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Summary

The life expectancy of human beings in general, has improved in the last

decade throughout the world. With advancing age, the ageing population is

likely subjected to stroke and neurological degenerative diseases like Parkinsons

disease, Dementia or Alzheimers disease and, the agility of the brain to process

information critical for going about daily living slows down. As a result,

persons affected by these disorders lose their dexterity, reflexes and speed in

performing simple day-to-day tasks.

Rehabilitation robotics is used in both in-patient and out-patient reha-

bilitation but it is expensive and bulky to be used for home rehabilitation.

Comprehensive training for basic but necessary tasks for the elderly cannot

be given sitting in a clinic or rehabilitation centre. Moreover, these tasks are

a closer outlook to the elderly persons actual life; hence, using an assistive

robotic system at homes for day-to-day activities could initiate a continuous

recovery for the patient instead of only at rehabilitative sessions. Such assis-

tive systems need to be scaled down in terms of the number of the sensors

and actuators used, without compromising on the quality of care and end

results. This is to ensure that the rehabilitation process doesn’t become a

burden to the elderly user.

The focus of this thesis is on developing algorithms for better processing of

Electromyography (EMG) and Mechanomyography (MMG) signals, improving

EMG Torque relation for the elbow joint for a reduced number of EMG

electrodes and for identifying and classifying different forearm movements and

exercises using MMG signals. The following problems are investigated and

corresponding solutions are provided in this approach:
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Adaptive Signal Processing of the EMG signal to eliminate power

line interference using Hilbert-Huang Transform: Estimation and re-

moval of power line noise in EMG is the first step in processing the EMG

signal. For elderly patients, such measurements and processing becomes

challenging as the actual EMG signal is at a much lower amplitude, com-

pared to a young healthy person resulting in a much lower Signal to Noise

Ratio (SNR). The problem of the power line frequency overlapping with

the power spectrum of the biosignal is solved by extracting the power line

frequency using Hilbert-Huang transform which then is fed into an adaptive

filter utilizing the Least Mean Squares (LMS) algorithm to nullify the effect

of power line frequency in the biosignal. Different conditions were simulated

to ensure that the proposed filter algorithm performed satisfactorily under all

conditions and a comparison was made between a LMS adaptive filter and a

variable step size adaptive filter. Experimental results with measured EMG

signal are presented to show the efficacy of the proposed algorithm.

Parameter Estimation of a Hybrid Muscle Model using an Itera-

tive Learning Predictor for Estimation of the Joint Torque: Unknown

parameters of the biomechanical muscle model are estimated during dynamic

contractions of the hand using dual channel EMG signal by an Iterative

Learning Predictor (ILP). The design of an iterative learning predictor for

estimating the missing parameters of the muscle model is outlined and a

pointwise ILC is proposed to ensure maximum tracking between the predicted

muscle length and the measured muscle length. A hybrid muscle model is

then proposed that utilizes the modified Hill’s model for agonist-antagonist

muscles to predict their joint torques from channels of EMG data. This

predicted torque is used to train a neural network for estimating the actual

joint torque from the muscle activation. The implementation of the ILC

xiv
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predictor in this hybrid muscle model is presented and it is found that the

error in the joint torque predicted by the hybrid model is less when compared

to the fixed function and the neural network model. The ILP ensures that the

maximum number of iterations for processing each data point for calculation

of the contractile element length is less than 20. On a hardware platform it is

possible to implement this ILC predictor with real time constraints.

Mechanomyography Feature Extraction and Classification of Fore-

arm Movements using Empirical Mode Decomposition and Wavelet

Transform: The MMG system is designed to measure data using accelerom-

eters built into the assistive device and, hence, doesn’t require any active

involvement of the patient. Different muscles are evaluated for the measure-

ment of the MMG signals for forearm and hand activity. The classification

of the eight forearm movements based on wavelet transform features and

Empirical Mode Decomposition (EMD) features using an Multilayer Percep-

tron (MLP) classifier is explored. The requisite theory is presented and two

new features based on the EMD and Hilbert spectrum are defined and used

for feature extraction. Experimental results for the same are presented and

it is found that, the wavelet transform based and EMD based feature sets

performed best for classifying movements of hand and wrist using the MMG

signal.

The algorithms in this study follow real time constraints for assistive

devices while the measurement protocols ensure that the biosignals were

broadly representative of that measured from the elderly. Thus, the EMG

and MMG signal processing techniques can be used in implementing a sensory

system for an upper limb assistive device for the elderly.
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Introduction

1.1 Ageing

The life expectancy of human beings in general, has improved in the last

decade throughout the world. In respect of Singapore, one out of every

five people will be reaching the age of 65 by the year 2030. Today’s ageing

population is well educated and comparatively richer than their predecessors,

and prefers living independently. The proportion of old people above the age

of 65, living alone or only with their spouses, has gone up from 9.7% in 1995

to 19.9% in 2005 [1]. But with higher life expectancy, the ageing population

is likely to be subjected to neurological degenerative diseases like Parkinson’s,

Dementia or Alzheimer’s disease. With advancing age, the agility of the brain

to process information that are critical for going about doing daily chores

slows down, and as a result, persons affected by these disorders lose their

dexterity, reflexes and speed in performing simple day-to-day tasks. The

number of people suffering from dementia throughout the world may almost

double every 20 years to reach over 100 million by 2050 [2].
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1.2 Stroke

1.2 Stroke

Stroke is another crippling condition resulting in total or partial loss of motion

for the elderly. A stroke can be described as a rapid loss of brain function(s)

due to disruption in the blood supply to the brain. This can be due to

lack of glucose and oxygen supply, caused by blockage in the blood vessel

(ischemic stroke) or due to a hemorrhage . As a result, the affected areas

of the brain are unable to carry on its specific functions properly, leading

to an inability to move one or more limbs on one side of the body, inability

to understand or formulate speech, or inability to see one side of the visual

field. A stroke is a medical emergency and can cause permanent neurological

damage, complications, and sometimes, even death. It is the number two

cause of death and is likely to become the leading cause of death worldwide in

the near future [3]. Already it has become the leading cause of adult disability

in the United States and Europe, and is a major cause of long-term disability

worldwide [4]. Mortality due to stroke has reduced considerably in the last few

decades but stroke survivors usually have to live with some form of disability.

Fifteen million people worldwide suffer from stroke every year among which

five million people are permanently disabled [5]. Disability also affects 75% of

stroke survivors in some form or the other, drastically reducing their activities

of daily living and deterring their employability.

Stroke can affect patients physically, mentally, emotionally, or any com-

bination of all the three. The results of stroke vary widely, depending on

the size and location of the affected lesion. Dysfunctions correspond to the

specific areas in the brain that have been damaged. Some of the physical

disabilities that can result from stroke include paralysis, numbness, pressure

sores, pneumonia, incontinence, apraxia (inability to perform learned move-
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ments), and difficulties in carrying out daily activities, loss of appetite, loss of

speech, loss of vision, and pain. Prevention and early recognition of medical

complications of stroke best maximizes neurologic and functional recovery.

Hemiparesis, partial weakness of one side of the body, or hemiplegia,

complete paralysis of one side, commonly occurs after a stroke. If all inputs

to a peripheral muscle are lost, the muscle feels soft and lax. Muscle tone

is typically reduced in early stages after stroke (hypotonia) but may later

become increased (hypertonia). This change happens due to sudden change

from no or decreased muscle stretch reflexes to brisk muscle stretch reflexes.

Spasticity is associated with spontaneous repetitive muscle contractions and

the resultant loss in range of motion of the corresponding limb [6].

1.3 Neuroplasticity

Plasticity is the ability of cells to alter any aspect of their phenotype at any

stage in their development in response to abnormal changes in their state and

environment. Neuroplasticity is the changing of neurons, the organization

of their networks, and their function via new experiences [7]. A surprising

consequence of neuroplasticity is that the brain activity associated with a

given function can move to a different location; this can result from normal

experience and also occurs in the process of recovery from brain injury.

Neuroplasticity is the fundamental issue that supports the scientific basis

for treatment of acquired brain injury and dementia with goal-directed experi-

ential therapeutic programs in the context of rehabilitation approaches to the

functional consequences of the injury. Most muscles are composed of assorted

muscle units with functional difference but dominated by a particular type

of muscle fibre based on the primary function of the muscle. Muscle fibres
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are totally adaptable and respond entirely to any change in demand that

is transmitted through the terminal synapse at the neuromuscular junction

that respond by being replaced, re-innervated or by being rejuvenated. These

changes release specific intra-neural hormones, which then act to modify the

nervous system so that stimuli can have a different effect or in other words,

the brain is physiologically restructured. This restructuring cannot happen,

if the neuronal cell body itself has been destroyed and could result in the

permanent loss of certain functions associated with corresponding neuron.

Physical activity proportionately increases a person’s ability to perform

physical work. An increasingly repetitive physical activity, known as stressing,

can take the form of therapy that includes planned physical conditioning.

Stressing is the repetition of a stimulus to produce an analogue effect of faith-

fully reproduced stimulation. Physiological stressing is the faithful repetition

of a stimulus for a significant period of time to produce change in the system.

Thus, it makes restructuring of the normal movement and also builds new

motor pathways[8].

1.4 Rehabilitation

Rehabilitation is the process by which patients with disabling strokes or

dementia undergo treatment to help them return to normal life as much as

possible by relearning and regaining the skills of everyday living. Rehabilita-

tion is a coordinated program that provides reliable, patient-centric restorative

care to minimize the impairment, disability and handicap caused by stroke.

Rehabilitation services can be classified as follows[6].

• In-patient Rehabilitation: In-patient Rehabilitation is recommended

for patients who have completely lost motor function due to a stroke.
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The patient is admitted to the rehabilitation cell of a hospital and

the program is implemented in two stages. The initial stage known as

‘acute comprehensive inpatient rehabilitation’ consists of a comprehen-

sive program aimed to maximize recovery and minimize disability and

handicap. The final stage consists of medical services for the patient

such as rehabilitation, therapy and hospice after acute rehabilitation

programme and is known as ‘sub-acute rehabilitation’.

• Out-patient Rehabilitation: The patient receives outpatient services

at the rehabilitation facility, hospital or therapist’s office either as initial

or subsequent treatment. The patient goes to a facility or facilities where

therapeutic services including physical, recreational and occupational

therapies are provided. When facilities are in different locations, the

coordination among the centers becomes a hindrance unless the patient

has a strong case management system between the rehabilitation centers.

This mode of rehabilitation can be used for recovering motor control for

stroke patients and elderly patients affected with dementia.

• Home Rehabilitation: Many patients prefer treatment at home for

disabling conditions because of convenience and familiarity. All com-

prehensive home health programs use nurses, physicians, therapists and

social workers to provide for rehabilitative services. The same program-

matic structure is followed at home. It could be said to be an extension

of the inpatient rehabilitation with the facilities and comforts of ones

own home.

Out-patient and in-patient programs try to optimize the same methodology

for rehabilitation. It requires a one-to-one interaction between the therapist

and the patient, with the therapist guiding the non-functioning part of the
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body in exercise for recovery. The brain through visual feedback is led to

believe that the arm/leg is in motion. The frequency and duration of the

rehabilitation sessions vary with the severity of the disability. Motor practice

consisting of simple, repetitive motions leading to a form of use-dependent

plasticity that results in the brain rewiring its neurons and a re-organization

of the pathways in the spinal cord and the motor cortex. With extended

sessions in physiotherapy, faster recovery is a possibility.

Recently, rehabilitation centers have chosen a programmatic structure to

manage specific clinical programs. In this model, a rehabilitation manager

evaluates and modifies policies and procedures, service delivery and also

coordinates all staff that provides stroke care.

All three traditional models of rehabilitation services are not without their

drawbacks.

1. Larger number of hours for physiotherapy exercises improves the chance

of recovery. This results in the patient incurring additional charges for

the extra hours, that makes rehabilitation expensive.

2. Each therapist can attend to only one patient at a time during each

session as each patient requires undivided attention and encouragement

during rehabilitation or they may not be motivated to come for further

sessions.

3. The patient is going to do the same monotonous exercise numerous

times for repeatability of the motion.

4. Home rehabilitation may give the patient the comfort and familiarity of

staying at home but again would be much more expensive as compared

to out-patient or in-patient rehabilitation.
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5. Each patient’s recovery process is different and thus a different reha-

bilitative program is required for each patient. This can be quite time

consuming and illogical for the rehabilitation manager to develop and

implement in practice.

Moreover, upper limb rehabilitation requires more time and effort from the

patient and the therapist as compared to lower limb rehabilitation. Though

studies show similar recovery rates for both the cases within a short time

period after stroke, typically 30 days, recovery rates are better for the former

for a longer time period after the onset of stroke [9]. This is due to the larger

functional area of the brain for the upper limb as compared to the lower limb

as functions of the upper extremity requires finer motor control, for which the

patient cannot readily compensate[10]. Thus, lower limb rehabilitation leads

to more and faster functional improvement and less disability than upper limb

rehabilitation over the similar time course.

If the therapist’s role can be substituted with an assistive robotic system

for conducting the repetitive tasks and exercises, it would help to overcome

the above-mentioned difficulties.

1.5 Assistive Robotic Systems

There are many commercially available robotic systems that help in the

rehabilitation of patients for both upper limb and lower limb paralysis. These

systems concentrate on rehabilitating specific functions by repetition and

feedback.

• LOKOMAT:The Lokomat developed by Hocoma is used by therapists

for lower limb rehabilitation and is the world’s first driven gait orthosis

that automates locomotion therapy on a treadmill and improves the
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efficiency of treadmill training[11]. A driven robotic gait orthosis guides

the patient’s legs on a treadmill allowing for faster progress through

longer and more intensive training sessions as compared to manual

treadmill training. The patient’s walking activity is monitored and

assessed for signs of improvement in gait. The gait patterns and the

guidance force are individually adjusted as per the patient’s needs.

The device also provides visual feedback of the patient’s performance,

thus motivating them for further improvement. Clinical studies of

the effectiveness of the device in stroke rehabilitation all point to an

improvement in the gait of the patient[12, 13].

• MIT-MANUS:The MIT-MANUS robotic system learns various types

of exercises from a physical therapist and guides the patient through

them in rehabilitation by providing visual, auditory and tactile feedback

[14]. The device can manipulate a powerless limb just like any hand-over-

hand therapy or measure the speed and direction of a patient-generated

movement. The robotic arm has low near isotropic inertia and reduced

friction in the arm so that it gets out of the way if it senses the patient

trying to move the arm. It also helps in motion if the patient is unable

to move the hand and adjusts the level of assistive power, based on the

person’s ability to do arm movement.

Recent works in the Institute of Infocomm Research, Singapore on a

brain computer interface (BCI) using this device measures the intent of

the patient by using the EEG signals and then accordingly maneuvers

the robotic arm [15].

• ARMEO:The Armeo developed by Hocoma is used for the arm rehabil-

itation and is similar to the MIT-MANUS in operation. Therapists can
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easily design custom training programs for each patient that address

specific movements and help to promote active movement. The patient

performs the pre-chosen sequence of exercises in a self-training mode.

A virtual reality-training environment clearly displays the functional

task and patient’s performance [16]. All performance data are stored in

the computer and can be used by the therapist to supervise, assess and

document the patient’s progress.

• MYOMO: An upper limb rehabilitation device developed by MYOMO,

Inc. uses EMG signals to sense residual electrical muscle activity and

forwards the data to a robotic device that uses it to assist the patient

in performing the desired movement. The power output of the device

is customized to patient’s ability. EMG-driven robotics requires that

patients be actively engaged throughout the therapy session. No electri-

cal stimulation or invasive procedures are employed for limb movement.

Clinical studies show an improvement in mobility of stroke patients

ranging from 4 weeks to 21 years after the onset of stroke[17]. This

system is the simplest and easiest for the patient for day-to-day usage.

The MIT-MANUS, ARMEO and MYOMO are functionally different from

other rehabilitative manipulators. These systems don’t make the patient

repeat the same monotonous exercise, also known as static biofeedback, but

concentrate on task specific exercises for rehabilitation, providing functional

training and motivation that are key factors for successful rehabilitation. This

approach known as task-oriented or dynamic biofeedback has shown better

recovery rates in patients as compared to static biofeedback [18].

In systems like MYOMO, the brain through visual feedback is led to

believe that the arm is in motion. The change from no movement of the arm
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to assurance that the hand is moving due to the patient’s efforts is highly

motivational for a faster recovery.

1.6 Electromyography

The central nervous system is organized in a hierarchical fashion. Motor

programming takes place in the premotor cortex, the supplementary motor

area, and other associated areas of the cortex. A Motor Unit (MU) consists

of a α-motoneuron in the spinal cord and the muscle fibers it innervates. The

α-motoneuron is the final point of summation for all the descending and reflex

inputs. The skeletal muscle is activated by the a-motoneuron at synapses

called neuromuscular junction or innervation sites. The net membrane current

induced in this motoneuron by the various synaptic innervation sites deter-

mines the discharge (firing) pattern of the motor unit and thus the activity of

the MU. The number of MU(s) per muscle in humans may range from about

100 for a small hand muscle to 1000 or more for large limb muscles.

The Motor Unit Action Potential (MUAP), which originates at the in-

nervation sites of each muscle, is a temporal and spatial summation of the

electric potentials propagating through the muscle fibers. The Myoelectric

Signal (MES) is the electrical activity of the muscles at the neuromuscular

junction and is the summation of all the membrane currents in the MU.

Electromyography (EMG) is the recording of the MUAP(s) of the skeletal

muscles and a record of the changes in the Myoelectric Signal (MES) is called

an electromyogram.

The MUAP originates at the neuromuscular junction and travels in op-

posite directions along the muscle fiber, with a velocity that depends on the

fiber diameter and whose physiological range is between 3 m/s and 5 m/s
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with an average of around 4 m/s. This propagation velocity is referred to as

conduction velocity (CV) and is related to membrane properties. Such prop-

erties, which are reflected by the muscle fiber action potential, are different

in different fiber types with larger muscle fibers having higher conduction

velocities [19].

The conduction velocity can be measured by using an array of electrodes

for measuring the EMG signal for the same muscle group. Choosing one set

of electrode data as a time reference signal, the cross-correlation function for

the other electrode data with respect to the reference signal is calculated. The

distance between any two electrodes divided by the time delay between the

peaks of the cross-correlation function gives the conduction velocity.

1.7 Adaptive Filtering of EMG Signal

The electromyogram (EMG) or the myoelectric signal has become an important

input or feedback parameter in biomechanical analysis or for physiotherapy

sessions. The study of EMG signals is difficult for two main reasons. Firstly,

the SNR of these signals is low since the EMG signals are measured at very

low amplitudes of the order of millivolts as shown in Fig.1.1. Secondly,

since human body acts as an antenna, the EMG signals are corrupted by

electromagnetic power line interference from the surrounding environment

[20, 21]. Removing the power line interference and its harmonics from surface

EMG is difficult because the myoelectric signal lacks a distinctive waveform.

For elderly patients, such measurements and processing become challenging

as the actual EMG signal is at a much lower amplitude when compared to a

young healthy person, resulting in a much lower SNR.

The EMG signals can be detected and recorded using invasive techniques
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Figure 1.1: Magnitude of Different Bio-signals.

by inserting a needle electrode underneath the skin or non-invasive techniques

by using electrodes on the surface of the skin. Needle electrode directly

measures the firing pattern of the muscle unit it is inserted into and is more

accurate compared to surface electrodes, which provides a global measure

of the muscles activities [22]. But surface electrodes are much easier to use

especially if measurements have to be repeated frequently or if the electrode

has to be in contact during the operation of any robotic system. However,

it also suffers from greater interference from the power line as the surface

EMG signals bandwidth lies predominantly in the range of 10 to 350 Hz [22]

and signal degradation due to an increase in impedance from the outermost

layer of skin, including dead skin material and oil secretions. The issue of

signal gradation due to increase in impedance can be reduced by careful

skin preparation to ensure good electrical contact with the electrodes and

differential amplification with common-mode rejection ratio of more than 100

dB [23].
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Modern biomedical amplifiers have a very high common mode rejection

ratio. Nevertheless, recordings are still contaminated by residual Power Line

Interference (PLI). The removal of PLI using traditional types of digital or

analogue notch filters has the inherent disadvantage of suppressing signal

components in the vicinity of the power line frequency and its harmonics. The

power line interference is not fixed at a frequency of 50 Hz or 60 Hz but has

been found to vary between ± 2 % of the nominal frequency. Moreover, the

surface EMG signal bandwidth lies predominantly in the range of 10 to 350

Hz. Hence, a fixed notch filter of 50/60 Hz would lead to ineffective filtering

if there is a deviation of frequency in the power line interference and the

inherent disadvantage of suppressing signal components in the vicinity of the

power line frequency and its harmonics.

Adaptive techniques are preferred because the power line noise changes

over the time and adaptive filters can perform satisfactorily in an environment

where complete knowledge of the relevant signal characteristics is not available

[24]. Different adaptive approaches have been proposed in the literature

to attenuate this noise, such as adaptive FIR notch filter [25], adaptive

IIR notch filter [26], adaptive notch filter using Fourier transform [27] and

numerous adaptive filters training methods. An adaptive Laguerre filter for

the elimination of power line noise is discussed in [28] that is a stable and

is a less complex filter as compared to other FIR filters. The subtraction

procedure is found to be useful in removing of power line interference from

Electrocardiography (ECG) signals [29]. This procedure does not affect the

signal frequency components around the interfering frequency. However, the

interfering signal needs to be known for adaptive filters and for the subtraction

procedure. This reference input must either be recorded in real time along

with the EMG, which is expensive in terms of memory, or must be generated
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synthetically such that it follows the power line frequency.

Bourdraa et.al. [30] proposed a signal filtering method based on EMD

for removing the noisy Intrinsic Mode Function (IMF) to filter the signal.

The authors focus on the removal of high frequency noise from standard test

signals and not on signals with overlapping bandwidths. But filtering the PLI

from EMG using this method is challenging as, the bandwidths of the EMG

signal and the PLI overlap.

1.8 Myoelectric Control, Features Extraction

and Classifier Algorithms

Myoelectric control is the preferred scheme for the control of upper limb

prosthesis or orthotic devices. In these systems, the processed EMG signal is

used as a control input and the generated result is used to actuate the motor

controlling limb movement as shown in Fig. 1.2.

The EMG or the Myoelectric Signal (MES) of a muscle is the summation

of the different Motor Unit Action Potential (MUAP). This can include the

MUAP(s) of nearby muscles as well. For a single channel recording of EMG,

if the muscle groups are very close to each other, it would be difficult to

Figure 1.2: Block Diagram showing the replacement of the joint
function and control by the orthosis [31].
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identify the EMG corresponding to a single muscle group and, hence, difficult

to identify the motion the EMG signal represents. Thus, the control system

has to extract certain features that represent the user’s intent of hand motion

from the raw EMG data and accordingly actuate the prosthesis or orthosis.

This process known as feature extraction is the heart of myoelectric control.

The EMG signal has to be processed keeping in mind the real time

application of the prosthesis or orthotics. Thus, a maximum threshold of

300 ms for the processing of the bio-signal needs to implemented, else the

user perceives a delay in the initiation of the action. The system has to

acquire the EMG data, extract features, classify the intended motion based

on the features and generate the control signals for actuation within this time

window.

The features that can be easily extracted from a raw EMG signal are the

basic time-frequency features such as mean absolute value, mean absolute

value slope, number of zero crossings, slope sign changes and waveform length.

Most of the earlier work on EMG focuses on these time-frequency features

for classification of different hand motions. More recently, auto-correlation

coefficients, spectral measures, and time series models have been used while

current approaches focus on the temporal structure in EMG patterns by using

the short-time Fourier transform, wavelet and wavelet packet transforms and

higher order spectral analysis for feature extraction.

After features have been extracted, an efficient classifier has to be designed

that is able to discriminate and adapt to the motions within the given time

frame. The last two decades have seen tremendous interest in designing and

implementing faster and more efficient classifiers. Giuffrida et.al. in [32] have

used the k-means clustering algorithm for stroke therapy task discrimination

for classifying features generated using electromyography and motion sensors.
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The classifier automatically detects the task the subject is trying to do based

on the gyroscope and EMG data, even when severe impairment produced

movements that were visually indistinguishable from different tasks.

Chu et.al. have used wavelet packet transform for extracting features from

the EMG data by using the local discriminant basis and an energy map in

[33]. They have further reduced the number of features from 1024 to 8, using

linear feature projection and shown the viability of this method for classifying

most of the forearm movements. The classifier used is an MLP classifier.

Hudgins et.al. in [34] proposed a novel, control scheme based on the feature

extraction during the onset of a contraction using artificial neural networks as

a classifier and [35] developed this idea further by using pattern recognition to

classify multiple classes of limb movements with focus on low storage capacity

and complex sequences of manipulation involving multiple joints. The same

authors have developed feature extraction algorithms for myoelectric control

using time-frequency methods[36] and wavelet packet transforms [37].

Yoshikawa et.al. proposed a scheme to use Support Vector Machine (SVM)

as efficient classifiers for EMG signal for robotic control in [38]. The SVM

classifier takes in the feature vector and generates the output in terms of

the corresponding joint angle for the manipulator. Experimental results

of the estimation of seven hand motions demonstrate the effectiveness of

the proposed method. Khushaba et.al. combine the concepts of wavelet

packet transforms for feature extraction, fuzzy entropy for feature elimination

and Principal Component Analysis (PCA) for dimensionality reduction in

[39]. The fuzzy entropy algorithm measures the information content of the

features and eliminates those features that are below a threshold value. This

methodology showed 99% accuracy even when using a small subset of the

original feature vector.
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Thus, different classifiers have shown to faithfully discriminate different

motions based on feature sets extracted, using pattern recognition techniques.

Though the advantages of the above studies are mentioned, they are not

without their drawbacks:

1. These schemes concentrate on reducing classification error for better

classification of the myoelectric signal using multiple channels. This is

better suited for use in prosthetics where the control scheme requires

more precision due to the absence of the arm.

2. Their use in outpatient rehabilitation devices may be suitable but would

require the patient to come to the same and/or different hospital(s) for

regular physiotherapy.

3. If the same schemes were implemented for orthotic gloves for home

rehabilitation, it would be rather inconvenient for the patient to put on

and remove the multiple numbers of electrodes every day.

It can be concluded from the above that, the feature extraction and

classification needs to focus on the use of a single channel or dual channel

EMG for multi-class hand movement classification for rehabilitation of the

elderly. A single channel myoelectric control of the hand movements using

Empirical Mode Decomposition (EMD) for feature extraction is designed in

[40] with basic features like mean and variance to achieve a better classification

rate as compared to time domain auto regression features shown in [41].

Feature identification and classification alone is not a robust way for

generating control signals for an assistive system. The generation of the

control signal for such a case doesn’t have any co-relation to the torque that

needs to be produced by the actuator. A pattern recognition based system is

acceptable if the torque required for the movement is not substantial. In other
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words, smaller joints like the wrists and hand can be actuated using a control

system shown in chapter 3. But the torque required for the actuation of the

joints such as the elbow joint is high and it would be detrimental to use such

a system for classifying them. The amount of time required to complete a

movement is not fixed and varies from person to person. A pattern recognition

based system is unable to predict the ‘in-between states’ between the initial

and final motions. These transient states need to be programmed into the

actuator accordingly, and still there is no surety that it mimics the elderly

user’s intention.

1.9 Electromyography-Torque Model

If a direct relation can be established between the measured EMG and the

actual joint torque or force produced, it would be beneficial for the myoelectric

control of prosthetics or orthotics. Research in this area is divided into three

major methods. The first methodology is to build the physiological muscle

model of the human muscle and then predict the joint torque as a function of

the neural activation derived from the EMG signal. The second method is

to model the EMG-Torque function using some known function. The same

method also involves optimizing the said function to best fit the EMG-Torque

dataset. The final method is to model the EMG-Torque function using a

neural network.

The earliest and most classic physiological muscle models is the Hill’s

model developed by A.V. Hill in 1938 [42]. The key finding of Hills model

is the observation that a sudden change in force (or length) would result in

nearly instantaneous change in length (or force) for a given sustained level of

neural activation.
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Herbert Hatze has contributed significantly in developing the physiological

model of the muscle. He proposed two physiological control parameters,

simulation rate and the motor unit recruitment, for the muscle model in [43]

and provided a complete set of control equations for the the same in [44]. In

[45], he provided a multivariate model for the passive human joint torque to

the neural activation for articulate joints. He supported the concept of an

extensor and flexor for each joint in [46].

Hof et.al. in [47] described an electrical analogue of the Hill muscle model

where the surface electromyography is related to the muscle force. The joint

torque was predicted by using the joint angle and the rectified EMG envelope.

These results were then verified using a calfergometer in [48] and a torque

plate in [49] and, the eccentric-concentric contractions were studied on a

spring wheel set up in [50].

A musculoskeletal control model for the human leg was developed in [51].

This model was based on the sarcomere properties of the muscle tendons as

compared to considering the muscle as a lump quantity in the classical Hill’s

model.

Winters and Stark studied the fundamental patterns of human limb

movement using an agonist-antagonist muscle model in [52] based on the

classical Hill model [42]. They further expanded their work into estimating

the mechanical properties of muscles involved in different movements of a

variety of human joints in [53]. The parameters estimated by combining the

anatomical properties of the muscle with geometrical data on the muscle-joint

anatomy, were compatible with available human experimental data.

The Hill based model was adopted by Riener and Quintern in [54], to

predict the shank motion induced by neuromuscular stimulation. The muscle

fatigue due to the stimulation was also modeled and the results supported
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the use of functional neuromuscular stimulation for development of neural

prostheses. The authors further developed this method in [55] and [56] for

developing a control algorithm for Functional Electrical Stimulation (FES)

supported standing.

A mathematical model for mapping EMG signal to the elbow joint torque

using nonlinear regression was proposed in [57], that had greater correlation

and least mean square error when compared to similar methods for both

offline and online processing. Mankala et.al. optimized the system dynamics

using an optimization function for designing an exoskeleton for gait training

in [58].

A knee ankle foot orthosis powered by artificial pneumatic muscles was

designed by Sawicki et.al. in [59] using myoelectric control and activation.

The lower limb orthosis was controlled by a simple proportional controller

relating the myoelectric signal of the biological extensor and flexor muscles to

the artificial extensor and flexor pneumatic muscles respectively.

Hincapie et.al. in [60, 61] have studied the feasibility of an EMG-based

neural network controller for upper extremity prosthesis. The focus of the

study was on the use of Functional Electrical Stimulation (FES) to provide

shoulder and elbow function to individuals with C5/C6 spinal cord injury.

Artificial neural networks with backpropagation were used to predict the

tendon forces from EMG signal during dynamic contractions by[62, 63]. This

study was focused on the prediction of the forces on a treadmill by measuring

the gastrocnemius muscle of cats in different sets of experiments.

Wang et.al. in [64] have combined the neural network approach to the

physiological approach by using a neural network to predict the neural activa-

tion and then using the predicted neural activation in the Hill muscle model

to obtain the joint torque.
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Winters et.al. described the fundamentals of varying the model complexity

and the gains and losses because of the same in [65]. The input parameters

of an EMG-Force model was optimized by Cao et.al. in [66], for constant and

sinusoidal force contractions using the Monte Carlo method.

Optimization techniques such as Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), [67–70] have been used to estimate different parameters

of the Hill muscle model. The parameters estimated in such studies were either

constants or the values changed minimally during dynamic contractions. Since

a changing parameter is to be estimated, which is a function of the muscle

activation as well as the muscle length under consideration, optimization

techniques would be complicated resulting to a huge burden on computing

power.

The advantage of using neural networks or black box modelling for the

EMG-Torque relation is that the governing equations or the characteristics of

the system need not be known for modeling the data while the disadvantage

is the requirement of multiple sensor data to ensure that the predictions are

accurate.

The obvious disadvantage for the physiological modelling of the EMG-

Torque relation is the need to model complicated muscle dynamics to get an

accurate joint torque estimate while the advantage is that once the model is

tuned, it predicts the joint torque quite accurately as it is a function of the

neural activation.

1.10 Mechanomyography Signal Processing

Mechanomyography (MMG) is another method useful in assessing activities

of skeletal muscles, that measures vibrations from contracting muscles. The
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MMG signals produced by contracting and vibrating muscle fibers can be

interpreted as a mechanical counterpart of EMG signals, since it has been

shown that MMG signal informs about differences in motor units recruitment

pattern [71], degenerative changes in skeletal muscles [72, 73], and mechanical

properties of skeletal muscles (stiffness and vibration)[74]. Despite the differ-

ence in nature of these two signals, each of them gives information about the

motor unit recruitment, firing frequency and synchronization [71] that are

reflected in the amplitude and frequency of the EMG and MMG signals.

Beck et.al. in [75] estimated the relationship between MMG amplitude

and frequency versus the torque for isometric and isokinetic muscle actions

of the biceps brachi i and in [76] determined the isokinetic muscle actions of

the biceps brachii for both EMG and MMG. They concluded that the MMG

along with EMG is useful in describing motor control strategies for dynamic

torque production. They also determined the MMG center frequency using

the Fourier and wavelet transform procedures for fatiguing isokinetic muscle

actions of the biceps brachii in [77] and for eccentric torque relationships in

[78]. They concluded that both Fourier and wavelet transform methods can

be used for examining MMG patterns during eccentric muscle actions [79],

and further extended the study to the quadriceps femoris in [80].

Silva et.al. in [81, 82] proposed a multi-sensor data fusion system, with

EMG and MMG, for prosthetic control. The authors designed a hybrid

microphone-accelerometer sensor pair to simultaneously measure the EMG

and MMG respectively. A strategy of multi-sensor data fusion was used

for generation of binary control signals for prosthesis control. In [83], a

mathematical model was derived for the the hybrid microphone-accelerometer

sensor pair focussed on separation of interfering sources from the MMG signal.

The authors concluded that MMG is comparable to EMG and may exceed
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its functionality. This study was further extended in [84] into studying the

effects of motion artifacts on MMG, measured from the extensor carpi ulnaris,

using accelerometers and microphones.

Alves and Chau investigated forearm muscle activity using multi-channel

MMG in [85]. They extract different sets of features, including wavelet trans-

form, time-frequency features, statistical features, auto-regressive coefficients

and ceptrum coefficients, from six forearm muscles. A Genetic Algorithm (GA)

is used to optimally reduce the features by using the Fisher’s ratio analysis.

The authors discovered that using only Root Mean Square (RMS) values

for classification resulted in poor accuracies while the ceptrum coefficients

based features were discovered to be the feature most selected by the GA in

each trial. This was compared to their work in [86] regarding the isometric

contractions of hand muscles during functional grasping.

Xie et.al. explored the use of MMG for multifunction prosthetic control

using MMG in [87]. Robust MMG features were extracted from the MMG

signals by fusing wavelet packet transform and singular value decomposition.

The best features were then selected using a distance evaluation criteria for

the classification of wrist flexion, wrist extension, hand opening and hand

grasping.

A human assisting manipulator for amputees, using accelerometer sensors

to measure MMG, was proposed in [88]. A probabilistic neural network

was used for separation and estimating the information on force and motion

from the measured MMG signals with high efficiency. A MMG based pattern

recognition approach was proposed in [89] for classification of, hand open, hand

close, wrist flexion and wrist extension, while using a single accelerometer

for measuring the MMG at the flexor carpi ulnaris muscle. The authors

used Principal Component Analysis (PCA) for reducing the dimension of the
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features and a Quadratic Discriminant Analysis (QDA) based classifier was

used with an average accuracy of 79.66 %.

The advantage of using an accelerometer to measure the MMG is that,

if placed properly, it can also measure the joint angle or orientation of the

hand and, thus, eliminates the need to assign multiple sensors to do the same

function.

1.11 Problem Statement

Rehabilitation robotics is used in both in-patient and out-patient rehabilitation

but are too complicated and bulky to be used for home rehabilitation. Another

aspect of task-oriented feedback is the functional training of day-to-day

activities like operating a doorknob, holding and drinking water from a cup,

lifting some weights etc. Comprehensive training for such basic but necessary

tasks for the elderly cannot be given sitting in a clinic or rehabilitation centre.

Moreover, such tasks are a closer outlook to the patient’s actual life; hence,

using such an assistive robotic system at homes for day-to-day activities could

initiate a continuous recovery for the patient instead of only at rehabilitative

sessions. The frequency of the patient going to periodic rehabilitative sessions

at the hospital is reduced and recovery could be faster.

As mentioned before, the recovery of the upper limb after stroke or

dementia for regaining functions of daily living is more time consuming and

difficult due to its larger functional area in the brain. Losing the functionality

of one or both the upper limbs can make the patient depressed and demotivated

and even unresponsive to rehabilitation. If the patient can see and feel the

improvement in motion and functionality, the motivation comes from within.

Rehabilitation of the elderly is particularly challenging because of the
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following reasons:

a. An elderly person is set in his/her ways and would not want to believe

that they are losing control of their faculties,

b. They would prefer if the rehabilitative service is available at their homes

or nearby their homes and

c. They would prefer not to have too many attachments (electrodes, machines,

battery packs etc.) on themselves for rehabilitation as it would be more of

a hindrance than an assistive role as the process of attaching and detaching

multiple electrodes everyday for measuring EMG in itself would be quite

cumbersome.

This thesis presents the research work in developing signal processing

techniques for implementation of Electromyography (EMG) and Mechanomyo-

graphy (MMG) in such a wearable system or ‘glove’ for the restoration of

upper limb functions. During the execution of the thesis research work, the

following problems related to EMG and MMG signal processing are considered:

• The major contributor to noise in EMG signal is the power line interfer-

ence. Depending on the location of the user, there may be a variable

impact of the power line noise on the signal quality and discerning it

from the signal is an important part of the EMG signal processing. The

weakest link here is the overlapping of the energy spectrums of the EMG

signal and that of the power line interference.

• Establishing a EMG-Joint Torque model for predicting the changes in

the joint torque as a function of the muscle activation. The limiting

factor is the complexity and quantity of the data processed along with
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the need to use minimum number of electrodes to facilitate ease of use

for the elderly.

• Designing a pattern recognition based classification system for the

movements of hand and wrist using mechanomyography as the control

input. The use of EMG for the same can be argued upon but MMG

provides a simpler and less tedious way to implement the same with

much less hassle.

Adaptive filtering is the preferred method for removing power line inter-

ference from the EMG signal but there is a need to identify the frequency of

the PLI before the adaptive algorithm can eliminate it. Thus,it is required

to estimate the frequency and amplitude of the PLI in the measured signal

in real time and to design an adaptive filter that reacts to the change in

frequencies in real time and removes just the noise and not the EMG data

signal.

The number of sensors used for detecting the residual muscle electrical

activity depends on the control algorithm that is used to differentiate the

different motions of the upper limb. If the control algorithm requires the use

of many sensors, the patient would find the act of putting on more sensors

cumbersome and may altogether prefer not to use the glove. Thus, the

secondary aim of the control algorithm is a reduction in the number of sensors

used for detecting the surface EMG signals for classification of different upper

limb motions.

The measurement of different bio-signals such as electromyography (EMG)

and mechanomyography (MMG) and their fusion with each other is an integral

part of such an orthotic glove to work seamlessly with the user to improve

upon their tasks of daily living. Thus, both EMG and MMG will be studied

separately and together for different day-to-day tasks for classifying them.
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The physiological muscle model for different joints will be formulated

and optimized for the use with minimum number of electrodes for use of the

elderly. This is critical in ensuring that the system does not assume the same

parameters for a healthy person and an elderly person.

A pattern recognition based system is designed using MMG for measuring

the muscle vibrations for different hand movements. Different sets of features

need to be extracted from the MMG to gauge its efficacy in such a system.

1.12 Thesis Contributions

The problem statement of this thesis covers different aspects of bio-signal

processing for developing assistive devices for rehabilitation. Similar solutions

have been provided in the literature for the same but don’t provide a concrete

answer for optimising the same for the elderly. The main contributions of this

thesis research work are the following:

1.12.1 A Modified Hilbert-Huang Algorithm based Adap-

tive Filter for Elimination of Power Line Inter-

ference from Surface Electromyography

A modified Hilbert-Huang Transform based Least Mean Squares (HHT-LMS)

adaptive filter is designed to eliminate the power line interference at different

signal to noise ratios. It takes into account the variable nature of the power

line frequency and adapts accordingly.

The HHT is an attractive solution for the estimation of PLI in a spectrum

of overlapping frequencies. It eliminates the need for an a-priori defined func-

tional basis, as is generally required for traditional signal analysis techniques.

Being purely data-driven, the HHT precisely determines the most appropriate
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empirical but adaptive basis for the signal. This ability to adapt is crucial,

given the individualistic nature of nonlinear systems. Another key feature of

the method is that, by utilizing the Hilbert transform, it operates at the scale

of one oscillation and is, thus, truly able to track local changes in signals.

The variable step size LMS algorithm ensures that any changes in the

frequency, amplitude and phase of the noise is adapted by using the inputs

from the HHT block.

1.12.2 Parameter Estimation of a Hybrid Muscle Model

using an Iterative Learning Predictor for the Es-

timation of Joint Torque

A hybrid model is designed that combines the muscle physiological model and

the neural network to predict the joint torque of the elbow. The predicted

results follow the actual joint torque faithfully and the mean square error is

minimum of all the different models. Moreover, the time required for executing

the hybrid model is directly proportional to the number of iterations required

per data point and the constant time required by the neural network for

predicting the joint torque. The accuracy of the predicted output is neither

just a function of the black box neural network nor dependent on multiple

muscle activation data.

Iterative Learning Control (ILC) is a simple and effective solution to

the parameter identification problems of the muscle model which is highly

nonlinear and multi-dimensional. The use of an Iterative Learning Predictor

(ILP) can guarantee the learning process convergence even if the plant model

is partially unknown or difficult to analyze. The use of an ILP ensures

that the model doesn’t predict unreasonable values for the parameter while
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simultaneously ensuring that the time required for processing the data is

minimized. This is due to the repetitive nature of rehabilitation exercises and

the dependency of the predicted output on the previously predicted value and

the error calculated. A pointwise ILP is implemented where the data points

in the signal are iterated one-by-one till the actual output is the same as the

desired system output.

1.12.3 Mechanomyography Feature Extraction and Clas-

sification of Forearm Movements using Empir-

ical Mode Decomposition and Wavelet Trans-

form

A pattern recognition based system is designed using the MMG as the input

signal. Different feature sets are isolated and extracted based on time-domain

features, wavelet features and features based on empirical mode decomposition.

Two new features based on the EMD and Hilbert spectrum are defined and

used in feature extraction.

A novel feature extraction technique is proposed by using the intrinsic

mode functions generated by using the EMD process. The classification

of the MMG signals based on different movements of the upper limb in a

supervised learning environment is achieved using a Multilayer Perceptron

(MLP) classifier. It is found that the wavelet based feature set and EMD

based feature set performed best for classifying movements of hand and wrist

using the multilayer perceptron classifier.
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1.13 Organization of the Thesis

This chapter presented the fundamentals of ageing, stroke, neuroplasticity

and stroke rehabilitation. It also presented the disadvantages of traditional

rehabilitation and presented different assistive robotic devices available. It

further introduced the concept of task-oriented biofeedback, differentiated it

with static biofeedback and emphasised its importance in rehabilitation. A

review of myoelectric control, different feature extraction methods and the

different classifiers used by researchers is carried out. Problems associated

with using EMG and MMG in an assistive system for the elderly are identified.

A brief literature review of the adaptive signal processing of EMG is provided

along with the description of different methods for calculating joint torque

using different EMG-Torque models. The use of MMG for extracting features

is explored and the corresponding literature reviewed.

Chapter 2 outlines the different EMG and MMG measurement protocols

to be followed and guidelines for selecting various parameters for EMG mea-

surement including electrode geometry, shape, size, inter-electrode distance,

electrode placement, electrode configuration and skin preparation. The pri-

mary recording sites for EMG and MMG for the different motions are also

identified along with their filter parameters. The different protocols followed

for measuring the EMG-Torque data and joint angle measurement are also

described in this chapter.

Chapter 3 is divided into three sections. Firstly, feature extraction is

described using different time-frequency and wavelet features. Secondly, the

control algorithm used to process the myoelectric signal which include feature

extraction and classifier design is detailed. The measured EMG data is

analysed and classified based on this control algorithm. Basic time domain
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features are used with a multilevel perceptron classifier for pattern recognition.

The final section details a prototype of a myoelectric glove along with its

design specifications and the obstacles faced in implementing the hardware

prototype.

Chapter 4 describes the instantaneous frequency estimation of the EMG

signal using Hilbert-Huang Transform and a variable step-size adaptive Least

Mean Squares (LMS) algorithm to filter out the variable Power Line Inter-

ference (PLI). The subsequent section details the simulations performed to

evaluate the HHT-LMS adaptive filter under different conditions while the

final section evaluates the HHT-LMS adaptive filter on experimental data.

Chapter 5 analyses the EMG-Torque relation using a physiological model

of the muscle based on the modified Hill’s muscle model. Preliminary tests

were carried out for estimating the joint torque of the elbow using the fixed

function model and neural network models. The inability of these models led

to the design of a hybrid muscle model for predicting the elbow joint torque.

An iterative learning predictor is proposed for estimation of the unknown

parameters from the modified Hill’s muscle model. The hybrid model is

described in detail and evaluated using experimental data. The Mean Squared

Error (MSE) is used to compare the performance of the hybrid model with

the fixed function and the neural network models.

Chapter 6 describes the methodology for optimal feature extraction, selec-

tion and classification of the Mechanomyography (MMG) signal for different

forearm motions. Three accelerometers are used for measuring the MMG

from major forearm muscle sites. The next section extracts time-frequency

features from the MMG data and classifies it using an Multilayer Percep-

tron (MLP) classifier. The MMG signal’s time variation is also explained from

measured data. The subsequent section describes the extraction of wavelet
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transform based features and their classification using a MLP classifier. The

final section details the decomposition of the MMG signal into Intrinsic Mode

Function (IMF), used for extracting Empirical Mode Decomposition (EMD)

based features and their subsequent classification using a MLP classifier.

Chapter 7 summarizes the study presented in this thesis and describes

future work that can be undertaken to further develop and improve this study.
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2

Electromyography and Mechanomyography

Measurement Protocols

This chapter outlines the different EMG and MMG measurement proto-

cols to be followed and guidelines for selecting various parameters for EMG

measurement including electrode geometry, shape, size, inter-electrode dis-

tance, electrode placement, electrode configuration and skin preparation. The

primary recording sites for EMG and MMG for the different motions are also

identified along with their filter parameters. The different protocols followed

for measuring the EMG-Torque data and joint angle measurement are also

described in this chapter.

2.1 Electromyography

The EMG or the Myoelectric Signal (MES) of a muscle is the summation

of the different Motor Unit Action Potential (MUAP). This can include the

MUAP(s) of nearby muscles as well. For a single channel recording of EMG,

if the muscle groups are very close to each other, it would be difficult to

identify the EMG corresponding to a single muscle group and, hence, difficult

to identify the motion the EMG signal represents. Thus, certain features need

to be extracted that represent the user’s intent of hand motion from the raw
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EMG data and accordingly actuate the prosthesis or orthosis. For this study,

the following hand motions are analyzed:

1. Elbow Flexion and Extension: The biceps brachii muscle group functions

as the agonist muscle for the forearm while the triceps muscle groups

as the antagonist muscles.

2. Wrist Flexion and Extension: The flexor carpi ulnaris is a muscle of

the forearm, which helps to flex and extend the wrist.

3. Hand Grasp and Open: The flexor digitorum profundus and flexor

digitorum superficialis are known as the flexors of the fingers and are

used for grasping and opening of the hand.

Table 2.1: Different motions of the hand and the corresponding
muscle groups

Motion of the Hand Associated Muscle Group

Elbow Flexion and Extension
biceps brachii
triceps brachii

Wrist Flexion and Extension flexor carpi ulnaris

Hand Grasp and Open
flexor digitorum profundus

flexor digitorum superficialis

2.1.1 EMG Measurement

2.1.1.1 Non-Invasive vs Invasive EMG

The EMG signals can be detected and recorded either by invasive techniques by

inserting a needle electrode underneath the skin or by non-invasive techniques

by using electrodes on the surface of the skin. Needle electrode directly

measures the firing pattern of the muscle unit it is inserted into and is

more accurate in MUAP measurements as compared to surface electrodes
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which provides a global measure of the muscle unit’s activities [90]. But

surface electrodes are much easier to use especially if measurements have to

be repeated frequently or if the electrode has to be in contact during the

operation of any robotic system and are also readily available as compared to

needle electrodes.

Hence for this system, non-invasive surface electrodes are used for EMG

measurements, as the EMG of the patient has to be measured continuously

for the time period of operation of the glove.

2.1.1.2 Electrode Material, Geometry, Size and Skin Preparation

Silver/Silver Chloride (Ag/AgCl) has certain electrochemical properties which

allow it to provide a very balanced and consistent surface EMG signal that

is not found with single compound electrodes [91]. Different geometry for

surface electrodes exists such as rectangular, bars or circular discs. Since the

MUAP propagates evenly in both directions from the neuromuscular junction,

use of disc electrodes would account for maximum uniform area covered for

measurement. Thus Ag/AgCl disc electrodes manufactured by ‘3M’ are used

for all EMG measurements.

The surface electrodes are not specific to any particular surface area of

the muscle for picking up EMG signals as they provide a global measure of

the muscle unit’s activities. Thus, there is no ideal size for electrodes for

optimum EMG measurement as each muscle unit’s dimensions are different

from each other. The rule of thumb is that, smaller the muscle from which

the recording has to be made, the smaller is the electrode.

An electrode diameter of 1 cm is used to measure EMG for both the

forearm muscles as well as the biceps muscles as both these muscle groups

are relatively large as compared to muscles of fingers, which would require an
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electrode diameter of about ‘0.5 cm’ for faithful measurements.

Consistency in impedance is critical for the reliability of EMG measure-

ments. Modern pre-amplifier design with high input impedance has reduced

the importance of measuring EMG with a low level of electrode-skin impedance.

While the absolute level of muscle impedance is not a critical factor, the sta-

bility in impedance over time and the balance in impedance between electrode

sites have a considerable effect on the signal to noise ratio of the measured

EMG signal, both in terms of noise levels and spatial resolution. The general

rule is that the more balanced the electrode-skin impedance between electrode

sites, the lower the noise, and as a result, higher the signal to noise ratio.

The electrode-skin interface generates a DC voltage potential, mainly

caused by a large increase in impedance from the outermost layer of the skin,

including dead skin material and oil secretions. This DC potential, common to

all electrodes, can be minimized with proper skin preparation. The quality of

contact is typically improved by at least a factor of 10 with proper preparation

[92].

To keep the electrode-skin impedance constant, proper skin preparation is

vital. The dead skin material and oil secretions on the surface are cleaned

using alcohol swabs. A conducting gel NuPrep is applied on the skin to give

uniform electrode-skin impedance during measurement.

2.1.1.3 Electrode Configuration and Inter-Electrode Distance

The bipolar electrode configuration is used for EMG measurements. In this

configuration, two electrodes are used at the detection site and a third ground

electrode is placed distally in a neutral electrical environment. This is because

a differential pre-amplifier is used for EMG signal amplification [91]. The

ground electrode site chosen for this study is the elbow joint.
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Inter-electrode distance is defined as the center-to-center distance between

the conductive areas of electrodes [93]. It is an important parameter when

EMG signal from a single muscle is to be determined. If the inter-electrode

distance is too small the surface electrodes may get short-circuited if the

skin becomes moist with conducting sweat. If the inter-electrode distance

is large the bandwidth of the EMG signal is reduced. The surface electrode

may also pick up electrical activity of neighboring muscles or crosstalk thus

leading to corrupted EMG data. The rule of thumb for small muscles is that

the inter-electrode distance should not exceed one-fourth of the muscle fibre

length. In this way, unstable recordings due to tendon and motor end-plate

effects, can be avoided.

An inter-electrode distance of ‘1.5 cm’ was chosen for EMG measurements

from the biceps muscle groups while an inter-electrode distance of ‘1 cm’ was

chosen for the forearm muscle groups.

2.1.1.4 Electrode Placement

The goal of electrode placement is to achieve a location where a good and

stable surface EMG signal can be obtained [94]. There are two general

strategies for placement of electrodes. From the skin surface the electrode

can be arranged longitudinally with respect to the long axis of the muscle

where it is recommended to place the electrode on the mid-line of the muscle

belly such that the innervation site is avoided during motion. Transversely, it

is recommended to place the electrodes such a way that they are away from

the boundary of the muscle recording area of interest i.e. perpendicular to

the long axis of the muscle so that neighboring muscle groups are avoided in

measurement.

A longitudinal arrangement of the electrodes is chosen and the electrodes
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are placed on the mid-line of the muscle belly and the electrode contacts lie

parallel to the muscle fibers and not across them. For each of the muscle

groups used, the electrodes are centered as follows:

1. biceps brachii and triceps brachii : The mid-line of the muscle belly.

2. flexor carpi ulnaris : Proximal one-third point on a line drawn from the

posterior portion of the medial epicondyte to posterior portion of the

styloid process of the ulna.

3. flexors of the fingers: Midway point on a line drawn from the medial

epicondyte to the styloid process of the ulna.

Table 2.2: EMG Parameters used for measurement in this study

EMG Parameter Value

EMG Detection Non-Invasive Surface Electrodes by 3M
Electrode Material Silver/Silver Chloride (Ag/AgCl)
Electrode Geometry Circular Disc
Electrode Size Diameter: 1cm

Skin Preparation
Alcohol Swabs

Conducting Gel NuPrep

Electrode Configuration
Bipolar Electrode Configuration with Ground Electrode

Ground Electrode Site: Elbow Joint

Inter-Electrode Distance
Biceps: 1.5 cm

Forearm muscles: 1 cm
Electrode Placement Longitudinal along the long axis of the muscle

2.1.2 EMG Signal Processing

2.1.2.1 EMG Equipment

The equipment used to measure EMG for this study on a Personal Computer

(PC) is the CleaveMed BioCapture Research System. The measuring unit is

wirelessly connected to the PC unit. The system is capable of simultaneously
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measuring eight channels of EMG and has adjustable sampling rates with a

maximum value of 960 Hz.

A joint torque measurement system has been developed in the laboratory

for simultaneous use along with the EMG equipment. The system is based

on the dSPACE hardware platform and can be used to implement real time

signal acquisition and processing to generate appropriate control signals for

the actuation of the rehabilitative device. The joint torque measurement

system provides visual feedback on the current level of Maximum Voluntary

Contraction (MVC) for the motion analyzed.

Sampling Frequency: 960 Hz

The selected bandwidth of the EMG signal for our system lies in the

range of 10 - 350 Hz. According to Nyquist Theorem, the sampling rate

chosen should be at least twice the bandwidth of the EMG signal for faithful

representation of the signal. Hence a sampling rate of 960 Hz is chosen for all

the experiments.

2.1.2.2 Filtering

The electrode-skin interface generates a DC voltage potential, mainly caused

by a large increase in impedance from the outermost layer of skin, including

dead skin material and oil secretions. The mean value in the data is removed

to filter out this DC offset. The Power Spectral Density of the measured

EMG data processed offline shows that the EMG signal lies predominantly in

the range of 10 to 350 Hz as shown in Fig. 2.1 [95].

A low pass filter with a cut-off frequency of 350 Hz and a High Pass Filter

with a cut-off frequency of 10 Hz were designed to process the EMG data

both in real time and for offline processing. A second order Butterworth filter

was chosen as it gave a flat magnitude response in the pass band. The high
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Figure 2.1: The Power Spectral Density of measured EMG signal.

pass filter helps removing the noises due to motion artifacts and random firing

of motor units while the low pass filter acts as an anti-aliasing filter.

2.1.2.3 EMG Crosstalk

Crosstalk is the EMG signal detected over a muscle but generated by another

muscle close to the first one [96–99]. The phenomenon is present in surface

recordings, when the distance of the detection points from the sources may

be relevant and similar for the different sources. Crosstalk is one of the

most important sources of error in interpreting surface EMG signals. This

is because crosstalk signals can be confounded with the signals generated

by the muscle, which thus may be considered active when indeed it is not.

The problem is particularly relevant in cases where the timing of activation

of different muscles is of importance, such as in movement analysis. Just

because two muscles lie close to each other or are separated by a thin layer of

fascia does not mean that crosstalk can occur at any given pair of surface or

indwelling recording sites. A set of guidelines is utilized to prevent crosstalk

as mentioned in [100]. The selection of the electrode size, geometry, inter-
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electrode placement in this study has been carried out keeping in mind the

problem of crosstalk.

Table 2.3: Filter Parameters used for EMG processing in the study

Filter Parameter Value

Low Pass Filter
Type: 2nd Order Butterworth Filter

Cut-Off Frequency: 350 Hz

High Pass Filter
Type: 2nd order Butterworth Filter

Cut-Off Frequency: 10 Hz
Sampling Rate 960 Hz
EMG Equipment Clevemed BioCapture Research System

The focus of this study is on elderly rehabilitation and to ensure that the

data measured is representative of that measured from the elderly, the following

protocol is strictly followed while measuring EMG from healthy young subjects:

1. The Maximum Voluntary Contraction (MVC) of the volun-

teer is measured in terms of the torque and is related to the

corresponding EMG.

2. A set of weights are chosen such that the MVC % is between

15% to 30% for the motions analyzed.

3. A visual feedback is given using the dSPACE Torque measure-

ment system to maintain the MVC(s) at the aforementioned

levels.

2.2 Mechanomyography

Another method that is useful in assessing activities of skeletal muscles is

mechanomyography (MMG) that measures vibrations from contracting mus-

cles. The MMG signals produced by contracting and vibrating muscle fibers
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can be interpreted as a mechanical counterpart of EMG signals, since it

has been shown that MMG signal informs about differences in motor units

recruitment pattern [71], degenerative changes in skeletal muscles [72, 73],

and mechanical properties of skeletal muscles (stiffness and vibration) [101].

Despite the different natures of these two signals, each of them gives informa-

tion about the motor unit recruitment, firing frequency and synchronization

[71] that are reflected in the amplitude and frequency of the EMG and MMG

signals.

However, an apparent advantage of MMG over EMG is that MMG reveals

mechanical properties of the muscles [71, 72]. Thus, simultaneously recorded

EMG and MMG signals can be used in monitoring relations between electrical

and mechanical properties of skeletal muscles [58, 71] and may potentially

provide useful information in sports, medical, and neuroscience research. The

MMG can be measured either by a microphone, a piezoelectric sensor, laser

detection sensors or by an accelerometer.

A MMG data acquisition system has been developed in the laboratory for

this study. The system is based on the dSPACE hardware platform and can

be used to implement real time signal acquisition and processing to generate

appropriate control signals for the actuation of the rehabilitative device. The

following sub-sections describe the MMG data acquisition system in detail.

2.2.1 MMG Measurement

2.2.1.1 Sensor Type

The MMG can be measured either by microphones [83, 102], a piezoelectric

sensor[103], laser distance sensors[74] or by an accelerometer. Use of micro-

phone for data collection would lead to lot of post-processing to isolate the
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MMG from the measured signal as the sensor would record all surround-

ing noise. Laser detection sensors are an expensive proposition for use in a

practical low cost system. Piezoelectric sensors are a good choice for measur-

ing MMG but there are inherent advantages while using accelerometers for

measurement of MMG.

• If aligned properly, it can also measure the joint angle or orientation

of the hand along with the MMG, thus eliminating the need to assign

multiple sensors to do the same function.

• The accelerometer can be embedded into the rehabilitative device to

assuage the discomfort and redundancy of attaching and detaching

electrodes to the elderly user.

• The accelerometer signal data can also provide the velocity and acceler-

ation of the hand during different movements.

• Low-cost of the sensor.

2.2.1.2 MMG Measurement Protocol

For this study, the following hand movements are analyzed:

(a) Wrist Pronation and Supination

(b) The Wrist Flexion and Extension

(c) Hand Open and Close

(d) Wrist Ulnar and Radial Deviation

MMG data from the following muscle groups of the forearm were used to

analyse the above hand movements:
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Figure 2.2: The different muscle groups for MMG measurement.
The solid lines point to the muscles measured, while the dotted

lines point to the nearby muscle groups.

(a) flexor carpi ulnaris

(b) brachioradialis supinator

(c) abductor pollicis longus

Fig. 2.2 shows the different muscle sites for MMG measurement. Simul-

taneous EMG measurement sites can be identified by the use of the ‘3M’

electrodes. The MMG sensor is hidden under the EMG electrodes. It can

be observed that the muscles in the forearm are densely located and it is

difficult to isolate exact muscle groups corresponding to each hand movement.

Hence, the crosstalk from surrounding muscle groups is abundant

in the measured data.
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2.2.1.3 Sensor Placement

The goal of sensor placement is to achieve a location where a good and stable

surface MMG signal can be obtained. From the skin surface the sensor can be

arranged longitudinally with respect to the long axis of the muscle where it

is recommended to place the sensor on the mid-line of the muscle belly such

that the innervation site is avoided during motion.

2.2.2 MMG Signal Processing

2.2.2.1 MMG Equipment

The equipment used to measure the MMG for this study on a personal

computer (PC) is designed inhouse using accelerometers and the dSPACE

hardware platform. The system is capable of simultaneously measuring upto

eight channels of MMG and has adjustable sampling rates.

Accelerometer

The MXA2500G/M is a low cost, dual axis accelerometer fabricated on

a standard, sub-micron CMOS process. It is a complete sensing system

with on-chip mixed mode signal processing. The MXA2500G/M measures

acceleration with a full-scale range of 1.7g and a sensitivity of 500mV/g at

5V at 25C. It can measure both dynamic acceleration (e.g. vibration) and

static acceleration (e.g. gravity). The MXA2500G/M provides two absolute

analog outputs. The typical noise floor is 0.2 mg/Hz allowing signals below 1

mg to be resolved at 1 Hz bandwidth.

There are two identical acceleration signal paths on the accelerometer, one

to measure acceleration in the x-axis and one to measure acceleration in the

y-axis.

Sampling Frequency:960 Hz
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The selected bandwidth of the MMG signal for our system lies in the range

of 5 - 100 Hz. To keep the sampling rate consistent with the EMG acquisition

system a sampling rate of 960 Hz is chosen. The sampling frequency chosen,

also satisfies the Nyquist criteria.

2.2.2.2 MMG Filtering

The accelerometer sensor has an inherent DC voltage potential in the mea-

surement. The mean value in the data is removed to filter out this DC

offset.

The Power Spectral Density of the measured MMG data processed offline

shows that the MMG signal lies predominantly in the range of 5Hz to 100 Hz

as shown in Fig 2.3 .

A low pass filter with a cut-off frequency of 100 Hz and a High Pass Filter

with a cut-off frequency of 5 Hz is designed to process the MMG data both

in real time and for offline processing. A second order Butterworth filter

is chosen similar to EMG filtering. The high pass filter helps removing the

noises due to motion artifacts while the low pass filter acts as an anti-aliasing

filter. The motion artifact noise can be further sub-divided into involuntary

muscle movement and the joint angle. This is addressed in the next section.

2.2.3 Joint Angle Measurement

One of the applications for the accelerometer is tilt/inclination measurement

for the dynamic contractions of the elbow joint. An accelerometer uses the

force of gravity as an input to determine the inclination angle of an object.

This feature is exploited upon to measure the joint angle of the elbow during

different movements or exercises of the hand. The accelerometer is most

sensitive to changes in position, or tilt, when the accelerometer’s sensitive
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Figure 2.3: The Power Spectral Density of measured MMG signal.

axis is perpendicular to the force of gravity, or parallel to the Earth’s surface.

Similarly, when the accelerometer’s axis is parallel to the force of gravity

(perpendicular to the Earth’s surface), it is least sensitive to changes in tilt.

Figure 2.4 helps to illustrate the position of the accelerometer for mea-

surement of the elbow joint angle. An external low pass filter is useful in low

frequency applications such as tilt or inclination. The low pass filter limits

the noise floor and improves the resolution of the accelerometer. The joint

angle is extracted from the data using a low pass filter of 2 Hz. The cut-off

frequency can be tuned based on the speed of motion of the hand for different

movements.

Table 2.4: Filter Parameters used for MMG processing in the study

Filter Parameter Value

Low Pass Filter
Type: 2nd Order Butterworth Filter

Cut-Off Frequency: 100 Hz

High Pass Filter
Type: 2nd order Butterworth Filter

Cut-Off Frequency: 5 Hz
Sampling Rate 960 Hz
MMG Equipment dSPACE Hardware Platform
Joint Angle Measurement Low Pass Filter: Cut-Off Frequency: 2 Hz
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(a) (b)

Figure 2.4: Accelerometer Angle Measurement Setup

2.3 Summary

This chapter lists out the different protocols followed for EMG and MMG

measurement. Firstly, the protocol for measuring EMG from different muscle

sites is described. The muscle groups to be analysed for the different motions

of the hand are identified and the different parameters for EMG measurement

such as electrode size, material, shape, geometry, inter-electrode distance,

skin preparation, electrode placement on the muscle groups and electrode

configuration have been appropriately selected keeping in mind the issue of

EMG crosstalk. The issues of noise, filter selection and sampling rate for the

EMG signal have also been addressed. The measurement protocols ensure

that the biosignals were representative of that measured from the elderly.

The MMG measurement protocol is described in detail in the next section.

The muscle groups to be analysed for the different motions of the hand are

identified and the different parameters for MMG measurement such as sensor

placement, hardware platform, sensor selection are identified. The different
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protocols for set up and measurement of mechanomyography signal using

accelerometers and the measurement of joint angle or hand inclination using

the same sensor are explored. The issues of noise, filter selection and sampling

rate for the MMG signal have also been addressed.
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Preliminary Tests: A Real Time Control

Algorithm for a Myoelectric Glove

This chapter details the theoretical background for feature extraction

and pattern classification of different movements of the upper limb using

Electromyography (EMG) as a control signal along with the experimental

results of the same. Two different sets of features were extracted from the

EMG signals, that are classified using three different classifiers.

3.1 Methodology

The EMG measurement protocols have been discussed in detail in Chapter

2. The following sections describe the subjects participated and the specific

tasks performed by them for this study. Data was collected from two muscle

sites represented in this study as shown in Table 3.1. The overview of the

system is shown in Fig. 3.1.

Figure 3.1: Overview of the pattern classification based system
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Table 3.1: Electromyography Electrode Notation and Muscle Sites

Muscle Site Notation

biceps brachii E1
triceps brachii E2

3.1.1 Subjects

Data was acquired from two able-bodied individuals, aged 23 ± 6 years. The

subjects were healthy and reported no physical or mental disorders. Each

subject had access to the full range of forearm motions with no previous

history of musculoskeletal illness.

3.1.2 Experimental protocol

All subjects were instructed not to perform fatiguing upper limb exercise one

day prior to the sessions. The CleaveMed BioCapture system was used to

start data acquisition and the participants were visually cued by the operator

of the BioCapture System to perform the elbow flexion and elbow extension

movements. A numerical index is used for each class of the hand motion for

identification during pattern recognition as shown in Table 3.2.

Table 3.2: Index for different hand motions for classification

Hand Motion Index

Elbow Flexion I
Elbow Extension II
Wrist Flexion III
Wrist Extension IV
Hand Open V
Hand Close VI

Subjects performed repetitions of each of the above motions. Each motion

was comprised of the full range of motion from the resting position to the
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final position, followed by the limb being held in the final position for 5-10

seconds. The first motion performed is ‘elbow flexion’ while the next motion

is ‘elbow extension’. This sequence is then repeated for the rest of the session.

The data was collected on multiple sessions, each session lasting not more

than 2 minutes to avoid muscle fatigue.

3.1.3 Signal Pre-processing

The measured and filtered surface EMG signals were stored and analysed on

a PC using MATLAB software. Each channel of the EMG data was processed

and analysed separately. The Direct Current (DC) offset was removed by

filtering the mean value in the EMG data while the 2nd order Butterworth

high pass and low pass filters, with cut-off frequencies of 10 Hz and 350 Hz

respectively, were applied to filter out the noise and motion artifacts including

changes in forearm joint angles.

3.2 Feature Extraction

The measured and filtered surface EMG signals were stored and analysed on

a PC using MATLAB software. Each channel of the EMG data was processed

and analysed separately. The DC offset is filtered by subtracting the mean

value of the data set in each time window. The 2nd order Butterworth

high pass and low pass filters, with cut-off frequencies of 10 Hz and 350

Hz respectively, were applied to filter out the unwanted noise and motion

artifacts.

As mentioned earlier, for real time applications, the response time threshold

of the system should be less than 300 ms, so that the user does not perceive

a delay between the initiation of a hand movement and the generation of the
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Figure 3.2: Different Time Analysis Windows for the the EMG
data.

control signal. In the applied control algorithm, a decision window of 250 ms

is chosen. The EMG signal continuously changes during the progress of a

contraction. The motion can be identified truly only if the relation between

the current and the previous EMG analysis window is known. Thus, the

algorithm extracts features from two different time analysis windows (Fig.

3.2) as follows:

1. An analysis window of 250 ms consisting of 240 samples is chosen as the

current active time window (kth window) and a feature set is computed

based on this segment.

2. An analysis window of 500 ms with 480 samples is chosen consisting of

the current time window (kth window) and the previous time window

(k-1th window ) and the feature set is computed based on this time

window. For feature extraction in this time epoch, a moving window

scheme is implemented with the moving time window of 250 ms.
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3.2.1 Feature Extraction using Time Domain Features

The following time domain features for the EMG signal were computed for

both the analysis windows called ‘Feature Set-I’. These features are extracted

for motions corresponding to the elbow and wrist movements:

• Mean Absolute Value (MAV) : The mean absolute value of the signal x

in segment i that has N samples is calculated as

xi =
1

N

N∑
k=1

|xk| (3.1)

• Mean Absolute Value Slope: The difference between the mean absolute

values of adjacent segments over the entire sampled signal is given by

4xi = xi − xi−1 (3.2)

• RMS Value: The Root Mean Square (RMS) is a measure of energy of

the signal. The acRMS of the signal x in segment i that has N samples

is calculated as

xRMS
i =

√√√√ 1

N

N∑
k=1

|x2
k| (3.3)

• Zero Crossings (ZC): It provides the frequency measure of the signal by

counting the number of times the waveform crosses zero. A threshold (σ)

is included to reduce noise induced zero crossings. Given two consecutive

samples xk and xk+1, the ZC count is incremented if,

{xk > 0 and xk+1 < 0} or {xk < 0 and xk+1 > 0}

and

|xk−xk+1| ≥ σ

(3.4)
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• Slope Sign Changes (SSC): A change in the slope sign provides an-

other measure for the frequency content of the signal. A threshold (ε)

is included to reduce noise induced slope sign changes. Given three

consecutive samples xk−1, xk and xk+1, the ZC count is incremented if,

{xk > xk−1 and xk > xk+1} or {xk < xk−1 and xk < xk+1}

and

|xk − xk+1| ≥ ε or |xk−1 − xk| ≥ ε

(3.5)

• Waveform Length: A feature which provides information on the wave-

form amplitude, frequency and duration. It is the cumulative length of

the waveform over each analysis window.

l0 =
N∑
k=1

(xk − xk−1) (3.6)

3.2.2 Feature Extraction using Wavelet Transform

Different sets of features are extracted using wavelet transform for both the

analysis windows. A wavelet transform characterizes the signals locally in

the time domain in the analysis window and is useful for approximating

non-stationary signals like EMG. The wavelet decomposition of a signal V0 is

given by,

V0 =
∞∑

j=−∞

∞∑
k=−∞

dj(k)ψ(2−jt− k) (3.7)

where, d1(k), d2(k), d3(k),. . . are the wavelet coefficients and ψ the wavelet

basis. Let the jth wavelet transform of an EMG signal V0 be denoted by Vj.

According to the wavelet orthonormal decomposition, first Vj is decomposed

orthogonally into a high-frequency sub-space Wj+1 and a low frequency sub-
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space Vj+1 using wavelet transform. The low-frequency sub-space Vj+1 is

further decomposed into Wj+2 and Vj+2.

The feature selected for representing each of the wavelet transform sub-

patterns is its wavelet entropy. If a wavelet sub-pattern has L coefficients,

then the wavelet entropy WE is defined as,

WE =
L∑
j=1

|dj(k)|2 (3.8)

The wavelet entropy for each sub-pattern is calculated for both the time

analysis windows and put together, to form a feature vector, ‘Feature Set-II’.

3.3 Classifier Algorithms

The EMG signal is not consistent for different individuals for similar hand

motions. The repeatability of the signal for an individual is high but is not

exactly the same [104]. Moreover, training an individual to use the glove would

improve their motor skills resulting in variations in subsequent Myoelectric

Signal (MES) recordings of the same muscle group. A classifier that is able

to adapt to these variations in features for different individuals as well as

to accommodate each individual’s MES change over the course of time is

required for faithfully classifying the different hand motions.

3.3.1 k-Nearest Neighbor Classifier

A k-nearest neighbor classifier is initially used for classification of the EMG

patterns into hand motions based on feature set I. The k-nearest-neighbor

classifier is based on the Euclidean distance between a test sample and the

specified training samples [105]. Let xi be an input sample window with ‘q’
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features (xi1, xi2 ,..,xiq ) and ‘n’ be the total number of input samples. The

Euclidean distance between sample xi and xl (where l=1,2,3,. . . n) is defined

as,

d(xi, xl) =
√

(xi1 − xl1)2 + (xi2 − xl2)2 + . . .+ (xiq − xlq)2 (3.9)

With 1-nearest neighbor rule, the predicted hand motion of the test sample

‘xi’ is set equal to the true hand motion (ω) of its nearest neighbor, where mi

is a nearest neighbor to ‘xi’ if the distance is

d(mi, xi) = minj {d(mj, xj)} (3.10)

For k-nearest neighbors, the predicted hand motion of the test sample ‘xi’ is

set equal to the most frequent actual hand motion among ‘k’ nearest training

samples.

3.3.2 Linear Discriminant Classifier

To identify which hand motion a sample window belongs to, a linear classifier

makes a classification decision based on the value of a linear combination of

the different features [105]. If the input feature vector to the classifier is ‘xi’,

then the output y is,

y = f(−→w · −→x ) = f

(∑
j

wj · xj

)
(3.11)

where, ‘w’ is a real vector of weights and ‘f ’ is a function that converts

the dot product of the two vectors into the desired output. The weight vector

‘w’ is estimated from a set of labeled training samples. Often ‘f ’ is a simple
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function that maps all values above a certain threshold to the first class and

all other values to the second class. For a multiple class problem, multiple

thresholds are present for classification into different classes.

3.3.3 Multilayer Perceptron Classifier

A MLP classifier [105] is used for pattern classification from the input Feature

Vector-II as shown in Fig.3.3. These networks have an input layer, one or

more hidden layer and an output layer. The weights of the neural network

for the different layers are initiated to zero before training.

• Input Layer: The 24-dimensional feature vector generated from the

EMG data is presented to the input layer. The input layer normalizes

these values so that the range of each variable is -1 to 1. The input

layer distributes the values to each of the neurons in the hidden layer.

The number of neurons in the input layer is equal to dimension of the

feature vector; hence, there are 24 input neurons (Nin).

• Hidden Layer: At a neuron in the hidden layer, the value from each

input neuron is multiplied by a weight (wji), and the resulting weighted

values are added together producing a combined value uj . The weighted

sum (uj) is fed into a transfer function, σh, which outputs a value hj.

The outputs from the hidden layer are distributed to the output layer.

A single hidden layer consisting of sixteen (Nhid) neurons is used and

a sigmoid function is chosen as the activation function for the hidden

layer. Thus, the weighted sum is given by

uj =

Nin∑
i=1

wji ∗ xi (3.12)
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3.3 Classifier Algorithms

Figure 3.3: Layer structure of the Multilayer Perceptron classifier
for the pattern classification of MMG signals

and the hidden layer output hj is

hj = σh ∗ uj (3.13)

• Output Layer: At the neuron in the output layer, the value from each

hidden layer neuron is multiplied by a weight (wkj), and the resulting

weighted values are added together producing a combined value vk. The

weighted sum (vk) is fed into a transfer function, σo, which outputs a

value yk. The output layer has six neurons corresponding to the six

motions to be classified and a linear function is used, as the activation

function. Thus,

vk =

Nhid∑
i=1

wkj ∗ hj (3.14)

and the output yk is

yk = σ0 ∗ vk (3.15)
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Figure 3.4: Original EMG data from the wrist of a participant
where 1: Wrist Flexion and 2: Wrist Extension.

3.4 Experimental Results

3.4.1 Feature Extraction

3.4.1.1 Feature Set-I: Time Frequency Features

Fig.3.4 shows a set of measured EMG data and Fig.3.5 displays the different

features for ‘Feature Set-I . This feature set is computed on data from the

elbow and the wrist movements and not that of hand opening and grasping.

The EMG data has been sub-divided into time segments of 250ms and 500ms

(with a 250ms moving window) and all the calculations have been made

individually in each time window. The RMS value of the data for each time

segment is also shown among the features as it gives an indication of the

energy of the signal. Here, the wrist is under flexion and extension with a

stationary time of approximately 5 seconds between movements. The analysis

of remaining data sets too gives similar feature vectors.

A total of 12 features for each channel of EMG data for both the time

segments are extracted. Thus, a 24-dimensional feature vector consisting of
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Figure 3.5: Feature set I for the EMG data in Fig.3.4.
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the feature sets of each channel is formed and provided to a classifier.

• OBSERVATIONS

– The temporal evolution of the Mean Absolute Value (MAV) of

the signal is consistent with the signal. It is difficult to identify

different hand movements based only on the MAV.

– The mean absolute value slope is a better feature in separating the

isometric component of the signal from the dynamic component

of the signal. It can be observed that during the initiation of the

movement(s) the mean absolute value slope increases sharply as

compared to during no movement or during isometric contraction.

– The number of ZC and SSC provide a boundary envelope for the

signal movements. These features can be used to restrict the

processing during specific time epochs when there is movement.

– The waveform length not only provides a boundary envelope for

the signal movements but it also varies according to the signal

strength. It is a good indicator of the amplitude and the frequency

of the signal.

– The temporal evolution of the RMS similarly varies according

to the signal strength. It is not only an indicator of the energy

of the signal but also of the noise present in the signal. It can

be observed that the signal has considerable noise and if either

the signal strength drops or the noise increases, it would become

difficult to distinguish between energy of the signal and the noise.
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3.4.1.2 Feature Set-II: Wavelet Features

Another set of features, Feature Set-II, is computed for the EMG data that

contain samples of hand opening and grasping as well. Fig.3.6. displays

the different wavelet sub-patterns for Feature Set II for the same data in

Fig.3.4. The value of J specifying the level of decomposition is chosen as ‘5’

while the wavelet used is a Daubechies family wavelet ‘db3 ’ as to work with

discrete systems. D1, D2, D3, D4, D5 show the high frequency or the detailed

sub-space at each level of decomposition while A5 gives the low frequency

or the approximate subspace and the final level of decomposition i.e. 5. The

wavelet decomposition divides the EMG signal into different frequency bands.

The different frequency bands for these components, at a sampling frequency

of 960 Hz, are shown in Table 3.3. Fig.3.7 shows the wavelet entropy of all the

sub-patterns of the data in each time analysis window. This feature vector

also includes measured data of hand opening and grasping movements.

Table 3.3: Frequency Bands for different wavelet sub-patterns

Wavelet Sub-Pattern Frequency Band

A5 0 - 15 Hz
D5 15 - 30 Hz
D4 30 - 60 Hz
D3 60 - 120 Hz
D2 120 - 240 Hz
D1 240 - 480 Hz

The six wavelet entropy values form the second feature set. The EMG

data is sub-divided into time segments of 250 ms and 500 ms (with a 250

ms moving window) and all the calculations are made individually in each

time window; hence, we have 12 features for each channel of EMG. Thus, a

24-dimensional feature vector consisting of the feature sets of each channel is

formed as Feature Set II and provided to a classifier.
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Figure 3.6: Wavelet Sub-Patterns for the signal in Fig.3.4

Figure 3.7: Feature Set II consisting of Wavelet Entropies for each
of the wavelet sub-patterns of Fig.3.6
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• OBSERVATIONS

– It can be observed from Fig. 3.6, and Table 3.3 that the detail

components ‘D1-D3’ are representative of the signal in each of the

frequency bands.

– The noise present in the signal is not present in the wavelet sub-

patterns ‘D4’,‘D5’ and ‘A5’ that are representative of the lower

frequency bands of the signal.

– The wavelet entropies in Fig. 3.7 of all the wavelet sub-patterns

not only provide a boundary envelope for the signal movements

but also vary according to the variations in each of them.

– Wavelet entropies of wavelet sub-patterns ‘D1-D5’ can be used to

distinguish not only the dynamic and the isometric components of

the signal but also the different wrist movements.

3.4.2 k-Nearest Neighbor

The k -nearest neighbor algorithm is initially used to classify the feature set

I. The two channels of the EMG signals were analysed separately. The data

set was divided into thirty training and thirty test sets for each of the elbow

and wrist movements. The value of ‘k’ for classification is taken as ‘3’. The

classifier assigns one of the training set class to the test sample. The confusion

matrix for the Classified Motion vs the Actual Motion for the test set is as

shown in Table 3.4.

• OBSERVATIONS

– It can be observed from Table 3.4 that the elbow flexion was

classified accurately for all the test samples while elbow extension,
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wrist flexion and wrist extension had success rates of 83.3%, 80%

and 93.3% respectively.

– The elbow movements were not wrongly classified as wrist move-

ments and vice versa as the data from the two channels of EMG

were processed separately. The analysis was separate as the EMG

signals from the two channels were mutually exclusive.

The k-nearest neighbor algorithm is computationally intensive as it com-

putes the minimum Euclidean distance between the test feature and each

of the training features. For the current training data of thirty sets, the

threshold of 300 ms, before the user perceives a delay in the initiation of the

action, is overshot. For a larger training set, the computational time would be

even larger. Thus, implementing the k-nearest neighbor classifier for real-time

application of myoelectric control is not feasible.

Table 3.4: Cofusion Matrix for k-Nearest neighbor Classifier (k=3)

Actual Motion
Classified Motion

EF EE WF WE

Elbow Flexion (EF) 30 0 0 0
Elbow Extension (EE) 5 25 0 0
Wrist Flexion (WF) 0 0 24 6
Wrist Extension (WE) 0 0 2 28

3.4.3 Linear Discriminant Classifier

The linear discriminant classifier is used to classify the Feature Set-I. The

two channels of the EMG signals were analysed separately by two different

linear classifiers, namely, one for wrist flexion and extension and the other for

elbow flexion and extension. This reduces the 4-class problem to two 2-class

classification problems. The data set was divided into thirty training and
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thirty test sets for each of the wrist and elbow movements. The classifier

is trained using the training set and the thresholds for the classifier are

determined.

The four control outputs of the linear classifier, two corresponding to

elbow movements and two to wrist movements, are as follows:

1. Elbow Control Signal

(a) 1 : Elbow Flexion (EF)

(b) -1: Elbow Extension(EE)

2. Wrist Control Signal

(a) 1 : Wrist Flexion (EF)

(b) -1: Elbow Extension(EE)

The confusion matrix for the Classified Motion vs. the Actual Motion for

the test set is shown in Table 3.5.

Table 3.5: Confusion Matrix for Linear Discriminant Classifier

Actual Motion
Classified Motion

EF EE WF WE

Elbow Flexion (EF) 29 1 0 0
Elbow Extension (EE) 2 28 0 0
Wrist Flexion (WF) 0 0 26 4
Wrist Extension (WE) 0 0 2 28

Ideally, these control outputs are connected to the corresponding servo

motors for wrist and elbow movement on the robotic manipulator such that,

• Elbow Flexion and Wrist Flexion: Clockwise rotation of the respective

motor and
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Figure 3.8: Wrist Control Output of the Linear Discriminant
classifier to the Manipulator

• Elbow Extension and Wrist Extension: Anti-clockwise rotation of the

respective motors.

The control outputs to the manipulator for the EMG data of the wrist

and the elbow are shown in Fig.3.8 and Fig.3.9 respectively.

• OBSERVATIONS

– It can be observed from Table 3.5 that the elbow flexion was

classified with an accuracy of 96.67% while elbow extension, wrist

flexion and wrist extension had success rates of 93.3%, 86.6% and

93.3% respectively.

– The elbow movements were not wrongly classified as wrist move-

ments and vice versa as different linear discriminant classifiers

were used to process the data from the two channels of EMG sep-

arately. The analysis was separate as the EMG signals from the

two channels were mutually exclusive.
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Figure 3.9: Elbow Control Output of the Linear Discriminant
classifier to the Manipulator

– As seen in Fig.3.8 , the linear classifier is unable to classify one of

the wrist extension movements as shown by the black dotted lines.

Similarly, the classified motions ‘1’ in Fig.3.9 have been wrongly

classified.

– Each time the output goes to either 1 or -1, the servomotor stays

in that position until the linear classifier gives an opposing control

output.

– The processing time required by the linear classifiers to generate

the control signal is well within 300 ms (the threshold of for the

user to perceive a delay in the initiation of the action).

3.4.4 Multilayer Perceptron Classifier

The MLP classifier is used to classify the feature set II. The data set also

consisted of hand opening and grasping apart from the wrist and elbow

movements. The data set was divided into thirty training and thirty test sets

for each of the wrist and elbow movements and fifteen training and fifteen
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test sets for the hand opening and grasping movements. Thus, a total of six

hand movements are classified using 2 channels of EMG data. The output

layer neurons of the MLP classifier each corresponds to one of the following

hand movements:

1. Elbow Control Signal

(a) 1 : Elbow Flexion (EF)

(b) -1: Elbow Extension(EE)

2. Wrist Control Signal

(a) 1 : Wrist Flexion (EF)

(b) -1: Elbow Extension(EE)

3. Hand Control Signal

(a) 1 : Hand Grasping(HG)

(b) -1: Hand Opening (HO)

The confusion matrix for the Classified Motion vs the Actual Motion for

the test set is given in Table 3.6. The control outputs to the manipulator

for the EMG data of the hand opening and grasping is as shown in Fig 3.10.

The output for the wrist and elbow movements mirror that of the linear

discriminant classifier.

• OBSERVATIONS

– It can be observed from Table 3.6 that the elbow flexion was

classified accurately for all the test samples while elbow extension,

wrist flexion and wrist extension had success rates of 93.3%, 93.3%

and 93.3% respectively. The hand grasping and hand opening

movements had success rates of 73.3% and 66.67% respectively.
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Figure 3.10: Hand Control Output of the MLP classifier to the
Manipulator

Table 3.6: Confusion Matrix for Multilayer Perceptron Classifier

Actual Motion
Classified Motion

EF EE WF WE HG HO

Elbow Flexion (EF) 30 0 0 0 0 0
Elbow Extension (EE) 2 28 0 0 0 0
Wrist Flexion (WF) 0 0 28 2 0 0
Wrist Extension (WE) 0 0 2 28 0 0
Hand Grasping (HG) 0 0 3 1 11 0
Hand Opening (HO) 0 0 0 5 0 10
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3.5 Myoelectric Glove

– The elbow movements were not wrongly classified as wrist move-

ments or hand movements as the data from the two channels of

EMG were processed separately. The analysis was separate as the

EMG signals from the two channels were mutually exclusive.

– As seen in Fig.3.10, the MLP classifier is unable to classify some

of the hand opening movements as shown by the dotted lines.

– As seen in Fig.3.10, the MLP classifier is wrongly classifying some

of the hand closing and opening.

It can be seen from the confusion matrix for the MLP classifier that the

elbow and wrist movement classification rates are similar to that of the linear

discriminant classifier. The MLP classifier is able to classify all but the hand

opening and grasping movements quite accurately. The success rate for hand

grasping and hand opening is quite low as they are wrongly classified as wrist

flexion or extension.

3.5 Myoelectric Glove

An attempt is made to implement the above results on a myoelectric glove

designed in the laboratory. The outline of the control system of the myoelectric

glove is shown in Fig. 3.11. The basic components of the system are a micro-

controller, the myoelectric glove, and a differential amplifier for measuring

the surface EMG signals.

3.5.1 Hardware

The input signal is amplified by a differential amplifier with an isolated input

and with a gain of 100-dB. To ensure a faithful signal, the input impedance
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Figure 3.11: Outline of the control system of the Myoelectric Glove
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of the amplifier should be of the order of 100 MΩ. The dominant energy

spectrum of the EMG signal generally lies between 20 to 350 Hz. Hence,

an analog 2nd order Butterworth band pass filter with cut-off frequencies of

10 Hz and 350 Hz is designed to filter out any other unwanted frequencies

present in the signal. As per Nyquist criterion, the sampling frequency should

be more than twice the maximum frequency present in the signal i.e. it

should be greater than 700 Hz. The amplified EMG signal is over-sampled

at a rate of 1500 Hz using a 12-bit analog to digital converter available as a

microcontroller peripheral. The microcontroller analyses the digitised EMG

signal and generates control signals to actuate the servo motors to move the

glove.

The effect of crosstalk in EMG has been discussed before. It can lead to a

sudden increase in the amplitude and frequency of the sampled EMG signal

which may lead to random and unwanted motion of the actuators. Thus

sensors are used on the glove that give a feedback of the real-time actual

position and velocity of the glove. This enables the micro-controller to take

corrective action to prevent these random motions in the event of crosstalk or

a sudden change in the EMG amplitude or frequency.

3.5.2 Microcontroller System

The microcontroller is used to process the digitized EMG signals, implement

the classifier, generate control signals for the servo motors and receive posi-

tion information from the sensors. A PIC microcontroller (Microchip PIC

24HJ128) with a crystal frequency of 10MHz and memory of 128 kilobyte,

sufficient enough for the myoelectric glove, is at the heart of the system. It is

programmed in C in the IAR embedded workbench software and uses standard

C libraries.
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3.5.3 Myoelectric Exoskeleton

The myoelectric exoskeleton consists of two units, one at the elbow and the

other at the wrist. Each unit consists of a fixed part and a moving part with

the elbow unit consisting of a plastic exoskeleton with the fixed part strapped

to the hand at the biceps and the moving part to the forearm. The wrist

unit’s fixed part is strapped to the hand at the wrist and the moving part to

the dorsum of the hand.

The human wrist has a flexion and extension range of about 160◦ and the

wrist unit uses a Hitec servo HS-755HB as the actuator. The elbow has a

flexion and extension range of about 120◦ and the elbow unit uses a Hitec

servo HS-805BB. The different servos are used as higher torque is required

for elbow movement as compared to wrist movement.

Sensors are required to give feedback on the actual position and velocity

of the glove. A potentiometer is used along with the servo motor of the wrist

unit to monitor the position of the wrist.

3.5.4 Control System

The microcontroller implements the multilayer perceptron classifier to generate

the control signals for the actuators. The control output for each of the four

hand motions are as follows:

1. Elbow Motor

(a) 1 : Elbow Flexion (EF)

(b) -1: Elbow Extension(EE)

2. Wrist Motor

(a) 1 : Wrist Flexion (EF)
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Figure 3.12: Myoelectric Glove Prototype

(b) -1: Elbow Extension(EE)

The activation of the elbow motor results in the servo motor rotating by

an angle of 7.5◦ in either direction while the activation of the wrist motor

results in the servo motor rotating an angle of 15◦ in either direction. The

human wrist has a flexion and extension range of about 160◦ while the elbow

has a flexion and extension range of about 120◦. The rotation of the actuator

is proportional to the muscle electrical activity. The system checks the sensor

information for the current position of the actuator and compares it with the

boundary conditions and then regulates the speed of the actuator accordingly.

Thus, if the patient’s wrist or elbow is already at its maximum flexion and

extension positions, then the system doesn’t allow any further actuations.

Fig.3.12 shows the myoelectric glove in operation.
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Figure 3.13: Raw biceps EMG measured using the hardware setup

Figure 3.14: Raw Wrist EMG measured using the hardware setup

3.5.5 Results

3.5.5.1 Measured EMG signals for the Elbow and the Wrist Mus-

cle Groups

It can be inferred from Fig.3.13 and Fig.3.14 that the EMG raw signals have

a large amount of noise. The signal strength is very low and it is difficult

to identify the signal from the raw signal. It becomes clear from Fig.3.15

and Fig.3.16 that the noise is predominantly the power line interference. The
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Figure 3.15: FFT for the biceps EMG in Fig.3.13

Figure 3.16: FFT for the Wrist EMG in Fig.3.14
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magnitude of the power line interference is very high compared to the actual

signal strength of the EMG.

3.5.5.2 Classification Results for the MLP hardware Classifier

The confusion matrix for the Classified Motion vs. the Actual Motion for the

hardware implementation is shown in Table 3.7.

Table 3.7: Confusion Matrix for the Hardware MLP Classifier

Actual Motion
Classified Motion

EF EE WF WE

Elbow Flexion (EF) 12 6 0 0
Elbow Extension (EE) 8 14 0 0
Wrist Flexion (WF) 0 0 16 9
Wrist Extension (WE) 0 0 4 11

It can be clearly seen from the confusion matrix in Table 3.7 that the

classifier misclassifies the motions with a high percentage.

• OBSERVATIONS

– It can be observed from Table 3.7 that the elbow flexion was

classified with a low accuracy of 66.67% while elbow extension,

wrist flexion and wrist extension had success rates of 70%, 80%

and 55% respectively.

– The elbow test samples were not wrongly classified as wrist move-

ments and vice versa by the MLP classifier as they were mutually

independent of each other.

– The hardware based MLP classifier uses the same decision window

of 250 ms with an analysis window of 500 ms for classification

of the hand movements which is maintained well within 300 ms,
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the threshold beyond which the user may perceive a delay in the

initiation of the action.

3.6 Discussion

An attempt is made to classify the basic six elbow and wrist motions using

two channels of EMG data. A pattern recognition method is used for the

classification of the EMG signals based on different movements of the upper

limb and includes feature identification and selection and different classifiers

are used to distinguish between different movements of the upper limb using

the identified features. Three classifiers were studied and it is found that the

Multilayer Perceptron (MLP) works best for classifying different movements

of the upper limb as compared to the the linear classifier or the k-nearest

neighbor classifier.

While the off-line implementation of the control algorithms worked with

good accuracies, the hardware implementation of the myoelectric glove based

on the outputs resulted in much poorer results. The EMG signal acquisition

had very low signal to noise ration and the resulting implementation did

not give a high success rate. Removing power line noise from the EMG

signal is challenging because of the overlapping bandwidths of the two signals.

Modern biomedical amplifiers have a very high common mode rejection

ratio. Nevertheless, recordings are still contaminated by residual power-line

interference. The power line interference is not fixed at 50 Hz and has been

found to vary between 49 Hz to 51 Hz as shown in Fig. 3.15 and Fig. 3.16.

Hence, a fixed notch filter of 50 Hz would lead to ineffective filtering if there

is a deviation of frequency in the power line interference. Moreover, there will

be signal components at the power line frequencies and using a notch filter
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would eliminate the useful signal along with the power line noise.

Classification of the hand movements at the larger joints such as the elbow

joint is a challenge to implement in a pattern classification based system.

Though the system is able to classify the movements correctly, it is not able to

predict the initial and final states of the hand positions from the EMG data

as shown in Fig.3.9. This is fine for the smaller joint movements like the hand

open and close where joint torque information is not as critical as the elbow

joint as shown in Fig.3.10. Thus, a relation needs to be established between

the larger joint torques and the EMG signal for the continuous movement of

the actuator.

It can also be inferred from the results that more the number of EMG

electrodes, better the classification rates for a pattern recognition based signal

processing system. The problem with such an approach as outlined earlier is

the reluctance of the elderly person to attach and detach multiple electrodes

for rehabilitation. However, using only one set of EMG electrodes would

prove detrimental to the rehabilitation process itself. Thus, there is a need

to establish a multimodal system of sensors that are embedded into the

rehabilitation device itself with minimum hindrance to the elderly user.

To circumvent the above mentioned problems the following approaches

are outlined in the succeeding chapters:

• Adaptive filtering approach to remove the power line interference from

the EMG signal.

• Dividing the signal acquisition system into two complimenting sensor

systems.

• Use of EMG sensors to build an EMG-Joint Torque model for estimation

of elbow torque.
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• Use of MMG sensors to design a pattern recognition based system to

differentiate the different movements of the hand and the wrist.

3.7 Summary

This chapter details the preliminary results for the signal processing of the

EMG signal for application in elderly rehabilitation. Feature extraction based

on basic time frequency parameters and wavelet parameters was initially

described. The subsequent sections describes the classification of the EMG

signals based on different movements of the upper limb and include feature

identification and selection, and different classifiers used to distinguish between

different movements of the upper limb using the identified features. It is found

that the Multilayer Perceptron (MLP) works best for classifying different

movements of the upper limb as compared to the the linear classifier or the

k-nearest neighbor classifier.

Next to that, hardware implementation of the myoelectric glove based

on the outputs from Section 3.3 along with the experimental results and

classification accuracies for the hardware MLP classifier is detailed.

Finally, the problems associated with the above approach are outlined

and alternative solutions are provided for implementation in the succeeding

chapters.
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4

A Modified Hilbert-Huang Algorithm based

Adaptive Filter for Elimination of Power line

Interference from Surface Electromyography

It was observed in Chapter 3 that the EMG raw signals have a large

amount of noise. The signal strength is very low and it is difficult to identify

the signal from the raw signal. It was also clear that the noise is predominantly

the power line interference. The magnitude of the power line interference is

very high compared to the actual signal strength of the EMG. This is also

augmented by the fact that the signal strength for the elderly’s EMG is much

lesser as compared to a young healthy person.

This chapter details the study for the removal of Power Line Interference

(PLI) from EMG. Section 4.1 and 4.2 details the methods for estimating the

power line frequency in the EMG signal as well as the theoretical basis for

adaptive filtering of the EMG signal. Section 4.3 describes the simulations

results for the designed filter and the corresponding discussions while Section

4.4 and 4.5 outlines the experimental results and discussion for the designed

filter for removing power line noise from EMG signal.

The EMG adaptive signal processing problem can be described as follows:
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• Estimate the frequency of Power Line Interference (PLI) in the measured

signal in real time.

• Design an adaptive filter that reacts to the change in frequencies in real

time and accordingly removes just the noise and not the EMG data

signal.

An adaptive filter requires a reference input that is correlated with the

Power Line Interference (PLI) that needs to be removed [106]. This reference

input is constructed mathematically using the estimated instantaneous fre-

quency of the power line interference with Hilbert-Huang Transform (HHT)

and subsequently applied to the adaptive filter structure. Zhidong et.al. in

[107] use a similar method to estimate the PLI in ECG signals using Empirical

Mode Decomposition (EMD). The advantage the authors had in designing the

algorithm was that the noise signal bandwidth and the ECG signal bandwidth

don’t interfere with each other hence, removal of the noise is much easier.

Bourdraa et.al. [30] proposed a signal filtering method based on EMD, by

removing the noisy Intrinsic Mode Function (IMF) to filter the signal. The

authors focus on the removal of high frequency noise from standard test

signals and not on signals with overlapping bandwidths. But filtering the PLI

from EMG is challenging as, the bandwidths of the EMG signal and the PLI

overlap. Since HHT can be used to determine the instantaneous frequency of

non-linear and non-stationary signals, it would be apt to use it in real-time to

estimate the instantaneous frequency of the PLI and accordingly eliminate it.

In this section an adaptive Variable Least Mean Square filter is proposed

to eliminate the PLI from the EMG signal. This notch filter can decrease

the numbers of mathematical operations significantly and is suitable for

practical implementation. The characteristics of adaptive LMS filter makes

it more stable than many other Infinite Impulse Response (IIR) filters. In
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Figure 4.1: Overview of the HHT-LMS adaptive filter

this study, recording of the the reference signals (i.e. 50/60 Hz PLI signal)

for an adaptive structure is not required as a synthetic signal is generated

that emulates the PLI in the EMG signal. This reduces the complexity of

hardware and eliminates the need for supplementary electrodes that collect

the noise reference.

The surface EMG signals are measured from the biceps brachii, which

measures the MES activity during the flexion and extension of the elbow.

Data was acquired from normally-limbed individuals who were instructed to

perform dynamic elbow extension and flexion with 1 kg of weight in their

hand and sampled at a frequency of 960 Hz.

The overview of the HHT-LMS adaptive filter is shown in Fig. 4.1. The

different blocks are described in the subsequent sections.

4.1 Hilbert-Huang Transform (HHT)

The Hilbert-Huang Transform (HHT) [108] is an empirically based data-

analysis method. Its basis of expansion is adaptive, so that it can produce phys-

ically meaningful representations of data from nonlinear and non-stationary

processes. The HHT consists of two parts: Empirical Mode Decomposi-

tion (EMD) and Hilbert Spectral Analysis (HSA) as explained below:
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4.1.1 Empirical Mode Decomposition (Sifting Process)

The EMD method is necessary to deal with data from non-stationary and

nonlinear processes and is represented by different Intrinsic Mode Function

(IMF) with the following definition:

A. in the whole dataset, the number of extrema and the number of zero-

crossings must either equal or differ at most by one and

B. at any point, the mean value of the envelope defined by the local maxima

and the envelope defined by the local minima is zero.

The signal is decomposed into its constituent IMF(s) based on the above

definition as follows:

(a) Find the local extrema in the data x(t) including all the maxima and

minima.

(b) Connect the maxima and minima separately using smooth cubic splines, to

get the upper envelope emax(t) and the lower envelope emin(t) respectively.

(c) Calculate the mean of the upper and the lower envelopes. Thus,

m(t) =
(emax(t) + emin(t))

2
(4.1)

(d) Since the IMF needs to have a local zero mean, subtract m(t) from the

original signal x(t) to get x1(t). Thus,

x1(t) = x(t)−m(t) (4.2)

(e) Verify that the normalized squared distance between two successful sifting
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4.1 Hilbert-Huang Transform (HHT)

is small. The value of SD chosen for this algorithm is 0.1.

SDk =

∑T
t=0 |xk−1(t)− xk(t)|2∑T

t=0 x
2
k−1(t)

(4.3)

(f) Check if x1(t) fulfills the definition of an IMF.

(g) If yes, terminate the process, else continue with steps (a) to (f) till x1(t) is

an IMF or results in a residual term c(t) that is less than a predetermined

small number or becomes monotonic.

For a given signal x(t), the EMD ends up with a representation of the

form:

x(t) = c(t) +
k∑

n=1

xn(t) (4.4)

where, c(t) denotes the residual term and xn(t) denotes the different IMF of

the signal x(t).

4.1.2 Hilbert Spectral Analysis (HSA)

After obtaining the IMF(s) components, the Hilbert transform is applied to

each IMF component, and then the instantaneous frequency is computed.

After performing Hilbert transform on each IMF component, the original

signal can be represented by the real part of the following equation:

x(t) = Real

{
n∑
j=1

aj(t)exp

[
i

∫
ωj(t)dt

]}
(4.5)

where, n is the total number of IMF(s), aj is the instantaneous amplitude

and ωj is the instantaneous phase of the jth IMF.

The EMD decomposes the non-stationary signal into narrow-band compo-

nents with decreasing frequency. The decomposition is complete, local and
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4.1 Hilbert-Huang Transform (HHT)

adaptive. The basis formed by the IMF(s) directly comes from the signal

which guarantees the inherent characteristic of signal and avoids the diffusion

and leakage of signal energy. The sifting process eliminates riding waves, so

each IMF is more symmetrical and is a zero mean signal. By construction,

the number of extrema is decreased when going from one residual to the

next thus ensuring that there are a finite number of steps for the complete

decomposition.

4.1.3 Estimation of Power Line Frequency

The following algorithm is used for estimating the instantaneous frequency of

the PLI present in the signal:

1. The signal is divided into N time windows each of length 500 ms. A

moving window scheme is applied with a processing window of 250 ms

and a 250 ms moving window.

2. The signal is decomposed into its constituent IMF(s) using the EMD

method in each of the time windows.

3. The Hilbert Transform is applied to each IMF component to estimate

the instantaneous amplitude and frequency of the signal. Hilbert energy

spectrum of the different IMF(s) is also calculated.

4. The IMF(s) that contain the power line noise are isolated and are sorted

according to decreasing values of the Hilbert energy spectrum.

5. The powerline instantaneous frequency is calculated as a weighted sum

of the individual instantaneous frequencies as follows [109]:

IFn(x(t)) =

∑3
j=1 a

2
j(t)vj(t)∑3

j=1 a
2
j(t)

(4.6)
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4.2 Least Mean Squares (LMS) Algorithm

Here, the number of IMF(s) for calculation of the powerline instan-

taneous frequency is chosen as three, isolating the IMF(s) with the

maximum Hilbert spectrum with respect to the powerline frequency.

6. Since the power line frequency can vary between ± 2% of the nominal

frequency, lower limit and upper limit of 49 Hz and 51 Hz respectively

are fixed for a nominal frequency of 50 Hz.

7. The average amplitude of the power line noise (An) is calculated using

the instantaneous amplitudes of the above isolated IMF(s).

8. Frequencies between 48 HZ and 52Hz are evaluated in each time window.

If the amplitude is within ±10% of An, the corresponding frequency

fn(x(t)) is noted as noise and the time of its occurrence recorded.

9. The list of frequencies and the time of their occurrence along with their

respective amplitudes in each time window is given as an input to the

adaptive filter block for eliminating the power line interference from

EMG.

4.2 Least Mean Squares (LMS) Algorithm

The Least Mean Squares (LMS) algorithm is an approximation of the steepest

descent algorithm, which uses an instantaneous estimate of the gradient

vector of a cost function. The estimate of the gradient is based on sample

values of the input vector and an error signal. The algorithm iterates over

each coefficient in the filter, moving it in the direction of the approximated

gradient. For the LMS algorithm, it is necessary to have a reference signal d(t)

representing the desired filter output. The difference between the reference

signal and the actual output of the transversal filter is the error signal.
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4.2 Least Mean Squares (LMS) Algorithm

Applying this scheme to the problem of filtering a noisy EMG signal, the

primary input x(t) of the system corresponds to the clean EMG signal s(t)

corrupted by power line noise p(t). The reference input r(t) is a sinusoidal

signal with frequency ’f ’ and zero phase and is defined as

r(t) = A ∗ Sin(2πft) (4.7)

The output y(t) of the filter, is estimated to match the noise p(t) in the

primary input. If the M-dimensional filter coefficient vector is defined as w(t)

= [w0(t) w1(t) ... wM−1(t)]T , then the equations that describe the adaptation

of the system based on the LMS algorithm with fixed step-size are given by

y(t) = wT (t)r(t) (4.8)

e(t) = d(t)− y(t) (4.9)

w(t+ 1) = w(t) + µe(t)r(t) (4.10)

Let d(t) denote the desired signal, which in this case is equivalent to the

primary input x(t). If the error signal e(t) is defined as the difference between

the desired signal d(t) and the filters output signal y(t) = p̂(t), then

e(t) = x(t)− y(t) (4.11)

e(t) = s(t) + p(t)− p̂(t) (4.12)

e(t) = ŝ(t) (4.13)

It can be seen from Eqn.4.13 that ŝ(t) is an estimate of the noise-free

EMG signal and the LMS algorithm is designed to minimize an instantaneous

version of the Mean Squared Error (MSE) given by E{e(t)2}=E{ŝ(t)2}
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4.2 Least Mean Squares (LMS) Algorithm

For removal of PLI from the EMG signal, it is desired to have the smallest

notch bandwidth; however, it is not possible to minimize this bandwidth by

making µ arbitrarily small. Instead, the step-size parameter needs to be chosen

in an optimal way at every iteration of the algorithm to ensure an optimal

equilibrium between all the desired filter characteristics. Several variable

step-size parameter algorithms have been proposed in the literature [25, 26,

29, 110, 111]. Most of the algorithms mentioned in [25, 26, 29, 110] are not

suitable for the application of interest due to its complexity in implementing

in real time.

The objective is to ensure large µ(t) when the algorithm is far from the

optimum, and decrease µ(t) as we approach the optimum, hence, the need

for decreasing the notch bandwidth and increasing noise attenuation. The

step-size adjustment proposed in [111, 112] is controlled by the square of the

prediction error. The simplicity of the algorithm and its sensitivity to changes

in the error signal makes it a good candidate to implement it in the adaptive

noise cancellation scheme. The algorithm for updating µ(t) is as follows:

µ(t+ 1) = αµ(t) + γe2(t) (4.14)

The constant, α is a forgetting factor and varies between 0 and 1 while γ

is the step-size parameter for the adaptation of µ and is greater than zero.

Substituting the variable step size in Eqn.4.10, the updated equation for the

filter becomes:

w(t+ 1) = w(t) + µ(t)e(t)r(t) (4.15)
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4.3 Simulation Results

4.3 Simulation Results

4.3.1 Signal Model

The signal observation model is given by

x(t) = s(t) + p(t) (4.16)

where s(t) is the EMG signal of interest and p(t) is an additive time-varying

sinusoidal interference.

Several mathematical models have been developed to describe EMG signals.

Some examples include AR models, matching pursuit method-based models,

Kalman filters, and Gaussian shaping filters. In this study, a shaping filter

is used to generate the surface EMG signal by passing white Gaussian noise

through it. The transfer function of the shaping filter is as follows:

HEMG(ω) =
jKω2

hω

(ωl + jω)(ωh + jω)2
(4.17)

In Eqn.4.17 ωl and ωh are the shape adjusting parameters of the EMG

spectrum while K is the gain factor and is adjusted to normalize the power

of the EMG signal to 1. Fig. 4.2 shows the simulated EMG signal generated

using Eqn. 4.17 while Fig. 4.3 shows its corresponding frequency plot.

The power line interference is added to the EMG signal by generating

a sinusoid with a given amplitude and frequency. The amplitude of the

sinusoid is calculated based on the desired signal to noise ratio (SNR). For the

simulations, SNR is varied between -20 dB and +20 dB in 5 dB increments.

The frequency of the synthetic power line interference is varied between 49 Hz

and 51 Hz at 0.25 Hz increments. Fig. 4.4 shows the FFT plot of the signal
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4.3 Simulation Results

Figure 4.2: The simulated EMG signal generated using the
spectral filter in Eqn.4.17

in Fig. 4.2 with added PLI at 50 Hz.

4.3.2 Simulation Results

4.3.2.1 Empirical Mode Decomposition of the EMG Signal

In this section, the EMG signal is decomposed into its constituent IMF(s).

The EMG signal is processed as follows:

• Firstly, the dataset is processed offline

• The signal is divided into time epochs of 500 ms with a moving window

of 250 ms to simulate real time processing conditions.

4.3.2.2 Hilbert Spectral Analysis and Frequency Estimation

The instantaneous frequency of the signal can be estimated by performing the

Hilbert Spectral Analysis (HSA)of the above derived IMF(s). The frequency-

time plot for the signal in Fig. 4.5 is shown in Fig 4.6 for the first four

IMF(s).
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4.3 Simulation Results

Figure 4.3: FFT of the signal in Fig.4.2

Figure 4.4: FFT of the signal in Fig.4.2 with added power line noise
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4.3 Simulation Results
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4.3 Simulation Results

Figure 4.7: Instantaneous frequency-time plot for the second IMF
in Fig4.5 for the time epoch of 0.5 sec.

It can be seen from Fig 4.6 that the power line noise is actually spread across

different IMF(s). By using the power line frequency estimation algorithm,

the power line noise is estimated and fed to the adaptive LMS filter. The

instantaneous frequency-time plot for a half second EMG data for the second

IMF is shown in Fig 4.7. It can be observed from the figure that, the

instantaneous frequencies predicted lie in the range from 40 to 150 Hz with

the dominant frequency being around 90 Hz.

The various power line frequencies estimated using Eqn.4.6 in the simulated

EMG signal are shown in Table 4.1. These are the variations in the PLI for

the EMG signal for different power line frequencies.

Table 4.1: Error in the Estimated Power Line Frequencies by the
HHT-LMS algorithm

Power Line Frequency Error in Estimation

49.50 0.12 Hz
49.75 0.10 Hz
50.00 0.03 Hz
50.25 0.06 Hz
50.50 0.10 Hz
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4.3 Simulation Results

4.3.2.3 Least-Mean Squares (LMS) Algorithm for Adaptive Fil-

tering

The LMS algorithm is implemented to eliminate the power line noise in the

EMG signal. The power line frequency is estimated from the Hilbert-Huang

transform and input to the LMS algorithm for its removal.

Simulation 1:

The noisy signal is generated by mixing the simulated EMG signal with

a power line noise of fixed frequency and amplitude. The simulation results

of the HHT-LMS algorithm are shown in Fig. 4.9 and 4.11 while, the noisy

signal’s FFT plot and Power Spectral Density (PSD) plot is shown in Fig.

4.8 and 4.10 respectively. The PSD plot is important in gauging the spectral

distortion of the cleaned signal w.r.t to the measured signal. This is to ensure

that filtering doesn’t remove EMG components.

• OBSERVATIONS

– Fig. 4.8 shows the FFT plot of the noisy simulated signal while Fig.

4.9 shows the FFT plot of the signal after it has passed through

the adaptive filter.

– Fig. 4.10 shows the Power Spectral Density (PSD) plot of the noisy

simulated signal while Fig. 4.11 shows the PSD plot of the signal

after it has passed through the adaptive filter.

– It can be inferred from the Fig. 4.8 and Fig. 4.9 that the HHT-

LMS adaptive filter faithfully removes the power line noise from

the simulated EMG signal.

– This is further proved by examining the PSD plots of the clean

and noisy EMG signals. The PSD plot of the cleaned EMG signal
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4.3 Simulation Results

Figure 4.8: FFT plot for the noisy signal in simulation for a fixed
power line noise

shows no distortion in its spectral content while there is a noticeable

bump in the PSD spectrum of the the noisy EMG signal.

Simulation 2:

To validate the above algorithm, another condition is simulated with

variable amplitude of the power line noise. In the first case the power line

noise is scaled to ten times to that of the signal amplitude corresponding to

a Signal to Noise Ratio (SNR) of -20dB. In the second case the power line

noise is scaled to one-tenths of the signal amplitude corresponding to a SNR

of +20dB. The powerline component in noisy signals with SNR higher than

20 dB doesn’t contribute to the distortion of the spectral content of the EMG

signal. Each of the power line signals is then added to the simulated EMG

signal to generate the noisy signal. The simulation results for the HHT-LMS

algorithm, variable step LMS algorithm and for LMS algorithm are shown

below.

• OBSERVATIONS

– Fig. 4.12 shows the PSD plot of the noisy simulated signal for
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4.3 Simulation Results

Figure 4.9: FFT plot for the cleaned signal in simulation for a fixed
power line noise

Figure 4.10: Welch Power Spectral Density (PSD) plot for the
noisy signal in simulation for a fixed power line noise
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4.3 Simulation Results

Figure 4.11: Welch PSD plot for the cleaned signal in simulation
for a fixed power line noise

Figure 4.12: Welch Power Spectral Density plot for the noisy
signal for power line noise amplitudes scaled to ten times and

one-tenth of the signal amplitude
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4.3 Simulation Results

Figure 4.13: Welch Power Spectral Density plot for the cleaned
signal for different adaptive filters in simulation for an power line
noise amplitude scaled down to one-tenth of the signal amplitude

Figure 4.14: Welch Power Spectral Density plot for the cleaned
signal for different adaptive filters in simulation for an power line

noise amplitude scaled up to ten times of the signal amplitude
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4.4 Experimental Results

power line noise amplitudes scaled to ten times and one-tenth of

the signal amplitude. Fig.4.13 shows the PSD plot for the cleaned

signal for different adaptive filters in simulation for a power line

noise amplitude scaled up to ten times of the signal amplitude while

Fig.4.14 shows the PSD plot for the cleaned signal for different

adaptive filters in simulation for a PLI amplitude scaled down to

one tenth of the signal amplitude.

– It can be inferred from the Fig.4.13 and Fig.4.14 that there is no

spectral distortion in the cleaned EMG signal for the HHT-LMS

adaptive filter.

– For a fixed step size of µ = 0.1 the LMS filter does not perform

well for both the cases as there are large spectral distortion in the

cleaned signals in Figs. 4.13 and 4.14.

– For a fixed step size of µ = 0.001 the LMS filter performs similar

to the HHT-LMS filter for both the cases. But the number of

iterations required by the algorithm for this step size is well above

the threshold of 300 ms set for this study.

– The variable step size LMS filter does perform similar to the HHT-

LMS filter when the PLI is small but an increase in the amplitude

of the power line results in the filter not being able to eliminate

the power line noise completely.

4.4 Experimental Results

The HHT-LMS algorithm is applied to an actual EMG signal measured from

the biceps of a participant. The measurement methodology for measuring the

EMG signal is described in Chapter 2.
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4.4 Experimental Results

4.4.1 Empirical Mode Decomposition of the EMG Sig-

nal

In this section the EMG signal is decomposed into its constituent IMF(s).

Similar to the simulations, firstly, the signal is processed offline as a whole

dataset and then the signal is divided into time windows of half a second each

to simulate real time processing conditions.Fig 4.15 shows the biceps EMG

signal and Fig. 4.16 the FFT plot for the same signal.

It can be observed from Fig 4.15 that the EMG signal is not noise free

and in fact it is really difficult to discern between the actual EMG signal and

the noise levels apart from certain points in the data. Moreover, from Fig.

4.16 it can also be observed that a constant DC offset is present in the signal.

Looking at the raw signal, it is possible to gauge the starting and ending of

the movement but it is not possible to distinguish between the noise and the

constant torque portion of the movement.

As evident from the Fig. 4.17 the initial iteration of the sifting algorithm

consists of the higher frequencies in the signal. Following the procedure

described earlier to calculate the IMF(s), the number of maxima and minima

reduces in subsequent IMF(s). Hence, these IMF(s) consists of the lower

frequencies in the signal spectrum. It ties in with the conclusion by Flandrin

et.al. in [113] that, EMD acts essentially as a dyadic filter bank.

4.4.2 Hilbert Spectral Analysis and Frequency Estima-

tion

The instantaneous frequency of the signal can be estimated by doing the

Hilbert spectral analysis of the above derived intrinsic mode functions. The

frequency-time plot for the signal in Fig. 4.15 is shown in Fig. 4.19. The
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4.4 Experimental Results

Figure 4.15: biceps EMG Signal for one elbow flexion-extension
motion

Figure 4.16: FFT plot for the raw signal in Fig. 4.15
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4.4 Experimental Results

(a)

(b)

Figure 4.18: The Intrinsic Mode Functions of the EMG Signal in Fig4.15 for
0.5 seconds
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4.4 Experimental Results

(a)

(b)

Figure 4.19: The Instantaneous Frequencies-time plots of the first two IMFs
in Fig4.18

EMD spectrum for half a second of the data set taken randomly is shown in

Fig. 4.20.

• OBSERVATIONS

– As can be seen from Fig.4.19(a), the EMG signal for the first ‘5’

seconds and for time greater than ‘22’ seconds mainly consists of

noise as there is no elbow movement during this period of operation.

– It can be seen from Fig.4.19(a) that the value of the instantaneous
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4.4 Experimental Results

Figure 4.20: Instantaneous frequency-time plot for the EMG signal
in Fig4.15

frequency during the time period before ‘5’ seconds is around 50Hz

or near to it.

– Similar results can be verified for a processing window of 500 ms as

shown by the instantaneous frequency-time plot for the half second

EMG data shown in Fig4.20.

The various power line frequencies measured in the raw EMG signal are

shown in Table 4.2. These are the estimates of the variations in the PLI

for the EMG signal in Fig. 4.15.

Table 4.2: List of Frequencies identified as power line frequencies
by the HHT-LMS algorithm

49.965 49.99 50.015 50.039 50.088
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4.4 Experimental Results

Figure 4.21: LMS-HHT filter Output of the for the raw signal in
Fig. 4.15

4.4.3 Least-Mean Squares (LMS) Algorithm for Adap-

tive Filtering

The LMS algorithm is implemented to eliminate the power line noise and the

fixed white Gaussian noise in the EMG signal. The power line frequency is

estimated from the Hilbert-Huang transform and input to the LMS algorithm

for its removal. Fig. 4.16 shows the FFT plot for the EMG signal in Fig.4.15.

It can be inferred from Fig. 4.16 that the magnitude of the power line

interference in the signal is significantly much higher than the frequencies in

the EMG spectrum.

Applying the HHT-LMS algorithm to the raw EMG signal in Fig.4.15, we

get the output as shown in Fig. 4.21.

• OBSERVATIONS

– It can be seen from Fig.4.22 that the frequency at which the

maximum magnitude of the EMG signal is measured is close to
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4.4 Experimental Results

Figure 4.22: Welch Power Density Plot for the raw signal in Fig.
4.15

Figure 4.23: Welch Power Density Plot for the cleaned signal in
Fig. 4.21
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4.5 Discussion

the power line interference.

– It is seen from Fig.4.23 that the HHT-LMS adaptive filter can re-

move the power line interference from the raw EMG signal without

affecting the spectral content of the biceps EMG signal.

– The HHT-LMS adaptive filter operates in the time constraint of

the 300 ms threshold for a real time assistive rehabilitation system

as the processing window for the signal is taken as 250 ms.

4.5 Discussion

The HHT is an attractive solution for the estimation of power line interference

in a spectrum of overlapping frequencies . It eliminates the need for a priori

defined functional basis, as is generally required for the traditional signal

analysis techniques (e.g., the Fourier transform expresses a signal in terms of

global harmonic basis functions, and the wavelet transform in terms of local

basis functions). Being purely data-driven, the HHT precisely determines the

most appropriate empirical adaptive basis. This ability to adapt is crucial,

given the individualistic nature of nonlinear systems. Another key feature of

the method is that, by utilizing the Hilbert transform, it operates at the scale

of one oscillation and is, thus, truly able to track local changes in signals.

The frequency estimator using modified Hilbert-Huang transform calcu-

lated the changes in the power line frequency faithfully in the time period of

‘5’ to ‘22’ seconds as is evident from Table 4.2 . However, the instantaneous

frequency plots for time periods prior to ‘5’ seconds and for time periods

after ‘22’ seconds show that there are many estimates along the power line

frequency. This can be explained by the inherent nature of the Hilbert-Huang

transform to create noisy IMF(s) from the signal [109, 114, 115]. This problem
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4.6 Summary

is reduced in the current study by rounding off the frequency estimates to

two decimal places.

The EMD decomposes the non-stationary signal into narrow-band compo-

nents with decreasing frequency. The decomposition is complete, local and

adaptive. The basis formed by the IMF directly comes from the signal which

guarantees the inherent characteristic of signal and avoids the diffusion and

leakage of signal energy.

The LMS algorithm adapts well to the changes in frequency of the power

line interference at different time instants except at the beginning of the signal

as seen from Fig.4.21. This can be explained as the time required for the LMS

filter to adjust its weights to adapt it to the noisy signal from its initial state.

4.6 Summary

This chapter describes the adaptive filtering of EMG signal using a modified

Hilbert-Huang based LMS adaptive filter (HHT-LMS). The estimation of the

frequency of the power line interference is done using the HHT. The estimated

power line frequencies and amplitudes are provided to a variable step LMS

filter for their removal.

The simulation results for the designed filter and the corresponding obser-

vations are described next. Different conditions were simulated to ensure that

the designed HHT-LMS filter performed satisfactorily under all conditions

and a comparison was made to a LMS adaptive filter and a variable step size

adaptive filter. The HHT-LMS filter is shown to remove power line noise from

the EMG signal while maintaining the structure of the relevant EMG data

for all simulated data.

Experimental results and discussion for the designed filter for removing
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4.6 Summary

power line noise from EMG signal are presented. The algorithm was designed

while keeping in mind the real time constraints for an assistive rehabilitation

system. The HHT-LMS filter is shown to remove power line noise from the

EMG signal while maintaining the structure of the relevant EMG data for

measured EMG data as well.There was no spectral distortion while using the

HHT-LMS filter for both simulated and experimental data.
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5

Parameter Estimation of a Hybrid Muscle

Model using an Iterative Learning Predictor

for the Estimation of Joint Torque

The feature identification and classification alone is not a robust way for

generating control signals for the assistive system as seen in Chapter 3. The

generation of the control signal for such a case doesn’t have any correlation

to the torque that needs to be produced by the actuator. This system is

acceptable if the torque required for the movement is not substantial. In

other words, smaller joints like the wrists and hand can be actuated using a

control system shown in Chapter 3. But the torque required for the actuation

of the joints such as the elbow joint is high and it would be detrimental to

use a pattern recognition based system for classifying such motions. The

amount of time required to complete a movement is not fixed, and varies from

person to person and a pattern recognition based system is unable to predict

the ‘in-between’ states between the initial and final motions. These transient

states need to be programmed into the actuator accordingly and there is no

surety that it mimics the elderly user’s intention.

The EMG signal too is a direct indicator of the torque required for joint

actuation. If a direct relationship can be established between the measured

117



EMG and the actual joint torque or force, it would be beneficial for the

myoelectric control of prosthetics or orthotics, especially for the larger joints

like the elbow and the knee. Research in this area is divided into following

three major methods:

• The first methodology is to build the physiological muscle model of the

human muscle and then predict the joint torque as a function of the

neural activation derived from the EMG signal [42–44, 46–53, 65, 116,

117]. The obvious disadvantage of this method is the need to model

complicated muscle dynamics to get an accurate joint torque estimate

while the advantage is that once the model is tuned it predicts the joint

torque quite accurately as it is a function of the neural activation.

• The second method is to model the EMG-Torque function using some

known function [118, 119]. The same method also involves optimizing

the said function to best fit the EMG-Torque dataset.

• The final method is to model the EMG-Torque function using a neural

network [62, 63, 67–70]. The advantage of this method is that the

governing equations or the characteristics of the system need not be

known for modeling the data.

To assuage the above problems of EMG-Torque modelling, a new hybrid

model is proposed for estimation of the joint torque. The advantages of the

EMG hybrid model are:

• In the proposed model, only two channels of EMG data is used to

predict the joint torque at the elbow. The two muscle groups studied

are the biceps and the triceps muscle groups. An agonist-antagonist

model modification of the Hill’s muscle model, proposed by Winters
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5.1 Methodology

et.al. in [120] is used. This augurs well with the primary aim of this

study: i.e., to keep the number of electrodes to the minimum.

• The joint torque for the two channel EMG data is predicted using the

physiological model of the muscle.

• To ensure faster estimation of the unknown parameters of the physiolog-

ical muscle model, an Iterative Learning Predictor (ILP) is implemented

in the physiological model.

• This predicted torque is correlated to the actual torque output using a

neural network.

5.1 Methodology

The EMG measurement protocols have been discussed in detail in Chapter

2. The following sections describe the subjects participated and the specific

tasks performed by them for this study. Data was collected from two muscle

sites represented in this study as shown in Table 5.1.

Table 5.1: Electromyography Electrode Notation and Muscle Sites

Muscle Site Notation

biceps brachii E1
triceps brachii E2

5.1.1 Subjects

Data was acquired from six able-bodied individuals, aged 23 ± 6 years. All

subjects were healthy and reported no physical or mental disorders. Each

subject had access to the full range of forearm motions with no previous

history of musculoskeletal illness.
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5.1 Methodology

Figure 5.1: The EMG signal at the two muscle sites for the elbow
flexion and elbow extension movements.

5.1.2 Experimental protocol

All subjects were instructed not to perform fatiguing upper limb exercise one

day prior to the sessions. The CleaveMed BioCapture system was used to

start data acquisition and the participants were visually cued by the operator

of the BioCapture System to perform the elbow flexion and elbow extension

movements. A numerical index is used for each class of the hand motion

for identification during pattern recognition as shown in Table 5.2. The raw

EMG signals at the two muscle sites biceps brachii and triceps brachii for

the elbow flexion and elbow extension are shown in Fig. 5.1.

Table 5.2: Index for different hand motions for classification

Elbow Motion Index

Elbow Flexion I
Elbow Extension II

Subjects performed twenty repetitions of each of the above motions. Each

motion was comprised of the full range of motion from the resting position

to the final position, followed by the limb being held in the final position for
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5-10 seconds. The first motion performed was ‘elbow flexion’ while the next

motion was ‘elbow extension’. This sequence was then repeated for the rest of

the session. The data was collected on multiple sessions, each session lasting

not more than 2 minutes to avoid muscle fatigue. To ensure that the data

measured was representative of the elderly population, all measurements were

taken with a Maximum Voluntary Contraction (MVC) under 20%.

5.1.3 Signal Pre-processing

The measured and filtered surface EMG signals were stored and analysed

on a PC using MATLAB software. Each channel of the EMG data was

processed and analysed separately. The DC offset was removed by filtering

the mean value in the EMG data while the 2nd order Butterworth high pass

and low pass filters, with cut-off frequencies of 10 Hz and 350 Hz respectively,

were applied to filter out the noise and motion artifacts including changes in

forearm joint angles. It can be observed from Fig. 5.1 that the Power Line

Interference (PLI) present in the noise is very large. This PLI is removed

from the signal using the HHT-LMS adaptive filter method as discussed in

Chapter 4.

The preprocessed signal is then rectified and passed through a low pass

filter of 5 Hz to generate the signal envelope of the EMG signal [47, 48]. This

EMG signal is used to estimate the level of the Neural Activation (NA) for

each muscle under study. The NA is a normalized signal which indicates a

state of maximal voluntary activation and represents no muscle activation.

Commonly, the NA level is estimated by using the envelope of the rectified

and normalized EMG signal. A nonlinear scaling [119], defines the degree of

nonlinearity of the neural activation where A is a non-linear factor, u(t) is

the rectified EMG signal and a(t) is the Neural Activation (NA).
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5.1 Methodology

(a) Joint Torque for the Elbow

(b) Normalized Neural Activation for the biceps brachii

(c) Normalized Neural Activation for the triceps brachii

Figure 5.2: Nomalized Neural Activation calculated for the biceps brachii
(Fig. 5.2(b)) and triceps brachii (Fig. 5.2(c)) for the joint torque at the elbow

(Fig. 5.2(a))

122



5.1 Methodology

a(t) =
Au(t) − 1

A− 1
(5.1)

This normalized NA derived from the EMG signal for the two muscle sites

for the elbow flexion and elbow extension movements are shown in Fig. 5.2.

5.1.4 Muscle Length and Moment Arm Calculation

In order to obtain the muscle lengths and the corresponding muscle moment

arms, the angular positions of each joint spanned by the muscle, as well

as anatomical information about the arm, are used. Several estimations of

length and moment arms for the upper limb muscles are available [121–124].

However, data are available only for a selected number of muscles and they

are expressed as average values or as polynomial interpolations with respect

to individual joint angles. Garner et.al. in [122, 125, 126] have developed

models describing the complex path of muscle from origin to insertion points.

These models facilitate the evaluation of muscle lengths and moment arms

across the elbow joint and hence are chosen for this study.

The joint angle measured at the elbow joint is shown in Fig.5.3(a). Fig.

5.3(b) and Fig. 5.3(c) show the calculated muscle lengths from the joint angle

data in Fig. 5.3(a).

• OBSERVATIONS

– The muscle lengths of the biceps and triceps in Fig. 5.3 indicate

that the biceps muscle groups are the agonist muscles for the flexion

movement while the triceps muscle groups are the antagonist muscle

groups for the same.

– For the elbow extension, the biceps muscle groups are the antagonist

muscles while the triceps muscle groups are the agonist muscles.
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(a) Joint Angle measured at the Elbow

(b) Muscle length calculated for the changes in the biceps brachii

(c) Muscle length calculated for the changes in the triceps brachii

Figure 5.3: Muscle length calculated for the biceps brachii(Fig. 5.3(b) ) and
triceps brachii (Fig. 5.3(c)) for the joint angle measured at the elbow (Fig.

5.3(a))
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5.2 Preliminary Tests

Preliminary tests were carried out with the measured data for predicting the

joint torque using the fixed function and neural network models.

5.2.1 EMG-Torque Relation as a Fixed Function Model

Here the EMG-Torque relation is modeled using the following equation [57]:

y(t) = x(t)a ∗ exp(b− c ∗ x(t)) (5.2)

where,

y(t) = Output Torque of the Elbow Joint;

x(t) = Normalized triceps Neural Activation signal

a,b,c = Constants to be determined

The normalized triceps EMG signal and torque output shown in Fig. 5.2(c)

and Fig. 5.2(a) respectively are used to tune the above equation.

A Genetic Algorithm (GA)[57, 68] is used to tune Eqn. 5.2 with the above

values of EMG and Torque. The values of a, b, and c found out by the

optimization algorithm are given in Table 5.3. These values are the mean of

1000 iterations of the GA algorithm.

Table 5.3: Values of the constants a, b and c calculated using GA

a b c

1.109 1.992 0.155

Substituting these values into Eqn. 5.2 and then calculating the output

torque one can get to Fig.5.4. Comparing Fig.5.4 with Fig.5.2(a), it can be

noticed that the error in the calculated torque is large. The calculated torque
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Figure 5.4: The calculated output torque using Eqn.5.2 for the
data in Fig. 5.2

envelope does not follow the structure of the measured torque and there are

lots of transients that were not present in the measurements.

As is evident from Fig.5.2(c), the variable nature of the EMG during

dynamic contractions makes it difficult to model it with respect to any pre-

known function. A more stringent filtering may smoothen the EMG envelope

further more to give better results but that would result in a higher error in

the actual torque produced by the function as data is being smoothened by

adding information not present in the measured data.

5.2.2 EMG-Torque Relation using Neural Network

Many authors have tried to establish the relationship between the EMG and

the joint torque using the black box model for the relation between the joint

torque and the EMG [60–63, 127, 128]. Wang et.al. in [64] have combined
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the neural network approach to the physiological approach by using a neural

network to predict the neural activation and then using the predicted neural

activation in the Hill muscle model to obtain the joint torque.

In this section, two neural networks are analysed. The data used for the

network is shown in Fig.5.2. Firstly, a single input neural network with single

channel normalized neural activation of the triceps EMG as the input and

the other neural network model has the normalized EMG as well as the joint

angle as inputs to the neural network.

Both the neural networks have one hidden layer with 20 neurons to enable

comparison between the performances of the two networks. The input EMG

signal and the output torque signal is the same as in Fig. 5.2(c) while the

corresponding torque output is shown in Fig. 5.2(a).

Neural Network 1:

Table 5.4: Parameters for Neural Network 1

Inputs 1(Normalized Neural Activation of the triceps)
Neurons in the Hidden Layer 20
Output 1 (Elbow Joint Torque)

Fig. 5.5. shows the output of the trained network with one channel input.

• OBSERVATIONS

– It can be seen from Fig. 5.5 that with only one input to the neural

network, the algorithm has trouble adjusting to the variations or

changes in torque but it is quite stable for constant torque regions

of the EMG data.

– It can be interpreted that the torque predicted by the neural

network in Fig. 5.5 does not follow the measured torque Fig. 5.2(a)

smoothly.
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Figure 5.5: Output Torque of the neural network 1 using the
training data set

– But it is evident that only one input won’t help in bettering the

accuracy of the algorithm. Though the one input neuron approach

is better than the constant function EMG-Torque relation, it is still

not safe and accurate for implementation for orthotic or prosthetic

control.

Neural Network 2:

Table 5.5: Parameters for Neural Network 2

Inputs
2 (Normalized Neural Activation of the

triceps and Elbow Joint Angle)
Neurons in the Hidden Layer 20
Output 1 (Elbow Joint Torque)

The input EMG signal and the output torque signal is the same as in Fig.

5.2(c) while the corresponding torque output is shown in Fig. 5.2(a). The

second input in the neural network is the joint angle shown in Fig. 5.3(a).

The output of the trained network is shown in Fig. 5.6.

• OBSERVATIONS
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Figure 5.6: Output Torque of the neural network 2 using the
training data set

– It can be seen from Fig.5.6 that with two inputs to the neural

network, the algorithm has easily reduced the mean square error

and doesn’t have any trouble adjusting to the variations or changes

in torque. It is relatively stable for constant torque regions of the

EMG data compared to the single input neural network.

– From Fig.5.2(a) and Fig.5.6, it can be interpreted that the output

torque calculated through the neural network for the test data

follows the measured torque quite closely though it varies in the

constant torque region of the EMG signal.

– The problem with using angular data as a neural network input

neuron is that the neural network ignores the changes in EMG

in the constant torque region of the data. This is because the

joint angle is maintained constant and, hence, the neural network

maintains the torque constant. But changes in the EMG due to

fatigue or minor movements of the hand are not considered in this

scheme.
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5.3 Hybrid Muscle Model

It is evident that only one input won’t help in improving the accuracy

of the predicted joint torque. Though the one input neuron approach is

better than the constant function EMG-Torque relation, it is still not safe

and accurate for implementation for orthotic or prosthetic control. The use

of joint angle as an input in the neural network is feasible only for isometric

contractions to stabilise the output torque but is not realistic to use the same

for dynamic contractions.

5.3 Hybrid Muscle Model

5.3.1 Physiological Model of the Muscle

One of the earliest and most classic muscle models is Hill’s model developed

by A.V. Hill in 1938 [42]. The key finding of Hill’s model is the observation

that a sudden change in force (or length) would result in nearly instantaneous

change in length (or force) for a given sustained level of neural activation.

This suggests the relationship of a spring:

k =
∆f

∆l
(5.3)

where k is called the spring constant for the muscle. The classic Hill’s model

of human muscle is shown in Fig. 5.7, with lightly-damped spring-like elements

both in series (SE) and in parallel (PE) with Contractile Element (CE) [42].

The contractile element is freely extendable when at rest, but shortens

when an electrical stimulus is activated. It represents the muscle fibre, that is

connected to an elastic serial element.

The series elastic component accounts for the muscle elasticity during

isometric (constant muscle length) force condition that is due in a large part
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Figure 5.7: Hill’s classical elastic muscle model

to the elasticity of the cross-bridges in the muscle. This element is equivalent

to the tendon muscle.

Parallel elastic component accounts for the inter-muscular connective

tissue surrounding the muscle fibres. It is physically represented by the muscle

membrane.

Active tension is modeled by the contractile component, while passive ten-

sion is modeled by the series and parallel elastic components. The contractile

tissue consists of the groups of muscle fibres which produce the active ten-

sion. It has two unique features, length-tension relationship and force-velocity

relationship.

The output force of the model can be written as a function of the forces

generated in the SE, PE and the CE. Given the mechanical arrangement of

the PE, SE, and CE components, the two parallel branches of the model share

the same displacement. In addition, the two elements in series on the same

branch share the same force. Finally, the total force generated by the muscle

is the sum of the forces developed by each branch. These relations are given
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5.3 Hybrid Muscle Model

below:

LPE = LSE + LCE (5.4)

FCE = FSE (5.5)

Ftot = FSE + FPE = FCE + FPE (5.6)

where F is the force and L is the length of the segment as shown in Fig.5.7.

Given the passive nature of the PE and SE elements, the force generated

by these two elements as a function of the displacement can be expressed by

the same equation (Eqn.5.7) provided that different internal parameters (S,

Fmax, ∆Lmax) are used.

F =

[
Fmax
eS − 1

] [
e(

S
4Lmax

4L) − 1
]

(5.7)

where, F is the passive force generated by the PE or the SE element, ∆L

is the change in length of the element with respect to the slack length, S is

a shape parameter (related to the stiffness of the element) and Fmax is the

maximal force exerted by the element for the maximum change in length

∆Lmax.

The only unknown parameter in Eqn.5.7 is the change in length ∆L for

the length of each element. The change in length of the PE element is the

same as the total change in the muscle length. Hence, by determining the

change in total muscle length for the corresponding elbow movement, the

passive force generated by the PE element can be determined. The change in

total muscle length is a function of the joint angle at the elbow. The change in

the muscle length is modeled according to the work by [122, 125, 126] where

the change in the muscle length is made a function of the joint angle.
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5.3.2 Numerical Implementation of Hill’s Muscle Model

The force generated by the CE element, FCE is a function of neural activation

a, of the normalized force-length function fl, of the normalized force-velocity

function fv, and of a fixed parameter defining the maximal force the element

can generate, i.e. FCEmax have been simplified and quantified by different

authors. Here, the simplification presented in [43, 44] is used to define these

different parameters as follows:

FCE = a ∗ fl ∗ fv ∗ FCEmax (5.8)

fl = exp

−0.5

(
∆LCE

LCE0
− φm
φv

)2
 (5.9)

fv =
0.1433

0.1074 + exp
(
−1.3sinh

(
2.8 VCE

VCE0
+ 1.64

)) (5.10)

VCE0 = 0.5 ∗ (a+ 1) ∗ VCEmax (5.11)

The function fl is modeled as a Gaussian function where LCE is the length

change for the CE element and LCE0 is the optimal fiber length; m and v

are parameters affecting the mean value and variance of the Gaussian. The

force-velocity equation is defined by Eqn. 5.10 where VCE is the CE velocity

and VCE0 is the maximal CE velocity when FCE = 0. VCE0, as shown in

Eqn.5.12, can be expressed as a function of neural activation and VCEmax,

i.e., VCE0 when the activation is maximum (a = 1). Moreover, the following

relations represent some of the parameters in the previous equations:

VCEmax = 2 ∗ LCE0 + 8 ∗ LCE0 ∗ α (5.12)
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FPEmax = 0.5 ∗ FCEmax (5.13)

∆PEmax = Lmax − (LCE0 + LTS) (5.14)

FSEmax = 1.3 ∗ FCEmax (5.15)

∆SEmax = 0.03 ∗ LTS (5.16)

where, α is the percentage of fast fibers in a muscle, LTS is the tendon

slack length.

Substituting Eqn.5.10 in Eqn.5.8 and expressing all the terms with respect

to ∆LCE[n] we get

FCE (∆LCE [n]) =
0.1433 ∗ a ∗ fl ∗ (∆LCE[n]) ∗ FCEmax

0.1074 + exp
(
−1.3sinh

(
2.8 VCE

VCE0
+ 1.64

)) (5.17)

where, ∆LCE[n] is the change in length of the LCE element at time ‘n’.

From Eqns. 5.4, 5.5 and 5.17

[
FSEmax
eSSE−1

] [
e

(
SSE

4LSEmax
4(LPE [n]−LCE [n])

)
− 1

]
=

0.1433 ∗ a ∗ fl ∗ (∆LCE[n]) ∗ FCEmax
0.1074 + exp

(
−1.3sinh

(
2.8 VCE

VCE0
+ 1.64

)) (5.18)

The numerical muscle model described in Eqn.5.18 can be rewritten as a

function of ∆LCE and VCE.

∆LPE = f(∆LCE, VCE) (5.19)

The CE velocity can be represented as a finite difference equation as given

in [67],

VCE[n] =
∆LCE[n]−∆LCE[n− 1]

∆t
(5.20)

134



5.3 Hybrid Muscle Model

where, ∆t is the time difference between the changes in CE length at time n

and n-1.

The unknown parameter in Eqn. 5.19 is the change in the contractile

length element, ∆LCE. Since the other parameters are known, the above

equality can be used to find out the change in the contractile element. The

other parameter that changes with time is the muscle length. The change in

the length of the contractile element is modelled with respect to the change

in muscle length.

The change in the CE length depends on the changes in muscle length

which is a function of the joint angle. The joint angle is fixed for isometric

contractions but varies with respect to the hand movements for dynamic

contractions. Thus, it is not possible to describe 5.19 as a static system for

use with simple parameter estimation methods such as GA or Particle Swarm

Optimization (PSO).

Optimization techniques such as GA, PSO, [67–70] have been used to

estimate different parameters of the hill muscle model. The parameters

estimated in such studies were either constants or the values changed minimally

during dynamic contractions. Since a changing parameter is to be estimated,

which is a function of the muscle activation as well as the muscle length

under consideration, optimization techniques would be complicated and a

huge burden on computing power.

In general, the method used depends on the behavior of the target function.

Based on the function, the problem of identification of parameters for a highly

nonlinear system can also be solved as a root finding problem when the

number of input and output is the same. To estimate the change in the CE

element of the muscle model, a root finding technique needs to be utilized in

this context.
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Cavallaro et. al. in [67] have used the bisection method for solving

Eqn.5.18. The authors have also mentioned that this method is not suitable

if the muscle activation is nil or not detected as, then the root of Eqn.5.18

would approach infinity.

In this study, an Iterative Learning Predictor (ILP) is proposed that is

a simple and effective solution to the parameter identification problems of

the muscle model which is highly nonlinear and multi-dimensional. The ILP

method can guarantee the learning process convergence even if the plant

model is partially unknown or difficult to analyze.

The concept of iterative learning was first introduced in control to deal

with a repeated control task without requiring the perfect knowledge such

as the plant model or parameters [129, 130]. It is a tracking control method

for systems that work in a repetitive mode. The present control action could

be updated by using information obtained from previous control action and

previous error signal, even though the control plant is highly nonlinear.

The rehabilitation task requires repetition of the same elbow movements

for retraining the brain. The elderly user keeps on repeating the same set of

exercises for a fixed interval of time. This feature is exploited in predicting

unknown parameters in Hill’s muscle model by the ILP.

A pointwise Iterative Learning Predictor (ILP) is implemented where the

data points in the signal are iterated one-by-one till the desired output is the

same as the actual system output. Table 5.6 lists the different parameters

and the ILP equation for the muscle model parameter estimator.
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Figure 5.8: Iterative Learning Predictor for Parameter
Identification

5.3.3 Design of the Iterative Learning Control Predic-

tor

Considering the relationship between parameters and muscle force described

by the mapping:

y = f(x) (5.21)

where x and y indicate the unknown parameters and the change in muscle

length in the model respectively. The process gradient is defined as:

F (x) =
δf(x)

δx
(5.22)

The learning objective is to find suitable parameters x such that, the

muscle length ’y’ can reach a given region around the desired value of yd .

The principal idea of Iterative Learning Control (ILC) is to construct a

convergent equation:

yd − yi+1 = A(yd − yi) (5.23)

where the norm of A is strictly less than one, so that learning process could
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be convergent after ith iteration or learning trial. To achieve the convergent

equation 5.23, the relevant repetitive learning law is:

xi+1 = xi + gi(yd − yi) (5.24)

where, gi is the learning gain.

It can be seen that the learning law updates parameters from the previ-

ously tuned parameters, xi and the previous performance error (yd-yi). The

schematic of the ILC process for parameters identification is shown in Fig.

5.8, where xi is the input of this system and yi+1 is the output response of

the muscle model. The performance error can also be represented as

yd − yi+1 = yd − yi+1

= yd − f(xi+1)

= yd − f(xi) + f(xi)− f(xi+1) (5.25)

= yd − yi +
δF

δx
(xi − xi+1)

Substituting xi+1 from Eqn.5.24 in Eqn.5.25,

yd − yi+1 = yd − yi +
δF

δx
(−gie(i))

= yd − yi −
δF

δx
(gi(yd − yi)) (5.26)

=

(
1− gi

δF

δx

)
(yd − yi)

Comparing Eqn.5.17 and Eqn.5.26, the magnitude of A is

|A| =
∣∣∣∣1− gi δFδx

∣∣∣∣ < 1 (5.27)
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gi <
2
δF
δx

(5.28)

Table 5.6: Parameters for the Iterative Learning Predictor

yd ∆LPE
xi ∆LCE
ILP Equation LPE=f (LCE)

Once the parameters are estimated for the biceps and triceps muscle

groups, the force and the torque generated are calculated using the Hill’s

muscle model for the same.

5.3.4 Design of the Hybrid Muscle Model

The disadvantage of using the Hill muscle model is that all the muscle

forces corresponding to a particular joint need to be known for predicting

the torque at that joint. For example, the elbow joint has thirteen muscle

groups associated with its movement. This would require the use of thirteen

pairs of electrodes for measuring the EMG for predicting the joint torque

which would not be fruitful for the rehabilitation process. Here, the muscle

torques calculated from the two biggest muscle groups (in this case the biceps

brachii and the triceps brachii) are used as inputs to a neural network model

for predicting the overall joint torque at the elbow. The neural network

parameters are given in Table 5.7.

Table 5.7: Parameters for the Neural Network for the Hybrid
Muscle Model

Inputs
2 (Calculated Joint Torques of the
biceps brachii and triceps brachii)

Neurons in the Hidden Layer 20
Output 1 (Elbow Joint Torque)

The data set was divided into 15 training and 5 test sets for the elbow

139



5.3 Hybrid Muscle Model

F
ig

u
re

5
.9

:
O

v
e
rv

ie
w

o
f

th
e

H
y
b

rid
M

u
sc

le
M

o
d

e
l

140
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flexion and elbow extension movements for each subject. The overview of the

Hybrid Muscle Model is shown in Fig. 5.9.

5.4 Experimental Results

5.4.1 Estimation of the Joint Torque

Fig. 5.9 outlines the algorithm for the calculation of the biceps force, triceps

force, biceps torque and triceps torque. The changes in the joint angle

during elbow flexion and extension are measured using the accelerometer. As

described in Section 5.1.4, the variation in the muscle length is proportional

to this change in the joint angle. The variation in the muscle length (Lm)is

taken as the desired input to this system. The ILP predicts the changes in

the Contractile Element (CE) length (LCE) according to the changes in the

muscle length. LCE is input to modified Hill’s model to numerically compute

the changes in the muscle length (Lm,cal). This calculated value for the muscle

length acts as a feedback to the system and is compared with the measured

value of the same. The error between (Lm,cal) and Lm is fed into to the ILP

to tune its parameters. This process is iterated till the error is minimal.

The predicted value of LCE for each muscle is used to calculate their

respective contractile element force using Eqn. 5.12. The measured change

in length for each muscle, which is also representative of LPE is used to

calculate the respective parallel element force using Eqn. 5.7. The two forces

for each muscle, FPE and FCE, are summed up together to generate the total

force Ftot generated by each muscle as shown in Fig.5.10(a) and Fig.5.10(b).

The moment arm calculated for each muscle is used in conjugation with

Ftot to generate the joint torque component of that muscle (Fig.5.10(c) and

Fig.5.10(d)). The total joint torque is then computed by summing up each
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muscle’s joint torque component as shown in Fig. 5.11(a).

• OBSERVATIONS

– The biceps and the triceps forces in Fig.5.10(a) and Fig.5.10(b)

respectively, are dependent on the respective biceps and triceps

EMG signals and, hence, the muscle activations. These forces

closely follow the structure of the neural activation of the respective

EMG signals.

– The joint torques generated by the biceps and the triceps muscle

groups, shown in Fig.5.10(c) and Fig.5.10(c)is directly proportional

to the respective biceps and triceps forces,

– It can be observed from 5.2(a) and 5.10(c) that during the elbow

flexion, there is a sharp rise in the torque generated by the biceps

muscle groups. The biceps torque generated then drops down

during the ’no movement’ stage and then rises again closer to the

flexion peak during the elbow extension initiation.

– It can be observed from 5.2(a) and 5.10(d) that during the elbow

flexion the rise in the triceps torque follows that of the biceps

torque, though the drop during the ’no movement’ stage is gradual

compared to the biceps muscle group. There is no rise in the triceps

torque during the elbow extension initiation.

– It can be seen from Fig. 5.11(b) that with two input muscle model

to the neural network, the algorithm has reduced the mean square

error and doesn’t have any trouble adjusting to the variations or

changes in torque. It is relatively stable for constant torque regions

of the EMG data compared to the previous results.

142



5.4 Experimental Results

(a
)

(b
)

(c
)

(d
)

F
ig

u
re

5
.1

0
:

B
ic

ep
s

F
or

ce
(F

ig
.

5.
10

(a
))

an
d

th
e

T
ri

ce
p
s

F
or

ce
(F

ig
.

5.
10

(b
))

ca
lc

u
la

te
d

fr
om

th
e

M
u
sc

le
M

o
d

el
al

on
g

w
it

h
th

e
to

rq
u

e
ge

n
er

at
ed

b
y

th
e

bi
ce

p
s

F
or

ce
(F

ig
.

5.
10

(c
))

an
d

th
e

tr
ic

ep
s

F
or

ce
(F

ig
.

5.
10

(d
))

.

143



5.4 Experimental Results

(a)

(b)

Figure 5.11: The Joint Torque generated by the triceps and the biceps
muscle groups (Fig. 5.11(a)) and the output of the neural network of the
hybrid model for EMG-Joint Torque Relation (Fig. 5.11(b)) for the joint

torque at the elbow Fig. 5.2(a)
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5.4 Experimental Results

Figure 5.12: Number of iterations for each data point in the
Iterative Learning Predictor (ILP)

– From Fig. 5.11(b) and Fig. 5.2(a), it can be interpreted that the

test data follows the measured torque quite closely.

– Fig. 5.12 shows the number of iterations required for processing

each data point in the ILP algorithm. The number of iterations

is less than 10 for most of the data points except when there is a

change in the muscle length.

– The maximum number of iterations for processing each data point

for calculation of the contractile element length is less than 20

as shown in Fig.5.12. On a hardware platform, it is possible to

implement this ILP with real time constraints.

5.4.2 Mean Squared Error

The Mean Squared Error (MSE)for the different models is calculated as

follows:

MSE =
1

N

[
N∑
i=1

(
T̂i − Ti

)2
]

(5.29)
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5.5 Discussion

When we compare the MSE of the different models in Table 5.8, it is evident

that the hybrid model performs the best for a two channel agonist-antagonist

model to map the joint torque to the EMG.

Table 5.8: Mean Squared Error in the Estimated Joint Torque

Muscle Model Mean Squared Error (MSE)

Hybrid Model 0.07
Fixed Function Model 6.73
Neural Network 1 4.59
Neural Network 2 1.58

5.5 Discussion

Iterative Learning Predictor (ILP) is a simple and effective solution to the pa-

rameter identification problems of the muscle model which is highly nonlinear

and multi-dimensional. ILC method can guarantee the learning process con-

vergence even if the muscle model is partially unknown or difficult to analyze.

The use of the ILP ensures that (i) the model doesn’t predict unreasonable

values for the parameter and (ii) the time required for processing the data is

minimized. This is due to the repetitive nature of rehabilitation exercises and

the dependency of the predicted output on the previously predicted value and

the error calculated. A pointwise ILP is implemented where the data points

in the signal are iterated one-by-one till the desired output reaches the same

as the actual system output.

The dependency of the muscle physiological model on the muscle activation

of all the muscle groups involved in the joint movement makes for complex

and tedious calculations for prediction of the joint torque. The neural network

model is a black box model for predicting the joint torque. Solving such

models using single or two channel data results in gross inaccuracies that are
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5.6 Summary

not tolerated in rehabilitation. It also requires multiple muscle activation

data for good prediction.

A hybrid model is proposed that combines the muscle physiological model

and the neural network to predict the joint torque of the elbow. The advantage

of this method over neural network black box models in [131] is the predicted

results follow the actual joint torque faithfully and the Mean Squared Error

(MSE) is minimum of all the models. Moreover, the time required for executing

the hybrid model is directly proportional to the number of iterations required

per data point and the constant time required by the neural network for

predicting the joint torque. The accuracy of the predicted output is neither

just a function of the black box neural network nor it depends on multiple

muscle activation data.

5.6 Summary

A brief description of the methodology used for data collection for EMG-

Torque modelling including the experimental protocol for EMG measurement

and the signal pre-processing is given in the initial section. Preliminary tests

were carried out for estimating the joint torque of the elbow using the fixed

function model and neural network models. The inability of these models

led to the design of a hybrid muscle model for predicting the elbow joint

torque. The physiological modelling of the muscle based on Hill’s muscle

model and its numerical implementation is derived. The design of an iterative

learning predictor for estimating the missing parameters of the muscle model

is outlined and a pointwise Iterative Learning Predictor (ILP) is proposed

to ensure maximum tracking between the predicted muscle length and the

measured muscle length. A hybrid muscle model is proposed that utilizes
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5.6 Summary

the Hill’s model to predict the joint torques for two channels of EMG data

and this predicted torque is used to train a neural network for estimating the

actual joint torque from the muscle activation.

The implementation of the ILP in this hybrid muscle model is presented

and it is found that the error in the joint torque predicted by the hybrid

model is less when compared to the fixed function and the neural network

model.
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6

Mechanomyography Feature Extraction and

Classification of Forearm Movements using

Empirical Mode Decomposition and Wavelet

Transform

This chapter details the theoretical background and experimental results

for feature extraction and pattern classification of different movements of

the forearm and hand using Mechanomyography (MMG) as a control signal.

Though Electromyography (EMG) is usually used to monitor the muscle

activity, there is valuable information in the mechanical index of the muscle

dynamics. Skeletal muscles, on contraction, emit low frequency vibrations that

can be measured on the surface of the skin. These vibrations are generated

as a resultant of the total lateral movement of the muscle at the start of a

contraction, subsequent resonant frequency oscillations and physical changes

in the active muscle fibers [84, 132–136]. The EMG is a direct function

of the neural activation and, thus, is affected greatly by ageing and injury.

MMG, being a function of the mechanical vibrations, is less likely to be

affected by ageing and injury and, hence, can play an active role in designing

a pattern recognition system for rehabilitation of the elderly [137] with input

of comparative data from a younger age group of healthy individuals.
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6.1 Methodology

A description of MMG patterns is a critical step towards a better un-

derstanding of the mechanical activity of muscles during movement control.

MMG can have applications in control of upper limb prosthesis or body-

machine interfaces if unique patterns can be identified for different movements

[81–83, 85]. This study focusses on isolating different patterns from the

recorded MMG signals of the forearm muscle groups during hand and wrist

movements, and classifying them for use in pattern recognition based assistive

actuator systems. The features extracted are time-frequency domain features

[75, 77, 85], wavelet features [78, 80, 134, 138] and features derived from the

empirical mode decomposition of the signal [139].

6.1 Methodology

The MMG measurement protocols have been discussed in Chapter 2. The

following sections describe the subjects participated and the specific tasks

performed by them for this study. Data were collected from three muscle sites

represented in this study as shown in Table 6.1.

Table 6.1: Accelerometer Notation and Muscle Sites

Muscle Site Notation

flexor capri ulnaris A1
brachioradialis supinator A2
abductor pollicis longus A3

6.1.1 Subjects

Data were acquired from six able-bodied individuals, aged 23 ± 6 years. All

subjects were healthy and reported no physical or mental disorders. Each

subject had access to the full range of forearm motions and no previous history

of musculoskeletal illness.
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6.1 Methodology

6.1.2 Experimental protocol

All subjects were instructed not to perform fatiguing upper limb exercise one

day prior to the sessions. A custom dSPACE graphical user interface (GUI)

with a manual trigger was used to start data acquisition and visually cue

participants to perform various classes of muscle activity corresponding to

the following eight hand motions: hand open, hand close, wrist flexion, wrist

extension, wrist pronation, wrist supination, wrist ulnar deviation and wrist

radial deviation. A numerical index is used for each class of the hand motion

for identification during pattern recognition as shown in Table 6.2. The raw

MMG signals at the three muscle sites flexor carpi ulnaris, brachioradialis

supinator, and abductor pollicis longus for all of the hand motions in the

study are shown in Fig. 6.1.

It can be observed from Fig. 6.1 that, each accelerometer channel has

some signal component present from different hand motions. This feature is

exploited in designing the classifier system with lesser number of electrodes,

as features identification here is focussed on extracting unique features that

isolate each of the different hand movements from the same three sites.

Table 6.2: Index for different hand motions for classification

Hand and Wrist Motion Index

Wrist Flexion I
Wrist Extension II
Hand Close III
Hand Open IV
Wrist Pronation V
Wrist Supination VI
Wrist Ulnar Deviation VII
Wrist Radial Deviation VIII

Subjects performed ten repetitions of each of the above motions. Each

motion was comprised of the full range of motion from the resting position to
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6.1 Methodology

the final position, followed by 2 seconds of the hand being held in the final

position. The different forearm motions are performed in pairs corresponding

to their agonist and antagonist relations. For example, in Fig. 6.5 the first

motion performed is the ‘hand close’ while the next motion is the ‘hand open’.

This sequence is then repeated for the rest of the session. The data were

collected in multiple sessions, each session not exceeding more than 2 minutes

to ensure that muscle fatigue doesn’t adversely affect the readings.

6.1.3 Signal Pre-processing

The measured and filtered surface MMG signals were stored and analysed

on a PC using MATLAB software. Each channel of the MMG data was

processed and analysed separately. The DC offset was removed by filtering

the mean value in the MMG data while the 2nd order Butterworth high pass

and low pass filters, with cut-off frequencies of 5 Hz and 100 Hz respectively,

were applied to filter out the noise and motion artifacts including changes in

forearm joint angles.

6.1.4 Multilayer Perceptron Classifier

A multilayer perceptron classifier (MLP) is used for pattern classification for

all the feature vectors. This network has an input layer, one hidden layer

and an output layer. The detailed description is given in Section 3.3.3. The

multilayer perceptron classifier layer structure for the pattern classification of

MMG signals is shown in Fig. 6.2.

• Input Layer: The number of neurons in the input layer is equal to

dimension of the feature vector which is described in Table 6.3

• Hidden Layer: A single hidden layer consisting of twenty (Nhid) neurons
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6.1 Methodology

Figure 6.2: Layer structure of the Multilayer Perceptron classifier
for the pattern classification of MMG signals

is used and a sigmoid function is chosen as the activation function for

the hidden layer.

• Output Layer: The output layer has eight neurons corresponding to

the eight motions to be classified and a linear function is used, as the

activation function.

Table 6.3: Input Layer Size for Different Feature Extraction
Methods

Feature Extraction Methods Input Layer Size

Time-Frequency 18
Wavelet Transform 75
Empirical Mode Decomposition 150
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6.2 Time-Frequency Feature Extraction and Classification

Figure 6.3: Temporal Evolution of the MMG Signal for different
hand motions at the flexor carpi ulnaris

6.2 Time-Frequency Feature Extraction and

Classification

6.2.1 Temporal Evolution of the muscle activity

To study the MMG signal’s temporal evolution, the root mean square(RMS)

value of the signal was evaluated over unique and consecutive 250 ms epochs

for each hand/wrist movement at all the muscle sites. The RMS of the MMG

signal is defines as :

ARMS =

√√√√ 1

N

N∑
i=1

x2
i (6.1)

where xi is the ith sample of the measured MMG containing N number of

samples.

Fig. 6.3 shows the typical time course of the MMG signals recorded at the

flexor carpi ulnaris muscle site while Fig. 6.4 shows the temporal evolution

of the MMG Signal for the ‘Hand Close’ movement at the three muscle sites.

From both these figures it can be observed that the RMS value increased
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6.2 Time-Frequency Feature Extraction and Classification

Figure 6.4: Temporal Evolution of the MMG Signal for the Hand
Close Movement at the three muscle sites.

up to 250 ms from its resting value before the movement was detected by

the accelerometer on the participant’s hand. The RMS steadily increased,

peaked between 250 to 500 ms after the initiation of movement, decayed, and

stabilized after about 1250 ms. The time-to-peak and the steady-state RMS

depended on the hand movement being performed. Thus, it can be inferred

that the minimum time needed for analysis of the MMG signal is 500 ms.

It can also be observed from Fig. 6.3 that the hand motion directly

associated with the corresponding muscle group had a peak RMS earlier and

at a higher amplitude compared to other muscle groups.

For real time application, the minimum threshold for the response time

of the system for the user to perceive a delay between the initiation of a

hand movement and the generation of the control signal is 300 ms. Hence, a

decision window of 250 ms is chosen. The MMG signal continuously changes

during the progress of a contraction. The motion can be identified truly if

the analysis window is at least 500 ms as inferred from the temporal analysis

of the MMG signal. Thus, features are extracted with a decision window of

250 ms and an analysis window of 500 ms.
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6.2 Time-Frequency Feature Extraction and Classification

Figure 6.5: Raw MMG Signal at the flexor carpi ulnaris for hand
open and close

6.2.2 Feature Extraction using Time-Frequency Fea-

tures

The raw MMG signal at the flexor carpi ulnaris for hand open and close

motions are shown in Fig. 6.5.

The following time domain features for the MMG signal are calculated for

the decision windows of 250 ms. The features, defined earlier in Section 3.2.1,

are extracted for all the different forearm motions mentioned in Table 6.2.

• Mean Absolute Value (MAV)

• Mean Absolute Value Slope

• Zero Crossings (ZC)

• Slope Sign Changes (SSC)

• Waveform Length

• Root Mean Square (RMS) Value
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6.2 Time-Frequency Feature Extraction and Classification

These features, extracted from the MMG signal constitute the feature set

of six features per channel. Thus, the total number of time-frequency features

extracted for each hand motion is eighteen for the three channels of MMG

data.

Fig.6.6 displays the different time domain features for the ‘hand open’

and ‘hand close’ MMG signal in Fig. 6.5. This feature set is computed on

data from the hand open and close movements. The MMG data has been

sub-divided into time segment of 500ms (with a 250ms moving window) and

all the calculations have been made individually in each time window. The

RMS value of the data for each time segment is also shown among the features

as it gives an indication of the energy of the signal. Here, the first noticeable

motion is the hand opening and the next motion is that of the hand closing.

The analysis of remaining data sets also give similar feature vectors.

• OBSERVATIONS

– The temporal evolution of the Mean Absolute Value (MAV) of

the signal is consistent with the signal. It is difficult to identify

different hand movements based on only the MAV.

– The drop in number of Slope Sign Changes (SSC) provides an

indication of the initiation of the MMG signal. This feature can

be used to identify the start of the motion and can be used to

restrict the processing during specific time epochs when there is

movement.

– The drop in number of Zero Crossings (ZC) also provides an

indication of the initiation of the MMG signal though not as clear

as that of the number of SSC. Moreover, this feature is affected

by other residual noise present in the signal.
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6.2 Time-Frequency Feature Extraction and Classification

– The waveform length not only provides a boundary envelope for

the signal movements but it also varies according to the signal

strength. It is a good indicator of the amplitude and the frequency

of the signal.

– The temporal evolution of the RMS value of the signal varies

according to the signal strength, similar to the MAV. It is not

only an indicator of the energy of the signal but also of the noise

present in the signal. The temporal evolution of the muscle activity

is discussed in detail in the next section.

6.2.3 Classification of Time domain features using MLP

Classifier

The confusion matrix of the time domain features for classification of the

eight hand motions is given in Table 6.4

Table 6.4: Confusion Matrix for the MLP Classifier for the
Time-Frequency features

Classified Motion
Actual Motion

I II III IV V VI VII VII

Wrist Flexion (I) 31 0 0 0 5 0 4 3
Wrist Extension (II) 0 36 0 0 0 0 1 3
Hand Close (III) 0 0 37 0 3 0 0 0
Hand Open (IV) 1 0 0 48 3 0 1 0
Wrist Pronation (V) 0 0 1 0 26 0 0 0
Wrist Supination (VI) 0 0 0 0 0 38 0 0
Wrist Ulnar Deviation (VII) 4 0 2 1 2 0 27 5
Wrist Radial Deviation (VIII) 0 0 1 0 0 0 2 25

• OBSERVATIONS

– It can be inferred from Table 6.5, that the overall classification

rate for the MLP classifier for using time frequency features is 86.7
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6.2 Time-Frequency Feature Extraction and Classification

Table 6.5: Error in Classification for the MLP classifier using
Time-Frequency features

Hand and Wrist Motion Error

Wrist Flexion 0.139
Wrist Extension 0
Hand Close 0.075
Hand Open 0.040
Wrist Pronation 0.462
Wrist Supination 0
Wrist Ulnar Deviation 0.25
Wrist Radial Deviation 0.306
Total Error 0.133

%.

– The wrist pronation is the most poorly classified with an efficiency

of 53.8% as seen from Tables 6.5 and 6.4.

– The next poorly classified motion is the wrist ulnar deviation that

has a classification rate of 69.4% as seen from Tables 6.5 and 6.4.

– The wrist radial deviation is the next poorly classified motion with

a classification rate of 75% as seen from Tables 6.5 and 6.4.

It can be concluded from the above observations that usage of only time

frequency features does not give a good classification rate for the MMG signal.

Though the overall classification rate is 86.7 %, the classification rates for wrist

pronation, wrist ulnar deviation and wrist radial deviation are not acceptable

for a pattern recognition based MMG classification system. The overall high

classification rate is due to the MLP classifying the wrist supination, hand

open and wrist extension motions with better accuracies.
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6.3 Wavelet Transform Feature Extraction and Classification

6.3 Wavelet Transform Feature Extraction and

Classification

6.3.1 Feature Extraction using Wavelet Transform

Different sets of features are extracted using wavelet transform for the analysis

window of 500 ms with a moving window of 250 ms. A wavelet transform

characterizes the signals locally in time domain in the analysis window and

is useful for approximating non-stationary signals like MMG. The wavelet

decomposition of a signal is detailed in Chapter 3.

The level of decomposition (J ) is chosen as 4, while the wavelet used

is a Daubechies family wavelet ‘db4 ’. The detailed sub-space or the high

frequency sub-patterns at each level of decomposition are represented by D1,

D2, D3, D4, D5 while A5 is the low frequency sub-pattern or the approximate

subspace, and is the final level of decomposition.

Using coefficients of the wavelets as features would be a computational

disaster depending on the level of decomposition of the MMG signal. Hence,

the following features were defined for each of the detailed and approximation

wavelets. These features are extracted for all the different forearm motions

mentioned in Table 6.2.

• Root Mean Square Value: Root mean square value of each wavelet in

the time segment is defined as

WRMS
jk =

√√√√ 1

N

N∑
i=1

x2
ijk (6.2)

where xijk is the ith sample of the jth wavelet in the kth time segment,

containing N number of samples.
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6.3 Wavelet Transform Feature Extraction and Classification

• Mean Absolute Value: The mean absolute value of the jth wavelet in

the kth time segment is defined as

WMAV
jk =

1

N

N∑
i=1

|xijk| (6.3)

• Shannon Entropy: The Shannon entropy of the jth wavelet in the time

segment k is

WH
jk = −

N∑
i=1

P (xijk)ln(P (xijk)) (6.4)

• Mean Frequency: The mean frequency component present in each

wavelet is

WMNF
jk =

∑
x2
ijkfijk∑
x2
ijk

(6.5)

where fijk is the ith frequency component in the jth wavelet in the kth

time segment and xijk is the corresponding amplitude component.

• Waveform Length: A feature which provides information on the wavelet

amplitude, frequency and duration. It is the cumulative length of each

wavelet over each analysis window.

WWL0
jk =

N∑
i=1

(xijk − x(i−1)jk) (6.6)

These features, extracted from the MMG signal constitute the feature

set of five features per wavelet per channel. Thus, the total number of time-

frequency features extracted for each hand motion is seventy-five for the three

channels of MMG data and five wavelet coefficients.
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6.3 Wavelet Transform Feature Extraction and Classification

Figure 6.7: D1-D4 wavelet decomposition of the signal in Fig. 6.5

Fig. 6.7shows the high frequency sub-space or the Detail wavelet sub-

patterns after the wavelet decomposition of the signal in Fig. 6.5. The

approximation wavelet is isolated in Fig. 6.8 and a set of its time domain

features are shown in Fig.6.9.

• OBSERVATIONS

– It can be observed from Fig. 6.7 that the detail components ‘D1’

and ‘D3’ are representative of the noise present in the MMG signal

in the higher frequency bands.

– The detail component ‘D4 ’ and the approximate component ‘A4 ’

(Fig.6.8) are more representative of the actual MMG signal. The

noise present in the signal is absent in these two wavelet sub-

patterns as it is representative of the lower frequency band of the

signal. Possible noise due to motion artifact has already been

removed by the signal pre-processing detailed in Section 6.1.3

– The detail component ‘D2 ’ has both signal components and noise

components present in the actual MMG signal. It is difficult to
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6.3 Wavelet Transform Feature Extraction and Classification

Figure 6.8: The A4 approximation of the wavelet decomposition of
signal in Fig. 6.5

Figure 6.9: Time domain feature set for A4 wavelet MMG Signal
at the flexor carpi ulnaris for hand open and close
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6.3 Wavelet Transform Feature Extraction and Classification

distinguish between the hand motion and the noise in some cases.

– The Shannon wavelet entropies in Fig. 6.9 of all the wavelet

sub-patterns not only provide a boundary envelope for the signal

movements but also varies according to the variations in each of

them.

– Waveform length, RMS value, and the MAV, look similar. These

features along with the Shannon wavelet entropy can be used to

distinguish not only the dynamic and the isometric components of

the signal but also the different wrist movements.

6.3.2 Classification of Wavelet features using MLP Clas-

sifier

The confusion matrix of the wavelet features for classification of the eight

hand motions is given in Table 6.6

Table 6.6: Confusion Matrix for the the MLP Classifier for the
wavelet features

Classified Motion
Actual Motion

I II III IV V VI VII VIII

Wrist Flexion (I) 35 0 0 0 1 0 1 0
Wrist Extension (II) 0 33 0 0 0 0 0 2
Hand Close (III) 1 0 39 1 4 0 1 0
Hand Open (IV) 0 0 1 49 0 0 0 0
Wrist Pronation (V) 0 0 0 0 31 0 0 0
Wrist Supination (VI) 0 0 0 0 0 38 0 0
Wrist Ulnar Deviation (VII) 0 1 0 0 2 0 33 0
Wrist Radial Deviation (VIII) 0 2 0 0 0 0 1 33

• OBSERVATIONS

– It can be inferred from Table 6.7 that the overall classification rate
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6.3 Wavelet Transform Feature Extraction and Classification

Table 6.7: Error in Classification for the MLP classifier using
Wavelet Transform features

Hand and Wrist Motion Error

Wrist Flexion 0.027
Wrist Extension 0.083
Hand Close 0.025
Hand Open 0.020
Wrist Pronation 0.183
Wrist Supination 0.000
Wrist Ulnar Deviation 0.083
Wrist Radial Deviation 0.083
Total Error 0.098

for the MLP classifier for using wavelet transform features is 90.2

%.

– The wrist pronation is again the most poorly classified but the

efficiency has improved to 81.58% as seen from Tables 6.7 and 6.6.

– The next poorly classified motion is the wrist extension motion

that has a classification rate of 91.7% as seen from Tables 6.7 and

6.6.

It can be concluded from the above observations that the wavelet feature

based classifier can classify different hand motions using the MLP classifier

better than the time-frequency based classifier. The overall classification

rate is 90.2 % and the classification rates for wrist pronation is still the

poorest. Wrist ulnar deviation, wrist extension and wrist radial deviation

have acceptable error of approximately 8.3 %. and is acceptable for a pattern

recognition based MMG classification system. The overall high classification

rate is again due to the MLP classifying the wrist supination, hand open and

wrist extension motions with better accuracies.
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6.4 Empirical Mode Decomposition Feature

Extraction and Classification

6.4.1 Feature Extraction using Empirical Mode Decom-

position

The Empirical Mode Decomposition (EMD) has been described in detail in

Chapter 4. The empirical mode decomposition method is a convenient tool to

deal with data from non-stationary and nonlinear processes and is represented

by different Intrinsic Mode Function (IMF) with the following denition:

1. In the whole dataset, the number of extrema and the number of zero-

crossings must either be equal or differ at the most by one, and

2. At any point, the mean value of the envelope dened by the local maxima

and the envelope dened by the local minima is zero.

The EMD algorithm attempts to decompose nearly any signal into a

finite set of functions, whose Hilbert transforms give physical instantaneous

frequency values. The EMD decomposes the non-stationary signal into narrow-

band components with decreasing frequency. The decomposition is complete,

local and adaptive. The basis formed by the IMF directly comes from the signal

which guarantees the inherent characteristic of signal and avoids the diffusion

and leakage of signal energy. The sifting process eliminates riding waves, so

each IMF is more symmetrical and is a zero mean signal. By construction,

the number of extrema is decreased when going from one residual to the

next thus ensuring that there are a finite number of steps for the complete

decomposition.
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EMD is performed on the MMG signal for the analysis window of 500 ms

with a moving window of 250 ms. The number of IMF(s) for each analysis

window is fixed at ten. The absolute mean and mean absolute value slope

have no significance for EMD as each IMF has zero mean. Hence, two new

features are defined for the EMD. Similar to wavelets, using the coefficients of

each IMF as features would be a computational disaster. Hence, the following

features were defined for each IMF. These features are extracted for motions

corresponding to the wrist and hand:

• Hilbert Energy: The Hilbert spectral energy is calculated for each IMF

Hil(IMFjk) =
N∑
i=1

a2
i (6.7)

where ai is the instantaneous amplitude of the ith sample of the jth IMF

in the kth time segment containing ‘N’ number of samples.

• Median Frequency: The Instantaneous Frequency (IF) in the Hilbert

spectrum that divides the spectrum in two equal halves.

lMDFi∑
i=0

a2
i ≈

1

2
Hil(IMFjk) (6.8)

MDF (IMFjk) = ωj[lMDFi
] (6.9)

where ωj represents the sorted values of the IF in the ascending order

for the ith IMF in the kth time segment.

• Shannon Entropy: The Shannon entropy of the jth IMF in the kth time

segment is

H(IMFjk) = −
N∑
j=1

P (xi)ln(P (xi)) (6.10)

169



6.4 Empirical Mode Decomposition Feature Extraction and
Classification

• Mean Frequency: The mean frequency component in the jth IMF for

the kth time segment is

MNF (IMFjk) =

∑
x2
ijkfijk∑
x2
ijk

(6.11)

where fijk is the ith frequency component in the jth IMF in the kth time

segment and xijk is the corresponding amplitude component.

• Waveform Length: A feature which provides information on the wave-

form amplitude, frequency and duration. It is the cumulative length of

each IMF over each analysis window.

WL(IMFjk) =
N∑
i=1

(xijk − x(i−1)jk) (6.12)

These features, extracted from the MMG signal constitute the feature

set of five features per wavelet per channel. Thus, the total number of time-

frequency features extracted for each hand motion is one hundred fifty for the

three channels of MMG data and ten IMF(s).

Empirical Mode decomposition of the signal in Fig. 6.5 gives the IMFs in

Fig.6.10. The first IMF is isolated in Fig. 6.11 and a set of its time domain

features are shown in Fig.6.12

• OBSERVATIONS

– It can be observed from Fig. 6.10(a) and the top most two waves

of Fig. 6.10(b) that the higher frequency IMF(s) are representative

of the MMG signal in this case.

– It is difficult to draw any conclusion regarding the bottommost

two waves in Fig. 6.10(b) and Fig. 6.10(c). Since the basis is
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(a)

(b)

(c)

Figure 6.10: Intrinsic Mode Functions of the MMG Signal in Fig. 6.5
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Figure 6.11: The IMF 1 of the EMD of signal in Fig. 6.5

Figure 6.12: Time domain feature set for IMF1 of the MMG Signal
at the flexor carpi ulnaris for hand open and close
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purely adaptive to the MMG signal, it would be unique to each

hand motion. Possible noise due to motion artifact has already

been removed by the signal pre-processing detailed in Section 6.1.3

– The Shannon IMF entropy in Fig. 6.12 of the first IMF in Fig.

6.11 is a good indicator of the boundary envelope of the IMF.

– Waveform length, RMS value, and the MAV, look similar. These

features along with the Shannon wavelet entropy can be used to

distinguish not only the dynamic and the isometric components of

the signal but also the different wrist movements.

6.4.2 Classification of EMD features using MLP Clas-

sifier

The confusion matrix of the EMD features for classification of the eight hand

motions is given in Table 6.8 while Table6.9 shows the error in classification

for the different hand motions.

Table 6.8: Confusion Matrix for the the MLP Classifier for the
EMD features

Classified Motion
Actual Motion

I II III IV V VI VII VIII

Wrist Flexion (I) 30 0 0 0 0 0 0 2
Wrist Extension(II) 2 36 0 2 0 0 2 0
Hand Close (III) 0 0 39 0 1 0 0 0
Hand Open (IV) 0 0 1 46 1 0 2 0
Wrist Pronation (V) 4 0 0 2 34 0 0 0
Wrist Supination (VI) 0 0 0 0 0 38 0 0
Wrist Ulnar Deviation (VII) 0 0 0 2 2 0 28 2
Wrist Radial Deviation (VIII) 0 0 0 2 0 0 4 30

The following observations can be inferred from Tables 6.8 and 6.9.

• OBSERVATIONS
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Table 6.9: Error in Classification for the MLP classifier using
Empirical Mode Decomposition features

Hand and Wrist Motion Error

Wrist Flexion 0.167
Wrist Extension 0.000
Hand Close 0.025
Hand Open 0.080
Wrist Pronation 0.053
Wrist Supination 0.000
Wrist Ulnar Deviation 0.222
Wrist Radial Deviation 0.167
Total Error 0.094

– It can be inferred from Table 6.9 that the overall classification rate

for the MLP classifier for using EMD features is 90.65 %.

– The wrist pronation is classified better in this case with an efficiency

of 89.47% as seen from Tables 6.9 and 6.8.

– The most poorly classified motion is the wrist ulnar deviation that

has a classification rate of 77.78% as seen from Tables 6.9 and 6.8.

– The classification rates for the wrist flexion has dropped to 83.33

% as compared to 97.22 % in the wavelet based classifier as seen

from Tables 6.9 and 6.8.

It can be concluded from the above observations that the EMD feature

based classifier can classify different hand motions using the MLP classifier

better than the time-frequency based classifier. The overall classification

rate is slightly better than the wavelet based classifier at 90.65 % while the

classification rates for wrist pronation has improved to 89.4 %.The error

in classifying wrist ulnar deviation and wrist flexion has dropped and the

former is the poorest classified motion. The overall high classification rate is

again due to the MLP classifying the wrist supination, hand open and wrist
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extension motions with better accuracies as compared to the time-frequency

based classifier.

It can be inferred from the above results that the EMD feature based

classifier and the wavelet feature based classifier both perform comparatively

better while using a MLP classifier as compared to a time-frequency based

MLP classifier.

6.5 Discussion

The RMS temporal evolution of the signal at the various muscle sites closely

agreed with physiological muscle function. Higher values of the RMS is

observed when the muscle site is the primary contributor to the hand motion.

While the RMS of MMG signals demonstrated task-specificity, the higher

pattern recognition rates attained by wavelet based classifiers and EMD

based classifier suggest that there is a complex coding of time and frequency

characteristics of the MMG signals during motor tasks.

The EMD algorithm attempts to decompose the MMG signal into a

finite set of functions, whose Hilbert transforms give physical instantaneous

frequency values. The EMD decomposes the non-stationary signal into narrow-

band components with decreasing frequency. The decomposition is complete,

local and adaptive. The basis formed by the IMF directly comes from the

signal which guarantees the inherent characteristic of signal and avoids the

diffusion and leakage of signal energy.

The temporal evolution of the MMG signal studied show that the MMG

signal increased from its resting value before the movement was detected by

the accelerometer on the participant’s hand. The RMS steadily increased,

peaked between 250 to 500 ms after the initiation of movement, decayed, and
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stabilized after about 1000 ms. Thus it was concluded that the minimum

time segment needed for analysis of the MMG signal is 500 ms. To satisfy

the threshold of 300 ms for real time processing, an analysis window of 250

ms was chosen with a sliding window of 250 ms for feature extraction and

classification. The time-to-peak and the steady-state RMS depended on the

hand movement being performed. It can also be observed that that the hand

motion directly associated with the corresponding muscle group had a peak

RMS earlier and at a higher amplitude compared to other muscle groups.

The MLP classifier performs satisfactorily for both wavelet based feature

extraction system and the EMD based feature extraction system. The classifi-

cation rates for the classifier were 90.2% and 90.65% for the wavelet features

and EMD features respectively.

6.6 Summary

This chapter describes the methodology used for MMG signal acquisition

and processing for eight different types of forearm movements. These eight

forearm movements are first classified based on time-frequency features and a

Multilayer Perceptron (MLP) classifier. The temporal evolution of the MMG

signal was also studied. The requisite theory is presented and experimental

results for classification are computed.

Subsequently, the classification of the eight forearm movements based on

wavelet transform features and an MLP classifier is presented and it is found

to perform better than the time-frequency based classifier. Finally, EMD

features are extracted from the MMG signal for the same set of motions. The

requisite theory is presented and two new features based on the EMD and

Hilbert spectrum were defined and used in feature extraction. Experimental
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results for the same are presented and it is found that the wavelet based feature

set and EMD based feature set performed best for classifying movements of

hand and wrist using MMG.
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7

Conclusions and Future Works

This thesis presents the research work on developing signal processing

techniques for upper limb rehabilitation for the elderly, to use in the conve-

nience of their homes. This work was focused at developing signal processing

techniques for implementation of an assistive device for the elderly with

Electromyography (EMG) and Mechanomyography (MMG). The problem

statement is defined in Chapter 1 and current solutions available for the same

are evaluated for implementation for elderly rehabilitation. The concept of

task-oriented biofeedback has been explained, differentiated it with static

biofeedback and stressed its importance in rehabilitation. A review of myoelec-

tric control, different feature extraction methods and the different classifiers

used by researchers is carried out and presented.

7.1 Conclusions

The life expectancy of human beings in general, has improved in the last

decade throughout the world. With advancing age, the ageing population is

likely to be subjected to stroke and neurological degenerative diseases like

Parkinsons disease, Dementia or Alzheimers disease and, the agility of the

brain to process information critical for going about daily living slows down.
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As a result, persons affected by these disorders lose their dexterity, reflexes

and speed in performing simple day-to-day tasks. An elderly person is set

in his/her ways and would not want to believe that they are losing control

of their faculties. They would prefer if the rehabilitative service is available

at their homes or nearby their homes. To an elderly person, it would be too

troublesome to attach and detach multiple electrodes everyday for measuring

biosignals for rehabilitation and they would prefer not to use such a device.

Neuroplasticity is the fundamental issue that supports the scientific basis

for treatment of acquired brain injury and dementia with goal-directed ex-

periential therapeutic programs in the context of rehabilitation approaches

to the functional consequences of the injury. Physical activity proportion-

ately increases a person’s ability to perform physical work. An increasingly

repetitive physical activity, known as stressing, can take the form of therapy

that includes planned physical conditioning. Stressing is the repetition of a

stimulus to produce an analogue effect of faithfully reproduced stimulation.

Physiological stressing is the faithful repetition of a stimulus for a significant

period of time to produce change in the system.

Rehabilitation robotics exploits this therapeutic effect of neuroplasticity

in both in-patient and out-patient rehabilitation. Comprehensive training for

basic but necessary tasks for the elderly cannot be given sitting in a clinic

or rehabilitation centre. Moreover, these tasks are a closer outlook to the

elderly persons actual life; hence, using an assistive robotic system at homes

for day-to-day activities could initiate a continuous recovery for the patient

instead of only at rehabilitative sessions. Such assistive systems need to be

scaled down in terms of the number of the sensors and actuators used, without

compromising on the quality of care and end results. This is to ensure that

the rehabilitation process doesn’t become a burden to the elderly user.
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Myoelectric control is the preferred scheme for the control of upper limb

prosthesis or orthotic devices. In these systems, the processed EMG signal is

used as a control input and the generated result is used to actuate the motor

controlling limb movement. To facilitate elderly rehabilitation, the primary

aim would be to explore feature extraction and classification methods focussed

on the use of a single channel or dual channel EMG or MMG for multi-class

hand movement classification.

It is essential to have a good understanding of the measurement protocols

to be followed while dealing with different biosignals such as EMG and MMG.

Selection of various parameters for EMG measurement such as electrode

geometry, shape, size, inter-electrode distance, electrode placement, electrode

configuration and skin preparation are essential in ensuring clean and faithful

data. For MMG, the accelerometer selection plays a critical role in acquiring

the signal and a MMG data acquisition system has been developed in the

laboratory for this study. The primary recording sites for EMG and MMG for

different motions are identified while keeping the noise levels to a minimum.

The use of band-pass filters ensures that only the signal bandwidth is measured.

A feedback parameter is important in gauging how well the system is working;

hence, different protocols for measuring the EMG-Torque data and the elbow

joint angle have been developed.

A pattern classification based system is proposed for distinguishing between

six basic hand movements using just two sets of electrodes. Basic time domain

features are used with a multilevel perceptron classifier for pattern recognition.

The measured EMG data is analysed and the results for classification are

not satisfactory. This re-iterates the earlier assumption that the quality of

care and end results should not be compromised for using a lesser number of

electrodes. A hardware myoelectric glove was built and it fared even worse
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than its theoretical counterpart. The EMG signal acquisition was not faithful

and large amount of power line interference was present in the data.

While implementing the hardware myoelectric glove, it was observed that

the EMG raw signals have a large amount of noise. The signal strength is

very low and it is difficult to identify the signal from the raw signal. It was

also clear that the noise is predominantly the Power Line Interference (PLI).

The magnitude of the power line interference is very high compared to the

actual signal strength of the EMG. This is also augmented by the fact that,

the signal strength of the elderly person’s EMG is much lesser as compared

to a young healthy person. The problem with removing the PLI from EMG

signal is due to the overlap of the PLI(s) bandwidth with that of the surface

EMG signals’ bandwidth which lies predominantly in the range of 10 to 350

Hz.

The Hilbert-Huang Transform (HHT) is an attractive solution for the

estimation of power line interference in a spectrum of overlapping frequencies.

It eliminates the need for an a priori defined functional basis, as is generally

required for traditional signal analysis techniques. Being purely data-driven,

the HHT precisely determines the most appropriate empirical but adaptive

basis. This ability to adapt is crucial, given the individualistic nature of

nonlinear systems. Another key feature of the method is that, by utilizing

the Hilbert transform, it operates at the scale of one oscillation and is, thus,

truly able to track local changes in signals and take into account the variable

nature of the power line frequency.

The variable step size of the Least Mean Squares (LMS) algorithm ensures

that any changes in the frequency, amplitude and phase of the noise is

adapted to using the inputs from the HHT block. An algorithm is designed

for estimation of the PLI frequency in the EMG signal using Hilbert-Huang
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Transform. Simulations were performed to evaluate the effectiveness of the

Hilbert-Huang Transform based Least Mean Squares (HHT-LMS) adaptive

filter under different conditions. The HHT-LMS adaptive filter is then applied

on experimental data to predict and remove the the PLI component from the

measured EMG data.

Feature identification and classification alone is not a robust way for

generating control signals for the assistive system as seen while implementing

the hardware myoelectric glove. The generation of the control signal for such

a case doesn’t have any co-relation to the torque that needs to be produced

by the actuator. This system is acceptable if the torque required for the

movement is not substantial. In other words, smaller joints like the wrists and

hand can be actuated using such a control system. But the torque required

for the actuation of the joints such as the elbow joint is high and it would

be detrimental to use a pattern recognition based system for classifying such

motions. The amount of time required to complete a movement is not fixed,

and varies from person to person and a pattern recognition based system is

unable to predict the in-between states between the initial and final motions.

These transient states need to be programmed into the actuator accordingly

and there is no surety that it mimics the elderly user’s intention.

A hybrid muscle model is designed that combines the muscle physiological

model and the neural network to predict the joint torque of the elbow. The

predicted results follow the actual joint torque faithfully and the mean square

error is minimum of all the different models. Moreover, the time required for

executing the hybrid model is directly proportional to the number of iterations

required per data point and the constant time required by the neural network

for predicting the joint torque. The accuracy of the predicted output is neither

just a function of the black box neural network nor dependent on multiple
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muscle activation data.

Iterative Learning Control (ILC) is a simple and effective solution to

the parameter identification problems of the muscle model which is highly

nonlinear and multi-dimensional. ILC method can guarantee the learning

process convergence even if the muscle model is partially unknown or difficult

to analyze. The use of ILC ensures that that the model doesn’t predict

unreasonable values for the parameter while simultaneously ensuring that the

time required for processing the data is minimized. This is due to the repetitive

nature of rehabilitation exercises and the dependency of the predicted output

on the previously predicted value and the error calculated. A pointwise ILC

is implemented where the data points in the signal are iterated one-by-one

till the desired output is the same as the actual system output.

Another method that is useful in assessing activities of skeletal muscles

is mechanomyography (MMG) that measures vibrations from contracting

muscles. The MMG signals, produced by contracting and vibrating muscle

fibers can be interpreted as a mechanical counterpart of EMG signals, as the

MMG signal informs about differences in motor units recruitment pattern,

degenerative changes in skeletal muscles, and mechanical properties of skeletal

muscles (stiffness and vibration) . Despite the different natures of these two

signals, each of them gives information about the motor unit recruitment,

firing frequency and synchronization that are reflected in the amplitude and

frequency of the EMG and MMG signals. However, an apparent advantage

of MMG over EMG is that EMG requires meticulous care in attaching the

electrodes for measurement while MMG measurements are independent of

any such constraints. This could be a boon in elderly rehabilitation as the

MMG system can be designed to measure data using accelerometers built into

the assistive device itself and, hence, doesn’t require any active involvement
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of the patient.

A Multilayer Perceptron (MLP) classifier based on time-frequency fea-

tures is implemented to classify eight different types of forearm movements.

Subsequently, the classification of the eight forearm movements based on

wavelet transform features and an MLP classifier is presented and it is found

to perform better than the time-frequency based classifier. Finally, Empirical

Mode Decomposition (EMD) features are extracted from the MMG signal

for the same set of motions. The requisite theory is presented and two new

features based on the EMD and Hilbert spectrum were defined and used

in feature extraction. Experimental results for the same are presented and

it is found that the wavelet based feature set and EMD based feature set

performed best for classifying movements of hand and wrist using MMG.

Three distinctive methods for processing EMG and MMG were studied

and the results are presented in this thesis. The algorithms in this study follow

real time constraints for assistive devices while the measurement protocols

ensure that the biosignals were broadly representative of that measured from

the elderly. Thus, the EMG and MMG signal processing techniques can be

used in implementing a sensory system for an upper limb assistive device for

the elderly.

7.2 Future Work

The Hill model has many parameters that need to be optimized to get

more accurate values of the joint torque with respect to the input single

channel EMG signal. Moreover, some of the parameters need to be calculated

from existing data and/or derived by iterative methods. An efficient way of

estimating the muscle length and the contractile element length using iterative
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learning control is currently being implemented. The parameter estimation

along with the optimization of the physiological model will give better results

for the torque prediction.

Currently, the EMG and MMG sensors are used separately for estimating

the different movements, muscle vibrations, the joint angle or the muscle

inclination. A fusion of these sensors will ensure that the rehabilitative glove

will work in real time. Sensor fusion of the EMG and MMG data along with

the angular data can not only eliminate the need to have a higher number

of sensors but can also improve upon the classification of different hand

movements and the torque prediction of different joints.

A hardware design for the elderly assistive rehabilitation is essential in

realising the theories in practice hence, a working prototype needs to be made

with adaptive actuator control for implementing the rehabilitative glove in a

rehabilitative institute or hospital for clinical trials.

The final aim is total non-dependence on the glove, as it is not intended to

act as a substitute for the upper limb. Conducting clinical trials with elderly

patients and recording their progress will gauge the time frame required for

such independence.
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