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Summary 

Event coreference is an important task in event extraction and other natural language 

processing tasks. Despite its importance, it was merely discussed in previous studies. 

In this thesis, we are first in the literature to provide a systematic and computation-

oriented study on this challenging task. We present a global coreference resolution 

system dedicated to various sophisticated event coreference phenomena. First of all, 

seven resolvers are utilized to resolve different event and object coreference mention 

pairs with a new instance selection strategy and new linguistic features. Competing 

classifiers and topic related event detection are further imposed to enhance mention-

pair resolvers. Secondly, two global solutions, spectral graph partitioning and 

modified random walk model, are employed for the chain formation. Spectral graph 

partitioning is equipped with heuristic-guidance and model specific manipulations to 

produce better coreference chain results.  Being the first attempt to apply random walk 

model for coreference resolution, the modified model utilizes a sampling method, 

termination criterion and stopping probability to greatly improve the effectiveness of 

random walk model for event coreference resolution. The new random walk model 

facilitates a convenient way to incorporate sophisticated linguistic constraints and 

preferences, the related object mention graph as well as pronoun coreference 

information not used in previous studies for effective chain formation. Collectively, 

all the above techniques impose significant B
3
 F-score improvement over the baseline 

system on the OntoNotes 4.0 Corpus.  
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Chapter 1: Introduction 

1.1 Background 

The last decade has seen an explosive growth in the amount of textual information in 

mass media. Such an enormous amount of information is infeasible for manual 

processing and understanding. Thus there is a need for an effective and efficient text 

mining system to gather and utilize the knowledge encoded in the texts. An intelligent 

text mining system should be able to perform various natural language processing 

(NLP) tasks such as discourse analysis.  

For a successful discourse analysis, a text mining system should have the 

capability of understanding the referential relations among different expressions in 

texts. Hence, coreference resolution, the task of resolving a given text expression to 

its referred expression in prior texts, is important for an intelligent text processing 

system. 

In linguistics, an expression that points back to a previously mentioned 

expression is called an anaphor, and the expression being referred to by the anaphor is 

called its antecedent. The mentions denoting the same object/event within the article 

together form a coreference chain. Most previous work on coreference resolution aims 

at object coreference in which the coreferent expressions are referring to the real 

world objects such as persons, places and organizations. For example, in the 

following sentence, 

 

“I bought a new house yesterday. It was in the sub-urban area.”             

(Example 1.1) 

 

We can find an anaphor “it” and its antecedent is “a new house”. Both the 

antecedent and the anaphor are referring to the house which is a real world entity. 



2 
 

While object coreference is well studied, its counterpart, event coreference, 

lacks exploration. In this thesis, we will conduct a systematic literature survey and 

analytical and experimental study on event coreference.  In the event coreference, the 

coreferent expressions are referring to an event which is a much more abstract 

concept compared to the real world object such as the “house” in Example 1.1.  

Consider the following sentences, 

 

“This was an all-white, all-Christian community that all the sudden was 

taken over -- not taken over, that's a very bad choice of words, but invaded 

by, perhaps different groups. It began when a Hasidic Jewish family 

bought one of the town's two meat-packing plants 13 years ago.”          

(Example 1.2) 

 

We can find the anaphor “it” and its antecedent “invaded” are referring an event 

in which an original white and Christian community is diluted by other ethnic groups. 

Compared to the real world object “house” in Example 1.1, we have an event in 

Example 1.2 which is more complicated to describe and resolve.  

As we can see from these two examples, event coreference is a more 

complicated linguistic phenomenon than general object coreference. The difficulties 

come from various aspects. One of the major causes is that the definition for event is 

more complicated than that of the object (this will be discussed in detail in Chapter 2). 

Another cause is that event coreference resolution requires more world knowledge 

than what the object coreference resolution requires. 
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1.2 Motivation 

Event coreference resolution is an important task in natural language processing 

research. Despite the lack of attention in the previous studies, we found there are two 

motivating factors for a focused study on the topic of event coreference resolution.  

The first important reason is because of its significant existence in text 

collections. According to our corpus investigation (Section 8.1.2), 69% of the articles 

in the OntoNotes 4.0 corpus
1
 contain at least one event coreference chain while 16% 

of all the coreference chains are event chains. Such a large contribution makes event 

coreference resolution an essential and critical task for an intelligent text mining 

system. 

In addition to significant proportion, event coreference resolution helps an event 

extraction system to acquire more important details related to events.  

Consider the following example,  

 

“Israel has fired missiles on the offices of the Palestinian Authority. … It 

has caused seven deaths with many injuries. … Israel helicopter gunships 

fired across the Gaza Strip for more than two hours. ... The attack in 

Gaza has been said to cause more violence in Gaza and West Bank and 

terminate the current round of Middle East peace talk in an unexpected 

way.”           

(Example 1.3) 

 

The four mentions here, “fired”, “it”, “fired” and “the attack” are referring to 

the same event (an Israel attack in Gaza Strip on Palestinian Authority). Establishing 

                                                           
1
 OntoNotes 4.0 corpus is annotated by multiple research institutions including BBN Tech-

nologies, University of Pennsylvania and etc. It consists of more than 2000 documents from 

mixed genres including new article, new wire, broadcasting news. The detail of OntoNotes 

4.0 corpus can be found in Section 8.1. 
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this event chain will provide us with all necessary details about the “air strike” event 

mentioned in different sentences, such as “Israel / Israel helicopter gunships” being 

the actuator, “offices of Palestinian Authority” being the target, “seven deaths and 

many injuries” being the consequence, “Gaza Strip” being the location and “more 

than two hours” being the duration. Current event extraction systems are mostly 

working at the sentence level where an event is bound to a single sentence. Without 

successful event coreference resolution, such separated pieces of information cannot 

be assembled correctly to facilitate a higher level of information extraction or 

understanding. Figure 1.1a&b demonstrate the impact of event coreference resolution 

on event extraction output. 

 
Event Extraction without Event Coreference Resolution

Sentence 1 Sentence 2

Sentence 3 Sentence 4

Event Extraction with Event Coreference Resolution

Palestinian 
Authority

Missiles fired

Israel

it caused

7 deaths

Gaza Strip

More than 
2 hours

fired

Israel 
gunships

That attack

caused

more 
violence

terminate peacetalk

fired/attack

terminate peacetalk

Palestinian 
Authority

Missiles

Israel /
Israel gunship

7 deaths & 
injuries

Gaza Strip

More than 
2 hours

more 
violence

 

Figure 1.1: Event extraction results (a) without event coreference resolution; 

                                                 (b) with event coreference resolution. 

 

Without the proper event coreference resolution, the information about the 

“fire/attack” event is scattered in several sentences and each will form an individual 

event. In such an output, further NLP applications such as summarization system 

cannot utilize all the details about the same event.  While incorporating event 



5 
 

coreference resolution, all the details of the same event are available for further NLP 

applications.  

1.3 Thesis Organization 

The rest of this thesis will be organized in the following way. The next chapter 

(Chapter 2) will provide a thorough literature review and a linguistic study of the 

event coreference resolution. The discussion on closely related work will also be 

given in Chapter 2. In Chapter 3, we will introduce the coreference resolution 

framework. After that, we will move on to our proposed framework in detail. Chapter 

4 will describe the event detection process while Chapter 5 elaborates on mention-pair 

resolvers. Chapter 6 will present the chain formation process using spectral graph 

partitioning and Chapter 7 will discuss a more creative chain formation technique 

using the adapted random walk model. Following that, we will present the 

experimental results in Chapter 8 with discussion. The last chapter (Chapter 9) will 

conclude the thesis and give a discussion on future research directions. 
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Chapter 2: Literature Survey 

In this chapter, we will present a thorough literature survey on event coreference. The 

survey will consist of the definition of event in Section 2.1. After that we will move 

on to define the event coreference and discuss the different types of event coreference 

phenomenon (Section 2.2 & 2.3). The last section (Section2.4) will discuss the closely 

related works.  

 

2.1 Event Definition 

Before we can define the event coreferences as a set the textual mentions representing 

the same event, we need to precisely define what an event is. However, to precisely 

define an event is hard and complicated by itself. Unlike real world objects such as 

the “house” in Example 1.1, an event such as “invade” in Example 1.2 is hard to 

precisely define. A “house” can be uniquely defined by its location (or building name 

if it is a famous building such as “the White House”). An event will be as abstract as 

“a thing that happens or takes place, especially one of importance” in the Oxford 

Dictionary of English.  

In this work we wish to take a deeper look into a more rigorous and formal 

definition.  We will present two definitions. One is from philosophers Davidson and 

Quine. The other is from a computational linguist, Asher. 

 

Davidson and Quine’s Definition 

In the 60’s, the famous philosophers Donald Davidson and Willard Quine had 

proposed a theory to define event and the criteria to distinguish one event from 

another. The theory described an event as an abstract entity with spatio-temporal 

properties, and a set of causes and effects.  Two events are the same if they have the 

same cause and effect as well as the same spatio-temporal properties. 
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Definition  by Asher 

In the 90’s Nicholas Asher as a computational linguist formulated the event definition 

as follows: An event E should have a theme, necessary roles and possible optional 

roles. Considering the following example: 

 

“John murdered Mary in their house last night because he thought she 

was cheating on him.”         

(Example 2.1) 

 

Following Quine’s definition, this event entity has spatio-property as “John and 

Mary’s house”, temporal property as “last night”, cause as “John thought Mary cheat 

on John” and effect “Mary was dead”. 

Following Asher’s definition, this event entity has a theme “murder”, necessary 

roles as murderer “John” and victim “Mary”, optional roles as location “John and 

Mary’s house” and time “last night”.  

  

Our Adapted Definition 

For this study, we will combine the two definitions above to form the following one 

as: 

“For an event E in this study, it has a theme T to describe this event entity; 

necessary roles Rn (such as “actor” and “patient”), spatiotemporal roles Rst (time 

and location) and optional roles Ro (such as “beneficiary”). Two events are 

considered the same event if they have the same theme， necessary roles and 

spatio-temporal roles.” 

This definition combines the strength of both Quine’s and Asher’s. The spatio-

temporal roles are added to distinguish events. Cause and effect are normally taken up 
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by other events and it required much complicated inference to derive. Thus we do not 

include them in our definition.  

 

2.2 Event Coreference Definition  

According to (Jurafsky and Martin, 2000), a natural language expression used to 

perform reference is called a referring expression, and the entity that is referred to is 

called a referent. Two expressions that are used to refer to the same entity are said to 

corefer. Between the two expressions, the prior one is called an antecedent while the 

latter one is called an anaphor. A collection of the coreferring expressions is a chain 

of coreference.  

After formally defining event and coreference, we can derive the event 

coreferences as a collection of textual expressions that refers to the same event where 

the event is defined as in Section 2.1.  

 

2.3 Event Coreference Taxonomy 

Event coreferences can be categorized in two ways. The first taxonomy is categorized 

by the types of relations while the second one is done by the types of expressions. The 

taxonomy study provides us with a better understanding of the event coreference 

phenomenon. It also helps us to understand what knowledge is required to correctly 

resolve them. 

 

Types of Relations 

Although up to now we have considered the coreference relation to be an identity 

relation, there exist other relation types so we will discuss them in this subsection.  
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Identity Relation 

This type of relation strictly follows our definition of event coreference. The anaphor 

and the antecedent are expressions of the same event, as in the following example. 

 

“I ran two miles yesterday. The run did me good.”           

(Example 2.2) 

 

“The run” and “ran” are references to the same running event. 

 

Event-Role Relation 

In this type of relation, the anaphor participates as a role in the antecedent’s event.   

Consider the following examples: 

 

“The spokesperson of the White House announced in press conference 

that …….... The statement however indicates …” 

          (Example 2.3) 

 

 “… A huge explosion happened outside the vessel’s side hull.… The 

serious damage made the ship tilt towards one side. …” 

                     (Example 2.4) 

 

“John was murdered last night. The murderer got away.”  

       (Example 2.5) 

 

In Example 2.3, “the statement” has the object role in the “announce” event. In 

Example 2.4, “the serious damage” is the consequence of the event “a huge 

explosion”. In Example 2.5, “the murderer” is the actor role in the “murder” event.  
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Although at the first glance, none of these three are related to our target, identity 

coreferences. In contrast, in Example 2.3, the object of the “announce” event is 

inseparable from the event itself. It means that an “announce” event will make no 

sense without whatever is announced. Thus the anaphor “statement” holds an identity 

relation to the “announce” event. In contrast, Examples 2.4 and 2.5 are not in the 

scope of this thesis as they are indeed non-identical relations.  

 

Types of Expressions 

In the book (Asher, 1993), an event is not only denoted by a single word or phrase as 

annotated in our example.  It requires a precise segment of texts related to that event. 

Thus the following categorization on the types of event antecedent expression can 

give us some insights of the problem. The name for each type is quite self-explaining. 

Thus we will elaborate each type by an example. 

 

That Clause 

“John believed that Mary was sick. The teacher believed it too.”        (Example 2.6) 

 

Infinitival Phrase 

“Fred wanted to go to the movies. But his mother wouldn’t allow it.”   (Example 2.7) 

 

Gerund Phrase 

“John‘s hitting Fred got everyone in trouble, for it led to a brawl.”     (Example 2.8) 

 

Noun Phrase 

“The claim that Susan got a C on the test was surprising. John didn’t believe it.” 

                (Example 2.9) 
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Verb Phrase 

“Fred hit a home run, and then Sally did it.”         (Example 2.10) 

 
For each mention, its boundary is difficult to determine automatically. 

Therefore, we decide to define an event coreference mention as a sufficient minimal 

text expression that is capable for a computational discourse model. Thus in this thesis, 

only pronouns, noun phrases and action verbs are taken as the event coreference 

mentions.  Several rationales embrace this simplification. 

Firstly, determining the event mention boundary is, in general, performed and 

studied in the event extraction task. Both event coreference resolution and event 

extraction are individual modules in the whole text processing system. One should not 

overtake other’s functionalities. By resolving the event coreferences to the anchor
2
 of 

the event, the event extraction module will be able to provide the relevant text 

boundary around the anchor. 

Secondly, this restriction on thesis scope is in line with the annotation practices 

in representative annotated corpora such as OntoNotes4.0 which is used in this thesis. 

Last but not least, such simplification will reduce the types of mentions to the 

most fundamental ones which are easier to comprehend. This is helpful for exploring 

the new and challenging task of event coreference resolution. Table 2.1 shows how 

this restriction will affect the mention types. 

 

 

 

 

                                                            
2 The anchor of the event is represented by the action verb, minimal text-span of noun phrase 

or the event pronoun. 
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Original 

Type 
Original Texts Simplified 

Type 
Simplified Texts 

That Clause 
John believed that Mary 

was sick. The teacher 

believed it too. 

Verb 
John believed that Mary 

was
3
 sick. The teacher 

believed it too. 

Infinitive 

Phrase 

Fred wanted to go to the 

movies. But his mother 

wouldn’t allow it. 

Verb 
Fred wanted to go to the 

movies. But his mother 

wouldn’t allow it.  

Gerund 

Phrase 

John‘s hitting Fred got 

everyone in trouble, for it 

led to a brawl.   

NP 
John‘s hitting Fred got 

everyone in trouble, for it 

led to a brawl.   

Noun 

Phrase 

The claim that Susan got a 

C on the test was 

surprising. John didn’t 

believe it. 

NP 

The claim that Susan got a 

C on the test was 

surprising. John didn’t 

believe it.” 

Verb 

Phrase 

Fred hit a home run, and 

then Sally did it. 
Verb Fred hit a home run, and 

then Sally did it. 

Table 2.1: Event Mentions after Restriction 

 

2.4 Related Work 

The related work consists of three major parts. The first collection of works focuses 

on the conventional object coreference resolution. We review them as a closely 

related task. Certain findings in these works are proven helpful in our study as well. 

The second part is about event coreference itself. Although we are the first one to give 

a systematic and in-depth study on this topic, there are a few previous works on some 

of the sub-problems in our task. The last part summarizes the representative work on 

the machine learning models used in this thesis. They are the toolkit for event 

coreference resolution. 

 

2.4.1 Object Coreference Resolution 

In this section, we will present four closely related and representative works on object 

coreference resolution. There are many other works on object coreference resolution (apart 

from the four works we are going to discuss in this thesis). These four representative works 

                                                            
3 The predicate verb of “be” is considered as anchor for event expressions describing a situa-

tion and status.  
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are selected from a large collection of papers on object coreference resolution. We 

select these four because we either adapted their frameworks and features or inspired 

by their ideas and methods. (Soon et al., 2001) presented a general machine learning 

framework which was followed by many other researchers including us. (Ng and 

Cardie, 2002a) proposed an instance selection strategy for the general object 

coreference resolution machine framework. In this work, we proposed a revised 

training instance selection strategy dedicated for event coreference resolution. (Yang 

et al., 2006) proposed a way to utilize the structural knowledge embedded in syntax 

parse tree which inspired us to utilize the same structural knowledge. The last work 

we presented here is (Nicolae and Nicolae, 2006). Their work proposed a min-cut 

variation to perform graph partitioning for object coreference resolution. In this work, 

we have introduced two other graph partitioning approaches which perform well for 

event coreference resolution. Besides the four works above, readers can always 

extend their reading for object coreference resolution by referring to the reference 

section of these four papers. 

 

(Soon et al., 2001) introduced a machine learning framework for mention-pair 

classifications. Their work proposed generic training and testing procedures to train 

and apply a machine learning algorithm such as support vector machine and decision 

tree. Parts of our work here follow these procedures as well.  

 

(Ng and Cardie, 2002a) introduced an instance selection strategy to improve rule-

learning based coreference resolution. In this work, we reexamine the scenario for 

event coreferences and propose a more dedicated strategy for event coreference 

resolution. 
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(Yang et al., 2006) introduced the syntactic tree kernel for object pronoun resolution. 

Inspired by them, we borrow the kernel method into our study and find positive 

results in several mention-pair classifiers. (Yang et al., 2008) presented a twin-

candidate model which is a pair-wise ranking method for object coreference 

resolution. Such method has been proven helpful in our study as well.  

(Nicolae and Nicolae, 2006) introduced a deviation of the Min-Cut graph partitioning 

algorithm to object coreference resolution. In this thesis, we have examined more 

graph partitioning approaches such as spectral clustering and random walk 

partitioning. We have also proposed dedicated techniques to those graph partitioning 

approaches to boost the performance of event coreference resolution.  

 

2.4.2 Event Coreference Resolution 

In this section, we introduce the related works on event coreference resolution. Event 

coreference resolution is a complicated task which can be further divided into several 

sub-problems such as event pronoun resolution attempted by (Donna, 2002) and 

(Müller, 2007); event verb resolution attempted by (Bejan and Harabagiu, 2010) and 

the untouched event noun phrase resolution. In addition, (Pradhan et al., 2007) is the 

paper promoting the OntoNotes 4.0 corpus which is the first large corpus that involves 

event coreference annotation. (Bejan and Harabagiu, 2010) proposed a resolution 

system on a different coreference corpus. However, based on our observation, their 

study belonged to a different task (we refer it as cross-document event verb 

resolution) from the event coreference definition adopted in this thesis. All the 

previous works on event coreference resolution only focused on one of the sub-

problems in a big picture. In comparison to these previous works, our approach is the 

first systematic study on this topic in the literature. Our work here will be the first 
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attempt to draw the big picture for event coreference resolution. The details of the 

above mentioned previous work are presented below. 

 

(Donna K. Byron, 2002) proposed semantic filtering as a complement to salience 

calculations to resolve event pronouns targeted by us. This knowledge deep approach 

only works for much focused domains like trains spoken dialogue addressed in the 

paper with handcrafted knowledge of suitable events for only the ten plus verbs 

involved.  Clearly this approach is not suitable for general event pronoun resolution in 

news articles for example. Besides, there is also no performance report on event 

pronoun resolution, thus it is not clear how effective their approach is. 

 

(Müller, 2007) proposed a pronoun resolution system using a set of hand-crafted 

constraints such as “argumenthood” and “right-frontier condition” together with a 

logistic regression model based on corpus counts. Their system targeted only three 

pronouns namely, “it”, “this” and “that”. The event anaphoric pronouns are resolved 

together with object referential pronouns. This preliminary explorative work only 

produced 11.94% F-score for event pronoun resolution which demonstrated the 

difficulties for event anaphora resolution. 

 

(Pradhan, et al., 2007) applied a conventional coreference resolution system to the 

OntoNotes 1.0 corpus using the same set of features for object noun phrase anaphora 

resolution. There is no specific performance reported on event anaphora resolution. 

We think the event anaphors are not correctly resolved in general as the majority of 

these features are inappropriate for event anaphora resolution according to our 

investigation. 
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(Bejan and Harabagiu, 2010) proposed an unsupervised Bayesian model at event 

coreference resolution. The corpus statistics gathered on their Event Coref Bank V1.0 

corpus
4
 shows a more focused corpus on cross-document verb coreference resolution. 

Only 20.9% (272 out of 1302) of intra-document chains have more than one mention. 

The intra-document event coreferences appear not well captured due to its corpus 

design. At the same time, 89.7% (1564 out of 1744)
5
 of the event mentions are verb 

mentions and none of the mentions annotated is pronoun. These observations are 

fundamentally different from the OntoNotes 4.0 corpus where only intra-document 

coreferences are annotated and all the NPs, pronouns and verbs are annotated. All of 

these factors made the findings in (Bejan and Harabagiu, 2010) more suitable for 

cross-document verb coreference resolution than the intra-document event 

coreferences according to (Asher, 1999)’s definition.  

 

2.4.3 Other Related Works 

In this section, we briefly introduce the relevant works on machine learning models 

and frameworks. The selected models are used in this thesis including Support Vector 

Machine, Latent Dirichlet Allocation, Spectral Graph Partitioning and Random Walk 

Graph Partitioning. Since this thesis will focus on the event coreference resolution 

rather than the machine learning. We will only list a few representative works on the 

above mentioned models. Readers can always extend their readings by referring to the 

reference section in the following publications. 

 

(Joachims, 1999; 2001) presented the Support Vector Machine (SVM) model for the 

text classification task. Because of SVM’s robustness and efficiency, we employ 

                                                            
4 ECB V1.0 as in (Bejan and Harabagiu, 2010) is available at  

http://www.hlt.utdallas.edu/~ady 
5 We use WordNet 3.0 first sense to identify verb mentions automatically. 
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SVM as our main algorithm for all the mention-pair coreference classifiers.  Further 

to that, (Moschitti, 2006) presented a tool to incorporate tree structures into SVM 

learning which we have borrowed for some of our mention-pair classifiers. 

 

(Luxburg, 2006; Shi and Malik, 2000; Shamir and Sharan, 2002) presented related 

studies on spectral graph partitioning (a.k.a. spectral clustering) on various tasks as 

image segmentation and gene clustering. It also comes with an in-depth discussion on 

the nature of spectral clustering. We have borrowed and adapted this method for our 

chain formation process with novel techniques to improve clustering results. 

 

(Yeh et al., 2009; Ramage et al., 2009; Huges and Ramage, 2007; Hassan and Radev, 

2010) presented  works using random walk partitioning for NLP tasks such as 

semantic similarity, text polarity and semantic relatedness in WordNet and Wikipedia. 

We are inspired by their approach and adopt random walk partitioning to coreference 

resolution with necessary modifications and novel enhancements. 

 

(Blei et al., 2003) presented a topic detection model using Latent Dirichlet Allocation 

(LDA). We adopt LDA in an unsupervised way and make it a very contributive factor 

to our event mention detection process. 

 

2.5 Chapter Summary 

In this chapter, we have derived the definitions for event and event coreference. In 

addition, we have introduced the different types of relations and expressions of the 

event coreference. Last but not least, we have presented the related works section to 

briefly introduce the selected related works. In the next chapter, we will move on to 

the adaptation of the conventional two-step resolution framework. 
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Chapter 3: Resolution Framework 

Before we introduce our proposed system for event coreference, we would like to 

revisit the widely used two-step resolution framework for a deeper understanding. 

Most of the previous coreference resolution systems employ a two-step approach as in 

(Soon et al., 2001; Nicolae and Nicolae, 2006) and many others. The first step 

identifies all the pairs of coreferent mentions. The second step forms coreference 

chains using the coreferent pairs identified in the first step.  

Although a handful of single-step frameworks were proposed recently such as 

(Cai and Strube, 2010), the two-step framework is still widely in use because it has 

been well-studied. Conceptually, the two-step framework adopts a divide-and-conquer 

strategy which in turn allows us to focus on different sub-problems at different stages. 

The mention-pair detection step allows us to employ many features associated with 

strong linguistic intuitions which have been proven useful in the previous linguistic 

studies. The later chain formation step allows us to leverage on efficient and robust 

graph partitioning algorithms, such as the random walk method, used in this thesis. In 

practice, the two-step framework is also more mature for practical use and has been 

implemented in a number of standard coreference resolution toolkits widely available 

such as RECONCILE (Stoyanov et al., 2010) and BART (Versley et al., 2008). 

Performance-wise, two-step approaches also show comparable performance to single 

step approaches on some benchmark datasets
6. 

In this paper, we are exploiting a new type of coreference phenomenon with 

                                                           
6
 (Stoyanov et al., 2010) reported the RECONCILE (two-steps) achieved 74.25% B

3
 F-score 

on ACE 2005. (Haghighi and Klein, 2010) using a single-step approach reported 75.10% B
3
 

F-score on the same dataset with the same train/test-splitting. According to our experiences, 

such a 0.95% difference is not statistically significant. Other single-step works such as 

(Rahman and Ng, 2009) and (Poon and Domingo, 2008) reported clearly lower B
3
 F-scores 

than RECONCILE using the same datasets but different train/test-splitting.  
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only a few previous attempts. Therefore, we employed the more matured two-step 

framework with innovative extensions to accommodate the complicated event 

coreference phenomena.  Such a divide-and-conquer strategy will give us more 

insight for further advancements as well. Figure 3.1 gives an overview of the two-step 

coreference resolution system. 

 

Mention Extraction

Chain Formation

Raw Texts

Coreference Results

Mention-Pair Resolvers

 

Figure 3.1: Two-Step Resolution Framework 

 

3.1 Mention-Pair Models 

Most the mention-pair models adopt the well-known machine learning framework for 

object coreference as proposed in (Soon et al., 2001) and (Ng and Cardie, 2002a). 

 

3.1.1 Instance Generation 

In this learning framework, a training or testing instance of the resolution system has 

the form of                where        is the i
th

 candidate of the antecedent of 

anaphor    . An instance is labelled as positive if        is the antecedent of      , 

or negative if        is not the antecedent of     .  

An instance is associated with a feature vector which records different 
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properties and relations between     and       . The features used in our system 

will be discussed later in the paper.  

During training, for each event anaphor, we consider the preceding event 

mentions as candidates for being an antecedent. The succeeding verbs are included to 

accommodate the cataphora phenomenon in which the antecedent occurs after the 

anaphor.  A positive instance is formed by pairing the anaphor with its correct 

antecedent. At the same time, a set of negative instances is formed by pairing the 

anaphor with each of its candidates other than the antecedent, which follows the same 

negative instance selection strategy discussed in (Ng and Cardie, 2002a).  (Ng and 

Cardie, 2002a)’s training instance selection strategy is illustrated in Figure 3.2. Given 

an anaphor NP6 and its antecedent NP3, (Ng and Cardie, 2002a) will generate one 

positive instance as NP3---NP6 and two negative instances as NP4---NP6 & NP5---NP6. 

The two NPs (NP1 and NP2) beyond the antecedent (NP3) will not generate any 

instance.  

 

NP1 NP2

NP3

(Antecedent)
(+)

NP4

(-)
NP5

(-)
NP6

(Anaphor)
... ... ... ... ...

Positive 
Instance

Negative 
Instance

Non-Generating 
NPs

NP1 NP2

NP3

(Antecedent)
(+)

NP6

(Anaphor)+

NP4

(-)
NP6

(Anaphor)
NP5

(-)
NP6

(Anaphor)
- -

 

Figure 3.2: (Ng and Cardie, 2002a) Training Instance Selection Illustration 
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Testing instances are generated in the same manner except that all the preceding 

event mentions will be considered as candidates. 

 

3.1.2 Learning Models 

Based on these generated training instances, we can train a binary classifier using any 

discriminative learning algorithm. We will present our model in the next chapter. 

 

3.2 Chain Formation Models 

After the coreferent mention pairs are identified, coreference chains are formed based 

on those coreferent pairs. There are two major ways to form coreference chains in the 

literature: best-link heuristic and graph partitioning. 

 

3.2.1 Best-Link Method 

The best-link heuristic selects the candidate antecedent with the highest confidence 

for each anaphor and forms a “best-link” between them. After that, it simply joins all 

the mentions connected by “best-links” into the same coreference chain. The best-link 

heuristic approach is widely used as in (Yang et al., 2006) because of its simplicity 

and reasonably good performance. 

The major criticism of the best-link heuristic falls on its lack of global 

consideration when forming the coreference chains. Global optimal solution cannot be 

guaranteed. The mentions are only joined through locally selected “best-links”. Thus 

chain consistency is not enforced. 

 

3.2.2 Graph Partitioning Method 

Graph partitioning approaches are proposed by various researchers to form 

coreference chains with global consideration. Here we take Best-Cut proposed in 

(Nicolae and Nicolae, 2006) as a representative of graph partitioning approaches such 

as hypergraph (Cai and Strube, 2010; Cai et al., 2011) and multigraph (Martschat et 
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al., 2012).  Best-Cut is a variant of the well-known minimum-cut algorithm. A graph 

is formed using all the mentions as vertices. An edge is added between two mentions 

if there is a positive output from the mention-pair model. Then the set of edges are 

iteratively cut to form the coreference chains. 

According to (Nicolae and Nicolae, 2006), their approach does not utilize 

coreferent pairs involving pronouns. However, event coreference chains contain a 

significant proportion of pronouns (18.8% of the event coreference mentions in the 

OntoNotes4.0 corpus). Leaving them untouched is obviously not a preferable choice. 

In Chapters 6 and 7, we will propose an alternative chain formation method to 

incorporate coreferent pronouns into the graph partitioning process to accommodate 

its intensive occurrences in event chains. 

 

 

3.3 Chapter Summary 

In this chapter, we have briefly reviewed the conventional two-step framework for 

object coreference resolution. A bird’s view analysis is also given on the conventional 

chain formation method. The criticisms lead us to our proposed models and 

techniques to improve the conventional framework.  

Figure 3.3 shows the relations between Chapter 3 and Chapters 4, 5, 6, 7. 

Chapter 3 establishes the general resolution frame work while the other four chapters 

propose various improvements at their corresponding steps. 
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Mention Extraction (Chapter 4)

Chain Formation (Chapter 6 & 7)

Raw Texts

Coreference Results

Mention-Pair Resolvers (Chapter 5)

 
Figure 3.3: Relation among Chapters 
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Chapter 4: Event Mention Extraction 

The very first task of our problem is to extract the event mentions from the texts. The 

major challenge lies in distinguishing the event mentions from the object mentions. 

We use the system mentions generated from the syntactic parse tree. Different sets of 

rules and settings are applied to different syntactic categories such as noun phrase 

(NP), verb and pronoun. There are different sources of knowledge used for the event 

mention extraction task. Figure 4.1 below shows an overview of our proposed 

methods. Recalling from Figure 3.1 which is the overview of the two-step framework, 

the techniques proposed in this chapter works on the “Event Mention Extraction” 

step. 

 

Chain Formation

Raw Texts

Coreference Results

Mention-Pair Resolvers

Event Mention Extraction 
Parse Tree (NP, Verb & Pronoun)

Event Mentions

LDA Topic Model
(Section 4.3)

Heuristics Rule Filters
(Section 4.1)

WordNet Hypernymy Filters
(Section 4.2)

Object Mentions Ambiguous Mentions

Topic Related Event 
Key Words

Event MentionsObject Mentions Ambiguous Mentions

Raw Texts

 

Figure 4.1: Event Mention Extraction Overview 

 

Firstly, from the parse tree of the raw texts, the NP, pronoun and verb mentions 

are extracted. After that, the heuristic rule filter (Section 4.1) and WordNet 

hypernymy filters (Section 4.2) are applied to categorize the mentions into “Object”, 
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“Event” and “Ambiguous” categories. In the next step, the LDA model identifies a list 

of high priority event word/phrases. Then the categorised mentions will be further 

refined with the list of high priority mentions from LDA (Section 4.3). As the final 

results, the refined mentions will be passed to the mention pair resolvers. 

 

4.1 Heuristic-Based Extraction 

Heuristics rules are crafted using linguistic intuitions. First of all, all verb mentions 

(excluding modal verbs) are considered as event mentions. Secondly, since pronouns 

have too little information to classify them as event-pronouns versus object-pronouns, 

all the pronouns will be resolved by both event resolvers and object resolvers. Lastly, 

all the noun phrases ending with “-tion”, “-ing” or “-ment” are considered as event 

mentions
7
. 

 

4.2 WordNet-Based Extraction 

The heuristics in the previous section suffer from low coverage, especially for the 

case of noun phrases. Therefore, we propose to use the WordNet Hypernymy relation 

information as a semantic knowledge source for distinguishing event noun phrases 

and object noun phrases.  

All the noun phrases are subject to a categorization as event NPs, object NPs 

and ambiguous NPs. This categorization is done automatically using its hypernymy 

information from WordNet
8
. A list of event hypernyms and another list of object 

hypernyms are collected from the training corpus. If an NP’s hypernym matches 

event/object hypernym list, it will be classified as an event/object NP. If an NP’s 

hypernym matches none or both of the event and object hypernym list, it is classified 

                                                           
7
 In this thesis, we focus in English corpus only. Therefore, the heuristic features are also lan-

guage-specific. 
8
 Instead of conducting a word sense disambiguation, we use the first sense in WordNet. 
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as an ambiguous NP. A sample of the selected WordNet hypernymy list is tabulated 

in Table 4.1.  

 

 

In total, there are twenty-one hypernyms for event NPs and twenty-seven 

hypernyms for object NPs
9
. Since the ambiguous NPs may be either event or object, 

we present them to both event resolvers and object resolvers. In Figure 4.2, we 

illustrate the WordNet Hypernymy filter selection with an example. Given the 

mention is “Invasion”, we first obtain its hypernymy hierarchy from WordNet as 

“Invasion” → “Attack/Onslaught” → “Military_Operation” → “Operation”. Then we 

cross check with the Event Hypernymy List. Because “Invasion” belongs to 

“Operation” hypernymy and “Operation” is in “Event Hypernymy List”, mention 

“Invasion” will be classified as an event mention.  

Readers should take note that these twenty-one and twenty-seven hypernymies 

are not meant to find all the events and objects mentions. In this study we only focus 

on the event/object mentions which are in the coreference chains. The selected hy-

pernymies are just enough to find those mentions in coreference chains. 

 

                                                           
9
 The full hypernym list is given in Appendix A2. 

Event Hypernymy List Object Hypernymy List 

Human Act Location  

Operation Device  

Happening Occurrence Artifact 

Change of State Living Thing 

Killing Natural Object 

... ... 

Table 4.1 : Hypernymy List for Event v.s. Object NPs 
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Invasion

Attack / 
Onslaught

Military_O
peration

Operation

...

Event Hypernymy 
List

Human_Act

Operation

Happening

Change_of_State

Killing

...

Object Hypernymy 
List

Location

Device

Artifact

Loving_Thing

Natural_Object

...

 

Figure 4.2: WordNet Hypernymy Filters 

 

4.3 Topic-Based Extraction 

According to our experiments, one serious problem for the resolution system using 

the previous event mention extraction methods is the excessive number of false 

positive predictions of the mention-pair classifiers. Since the event mention 

identification is done before the coreference resolution, the mention extractor has to 

emphasize on the recall in order to include most of the event mentions for the 

mention-pair classifiers. As shown in our observations, the mention-pair models will 

produce a large number of false positive links. The overwhelming number of false 

positive links will mislead the chain formation process. Therefore we propose a 

dedicated event detection module to enhance the prediction of mention-pair 

classifiers. 

In our observation, each article will have its own central topic. Intuitively, the 

events closely related to the article topic have a higher probability of re-occurring in 

the article and thus forming coreference chains. For example, if a news article is 

talking about a large fall in the Dow Jones’s Index of New York Stock Exchange, the 

event mentions about the “index fall” will re-occur as “fall”, “drop”, “plunge”, “dive” 
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and their morphological variations. These mentions are highly likely to co-refer with 

each other. Other event mentions are less likely to be repeated and thus no 

coreference chains are formed. Therefore we propose to use a topic modelling module 

to find these high-priority key event mentions for each topic of the articles.  

Since the OntoNotes 4.0 corpus is not labelled with article topics, we use Latent 

Dirichlet allocation (LDA) in an unsupervised way to cluster the articles
10

. 

 
4.3.1 LDA-Based Topic Modeling 

Latent Dirichlet Allocation as introduced in (Blei et al., 2003) is a three-level 

hierarchical Bayesian model. Each document is represented as a set of   words, and 

the collection has   documents. Each word   in a document is generated from a 

topic distribution, which is a multinomial distribution over words. The topic indicator 

Z of the word   is assumed to have a multinomial distribution over topics, which in 

turn has a Dirichlet prior with a hyper-parameter. 

In our work, we use the training portion of the corpus to create the LDA model 

and form a set of document clusters  . Each cluster   in   is considered a topic though 

we do not have a specific semantically meaningful label (such as “sports” or “stocks”) 

for it. Each cluster   is associated with a list of words which is used to identify the 

topic related event mentions. This list is obtained from the LDA output. Since each 

word is assigned a probability that it belongs to the topic, we rank the list by this 

probability and use the top fifteen
11

 words in the list as key words for the documents 

in cluster  . 

During resolution, each testing document is labelled with one of the clusters in 

  from the LDA model trained above. After that, the associated key word list is used 

                                                           
10

 We use the open source LDA from http://www.cs.princeton.edu/~blei/lda-c/ 
11

 The number of top keywords, 15, is empirically selected. 
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to identify the topic related events. Only those mentions in the key list are considered 

as an event mention and presented to the mention pair classifiers.  

Besides the set of key words, there is a list of common phrases to use as event 

mentions. Such common phrases include “be”, “state”, “seem”, “say”, “announce” 

and etc. and their morphological forms
12

. 

 

4.3.2  Combined versus Separated Topic Models 

In event coreference resolution task, we have to handle the differences between 

syntactic categories, namely the verbs and noun phrases. Thus, we have two different 

settings to construct the LDA topic models. The first one simply uses a combined list 

mixing both verbs and noun phrases. Alternatively, we can construct two separated 

key word lists for verbs and noun phrases respectively.  

Using a single list may suffer from an unbalanced list that contains only one 

type of the mentions (only verbs or only noun phrases). It will miss a number of event 

mentions in the article. Since we cannot decide which setting is better theoretically, 

we find the better setting in an empirical way. 

  

4.4 Chapter Summary  

In this chapter, we have a deep look into the event mention detection subtask. At first, 

we use language specific heuristics filter such as “-tion” and WordNet hypernymy 

filter to identify event mentions. Furthermore, we propose to use topic-dependent 

prior event mention list to further refine the extracted mentions. The refined event 

mentions will be passed to the mention pair resolvers in the next chapter. 

                                                           
12

 The complete list of common phrases is given in Appendix A3 
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Chapter 5: Mention-Pair Resolvers 

After extracting the potential event mentions, we will present how to predict the 

coreferent mention pairs. In this chapter, we will investigate the phenomenon between 

different syntactic categories.  Figure 5.1 shows an overview of the mention-pair 

resolvers and our proposed techniques (utilizing competing classifiers’ results and a 

better training instance selection strategy). Recalling from Figure 3.1 which is the 

overview of the two-step framework, the techniques proposed in this chapter are 

working on the “Mention-Pair Resolution” step. 

 

Mention Extraction

Chain Formation

Raw Texts

Coreference Results

Mention-Pair ResolversExtracted Mentions

Object NP-NP 
Resolver

Coreferent Mention-Pairs

Object NP-Pronoun 
Resolver

Event NP-NP 
Resolver

Event Verb-NP 
Resolver

Event Verb-Verb 
Resolver

Event Verb-Pronoun 
Resolver

Event NP-Pronoun 
Resolver

Competing Classifier’s Results
(Section 5.4)

Competing Classifier’s Results
(Section 5.4)

Better Instance Strategy 
for every resolver

(Section 5.5)

Seven Resolvers (Section 5.1)
Flat Features (Section 5.2)
Structural Features (Section 5.3)

 

Figure 5.1: Mention Pair Resolvers Overview 
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5.1 Seven Distinct Mention-Pair Resolvers 

One major difficulty of event coreference lies in the gap between different syntactic 

types of mentions (e.g. nouns, verbs and pronouns). Different syntactic types of 

coreferent mentions show very different characteristics which require distinct features 

to resolve them. Following this observation, we have built five distinct resolution 

models for event coreferences involving noun phrases, pronouns and verbs. They are 

the Verb-Pronoun, Verb-NP, Verb-Verb, NP-NP and NP-Pronoun resolvers
13

. 

Conventionally, pronouns can only appear as anaphors but not antecedents. Therefore 

we do not train Pronoun-Pronoun, Pronoun-Verb and Pronoun-NP resolvers. In 

addition, we find the effective feature sets for Verb-NP and NP-Verb resolvers are the 

same. Therefore the Verb-NP resolver will handle the Verb-NP mention pairs in both 

forward and backward directions. 

With respect to the differences between object NPs and Event NPs, we train two 

distinct models to handle object NP-NP and event NP-NP resolution separately with 

distinct features. Similarly, we train separate resolvers with distinct features for 

event/object NP-Pronoun. In total, we have seven distinct mention-pair resolvers for 

different syntactic and semantic types of mentions. Five of them focus on event 

coreference while the other two focus on object coreference. The object coreference 

results are used to enhance event coreference performance by ruling out inappropriate 

anaphors. 

 

SVM Learning Model 

In theory, any discriminative learning algorithm can be used to learn a classifier for 

pronoun resolution. In our study, we use Support Vector Machine (Vapnik, 1995) to 

allow the use of kernels to incorporate the structural feature. One advantage of SVM 

                                                           
13

 The mention-pair resolvers are not sorted according to any order.  
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is that we can use a tree kernel approach to capture syntactic parse tree information in 

a high-dimensional space. 

Suppose the training set   consists of labeled vectors          , where   is the 

feature vector of a training instance and    is its class label. The classifier learned by 

SVM is: 

                     

   

  

where    is the learned parameter for a support vector   . An instance   is classified 

as positive if       . 

 

5.2 Flat Features 

In this section we will investigate the flat feature space for mention-pair resolvers. 

Flat features refer to the features without structural information. Our investigation 

starts with an analysis of why the feature set used for conventional object resolution 

system fails for event coreference resolution (Section 5.2.1). We then move on to 

understand the syntactic and semantic difficulties with event coreference (Section 

5.2.2). After that, we will propose our novel features for the challenging event 

coreference resolution task (Section 5.2.3.1~5.2.3.12). The proposed feature sets are 

designed with intuition from various knowledge sources including lexical, contextual, 

and syntactic and many others. 

 

5.2.1 Failure of Conventional Features 

In this section, we will examine the conventional features proposed for object 

coreference resolution. Table 5.1 gives a list of some features used in conventional 

noun phrase anaphora/coreference resolution which focus on object entity (Soon et al., 

2001; Ng and Cardie, 2002b; Yang et al., 2003; Luo et al., 2004). 
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However, most of these features are not useful for our task except the shallow 

positional features. In event anaphora resolution, we focus on event entity instead of 

real objects. Thus the features describing object characteristics such as number 

agreement, gender agreement and name alias will no longer function here. Also, our 

anaphor and antecedent pair consists of a verb and a noun phrase. The difference in 

word syntactic category will introduce extra difficulties using the conventional lexical 

features such as string matching and head matching. Furthermore, the difference in 

word syntactic category will cripple the noun phrase characteristic features for half of 

the pair. Grammatical features on appositive structure are no longer useful as well. 

 

Conventional Features Applicable to Event Anaphora Resolution 

Object Characteristics  

Number Agreement No  

Gender Agreement No  

Name alias No  

Grammatical Feature  

Appositive Structure No  

Table 5.1: Features for Conventional ObjectNP Resolution 

 

5.2.2 Complications of Event Coreference Resolution 

After showing the failure of the conventional features, we conduct an investigation on 

why the conventional features failed. Event coreference resolution incurs more 

difficulties as compared to traditional object coreference resolution in two aspects, 

syntactic and semantic. We will elaborate the difficulties in detail. 

 

Syntactic Difficulties 

In a syntactic view, object coreference resolution only involves mentions from the 

noun category while event coreference involves mentions from verbs as well. This 
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syntactic difference will cripple the traditional coreference features. The crippled 

features include mention characteristics features such as “if NP is a proper name”, 

semantic features such as “number/gender agreement” and grammatical features such 

as “appositive structure”. In addition, the event NP-Pronoun/NP-NP resolution 

requires very different linguistic features from the traditional ones. For example, 

previous semantic compatibility features only focus on measuring the compatibility 

between object such as “person”, “location” and etc. Event cases generally fall in the 

“other” category which provides no useful information in distinguishing different 

events. 

 

Semantic Difficulties 

In a semantic view, an object (such as a person, location, organization and etc.) is 

uniquely defined by its name (e.g. Barack Obama) while an event requires its role 

information to distinguish itself from other events. For example, “the crash yesterday” 

--- “crash in 1968” share the same event type, an air crash, but they are likely to be 

different events by their time argument. Similarly, “murder of Joe” --- “murder of 

John” and “conflict in Middle East” --- “conflict in Afghanistan” also shares same 

event types but distinguished by the patient and location arguments respectively. 

 

5.2.3 Features for Event Coreference Resolution 

After examining the difficulties in event coreference resolution, in the next several 

sub-sections, we are going to present the features we selected for our event 

coreference mention-pair resolvers. Different mention pair resolvers utilize different 

sets of features. In Table 5.3, the features used for various mention pair resolvers are 

tabulated. The leftmost column listed the feature groups. The middle column briefly 

explains the feature group. The rightmost column lists the mention pair resolvers 
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which the feature is applied to. In the rightmost column, e stands for event; o stands 

for object. Similarly, V, N and P stand for Verb, Noun Phrase and Pronoun 

respectively. For example, the second row on “String-Matching” feature group, the 

feature group is applied to event NP-NP resolver (eNN), object NP-NP resolver (oNN) 

and Verb-Verb resolver (VV). Similarly, eNP stands for event NP-Pronoun resolver 

and VN stands for Verb-NP resolver. 

In the next twelve sub-sections, we will explain each feature group in detail. 

The commonly used features such as position features will only be briefly introduced. 

The dedicated features for event coreference such as the synonymy relation features 

and Event WordNet Hypernymy features will be explained in more details. 

 

 

5.2.3.1 Positional Features 

A set of positional features is employed in our resolution system. They are employed 

from the conventional noun phrase anaphora resolution. Positional features measure 

the separating distance between an anaphor and its candidate in various units. These 

features are tabulated in Table 5.2. In general, the closer candidate is preferred. These 

features are especially helpful for pronoun resolution as pronouns usually come with 

too little information. The notation that those pronouns prefer the closer candidate is a 

common observation for pronoun resolution. It is also commented in (Yang et al., 2006 and 

Ng and Cardie 2002b).   

 

Positional Features:    Mi: Mention i; Mj: Mention j 

SentDist # of Sentences between Mi and Mj; 

PhraseDist # of NPs between Mi and Mj; 

WordDist # of words between Mi and Mj; 

Table 5.2: Positional Features 
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Table 5.3: Feature List (e: Event; o: Object; V: Verb; P: Pronoun; N: Noun Phrase) 

 

 

 

 

 

 

Feature Group Detail Used in  

Positional  
Sentence Distance, Word Distance, Phrase 

Distance;  
All 

String-Matching 
Full-Match, Partial-Match, Head-Match, 

Contained-In,  Cosine Similarity; 
eNN, oNN, VV 

Grammatical  Subject/Object in main/sub clauses Except VV 

Mention Characteristics 

(NP Type) 
Definite / Indefinite / Proper Name 

oNN, eNN, 

VN, oNP, eNP 

Mention Characteristics 

(Verb Type) 
Predicative / Passive / Common VN, VP, VV 

Mention Characteristics 

(Pronoun Type) 
Possessive/Reflexive/Common oNP, VP, eNP  

Mention-Semantic 

(NE-Semantic) 
Named entity semantic type oNN 

Mention-Semantic 

(WN-Object-Semantic) 
WordNet semantic types of object oNN, oNP  

Mention-Semantic 

(WN-Event-Semantic) 
WordNet semantic types of event eNN, eNP, VN 

Fixed-Pairing Feature Fixed Pairing of two mentions VN, eNN 

Morphological Relation 
If anaphor and antecedent are morpholog-

ical  
VN 

Synonymy Relation 
If anaphor and antecedent share synonym 

list  
eNN, VV,VN 

Surrounding Words / POS 
Non-stop-words near the anaphor and an-

tecedent  
eNP, oNP 

Contexts-Information 
Non-stop-words near the anaphor and an-

tecedent  
eNN, VN, VV 

Argument-Matching 
Event arguments from pre-modifiers and 

PP-attachments  
VN, VV, eNN 

NP-Antecedent  existing NP chains information VN, eNN, oNN 

Structural Information Minimum-Expansion  Except o/eNN 
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5.2.3.2 String-Matching Features 

This group of features measures the lexical similarity between two mentions. There 

are five features in this group, namely, Exact-Match, Partial-Match, Head-Match
14

, 

One-Contained-Another, and Cosine-Similarity. Table 5.4 elaborates the five features 

with explanations. Among them, the “Partial-Match” feature is only applied if the two 

mentions are both multi-word expressions. The “head” of a phrase is extracted from 

the parse tree using a set of rules. The word vector of a mention is the bag-of-word 

vector representation of a given mention. 

 

 Feature Evaluation (Mi: Mention i; Mj: Mention j) 

Exact-Match 0: if Mi is different from Mj. 

1: if Mi is same as Mj. 

Partial-Match 0: if Mi and Mj have no overlapping word. 

1: if Mi and Mj have at least 1 overlapping word. 

Head-Match 0: if head of Mi is different from head of Mj. 

1: if head of Mi is same as head of Mj. 

One-Contained-

Another 

0: if neither Mi nor Mj is a substring of the other.  

1: if Mi is a substring of Mj or Mj is a substring of Mi. 

Cosine Similarity The cosine similarity between the word vector of Mi 

and word vector of Mj. 

Table 5.4: String-Matching Features 

 

5.2.3.3 Grammatical Features 

This set of features aims to capture the grammatical roles of the anaphor and an 

antecedent candidate in a sentence. The details of this set of features are tabulated in 

Table 5.5. These features capture the grammatical preferences for a given anaphor.  

 

 

 

                                                           
14

 The details on how to extract phrase head can be found in Appendix A1. 
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NP or Pronoun: M 

Sbj_Main 1 if M is subject in main clause; else 0. 

Sbj_Sub 1 if M is subject in sub-clause; else 0. 

Obj_Main 1 if M is object in main clause; else 0. 

Obj_Sub 1 if M is object in sub-clause; else 0. 

Verb: V 

Main 1 if V in main clause; else 0. 

Sub 1 if V in sub-clause; else 0. 

Table5.5: Grammatical Features 

 

5.2.3.4 Mention-Characteristics Features 

A set of phrasal characteristic features is employed in our resolution system. They are 

inspired by conventional noun phrase anaphora resolution. This set of mention-

characteristics features includes three sub-categories: namely, NP-type features, Verb-

type features and Pronoun-type features. These features are tabulated in Table 5.6 

below. 

 

NP Type Features:                                    Mi: Mention i 

NP_i_Def 1 if Mi is definite; else 0; 

NP_i_Demo 1 if Mi is demonstrative; else 0; 

NP_i_First 1 if Mi is the first NP in its sentence; 

NP_i_Prop 1 if Mi is a proper name; 

Verb Type Features:                                 Mi: Mention i 

V_i_Pred 1 if Mi is a predicative verb; 

V_i_Pass 1 if Mi is a verb in passive mode; 

V_i_Comm 1 if Mi is a common verb; 

Pronoun Type Features:                           Mi: Mention i 

Pr_i_Poss 1 if Mi is a possessive pronoun; 

Pr_i_Refl 1 if Mi is a reflexive pronoun; 

Pr_i_Comm 1 if Mi is a common pronoun; 

Table5.6: Mention Characteristic Features 
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5.2.3.5 Mention-Semantic Features 

Conventional features try to match mentions into semantic categories like person, 

location, etc. Then, a conventional resolver evaluates the semantic-matching features 

to pair-up mentions from the same semantic type. In our object resolvers, we also 

employ this type of semantic features. They help to identify objects which are 

represented by named entity mentions. Besides the commonly used Named Entity 

semantic features, we also utilize the WordNet hypernymy information. The WordNet 

hypernymy information helps to identify object which are represented by the nominal 

mentions.  

However, event NPs exhibit a very different hierarchy in WordNet from the 

object NPs. A set of dedicated event hierarchy matching features is proposed to match 

events of the same type. Such rules will match from a WordNet hypernyms to several 

surface words or sub-hypernyms in the hypernymy hierarchy. For example, mentions 

under hypernymy class “Communication” will be matched to surface word “say”, 

“announce” and “tell” or mentions from sub-hypernymy class “transmission”, “mail” 

and “verbal communication”.  These rules are generated from linguistic intuitions and 

error analysis from our corpus
15

.  

 

5.2.3.6 Fixed Pairing Feature 

Fixed pairing is a list of common referential usage between an anaphor and its 

antecedent. For example, “say --- information” and “announce --- statement” are 

commonly used in a referential relation. From a linguistic point of view, 

“information” is the patient role in a “say” action. The relation between “say” and 

“information” is different from the synonymy and morphology relation described 

previously. The fixed pairing list is automatically generated from the training data by 

                                                           
15

 The full list of Event Incompatibility / Compatibility Rules is given in Appendix A6. 
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recording any encountered pairs of the head of NP anaphor and its verb antecedent 

occurring three times or more
16

. The feature is 1 if a candidate anaphor pair makes a 

hit in the pairing list and 0 if the pair does not exist in the pairing list
17

. 

 

5.2.3.7 Morphological Features 

Morphological features capture the inflectional and derivational relationship between 

the anaphor and its antecedent candidate, especially for verb-NP pairs. Morphological 

features help to bridge the gap between different word syntactic categories. This 

feature represents how close the anaphor and an antecedent candidate are in their 

meanings. A candidate with an inflectional or derivational relation with the anaphor is 

preferred over others to be the antecedent. For example, “confess” will be a better 

antecedent choice for “confession” compared to other verbs. WordNet is used to find 

the morphological forms of a given word. This feature is particularly useful for a 

Verb-NP mention pair because Verb-NP resolver requires morphological information 

to bridge the semantic gap between verbs and noun phrases. 

 

5.2.3.8 Synonymy Feature 

Synonym features are also used to capture the similarity in meanings between the 

anaphor and its antecedent candidate. For example, “assault” is a preferred candidate 

for anaphor “attack” (for the noun category). In the actual resolution, synonyms are 

also generated from the derivational forms of the anaphor and the candidates. This is 

to overcome the gap in word syntactic categories between an anaphor and a candidate. 

A list of synonyms (including synonyms of derivational forms) is generated for an 

anaphor and its candidate separately. The synonym feature will be evaluated by 

comparing the two lists. Feature values include cases as “Both are In the others’ 

                                                           
16

 The occurring threshold, 3, is empirically selected. 
17

 The full list fixed pairings is given in Appendix A5. 
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synonym List (BIL)”, “One In the other’s List (OIL)”, “Lists are Overlapping (LO)” 

and “Lists are Mutually Exclusive (LME)”. These four values are considered as 

ordinal with a descending order of BIL>OIL>LO>LME. A higher order indicates a 

more similar word meaning. WordNet is used for synonym list generation. Although 

this feature is used for both the Verb-NP and event NP-NP resolvers, it is shown to be 

critical for the Verb-NP mention-pair resolver.  

Figure 5.2 illustrates the scenario evaluating the synonymy feature for the pair 

“attack” --- “assault”. From the WordNet, we first obtain the synonym lists for both 

mentions “attack” and “assault”. “Attack” has synonyms as “assail”, “lash out”, 

“contend”, “snipe”, “assault”, “fight” and etc. “Assault” has synonyms as “attack”, 

“rape”, “violate”, “ravish”, “set on” and etc. There is one mention “assail” in both 

lists. “Attack” is in “Assault” synonymy list while “Assault” is in “Attack” synonymy 

list. The final feature value is “Both are In the others’ synonym List (BIL)”. 

 

attack

assail

lash out

assault

snipe

contend

fight

...

assaultassail

set on

violate

attack

ravish

rape

...

 
Figure 5.2: Illustration for Synonymy List Feature 
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5.2.3.9 Surrounding Words/POS Tags and Co-occurrences 

This group of features measures the matching of surrounding words/POS-tags and co-

occurrences of surrounding words/POS-tags. It consists of two sub-groups of features. 

 

 

Surrounding Words and POS Tags 

The intuition behind this set of features is to find potential surface words that occur 

most frequently with the positive instance. Since most of verbs occur before the 

pronoun occurrence, we have built a frequency table from the preceding five words of 

verb to succeeding five surface words of the pronoun. After the frequency table is 

built, we select those words with confidence > 70%
18

 as features. Similar to 

Surrounding Words, we have built a frequency table to select surrounding POS tags 

which occur most frequently with a positive instance. 

 

Co-occurrences of Surrounding Words 

The intuition behind this set of features is to capture potential surface patterns such as 

“It caused…” and “It leads to”. These patterns are associated with strong indication 

that the pronoun “it” is an event type pronoun. The range for the co-occurrences is 

from preceding five words to succeeding give words. All possible combinations of the 

word positions are used for a co-occurrence word pattern. For example “it leads to” 

will generate a pattern as “S1_S2_lead_to” where S1 and S2 mean the succeeding 

position 1 and 2. Similar to the previously mentioned surrounding words feature, we 

will compile corpus statistics analysis and select the co-occurrence patterns with a 
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. The 70% threshold is empirically 

selected based on training data. 
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confidence greater than 70%. Following the same process, we have also examined the 

co-occurrence patterns for surrounding POS tags. 

 

5.2.3.10 Contextual Information Features 

This group of features captures the contextual information using different degrees of 

matching. There are three sub-groups in this category. The first group measures exact 

matching whiles the second group measuring the degree of matching using cosine 

similarity. The last group measures the identified coreferential relations in context. 

 

Contextual Phrases Features 

This group of features measures the similarity and referential relation that exist in the 

contexts of an anaphor and its candidate.  These features are derived based on the 

following intuitions. First, an event is not only represented by its main action verb, 

but also the information (e.g. roles of action) extracted from surrounding phrases. 

Second, when an event is referred in a later occurrence, the related information may 

reoccur in the contexts. Therefore, this group of feature is designed to capture such 

knowledge. There are two features in this group. 

 

Context Word Similarity 

This feature measures the similarity between an anaphor’s context and its candidate’s 

context. Stop words (such as “in”, “the” and etc.) are removed from contexts before 

calculating the similarity. The similarity is calculated based on a window of ±5 

context words. The number of words in common is used to represent the contextual 

similarity. Inflectional and derivational forms in the contextual words are considered 

as matching words. 
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Coreferential Relation in Contexts 

This feature is 1 if an object coreferential relation exists between the anaphor’s 

context and its candidate’s context. The idea is to capture matching roles of action in 

two contexts. For example,  

 

 

“[George W. Bush]1 {approved}2 the new military plan …. {[The 

president]1 ’s decision}2 agitated various anti-war groups …”.  

(Example 5.1) 

 

By knowing that [George W. Bush]1 and [The president]1 corefer with each other, 

{approved}2 is a preferable candidate for {The president’s decision}2 as they share a 

common attribute value “President Bush”. 

 

5.2.3.11 Event-Arguments Matching Feature 

Event NPs have different characteristics from the object NPs. Event NPs require the 

event roles to distinguish it from other events while the object NPs are quite self-

explanatory. The conventional features such as string-matching and head-matching 

will not work properly when handling cases like “conflicts in Middle East” vs. 

“conflicts in Afghanistan”. In our approach, a sophisticated argument matching 

feature is proposed to capture such information. Argument information is extracted 

automatically from the pre-modifiers and prepositional phrase attachments
19

. 

 

5.2.3.12 NP-Antecedent Features 

When an NP corefers with a previous one, people will naturally replace the original 

phrase with a concise expression. By using the full expression from an NP’s 
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 More details can be found in Appendix A4. 
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antecedent, we can obtain extra knowledge for the later concise expression. For the 

antecedent knowledge of NPs, we use our trained object coreference resolution results 

for this information. There are three features in this group. 

 

Morphological Feature with NP’s Antecedent  

This feature is evaluated by comparing each of the NP’s antecedents with the verb for 

an inflectional or derivational relation. It is considered as a morphological relation if 

one of the NP’s antecedents is an inflectional or derivational word from the verb. 

 

Synonym Feature with NP’s Antecedent  

Similar to the Section 5.2.3.8, the synonym list from the NP coreferential expressions 

is used to compare with the verb’s synonym list. The final feature value is taken to be 

the highest order as described in the previous section on synonym features. 

 

Named Entity Feature with NP’s Antecedent 

This feature is used to rule out inappropriate NPs for event anaphoric relation. 

Consider the object coreferential expressions “George W. Bush” and “the president”. 

The first one will be marked as named entity but not the latter. By using the object 

NP’s coreference knowledge, we can rule out the inappropriate NP “the president” as 

it refers to a named entity. 

 

In the above Section 5.2.3, we have explained each group of flat features in 

details. These features include information from positional, grammatical, syntactic 

and semantic aspects. Some of them are borrowed from the conventional object 

coreference resolution such as grammatical and positional features. Some are solely 

designed for event coreference resolution such as morphological and synonymy 
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features. After introducing these flat features, we will move on to Section 5.3 which 

incorporates the structural information in an implicit way. 

 

5.3 Structural Information 

A parse tree that covers an event anaphoric noun phrase and its antecedent candidate 

could provide us much syntactic information related to the pair. The commonly used 

syntactic knowledge for noun phrase resolution, such as grammatical roles or the 

governing relations, can be directly described by the tree structure. Other syntactic 

knowledge that may be helpful for resolution could also be implicitly represented in 

the parse tree. Therefore, by comparing the common sub-structures between two trees 

we can find out to what degree the two trees contain similar syntactic information. 

This can be done using a convolution tree kernel. The value returned from the tree 

kernel reflects the similarity between the two instances in syntax. Such syntactic 

similarity can be further combined with other knowledge to compute the overall 

similarity between two instances, through a composite kernel. Although there are 

other methods to incorporate the structural information, we choose the convolution 

tree kernel because it can incorporate the structural knowledge in an implicit way 

without manual intervention on structural feature formulation. The convolution tree 

kernel has shown its success as (Moschitti, 2004;2006; and Yang et al., 2006). 

Normally, parsing is done at the sentence level. However, in many cases a noun 

phrase and an antecedent candidate do not occur in the same sentence. To present 

their syntactic properties and relations in a single tree structure, we construct a syntax 

tree for an entire text by attaching the parse trees of all its sentences to a pseudo root 

node. Having obtained the parse tree of a text, we shall consider how to select the 

appropriate portion of the tree as the structured feature for a given instance. As each 
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instance is related to a noun phrase and a candidate, the structured feature at least 

should be able to cover both of these two expressions. 

Generally, the more substructure of the tree is included, the more syntactic 

information is provided. However, at the same time the noise originating from parsing 

errors will be introduced. In our study, we examine three possible structured features 

that contain different substructures of the parse tree. 

 

5.3.1 Minimal-Expansion Tree 

This feature records the minimal structure covering both the pronoun and the 

candidate in the parse tree. It only includes the nodes occurring in the shortest path 

connecting the pronoun and the candidate, via the nearest commonly commanding 

node.  When the pronoun and antecedent are from different sentences, we will find a 

path through the pseudo “TOP” node which links all the parse trees of the sentences 

of an article. Considering the following example,  

 

“This was an all-white, all-Christian community that all the sudden was 

taken over -- not taken over, that's a very bad choice of words, but 

[invaded] by, perhaps different groups. 

[It] began when a Hasidic Jewish family bought one of the town's two 

meat-packing plants 13 years ago.” 

(Example 5.2) 

 

The Minimum-Expansion structural feature of the instance {invaded, it} is 

circled with a solid line in Figure 5.3. Basically, it consists of a syntactic path 

connecting the two entities. 
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It began when a .

PRP VBD WRB DT
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VBD NNSJJRB,VBNCC

NP-PRD

SBAR

S

VP

VP PP NP

ADVP

 
Figure 5.3: Minimum-Expansion Tree 

 
 

5.3.2 Simple-Expansion Tree 

Intuitively, the Minimum-Expansion tree could, to some degree, describe the syntactic 

relationship between the candidate and the pronoun. However, it is incapable of 

capturing the syntactic properties of the candidate or the pronoun, because the tree 

structure surrounding the expression is not taken into consideration. To incorporate 

such information, the feature Simple-Expansion not only contains all the nodes in 

Min-Expansion, but also includes the first-level children of these nodes
20

 excluding 

the punctuation. For the same example above, the simple-expansion structural feature 

of the instance {invaded, it} is circled with a dashed line in Figure 5.4. We can see 

that on the right sentence’s tree, “TOP→S→VP” is not further expanded as there are 

                                                           
20

 If the pronoun and the candidate are not in the same sentence, we will not include the nodes 

denoting the sentence before the candidate or after the pronoun. 
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no more nodes to include below “VP” node. Similarly, the node “NP” for “perhaps 

different groups” is included to provide a clue that we have a noun phrase at the 

object position of the candidate verb.  

It began when a .

PRP VBD WRB DT

…...

.

NP-SBJ

WHAD

VP

SBAR-

TMP

NP-SBJ

VP

S

VP

S

…...

TOP

S

.

.

groupsdifferentperhaps,invadedbutwasThis …...

DT

NP-SBJ VP

VBD NNSJJRB,VBNCC

NP-PRD

SBAR

S

VP

VP PP NP

ADVP

 
Figure 5.4: Simple-Expansion Tree 

 

 

5.3.3 Full-Expansion Tree 

This feature focuses on the whole tree structure between the candidate and pronoun. It 

not only includes all the nodes in Simple-Expansion, but also the nodes (beneath the 

nearest commanding parent) that cover the words between the candidate and the 

pronoun
21

. Such a feature keeps the most information related to the pronoun-candidate 

pair in comparison to the other two trees. 
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 We will not expand the nodes denoting the sentences other than where the pronoun and the 

candidate occur. 
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Figure 5.5: Full-Expansion Tree 

 

Figure 5.5 shows the structure for the feature Full-Expansion of the instance 

{invaded, it}. As illustrated, the “NP” node for “perhaps different groups” is further 

expanded to the POS level. All its child nodes are included in the full-expansion tree 

except the surface words. 

 

In Sections 5.3.1~5.3.3, we have introduced three expansion trees to encode the 

structural information. From minimum-expansion to full-expansion, more and more 

contextual and structural information is incorporated. However, more noises are 

introduced as well. Since we cannot decide which one is better conceptually, we will 

compare the three expansion trees by their empirical performances in Section 8.4.2.  
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5.3.4 Incorporate Structural Knowledge through Convolution Tree Kernel 

Given structural knowledge in the form of a parse tree, we use the same convolution 

tree kernel as described in (Collins and Duffy, 2002) and (Moschitti, 2004) to 

incorporate it into the SVM model in Section 5.1. 

Generally, we can represent a parse tree T by a vector of integer counts of each 

sub-tree type (regardless of its ancestors): 

                                  

                                                 

This results in a very high dimensionality since the number of different sub-

trees is exponential in its size. Thus it is computationally infeasible to directly use the 

feature vector     . To solve the computational issue, the tree kernel function is 

introduced which is capable of calculating the dot product between the above high 

dimensional vectors efficiently. The kernel function is defined as follows: 

                          

                     
 

 

                 
           

 

where    and    are the sets of all nodes in trees    and   , respectively, and       is 

the indicator function that is 1 if and only if a sub-tree of type   occurs with root at 

node n and zero otherwise.  

Collins and Duffy (2002) show that           is an instance of convolution 

kernels over tree structures, and which can be computed in               by the 

following recursive definitions   et                         : 
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(1) if    and    do not have the same syntactic tag or their children are different 

then              

(2) else if their children are leaves (i.e. POS tags), then             ; 

(3) else                                     
      
    

where        is the number of the children of    ,         is the  th
 child of node   

and            is the decay factor in order to make the kernel value less variable 

with respect to the tree sizes. In addition, the recursive rule (3) holds because given 

two nodes with the same children, one can construct common sub-trees using these 

children and common sub-trees for further offspring. 

Besides the above convolution parse tree kernel                       

defined to capture the syntactic information between two instances    and   , we also 

use another kernel       to capture flat features.  

The syntactic tree knowledge from the tree kernel       is combined with the 

flat feature kernel       linearly: 

                                       

Both of the kernels are normalized by: 

         
        

                  
 

 

 

5.4 Utilizing Competing Classifiers’ Results  

For the same mention, different mention-pair resolvers will resolve it to different 

antecedents. Some of these resolution results contradict each other. In the following 

example: 
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“USA Today reports {some evidence} that has been uncovered shows Bin 

Laden financed [the attack] and assigned one of his top assistants to 

supervise [it].” 

    (Example 5.3) 

it

some evidence

the attack

Object NP-Pronoun 
Resolver

Event NP-Pronoun 
Resolver

Competing 
Classifiers’ Results

Competing 
Classifiers’ Results

 
Figure 5.6: Competing Classifiers' Results 

 

Figure 5.6 shows the competing relation of the example above. For the anaphor 

[it], the event NP-Pronoun resolver may pick [the attack] as the antecedent while the 

object NP-Pronoun resolver may pick {some evidence} as the antecedent. Instead of 

choosing one as the final resolution result from these contradicting outputs, we feed 

the object resolver results into the event resolvers as a feature and re-train the event 

resolvers
22

. The idea is to provide the learning models with a confidence on how 

likely the anaphor refers to an object. 

 

5.5 Better Instance Selection Strategy  

As we mentioned previously, the traditional training instance selection strategy as in 

(Ng & Cardie, 2002) has a significant weakness. The original purpose of mention pair 

resolvers is to identify any two coreferent mentions (not restricted to the closest one). 

By using the previous training instance selection strategy, the selected training 

                                                           
22

 The SVM-outputs from object resolvers are transformed into a confidence value in the 

range of [-1, 1]. The transformation is done using a sigmoid function. After that the confi-

dence values are used as a feature for event resolvers. 
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instances actually represent a sample space of locally closest preferable mention vs. 

locally non-preferable mentions. In most of previous works, it shows a reasonably 

good performance when using the “best-link” chain formation technique. Our 

empirical investigation (in Section 8.4.2) shows it actually misguided the graph 

partitioning methods. Therefore, we propose a revised training instance selection 

strategy which reflects the true sample space of the original coreferent/non-coreferent 

status between mentions. In brief, our revised strategy exhaustively selects all the 

coreferent mention-pairs as positive instances and non-coreferent pairs as negative 

instances regardless of their closeness to the anaphor. Consider the following example: 

 

“…linking {Saudi terrorist Osama Bin Laden} to [the bombing]. {USA 

Today} reports {some evidence} that has been uncovered shows {Bin 

Laden} financed [the attack] and assigned one of his {top assistants} to 

supervise [it].” 

(Example 5.4) 

 

 
Conventional 

Strategy 
Our Strategy 

   

Positive Instances [the attack]–[it] 
[the attack]–[it] 

[the bombing]–[it] 
   

Negative Instances {top assistants}–[it] 

{top assistants}–[it] 

{Bin Laden}–[it] 

{USA Today}–[it] 

{some evidence}-[it] 

{ Saudi terrorist Osama Bin Laden 

}–[it] 

Table 5.7: Better Instance Selection Strategy 
 

In Table 5.7, the traditional instance selection scheme will only select [the 

attack]–[it] as a positive instance and {top assistants}–[it] as a negative instance. Our 
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revised instance selection scheme will select an additional positive instance [the 

bombing]–[it] and additional negative instances such as {Bin Laden}–[it], {USA 

Today}–[it] and other NP mentions in curly brackets. Thus the full sample space is 

represented using our training instance selection strategy. 

 

5.6 Chapter Summary  

In this chapter, we have elaborated the seven mention pair resolvers in details. 

Multiple groups of features are incorporated into the mention pair resolvers including 

positional, grammatical, and structural and many others. On top of the carefully 

designed features for each individual resolver, we also propose two methods to 

improve the mention pair resolution performance. The first method is to utilize the 

competing classifiers’ results which improve the event resolvers using object 

probability of a given mention. The second method is a revised training instance 

selection strategy which helps to produce better chain formation results. 

After identifying the coreferent mention pairs, we will move on to form the 

coreference chains using the coreferent mention pairs. In the next two chapters, we 

will introduce two graph partitioning approaches to form the coreference chains. The 

two methods have their own advantages and disadvantages. The first one is spectral 

graph portioning which is introduced in Chapter 6. The second one is random walk 

graph partitioning which will be introduced in Chapter 7. 

 



56 
 

Chapter 6: Chain Formation using Spectral Graph 

Partitioning 

After obtaining the coreferent mention pairs in Chapter 5, we will move on to the 

chain formation step. The first method we proposed is spectral graph partitioning. The 

very first reason to use this method is its robustness and efficiency in computation. In 

addition, spectral graph partitioning also enables us to conveniently incorporate the 

pronoun coreference information. Furthermore, we proposed techniques to employ the 

linguistic knowledge to improve clustering results. Figure 6.1 shows an overview of 

spectral graph partitioning model and our proposed improvement techniques. Recall 

form Figure 3.1 which is the overview of the two-step framework, the techniques 

proposed in this chapter concern the “Chain-Formation” step. 

 

Mention Extraction

Raw Texts

Coreference Results

Mention-Pair Resolvers

Chain Formation using 
Spectral Graph Partitioning

Coreferent Pairs

Mention Similarity Graph

Pruned Similarity Graph

Pronoun Coreference
(Section 6.1.2)

Edge-Pruning using
1. Semantic Incompatibility
2. Negative Edge Propagation
(Section 6.2)

Standard 
Spectral Graph Partitioning 

Process

Clustering Results

Seed Clusters guided by
1. Heuristic
2. Distance 
(Section 6.3)

Ordered 
Eigen-Decomposed Points

(Section 6.4)

Figure 6.1: Overview of Spectral Graph Partitioning 
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6.1 Brief Introduction on Spectral Graph Partitioning 

Spectral graph partitioning (also known as spectral clustering) has made its success in 

a number of fields such as image segmentation (Shi and Malik, 2000) and gene 

expression clustering (Shamir and Sharan, 2002).  

Compared to the “traditional algorithms” such as  -means or minimum-cut, 

spectral clustering has many fundamental advantages. Results obtained by spectral 

clustering often outperform the traditional approaches, and spectral clustering is very 

simple to implement and a clustering can be found efficiently by standard linear 

algebra methods. More attractively, according to (Luxburg, 2006), spectral clustering 

does not intrinsically suffer from the local optima problem.  

 

6.1.1 Applying Spectral Graph Partitioning to Event Coreference Resolution 

After deriving the potential coreferent mention pairs using the SVM classifiers, we 

further use spectral graph partitioning to form the globally optimized coreference 

chains. The spectral clustering process is illustrated in Figure 6.2. 

 

 

Figure 6.2: Spectral Graph Partitioning Process 
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The similarity graph is formed using the SVM confidence
23

 outputs. The nodes 

of the similarity graph are the event mentions in the document (Mentions M1-M6 in 

Figure 6.2: Spectral Graph Partitioning Process). The edges are the positive coreferent 

links identified by the mention-pair classifiers. The weight of an edge is the 

corresponding SVM confidence output
24

. 

After forming the similarity graph, we obtain the Eigen-vectors of the matrix 

representation of the similarity graph. The Eigen-vectors are ranked according to their 

corresponding Eigen-values following a descending order. After that, we use the top 

eight Eigen vectors to create the Eigen-decomposed points for the event mentions
25

. 

Each of the original event mentions is represented as an Eigen-decomposed point 

which is denoted by a coordinate in the transformed Euclidean space. 

After representing each event mention as an Eigen-decomposed point, the 

clustering is then conducted by using the Euclidean distance between the points. The 

points within a radius   is clustered together to form an event chain
26

. We did not use 

the conventional k-mean clustering because of two reasons. First, the performance of 

 -means greatly depends on the choice of  . However, the choice of   (corresponding 

to number of events in a document) is hard to decide. Second, we are only interested 

in the event mentions. Therefore, we only pick the high priority event mentions and 

group the mentions in close proximity together as one event. Our modified version of 

spectral graph partitioning can avoid the hard decision of   and concentrate on the 

event mentions. At the same time, the computational complexity is also reduced as we 

                                                           
23

 Confidence is computed from kernel outputs using the sigmoid function. 
24

 We consider an edge is positive if its SVM output is positive. (the corresponding confi-

dence value will be > 0.5 )  
25

 Eight is selected empirically through corpus investigation of the training set. More details 

can be found in Appendix B1. 
26

 The radius r is empirically defined using the training part of the corpus. More details can be 

found in Appendix B1. 
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can ignore a large number of object mentions in the original mention graph. Figure 

6.3 gives the pseudo-process of our spectral graph partitioning
27

. 

 

Given a set of points (mentions) S = {s1, … sn}in R
l
 that we want to cluster into at 

most k subsets: 

1. Form the similarity matrix (affinity matrix) A ⋲ R
nxn 

where Aij is the SVM 

confidence value between si and sj; 

2. Define D to be the diagonal matrix whose (i, i)-elements is the sum of A’s i
th

 

row, and construct matrix L = D
-1/2

AD
-1/2

  
28

; 

3. Find x1, x2, …xk, the k largest eigenvectors of L (chosen to be orthogonal to 

each other in the case of repeated eigenvalues), and form matrix X = 

[x1x2…xk] ⋲  R
nxk

 by stacking the eigenvectors in columns; 

4. Form the matrix Y from X by renormalizing each X’s rows to have unit 

length (i.e. Yij = Xij / (∑jXij
2
)
1/2

); 

5. Treat each row of Y as a point in R
k
, from the select event points (mentions) 

group the points in close proximity of an event points as an event cluster. 

 Figure 6.3: Algorithm of Our Spectral Graph Partitioning  

 

 

6.1.2 Incorporating Pronoun Coreference Information 

Besides the advantages of spectral graph partitioning model above, one particular 

reason to employ it is that the previous best-cut approach failed to incorporate 

pronoun information in their similarity graph. It may not be an issue in object 

coreference as pronouns comprise only a relatively small proportion (9.78% of the 

object mentions in OntoNotes 4.0 are pronouns). However, in event coreference, 

pronouns contribute to 18.8% of the event mentions. As we further demonstrate in our 

corpus investigation, event chains are relatively more sparse and shorter than object 

chains. In fact, a significant proportion of the event chains consists only two mentions: 

the pronoun and its verb/NP antecedent. Removing pronouns from the similarity 

                                                           
27

 More details about spectral graph partitioning can be found in Appendix A9. 
28

 Readers familiar with spectral graph theory may be more familiar with the Laplacian I-L. 

However as replacing L with I-L would complicate our later discussion, and only changes the 

eigenvalues (from λi to 1-λi) and not the eigenvectors, we instead use L. 



60 
 

graph will break a significant proportion
29

 of the event chains. Thus we propose this 

spectral graph partitioning approach to overcome this inappropriateness of the 

previous models.  

In this work, we propose several sophisticated enhancements to make spectral 

clustering a more capable method for event coreference resolution. These 

enhancements utilize semantic knowledge and model characteristics of spectral 

clustering. 

In the following three sub-sections, we will present our proposed techniques. 

Pruning the inappropriate edges utilizes semantic and linguistic knowledge. Since we 

found the performance of spectral clustering is affected by the ordering of points and 

the existence of seed clusters by prior knowledge, we propose to form the seed 

clusters using two kinds of knowledge source and ordering the Eigen-decomposed 

points to utilize this model-specific characteristic of spectral clustering. 

 

6.2 Pruning of Inappropriate Edges  

The first technique we propose is to prune the inappropriate edges in the similarity 

graph. The pruning is conducted by two kinds of heuristics. The first one is semantic 

incompatibility. The other is one-step negative edge propagation. This technique 

works on the similarity graph corresponding to Stage (a) in Figure 6.2. 

 

6.2.1 Eliminating Semantic Incompatibility 

Semantic incompatibility rules are used to eliminate inappropriate edges between 

incompatible mentions in the similarity graph.  Although a number of features in the 

mention-pair models are designed to capture such incompatibilities, SVM can only 

produce soft constraints. Thus, the hard constraints such as semantic incompatibility 

                                                           
29

 According to our observation, 34.6% of the event chains will be broken if pronouns are ig-

nored from chain formation. 
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cannot be enforced directly in the SVM models. The semantic incompatibility rules 

here are an enforcement of the hard constraints to overcome the shortcoming of the 

SVM model. To accommodate more sophisticated incompatibility constraints, we 

designed the constraints not only using the surface words of the event mentions, but 

also the WordNet hypernymy relations of the event mentions. For example, the 

mention “commence” should not be linked with any mentions under the hypernymy 

“communication”. There are a total of twenty-eight of such rules created from the 

error analysis on training data
30

.   

Furthermore, the event arguments are checked for the two event mentions. This 

rule is to filter out cases as “conflicts in Middle East” vs. “conflicts in Afghanistan”. 

The role of the argument is decided by syntactic heuristics. Only location and date-

time arguments are matched. 

 

6.2.2 Propagating the Negative Edges 

As we mentioned above, the positive outputs from SVM models are used to form the 

positive edges in the similarity graph. We utilized the strong negative SVM outputs as 

negative edges to prune inappropriate positive edges. The strong negative edges are 

propagated one step to detect the potential false positive edges. This pruning is 

particularly effective for the less informative mentions such as pronouns and short 

noun phrases. 

For example, the event pronoun “it” can be resolved to two verb mentions 

“attack” and “announce” by the Verb-Pronoun resolver. The SVM confidence output 

for edge “attack”---“it” is 0.8 and that for edge “announce”---“it” is 0.6.  The situation 

is illustrated in Figure 6.4. 

                                                           
30

 The full list of Incompatibility Pruning Rules can be found in Appendix A7. 
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attack

it

announce

0.6

0.8

0.02

Negative Edge

Positive Edge

Pruned Edge

 

Figure 6.4: Negative Edge Propagation 

 

If we use only the positive SVM outputs, both edges “attack”---“it” and 

“announce”---“it” are included in the similarity graph. However, the SVM output 

from Verb-Verb resolver for edge “attack”---“announce” may be a negative value and 

produce a low confidence of 0.02. By propagating this negative edge “attack”---

“announce”, we know there is a conflict between the two edges “attack”---“it” and 

“announce”---“it”. Thus we will choose only the “attack”---“it” edge with a higher 

confidence and prune the edge “announce”---“it” from the similarity graph. 

 

6.3 Seed Cluster Creation 

The second technique we proposed to enhance the spectral clustering process is to 

form seed clusters before running the clustering. The seed clusters are created using 

two kinds of heuristics. The first kind is formed using semantic knowledge. The 

second kind is formed using the proximity of the points. This technique works on the 

Eigen decomposed points corresponding to Stage (b) in Figure 6.2. 
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6.3.1 Knowledge Guided Seed Clusters 

This kind of rule is used to create the seed clusters using semantic knowledge. As we 

mentioned, the SVM model cannot enforce hard constraints. It cannot guarantee to 

link two mentions although they can be identified using semantic knowledge. 

The rules we used here include two types: 

 

1) Fixed pairing of head words: 

A list of fixed pairing of head-words is collected from training corpus. These rules are 

used to link mentions like “say”---“statement”. These word pairs generally cannot be 

resolved by other features we have employed. Therefore we create these word pairs 

from error analysis of the training data as predefined background knowledge. There 

are in total eighteen such pairs
31

. The set of fixed-pairing words are the same as in 

Section 5.2.9. 

 

2) Compatible Event Arguments with compatible head word 

Two mentions are linked together if the head words are synonyms of each other and 

have at least one compatible event arguments. 

 

These heuristically formed clusters are very useful to connect event chains that are 

separated as several small clusters after spectral decomposition. This separation may 

be caused by the  -sentence window we assigned for mention-pair resolvers. Thus if 

the same event chain is separated as two or more clusters after spectral decomposition, 

we need these heuristic rules to join them back. The effect of such seed clusters is 

demonstrated in Figure 6.5(a). 

 

 

                                                           
31

 The full list of Fixed Pairing Words can be found in Appendix A5. 
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6.3.2 Proximity Guided Seed Clusters 

This heuristics will form the clusters of points very close to each other. We 

empirically choose a small radius   as           32
. All the points that can be fitted 

into such a small cluster will be formed before running the clustering of all points. For 

example, in Figure 6.2(b), P1 and P5 are very close to each other, so they will form a 

seed cluster before running the clustering step. These close distance points are usually 

cases of very strong coreference pairs such as multiple mentions of “the confession”. 

These points should form a cluster. However, the order of points in the clustering 

process will affect the final results. Theses points may be accidentally separated. 

Therefore the distance guided seed clusters will prevent such drawbacks and lead to a 

better clustering results. The effect of the distance-guided seed clusters is illustrated in 

Figure 6.5(b). 

 

(a) Knowledge-Guided Seed Cluster (b) Distance-Guided Seed Cluster

say
the 

statement

say
the 

statement

Seed 
Cluster

Before

After

Before

After

Seed 
Cluster

 
Figure 6.5: Results Before and After Applying Seed Clusters 

  

 

                                                           
32

 The value of e is empirically chosen by analysis of the training corpus. More details can be 

found in Appendix B1. 
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6.4 Ordering of Eigen-Decomposed Points 

After the Eigen-decomposition of the Laplacian matrix of similarity graph, we 

represent each event mention as a point in the Euclidean space. Though we simplify 

the clustering process by this decomposition, we also lose textual meaning of the 

event mentions. In order to make up for such loss, we ordered the decomposed points 

by their textual expression.  

The ordering is done in the following way: 

1) The verbs points are put in front of the noun phrases and pronouns; 

2) The noun phrases points are put in front of the pronouns; 

3) When comparing between two verbs or two noun phrases, the point with longer 

mention string is put in front of the shorter one. 

By putting the verbs in the beginning of the list, each different event chain will have a 

verb to form its cluster. The pronouns are put at the end of list and are prohibited from 

creating new clusters because they carry very little information. NPs are ranked by 

their string length by assuming longer strings convey more information. This 

technique also works in Stage (b) of Figure 6.2. The ordering effect is elaborated in 

Figure 6.6.  

 

Random Ordering  Our Ordering 

it 

 

exploded 

the attack a terrorist bombing 

a terrorist bombing the attack 

exploded it 

it it 

Figure 6.6: Ordering of Points 
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6.5 Chapter Summary 

In this chapter, we have shown how to form the event chains using spectral graph 

partitioning method. In addition, we proposed to improve the chain formation 

performance by utilizing the pruning of the inappropriate edges, the seed clusters and 

the ordering of the decomposed points. These methods incorporated the linguistic 

knowledge and proximity heuristics. 

 In the next chapter, we will introduce another chain formation approach using 

the random walk graph partitioning. With the new approach, we are able to utilize the 

linguistic knowledge in a dynamic way.  
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Chapter 7: Chain Formation through Random Walks  

In Chapter 6, we have discussed a chain formation technique using spectral graph 

partitioning. In this chapter we will present another chain formation method by 

random walks through the mention graph. Although spectral graph partitioning shows 

its advantages in the chain formation task, the random walk graph partitioning model 

demonstrates its own specialties in various ways:  

Firstly, in the modeling aspect, it can achieve similar results as spectral graph 

partitioning. Secondly, it can model certain corpus statistical knowledge through the 

terminating criteria and the termination probability. Thirdly, it can incorporate the 

relevant linguistic knowledge as constraints and preferences. Instead of the static 

usage of such knowledge in spectral graph partitioning, they are imposed dynamically 

in the random walks model. Furthermore, the random walk model enables consistency 

checking at the chain level instead of at the mention-pairs level in spectral graph 

partitioning. Last but not least, the random walk model further employs the object 

mention nodes to prune the inappropriate chains.  

The overview of the random walk mode (with necessary modifications) and our 

proposed techniques (incorporation of linguistic constraints and preferences and 

pruning using object mention graph) is illustrated in Figure 7.1. Recall from Figure 

3.1 which is the overview of the two-step framework, the techniques we propose in 

this chapter work on the “Chain-Formation” step. 

 



68 
 

Mention Extraction

Raw Texts

Coreference Results

Mention-Pair Resolvers

Chain Formation using Random Walks
Coreferent Pairs

Mention Similarity Graph

Pronoun Coreference
(utilized as in Section 6.1.2)
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Terminating Probability

(Section 7.2.3)

Self-Interacting Random Walks 
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(Section 7.2.2)
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(Section 7.4)
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(Section 7.3.2)

Starting Point 
Selection

(Section 7.2.4)

 
Figure 7.1: Overview of Random Walk Model 

  

7.1 Brief Introduction to Random Walk 

The random walk model has made its success in several NLP applications such as 

polarity classification (Hassan and Radev, 2010), semantic similarity (Ramage et al., 

2009) and semantic relatedness (Hughes and Ramage, 2007; Yeh et al., 2009).  

A conventional random walk model works as a graph partitioning method like 

the spectral graph partitioning model. Given a weighted graph   with vertices (nodes) 

set   and edges set  , a random walk   starting from a node    will move from a 

node   to another node   with a probability    . This probability is calculated by 

normalizing the edge weights of node  . (    
   

     
  where     is weight of 

edge between node   and   ,      is the sum of all edges connected to node  .) 

Without any terminating condition, if we repeat the random walk process a 
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sufficiently large number of times, the random walk   will eventually become 

stationary and be trapped in densely connected sub-graphs
33

. Therefore, a stationary 

transition matrix can be derived in conventional random walk models to identify the 

most probable final nodes of a random walk
34

. This traditional stationary transition 

probability based random walk was used in (Ramage et al., 2009; Hughes and 

Ramage, 2007; Yeh et al., 2009). 

 

7.2 Random Walk Model for Event Coreference Resolution 

In this section, we will present how to apply the random walk model to event 

coreference resolution. The conventional stationary transition probability can be 

applied directly to coreference resolution as a graph partitioning algorithm. In Section 

7.2.1, we will illustrate how to apply the conventional approach. In Section 7.2.2, we 

will introduce the sampling way to apply random walk model to coreference 

resolution.  

 

7.2.1 Random Walks Through Stationary Transition Probability 

Similar to the process in Section 6.1.1, we can form the mention similarity graph 

using the mention pair classifiers’ confidence outputs. Given the mention similarity 

graph   with set of vertices                where   s are mentions in   and 

set of edges   with a set of edge weights   where        denotes an edge in G and 

      is the confidence from the mention pair resolver linked    to   . Let   be 

                                                           
33

 In a weighted graph, “densely connected” is subjected to the normalization by edge 

weights.  

Although for certain graphs such as non-Ergodic graphs, the transition probability may not 

converge to a stationary distribution. For event coreference mention graph in this thesis, alt-

hough we do not have a theoretical proof for the Ergodicity, we have conducted empirical 

investigation on this issue. Throughout our experiments, all the event coreference mention 

graphs converge to a stationary transition probability distribution. 
34

 More elaboration on random walk model is given in Appendix A10. 
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the transition matrix of  . Let     be the      -element of   which is the transition 

probability from    to   .    is calculated as     
   

            
 where       is a 

function that returns the set of neighbors of   . By a series of matrix multiplication of 

 , we can derive the stationary transition probability matrix  . By setting a threshold 

 , we can obtain a connectivity matrix   where                and      

  otherwise.       indicates that the mention    and   are in the same cluster. 

According to the connectivity matrix  , we can partition the mentions in mention 

graph   into a set of clusters. Each cluster corresponds to an event. The derivation of 

  involves a rigorous proof and lengthy explanation for which other researchers are 

writing an entire book (Aldous and Fill, 2001) and papers (Lovász, 1993) on this 

topic. Instead of repeating the proof, we would like to direct the reader to (Aldous and 

Fill, 2001) and (Lovász, 1993) for mathematical details. 

However, the conventional random walk model lacks consideration for certain 

special characteristics of event coreference. First of all, for the event coreference task, 

we are more interested in all the nodes visited by the random walks instead of the 

final node of the random walks. All the nodes visited by a random walk are 

considered as mentions of the same entity. Secondly, the conventional random walk 

model assumes an infinite length of the walk whereas event coreference chains are in 

general very short. In addition, the conventional model fails to incorporate the 

linguistic constraints and preferences (as in Section 7.3) at all. Therefore, we have 

made three meaningful modifications to the conventional random walk model to make 

it more suitable to the event coreference task. 

 

 

 

 

 



71 
 

7.2.2 Random Walks Through Sampling Method 

The list of nodes visited by a walk is “random” depending on the choice of the 

neighboring nodes. Different random walks may be produced from the same starting 

nodes. Instead of deriving the stationary transition probability, we conducted a 

reasonably large number of random walks from the same starting node. A random 

walk begins from a starting node   . A walk at a currently visited node    will choose 

its next-hop node      randomly from its neighboring nodes set   . The probability 

that the walk will choose      to move to is the normalized weight among all the edge 

weights from    to every member in   . The walk will continue till it fulfills one of 

the terminating criteria presented in the next sub-section. When a walk is finished, we 

consider all nodes traversed along the path of the walk            as mentions in an 

event. 

After obtaining the set of random walks, a mention is included in the event 

chain if it appears more than a threshold   number of times in the observed random 

walks
35

. This sampling way of random walk accounts for three unique characteristics 

of the event coreference phenomena.  

Firstly, event coreference chains are generally short in length but the traditional 

stationary transition probability matrix describes an eventually stationary situation of 

the random walk which is equivalent to a walk with unlimited length. Thus in this 

sampling random walk, we can conveniently limit the length of the walks by a 

terminating criterion on the number of nodes in the current walk. 

Secondly, the mentions in the original text appear in a natural order. In 

literature, we usually assume the latter mention refers back to a prior mention but not 

                                                           
35

 In this particular work, we empirically select the number of sampled walks to be 100, and 

the mention inclusion threshold to be 70 occurrences. More details can be found in Appendix 

B1. 
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the opposite direction. In such a sampling random walk, we can conveniently model 

this intuition as a terminating probability that varies with the mention’s position in the 

article. In addition, this modification may reduce the computation complexity as 

shorter walks are produced
36

.  

Last but most importantly, we have introduced a number of linguistic 

constraints and preferences in a later section (Section 7.3) which helps to boost the 

random walk model performance. These constraints and preferences depend on the 

previously visited nodes by the current walk. Such self-interacting walks are 

intractable using the traditional stationary transition probability approach. Therefore 

the modification to the conventional random walk is necessary and also benefits from 

the incorporated linguistic constraints and preferences. 

There are a number of works in NLP research utilizing random walk models. 

The majority of them fall in the closed form solution category. The most related work 

is (Hassan and Radev, 2010) which followed a sampling approach as we do in this 

chapter. However, (Hassan and Radev, 2010) employed a different sampling based 

random walk from ours; though their major focus was still on the final node of the 

random walk. The stationary transition based approach is theoretically capable of 

handling their problem. Due to the intractable size of their graph, they adopted the 

sampling method by sampling the final node of random walks. Our focus is on the set 

of visited nodes by the walk with additional terminating criteria. Thus we are 

sampling all the nodes visited by the random walk under specific necessary 

conditions. The conventional stationary transition based approach fails to solve our 

problem as it can at most handle the limited length of a walk but not the linguistic 

                                                           
36

 The reduction in complexity here does not refer to change in complexity class. The overall 

complexity class will remain but there will be a complexity reduction by a linear term. 
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constraints and preferences using self-interacting walks. Thus we propose this 

necessary modification to the random walk model. 

 

7.2.3 Incorporating Corpus Knowledge through Terminating Criteria and 

Terminating Probability 

As random walks traverse in the mention graph, we introduce three terminating 

criteria.  

Firstly, a random walk is terminated when it comes back to a node visited by it. 

This early termination aims to prevent random walks from oscillating among a few 

densely connected nodes.   

Secondly, a random walk is limited to eight steps which is the length of the 

longest event chain observed in the OntoNotes 4.0 Corpus.  

Thirdly, each node is associated with a terminating probability estimated
37

 from 

the training corpus using the type of the mentions
38

, the position in the text and the 

length of current walk. This is based on the observation that most of the event chains 

are generally short (2.72 mentions) in length. Therefore, random walks for event 

coreference should prefer to terminate early instead of traversing till they reach a 

stationary situation. Similarly, if we reach a node corresponding to a mention very 

near to the beginning of a text, it should prefer to stop instead of moving on. This is 

because if a mention appearing later in the text refers back to mentions in prior text, 

then mentions appearing earlier in the text are generally discourse-new mentions. 

 

 

 

 

                                                           
37

 The terminating probability is estimated from the training corpus using a linear regression 

on three factors mentioned above. 
38

Type of mentions includes verb, pronoun, definiteNP, ProperNP, indefiniteNP and 

ComplexNP.  
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7.2.4 Incorporating Mention Knowledge through Starting Points Selection 

Since our focus is on event coreference, only mentions representing events are 

selected as starting nodes for our random walk. This set of starting nodes consists of 

all the verbal mentions and event noun phrases. The verbs are ordered with higher 

precedence than event noun phrases. The order of the verbs will be sorted according 

to their topic-related priority in the event verb key word list produced by the LDA 

topic models (in Section 4.3). Similarly, the order of the event noun phrases are sorted 

by their topic-related priority in event noun phrases key word list. 

 

7.3 Incorporating Linguistics Knowledge in a Dynamic Way  

The random walk process can be conveniently equipped with linguistic constraints 

and preferences to guide the walking process when selecting the next-hop node to 

move to. Although the spectral graph partitioning method is able to incorporate 

linguistic knowledge as well, the random walk manages to incorporate it in a dynamic 

way. Spectral graph partitioning can only apply linguistic constraints before clustering. 

Random walks can check such constraints during execution, when the sampled walks 

are traversing the mention graph. While spectral graph partitioning can only check the 

consistency between two-mentions (negative-edge-pruning can check consistency 

among three nodes but it is still a limited number of nodes.), random walk can check 

the chain consistency conditioned on all the traversed nodes in the current walk. 

Figure 7.2 demonstrates the differences between spectral graph partitioning and the 

random walk model. 
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Spectral Graph Partitioning Random Walk Model

Negative-Edge 
Pruning

Semantic 
Incompatibility

Dynamic Chain-Consistency 
Checking

Nodes in 
Current Walk

 
Figure 7.2: Spectral Graph Partitioning v.s. Random Walk Model 

 

7.3.1 Dynamic Chain Consistency Enforcement in Random Walk 

We have crafted a set of twenty-eight pruning rules
39

 to eliminate next-hop nodes 

which may cause inconsistency in an event chain. A neighboring node of the current 

node will be disqualified for the random walk if it triggers one of the pruning rules. 

To enforce chain consistency, a next-hop node is tested against all the nodes currently 

in the walk. Such pruning rules are crafted based on linguistic intuition and error 

analysis on the training corpus. The pruning rules include five types: 

 

1) Conflicting Event Semantics:  

This rule is fired if a next-hop node and one of the current walk nodes belong to 

conflicting event semantics in WordNet
40

. For instance, this rule is to eliminate 

improper linking to “announcement” (belongs to “communication”) given current 

node is “invasion” (belongs to “military_operation”).  

                                                           
39

 The full set of pruning rules can be found in Appendix A7. 
40

 The event semantic is obtained from the WordNet Hypernymy relations. More details can 

be found in Appendix A6. 
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2) Conflicting Event Arguments:  

This rule is to filter out cases as “conflicts in Middle East” vs. “conflicts in 

Afghanistan”. These two mentions shall not be linked as they have conflicting 

arguments. The role of the event argument is decided by heuristics
41

. Only location 

and date-time arguments are checked. 

 

3) Conflicting Number Agreement:  

This rule is to prune improper links between singular and plural “conflicts” and 

“suicide”---“attack”. The next-hop node has to be number compatible with all the 

nodes in the current walk. 

 

4) Conflicting Text-Span:  

This rule will prune cases when a next-hop node is spanned by or overlapped with one 

of the nodes in the current walk. Since we are generating mentions from the parse 

trees with padding rules, there are mentions that have overlapping text-span. This rule 

is to remove those overlapping mentions. 

  

5) Conflicting Governing-Node:  

This rule will eliminate cases where two mentions are governed by the same VP node 

in the parse tree. This follows the intuition that if two mentions are governed by the 

same VP, they are most likely to be two different roles of the same event which are 

very unlikely to be coreferent. 

 

Some of the above-mentioned constraints are utilized in the mention-pair SVM 

models introduced previously to calculate the similarity between mentions. However, 

                                                           
41

 The event arguments are identified using pre-modifiers and propositional phrase attach-

ment. They are then spotted as date/time or location by surface patterns. More details can be 

found in Appendix A4. 
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SVM models only consider linguistic constraints between two mentions as soft 

features, which means that two mentions may still obtain a high score even if they 

violate one of the hard linguistic constraints. In contrast, by using this linguistically 

constrained guided random walk we can enforce the nodes’ consistency at the set 

level.   

 

7.3.2 Mention Preference Knowledge through Dynamic Probability Updating  

In addition to the pruning rules, we also derive a list of preference rules to favor the 

next-hop nodes that satisfy linguistic preferences
42

. To maintain the “randomness” of 

the walk, instead of picking the node preferred by rules, we increase
43

 the probability 

for selecting that node for the walk. Similar to the treatment of the pruning rules, the 

preference rules are tested against all the nodes in the current walk. These preference 

rules are derived from both linguistic knowledge and error analysis on the training 

corpus. The set of preference rules includes three types: 

 

1) Shared/Compatible Event Semantics:  

A neighboring node is preferred if it has the same/compatible event semantics from 

WordNet as the nodes of the current walk. This list of compatible event semantics is 

carefully chosen from the WordNet hypernymy relations to capture the small 

semantic differences. 

 

                                                           
42

 There are total 19 such preference rules excluding the “fixed-pairing” category. The full list 

of preference rules can be found in Appendix A8.  
43

 In this work we empirically choose to double the edge weights to increase its probability 

and normalized against other next-hop nodes to maintain the basic axioms of probability. 

More details on empirical choices can be found in Appendix B1. 
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2) Shared/Compatible Event Arguments:  

A next-hop node is preferred if it shares a same/compatible argument as one of the 

nodes in the current walk. The resolved object coreference information is used when 

we decide whether two arguments of different nodes are compatible or not. The 

headword of an event is also counted as one argument of the event. In the actual 

implementation, when we manipulate the next-hop probability using 

shared/compatible argument preferences, the original edge probability is increased 

according to the number of arguments matched
44

. 

 

3) Fixed Pairing of Head-Words:  

A list of fixed pairing of head-words is collected from the training corpus. These rules 

are used to prefer links like “say”---“statement”. These pairings are derived from the 

error analysis on the training corpus. There are in total eighteen such pairs
45

. 

 

 

7.4 Dynamic Chains Pruning using Object Mentions  

In our proposed model above, only event and ambiguous noun phrases are used for 

final event chain formation. However, the ambiguous NPs also consist of object NPs 

which may introduce noise into the event coreference chains. Therefore we propose to 

incorporate a portion of object graph nodes which helps to rule out the object NPs. 

Object mention graphs in general are much larger and denser than the event mention 

graphs. Including the whole object graph will increase the computation complexity 

unnecessarily. Therefore, we only expand the mention graph by adding those object 

NP nodes having links with any of the ambiguous NP nodes. Those object nodes that 

                                                           
44

 A headword match will give a 50% increase in edge probability while compatible argu-

ments will give a 25% edge probability increase. The total increase is capped at 100% (i.e. 

doubled). More details on empirical choices can be found in Appendix B1. 
45

 Full list of Fixed Pairing words can be found in Appendix A5. 
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are only linked to other object nodes will not be added to keep a smaller graph for 

random walk. 

After adding in the object nodes, we impose one more terminating criterion into 

the random walk model. Any random walks visiting an object node will be 

immediately terminated and discarded. Since we use a sampling approach for random 

walks, in order to maintain the size of samples, a new walk from the same starting 

node is conducted. An illustration of this condition is shown in Figure 7.3. 

 

Event / Ambiguous Nodes

Object Nodes

Starting Nodes

Rejected 
Walk

Starting Nodes

Accepted 
Walk

(a) Reject Walks Sample hitting an object node

(b) Accepted Walks Sample 

 
Figure 7.3: Object Nodes Pruning Situation 

 
 

7.5 Chapter Summary  

In this chapter, we have presented the second chain formation technique, random walk 

graph partitioning. Random walk model can capture the event coreference 

characteristics through various terminating criteria and probability. In addition, the 

random walk model is also capable to incorporate linguistics constraints and 

preferences. Comparing to the spectral graph partitioning approach in Chapter 6, 
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random walk graph partitioning is capable of enforcing the chain consistency 

dynamically. Furthermore, the chain consistency is enforced by comparing mention-

to-chain consistency while the previous best-cut model and spectral graph partitioning 

model can only check consistency by mention-to-mention comparison. Last but not 

least, the random walk model utilizes the object mention graph information to prune 

the event chains. 

In the next chapter (Chapter 8), we will present the experimental results to 

verify the effectiveness of all the previous proposed techniques.  
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Chapter 8: Experimental Results and Discussion 

In this chapter, we will present our experiment results with discussion. Before 

showing experimental results, we will briefly discuss the corpus investigation, 

performance metrics and experimental settings. After that, the experimental results are 

presented according to the steps in our resolution framework, namely event mention 

extraction, mention-pair resolution and coreference chain formation. Each step will 

consist of a section discussing the techniques we proposed.  

   

 

8.1 Introduction to OntoNotes 4.0 Corpus 

The corpus we used is OntoNotes 4.0 which contains 600k words of English 

newswire, 200k word of English broadcast news, 200k words of English broadcast 

conversation and 300k words of English web text. OntoNotes4.0 provides gold 

annotation for parsing, named entity, and coreference.  

 

8.1.1 Event Coreference Annotation 

In this section, we will show how to identify the event coreference annotations from 

OntoNotes 4.0 Corpus. The original OntoNotes 4.0 Corpus is only annotated with 

coreference information. The annotation does not distinguish between event 

coreferences and object coreferences. We have conducted a semi-automated process 

to identify the event coreference annotations. The following four steps are essential 

steps to identify the event coreference annotations in OntoNotes 4.0 Corpus. 

1. Include all the coreference chains that have at least one verb mention. 

(OntoNotes 4.0 provides gold POS annotation, thus the verb mention detection 

is reliable.) 
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2. Exclude all the coreference chains that have at least one Named Entity (except 

“Event” category) annotation. (OntoNotes 4.0 provides gold NE annotation) 

3. Exclude all the coreference chains that have at least one mention of the per-

sonal pronouns (including I, me, my, myself, you, your, yourself, yourselves, 

he, him, his, himself, she, her, herself, we, us, our, ourselves) 

4. Exclude the coreference chains that have at least one mention belong to major 

continent / country / state / province / city list.  

5. Manually exclude any other object coreference annotations. 

6. The remaining annotations are considered as event coreference annotations. 

 

8.1.2 Corpus Statistics 

After the event coreference annotations are extracted from the original OntoNotes 4.0 

corpus, we have gathered basic corpus statistics of event coreference distribution. The 

distribution of event coreference is tabulated below in Table 8.1. 

 

 # of Articles # of Chains # of Mentions 

Event 1414 3687 10012 

Object 2068 20063 74956 

Total 2078 23750 84968 

Table 8.1: Corpus Distribution 

        

The distribution of event chains is quite sparse. On average, an article contains 

only 2.6 event chains compared with 9.7 object chains. Furthermore, event chains are 

generally shorter than object chains. Each event chain contains 2.72 mentions 

comparing to 3.74 mentions in each object chain. 
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8.2 Performance Metrics 

Different performance metrics are employed at different levels in our resolution 

framework. In this section, we will explain each metric in detail. 

 

8.2.1 Event Mention Extraction Metric 

 For event mention extraction, we are only focusing on the coverage of such method. 

The coverage measures the percentage of event mentions in gold annotation that have 

been correctly extracted. Another comparison measure is the total number of mentions 

extracted. For a fixed level of coverage, the lower the total number of mentions would 

imply the better is the extraction result. 

 

8.2.2 Mention-Pair Resolution Metric 

At the mention-pair level, we use two different performance metrics to measure the 

resolution results.  

The first one is precision/recall/F-score commonly used in many conventional 

coreference resolution systems. We refer to this measurement as the “best-candidate 

evaluation”. The best-candidate evaluation follows the traditional mention pair 

evaluation. It first groups mention-pair predictions by anaphor. Then an anaphor is 

correctly resolved as long as the candidate-anaphor pair with the highest resolver’s 

score is the true antecedent-anaphor pair. The other candidates’ resolution outputs are 

not counted at all.  

As a possible counterpart, we propose the “coreferent-link evaluation” which 

counts each candidate-anaphor pair resolution separately. Intuitively, the best-

candidate evaluation measures how well a resolver can rank the candidates while the 

coreferent link evaluation measures how well a resolver identifies coreferent pairs. 

Table 8.2 shows the difference between the two evaluations.  
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Gold Standard 

M2 M4
+

 

Best-Candidate Evaluation Coreferent-Link Evaluation 

+ (0.8)

+ (0.6)

- (-0.5)

M1

M2

M3

M4

 

+ (0.8)

+ (0.6)

- (-0.5)

M1

M2

M3

M4

M4

M4
 

Score: 0% (0/1) Score: 66.7% (2/3) 

Table 8.2: Two Mention-Pair Evaluations  
 

In this example, the correct mention pair is “M2---M4”. The conventional best 

candidate evaluation will score 0%, as the highest ranked candidate forms an incorrect 

pair. However, the coreferent-link measure will give a 66.7% score as two of the pairs 

are classified correctly. 

 

8.2.3 Event Chain Resolution Metric 

At the coreference chain level, we evaluate over the commonly used B-Cubed F-

Score (Bagga and Baldwin, 1998), which is a measure of the overlap of predicted 

clusters and true clusters. It is computed as the harmonic mean of precision   , 

  
 

 
    

  
  

 

   

 

   

 

and recall   , 

  
 

 
    

  
  

 

   

 

   

 

and F-score   , 
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where    is the number of mentions appearing both in  ’s predicted cluster and in 

 ’s true cluster,    is the size of the predicted cluster containing  , and    is the 

size of  ’s true cluster. Finally,   represents a document from the set  , and   is the 

total number of mentions in  . 

B-Cubed F-Score has the advantage of being able to measure the impact of 

singleton entities, and of giving more weight to the splitting or merging of larger 

entities. It also gives equal weight to all types of entities and mentions. For these 

reasons, we report our results using B-Cubed F-Score. 

 

 

8.3  Experiment Settings 

For each experiment conducted, we use the following data split. 600 articles are 

reserved to train the object NP-Pronoun and object NP-NP resolvers. Among the 

remaining 1478 articles, we randomly selected 1182 (80%) for training the five event 

resolvers while the other 296 articles are used for testing. 

In order to separate the propagated errors from preprocessing procedures such 

as parsing and named entity recognition, we used OntoNotes 4.0 gold annotation for 

Parsing and Named Entities only. Coreferent mentions are generated by our system 

instead of using the gold mentions.  

We perform the paired Student’s t-test at 5% level of significance to verify the 

significance in performance differences
46

. To make the paired t-test statistics 

sufficient, we conduct the experiments twenty times through a random sampling 

method to gather the performance data
47

. 

 

 

                                                           
46

 The details on Student’s t-Test can be found in Appendix B3. 
47

 The details on the 20 runs through random sampling can be found in Appendix B2 and B3. 
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8.4 Experimental Results 

The experimental results section is divided into four different sections. The first 

section will present the performance on event mention extraction. After that, mention-

pair resolution results are presented. The last two sections will present the results of 

the two proposed chain formation methods separately. A full set of 20 experiment 

results is tabulated in Appendix C1. A full list of t-test p-values is tabulated in 

Appendix C2. 

 

8.4.1 Event Mention Extraction Performances 

The first set of experimental results is the event mention extraction coverage and 

mention number. We employ a natural baseline which simply includes all the 

mentions (verbs, pronouns and noun phrases) as event mentions. After that, we 

gradually introduce the mention extraction technique using heuristics, WordNet and 

topic-based event detection.  

 

Using Heuristics and WordNet in (Section 4.1 & 4.2) 

Table 8.3 shows the natural mention extraction baseline in the first row. The 

extraction performance using heuristics and WordNet knowledge is shown in the 

second row.  

 

Event Mention Extraction System Coverage Extracted Mention 

Number 

Natural Mention Extraction 100% 243056 

+ Heuristics & WordNet 97.6% 96720 

Table 8.3: Event Mention Extraction using Heuristics and WordNet 
 

With a very small drop in coverage (2.4%), we managed to reduce the total number of 

extracted mention by 60.2%. Only two fifths of the original extracted mentions are 
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retained for resolution. Intuitively, for the same level of coverage, the less number of 

mentions is the better situation for the later mention-pair resolution.  

 

Using Topic-Related Keyword List in (Section 4.3) 

Although using heuristics and WordNet knowledge can significantly reduce the 

extracted mention number, over ninety thousand mentions are still too much for the 

latter resolution task. Therefore, we propose a better method of using topic-based 

keywords to further reduce the number of extracted mention. This set of experimental 

results is tabulated in Table 8.4. 

 

Event Mention Extraction System Coverage Extracted Mention 

Number 

Natural Mention Extraction 100% 243056 

+ Heuristics & WordNet 97.6% 96720 

+ Combined Topic Model 94.2% 52549 

+ Separated Topic Model 95.4% 57902 

Table 8.4: Event Mention Extraction using Topic-related Keywords 
 

As the results suggest, both the combined and separated topic models manage to 

further reduce the total number of extracted mentions. They further reduce the number 

of extracted mentions by 40.1% ~ 45.7%. Compared to the natural mention extraction 

method, the topic models can reduce the total number of mentions by 76.2% ~ 78.4%. 

Both models show the usefulness in mention extraction. The combined topic model 

reduces more but covers less event mentions. The separated model performs in the 

opposite way. However, we need to decide a better model for further usage. Thus we 

propose to test the effectiveness on the actual mention-pair resolvers.  

We use the Verb-NP resolver’s performance as a representative to demonstrate 

the effectiveness. Similar observations are obtained for other mention-pair resolvers 
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as well. We investigate the empirical differences between the combined topic model 

and the separated topic models in Table 8.5. 

 

Verb-NP Resolver Precision Recall F-score 

Basic Resolver (Using Heuristics& WordNet ) 55.3% 66.9% 60.5% 

+Combined Topic Model 60.7% 63.8% 62.2% 

+Separated Topic Model 64.4% 66.0% 65.2% 
    

Event Chain B
3
  Precision Recall F-score 

BL Baseline (Using Heuristics & WordNet) 28.2% 59.1% 38.2% 

+Topic Model 31.7% 54.9% 40.2% 

SGP  Baseline (Using Heuristics& WordNet )  25.4% 68.2% 37.2% 

+Topic Model 30.5% 66.7% 41.9% 

Table 8.5: Event Detection Effect on Resolution System 

 

The upper half of the table shows the performances of the Verb-NP resolver. 

Both of the topics modelling settings show significant improvements. As we see, 

event detection using the combined topic model getting topic nouns and verbs at the 

same time yields a 5% increase in precision with a 3% trade-off in recall. On the other 

hand, using the separated topic models that treats topic nouns and verbs separately we 

get a greater improvement in precision (9%) with literally no trade-off in recall. The 

reason is that we find verb mentions are much less frequent than the noun phrase 

mentions. Thus the combined model is overwhelmed by the noun phrase mentions. 

Verb mentions are merely detected as a result of that. However, the separated topic 

models managed to avoid this problem.  

For the chain level measurement, shown in the lower half of Table 8.5, we use a 

spectral graph partitioning approach without any enhancements as a baseline (shown 

as “SGP Baseline”). The separated event detection yields a 4% improvement in B
3
 F-

score. Since the separated topic model event detection shows an empirical advantage 
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over the combined event detection model, in the rest of this chapter, the event 

detection module refers to the separated topic model event detection. 

 

8.4.2 Mention-Pair Resolution Performances 

After the event mentions are extracted, they are passed to the seven mention-pair 

resolvers to identify the coreferent pairs. In this section, we will present the 

experimental results on the mention-pair resolvers. First of all, we will examine the 

usefulness of our flat feature set through a representative resolver. The newly added 

features will be tested for effectiveness. Then, we will investigate the improvement by 

introducing the structural information through the tree kernel. After finalizing the 

feature set, we will illustrate the improvements from our two novel techniques 

(utilizing competing classifiers’ results and better instance selection strategy). 

 

Selected Flat Feature Analysis in (Section 5.2) 

At first, we are investigating the effectiveness of flat features using the Verb-NP 

resolver. The effectiveness of an individual feature is measured in a leave-one-out 

manner, that is, the performance loss by removing a particular feature from the feature 

list. The greater performance drop after removing a feature, the more effective that 

feature is. Instead of showing all the seven distinct resolvers, we choose the Verb-NP 

resolver as a representative because Verb-NP resolver has the most special flat 

features proposed in this thesis. Similar improvements are observed in other mention-

pair resolvers. Table 8.6 presents the results of this set of experiments.  

In Table 8.6, the first row shows the performance using all the flat features. 

Each line below is the performance after removing the feature in that line from the 

resolution system. The observations in Table 8.6 suggest that all the features we have 

discussed in Chapter 5 contribute a significant part in the resolution system. For most 
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of the features (except position), the overall system is almost not functioning for the 

identification of the correct antecedent. The performance drops for most of the 

features are over 30% in F-score. The conclusion we can draw from these 

observations is that the flat features are co-dependent in performing the event-

anaphoric noun phrase resolution task. Each feature’s individual contribution is hard 

to separate from the overall performance. All of them are essential parts in the 

resolution system. 

 

Feature Precision Recall F-score 

ALL 43.87% 42.86% 43.35% 

-Morph 8.74% 5.84% 6.99% 

-Synonym 7.24% 4.63% 5.64% 

-Fixed Pair 9.94% 5.43% 7.01% 

-Cont_Sim 10.35% 4.63% 6.37% 

-Cont_Coref 8.17% 4.43% 5.72% 

-Ante_Morph 11.00% 6.64% 8.26% 

-Ante_Syn 11.95% 7.04% 8.84% 

-Ante_NE 10.36% 7.24% 8.51% 

-Gram_Role 11.76% 6.64% 8.45% 

-Position 47.47% 32.11% 38.31% 

Table 8.6: Flat Feature Effectiveness 

 

We note that the use of the positional features incurs a 5.04% drop in F-score. 

Although it is comparatively smaller than performance drop of other features, it is still 

a significant part in the overall performance. Especially, after removing positional 

features, the recall decreases by 10.75%. Therefore, in the later experiments, all the 

flat features are used for event-anaphoric noun phrase resolution. 
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Structured Information Analysis in (Section 5.3) 

In the next set of experiments, we aim to investigate the effectiveness of each single 

knowledge source. Table 8.7 reports the performance of each individual experiment. 

The Verb-NP resolver is selected as the representative. 

 

 Precision Recall F-score 

Flat 43.87% 42.86% 43.35% 

Min-Exp 33.35% 19.95% 24.82% 

Simple-Exp 22.22% 8.45% 12.24% 

Full-Exp 33.33% 5.63% 9.63% 

Table 8.7: Contribution from Single Knowledge Source 

 

From Table 8.7, the flat feature set yields a baseline system with 43.35% F-

score. By using each tree structure alone, we can only achieve a performance of 

24.82% F-score using the minimum-expansion tree. These results indicate that the 

syntactic structural information alone cannot resolve event anaphoric noun phrases.  

A composite kernel can be used to combine flat features with syntactic structure 

feature. The third set of experiments is conducted to verify the performances of 

various tree structures combined with flat features. The performances are reported in 

Table 8.8.  

 

 Precision Recall F-score 

Flat features only 43.87% 42.86% 43.35% 

Flat + Minimum-Expansion 65.78% 53.60% 59.01% 

Flat + Simple-Expansion 62.85% 49.64% 55.43% 

Flat + Full-Expansion 64.56% 50.77% 56.77% 

Table 8.8: Different Combinations of Syntactic Structural Knowledge 

 

As Table 8.8 presents, all the three types of structural information improve the 

overall performance by over 10% in F-score. Obviously, syntactic structural 
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information is very useful for event anaphoric noun phrase resolution when combined 

with flat features. Minimum expansion tree performs better than the other two 

structures. The performance difference in simple expansion and full expansion are 

statistically insignificant. This result shows that contextual structural information is 

considered noisy rather than helpful in event anaphoric noun phrase resolution. The 

minimum structural information covering the anaphor and antecedent is the most 

helpful as it introduces the least amount of noises. This finding is different from the 

conclusion in conventional pronoun resolution as reported in (Yang et al., 2006;) 

where simple expansion tree performs best. We believe this difference is caused by 

the distance of separation from anaphor to antecedent.  

 

Mention-Pair Baseline Models (BL Baseline) in (Section 5.2 & 5.3) 

The next set of experimental results presented is the seven mention-pair resolvers 

using all presented features without any further improvement methods. The Verb-

Verb resolver’s performance is particularly low due to lack of training instances 

where only 66 positive instances are available from the corpus. 

The coreference chains formed by the conventional Best-Link method give a 

40.2% B
3
 F-score. The Best-Link model provides us with a natural baseline model 

(BL Baseline) for comparison. In theory, the spectral graph partitioning can solve the 

same problem space as min-cut graph partitioning. Therefore, we can use the chain 

formation results from spectral graph partitioning to mimic the min-cut method 

performance. In addition to the BL Baseline, the coreference chains formed using 

spectral graph partitioning without any proposed improvements yields a B
3
 F-score of 

41.8% which serves as another baseline (SGP Baseline) for further comparison. The 

difference between BL Baseline and SGP Baseline is statistically significant. Using a 
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generic chain formation technique such as SGP gives a 1.6% F-score improvement 

which is about the same effect as (Nicolae and Nicolae, 2006)’s 0.9% MUC-F-score
48

. 

 

Mention-Pair Score Precision Recall F-Score 

Event Resolvers 

Verb-Pronoun 32.3% 68.3% 43.9% 

Verb-NP 54.2% 68.5% 60.5% 

Verb-Verb 19.8% 81.7% 31.9% 

NP-Pronoun 46.6% 70.4% 56.1% 

NP-NP 48.8% 60.0% 53.8% 

Object Resolvers 

NP-NP 56.4% 66.7% 61.1% 

NP-Pronoun 59.7% 82.7% 69.4% 
    

Event Chain B
3
  Precision Recall F-Score 

BL Baseline 31.7% 54.9% 40.2% 

SGP Baseline 30.5% 66.7% 41.8%
49

 

Table 8.9: Mention-Pair Performance 

 

As the results show, the precision in general is particularly low. Our proposed 

techniques in mention-pair resolution mainly target to improve the precision. From 

Table 8.9 onwards, a bold number in F-score indicates that the system statistically 

significantly performs better than the system one line above it. 

 

Utilizing Competing Classifiers’ Results (CC) in (Section 5.4) 

Since the object resolvers’ results are in general better than those of the event 

resolver, we propose to utilize competing object classifiers’ results to improve the 

                                                           
48

 Readers should take note that the performances are not directly comparable as we used B
3
 

evaluation and OntoNotes4.0 Corpus while (Nicolae and Nicolae, 2006) used MUC-Score 

and ACE-Phase 2 Corpus. The same level of performance is not rigorous conclusion. 
49

 The difference between BL and SGP is statistically significant with p-value of 6.7595E-09. 

More t-test’s p-values can be found in Appendix C2. 
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event resolvers’ performance. The experiment results are tabulated below in Table 

8.10.  

Mention-Pair  Precision Recall F-Score 

Event Verb-Pronoun Resolver 

w/o object info 32.3% 68.3% 43.9% 

with object info 45.0% 64.7% 53.0% 

Event NP-Pronoun Resolver 

w/o object info 46.6% 70.4% 56.1% 

with object info 57.8% 69.1% 62.9% 
    

Event Chain B
3
  Precision Recall F-Score 

BL Baseline 31.7% 54.9% 40.2% 

BL Baseline + CC 38.6% 53.0% 44.7%
50

 

SGP Baseline 30.5% 66.7% 41.8% 

SGP Baseline + CC 36.5% 65.7% 46.9%
51 

Table 8.10: Performance using competing classifiers’ results 

 

By incorporating the object coreference information, we improve the event 

coreference resolution significantly, by more than 9% F-score for the Verb-Pronoun 

resolver and about 7% F-score for the event NP-Pronoun resolver. Object coreference 

information improves pronoun resolution more than NP resolution. This is mainly 

because pronouns contain much less information than NPs. Such additional 

information greatly helps in preventing object pronouns from being mistakenly 

resolved by the event resolvers. Although object coreference is incorporated at the 

mention-pair level, we also measure its contribution to B
3
 score at the chain level. It 

improves the BL B
3
 F-score by 4.5%. At the same time, it improves the SGP B

3
 F-

                                                           
50

 The difference between BL and BL+CC is statistically significant with p-value of 

3.35848E-13. More t-test’s p-values can be found in Appendix C2. 
51

 The difference between SGP and SGP+CC is statistically significant with p-value of 

5.8811E-13. More t-test’s p-values can be found in Appendix C2. 
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score from 41.8% to 46.9% which is a 5.1% improvement. This observation also 

shows the importance of the collective decision of competing classifiers. 

 

Better Instance Selection Strategy (BIS) in (Section 5.5) 

The second mention-pair level technique we proposed is a better training instance 

selection strategy. Table 8.11 shows improvement using the better instance selection 

strategy. At mention-pair level, we take the event NP-Pronoun resolver for 

demonstration. Similar behaviors are observed in other mention-pair models as well. 

In order to demonstrate the power of a better instance selection scheme, we evaluate 

the mention-pair results in two different ways, the best-candidate evaluation and the 

coreferent-link evaluation.  

An interesting phenomenon is the performance evaluation using the best 

candidate actually drops 4.3% in F-measure when employing the revised instance 

selection scheme. However when we look at the coreferent link results, the revised 

instance selection scheme improves the performance by 2.8% F-measure. As a result, 

our revised instance selection scheme trains better classifiers with higher coreferent 

link prediction results. Since this coreferent link information is further used in the 

final chain formation step, our revised scheme contributes an improvement on the 

final event chain formation by 2.1% B
3 

F-Score for SGP model. As expected, the 

performance of BL model drops. 

This observation shows that the traditional mention-pair model should be 

revised to maximize the coreferent link performance instead of the traditional best-

candidate performance. This is because the coreferent link performance is more 

influential to the final chain formation process using graph partitioning approach. 
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Mention-Pair Score Precision Recall F-Score 

Event NP-Pronoun using Best Candidate Evaluation  

Basic Resolver +CC 57.8% 69.1% 62.9% 

Basic Resolver +CC +NIS 52.0% 67.1% 58.6% 

Event NP-Pronoun using Coreferent Link Evaluation 

Basic Resolver +CC 39.9% 64.0% 49.2% 

Basic Resolver +CC +NIS 43.3% 65.4% 52.1% 
 

Event Chain B
3
 Precision Recall F-Score 

BL Baseline  +CC 38.6% 53.0% 44.7% 

BL Baseline + CC +BIS 35.3% 55.8% 43.2% 

SGP Baseline +CC 36.5% 65.7% 46.9%
 

SGP Baseline +CC +BIS 39.3% 65.2% 49.0%
52

 

Table 8.11: Performance using Better Instance Selection 

 

After identifying the coreferent mention-pairs, we now move on to present the 

experimental results for the chain formation step. We illustrate the performance of the 

spectral graph partitioning technique first. 

 

8.4.3 Event Chain Formation Performances using Spectral Graph Partitioning 

In this subsection, we demonstrate the effectiveness of the four techniques we 

proposed in Chapter 6. Since the proposed techniques for resolve mention-pair are 

shown to be effective, we apply these techniques in the rest of this section. The 

performance analysis starts with the incorporation of pronoun coreference information. 

 

 

Incorporating Pronoun Coreference Information (PCI) in (Section 6.1.2) 

The first chain formation improvement we proposed is the spectral partitioning with 

pronoun information. The performance improvement is demonstrated in Table 8.12.  

 

                                                           
52

 The difference between SGP+CC and SGP+CC+BIS is statistically significant with p-value 

of 2.172E-11. More t-test’s p-values can be found in Appendix C2. 
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B
3
 Performance Precision Recall F-score 

BL+CC 38.6% 53.0% 44.7% 

SGP+CC+BIS 39.3% 65.2% 49.0% 

SGP+CC+BIS+PCI 40.4% 66.1% 50.1%
53

 

Table 8.12: Performance using Pronoun Coreference Information 

 

By incorporating the coreferent pronoun information, the performance is 

improved by 1.1% in F-measure. Although this improvement is not significant at the 5% 

level of significance, this incorporation is necessary for the other three techniques 

(Pruning of the Inappropriate Edges (PIE), Seed Clusters (SC) and Ordering of 

Decomposed Points (ODP)) to function properly. Therefore, we still incorporate the 

pronoun coreference information into our resolution system. 

 

Pruning of Inappropriate Edges (PIE) in (Section 6.2) 

The second set of experiments results we presented in Table 8.13 is the performance 

enhancement after applying the technique of pruning of inappropriate edges. 

 

Event Chain B
3
  Precision Recall F-score 

SGP+CC+BIS+PCI 40.4% 66.1% 50.1% 

SGP+CC+BIS+PCI+PIE 45.5% 62.6% 52.7%
54

 

 

 

As the results show, we achieve a 5% increase in precision, with a 3.5% trade-

off in recall. Since the overall system suffers from the low-precision problem in 

general, such a trade-off gives a B
3
 F-score increment of 2.6% which is a significant 

improvement. The baseline system generally tends to output large event chains, as the 

precision is quite low. Such a large chain normally is a combination of mentions from 

                                                           
53

 The difference between SGP+CC+BIS and SGP+CC+BIS+PCI is NOT statistically signifi-

cant with p-value of 0.06366406. More t-test’s p-values can be found in Appendix C2. 
54

 The difference between SGP+CC+BIS+PCI and SGP+CC+BIS+PCI+PIE is statistically 

significant with p-value of 2.9307E-12. More t-test’s p-values can be found in Appendix C2. 

Table 8.13: Pruning of Inappropriate Edges 
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two more events. By pruning the inappropriate edges, we have significantly reduced 

the sizes of the output chains. Therefore, the coreference results will be better for 

other applications. 

 

Forming Seed Clusters (SC) in (Section 6.3) 

The next set of performance results we present is the performance using the pre-

formed seed clusters. This is shown in Table 8.14.  

 

Event Chain B
3
  Precision Recall F-score 

SGP+CC+BIS+PCI+PIE 45.5% 62.6% 52.7% 

SGP+CC+BIS+PCI+PIE+SC 46.9% 67.5% 55.3%
55

 

 

 

After applying the seed clusters, we get an overall 2.6% increment in B
3
 F-score. 

The improvement is mainly from the improvement in recall. As our observation 

shows, the main increment is from the rejoining of the separated clusters denoting the 

same event chain. The separation of event chain is mainly caused by the distance 

between mentions. By joining compatible small clusters into a large one, we managed 

to recover long event chains. At the same time, the small clusters of closely located 

points reduce errors of the ambiguous NPs and Pronouns as they could be in the small 

cluster with a more informative mention and thus they will be correctly resolved 

together with the informative mention. 

 

Ordering of Decomposed Points (ODP) in (Section 6.4) 

The last set of experiments presented is the performance after applying the ordering of 

decomposed points. They are presented in Table 8.15.  

                                                           
55

 The difference between SGP+CC+BIS+PCI+PIE and SGP+CC+BIS+PCI+PIE+SC is sta-

tistically significant with p-value of 2.6835E-10. More t-test’s p-values can be found in Ap-

pendix C2. 

Table 8.14: Forming Seed Clusters 
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Event Chain B
3
  Precision Recall F-score 

SGP+CC+BIS+PCI+PIE+SC 46.9% 67.5% 55.3% 

SGP+CC+BIS+PCI+PIE+SC+ODP 49.6% 67.3% 57.1%
56

 

 

 

The final results show a significant improvement over the one using a random 

ordering of the points. This complies with our intuition that the more informative 

mentions should be considered first during spectrum clustering. The different events 

will have its own cluster formed instead of mixing together by the ambiguous NPs 

and pronouns in random ordering. In this subsection, we achieved a 57.1% B
3
 F-score 

using the spectral graph partitioning method. 

 

8.4.4 Event Chain Formation Performances using Random Walk 

As we discussed in Chapter 7, the random walk model shows its strengths in the chain 

formation process. In this subsection, we will show the effectiveness of our proposed 

techniques. First we will show that our modified version of the random walk model is 

a better choice for event coreference resolution. 

 

Modified Random Walk (MRW) v.s. Conventional Random Walk (CRW) in 

(Section 7.2) 

First of all, we will present the empirical support for our modified version of the 

random walk model versus the conventional random walk model. Table 8.16 shows 

the performance differences. The conventional random walk model is denoted by 

“CRW”. Our proposed modified version of random walk is denoted by “MRW” (short 

for Modified Random Walk).  In this experimental setting, we have applied both 

                                                           
56

 The difference between SGP+CC+BIS+PCI+PIE+SC and SGP+CC+BIS+PCI+PIE+SC+ 

ODP is statistically significant with p-value of 2.8176E-8. More t-test’s p-values can be found 

in Appendix C2. 

Table 8.15: Ordering of Decomposed Points 
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competing classifiers’ results and better instance selection strategy to the random 

walk model.  

 

B
3
 Performance Precision Recall F-score 

BL+CC 38.6% 53.0% 44.7% 

CRW 37.3% 65.2% 47.4%
57

 

MRW 42.2% 68.1% 52.1%
58

 

Table 8.16: Modified v.s. Conventional Random Walk Model 
 

 

Both of the conventional and our modified random walk model have statistically 

significant better performance than the BL+CC model. This shows that a chain 

formation process is beneficial to event coreference resolution. Moreover, our 

proposed modified random walk model significantly outperforms the conventional 

random walk model. This shows that the proposed modification to the random walk 

model is necessary and effective to apply the random walk model to the event 

coreference resolution task. Therefore, we will use the “MRW” from this point 

onwards. All the proposed techniques to the chain formation process will be applied 

to and tested on the “MRW” model collectively. 

 

Incorporating Pronoun Coreference Information (PCI) 

The pronoun coreference information is incorporated into the chain formation step as 

the necessary information for further use. The experimental results are tabulated in 

Table 8.17. 

 

                                                           
57

 The difference between BL+CC and CRW is statistically significant with p-value of 

8.2254E-10. More t-test’s p-values can be found in Appendix C2. 
58

 The difference between CRW and MRW is statistically significant with p-value of 

9.7817E-14. More t-test’s p-values can be found in Appendix C2. 
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B
3
 Performance Precision Recall F-score 

MRW 42.2% 68.1% 52.1% 

MRW +PCI 43.5% 70.3% 53.7%
59

 

Table 8.17: Incorporate Pronoun Coreference into Random Walk 
 

By incorporating the coreferent pronoun information, the performance is 

improved by 1.6% in F-measure. Although this improvement is not significant at the 5% 

level of significance, its incorporation is necessary for the two later techniques (LCP 

and OGI) to function properly. Therefore, we still incorporate the pronoun 

coreference information into our resolution system. 

 

Incorporating Linguistic Constraints and Preferences (LCP) in (Section 7.3) 

In Table 8.18, we present the performance comparison before and after enforcing the 

linguistic constraints and incorporating linguistic preferences in the random walk 

process. The “MRW +PCI” system corresponds to the best model in the previous 

subsection for comparison. The “MRW +PCI +LCP” system corresponds to the 

“MRW +PCI” system further extended with the enforcement of linguistic constraints 

and incorporation of linguistic preferences. 

 

B
3
 Performance Precision Recall F-Score 

MRW +PCI 43.5% 70.3% 53.7% 

MRW +PCI +LCP 47.1% 68.9% 56.0%
60

 

Table 8.18: Enforcing Constraints and Preferences 
 

As the results shown, the linguistic constraints and preferences incorporation 

brings us a 2.3% improvement in B
3
 F-score. Especially, the precision score is greatly 

improved. It shows the incorporation of linguistic constraints helps to accurately 

                                                           
59

 The difference between MRW and MRW+PCI is NOT statistically significant with p-value 

of 0.05945349. More t-test’s p-values can be found in Appendix C2. 
60

 The difference between MRW+PCI and MRW+PCI+LCP is statistically significant with p-

value of 1.0073E-07. More t-test’s p-values can be found in Appendix C2. 
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identify the event coreference chains. In a balanced overview between precision and 

recall, the improvement is roughly a trade-off between precision and recall as 

precision improves about 4% while recall decreases a similar amount. The final F-

score improves as “MRW +PCI +LCP” provides a more balanced precision and recall 

than the system without linguistic constraints and preferences. 

 

Pruning with Object Graph Information (OGI) in (Section 7.5) 

Table 8.19 below demonstrates the performance improvement by further 

incorporating the object graph information. The “MRW+PCI+LCP” system 

corresponds to the system without using the object mention graph. The “MRW+PCI 

+LCP+OGI” system corresponds to the previous best-performing system with further 

extension of object mention graph information. 

 

B
3
 Performance Precision Recall F-Score 

MRW +PCI +LCP 47.1% 68.9% 56.0% 

MRW +PCI +LCP +OGI 50.7% 67.5% 57.9%
61

 

Table 8.19: Performance using Object Graph Information 

    

As the results show, by utilizing the object graph information, we can further 

enhance the overall resolution performance by 1.9% in B
3
 F-score. This is mainly 

from the improvement in precision with only a small drop in recall. It shows by 

incorporating the object mention graph, we can identify the event coreference chains 

more precisely. 

 

8.4.5 Comparing Spectral Graph Partitioning versus Random Walk  

As the empirical results suggest, the spectral graph partitioning method and the 

random walk method show comparable performance (SGP 57.1% B
3
-F v.s MRW 57.9% 

                                                           
61

 The difference between MRW+PCI+LCP and MRW+PCI+LCP+OGI is statistically signif-

icant with p-value of 5.41261E-11. More t-test’s p-values can be found in Appendix C2. 
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B
3
-F). In this section, we will conduct a deeper analysis on the advantages and 

disadvantages for both methods. 

Mathematically, both of them are efficient and robust graph partitioning 

methods. The basic versions of both models (without any proposed improving 

techniques) can solve the same problem space in clustering task. However, when 

applying to the challenging event coreference resolution task, each of the two 

methods shows different capabilities to enhance the resolution performance. In Table 

8.20, we will compare the different strengths of the two models. 

 

Strengths Spectral Graph Partitioning Random Walk 

(1) Consistency  

Helps in enforcing 

consistency. 

Static 

Negative-Edge 
Pruning

Semantic 
Incompatibility

 

Dynamic 
Dynamic Chain-Consistency 

Checking

Nodes in 
Current Walk

 

(2) Seed Clusters 

Helps in bridging 

long distance 

clusters 

say
the 

statement

Seed 
Cluster

 

Not Available 

(3) Object Graph 

Helps in pruning 

in appropriate 

nodes 

Not Available 

Event / Ambiguous Nodes

Object Nodes

Starting 
Nodes

Walk #1
Rejected

Walk #2
Accepted

 

Table 8.20: Comparison between Spectral Graph Partitioning and Random Walk 
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 The first row shows the models’ abilities to enforce chain consistency. The 

MRW model shows a little advantage as it imposes a dynamic version. However, 

empirical results show that the two methods are empirically equivalent. The pruning 

of inappropriate edge (PIE) in SGP improves 2.6% B
3
-F while the linguistic 

constraints and preferences (LCP) in MRW improves 2.3% B
3
-F. The differences are 

statistically insignificant
62

 which gives the two a draw in the consistency checking 

capability. 

The second row shows that SGP enables the clustering of long distance 

mentions using seed clusters generated by heuristics. Such capability is very helpful 

as though event chains are shorter in terms of mentions, they exhibit longer separation 

distances especially in the Verb-Verb and the Verb-NP cases. In addition, SGP by its 

own model property can also link two long-distance but densely connected mentions 

into one cluster even if they are not directly connected. Both these scenarios help in 

bridging the event mentions beyond our n-sentence window. Empirically, it also 

shows a significant improvement to B
3
-F. In contrast, the MRW model fails to 

recover from such losses. Currently, we leave it for the future work to solve. SGP 

beats MRW in this aspect. 

The third row shows the MRW model is capable of pruning inappropriate walk 

samples using object graph information. This technique helps by keeping the event 

chain (walks) focused on event mentions, rejecting walks with ambiguous mentions 

which are close to object mentions. Empirically, it shows a significant improvement 

in B
3
-F. On the other hand, when including object mentions into SGP, it is hard to 

decide whether a cluster consisting of all of the event, ambiguous and object mentions 

                                                           
62

 The difference between SGP+PCI+PIE and MRW+PCI+LCP is NOT statistically signifi-

cant with a p-value of 0.055852875. More t-test’s p-values can be found in Appendix C2. 
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is an event chain or object chain. We leave more in-depth comparisons as another 

future work in the current thesis. In this round, MRW beats SGP. 

In summary, SGP and MRW show a draw of 2:2 in the previous three rounds of 

comparisons. Empirically, they also produced similar and comparable results. The 

difference in the final B
3
 F-scores (SGP 57.1% vs. MRW 57.9%) is statistically 

insignificant. Based on our finding here, we have to say both the SGP and MRW 

models are statistically equivalent
63

, although the MRW model appears to be slightly 

better in our theoretical analysis and 0.8% B
3
-F better in our empirical study. 

 

8.4.6 Randomly Selected Error Analysis 

The error analysis for coreference resolution is more difficult than other NLP tasks 

such as Named Entity Recognition (NER). Error analysis for NER can be conducted 

at the feature level. However, coreference resolution involves a chain formation 

process. The difficulty of evaluating a clustering algorithm comes from two aspects 

First, a clustering decision (e.g. to decide whether to include a mention given the 

current cluster) is in general hard to judge whether it is a good or bad decision. This is 

because in most of thesecases, such a clustering decision makes certain cases correct 

while making some other cases wrong. Second, the final clustering result is a 

collective result from multiple clustering decisions. It is in generally hard to identify 

which one makes the wrong move especially when the chain is formed dynamically 

such as our random walk model.  

In this section, we have randomly selected 170 event chains (consist of 434 

event mentions (287 mention pairs
64

): 70 Pronouns, 46 Verbs and 318 Noun Phrases) 

                                                           
63

 The difference between SGP+PCI+PIE+ODP and MRW+PCI+LCP+OGI is NOT statisti-

cally significant with a p-value of 0.142003431. More t-test’s p-values can be found in Ap-

pendix C2. 
64

 The measurement of mention pairs is subjected to the n-sentence window introduce in 

Chapter 3. 
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from one of the twenty runs of experiments. These 170 event chains give a 58.9% F-

score (SGP) and 56.2% F-score (RW) around the same level as the overall resolution 

performance. The 170 chains are manually examined to gain a comprehensive 

understanding of the causes of error. After manually spotting the possible causes of 

error, we try to make manual corrections if possible. The corrected results will be 

presented to the resolution system to verify if any improvements can be gained.  

 

 Inaccurate Confidence from Mention-Pair Prediction 

The first source of error that attracted our attention is the inaccurate confidence from 

mention-pair prediction. Both of our chain formation techniques depend on the 

confidence outputs from the mention-pair resolvers. The inaccurate outputs of the 

confidence misguide the chain formation techniques in forming incorrect chains. 

Based on our investigation, we have identified 96 mention pairs (33.4% out of the 287 

mention pairs), in which the correct antecedent is not the highest confidence one in all 

the outputs. We proposed a manual correction as reordering the outputs by giving the 

highest confidence to the correct antecedent. After correction, the 170 event chain 

performance is improved by 1.7% F-score (SGP) and 0.4% (RW). However, these 

170 chains are too small to give any statistical significance analysis. We can only 

imply that the inaccurate confidence estimation by the mention pair resolvers is one of 

the major causes of the errors. 

 

Long Chains Due to Wrong Pronoun Prediction   

The second major cause of error in our error study is the inaccurate predictions of 

pronouns. These inaccurate resolutions give multiple positive antecedent predictions 

for one pronoun. Each of the positive predictions will produce a positive edge in the 

mention graph. In the chain formation step, these positive edges may bring incorrect 
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mentions into the event chain. Out of the 170 event chains, we have identified 59 

chains which have inappropriate mentions brought in by edges from pronouns. We 

proposed manual corrections by removing the incorrect pronoun predictions. The final 

results are improved by 2.4% F-score in SGP and 3.1% F-score in RW. Due to the 

limited number of samples, we cannot conduct statistical significance analysis. We 

can only intuitively infer that the wrong pronoun predictions are one of the major 

error causes in the current resolution system. 

 

Empirical Decision when Selecting Heuristic Rules 

This error is not referring to any particular heuristic rules or preferences we have used. 

It is a rather common scenario when we make decision whether to include a certain 

heuristic rule. The fixed pairing set of rules is easy to decide, as it makes a 

comparatively big improvement. However other rules are much more difficult to 

decide. The difficulties not only come from choosing a single rule, but also the 

scenario becomes even harder when considering collective effects from multiple rules.  

During the actual selection process, empirical impact is an important factor. Within 

the 170 event chains, we find 4 new rules that can help to improve the final results. 

However, when we put them into the resolution system, they improved the 170 chains 

performance but decreased the overall performance on all testing data. At the current 

stage, our current rule set is the best based on the experiments we have conducted. 

However, we hope to find a better rule set as the current one still makes a significant 

number of wrong decisions.   

 

These three sources of error are not the only ones in our error analysis. They are the 

major ones that have drawn our attentions. Due to the difficulty in conducting error 

analysis for clustering results, we can only manually process a limited number of error 
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cases. With the limited number of error cases, we find these three sources of error to 

be more critical than others. The errors with only one or two occurrences will not be 

discussed here. 

 

8.5 Chapter Summary 

In this chapter, we have shown various sets of experimental results on our proposed 

techniques at different steps. Most of them have shown statistically significant 

improvements (except incorporating the pronoun coreference information). Since we 

have proposed two chain formation techniques, we have presented an in-depth 

comparison between the spectral graph partitioning and random walk graph 

partitioning. From the aspect of the knowledge they can incorporate, the two models 

have their own pros and cons. From the empirical aspect, there are no statistically 

significant differences between them. Therefore, in this study, we can only conclude 

that the spectral graph partitioning and the random walk graph partitioning are 

equivalent. 

Last but not least, we have presented an error analysis based on 170 event 

chains randomly selected from one experiment. We have identified three major 

sources of the errors. Correction to these errors may lead to further improvement to 

the resolution performance. 
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Chapter 9: Conclusion and Future Work 

9.1 Conclusion 

The purpose of this thesis is to investigate, formulate and propose a feasible and well-

performed solution to the challenging event coreference resolution task which lacks 

attention in the literature. To the best of our knowledge, we are the first to perform a 

systematic and in-depth study in the literature on event coreference resolution. We 

adopt the two-step resolution framework and propose a number of novel features, 

methods and improvements at various stages in the resolution process. 

At the mention extraction stage, we have proposed a heuristic plus a WordNet 

semantic approach for detecting potential event mentions.  After that, a separated 

LDA topic model is introduced into the mention extraction task to detect topic 

specific high priority event mentions. The empirical results show a huge 78% 

reduction in the number of mentions extracted which induces a significant 4% B
3
-F 

improvement in the event coreference chains resolved. 

At the mention-pair resolution stage, we have proposed a number of novel 

features to bridge the syntactic and semantic gaps discovered in event coreference 

resolution. Following a divide-and-conquer philosophy, we have created seven 

distinct mention-pair resolvers to tackle the challenging task. In addition, two 

effective techniques (utilizing competing classifiers’ results and new instance 

selection strategy) are applied to the mention-pair resolvers. Each of them contributes 

significant improvements in both the mention-pair and chain formation performance. 

Prior to the chain formation stage, we have proposed two very different methods 

(Spectral Graph Partitioning and Random Walk Model) to form the final coreference 

chains. Each of the methods has its own specific capabilities dedicated to the event 

coreference phenomenon. Both of the methods are capable of incorporating pronoun 
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coreference information which has been intentionally omitted in previous graph 

partitioning approaches.  

For the spectral graph partitioning method, we have proposed three 

enhancements. Pruning of inappropriate edges enforces chain consistency and 

linguistic constraints. Selecting seed clusters and ordering of decomposed points 

provide the spectral graph partitioning model with mention preference knowledge. All 

these three techniques show significant improvements over the basic spectral graph 

partitioning model. The spectral graph partitioning approach demonstrates a final 

score of 57.1% B
3
-F. 

The second chain formation technique, the random walk model, is for the first 

time adapted and modified for the event coreference resolution task. A sampling 

approach of the random walk model is adapted to facilitate the self-interacting walks. 

The sampling random walk model is further modified to utilize the corpus statistical 

knowledge using the terminating criteria and probability. In addition, two novel 

techniques are further applied to the random walk model to improve the performance. 

Linguistic constraints and preferences are utilized in a dynamic way comparing the 

static use in spectral graph partitioning. Last but not least, the information from object 

mention graph is used to prune the inappropriate walks from the samples. All the 

adaptations and improvements show significant increases in chain-level 

measurements B
3
 F-score. The random walk model achieves a 57.9% B

3
-F which is 

also the highest score reported in this work. 

In conclusion, this thesis provides a systematic linguistics and empirical study 

for the new and challenging event coreference resolution task. It also proposes a 

computational solution with the state-of-the-art performances. Last but not least, it 

serves as a foundation for any further research work on event coreference resolution. 
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9.2 Future Work 

With the insights gained from the current work, we would like to explore the 

following areas to further improve event coreference resolution.  

 

9.2.1 Employing Ensemble Models  

The spectral graph partitioning model and random walk model utilize different 

knowledge and show different resolution capabilities. A natural extension to the 

current resolution framework is to employ a model ensemble method and make 

collective decisions from both chain formation models. For further enhancement, each 

individual mention-pair model can be replaced with a multi-pass ensemble of 

classification models. The collective decisions are expected to be better than each 

individual classifier. This future work serves as an engineering improvement to the 

current resolution system. 

 

9.2.2 Incorporating more Semantic Knowledge 

Although we have incorporated event semantic knowledge from the WordNet, it is 

not a dedicated event semantic dictionary for event coreference resolution. A rather 

large portion of semantic information is missing in the current work. A carefully 

designed and dedicated event hierarchy dictionary (to serve as an ontology) could be a 

possible extension to the current work. Although building a complete event hierarchy 

on everything is not feasible, building a reasonable sized event hierarchy on a specific 

domain (e.g. protein-protein interaction) is still a feasible solution. Other potential 

helpful knowledge includes semantic role labeling results, verb senses and verb 

frames. 
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9.2.3 Knowledge Deep Parsing 

Knowledge gap happens to be a serious problem in the current work. Some cases 

require a certain amount of world knowledge to resolve. A knowledge-deep parsing 

method such as discourse parsing using discourse representation theory could be a 

valuable knowledge source for closing such knowledge gaps. A world knowledge 

databank will also benefit the event coreference resolution.   
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Appendix A: Model Design Details 

In Appendix Section A, we have ten subsections covering various model design 

details.   

 

Appendix A1: How to Identify Mention Heads from Parse Tree 

In Appendix Section A1, we will show how to extract the head of a phase. We follow 

(Collins, 1997)’s method to extract. Readers may refer to the head-word table in 

http://people.csail.mit.edu/mcollins/papers/heads for quick access. 

 

Rules for NP Head Extraction: 

Remove ADJPs, QPs, and also NPs which dominate a possessive (tagged POS, e.g. 

(NP (NP the man 's) telescope ) becomes (NP the man 's telescope)). These are 

recovered as a post-processing stage after parsing. 

The following rules are then used to recover the NP head: 

If the last word is tagged POS, return (last-word); 

Else search from right to left for the first child which is an NN, NNP, NNPS, 

NNS, NX, POS, or JJR 

Else search from left to right for first child which is an NP 

Else search from right to left for the first child which is a $, ADJP or PRN 

Else search from right to left for the first child which is a CD 

Else search from right to left for the first child which is a JJ, JJS, RB or QP 

Else return the last word. 

 

Instructions for Tree Head Table: 

The first column is the non-terminal.  The second column indicates where you start 

when you are looking for a head (left is for head-initial categories, right is for head-
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final categories). The rest of the line is a list of non-terminal and pre-terminal 

categories which represent the head rule. 

 

Tree Head Table: 

Label Direction Head Rule 

ADJP Right  NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT 

FW RBR RBS SBAR RB 

ADVP Left RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN 

CONJP Left CC RB IN 

FRAG Left  

INTJ Right  

LST Left LS: 

NAC Right NN NNS NNP NNPS NP NAC EX $ CD QP PRP VBG JJ 

JJS JJR ADJP FW 

PP Left IN TO VBG VBN RP FW 

PRN Right  

PRT Left RP 

QP Right $ IN NNS NN JJ RB DT CD NCD QP JJR JJS 

RRC Left VP NP ADVP ADJP PP 

S Right TO IN VP S SBAR ADJP UCP NP 

SBAR Right WHNP WHPP WHADVP WHADJP IN DT S SQ SINV 

SBAR FRAG 

SBARQ Right SQ S SINV SBARQ FRAG 

SINV Right VBZ VBD VBP VB MD VP S SINV ADJP NP 

SQ Right VBZ VBD VBP VB MD VP SQ 

UCP Left  

VP Right TO VBD VBN MD VBZ VB VBG VBP VP ADJP NN 

NNS NP 

WHADJP Right CC WRB JJ ADJP 

WHADVP Left CC WRB 

WHNP Right WDT WP WP$ WHADJP WHPP WHNP 

WHPP Left IN TO FW 
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Appendix A2: WordNet Hypernym Lists for Event and Object 

In Appendix Section A2, we will show the WordNet hypernym lists for events and 

objects. 

Event Hypernym List (21 words): Human_Act; Military_Operation; Happening; 

Occurrence; Killing; Change_of_State; Attack; Plan_of_Action; Maneuver; Discharge; 

Acquisition; Aggression; Policy; Care; Death; Procession; Transgression; Ceremony; 

Change_of_Magnitude; Social Policy; Water_Sport. 

Object Hypernym List (27 words): Location; Device; Artifact; Living_Thing; 

Natural_Object; Administrative_District; Skilled_Worker; Corporate_Executive; 

Male; Female; Businessperson; Municopality; Food; Calender_Day; Calender_Month 

World_Organization; Mammal; Bird; Chemical; Print_Media; Body_Part; 

Monetary_Unit; Place_of_Business; Person_of_Color; Metric_Uint; Mass_Unit; 

Building_Complex.  
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Appendix A3: Common Phrases 

In Appendix Section A3, we will show the common phrases we used in addition to the 

LDA identified key event word list. 

Common Phrases: “be”, “decide”, “determine”, “get”, “take”, “make”, “do”, “seem”, 

“consider”, “state”, “announce”, “speak”, “tell” and their derivational forms. 
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Appendix A4: Event Argument Extraction and Matching 

In Appendix Section A4, we will show how the event arguments are extracted and 

matched. We only conducted a simple argument extraction. We only extract the time, 

location and actuator/patient. We use only the attached prepositional phrases (from 

parse tree) and pre-modifiers (in XXX’s format) to identify the arguments. For time 

argument, we only identify the Named Entity, the names of 12 months, the 4(or 2) 

digits year, the time with “am/pm” and their combinations. For location argument, we 

only identify the Named Entity, a list of geo-location names (including the names of 7 

continents, continents name with directions such as East Asia, North America, 

common geo-locations as Far East, Middle East.),  a list of country/province/state/city 

names and a list of acronyms of common country/state/city. For actuator/patient role, 

we only identify the person category of Name Entities. The time/location argument 

can be easily caught with regular expressions. 

For example, “I study in Singapore.” The prepositional phrase “in Singapore” is 

attached to the verb “study”. From country name list, we find “Singapore” belongs to 

location.  
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Appendix A5: Fixed Pairings of Words 

In Appendix Section A5, we will show the 18 fixed pairing of words. 

Fixed Pairs: “say / announce / speak – statement”; “say / tell – words”; “bill / policy – 

measure”; “trouble – misfortune”; “ceremony – celebrate”, “plan – proposal”; “cut – 

decrease”; “attack – bombing / blast / explosion”; “administration – rule / reign”; 

“investigation – study / research”; 
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Appendix A6: Event Semantic Compatibility/Incompatibility  

In Appendix Section A6, we will show the event semantic compatibility / 

incompatibility. These checking criteria are defined in terms of the surface words and 

the WordNet hypernyms. 

 

Important Compatibility Pairs (16 pairs): “Attribute – Form”; “Pathological_State – 

Shock / Collapse”; “Signal – Alarm / Recording”; “Illness – Growth / Collapse / 

Ague”; “Law - Prohibition”; “Ill_Health – Affliction / Infection”; “Case – Civil_Suit / 

Class_Action / Criminal_Suit / Countersuit”. 

 

Important Incompatibility Pairs (22 pairs): “Operation – Surgical_Procedure”; 

“Speech_Act – Concession / Discord / Prayer”; “Group_Action – Defense / Warfare / 

Manufacture”; “Due_Process – Denial / Judgment”; “Selling – Capitalization”; 

“Social_Event – Stage_Dance / Movie / Picture / Attraction”; “Transaction – Business 

/ Finance”; “Management – Supervision / Finance / Homemaking”; “Work – Job / 

Housework / Loose_End”. 
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Appendix A7: Semantic Incompatibility Pruning Rules 

In Appendix Section A7, we will show the entire set of 28 semantic incompatibility 

pruning rules. 

Rule 1: If the two mentions have number disagreement; 

Rule 2: If the two mention have overlapping text span; 

Rule 3~5: if the two mentions are governed by a common parent VP / PP / NP 

node; 

Rule 6: If the two mentions have non-matched time/location arguments; (Event 

argument is extracted as in Appendix A4.) 

Rule 7~28: The incompatibility pairs in Appendix A6.  
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Appendix A8: Semantic Compatibility Preference Rules 

In Appendix Section A8, we will show entire set of 19 semantic compatibility 

preference rules. 

Rule 1: if the two mentions have exact argument match for time/location; 

Rule 2: if the two mentions have head-word match for actuator/patient; 

Rule 3: if the two mentions have compatible time / location; (the compatible 

locations is defined as one location is a larger concept contained the other such 

as “North America” – “New York”; the compatible times is defined as one time 

unit is a more general concept than another such as “March, 1983” – “1983” but 

not “March” – “1983”) 

Rule 4~19: the compatible pairs in Appendix A6. 
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Appendix A9: Spectral Graph Partitioning  

In Appendix Section A9, we will show a brief introduction of the conventional 

spectral graph partitioning model. The definition and formulation is quite standard in 

the research community. Instead of restating them, we would like to reproduce an 

easy to understand version from CWiki Apache website
65

. 

Spectral clustering, a more powerful and specialized algorithm (compared to  -

means), derives its name from spectral analysis of a graph, which is how the data are 

represented. Each object to be clustered can initially be represented as an  -

dimensional numeric vector, but the difference with this algorithm is that there must 

also be some method for performing a comparison between each object and 

expressing this comparison as a scalar. 

This   by   comparison of all objects with all others forms the affinity matrix, 

which can be intuitively thought of as a rough representation of an underlying 

undirected, weighted, and fully connected graph whose edges express the relative 

relationships, or affinities, between each pair of objects in the original data. This 

affinity matrix forms the basis from which the two spectral clustering algorithms 

operate. 

The equation by which the affinities are calculated can vary depending on the 

user's circumstances; typically, the equation takes the form of:   
   

 
 
 where   is the 

Euclidean distance between a pair of points and   is a scaling factor.   is often 

calculated relative to a  -neighborhood of closest points to the current point; all other 

affinities are set to   outside of the neighborhood. Again, this formula can vary 

                                                           
65 https://cwiki.apache.org/MAHOUT/spectral-clustering.html 
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depending on the situation (e.g. a fully connected graph would ignore the  -

neighborhood and calculate affinities for all pairs of points). 

The spectral clustering is often use together with k-means clustering. This 

consists of a few basic steps of generalized spectral clustering, followed by standard 

 -means clustering over the intermediate results. Again, this process begins with an 

affinity matrix   - whether or not it is fully connected depends on the user's need. 

  is then transformed into a pseudo-Laplacian matrix via a multiplication with a 

diagonal matrix whose entries consist of the sums of the rows of  . The sums are 

modified to be the inverse square root of their original values. The final operation 

looks something like: 

       
       

   

  has some properties that are of interest to us; most importantly, while it is 

symmetric like  , it has a more stable eigen-decomposition.   is decomposed into its 

constituent eigenvectors and corresponding eigenvalues (though the latter will not be 

needed for future calculations); the matrix of eigenvectors,  , is what we are now 

interested in. 

Assuming   is a column matrix (the eigenvectors comprise the columns), then 

we will now use the rows of   as proxy data for the original data points. We will run 

each row through standard  -means clustering, and the label that each proxy point 

receives will be transparently assigned to the corresponding original data point, 

resulting in the final clustering assignments. 
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Appendix A10: Random Walk Graph Partitioning 

In Appendix Section A10, we will show a brief introduction of the conventional 

Random Walk Model. Conventional random walk model is a well-established graph 

partitioning model. We have extracted the brief but essential explanations from 

Wikipedia
66

 for the readers to digest easily. 

A random walk is a mathematical formalization of a path that consists of a 

succession of random steps. A random walk of length   on a possibly 

infinite graph   with a root   is a stochastic process with random 

variables              such that      and      is a vertex chosen uniformly at 

random from the neighbours of   . Then the number           is the probability that a 

random walk of length   starting at   ends at  . In particular, if   is a graph with 

root  ,         is the probability that a   -step random walk returns to 0. We can also 

construct a matrix    which the      -element of    is                  for      . 

The matrix    denotes the probability of the final node if we start the walk from node 

  and walk for   steps. In addition, if we make    , we will get a matrix    which 

shows the probability of the final node for infinite number of steps. The matrix    is 

also referred as the stationary transition probability.  

There are two ways to derive the matrix   . The first method is a closed form 

solution for   . We will not extend our study to the closed form solution as it may 

take a whole chapter to gain a thorough understanding. We would like to direct reader 

to a comprehensive survey paper on random walk (Lovász, 1993) for the closed form 

solution.  

The second way is estimate the    through sampling. The sampling technique is 

easier to understand. Basically, it just conducts a sufficient large number of random 

                                                           
66

 http://en.wikipedia.org/wiki/Random_walk 
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walks and estimates the entries in    using the sample mean. The sampling way is 

used when the graph size is infeasible for a closed form solution (e.g. Hassan and 

Radev, 2010; Wang et al., 2012) or the random walks required certain special 

characteristics such as the self-interacting capability in this thesis and in (Riberio & 

Twosley, 2010). The self-interacting capability enables us to incorporate the 

linguistics constraints and preferences in a dynamic way.  
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Appendix B Empirical Model Settings 

In Appendix Section B, we will show all the details on empirical model settings 

 

Appendix B1: How to Tune Parameters with Training Data 

In Appendix Section B1, we will show how to tune the parameters with the training 

data. Readers may be more familiar with the concept of the “development” data. In 

our case, the tuned parameters are from unsupervised model such as the Spectral 

Graph Partitioning, Random Walk Model and LDA Topic Models. 

In the rest of this section, we will list all the empirical parameter we tuned with 

the training data. 

For LDA Topic Modeling, we use the training data to select best size of key 

word list. 

For Spectral Graph Partitioning model, we use the training data to select:  

(1). Best number of eigenvectors = 8; 

(2). Proximity Radius e=0.1x10
-4

; 

For Spectral Graph Partitioning model, we use the training data to select: 

(1). Random Walk Sample Size = 100; 

(2). Mention Inclusion Threshold = 70; 

(3). Random Walk Preference Rules Weights Judgments 
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Appendix B2: 20 Runs of Experiments through Random Sampling of 

Training and Testing Data 

In Appendix Section B2, we will show the detailed process to conduct 20 runs of 

experiments through random sampling of training and testing data. 

For each run of the experiments, we split the corpus into an 80:20 proportion. 80% of 

corpus will be used for training while the other 20% of corpus will be used for testing. 

Thus for each run of experiment, the training data and testing data are mutually 

exclusive. For each run of experiment, the 80:20 split is random sampled. The random 

sampling process is repeated 20 times to create 20 different runs of experiment with 

different training/testing data. 

For Example, we have 5 documents in the corpus                   . One 

randomly sampled Training/Testing split can be                      and 

          . Another randomly sampled Training/Testing split can be        

              and           . In this simple example, we cannot conduct 20 

random sampling processes. But in OntoNotes4.0 corpus with 2000+ documents, 20 

random sampling processing can be conducted without repetition. 

The same process is also used by other researchers such as (Yin et al, 2009) & 

(Pan et al, 2009). Both of these works are from a top-ranked conference: International 

Joint Conference of Artificial Intelligence (IJCAI).  
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Appendix B3: Student’s paired t-Test for Statistical Significances 

In Appendix Section B3 we will show the details on the two-sample paired Student’s 

t-test. Student’s paired t-test is a well-defined hypothesis test for comparing the 

difference between two related samples. Part of the following information is taken 

from (Shier, 2004) on the Mathematical Learning Support Centre Website
67

 for an 

easy understanding. 

 

General Information on paired Student’s t-Test 

A paired t-test is used to compare two population means where you have two 

samples in which observations in one sample can be paired with observations in the 

other sample. Examples of where this might occur are: 

• Before-and-after observations on the same subjects  

• A comparison of two different methods of measurement or two different treatments 

where the measurements/treatments are applied to the same subjects. 

Our scenario falls in the second cases which we try to compare the 

performances between two models applied to the same set of training/testing data.  

 

Level of Significance 

We select the most commonly used level of significance     .  

 

One-Tailed vs. Two-Tailed t-Test 

In our cases, we are comparing an improved model           (improved with a 

proposed technique) with an ordinary model           (without the proposed 

technique). We have a prior knowledge that the performance of           is better 
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than the performance of           .  Therefore, the one-tailed paired t-test is used 

instead of the two-tailed one. In other words, the hypothesis test is set as 

                                      

                                       

 

Procedure to Conduct t-Test 

We use the Microsoft Excel’s built-in T-Test function to conduct out one-tailed two-

sample paired t-test with 5% level of significance. Although t-test works on fewer 

samples, in statistical study, a sample size of 20 is in general more meaningful for 

conducting Student’s t-test.  
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Appendix C: Experimental Results 

In Appendix Section C, we will show all the experiment records for this thesis. 

 

Appendix C1: 20 Sets of Experimental Results 

In Appendix Section C1, we will show all the 20 sets of Experiments Results.  

Experiment Set 1: 

Model P R F 

BL 31.7% 54.9% 40.2% 

BL+CC 38.6% 53.0% 44.7% 

SGP 30.5% 66.7% 41.9% 

SGP+CC 36.5% 65.7% 46.9% 

SGP+CC+BIS 39.3% 65.2% 49.0% 

SGP+CC+BIS+PCI 40.4% 66.1% 50.1% 

SGP+CC+BIS+PCI+PIE 45.5% 62.6% 52.7% 

SGP+CC+BIS+PCI+PIE+SC 46.9% 67.5% 55.3% 

SGP+CC+BIS+PCI+PIE+SC+ODP 49.6% 67.3% 57.1% 

CRW 37.3% 65.2% 47.5% 

MRW 42.2% 68.1% 52.1% 

MRW+PCI 43.5% 70.3% 53.7% 

MRW+PCI+LCP 47.1% 68.9% 56.0% 

MRW+PCI+LCP+OGI 50.7% 67.5% 57.9% 

Experiment Set 2: 

Model P R F 

BL 29.9% 53.7% 38.4% 

BL+CC 34.4% 50.1% 40.8% 

SGP 28.2% 65.6% 39.4% 

SGP+CC 33.8% 62.9% 44.0% 

SGP+CC+BIS 36.8% 62.1% 46.2% 

SGP+CC+BIS+PCI 37.1% 63.6% 46.9% 

SGP+CC+BIS+PCI+PIE 41.9% 60.7% 49.6% 

SGP+CC+BIS+PCI+PIE+SC 44.1% 63.7% 52.1% 

SGP+CC+BIS+PCI+PIE+SC+ODP 48.1% 61.1% 53.8% 

CRW 33.2% 60.7% 42.9% 

MRW 36.3% 62.1% 45.8% 

MRW+PCI 35.9% 63.3% 45.8% 

MRW+PCI+LCP 40.2% 60.8% 48.4% 

MRW+PCI+LCP+OGI 44.5% 59.4% 50.9% 
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Experiment Set 3: 

Model P R F 

BL 30.3% 56.2% 39.4% 

BL+CC 35.3% 52.1% 42.1% 

SGP 27.7% 67.6% 39.3% 

SGP+CC 34.3% 65.9% 45.1% 

SGP+CC+BIS 38.3% 65.6% 48.4% 

SGP+CC+BIS+PCI 39.4% 66.8% 49.6% 

SGP+CC+BIS+PCI+PIE 44.8% 62.1% 52.1% 

SGP+CC+BIS+PCI+PIE+SC 46.0% 67.3% 54.6% 

SGP+CC+BIS+PCI+PIE+SC+ODP 49.4% 64.1% 55.8% 

CRW 35.7% 61.2% 45.1% 

MRW 39.2% 62.7% 48.2% 

MRW+PCI 41.7% 61.0% 49.5% 

MRW+PCI+LCP 44.0% 59.4% 50.6% 

MRW+PCI+LCP+OGI 47.3% 58.0% 52.1% 

Experiment Set 4: 

Model P R F 

BL 33.7% 50.5% 40.4% 

BL+CC 38.2% 49.4% 43.1% 

SGP 31.3% 66.2% 42.5% 

SGP+CC 37.3% 64.3% 47.2% 

SGP+CC+BIS 41.1% 62.1% 49.5% 

SGP+CC+BIS+PCI 42.4% 64.0% 51.0% 

SGP+CC+BIS+PCI+PIE 46.9% 63.7% 54.0% 

SGP+CC+BIS+PCI+PIE+SC 49.0% 69.1% 57.3% 

SGP+CC+BIS+PCI+PIE+SC+ODP 51.3% 66.9% 58.1% 

CRW 31.9% 59.7% 41.6% 

MRW 34.9% 61.8% 44.6% 

MRW+PCI 35.1% 62.2% 44.9% 

MRW+PCI+LCP 39.8% 59.4% 47.7% 

MRW+PCI+LCP+OGI 42.6% 57.8% 49.0% 

Experiment Set 5: 

Model P R F 

BL 29.4% 57.5% 38.9% 

BL+CC 36.0% 55.8% 43.8% 

SGP 30.3% 69.7% 42.2% 

SGP+CC 37.9% 67.1% 48.4% 

SGP+CC+BIS 40.2% 66.7% 50.2% 

SGP+CC+BIS+PCI 39.7% 67.4% 50.0% 

SGP+CC+BIS+PCI+PIE 45.4% 64.7% 53.4% 

SGP+CC+BIS+PCI+PIE+SC 46.7% 68.3% 55.5% 

SGP+CC+BIS+PCI+PIE+SC+ODP 49.1% 66.0% 56.3% 

CRW 39.7% 64.8% 49.2% 

MRW 44.7% 65.2% 53.0% 

MRW+PCI 45.9% 66.3% 54.2% 

MRW+PCI+LCP 48.5% 63.2% 54.9% 

MRW+PCI+LCP+OGI 53.7% 61.9% 57.5% 
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Experiment Set 6: 

Model P R F 

BL 31.3% 55.5% 40.0% 

BL+CC 38.5% 51.4% 44.0% 

SGP 32.1% 66.8% 43.4% 

SGP+CC 39.3% 64.1% 48.7% 

SGP+CC+BIS 41.1% 64.7% 50.3% 

SGP+CC+BIS+PCI 40.4% 65.8% 50.1% 

SGP+CC+BIS+PCI+PIE 46.4% 61.7% 53.0% 

SGP+CC+BIS+PCI+PIE+SC 47.9% 63.3% 54.5% 

SGP+CC+BIS+PCI+PIE+SC+ODP 48.5% 64.1% 55.2% 

CRW 35.3% 63.7% 45.4% 

MRW 39.8% 64.5% 49.2% 

MRW+PCI 41.1% 66.0% 50.7% 

MRW+PCI+LCP 46.8% 63.3% 53.8% 

MRW+PCI+LCP+OGI 48.3% 61.6% 54.1% 

Experiment Set 7: 

Model P R F 

BL 29.7% 54.7% 38.5% 

BL+CC 35.8% 52.2% 42.5% 

SGP 29.8% 64.6% 40.8% 

SGP+CC 32.7% 62.0% 42.8% 

SGP+CC+BIS 36.1% 60.9% 45.3% 

SGP+CC+BIS+PCI 36.9% 61.1% 46.0% 

SGP+CC+BIS+PCI+PIE 40.1% 59.7% 48.0% 

SGP+CC+BIS+PCI+PIE+SC 41.2% 63.8% 50.1% 

SGP+CC+BIS+PCI+PIE+SC+ODP 45.4% 62.1% 52.5% 

CRW 36.8% 65.1% 47.0% 

MRW 42.0% 67.3% 51.7% 

MRW+PCI 43.1% 68.1% 52.8% 

MRW+PCI+LCP 45.7% 65.0% 53.7% 

MRW+PCI+LCP+OGI 49.8% 63.8% 55.9% 

Experiment Set 8: 

Model P R F 

BL 35.4% 51.9% 42.1% 

BL+CC 41.6% 48.7% 44.9% 

SGP 33.7% 69.3% 45.3% 

SGP+CC 40.1% 63.6% 49.2% 

SGP+CC+BIS 42.7% 61.2% 50.3% 

SGP+CC+BIS+PCI 40.9% 63.3% 49.7% 

SGP+CC+BIS+PCI+PIE 46.3% 60.1% 52.3% 

SGP+CC+BIS+PCI+PIE+SC 47.7% 65.2% 55.1% 

SGP+CC+BIS+PCI+PIE+SC+ODP 49.3% 63.7% 55.6% 

CRW 34.2% 66.1% 45.1% 

MRW 39.6% 68.2% 50.1% 

MRW+PCI 40.2% 69.1% 50.8% 

MRW+PCI+LCP 44.3% 64.7% 52.6% 

MRW+PCI+LCP+OGI 49.2% 62.2% 54.9% 
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Experiment Set 9: 

Model P R F 

BL 31.3% 54.9% 39.9% 

BL+CC 39.4% 53.2% 45.3% 

SGP 29.2% 68.1% 40.9% 

SGP+CC 31.9% 66.0% 43.0% 

SGP+CC+BIS 34.3% 64.7% 44.8% 

SGP+CC+BIS+PCI 36.1% 65.5% 46.5% 

SGP+CC+BIS+PCI+PIE 41.8% 62.2% 50.0% 

SGP+CC+BIS+PCI+PIE+SC 43.4% 65.2% 52.1% 

SGP+CC+BIS+PCI+PIE+SC+ODP 46.3% 64.9% 54.0% 

CRW 35.7% 64.7% 46.0% 

MRW 37.8% 65.0% 47.8% 

MRW+PCI 36.4% 65.2% 46.7% 

MRW+PCI+LCP 40.7% 63.8% 49.7% 

MRW+PCI+LCP+OGI 45.8% 59.4% 51.7% 

Experiment Set 10: 

Model P R F 

BL 31.9% 55.0% 40.4% 

BL+CC 41.1% 51.4% 45.7% 

SGP 32.3% 66.9% 43.6% 

SGP+CC 38.0% 64.9% 47.9% 

SGP+CC+BIS 39.7% 64.1% 49.0% 

SGP+CC+BIS+PCI 37.9% 66.0% 48.2% 

SGP+CC+BIS+PCI+PIE 43.6% 60.1% 50.5% 

SGP+CC+BIS+PCI+PIE+SC 43.7% 64.4% 52.1% 

SGP+CC+BIS+PCI+PIE+SC+ODP 45.9% 62.9% 53.1% 

CRW 38.2% 65.3% 48.2% 

MRW 42.4% 67.2% 52.0% 

MRW+PCI 43.0% 68.3% 52.8% 

MRW+PCI+LCP 45.9% 64.1% 53.5% 

MRW+PCI+LCP+OGI 48.7% 63.0% 54.9% 

Experiment Set 11: 

Model P R F 

BL 32.1% 56.7% 41.0% 

BL+CC 40.2% 54.9% 46.4% 

SGP 33.3% 68.2% 44.7% 

SGP+CC 38.7% 66.2% 48.8% 

SGP+CC+BIS 41.8% 65.6% 51.1% 

SGP+CC+BIS+PCI 40.7% 67.0% 50.6% 

SGP+CC+BIS+PCI+PIE 45.2% 65.0% 53.3% 

SGP+CC+BIS+PCI+PIE+SC 46.7% 65.0% 54.4% 

SGP+CC+BIS+PCI+PIE+SC+ODP 48.2% 66.7% 56.0% 

CRW 40.7% 68.2% 51.0% 

MRW 44.6% 70.3% 54.6% 

MRW+PCI 45.0% 69.4% 54.6% 

MRW+PCI+LCP 47.3% 65.9% 55.1% 

MRW+PCI+LCP+OGI 51.4% 63.7% 56.9% 
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Experiment Set 12: 

Model P R F 

BL 30.1% 56.2% 39.2% 

BL+CC 35.6% 55.7% 43.4% 

SGP 29.3% 65.9% 40.6% 

SGP+CC 35.3% 64.0% 45.5% 

SGP+CC+BIS 37.3% 64.1% 47.2% 

SGP+CC+BIS+PCI 38.2% 65.3% 48.2% 

SGP+CC+BIS+PCI+PIE 41.6% 63.7% 50.3% 

SGP+CC+BIS+PCI+PIE+SC 44.1% 69.2% 53.9% 

SGP+CC+BIS+PCI+PIE+SC+ODP 45.8% 67.7% 54.6% 

CRW 37.2% 64.9% 47.3% 

MRW 41.2% 65.7% 50.6% 

MRW+PCI 40.8% 65.1% 50.2% 

MRW+PCI+LCP 44.1% 62.7% 51.8% 

MRW+PCI+LCP+OGI 45.9% 61.8% 52.7% 

Experiment Set 13: 

Model P R F 

BL 29.8% 52.1% 37.9% 

BL+CC 33.0% 50.6% 39.9% 

SGP 30.1% 63.9% 40.9% 

SGP+CC 36.7% 64.1% 46.7% 

SGP+CC+BIS 38.8% 63.3% 48.1% 

SGP+CC+BIS+PCI 39.9% 64.4% 49.3% 

SGP+CC+BIS+PCI+PIE 47.2% 59.8% 52.8% 

SGP+CC+BIS+PCI+PIE+SC 49.1% 63.3% 55.3% 

SGP+CC+BIS+PCI+PIE+SC+ODP 53.7% 60.6% 56.9% 

CRW 38.4% 68.1% 49.1% 

MRW 41.9% 71.3% 52.8% 

MRW+PCI 39.3% 70.0% 50.3% 

MRW+PCI+LCP 43.2% 66.6% 52.4% 

MRW+PCI+LCP+OGI 48.3% 64.1% 55.1% 

Experiment Set 14: 

Model P R F 

BL 30.7% 54.4% 39.2% 

BL+CC 36.9% 53.7% 43.7% 

SGP 31.2% 65.1% 42.2% 

SGP+CC 37.0% 63.9% 46.9% 

SGP+CC+BIS 38.8% 62.8% 48.0% 

SGP+CC+BIS+PCI 36.7% 63.0% 46.4% 

SGP+CC+BIS+PCI+PIE 44.2% 62.1% 51.6% 

SGP+CC+BIS+PCI+PIE+SC 46.0% 66.7% 54.4% 

SGP+CC+BIS+PCI+PIE+SC+ODP 50.1% 62.9% 55.8% 

CRW 36.4% 65.7% 46.8% 

MRW 40.1% 67.7% 50.4% 

MRW+PCI 42.4% 67.2% 52.0% 

MRW+PCI+LCP 45.3% 64.1% 53.1% 

MRW+PCI+LCP+OGI 50.7% 59.9% 54.9% 
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Experiment Set 15: 

Model P R F 

BL 31.6% 53.9% 39.8% 

BL+CC 38.4% 51.7% 44.1% 

SGP 30.1% 64.6% 41.1% 

SGP+CC 38.5% 65.1% 48.4% 

SGP+CC+BIS 40.2% 65.2% 49.7% 

SGP+CC+BIS+PCI 41.4% 66.7% 51.1% 

SGP+CC+BIS+PCI+PIE 45.8% 63.2% 53.1% 

SGP+CC+BIS+PCI+PIE+SC 45.1% 68.6% 54.4% 

SGP+CC+BIS+PCI+PIE+SC+ODP 47.7% 67.6% 55.9% 

CRW 39.1% 69.3% 50.0% 

MRW 42.2% 73.7% 53.7% 

MRW+PCI 43.1% 71.9% 53.9% 

MRW+PCI+LCP 47.0% 65.3% 54.7% 

MRW+PCI+LCP+OGI 49.8% 62.7% 55.5% 

Experiment Set 16: 

Model P R F 

BL 30.8% 54.7% 39.4% 

BL+CC 35.8% 52.2% 42.5% 

SGP 29.7% 64.6% 40.7% 

SGP+CC 33.7% 65.1% 44.4% 

SGP+CC+BIS 37.8% 63.9% 47.5% 

SGP+CC+BIS+PCI 37.0% 65.1% 47.2% 

SGP+CC+BIS+PCI+PIE 40.2% 63.4% 49.2% 

SGP+CC+BIS+PCI+PIE+SC 42.1% 64.8% 51.0% 

SGP+CC+BIS+PCI+PIE+SC+ODP 44.9% 62.2% 52.2% 

CRW 31.4% 60.8% 41.4% 

MRW 37.2% 61.7% 46.4% 

MRW+PCI 38.4% 62.1% 47.5% 

MRW+PCI+LCP 42.6% 60.5% 50.0% 

MRW+PCI+LCP+OGI 46.3% 58.8% 51.8% 

Experiment Set 17: 

Model P R F 

BL 30.3% 55.2% 39.1% 

BL+CC 36.2% 53.1% 43.1% 

SGP 31.1% 64.6% 42.0% 

SGP+CC 37.9% 62.8% 47.3% 

SGP+CC+BIS 39.5% 63.7% 48.8% 

SGP+CC+BIS+PCI 40.8% 65.1% 50.2% 

SGP+CC+BIS+PCI+PIE 42.9% 64.4% 51.5% 

SGP+CC+BIS+PCI+PIE+SC 45.1% 65.7% 53.5% 

SGP+CC+BIS+PCI+PIE+SC+ODP 46.4% 63.0% 53.4% 

CRW 38.2% 66.6% 48.6% 

MRW 43.1% 66.2% 52.2% 

MRW+PCI 42.3% 65.7% 51.5% 

MRW+PCI+LCP 45.8% 62.3% 52.8% 

MRW+PCI+LCP+OGI 49.0% 60.4% 54.1% 
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Experiment Set 18: 

Model P R F 

BL 32.0% 54.2% 40.2% 

BL+CC 39.1% 49.7% 43.8% 

SGP 31.1% 64.6% 42.0% 

SGP+CC 35.8% 63.1% 45.7% 

SGP+CC+BIS 39.4% 62.2% 48.2% 

SGP+CC+BIS+PCI 40.7% 63.1% 49.5% 

SGP+CC+BIS+PCI+PIE 45.8% 61.2% 52.4% 

SGP+CC+BIS+PCI+PIE+SC 46.3% 63.9% 53.7% 

SGP+CC+BIS+PCI+PIE+SC+ODP 48.5% 62.2% 54.5% 

CRW 40.2% 67.4% 50.4% 

MRW 42.9% 68.3% 52.7% 

MRW+PCI 43.1% 66.7% 52.4% 

MRW+PCI+LCP 46.0% 63.1% 53.2% 

MRW+PCI+LCP+OGI 49.3% 61.4% 54.7% 

Experiment Set 19: 

Model P R F 

BL 32.2% 53.4% 40.2% 

BL+CC 40.6% 51.0% 45.2% 

SGP 31.7% 65.3% 42.7% 

SGP+CC 37.1% 63.0% 46.7% 

SGP+CC+BIS 40.6% 60.9% 48.7% 

SGP+CC+BIS+PCI 39.1% 64.1% 48.6% 

SGP+CC+BIS+PCI+PIE 46.0% 60.0% 52.1% 

SGP+CC+BIS+PCI+PIE+SC 47.8% 63.3% 54.5% 

SGP+CC+BIS+PCI+PIE+SC+ODP 49.1% 62.8% 55.1% 

CRW 39.8% 66.7% 49.9% 

MRW 44.7% 68.2% 54.0% 

MRW+PCI 46.4% 69.1% 55.5% 

MRW+PCI+LCP 49.3% 65.4% 56.2% 

MRW+PCI+LCP+OGI 53.1% 63.7% 57.9% 

Experiment Set 20: 

Model P R F 

BL 31.3% 54.0% 39.6% 

BL+CC 37.4% 52.1% 43.5% 

SGP 29.9% 66.4% 41.2% 

SGP+CC 34.8% 65.3% 45.4% 

SGP+CC+BIS 39.0% 63.9% 48.4% 

SGP+CC+BIS+PCI 37.1% 64.2% 47.0% 

SGP+CC+BIS+PCI+PIE 41.8% 60.3% 49.4% 

SGP+CC+BIS+PCI+PIE+SC 40.4% 63.7% 49.4% 

SGP+CC+BIS+PCI+PIE+SC+ODP 44.4% 62.1% 51.8% 

CRW 33.8% 63.4% 44.1% 

MRW 36.1% 64.2% 46.2% 

MRW+PCI 37.0% 61.5% 46.2% 

MRW+PCI+LCP 42.1% 59.8% 49.4% 

MRW+PCI+LCP+OGI 48.0% 56.1% 51.7% 
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Appendix C2: List of p-Values for Student’s paired t-Tests 

In Appendix Section C2, we will show the p-Values when conducting Student’s 

paired t-tests for statistical significance. 

System 1 System 2 p-Value 

BL BL+CC 3.35848E-13 

BL SGP 6.7595E-09 

BL+CC SGP+CC 1.06443E-06 

SGP SGP+CC 5.8811E-13 

SGP+CC SGP+CC+BIS 2.172E-11 

SGP+CC+BIS SGP+CC+BIS+PCI 0.06366406 

SGP+CC+BIS+PCI SGP+CC+BIS+PCI+PIE 2.9307E-12 

SGP+CC+BIS+PCI+PIE SGP+CC+BIS+PCI+PIE+SC 2.6835E-10 

SGP+CC+BIS+PCI+PIE+SC SGP+CC+BIS+PCI+PIE+SC+ODP 2.8176E-08 

BL+CC CRW 8.2254E-10 

CRW MRW 9.7817E-14 

MRW MRW+PCI 0.05945349 

MRW+PCI MRW+PCI+LCP 1.0073E-07 

MRW+PCI+LCP MRW+PCI+LCP+OGI 5.41261E-11 

SGP+CC+BIS+PCI+PIE MRW+PCI+LCP 0.055852875 

MRW+PCI+LCP+OGI SGP+CC+BIS+PCI+PIE+SC+ODP 0.142003431 
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