to code a partial function if it codes an \mathcal{M}-finite set D and D is the graph of a partial function.

Lemma 2.5. Suppose \mathcal{M} is a $B \Sigma_{n}$ model with $n \geq 2, I \subset \mathcal{M}$ is a Σ_{n} cut, $a_{0} \in$ $\{0,1\}$, and $h: I \times 2^{I} \rightarrow\{0,1\}$ is total on $I \times 2^{I}$ and Σ_{n} definable. Let $G \subseteq I$ be defined by iterating h :

$$
\begin{aligned}
G(0) & =a_{0} \\
G(i+1) & =h(i, G \upharpoonright[0, i]), \text { if } i \in I \text { and } G \upharpoonright[0, i] \text { is } \mathcal{M} \text {-finite. }
\end{aligned}
$$

Then for every $i \in I, G(i)$ is uniquely defined. Thus, G is Δ_{n} on I and coded on I. Proof. It follows immediately from the definition that

$$
\begin{aligned}
& G(i)=y \leftrightarrow[(i \in I) \wedge \exists z(z \text { codes a partial function } \wedge \\
& \\
& \left.\left.\quad z(0)=a_{0} \wedge \forall j<i(z(j+1)=h(j, z \upharpoonright[0, j])) \wedge z(i)=y\right)\right]
\end{aligned}
$$

Therefore, G is Σ_{n} definable ${ }^{\dagger}$ and $\operatorname{dom}(G) \subseteq I$ is a Σ_{n} cut of \mathcal{M}. By $I \Sigma_{1}$ (which follows from $B \Sigma_{n}$, for $\left.n \geq 2\right), G(i)$ is unique for any $i \in \operatorname{dom}(G)$.

To see that $\operatorname{dom}(G)=I$, choose an arbitrary $i \in I$, and we only need to show $\operatorname{dom}(G) \supseteq[0, i]$. For any $j \leq i$,

$$
\begin{align*}
& G(j)=y \leftrightarrow \exists z<2^{i+1}(z \text { codes a partial function } \wedge \\
& \left.\quad z(0)=a_{0} \wedge \forall k<j\left(z(k+1)=h_{i}(j, z \upharpoonright[0, k])\right) \wedge z(j)=y\right), \tag{2.2}
\end{align*}
$$

where $h_{i}=h \upharpoonright[0, i] \times\left[0,2^{i+1}\right]$. The function h_{i} is total on $[0, i] \times\left[0,2^{i+1}\right]$, so h_{i} is Δ_{n} definable. In addition, h_{i} is bounded. Lemma 2.4 implies that h_{i} is \mathcal{M}-finite. Then the right hand side of (2.2) is Σ_{0}. Thus, $\operatorname{dom}(G) \supseteq[0, i]$.

[^1]
Computation and cut

Now we suppose \mathcal{M} is a $B \Sigma_{1}$ model, I is a Σ_{1} cut in $\mathcal{M}, a \in \mathcal{M}$ is greater than all numbers in I, and $\left\{\Phi_{e}\right\}_{e \in \mathcal{M}}$ is a recursive enumeration of all r.e. Turing functionals of \mathcal{M}. The following two lemmas are straightforward.

Lemma 2.6. For every nonempty \mathcal{M}-finite set X,

$$
\begin{aligned}
& X \subseteq I \leftrightarrow \max X \in I, \\
& X \subseteq \bar{I} \leftrightarrow \min X \in \bar{I},
\end{aligned}
$$

where $\max X(\min X$, respectively) is the maximum (minimum) element in X.
Lemma 2.7. For any set $G \subseteq \mathcal{M}, I \leq_{T} G$ if and only if $I \leq_{p} G$.
For every $e, s \in \mathcal{M}$, we define

$$
\begin{equation*}
\Psi_{e}^{I}[s]=\left\{\langle X, z, n\rangle: \exists P \subseteq I_{s} \exists N \subseteq \bar{I}_{s}\left(\langle X, z, P, N\rangle \in \Phi_{e}^{I}[s] \wedge n=\min (N \cup\{a\})\right)\right\} . \tag{2.3}
\end{equation*}
$$

That is, we only consider the minimum element of the negative condition of the computation. Ψ_{e}^{I} also satisfies local downward closure property with respect to $\Psi_{e}^{I}[s]$. If $G=\Phi_{e}^{I}$, then for any \mathcal{M}-finite set X,

$$
\begin{aligned}
& X \subseteq G \leftrightarrow \exists n \in \bar{I}\left(\langle X, 1, n\rangle \in \Psi_{e}^{I}\right), \\
& X \subseteq \bar{G} \leftrightarrow \exists n \in \bar{I}\left(\langle X, 0, n\rangle \in \Psi_{e}^{I}\right) .
\end{aligned}
$$

Therefore, we also say that $G \leq_{T} I$ via Ψ_{e} or $G=\Psi_{e}^{I} .\left\{\Psi_{e}^{I}\right\}_{e \in \mathcal{M}}$ can be seen as a recursive enumeration of all r.e. Turing functionals with oracle I.

2.2 Second Order Arithmetic

In this section, We recall some useful facts about second order arithmetic. The reader may consult [39, 44] for details.

2.2.1 Language and analytic hierarchy

The language of second order arithmetic is a two sorted language. 0 and 1 are constant symbols. Variables include number variables m, n, k ranging over ω (the

2.2 Second Order Arithmetic

set of natural numbers), and set variables X, Y, Z ranging over $\mathcal{P}(\omega)$ (the power set of ω). Quantifiers in front of number variables are number quantifiers, and those in front of set variables are set quantifiers. Functions include + (plus) and \cdot (times).

Atomic formulas are $t=s, t<s$ and $X(n)=k$, where t and s are number theoretic terms, n is a number variable and $k=0$ or 1 . Analytical formulas are built up from atomic formulas, propositional connectives and quantifiers as usual. A formula without any quantifier is Σ_{0}. We say a formula φ is arithmetic, if φ only contains number quantifiers. An arithmetic formula φ is Σ_{n}^{0} (or Σ_{n} for short), if there is a Π_{n-1} formula ψ such that φ is in the form of $\exists n \psi(n)$. A formula is Π_{n}^{0} (or Π_{n} for short), if its negation is Σ_{n}. A formula is Δ_{n} if it is both Σ_{n} and Π_{n}.

Now we define the analytic hierarchy. Let $\Sigma_{0}^{1}=\Pi_{0}^{1}$ denote arithmetic formulas. As in the arithmetic hierarchy, a formula φ is Σ_{n}^{1} if there is a Π_{n-1}^{1} formula ψ such that φ is in the form of $\exists X \psi(X)$. Similarly, we define Π_{n}^{1} and Δ_{n}^{1} formulas.

An arithmetical formula $R(X, m)$ is recursive if there is an index e such that Φ_{e}^{X} is total and for all X and m,

$$
R(X, m) \leftrightarrow \Phi_{e}^{X}(m)=1
$$

Proposition 2.2.1 (Kleene, 1955). Every analytical formula $\varphi(X, m)$ can be put in one of the following forms:

$$
\begin{array}{lll}
A(X, m) & \exists Y \forall n R(X, Y, m, n) & \exists Z \forall Y \exists n R(X, Y, Z, m, n) \ldots \\
& \forall Y \exists n R(X, Y, m, n) & \forall Z \exists Y \forall n R(X, Y, Z, m, n) \ldots
\end{array}
$$

where A is arithmetic and R is recursive.

2.2.2 Hyperarithemtic theory

Kleene's \mathcal{O} and hyperarithmetic sets

The well ordering $<_{\mathcal{O}}$ over ω is the smallest subset of ω^{2} such that
(i) $1<{ }_{\mathcal{O}} 2$.
(ii) $\forall n\left(n\right.$ is in the field of $\left.<_{\mathcal{O}} \rightarrow n<_{\mathcal{O}} 2^{n}\right)$.
(iii) $\forall e\left(\Phi_{e}\right.$ is a total function $\left.\wedge \forall n\left(\Phi_{e}(n)<_{\mathcal{O}} \Phi_{e}(n+1)\right) \rightarrow \forall n\left(\Phi_{e}(n)<_{\mathcal{O}} 3 \cdot 5^{e}\right)\right)$.
(iv) $\forall i \forall j \forall k\left(i<_{\mathcal{O}} j \wedge j<_{\mathcal{O}} k \rightarrow i<_{\mathcal{O}} k\right)$.

Kleene's \mathcal{O} is the field of $<_{\mathcal{O}}$. The function $\left|\left.\right|_{\mathcal{O}}: \mathcal{O} \rightarrow\right.$ Ord, where Ord is the class of ordinals, is defined by induction as follows.

$$
\begin{aligned}
|1|_{\mathcal{O}} & =0 \\
\left|2^{n}\right|_{\mathcal{O}} & =|n|_{\mathcal{O}}+1, \quad n \in \mathcal{O} \\
\left|3 \cdot 5^{e}\right|_{\mathcal{O}} & =\sup _{n}\left|\Phi_{e}(n)\right|_{\mathcal{O}}, \quad 3 \cdot 5^{e} \in \mathcal{O}
\end{aligned}
$$

Let $\omega_{1}^{C K}=\sup \left\{|n|_{\mathcal{O}}: n \in \mathcal{O}\right\}$.
Now we iterate the Turing jump through \mathcal{O}.

$$
\begin{aligned}
H_{1} & =\emptyset \\
H_{2^{n}} & =\left(H_{n}\right)^{\prime} \quad n \in \mathcal{O} \\
H_{3 \cdot 5^{e}} & =\left\{(n, m): m \in H_{\Phi_{e}(n)}, 3 \cdot 5^{e} \in \mathcal{O}\right\}
\end{aligned}
$$

A set A is hyperarithmetic if $A \leq_{T} H_{n}$ for some $n \in \mathcal{O}$.
Theorem 2.8 (Kleene, [39]). Hyperarithemtic sets are exactly the Δ_{1}^{1} sets.

Π_{1}^{1} completeness

A Π_{1}^{1} set $A \subset \omega$ is Π_{1}^{1} complete if every Π_{1}^{1} set is many-one reducible to A.
Lemma 2.9. There is a Π_{1}^{1} set that is not Σ_{1}^{1}. Thus, if A is Π_{1}^{1} complete, then A is not Σ_{1}^{1}.

Suppose T is a tree. A function $f: T \rightarrow$ Ord is order preserving if for all $\sigma, \tau \in T, \sigma \subsetneq \tau$ implies that $f(\sigma)<f(\tau)$. We say T is well founded if $[T]=\{p \in$ $\left.\omega^{\omega}: \forall n(p \upharpoonright n \in T)\right\}$ is empty.

Lemma 2.10 ([39]). Suppose $T \subseteq \omega^{<\omega}$ is a recursive tree. Then T is well founded if and only if there is an order preserving function $f: T \rightarrow \omega_{1}^{C K}$.

Let $\left\{T_{e}\right\}_{e<\omega}$ be a recursive list of all (partial) recursive functions from $\omega^{<\omega}$ to $\{0,1\}$. For every $\sigma \in \omega^{<\omega}$, we say $T_{e, s}(\sigma)=j$, if $T_{e}(\sigma)$ converges within s steps and is equal to j. Call T_{e} describes a well founded tree if T_{e} is a total function and $\left\{\sigma \in \omega^{<\omega}: T_{e}(\sigma)=1\right\}$ is a well founded tree. Define
$\mathrm{WF}=\left\{e<\omega: T_{e}\right.$ describes a well founded tree $\}$.

2.2 Second Order Arithmetic

Proposition 2.2.2 ([39]). WF and \mathcal{O} are Π_{1}^{1} complete. Therefore, WF and \mathcal{O} are not Σ_{1}^{1}.

Lemma 2.11. Suppose $<^{*}$ is a Σ_{1}^{1} well ordering over ω. Then the order type of $<^{*}$ is less than $\omega_{1}^{C K}$.

Proof. For the sake of a contradiction, we assume $<^{*}$ is a Σ_{1}^{1} well ordering of order type at least $\omega_{1}^{C K}$. Then

$$
\begin{aligned}
n \in \mathrm{WF} \leftrightarrow & \left(T_{n} \text { is total }\right) \wedge\left\{\sigma \in \omega^{<\omega}: T_{n}(\sigma)=1\right\} \text { is a tree } \wedge \\
& \exists f\left(f: \omega^{<\omega} \rightarrow \omega \wedge \forall \sigma \forall \tau\left(\sigma \subsetneq \tau \wedge T_{n}(\tau)=1 \rightarrow f(\sigma)<^{*} f(\tau)\right)\right) .
\end{aligned}
$$

That is a contradiction since WF is not Σ_{1}^{1}.
Proposition 2.2.3 ([39]). Given any linear ordering R over ω, $\mathrm{WO}(R)$, which states that R is a well ordering, is Π_{1}^{1} not Σ_{1}^{1}.

Inductive definitions

Suppose $A \subseteq \omega$ and $\Gamma(A)=\left\{\Gamma_{n}(A)\right\}_{n<\omega}$ is a sequence of functions from 2^{ω} to 2^{ω}. We define the arithmetic or hyperarithmetic complexity of Γ to be that of the predicate $m \in \Gamma_{n}(X)$. Γ is monotonic if $\Gamma_{n}(A) \supseteq \Gamma_{n}(B)$ for all $A \supseteq B$ and every n.

For each $n<\omega$ and ordinal α, define $\Gamma_{n}^{\alpha}(A)$ as follows:

$$
\begin{aligned}
& \Gamma_{n}^{0}(A)=A \\
& \Gamma_{n}^{\alpha+1}(A)=\Gamma_{n}^{\alpha}(A) \cup \Gamma_{n}\left(\Gamma^{\alpha}(A)\right) \\
& \Gamma_{n}^{\lambda}(A)=\bigcup_{\alpha<\lambda} \Gamma_{n}^{\alpha}(A) \quad \lambda \text { is a limit ordinal. }
\end{aligned}
$$

Since ω is countable, there is a least countable ordinal $\alpha\left(\Gamma_{n}, A\right)$, such that for all $\alpha \geq \alpha\left(\Gamma_{n}, A\right), \Gamma_{n}^{\alpha}(A)=\Gamma_{n}^{\alpha\left(\Gamma_{n}, A\right)}(A)=\Gamma_{n}^{\infty}(A)$. Let the rank of $\Gamma_{n}(A)$ be $\left|\Gamma_{n}(A)\right|=$ $\alpha\left(\Gamma_{n}, A\right)$ and the rank of $\Gamma(A)$ be $|\Gamma(A)|=$ the least $\alpha \geq\left|\Gamma_{n}(A)\right|$ for all n. Then $|\Gamma(A)|<\aleph_{1}$.

Proposition 2.2.4 was originally proved by Spector [48] in 1955. His result applies to any Γ that is Π_{1}^{1}. Here we give a different but simpler proof for hyperarithmetic Γ. And that suffices for our discussion in Chapter 5.

Proposition 2.2.4 (Spector). Suppose Γ is monotonic and hyperarithmetic, and A is hyperarithmetic. Then $|\Gamma(A)| \leq \omega_{1}^{C K}$. If moreover, $\Gamma_{n}^{\infty}(A)=\omega$ for all n, then $|\Gamma(A)|<\omega_{1}^{C K}$.

Proof. Note that we only need to prove the proposition for $A=\emptyset$ instead of the general case. For an arbitrary hyperarithmetic A, we consider $\Gamma^{*}(\emptyset)=\left\{\Gamma_{n}^{*}(\emptyset)\right\}_{n<\omega}$ defined by $m \in \Gamma_{n}^{*}(X)$ if and only if $m \in \Gamma^{*}(X)$ or $m \in A$. Then Γ^{*} preserves hyperarithmetic and monotonic properties, and $\left|\Gamma^{*}\right|=|\Gamma(A)|$, whenever $|\Gamma| \geq \omega$.

We may further assume $\forall m \Gamma_{m}(A)=\Gamma_{0}(A)$ (then $\left.|\Gamma(A)|=\left|\Gamma_{0}(A)\right|\right)$ for the following reason. Let $A^{* *}=\{(n, x): x \in A\}$. Then $A^{* *}$ is also hyperarithmetic. For all m and X, define

$$
\Gamma_{m}^{* *}(X)=\left\{(n, x) \in \omega^{2}: x \in \Gamma_{n}\left(X^{[n]}\right)\right\}
$$

where $X^{[n]}=\{x:(n, x) \in X\}$ is the $n^{\text {th }}$ column of X. Then $\Gamma^{* *}=\left\{\Gamma_{n}^{* *}\right\}_{n<\omega}$ preserves hyperarithmetic and monotonic properties, and $\left|\Gamma^{* *}\left(A^{* *}\right)\right|=\left|\Gamma_{0}^{* *}\left(A^{* *}\right)\right|=$ $|\Gamma(A)|$.

For the rest of this proof, we always assume $A=\emptyset$ and $\forall n \Gamma_{n}(A)=\Gamma_{0}(A)$ with $\Gamma_{0}(\emptyset) \neq \emptyset$. We denote $\Gamma_{0}(A)$ by Γ.

For every $n \in \Gamma^{\infty}$, we define its rank by $\operatorname{rank}(n)=$ the least α such that $n \in \Gamma^{\alpha+1}$. Now we define a liner order $<^{*}$ over Γ^{∞} :

$$
m<^{*} n \leftrightarrow(\operatorname{rank}(m)<\operatorname{rank}(n)) \vee(\operatorname{rank}(m)=\operatorname{rank}(n) \wedge m<n)
$$

Then $<^{*}$ is a well ordering over Γ^{∞} and the order type of $<^{*}$ is at least $|\Gamma|$.
We claim that for all $k \in \Gamma^{\infty}$,

$$
\begin{align*}
& \left(m, n \in \Gamma^{\infty} \wedge \operatorname{rank}(m), \operatorname{rank}(n)<\operatorname{rank}(k) \wedge m<^{*} n\right) \leftrightarrow \\
& \exists R \exists X\left[R \in \mathrm{LO}_{0} \wedge X^{[0]}=\emptyset \wedge \forall i \in F(R)[i>0 \rightarrow\right. \\
& \left.\left(X^{[i]}=\bigcup_{j R i} \Gamma\left(X^{[j]}\right) \wedge k \notin \bigcup_{j R i} X^{[j]}\right)\right] \\
& \wedge\left[\exists i \in F(R)\left(n \notin X^{[i]} \wedge m \in X^{[i]}\right)\right. \\
& \left.\left.\quad \vee \forall i \in F(R)\left(\left(m \in X^{[i]} \leftrightarrow n \in X^{[i]}\right) \wedge m<n\right)\right]\right] \tag{2.1}
\end{align*}
$$

where LO_{0} is the collection of all the linear ordering over ω such that 0 is the least element, and $F(R)=\{n<\omega: \exists m<\omega(m R n \vee n R m)\}$ is the field of R.

2.2 Second Order Arithmetic

If (2.1) is true, then any initial segment of $<^{*}$ is a Σ_{1}^{1} well ordering. By Lemma 2.11, $|\Gamma| \leq \omega_{1}^{C K}$. Suppose $\Gamma^{\infty}=\omega$ and $|\Gamma|$ is a limit ordinal. Then $m<^{*} n$ if and only if there exists k such that $\operatorname{rank}(m), \operatorname{rank}(n)<\operatorname{rank}(k)$ and $m<^{*} n$. By (2.1), $<^{*}$ is hyperarithmetic and so $|\Gamma|<\omega_{1}^{C K}$.

It remains to prove our claim (2.1). The direction from left to right is obvious and we only check the direction from right to left by showing R is a well ordering. Suppose R and X satisfy the matrix of the right hand side. Then for every $i \in F(R)$, let $\alpha(i)=$ the least α such that $\Gamma^{\alpha+1} \nsubseteq \bigcup_{j R i} X^{[j]}\left(\alpha(i)\right.$ exists since $\left.k \in \Gamma^{\infty} \backslash \bigcup_{j R i} X^{[j]}\right)$. Now we will show that

$$
j R i \rightarrow \alpha(j)<\alpha(i)
$$

For all $j, \bigcup_{l R j} X^{[l]} \supseteq \bigcup_{\alpha<\alpha(j)} \Gamma^{\alpha+1}=\Gamma^{\alpha(j)}$. Therefore, for all $j R i, \bigcup_{j R i} X^{[j]} \supseteq$ $\Gamma^{\alpha(j)+1}$. Then $\alpha(j)<\alpha(i)$. Thus, R is a well ordering.

Recall in Chapter 1, we defined the Cantor-Bendixson derivative and rank as follows. Let $T \subseteq 2^{<\omega}$ be a tree and $[T]=\left\{x \in 2^{\omega}: \forall n(x \upharpoonright n \in T)\right\}$. The Cantor-Bendixson derivative of T, denoted as $\mathrm{CB}(T)$, is

$$
\mathrm{CB}(T)=\left\{\sigma \in 2^{<\omega}: \exists x, y \in[T](x \neq y \text { extend } \sigma)\right\}
$$

We may iteratively apply the Cantor-Bendixson derivative through the ordinals, i.e. let $T_{0}=T$ and for every $\alpha>0$, let $T_{\alpha}=\bigcap_{\beta<\alpha} \mathrm{CB}\left(T_{\beta}\right)$. The least ordinal α such that $T_{\alpha}=\bigcap_{\beta} T_{\beta}$ is the Cantor-Bendixson rank of T (denoted $|T|_{\mathrm{CB}}$).

Consider the Cantor-Bendixson derivative to be on the complement of a tree T. Then this operation is monotone and hyperarithmetic. Thus, by Proposition 2.2.4, $|T|_{\mathrm{CB}} \leq \omega_{1}^{C K}$. If $\bigcap_{\alpha} T_{\alpha}=\emptyset$, then $|T|_{\mathrm{CB}}<\omega_{1}^{C K}$.

2.2.3 Reverse mathematics

The axioms of second order arithmetic are the following.
(i) Basic axioms: P^{-}.
(ii) Induction axiom: $(0 \in X \wedge \forall n(n \in X \rightarrow n+1 \in X)) \rightarrow \forall n(n \in X)$.
(iii) Comprehension scheme: $\exists X \forall n(n \in X \leftrightarrow \varphi(n))$, where $\varphi(n)$ is an analytic formula (possibly with parameters).

Subsystems of second order arithmetic included $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}, \mathrm{ACA}_{0}, \mathrm{ATR}_{0}$ and $\Pi_{1}^{1}-\mathrm{CA}_{0}$ in a strictly increasing logical strength order. In this thesis, we focus on the last three principles. Each of $\mathrm{ACA}_{0}, \mathrm{ATR}_{0}$ and $\Pi_{1}^{1}-\mathrm{CA}_{0}$ includes basic axioms and induction axiom. ACA_{0} and $\Pi_{1}^{1}-\mathrm{CA}_{0}$ contain the comprehension schema restricted to arithmetic formulas and Π_{1}^{1} formulas respectively. ATR_{0} is ACA_{0} plus the following principle

$$
\forall R\left(\mathrm{WO}(R) \rightarrow \exists X H_{\theta}(R, X)\right),
$$

where θ is arithmetical and $H_{\theta}(R, X)$ is a formula which says that R is a linear order, and for all i in the field of $R, X^{[i]}=\left\{n: \theta\left(n, \bigcup_{j R i}\left(\{j\} \times X^{[j]}\right)\right)\right\}$.

Proposition 2.2.5 (Simpson, [44]). The following are equivalent over $A C A_{0}$.

1. Π_{1}^{1} comprehension.
2. For any sequence of trees $\left\{T_{k}\right\}_{k<\omega}, T_{k} \subseteq \omega^{<\omega}$, there exists a set X such that $\forall k\left(k \in X \leftrightarrow T_{k}\right.$ has a path $)$.

Recall the Cantor-Bedixson kernel we defined in Chapter 1 (see also Section 2.2.2).

Proposition 2.2.6 (Simpson, [44]). Over $A C A_{0}$,
(1) ATR R_{0} implies that for any tree $T \subseteq \omega^{\omega}$ either $\operatorname{Ker}_{\mathrm{CB}}(T)=\emptyset$ or T contains a nonempty perfect subtree.
(2) Π_{1}^{1} comprehension holds if and only if $\operatorname{Ker}_{\mathrm{CB}}(T)$ exists for every $T \subseteq \omega^{\omega}$.

2.3α-Recursion

We recall some basic definitions and results in α-recursion theory. A detailed introduction to the subject can be found in [2, 31, 32, 39].

2.3.1 Admissible ordinals

The language of α-recursion theory is the language of Zermelo-Fraenkel set theory (ZF). Formulas and Levy hierarchy of formulas are defined as usual. Given a formula
φ, we write $\mu x \varphi(x)$ to denote the least ordinal x such that $\varphi(x)$ holds, and $[x, y]$ ($[x, y$) respectively) to denote $\{z: x \leq z \leq y\}$ ($\{z: x \leq z<y\}$ respectively). An ordinal α is said to be Σ_{1} admissible if L_{α} satisfies Σ_{1} replacement.

Suppose α is a Σ_{1} admissible ordinal. A set is $\alpha-r$.e., if it is Σ_{1} definable over L_{α}. If the set is Δ_{1} definable over L_{α}, then it is α-recursive. A set is α-finite if it is in L_{α}. A set is regular if its intersection with any α-finite set is still α finite. For each nonempty α-finite set $C \subset \alpha$, define $\sup C=\mu y \forall x \in C(x<y)$, $\max ^{*} C=\mu y \forall x \in C(x \leq y), \min C=\mu x(x \in C)$. Given a non-empty α-finite set C, the least element min C always exists, however there may not be the maximal element $\max C$ in C. If $\max C$ exists in C, then $\max ^{*} C=\max C$; if there is no maximal element in C, then by their definitions $\max ^{*} C=\sup C$.

Suppose $\beta<\delta \leq \alpha . \beta$ is said to be δ-stable, if $L_{\beta} \prec_{1} L_{\delta}$. β is said to be an α-cardinal if there is no α-finite one-to-one correspondence between β and any $\gamma<\beta$. Every α-cardinal greater than ω is α-stable.

Each α-finite set has an α-cardinality. The α-cardinality of an α-finite set C is denoted by $|C|_{\alpha}$.

Recall that there exists a one-one, α-recursive (total) function f that maps α onto L_{α}. That is, α-finite sets can be effectively coded as ordinals. Thus, there is no harm in identifying α-finite sets with ordinals below α, and identifying subsets of L_{α} with subsets of α. From now on, by an α-r.e. set without specification, we always mean an α-r.e. subset of α. Also, f yields a recursive bijection from α^{2} to α. Fix such a bijection, and denote it by $\langle\cdot, \cdot\rangle$.

It is straightforward to verify that there is a Gödel numbering of α-r.e. sets, which we denote as $\left\{W_{e}\right\}_{e<\alpha}$. For an arbitrary numbering $\left\{A_{e}\right\}_{e<\alpha}$ and any stage $\eta<\alpha$, the set $A_{e, \eta}$ is defined to be the collection of elements which are less than η and are enumerated into A_{e} by stage η. In other words, suppose $x \in A_{e}$ if and only if $\exists y \varphi(e, x, y)$, where φ is Σ_{0}, then $A_{e, \eta}=\{x<\eta: \exists y<\eta \varphi(e, x, y)\}$.

2.3.2 Σ_{n} projectum and cofinality

Let $n \geq 1$. The Σ_{n} projectum of α, denoted by $\sigma n p(\alpha)$, is defined to be the least ordinal β such that there is a Σ_{n} (partial) function from β onto α.

Theorem 2.12 (Jensen, [21]). $\sigma n p(\alpha)$ is the least β such that some Σ_{n} (over L_{α})
subset of β is not α-finite. Thus, if $I \subset \alpha$ is an α-finite set such that $|I|_{\alpha}<\sigma n p(\alpha)$, then each Σ_{n} subset of I is α-finite.

The Σ_{n} cofinality of $\delta \leq \alpha$, denoted by $\sigma n c f(\delta)$, is defined to be

$$
\left.\mu \gamma \exists f\left[f: \gamma \xrightarrow{\text { one-one }} \delta,(\text { total on } \gamma), \text { is } \Sigma_{n} \text { over } L_{\alpha} \text { and } f \text { is cofinal (in } \delta\right)\right] .
$$

It is obvious that $\sigma n p(\alpha)$ and $\sigma n c f(\alpha)$ are α-cardinals.

2.3.3 Tameness

The notion of tameness was introduced by Lerman [30]. It has many applications, especially in constructions involving Σ_{2} functions.

Let $f: \beta \rightarrow \alpha$ for some $\beta \leq \alpha$. Then f is said to be tame Σ_{2} if it is total and there exists an α-recursive f^{\prime} such that

$$
\forall \gamma<\beta \exists \tau \forall x<\gamma \forall \eta>\tau\left(f^{\prime}(\eta, x)=f(x)\right) .
$$

Such an f^{\prime} is said to tamely generate f. The tameness of f refers to the way f^{\prime} approximates f on proper initial segments of $\operatorname{dom}(f)$. A Σ_{2} function need not be tame Σ_{2}.

The tame Σ_{2} projectum of α, denoted by $t \sigma 2 p(\alpha)$, is defined to be

$$
\mu \beta \exists f\left[f: \beta \xrightarrow[\text { onto }]{\text { one-one }} \alpha,(\text { total on } \beta) \text {, is tame } \Sigma_{2}\right] .
$$

A set is tame Σ_{2} if its characteristic function is tame Σ_{2}. Analogous to $\sigma 2 p(\alpha)$, we have

Lemma 2.13 (Simpson, [2, 31). $\operatorname{t\sigma } 2 p(\alpha)$ is the least β such that not every tame Σ_{2} subset of β is α-finite.

Lemma 2.14 ([31). For all $\delta \leq \alpha$, there exists a strictly increasing tame Σ_{2} cofinal function $f: \sigma 2 c f(\delta) \rightarrow \delta$. Every Σ_{2} function from $\vartheta \leq \sigma 2 c f(\alpha)$ to α is tame.

Corollary 2.15 ([2, 31, 39]). (1) $\omega \leq \sigma 2 c f(\alpha) \leq t \sigma 2 p(\alpha) \leq \sigma 1 p(\alpha) \leq \alpha$,
(2) $\sigma 2 c f(\sigma 1 p(\alpha))=\sigma 2 c f(t \sigma 2 p(\alpha))=\sigma 2 c f(\alpha)$.

Corollary 2.16 (Local Σ_{2} Replacement). Let $a<\sigma 2 c f(\alpha)$ and $R \subseteq \alpha \times \alpha$ be a Σ_{2} relation. Then

$$
\begin{equation*}
\forall x<a \exists y R(x, y) \rightarrow \exists z \forall x<a \exists y<z R(x, y) \tag{2.1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\forall x<a \exists y<\sigma 2 c f(\alpha) R(x, y) \rightarrow \exists z<\sigma 2 c f(\alpha) \forall x<a \exists y<z R(x, y) . \tag{2.2}
\end{equation*}
$$

Proof. (2.1) is immediate from the definition of $\sigma 2 c f(\alpha)$. By Lemma 2.14, it is straightforward to get (2.2) from (2.1). We omit the details here.

Chapter 3

Degree Structures Without Σ_{1} Induction

3.1 Proper D-r.e. Degree and Σ_{1} Induction

Cooper [12] proved the existence of a proper d-r.e. degree in the standard model ω, using a $\mathbf{0}^{\prime}$-priority construction. As we see in Section 3.1.1, his proof remains valid under the weaker assumption of Σ_{1} induction. The remain problem is therefore the converse: is Σ_{1} induction necessary for the existence of a proper d-r.e. degree? In Section 3.1.2, we give a negative answer to this question.

3.1.1 $I \Sigma_{1}$ implies the existence of a proper d-r.e. degree

Theorem 3.1 (Kontostathis [26]). Let $\mathcal{M} \vDash P^{-}+I \Sigma_{1}$. Then there exists a dr.e. set D such that $D \not \equiv_{T} W$ for any r.e. set W.

Proof. Suppose $\mathcal{M} \models P^{-}+I \Sigma_{1}$. Let $\left\{W_{e}\right\}_{e \in \mathcal{M}},\left\{\Phi_{e}\right\}_{e \in \mathcal{M}}$, and functions $\langle\cdot, \ldots, \cdot\rangle$ be as above. The objective in the construction is to meet, for all $e, i, j \in \mathcal{M}$, the requirement

$$
R_{\langle e, i, j\rangle}: D \neq \Phi_{i}^{W_{e}} \text { or } W_{e} \neq \Phi_{j}^{D} .
$$

In \mathcal{M}, we can perform Cooper's construction by Σ_{1} induction. Moreover, by Σ_{1} induction again, each requirement $R_{\langle e, i, j\rangle}$ is injured at most $3^{\langle e, i, j\rangle}-1$ times. To
show $R_{\langle e, i, j\rangle}$ is satisfied, we consider

$$
\begin{aligned}
A_{\langle e, i, j\rangle}=\left\{\left\langle e^{\prime}, i^{\prime}, j^{\prime}, k\right\rangle:\left\langle e^{\prime}, i^{\prime}, j^{\prime}\right\rangle<\langle e, i, j\rangle \wedge\right. & R_{\left\langle e^{\prime}, i^{\prime}, j^{\prime}\right\rangle} \\
& \text { receives attention at least } k \text { times }\}
\end{aligned}
$$

is bounded and Σ_{1}, therefore is \mathcal{M}-finite by Lemma 2.2. Thus the range of the recursive function $f: A_{\langle e, i, j\rangle} \rightarrow \mathcal{M}$ defined by

$$
f\left(\left\langle e^{\prime}, i^{\prime}, j^{\prime}, k\right\rangle\right)=\mu s\left(R_{\left\langle e^{\prime}, i^{\prime}, j^{\prime}\right\rangle} \text { receives attention at least } k \text { times by stage } s\right)
$$

is bounded. Suppose $\operatorname{ran}(f) \subseteq[0, s)$. Then after stage $s, R_{\langle e, i, j\rangle}$ is never be injured and receives attention at most twice and $R_{\langle e, i, j\rangle}$ is satisfied eventually.

Remark. Let $D=A \backslash B$, where A and B are r.e. such that $B \subseteq A . I \Sigma_{1}$ implies that A and B are regular. Then by $I \Sigma_{1}$,

$$
\begin{align*}
& X \subseteq D \leftrightarrow X \subseteq A \wedge X \subseteq \bar{B} \tag{3.1}\\
& X \subseteq \bar{D} \leftrightarrow \exists X_{1} \subseteq \bar{A} \exists X_{2} \subseteq B\left(X=X_{1} \cup X_{2}\right), \tag{3.2}
\end{align*}
$$

for every \mathcal{M}-finite set X. Hence, $P^{-}+I \Sigma_{1}$ is sufficient to show that every d-r.e. set is Turing reducible to \emptyset^{\prime} and that there is a proper d-r.e. degree below 0^{\prime} by Theorem 3.1.

Suppose \mathcal{M} is a $B \Sigma_{1}$ model. Then (3.1) remains valid but (3.2) fails: if $X \subseteq \bar{D}$ and A is not regular, then $X_{2}=X \cap A$ (a subset of B) may not be \mathcal{M}-finite. For this reason, D may not be reducible to \emptyset^{\prime}. The observation here will be important for our construction of a proper d-r.e. degree (not below $\mathbf{0}^{\prime}$) in a $B \Sigma_{1}$ model.

3.1.2 $B \Sigma_{1}$ implies the existence of a proper d-r.e. degree

Theorem 3.2. If $\mathcal{M} \vDash P^{-}+B \Sigma_{1}+\operatorname{Exp}$, then there is a proper d-r.e. degree in \mathcal{M}.

By Theorem 3.1, we only need to show the existence of a proper d-r.e. degree in any $B \Sigma_{1}$ model \mathcal{M}. Suppose $I \subseteq \mathcal{M}$ is a Σ_{1} cut, a is an upper bound of all numbers in I, and $f: I \rightarrow \mathcal{M}$ is a Δ_{1} strictly increasing cofinal function.

The difficulty of applying the $\mathbf{0}^{\prime}$-priority method in a $B \Sigma_{1}$ model is as follows. Fix a requirement R_{e} and suppose each requirement $R_{e^{\prime}}, e^{\prime}<e$ is injured only \mathcal{M} finitely many times. Then the set $A_{e}=\left\{\left\langle e^{\prime}, n\right\rangle: e^{\prime}<e \wedge R_{e^{\prime}}\right.$ requires attention at

3.1 Proper D-r.e. Degree and Σ_{1} Induction

least n times $\}$ is r.e. Without $I \Sigma_{1}$, the enumeration of A_{e} may not terminate at any stage s and there may not be any opportunity to satisfy R_{e}.

Proof of Theorem 3.2. We will construct a d-r.e. set D such that $D \not \mathbb{Z}_{T} \emptyset^{\prime}$ in stages along the cut I, without the use of a priority argument. (At any stage $i \in I$, we compute $f(i)$ many steps.) For every $e \in \mathcal{M}$, the requirement is

$$
Q_{e}: D \neq \Phi_{e}^{\varpi^{\prime}} .
$$

The strategy of meeting a requirement Q_{e} is to attach a witness $X_{e}=[e a,(e+1) a)$ to Q_{e} and to look for a stage $i>0$ such that

$$
\Phi_{e}^{\emptyset^{\prime}}[f(i-1)] \upharpoonright X_{e}=\emptyset
$$

If no such stage exists, Q_{e} is automatically satisfied with witness X_{e}. If i exists, then we enumerate $e a+i$ into D at stage i. Now consider whether there is a stage $j>i$ such that

$$
\Phi_{e}^{\mathfrak{Q}^{\prime}}[f(j-1)] \upharpoonright X_{e}=\{e a+i\}
$$

If there is no such stage j, then Q_{e} is satisfied, as $\Phi_{e}^{\mathbb{Q}^{\prime}} \upharpoonright X_{e} \neq\{e a+i\}=D \upharpoonright X_{e}$. If j exists, then we extract $e a+i$ from D at stage j, look for a stage $k>j$ such that

$$
\Phi_{e}^{\emptyset^{\prime}}[f(k-1)] \upharpoonright X_{e}=\emptyset,
$$

and repeat the strategy over again.
Notice that different requirements here do not conflict with one another and this strategy allows us to accommodate all requirements simultaneously.

According to the strategy, the function $\langle i, e\rangle \mapsto\left\langle f(i), D_{f(i)} \upharpoonright X_{e}\right\rangle$ is recursive, where $e \in \mathcal{M}$ and $i \in I$. Thus by $B \Sigma_{1}$ which is equivalent to $I \Delta_{1}$ according to Theorem 2.1, we can easily prove the following results:
(i) For every $x \in \mathcal{M}, x$ is enumerated into D at most once and is extracted from D at most once,
(ii) For every $e \in \mathcal{M}$ and $i \in I$, there is at most one element in $D_{f(i)} \upharpoonright X_{e}$.

Therefore, D is d-r.e. and $D \upharpoonright X_{e}$ contains at most one element.
For the sake of a contradiction, suppose Q_{e} is not satisfied.

Case 1. $D \upharpoonright X_{e}=\Phi_{e}^{\emptyset^{\prime}} \upharpoonright X_{e}=\emptyset$. Suppose $i \in I$ is a stage such that there is a computation $\left\langle X_{e}, 0, P, N\right\rangle \in \Phi_{e}^{0^{\prime}}[f(i-1)]$, where P has been enumerated as a subset of \emptyset^{\prime} by stage $f(i-1)$ and $N \subseteq \overline{\emptyset^{\prime}}$. Let $j \geq i$ be the first stage by which the element in $D_{f(i)} \upharpoonright X_{e}$, if any, is extracted from D (such a stage exists for $D \upharpoonright X_{e}=\emptyset$). Then at stage $j+1$, the element $e a+j+1$ is enumerated into D and will never be extracted, contradicting the assumption that $D \upharpoonright X_{e}=\emptyset$.

Case 2. $D \upharpoonright X_{e}=\Phi_{e}^{0^{\prime}} \upharpoonright X_{e}=\{e a+i\}$. Then $D \upharpoonright X_{e}=D_{f(i)} \upharpoonright X_{e}=\Phi_{e}^{0^{\prime \prime}}[f(j)] \upharpoonright$ X_{e} for some $j>i$. Thus $e a+i$ is extracted from D at stage j. Again, that is a contradiction.

The cut I plays a significant role in the proof of Theorem 3.2, It exploits the recursive cofinal function f and compresses time and space to achieve the diagonalization against $\Phi_{e}^{\mathbb{Q}^{\prime}}$ for every e. Notice that the set D constructed in the proof of Theorem 3.2 is unbounded. With the aid of I, we can actually further compress the space and construct a bounded d-r.e. set $D \not \leq_{T} \emptyset^{\prime}$.

3.1.3 Bounded sets

Let \mathcal{M}, I, a, f be as in Section 3.1.2. Suppose $D=A \backslash B$, where A and B are bounded r.e. sets and $B \subseteq A$. Let b be an upper bound of all elements in A. We may further assume that $A_{f(0)}=B_{f(0)}=\emptyset$ and for all $i \in I, B_{f(i+1)} \subseteq A_{f(i)}$ (this is to ensure that, along the time axis I, none appears in B before it is enumerated in A). Since the set

$$
\begin{equation*}
H=\left\{(x, i): x<b, i \in I, x \in\left(A_{f(i)} \backslash A_{f(i-1)}\right) \cup\left(B_{f(i)} \backslash B_{f(i-1)}\right)\right\}, \tag{3.3}
\end{equation*}
$$

which records the stages of enumeration, is Δ_{1} on $[0, b) \times I, H$ is coded by Lemma 2.4. Suppose $\hat{H} \subseteq[0, b) \times[0, a)$ is a code of H satisfying for every $x<b$, there are exactly two i 's such that $(x, i) \in \hat{H}$. Define $i_{x}=\min \{i<a:(x, i) \in \hat{H}\}$ and $j_{x}=\max \{i<a:(x, i) \in \hat{H}\}$. Then for every $x<b$,

$$
j_{x} \in I \rightarrow x \in \bar{D}, \quad\left(i_{x} \in I \wedge j_{x} \in \bar{I}\right) \rightarrow x \in D, \quad i_{x} \in \bar{I} \rightarrow x \in \bar{D}
$$

Fix $e \in \mathcal{M}$. To ensure $D \neq \Phi_{e}^{\emptyset^{\prime}}$, we need to implement a diagonalization strategy as in Theorem 3.2. Given any r.e. set R, we say x that escapes from computation Φ_{e}^{R} at stage s, if $x \in B$ and for every computation of the form $\langle\{x\}, 0, P, N\rangle$ in

3.1 Proper D-r.e. Degree and Σ_{1} Induction

$\Phi_{e}^{R}[s], N \cap R \neq \emptyset$. Note that if $X \subseteq \bar{D}$ is \mathcal{M}-finite such that for every stage s, there is an $x \in X$ such that x escapes from computation Φ_{e}^{R} at stage s, then $\Phi_{e}^{R} \upharpoonright X \neq D \upharpoonright X=\emptyset$ by the local downward closure property of Φ_{e}^{R}. This idea leads to the following Lemma.

Lemma 3.3. If R is r.e. and $\Phi_{e}^{R}=D$, then for some stage s, there is no $x<b$ with $f\left(i_{x}\right) \geq s$ such that x escapes from computation Φ_{e}^{R} at stage s.

Proof. We prove this by contradiction. Suppose $\Phi_{e}^{R}=D$ and for every $i \in I$, there is an $x<b$ with $i_{x} \geq i$ such that x escapes from computation Φ_{e}^{R} at stage $f(i)$. Then the function $\alpha: I \rightarrow I^{2}$ defined by $i \mapsto\left(i_{x}, j_{x}\right)$ where $x<b$ is the first enumerated number satisfying $i_{x} \geq i, j_{x} \in I$ and x escapes from computation Φ_{e}^{R} at stage $f(i)$. The function α is total on I by assumption.

Since α is recursive, α is coded on I^{3} by a function $\hat{\alpha}:[0, a) \rightarrow[0, a)^{2}$. We denote the first coordinate of $\hat{\alpha}(i)$ by $\hat{\alpha}_{1}(i)$ and the second by $\hat{\alpha}_{2}(i)$. We may further assume that for every $i<a, \hat{\alpha}_{2}(i)>\hat{\alpha}_{1}(i) \geq i$.

Now let $X=\left\{x<b:\left(i_{x}, j_{x}\right) \in \operatorname{ran}(\hat{\alpha})\right\}$. Then for every $x \in X$,
Case 1. There is an $i \in I$ such that $\hat{\alpha}(i)=\left(i_{x}, j_{x}\right)$. Then $\alpha(i)=\left(i_{x}, j_{x}\right)$. Thus, $i_{x}, j_{x} \in I$.

Case 2. There is an $i \in \bar{I}$ such that $\hat{\alpha}(i)=\left(i_{x}, j_{x}\right)$. Then $i_{x}, j_{x} \in \bar{I}$ since $i_{x} \geq i$.
Therefore, $X \subseteq \bar{D}$. Moreover, by the definition of α, for every stage $f(i)$, there is an $x \in X$ such that x escapes from computation Φ_{e}^{R} at stage $f(i)$, and so $\Phi_{e}^{R} \upharpoonright X \neq \emptyset$, contradicting the assumption that $\Phi_{e}^{R}=D$.

Corollary 3.4. If $\Phi_{e}^{0^{\prime}}=D$, then for some stage s, there is no $x<b$ such that x escapes from computation $\Phi_{e}^{\emptyset^{\prime \prime}}$ at stage s and $f\left(i_{x}\right) \geq s$.

The above definition can be generalized to computations $\left\{\Psi_{e}\right\}_{e \in \mathcal{M}}$. We say an element x escapes from computation Ψ_{e}^{I} at stage s, if $x \in B$ and $n \in I$ for all $\langle\{x\}, 0, n\rangle$ in $\Psi_{e}^{I}[s]$.

Corollary 3.5. If $\Psi_{e}^{I}=D$, then for some $i \in I$, there is no $x<b$ such that x escapes from computation Ψ_{e}^{I} at stage $f(i)$ and $i_{x} \geq i$.

Lemma 3.6. $D \leq_{T} \emptyset^{\prime}$ if and only if $D \leq_{T} I$.

Proof. We only need to show the " only if" part. Since every \mathcal{M}-finite set X,

$$
\begin{aligned}
& X \subseteq D \leftrightarrow(X \subseteq[0, b) \wedge X \subseteq D) \\
& X \subseteq \bar{D} \leftrightarrow(X \cap[0, b) \subseteq \bar{D})
\end{aligned}
$$

we only need to consider subsets of $[0, b)$ in the computation of D.
Suppose $D=\Phi_{e}^{\emptyset^{\prime}}$. Define G to be a set that codes the approximation of $\Phi_{e}^{\emptyset^{\prime}}$ as follows:

$$
\begin{aligned}
G=\{(X, i, j, z): X \subseteq[0, b) \wedge & i<j \in I \wedge(z=0 \vee z=1) \wedge \\
& \left.\exists P \exists N\left(\langle X, z, P, N\rangle \in \Phi_{e}^{\mathfrak{Q}^{\prime}}[f(i)] \wedge N \subseteq \overline{\emptyset_{f(j)}^{\prime}}\right)\right\}
\end{aligned}
$$

That is, $(X, i, j, z) \in G$ if and only if the computation $\Phi_{e}^{\ddot{y}^{\prime}}(X)[f(i)]=z$ is still valid at stage $f(j)$. Since G is Δ_{1} on $\left[0,2^{b}\right) \times I \times I \times[0,2)$, by Lemma $2.4, G$ is coded by $\hat{G} \subseteq\left[0,2^{b}\right) \times[0, a) \times[0, a) \times[0,2)$.

Suppose $X \subseteq[0, b)$. If $X \subseteq D$, then there is a quadruple $\langle X, 1, P, N\rangle \in \Phi_{e}^{\mathscr{\theta}^{\prime}}[f(i)]$ such that $N \subseteq \overline{\emptyset^{\prime}}$. Thus, for every $j>i, j \in I$, we have $N \subseteq \overline{\emptyset_{f(j)}^{\prime}}$ and $(X, i, j, 1) \in \hat{G}$. Since I is not \mathcal{M}-finite,

$$
\begin{equation*}
u=\sup \left\{j<a: \forall j^{\prime}\left(i<j^{\prime}<j \rightarrow\left(X, i, j^{\prime}, 1\right) \in \hat{G}\right)\right\} \in \bar{I} \tag{3.4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\exists i \in I \exists u \in \bar{I} \forall j(i<j<u \rightarrow(X, i, j, 1) \in \hat{G}) . \tag{3.5}
\end{equation*}
$$

Conversely, if (3.5) holds, then there is some $\langle X, 1, P, N\rangle \in \Phi_{e}^{b^{\prime}}[f(i)]$ such that $N \subseteq \overline{\emptyset^{\prime}}$. Thus, for every \mathcal{M}-finite set $X \subseteq[0, b)$,

$$
X \subseteq D \leftrightarrow \exists i \in I \exists u \in \bar{I} \forall j(i<j<u \rightarrow(X, i, j, 1) \in \hat{G})
$$

and similarly,

$$
X \subseteq \bar{D} \leftrightarrow \exists i \in I \exists u \in \bar{I} \forall j(i<j<u \rightarrow(X, i, j, 0) \in \hat{G})
$$

To construct a bounded d-r.e. set $D \not \mathbb{Z}_{T} \emptyset^{\prime}$, by Lemma 3.6, it is enough to ensure that $D \not \mathbb{Z}_{T} I$: For each i and e, if there is an $x \in D$ with $i_{x} \geq i$ such that x escapes from Ψ_{e}^{I} at stage $f(i)$, then $D \neq \Psi_{e}^{I}$ by Corollary 3.5.

3.1 Proper D-r.e. Degree and Σ_{1} Induction

Lemma 3.7. For every $e, s \in \mathcal{M}$, if $\Psi_{e}^{I}=D$, then the set

$$
J_{e, s}=\left\{j \in I: \exists x<b \exists i \in I \exists n \in \bar{I}\left(\langle\{x\}, 0, n\rangle \in \Psi_{e}^{I}[s] \wedge f(i) \leq s \wedge i=i_{x} \wedge j=j_{x}\right)\right\}
$$

is bounded in I. Moreover, there is a recursive function $\beta: \mathcal{M}^{2} \rightarrow \mathcal{M}$ such that whenever $\Psi_{e}^{I}=D, \beta(e, s) \in I$ is an upper bound of all elements in $J_{e, s}$.

Proof. Fix s and e. Let $i^{*} \in I$ be the largest i such that $f\left(i^{*}\right) \leq s$. Then

$$
\begin{align*}
J_{e, s} & =\left\{j \in I: \exists x<b \exists i \leq i^{*} \exists n \in \bar{I}\left(\langle\{x\}, 0, n\rangle \in \Psi_{e}^{I}[s] \wedge i=i_{x} \wedge j=j_{x}\right)\right\} \\
& \subseteq\left\{j<a: \exists x<b \exists i \leq i^{*} \exists n>j\left(\langle\{x\}, 0, n\rangle \in \Psi_{e}^{I}[s] \wedge i=i_{x} \wedge j=j_{x}\right)\right\} \tag{3.6}
\end{align*}
$$

We denote the set in the second line of (3.6) by $\tilde{J}_{e, s}$, which is \mathcal{M}-finite. Let $\beta(e, s)=$ $\sup \tilde{J}_{e, s}$. We only need to show that if $\Psi_{e}^{I}=D$, then $\tilde{J}_{e, s} \subset I$.

Suppose $\Psi_{e}^{I}=D$ and $\langle\{x\}, 0, n\rangle \in \Psi_{e}^{I}$, where $x<b, i_{x} \leq i^{*}$ and $j_{x}<n$. Since $i_{x} \in I, x \in A$. If $n \in \bar{I}$, then $x \in \bar{D}$, and so $x \in B$ with $j_{x} \in I$. If $n \in I$, then $j_{x} \in I$ since $j_{x}<n$. In any case $j_{x} \in I$, so $\tilde{J}_{e, s} \subset I$.

Proof of Theorem 3.2 (bounded set D). I, a, f are defined as above. Let

$$
\begin{array}{r}
\hat{H}=\left\{(x, i) \in\left[0,2^{a}\right) \times[0, a): \text { If the } \mathcal{M} \text {-finite set } X\right. \text { represented by the binary } \\
\text { expansion of } x \text { has at least two elements, then } i=\min X \text { or } \\
i=\max X, \text { and if } X \text { has less than two elements, then } i=0 \text { or } i=1\} .
\end{array}
$$

That is, for every pair $(i, j) \in[0, a) \times[0, a)$ with $i<j$, we have some $x<2^{a}$ such that $(i, j)=\left(i_{x}, j_{x}\right)$, where

$$
i_{x}=\min \{i:(x, i) \in \hat{H}\}, \quad j_{x}=\max \{i:(x, i) \in \hat{H}\}
$$

Then \hat{H} codes the enumeration of a d-r.e. set D :

$$
D=\left\{x<2^{a}: i_{x} \in I, j_{x} \in \bar{I}\right\} .
$$

Let β be defined as in Lemma 3.7.
Now we claim that $D \not \mathbb{Z}_{T} I$, so $D \not \mathbb{Z}_{T} \emptyset^{\prime}$ by Lemma 3.6. For the sake of contradiction, suppose $D=\Psi_{e}^{I}$. For each $i \in I$, let $x(i)$ be the least such that $\left(i_{x(i)}, j_{x(i)}\right)=(i, \beta(e, f(i))+1)$. By Lemma 3.7, $x(i)$ escapes from Ψ_{e}^{I} at stage $f(i)$. Then by Lemma 3.5, $D \neq \Psi_{e}^{I}$. That is a contradiction.

3.1.4 $B \Sigma_{1}+\neg I \Sigma_{1}$ implies d-r.e. degrees below 0^{\prime} are r.e.

In Sections 3.1.2 and 3.1.3, it was shown that in a $B \Sigma_{1}$ model, there is a proper d-r.e. degree not below 0^{\prime}. In this section, we prove that in any $B \Sigma_{1}$ model, it is impossible to find a proper d-r.e. degree below $\mathbf{0}^{\prime}$.

Let \mathcal{M}, f, I, a be as in Section 3.1 .2 and 3.1.3. Let $D=A \backslash B$, where A and B are r.e. (may not be bounded) and $B \subseteq A$. As before, we may assume that $A_{f(0)}=B_{f(0)}=\emptyset$ and for all $i \in I, B_{f(i+1)} \subseteq A_{f(i)}$. If D is recursive, then clearly $\operatorname{deg}(D)$ is r.e. For the rest of this section, we always assume that $D=\Phi_{e}^{\emptyset^{\prime}}$ is not recursive. The object is to construct an r.e. set $W \equiv_{T} D$.

3.1.5 Regular sets

We first consider the case when D is regular. The idea of considering regular and non-regular sets can be traced back to Chong and Mourad [5].

Lemma 3.8. If $D=\Phi_{e}^{\emptyset^{\prime}}$ is regular, then $D \leq_{T} I$.
Proof. Suppose D is regular. The method here is similar to that in Lemma 3.6. For each $k \in I$ and stage s, we say $\left(E_{0}, E_{1}\right)$ is a partition of $[0, f(k))$ at stage s, if
(i) $E_{0} \cup E_{1}=[0, f(k)), E_{0} \cap E_{1}=\emptyset$, and
(ii) There are \mathcal{M}-finite sets $P_{0}, P_{1}, N_{0}, N_{1}$ such that $\left\langle E_{0}, 0, P_{0}, N_{0}\right\rangle,\left\langle E_{1}, 1, P_{1}, N_{1}\right\rangle \in$ $\Phi_{e}^{\emptyset^{\prime}}[f(i)]$.

Note that at each stage $f(i)$, there is at most one partition of $[0, f(k))$. Let

$$
\begin{array}{r}
G=\left\{(i, j, k) \in I^{3}: i \leq j \wedge \text { There are partitions of }[0, f(k)) \text { at stage } f(i) \text { and } f(j)\right. \\
\wedge \text { The two partitions are equal }\} .
\end{array}
$$

By Lemma 2.4. G is coded on I^{3}. Suppose $E_{0, k}=\bar{D} \cap[0, f(k))$ and $E_{1, k}=D \cap$ $[0, f(k))$, then there is some $i \in I$ such that
$\exists P_{0}, P_{1} \subseteq \emptyset^{\prime} \exists N_{0}, N_{1} \subseteq \overline{\emptyset^{\prime}}\left(\left\langle E_{0, k}, 0, P_{0}, N_{0}\right\rangle \in \Phi_{e}^{\emptyset^{\prime}}[f(i)] \wedge\left\langle E_{1, k}, 1, P_{1}, N_{1}\right\rangle \in \Phi_{e}^{\emptyset^{\prime}}[f(i)]\right)$.
That is, at stage $f(i), \Phi_{e}$ correctly computes a partition of $[0, f(k))$. Then for any stage $s \geq f(i)$, the partition of $[0, f(k))$ at stage s must be $\left(E_{0, k}, E_{1, k}\right)$, so $(i, j, k) \in \hat{G}$

3.1 Proper D-r.e. Degree and Σ_{1} Induction

for all $j \geq i$. Thus for any $k \in I$,

$$
\left.\left.\begin{array}{rl}
E_{0, k}=\bar{D} \cap[0, f(k)) \wedge E_{1, k}=D \cap[0, f(k)) & \rightarrow \exists i \in I \exists i^{\prime} \in \bar{I} \forall j\left(\left(E_{0, k}, E_{1, k}\right)\right. \text { is a } \\
& \text { partition of }[0, f(k)) \text { at stage } f(i) \tag{3.7}
\end{array}\right)\left(i \leq j \leq i^{\prime} \rightarrow(i, j, k) \in \hat{G}\right)\right) . \quad \text { (3.7 }
$$

Now suppose the conclusion in (3.7) holds for $\left(E_{0}, E_{1}\right)$, and we prove the hypothesis in (3.7). Thus, the hypothesis and conclusion in (3.7) are actually equivalent and $D \leq_{T} I$.

For the sake of a contradiction, we assume that $\bar{D} \cap[0, f(k)) \neq E_{0}, D \cap[0, f(k)) \neq$ $E_{1}, i \in I,\left(E_{0}, E_{1}\right)$ is a partition of $[0, f(k))$ at stage $f(i), i^{\prime} \in \bar{I}$, and $\forall j(i \leq j \leq$ $\left.i^{\prime} \rightarrow(i, j, k) \in \hat{G}\right)$. Let $\tilde{j}>i$ such that $\tilde{j} \in I$ and Φ_{e} correctly computes a partition of $[0, f(k))$ at stage $f(\tilde{j})$. Then $(i, \tilde{j}, k) \notin \hat{G}$. That is a contradiction.

Lemma 3.9. If $D=\Phi_{e}^{\emptyset^{\prime}}$ is regular and non-recursive, then $D \geq_{T} I$.
Proof. Consider the following set:

$$
G_{0}=\left\{(i, j, k) \in I^{3}: i<j<k \wedge \exists x \in A_{f(i)}\left(x \in B_{f(k)} \backslash B_{f(j)}\right)\right\},
$$

i.e. $f(k)$ is a stage that we find $A_{f(i)} \backslash B_{f(j)}$ is not a subset of D. By Lemma 2.4, G_{0} can by coded on I^{3} by a set $\hat{G}_{0} \subseteq[0, a)^{3}$ such that for every $(i, j, k) \in \hat{G}_{0}$, $i<j<k$ and for each $i<j \in I$, there is some $k<a$ such that $(i, j, k) \in \hat{G}_{0}$. (If $(i, j, k) \in I^{2} \times[0, a)$ and $A_{f(i)} \backslash B_{f(j)} \subseteq D$, then $k \in \bar{I}$.)

Suppose the set $C_{0}=\left\{k<a: \exists i, j \in I\left(A_{f(i)} \backslash B_{f(j)} \subseteq D \wedge(i, j, k) \in \hat{G}_{0}\right)\right\} \subseteq \bar{I}$ is unbounded in \bar{I}, i.e. no $i^{\prime} \in \bar{I}$ is a lower bound of numbers in C_{0}, then

$$
i^{\prime} \in \bar{I} \leftrightarrow \exists k<i^{\prime}\left(k \in C_{0}\right)
$$

It follows that \bar{I} is r.e. in D. Hence $I \leq_{p} D$. By Lemma $2.7, I \leq_{T} D$.
Now suppose C_{0} is bounded in \bar{I}. Then there is an $i^{\prime} \in \bar{I}$ such that

$$
\forall i, j \in I\left(A_{f(i)} \backslash B_{f(j)} \subseteq D \leftrightarrow \exists k>i^{\prime}\left((i, j, k) \in \hat{G}_{0}\right)\right)
$$

Furthermore, since D is regular, for every $i \in I$ there is $j \in I$ such that $A_{f(i)} \backslash B_{f(j)} \subseteq$ D. Thus, $D=\left\{x: \exists i, j \in I \exists k>i^{\prime}\left((i, j, k) \in \hat{G}_{0} \wedge x \in A_{f(i)} \backslash B_{f(j)}\right)\right\}$ is r.e. In that case, by modifying the enumeration of D, we may assume that $B=\emptyset$. Let

$$
G_{1}=\left\{(i, j, k) \in I^{3}: i<j \wedge \exists x<f(k)\left(x \in A_{f(j)} \backslash A_{f(i)}\right)\right\},
$$

i.e. $f(j)$ is a stage that we find $A_{f(i)} \upharpoonright[0, f(k))$ is not $D \upharpoonright[0, f(k))$. Again G_{1} is coded by $\hat{G}_{1} \subseteq[0, a)$ in I^{3}. We also assume that for all $i<k \in I$, there is some j such that $(i, j, k) \in \hat{G}_{1}$. (If $A_{f(i)} \upharpoonright[0, f(k))=D \upharpoonright[0, f(k))$ and $(i, j, k) \in \hat{G}_{1}$, then $j \in \bar{I}$.)

Suppose $C_{1}=\left\{j: \exists i, k \in I\left(A_{f(i)} \upharpoonright[0, f(k))=D \upharpoonright[0, f(k)) \wedge(i, j, k) \in \hat{G}_{1}\right)\right\}$ is unbounded in \bar{I}. Then for all $i^{\prime \prime}$,

$$
i^{\prime \prime} \in \bar{I} \leftrightarrow \exists i \in I \exists k \in I \exists j<i^{\prime \prime}\left(A_{f(i)} \upharpoonright\left[0, f(k)=D \upharpoonright[0, f(k)) \wedge(i, j, k) \in \hat{G}_{1}\right) .\right.
$$

Hence, $I \leq_{T} D$.
If C_{1} is bounded in \bar{I}, then for some $i^{\prime \prime} \in \bar{I}$,

$$
\begin{equation*}
\forall i, k \in I\left(A_{f(i)} \upharpoonright[0, f(k))=D \upharpoonright[0, f(k)) \leftrightarrow \exists k>i^{\prime \prime}(i, j, k) \in \hat{G}_{1}\right) . \tag{3.8}
\end{equation*}
$$

Again, since D is regular, for all $k \in I$, there is some $i \in I$ such that $A_{f(i)} \upharpoonright$ $[0, f(k))=D \upharpoonright[0, f(k))$. Then (3.8) implies that D is recursive. That is a contradiction.

Corollary 3.10. If $D=\Phi_{e}^{0^{\prime}}$ is regular and non-recursive, then $D \equiv_{T} I$.

Non-regular sets

Similar to Lemma 3.9, we have
Lemma 3.11. If D is non-regular, then $D \geq_{T} I$.
Proof. Suppose $d \in \mathcal{M}$ and $D \upharpoonright[0, d)$ is not \mathcal{M}-finite. As in Section 3.1.3, let

$$
H=\left\{(x, i): x<d \wedge i \in I \wedge\left(x \in A_{f(i)} \backslash A_{f(i-1)} \vee x \in B_{f(i)} \backslash B_{f(i-1)}\right)\right\}
$$

and let $\hat{H} \subseteq[0, d) \times[0, a)$ be a code of H in $[0, d) \times I$ such that for every $x<d$, there are exactly two i 's with $(x, i) \in \hat{H}$. Define $i_{x}=\min \{i<a:(x, i) \in \hat{H}\}$ and $j_{x}=\max \{i<a:(x, i) \in \hat{H}\}$.

For every $x<d$, if $x \in D$, then $i_{x} \in I$ and $j_{x} \in \bar{I}$. Suppose such j_{x} 's are unbounded in \bar{I}, i.e.

$$
\begin{equation*}
\forall i^{\prime} \in \bar{I} \exists x<d\left(x \in D \wedge j_{x}<i^{\prime}\right) \tag{3.9}
\end{equation*}
$$

Then for any i^{\prime},

$$
i^{\prime} \in \bar{I} \leftrightarrow \exists x<d\left(x \in D \wedge j_{x}<i^{\prime}\right) .
$$

Thus, $I \leq_{T} D$.
If (3.9) fails, then let $i^{\prime} \in \bar{I}$ be such that $\forall x<d\left(x \in D \rightarrow j_{x}>i^{\prime}\right)$. Then we consider the x 's in \bar{D} such that $j_{x}>i^{\prime}$. For such an $x, i_{x} \in \bar{I}$. If

$$
\begin{equation*}
\forall i^{\prime \prime} \in \bar{I} \exists x<d\left(x \in \bar{D} \wedge j_{x}>i^{\prime} \wedge i_{x}<i^{\prime \prime}\right) \tag{3.10}
\end{equation*}
$$

Then for every $i^{\prime \prime}$,

$$
i^{\prime \prime} \in \bar{I} \leftrightarrow \exists x<d\left(x \in \bar{D} \wedge j_{x}>i^{\prime} \wedge i_{x}<i^{\prime \prime}\right) .
$$

Thus, $I \leq_{T} D$.
Suppose 3.10) fails again, and let $i^{\prime \prime} \in \bar{I}$ be such that $\forall x<d\left(x \in \bar{D} \wedge j_{x}>\right.$ $\left.i^{\prime} \rightarrow i_{x}>i^{\prime \prime}\right)$. Then for all $x<d$,
(i) If $j_{x}>i^{\prime}$, then $x \in D$ if and only if $i_{x}<i^{\prime \prime}$.
(ii) If $j_{x} \leq i^{\prime}$, then $x \in \bar{D}$.

Thus, $D \upharpoonright[0, d)$ is Δ_{1}. According to Lemma 2.4, $D \upharpoonright[0, d)$ is \mathcal{M}-finite, contradicting our assumption.

Given $k \in I$, we say $r_{k} \in I$ is a separating point of $[0, f(k))$ if

$$
\forall x \in\left([0, f(k)) \backslash A_{f\left(r_{k}\right)}\right)\left(x \in B \rightarrow \exists P \subseteq \emptyset^{\prime} \exists N \subseteq \overline{\emptyset^{\prime}}\left(\langle\{x\}, 0, P, N\rangle \in \Phi_{e}^{\emptyset^{\prime}}\left[f\left(r_{k}\right)\right]\right)\right) .
$$

By Corollary 3.4, a separating point of $[0, f(k))$ exists for every $k \in I$. Moreover, the predicate " r is not a separating point of $[0, f(k)$)", whose variables are r and k, is Σ_{1}, so it is reducible to I by Lemma 3.12 .

Lemma 3.12 (Chong and Yang [8). Every bounded r.e. set is reducible to I.
If $B=\emptyset$, then clearly D is of r.e. degree. For the general case, intuitively, we modify the enumeration of D to be more "effective": we enumerate x into D only if we see that x is enumerated into A at some stage s and all the computations of the form $\langle\{x\}, 0, P, N\rangle \in \Phi_{e}^{\emptyset^{\prime}}[s]$ are fake by $N \cap \emptyset^{\prime} \neq \emptyset$. That is, we define

$$
\begin{aligned}
& A^{*}=\left\{x: \exists s \exists t>s\left[x \in A_{s} \backslash B_{t} \wedge \forall P, N\left(\langle\{x\}, 0, P, N\rangle \in \Phi_{e}^{\emptyset^{\prime}}[s] \rightarrow N \cap \emptyset_{t}^{\prime} \neq \emptyset\right)\right]\right\} \\
& B^{*}=A^{*} \cap B .
\end{aligned}
$$

Then $D=A^{*} \backslash B^{*}$. We show that $D \equiv_{T} A^{*} \oplus B^{*} \oplus I$. By Lemma 3.11, $D \geq_{T} I$. Thus, we only need to show:

Lemma 3.13. If D is non-regular, then $D \oplus I \equiv_{T} A^{*} \oplus B^{*} \oplus I$.
Proof. Fix any $k \in I$. By Lemma 3.12, we can get a separating point r (may not be unique) of $[0, f(k))$ recursively in I. Then the interval $[0, f(k))$ is separated into two parts: $[0, f(k)) \backslash A_{f(r)}$ and $[0, f(k)) \cap A_{f(r)}$. By definition of separating point,

$$
\forall x \in[0, f(k)) \backslash A_{f(r)}\left(x \in B \rightarrow \exists P \subseteq \emptyset^{\prime} \exists N \subseteq \overline{\emptyset^{\prime}}\left(\langle\{x\}, 0, P, N\rangle \in \Phi_{e}^{\emptyset^{\prime}}[f(r)]\right)\right) .
$$

Therefore,

$$
\forall x \in[0, f(k)) \backslash A_{f(r)}\left(x \in B \rightarrow x \notin A^{*}\right)
$$

i.e.
$D \upharpoonright\left([0, f(k)) \backslash A_{f(r)}\right)=A^{*} \upharpoonright\left([0, f(k)) \backslash A_{f(r)}\right), \quad B^{*} \upharpoonright\left([0, f(k)) \backslash A_{f(r)}\right)=\emptyset$.
In addition, we claim that
$A^{*} \upharpoonright\left([0, f(k)) \cap A_{f(r)}\right)$ is recursive.
For every $x \in[0, f(k)) \cap A_{f(r)}$, since x is enumerated into A at some stage s, there exists a stage $t>s$ such that either

Case 1. x is enumerated into B at stage t, or
Case 2. All computations of the form $\langle\{x\}, 0, P, N\rangle$ in $\Phi_{e}^{\emptyset^{\prime}}[s]$ are fake, i.e. $N \cap \emptyset_{t}^{\prime} \neq$ \emptyset.

Thus, $x \in A^{*}$ if and only if Case 2 occurs first, which can be determined recursively. Therefore, to determine whether X is a subset of $D \upharpoonright\left([0, f(k)) \cap A_{f(r)}\right)$ or a subset of $\bar{D} \upharpoonright\left([0, f(k)) \cap A_{f(r)}\right)$, we only need to take $B^{*} \upharpoonright\left([0, f(k)) \cap A_{f(r)}\right)$ as an oracle, and vice versa. This property and (3.11) combine to produce $D \oplus I \equiv_{T}$ $A^{*} \oplus B^{*} \oplus I$.

Theorem 3.14. In a $B \Sigma_{1}$ model, every d-r.e. degree below 0^{\prime} is r.e.

We therefore have:

Corollary 3.15. Assume $P^{-}+B \Sigma_{1}+$ Exp. Then
(1) There is a proper d-r.e. degree;
(2) $I \Sigma_{1}$ is equivalent to the existence of a proper d-r.e. degree below $\mathbf{0}^{\prime}$.

3.2 Degrees Below 0^{\prime} in a Saturated Model

3.2 Degrees Below 0' in a Saturated Model

As shown in Section 3.1, any proper d-r.e. degree in a $B \Sigma_{1}$ model is not below 0^{\prime}. In this section, we expand our investigation with an analysis of the degrees below 0^{\prime} for $B \Sigma_{1}$ models. The main result is:

Theorem 3.16. $P^{-}+B \Sigma_{1}+\operatorname{Exp} \nvdash$ There is a non-r.e. degree below $\mathbf{0}^{\prime}$.
To show this theorem, we consider a $B \Sigma_{1}$ model \mathcal{M} with the following properties:
(i) $\omega \subset \mathcal{M}$ is a Σ_{1} cut of \mathcal{M}.
(ii) Every subset of ω is coded (on ω) in the model \mathcal{M}.

Such a model \mathcal{M} is called a saturated $B \Sigma_{1}$ (or saturated, for short) model. In [46], Slaman and Woodin showed that a saturated $B \Sigma_{1}$ model exists. Let I denote ω, $a \in \mathcal{M}$ be such that $I \subset[0, a)$, and $f: I \rightarrow \mathcal{M}$ be a strictly increasing cofinal Δ_{1} function with $f(0)=0$. We may further assume that $\langle\cdot, \cdot\rangle \upharpoonright I^{2}$ maps onto I.

The proof that every d-r.e. set $D=A \backslash B$ reducible to \emptyset^{\prime} is of r.e. degree in Section 3.1.4 could be simplified if \mathcal{M} is saturated: Suppose $D=\Phi_{e}^{Q^{\prime}}$ and
$G=\{\langle k, r\rangle: r$ is the least separating point of $[0, f(k+1))\}$.
Then G is coded by $\hat{G} \subseteq[0, a)$. For each $k<a$, let r_{k} be the least r such that $\langle k, r\rangle \in \hat{G}$ and $[0, f(k))$ can be recursively separated into two parts:

- $P_{0}=\left\{x: \exists k \in I\left(x \in[f(k), f(k+1)) \wedge x \notin A_{f\left(r_{k}\right)}\right)\right\}$ and
- $P_{1}=\left\{x: \exists k \in I\left(x \in[f(k), f(k+1)) \wedge x \in A_{f\left(r_{k}\right)}\right)\right\}$.

For any $x \in[f(k), f(k+1))$,

- If $x \in A_{f\left(r_{k}\right)}$, then $x \in D$ if and only if $x \notin B$.
- If $x \notin A_{f\left(r_{k}\right)}$, then by the definition of separating point, $x \in D$ if and only if all computations of the form $\langle\{x\}, 0, P, N\rangle$ in $\Phi_{e}^{\emptyset^{\prime}}\left[f\left(r_{k}\right)\right]$ are fake, (i.e. $N \cap \emptyset^{\prime} \neq \emptyset$) and $x \in A$.

Thus, $D \upharpoonright P_{0}$ is $\Sigma_{1}, D \upharpoonright P_{1}$ is Π_{1} and D is of r.e. degree. Clearly, the key to this proof is the separating points.

Now suppose $V=\Phi_{e}^{6^{\prime}}$, which may not be d-r.e. We generalize the notion of separating points as follows: Let $k \in I$ and

$$
H_{k}=\left\{(x, i): x \in[f(k), f(k+1)) \wedge i \in I \wedge \Phi_{e}^{Q^{\prime}}(x)[f(i)]=1\right\} .
$$

That is, H_{k} records the approximation of $\Phi_{e}^{\emptyset^{\prime}} \upharpoonright[f(k), f(k+1))$. Since H_{k} is recursive on $[f(k), f(k+1)) \times I$, it is coded by some $\hat{H}_{k} \subseteq[f(k), f(k+1)) \times[0, a)$. For each k, we fix a code \hat{H}_{k}. For any $i<a$ and $x \in[f(k), f(k+1))$, we define

$$
V_{i}(x)= \begin{cases}1 & \text { if }(x, i) \in \hat{H}_{k} \\ 0 & \text { otherwise }\end{cases}
$$

and so $V(x)=\lim _{i \in I} V_{i}(x)$.
Suppose $i \in I$. Then
(i) x is said to be i-honest, if for any $j \in I$ greater than $i, V_{j}(x)=V_{i}(x)$; otherwise, x is an i-liar.
(ii) x is found to be an i-liar by stage j, if x is an i-liar, $j \in I, j>i$ and

$$
\exists k \leq j\left(k>i \wedge V_{k}(x) \neq V_{i}(x)\right) ;
$$

(iii) x is called an i-white liar, if x is an i-liar and $V(x)=V_{i}(x)$;
(iv) x is an i-malicious liar, if x is an i-liar and $V(x) \neq V_{i}(x)$.

We observe that white liars correspond to escaping elements in Section 3.1.3. Similar to Lemma 3.3, we have

Lemma 3.17. For any $i, k \in I$, there is a $j>i$ such that all i-white liars in $[f(k), f(k+1))$ are found by stage j.

Proof. For the sake of a contradiction, we suppose $i, k \in I$ and for each $j>i$ in I, there is an i-white liar not founded by stage j, and without loss of generality, we assume all such i-white liars are not in V. Then consider the function $\delta: I \backslash[0, i] \rightarrow I$, $j \mapsto\left\langle n_{j}, z_{0}^{j}, z_{1}^{j}, \ldots, z_{n_{j}-1}^{j}\right\rangle$, where

3.2 Degrees Below 0^{\prime} in a Saturated Model

(i) z^{j} is the first i-white liar not in V that is found at a least stage $j^{\prime}>j$ but is not found by stage j, and
(ii) $z_{0}^{j}<z_{1}^{j}<\ldots<z_{n_{j}-1}^{j}$ is a list of all stages $l \in I$ such that $V_{l}\left(z^{j}\right) \neq V_{l-1}\left(z^{j}\right)$.

According to the saturation of \mathcal{M}, δ is coded on I^{2} by an \mathcal{M}-finite partial function $\hat{\delta}:[i+1, a) \rightarrow[0, a)$ with the following properties:
(i) $\operatorname{dom}(\hat{\delta}) \supset \operatorname{dom}(\delta)$, and
(ii) For each $j \in \operatorname{dom}(\hat{\delta}), \hat{\delta}(j)=\left\langle n_{j}, z_{0}^{j}, z_{1}^{j}, \ldots, z_{n_{j}-1}^{j}\right\rangle$ for some $n_{j}, z_{0}^{j}, \ldots, z_{n_{j}-1}^{j}$ such that
(a) $z_{0}^{j}<z_{1}^{j}<\ldots,<z_{n_{j}-1}^{j}<a-1$, and
(b) $\forall m\left(z_{m}^{j}>i \leftrightarrow z_{m}^{j}>j\right)$.

Then for any $j \in \operatorname{dom}(\hat{\delta})$, we may recursively find an $x \in[f(k), f(k+1))$ with $V_{i}(x)=0$ such that $z_{0}^{j}, \ldots, z_{n_{j}-1}^{j}$ are the first n_{j} many l 's satisfying $V_{l}(x) \neq V_{l-1}(x)$ and the $\left(n_{j}+1\right)^{\text {th }} l$ is the largest possible according to \hat{H}_{k}. This x is said to be corresponding to j. Notice that if x corresponds to a $j \in I$, then x is also an i-white liar not found by j, and if x corresponds to a $j \in \bar{I}$, then x is i-honest.

Now let

$$
X=\{x \in[f(k), f(k+1)): \exists j \in \operatorname{dom}(\hat{\delta})(x \text { is corresponding to } j)\}
$$

Since each $x \in X$ is either i-honest or an i-white liar, $X \subseteq \bar{V}$. But then there is some $j>i$ such that $\Phi_{e}^{0^{\prime}}[f(j)] \upharpoonright X=\emptyset$. According to the local downward closure property of $\Phi_{e}^{\emptyset^{\prime}}$, all i-liars in X are found by stage j. That is a contradiction.

Suppose all i-white liars in $[f(k), f(k+1))$ are found by stage $j, x \in[f(k), f(k+$ 1)) and the approximation $V_{l}(x)$ does not "change its mind" between i and j, i.e. $\forall l \in$ $[i, j]\left(V_{i}(x)=V_{l}(x)\right)$. Then x cannot be an i-white liar. Thus, for all such x 's,

$$
\begin{equation*}
V(x)=V_{i}(x) \leftrightarrow \neg \exists j \in I\left(j>i \wedge V_{j}(x) \neq V_{i}(x)\right) . \tag{3.1}
\end{equation*}
$$

Conversely, for any $x \in[f(k), f(k+1))$, there are $i<j \in I$ such that x is i-honest and all i-white liars in $[f(k), f(k+1))$ are found by stage j. Then the approximation $V_{l}(x)$ does not " change its mind" between i and j for all $j>i$.

Lemma 3.18. There exists $u \in I$ with property $\rho(k, u)$:
For any $x \in[f(k), f(k+1))$, there are $i<j<u$ such that all i-white liars in $[f(k), f(k+1))$ are found by stage j and $V_{i}(x)=V_{l}(x)$ for all $l \in[i, j]$.

Proof. Let $T_{k}=\left\{\langle i, j\rangle \in I^{2}: i<j \wedge\right.$ All i-white liars in $[f(k), f(k+1))$ are found by stage $j\}$. Since \mathcal{M} is saturated, T_{k} is coded by $\hat{T}_{k} \subseteq[0, a)$ so that for all $\langle i, j\rangle \in \hat{T}_{k}$, $i<j$. Now consider the function $\epsilon:[f(k), f(k+1)) \rightarrow \hat{T}_{k}, x \mapsto \mu\langle i, j\rangle(\langle i, j\rangle \in$ $\left.\hat{T}_{k} \wedge \forall l \in[i, j] V_{i}(x)=V_{l}(x)\right)$. For every x in $[f(k), f(k+1))$, since $\langle\cdot, \cdot\rangle$ maps I^{2} onto I and there is a pair $\langle i, j\rangle \in T_{k}$ such that $\forall l \in[i, j]\left(V_{i}(x)=V_{l}(x)\right)$, we have $\epsilon(x) \in I$. By $B \Sigma_{1}, \operatorname{ran}(\epsilon)$ is bounded in I. Let $u \in I$ be an upper bound of all elements in $\operatorname{ran}(\epsilon)$ and it is straightforward to verify that $\rho(k, u)$ holds.

For each $k \in I$, let u_{k} be the least u satisfying $\rho(k, u)$ and

$$
\begin{aligned}
& F=\left\{\langle k, i, j\rangle \in I^{3}: i<j<u_{k} \wedge j\right. \text { is the least such that } \\
& \qquad \quad \text { all } i \text {-white liars in }[f(k), f(k+1)) \text { are found by stage } j\} .
\end{aligned}
$$

Suppose $\hat{F} \subseteq[0, a)$ is a code of F such that for all $\langle k, i, j\rangle \in \hat{F}$ with $k \in I, i<j<u_{k}$ and $\langle k, i, j\rangle \in F$.

We recursively separate \mathcal{M} into countably many parts $\left\{E_{k, i}\right\}_{k \in I, i<u_{k}}$:
$E_{k, i}=\left\{x \in[f(k), f(k+1)) \backslash \bigcup_{i^{\prime}<i} E_{k, i^{\prime}}: \exists j\left(\langle k, i, j\rangle \in \hat{F} \wedge \forall l \in[i, j]\left(V_{i}(x)=V_{l}(x)\right)\right)\right\}$.
For every $k \in I$ with $\langle k, i, j\rangle \in \hat{F}$ and every $x \in E_{k, i}, x$ cannot be an i-white liar since all i-white liars in $[f(k), f(k+1))$ are found by stage j. Thus (3.1) holds for all $x \in E_{k, i}$. Define the r.e. set A on each $E_{k, i}$ by

$$
x \in A \upharpoonright E_{k, i} \leftrightarrow \exists j \in I\left(j>i \wedge V_{j}(x) \neq V_{i}(x)\right) .
$$

By (3.1) again, $A \equiv_{T} V$ and $\operatorname{deg}(V)$ is r.e.
Remark. Note that the argument in this section only requires that every arithmetically definable (in the sense of \mathcal{M}) subset of ω is coded on ω. Thus, for a countable model of $P^{-}+B \Sigma_{1}+\neg I \Sigma_{1}+\operatorname{Exp}$, if ω is a Σ_{1} cut and every arithmetically definable subset of ω is coded, then all degrees below $\mathbf{0}^{\prime}$ are r.e.

In general, for a given model of $P^{-}+B \Sigma_{1}+\neg I \Sigma_{1}+\operatorname{Exp}$, it is still unknown whether there is a non-r.e. degree below $\mathbf{0}^{\prime}$ due to the complexity of coding. In the above argument, note that in the proof of Lemma 3.17, δ is not Δ_{1} on I^{2}. More importantly, the complexity of F defined above is far beyond Δ_{1} on I^{3}.

Friedberg Numbering In Reverse Recursion Theory And α-Recursion Theory

4.1 Weak Fragments of PA

The known constructions of a Friedberg numbering ([15, 29]) make strong use of existence of the least index for each r.e. set, in order to construct a Friedberg numbering for ω. This is equivalent to proving the theorem in the theory $P^{-}+I \Sigma_{2}$, as we discuss below. We will prove in this section that over the base theory $P^{-}+B \Sigma_{2}$, $I \Sigma_{2}$ is both sufficient and necessary for the existence of such a numbering.*

4.1.1 Towards Friedberg numbering in fragments of PA

Let $\left\{W_{e}\right\}$ be a Gödel numbering in a model of $P^{-}+I \Sigma_{0}+$ Exp. Note that the statement " $W_{i}=W_{e}$ " is Π_{2}. Therefore, $L \Pi_{2}$ suffices to show that every r.e. set has a least index in $\left\{W_{e}\right\}$. By Theorem 2.1, $L \Pi_{2} \Leftrightarrow I \Sigma_{2}$. In fact, the induction needed to carry out the construction of a Friedberg numbering for ω is just $I \Sigma_{2}$. Thus,

Lemma $4.1\left(P^{-}+I \Sigma_{2}\right)$. There exists a Friedberg numbering.

[^2]Now we consider the case that $I \Sigma_{2}$ fails. From now on in this section, \mathcal{M} is a $B \Sigma_{2}$ model and $I \subset \mathcal{M}$ is a Σ_{2} cut. Let $\left\{A_{e}\right\}_{e \in \mathcal{M}}$ be a one-one numbering of r.e. sets in \mathcal{M}. Our purpose is to construct an r.e. set X such that $X \neq A_{e}$, for all $e \in \mathcal{M}$. Hence, $\left\{A_{e}\right\}_{e \in \mathcal{M}}$ is not a Friedberg numbering.

By Lemma 2.3, let $f: I \rightarrow \mathcal{M}$ be a nondecreasing Δ_{2} cofinal function with $f(0)=0$. That makes it possible to establish a partition of $\mathcal{M},\{[f(i), f(i+1)): i \in$ $I\}$. The interval $\left[f(i), f(i+1)\right.$) is said to be the $i^{\text {th }}$ block (or block i) of \mathcal{M}. Then X is constructed by diagonalizing against A_{e} 's in each block.

For any $a \in \mathcal{M}$,

$$
\forall d, e<a \exists x\left(d \neq e \rightarrow A_{d}(x) \neq A_{e}(x)\right) .
$$

Since $\left\{A_{e}\right\}_{e \in \mathcal{M}}$ is a one-one numbering. It follows from $B \Sigma_{2}$ that there is a $b \in \mathcal{M}$ such that

$$
\begin{equation*}
\forall d, e<a \exists x<b\left(d \neq e \rightarrow A_{d}(x) \neq A_{e}(x)\right) . \tag{4.1}
\end{equation*}
$$

Here, b is said to be a bound of differences relative to $[0, a)$. (4.1) implies that there is at most one $e<a$ such that

$$
\begin{equation*}
A_{e} \upharpoonright[0, b)=X \upharpoonright[0, b) \tag{4.2}
\end{equation*}
$$

Therefore, diagonalizing against $\left\{A_{e}\right\}_{e<a}$ amounts to diagonalizing against the sole A_{e} satisfying (4.2), if any, by one witness greater than or equal to b. In short, to diagonalize against one block it suffices to diagonalize against one special r.e. set.

Let us recall the definition of limit as follows. Suppose $h: \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}$ is a total function. Then

$$
\lim _{s} h(s, a)=n,
$$

if either $n \in \mathcal{M}$ and there exists t such that

$$
\forall s>t(h(s, a)=n),
$$

or else $n=\infty$ and

$$
\forall m \exists t \forall s>t(h(s, a)>m) .
$$

Since $f: I \rightarrow \mathcal{M}$ is Δ_{2}, 4.1) yields a Δ_{2} function $g: I \rightarrow \mathcal{M}$ such that $g(i)$ is a bound of differences relative to $[0, f(i))$ for each $i \in I$. A careful examination of the proof of the Limit Lemma [47] in standard model ω shows that the proof of the Limit

4.1 Weak Fragments of PA

Lemma only requires $P^{-}+B \Sigma_{1}$ and the regularity of Δ_{2} sets. Then in the $B \Sigma_{2}$ model \mathcal{M}, the Limit Lemma implies that f and g have recursive approximations. A more precise statement of this situation is that f and g may chosen to have nondecreasing recursive approximations, as proved in Lemma 4.2. Based on those approximations, it will be shown later that X can be constructed in an effective manner.

Lemma 4.2. Let \mathcal{M} be a $B \Sigma_{2}$ model and $I \subset \mathcal{M}$ be a Σ_{2} cut. Then there exist (total) recursive functions $f^{\prime}, g^{\prime}: \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}$ such that
(i) $\lambda s\left(f^{\prime}(s, i)\right), \lambda i\left(f^{\prime}(s, i)\right), \lambda s\left(g^{\prime}(s, i)\right)$ and $\lambda i\left(g^{\prime}(s, i)\right)$ are nondecreasing;
(ii) functions f and g given by $f(i)=\lim _{s} f^{\prime}(s, i), g(i)=\lim _{s} g^{\prime}(s, i)$ are well defined and less than ∞ on I and equal ∞ on $\mathcal{M} \backslash I$;
(iii) $f: I \rightarrow \mathcal{M}$ is cofinal;
(iv) $\forall i, j, s, t\left(i \neq j \rightarrow g^{\prime}(s, i) \neq g^{\prime}(t, j)\right)$, i.e. $\operatorname{ran}\left(\lambda s g^{\prime}(s, i)\right) \cap \operatorname{ran}\left(\lambda s g^{\prime}(s, j)\right)=\emptyset$ for any $i \neq j$;
(v) $\forall i \in I \forall d, e<f(i) \exists x<g(i)\left(d \neq e \rightarrow A_{d}(x) \neq A_{e}(x)\right)$, i.e. $g(i)$ is a bound of differences relative to $[0, f(i))$.

Proof. Functions f^{\prime} and f satisfying (i)-(iii) may be defined from the Σ_{2} definition of I (See [3, 4]). We omit the details and directly define g^{\prime} satisfying (i), (ii) and (v). Then (i), (ii), (iv) and (v) will be satisfied for $g^{\prime \prime}$, defined by $g^{\prime \prime}(s, i)=\left\langle i, g^{\prime}(s, i)\right\rangle$ for any $s, i \in \mathcal{M}(\langle\cdot, \cdot\rangle$ is a recursive code of pairs $)$.

Now define g^{\prime} by induction on s as follows.

$$
\begin{aligned}
g^{\prime}(0, i) & =i \\
g^{\prime}(s+1, i) & = \begin{cases}g^{\prime}(s, i) & \text { if } g^{\prime}(s, i)>f^{\prime}(s, i) \text { and } \\
& \forall d, e<f^{\prime}(s, i) \exists x<g^{\prime}(s, i)(d \neq e \rightarrow \\
g^{\prime}(s, i)+1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

By $I \Sigma_{1}, g^{\prime}$ is total recursive and $\lambda s\left(g^{\prime}(s, i)\right)$ is nondecreasing.

To see that $\lambda i\left(g^{\prime}(s, i)\right)$ is nondecreasing, it suffices to show

$$
\begin{equation*}
\forall i\left(g^{\prime}(s, i+1) \geq g^{\prime}(s, i)\right) \tag{4.3}
\end{equation*}
$$

by induction on s and $I \Pi_{1}$. The induction is straightforward and we omit the details here.

Observe that a recursive set either has a maximum element or is unbounded in \mathcal{M} by $L \Pi_{1}$. Then it follows immediately from the nondecreasing property of $\lambda s\left(g^{\prime}(s, i)\right)$ that

$$
\lim _{s} g^{\prime}(s, i)<\infty \leftrightarrow\left\{g^{\prime}(s, i): s \in \mathcal{M}\right\} \text { is bounded. }
$$

Then it is easy to check that (ii) and (v) hold by $B \Sigma_{2}$ and the properties of f and the defintion of g.

4.1.2 Nonexistence of Friedberg numbering

Let \mathcal{M}, I and $\left\{A_{e}\right\}_{e \in \mathcal{M}}$ be as in Section 4.1.1. In this section it will be shown that there exists an r.e. set $X \notin\left\{A_{e}\right\}_{e \in \mathcal{M}}$. The method here converts the diagonalization strategy in Section 4.1.1 to an effective one so as to obtain an r.e. counterexample X.

Theorem 4.3. There is no Friedberg numbering in a $B \Sigma_{2}$ model.
Proof. Again, \mathcal{M}, I and $\left\{A_{e}\right\}_{e \in \mathcal{M}}$ are as in Section 4.1.1. Let $f, f^{\prime}, g, g^{\prime}$ be as in Lemma 4.2. The construction below defines X such that
(i) $X \subseteq \operatorname{ran}\left(g^{\prime}\right)$;
(ii) $\forall i \notin I \forall s\left(g^{\prime}(s, i) \in X\right)$
(iii) $\forall i \in I \forall s\left(g^{\prime}(s, i)<g(i) \rightarrow g^{\prime}(s, i) \in X\right)$;
(iv) $\forall i \in I\left[(g(i) \notin X) \leftrightarrow \exists c<f(i)\left(A_{c} \upharpoonright[0, g(i))=X \upharpoonright[0, g(i)) \wedge g(i) \in A_{c}\right)\right]$.

According to Lemma 4.2, $g(i)$ is a bound of differences relative to $[0, f(i))$. Then at most one $c<f(i)$ satisfies

$$
A_{c} \upharpoonright[0, g(i))=X \upharpoonright[0, g(i)) .
$$

4.1 Weak Fragments of PA

Thus, (iv) implies $X \neq A_{c}$, for any $c<f(i), i \in I$.
Since $\lambda s\left(g^{\prime}(s, i)\right)$ is nondecreasing, (ii) and (iii) are satisfied easily via the approximation g^{\prime}. However, that approximation strategy fails for Clause (iv). This is because in the matrix of (iv), the right hand side of " \leftrightarrow " is Δ_{2} and so we cannot recursively determine its truth value. More precisely, at stage s, it is tempting to (perhaps mistakenly) enumerate $g^{\prime}(s, i)$ if

$$
\begin{equation*}
\neg \exists c<f^{\prime}(s, i)\left(A_{c, s} \upharpoonright\left[0, g^{\prime}(s, i)\right)=X_{s} \upharpoonright\left[0, g^{\prime}(s, i)\right) \wedge g^{\prime}(s, i) \in A_{c, s}\right) . \tag{4.4}
\end{equation*}
$$

By (4.4), guessing whether $g^{\prime}(s, i)$ should be enumerated into X could be wrong even if $g^{\prime}(s, i)=g(i)$ and $f^{\prime}(s, i)=f(i)$. We may find a $c<f(i)$ at a later stage satisfying $A_{c} \upharpoonright[0, g(i))=X \upharpoonright[0, g(i))$ and $g(i) \in A_{c}$ in the sense of that stage. But once $g(i)=g^{\prime}(s, i)$ is mistakenly enumerated into $X, g(i)$ cannot be removed from X.

The problem can be solved with the aid of Lemma 2.5 .
A non-effective construction of X is carried out inductively on I, with the intention of finding a set G such that

$$
\begin{equation*}
G(i)=0 \leftrightarrow \exists c<f(i)\left(A_{c} \upharpoonright[0, g(i))=X \upharpoonright[0, g(i)) \wedge g(i) \in A_{c}\right) . \tag{4.5}
\end{equation*}
$$

Define

$$
\begin{aligned}
X_{0} & =\bigcup_{n \in \mathcal{M}}\left\{g^{\prime}(s, n): g^{\prime}(s, n)<g(n)\right\} . \\
G(0) & = \begin{cases}0 & \text { if } \exists c<f(0)\left(A_{c} \upharpoonright[0, g(0))=X_{0} \upharpoonright[0, g(0)) \wedge g(0) \in A_{c}\right), \\
1 & \text { otherwise. }\end{cases} \\
X_{i+1} & = \begin{cases}X_{i} & \text { if } G(i)=0, \\
X_{i} \cup\{g(i)\} & \text { if } G(i)=1 .\end{cases} \\
G(i+1) & = \begin{cases}0 & \text { if } \exists c<f(i+1)\left(A_{c} \upharpoonright[0, g(i+1))=X_{i+1} \upharpoonright[0, g(i+1))\right. \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

for all $i \in I$. Here, $g(n)=\infty$, if $n \notin I$, by Lemma 4.2.
Let

$$
X=\bigcup_{i \in I} X_{i} .
$$

It is immediate from Lemma 2.5 that X_{i} and $G(i)$ are well defined on I, G is Δ_{2} on I and coded on I. Suppose \hat{G} is a code of G on I. Then

$$
\begin{aligned}
X & =X_{0} \cup\left(\bigcup_{i \in I}\{g(i): G(i)=1\}\right) \\
& =\bigcup_{n \in \mathcal{M}}\left\{g^{\prime}(s, n): \exists t>s\left(g^{\prime}(s, n)<g^{\prime}(t, n)\right) \vee \hat{G}(n)=1\right\} .
\end{aligned}
$$

and X is r.e.
By Lemma 4.2, g is strictly increasing on I. Thus,

$$
X \upharpoonright[0, g(i+1))=X_{i+1} \upharpoonright[0, g(i+1))
$$

(4.5) and Clause (iv) are satisfied according to the construction.

Theorem 4.3 and Lemma 4.1 combine to yield
Corollary $4.4\left(P^{-}+B \Sigma_{2}\right)$. $I \Sigma_{2}$ is equivalent to the existence of a Friedberg numbering.

Remark. A numbering $\left\{B_{e}\right\}_{e \in \mathcal{M}}$ is acceptable (K-acceptable, respectively) if for any other numbering $\left\{D_{e}\right\}_{e \in \mathcal{M}}$ there is a recursive (\emptyset^{\prime}-recursive, respectively) function f such that $D_{e}=B_{f(e)}$ for all e. Clearly, Gödel numbering is acceptable. In classical recursion theory, a Friedberg numbering is an example of non-acceptable universal numbering and non- K-acceptable universal numbering.

In a $B \Sigma_{2}$ model \mathcal{M}, no Friedberg numbering exists, but a non- K-acceptable universal numbering, thus a non-acceptable universal numbering still exists.

For instance, suppose $\langle\cdot, \cdot\rangle: \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}$ is a recursive injection, and let

$$
B_{e}= \begin{cases}\mathcal{M} & \text { if } e=0 \tag{4.6}\\ W_{i} \backslash\{j\} & \text { if } e>0 \text { and } \exists i, j<e(\langle i, j\rangle=e), \\ W_{e} \backslash\{0\} & \text { if } e>0 \text { and } \neg \exists i, j<e(\langle i, j\rangle=e) .\end{cases}
$$

where $\left\{W_{e}\right\}_{e \in \mathcal{M}}$ is a Gödel numbering. Then $\left\{B_{e}\right\}_{e \in \mathcal{M}}$ is a universal numbering and

$$
B_{e}=\mathcal{M} \Leftrightarrow e=0 .
$$

Thus, there is no K-recursive function $g: \mathcal{M} \rightarrow \mathcal{M}$ satisfying

$$
W_{e}=B_{g(e)}
$$

A K_{e}-numbering $\left\{C_{e}\right\}$ is a universal numbering for which the grammar equivalence problem $\left\{(e, d): C_{e}=C_{d}\right\}$ is \emptyset^{\prime}-recursive (See [20]). A Friedberg numbering is a K_{e}-numberings. In a $B \Sigma_{2}$ model, no Friedberg numbering exists, and also no K_{e}-numbering exists. The reason is as follows. Suppose \mathcal{M} is a $B \Sigma_{2}$ model and $\left\{C_{e}\right\}_{e \in \mathcal{M}}$ is a K_{e}-numbering. Then for each e in \mathcal{M},

$$
\left\{d<e: C_{d}=C_{e}\right\}
$$

is a Δ_{2} set, and has a least element. It follows that the least index exists for every r.e. set in the numbering $\left\{C_{e}\right\}_{e \in \mathcal{M}}$, which is not the case for $\left\{W_{e}\right\}_{e \in \mathcal{M}}$. By [29], a Friedberg numbering can be constructed using a priority-free method via the numbering $\left\{C_{e}\right\}_{e \in \mathcal{M}}$, a contradiction. Hence,

Corollary $4.5\left(P^{-}+B \Sigma_{2}\right) . I \Sigma_{2}$ is equivalent to the existence of a $K_{e}-n u m b e r i n g$.

4.2 $\quad \Sigma_{1}$ Admissible Ordinals

In this section, we investigate the problem of the existence of a Friedberg numbering in the context of admissible ordinals.

4.2.1 Towards Friedberg numbering in α-recursion

Assume $\left\{W_{e}\right\}_{e<\alpha}$ is a Gödel numbering. We attempt to lift the construction of a Friedberg numbering from ω to α. No difficulty arises when L_{α} satisfies Σ_{2} replacement. The proof remains valid because Σ_{2} replacement suffices to show
(e is the least index for W_{e}) \Leftrightarrow

$$
\begin{equation*}
\exists b \exists \eta \forall d<e\left(W_{d} \upharpoonright b=W_{d, \eta} \upharpoonright b \neq W_{e, \eta} \upharpoonright b=W_{e} \upharpoonright b\right) . \tag{4.1}
\end{equation*}
$$

Therefore the least index can be approximated effectively.
If L_{α} does not satisfy Σ_{2} replacement, then the approach above for constructing a Friedberg numbering fails by noticing that Σ_{2} replacement is also necessary for (4.1) to hold. In this situation, the straightforward adaptation of the argument in $B \Sigma_{2}$ models is not applicable neither: Suppose $\left\{A_{e}\right\}_{e<\alpha}$ is a one-one numbering, then it is not always true that for an arbitrary $\beta<\alpha$,

$$
\begin{equation*}
\exists b \forall d, e<\beta\left(d \neq e \rightarrow \exists x<b\left(A_{d}(x) \neq A_{e}(x)\right)\right) . \tag{4.2}
\end{equation*}
$$

In this chapter, we introduce three strategies which will either yield a successful construction of a Friedberg numbering for suitable α 's or allow a diagonalization argument to be implemented showing the nonexistence of such a numbering.

The intuition is that the shorter the list of α-r.e. sets is, the more likely (4.1) and (4.2) can be made to hold. The first strategy attempts to rearrange the order of α-r.e. sets so as to produce a short, necessarily non-recursive, list of these sets. A further idea is to force every proper initial segment of the list to be correctly approximated from some stage onwards, for the sake of computing the least indices and upper bounds of differences correctly in the limit. To achieve this, we arrange for the list of the α-r.e. sets to have length $t \sigma 2 p(\alpha)$. More precisely, α-r.e. sets are listed by a tame Σ_{2} projection $g: t \sigma 2 p(\alpha) \xrightarrow[\text { onto }]{\text { one-ne }} \alpha$. Thus, for an arbitrary numbering $\left\{A_{e}\right\}_{e<\alpha}$, the set A_{d} respectively is listed before A_{e}, if $g^{-1}(d)<g^{-1}(e)$.

The second strategy is to exploit the key property of $\sigma 2 c f(\alpha)$, i.e. Corollary 2.16. According to Corollary 2.16, it is possible to apply Σ_{2} replacement on lengths less than $\sigma 2 c f(\alpha)$. The first two strategies combine to suggest the possibility that a Friedberg numbering exists when $t \sigma 2 p(\alpha)=\sigma 2 c f(\alpha)$. In particular, if L_{α} satisfies Σ_{2} replacement, then $t \sigma 2 p(\alpha)=\sigma 2 c f(\alpha)=\alpha$.

If $t \sigma 2 p(\alpha)>\sigma 2 c f(\alpha)$, then Lemma 2.13 implies that coding a tame Σ_{2} subset of $\sigma 2 c f(\alpha)$ is possible. The problem left to adapt the proof in $B \Sigma_{2}$ models to L_{α} is to give an effective method of searching for an upper bound b in (4.2). However, such an upper bound may not exist.

The third strategy is aimed at devising diagonalization method to show the nonexistence of a Friedberg numbering in the situation that $\sigma 2 c f(\alpha)<t \sigma 2 p(\alpha)$. This is done by analyzing α-finite sets together with a property we call pseudostability. Pseudostable ordinals will be used to get suitable upper bounds for witnesses that differentiae two α-r.e. sets in a given α-finite collection for the purpose of a diagonalization. (See Section 4.2.3 and 4.2.4).

Let $C, I \subset \alpha$ be α-finite. If $|I|_{\alpha}<\sigma 1 p(\alpha)$, then for any simultaneous enumeration of α-r.e. sets $\left\{A_{e}\right\}_{e \in I}$, the set

$$
I_{C}=\left\{e \in I: A_{e} \supsetneq C\right\}
$$

is α-finite, by Theorem 2.12. Thus $\exists \eta \forall e \in I\left(e \in I_{C} \leftrightarrow A_{e, \eta} \supsetneq C\right)$ by Σ_{1} replacement. Therefore, any set $X \supsetneq C$ such that $X \upharpoonright \eta=C$ would not be in $\left\{A_{e}\right\}_{e \in I}$
(recall that $A_{e, \eta} \subseteq[0, \eta)$ for every $e, \eta<\alpha$).
Note that the recursive search for η strongly relies on the parameter I_{C}. That would be a problem if C varies, as the parameters of I_{C} may not be recovered effectively. Nevertheless, there are special cases when the parameter I_{C} can be omitted (i.e. the ordinal η can be derived directly from C). For example, when
(i) C is never in the list of r.e. sets $\left\{A_{e}\right\}_{e \in I}$ as C changes,
(ii) a final segment of C is an interval of ordinals with sup $C=\eta$ being an α-stable ordinal, and
(iii) roughly speaking, $\sup C$ is large enough,
then we have

$$
\forall e \in I\left(A_{e} \supsetneq C \leftrightarrow A_{e} \supseteq C \leftrightarrow A_{e, \sup C} \supseteq C\right) .
$$

The only problem with the use of α-stable ordinals is that α-stable ordinals need not be cofinal in α. Therefore, the notion of pseudostablility, a weak form of α-stability, is introduced. As will be seen in Section 4.2.3 and 4.2.4, pseudostable ordinals are cofinal in α and enjoy the properties required for our construction.

4.2.2 When $t \sigma 2 p(\alpha)=\sigma 2 c f(\alpha)$

The main result of this section is
Theorem 4.6. If $\operatorname{t\sigma } 2 p(\alpha)=\sigma 2 c f(\alpha)$, then there exists a Friedberg numbering.

The strategy here is to adapt Kummer's construction [29] by introducing a shorter list of all α-r.e. sets on $t \sigma 2 p(\alpha)$ and applying local Σ_{2} replacement (Corollary 2.16) on $\sigma 2 c f(\alpha)$.

Let $\hat{\alpha}=t \sigma 2 p(\alpha)=\sigma 2 c f(\alpha), f: \hat{\alpha} \xrightarrow[\text { cofinal }]{\text { strictly increasing }} \alpha$ and $g: \hat{\alpha} \xrightarrow[\text { onto }]{\text { one-one }} \alpha$ be tame Σ_{2}, and $f^{\prime}, g^{\prime}: \alpha \times \hat{\alpha} \rightarrow \alpha$ be recursive functions that tamely generate f, g such that for all $\eta<\hat{\alpha}$,
(i) $\lambda x\left(f^{\prime}(\eta, x)\right)$ and $\lambda x\left(g^{\prime}(\eta, x)\right)$ are one-one,
(ii) $\lambda x\left(f^{\prime}(\eta, x)\right)$ is strictly increasing, and $\lambda x\left(g^{\prime}(\eta, x)\right)$ is strictly increasing for $x>\eta$, if any.

For simplicity, f_{η}, g_{η} will be used to denote functions $\lambda x\left(f^{\prime}(\eta, x)\right), \lambda x\left(g^{\prime}(\eta, x)\right)$ respectively.

Lemma 4.7. Suppose $\left\{W_{e}\right\}_{e<\alpha}$ is a Gödel numbering. Then there are numberings $\left\{P_{e}\right\}_{e<\alpha}$ and $\left\{Q_{e}\right\}_{e<\alpha}$ such that
(i) $\left\{P_{e}\right\}_{e<\alpha} \cap\left\{Q_{e}\right\}_{e<\alpha}=\emptyset$;
(ii) $\left\{P_{e}\right\}_{e<\alpha} \cup\left\{Q_{e}\right\}_{e<\alpha}=\left\{W_{e}\right\}_{e<\alpha}$;
(iii) $P_{e} \neq P_{d}$ whenever $e \neq d$;
(iv) $\left\{e<\alpha: P_{e} \supseteq C\right\}$ is cofinal in α, for every α-finite set C.

Proof. Let

$$
\begin{aligned}
& P_{e}=[0, e), \\
& Q_{e}= \begin{cases}\alpha & \text { if } e=0, \\
W_{e^{\prime}} \cup\left\{e^{\prime \prime}\right\} \backslash\left\{e^{\prime \prime \prime}\right\} & \text { if } e=\left\langle\left\langle e^{\prime}, e^{\prime \prime}\right\rangle, e^{\prime \prime \prime}\right\rangle \text { and } e^{\prime \prime}>e^{\prime \prime \prime}, \\
W_{e} \cup\{e\} \backslash\{0\} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then (i)-(iv) are immediate from the definitions of P_{e} and Q_{e}.

Requirements and strategy

Fix numberings $\left\{P_{e}\right\}_{e<\alpha}$ and $\left\{Q_{e}\right\}_{e<\alpha}$ as in Lemma 4.7. For any $e<\alpha, e$ is said to be the least index for $\left\{e^{\prime}: Q_{e^{\prime}}=Q_{e}\right\}$ via g, if

$$
\exists i<\hat{\alpha} \forall j<i\left(g(i)=e \wedge Q_{g(i)} \neq Q_{g(j)}\right) .
$$

We denote the characteristic function of this predicate by $\mathrm{L}_{Q, g}(e)$ (or $\mathrm{L}(e)$ for short).
A Friedberg numbering $\left\{A_{e}\right\}_{e<\alpha}$ will be constructed and the requirements are as follows.

$$
\begin{aligned}
\text { Requirement } e: & R_{P, e}: \exists!\rho\left(P_{e}=A_{\rho}\right), \\
& R_{Q, e}: \exists!\rho\left(Q_{e}=A_{\rho}\right) .
\end{aligned}
$$

The strategy for satisfying requirement e consists of the following:
(i) assign a unique follower $\rho=F_{P}^{*}(e)$ to P_{e} with the objective of making $A_{F_{P}^{*}(e)}$ equal to P_{e};
(ii) assign a unique follower $\rho=F_{Q}^{*}(e)$ to Q_{e}, whenever $\mathrm{L}(e)=1$, with the objective of making $A_{F_{Q}^{*}(e)}$ equal to Q_{e}; and
(iii) for every $\rho<\alpha$, assign ρ to a unique set from $\left\{P_{e}\right\}_{e<\alpha} \cup\left\{Q_{e}\right\}_{e<\alpha, \mathrm{L}(e)=1}$, such that ρ is the follower of the corresponding set.

More precise definitions of F_{P}^{*} and F_{Q}^{*} will be given in the part of construction and the part of verification.

The strategy works effectively, except for the fact that " $\mathrm{L}(e)=1$ " is not a recursive predicate. Nevertheless, it will soon be seen that " $\mathrm{L}(e)=1$ " has an effective approximation $L^{\prime}(\eta, e)$ (See Lemma 4.9). For the moment assume that Lemma 4.9 holds, i.e.

$$
\mathrm{L}(e)=1 \leftrightarrow \lim _{\eta \rightarrow \alpha} \mathrm{L}^{\prime}(\eta, e)=1
$$

where L^{\prime} is α-recursive. Then at each stage η, the construction will proceed as follows.

Step One assign a follower to Q_{e}, if $e<\eta, Q_{e}$ has no follower and $L^{\prime}(\eta, e)=1$; release the follower of Q_{e} (which was assigned before stage η, if any), whenever $e \geq \eta$ or $\mathrm{L}^{\prime}(\eta, e)=0$;

Step Two assign a follower to P_{e}, if $e<\eta$ and P_{e} has no follower;
Step Three for all $\rho \in[0, \eta) \cup\{\rho: \rho$ is relased at step one $\}$, if ρ has not been assigned to any set by the end of step two, then assign ρ to some P_{d} such that P_{d} has not been assigned to any follower and $P_{d} \supseteq \bigcup_{\delta<\eta} A_{\rho, \delta}$.

Step Four if $F_{P}(\eta, e)$ is a follower of P_{e} and $F_{Q}\left(\eta, e^{\prime}\right)$ is a follower of $Q_{e^{\prime}}$ by the end of step three, then let $A_{F_{P}(\eta, e), \eta}=P_{e, \eta}$ and $A_{F_{Q}\left(\eta, e^{\prime}\right), \eta}=Q_{e^{\prime}, \eta}$.

This strategy succeeds, because
(i) each P_{e} has a follower and never releases its follower,
(ii) eventually Q_{e} has a permanent follower after some stage if and only if $\mathrm{L}(e)=1$, and
(iii) each ρ, as a follower, is released at most once, after which it will be a permanent follower of a P set or a Q set.

More details will be given in the part of verification.
To approximate $\mathrm{L}(e)$, the notion of the greatest common length of $Q_{g(i)}$ and $Q_{g(j)}$, $\forall j<i$ will be introduced. To define this notion, we first prove Lemma 4.8. Lemma 4.8 claims that for an $i<\hat{\alpha}$, the statement that $W_{g(i)}$ is not equal to $W_{g(j)}$ for any $j<i$ is equivalent to the existence of an upper bound $b<\hat{\alpha}$, such that the least difference of $W_{g(i)}$ with any $W_{g(j)}$ for $j<i$, after the mapping g^{-1}, lies below b and is seen by stage $f(b)$.

Lemma 4.8. If $i<\hat{\alpha}$, then

$$
\begin{align*}
\forall j<i\left(Q_{g(i)}\right. & \left.\neq Q_{g(j)}\right) \leftrightarrow \exists b<\hat{\alpha} \forall j<i \exists x<b \\
& \left(Q_{g(i), f(b)}(g(x))=Q_{g(i)}(g(x)) \neq Q_{g(j)}(g(x))=Q_{g(j), f(b)}(g(x))\right) \tag{4.3}
\end{align*}
$$

Proof. We only prove the direction from left to right.
Suppose $\forall j<i\left(Q_{g(i)} \neq Q_{g(j)}\right)$. Then
$\forall j<i \exists x<\hat{\alpha} \exists \gamma<\hat{\alpha}\left(Q_{g(i), f(\gamma)}(g(x))=Q_{g(i)}(g(x)) \neq Q_{g(j)}(g(x))=Q_{g(j), f(\gamma)}(g(x))\right)$.
Since the matrix of the above formula is Σ_{2}, Lemma 2.16 provides a $b<\hat{\alpha}$ such that the right hand side of 4.3) holds.

In the proof of Theorem 4.6, Lemma 4.8 is the only place where the function f is involved. In its proof, Lemma 4.8 essentially applies the condition $t \sigma 2 p(\alpha)=$ $\sigma 2 c f(\alpha)$. By Lemma 4.8, the greatest common length is measured within $\hat{\alpha}$ through the map g. One advantage of this measure has to do with the regularity. That is, $\left(g^{-1} \upharpoonright W\right) \cap \delta$ is α-finite for any α-r.e. set W and $\delta<\hat{\alpha}$, since $\hat{\alpha}=t \sigma 2 p(\alpha) \leq \sigma 1 p(\alpha)$ and g is tame Σ_{2} (the tame Σ_{2} property of g ensures that $g_{\eta} \upharpoonright \delta=g \upharpoonright \delta$, so $\left(g^{-1} \upharpoonright W\right) \cap \delta=\left(g_{\eta}^{-1} \upharpoonright W\right) \cap \delta$ for all sufficiently large η; and $\delta<\hat{\alpha} \leq \sigma 1 p(\alpha)$ ensures that any α-r.e. subset of $g \upharpoonright \delta$ is α-finite). An arbitrary α-r.e. set W, however, need not be regular.

Suppose $e, \eta<\alpha$. The greatest common length with respect to e through g at
stage η is defined as

$$
c_{g}(\eta, e)=\left\{\begin{array}{cc}
\max ^{*}\left\{b<\min \{\hat{\alpha}, \eta\}: \exists j<g_{\eta}^{-1}(e)\left(Q_{e, \eta} \upharpoonright \operatorname{ran}\left(g_{\eta} \upharpoonright b\right)=\right.\right. \\
& \left.\left.Q_{g_{\eta}(j), \eta} \upharpoonright \operatorname{ran}\left(g_{\eta} \upharpoonright b\right)\right)\right\} \\
0 & \text { if } e<\eta \text { and } e \in \operatorname{ran}\left(g_{\eta} \upharpoonright \min \{\hat{\alpha}, \eta\}\right), \\
0 & \text { otherwise. }
\end{array}\right.
$$

Note that c_{g} is an α-recursive function.
The index e is said to be the least index for $\left\{e^{\prime}: Q_{e^{\prime}}=Q_{e}\right\}$ via g at stage η, if

$$
\exists \delta<\eta \forall \rho\left(\delta \leq \rho \leq \eta \rightarrow c_{g}(\rho, e)=c_{g}(\eta, e)<\hat{\alpha}\right),
$$

and the characteristic function of this relation is denoted by $\mathrm{L}_{Q, g}^{\prime}(\eta, e)$ (or $\mathrm{L}^{\prime}(\eta, e)$ for short). Notice that $\mathbf{L}_{Q, g}^{\prime}(\eta, e)$ (or $\mathbf{L}^{\prime}(\eta, e)$) is α-recursive.

Lemma 4.9. $\mathrm{L}(e)=1 \leftrightarrow \lim _{\eta \rightarrow \alpha} \mathrm{L}^{\prime}(\eta, e)=1$.
Proof. Let $i=g^{-1}(e)<\hat{\alpha}$.
Suppose $\mathrm{L}(e)=1$. Then $\forall j<i\left(Q_{g(i)} \neq Q_{g(j)}\right)$. As in Lemma 4.8, there is a $b_{0}<\hat{\alpha}$ such that

$$
\forall j<i \exists x<b_{0}\left(Q_{e, f\left(b_{0}\right)}(g(x))=Q_{e}(g(x)) \neq Q_{g(j)}(g(x))=Q_{g(j), f\left(b_{0}\right)}(g(x))\right) .
$$

Thus,

$$
\left.\forall j<i \forall \eta>f\left(b_{0}\right)\left(Q_{e, \eta} \upharpoonright \operatorname{ran}\left(g \upharpoonright b_{0}\right)\right) \neq Q_{g(j), \eta} \upharpoonright\left(\operatorname{ran}\left(g \upharpoonright b_{0}\right)\right)\right) .
$$

Let η_{0} be a stage such that

$$
\forall \eta>\eta_{0}\left(g_{\eta} \upharpoonright\left(\max \left\{i, b_{0}\right\}+1\right)=g \upharpoonright\left(\max \left\{i, b_{0}\right\}+1\right)\right) .
$$

Also, it follow easily from $\operatorname{t\sigma } 2 p(\alpha) \leq \sigma 1 p(\alpha)$ and Theorem 2.12 that there is an η_{1} such that

$$
\forall j \leq i\left(Q_{g(j)} \upharpoonright \operatorname{ran}\left(g \upharpoonright b_{0}\right)=Q_{g(j), \eta_{1}} \upharpoonright \operatorname{ran}\left(g \upharpoonright b_{0}\right)\right) .
$$

Then for any $\eta>\max \left\{\eta_{0}, \eta_{1}, f\left(b_{0}\right)\right\}$,

$$
\begin{aligned}
c_{g}(\eta, e) & =\max ^{*}\left\{b<\min \{\hat{\alpha}, \eta\}: \exists j<i\left(Q_{e, \eta} \upharpoonright \operatorname{ran}\left(g_{\eta} \upharpoonright b\right)=Q_{g_{\eta}(j), \eta} \upharpoonright \operatorname{ran}\left(g_{\eta} \upharpoonright b\right)\right)\right\} \\
& =\max ^{*}\left\{b<b_{0}: \exists j<i\left(Q_{e} \upharpoonright \operatorname{ran}(g \upharpoonright b)=Q_{g(j)} \upharpoonright \operatorname{ran}(g \upharpoonright b)\right)\right\}
\end{aligned}
$$

is a constant less than $\hat{\alpha}$, and so $\lim _{\eta \rightarrow \alpha} \mathrm{L}^{\prime}(\eta, e)=1$.
Now assume δ is a stage such that $\forall \eta>\delta\left(\mathrm{L}^{\prime}(\eta, e)=1\right)$. Then $\forall \eta>\delta\left(c_{g}(\eta, e)=\right.$ $\left.c_{g}(\delta, e)<\hat{\alpha}\right)$. For the sake of contradiction, suppose $j<i$ and $Q_{g(j)}=Q_{g(i)}=Q_{e}$.

Similar to the existence of η_{0} and η_{1} above, there is a stage $\eta_{2}>c_{g}(\delta, e)+1$ such that

$$
\begin{aligned}
& \forall \eta>\eta_{2}\left[g_{\eta} \upharpoonright\left(\max \left\{i, c_{g}(\delta, e)\right\}+1\right)=g \upharpoonright\left(\max \left\{i, c_{g}(\delta, e)\right\}+1\right)\right. \\
& \wedge Q_{g(j)} \upharpoonright \operatorname{ran}\left(g \upharpoonright\left(c_{g}(\delta, e)+1\right)\right)=Q_{g(j), \eta} \upharpoonright \operatorname{ran}\left(g \upharpoonright\left(c_{g}(\delta, e)+1\right)\right) \\
& \left.\wedge Q_{e} \upharpoonright \operatorname{ran}\left(g \upharpoonright\left(c_{g}(\delta, e)+1\right)\right)=Q_{e, \eta} \upharpoonright \operatorname{ran}\left(g \upharpoonright\left(c_{g}(\delta, e)+1\right)\right)\right] .
\end{aligned}
$$

Thus, $c_{g}(\eta, e) \geq c_{g}(\delta, e)+1$ for each $\eta>\eta_{2}$, a contradiction.

Construction

At each stage η, the construction below is carried out in four steps as described earlier. Two α-recursive functions $F_{P}(\eta, e)$ and $F_{Q}(\eta, e)$ are defined to denote the follower of P_{e} at stage η and the follower of Q_{e} at stage η respectively. During the construction, ρ is said to be unused if ρ has not been in the range of F_{P} and F_{Q} defined so far.

The construction proceeds as follows.
At stage η. Step One. For each $e<\alpha$,
Case 1.1: $e \geq \eta$ or $\mathrm{L}^{\prime}(\eta, e)=0$. Set $F_{Q}(\eta, e)=-1$.
Case 1.2: Case 1.1 fails and either η is a limit ordinal such that $\lim _{\gamma \rightarrow \eta} F_{Q}(\gamma, e) \neq$ -1 exists or $\eta=\eta^{\prime}+1$ is a successor ordinal such that $F_{Q}\left(\eta^{\prime}, e\right) \geq 0$. Then let

$$
F_{Q}(\eta, e)= \begin{cases}\lim _{\gamma \rightarrow \eta} F_{Q}(\gamma, e) & \text { if } \eta \text { is a limit ordinal } \\ F_{Q}\left(\eta^{\prime}, e\right) & \text { if } \eta=\eta^{\prime}+1\end{cases}
$$

Case 1.3: Case 1.1 and Case 1.2 fail. Let $e_{0}<e_{1}<\ldots<e_{\zeta}<\ldots$ be a list of all e 's of Case 1.3 and $\rho_{0}<\rho_{1}<\ldots<\rho_{\zeta}<\ldots$ be a list of all unused ρ. Let $F_{Q}\left(\eta, e_{\zeta}\right)=\rho_{\zeta}$ for each e_{ζ}.

Step Two. For any $e<\alpha$,
Case 2.1. Either η is a limit ordinal such that $\lim _{\gamma \rightarrow \eta} F_{P}(\gamma, e) \neq-1$ exists or
$\eta=\eta^{\prime}+1$ is a successor ordinal such that $F_{P}\left(\eta^{\prime}, e\right) \geq 0$. Then set

$$
F_{P}(\eta, e)= \begin{cases}\lim _{\gamma \rightarrow \eta} F_{P}(\gamma, e) & \text { if } \eta \text { is a limit ordinal } \\ F_{P}\left(\eta^{\prime}, e\right) & \text { if } \eta=\eta^{\prime}+1\end{cases}
$$

Case 2.2. Case 2.1 fails and $e<\eta$. Similar to Case 1.3, define $F_{P}(\eta, e)$ to be ρ_{ζ}^{\prime}, whenever e is the $\zeta^{\text {th }}$ ordinal in Case 2.2 and ρ_{ζ}^{\prime} is the $\zeta^{\text {th }}$ unused ρ by the end of step one.

Case 2.3. Case 2.1 and Case 2.2 fail. $F_{P}(\eta, e)$ will be defined in step three.
Step Three. Let $\rho_{0}^{\prime \prime}<\rho_{1}^{\prime \prime}<\ldots<\rho_{\zeta}^{\prime \prime}<\ldots$ be a list of ρ^{\prime} 's such that
(i) The ordinal ρ is not $F_{P}(\eta, e)$ and not $F_{Q}\left(\eta, e^{\prime}\right)$ for any defined $F_{P}(\eta, e)$ and $F_{Q}\left(\eta, e^{\prime}\right)$, and
(ii) Either $\rho<\eta$ or $\rho \in\left\{F_{P}(\delta, d): d<\alpha, \delta<\eta\right\} \cup\left\{F_{Q}(\delta, d): d<\alpha, \delta<\eta\right\} \backslash\{-1\}$.

Now recursively define
$e_{\zeta}^{\prime \prime}=$ the first enumerated $e>\sup _{\zeta^{\prime}<\zeta} e_{\zeta^{\prime}}^{\prime \prime}$ such that $P_{e} \supseteq \bigcup_{\delta<\eta} A_{\rho_{\zeta}^{\prime \prime}, \delta}$ and that $F_{P}(\eta, e)$ is undefined by the end of step two.

Define $F_{P}\left(\eta, e_{\zeta}^{\prime \prime}\right)$ to be $\rho_{\zeta}^{\prime \prime}$.
Finally, for $F_{P}(\eta, e)$ still undefined, let $F_{P}(\eta, e)=-1$.
Step Four. For any $\rho<\alpha$, if $\rho=F_{P}(\eta, e)$, then let $A_{\rho, \eta}=\left(\bigcup_{\zeta<\eta} A_{\rho, \zeta}\right) \cup P_{e, \eta}$; if $\rho=F_{Q}(\eta, e)$, then let $A_{\rho, \eta}=\left(\bigcup_{\zeta<\eta} A_{\rho, \zeta}\right) \cup Q_{e, \eta}$. Otherwise, let $A_{\rho, \eta}=\bigcup_{\zeta<\eta} A_{\rho, \zeta}$.

Verification

Clause (iii) of the next lemma implies that the above construction is α-recursive.
Lemma 4.10. Assume $\eta<\alpha$.
(i) For all $e<\eta, F_{P}(\eta, e) \geq 0$ and $\left(F_{Q}(\eta, e) \geq 0 \leftrightarrow \mathrm{~L}^{\prime}(\eta, e)=1\right)$;
(ii) $\eta \subseteq \operatorname{ran}\left(F_{P} \upharpoonright(\{\eta\} \times \alpha)\right) \cup \operatorname{ran}\left(F_{Q} \upharpoonright(\{\eta\} \times \alpha)\right)$, i.e. each $\rho<\eta$ becomes a follower of some set from stage η onwards;
(iii) $\left\{e: F_{P}(\eta, e) \neq-1\right\},\left\{e: F_{Q}(\eta, e) \neq-1\right\}, \operatorname{ran}\left(F_{P} \upharpoonright(\{\eta\} \times \alpha)\right) \backslash\{-1\}$ and $\operatorname{ran}\left(F_{Q} \upharpoonright(\{\eta\} \times \alpha)\right) \backslash\{-1\}$ are α-finite;
(iv) $\forall e, e^{\prime}\left(F_{P}(\eta, e), F_{Q}\left(\eta, e^{\prime}\right) \geq 0 \rightarrow F_{P}(\eta, e) \neq F_{Q}\left(\eta, e^{\prime}\right)\right)$ and $\forall e, e^{\prime}\left(\left(F_{P}(\eta, e)=\right.\right.$ $\left.\left.F_{P}\left(\eta, e^{\prime}\right) \geq 0\right) \vee\left(F_{Q}(\eta, e)=F_{Q}\left(\eta, e^{\prime}\right) \geq 0\right) \rightarrow e=e^{\prime}\right)$. In other words, at stage η, the assignment of followers is one-one;
(v) $\forall e\left(F_{P}(\eta, e) \geq 0 \rightarrow \forall \delta>\eta F_{P}(\delta, e)=F_{P}(\eta, e)\right)$, i.e. P_{e} never releases its follower for any e;
(vi) $\forall e\left(\eta>e \wedge \forall \delta \geq \eta\left(\mathrm{L}^{\prime}(\delta, e)=1\right) \rightarrow \forall \delta>\eta\left(F_{Q}(\delta, e)=F_{Q}(\eta, e)\right)\right)$, i.e. Q_{e} never release its follower after stage η if e is thought to be the least index via g from stage η onwards;
(vii) $A_{\rho, \eta}$ is equal to $P_{e, \eta}$ if $F_{P}(\eta, e)=\rho$, and is equal to $Q_{e, \eta}$ if $F_{Q}(\eta, e)=\rho$.

Proof. By induction on η and δ (δ is as in Clause (v)-(vi)).
Define $F_{P}^{*}, F_{Q}^{*}: \alpha \rightarrow \alpha \cup\{-1\}$ by

$$
F_{P}^{*}(e)=\lim _{\eta \rightarrow \alpha} F_{P}(\eta, e), \quad F_{Q}^{*}(e)=\lim _{\eta \rightarrow \alpha} F_{Q}(\eta, e)
$$

That is, $F_{P}^{*}(e)$ is the permanent follower of P_{e}; and $F_{Q}^{*}(e)$, if defined, is the permanent follower of Q_{e}.

Part (i), (v) and (vi) of Lemma 4.10 together imply that

$$
\forall e\left(F_{P}^{*}(e) \downarrow \neq-1\right), \quad \forall e\left(\mathrm{~L}(e)=1 \rightarrow F_{Q}^{*}(e) \downarrow \neq-1\right) .
$$

For $e<\alpha$ such that $\mathrm{L}(e)=0$, Lemma 4.9 implies that there are cofinally many stages η satisfying $\mathrm{L}^{\prime}(\eta, e)=0$, and so there are cofinally many stages η such that $F_{Q}(\eta, e)=-1$. Thus,

$$
\forall e\left(\mathrm{~L}(e)=0 \rightarrow F_{Q}^{*}(e) \uparrow \vee F_{Q}^{*}(e)=-1\right)
$$

By (iv), the assignment of permanent followers is one-one, i.e.

$$
\begin{align*}
\forall e, e^{\prime}\left[\left(\mathrm{L}\left(e^{\prime}\right)=1 \rightarrow F_{P}^{*}(e)\right.\right. & \left.\neq F_{Q}^{*}\left(e^{\prime}\right)\right) \\
& \wedge\left(e \neq e^{\prime} \rightarrow F_{P}^{*}(e) \neq F_{P}^{*}\left(e^{\prime}\right)\right) \tag{4.4}\\
& \left.\wedge\left(e \neq e^{\prime} \wedge \mathrm{L}(e)=\mathrm{L}\left(e^{\prime}\right)=1 \rightarrow F_{Q}^{*}(e) \neq F_{Q}^{*}\left(e^{\prime}\right)\right)\right]
\end{align*}
$$

According to (vii),

$$
\forall e\left(P_{e}=A_{F_{P}^{*}(e)}\right), \text { and } \forall e\left(\mathrm{~L}(e)=1 \rightarrow Q_{e}=A_{F_{Q}^{*}(e)}\right)
$$

Consequently, $\left\{A_{e}\right\}_{e<\alpha}$ is a universal numbering of all α-r.e. sets. To show that $\left\{A_{e}\right\}_{e<\alpha}$ is a Friedberg numbering, it is only necessary to show that $\left\{A_{e}\right\}_{e<\alpha}$ is one-one. Observe that by 4.4), $\left\{A_{e}\right\}_{e<\alpha}$ being one-one is immediate once $\alpha \subseteq$ $\operatorname{ran}\left(F_{P}^{*}\right) \cup \operatorname{ran}\left(F_{Q}^{*}\right)$, i.e. each ρ is a permanent follower for someone, has been proved.

Let $\rho<\alpha$. By (v), if $\rho=F_{P}(\eta, e)$ for some η, e, then $\rho=F_{P}^{*}(e) \in \operatorname{ran}\left(F_{P}^{*}\right)$. Now suppose $\rho \neq F_{P}(\eta, e)$ for all η and e. Then at stage $\rho+1$, according to (ii), $\rho=F_{Q}\left(\rho+1, e^{\prime}\right)$. Moreover, $\forall \eta>\rho+1\left(\rho=F_{Q}\left(\eta, e^{\prime}\right)\right)$. Otherwise, at the least stage $\eta>\rho+1$ with $\rho \neq F_{Q}\left(\eta, e^{\prime}\right)$, it is defined in step three that $F_{P}\left(\eta, e^{\prime \prime}\right)=\rho$ for some $e^{\prime \prime}$, yielding a contradiction. Since $\forall \eta>\rho\left(\rho=F_{Q}\left(\eta, e^{\prime}\right)\right)$, we immediately get $\mathrm{L}\left(e^{\prime}\right)=1$ and $\rho=F_{Q}^{*}\left(e^{\prime}\right)$.

4.2.3 Pseudostability

Through out this section of pseudostability, we make the assumption that $\sigma 1 p(\alpha)>$ ω, which is only necessary for Lemma 4.20. In this section, we introduce the notion of pseudostability and generalize some properties of α-stable ordinals to pseudostable ordinals. In Section 4.2.4, pseudostability will be used to show the nonexistence of a Friedberg numbering when $t \sigma 2 p(\alpha)>\sigma 2 c f(\alpha)$, which is stronger than $\sigma 1 p(\alpha)>\omega$ (since $\sigma 2 c f(\alpha) \geq \omega$). Under the assumption that $t \sigma 2 p(\alpha)>\sigma 2 c f(\alpha)$, all proofs in this section remain the same.

Suppose $\left\{A_{e}\right\}_{e<\alpha}$ is an arbitrary numbering. As noticed in Section 4.2.1, α stable ordinals are used to obtain, roughly speaking, an upper bound of the least differences between a given α-finite set C and α-finitely many α-r.e. sets of the numbering. That idea succeeds mainly because of the following property: for any ζ and α-finite set C, if $\delta<\sigma 1 p(\alpha)$ and β is a large enough α-stable ordinal, then

$$
\forall e<\delta\left(A_{e} \supseteq C \cup[\zeta, \beta) \leftrightarrow A_{e, \beta} \supseteq C \cup[\zeta, \beta)\right) .
$$

Pseudostable ordinals are defined mainly by this property.
Lemma 4.11. Suppose $\left\{A_{e}\right\}_{e<\alpha}$ is a numbering. Then there exists an α-recursive function $h: \alpha^{4} \rightarrow \alpha$, such that: for any $\gamma<\alpha$, α-finite set $C \subset \alpha$, and α-finite (partial) function $p: \alpha \xrightarrow{\text { one-one }} \alpha$ satisfying $|\operatorname{dom}(p)|_{\alpha}<\sigma 1 p(\alpha)$, we have
(i) For each $\eta<\alpha, h(\eta, \gamma, C, p) \leq \eta$ is defined.
(ii) The sequence $\{h(\eta, \gamma, C, p)\}_{\eta<\alpha}$ is nondecreasing.
(iii) There is a $\beta<\alpha$ such that

$$
\left.\beta=\lim _{\eta \rightarrow \alpha} h(\eta, \gamma, C, p)=h(\beta, \gamma, C, p)>\max \{\gamma, C, \sup C, p\}\right\}^{\dagger}
$$

and

$$
\begin{equation*}
\forall e \in \operatorname{ran}(p)\left(A_{e} \supseteq C \cup[\sup C, \beta) \leftrightarrow A_{e, \beta} \supseteq C \cup[\sup C, \beta)\right) . \tag{4.5}
\end{equation*}
$$

The rest of this section is devoted to the proof of Lemma 4.11.
An ordinal $\beta<\alpha$ is said to be pseudostable relative to the numbering $\left\{A_{e}\right\}_{e<\alpha}$, if $\beta=\lim _{\eta \rightarrow \alpha} h(\eta, \gamma, C, p)$ for some h, γ, C, p satisfying all the requirements in Lemma 4.11. Immediately from the definition, for any C, p as in Lemma 4.11, pseudostable ordinals $\left\{\lim _{\eta \rightarrow \alpha} h(\eta, \gamma, C, p): \gamma<\alpha\right\}$ are cofinal in α.

In the construction given in Section 4.2.4, Lemma 4.11 is applied as follows: the function p is an initial segment of the graph of a tame Σ_{2} projection from $t \sigma 2 p(\alpha)$ to α, γ is a stage such that all approximations related to the initial segment have reached their final limit, and C is an initial segment of the set to be constructed.

The method of proof of Lemma 4.11 consists of a Skolem hull argument below α with respect to the property (4.5) and, roughly speaking, coding the approximation of the Skolem hull construction into the enumeration of an α-r.e. subset with α cardinality less than $\sigma 1 p(\alpha)$. By Theorem 2.12 , the α-r.e. set is α-finite. Thus, its enumeration terminates before α. Consequently, the Skolem hull is also below α.

Skolem hull argument

From now on, γ, C, p are as in Lemma 4.11 and fixed. For each $n<\omega$, define the Skolem function

$$
\begin{aligned}
& z_{0}(\gamma, C, p)=\max \{\gamma, C, \sup C, p\}+1, \\
& z_{n+1}(\gamma, C, p)=\mu z \geq z_{n}(\gamma, C, p)\left(\forall e \in \operatorname { r a n } (p) \left(A_{e} \supseteq C \cup\left[\sup C, z_{n}(\gamma, C, p)\right) \rightarrow\right.\right. \\
& \left.A_{e, z} \supseteq C \cup\left[\sup C, z_{n}(\gamma, C, p)\right)\right) .
\end{aligned}
$$

[^3]To simply the notation, we suppress the parameters of $z_{n}(\gamma, C, p)$ unless the possibility of confusion arises. Note that $\left\{z_{n}: n<\omega\right\}$ may not be stable or pseudostable ordinals. In fact, later we will see that $\max _{n<\omega}^{*} z_{n}$ is a pseduostable ordinal.

Lemma 4.12. $\left\{z_{n}: n<\omega\right\} \subseteq \alpha$.
Proof. Since p is one-one, $|\operatorname{ran}(p)|_{\alpha}=|\operatorname{dom}(p)|_{\alpha}<\sigma 1 p(\alpha)$. Thus, any α-r.e. subset of $\operatorname{ran}(p)$ is α-finite, by Theorem 2.12 .

By induction on n, if $z_{n}<\alpha$, the set $\left\{e \in \operatorname{ran}(p): A_{e} \supseteq C \cup\left[\sup C, z_{n}\right)\right\}$ is α-finite. Hence $z_{n+1}<\alpha$ by Σ_{1} replacement. It follows that $\left\{z_{n}: n<\omega\right\} \subseteq \alpha$.

Lemma 4.13. $\forall n \forall \eta \geq z_{n+1} \forall e \in \operatorname{ran}(p)\left(A_{e} \supseteq C \cup\left[\sup C, z_{n}\right) \leftrightarrow A_{e, \eta} \supseteq C \cup\right.$ $\left.\left[\sup C, z_{n}\right)\right)$.

Proof. By the definition of z_{n+1} and the fact that $\left\{A_{e}\right\}_{e<\alpha}$ are α-r.e. sets.
Let $\beta(\gamma, C, p)=\max _{n<\omega}^{*} z_{n}(\gamma, C, p)$. Again, we suppress parameters of $\beta(\gamma, C, p)$ for simplicity.

Lemma 4.14. $\forall e \in \operatorname{ran}(p)\left(A_{e} \supseteq C \cup[\sup C, \beta) \leftrightarrow A_{e, \beta} \supseteq C \cup[\sup C, \beta)\right)$.
Proof. For any $e \in \operatorname{ran}(p)$,

$$
\begin{aligned}
& A_{e} \supseteq C \cup[\sup C, \beta) \\
\leftrightarrow & \forall n<\omega\left(A_{e} \supseteq C \cup\left[\sup C, z_{n}\right)\right) \\
\leftrightarrow & \forall n<\omega\left(A_{e, \beta} \supseteq C \cup\left[\sup C, z_{n}\right)\right) \quad \text { by Lemma 4.13 } \\
\leftrightarrow & A_{e, \beta} \supseteq C \cup[\sup C, \beta) . \square
\end{aligned}
$$

It will be shown later that $\beta<\alpha$. For the moment assume that this is true. To prove Lemma 4.11, it remains to define h by the approximation of $\left\{z_{n}\right\}_{n<\omega}$, so that $\beta=\lim _{\eta \rightarrow \alpha} h(\eta, \gamma, C, p)$.

At stage η, define the approximation of $\left\{z_{n}\right\}_{n<\omega}$ by induction on $n<\omega$ as follows:

$$
\begin{aligned}
z_{0, \eta}= & \min \left\{z_{0}, \eta\right\} \\
z_{n+1, \eta}= & \max \left\{\max _{\eta^{\prime}<\eta}^{*} z_{n+1, \eta^{\prime}}, \mu z \leq \eta\left[\left(z \geq z_{n, \eta}\right) \wedge\right.\right. \\
& \left.\left.\forall e \in \operatorname{ran}(p)\left(A_{e, \eta} \supseteq C \cup\left[\sup C, z_{n, \eta}\right) \rightarrow A_{e, z} \supseteq C \cup\left[\sup C, z_{n, \eta}\right)\right)\right]\right\} .
\end{aligned}
$$

In the definition of $z_{n+1, \eta}$, " $\max _{\eta^{\prime}<\eta}^{*} z_{n+1, \eta}$ " ensures that $z_{n+1, \eta}$ is nondecreasing with respect to η, and " $A_{e, \eta} \supseteq C \cup\left[\sup C, z_{n, \eta}\right) \rightarrow A_{e, z} \supseteq C \cup\left[\sup C, z_{n, \eta}\right)$ " is a Skolem hull construction.

Lemma 4.15. Suppose $n<\omega$. Then
(i) $\left\{z_{n, \eta}\right\}_{\eta<\alpha}$ is a nondecreasing sequence;
(ii) $\forall \eta\left(z_{n, \eta} \leq \min \left\{z_{n}, \eta\right\}\right)$;
(iii) $\forall \eta \geq z_{n}\left(z_{n, \eta}=z_{n}\right)$.

Proof. Clause (i) is immediate from the definition of $z_{n, \eta}$. Also from the definition of $z_{n, \eta}$, an induction on η shows $\forall \eta \forall n\left(z_{n, \eta} \leq \eta\right)$. Hence $\forall \eta<z_{n} \forall n\left(z_{n, \eta} \leq \min \left\{z_{n}, \eta\right\}\right)$. Therefore, to prove (ii), only (iii) needs to be shown.

Clause (iii) is proved by induction on n and η. We omit the details.
For any $\eta<\alpha$, define

$$
h(\eta, \gamma, C, p)=\max _{n<\omega}^{*} z_{n, \eta} .
$$

By Lemma 4.15

$$
\forall \eta \geq \beta(h(\eta, \gamma, C, p)=\beta)
$$

It is easy to check (i)-(iii) of Lemma 4.11. To complete the proof of Lemma 4.11, it remains only to verify that $\max _{n<\omega}^{*} z_{n}<\alpha$, i.e. $\beta<\alpha$. The following lemma deals with a special case and is straightforward to verify.

Lemma 4.16. If $z_{n+1}=z_{n}$, then $\forall m<\omega\left(m>n \rightarrow z_{m}=z_{n}\right)$.
Lemma 4.16 suggests that if $z_{n}=z_{n+1}$, for some $n<\omega$, then $\beta=\max _{m<\omega}^{*} z_{m}=$ $z_{n}<\alpha$. Thus, to show $\beta<\alpha$ in general, we only need to check the case when $\left\{z_{n}\right\}_{n<\omega}$ is strictly increasing. That case will be addressed in the coding part below.

Coding

Let γ, C, p be given and $\left\{z_{n}\right\}_{n<\omega}$ be defined as in previous part of Skolem hull argument. In this part, we always assume that $\left\{z_{n}\right\}_{n<\omega}$ is strictly increasing. Then it is immediate from the definition of z_{n} that

$$
\begin{equation*}
\forall n<\omega \exists e \in \operatorname{ran}(p)\left(A_{e} \supseteq C \cup\left[\sup C, z_{n}\right)\right) . \tag{4.6}
\end{equation*}
$$

With the above formula in mind, it is straightforward to code the approximation of β by enumerating (n, e) such that, (n, e) is enumerated at stage η if $A_{e, \eta} \supseteq$ $C \cup\left[\sup C, z_{n, \eta}\right)$. It is tempting to assume (mistakenly) that $z_{n+1, \eta}=z_{n+1}$ if and only if the (n, e)'s have completed their enumeration at stage η. Nevertheless, in that event, the enumeration of (n, e) 's may terminate before the enumeration of some (m, e^{\prime}), $m<n$, due to the approximation of z_{n} and $z_{m}, m<n$. The trick to cover this possibility is to incorporate the enumeration of the (m, e^{\prime})'s, for all $m<n$, in the enumeration of the (n, e)'s: Suppose at stage $\eta, A_{e, \eta} \supseteq C \cup\left[\sup C, z_{n, \eta}\right)$. Then $\left(n, e_{0}, e_{1}, \ldots, e_{n}\right)$ is enumerated if $\left(n-1, e_{0}, e_{1}, \ldots, e_{n-1}\right)$ is enumerated by stage η. Then for $n>0$, the enumeration of the ($n, e_{0}, e_{1}, \ldots, e_{n}$)'s does not terminate whenever some $\left(n-1, e_{0}^{\prime}, e_{1}^{\prime}, \ldots, e_{n-1}^{\prime}\right)$ is yet to be enumerated.

More precisely, define an α-r.e. set $D \subseteq \bigcup_{n<\omega}\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right)$ as follows, where

$$
\bigcup_{n<\omega}\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right)=\left\{\left(n, e_{0}, e_{1}, \ldots, e_{n}\right): n<\omega, e_{0}, e_{1}, \ldots, e_{n} \in \operatorname{ran}(p)\right\} .
$$

Suppose $\eta<z_{0}$. Then let $D_{\eta}=\emptyset$.
At stage $\eta \geq z_{0}$, the enumeration of D_{η} is carried out in ω steps. Let

$$
D_{\eta, 0}=\left(\bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}}\right) \cup\left\{(0, e): e \in \operatorname{ran}(p) \wedge A_{e, \eta} \supseteq C \cup\left[\sup C, z_{0}\right)\right\}
$$

and if $n>0$,

$$
\begin{aligned}
& D_{\eta, n}=\left(\bigcup_{m<n} D_{\eta, m}\right) \cup\left\{\left(n, e_{0}, e_{1}, \ldots, e_{n}\right): e_{0}, e_{1}, \ldots, e_{n} \in \operatorname{ran}(p) \wedge\right. \\
& \left.\qquad A_{e_{n}, \eta} \supseteq C \cup\left[\sup C, z_{n, \eta}\right) \wedge\left(n-1, e_{0}, e_{1}, \ldots, e_{n-1}\right) \in D_{\eta, n-1}\right\} . \\
& D_{\eta}=\bigcup_{n<\omega} D_{\eta, n} .
\end{aligned}
$$

Then let $D=\bigcup_{\eta<\alpha} D_{\eta}$.
Lemma 4.17. If $n>0,\left(n-1, e_{0}, e_{1}, \ldots, e_{n-1}\right) \in D$ and $A_{e_{n}} \supseteq C \cup\left[\sup C, z_{n}\right)$, then $\left(n, e_{0}, e_{1}, \ldots, e_{n}\right) \in D$.

Proof. Let $\eta>z_{n}$ be large enough such that $\left(n-1, e_{0}, e_{1}, \ldots, e_{n-1}\right) \in D_{\eta}$, and $C \cup\left[\sup C, z_{n}\right) \subseteq A_{e_{n}, \eta}$. Since $\eta>z_{n}$, we have $z_{n, \eta}=z_{n}$. Thus, $\left(n, e_{0}, e_{1}, \ldots, e_{n}\right) \in$ D_{η}.

Lemma 4.18. For any $n<\omega$ and $\eta<\alpha$,

$$
\begin{equation*}
\eta \geq z_{n+1} \leftrightarrow D_{\eta} \upharpoonright\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right)=D \upharpoonright\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right) . \tag{4.7}
\end{equation*}
$$

Proof. The lemma is proved by induction on n.
Let $n=0$. By the definition of D_{η}, for all $e \in \operatorname{ran}(p)$ and $\eta<\alpha$,

$$
(0, e) \in D_{\eta} \leftrightarrow\left(\eta \geq z_{0} \wedge A_{e, \eta} \supseteq C \cup\left[\sup C, z_{0}\right)\right) .
$$

Thus, for any $e \in \operatorname{ran}(p)$,

$$
(0, e) \in D \leftrightarrow A_{e} \supseteq C \cup\left[\sup C, z_{0}\right),
$$

According to 4.6, $D \upharpoonright(\{0\} \times \operatorname{ran}(p)) \neq \emptyset$. Therefore,

$$
D \upharpoonright(\{0\} \times \operatorname{ran}(p))=D_{\eta} \upharpoonright(\{0\} \times \operatorname{ran}(p)) \rightarrow \eta \geq z_{1} .
$$

The other direction of (4.7) for $n=0$ is immediate from the definition of z_{1}.
With the intention of showing (4.7) when $n>0$, assume that (4.7) is true for $0, \ldots, n-1$. Pick any $\eta<\alpha$. We consider three cases.

Case 1. $\eta<z_{n}$. Since (4.7) is true for $n-1$, let $\left(n-1, e_{0}, e_{1}, \ldots, e_{n-1}\right) \in$ $D \backslash D_{\eta}$. Let $e_{n} \in \operatorname{dom}(p)$ be any index such that $A_{e_{n}} \supseteq C \cup\left[\sup C, z_{n}\right)$. Then $\left(n, e_{0}, e_{1}, \ldots, e_{n}\right) \in D \backslash D_{\eta}$. Hence $D_{\eta} \upharpoonright\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right) \neq D \upharpoonright\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right)$.

Case 2. $z_{n} \leq \eta<z_{n+1}$. Then $z_{n, \eta}=z_{n}$ and by the definition of z_{n+1}, there is some $e_{n} \in \operatorname{ran}(p)$ such that $A_{e_{n}} \supseteq C \cup\left[\sup C, z_{n}\right)$ but $A_{e_{n}, \eta} \nsupseteq C \cup\left[\sup C, z_{n}\right)$. Let $x \in C \cup\left[\sup C, z_{n}\right) \backslash A_{e_{n}, \eta}$. Since $z_{n}>\sup C$, we have $x<z_{n}$.

Subcase 2.1. there exists $\left(n-1, e_{0}, e_{1}, \ldots, e_{n-1}\right) \in D \backslash \bigcup_{\eta^{\prime}<z_{n}} D_{\eta^{\prime}}$. Then
(i) Since $\left(n-1, e_{0}, e_{1}, \ldots, e_{n-1}\right) \notin \bigcup_{\eta^{\prime}<z_{n}} D_{\eta^{\prime}},\left(n, e_{0}, e_{1}, \ldots, e_{n}\right) \notin \bigcup_{\eta^{\prime}<z_{n}} D_{\eta^{\prime}}$;
(ii) For any δ such that $z_{n} \leq \delta \leq \eta$, we have $\left(n, e_{0}, e_{1}, \ldots, e_{n}\right) \notin D_{\delta} \backslash \bigcup_{\delta^{\prime}<\delta} D_{\delta^{\prime}}$, as $A_{e_{n}, \delta} \nsupseteq C \cup\left[\sup C, z_{n}\right)$ and $z_{n}=z_{n, \delta}$.

Thus, $\left(n, e_{0}, e_{1}, \ldots, e_{n}\right) \in D \backslash D_{\eta}$. Hence $D_{\eta} \upharpoonright\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right) \neq D \upharpoonright(\{n\} \times$ $\left.\operatorname{ran}(p)^{n+1}\right)$ 。

Subcase 2.2. Subcase 2.1 fails. Then we claim that $\max _{\eta^{\prime}<z_{n}}^{*} z_{n, \eta^{\prime}}=z_{n}$. It will be proved in a moment. For now assume the claim and let $\eta^{\prime}<z_{n}$ be such that $z_{n, \eta^{\prime}}>x$. Since $\eta^{\prime}<z_{n}$, there is $\left(n-1, e_{0}, e_{1}, \ldots, e_{n-1}\right) \in D \backslash D_{\eta^{\prime}}$. Therefore,
(i) If $\delta \leq \eta^{\prime}$, then $\left(n, e_{0}, e_{1}, \ldots, e_{n}\right) \notin D_{\delta}$ since $\left(n-1, e_{0}, e_{1}, \ldots, e_{n-1}\right) \notin D_{\delta}$;
(ii) If $\eta^{\prime}<\delta \leq \eta$, then $z_{n, \delta}>x$ and $x \in C \cup\left[\sup C, z_{n, \delta}\right) \backslash A_{e_{n}, \delta}$. Therefore, $A_{e_{n}, \delta} \nsupseteq C \cup\left[\sup C, z_{n, \delta}\right)$ and $\left(n, e_{0}, e_{1}, \ldots, e_{n}\right) \notin D_{\delta} \backslash \bigcup_{\delta^{\prime}<\delta} D_{\delta^{\prime}}$.

Thus, $\left(n, e_{0}, e_{1}, \ldots, e_{n}\right) \in D \backslash D_{\eta}$. Hence $D_{\eta} \upharpoonright\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right) \neq D \upharpoonright(\{n\} \times$ $\left.\operatorname{ran}(p)^{n+1}\right)$ 。

Case 3. $\eta \geq z_{n+1}$. One can see immediately that $z_{n, \eta}=z_{n}=z_{n, z_{n+1}}$. Suppose $A_{e_{n}, \eta} \supseteq C \cup\left[\sup C, z_{n, \eta}\right)$ and $\left(n-1, e_{0}, e_{1}, \ldots, e_{n-1}\right) \in D_{\eta, n-1}$. Then, by the definition of $z_{n+1}, A_{e_{n}, z_{n+1}} \supseteq C \cup\left[\sup C, z_{n, z_{n+1}}\right)$ and by (4.7) for $n-1,\left(n-1, e_{0}, e_{1}, \ldots, e_{n-1}\right) \in$ $D_{z_{n+1}}$. Thus, $\left(n, e_{0}, e_{1}, \ldots, e_{n}\right) \in D_{z_{n+1}}$. Hence $D_{\eta} \upharpoonright\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right)=D_{z_{n+1}} \upharpoonright$ $\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right)=D \upharpoonright\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right)$.

Finally, in Subcase 2.2, to see $\max _{\eta^{\prime}<z_{n}}^{*} z_{n, \eta^{\prime}}=z_{n}$, assume for a contradiction that $M=\max \left\{z_{n-1}, \max _{\eta^{\prime}<z_{n}}^{*} z_{n, \eta^{\prime}}\right\}<z_{n}$. Then there exists $\left(n-1, e_{0}^{*}, e_{1}^{*}, \ldots, e_{n-1}^{*}\right) \in$ $D \backslash D_{M}$. Let δ be the first stage that $\left(n-1, e_{0}^{*}, e_{1}^{*}, \ldots, e_{n-1}^{*}\right)$ is enumerated into D. Then by (4.7) for $n-1$ and the assumption of Subcase 2.2, we conclude $M<\delta<z_{n}$. Now
(a) If $n=1$, then $z_{0} \leq M<\delta<z_{1}$ and $\left(0, e_{0}^{*}\right) \in D_{\delta} \backslash D_{M}$. Since $\left(0, e_{0}^{*}\right) \in D_{\delta}$, by the definition of $D_{\delta}, A_{e_{0}^{*}, \delta} \supseteq C \cup\left[\sup C, z_{0}\right)$. Then by the definition of $z_{1, \delta}$, $A_{e_{0}^{*}, z_{1, \delta}} \supseteq C \cup\left[\sup C, z_{0}\right)=C \cup\left[\sup C, z_{0, \delta}\right)$. Therefore, $A_{e_{0}^{*}, M} \supseteq C \cup\left[\sup C, z_{0}\right)$ and $\left(0, e_{0}^{*}\right) \in D_{M}$, a contradiction.
(b) If $n \geq 2$, then $z_{n-1} \leq M<\delta<z_{n}$ and $\left(n-1, e_{0}^{*}, e_{1}^{*}, \ldots, e_{n-1}^{*}\right) \in D_{\delta} \backslash \bigcup_{\delta^{\prime}<\delta} D_{\delta^{\prime}}$. By definition of $D_{\delta}, A_{e_{n-1}^{*}, \delta} \supseteq C \cup\left[\sup C, z_{n-1, \delta}\right)=C \cup\left[\sup C, z_{n-1}\right)=C \cup$ $\left[\sup C, z_{n-1, M}\right)$ and $\left(n-2, e_{0}^{*}, e_{1}^{*}, \ldots, e_{n-2}^{*}\right) \in D_{\delta}$. Similar to the proof in (a), we have

$$
A_{e_{n-1}^{*}, M} \supseteq C \cup\left[\sup C, z_{n-1, M}\right) .
$$

And by 4.7) for $n-2,\left(n-2, e_{0}^{*}, e_{1}^{*}, \ldots, e_{n-2}^{*}\right) \in D_{M}$. Thus, $\left(n-1, e_{0}^{*}, e_{1}^{*}, \ldots\right.$, $\left.e_{n-1}^{*}\right)$ is in D_{M}, again a contradiction.

Corollary 4.19. For any $\eta<\alpha$,

$$
\eta \geq \beta \leftrightarrow D_{\eta}=D
$$

The next task to show that D is α-finite.
Lemma 4.20. Every α-r.e. subset of $\bigcup_{n<\omega}\left(\{n\} \times \operatorname{ran}(p)^{n+1}\right)$ is α-finite.

Proof. Let $\kappa=\max \left\{|\operatorname{dom}(p)|_{\alpha}, \omega\right\}$. Since $|\operatorname{dom}(p)|_{\alpha}, \omega<\sigma 1 p(\alpha)$, we have $\kappa<$ $\sigma 1 p(\alpha)$. Since p is one-one, it follows immediately that $|\operatorname{ran}(p)|_{\alpha} \leq \kappa$. Therefore, $\left|\{n\} \times \operatorname{ran}(p)^{n+1}\right|_{\alpha} \leq \kappa$ for all $n<\omega$. Furthermore, the α-finite bijections from $\{n\} \times \operatorname{ran}(p)^{n+1}$ to κ may be defined uniformly for all $n<\omega$. Hence $\mid \bigcup_{n<\omega}(\{n\} \times$ $\left.\operatorname{ran}(p)^{n+1}\right)\left.\right|_{\alpha} \leq \kappa<\sigma 1 p(\alpha)$ and the lemma follows by Theorem 2.12,

Lemma 4.19 and 4.20 combine to imply that D is α-finite. Hence
Lemma 4.21. $\max _{n<\omega}^{*} z_{n}<\alpha$, i.e. $\beta<\alpha$.
Observe at this point that Lemma 4.11 holds whenever $\sigma 1 p(\alpha)>\omega$. Since no restriction on the numbering is required, if $\sigma 1 p(\alpha)>\omega$, then Lemma 4.11 is applicable for any type of numberings. In particular, Lemma 4.11 is also true for a Gödel numbering when $\sigma 1 p(\alpha)>\omega$. Notice that a Gödel numbering exists in L_{α} for all Σ_{1} admissible ordinal α. Thus, in general, the nonexistence of a Friedberg numbering when $t \sigma 2 p(\alpha)>\sigma 2 c f(\alpha)$ (See Section 4.2.4) is not due to the existence of pseudostable ordinals.

4.2.4 When $t \sigma 2 p(\alpha)>\sigma 2 c f(\alpha)$

In this section, we prove
Theorem 4.22. If $\operatorname{ta} 2 p(\alpha)>\sigma 2 c f(\alpha)$, then there is no Friedberg numbering of $\alpha-r . e . s e t s$.

Since $t \sigma 2 p(\alpha)>\sigma 2 c f(\alpha)$, by Clause (1) of Corollary 2.15, $\omega<\sigma 1 p(\alpha)$ and $\sigma 2 c f(\alpha)<\alpha$. Therefore, in this situation, the notion of pseudostability is applicable and Σ_{2} replacement fails.

Let $\left\{A_{e}\right\}_{e<\alpha}$ be a one-one numbering, and let h be an α-recursive function satisfying Lemma 4.11. The objective is to construct an α-r.e. set X, so that $X \notin\left\{A_{e}\right\}_{e<\alpha}$. Thus, $\left\{A_{e}\right\}_{e<\alpha}$ is not a Friedberg numbering.

Fix the terminology as follows. Let

$$
g: \operatorname{t\sigma } 2 p(\alpha) \xrightarrow[\text { onto }]{\text { one-one }} \alpha
$$

be a tame Σ_{2} projection, and according to Lemma 2.14 and Clause (2) of Corollary 2.15, let

$$
f: \sigma 2 c f(\alpha) \rightarrow t \sigma 2 p(\alpha)
$$

be a strictly increasing tame Σ_{2} cofinal function so that $f(0)=0$. Moreover, assume $f^{\prime}: \alpha \times \sigma 2 c f(\alpha) \rightarrow t \sigma 2 p(\alpha), g^{\prime}: \alpha \times t \sigma 2 p(\alpha) \rightarrow \alpha$ tamely generate f and g respectively. As in Section 4.2.2, f_{η}, g_{η} will be used to denote functions $\lambda x\left(f^{\prime}(\eta, x)\right)$ and $\lambda x\left(g^{\prime}(\eta, x)\right)$. Moreover, we assume that for all $\eta<\alpha, f_{\eta}$ is nondecreasing and $\operatorname{ran}\left(f_{\eta}\right), \operatorname{ran}\left(g_{\eta}\right) \subseteq[0, \eta]$.

Strategy

As in Section 4.2.2, g makes it possible to arrange the indices of $\left\{A_{e}\right\}_{e<\alpha}$ on $t \sigma 2 p(\alpha)$. The function f partitions $t \sigma 2 p(\alpha)$ into $\sigma 2 c f(\alpha)$ many blocks: $\{[f(i), f(i+1)): i<$ $\sigma 2 c f(\alpha)\}$. $[f(i), f(i+1))$) is said to be the $i^{\text {th }}$ block (or block i) of t $\sigma 2 p(\alpha)$. By α-r.e. sets in the $i^{\text {th }}$ block (or α-r.e. sets in block i), we mean the α-r.e. sets are from the collection $\left\{A_{e}: g(e) \in[f(i), f(i+1))\right\}$. Since the numbering $\left\{A_{e}\right\}_{e<\alpha}$ is one-one, each α-r.e. set is in at most one block. The set X is constructed by diagonalizing against α-r.e. sets in each block.

Suppose $i<\sigma 2 c f(\alpha), \gamma<\alpha, C \subset \alpha$ is an α-finite set, and $\beta=\beta(\gamma, C, g \upharpoonright f(i))$ is the pseudostable ordinal obtained in Lemma 4.11 when $p=g \upharpoonright f(i)$, i.e.

$$
\beta=\lim _{\eta \rightarrow \alpha} h(\eta, \gamma, C, g \upharpoonright f(i)),
$$

and $X \upharpoonright \beta=C \cup[\sup C, \beta)$. Then it follows from Lemma 4.11 that

$$
\begin{equation*}
\forall e \in \operatorname{ran}(g \upharpoonright f(i))\left(A_{e} \supseteq X \upharpoonright \beta \leftrightarrow A_{e, \beta} \supseteq X \upharpoonright \beta\right) \tag{4.8}
\end{equation*}
$$

Since $\left\{A_{e}\right\}_{e<\alpha}$ is a one-one numbering, there is at most one e in the range of $g \upharpoonright f(i)$ such that $A_{e}=X \upharpoonright \beta$. Therefore, by (4.8), the set $\left\{e \in \operatorname{ran}(g \upharpoonright f(i)): A_{e} \supsetneq X \upharpoonright \beta\right\}$ is α-finite. According to Σ_{1} replacement, let $u \geq \beta$ be such that

$$
\begin{equation*}
\forall e \in \operatorname{ran}(g \upharpoonright f(i))\left(A_{e} \supsetneq X \upharpoonright \beta \leftrightarrow A_{e, u} \supsetneq X \upharpoonright \beta\right) . \tag{4.9}
\end{equation*}
$$

Now suppose e is in the range of $g \upharpoonright f(i)$, then
(i) if $A_{e} \nsupseteq X \upharpoonright \beta$, then there is a least $w<\beta$ such that $A_{e}(w) \neq X(w)$;
(ii) if $A_{e} \supseteq X \upharpoonright \beta$, then either $A_{e}=X \upharpoonright \beta$ or $A_{e, u} \supsetneq X \upharpoonright \beta$.

Thus, to diagonalize against A_{e} in block j for all $j<i$ (i.e. $e \in \operatorname{ran}(g \upharpoonright f(i))$), it suffices to define $X \upharpoonright(u+1)=C \cup[\sup C, \beta) \cup\{u\}$. In our construction, X is defined by iterating this strategy through $i<\sigma 2 c f(\alpha)$.

This strategy may be converted to an effective one, largely because f, g and h are effectively and tamely approximated. The only difficulty concerns obtaining a nice recursive approximation of u in (4.9) (notice that the intention is to make $X \upharpoonright[\beta, u)=\emptyset)$. A recursive approximation of u requires information regarding $I_{\beta, i}=\left\{e \in \operatorname{ran}(g \upharpoonright f(i)): A_{e} \supsetneq X \upharpoonright \beta\right\}$. Lemma 2.13 and Lemma 4.11 provide a way around this difficulty. Notice that a correct guess of the set $I_{\beta, i}^{\prime}=\{e \in \operatorname{ran}(g \upharpoonright$ $\left.f(i)): A_{e} \supseteq X \upharpoonright \beta\right\}$ is obtained from stage β onwards. Thus, only a coding of the existence of an A_{e} which is equal to $X \upharpoonright \beta$, where e is in the range of $g \upharpoonright f(i)$, is needed to determine $I_{\beta, i}$: if such an A_{e} exists, then $I_{\beta, i}$ is obtained by enumerating all $e \in I_{\beta, i}^{\prime}$ such that $A_{e} \supsetneq X \upharpoonright \beta$ until only one index in $I_{\beta, i}^{\prime}$ remains to be enumerated; if no such A_{e} exists, then $I_{\beta, i}=I_{\beta, i}^{\prime}$. As will be seen in a moment, the coding is tame Σ_{2} and hence, by Lemma 2.13, is α-finite.

The above strategy is an analogue of that in $B \Sigma_{2}$ models. The difference between the two constructions mainly arises from the upper bound established in the constructions. In $B \Sigma_{2}$ models, it is an upper bound of the least differences between any pair of r.e. sets in some blocks; in L_{α}, since Σ_{2} replacement fails, the upper bound is only for the least differences between X and the α-r.e. sets in some α-finite part of the numbering.

Construction

X is first constructed recursively in \emptyset^{\prime} by induction through $\sigma 2 c f(\alpha)$ with the intention of coding the existence of A_{e} such that A_{e} is equal to $X \upharpoonright \beta_{i}$, where e is in the range of $g \upharpoonright f(i), i<\sigma 2 c f(\alpha)$, and β_{i} is a pseudostable ordinal specified below.

Let $i<\sigma 2 c f(\alpha)$. Suppose for all $j<i$, the values of $\gamma_{j}, \beta_{j}, u_{j}, X[j]$ and $G(j)$ have been defined. For i, the values of $\gamma_{i}, \beta_{i}, u_{i}, X[i]$ and $G(i)$ are defined as follows.

Stage γ_{i} is defined to be a stage such that the approximation of f below $i+1$ and the approximation of g below $f(i)+1$ have reached their limits from stage γ_{i} onwards:

$$
\begin{aligned}
\gamma_{i}=\max \left\{\mu \zeta \left(\forall \zeta^{\prime} \geq \zeta(\right.\right. & \left.\left.f_{\zeta^{\prime}} \upharpoonright(i+1)=f \upharpoonright(i+1)\right)\right), \\
& \mu \zeta\left(\forall \zeta^{\prime} \geq \zeta\left(g_{\zeta^{\prime}} \upharpoonright(f(i)+1)=g \upharpoonright(f(i)+1)\right)\right\} .
\end{aligned}
$$

Let C_{i} be $\bigcup_{j<i} X[j]$. If C_{i} is α-finite, then let β_{i} be the pseudostable
ordinal obtained in Lemma 4.11 when $\gamma=\gamma_{i}, C=C_{i}$, and $p=g \upharpoonright f(i)$, i.e.

$$
\beta_{i}=\lim _{\zeta \rightarrow \alpha} h\left(\zeta, \gamma_{i}, C_{i}, g \upharpoonright f(i)\right) .
$$

If C_{i} is not α-finite, then β_{i}, together with ordinals defined below u_{i}, X_{i} and $G(i)$, is undefined. It will follow from Lemma 4.23 that C_{i} is α-finite for all $i<\sigma 2 c f(\alpha)$.

The pseudostable ordinal β_{i} together with an upper bound u_{i} defined below will be applied to diagonalize A_{e} in block j for all $j<i$. Intuitively, the upper bound u_{i} is a stage at which all α-r.e. sets with indices in the range of $g \upharpoonright f(i)$ containing $C_{i} \cup\left[\sup C_{i}, \beta_{i}\right)$ as a proper subset have been enumerated. More precisely, we define

$$
\begin{aligned}
& u_{i}=\mu u \geq \beta_{i}[\forall e \in \operatorname{ran}(g \upharpoonrightf(i))\left(A_{e} \supsetneq C_{i} \cup\left[\sup C_{i}, \beta_{i}\right)\right. \\
&\left.\left.\rightarrow A_{e, u} \supsetneq C_{i} \cup\left[\sup C_{i}, \beta_{i}\right)\right)\right] .
\end{aligned}
$$

$X[i]$ is defined to be an end extension of C_{i} using β_{i} and u_{i} as parameters with the intention of diagonalizing A_{e} in block j for all $j<i$:

$$
X[i]=C_{i} \cup\left[\sup C_{i}, \beta_{i}\right) \cup\left\{u_{i}\right\} .
$$

X succeeds in diagonalizing A_{e} in a block j for all $j<i$ if X is an end extension of $X[i]$, for the reason shown in the part of the strategy.
$G(i)$ is defined below to provide the desired code of the existence of A_{e} in a block $j<i$ such that A_{e} is identical with $C_{i} \cup\left[\sup C_{i}, \beta_{i}\right)$, i.e.

$$
G(i)= \begin{cases}1 & \text { if } \exists e \in \operatorname{ran}(g \upharpoonright f(i))\left(A_{e}=C_{i} \cup\left[\sup C_{i}, \beta_{i}\right)\right), \\ 0 & \text { otherwise }\end{cases}
$$

$G(i)$ will be a parameter of the recursive approximation of u_{i} as shown in the section we described the strategy. We review the idea briefly in the following.

For the rest of this paragraph we only consider A_{e} 's such that e is in the range of $g \upharpoonright f(i)$. Also for simplicity, let Υ_{i} denote the α-finite set $C_{i} \cup\left[\sup C_{i}, \beta_{i}\right)$. Since β_{i} is pseudostable, whether A_{e} contains Υ_{i} as a subset is determined at stage β_{i}. If $G(i)=0$, then all A_{e} containing Υ_{i}
as a subset will contain Υ_{i} as a proper subset. Therefore when $G(i)=0$, to determine u_{i}, one only needs to wait until each A_{e} containing Υ_{i} as a subset at stage β_{i} has enumerated an element not in Υ_{i}. If $G(i)=1$, then all but one A_{e} containing Υ_{i} as a subset would contain Υ_{i} as a proper subset. Thus when $G(i)=1$, to determine u_{i}, one only needs to wait until all but one A_{e} containing Υ_{i} as a subset at stage β_{i} has enumerated an element not in Υ_{i}.

Lemma 4.23. The function $q: i \mapsto\left(\gamma_{i}, \beta_{i}, u_{i}, X[i], G(i)\right)$ is tame Σ_{2} and has domain $\sigma 2 c f(\alpha)$.

Proof. Suppose $\delta=\operatorname{dom}(q) \leq \sigma 2 c f(\alpha)$. Notice that
(i) f, g are tame Σ_{2};
(ii) For every $i<\delta$ and $\zeta \geq \beta_{i}, h\left(\zeta, \gamma_{i}, C_{i}, g \upharpoonright f(i)\right)=\beta_{i}$, where $C_{i}=\bigcup_{j<i} X[j]$, i.e. the approximation to β_{i} reaches its limit at stage β_{i} and does not change thereafter;
(iii) For every $i<\delta$, by Lemma 4.11 and definitions of β_{i} and u_{i},

$$
\begin{aligned}
& G(i)=0 \leftrightarrow \\
& \quad \forall e \in \operatorname{ran}(g \upharpoonright f(i))\left(A_{e, \beta_{i}} \supseteq C_{i} \cup\left[\sup \left(C_{i}, \beta_{i}\right) \rightarrow A_{e, u_{i}} \supsetneq C_{i} \cup\left[\sup C_{i}, \beta_{i}\right)\right) .\right.
\end{aligned}
$$

Now it is straightforward to verify that the function q is Σ_{2}.
Moreover, q can be viewed as a (partial) function on $\sigma 2 c f(\alpha)$. Since Lemma 2.14 implies that q is tame Σ_{2}, we have $q \upharpoonright a$ is α-finite, whenever $a \leq t \sigma 2 p(\alpha)$.

For the sake of contradiction, assume $\delta<\sigma 2 c f(\alpha)$. Then $q \upharpoonright \delta$ and C_{δ} are α finite. This implies that γ_{δ} and β_{δ} are defined. Since $f(\delta)<t \sigma 2 p(\alpha) \leq \sigma 1 p(\alpha)$ and g is a tame Σ_{2} one-one function, by Theorem 2.12, each α-r.e. subset of $\operatorname{ran}(g \upharpoonright f(\delta))$ is α-finite. Hence

$$
\left\{e \in \operatorname{ran}(g \upharpoonright f(\delta)): A_{e} \supsetneq C_{\delta} \cup\left[\sup C_{\delta}, \beta_{\delta}\right)\right\}
$$

is α-finite. Thus, u_{δ} is well defined by Σ_{1} replacement, and so are $X[\delta]$ and $G(\delta)$, a contradiction.

Lemma 4.24. $G: \sigma 2 c f(\alpha) \rightarrow\{0,1\}$ is α-finite.
Proof. By Lemma 4.23, $\{i<\sigma 2 c f(\alpha): G(i)=1\}$ is tame Σ_{2}. Since $\sigma 2 c f(\alpha)<$ $t \sigma 2 p(\alpha)$, according to Lemma 2.13, G is α-finite.

Let

$$
X=\bigcup_{i<\sigma 2 c f(\alpha)} X[i] .
$$

Lemma 4.25. $X \notin\left\{A_{e}\right\}_{e<\alpha}$.
Proof. Assume $X \in\left\{A_{e}\right\}_{e<\alpha}$ for a contradiction. Since f is cofinal and g is onto, there is $i<\sigma 2 c f(\alpha)$ and $e \in \operatorname{ran}(g \upharpoonright f(i))$ such that $X=A_{e}$. Let Υ_{i} denote the α-finite set $\left(\bigcup_{j<i} X[j]\right) \cup\left[\sup \left(\bigcup_{j<i} X[j]\right), \beta_{i}\right)$ for simplicity.

Observe that for every $i^{\prime}>i, X\left[i^{\prime}\right]$ is an end extension of $X[i]$. Hence

$$
\Upsilon_{i}=X \upharpoonright u_{i}=A_{e} \upharpoonright u_{i} .
$$

Since $X \supsetneq \Upsilon_{i}$, it follows from the definition of u_{i} that $A_{e, u_{i}} \supsetneq \Upsilon_{i}$. But notice that $A_{e, u_{i}} \subseteq A_{e} \upharpoonright u_{i}=\Upsilon_{i}$, a contradiction.

Verifying that X is α-r.e.

Lemma 4.25 states that X is not in the numbering $\left\{A_{e}\right\}_{e<\alpha}$. To see that $\left\{A_{e}\right\}_{e<\alpha}$ is not a universal numbering, we only need to show that X is α-r.e. We will effectively reconstruct the set X as an α-r.e. set using the α-finite code G as a parameter.

Again, let C_{i}, Υ_{i} denote $\bigcup_{j<i} X[j]$ and $\left(\bigcup_{j<i} X[j]\right) \cup\left[\sup \left(\bigcup_{j<i} X[j]\right), \beta_{i}\right)$ respectively for simplicity. Note that by Lemma 4.11, for any $e \in \operatorname{ran}(g \upharpoonright f(i)), A_{e}$ contains Υ_{i} if and only if Υ_{i} is enumerated into A_{e} by stage β_{i}. Moreover, at most one $e \in \operatorname{ran}(g \upharpoonright f(i))$ satisfies $A_{e}=\Upsilon_{i}$. And by the definition of G, such an e exists if and only if $G(i)=1$. These observations yield an alternative definition of u_{i} with parameter G :

$$
\begin{align*}
u_{i}=\mu u \geq \beta_{i}[G(i)=0 & \rightarrow \forall e \in \operatorname{ran}(g \upharpoonright f(i))\left(A_{e, \beta_{i}} \supseteq \Upsilon_{i} \rightarrow A_{e, u} \supsetneq \Upsilon_{i}\right) \\
& \left.\wedge G(i)=1 \rightarrow \forall \geq 1 e \in \operatorname{ran}(g \upharpoonright f(i))\left(A_{e, \beta_{i}} \supseteq \Upsilon_{i} \rightarrow A_{e, u} \supsetneq \Upsilon_{i}\right)\right] . \tag{4.10}
\end{align*}
$$

Here, by " ${ }^{\geq 1} e \in C$ ", where C is any α-finite set, we mean " $\exists e_{0} \in C \forall e \in C \backslash\left\{e_{0}\right\}$ ". Definition (4.10) implies that u_{i} is α-recursively defined by $\beta_{i}, g \upharpoonright f(i)$ and C_{i}.

At each stage $\eta<\alpha$, the approximation of $\{X[i]\}_{i<\sigma 2 c f(\alpha)}$ inductively for $i<$ $\sigma 2 c f(\alpha)$ is given as follows.

Stage $\gamma_{i, \eta}$ is defined to be a stage not exceeding η such that the approximation of f below $i+1$ and approximation of g below $f_{\eta}(i)+1$ have attained their values at stage η and do not change thereafter until stage η :

$$
\begin{align*}
\gamma_{i, \eta}=\max \{\mu \zeta & \leq \eta\left(\forall \zeta^{\prime} \in[\zeta, \eta]\left(f_{\zeta^{\prime}} \upharpoonright(i+1)=f_{\eta} \upharpoonright(i+1)\right)\right), \tag{4.11}\\
\mu \zeta & \left.\leq \eta\left(\forall \zeta^{\prime} \in[\zeta, \eta]\left(g_{\zeta^{\prime}} \upharpoonright\left(f_{\eta}(i)+1\right)=g_{\eta} \upharpoonright\left(f_{\eta}(i)+1\right)\right)\right)\right\}
\end{align*}
$$

Let $C_{i, \eta}$ be $\bigcup_{j<i} X_{\eta}[j]$. Pseudostable ordinal β_{i} is approximated via the function h, i.e.

$$
\beta_{i, \eta}=h\left(\eta, \gamma_{i, \eta}, C_{i, \eta}, g_{\eta} \upharpoonright f_{\eta}(i)\right)
$$

An upper bound $u_{i, \eta}<\eta$ is defined by substituting $\beta_{i, \eta}, g_{\eta}, f_{\eta}, X_{\eta}[j]$ for $\beta_{i}, g, f, X[j]$ respectively and restricting u to the set $\left[\sup C_{i, \eta}, \eta\right)$ in (4.10): Let $\Upsilon_{i, \eta}$ denote $C_{i, \eta} \cup\left[\sup C_{i, \eta}, \beta_{i, \eta}\right)$. Then

$$
\begin{aligned}
u_{i, \eta}= & \mu u \geq \beta_{i, \eta}\left[\left(u \geq \sup C_{i, \eta} \wedge(u<\eta) \wedge\right.\right. \\
& G(i)=0 \rightarrow \forall e \in \operatorname{ran}\left(g_{\eta} \upharpoonright f_{\eta}(i)\right)\left(A_{e, \beta_{i, \eta}} \supseteq \Upsilon_{i, \eta} \rightarrow A_{e, u} \supsetneq \Upsilon_{i, \eta}\right) \wedge \\
& \left.G(i)=1 \rightarrow \forall^{\geq 1} e \in \operatorname{ran}\left(g_{\eta} \upharpoonright f_{\eta}(i)\right)\left(A_{e, \beta_{i, \eta}} \supseteq \Upsilon_{i, \eta} \rightarrow A_{e, u} \supsetneq \Upsilon_{i, \eta}\right)\right] .
\end{aligned}
$$

For some $\eta, u_{i, \eta}$ may be undefined.
Now define

$$
X_{\eta}[i]= \begin{cases}\Upsilon_{i, \eta} \cup\left\{u_{i, \eta}\right\} & \text { if for each } j \leq i, u_{j, \eta} \text { is defined } \\ \emptyset & \text { otherwise }\end{cases}
$$

Lemma 4.26. Suppose $i<\sigma 2 c f(\alpha)$. Then

$$
\lim _{\eta \rightarrow \alpha}\left(\gamma_{i, \eta}, \beta_{i, \eta}, u_{i, \eta}, X_{\eta}[i]\right)=\left(\gamma_{i, \eta_{0}}, \beta_{i, \eta_{1}}, u_{i, \eta_{2}}, X_{\eta_{2}}[i]\right)=\left(\gamma_{i}, \beta_{i}, u_{i}, X[i]\right),
$$

for any $\eta_{0} \geq \gamma_{i}, \eta_{1} \geq \beta_{i}$, and $\eta_{2}>u_{i}$.
Proof. All equations are proved simultaneously by induction on i. Suppose Lemma 4.26 is proved for each $j<i$. Let $\eta<\alpha$ be a stage. We have
(i) If $\eta \geq \gamma_{i}$, then the definition of γ_{i} implies

$$
f_{\eta} \upharpoonright(i+1)=f \upharpoonright(i+1), \quad g_{\eta} \upharpoonright(f(i)+1)=g \upharpoonright(f(i)+1) .
$$

Thus, according to 4.11), $\gamma_{i, \eta}=\gamma_{i}$.
(ii) Let $\eta \geq \beta_{i}$. Then by their definitions and Lemma 4.11, $\beta_{i}>\max \left\{\gamma_{i}, \sup _{j<i} u_{j}\right\}$. According to the inductive hyphothesis and (1) of this proof, $\left(\gamma_{i, \eta}, C_{i, \eta}, g_{\eta} \upharpoonright\right.$ $\left.f_{\eta}(i)\right)=\left(\gamma_{i}, C_{i}, g \upharpoonright f(i)\right)$. By Lemma 4.11 again, $\beta_{i, \eta}=\beta_{i}$.
(iii) Now suppose $\eta>u_{i}$. Since $u_{i} \geq \beta_{i}$, by (2) of the present proof, ($\beta_{i, \eta}, \gamma_{i, \eta}, C_{i, \eta}$, $\left.g_{\eta} \upharpoonright f_{\eta}(i)\right)=\left(\beta_{i}, \gamma_{i}, C_{i}, g \upharpoonright f(i)\right)$. So $u_{i, \eta}$ is defined and equal to u_{i}. Combine this with the inductive hypothesis, then we have $\forall j \leq i\left(u_{j, \eta} \downarrow=u_{j}\right)$. Hence $X_{\eta}[i]=X[i]$.

Lemma 4.27. $X_{\eta}[i] \subseteq X$ for all $\eta<\alpha, i<\sigma 2 c f(\alpha)$.
Proof. Fix a stage η. Lemma 4.11 implies that for every $i<\sigma 2 c f(\alpha)$, we have

$$
\beta_{i}>\max \left\{\operatorname{ran}(g \upharpoonright(f(i)+1)), \sup _{j<i} u_{j}\right\} \text { and } u_{i} \geq \beta_{i} .
$$

Thus, $\left\{\beta_{i}\right\}_{i<\sigma 2 c f(\alpha)}$ and $\left\{u_{i}\right\}_{i<\sigma 2 c f(\alpha)}$ are strictly increasing and cofinal in α.
Let $i^{*}<\sigma 2 c f(\alpha)$ be the least i that $u_{i} \geq \eta$. Then for every $j<i^{*}, u_{j}<\eta$, and Lemma 4.26 implies that $X_{\eta}[j]=X[j] \subseteq X$.

Suppose $i \geq i^{*} . X_{\eta}[i] \subseteq X$ is trivially true if $X_{\eta}[i]=\emptyset$. Now assume $X_{\eta}[i] \neq \emptyset$. Then by its definition, $X_{\eta}[i] \subseteq \eta$ and $X_{\eta}[i] \upharpoonright \sup C_{i^{*}}=C_{i^{*}}$, where $C_{i^{*}}=\bigcup_{j<i^{*}} X[j]$.

Case 1. $\eta \leq \beta_{i^{*}}$. By the definition of $\left\{X_{\eta}[j]\right\}_{j \leq i}$, we have

$$
X_{\eta}[i] \subseteq C_{i^{*}} \cup\left[\sup C_{i^{*}}, \eta\right) \subseteq X\left[i^{*}\right] .
$$

Therefore, $X_{\eta}[i] \subseteq X$.
Case 2. $\beta_{i^{*}}<\eta \leq u_{i^{*}}$. By Lemma 4.26, $\left(\gamma_{i^{*}, \eta}, \beta_{i^{*}, \eta}, C_{i^{*}, \eta}\right)=\left(\gamma_{i^{*}}, \beta_{i^{*}}, C_{i^{*}}\right)$. Then $\Upsilon_{i^{*}, \eta}=\Upsilon_{i^{*}}$. Since $\gamma_{i^{*}}=\gamma_{i^{*}, \eta}, f_{\eta} \upharpoonright(i+1)=f \upharpoonright(i+1)$ and $g_{\eta} \upharpoonright f(i)=g \upharpoonright f(i)$. Therefore, in the formula of the definition of $u_{i^{*}, \eta}$, every subscript η can be omitted. Note that $\eta \leq u_{i^{*}}$, so $u_{i^{*}, \eta}$ is undefined. Therefore $X_{\eta}[i]=\emptyset$, a contradiction.

Note that the sequence $\left\{\left(\gamma_{i, \eta}, \beta_{i, \eta}, u_{i, \eta}, X_{\eta}[i]\right)\right\}_{i<\sigma 2 c f(\alpha), \eta<\alpha}$ is α-recursive. Thus, Lemma 4.26 and Lemma 4.27 combine to produce the following corollary.

Corollary 4.28. X is α-r.e. Hence $\left\{A_{e}\right\}_{e<\alpha}$ is not a Friedberg numbering.
Since $\left\{A_{e}\right\}_{e<\alpha}$ is an arbitrary one-one numbering, Corollary 4.28 implies that there is no Friedberg numbering when $\operatorname{t\sigma } 2 p(\alpha)>\sigma 2 c f(\alpha)$, proving Theorem 4.22,

The code G plays a significant role in the proof of Theorem 4.22. It exploits the property that the numbering $\left\{A_{e}\right\}_{e<\alpha}$ is one-one and makes the use of pseudostable ordinals to achieve the diagonalization against $\left\{A_{e}\right\}_{e<\alpha}$. Pseudostability is applicable for any numbering. Yet, if the numbering is not one-one in some blocks and the number of such repetitions is cofinal in $\operatorname{t\sigma } 2 p(\alpha)$ as the number of blocks increases, then a code such as G may not exist. Therefore, the diagonalization construction may not be applicable for other types of numberings.

Remark. As in Section 4.1.2, Gödel numbering is a K-acceptable numbering and (4.6) is still a valid example of non- K-acceptable numbering in L_{α}, for all Σ_{1} admissible α, by simply replacing the notations appropriately.

Now we consider K_{e}-numbering. If $t \sigma 2 p(\alpha)=\sigma 2 c f(\alpha)$, then the Friedberg numbering constructed in Section 4.2 .1 is a natural example of a K_{e}-numbering (ref. Section 4.1.2 and 4.2.1). If $t \sigma 2 p(\alpha)>\sigma 2 c f(\alpha)$, then there is no K_{e}-numbering as the situation of $B \Sigma_{2}$ models, but for a different reason: For the sake of contradiction assume $\left\{C_{e}\right\}_{e<\alpha}$ is a K_{e}-numbering. Then $\left\{e^{\prime}<e: C_{e^{\prime}}=C_{e}\right\}$ is Δ_{2} for every $e<\alpha$. Therefore the least indices of $\left\{C_{e}\right\}_{e<\alpha}$ have an α-recursive approximation. Then the straightforward adaptation of the proof in [29] provides a Friedberg numbering in L_{α}. Hence, we have

Corollary 4.29. If $\operatorname{t\sigma } 2 p(\alpha)>\sigma 2 c f(\alpha)$, there is no K_{e}-numbering in L_{α}.
Corollary 4.30. The following are equivalent:

1. $t \sigma 2 p(\alpha)=\sigma 2 c f(\alpha)$;
2. There is a Friedberg numbering in L_{α};
3. There is a K_{e}-numbering in L_{α}.

4.3 Friedberg Numbering of N-r.e. Sets

A sequence $\left\{D_{e}\right\}_{e \in \mathcal{M}}$ of n-r.e. sets is a Friedberg numbering of n-r.e. sets if

4.3 Friedberg Numbering of N-r.e. Sets

(i) For any n-r.e. set $X \subseteq \omega$, there is a unique e such that $D_{e}=X$, and
(ii) $\left\{(x, e): x \in D_{e}\right\}$ is also n-r.e.

Notice that the discussion in Section 4.1 and 4.2 .2 is applicable to n-r.e. sets for every $n \geq 1$. Then we get the following results.

Corollary 4.31. Suppose $n \geq 1, \mathcal{M}$ is a $B \Sigma_{2}$ model and $\left\{D_{e}\right\}_{e \in \mathcal{M}}$ is a sequence of n-r.e. sets without repetition such that $\left\{(x, e): x \in D_{e}\right\}$ is also n-r.e. Then there is an r.e. set X such that $X \neq D_{e}$ for all $e \in \mathcal{M}$.

Corollary 4.32. For every $n \geq 1$, the following are equivalent over $P^{-}+B \Sigma_{2}$:

1. Σ_{2} induction.
2. There exists a Friedberg numbering of n-r.e. sets.

Corollary 4.33. If α is admissible and $t \sigma 2 p(\alpha)=\sigma 2 c f(\alpha)$, then there is a Friedberg numbering of n-r.e. sets in L_{α} for any $n \geq 1$.

Now suppose α is admissible, $\left\{D_{e}=A_{e} \backslash B_{e}\right\}_{e<\alpha}$ is a sequence of d-r.e. sets without repetition such that $\left\{(x, e): x \in A_{e}\right\},\left\{(x, e): x \in B_{e}\right\}$ are r.e. Then for every $i<\sigma 2 c f(\alpha)$, we modify the definition of γ_{i} as follows:

$$
\begin{aligned}
& \gamma_{i}=\max \left\{\mu \zeta\left(\forall \zeta^{\prime} \geq \zeta\left(f_{\zeta^{\prime}} \upharpoonright(i+1)=f \upharpoonright(i+1)\right)\right),\right. \\
& \mu \zeta\left(\forall \zeta^{\prime} \geq \zeta\left(g_{\zeta^{\prime}} \upharpoonright(f(i)+1)=g \upharpoonright(f(i)+1)\right)\right. \\
& \forall e<f(i)\left(B_{e} \supsetneq\left(\sup _{j<i} u_{j} \backslash C_{i}\right) \rightarrow\right. \\
& \left.\left.\quad \exists x<\zeta\left(x \in B_{e, \zeta} \backslash\left(\sup _{j<i} u_{j}\right) \vee x \in C_{i}\right)\right)\right\} .
\end{aligned}
$$

We modify $\gamma_{i, \eta}$ accordingly and other definitions are the same as in Section 4.2.4. Then we get the following results.

Corollary 4.34. There is an r.e. set X such that $X \neq D_{e}$ for all $e<\alpha$.
Corollary 4.35. For every admissible ordinal α, the following are equivalent:

1. $\operatorname{t\sigma } 2 p(\alpha)=\sigma 2 c f(\alpha)$;
2. There exists a Friedberg numbering of d-r.e. sets in L_{α}.

\section*{| |
| :---: |
| Chapter |}

Recursive Aspects Of An Everywhere Differentiable Function

In this chapter, we investigate properties of everywhere differentiable functions in the aspect of hyperarithmetic theory and reverse mathematics. The descriptive set theoretic aspect of this topic was done by Kechris and Woodin [24]. This chapter can be viewed as an effective version of their results.

To describe intervals, real numbers, subsets of real numbers and functions in our context, we need to "translate" them into the language of second order arithmetic. Section 5.2 is devoted to this work. In Section 5.3 and 5.4 we study everywhere differentiable functions in the context of hyperarithemtic theory. In Section 5.3, $D=\left\{e<\omega: \Phi_{e}\right.$ describes an everywhere differentiable function on $\left.[0,1]\right\}$ is proved to be a Π_{1}^{1} complete set. In Section 5.4, to every continuous function on $[0,1]$, the Kechris-Woodin rank is assigned in terms of Cantor-Bendixson type analysis, from which the Kechris-Woodin kernel is defined. In Section 5.4, the existence of Kechris-Woodin kernel is shown to be equivalent to $\Pi_{1}^{1}-\mathrm{CA}_{0}$ in reverse mathematics.

5.1 Convention and Notations

In this chapter, our study involves natural numbers, integers, rational numbers, real numbers, arithmetic operations of these numbers, sequences of these numbers, their subsets and functions. For convenience, e, i, j, k, l, m, n are reserved for
natural numbers; u, v, w are reserved for integers; $a, b, c, d, p, q, r, s, \varepsilon$ are rational numbers; x, y, z are variables over the set of real numbers; and f, g, h are intended to denote functions on the closed interval $[0,1]$. All these notations allow superscripts or subscripts. To avoid confusion, in this chapter, we will use (,-) to denote an open interval and $\left\langle_{-},-\right\rangle(\langle-,-, \ldots,-\rangle$, respectively) to denote a pair (a finite sequence, respectively) of numbers.

In addition, let $\mathbf{C}[0,1]$ be the collection of all continuous functions on $[0,1]$ and \mathbf{D} be the collection of everywhere differentiable functions on $[0,1]$. (At 0 and 1 , we consider the right hand side derivative and the left hand side derivative respectively.)

5.2 Second Order Arithmetic Descriptions

In this section, we set up a system to code numbers, sequences, subsets and functions in second order arithmetic. In general, we will add an ^ to denote the codes. For instance, we denote the set of codes of rational numbers by \hat{Q}.

Let $\pi: \omega^{2} \rightarrow \omega$ be a recursive bijection such that $\pi\langle 0,0\rangle=0$. If $\pi\langle i, j\rangle=k$, then we say k codes the ordered pair $\langle i, j\rangle$. We define

$$
\hat{Z}=\{\pi\langle i, 0\rangle: i<\omega\} \cup\{\pi\langle 0, j\rangle: j<\omega\} .
$$

The code $\pi\langle i, j\rangle \in \hat{Z}$ is to denote the integer $i-j$, in particular $\pi\langle 0,0\rangle=0$ denotes 0 . The absolute value function, order relation and arithmetic operations over \hat{Z} are denoted by $|\pi\langle i, j\rangle|_{\mathbb{Z}},<_{\mathbb{Z}},+_{\mathbb{Z}},-_{\mathbb{Z}}, \cdot_{\mathbb{Z}}, \dot{\div}_{\mathbb{Z}}$, respectively. Then,

$$
\begin{gathered}
|\pi\langle i, 0\rangle|_{\mathbb{Z}}=\pi\langle i, 0\rangle, \quad|\pi\langle 0, j\rangle|_{\mathbb{Z}}=\pi\langle j, 0\rangle \\
\pi\langle i, j\rangle<_{\mathbb{Z}} \pi\left\langle i^{\prime}, j^{\prime}\right\rangle \leftrightarrow i+j^{\prime}<i^{\prime}+j, \text { where } \pi\langle i, j\rangle, \pi\left\langle i^{\prime}, j^{\prime}\right\rangle \in \hat{Z} \\
\pi\langle i, 0\rangle+_{\mathbb{Z}} \pi\left\langle i^{\prime}, 0\right\rangle=\pi\left\langle i+i^{\prime}, 0\right\rangle, \quad \pi\langle 0, j\rangle+_{\mathbb{Z}} \pi\left\langle 0, j^{\prime}\right\rangle=\pi\left\langle 0, j+j^{\prime}\right\rangle \\
\pi\langle i, 0\rangle+_{\mathbb{Z}} \pi\langle 0, j\rangle= \begin{cases}\pi\langle i-j, 0\rangle & \text { if } i \geq j, \\
\pi\langle 0, j-i\rangle \quad \text { otherwise }\end{cases} \\
\pi\langle i, j\rangle-_{\mathbb{Z}} \pi\left\langle i^{\prime}, j^{\prime}\right\rangle=\pi\left\langle i^{\prime \prime}, j^{\prime \prime}\right\rangle \leftrightarrow \pi\left\langle i^{\prime}, j^{\prime}\right\rangle+_{\mathbb{Z}} \pi\left\langle i^{\prime \prime}, j^{\prime \prime}\right\rangle=\pi\langle i, j\rangle \\
\pi\langle i, 0\rangle \cdot_{\mathbb{Z}} \pi\left\langle i^{\prime}, 0\right\rangle=\pi\left\langle i i^{\prime}, 0\right\rangle, \quad \pi\langle 0, j\rangle \cdot \mathbb{Z} \pi\left\langle 0, j^{\prime}\right\rangle=\pi\left\langle j j^{\prime}, 0\right\rangle \\
\pi\langle i, 0\rangle \cdot \mathbb{Z} \pi\langle 0, j\rangle=\pi\langle 0, i j\rangle \\
\pi\langle i, j\rangle \div_{\mathbb{Z}} \pi\left\langle i^{\prime}, j^{\prime}\right\rangle=\pi\left\langle i^{\prime \prime}, j^{\prime \prime}\right\rangle \leftrightarrow \neg\left(i^{\prime}=j^{\prime}=0\right) \wedge \pi\left\langle i^{\prime}, j^{\prime}\right\rangle \cdot \mathbb{Z} \pi\left\langle i^{\prime \prime}, j^{\prime \prime}\right\rangle=\pi\langle i, j\rangle
\end{gathered}
$$

5.2 Second Order Arithmetic Descriptions

Suppose $u(m)$ and $u(n)$ are the integers coded by m and n respectively and $u(n)>0$. Let $\operatorname{gcd}_{\mathbb{Z}}(m, n)$ be $\pi\langle\operatorname{gcd}(u(m), u(n)), 0\rangle$, the code of the greatest common divisor of $u(m)$ and $u(n)$. Now we introduce the field \mathbb{Q}. We define

$$
\hat{Q}=\left\{\pi\langle m, n\rangle: m, n \in \hat{Z} \wedge n>_{\mathbb{Z}} 0 \wedge \operatorname{gcd}_{\mathbb{Z}}(m, n)=\pi\langle 1,0\rangle\right\}
$$

Here $\pi\langle m, n\rangle \in \hat{Q}$ codes the rational number $\frac{u(m)}{u(n)}$, where $u(m)$ and $u(n)$ are the integers coded by m and n respectively. In \hat{Q}, we use $\pi\langle 0,1\rangle$ to denote 0 . Then,

$$
\begin{gathered}
\left.|\pi\langle m, n\rangle|_{\mathbb{Q}}=\left.\pi\langle | m\right|_{\mathbb{Z}}, n\right\rangle \\
\pi\langle m, n\rangle<_{\mathbb{Q}} \pi\left\langle m^{\prime}, n^{\prime}\right\rangle \leftrightarrow m \cdot \mathbb{Z} n^{\prime}<_{\mathbb{Z}} m^{\prime} \cdot \mathbb{Z} n \\
\pi\langle m, n\rangle+_{\mathbb{Q}} \pi\left\langle m^{\prime}, n^{\prime}\right\rangle=\pi\left\langle m^{\prime \prime}, n^{\prime \prime}\right\rangle, \text { where }\left\{\begin{array}{l}
m^{\prime \prime}=\left(m \cdot \mathbb{Z} n^{\prime}+_{\mathbb{Z}} m \cdot \mathbb{Z} n^{\prime}\right) \div_{\mathbb{Z}} d, \\
n^{\prime \prime}=\left(n \cdot \mathbb{Z} n^{\prime}\right) \div_{\mathbb{Z}} d, \text { and } \\
d={g d_{\mathbb{Z}}\left(m \cdot \mathbb{Z} n^{\prime}+_{\mathbb{Z}} m \cdot \mathbb{Z} n^{\prime}, n \cdot \mathbb{Z} n^{\prime}\right)}_{\pi\langle m, n\rangle-_{\mathbb{Q}} \pi\left\langle m^{\prime}, n^{\prime}\right\rangle=\pi\left\langle i^{\prime \prime}, j^{\prime \prime}\right\rangle \leftrightarrow \pi\left\langle m^{\prime}, n^{\prime}\right\rangle+_{\mathbb{Q}} \pi\left\langle m^{\prime \prime}, n^{\prime \prime}\right\rangle=\pi\langle m, n\rangle}^{\pi\langle m, n\rangle \cdot \mathbb{Q} \pi\left\langle m^{\prime}, n^{\prime}\right\rangle=\pi\left\langle m \cdot \mathbb{Z} m^{\prime}, n \cdot \mathbb{Z} n^{\prime}\right\rangle} \\
\pi\langle m, n\rangle \div_{\mathbb{Q}} \pi\left\langle m^{\prime}, n^{\prime}\right\rangle=\pi\left\langle m^{\prime \prime}, n^{\prime \prime}\right\rangle \leftrightarrow \neg\left(m^{\prime}=0\right) \wedge \pi\left\langle m^{\prime}, n^{\prime}\right\rangle \cdot \mathbb{Q} \pi\left\langle m^{\prime \prime}, n^{\prime \prime}\right\rangle=\pi\langle m, n\rangle
\end{array}\right.
\end{gathered}
$$

In the sequel, if $l \in \hat{Q}$, then let $a(l)$ be the rational number coded by l.
This coding of \mathbb{Q} provides a way to describe open intervals with rational end points. We say $\left\langle l, l^{\prime}\right\rangle$ describes an open interval $\left(a(l), a\left(l^{\prime}\right)\right)$ if $l, l^{\prime} \in \hat{Q}$, and $l<_{\mathbb{Q}} l^{\prime}$. $A_{0} \subset \omega^{2}$ describes an open set if
(i) Each $\left\langle l, l^{\prime}\right\rangle \in A_{0}$ describes an open interval $\left(a(l), a\left(l^{\prime}\right)\right)$.
(ii) If $\left\langle m, m^{\prime}\right\rangle \in A_{0}$ and $\left\langle l, l^{\prime}\right\rangle$ describes an open interval $\left(a(l), a\left(l^{\prime}\right)\right) \subseteq\left(a(m), a\left(m^{\prime}\right)\right)$, then $\left\langle l, l^{\prime}\right\rangle \in A_{0}$, i.e. A_{0} is closed under subsets.
(iii) If for every $k<\omega,\left\langle m_{k}, m_{k}^{\prime}\right\rangle \in A_{0}$, and $\left\langle l, l^{\prime}\right\rangle$ describes an open interval $\left(a(l), a\left(l^{\prime}\right)\right)=\bigcup_{k}\left(a\left(m_{k}\right), a\left(m_{k}^{\prime}\right)\right)$, then $\left\langle l, l^{\prime}\right\rangle \in A_{0}$, i.e. A_{0} is closed under countable union.

The open set described by A_{0} is $\bigcup_{\left\langle l, l^{\prime}\right\rangle \in A_{0}}\left(a(l), a\left(l^{\prime}\right)\right)$. We may also say its complement, $\bigcup_{\left\langle l, l^{\prime}\right\rangle \in A_{0}}\left(a(l), a\left(l^{\prime}\right)\right)$, is described by A_{0}. If $A \subset \omega$, then A describes an open set if $\left\{\left\langle l, l^{\prime}\right\rangle: \pi\left\langle l, l^{\prime}\right\rangle \in A\right\}$ describes an open set.

Lemma 5.1. \hat{Z}, \hat{Q} are recursive subsets of ω. Their absolute value functions, order relations and arithmetic operations defined above are recursive. Moreover, " $A \subset \omega$ describes an open set" is an arithmetic property of A.

Proof. We only need to show that " $A_{0} \subset \omega^{2}$ describes an open set" is arithmetic. In its definition, Clause (i) and (ii) are clearly arithmetic. So we only need to check Clause (iii). Notice that (iii) is equivalent to the following statement:

If for every $m, m^{\prime} \in \hat{Q}$ with $l<_{\mathbb{Q}} m<_{\mathbb{Q}} m^{\prime}<_{\mathbb{Q}} l^{\prime}$, there is a finite sequence $\left\{\left\langle m_{k}, m_{k}^{\prime}\right\rangle\right\}_{k<n} \subset A_{0}$ such that $\left\{\left(a\left(m_{k}\right), a\left(m_{k}^{\prime}\right)\right): k<n\right\}$ is an open cover of the closed interval $\left[a(m), a\left(m^{\prime}\right)\right]$, then $\left\langle l, l^{\prime}\right\rangle \in A_{0}$.
$\left\{\left(a\left(m_{k}\right), a\left(m_{k}^{\prime}\right)\right): k<n\right\}$ is an open cover of the closed interval $\left[a(m), a\left(m^{\prime}\right)\right]$ if and only if there is a permutation of these open intervals, say $\left\{\left(a\left(m_{k}\right), a\left(m_{k}^{\prime}\right)\right): k<\right.$ $n\}$ itself, such that for all $k<n-1, m_{k+1}<_{\mathbb{Q}} m_{k}^{\prime}<_{\mathbb{Q}} m_{k+1}^{\prime}, m_{0}<_{\mathbb{Q}} m<_{\mathbb{Q}} m_{0}^{\prime}$ and $m_{n-1}<_{\mathbb{Q}} m^{\prime}<_{\mathbb{Q}} m_{n-1}^{\prime}$.

Remark 5.2. From now on, we we expand the second order language to include the language for the field of rational numbers. In this expanded language, the order relation and arithmetic operations without subscribes are the usual ones over rationals. And the complexity of a formula is determined by coding rational numbers into natural numbers. Using Lemma 5.1, we may treat rational numbers as natural numbers in a formula without changing its arithmetic or analytic complexity. In the following, we will further expand the language to the field of reals with its arithmetic operations and we may treat real numbers as a sequence of rationals thus as a subset of ω.

We now introduce \mathbb{R} by a sequence of rational numbers. Let
$\hat{R}=\{f: f: \omega \rightarrow \mathbb{Q}$ is a function \wedge

$$
\left.\forall \epsilon \in \mathbb{Q}^{+} \exists i<\omega \forall m, n<\omega(m, n>i \rightarrow|f(m)-f(n)|<\epsilon)\right\} .
$$

For any $f \in \hat{R},\{f(n)\}_{n<\omega}$ is a Cauchy sequence and has a limit. The intuition is to denote the real number $\lim _{n} f(n)$ by f. In particular, we use 0 , where $0(n)=0$ for all n, to denote the real number 0 . We define the order relation and arithmetic

5.2 Second Order Arithmetic Descriptions

operations over \hat{R} as those over \mathbb{R}.

$$
\begin{gathered}
|f|_{\mathbb{R}}(n)=|f(n)|, \text { for all } n<\omega \\
f=_{\mathbb{R}} g \leftrightarrow \forall \epsilon \in \mathbb{Q}^{+} \exists i<\omega \forall m, n<\omega(m, n>i \rightarrow|g(m)-f(n)|<\epsilon) \\
f<_{\mathbb{R}} g \leftrightarrow \exists \epsilon \in \mathbb{Q}^{+} \exists i<\omega \forall m, n<\omega(m, n>i \rightarrow g(m)-f(n)>\epsilon) \\
\left(f+_{\mathbb{R}} g\right)(n)=f(n)+g(n), \text { for all } n<\omega \\
f-_{\mathbb{R}} g=h \leftrightarrow g+_{\mathbb{R}} h=f \\
\left(f \bullet_{\mathbb{R}} g\right)(n)=f(n) \cdot g(n), \text { for all } n<\omega \\
f \succ_{\mathbb{R}} g=h \leftrightarrow \forall n<\omega(g(n) \neq 0) \wedge \neg\left(g=_{\mathbb{R}} 0\right) \wedge g \cdot_{\mathbb{R}} h=f
\end{gathered}
$$

Lemma 5.3. "f $\in \hat{R}$ " and the arithmetic operations over \hat{R} are arithmetic.
For continuous functions over \mathbb{R}, we may consider using functions over \hat{R} as their codes. However, that idea leads to the third order definition of functions on \hat{R}. By the continuity, we may narrow down the complexity of descriptions of continuous functions. Intuitively, we may code all quadruple of rational numbers $\langle a, b, r, s\rangle$ such that the function maps real numbers in the open interval (a, b) into (r, s). From this view point, we say $\hat{f} \subset \mathbb{Q}^{4}$ describes a continuous function on $[p, q]$, where $p<q$ are rational numbers, if
(i) Any quadruple $\langle a, b, r, s\rangle \in \hat{f}$ satisfies $a<b, r<s$ and $(a, b) \cap[0,1] \neq \emptyset$.
(ii) (Consistency) If $\langle a, b, r, s\rangle,\left\langle a^{\prime}, b^{\prime}, r^{\prime}, s^{\prime}\right\rangle \in \hat{f}$ and $(a, b) \cap\left(a^{\prime}, b^{\prime}\right) \neq \emptyset$, then $(r, s) \cap$ $\left(r^{\prime}, s^{\prime}\right) \neq \emptyset$.
(iii) (Preciseness) For every $\varepsilon \in \mathbb{Q}^{+}$, there is a sequence $\left\{\left\langle a_{i}, b_{i}, r_{i}, s_{i}\right\rangle\right\}_{i<n}$ in \hat{f} such that for all $i<n, s_{i}-r_{i}<\varepsilon$, and $\left\{\left(a_{i}, b_{i}\right)\right\}_{i<n}$ is an open cover of the interval $[p, q]$.

Then let

$$
\hat{C}[0,1]=\left\{\hat{f} \subset \mathbb{Q}^{4}: \hat{f} \text { describes a continuous function on }[0,1]\right\}
$$

Lemma 5.4. " $\hat{f} \in \hat{C}[0,1]$ " is an arithmetic property of \hat{f}.
Lemma 5.5. If \hat{f} describes a continuous function on $[0,1]$, then there is a (unique) continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\forall\langle a, b, r, s\rangle \in \hat{f}(\operatorname{ran}(f \upharpoonright(a, b)) \subseteq[r, s]) . \tag{5.1}
\end{equation*}
$$

We say \hat{f} describes f.
Proof. For every $x \in[0,1]$, pick a sequence $\left\{\left\langle a_{i}, b_{i}, r_{i}, s_{i}\right\rangle\right\}_{i<\omega}$ in \hat{f} such that $x \in$ $\bigcap_{i}\left(a_{i}, b_{i}\right)$ and $\lim _{i}\left(s_{i}-r_{i}\right)=0$, and we call $\left\{\left\langle a_{i}, b_{i}, r_{i}, s_{i}\right\rangle\right\}_{i<\omega}$ an x-approximation sequence. Then define

$$
f(x)=\lim _{i} r_{i} .
$$

Firstly, the function f is well-defined. Note that for every $x \in[0,1]$ there is an x-approximation sequence $\left\{\left\langle a_{i}, b_{i}, r_{i}, s_{i}\right\rangle\right\}_{i<\omega}$. And since $x \in \bigcap_{i}\left(a_{i}, b_{i}\right)$, for every i, j, we have $\left(a_{i}, b_{i}\right) \cap\left(a_{j}, b_{j}\right) \neq \emptyset$ and so $\left(r_{i}, s_{i}\right) \cap\left(r_{j}, s_{j}\right) \neq \emptyset$. Then $\lim _{i, j \rightarrow \infty}\left|r_{i}-r_{j}\right| \leq$ $\lim _{i, j \rightarrow \infty}\left(s_{i}-r_{i}\right)+\left(s_{j}-r_{j}\right)=0$. Thus, $\lim _{i} r_{i}$ exists.

To see the definition does not depend on the choice of the x-approximation sequence, suppose $\left\{\left\langle a_{i}, b_{i}, r_{i}, s_{i}\right\rangle\right\}_{i<\omega},\left\{\left\langle a_{i}^{\prime}, b_{i}^{\prime}, r_{i}^{\prime}, s_{i}^{\prime}\right\rangle\right\}_{i<\omega}$ are x-approximation sequences in \hat{f}. Then $\left\{\left\langle a_{i}^{\prime \prime}, b_{i}^{\prime \prime}, r_{i}^{\prime \prime}, s_{i}^{\prime \prime}\right\rangle\right\}_{i<\omega}$ defined by

$$
\left\langle a_{i}^{\prime \prime}, b_{i}^{\prime \prime}, r_{i}^{\prime \prime}, s_{i}^{\prime \prime}\right\rangle= \begin{cases}\left\langle a_{i}, b_{i}, r_{i}, s_{i}\right\rangle & \text { if } i \text { is even } \\ \left\langle a_{i}^{\prime}, b_{i}^{\prime}, r_{i}^{\prime}, s_{i}^{\prime}\right\rangle & \text { if } i \text { is odd }\end{cases}
$$

is also an x-approximation sequence. By the argument in the previous paragraph, $\lim _{i} r_{i}^{\prime \prime}$ exists. Hence, $\lim _{i} r_{i}=\lim _{i} r_{i}^{\prime}$.

Secondly, we show that $\forall\langle a, b, r, s\rangle \in \hat{f}(\operatorname{ran}(f \upharpoonright(a, b)) \subseteq[r, s])$. Pick any $x \in$ $[0,1] \cap(a, b)$ and x-approximation sequence $\left\{\left\langle a_{i}, b_{i}, r_{i}, s_{i}\right\rangle\right\}_{i<\omega}$ in \hat{f} with $\left\langle a_{0}, b_{0}, r_{0}, s_{0}\right\rangle=$ $\langle a, b, r, s\rangle$. Then $f(x)=\lim _{i} r_{i}=\lim _{i}\left(r_{i}+s_{i}\right) / 2$. Note that for all $j>i$,

$$
\left|\left(r_{j}+s_{j}\right) / 2-\left(r_{i}+s_{i}\right) / 2\right| \leq\left(s_{j}-r_{j}\right) / 2+\left(s_{i}-r_{i}\right) / 2
$$

Let $j \rightarrow \infty$, we have $\left|f(x)-\left(r_{i}+s_{i}\right) / 2\right| \leq\left(s_{i}-r_{i}\right) / 2$. In particular, $|f(x)-(r+s) / 2| \leq$ $(s-r) / 2$, and so $f(x) \in[r, s]$.

Moreover, for each $\varepsilon \in \mathbb{Q}^{+}$, there is a sequence $\left\{\left\langle a_{i}, b_{i}, r_{i}, s_{i}\right\rangle\right\}_{i<n}$ in \hat{f} such that for all $i<n, s_{i}-r_{i}<\varepsilon$, and $\left\{\left(a_{i}, b_{i}\right)\right\}_{i<n}$ is an open cover of $[0,1]$. Since $\operatorname{ran}\left(f \upharpoonright\left(a_{i}, b_{i}\right)\right) \subseteq\left[r_{i}, s_{i}\right], f$ is continuous on $[0,1]$.

Thirdly, f is unique. Suppose f and g are continuous functions on $[0,1]$ satisfying (5.1), and suppose $f(x) \neq g(x)$ for some $x \in[0,1]$. Let $\varepsilon \in \mathbb{Q}^{+}$such that $\mid f(x)-$ $g(x) \mid>\varepsilon$, and $\langle a, b, r, s\rangle$ in \hat{f} such that $x \in(a, b), s-r<\varepsilon$. Then $f(x), g(x) \in[r, s]$ and so $|f(x)-g(x)|<\varepsilon$. We get a contradiction.

$5.3 \Pi_{1}^{1}$ Completeness of D

Lemma 5.6. If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function, then there is an $\hat{f} \in \hat{C}[0,1]$ that describes f.

Proof. Consider

$$
\hat{f}=\left\{\langle a, b, r, s\rangle \in \mathbb{Q}^{4}: a<b, r<s,(a, b) \cap[0,1] \neq \emptyset, \operatorname{ran}(f \upharpoonright(a, b)) \subseteq(r, s)\right\}
$$

It is straightforward to check that \hat{f} is in $\hat{C}[0,1]$.
For every continuous function f on $[0,1]$, let $f_{p, q}^{s c a n}((q-p) x+p)=(q-p) f(x)$ for all $x \in[0,1]$, and $f_{p, q}^{s c a n}$ is called the scanned copy of f on $[p, q]$.

Lemma 5.7. Suppose \hat{f} describes the continuous function f on $[0,1]$. Then
(i) For any rational number $l>0$, $l \hat{f}=\{\langle a, b, l r, l s\rangle:\langle a, b, r, s\rangle \in \hat{f}\}$ describes $l f$.
(ii) For any rational numbers $p<q$, $\hat{f}_{p, q}^{\text {scan }}=\{\langle(q-p) a+p,(q-p) b+p,(q-$ $p) r,(q-p) s\rangle:\langle a, b, r, s\rangle \in \hat{f}\}$ describes $f_{p, q}^{s c a n}$.

If \hat{f} describes f, then we say \hat{f} describes an everywhere differentiable function on $[0,1]$ if f is everywhere differentiable on $[0,1]$, i.e. $f \in \mathbf{D}$. We say a total function Φ_{e} describes an everywhere differentiable function on $[0,1]$, if $\Phi_{e}=A$ for some $A \subset \omega$ and

$$
\{\langle a(i), a(j), a(k), a(l)\rangle: \pi\langle i, \pi\langle j, \pi\langle k, l\rangle\rangle\rangle \in A, \text { where } a(i), a(j), a(k), a(l)
$$

are the rational numbers coded by i, j, k, l respectively. $\}$
describes an everywhere differentiable function on $[0,1]$.
Lemma 5.8. $D=\left\{e<\omega: \Phi_{e}\right.$ describes an everywhere differentiable function on $[0,1]\}$ is Π_{1}^{1}.

$5.3 \quad \Pi_{1}^{1}$ Completeness of D

Recall that in Section 2.2, we have seen that WF is Π_{1}^{1} complete. This section is devoted to the proof of following theorem. Its proof idea is from Mazurkiewicz [33] (see also [24]).

Theorem 5.9. D is Π_{1}^{1} complete.
For this purpose, we construct a recursive function $\chi: \omega \rightarrow \omega$ such that

$$
e \in \mathrm{WF} \leftrightarrow \chi(e) \in D
$$

For the convenience of further discussion, we first "convert" every partial recursive function $T_{e}: \omega^{<\omega} \rightarrow\{0,1\}$ to a total recursive function $T_{g(e)}$ such that $\left\{\sigma: T_{g(e)}(\sigma)=1\right\}$ is a tree and $e \in \mathrm{WF} \leftrightarrow g(e) \in \mathrm{WF}$.

Fix a recursive bijection $\ulcorner\urcorner:. \omega^{<\omega} \rightarrow \omega$. For every $e<\omega$, define $T_{g(e)}(\sigma)=1$ if and only if
(i) σ is the empty string, $\langle 0\rangle,\langle 1\rangle$ or $\langle 2\rangle$; or
(ii) (Code whether T_{e} is a total function) $\sigma=\langle 0 n\rangle^{\wedge}\langle\underbrace{0 \ldots 0}_{m \text { times }}\rangle$ and $T_{e, m}(n) \uparrow$; or
(iii) (Code whether T_{e} describes a tree) $\sigma=\langle 1 n\rangle^{\wedge} \underbrace{0 \ldots 0}_{m \text { times }}\rangle$ and for some τ and τ^{\prime} with $\ulcorner\tau\urcorner,\left\ulcorner\tau^{\prime}\right\urcorner<n, \tau$ is an initial segment of τ^{\prime} but $T_{e, n}(\tau) \downarrow=0$ and $T_{e, n}\left(\tau^{\prime}\right) \downarrow=1$ (i.e. at stage n, we find T_{e} does not describe a tree); or
(iv) (Code whether T_{e} describes a well founded tree) $\sigma=\langle 2\rangle^{\wedge} \tau$ and for every k such that $2 k+1<|\tau|, T_{e, \tau(2 k)}(\langle\tau(1), \tau(3), \ldots, \tau(2 k+1)\rangle)=1$ (i.e. an even digit $\tau(2 k)$ codes the steps after which the string of odd digits up to $\tau(2 k+1)$ is computed to be in the tree T_{e}).

Otherwise, define $T_{g(e)}(\sigma)=0$.
Note that $T_{g(e)}$ is always total recursive, $\left\{\sigma: T_{g(e)}(\sigma)=1\right\}$ is a tree, and $g(e) \in$ $\mathrm{WF} \leftrightarrow e \in \mathrm{WF}$.

Now we construct continous functions on $[0,1]$. For any closed interval $K=$ $[a, b] \subseteq[0,1], a, b \in \mathbb{Q}$, let

$$
\varphi(x ; K)= \begin{cases}\frac{16(x-a)^{2}(x-b)^{2}}{(b-a)^{3}}, & \text { if } x \in K \tag{5.1}\\ 0 & \text { otherwise }\end{cases}
$$

The graph of $\varphi(x ; K)$ is as follows.

$5.3 \Pi_{1}^{1}$ Completeness of D

In the following, we construct two sequences $\left\{J_{\sigma}=\left(a_{\sigma}, b_{\sigma}\right)\right\}_{\sigma \in \omega<\omega}$ and $\left\{K_{\sigma}=\right.$ $\left.\left[c_{\sigma}, d_{\sigma}\right]\right\}_{\sigma \in \omega<\omega}$ such that:
(i) $0 \leq a_{\sigma}<c_{\sigma}<d_{\sigma}<b_{\sigma} \leq 1$ are rational numbers.
(ii) K_{σ} is concentric with J_{σ} and the length of K_{σ} is less than $\frac{1}{2^{r \sigma}}$ of that of J_{σ}, i.e. $d_{\sigma}-c_{\sigma}<\frac{1}{2^{\sigma \gamma}}\left(b_{\sigma}-a_{\sigma}\right)$.
(iii) If σ is a proper initial segment of τ, then $J_{\tau} \subset K_{\sigma}^{(L)}$. Here $K_{\sigma}^{(L)}=\left[c_{\sigma},\left(c_{\sigma}+\right.\right.$ $\left.\left.d_{\sigma}\right) / 2\right]$ and $K_{\sigma}^{(R)}=\left[\left(c_{\sigma}+d_{\sigma}\right) / 2, d_{\sigma}\right]$.
(iv) If σ and τ are incompatible (i.e. there exists $n<\min \{|\sigma|,|\tau|\}$ such that $\sigma(n) \neq \tau(n))$, then $J_{\sigma} \cap J_{\tau}=\emptyset$.
Lemma 5.10. For every pair $\sigma \neq \tau$ in $\omega^{<\omega}, K_{\sigma}^{(R)} \cap K_{\tau}^{(R)}=\emptyset$.
Proof. If σ and τ are incompatible, then $J_{\sigma} \cap J_{\tau}=\emptyset$. Therefore, $K_{\sigma}^{(R)} \cap K_{\tau}^{(R)}=\emptyset$. If σ is a proper initial segment of τ, since $K_{\tau}^{(R)} \subset J_{\tau} \subset K_{\sigma}^{(L)}, K_{\sigma}^{(R)} \cap K_{\tau}^{(R)}=\emptyset$.

Lemma 5.11. There are recursive sequences (in the sense of Remark 5.2) $\left\{a_{\sigma}\right\}_{\sigma \in \omega<\omega}$, $\left\{b_{\sigma}\right\}_{\sigma \in \omega^{<\omega}},\left\{c_{\sigma}\right\}_{\sigma \in \omega<\omega}$ and $\left\{d_{\sigma}\right\}_{\sigma \in \omega<\omega}$ satisfying Clause (i)-(iv).

Proof. If σ is the empty string, then let $a_{\sigma}=0, b_{\sigma}=1, c_{\sigma}=1 / 4, d_{\sigma}=3 / 4$.
Inductively, suppose we have defined J_{σ} and K_{σ}. Then for every $n<\omega$, let

$$
\begin{aligned}
& a_{\sigma^{\wedge}\langle n\rangle}=\frac{n}{2(n+1)} d_{\sigma}+\frac{n+2}{2(n+1)} c_{\sigma} \\
& b_{\sigma^{\wedge}\langle n\rangle}=\frac{n+1}{2(n+2)} d_{\sigma}+\frac{n+3}{2(n+2)} c_{\sigma} \\
& c_{\sigma^{\wedge}\langle n\rangle}=\frac{a_{\sigma^{\wedge}\langle n\rangle}+b_{\sigma^{\wedge}\langle n\rangle}}{2}-\frac{b_{\sigma^{\wedge}\langle n\rangle}-a_{\sigma^{\wedge}\langle n\rangle}}{2^{\left\ulcorner\sigma^{\urcorner}+3\right.}} \\
& d_{\sigma^{\wedge}\langle n\rangle}=\frac{a_{\sigma^{\wedge}\langle n\rangle}+b_{\sigma^{\wedge}\langle n\rangle}}{2}+\frac{b_{\sigma^{\wedge}\langle n\rangle}-a_{\sigma^{\wedge}\langle n\rangle}}{2^{\left\ulcorner\sigma^{\urcorner}+3\right.}}
\end{aligned}
$$

It is straightforward to check that Clause (i)-(iv) are satisfied.

We fix sequences $\left\{J_{\sigma}\right\}_{\sigma \in \omega<\omega}$ and $\left\{K_{\sigma}\right\}_{\sigma \in \omega<\omega}$ satisfying Lemma 5.11. Define

$$
F_{T}(x)=\sum_{\sigma \in T} \varphi\left(x ; K_{\sigma}^{(R)}\right),
$$

for any tree $T \subseteq \omega^{<\omega}$. Note that F_{T} is continuous since every $\varphi\left(x ; K_{\sigma}^{(R)}\right)$ is continuous and

$$
\begin{equation*}
\max _{x \in[0,1]} \varphi\left(x ; K_{\sigma}^{(R)}\right)<2^{-\ulcorner\sigma\urcorner+1} . \tag{5.2}
\end{equation*}
$$

By Lemma 5.10, for every $x \in[0,1]$, there is at most one σ such that $\varphi\left(x ; K_{\sigma}^{(R)}\right) \neq$ 0 and for any $\sigma, F_{T}\left(\left(c_{\sigma}+d_{\sigma}\right) / 2\right)=F_{T}\left(d_{\sigma}\right)=0$.

Pick any $\langle a, b, r, s\rangle \in \mathbb{Q}$ such that $a<b, r<s$ and $(a, b) \cap[0,1] \neq \emptyset$. To determine whether $\operatorname{ran}\left(F_{T} \upharpoonright(a, b)\right) \subseteq(r, s)$, we consider the following three cases.

Case 1. $s \leq 0$. Then $\operatorname{ran}\left(F_{T} \upharpoonright(a, b)\right) \nsubseteq(r, s)$, since $F_{T}(x) \geq 0$ for all $x \in[0,1]$.
Case 2. $r<0<s$. Then

$$
\operatorname{ran}\left(F_{T} \upharpoonright(a, b)\right) \subseteq(r, s) \leftrightarrow \max _{a<x<b} F_{T}(x)<s
$$

Let n_{s} be the maximal n such that $2^{-n+1} \geq s$. Then by 5.2),

$$
\max _{a<x<b} F_{T}(x)<s \leftrightarrow \max _{\substack{a \in x<x \\ \sigma \in T ;-\sigma \in n_{s}}} \varphi\left(x ; K_{\sigma}^{(R)}\right)<s .
$$

Case 3. $r \geq 0$. Then

$$
\begin{aligned}
& \operatorname{ran}\left(F_{T} \upharpoonright(a, b)\right) \subseteq(r, s) \leftrightarrow \exists \sigma \in T\left((a, b) \subset K_{\sigma}^{(R)} \wedge\right. \\
& \left.\operatorname{ran}\left(\varphi\left(x ; K_{\sigma}^{(R)}\right) \upharpoonright(a, b)\right) \subseteq(r, s)\right) .
\end{aligned}
$$

Let n_{b-a} be the maximal n such that $2^{-n+1} \geq b-a$. Then for all $\sigma \in T$ such that $\ulcorner\sigma\urcorner>n_{b-a}, 1 / 2\left(d_{\sigma}-c_{\sigma}\right)<b-a$ and so $(a, b) \nsubseteq K^{(R)}$. Therefore,

$$
\begin{aligned}
\operatorname{ran}\left(F_{T} \upharpoonright(a, b)\right) \subseteq(r, s) \leftrightarrow \exists \sigma & \in T\left(\ulcorner\sigma\urcorner \leq n_{b-a} \wedge\right. \\
& \left.(a, b) \subset K_{\sigma}^{(R)} \wedge \operatorname{ran}\left(\varphi\left(x ; K_{\sigma}^{(R)}\right) \upharpoonright(a, b)\right) \subseteq(r, s)\right) .
\end{aligned}
$$

Hence, $\operatorname{ran}\left(F_{T} \upharpoonright(a, b)\right) \subseteq(r, s)$ is uniformly recursive in T. Let

$$
\hat{F}_{T}=\left\{\langle a, b, r, s\rangle \in \mathbb{Q}^{4}: a<b, r<s,(a, b) \cap[0,1] \neq \emptyset, \operatorname{ran}\left(F_{T} \upharpoonright(a, b)\right) \subseteq(r, s)\right\}
$$

and

$$
\Phi_{\chi(e)}=\left\{\pi\langle i, \pi\langle j, \pi\langle k, l\rangle\rangle\rangle:\langle a(i), a(j), a(k), a(l)\rangle \in \hat{F}_{T_{g(e)}}\right\},
$$

$5.3 \Pi_{1}^{1}$ Completeness of D

where $a(i), a(j), a(k), a(l)$ are the rational numbers coded by i, j, k, l respectively and π is as defined in Section 5.2. Then $\Phi_{\chi(e)}$ describes $F_{T_{g(e)}}$.

To see that $e \in \mathrm{WF}$ if and only if $\chi(e) \in D$, it suffices to prove the following lemma.

Lemma 5.12 ([33]). T is a well founded tree if and only if F_{T} is everywhere differentiable on $[0,1]$.

Proof. For very $\alpha \in \omega^{\omega}$, let $x_{\alpha}=\bigcap_{n<\omega} K_{\alpha \upharpoonright n}$ and $G_{T}=\left\{x_{\alpha}: \alpha \in[T]\right\}$. Then it suffices to show that

$$
x \in G_{T} \leftrightarrow F_{T}^{\prime}(x) \text { does not exist. }
$$

Firstly, if $x \in G_{T}$, then $x \in K_{\alpha\lceil n}^{(L)}$ for all n. By Lemma 5.10, $F_{T}(x)=0$. Let $\eta_{n}=1 / 4\left(d_{\alpha \mid n}-c_{\alpha \mid n}\right)$, (i.e. half of the length of $\left.K_{\alpha \mid n}^{(R)}\right)$, and $\xi_{n}=1 / 4 c_{\alpha \mid n}+3 / 4 d_{\alpha \mid n}$, (i.e. the middle point of $K_{\alpha \mid n}^{(R)}$). Then $\lim _{n} \eta_{n}=0, \lim _{n} \xi_{n}=x$. Note that

$$
\frac{F_{T}\left(\xi_{n}+\eta_{n}\right)-F_{T}(x)}{\xi_{n}+\eta_{n}-x}=0,
$$

since $\xi_{n}+\eta_{n}$ is the right end point of $K_{\alpha \mid n}^{(R)}$ and

$$
\frac{F_{T}\left(\xi_{n}\right)-F_{T}(x)}{\xi_{n}-x}=\frac{2 \eta_{n}}{\xi_{n}-x} \geq \frac{2 \eta_{n}}{3 \eta_{n}}=\frac{2}{3} .
$$

Hence $F_{T}^{\prime}(x)$ does not exist.
Secondly, suppose $x \notin G_{T}$. Note that $G_{T}=\bigcap_{n} \bigcup_{\sigma \in T ;|\sigma|=n} J_{\sigma}$. So there is some n, such that $x \notin J_{\sigma}$ for any $\sigma \in T$ of length at least n. Moreover, for any $n^{\prime}<n$, there is at most one $\tau \in T$ of length n^{\prime} such that $x \in J_{\tau}$. Therefore, $\left\{\sigma \in T: x \in J_{\sigma}\right\}$ is finite. Let $N \geq 2$ be large enough such that for all $\sigma \in T$ if $\ulcorner\sigma\urcorner \geq N$, then $x \notin J_{\sigma}$. Then for any $y \in[0,1]$, if $y \in K_{\sigma}^{(R)},\ulcorner\sigma\urcorner \geq N$,

$$
\left|\frac{\varphi\left(y ; K_{\sigma}^{(R)}\right)-\varphi\left(x ; K_{\sigma}^{(R)}\right)}{y-x}\right| \leq \frac{1 / 2\left(d_{\sigma}-c_{\sigma}\right)}{1 / 2\left(1-1 / 2^{\ulcorner\sigma\urcorner}\right)\left(b_{\sigma}-a_{\sigma}\right)}<\frac{1}{2^{\left\ulcorner\sigma^{\urcorner}-1\right.}}
$$

For $n \geq N$, let

$$
F_{T, n}=\sum_{\sigma \in T ;\ulcorner\sigma \backslash n} \varphi\left(x ; K_{\sigma}^{(R)}\right) .
$$

Then for all $n \geq N, y \in[0,1] \backslash\{x\}$,

$$
\begin{aligned}
&\left|\frac{F_{T}(y)-F_{T}(x)}{y-x}-\frac{F_{T, n}(y)-F_{T, n}(x)}{y-x}\right| \\
& \leq \sum_{\sigma \in T ;\left\ulcorner\sigma^{\urcorner}>n\right.}\left|\frac{\varphi\left(y ; K_{\sigma}^{(R)}\right)-\varphi\left(x ; K_{\sigma}^{(R)}\right)}{x-y}\right| \leq \frac{1}{2^{n-1}} .
\end{aligned}
$$

Let y approach x, then

$$
\left|\liminf _{y \rightarrow x} \frac{F_{T}(y)-F_{T}(x)}{y-x}-\limsup _{y \rightarrow x} \frac{F_{T}(y)-F_{T}(x)}{y-x}\right| \leq \frac{1}{2^{n-2}}
$$

for any $n \geq N$. Thus, $F_{T}^{\prime}(x)$ exists.

5.4 Effective Ranks of Continuous Functions

In this section, we study the Kechris-Woodin derivative defined in [24] and assign a Kechris-Woodin rank to each continuous function. Then we show the correspondence between recursive ordinals and recursively described continuous (including everywhere differentiable) functions on $[0,1]$.

For each function $f \in \mathbf{C}[0,1], \varepsilon \in \mathbb{Q}^{+}$and closed set $P \subseteq[0,1]$, let the KechrisWoodin derivative of P with respect to f and ε be

$$
\begin{aligned}
& P_{\varepsilon, f}^{\prime}=P_{\varepsilon}^{\prime}=\{x \in P: \text { For every open neighborhood } U \text { of } x \text { there are } \\
& \qquad \begin{array}{r}
\text { rational points } p<q, r<s \text { in } U \cap[0,1] \text { with } \\
\left.[p, q] \cap[r, s] \cap P \neq \emptyset \text { and }\left|\Delta_{f}(p, q)-\Delta_{f}(r, s)\right|>\varepsilon\right\},
\end{array}
\end{aligned}
$$

where

$$
\Delta_{f}(x, y)=\frac{f(x)-f(y)}{x-y}, \quad x, y \in[0,1], \quad x \neq y .
$$

We may iterate the Kechris-Woodin derivative along ordinals as follows.

$$
\begin{aligned}
& P_{\varepsilon, f}^{0}=P_{\varepsilon}^{0}=[0,1] \\
& P_{\varepsilon, f}^{\alpha+1}=P_{\varepsilon}^{\alpha+1}=\left(P_{\varepsilon}^{\alpha}\right)_{\varepsilon}^{\prime} \\
& P_{\varepsilon, f}^{\lambda}=P_{\varepsilon}^{\lambda}=\bigcap_{\alpha<\lambda} P_{\varepsilon}^{\alpha}, \quad \lambda \text { is a limit oridinal }
\end{aligned}
$$

By its definition, we have the following properties of the Kechris-Woodin derivative.

5.4 Effective Ranks of Continuous Functions

Proposition 5.4.1. For all ordinals $\alpha \leq \beta, P_{\varepsilon}^{\alpha} \supseteq P_{\varepsilon}^{\beta}$ and for any positive rational numbers $\varepsilon \leq \varepsilon^{\prime}, P_{\varepsilon}^{\alpha} \supseteq P_{\varepsilon^{\prime}}^{\alpha}$.

Thus, there is a least $\alpha_{f}(\varepsilon)=\alpha(\varepsilon)<\aleph_{1}$ such that for all $\alpha \geq \alpha(\varepsilon), P_{\varepsilon}^{\alpha}=P_{\varepsilon}^{\alpha(\varepsilon)}=$ P_{ε}^{∞}. Let the Kechris-Woodin rank of f,

$$
|f|_{\mathrm{KW}}=\mu \alpha\left\{\alpha: \alpha \geq \alpha_{f}(\varepsilon), \text { for all } \varepsilon \in \mathbb{Q}^{+}\right\},
$$

and the Kechris-Woodin kernel of f,

$$
\operatorname{Ker}_{\mathrm{KW}}(f)=\bigcup_{\varepsilon \in \mathbb{Q}^{+}} \bigcap_{\alpha} P_{\varepsilon}^{\alpha}=\bigcup_{\varepsilon \in \mathbb{Q}^{+}} P_{\varepsilon}^{\infty} .
$$

Lemma 5.13 ([24]). f is everywhere differentiable if and only if $\operatorname{Ker}_{\mathrm{Kw}}(f)=\emptyset$.
Proof. Suppose for some $x \in[0,1], f^{\prime}(x)$ does not exist, then for some $\varepsilon \in \mathbb{Q}^{+}$we have the following property:

For every open neighborhood U of x, there are rational numbers $r, s, p, q \in$ $U \cap[0,1]$ such that $r \leq x \leq s, p \leq x \leq q,\left|\Delta_{f}(r, s)-\Delta_{f}(p, q)\right|>\varepsilon$.

By induction, $x \in P_{\varepsilon}^{\alpha}$ for all α and $\operatorname{Ker}_{\mathrm{KW}}(f) \neq \emptyset$.
Now we consider the case that f is everywhere differentiable. Then we claim that for every ε and any nonempty closed set $P \subseteq[0,1], P_{\varepsilon}^{\prime} \neq P$, therefore $\operatorname{Ker}_{\mathrm{KW}}(f)=\emptyset$. For the sake of a contradiction, we assume that $P \subseteq[0,1]$ is closed and $P_{\varepsilon}^{\prime}=P$. Then by the definition of P_{ε}^{\prime} we have for every $n<\omega$, the set

$$
\begin{gathered}
E_{n}=\{x \in P: \exists p, q, r, s \in \mathbb{Q} \cap[0,1](p<x<q \wedge r<x<s \wedge \\
\left.\left.q-p, s-r<1 / n \wedge\left|\Delta_{f}(p, q)-\Delta_{f}(r, s)\right|>\varepsilon\right)\right\} \\
\bigcup\{x \in P: \exists q, s \in \mathbb{Q} \cap[0,1](x<q<1 / n \wedge x<s<1 / n \wedge \\
\left.\left.\left|\Delta_{f}(0, q)-\Delta_{f}(0, s)\right|>\varepsilon\right)\right\} \\
\begin{array}{l}
\bigcup x \in P: \exists p, r \in \mathbb{Q} \cap[0,1](1-1 / n<p<x \wedge \\
\left.\left.1-1 / n<r<x \wedge\left|\Delta_{f}(p, 1)-\Delta_{f}(r, 1)\right|>\varepsilon\right)\right\}
\end{array}
\end{gathered}
$$

is open dense in P. By the Baire Category Theorem, $\bigcap_{n} E_{n} \neq \emptyset$. Let $x \in \bigcap_{n} E_{n}$. Then $f^{\prime}(x)$ does not exist. That is a contradiction.

Proposition 5.4.2. Suppose f is everywhere differentiable on $[0,1]$. Then f^{\prime} is continuous if and only if $|f|_{\mathrm{KW}}=1$.

Proof. Assume that f^{\prime} is continuous. Then for every $\varepsilon \in \mathbb{Q}^{+}$and $x \in[0,1]$, there is an open neighborhood U of x, such that for any $y \in U \cap[0,1],\left|f^{\prime}(y)-f^{\prime}(x)\right|<\varepsilon / 2$. Therefore, if $p<q, r<s$ in $U \cap[0,1]$, then $\left|\Delta_{f}(p, q)-\Delta_{f}(r, s)\right|=\left|f^{\prime}(y)-f^{\prime}(z)\right|<\varepsilon$ for some $y, z \in U \cap[0,1]$. Hence $P_{\varepsilon}^{1}=\emptyset$.

Now suppose f^{\prime} is not continuous at x. Then there is an $\varepsilon \in \mathbb{Q}^{+}$such that for all open neighborhood U of x there is a $y \in U \cap[0,1]$ with $\left|f^{\prime}(y)-f^{\prime}(x)\right|>\varepsilon$. Therefore, there are rational numbers $p<q, r<s$ in $U \cap[0,1]$ with $[p, q] \cap[r, s] \neq \emptyset$ and $\left|\Delta_{f}(p, q)-\Delta_{f}(r, s)\right|>\varepsilon$. Thus, $P_{\varepsilon}^{1} \neq \emptyset$.

Now we consider sets of natural numbers that describe the Kechris-Woodin derivatives. For any ordinal α, let

$$
\hat{P}_{\varepsilon, f}^{\alpha}=\hat{P}_{\varepsilon}^{\alpha}=\left\{\pi\left\langle l, l^{\prime}\right\rangle: l, l^{\prime}<\omega, a(l)<a\left(l^{\prime}\right), P_{\varepsilon, f}^{\alpha} \cap\left(a(l), a\left(l^{\prime}\right)\right)=\emptyset\right\},
$$

where $a(l), a\left(l^{\prime}\right)$ are rational numbers coded by l and l^{\prime} respectively and π is defined as in Section 5.3. Then $\hat{P}_{\varepsilon}^{\alpha}$ describes the closed set P_{ε}^{α}. Let

$$
\begin{aligned}
\hat{\operatorname{Ker}}_{\mathrm{KW}}(f)=\left\{\pi\left\langle e, \pi\left\langle l, l^{\prime}\right\rangle\right\rangle: e, l, l^{\prime} \in \omega, a(l)<a\left(l^{\prime}\right), a(e)>0\right. & \\
& \left.\pi\left\langle l, l^{\prime}\right\rangle \in \hat{P}_{a(e)}^{\alpha} \text { for some } \alpha\right\} .
\end{aligned}
$$

Then we say $\hat{\operatorname{Ker}_{\mathrm{KW}}}(f)$ describes $\operatorname{Ker}_{\mathrm{Kw}}(f)$.
Proposition 5.4.3. For any ordinal α,

$$
\hat{P}_{\varepsilon, f}^{\alpha+1}=\Gamma_{\varepsilon, f}\left(\hat{P}_{\varepsilon}^{\alpha}\right),
$$

where for any $A \subseteq\left\{\pi\left\langle l, l^{\prime}\right\rangle: l, l^{\prime}<\omega, a(l)<a\left(l^{\prime}\right)\right\}$,

$$
\begin{array}{r}
\Gamma_{\varepsilon, f}(A)=\left\{\pi\left\langle l, l^{\prime}\right\rangle: l, l^{\prime}<\omega, a(l)<a\left(l^{\prime}\right), \text { and for all rational points } p<q,\right. \\
r<s \text { in }\left(a(l), a\left(l^{\prime}\right)\right) \cap[0,1], \text { if }[p, q] \cap[r, s] \cap \overline{\bigcup_{\pi\left\langle l, l^{\prime}\right\rangle \in A}\left(a(l), a\left(l^{\prime}\right)\right)} \neq \emptyset, \\
\text { then } \left.\left|\Delta_{f}(p, q)-\Delta_{f}(r, s)\right| \leq \varepsilon\right\} .
\end{array}
$$

In particular, if $\lambda>0$ is a limit ordinal, then

$$
\hat{P}_{\varepsilon}^{\lambda+1}=\Gamma_{\varepsilon, f}\left(\bigcup_{\alpha<\lambda} \hat{P}_{\varepsilon}^{\alpha}\right) .
$$

Proof. By the definition of Kechris-Woodin derivative.

5.4 Effective Ranks of Continuous Functions

Suppose $\hat{f} \subset \omega$ describes f. Then in Proposition 5.4.3 $\Gamma_{\varepsilon, f}$ is a monotonic operator arithmetic in \hat{f}. Therefore, by Proposition 2.2.4, we have Theorem 5.14.

Theorem 5.14. If f has a recursive description, then $|f|_{\mathrm{KW}} \leq \omega_{1}^{C K}$. Moreover, if f is everywhere differentiable on $[0,1]$, then $|f|_{\mathrm{KW}}<\omega_{1}^{C K}$.

The rest of this section is devoted to the proof of Theorem 5.15. Part of the proof idea can be found in [24].

An everywhere differentiable nonnegative function f on $[0,1]$ is nice, if $\max _{x \in[0,1]} f(x)<1, \max _{x \in[0,1]} f^{\prime}(x)<1$ and $f(0)=f(1)=f^{\prime}(0)=f^{\prime}(1)=0$.

Theorem 5.15. There is a recursive function $F: \omega \rightarrow \omega$ such that if $e \in \mathcal{O}$ and $e \neq 1$, then $\Phi_{F(e)}$ describes a nice function $f_{|e|_{\mathcal{O}}}$ on $[0,1]$ such that $\left|f_{|e|_{\mathcal{O}}}\right|_{\mathrm{KW}}=|e|_{\mathcal{O}}$ and if $|e|_{\mathcal{O}}$ is a successor, then $\left|f_{\mid e_{\mathcal{O}}}\right|_{\mathrm{KW}}=\alpha_{f_{\mid e_{\mathcal{O}}}}(1 / 9)$.

Recall $\varphi(x ; K)$ in Section 5.3. Let $f_{1}(x)=1 / 64 \varphi(x ;[1 / 4,3 / 4])$. Then f_{1} is nice and by Proposition 5.4.2, $\left|f_{1}\right|_{\mathrm{KW}}=\alpha_{f_{1}}(1 / 9)=1$. Let e_{0} be an index such that $\Phi_{e_{0}}$ describes $f_{1}\left(e_{0}\right.$ exists by the argument in Section 5.3) and define $F(n, 2)=\Phi(n, 0)=$ e_{0}. Next, we will construct f_{α} inductively and show there is an effective induction of their recursive descriptions with parameter n. By the Recursion Theorem, the parameter n could be fixed.

Consider the following picture.

Lemma 5.16. There are recursive sequences of rational numbers $\left\{a_{n}\right\}_{n<\omega},\left\{b_{n}\right\}_{n<\omega}$, $\left\{c_{n}\right\}_{n<\omega},\left\{d_{n}\right\}_{n<\omega}$ such that $\lim _{n} a_{n}=0$ and for all $n<\omega$,
(i) If $n>0$, then $0<a_{n}<b_{n}<c_{n}<d_{n}<a_{n-1} \leq a_{0}<b_{0}<c_{0}<d_{0}<1$. We denote $\left[a_{n}, b_{n}\right]$ by I_{n} and $\left[c_{n}, d_{n}\right]$ by J_{n}.
(ii) The squares with basis I_{n} or J_{n} are between the graphs of $y=x^{2}$ and $y=-x^{2}$, i.e. $d_{n}-c_{n}<\left(c_{n}\right)^{2}$ and $b_{n}-a_{n}<\left(a_{n}\right)^{2}$.
(iii) Let the middle point of J_{n} be ξ_{n}. Then $\frac{d_{n}-c_{n}}{\xi_{n}-a_{n}}=1 / 4$.

Here "recursive" is defined in the sense of Remark 5.2.

Proof. For every $n<\omega$ let

$$
\begin{aligned}
a_{n} & =\frac{1}{n+2}, \\
s_{n} & =a_{n}+\left(a_{n}\right)^{2}, \\
b_{n} & =\frac{1}{4}\left(s_{n}-a_{n}\right)+a_{n}, \\
c_{n} & =\frac{7}{16}\left(s_{n}-a_{n}\right)+a_{n}, \\
d_{n} & =\frac{9}{16}\left(s_{n}-a_{n}\right)+a_{n} .
\end{aligned}
$$

s_{n} is applied here for the sake of Clause (ii). It is straightforward to check that Clause (i) to (iii) are satisfied.

For the rest of this section, we fix sequences $\left\{I_{n}=\left[a_{n}, b_{n}\right]\right\}_{n<\omega}$ and $\left\{J_{n}=\left[c_{n}, d_{n}\right]\right\}_{n<\omega}$ as in Lemma 5.16. A function f_{α} is constructed so that $f_{\alpha} \upharpoonright I_{n}$ is a scanned copy of some $f_{\alpha^{\prime}}, \alpha^{\prime}<\alpha, f_{\alpha} \upharpoonright J_{n}$ depends on the property of α, and f_{α} equals 0 on the complement of $\bigcup_{n} I_{n} \cup \bigcup_{n} J_{n}$.

We consider the following three cases.
Case 1. α is a limit ordinal and $\left\{\beta_{n}\right\}_{n<\omega}$ is a strictly increasing sequence of ordinals such that $\lim _{n} \beta_{n}=\alpha$. Define

$$
f_{\alpha}(x)= \begin{cases}\left(f_{\beta_{n}} /(n+1)\right)_{a_{n}, b_{n}}^{s c a n}(x) & \text { if } x \in I_{n} \\ 0 & \text { otherwise }\end{cases}
$$

5.4 Effective Ranks of Continuous Functions

Then f_{α} is nice on $[0,1]$. Moreover, for every $n<\omega, \max _{x \in I_{n}}\left(\left(f_{\beta_{n}} /(n+1)\right)_{a_{n}, b_{n}}^{s \text { san }}\right)^{\prime}(x)=$ $\max _{x \in[0,1]} f_{\beta_{n}}^{\prime}(x) /(n+1)<1 /(n+1)$. Then for any $\varepsilon \in \mathbb{Q}^{+}$and closed set $P \subseteq[0,1]$, we have $P_{\varepsilon, f_{\alpha}}^{\prime} \subseteq \bigcup_{2 /(n+1)>\varepsilon} I_{n}$. Thus, $\left|f_{\alpha}\right|_{\mathrm{KW}}=\sup _{n}\left|f_{\beta_{n}} /(n+1)\right|_{\mathrm{KW}}=\alpha$.

Case 2. $\alpha=\lambda+1$, where λ is a limit and $\left\{\beta_{n}\right\}_{n<\omega}$ is a strictly increasing sequence of successor ordinals such that $\lim _{n} \beta_{n}=\lambda$. Define

$$
f_{\alpha}(x)= \begin{cases}\left(f_{\beta_{n}}\right)_{a_{n}, b_{n}}^{\text {scan }}(x) & \text { if } x \in I_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Then f_{α} is nice on $[0,1]$. For any $\varepsilon \in \mathbb{Q}^{+}$, and closed set $P \subseteq[0,1], P_{\varepsilon, f_{\alpha}}^{\prime} \subseteq$ $\bigcup_{n} I_{n} \cup\{0\}$. Thus, $\left|f_{\alpha}\right|_{\mathrm{KW}} \geq \sup _{n}\left|f_{\beta_{n}}\right|_{\mathrm{KW}}=\lambda$. On the other hand, for all $\varepsilon \in \mathbb{Q}^{+}$, $P_{\varepsilon, f_{\alpha}}^{\lambda} \subseteq\{0\}$. To see $\left|f_{\alpha}\right|_{\mathrm{KW}}=\alpha_{f_{\alpha}}(1 / 9)=\lambda+1$, it suffices to show that $0 \in P_{1 / 9, f_{\alpha}}^{\lambda}$. Since $\left|f_{\beta_{n}}\right|_{\mathrm{KW}}=\alpha_{f_{\beta_{n}}}(1 / 9)=\beta_{n}, P_{1 / 9, f_{\beta_{n}}}^{\beta} \upharpoonright I_{n} \neq \emptyset$ for every $\beta<\lambda$ and $\beta_{n}>\beta$. Therefore, $0 \in P_{1 / 9, f_{\alpha}}^{\beta}$ for all $\beta<\lambda$. Thus, $0 \in P_{1 / 9, f_{\alpha}}^{\lambda}$.

Case 3. $\alpha=\beta+1$, where β is a successor ordinal. Then let

$$
f_{\alpha}(x)= \begin{cases}\left(f_{\beta}\right)_{a_{n}, b_{n}}^{s c a n}(x) & \text { if } x \in I_{n} \\ (\varphi(x ;[1 / 4,3 / 4]))_{c_{n}, d_{n}}^{s c a n}(x) & \text { if } x \in J_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Then f_{α} is nice on $[0,1]$. As in Case 2, for any $\varepsilon \in \mathbb{Q}^{+}$, and closed set $P \subseteq[0,1]$, $P_{\varepsilon, f_{\alpha}}^{\prime} \subseteq \bigcup_{n} I_{n} \cup\{0\}$. Thus, $P_{\varepsilon, f_{\alpha}}^{\alpha} \subseteq\{0\}$. To see $\left|f_{\alpha}\right|_{\mathrm{KW}}=\alpha_{f_{\alpha}}(1 / 9)=\beta+1$, we only need to show that $0 \in P_{1 / 9, f_{\alpha}}^{\beta}$. Suppose $\beta=\gamma+1$. Then for any $n, P_{1 / 9, f_{\alpha}}^{\gamma} \upharpoonright I_{n} \neq \emptyset$. Let ξ_{n} be the middle point of J_{n}. Note that

$$
\Delta_{f_{\alpha}}\left(\xi_{n}, a_{n}\right)-\Delta_{f_{\alpha}}\left(b_{n}, a_{n}\right)=\frac{1 / 2\left(d_{n}-c_{n}\right)}{\xi_{n}-a_{n}}=\frac{1}{8}
$$

and $\left[a_{n}, \xi_{n}\right] \cap\left[a_{n}, b_{n}\right]=I_{n}$. Thus, $0 \in P_{1 / 9, f_{\alpha}}^{\beta}$.
Now we consider recursive descriptions of $\left\{f_{\alpha}\right\}_{\alpha<\omega_{1}^{C K}}$.
Suppose $\left\{g_{n}\right\}_{n<\omega}$ and $\left\{h_{n}\right\}_{n<\omega}$ are sequences of nice functions on $[0,1]$, and $\left\{\Psi_{n ; g}\right\}_{n<\omega},\left\{\Psi_{n ; h}\right\}_{n<\omega}$ are uniformly recursive sequences of total recursive functions such that for all $n, \Psi_{n ; g}$ describes g_{n} and $\Psi_{n ; h}$ describes h_{n}. Then define

$$
\begin{aligned}
a_{-1} & =1 \\
C_{n ; g} & =\left\{\pi\langle i, \pi\langle j, \pi\langle l, k\rangle\rangle\rangle: a_{n}-a(i), a(j)-b_{n}<\min \left\{a_{n}-d_{n+1}, c_{n}-b_{n}\right\}\right\}, \\
C_{n ; h} & =\left\{\pi\langle i, \pi\langle j, \pi\langle l, k\rangle\rangle\rangle: c_{n}-a(i), d(j)-b_{n}<\min \left\{c_{n}-b_{n}, a_{n-1}-d_{n}\right\}\right\},
\end{aligned}
$$

$$
\begin{align*}
& \Psi_{g}=\left(\bigcup_{n}\left(\Psi_{n ; g}\right)_{a_{n}, b_{n}}^{s c a n} \cap C_{n ; g}\right) \cup\{\pi\langle i, \pi\langle j, \pi\langle k, l\rangle\rangle\rangle: a(k)<0<a(l) \wedge \\
& a(i)<a(j) \wedge[a(j) \leq 0 \vee a(i) \geq b_{0} \\
&\left.\left.\vee \exists n\left(a(i)=b_{n}, b(i)=a_{n-1}\right)\right]\right\}, \tag{5.1}
\end{align*}
$$

and

$$
\begin{align*}
& \Psi_{g, h}=\left(\bigcup_{n}\left(\Psi_{n ; g}\right)_{a_{n}, b_{n}}^{s c a n} \cap C_{n ; g}\right) \cup\left(\bigcup_{n}\left(\Psi_{n ; h}\right)_{c_{n}, d_{n}}^{s c a n} \cap C_{n ; h}\right) \cup\{\pi\langle i, \pi\langle j, \pi\langle k, l\rangle\rangle\rangle: \\
& a(k)<0<a(l) \wedge a(i)<a(j) \wedge\left[a(j) \leq 0 \vee a(i) \geq d_{0}\right. \\
&\left.\left.\vee \exists n\left[\left(a(i)=b_{n}, b(i)=c_{n}\right) \vee\left(a(i)=d_{n}, b(i)=a_{n-1}\right)\right]\right]\right\} \tag{5.2}
\end{align*}
$$

where $a: \omega \rightarrow \mathbb{Q}, \pi: \omega^{2} \rightarrow \omega$ and ()$_{a, b}^{s c a n}$ are as defined in Section 5.2 in the sense of Remark 5.2.

Lemma 5.17. Ψ_{g} describes g and $\Psi_{g, h}$ describes $g \oplus h$, where

$$
g(x)=\left\{\begin{array}{ll}
g_{n}(x) & \text { if } x \in I_{n}, \\
0 & \text { otherwise }
\end{array} \quad g \oplus h(x)= \begin{cases}g_{n}(x) & \text { if } x \in I_{n} \\
h_{n}(x) & \text { if } x \in J_{n} \\
0 & \text { otherwise }\end{cases}\right.
$$

Lemma 5.17 is straightforward and we skip its proof.
Now we are back to the proof of Theorem 5.15.
Let $|e|_{\mathcal{O}}=\alpha>1$. Suppose for all $1_{\mathcal{O}}<e^{\prime}<_{\mathcal{O}} e$ we have defined $F\left(n, e^{\prime}\right)$, such that $\forall e^{\prime}<_{\mathcal{O}} e\left[\forall e^{\prime \prime}<_{\mathcal{O}} e^{\prime}\left(\Phi_{F\left(n, e^{\prime \prime}\right)}\right.\right.$ describes $\left.f_{\left|e^{\prime \prime}\right| \mathcal{O}}\right) \rightarrow \Phi_{F\left(n, e^{\prime}\right)}$ describes $\left.f_{\left|e^{\prime}\right| \mathcal{O}}\right]$. Now we define $F(n, e)$.

Case 1. $e=3 \cdot 5^{m}$. Then α is a limit. Let $g_{k}=f_{\left|\Phi_{m}(k)\right|_{\mathcal{O}}} /(k+1), \Psi_{k ; g}=$ $(1 /(k+1))\left(\left(\Phi_{F\left(n, \Phi_{m}(k)\right)}\right)_{a_{k}, b_{k}}^{s c a n}\right)$ for all $k<\omega$, and $\Phi_{F(n, e)}=\Psi_{g}$ be defined as in 5.1. Then $\Phi_{F(n, e)}$ describes f_{α}.

Case 2. $e=2^{3.5^{m}}$. So $\alpha=\lambda+1$, where λ is a limit ordinal. Then let $g_{k}=$ $\left.f_{\mid 2^{\Phi} m(k)}\right|_{\mathcal{O}}, \Psi_{k ; g}=\left(\Phi_{F\left(n, 2^{\Phi m(k)}\right.}\right)_{a_{k}, b_{k}}^{s c a n}$ for all $k<\omega$, and $\Phi_{F(n, e)}=\Psi_{g}$ be defined as in (5.1). $\Phi_{F(n, e)}$ describes f_{α}.

Case 3. $e=2^{m}$, where $m \neq 3 \cdot 5^{m^{\prime}}$ for any $m^{\prime}<m$. Then $\alpha=\beta+1$, where β is a successor ordinal. Then let $g_{k}=f_{|m|_{\mathcal{O}}}, h_{k}=\varphi(-;[1 / 4,3 / 4]), \Psi_{k ; g}=\left(\Phi_{F(n, m)}\right)_{a_{k}, b_{k}}$, $\Psi_{k ; h}$ be a recursive description of $\varphi\left(_;[1 / 4,3 / 4]\right)$. Define $\Phi_{F(n, e)}=\Psi_{g, h}$ as in 5.2). Then $\Phi_{F(n, e)}$ describes f_{α}.

5.5 Kechris-Woodin Kernel and $\Pi_{1}^{1}-\mathrm{CA}_{0}$

By the Recursion theorem, there is a fixed parameter n_{0}, such that $\Phi_{F(e)}=$ $\Phi_{F\left(n_{0}, e\right)}$ describes $f_{|e|_{\mathcal{O}}}$ for all $e \in \mathcal{O} \backslash\{1\}$, where $F(e)=F\left(n_{0}, e\right)$. The proof of Theorem 5.15 is complete.

5.5 Kechris-Woodin Kernel and $\Pi_{1}^{1}-\mathrm{CA}_{0}$

In this section, we discuss the existence of Kechris-Woodin kernel from the view point of reverse mathematics. In a model \mathcal{M} of second order arithmetic, we say a continuous function f (a closed set, $\left.\operatorname{Ker}_{\mathrm{KW}}(f)\right)$ exists, if f (the closed set, $\operatorname{Ker}_{\mathrm{KW}}(f)$, respectively) has a description in the second order part of \mathcal{M}.

Theorem $5.18\left(\mathrm{ATR}_{0}\right)$. For every continuous function f on $[0,1]$, either $\operatorname{Ker}_{\mathrm{KW}}(f)=$ \emptyset or there is a nonempty closed set $P \subseteq \operatorname{Ker}_{\mathrm{KW}}(f) \neq \emptyset$.

Proof. Suppose \mathcal{M} is a model of ATR_{0} and f in \mathcal{M} is a continuous function on $[0,1]$. And suppose R is a well ordering in \mathcal{M} and 0 is the R-least element. Then there is a sequence of sets $\left\{A_{n}\right\}_{n \in F(R)}$ such that $A_{0}=\emptyset$ and

$$
\forall n>0\left(n \in F(R) \rightarrow A_{n}=\bigcup_{i R n} \Gamma\left(A_{i}\right)\right),
$$

where $\Gamma\left(A_{i}\right)=\bigcup_{n}\left\{\pi\langle n, k\rangle: a(n)>0, k \in \Gamma_{a(n), f}\left(A_{i}^{[n]}\right)\right\}, a(n)$ is the rational number coded by n and $\Gamma_{a(n), f}$ is defined as in Proposition 5.4.3.

Since " R is an well ordering" is not Σ_{1}^{1} property, there is a linear order but not well ordering R (in the sense of \mathcal{M}) such that 0 is the R-least element, and there exists a sequence of sets $A=\left\{A_{n}\right\}_{n \in F(R)}$ satisfying the requirements in last paragraph and R has no (A, R)-recursive infinite R-decreasing sequence.

For any $n \in F(R)$, we say n is nonstandard if there is an infinite R-decreasing sequence (in the sense of the universe) in $\{i \in F(R): i R n\}$.

Pick any nonstandard n. We claim that $A_{n} \supseteq \hat{\operatorname{Ker}}_{\mathrm{KW}}(f)$, where $\hat{\operatorname{Ker}_{\mathrm{KW}}}(f)$ describes $\operatorname{Ker}_{\mathrm{KW}}(f)$. Suppose not, then there is an $m \in \hat{\operatorname{Ker}_{\mathrm{KW}}}(f) \backslash A_{n}$. By the proof of (2.1) (let $k=m$ in (2.1)), $\{j R i: i R n\}$ is a well ordering (in the sense of the universe), deriving a contradiction. Now if $A_{n}=\hat{\operatorname{Ker}_{\text {KW }}}(f)$ or $\operatorname{Ker}_{\mathrm{KW}}(f)=\emptyset$, then we are done. Otherwise, suppose $k \in A_{n} \backslash \hat{\operatorname{Ker}_{\mathrm{KW}}}(f)$. Then there is an R-least element $n^{\prime} \in F(R)$ such that $k \in A_{n^{\prime}}$ (If n^{\prime} does not exist, then there is an infinite (A, R)-recursive infinite R-decreasing sequence). Clearly, n^{\prime} is nonstandard. Then
we have a nonstandard $n^{\prime \prime}$ such that $n^{\prime \prime} R n^{\prime}$. Since $k \notin A_{n^{\prime \prime}}$ and $A_{n^{\prime \prime}} \supseteq \hat{\operatorname{Ker}_{\mathrm{KW}}}(f)$, $A_{n^{\prime \prime}}$ describes a nonempty closed subset of $\operatorname{Ker}_{\mathrm{KW}}(f)$.

Theorem 5.19. The existence of Kechris-Woodin kernel is equivalent to $\Pi_{1}^{1}-C A_{0}$ over $A C A_{0}$

By Proposition 2.2.5, it suffices to show Lemma 5.20 .
Lemma 5.20. The following are equivalent over $A C A_{0}$.

1. For any sequence of trees $\left\{T_{k}\right\}_{k<\omega}, T_{k} \subseteq \omega^{<\omega}$, there exists a set X such that $\forall k\left(k \in X \leftrightarrow T_{k}\right.$ has a path $)$.
2. For every f continuous on $[0,1], \operatorname{Ker}_{\mathrm{KW}}(f)$ exists.

Proof. $(1 \rightarrow 2)$. Suppose f continuous in $[0,1]$. And $A=\{\langle r, s\rangle: 0 \leq r<s \leq 1\}$. We construct a sequence of trees $T_{\varepsilon, f,(a, b)} \subseteq A^{<\omega}$ arithmetically in a description of f, where $\varepsilon \in \mathbb{Q}$ and $a<b$ are rational numbers.

$$
\begin{aligned}
& T_{\varepsilon, f,(a, b)}=\{\emptyset\} \cup\{\langle r, s\rangle \in A: a<r<s<b\} \\
& \cup\left\{\left\langle\left\langle r_{0}, s_{0}\right\rangle, \ldots,\left\langle r_{n}, s_{n}\right\rangle\right\rangle \in A^{n+1}: \varepsilon \in \mathbb{Q} \wedge n<\omega \wedge \forall i \leq n\left(s_{i}-r_{i}<\frac{1}{2^{i}}\right)\right. \\
&\left.\wedge \bigcap_{i=0}^{n}\left[r_{i}, s_{i}\right] \neq \emptyset \wedge \forall i<n\left(\left|\Delta_{f}\left(r_{i+1}, s_{i+1}\right)-\Delta_{f}\left(r_{i}, s_{i}\right)\right|>\varepsilon\right)\right\} .
\end{aligned}
$$

To show $1 \rightarrow 2$, it suffices to prove that $T_{\varepsilon, f,(a, b)}$ is well founded if and only if $(a, b) \cap P_{\varepsilon, f}^{\infty}=\emptyset$.

Suppose $T_{\varepsilon, f,(a, b)}$ is not well founded. Let $\left\langle\left\langle r_{0}, s_{0}\right\rangle,\left\langle r_{1}, s_{1}\right\rangle, \ldots,\left\langle r_{n}, s_{n}\right\rangle, \ldots\right\rangle$ be an infinite path in $T_{\varepsilon, f,(a, b)}$. Then $\bigcap_{n}\left[r_{n}, s_{n}\right] \neq \emptyset$. Let $x_{0} \in \bigcap_{n}\left[r_{n}, s_{n}\right] \subset(a, b)$. By induction, $x_{0} \in P_{\varepsilon, f}^{\alpha}$ for all α. Thus, $(a, b) \cap P_{\varepsilon, f}^{\infty} \neq \emptyset$.

Now assume $P=(a, b) \cap P_{\varepsilon, f}^{\infty} \neq \emptyset$. As in the proof of Lemma 5.13, define

$$
\begin{gathered}
E_{n}=\{x \in P: \exists p, q, r, s \in \mathbb{Q} \cap[0,1](p<x<q \wedge r<x<s \wedge \\
\left.\left.q-p, s-r<1 / n \wedge\left|\Delta_{f}(p, q)-\Delta_{f}(r, s)\right|>\varepsilon\right)\right\} \\
\bigcup\{x \in P: \exists q, s \in \mathbb{Q} \cap[0,1](x<q<1 / n \wedge x<s<1 / n \wedge \\
\left.\left.\left|\Delta_{f}(0, q)-\Delta_{f}(0, s)\right|>\varepsilon\right)\right\} \\
\bigcup\{x \in P: \exists p, r \in \mathbb{Q} \cap[0,1](1-1 / n<p<x \wedge \\
\left.\left.1-1 / n<r<x \wedge\left|\Delta_{f}(p, 1)-\Delta_{f}(r, 1)\right|>\varepsilon\right)\right\}
\end{gathered}
$$

5.5 Kechris-Woodin Kernel and $\Pi_{1}^{1}-\mathrm{CA}_{0}$

and E_{n} is open and dense in P since $\left(P_{\varepsilon, f}^{\infty}\right)_{\varepsilon, f}^{\prime}=P_{\varepsilon, f}^{\infty}$. By the Baire Category Theorem, $\bigcap_{n} E_{n} \neq \emptyset$. Let $x_{1} \in \bigcap_{n} E_{n}$. Then by the definition of $T_{\varepsilon, f,(a, b)}$, there is an infinite path $\left\langle\left\langle r_{0}, s_{0}\right\rangle,\left\langle r_{1}, s_{1}\right\rangle, \ldots,\left\langle r_{n}, s_{n}\right\rangle, \ldots\right\rangle$ such that for all $n, r_{n}<x_{1}<s_{n}$. Then $T_{\varepsilon, f,(a, b)}$ is not well founded.
$(2 \rightarrow 1)$. Suppose $\left\{T_{n}\right\}_{n<\omega}$ is a sequence of trees. Let $F_{T_{n}}$ be defined as in Section 5.3 and let

$$
\begin{aligned}
p_{n} & =\frac{1}{4}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\frac{1}{n+2}, \\
q_{n} & =\frac{3}{4}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\frac{1}{n+2}, \quad \forall n<\omega . \\
F(x) & = \begin{cases}\left(F_{T_{n}}\right)_{p_{n}, q_{n}}^{s c a n}(x) & \text { if } p_{n} \leq x \leq q_{n} \text { for some } n \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Then for n,

$$
\begin{aligned}
& T_{n} \text { is well founded } \\
\leftrightarrow & F_{T_{n}} \text { is everywhere differentiable on }[0,1] \\
\leftrightarrow & \forall \varepsilon \in \mathbb{Q}^{+}\left(\left(\frac{1}{n+2}, \frac{1}{n+1}\right) \cap P_{\varepsilon, F}^{\infty}=\emptyset\right) . \square
\end{aligned}
$$

Chapter

Open problems

We conclude this thesis with four open problems.

1. In any $B \Sigma_{1}$ model, a proper d-r.e. degree exists. Does a proper 3-r.e. degree exist? In general, is there a proper n-r.e. degree in $B \Sigma_{1}$ models, for $n \geq 3$? If R is r.e. and Q is a subset of \bar{R}, then for all stage $s, Q \subseteq \overline{R_{s}}$. However, if R is 2-r.e. for $n \geq 2$ and $Q \subseteq \bar{R}$, then Q may not be a subset of $\overline{R_{s}}$ for any s and the computation Φ_{e}^{R} may not be correctly approximated. This raises a main difficulty to diagonalize Φ_{e}^{R}.
2. Is there a $B \Sigma_{1}$ model with a non-r.e. degree below $\mathbf{0}^{\prime}$? We have seen a $B \Sigma_{1}$ model in which every degree below $\mathbf{0}^{\prime}$ is r.e. A careful analysis of the proof shows if $B \Sigma_{1}$ model has a Σ_{1} cut on which every Π_{2} subset is coded, then in the model, all degrees below $\mathbf{0}^{\prime}$ are r.e. It is tempting to conjecture that there is a characterization of the existence of non-r.e. degrees below 0^{\prime} in terms of the existence of codes in the model.
3. It is shown that there is no Friedberg numbering in a $B \Sigma_{2}$ model. Also, we have seen that in the projection model which satisfies $I \Sigma_{1}$ but not $B \Sigma_{2}$, a Friedberg numbering exists. In general, does a Friedberg numbering exist when $B \Sigma_{2}$ fails?
4. In α-recursion theory, for every admissible ordinal $\alpha, \operatorname{t\sigma } 2 p(\alpha)=\sigma 2 c f(\alpha)$ if and only if there is a Friedberg numbering of r.e. sets in L_{α}, if and only if there is a Friedberg numbering of d-r.e. sets in L_{α}. Yet, for $n \geq 3$, we only know that
$t \sigma 2 p(\alpha)=\sigma 2 c f(\alpha)$ implies there is a Friedberg numbering of n-r.e. sets. The other direction is still open.

For instance, let $\alpha=\aleph_{\omega}^{L}$ and $\left\{D_{e}\right\}_{e<\alpha}$ be an effective list of 3-r.e. sets without repetition. To construct an r.e. set X not in the list, we may still diagonalize $\left\{D_{e}\right\}_{e<\alpha}$ block by block. For one block of 3-r.e. sets, whether one set contains $\left[0, \aleph_{n}^{L}\right)$ as a subset may be determined by stage \aleph_{n}^{L} if n is large enough. But if one 3 -r.e. set containing $\left[0, \aleph_{n}^{L}\right.$) enumerates one more element, then that element may further change its mind two more times. A way to deal with this difficulty is to let n be large enough such that we have found all indices in the block, for which the enumeration of D_{e} is r.e. or d-r.e. This method works if the enumeration of D_{e} is d-r.e. for all e (see Section 4.3). But it is not sufficient for 3-r.e. sets. By this method, $X \upharpoonright \aleph_{n}^{L}=\left[0, \aleph_{n}^{L}\right)$ cannot "filtrate" any set D_{e} with a 3 -r.e. enumeration. It only filtrates every D_{e} with a dr.e. enumeration. If we relax the requirement of X, i.e. let X be a d-r.e. or 3 -r.e. set, then it seems that the above problem is solved: we may extract one element from $\left[0, \aleph_{n}^{L}\right)$, for every 3 -r.e. set in the block with a 3 -r.e. enumeration. Yet, in practice, we need to recursively approximate \aleph_{n}^{L}, during which we may mistakenly exhaust all the chances to change one's mind before getting the true value of \aleph_{n}^{L}. Perhaps there is a Friedberg numbering of 3-r.e. sets in $L_{\aleph L_{\omega}^{L}}$. In any case, some new technic is needed here.

Bibliography

[1] P. A. Cholak, C. G. Jockusch and T. A. Slaman, On the strength of Ramsey's theorem for pairs, Journal of Symbolic Logic, vol. 66, no. 1, pp. 1-55.
[2] C. T. Chong, Techniques of Admissible Recursion Theory, Lecture notes in mathematics, Springer-Verlag, 1984.
[3] \qquad , Recursively enumerable sets in models of Σ_{2} collection, Mathematical Logic and Application: Proceedings of the Logic Meeting Held in Kyoto (Kyoto, Japan), (J. Shinoda, T. A. Slaman and T. Tugué, editors), vol. 1388, Springer-Verlag, 1989, pp. 1-15.
[4] _ , Maximal sets and fragments of Peano arithmetic, Nagoya Mathematical Journal, vol. 115, pp. 165-183.
[5] C. T. Chong and K. J. Mourad, The degree of a Σ_{n} cut, Annals of Pure and Applied Logic, vol. 48, no. 3, pp. 227-235.
[6] \qquad , Σ_{n} definable sets without Σ_{n} induction, Transactions of the American Mathematical Society, vol. 334, no. 1, pp. 349-363.
[7] C. T .Chong, T. A. Slaman and Yue Yang, The metamathematics of stable Ramsey's theorem for Pairs, to appear.
[8] C. T. Chong and Yue Yang, Recursion theory on weak fragments of Peano arithmetic: a study of definable cuts, Proceedings of the Sixth Asian Logic

Conference (Beijing, China), (C. T. Chong, Q. Feng, D. Ding, Q Huang and M. Yasugi, editors), World Scientific, 1996, pp. 47-65.
[9] \qquad , Σ_{2} induction and infinite injury priority argument, Part I: maximal Sets and the jump Operator, Journal of Symbolic Logic, vol. 63, no. 3, pp. 797-814.
[10] \qquad , The jump of a Σ_{n} cut, Journal of the London Mathematical Society, vol. 75, no. 3, pp. 690-704.
[11] C. T. Chong, Lei Qian, T. A. Slaman and Yue Yang, Σ_{2} induction and infinite injury priority arguments, part III: prompt sets, minimal pairs and Shoenfield's conjecture, Israel Journal of Mathematics, vol. 121, no. 1, pp. 1-28.
[12] S. B. Cooper, Degrees of Unsolvability, Ph.D. Thesis, Leicester University, 1971.
[13] A. Church, The constructive second number class, Bulletin of the American Mathematical Society, vol. 44, no. 4, pp. 224-232.
[14] A. Church and S. C. Kleene, Foraml Definitions in the Theory of Ordinal Numbers, Fundamenta Mathematica, vol. 28, pp. 11-21.
[15] R. M. Friedberg, Three theorems on recursive enuemration I. Decomposition. II. Maximal set. III. Enumeration without duplication, Journal of Symbolic Logic, vol. 23, no. 3, pp. 309-316.
[16] Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatsheft für Mathematik und Physik, vol. 38, pp. 173-198.
[17] M. Groszek and T. A. Slaman, On Turing Reducibility, preprint.
[18] H. Friedman, Some systems of second order arithmetic and their use, Proceedings of the International Congress of Mathematicians (Vancouver, Canada), (Ralph D. James, editor), 1974, vol. 1, Canadian Mathematical Congress, pp. 235-242.
[19] J. Hirst, Combinatorics in Subsystems of Second Order Arithmetic, Ph.D. Thesis, Pennsylvania State University, 1987.
[20] S. Jain and F. Stephan, Numberings Optimal for Learning, Journal of Computer and System Sciences, vol. 76, no. 3-4, pp. 233-250.
[21] R. Jensen, The fine structure of the constructive hierarchy, Annals of Mathematical Logic, vol. 4, no. 3, pp. 229-308.
[22] R. Kaye, Models of Peano Arithmetic, Oxford Logic Guides, Oxford University Press, 1991.
[23] _, Model-theoretic properties characterizing Peano arithmetic, Journal of Symbolic Logic, vol. 56, no. 3, pp. 949-963.
[24] A. S. Kechris and W. H. Woodin, Ranks of differentiable functions, Mathematika, vol. 33, no. 2, pp. 252-278.
[25] S. C. Kleene, On notations for ordinal numbers, Journal of Symbolic Logic, vol. 3, no. 4, pp. 150-155.
[26] K. Kontostathis, The Combinatorics of the Friedberg-Muchnick Theorem, Logical Methods: In Honor of Anil Nerode's Sixtieth Birthday, (J. N. Crossley, J. B. Remmel, R. A. Shore and M. E. Sweedler, editors), vol. 12, 1993, pp. 467-489.
[27] G. Kreisel and G. E. Sacks, Metarecursive sets, Journal of Symbolic Logic, vol. 30, no. 3, pp. 318-338.
[28] S. Kripke, Transfinite recursions on admissible ordinals, Journal of Symbolic Logic, vol. 29, no. 3, pp. 161-162.
[29] M. Kummer, An easy priority-free proof of a theorem of Friedberg, Theoretical Computer Science, vol. 74, no. 2, pp. 249-251.
[30] M. Lerman, On suborderings of the α-recursively enumerable α-degrees, Annals of Mathematical Logic, vol. 4, no. 4, pp. 396-392.
\qquad , Maximal $\alpha-r . e$. sets, Transactions of the American Mathematical Society, vol. 188, no. 2, pp. 341-386.
[32] M. Lerman and G. E. Sacks, Some minimal pairs of α-recursively enumerable degrees, Annals of Mathematical Logic, vol. 4, no. 4, pp. 415-442.
[33] S. Mazurkiewicz, Über die Menge der differenzierbaren Funktionen, Fundamenta Mathematicae, vol. 27, pp. 244-249.
[34] M. Mytilinaios, Finite injury and Σ_{1}-induction, Journal of Symbolic Logic, vol. 54, no. 1, pp. 38-49.
[35] M. Mytilinaios and T. A. Slaman, Σ_{2}-collection and the infinite injury priority method, Journal of Symbolic Logic, vol. 53, no. 1, pp. 212-221.
[36] J. B. Paris and L. A. S. Kirby, Σ_{n}-collection schemas in arithmetic, Studies in Logic and the Foundations of Mathematics (Amsterdam, Holland), (A. MacIntyre, L. Pacholski, J. Paris, editors), North-Holland, vol. 96, 1978, pp. 199-209.
[37] C. Parsons, On a number theoretic choice schema and its relation to induction, Studies in Logic and the Foundations of Mathematics (Buffalo, USA), (A. Kino, J. Myhill and R. E. Vesley, editors), North-Holland, vol. 70, 1970, pp. 459-474.
[38] R. Platek, Foundations of Recursion Theory, Ph.D. Thesis, Stanford, 1966.
[39] G. E. Sacks, Higher Recursion Theory, Perspectives in Mathematical Logic, Springer, 2010.
[40] G. E. Sacks and S. G. Simpson, The α-finite injury method, Annals of Mathematical Logic, vol. 4, no. 4, pp. 343-367.
[41] R. A. Shore, Splitting an α-recursively enumerable set, Transactions of the American Mathematical Society, vol. 204, pp. 65-77.
[42] \qquad , The recursively enumerable α-degrees are dense, Annals of Mathematical Logic, vol. 9, no. 1-2, pp. 123-155.
[43] R. A. Shore and D. R. Hirschfeldt, Combinatorial priciples weaker than Ramsey's theorem for Pairs, Journal of Symbolic Logic, vol. 72, no. 1, pp. 171-206.
[44] S. G. Simpson, Subsystems of Second Order Arithmetic, 2nd edition, Perspectives in Logic, Cambridge University Press, 2010.
[45] T. A. Slaman, Σ_{n}-bounding and Δ_{n}-induction, Proceedings of the American Mathematical Society, vol. 132, no. 8, pp. 2449-2456.
[46] T. A. Slaman and W. H. Woodin, Σ_{1} collection and the finite injury priority method, Mathematical Logic and Application: Proceedings of the Logic Meeting Held in Kyoto (Kyoto, Japan), (J. Shinoda, T. A. Slaman and T. Tugué, editors), vol. 1388, Springer-Verlag, 1989, pp. 178-188.
[47] R. I. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic, Springer-Verlag, 1987.
[48] C. Spector, Recursive well-orderings, Journal of Symbolic Logic, vol. 20, no. 2, pp. 151-163.
[49] Frank Stephan, Recursion Theory, Lecture Notes, National University of Singapore, Semester I, Academic Year 2008-2009.
[50] G. Takeuti, On the recursive functions of ordinal numbers, Journal of the Mathematical Society of Japan, vol. 12, no. 2, pp. 119-128.

CLASSICAL THEOREMS IN REVERSE MATHEMATICS AND HIGHER RECURSION THEORY

LI WEI

[^0]: *In general, a bounded set may not be \mathcal{M}-finite. For instance, in any nonstandard model, the set ω is bounded but not \mathcal{M}-finite (and not regular).

[^1]: ${ }^{\dagger} G$ may not be Δ_{n} definable. In fact, $\operatorname{dom}(G)=I$ as we see in the rest of the proof. Therefore, $G(i)$ may be equal to 1 for all $i \in I$ (i.e. as a set, G may be equal to I), in which case G is not Σ_{n} definable.

[^2]: ${ }^{*}$ Without $B \Sigma_{2}$, a Friedberg numbering may exist. Let \mathcal{M} be a model of $P^{-}+I \Sigma_{1}$ such that (i) $B \Sigma_{2}$ fails and (ii) there is a Σ_{2} one-one projection from ω onto \mathcal{M}. (The existence of such a model \mathcal{M} was shown by Groszek and Slaman [17].) In \mathcal{M}, the construction of a Friedberg numbering can be carried out by exploiting the existence of the Σ_{2} projection.

[^3]: ${ }^{\dagger}$ The canonical enumeration of sets in L_{α} allows a canonical effective coding of α-finite sets (See [39]). Here, $\beta>C$ and $\beta>p$ mean that β is greater than the code of C and p respectively.

