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Summary

Sampling or random sampling is a ubiquitous tool to circumvent scalability issues

arising from the challenge of processing large datasets. The ability to generate

representative samples of smaller size is useful not only to circumvent scalability

issues but also, per se, for statistical analysis, data processing and other data mining

tasks. Generation is a related problem that aims to randomly generate elements

among all the candidate ones with some particular characteristics. Classic examples

are the various kinds of graph models.

In this thesis, we focus on random sampling and generation problems over data

streams and large graphs. We first conceptually indicate the relation between ran-

dom sampling and generation. We also introduce the conception of three relevant

problems, namely, construction, enumeration and counting. We reveal the malprac-

tice of these three methods in finding representative samples of large datasets. We

propose problems encountered in the processing of data streams and large graphs,

and devise novel and practical algorithms to solve these problems.

We first study the problem of sampling from a data stream with a sliding

window. We consider a sample of fixed size. With the moving of the window, the

expired data have null probability to be sampled and the data inside the window are

sampled uniformly at random. We propose the First In First Out (FIFO) sampling

algorithm. Experiment results show that FIFO can maintain a nearly random

sample of the sliding window with very limited memory usage.

Secondly, we study the problem of sampling connected induced subgraphs of

fixed size uniformly at random from original graphs. We present four algorithms

that leverage different techniques: Rejection Sampling, Random Walk and Markov

Chain Monte Carlo. Our main contribution is the Neighbour Reservoir Sampling

(NRS) algorithm. Compared with other proposed algorithms, NRS successfully

vii



realize the compromise between effectiveness and efficiency.

Thirdly, we study the problem of incremental sampling from dynamic graphs.

Given an old original graph and an old sample graph, our objective is to incre-

mentally sample an updated sample graph from the updated original graph based

on the old sample graph. We propose two algorithms that incrementally apply

the Metropolis algorithm. We show that our algorithms realize the compromise

between effectiveness and efficiency of the state-of-the-art algorithms.

Fourth, we study the problem of generating random graphic sequences. Our

target is to generate graphic sequences uniformly at random from all the possible

graphic sequences. We propose two sub-problems. One is to generate random

graphic sequences with prescribed length. The other is to generate random graphic

sequences with prescribed length and sum. Our contribution is the original design

of the Markov chain and the empirical evaluation of mixing time.

Lastly, we study the fast generation of Erdős-Rényi random graphs. We propose

an algorithm that utilizes the idea of pre-computation to speedup the baseline

algorithm. Further improvements can be achieved by paralleling the proposed

algorithm.

Overall, the main difficulty revealed in our study is how to devise effective

algorithms that generate representative samples with respect to desired properties.

We shall, analytically and empirically, show the effectiveness and efficiency of the

proposed algorithms.
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Chapter 1

Introduction

A recurrent challenge for modern applications is the processing of large datasets [13,

28, 106]. Two kinds of large datasets are constantly encountered in contemporary

applications. They are data streams and large graphs.

A data stream is a ordered sequence D of continuous data di, each of which

arrives in a high speed and usually can be processed only once. Examples of data

streams include telephone records, stock quotes, sensor data, Internet traffic, etc.

Typically, data streams contain too large amount of data to fit in main memory

due to its continuity and high arrival rate. For example, [7] reports that during

the first half of 2011, Twitter users sent 200 million Tweets per day. These tweets

thereby make up a high-speed, continuous and endless information stream.

A graph is an abstract representation of a set of vertices V where some pairs

of vertices are connected by a set of edges E. For example, in an email network,

the senders and the receivers are the vertices, and there is an edge connecting a

sender and a receiver if they send emails to each other. Modern real life graphs

usually consist of at least millions of vertices and billions of edges. For instance, the

social graph of Facebook was reported to have about 721 million active users and
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68.7 billion friendship edges by May 2011 [107]. Therefore it is often impossible

to directly apply graph analysis algorithms on real graphs because of the high

complexity of the algorithms.

1.1 Random Sampling and Generation

One way to circumvent scalability issues arising from the above challenge is to

replace the processing of very large datasets by the processing of representative

samples of manageable size. This is sampling or random sampling. The ability

to generate representative samples of smaller size is useful not only to circumvent

scalability issues but also, per se, for statistical analysis, data processing and other

data mining tasks. Examples include diverse applications such as data mining [59,

95, 106, 115], query processing [13, 25], graph pattern mining [50, 51], sensor data

management [28, 99], etc.

Over time, a series of sampling algorithms have been proposed to cater for

different problems. In 1980s, reservoir sampling is first introduced by McLeod et al.

in [82] and revisited by Vitter in [112]. The algorithm uniformly at random selects

a sample with fixed size from a data stream with unknown length. Later random

pairing and resizing samples [37] are proposed based on reservoir sampling to cater

for the problem when there are deletions in the original data stream. Despite

the extensive discussion of the uniform sampling, modern applications show their

preference to recent data. Aggarwal [8] proposes an algorithm to give bias to recent

data in the stream. The algorithm samples data with probability exponentially

proportional to its arrival time. The later a data arrivals, the higher probability

it is sampled. On the other hand, Babcock et al. [14] consider another kind of

biased sampling. Rather than sampling from the entire history of the stream,
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they investigate how a sample can be continuously and uniformly generated within

a sliding window containing only the recent data. In addition to sampling data

streams, the problem of sampling from large graphs arises these years. The general

purpose of graph sampling is to sample representative subgraphs that preserve

desired properties of the original graphs. In the pioneering paper, Leskovec et

al. [70] discuss several possible sampling techniques for graph sampling. They

evaluate the discussed algorithms on their abilities of preserving a list of selected

properties of original graphs. Then Hübler et al. [56] propose Metropolis algorithms

to improve the sample quality. Later Maiya et al. [80] propose algorithms to sample

the community structure in large networks. Other sampling problems include time-

based sampling [36, 104, 9], snowball sampling [20, 114] and so on.

Another problem that is related to sampling is generation. A generation prob-

lem is defined as randomly generating one or more solutions among all the possible

ones with some particular characteristics. This is the case when one discusses

the graph models. For instance, the classic random graph model, or Erdős-Rényi

model, proposed by Gilbert [40] and Erdős et al. [33], randomly generates graphs

with given number of vertices and the probability to link each pair of the vertices,

or with given number of vertices and edges. Then a successive of graph models are

proposed to simulate the real graphs, including the Watts and Strogatz model [113],

the Barabási-Albert model [15], the Forest Fire model [71], etc. All these graph

models are randomly generating graphs with desired properties of the real graphs,

among all the possible ones. Some other literatures discuss the problem of generat-

ing random graphs with prescribed degree sequences [84, 111, 38]. This is also the

case when one discusses random generation of synthetic databases. Examples in-

clude fast generation of large synthetic database [45], generation of spatio-temporal

datasets [105], data generation with constraints [12], etc.
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As discussed above, sampling is extracting representative samples from the orig-

inal population. Indeed, the sampling process is equivalent to randomly generating

representative samples among all the possible samples. For example, given n ver-

tices and m edges of a graph the Erdős-Rényi model randomly selects m edges

from n(n−1)
2

possible edges. This is sampling. On the other hand, the Erdős-Rényi

model is randomly generating graphs among all the graphs with n vertices and

m edges. This is generation. Therefore sampling and generation are equivalent

problems interpreted from two different angles.

In this thesis, we study random sampling and generation problems over data

streams and graphs. We propose novel algorithms to solve these problems.

1.2 Construction, Enumeration and Counting

Before further discussing sampling and generation, we introduce three related prob-

lems. They are construction, enumeration and counting.

A construction problem1 aims to find an arbitrary element with desired char-

acteristics. Note that a generation problem aims to find a random element. For

example, to construct a sample of size n from a data stream, one can simply select

the first n data. To construct an induced subgraph with n vertices from an original

graph, one can arbitrarily select n vertices and construct the corresponding induced

subgraph. There are two classic construction algorithms for extracting subgraphs

with given sizes (number of vertices). They are the Depth First Search (DFS) al-

gorithm and the Breadth First Search (BFS) algorithm [65]. DFS starts at some

vertex and explores as far as possible along each branch before backtracking, until

desired number of vertices are selected. BFS starts at some vertex and explores all

the neighbours of the vertex. For each neighbour, BFS then recursively explores

1We present the results of a construction problem in Appendix C
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its unvisited neighbours, until desired number of vertices are selected. Both of the

algorithms construct deterministic subgraphs once the first vertex is selected. An-

other example is the simple algorithm [14]. The algorithm is proposed for sampling

from a data stream with a sliding window. The data in the window are supposed

to be sampled uniformly at random. The algorithm samples the first window using

the standard reservoir sampling. However, the consecutive samples are produced

by construction. Whenever a data in the current sample is expired, the newly ar-

rival data is inserted into the sample. This algorithm reproduces periodically the

same sample design once the sample of the first window is generated. As what

we see, the element constructed by a construction method is also a sample of the

underlying population. The problem with construction is that it usually produces

unrepresentative samples because the sample design is usually deterministic. In-

stead, random sampling and generation methods are an option when construction

methods cannot produce representative samples.

One naive method to solve a generation problem is to enumerate all the elements

and randomly select some of them. The former processing is called enumeration.

For example, Harary et al. [49] discuss in their book the enumeration of graphs

and related structural configurations. Another classic enumeration problem is the

maximal clique enumeration problem [11]. A clique is a complete subgraph. A

maximal clique is a clique that is not contained in any other cliques. The maximal

clique enumeration problem aims to enumerate all maximal cliques in a graph. The

problem is NP -hard. Generation by enumeration is often impractical when space of

elements is large. In such a scenario, practical sampling and generation algorithms

are required.

Another relevant problem is counting. The problem aims to count the number of

possible elements with desired characteristics without enumerating. If the number
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of elements can be efficiently counted, it is possible to assign any probability distri-

bution on the elements and generate random elements according to the distribution.

For example, the problem “how many different samples of size n are there given

a population of size m?” can be easily solved using the combination formula
(
m
n

)
.

One can assign each sample probability 1/
(
m
n

)
and generate the samples uniformly

at random. However, many counting problems are difficult as there is no direct

approach to calculate the corresponding numbers. For example, there is no known

formula to solve the problem “how many distinct graphic sequences with length n

are there?”. One could obtain the result by enumerating all the distinct graphic

sequences with length n. However, it is impractical. In fact, there are a category

of counting problems called ]P problems which are associated with the decision

problems in the set NP . For example the problem “Are there any subsets of a

list of integers that add up to zero?” is an NP problem while the problem “How

many subsets of a list of integers add up to zero?” is a ]P problem. If a problem

is in ]P and every ]P problem can be reduced to it by polynomial-time counting

reduction, the problem is in ]P -complete. Famous examples include “How many

different variable assignments will satisfy a given DNF formula?”, “How many

perfect matchings are there for a given bipartite graph?”, etc. More examples of

]P -complete problems can be found in Appendix A. If a counting problem is in

]P -complete, it is impractical to sample via counting. Instead, we are interested in

designing efficient sampling and generation algorithms.

1.3 Contributions

In this thesis, our main contribution is the novel design of sampling and generation

algorithms for different problems over data streams and graphs. We list the research
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gaps and the achievements so far as follows.

1.3.1 Sampling from a Data Stream with a Sliding Window

Sampling streams of continuous data with limited memory, or reservoir sampling,

is a utility algorithm. Standard reservoir sampling maintains a random sample

of the entire stream as it has arrived so far. This restriction does not meet the

requirement of many applications that need to give preference to recent data. Bab-

cock et al. discuss the problem of sampling from a sliding window in [14]. They

propose the simple algorithm and the chain-sample algorithm. However, the two

algorithms suffer from different drawbacks, respectively. The simple algorithm

produces periodical sample design, and the chain-sample algorithm requires high

memory usage. Moreover, it is unclear how to sample more than one elements with

the chain-sample algorithm.

We propose an effective algorithm, which is very simple and therefore efficient,

for maintaining a near random fixed size sample of a sliding window [79]. Indeed

our algorithm maintains a biased sample that may contain expired data. Yet it is

a good approximation of a random sample with expired data being present with

low probability. We analytically explain why and under which parameter settings

the algorithm is effective. We empirically evaluate its performance and compare it

with the performance of existing representatives of random sampling over sliding

windows and biased sampling algorithm.

1.3.2 Sampling Connected Induced Subgraphs Uniformly

at Random

A recurrent challenge for modern applications is the processing of large graphs.

Given that the graph analysis algorithms are usually of high complexity, replacing
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the processing of original graphs by the processing of representative subgraphs of

smaller size is useful to circumvent scalability issues. For such purposes adequate

graph sampling techniques must be devised. Despite the fact that many graph sam-

pling problems have been proposed in the past few years, little work has been done

on sampling connected induced subgraphs. In fact, connected induced subgraphs

naturally preserve local properties of original graphs.

We study the uniform random sampling of a connected subgraph from a graph [75].

We require that the sample contains a prescribed number of vertices. The sampled

graph is the corresponding induced graph. We devise, present and discuss several

algorithms that leverage three different techniques: Rejection Sampling, Random

Walk and Markov Chain Monte Carlo. We empirically evaluate and compare the

performance of the algorithms. We show that they are effective and efficient but

that there is a trade-of, which depends on the density of the graphs and the sample

size. We propose one novel algorithm, which we call Neighbour Reservoir Sampling,

that very successfully realizes the trade-of between effectiveness and efficiency.

1.3.3 Sampling from Dynamic Graphs

The graphs encountered in modern applications are dynamic: edges and vertices

are added or removed. However, existing graph sampling algorithms are not incre-

mental. They were designed for static graphs. If the original graph changes, the

sample graph must be entirely recomputed.

We present incremental graph sampling algorithms preserving selected proper-

ties, by applying the Metropolis algorithms [76]. The rationale of the proposed

algorithms is to replace a fraction of vertices in the old sample with newly updated

vertices. We analytically and empirically evaluate the performance of the proposed

algorithms. We compare the performance of the proposed algorithms with that
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of baseline algorithms. The experiment results on both synthetic and real graphs

show that our proposed algorithms realize a compromise between effectiveness and

efficiency, and, therefore provide practical solutions to the problem of incrementally

sampling from the large dynamic graphs.

1.3.4 Generating Random Graphic Sequences

The graphs that arise from concrete applications seem to correspond to models with

prescribed degree sequences. A lot of work has discussed the problem of generating

random graphs with prescribed degree sequences [84, 111, 38]. They randomly

produce graphs with particular characteristics with the given prescribed degree

sequences. An underlying problem of this graph generation problem is therefore

the generation of degree sequences.

We present four algorithms for the random generation of graphic sequences [74].

We have proved their correctness. We empirically evaluate their performance. Two

of these algorithms that generate random graphic sequences according to the un-

derlying distribution of random graphs are trivial and are as effective and efficient

as the corresponding graph generation algorithms. The two other algorithms gen-

erate graphic sequences uniformly at random. To our knowledge these algorithms

are the first non-trivial algorithms proposed for this task. The algorithms that we

propose are Markov chain Monte Carlo algorithms. Our contribution is the original

design of the Markov chain and the empirical evaluation of mixing time.

1.3.5 Fast Generation of Random Graphs

Today, several database applications call for the generation of random graphs. A

fundamental, versatile random graph model adopted for that purpose is the Erdős-

Rényi Γv,p model. This model can be used for directed, undirected, and multi-
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partite graphs, with and without self-loops; it induces algorithms for both graph

generation and sampling, hence is useful not only in applications necessitating the

generation of random structures but also for simulation, sampling and in random-

ized algorithms. However, the commonly advocated algorithm for random graph

generation under this model performs poorly when generating large graphs.

We propose PreZER, an alternative algorithm with certain pre-computation for

random graph generation under the Erdős-Rényi model [90]. Our extensive exper-

imental study shows significant speedup for PreZER with respect to the baseline

algorithm.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. Section 2 introduces background

knowledge and takes a detailed review of related work. Section 3-7 present the

main contributions in our work, which includes sampling of a data stream with

a sliding window (Section 3), sampling connected induced subgraphs uniformly

at random (Section 4), sampling dynamic graphs (Section 5), generating random

graphic sequences (Section 6) and fast generation of random graphs (Section 7).

Section 8 proposes the problems and possible directions in the future work. Finally,

we conclude in Section 9. We also show the results of some relevant work in

Appendix.
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Chapter 2

Background and Related Work

2.1 Markov Chain Monte Carlo

Many literatures [56, 80, 43, 84] devise algorithms that belong to the Markov Chain

Monte Carlo (MCMC) method [52]. Markov chain Monte Carlo algorithms are ran-

dom walks on Markov chains. They stem from the Monte Carlo methods used in

applied statistics where they were used for simulation and sampling [52]. Sinclair,

in his monograph [100], has formalized and popularized their use for random gen-

eration (sampling) and counting.

An MCMC algorithm builds and randomly walks on a Markov chain whose

states correspond to the objects being sampled. The current state depends only

on its adjacent states. It is not necessary that all the states of the Markov chain

correspond to object being sampled as a rejection mechanism can filter out those

undesirable objects. Nevertheless, if the Markov chain is carefully designed, if it is

finite and ergodic (irreducible and aperiodic), then it has a stationary distribution

of random walk. Namely, the stationary probability vector πn of the Markov chain

satisfies πn = πnPn×n, where Pn×n is the transition matrix of the Markov chain,
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specifying the transition probability between every pair of states. For instance, the

stationary distribution is uniform if the graph of the underlying Markov chain is

regular and if the transition probability from s to s′ is defined as follows:

p(s, s′) =


1
ds

if s and s′ are adjacent

0 else,

where ds is the degree of state s in the graph of the Markov chain.

The mixing time of a Markov chain is the minimum number of random walk

steps t required to reach the stationary distribution. A sufficiently long random

walk, longer than the mixing time of a Markov chain, will reach states at random

according approximately to the stationary distribution. Formally, following [100],

let MC(x) be a family of ergodic Markov chains parameterized on strings x ∈ Ω.

For each x, let ∆(x)(t) denote the distance1 between the stationary distribution

and the distribution of MC(x) from any initial state after t steps, the mixing time

T x(ε) with error ε is defined as follows.

T (x)(ε) = min{t ∈ N : ∆(x)(t′) ≤ ε for all t′ ≥ t, 0 < ε ≤ 1}.

Such a family is said to be rapidly mixing if and only if there exists a polynomial

bounded function q : N ×R+ → N such that

T (x)(ε) ≤ q(|x|, log ε−1)

For a given generation problem the challenge is to devise a rapidly mixing

ergodic Markov chain whose states are the objects to be generated with the desired

stationary distribution. Generally, there are two methods to obtain the desired

1There are several different definitions of distance such as the total variation distance.
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stationary distribution. One is using the Metropolis algorithm [83]. This method

revises the stationary distributions by controlling the transition probability between

two states, for instance, according to their degrees in the graph of the Markov

Chain. The other method is modifying the weights of certain edges in the Markov

Chain, so that the sum of weights incident to each state is proportional to the

desired stationary distribution [100].

The Metropolis algorithm [83] can draw samples from an ergodic Markov chain

with any desired probability distribution π by satisfying the detailed balance con-

dition,

π(s)p(s, s′) = π(s′)p(s′, s), (2.1)

where π(s) is the stationary probability of state s and p(s, s′) is the transition

probability from s to s′, for any state s and s′. The transition probability p(s, s′) =

t(s, s′)× a(s, s′), where t(s, s′) is the probability of the transition from s to s′ and

a(s, s′) is the probability of accepting the transition. To ensure the detailed balance,

the acceptance probability has to be set as a(s, s′) = min(1, π(s′)
π(s)
× t(s,s′)

t(s′,s)). If the

constructed Markov chain is regular, that is, all the states have the same number of

adjacent states, we have t(s, s′) = t(s′, s). In such kind of scenario, the acceptance

probability is simplified as a(s, s′) = min(1, π(s′)
π(s)

). It is easy to prove that the

detailed balance holds for the Markov chain if only it holds for any two adjacent

states of the Markov chain. We prove this property in Chapter 5.

The other method to draw samples with any desired probability distribution,

suggested by Sinclair in [100], is to modify the weights of edges corresponding to the

transitions between adjacent states of the Markov chain. Namely, the stationary

probability of each state is proportional to the sum of the weights of its incident

edges in the graph of the underlying Markov chain, with the following transition
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matrix P,

p(s, s′) =


w(s,s′)∑

l∈adj(s) w(s,l)
if s and s′ are adjacent

0 else,

where w(s, s′) is the weight of edge corresponding to the transition from state s to

s′.

2.2 Sampling a Stream of Continuous Data

For the problem of sampling a stream of continuous data, previous work focuses

mainly on two areas. One is sampling the entire history uniformly at random.

The other is giving preference to recent data. The former area includes the work

such as Reservoir Sampling [82, 112], Random Pairing and Resizing Samples [37].

The latter includes the work such as Biased Reservoir Sampling [8], the Simple

algorithm, Chain-Sample [14] and Partition Sampling [22].

McLeod et al. [82] first introduce the Reservoir Sampling algorithm. Given a

data stream with unknown length and a sample size n, the algorithm inserts directly

the first n data into the sample. Then for each of the subsequent data, the algorithm

inserts it into the sample with probability n/t, where t is the length of the stream

after this insertion. If the newly arrival data is inserted, the algorithm discard

one data in the current sample uniformly at random. Reservoir Sampling always

maintains a uniform random sample of the entire data stream. Vitter [112] revisits

the Reservoir Sampling algorithm and proposes the optimized version algorithm

Z. The basic idea is to skip data that are not going to be selected according to

the selection probability, and rather select the index of next data. A formula is

derived to compute the number of data that are skipped over before the next data
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is chosen for the reservoir. This technique reduces the number of data that need

to be processed and thus the number of calls to RANDOM, which is a function to

generate a uniform random variable between 0 and 1. With the increasing of the

length of the data stream, more and more data are skipped directly.

The basic Reservoir Sampling algorithm handles only the insertion of data of

the original stream. Gemulla et al. [37] take a dip into the Reservoir Sampling

by considering both insertions and deletions of a data stream. They propose the

Random Pairing and Resizing Samples algorithms. The basic idea behind Random

Pairing is to avoid accessing the original data stream by considering each new inser-

tion as a compensation for the previous deletion. In the long term, every deletion

from the data stream is eventually compensated by a corresponding insertion. The

algorithm maintains two counters c1 and c2, which denote the numbers of uncom-

pensated deletions in the sample S and in the original data stream R, respectively.

Initially c1 and c2 are both set to 0. If c1+c2 = 0, the Reservoir Sampling algorithm

is applied. If c1 + c2 6= 0, the new data has probability c1/(c1 + c2) to be selected

into S; otherwise, it is discarded. Then c1 or c2 are modified accordingly. Random

Pairing is proposed for the scenario that the size of the original data stream is

relatively stable. On the other hand, they consider the data stream that is growing

in the long run, so that the upper bound of sample size grows with the length of

the data stream. The propose the Resizing Samples algorithm. The general idea is

to generate a sample S of size at most n from the initial data stream R and, after

some finite transactions of insertions and deletions, produce a sample S ′ of size n′

from the new base data stream R′, where n < n′ < |R|.

Modern applications show their preference to recent data. To cater for this prob-

lem, Aggarwal [8] proposes the Biased Reservoir Sampling algorithm that samples

each data with probability proportional to its arrival time. The later a data is

15



present in the stream, the higher probability it is sampled with. In particular, the

probability of the rth data included in the sample at the arrival of the tth data is

proportional to a bias function f(r, t) = e−λ(t−r), where λ is the bias rate lying

between 0 and 1. They define the bias using this exponential function because the

probability distribution can be easily maintained by modifying Reservoir Sampling,

as they proved in [8]. The algorithm first maintains an empty sample of capacity

n = [1/λ]. Assume that at the arrival of the tth data, the fraction of the sample

filled is F (t). The (t+ 1)th data is deterministically inserted into the sample. How-

ever, the deletion of an old data in the sample is not necessary. The algorithm flips

a coin with success probability F (t). In case of a success, a randomly selected data

in the old sample is discarded. Otherwise, no deletion occurs and the sample size

increases by 1. Notice that once the sample is fully filled, each newly arrival data

replaces one data randomly selected from the old sample with probability 1.

Another kind of biased sampling is sampling with a sliding (moving) window.

Babcock et al. first consider this problem in [14]. Given a data stream with un-

known length, a sample size n and a window size w, the sampling scheme should

always maintain a uniform random sample of the most recent w data of the stream.

Notice that previous work maintains a sample of the entire data stream, whereas

sliding window sampling maintains a sample of recent data only. They propose

the Simple algorithm and the Chain-Sample algorithm. The Simple algorithm first

generates a sample of size n from the first w data using the reservoir sampling

algorithm. Then the window moves on the stream. The current sample is main-

tained until a newly arrival data causes an old data in the sample to be expired

(outside the window). The new data is then inserted directly into the sample and

the expired data is directly discarded. This algorithm can efficiently maintain a

uniform random sample of the sliding window. However, the sample design is re-
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produced for every tumbling window. If the ith data is in the sample of the current

window, the (i + cw)th data is guaranteed to be included into the sample of some

window in future, where c is an arbitrary integer constant. To avoid this problem,

they propose the Chain-Sample algorithm. When the ith data enters the window,

it is selected to be the sample with probability Min(i,w)
w

. If the data is selected, the

index of the data that replaces it when it expires is uniformly chosen from i+ 1 to

i+w. When the data with the selected index arrives, the algorithm puts it into the

sample and calculates the new replacement index, etc. Thus, a chain of elements

that can replace the outdated data is built. Chain-Sample generates a sample of

size 1 for each chain. In order to obtain a sample of size n, n chains need to be

maintained. However, the Chain-Sample algorithm requires high memory usage,

as analyzed in [14].

A recent work proposes the Partition Sampling algorithm for sliding window

sampling on a data stream with O(n) memory usage [22]. The basic idea is to

partition the data stream into disjoint buckets B(iw, (i+ 1)w), i = 0, 1, . . . , where

w is the window size, and draw a sample from the most recent two buckets based

on some principle. At any time, there are one active bucket and at most one

partial bucket. A bucket is considered as “active” if not all the data of the bucket

have been expired. A bucket is considered as ”partial” if not all the data of the

bucket have arrived yet. The algorithm is then as follows. Denote by U the active

bucket and by SU the sample of size n drawn from U using the Reservoir Sampling

algorithm. If there is no partial bucket, the final sample S is simply equal to SU .

Otherwise, denote by V the partial bucket. If all the data of SU are not expired,

S = SU . Otherwise, let Ue be the set of data of U that are expired, Ua be the set

of data of U that are not expired (still active), and Va be the set of data of V that

have arrived. Let i be the number of expired data in SU , that is, i = |Ue ∩ SU |.
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The algorithm draws a sample SiV of size i of Va from SV . Finally, the sample S is

equal to (SU ∩ Ua) ∪ SiV . They prove the correctness of the algorithm. Since there

are at mot two buckets under processing at any time and the Reservoir Sampling

algorithm requires O(n) memory, the total memory of the algorithm is O(n).

2.3 Graph Sampling

For the problem of graph sampling, existing work focuses mainly on two differ-

ent sampling purposes. One purpose is to generate subgraphs of smaller sizes

that preserve selected properties of the original graph, such as degree distribution,

component distribution, average clustering coefficient, community structure, etc.

Although these algorithms have a random component, they are primarily construc-

tion algorithms and are not designed with the main concern of randomness and

uniformity of the sampling. In general the distribution from which these random

graphs are sampled are not known. Representatives of literatures include sampling

from large graphs [70], Metropolis Graph Sampling [56], and sampling community

structure [80]. The other purpose is to sample subgraphs of interest uniformly at

random from the original graphs. Representatives of literatures include sampling

random URL [54], sampling network motifs [61] and sampling unbiased Facebook

users [43].

In the pioneering paper [70], Leskovec et al. discuss ten candidate sampling al-

gorithms aiming at preserving a selected list of graph properties. They also propose

two sampling goals, namely, scale-down sampling and back-in-time sampling. The

former aims to create a sample graph S that is similar to the original graph G. The

latter aims to find a sample graph S that is similar to the original graph G when

it has the same size as S. The algorithms discussed include sampling by random
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node selection, sampling by random edge selection and sampling by exploration of

the graph. They consider the graph properties as distribution, including degree

distribution, clustering coefficient distribution, the distribution of component size,

hop-plot, etc. They empirically and comparatively evaluate the candidate algo-

rithms by measuring the similarity between the generated sample graphs and the

original graphs on nine static properties and five evolving properties. Among the

discussed algorithms, Random Walk Sampling and Forest Fire Sampling have the

best overall performance. The Random Walk Sampling algorithm selects uniformly

at random a starting vertex and simulates a random walk on the graph. In each

step, the algorithm jumps back to the starting vertex with a certain probability

and restarts the random walk. The algorithm has the problem of getting stuck.

The solution is to select a new starting vertex and repeat the above procedure if no

enough number of vertices are sampled after a sufficiently long time. Similarly to

Random Walk Sampling, Forest Fire Sampling selects a starting vertex v uniformly

at random from the graph. Then a random number x is drawn from a geometric

distribution with mean
pf

1−pf
, where pf is called forward burning probability. The

algorithm hereafter selects x neighbor vertices of v that have not yet been selected.

Recursively, the algorithm applies the same process to these newly selected vertices,

until enough number of vertices are sampled. If the algorithm gets stuck at some

vertex, it selects a new starting vertex uniformly at random and restarts the above

procedure.

The algorithms proposed in [70] are practical with respect to preserving different

graph properties. However, they do not guarantee to find the most representative

sample graphs. To improve the sample quality, Hübler et al. propose the Metropo-

lis Graph Sampling algorithm in [56]. The algorithm generates sample graphs with

higher quality and smaller size, compared with the algorithms in [70]. The basic
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idea is to generate the sample graphs with probability proportional to their quali-

ties using the Metropolis algorithm, and modify the algorithm into an optimization

variant by storing the sample graph with the best quality. In particular, the al-

gorithm begins with a subgraph S of size n selected uniformly at random from

the original graph G. At each random walk step, one vertex outside S is selected

uniformly at random to replace one vertex inside S. The replaced vertex is selected

uniformly at random from S. Let S ′ be the new subgraph. Then they compute the

values of ∆G,σS and ∆G,σS
′, where ∆G,σS is a distance measure of the difference

between S and G on the graph property σ. With a success probability (
∆G,σS

∆G,σS′
)p,

S moves to S ′; otherwise, the algorithm stays at S. Here p is a parameter that

affects the convergence of the constructed Markov chain. In the event of a success,

the algorithm stores S as Sbest if ∆G,σS < ∆G,σSbest. The random walk stops after

a sufficient large number of steps, and the algorithm outputs Sbest as the sample

graph. For a certain graph property, the transition probability makes S definitely

move to subgraphs more similar to G, and move to subgraphs less similar to G

with smaller probability.

In addition to sampling general graph properties, Maiya et al. focus on preserv-

ing the community structure of the original graph in [80]. The generated sample

graphs can be viewed as stratified samples in that they consist of members from

most or all communities in the original graph. They define a conception of expan-

sion factor, or expansion for short, of a subgraph S. Their method is then based

on the rationale that better expansion equates to better community representative-

ness. They propose the Snowball Sampling algorithm and the Markov chain Monte

Carlo algorithm. The Snowball Sampling algorithm begins with a subgraph S con-

taining only one vertex which is selected uniformly at random from the original

graph G. At each iteration, the algorithm adds a vertex v to S chosen from the
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adjacent vertices of S, such that v contributes the most to the expansion of S. The

iteration terminates when the desired number of vertices are sampled. The Markov

Chain Monte Carlo algorithm reproduces the algorithms in [56]. The difference is

that the quality of subgraphs is measured using the expansion factor.

The other category of graph sampling is concerned with randomness and uni-

formity of the samples. The random or uniform sampling is useful for statistical

analysis, data mining and simulation, as it naturally and statistically maintains

the properties of interest. For instance, Kashtan et al. uses the sampling method

to estimate network motifs concentration in [61]. Network motifs are connected

subgraphs matching a prescribed pattern (and therefore a prescribed size), which

usually have only 3, 4 or 5 vertices. They propose a random sampling algorithm

that is proved to be biased. The RVE algorithm that we discuss in Section 4.2.2 is

a variant of their work. We will present this algorithm below. However, they devise

an estimation method to adjust the bias and calculate the approximate concentra-

tions (frequencies) of sampled motifs. This method is only practical for motifs of

small size, due to the high complexity of the computation.

Another example of uniform graph sampling is the problem of obtaining a rep-

resentative (unbiased) sample of Facebook users studied by Gjoka et al. in [43].

Facebook users form such a graph that each vertex represents a user and an edge

connects a pair of vertices if the two corresponding users are friends. The authors

do not guarantee to generate a subgraph of fixed size. Instead, they are concerned

only with the unbiasedness of the sample. Among the algorithms proposed by them,

they find the Metropolis-Hastings Random Walk algorithm and the Re-Weighted

Random Walk perform well. The Metropolis-Hastings Random Walk algorithm

begins with an arbitrary vertex. At each iteration, the algorithm selects a vertex

w uniformly at random from neighbours of the current vertex v. Then v moves

21



to w with probability kv/kw, or stay at v otherwise, where kv is the degree of v.

The algorithm always accepts the move towards smaller degree vertices, and rejects

some of the moves towards higher degree vertices. This adjusts the bias towards

high degree vertices in the original random walk algorithm. The iteration termi-

nates when an unbiased sample of users is obtained. This termination criterion is

tested using diagnostic tools [39, 35]. The Re-Weighting Random Walk algorithm

conducts a standard random walk on the graph, but corrects the degree bias by an

appropriate re-weighting of the measured values using the Hansen-Hurwitz estima-

tor [48]. Re-Weighting Random Walk is rather an estimation of the unbiasedness

of the sample than an algorithm that generates an unbiased sample.

2.4 Graph Generation

For the problem of graph generation, a lot of work has been done on generating

graphs of a given model or of a prescribed constraint. Random graph generation

under specific models and with prescribed constraints can be seen as sampling from

a virtual specific sample space consisting of all the possible random graphs. Known

graph generation models include the Erdős-Rényi model [40, 33], the Watts and

Strogatz (small-world) model [113], the Barabási-Albert (preferential-attachment)

model [15] and the Forest Fire model [71]. An interesting constraint is the pre-

scribed degree sequence. Generating graphs uniformly at random with prescribed

degree sequence is discussed in [84, 111].

Gilbert [40] and Erdős et al. [33] discuss two algorithms for random graph

generation. The two corresponding models together are referred to as the Erdős-

Rényi model. The basic model generates a random undirected graph with n vertices

by linking each pair of vertices with probability p. Recently, Nobari et al. discuss
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fast generation of this model using GPU in [90]. An alternative algorithm of the

Erdős-Rényi model is to randomly select m edges from all the n(n−1)
2

(undirected

graphs without self-loop) edges. The model is widely used as a baseline for testing

graph analysis algorithm, modeling and simulation. However, the model does not

capture the properties in real graphs such as power-law degree distribution and

high clustering coefficient.

The classic random graph model (Erdős-Rényi model) generates random graphs

such that each pair of vertices is linked with identical probability. The graphs gen-

erated in this way have homogeneous structure for vertices while in real life graphs

usually exhibit hierarchical organization, where vertices could be partitioned to

groups and further to subgroups, etc. Clauset et al. propose a variation of Erdős-

Rényi model to generate random graphs with respect to prescribed hierarchical

structure in [27]. In particular, for an observed graph G they generate correspond-

ing dendrogram D with probability proportional to the likelihood L that how D is

fitting the structural of G, and then re-sample random graphs from D which have

similar hierarchical structures with G. This model is similar to Erdős-Rényi model

except that the probabilities linking pairs of vertices are inhomogeneous. In this

way, the model can generate random graphs with hierarchical structures.

Watts et al. propose the Watts and Strogatz model in [113]. Given the number

of vertices n, the average degree k and a rewiring probability β, the algorithm

generates an undirected graph in the following way. It arranges the n vertices on a

ring and links each vertex with its k neighbours, k/2 on each side. Then for each

vertex vi, it takes every edge (vi, vj) with i < j and rewires vi with probability β to

vk selected uniformly at random from remaining vertices. The rewiring avoids to

generate loops or multiple edges. This model captures the small-world phenomenon

(high clustering coefficient) in real graphs, but fails to reproduces the power-law
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degree distribution.

Later Barabási et al. propose the Barabási-Albert model in [15]. In this model,

the vertices are added to the current graph one by one. Each newly added vertex

links to m existing vertices. The m vertices are selected with probability propor-

tional to their degrees. Therefore the old vertices attract the newly added vertices

in a rich-get-richer (preferential attachment) way. Graphs generated by this model

exhibit power-law degree distribution. Later Klemm et al. propose two extended

models. The first model [63] leverages the behaviors of the Watts and Strogatz

model and the Barabási-Albert model. The second model [64] generates highly

clustered scale-free (power-law degree distribution) graphs.

For the sake of fast generation, Batagelj et al. discuss efficient algorithms for

generating graphs of most of the above models in [18].

Recently, Leskovec et al. [71] study the evolution of real graphs. They find

that other than the static properties of a graph snapshot such as power-law degree

distribution and high clustering coefficient, the real graphs exhibit densification

power law and shrinking effective diameters. They propose the Forest Fire model

to reproduce these evolving properties. Given a forward burning probability p

and a backward burning ratio r, Forest Fire generates a directed graph in the

following way. Each newly added vertex v links to an existing vertex w selected

uniformly at random from the current graph G. Then v selects x out-links and

y in-links of w incident to unvisited vertices. x and y are two random numbers

geometrically distributed with mean p(1− p) and rp/(1− rp), respectively. Denote

by w1, w2, . . . , wx+y the vertices in the other end of the selected links. v forms

out-links to w1, w2, . . . , wx+y, and then recursively burns the links of each of these

x + y vertices. The model is reported to capture not only the densification power

law and a shrinking diameter, but also heavy-tailed in- and out-degrees.
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Milo et al. [84] study the problem of uniform generation of random graphs

with prescribed degree sequences. They discuss three algorithms. The first is the

switching algorithm. It uses a Markov chain to generate a random graph with

a given sequence, which is also discussed in [88, 81, 85]. At each iteration, the

algorithm selects uniformly at random a pair of edges (A → B, C → D), and

exchanges their ends to get edges (A → D, C → B). The iteration terminates

after a sufficient large number of steps. The second is the matching algorithm.

Initially there is no edge between the vertices. Then the algorithm assigns stubs

to the vertices according to the given degree sequence. The edges are created by

randomly linking two stubs. The third is the “go with the winners” algorithm.

It begins by taking several copies of the initial graph in the matching algorithm.

At each iteration, it randomly creates one edge in each graph. If a copy of graph

cannot form any more edge at some point, it is dropped. The algorithm periodically

cloning each of the surviving graphs to keep enough number of copies. After all

the edges are created, the generated graph is selected uniformly at random from

all the surviving copies. They compare the three algorithms and find that the

switching algorithm and the “go with the winners algorithm” can generate graphs

with prescribed degree sequence uniformly at random. The matching algorithm

has measurable deviation from the uniform distribution.
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Chapter 3

Sampling from a Data Stream

with a Sliding Window

3.1 Introduction

The fact that reservoir sampling [82, 112] produces samples of the entire data

stream as opposed to samples of data in a sliding window is a clear disadvantage for

data stream applications where users need to consider the most recent information.

To meet this requirement, Babcock et al. propose the Simple algorithm and the

Chain-Sample algorithm in [14]. However, the Simple algorithm reproduces the

same sampling design for each tumbling window, and Chain-Sample needs memory

that is only statistically bound.

In this work, we consider the problem of maintaining an approximate uniform

random sample of a fixed specified size n over a data stream based on a sequence

based sliding window model. The algorithm presented in this work belongs to the

class of reservoir sampling. It is called FIFO (First In First Out) sliding window

sampling, or FIFO for short. It maintains a sample of size n and requires a memory
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of size n. The algorithm is biased towards recent data. The algorithm however does

not produce true random samples of the sliding window and may contain expired

data. However, as we argue, it can be parameterized to produce almost random

samples. It relies on a simple queue data structure. We present some analytical

results and empirically and comparatively evaluate its effectiveness. We compare

it with the main reservoir and sliding window reservoir algorithms. We conclude

that FIFO is both efficient and effective.

3.2 The FIFO Sampling Algorithm

We consider sampling with a sliding window. In detail, we consider a window on

a data stream. While the stream evolves, new data comes into the window and

expired data goes out, which constitutes a sliding window on the data stream. Our

task is to always extract a sample uniformly at random from the current window.

Formally, suppose the sample size is n and the window size is w. After the tth

data is processed, all the expired data which arrive before the t − w + 1th data

should have null probability to be included in the sample while all the subsequent

data have probability n/w to be included. The probability distribution is shown

as Figure 3.1.

We hence propose a new algorithm to approximately maintain a uniform random

sample of a sliding window, which is called First In First Out, or FIFO for short,

sampling algorithm [79]. The main idea of FIFO is that whenever a new data

in the stream arrives, we insert it into the sample with a fixed probability p and

simply discard the oldest data in the sample. The complete algorithm is given in

Algorithm 1. A critical point is the selection of the inclusion probability p. Below

we show that with appropriate selection of the value of p, FIFO approximately
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Figure 3.1: The probability distribution of uniform sampling of the window. t is
the number of processed data in the stream.

Algorithm 1: FIFO Sampling Algorithm

Input: n : sample size, p : inclusion probability, DS : data stream
Output: The sample S

1 S ← {};
2 Insert sequentially the first n data of DS into S;

3 while NOT EndOFStream(DS) do
4 Randomly generate a number ϕ in the interval [0, 1);
5 if ϕ < p then
6 Insert the next data into S;
7 Discard the oldest data in S;

8 end

9 end
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generates a uniform random sample of the sliding window.

3.3 Probability Analysis

In this section, we show the probability distribution of FIFO by giving the proba-

bility formula of each data in the stream. The derivation of the formula is based

on the facts that, a data is contained in the sample at a certain point if and only

if (a) the data is selected into the sample when it is processed and (b) it has not

been discarded. Because FIFO always discards the oldest data in the sample, a

newly inserted data is not discarded until n of its subsequent data are selected into

the sample, that is, if the rth data is inserted into the sample when it is processed

and less than n data are inserted into the sample from the (r + 1)th data to the

tth data, the rth data is still present in the sample after the tth data is processed.

Formally, denote by n the sample size and by P(r,t) the probability that the rth

data is present in the sample after the tth data is processed, where t > r. Without

loss of generality, we assume that t � n. We divide the data stream into three

intervals: (i) [1, n]; (ii) [n + 1, t− n]; (iii) [t− n + 1, t]. Note that the probability

distributions in these three intervals are different.

When 1 ≤ r ≤ n, the case is slightly different from the discussion above.

Initially the first n data are sequentially inserted into the sample. So for the first

data, n − 1 of its successors have been inserted into the sample. It is discarded

once there is one more data to be selected into the sample from the (n+ 1)th data

to the tth data. For the second data, two more insertions after the first n insertions

cause it to be discarded, etc. Thus we can derive the probability formula for the
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first n data, which is:

P(r,t) =
r−1∑
k=0

Binomial(k; t− n, p),

where the function Binomial() represents the Binomial distribution [96]. A bi-

nomial function Binomial(k;m, p0) = (mk )pk0(1 − p0)m−k calculates the probability

that an event happens for k times in m tests, with a probability of p0 each time.

t− n is the total number of remaining data in the stream, k is the number of data

selected for the sample and p is the probability.

When n + 1 ≤ r ≤ t− n, the situation is similar to the case that we discussed

above except that each data initially enters the sample with probability p. So the

formula is:

P(r,t) = p×
n−1∑
k=0

Binomial(k; t− r, p).

The last n data are not replaced out once they are selected into the sample, as

each of them has less than n successors. Thus the formula is trivial:

P(r,t) = p.

The complete probability formulae are as follows:

P(r,t) =



∑r−1
k=0 B(k; t− n, p) for 1 ≤ r ≤ n

p
∑n−1

k=0 B(k; t− r, p) for n+ 1 ≤ r ≤ t− n

p for t− n+ 1 ≤ r ≤ t,

(3.1)

where B() is the abbreviation of Binomial().
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Figure 3.2: Probability of each data to be sampled at t = 10, 000 by varying p.
n = 100, w = 5, 000.

Figure 3.2 shows the probability distributions obtained using the above formu-

lae. In the figure, we vary the value of p and plot the probability for each data

to be finally included in the sample at a given time t. The X-axis represents the

variable r and the Y-axis is the probability P(r,t). The number of processed data in

the figure is 10, 000, the window size is 5, 000 and the sample size is 100. We also

plot the corresponding ideal distribution.

In the figure, the line-point graphs show the probability distributions for dif-

ferent values of p according to our analysis, and the dashed graph shows the ideal

probability distribution as discussed above. From the graphs, we can see that the

probability distribution of p = n/w seems best approximate the ideal distribution.

Expired data have lower probabilities to be included in the sample as their age

increases while most data in the window have near equi-probability n/w to be se-

lected. The figure suggests that the optimum of this situation is obtained near

p = n/w. Although equi-probability is only a necessary condition for a sampling

algorithm to generate random samples, no further dependency being imposed, it is
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Figure 3.3: Probability of each data to be sampled at p = n/w by varying t.
n = 100, w = 5, 000.

clear that it is a sufficient condition for FIFO.

In Figure 3.3, we show, for given n, w and p (p = n/w), the probability distri-

butions for selected varying values of t. The graphs being parallel indicates that

the same effectiveness is maintained for the successive windows.

3.4 Optimal Inclusion Probability

One important question is the selection of the optimal value of the probability p.

That is the value of p that yields the best approximation of a random sampling

of the sliding window. We estimate this value in two different ways: analytically

and empirically. In Figure 3.2 we see that the probability distributions for different

values of p. Among the probabilities, p = n/w seems to be the optimal value. Let

us confirm this observation.

We can estimate the optimal value of the probability p by comparing the dif-

ference D between the distribution of our algorithm for various values of p and the
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Figure 3.5: Sample 200 data with
window size of 2, 000 from a 20, 000
data stream.

ideal distribution. We compute the value of D as follows:

D =
t∑

r=1

|P(r,t) − P(r)|,

where P(r,t) can be calculated by Equation3.1 and P(r) is the probability in theory

defined as follows:

P(r) =

 0 if r ≤ t− w

n/w otherwise.

Empirically, the optimal value of the probability p should coincide with the smallest

value D.

By Experiments, we find that for a given pair of w and n, D always reaches

the smaller value when the inclusion probability p approaches to n/w. Thus we

believe that the optimal probability should be n
w
± d, where d is a very small real

number for adjustment. Figure 3.4 and Figure 3.5 show the results on two sets of

parameters.

On the other hand, we analyze the optimal value of p based on the following

observes from Figure 3.2 and 3.3. The probability for a data to be included in the

sample always firstly increases fast as t gets larger. After a particular point, the
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increasing ratio becomes smaller and smaller and eventually the probability stays

at p. We call the point an inflexion point. For a fixed pair of n and w, we believe

that the best approximation of a random sample is obtained when the inflexion

point coincides with t − w + 1. Below we calculate the value of p that meets the

above condition.

Because the distribution is discrete, we cannot calculate the inflexion point by

a classical derivation. However, we can use the following approach. Let d(r,t) be

the difference between probabilities of the rth data and the (r + 1)th data in the

sample after the processing of the tth data, that is, d(r,t) = P(r+1,t)− P(r,t). We also

define ∆d(r,t) = d(r,t)− d(r−1,t). If r is an inflexion point, we have that ∆d(r−1,t) ≥ 0

and ∆d(r,t) ≤ 0. By replacing with the formulae in Section 3.3 (we assume that

n+ 1 ≤ r ≤ t− n for the general case), we get,

d(r,t) = p
n−1∑
k=0

[B(k; t− r − 1, p)−B(k; t− r, p)]. (3.2)

A result in the case of a Binomial Distribution [96] states that if X ∼ B(x, p) and

Y ∼ B(y, p) then X + Y ∼ B(x+ y, p). Thus,

B(k; t− r, p) = B(k; t− r − 1, p)B(0; 1, p) +B(k − 1; t− r − 1, p)B(1; 1, p)

= (1− p)B(k; t− r − 1, p) + pB(k − 1; t− r − 1, p).

(3.3)
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By taking Equation 3.3 into Equation 3.2, we have,

d(r,t) = p2

n−1∑
k=1

[B(k; t− r − 1, p)−B(k − 1; t− r − 1, p)]

+ p[B(0; t− r − 1, p)−B(0; t− r, p)]

= p2B(n− 1; t− r − 1, p).

Thus,

∆d(r,t) = p2[B(n− 1; t− r − 1, p)−B(n− 1; t− r, p)].

We can use Poisson distribution, Poisson(k0, λ) = λk0e−λ/k0! to approximate the

Binomial distribution Binomial(k0;m, p0), if m is sufficiently large and p0 is suf-

ficiently small, where λ = mp0 [96]. Our formulae satisfy the constraint, so we

get,

∆d(r,t) = p2{ [(t− r − 1)p]n−1e−(t−r−1)p

(n− 1)!
− [(t− r)p]n−1e−(t−r)p

(n− 1)!
}

=
p(n+1)e−(t−r−1)p

(n− 1)!
[(t− r − 1)n−1 − (t− r)n−1

ep
].

Let ∆d
′

(r,t) = (t− r−1)n−1− (t−r)n−1

ep
. Obviously, ∆d(r,t) and ∆d

′

(r,t) are of the same

positive and negative shape. So if r is an inflexion point, we have ∆d
′

(r−1,t) ≥ 0 and

∆d
′

(r,t) ≤ 0. Because we empirically claim that the inflexion point coinciding with

t− w + 1 is the optimum, we replace r by t− w + 1, so we get,


(w − 1)n−1 − wn−1

ep
≥ 0

(w − 2)n−1 − (w−1)n−1

ep
≤ 0.
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Thus we get a bound of p, which is,

(n− 1) ln
w

w − 1
≤ p ≤ (n− 1) ln

w − 1

w − 2
. (3.4)

An approximation of the bounds can be derived as follows,

lower bound = (n− 1) ln
w

w − 1
= ln(

w

w − 1
)n−1 = ln(1 +

1

w − 1
)(w−1)× n−1

w−1 .

For a sufficient large w, we can derive the approximation,

lower bound = ln(1 +
1

w − 1
)(w−1)× n−1

w−1 ≈ ln e
n−1
w−1 =

n− 1

w − 1
.

Similarly, we can drive the approximation of the upper bound of Equation 3.4, and

get the following approximated bounds,

n− 1

w − 1
≤ p ≤ n− 1

w − 2
. (3.5)

For large values of n and w, this bound for the optimal probability is close to

n/w, which coincides with the results of the first approach. Thus, we believe that

the probability n/w is a good approximation to the optimal probability. Below

we use n/w as the inclusion probability for performance evaluation. Table 3.1

illustrates the previous result with some example values of n and w.

n w Lower Bound Upper Bound n
w

500 2000 0.249562 0.249687 0.25
100 2000 0.0495124 0.0495372 0.05
1000 5000 0.19982 0.19986 0.2
1000 12000 0.0832535 0.0832604 0.0833333

Table 3.1: Some bounds calculated by specified n and w.
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3.5 Optimizing FIFO

In [112], algorithm Z optimizes algorithm R by periodically skipping some data and

directly selecting the next data into the sample. We introduce this idea into our

FIFO algorithm and obtain a Z version of FIFO, or for simple, FIFOZ algorithm.

Denote by α the number of skipped data. The probability mass function f(s) =

Prob(α = s), for s ≥ 0, is:

f(s) = (1− p)sp,

where p is the inclusion probability. So the corresponding cumulative distribution

function F (s) = Prob(α ≤ s) is:

F (s) =
s∑

k=0

f(k) = 1− (1− p)s+1.

Thus we can generate the independent variable α by first generating an independent

uniform variable µ in the interval [0, 1) and then setting α to the smallest s such

that F (s) ≥ µ, that is:

1− (1− p)s+1 ≥ µ.

Thus,

(1− p)s+1 ≤ ν,

where ν is also an independent uniform variable in [0, 1) which equals 1−µ. So we

get,

α = dlog1−p ν − 1e.

The complete algorithm is given in Algorithm 2.

As a result of periodically skipping data in the stream, FIFOZ algorithm caters
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Algorithm 2: FIFOZ Sampling Algorithm

Input: n : sample size, p : inclusion probability, DS : data stream
Output: The sample S

1 S ← {};
2 Insert sequentially the first n data of DS into S;

3 while NOT EndOFStream(DS) do
4 Randomly generate a number ν in the interval [0, 1);
5 α = dlog1−p ν − 1e;
6 Skip the next α data of DS;
7 Insert the next data into S;
8 Discard the oldest data in S;

9 end

for sampling data streams of high arrival rate. The expected value of α is:

expected(α) =
+∞∑
k=0

k(1− p)kp =
1− p
p

(3.6)

3.6 Performance Evaluation

In this section, we compare FIFO’s performance with that of the various sampling

algorithms in literatures. We compare the analytical probability distribution and

empirically compare the distribution divergence.

The results confirm the inappropriateness of the Reservoir Sampling and Biased

Reservoir Sampling algorithms for the problem of sliding windows. They also show

that, in practice FIFO performs as effectively as the Simple sliding window sampling

(and Random Pairing which degenerates into the Simple algorithm in our case).

3.6.1 Comparison of Analytical Bias Functions

In this section, we analytically compare the probability distribution of FIFO with

the optimal probability p = n/w with the probability distributions of the Simple

38



algorithm and the Biased Reservoir Sampling algorithm, respectively. We show

that FIFO approximates a random sample without a predictable sample design.

In the Simple algorithm, expired data are discarded and all the data in the

sample come from the current window. As the first w data are processed using the

Reservoir Sampling algorithm, each of the data have probability n/w to be sam-

pled. Thus, data in the current window also have the optimal sampling probability.

However, the simple algorithm is periodical.

In the Biased Reservoir Sampling algorithm [8], the probability of the rth data

in the stream being included in the sample after the processing of the tth data is

P(r,t) = e−(t−r)/n, where n is the sample size.

Figure 3.6 and Figure 3.7 show the results based on two sets of parameters. In

Figure 3.6, the case is generating a sample of size 200 from a set of 5, 000 data

with window size 1, 000. Figure 3.7 shows the result of sampling from a dataset of

10, 000 data with window size being set to 5, 000 and sample size being set to 500.

In both figures, we also plot the probability distribution of Reservoir Sampling. The

results demonstrate that the sampling probability of the Biased Reservoir Sampling

algorithm suddenly increases to 1 when the stream is close to the end. Data with

a little distant history in the window has a very small probability to be included.

The Reservoir Sampling algorithm demonstrates a uniform probability distribution

over all the data, which is not interesting in our problem. The Simple algorithm has

as exactly the same probability distribution as the ideal distribution, despite the

sample design is periodical. Obviously, FIFO approximates the ideal distribution

better than the Reservoir Sampling algorithm and the Biased Reservoir Sampling

algorithm do.
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Figure 3.6: Probability distributions
of different sampling algorithms. n =
200, w = 1, 000, p = n/w.
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3.6.2 Empirical Performance Evaluation: Setup

We implement Algorithm R (Reservoir Sampling), Algorithm Z (Skipping Variant

of Reservoir Sampling), Random Pairing, the Simple algorithm, the Chain-Sample

algorithm, the Biased Reservoir Sampling algorithm and the FIFO algorithm using

Java 1.6. For all the implemented algorithms, we consider a sliding window on the

stream. All the experiments are run on a dual-core machine with 2.8 GHz CPU

and 2 GB memory.

The empirical performance evaluation uses the Jensen-Shannon Divergence to

quantify the difference between the distributions of the data in the sliding window

and in the sample. A small Jensen-Shannon divergence indicates similar distribu-

tions. For two distributions P = {p1, p2 . . . pn} and Q = {q1, q2 . . . qn}, Jensen-

Shannon divergence measures their similarity as follows,

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M),

where M = 1
2
(P +Q), DKL is the Kullback -Leibler Divergence, which is defined as
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follows,

DKL(P ||Q) =
n∑
i=1

pi log(pi/qi).

We use Jensen-Shannon divergence to measure the similarity of distributions of the

successive samples with the distribution in the successive sliding windows.

We empirically evaluate the performance of the algorithms with both synthetic

and real datasets.

3.6.3 Empirical Performance Evaluation: Synthetic Dataset

The synthetic dataset that we used is a set of 1, 000, 000 integers with values ranging

from 1 to 10 chosen from a Zipfian distribution. In order to create changes in the

distribution, we shuffle the distribution every 100, 000 data. The sample size is fixed

to 1, 000 and the window size is 50, 000. We plot the graph of the Jensen-Shannon

divergence for each algorithm.

The results are shown in Figure 3.8. As we discussed above, Algorithm R and

Z produce successive samples of the entire dataset, but not of the sliding windows.

As expected, the Jensen-Shannon divergence increases. Indeed the sample in R

and Z is representative of the entire stream so far and therefore diverges from the

distribution in the window that contains only the most recent data. The reshuf-

fling corresponding to the changes in distribution are clearly visible on the plot.

The Chain-Sample algorithm produces low Jensen-Shannon divergence values. The

Biased Reservoir Sampling algorithm generates very high peaks at the interfaces

of two intervals with different distributions. It is too sensitive to the changes, as

expected as well. The Simple algorithm performs the best in the above algorithms.

The Random Pairing algorithm degenerates into the Simple algorithm. Our FIFO

algorithm performs similarly to the Simple algorithm, which can be seen clearly in

Figure 3.9.
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Figure 3.9: Comparison of FIFO, RP
and simple algorithm, 10 datasets of
value range from 1 to 10.
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Figure 3.10: Comparison of FIFO
and simple algorithm, 100 datasets of
value range from 1 to 100.
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Figure 3.11: Comparison of FIFO
and simple algorithm, 100 datasets of
value range from 1 to 1,000.

We then extend our experiment to further compare the performances of FIFO

with that of the simple algorithm. Figure 3.10 and Figure 3.11 show the results

of the experiments on 100 datasets containing integers with values ranging from

1 to 100 and 100 datasets containing integers with values ranging from 1 to 1,000

respectively. The reader remembers that, although the two algorithms perform

equally well, the simple algorithm sample design is periodical.

We also confirm the optimal value for p by evaluating FIFO’s performance

by setting different inclusion probabilities. Figure 3.12 and Figure 3.13 show the
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Figure 3.13: Comparison of FIFO
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results on the 10 datasets of value from 1 to 10 and 100 datasets of value from 1 to

100 respectively. From the figure, we can see that the optimal probability should

near n/w, which coincides with the results in Figure 3.2.

3.6.4 Empirical Performance Evaluation: Real Dataset

The real life dataset that we used in the experiments is the weather data collected

at [46] which records the surface synoptic weather information for the entire globe

from December 1981 to November 1991. The reports come from land stations and

ships located in particular positions of the earth. We use the reports from land

stations in 1990, and we are interested in the current weather attribute which has

a domain of 48 integer values. The data is sorted in chronological order. The total

number of the records is 1, 344, 024. We set the sample size to be 1, 000 and the

window size to be 50, 000. We still calculate successive Jensen-Shannon divergence

values as in the synthetic dataset experiment to evaluate the performances of the

algorithms. The results are shown as Figure 3.14. We can see that Algorithm R,

Algorithm Z and the Biased Reservoir Sampling algorithm produce higher Jensen-
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Figure 3.14: Performance evaluation
on real life dataset.
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Figure 3.15: Performance evaluation
on real life dataset.

Shannon divergence values. The other four algorithms perform relatively better.

However, Random Pairing degenerates into the Simple algorithm. In Figure 3.15,

we can see their performances more clearly. The Chain-Sample algorithm produces

a slightly higher Jensen-Shannon divergence than FIFO and the Simple algorithm.

FIFO and the Simple algorithm are still the best.

3.6.5 Empirical Performance Evaluation: Efficiency

We also run these algorithms on data streams of different lengths to evaluate and

compare their running time. The stream lengths are set to 1, 000, 000, 5, 000, 000,

10, 000, 000, 50, 000, 000, 100, 000, 000 and 500, 000, 000. Figure 3.16 and Fig-

ure 3.17 show the results on two sets of sampling parameters. The window sizes

are 50, 000 and 100, 000 and the sample sizes are 1, 000 and 5, 000, respectively.

We see that the running times of Reservoir Algorithm R, Random Pairing, Biased

Reservoir Sampling, FIFO are higher than that of the other algorithms. This is be-

cause these four algorithms have to process every data encountered in the stream.

The optimized variant of FIFO, the FIFOZ Sampling algorithm, is as fast as the

Chain-Sampling algorithm. However, the exact way of sampling n data with Chain-

Sampling is still unknown. In section 3.5 we give the expected value of α (the value
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Figure 3.16: Running time evalua-
tion, w = 50, 000 and n = 1, 000.
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Figure 3.17: Running time evalua-
tion, w = 100, 000 and n = 5, 000.

of skipping of FIFOZ) in Equation 3.5. For p = n
w

, we get expected(α) = w−n
n

which is a constant for given n and w. Therefore the running time of FIFOZ in-

creases linearly with the increasing of the length of the data stream. On the other

hand, we know that the expected value of α of Algorithm Z is t−n+1
n−1

[112], where

t is the processed data. The expected value suggests that the value of skipping of

Algorithm Z increases linearly along with the length of the stream. In other word,

the running time of Algorithm Z should remain stable, despite the increasing of

the data stream length. The results in the figure confirm the intuition. We ob-

serve that the running time of Algorithm Z remains almost unchanged in spite of

the increasing of the stream length, whereas the running time of FIFOZ increases

linearly with the stream length. We also implement the skipping variant of the

Simple algorithm. In the skipping variant, the window is moved each time directly

to the next data that is selected into the sample to replace the expired data. The

number of skipped data is equal to the distance between the oldest data and the

second oldest data in the current sample. The expected value of this distance is

w−n
n

as each data is selected uniformly at random from the current window. The

design of the Simple algorithm makes it periodically skip some data, whereas in

FIFOZ, we have to compute the values of skipping with random number genera-
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tion and the logarithm computation. Therefore FIFOZ runs slightly slower than

the Simple algorithm. Nevertheless, FIFOZ improves significantly the efficiency of

FIFO, especially when w � n.

3.7 Summary

In this work, we propose a new sampling algorithm, called FIFO sliding window

sampling or FIFO, for short, for sampling sliding windows over data stream.

We compare its performance to that of existing stream and sliding window sam-

pling algorithms. We analyze the properties of FIFO analytically and empirically

to show that our new algorithm is effective: it can maintain a near random sample

of a sliding window with fixed memory and without reproducing its sample design,

with the optimal selection of the inclusion probability of each data.

FIFO is also very efficient as it only maintains a queue and samples each data

once with a bernoulli process. We also adopt the skipping idea of Algorithm Z and

implement the FIFOZ sampling algorithm. The results show FIFOZ improves the

efficiency significantly.

Although we have shown empirically and argued analytically that FIFO is most

effective for p near n/w, we are now trying to obtain an exact analytical formula

for this optimum.
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Chapter 4

Sampling Connected Induced

Subgraphs Uniformly at Random

4.1 Introduction

The versatility of graphs makes them an almost universal data structure in domains

as varied as social network, transportation and bioinformatics, to cite a few among

the obvious. The challenge for modern applications is the effective and efficient

processing of very large graphs. One way to circumvent scalability issues arising

from this challenge is to replace the processing of very large graphs by the processing

of representative subgraphs of manageable size. In this work, we study a new graph

sampling problem.

We observe that the graphs of interest are often required to be connected (or

that one is interested in connected components). This is the case, for instance,

when one is looking for graphlets and motifs in applications such as graph pattern

mining (see [61, 94], for example). This is also the case when one is studying social

networks where communities are characterized by their connectivity. In this domain

47



connected induced subgraphs are the preferred basis of studies of network topology

(see [10, 66], for example) and evolution (see [110], for example), for instance.

For statistical analysis, data mining and simulation applications a common re-

quirement for a subgraph construction or sampling algorithm is that it maintains

graph properties. A uniformly sampled connected induced graph has the advan-

tage that it naturally statistically maintains local properties such as vertex degrees

and clustering coefficients among others. In addition a strong guarantee on the

distribution, such as uniformity, from which the graph is sampled is very useful for

statistical analysis, simulation applications and randomized algorithms.

Motivated by these observations, we study the uniform (or simple) random

sampling of a connected induced subgraph of a prescribed size from a graph.

For the sake of simplicity, and without loss of generality as far as the algorithms

discussed are concerned, we consider simple graphs of the form G =< V,E >, where

V is a set of vertices and E is a set of pairs of vertices called edges. The size (also

called order) of a graph G =< V,E > is the number of its vertices, | V |. A

subgraph of a graph G =< V,E > is a graph G′ =< V ′, E ′ > such that V ′ ⊆ V

and E ′ ⊆ E. A subgraph of a graph G is induced if it contains all the edges that

appear in G between any two of its vertices.

Definition 1. Let G =< V,E > be a graph. A subgraph G′ =< V ′, E ′ > of G is

induced if and only if:

∀x ∈ V ′ ∀y ∈ V ′ {x, y} ∈ E ⇒ {x, y} ∈ E ′

The problem we am studying in this work is the generation of connected

induced subgraphs of size k uniformly at random from a connected graph

G of size n, where 1 ≤ k ≤ n.
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(a) (b) (c) (d) (e)

Figure 4.1: A connected graph and its connected induced subgraphs

Example 1. The graph in Figure 4.1(a) is a simple graph of size 5. It has 4 edges.

There are 4 connected induced subgraphs with 3 vertices shown in Figure 4.1(b),

4.1(c), 4.1(d) and 4.1(e), respectively. We ought to devise algorithms able to

randomly generate each of this connected induced subgraphs with equi-probability,

i.e. 1
4

in this example.

We devise, present and discuss four algorithms that leverage different tech-

niques: Rejection Sampling, Random Walk and Markov Chain Monte Carlo.

The first algorithm, which we call Acceptance-Rejection Sampling (ARS) is a

trivial variation of the standard Rejection Sampling [69]. It serves as a baseline

reference as it is guaranteed to be a uniform random sampling.

The second algorithm, which we call Random Vertex Expansion (RVE), adapts

the idea of a random walk on the original graph to the gradual construction of the

sample.

The third algorithm, which we call Metropolis-Hastings Sampling (MHS), is

a Markov Chain Monte Carlo algorithm. The general idea of algorithms from

this known and generic family is a random walk on a graph of sample states. The

effectiveness of such algorithms is guaranteed provided a sufficient duration, mixing

time, of the random walk.

The fourth algorithm, which we call Neighbour Reservoir Sampling (NRS) is

our main contribution. It operates on the same Markov Chain as MHS but tries

to avoid local computation of the degrees of states and long or unbound random
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walks, and adjust the bias of RVE by combining the idea of expansion from RVE

with the idea of reservoir from Reservoir Sampling [112].

Notice again that, differently from these existing algorithms that aim to find

a subgraph most similar to the original graph for some property, we consider the

random generation of connected induced subgraphs of prescribed size uniformly at

random from a connected simple graph G.

4.2 The Algorithms

We first introduce a baseline algorithm based on Rejection Sampling [69]. We

then revisit the algorithm of [61] for sampling connected subgraphs. Finally,

we propose two non-trivial algorithms for practically sampling the subgraphs. The

two algorithms leverage the idea of traversing a Markov chain of connected induced

subgraphs.

4.2.1 Acceptance-Rejection Sampling

The simplest algorithm to sample, uniformly at random, an induced subgraph of

size k from an original graph of size n is to select k vertices uniformly at random,

complete the induced graph by adding all the edges linking the vertices and then

check for connectivity of the induced subgraph. If the induced subgraph is not

connected then it is rejected and the selection restarts. If the induced subgraph is

connected then it is accepted.

It is a simple instance of Rejection Sampling (see [69], for instance). We call

this algorithm Acceptance-Rejection Sampling (ARS). The pseudo-code for ARS is

given in Algorithm 3.

Notice that the same approach can be applied to generate uniformly at random
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an induced subgraph with any desired property other than connectivity.

Algorithm 3: Acceptance-Rejection Sampling

Input: G : the original graph with n vertices, k : subgraph size
Output: a connected induced subgraph g with k vertices

1 do
2 Select k vertices uniformly at random from G;
3 Generate the induced graph g of the k vertices ;

4 while g is not connected;
5 Return g

Proposition 1. Given a graph G of size n and an integer k where n ≥ k, the

ARS algorithm generates a connected induced subgraph of size k (if it exists) from

G uniformly at random.

Proof. Let S be the set of induced subgraphs of size k in G. Let C be the set of

connected induced subgraphs of size k in G. Let g be the probability distribution

of S. Let f be the probability distribution of C. In a uniform distribution, the

probability density function (pdf) of a subgraph c ∈ C is f(c) = 1/|C| and g(c) =

1/|S|. Let M = |S|/|C|. For each c generated from the distribution g, we accepted

it with probability f(c)/(M × g(c)) = 1 if c is connected; otherwise, we reject c. The

accepted subgraph c follows the distribution f , i.e., it is generated uniformly at

random from C.

ARS is a baseline algorithm that provides a reference for effectiveness. It is

a rather brute-force algorithm. We expect ARS to be efficient for dense graphs

but otherwise generally inefficient when connected induced subgraphs are a small

fraction of induced subgraphs.
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4.2.2 Random Vertex Expansion

One natural method to generate connected subgraphs is to explore a graph from

a starting vertex moving gradually and randomly to neighbouring vertices. This

generalization of a random walk, which we call Random Vertex Expansion (RVE)

has been independently proposed and used by many authors. In particular, Kashtan

et al. in [61] use it to sample network motifs. Variants of RVE can be implemented

with different random selection of the next vertex. We have experimented with

several such selection functions and, for the sake of simplicity, only report here the

most relevant one. Namely, in the variant we are discussing, RVE chooses the next

vertex by selecting uniformly at random one of edges connecting a vertex of the

current subgraph with a vertex not yet in the subgraph. The algorithm terminates

when the subgraph has the desired size. The pseudo-code for RVE is given in

Algorithm 4.

Algorithm 4: Random Vertex Expansion

Input: G : the original graph with n vertices, k : subgraph size
Output: a connected induced subgraph g with k vertices

1 E ← ∅;
2 Select uniformly at random an edge e of G;
3 E ← e;
4 while E contains less than k vertices do
5 EL← ∅;
6 EL← edges connecting a vertex of E with a vertex not yet in E;
7 Select uniformly at random an edge e from EL;
8 E ← e;

9 end
10 Return the induced graph g of E;

The probability of sampling a k−vertex subgraph is then the sum of the proba-

bilities of the permutations of its k−1 edges. It is given by Equation 4.1 where Sm

is the set of all the valid permutations of k− 1 edges to sample a certain subgraph,
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Ej is the jth edge in an (k − 1)-edge permutation.

P =
∑
σ∈Sm

∏
Ej∈σ

Pr[Ej = ej|(E1, E2, . . . , Ej−1) = (e1, e2, . . . , ej−1)]. (4.1)

The more edges a connected induced subgraph of size k has, the more permuta-

tions of its k− 1 edges, and the higher its probability to be selected. RVE has bias

to those subgraphs that are denser, i.e., have higher average clustering coefficient.

The main cost of RVE is computing the list of edges connecting a vertex of the

current subgraph with a vertex not yet in the subgraph in each step. Suppose

the maximal degree of vertices in G is D, the worst complexity is O(Dk). The

complexity can be reduced to O(k2) by maintaining an efficient data structure [61].

4.2.3 Metropolis-Hastings Sampling

Another idea for catering for the requirement of connectivity is to sample on an

ergodic Markov chain whose states represent all the connected induced subgraphs

with prescribed size of a given original graph. The approach belongs to the Markov

Chain Monte Carlo (MCMC) family [41]. An MCMC sampling algorithm con-

structs and randomly traverses a Markov chain whose states are all the candidate

samples, starting from any initial state of the Markov chain. After sufficiently

many steps, this random walk converges and each state is visited with probabil-

ity proportional to the degree of that state. The number of random walk steps

needed for convergence is called the mixing time. The corresponding probability

distribution is called stationary distribution and the probability is called stationary

probabilities.

For the problem at hand, the states of the Markov chain are the connected
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induced subgraphs g of size k of the graph G. Two states gi and gj are neighbours

of each other if and only if V (gi)− V (gj) = {vi} and V (gj)− V (gi) = {vj}, where

V (gi) is the vertex set of gi, that is, one can get gj by deleting vi from gi and adding

vj to it, and vice versa. This Markov chain is constructed while it is traversed. The

starting state of the random walk can be any connected induced subgraph g0 of

size k. In order to construct such a graph it suffices, for instance, to start at a

random vertex and to traverse, by any convenient means, the graph G until we

visit k vertices.

In each step, the random walk may select the next state uniformly at random

from the neighbours of the current state and transfers to it. We can see that all the

connected induced subgraphs can be reached from any initial state by a sequence

of replacement of the vertices, which indicates the Markov chain is irreducible.

Moreover, rejecting the transition means adding self-loops to the states, which

makes the Markov chain aperiodic. Therefore our Markov chain is ergodic and has

a stationary distribution.

However, the stationary probability of each state is proportional to its degree

in the Markov chain. Consequently for the Markov chain that we are considering,

the distribution is not necessarily uniform. In Section 6 where we generate random

graphic sequences, we produce the uniform distribution by introducing intermedi-

ate states into the Markov chain. Another option to adjust this bias is by using

the Metropolis-Hastings algorithm [52]. Each step from gi to gj is accepted with

probability di
dj

where di is the degree of gi. This approach is actually balancing the

probability of visiting the states with their different degrees. One may notice that

if di > dj the transition is accepted definitely, whereas the smaller di compared to

dj the higher the chance that the random walk stays at gi.

We call this algorithm Metropolis-Hastings Sampling (MHS). The pseudo-code
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for MHS is given in Algorithm 5.

Algorithm 5: Metropolis-Hastings Sampling

Input: G : the original graph with n vertices, k : subgraph size, t : the
number of random walk steps

Output: a connected induced subgraph g with k vertices

1 Perform any graph traverse algorithm on G to get an initial connected
induced subgraph g of size k;

2 while t > 0 do
3 Select g′ uniformly at random from the neighbors of g;
4 Generate a random number α ∈ [0, 1);

5 if α < dg
dg′

then

6 g = g′

7 end
8 t = t− 1

9 end
10 Return g;

The Markov chain and the degree of the states are computed during the traver-

sal. At each step the algorithm only needs to compute the degree of the selected

neighbour of the current state and temporarily store the neighbour information of

that neighbour. If the transition is accepted, it moves to the next state and directly

uses the information computed in previous step, and then iteratively computes and

stores the information of the next selected neighbour, etc. In this way the memory

usage is bounded by the largest degree of a state in the Markov chain. In terms

of time complexity, suppose on average each connected induced subgraph of size k

has l edges and m neighbour vertices, MHS needs on average O(km(k + l)) time

to compute its neighbours states in the Markov chain, where O(k + l) is the time

complexity for checking the connectivity. Suppose on average each connected in-

duced subgraph has d neighbour states, then each local computation of the degree

of neighbour states takes O(dkm(k+l)) time. Therefore the overall time complexity

of MHS is O(tdkm(k + l)), where t is the number of random walk steps.
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One crucial issue for Markov Chain Monte Carlo algorithms is to determine

the mixing time. When the mixing time cannot be determined analytical, one

can use statistical tests of convergence [31]. One simple and practical such test

is the Geweke diagnostics [39]. The basic idea is that for a sequence of random

walk iterations, Geweke diagnostics compares the distribution of some metric of

interest between the beginning part and the ending part of the sequence. As the

random walk iterates, the correlation between the two parts decreases and thus the

distribution of the metric of interest should become identical. Geweke diagnostics

defines the z−score such that z = E(mb)−E(me)√
V ar(mb)+V ar(me)

, where mb and me denote

the metric of interest in the beginning part and the ending part of the Markov

sequence, respectively. Typically the beginning part is defined as the first 10%

part and the ending part is defined as the last 50% part. Then multiple chains

start from different initial states. The convergence is declared when the z-scores of

all the chains fall into the range [−1, 1] with a mean of 0 and a variance of 1. Below

we empirically evaluate the convergence of MHS using the Geweke diagnostics.

4.2.4 Neighbour Reservoir Sampling

In order to adjust the bias of RVE, we consider a method that decreases the prob-

ability to sample the induced subgraphs with higher average clustering coefficient.

We sample the first k vertices using RVE and get a subgraph gk. After that, we

continue to choose the ith vertex vi by selecting uniformly at random one of edges

connecting a vertex of gi−1 with an unprocessed vertex. Then we insert vi into

gi−1 with probability k
i
. In case of a success, one vertex of gi−1 is replaced by vi

uniformly at random and we get a new subgraph gi. If gi is connected, we keep it;

otherwise, gi = gi−1. We iteratively select the new vertices until there is no such

an edge that connects a vertex of gi with an unprocessed vertex.
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We call this algorithm Neighbour Reservoir Sampling (NRS) as the algorithm

samples with a reservoir and always chooses the new vertices from the neighbours.

The pseudo-code for NRS is given in Algorithm 6.

Algorithm 6: Neighbour Reservoir Sampling

Input: G : the original graph with n vertices, k : subgraph size
Output: a connected induced subgraph g with k vertices

1 V ← the vertices selected using RVE ;
2 EL← edges connecting a vertex of V with an unprocessed vertex ;
3 i = k;
4 while EL is not empty do
5 i+ +;
6 Select uniformly at random an edge e from EL;
7 v = the unprocessed vertex of e;
8 Generate a variable α ∈ [0, 1) uniformly at random;
9 if α < k/i then

10 Select uniformly at random a vertex u from V ;
11 V ′ ← V \u ∪ v;
12 if the induced subgraph of V ′ is connected then
13 V ← V ′

14 end

15 end
16 Recompute EL of the current subgraph

17 end
18 Return the induced graph g of V ;

The algorithm begins with standard RVE and continues to select new vertices

using the same strategy as RVE. However, the vertices with higher local clustering

coefficient have higher probability to be replaced, because by deleting them the

subgraphs have higher probability to remain connected. The bias to the subgraphs

having higher average clustering coefficient is therefore adjusted by this mecha-

nism. The new vertices enter the subgraph with a decreasing probability so that

each selected vertex can be sampled with the same probability [112] despite the

connectivity of the graph.

In addition, Similarly to MHS, NRS traverses a Markov chain of connected
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induced subgraphs of size k. However, NRS takes at most n− k steps, and in each

step, NRS checks the connectivity of the possible next state at most once. In each

step, NRS maintains a list of edges connecting one unprocessed vertex and one

vertex in the current subgraph. This process takes O(me) time, where me is the

number of edges connecting to the current subgraph. Therefore the overall time

complexity is O(Dk + (n − k)(me + k + l)), where O(Dk) is the time to compute

the first subgraph of size k, O(k + l) is the time to check the connectivity of each

subgraph.

As a result, NRS adjusts the bias of RVE as well as avoids the local computation

of the degrees of Markov chain states and the long or unbound random walks of

MHS.

4.3 Performance Evaluation

4.3.1 Experimental Setup

We implement the four algorithms in C++ and run them on an Intel Core 2 Quad

machine with Ubuntu 10.4 and 4GB main memory.

We conduct experiments with both synthetic datasets and real life datasets.

First, we evaluate and compare the performance of the proposed algorithms with

synthetic graphs generated in the Erdős-Rényi and Barabási-Albert models. We

generate graphs of varying size and density. These properties can be controlled

directly or indirectly by the parameters of the two models. Second, we show that

induced subgraphs that are uniformly sampled can preserve significant properties

of the original graph. We collect four real life graphs from SNAP [6] and one real

life graph from arXiv.org. Table 4.1 lists the basic statistics of the five graphs.

We sample a series of subgraphs with incremental sizes from these real graphs
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using NRS and calculate average errors on multiple graph properties between the

subgraphs and the original graphs, over all the five graphs.

Dataset #Vertices #Edges Description
HEP-TH 29, 555 352, 807 A citation graph from e-print arXiv
HEP-PH 30, 567 348, 721 A citation graph from e-print arXiv

AS 6, 474 26, 467 A autonomous system consisting of routers
Bipar-arXiv 57, 381 133, 170 A bipartite graph from arXiv describing the affiliation between authors and papers

Trust 75, 879 508, 960 A who-trusts-whom graph from epinions.com

Table 4.1: Description of the real life datasets.

We preliminarily discuss the convergence of MHS using Geweke diagnostics.

We comparatively evaluate the effectiveness of the four algorithms by measuring

the standard deviation from the uniform distribution and by comparing the average

subgraph properties.

We comparatively evaluate the efficiency of the four algorithms by measuring

their execution time.

We comparatively evaluate the overall performance of the four algorithm in

terms of the efficiency versus the effectiveness.

We evaluate the property-preserving of uniform sampling by measuring the

Kolmogorov-Smirnov D-statistic on different graph criteria between the subgraphs

and the original graphs. The D-statistic is used to compare two distributions, even

if they are of different scalings. It is defined as D = maxx |F ′(x) − F(x)|, where

F ′(x) and F(x) are the empirical distribution functions and x is over the range of

random variable of the distribution. F(x) for n iid observations xi is defined as

F(x) = 1
n

∑n
i=1 Ixi≤x, where Ixi≤x is equal to 1 if xi ≤ x and equal to 0 otherwise.

A lower value of D-statistic indicates higher similarity of two distributions.

4.3.2 Mixing Time

We empirically evaluate the mixing time of MHS by detecting its convergence using

Geweke diagnostics.
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Figure 4.2: Geweke diagnostics for a
Barabási-Albert graph with 1000 ver-
tices and p = 0.1. The sampled sub-
graph size is 10. The metric of inter-
est is average degree.
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Figure 4.3: Geweke diagnostics for a
Barabási-Albert graph with 1000 ver-
tices and p = 0.1. The sampled sub-
graph size is 10. The metric of inter-
est is average clustering coefficient.

We evaluate the convergence of MHS with an Erdős-Rényi graph with 1, 000

vertices with p = 0.1, and with a Barabási-Albert graph with 500 vertices and 10

new links per new vertex1. We sample connected induced subgraphs with prescribed

size 10. For each graph, we run 10 chains from different starting vertex. We

compute the z-score of Geweke diagnostics for each chain after every random walk

step, using the metric of average degree and average clustering coefficient of the

subgraphs.

The results are presented in Figures 4.2, 4.3, 4.4 and 4.5.

We see that for the Erdős-Rényi graph, the z-scores have a mean 0 and a variance

less than 0.5 after 2000 random walk steps. For the Barabási-Albert graph, this

number of random walk steps is around 1500. We then use this empirically results

in the evaluation below.

1We denote by d this parameter, i.e., d = 10. Below we use this form.
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Figure 4.4: Geweke diagnostics for a
Barabási-Albert graph with 500 ver-
tices and d = 10. The sampled sub-
graph size is 10. The metric of inter-
est is average degree.
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Figure 4.5: Geweke diagnostics for a
Barabási-Albert graph with 500 ver-
tices and d = 10. The sampled sub-
graph size is 10. The metric of inter-
est is average clustering coefficient.

4.3.3 Effectiveness

We evaluate the effectiveness of the algorithms on small and large graphs, respec-

tively.

4.3.3.1 Small Graphs

We measure the standard deviation of the four algorithms with four Barabási-

Albert graphs with 15 vertices and d = 1, 2, 3, 4, respectively. We sample connected

induced subgraphs with prescribed sizes varying from 1 to 15. For each size, we

generate 10 samples on average for every distinct induced subgraphs.

The results are presented in Figures 4.6, 4.7, 4.8 and 4.9.

We see that ARS and MHS yield the lowest overall standard deviation while

NRS remains competitive unless the graph is sparse. RVE does not perform as well

as the above three algorithms because it has bias to subgraphs with higher average

degree and higher average clustering coefficient.
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Figure 4.6: Standard deviation from
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Figure 4.7: Standard deviation from
uniform distribution. The Barabási-
Albert graph has 15 vertices and d =
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Figure 4.8: Standard deviation from
uniform distribution. The Barabási-
Albert graph has 15 vertices and d =
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Figure 4.9: Standard deviation from
uniform distribution. The Barabási-
Albert graph has 15 vertices and d =
4.
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Figure 4.10: Comparison of aver-
age degree of samples. The original
Erdős-Rényi graph has 1000 vertices
and p = 0.1.
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Figure 4.11: Comparison of average
clustering coefficient of samples. The
original Erdős-Rényi graph has 1000
vertices and p = 0.1.

4.3.3.2 Large Graphs

It is impractical to generate all the connected induced subgraphs for large graphs.

We therefore turn to compare average graph properties of connected induced sub-

graphs sampled by different algorithms.

We measure the average degree and average clustering coefficient of the sub-

graphs generated by the four algorithms with the Erdős-Rényi graph of 1000 ver-

tices with probability 0.1 and with the Barabási-Albert graph of 500 vertices and

d = 10, which are used in Section 4.3.2. We sample connected induced subgraphs

with prescribed sizes varying from 10 to 100 in increments of 10. For each size,

we sample 100 connected induced subgraphs and calculate the average of average

degree and average clustering coefficient of these subgraphs.

The results are presented in Figures 4.10, 4.11, 4.12 and 4.13.

We see that ARS and MHS always coincide with each other on both properties

while NRS remains competitive. RVE is biased towards subgraphs with higher

average degree and higher average clustering coefficient. This is because RVE

tends to sample denser subgraphs.
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Figure 4.12: Comparison of aver-
age degree of samples. The original
Barabási-Albert graph has 500 ver-
tices and d = 10.
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Figure 4.13: Comparison of average
clustering coefficient of samples. The
original Barabási-Albert graph has
500 vertices and d = 10.

4.3.4 Efficiency

We evaluate the efficiency of the algorithms on graphs of different densities and

with different subgraph sizes.

4.3.4.1 Varying Density

We measure the execution time of the four algorithms with a series of Barabási-

Albert graphs with 500 vertices. The number of links that each new vertex gener-

ates for each graph varies from 1 to 10 with step 1 and from 20 to 100 with step 10.

For each graph we sample 10 connected induced subgraphs of size 10 and calculate

the average execution time.

The results are presented in Figures 4.14.

We see that the execution times of ARS and MHS are increasing rapidly as

the graph density decreases and increases, respectively. When the graph density is

below 5, ARS becomes unacceptably inefficient. However, real graphs often display

a density less than 5 so that ARS is not practical in real applications. On the

contrast, MHS caters for the sparse graph because of faster convergence. However,

on dense graphs MHS is inefficient as the Markov Chain has numerous states so that
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Figure 4.14: Average execution times
of sampling a connected induced sub-
graph of size 10 from Barabási-Albert
graphs with 500 vertices and different
densities.
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Figure 4.15: Average execution times
of sampling connected induced sub-
graphs of different sizes from a
Barabási-Albert graph with 500 ver-
tices and d = 10.

the convergence is slow. Nevertheless, NRS scales well along with the graph density

as its running time is bounded by the number of vertices. The execution time of

NRS increases because, when the graph is denser there are more candidate vertices

that can be replaced, so there are more chances to traverse a whole subgraph to

confirm the connectivity. The execution time of RVE is always less than 1ms so

that it cannot be displayed. RVE is the fastest because it terminates as long as

desired number of vertices are sampled.

4.3.4.2 Varying Prescribed Size

We measure the execution time of the four algorithms with a Barabási-Albert graph

with 500 vertices. The graph density is about 10. For each algorithm, the sampled

subgraph size is varying from 1 to 10 with step 1 and from 20 to 100 with step 10.

We compute the average execution times of 10 runs for each sample size.

The results are presented in Figures 4.15.

The execution time of ARS first increases because of the growing subgraph

size, and then decreases because of fewer rejections of the samples. The execution
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time of MHS, as expected, is increasing when the subgraph size grows as there are

more states in the Markov chain. NRS is slowly increasing when the subgraph size

grows. This slow increase is because when the subgraph size increases, the test of

connectivity consumes more time. RVE is still the fastest.

4.3.5 Efficiency versus Effectiveness

We measure the overall performance of the four algorithms in terms of the efficiency

versus the effectiveness.

For efficiency, we compute the average execution time for each algorithm of all

the settings of graph density in Figure 4.14 and all the settings of subgraph size in

Figure 4.15, respectively. We normalize the execution time in [0, 1]. A lower value

corresponds to higher efficiency.

For effectiveness, we consider ARS as the most effective algorithm because it

produces a true uniform distribution. For each algorithm, we compute the average

value of average degree and clustering coefficient for each setting and measure the

difference from ARS by computing the sum of square errors (SSE ) of all the values.

We normalize the SSE in [0, 1]. A lower value corresponds to higher effectiveness.

The results are presented in Figure 4.16 and Figure 4.17.

We see that the effectiveness of ARS, MHS, and NRS are very close to each

other. However, the efficiency of ARS and MHS depends highly on the graph

density and the sampled subgraph size. RVE has the best efficiency but the worst

effectiveness.

4.3.6 Sampling Graph Properties

We measure the D-statistic for six of the nine properties used in [70] for scale-

down sampling (the authors of [70] also consider back-in-time sampling). The three
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versus effectiveness of sampling con-
nected induced subgraphs of size 10
from Barabási-Albert graphs with
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Figure 4.17: Normalized efficiency
versus effectiveness of sampling con-
nected induced subgraphs of different
sizes from a Barabási-Albert graph
with 500 vertices and d = 10.

remaining properties concern the distribution of component size and, therefore, do

not apply to connected subgraph sampling.

in-deg out-deg clust sng-val sng-vec hops
RN 0.084 0.145 0.327 0.079 0.112 0.231

RPN 0.062 0.097 0.243 0.048 0.081 0.200
RDN 0.110 0.128 0.256 0.041 0.048 0.238
RE 0.216 0.305 0.525 0.169 0.192 0.509

RNE 0.277 0.404 0.709 0.255 0.273 0.702
HYB 0.273 0.394 0.670 0.240 0.251 0.683
RNN 0.179 0.014 2 0.398 0.060 0.255 0.252
RJ 0.132 0.151 0.235 0.076 0.143 0.264
RW 0.082 0.131 0.243 0.049 0.033 0.243
FF 0.082 0.105 0.244 0.038 0.092 0.203

NRS 0.048 0.074 0.059 0.060 0.012 0.401
2 We suspect this number is a typo.

Table 4.2: Measuring D-statistic on six graph properties.

The first three properties, the in-degree distribution, out-degree distribution,

and clustering coefficient, are properties local to vertices.

The next two properties, the distribution of singular values of the graph adja-

cency matrix versus the rank and the distribution of the first left singular vector of
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the graph adjacency matrix versus the rank, are spectral properties of the graph.

The sixth property, the distribution of the number of reachable pairs of nodes

at distance h or less, is a global property of the sample.

We run NRS on the same datasets and using the same experimental settings

as [70], and compare the results with the corresponding ones published in [70]. The

results are presented in Table 4.2. Remember that a lower value of D-statistic

indicates higher similarity of two distributions.

The results suggest that sampling connected induced subgraphs uniformly at

random can preserve significant properties such as degree distribution and cluster-

ing coefficient distribution. This is because connected induced subgraphs naturally

contain the information of local graph properties such as vertex degree and clus-

tering coefficient. Also, our sampling algorithm can preserve relatively well the

spectral properties such as singular values and the first left singular vector of graph

adjacency matrix. The overall performance of NRS is much better than the two

outperforming algorithms reported in [70], FF and RW.

4.4 Discussion

ARS, MHS and NRS are effective. They sample almost uniformly at random a

connected induced subgraph with a prescribed number of vertices from a graph.

NRS is slightly less effective than ARS and MHS. RVE has bias towards denser

subgraphs.

RVE is more efficient than the other three algorithms. NRS is practical on all

graphs but slower than RVE. MHS is efficient on sparse graphs and small prescribed

sizes. ARS is only efficient for very dense graphs.

The newly proposed algorithm NRS very successfully realizes the compromise
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between effectiveness and efficiency for which it was designed.

4.5 Summary

In this work, we study the uniform random sampling of connected induced sub-

graphs of a prescribed size from a graph.

We present and discuss four algorithms that leverage several ideas such as re-

jection sampling, random walk and Markov Chain Monte Carlo.

The first algorithm, Acceptance-rejection Sampling (ARS), provides a reference

for effectiveness. It is generally not efficient.

The second algorithm, Random Vertex Expansion (RVE), illustrates the perfor-

mance of a selection of vertices without replacement but has limited effectiveness.

The third algorithm, Metropolis-Hastings Sampling (MHS), demonstrates the

practicality and the effectiveness of Markov Chain Monte Carlo.

The main contribution of this paper is the Neighbour Reservoir Sampling (NRS)

algorithm that tries and finds a compromise between the effectiveness of a random

walk on a Markov chain of connected induced subgraphs, as in MHS, with the

performance of a sampling of vertices with no replacement, as in RVE.
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Chapter 5

Sampling from Dynamic Graphs

5.1 Introduction

As far as we know, existing graph sampling algorithms are designed to sample from

static graphs [70, 56, 75, 80]. Vertices and edges are neither added to nor removed

from original graphs. However, the graphs encountered in modern applications are

dynamic. Vertices are added or removed. For example, Twitter was reported to

have an average of 460, 000 new users every day in February of 2011 [1]. Some of

the properties of the Twitter user graph may have correspondingly changed over

time.

For the sake of efficiency, at least, we want to avoid sampling the successive

graphs from scratch. The challenge is to incrementally maintain a representative

sample graph. We try and devise algorithms able to incrementally update the

sample graph as the original graph is modified.

We consider two undirected graphs G and G′. We refer to G as the “old” graph

and to G′ as the “updated” graph. For the sake of simplicity, we consider that G′

is obtained by the addition of vertices and edges to G. We do not consider the
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′′

′′

Figure 5.1: Illustration of the rationale of incremental construction of a sample g′

of G′ from a sample g of G. G′u is the subgraph induced by the updated vertices
of G′. g′ is formed by replacing some vertices in g with the vertices of G′u in the
smaller gray rectangle.

addition of isolated vertices. We call “updated” a vertex of G′ that is the endpoint

of an edge in G′ that does not belong to G. We consider sample graphs of fixed

size. The rationale of the proposed algorithms is to replace a fraction of the vertices

in the sample graph g of the graph G with updated vertices to obtain a sample

graph g′ of the graph G′. We refer to g as the “old” sample graph and to g′ as the

“updated” sample graph. Figure 5.1 illustrates this rationale.

We devise two variants of the idea above in which the vertices are replaced

randomly or deterministically, respectively.

5.2 Metropolis Graph Sampling

In Section 2.3, we review the Metropolis Graph Sampling (MGS) algorithm pro-

posed by Hübler et al. in [56]. The algorithm belongs to MCMC methods. The

algorithm samples a subgraph g of fixed size with probability reversely proportional

to its distance measure ∆G,σ(g) to the original graph G with respect to some graph

property σ. They modify the algorithm to an optimization variant by storing the

subgraph with the lowest distance measure during random walk.

The MGS algorithm outperforms the Forest Fire (FF) algorithm and the Ran-
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dom Walk (RW) algorithm proposed in the pioneering paper [70] with respect to

both sample quality and sample size. However, MGS is not efficient because of two

reasons. First, it requires a large number of random walk steps in order to make the

Markov chain converge. Second, it computes the graph property σ of the subgraph

and the distance measure between the subgraph and the original graph at each

random walk step. We shall incrementally use the idea of MGS and reduce the

number of random walk steps as well as the cost of computing σ and the distance

measure. In addition, we observe (see the corresponding experimental results in

Section 5.4.2.5) that MGS generates many isolated vertices in the sample graph,

that is, the vertices having degree 0, especially when the sample size is small or the

original graph is sparse. To avoid this problem, the Chaining algorithm was pro-

posed in [56] to restrict the sample graphs to be connected. However, real graphs

neither contain a large faction of isolated vertices or have only a single compo-

nent. They usually consist of a few connected components of different sizes. We

shall modify the MGS algorithm to generate sample graphs that are not necessarily

connected and have no isolated vertex.

5.3 The Algorithms

We begin this section with a modification of the MGS algorithm for sampling

from static graphs. Then we present our proposed algorithms. Both algorithms

incrementally apply the modified MGS algorithm on a dynamic graph.

5.3.1 Modified Metropolis Graph Sampling

We modify the MGS algorithm to restrict the sample graphs to have no isolated

vertex. To avoid the initial selection of isolated vertices, we modify the MGS
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algorithm in the way of selecting the initial subgraph. We randomly select a vertex

in G and perform the Breadth First Search (BFS) graph traversal algorithm to

generate the initial subgraph gcurrent of size n. Alternatively, one can apply any

other graph traversal algorithm to sample the initial subgraph. If we get stuck in

a component of size less than n, we perform BFS with a new starting vertex, until

n vertices are sampled. This method guarantees to generate an initial subgraph

without any isolated vertex. To avoid the introduction of isolated vertices during

random walk, we select the pair of vertices (v, w) for replacement at each step as

follow. The vertex v is randomly selected from gcurrent. The vertex w is randomly

selected from the neighbor vertices of gcurrent \ {v}. We form a new subgraph

gnew = (gcurrent \ {v}) ∪ {w}. We reject gnew directly if it contains any isolated

vertex. Otherwise, we move from gcurrent to gnew with a proposed probability.

Algorithm 7 describes the pseudo code for selecting a random pair of vertices (v, w)

for replacement.

Algorithm 7: Finding Pair(g,G)

Input: G : a graph, g : a subgraph without isolated vertex of G
Output: v, w : a pair of vertices for replacement.

1 v ← select a vertex uniformly at random from g;
2 N(gr)← find all the neighbor vertices of g \ {v} in G;
3 w ← select a vertex uniformly at random from N(gr);
4 Return (v, w);

We thus construct a Markov chain whose states are the subgraphs without any

isolated vertex of size n of G. The rest of the algorithm is as the same as the

original MGS algorithm. We call this modified variant Modified Metropolis Graph

Sampling (MMGS).
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5.3.2 Incremental Metropolis Sampling

We now turn to the problem of incremental construction of a updated sample graph

g′ of G′ from an old sample graph g of G.

One factor that determines the efficiency of the MMGS algorithm is the number

of random walk steps required to achieve the stationary distribution. If we sample

g′ from G′ using the MMGS algorithm, the number of random walk steps is relevant

to the size of G′. The smaller the size of G′ is, the fewer subgraphs of G′ are in

the Markov chain, hence the fewer random walk steps are required to achieve the

stationary distribution. Therefore the efficiency of the MMGS algorithm can be

improved if we can apply it to sample g′ from a subgraph of G′. On the other

hand, as we discussed in Section 5.1, the rationale of incremental sampling is to

replace some vertices in g with the same number of updated vertices in G′. The

key challenge is how to select the replaced vertices and the updated vertices. We

denote by G′temp the subgraph induced by the vertices in g and the updated vertices

in G′. We find that the Metropolis algorithm can spontaneously solve this problem

via random walk on the Markov chain whose states are the subgraphs constructed

by the vertices in G′temp.

In particular, we first construct the subgraph G′temp and set gbest = gcurrent = g.

We start the random walk from g. At each step, we randomly select a pair of vertices

(v, w) for replacement using Algorithm 7, where v ∈ gcurrent and w ∈ G′temp\gcurrent.

We construct a new subgraph gnew = (gcurrent \ {v}) ∪ {w}. If gnew contains any

isolated vertex, we return to gcurrent. Otherwise, we accept the transition from

gcurrent to gnew with probability
∆G′,σ(gcurrent)

∆G′,σ(gnew)
. Reader notice that, differently from

the MMGS algorithm, we construct the subgraphs gcurrent and gnew from G′temp but

compute the distance measure ∆σ between the subgraphs and the updated graph

G′. In case of a success, we set gcurrent = gnew and, if ∆G′,σ(gcurrent) < ∆G′,σ(gbest),
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Figure 5.2: Illustration of the IMS algorithm. The subgraph in the dashed area is
G′temp. The size of sample graph is 3. At each step, the gray vertices construct the
subgraph of the Markov chain.

we store gcurrent as gbest. We output gbest as the sample graph g′ of the updated

graph G′ after a sufficient large number of random walk steps. In summary, we

sample g′ from the subgraph G′temp of G′. We construct a Markov chain whose

states are the subgraphs without isolated vertex of size n of G′temp. We perform a

random walk starting from g on this Markov chain using the Metropolis algorithm.

The replacement of the vertices is spontaneously realized during the random walk.

We output the subgraph as g′ that has the lowest distance measure to G′ with

respect to property σ. Figure 5.2 illustrates this algorithm with a small example.

We call this algorithm Incremental Metropolis Sampling (IMS). The pseudo code is

described in Algorithm 8. The parameter p affects the convergence of the Markov

chain. We set p = 10× E
V

lg V in the experiment according to the parameter setting

in [56], where E and V are the number of edges and the number of vertices of G′temp,

respectively.

We now turn to prove that the stationary probability of each subgraph of the
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Markov chain is inversely proportional to its distance measure to the original graph.

We need to prove that the Markov chain is ergodic and satisfies the detailed balance.

Algorithm 8: Incremental Metropolis Sampling

Input: g : a sample graph of G, n : the sample size, G′ : the updated graph,
#it : the number of random walk steps.

Output: g′ : a sample graph of G′.

1 G′temp = the subgraph of G′ induced by the vertices in g and the updated

vertices in G′;
2 gbest = gcurrent = g;
3 for i = 1 to #it do
4 (v, w) = Finding Pair(gcurrent, G

′
temp);

5 gnew = (gcurrent \ {v}) ∪ {w};
6 if gnew contains any isolated vertex then
7 continue;
8 end
9 α← random number from interval [0, 1];

10 if α < (
∆G′,σ(gcurrent)

∆G′,σ(gnew)
)p then

11 gcurrent = gnew;
12 if ∆G′,σ(gcurrent) < ∆G′,σ(gbest) then
13 gbest = gcurrent;
14 end

15 end

16 end
17 g′ = gbest;
18 Return g′;

Notice that not all the subgraphs without isolated vertex of size n of G′temp can

be sampled (or the Markov chain does not contain all the subgraphs without isolated

vertices of size n of G′temp), given the old sample graph g as the initial subgraph.

Suppose g is the subgraph induced by the vertices in a set C = {c1, c2, . . . , ck} of

disjoint components of G′temp. Then the states of the Markov chain of the IMS

algorithm can only be the subgraphs without isolated vertex of size n induced by

the vertices from exactly the same set of components. On one hand, no vertex

from other component can be selected during random walk. This is because we
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always select the vertex w for replacement from the neighbor vertices of the current

subgraph. But the vertices that are not in C do no connect to any vertices in C.

On the other hand, no component in C can be discarded during random walk, that

is, each component in C contributes some vertices to each subgraph of the Markov

chain. This is because each component in C must have at least two connected

vertices being selected during random walk. Otherwise the corresponding subgraph

contains isolated vertices. A possible solution for selecting vertices from all the

components of G′temp is to select a pair of connected vertices for replacement instead

of selecting a single neighbor vertex. However, we are concerned with preserving

graph properties rather than sampling from all the vertices. We prove that the

Markov chain of the IMS algorithm is ergodic with respect to the subgraphs without

isolated vertex of size n induced by the vertices exactly in the components of C.

By exactly we mean the vertices must be in these components and each component

mush contain some of the vertices. Note that the vertices discussed here are those

of the subgraph G′temp by default.

Lemma 1. Given an initial subgraph g of size n whose vertices are in a set

C = {c1, c2, . . . , ck} of disjoint components of G′temp, the corresponding Markov

chain of the IMS algorithm is ergodic, whose states are all the subgraphs without

isolated vertex of size n induced by the vertices exactly in the components of C.

Proof. (i) Aperiodicity. It is straightforward to prove the Markov chain is aperi-

odic, because there are self-loops in the Markov chain by applying the Metropolis

algorithm.

(ii) Irreducibility. The theorem of irreducibility states that each state of the

Markov chain can be reached from any other state of the Markov chain. Suppose

that g1 and g2 are any two subgraphs of size n without isolated vertex, induced

by the vertices in the set C of components of G′temp. Suppose the subgraph of
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g1 from component ci is s1
i , and the subgraph of g2 from component ci is s2

i , for

i = 1, 2, . . . , k. Notice that s1
i and s2

i are subgraphs from the same component of

C, for i = 1, 2, . . . , k.

For each s1
i , we can transform it to be a connected subgraph s1

i ′ by iteratively

removing a current vertex and adding one neighbour vertex of the current subgraph.

Therefore we can transform g1 to g1′ such that each s1
i ′ is connected, by transform-

ing each s1
i separately, i = 1, 2, . . . , k. In the same way, we can transform g2 to g2′

such that each s2
i ′ is connected, by transforming each s2

i separately. Moreover, as

s1
i ′ and s2

i ′ are from the same component of C, we can find such a transformation

that makes s1
i ′ ⊆ s2

i ′ or s2
i ′ ⊆ s1

i ′ for each i. Then the transformation from g1′ to

g2′ are as follows. In each iteration, we find a pair of subgraphs s1
i ′ and s2

i ′ from

the same component ci of C, such that s1
i ′ ⊆ s2

i ′. Then there must be another pair

of subgraphs s1
j ′ and s2

j ′ such that s2
j ′ ⊆ s1

j ′, i 6= j, as the number of vertices of g1

and g2 are the same. We remove one vertex from s1
j ′ and add one neighbour vertex

of s1
i ′ to s1

i ′, to make the difference between s1
i ′ and s2

i ′ and the difference between

s1
j ′ and s2

j ′ smaller. As all the subgraphs are connected, we can always avoid the

introduction of isolated vertex. The iteration stops when s1
i ′ = s2

i ′ or s1
j ′ = s2

j ′.

We then turn to the subgraphs from other components and start another iteration.

Finally we can make sure s1
i ′ = s2

i ′ for i = 1, 2, . . . , k.

Therefore we find a path from g1 to g1′, then from g1′ to g2′ and finally from

g2′ to g2 (by reversing the transformation from g2 to g2′), that is, g2 is reachable

from g1. As g1 and g2 are arbitrary pair of subgraphs, the irreducibility is proved.

By taking together (i) and (ii), we proved the ergodicity of the Markov chain.

Now we need to prove that the detailed balance holds for the Markov chain,

that is, for any two subgraphs g1 and g2 whose vertices fall exactly in the set C
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of components of G′temp, we have π(g1)p(g1, g2) = π(g2)p(g2, g1), where π(g1) is the

stationary probability of subgraph g1 and p(g1, g2) is the transition probability from

g1 to g2.

We first prove the following lemma regarding the property of detailed balance,

discussed in Section 2.1.

Lemma 2. The detailed balance of an ergodic Markov chain holds iff the detailed

balance holds for any two adjacent states.

Proof. i) Proof of ⇒. Suppose the detailed balance holds for the Markov chain,

that is, for any two states s and s′ we have π(s)p(s, s′) = π(s′)p(s′, s), where π(s)

is the stationary probability of s and p(s, s′) is the transition probability from s to

s′. It is obvious that the detailed balance holds for any two adjacent states.

ii) Proof of⇐. Suppose the detailed balance holds for any two adjacent states.

For any two states s and s′ of the Markov chain, suppose there are k paths between

them. We have,

π(s)p(s, s′) = π(s)
k∑
i=1

pi(s, s′) =
k∑
i=1

π(s)pi(s, s′), (5.1)

where pi(s, s′) is probability of moving from s to s′ through the ith path.

Denote by Pathi(s, s′) =< s, si1, s
i
2, . . . , s

i
li
, s′ > the ith path from s to s′, i =
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1, 2, . . . , k. We have,

π(s)pi(s, s′) = π(s)× p(s, si1)× p(si1, si2)× · · · × p(sili , s′)

= p(si1, s)× π(si1)× p(si1, si2)× · · · × p(sili , s′)

= p(si1, s)× p(si2, si1)× π(si2)× · · · × p(sili , s′)

. . .

= p(si1, s)× p(si2, si1)× · · · × p(s′, sili)× π(s′)

= π(s′)pi(s′, s).

By taking this equation into Equation 5.1, we get,

π(s)p(s, s′) =
k∑
i=1

π(s)pi(s, s′) =
k∑
i=1

π(s′)pi(s′, s) = π(s′)p(s′, s), (5.2)

that is, the detailed balance holds for any two states of the Markov chain.

In summary, the lemma is proved by the conclusion of i) and ii).

Lemma 3. The detailed balance holds for the Markov chain constructed in Algo-

rithm 8, that is, for any two subgraphs g1 and g2 whose vertices fall exactly in the

set C of components of G′temp, we have π(g1)p(g1, g2) = π(g2)p(g2, g1).

Proof. First, According to Lemma 2, we only need to prove that the detailed bal-

ance holds for any two adjacent subgraphs g1 and g2.

Second, we suppose that the stationary probability of a subgraph is reversely

proportional to its distance measure to the original graph, that is,

π(g1)

π(g2)
=

∆G′,σ(g2)

∆G′,σ(g1)
. (5.3)

80



With the acceptance probability proposed in Algorithm 8, we get,

π(g1)p(g1, g2) = π(g1)× t(g1, g2)×min(1,
∆G′,σ(g1)

∆G′,σ(g2)
)

and

π(g2)p(g2, g1) = π(g2)× t(g2, g1)×min(1,
∆G′,σ(g2)

∆G′,σ(g1)
),

where t(g1, g2) is the probability of transition from g1 to g2, as discussed in Section2.1.

Without loss of generality, we assume that ∆G′,σ(g1) ≥ ∆G′,σ(g2). So we have,

π(g1)p(g1, g2) = π(g1)× t(g1, g2) (5.4)

and

π(g2)p(g2, g1) = π(g2)× t(g2, g1)× ∆G′,σ(g2)

∆G′,σ(g1)
. (5.5)

We know that g1 and g2 are adjacent, that is, there is a pair of vertices (v, w),

such that g1 \ {v} ∪ {w} = g2, or g1 \ {v} = g2 \ {w}. Denote by g1,2 = g1 \ {v} =

g2 \ {w}, which is the intermediate state between g1 and g2. Denote by N(g1,2) the

number of subgraphs of the Markov chain obtained by adding one vertex to g1,2.

We get,

t(g1, g2) =
1

n
× 1

N(g1,2)
= t(g2, g1), (5.6)

where 1
n

is the probability of picking v from g1, or picking w from g2.

By taking together Equation 5.3, 5.4, 5.5 and 5.6, we get,

π(g1)p(g1, g2) = π(g1)× t(g1, g2) = π(g2)× ∆G′,σ(g2)

∆G′,σ(g1)
× t(g2, g1)

= π(g2)p(g2, g1).

We therefore proved that the detailed balance holds for any two adjacent states.
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According to Lemma 2, the lemma holds.

With Lemma 1, 3 and according to the theorem in Section 2.1, we can sample

the subgraphs without isolated vertex using IMS with probability inversely pro-

portional to their distance measure ∆σ to the updated graph G′ using the IMS

algorithm.

5.3.3 Sample-Merging Sampling

Another factor that affects the efficiency of the MMGS algorithm is the computa-

tional cost at each random walk step. As we need to compute the neighbor vertices

and the property σ of the current subgraph and the distance measure of the current

subgraph to the original graph, this cost is in turn determined by the size of the

subgraph. Therefore the second method to speed up the MMGS algorithm is to

reduce the size of the subgraphs in the Markov chain.

To achieve this goal, we propose an algorithm based on the following conjecture.

If gx is a representative sample graph of Gx and gy is a representative sample graph

of Gy, gx ∪ gy is a representative sample graph of Gx ∪ Gy. We assume that

Gx ∩ Gy = ∅. The extreme case is when gx = Gx and gy = Gy. Note that gx ∪ gy

is an induced subgraph of Gx ∪Gy. The algorithm works as follows. We construct

a subgraph gnon that is induced by the non-updated vertices of g. We denote by

G′non the subgraph induced by the non-updated vertices of G′. We consider that

gnon is a representative sample graph of G′non. Suppose the size of gnon is snon. We

denote by G′u the subgraph induced by the updated vertices of G′. We then sample

a subgraph g′u of size n− snon from G′u using the MMGS algorithm. According to

the conjecture, gnon ∪ g′u is a representative sample graph of G′non ∪ G′u, i.e., G′.

We merge gnon and g′u and form the sample graph g′, that is, g′ is the subgraph

induced by the vertices in gnon and g′u. In summary, we keep deterministically in
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Figure 5.3: Illustration of the SMS algorithm. The subgraph is the dashed area is
G′u. The gray vertices are sampled. The size of the sample graph is 3. The size of
the subgraphs of the Markov chain is 2.

g′ the non-updated vertices of g and select the rest of the vertices of g′ from the

updated vertices of G′ using the MMGS algorithm. The size of the subgraphs of

the underlying Markov Chain is therefore reduced by snon. By this method, we

achieve the goal of reducing the size of subgraphs in the Markov chain. Figure 5.3

illustrates this algorithm with a small example. We all this algorithm Sample-

Merging Sampling (SMS). The pseudo code is described in Algorithm 9.

Algorithm 9: Sample-Merging Sampling

Input: g : a sample subgraph of G, n : the sample size, G′ : the updated
graph, #it : the number of random walk steps.

Output: g′ : a sample graph of G′.

1 gnon = the subgraph induced by the non-updated vertices of g;
2 snon = the size of gnon;
3 G′u = the subgraph induced by the updated vertices of G′;
4 Sample g′u of size n− snon from G′u using the MMGS algorithm;
5 g′ = gnon ∪ g′u;
6 Return g′;
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Suppose the vertices of g′u falls in a set C of disjoint components of G′u. It is

easy to prove that the Markov chain of the SMS algorithm is ergodic with respect

to the subgraphs without isolated vertex of size n − snon induced by the updated

vertices falling exactly in C using Lemma 1 in Section 5.3.2.

The problem of SMS is that it may generates a sample graph g′ with a larger

distance measure to G′ than g with respect to property σ, that is, ∆G′,σ(g′) >

∆G′,σ(g). The possible explanations are as follows. First, g is similar to G′ with

respect to property σ; secondly, gnon is not as a representative sample graph of G′non

as we expected; lastly, the merging phase introduces extra error to the distance

measure between G′ and g′. In this case, we restore g as a representative sample

graph of G′, as we are concerned with preserving graph properties rather than

replacing the vertices in the old sample with the updated vertices.

5.4 Performance Evaluation

5.4.1 Complexity Analysis

We present the time complexity of the algorithms in this section. In the MMGS

algorithm, we compute the neighbor vertices of a subgraph of size n − 1 at each

step. The time complexity is O(n). We also compute the graph property σ of a

subgraph of size n and compute the distance measure ∆ between the subgraph

and the original graph. We denote by O(ncσ) the time complexity of computing

property σ of a subgraph of size n. We select the Kolmogorov-Smirnov D-statistic

to compute ∆. Below we see that the time complexity scales linearly with the size of

the distribution (the property) in the sample graph plus that in the original graph.

For the sake of simplicity, we denote by O(n+N) the corrsponding time complexity,

where N is the size of the original graph. Therefore the time complexity of MMGS
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at each step isO(ncσ+2n+N). The number of random walk steps required is at least

equal to the mixing time of the Markov chain. The mixing time of a Markov chain

is theoretically studied in [100]. There are also emprical techniques for evaluating

the mixing time, for instance, the Geweke diagnostics [39]. However, it is estimated

that the number of random walk steps in the order of size of the original graph is

sufficient for the convergence of our Markov chain [42, 56]. Therefore the total time

complexity of MMGS is O(ncσN+2nN+N2). Accordingly, the time complexity of

IMS is O(ncσNtemp + 2nNtemp +N2
temp), where Ntemp is the size of subgraph G′temp.

The time complexity of SMS is O(ncσu Nu + 2nNu + N2
u), where nu is the size of

subgraph g′u and Nu is the size of subgraph G′u.

We use the number of random walk steps discussed in this section in the exper-

imental study below.

5.4.2 Empirical Evaluation

We conduct the experimental study in this section. We empirically evaluate the

algorithms on their abilities of preserving a selected set of graph properties. All the

properties are considered as distributions. We choose the Kolmogorov-Smirnov D-

statistic to compute distance measure ∆σ between the sample graph and the original

graph on property σ, following the convention in [56, 70]. We run experiments on

both synthetic datasets and real datasets.

5.4.2.1 The Graph Properties

We select four graph properties for evaluation, which are also used in [70].

Degree distribution: the degree distribution is defined as the probability distri-

bution of all the degrees over a graph.

The distribution of clustering coefficient: the clustering coefficient of a vertex
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is defined as the ratio of existing edges between its neighbor vertices. Suppose a

vertex v connects to k other vertices, where k > 1. The clustering coefficient of v

is computed as m
k(k−1)/2

, where m is the number of existing edges between these k

vertices. The distribution of clustering coefficient [70] is defined as the distribution

of average clustering coefficient over all vertices of the same degree.

The distribution of component size: a graph may consist of many disjoint

components. The distribution of component size is defined as the distribution of

the numbers of components over all the sizes. A relevant property is the graphlet

distribution or the distribution of network motifs [61, 85]. A graphlet is a connected

induced subgraph usually having 3, 4 or 5 vertices. The graphlet distribution is

defined as the probability distribution of all the graphlets over a graph.

Hop-plot: P (h) is defined as the number of reachable pairs of vertices at distance

less than or equal to h. The hop-plot is the distribution of the numbers of vertex

pairs over all the distances less than or equal to h [70].

All the properties are computed using the Snap [6] library.

5.4.2.2 Kolmogorov-Smirnov D-statistic

We select the Kolmogorov-Smirnov D-statistic to compute the distance measure

∆G,σ(g) between the sample graph g and the original graph G on property σ,

following the conventions in [56, 70]. The distribution (normalized) of a property

of the sample graph and that of the original graph are usually have different sizes.

The KS D-statistic is appropriate for this distance measure because it can measure

the difference between two distributions with different sizes.

Given distribution D = [D1, D2, . . . , DnD ] and d = [d1, d2, . . .

, dnd ], the KS D-statistic is computed as follows. We first define a range of ran-

dom variables x = [x1, x2, . . . , xk]. Then we compute the cumulative distribution
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function FD and Fd for D and d over x, respectively, as Equation 5.7,

FD(i) =
1

nD

nD∑
j=1

Ij, i = 1, 2, . . . , k, (5.7)

where Ij = 1 if Dj ≤ xi and Ij = 0 otherwise.

Then the KS D- statistic is computed as,

D = sup
i
|FD(i)− Fd(i)|, i = 1, 2, . . . , k. (5.8)

A smaller value of KS D-statistic means the two distributions in comparison

are more similar to each other.

5.4.2.3 Datasets

We generate Barabási-Albert random graphs [15] and Forest Fire random graphs [71]

for the synthetic datasets. Both of the graph models simulate the evolution of real

graphs. Barabási-Albert random graphs simulate the preferential attachment phe-

nomenon in real graphs. Forest Fire random graphs reproduce the behavior of

densification power laws and shrinking diameters in real graph evolution.

We generate 10 random graphs with different densities for each model. In the

Barabási-Albert model, the density of the graph is determined by the parameter

d, which is the number of edges each new vertex generates. Higher values of b

lead to the generation of denser graphs. We set b = 1, 2, . . . , 10 for the ten graphs,

respectively. In the Forest Fire model, the density is relevant to both the forward

burning probability p and the backward burning probability pb. We set pb = 0.3

and vary the value of p from 0.31 to 0.4 with increments of 0.01. Higher values of p

lead to the generation of denser graphs. In order to generate multiple disjoint com-

ponents in the Barabási-Albert graphs, we randomly form a new small component
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with some probability at the arrival of each new vertex. In the Forest Fire graphs,

we generate multiple components by setting the probability of a new vertex being

an orphan to be 0.1. However, we discard the orphan vertices and keep only the

vertices having degree at least 1. Each synthetic graph has 10000 vertices.

The real dataset is a Facebook friendship graph. The graph contains a five-year

friendship list within 15 schools with timestamp for the confirmation of each pair of

friends. The graph has 331667 vertices (users) and 1391866 edges (pairs of friends).

We sample 10 subgraphs of different periods from the Facebook friendship graph.

Each subgraph contains 20000 vertices. The average number of edges is 24058.

5.4.2.4 Experimental Setup

We implement the Random Walk algorithm, the Forest Fire algorithm, the Mod-

ified Metropolis Graph Sampling algorithm, the Incremental Metropolis Sampling

algorithm and the Sample-Merging Sampling algorithm in C++. We run all the

algorithms on each of the graphs described above. We evaluate their ability of

sampling each of the properties seperately. For each synthetic graph, we generate

a sample graph of size 100 whenever the graph size increases by 1000. FF, RW and

MMGS generate the sample graphs from scratch. IMS and SMS incrementally gen-

erate the updated sample graphs based on the old sample graphs. We compute the

distance of the sample graph to the current original graph on the specific property

using KS D-statistic. For each real graph, we generate a sample graph of size 200

whenever the graph size increases by 2000. We then compute the average results

over the ten graphs for each graph model. We compute the average execution time

of the generation of all the sample graphs for each graph model. All the experi-

ments are run on a cluster of 54 nodes, each of which has a 2.4GHz 16-core CPU

and 24 GB memory.
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Figure 5.4: Degree distribution:
Barabási-Albert graphs.
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Figure 5.5: Clustering coefficient distri-
bution: Barabási-Albert graphs.

5.4.2.5 Isolated Vertices

We observe that the original MGS algorithm generates sample graphs with a large

fraction of isolated vertices. Table 5.1 shows the average fraction of the isolated

vertices. Each entry represents the average fraction over all the sample graphs

of the corresponding graph model for preserving the corresponding property. The

results suggest that MGS generates very sparse sample graphs. Most of the vertices

have no incident edge.

Deg clus component hop
Barabási-Albert 0.982 0.863 0.953 0.819

Forest Fire 0.987 0.877 0.982 0.808
Facebook Friendship 0.988 0.951 0.991 0.947

Table 5.1: The fraction of isolated vertices in the sample graphs generated by MGS.

5.4.2.6 Effectiveness

Figure 5.4, 5.5, 5.6 and 5.7 show the average results over the ten Barabási-Albert

random graphs on preserving the four graph properties, respectively.

We observe that the IMS and SMS algorithms perform better than the RW and

FF algorithms. They also perform similar to the MMGS algorithm. RW and FF
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Figure 5.6: Component size distribu-
tion: Barabási-Albert graphs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

K
ol

m
og

or
ov

-S
m

irn
ov

 D
-S

ta
tis

tic
s

Number of Vertices

RW
FF
MMGS
IMS
SMS

Figure 5.7: Hop-Plot: Barabási-Albert
graphs.

exhibit random behaviors for the component size distribution. This is because they

always tend to sample a connected subgraph from a starting vertex. The number of

components in the sample graph depends highly on the selection of random starting

vertex. The MMGS algorithm generally performs slightly better than the IMS and

SMS algorithm. However, we observe that IMS performs better than MMGS for

degree distribution and hop-plot. A possible reason is that the MMGS algorithm

gets stuck in local maximums of the probability distribution of the Markov chain.

Therefore it has not fully converged. The IMS algorithm roughly performs better

than the SMS algorithm. This is because SMS samples local optimal subgraphs

from the updated graph and introduces extra error in the merging phase.

Figure 5.8, 5.9, 5.10 and 5.11 show the average results over the ten Forest Fire

random graphs on preserving the four graph properties, respectively.

We observe the similar results with the those of the Barabási-Albert graphs. The

RW algorithm and the FF algorithm exhibit more random behaviors compared with

the results of the Barabási-Albert graphs. MMGS, IMS and SMS perform better

than RW and FF.

Figure 5.12, 5.13, 5.14 and 5.15 show the average results over the ten Facebook

friendship subgraphs on preserving the four graph properties, respectively.
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Figure 5.8: Degree distribution: Forest
Fire graphs.
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Figure 5.9: Clustering coefficient distri-
bution: Forest Fire graphs.
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Figure 5.10: Component size distribu-
tion: Forest Fire graphs.
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Figure 5.11: Hop-Plot: Forest Fire
graphs.
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Figure 5.12: Degree distribution: Face-
book friendship graphs.
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Figure 5.13: Clustering coefficient dis-
tribution: Facebook friendship graphs.
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Figure 5.14: Component size distribu-
tion: Facebook friendship graphs.
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Figure 5.15: Hop-Plot: Facebook
friendship graphs.

We observe that RW and FF perform similar to the other three algorithms on

degree distribution, clustering coefficient distribution and component size distribu-

tion at the beginning stage of the graph evolution. To some extend, these results

coincide with the finding in [70] that %15 is a good sample ratio for RW and FF

to matching properties. When the size of the original graph increases, the sample

ratio decreases because we fix the sample size. As a result, the quality of the sam-

ple graphs generated by RW and FF decreases accordingly. The MMGS, IMS and

SMS algorithms still perform better than RW and FF.

Overall, we show that MMGS, IMS and SMS perform better than RW and FF

on preserving the four properties. MMGS performs slightly better than IMS and

SMS and IMS performs better than SMS in general. Among the four properties, we

observe that SMS performs not good enough on preserving the hop-plot property.

The possible reason is that hop-plot is a global property of the original graph,

whereas SMS generates the local optimal sample graph from the updated graph.

The merging phase also introduces extra error.
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Figure 5.16: Execution Time: Barabási-
Albert graphs.
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Figure 5.17: Execution Time: Forest
Fire graphs.

5.4.2.7 Efficiency

Figure 5.16, 5.17 and 5.18 show the average execution time of sampling the four

graph properties over the ten graphs for both synthetic and real graphs, respec-

tively.

We observe that RW and FF are faster than the other three algorithms as ex-

pected. Our IMS and SMS algorithms are much faster than the MMGS algorithm,

and SMS is faster than IMS. This is as expected because IMS and SMS require fewer

random walk steps than MMGS does, and SMS computes the neighbor vertices and

the graph properties of subgraphs with smaller sizes than IMS does.

The difference between the execution time of MMGS and IMS and that between

MMGS and SMS increases very quickly as the original graph grows. This is because

the total number of vertices of the original graph increases faster than the number

of updated vertices as the original graph grows. Therefore the number of random

walk steps required by MMGS increases faster than that required by IMS and SMS.
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Figure 5.18: Execution Time: Facebook
friendship graphs.

5.5 Summary

We have presented two incremental graph sampling algorithms preserving the dis-

tributions of degree, of clustering coefficient, of component size and of hop-plot.

The rationale of the algorithms is to replace a fraction of vertices in the former

sample with newly updated vertices. The two algorithms differ in their way of

selecting the vertices to be replaced and updated in the sample graph.

We analytically and empirically evaluated the performance of the proposed al-

gorithms: Incremental Metropolis Sampling and Sample-Merging Sampling. We

compared their performance with that of baseline algorithms: Random Walk, For-

est Fire, and Modified Metropolis Graph Sampling. The experiment results on

both synthetic and real graphs showed that our proposed algorithms realize a com-

promise between effectiveness and efficiency.

MMGS is the most effective yet slowest of the three baseline algorithms. Our

algorithms are significantly more efficient than MMGS. Although very efficient, RW

and FF prove not effective. Our algorithms are less efficient than RW and FF but

significantly more effective. Of the two proposed algorithms, IMS is slightly more

effective than SMS, while SMS is more efficient than IMS
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We have provided practical algorithms for the incremental sampling of the large

dynamic graphs being created on the Internet, the World Wide Web and its nu-

merous social media.
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Chapter 6

Generating Random Graphic

Sequences

6.1 Introduction

The graphs that arise from concrete applications seem to correspond to models

with prescribed degree sequences. There is evidence that useful graphs in most

applications domains follow a prescribed degree sequence or degree law (typically

the power law). Numerous algorithms have been developed that generate graphs

from prescribed degree sequences [84, 111, 38] and laws [44] or that evaluate their

structure and dynamics [85]. The latter example mines and evaluates the interest-

ingness of motifs in all kinds of graphs such as transcription networks, ecological

food webs and neuron synaptic connection networks.

It is therefore necessary to provide algorithms that generate graphic sequences

(realizable degree sequences), in particular uniformly at random, in order to evalu-

ate these algorithms. Using random graphs or graphic sequence with an underlying

distribution of random graphs would neglect rare but possibly significant graphic
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sequences.

In this study, we are interested in the random generation of graphic sequences.

The problem is trivial if one wishes to generate graphic sequences according to the

underlying graph distribution. The problem is particularly difficult if one wishes

to generate graphic sequences uniformly at random.

We develop four algorithms for the random generation of graphic sequences [74].

Two of these algorithms that generate random graphic sequences according to the

underlying distribution of random graphs are trivial and are as effective and efficient

as the corresponding Erdős-Rényi algorithms. The two other algorithms generate

graphic sequences uniformly at random. Our contribution is the design of the

corresponding Markov Chains and the empirical evaluation of the (rapid) mixing

times.

6.2 Background

Graphic sequences have received a lot of attention, both from the theoretical and

practical viewpoint. Google scholar retrieves 2, 500 references for a search on

graphic sequence and 6, 630 for a search on degree sequence. In this section we

introduce preliminary definitions and results concerning graphic sequences as well

overviews the relevant work.

6.2.1 Degree Sequence

Without loss of generality and for the sake of simplicity of exposition we consider

simple graphs, that is undirected graphs without self-loops and multiple edges. The

degree sequence of a graph is defined as follows.

Definition 2. [Degree Sequence [101]] Let G(v, e) be a graph with n vertices
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and m edges. The degree sequence DS = (d1, d2, . . . , dn) of G is the non-increasing

sequence of natural numbers corresponding to the degrees of vertices in G.

For a variety of applications, authors have considered the realizability, construc-

tion, enumeration and, less so, counting and generation of graphs with prescribed

degree sequences. The list of applications is long and increasing. For instance, the

authors of [42] assess the interest of data mining results by comparing them with

the results obtained from mining random graphs with the same degree sequence.

Interesting patterns and rules are those who are specific to the original graph rather

than those frequently appearing in graphs with the same degree sequence. The au-

thors of [73] propose a notion of k -degree anonymity and anonymization algorithms

for privacy preservation in graphs in general and in social networks in particular.

In this approach, identity disclosure and its prevention depend and rely on degree

sequence.

One particularly interesting problem is the random generation of graphs with

prescribed degree sequences. The authors of [84] present and compare three main-

stream algorithms: a näıve configuration algorithm that is painstakingly matching

stubs under the prescribed sequence constraints, a local optimization algorithm

and a Markov Chain Monte Carlo algorithm called the switching algorithm. Re-

cently, the authors of [38] have proposed a polynomial time algorithm that avoids

the drawbacks of backtracking and uncontrolled rejection of the three approaches

above. The exact problem statement may vary depending on the nature of the

graph and on additional constraints. For instance, the authors of [111] consider

the uniform generation of random simple connected graphs with a prescribed degree

sequence.

Other applications need to determine the structure and dynamics of graphs with

prescribed degree sequences. For instance, the authors of [85] mine and evaluate the
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significance of motifs in transcription networks, ecological food webs and neuron

synaptic connection networks. The authors of [86] investigate the number of vertices

and the number of cycles in the largest component of random graphs with a given

degree sequence. Connected components [26] and Hamilton cycles [29] are also

investigated in the graphs with prescribed degree sequences.

6.2.2 Graphical Sequence

Therefore it is important to consider, upstream from the problems of graphs with

prescribed degree sequences, the realizability, construction, enumeration, counting

and generation of degree sequences themselves.

However, not every non-increasing sequence of natural numbers is a degree se-

quence. non-increasing sequence of natural numbers that is the degree sequence of a

graph is called a graphic sequence or a realizable degree sequence as per Definition 3.

Definition 3. [Graphic Sequence [101]] Let DS = (d1, d2, . . . , dn) be a non-

increasing sequence of natural numbers. DS is said to be a graphic sequence (or

a realizable degree sequence) if and only if there exists a graph G(v, e) with degree

sequence DS.

Figure 6.1 illustrates the eight possible graphs with three vertices. The eight

graphs yield four different graphic sequences: (0, 0, 0), (1, 1, 0), (2, 1, 1) and (2,

2, 2). There is no graph with degree sequence (1, 0, 0), (1, 1, 1) or (2, 0, 0), for

instance.

The realizability of degree sequences is first investigated by Havel [53]. Hakimi [47]

then complements the work and obtains a sufficient and necessary condition for a

degree sequence to be graphic. The authors of [98] show the equivalence of seven

previously proposed necessary and sufficient criteria for a sequence of integers to

be graphic.
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Figure 6.1: All the graphs with three vertices.

The original construction problem is trivial since a sequence of zeros is graphic.

We shall use this trivial graphic sequence as a starting state in the Markov Chain

Monte Carlo method that we discuss below.

As remarked by the Ruskey of [97] the enumeration of graphic sequences has

been largely overlooked. They propose an algorithm that enumerates graphic se-

quences with prescribed length. The algorithm leverages Havel and Hakimi’s con-

dition [53]. The authors conjecture and verify experimentally that their algorithm

is running in constant amortized time, i.e. in time proportional to the size of the

output. Nevertheless its worst case complexity remains exponential. (see [24] and

the following discussion about counting.)

Barnes and Savage propose in [17] an algorithm for the enumeration of graphic

sequences with prescribed sum.

There is no known analytical formula for the counting of graphic sequences with

prescribed length. Burns [24] gives a upper bound of 4n/(log n)C
√
n and a lower

bound of 4n/Cn.

Other authors have addressed related but different problems. Barnes, in [16],

proposes a recurrence and a polynomial-time algorithm for counting graphic se-

quences with prescribed sum. Stanley, in [103] and Peled, in [93], count the number
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of ordered graphic sequences (as opposed to graphic sequences which are multi-sets)

as a (exponential) function of the number of odd cycles in the corresponding forest.

While the construction problem, without or with further constraints, is rather

simple, the counting problem seems difficult. This apparent paradox makes the

problem of counting, and the problem of generating graphic sequences uniformly at

random, interesting and challenging. We therefore are interested in addressing the

random generation of graphic sequences with prescribed length and with prescribed

length and sum.

6.3 The Algorithms

In this section, we present four algorithms for random generation of graphic se-

quences. The first two algorithms generate random graphic sequences with pre-

scribed length, and prescribed length and sum, according to the underlying distri-

bution of graphs. They are näıve and trivial. We give them for reference and com-

pleteness. The third and fourth algorithms generate uniformly at random graphic

sequences with prescribed length, and prescribed length and sum. We contribute

the first non trivial algorithms for these tasks and study their effectiveness and

efficiency.

6.3.1 Random Graphic Sequence with Prescribed Length

We consider random graphic sequences with prescribed length according to the

underlying distribution of the corresponding graphs which is defined by the Γn,p

Erdős-Rényi model for some probability p. The underlying graphs have a prescribed

number of vertices which corresponds to the length of the sequence. We call this

model D(n, p).
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We propose a straightforward algorithm D(n, p) for D(n, p), which is shown

in Algorithm 10. We first generate a random graph with prescribed number of

vertices using algorithms in [90] for the Γn,p Erdős-Rényi model [33, 40]. Then we

output its degree sequence. It is possible, as a minor optimization, to make the

economy of the generation of the graph and modify a random graph generation

algorithm to incrementally maintain the degree sequence. The algorithm is correct

by construction.

Algorithm 10: Algorithm D(n, p)

Input: n : the length of the sequence; p : the probability to add an edge
Output: DS : a graphic sequence generated from underlying distribution of

D(n, p)

1 G = ∅;
2 for i = 1 to n(n− 1)/2 do
3 Generate a uniform random number α ∈ [0, 1);
4 if α < p then
5 G← ei;
6 end

7 end
8 DS = the degree sequence of G;

6.3.2 Random Graphic Sequence with Prescribed Length

and Sum

We consider random graphic sequences with prescribed length and sum according

to the underlying distribution of the corresponding graphs which is defined by

the Γn,m Erdős-Rényi model. The underlying graphs have a prescribed number

of vertices, n, which corresponds to the length of the sequence, and a prescribed

number of edges, m, which corresponds to half of the sum s of the sequence (by

the Handshaking Lemma.) We call this model D(n, s).

One possible algorithm, which we call D(n, s), which is incremental and can
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therefore be used to generate series of random results for increasing sums, consists

in adapting the Reservoir sampling algorithm [112] to a random generation ofm = s
2

edges among n×(n−1)
2

possible ones (for a simple graph). The algorithm is shown in

Algorithm 11.

Algorithm 11: Algorithm D(n, s)

Input: n : the length of the sequence; s : the sum of the sequence
Output: DS : a graphic sequence generated from underlying distribution of

D(n, s)

1 G = ∅;
2 for i = 1 to s/2 do
3 Gei ← ei;
4 end
5 for i = s/2 + 1 to n(n− 1)/2 do
6 Generate a uniform random number α ∈ [0, 1);
7 µ = floor(α× i);
8 if µ ≤ s/2 then
9 Geµ = ei;

10 end

11 end
12 DS = the degree sequence of G;

6.3.3 Uniformly Random Graphic Sequence with Prescribed

Length

We consider graphic sequences with prescribed length uniformly at random. We

call this model Du(n).

Here a näıve algorithm to generate sequences in the model Du(n) consists in

enumerating the different graphic sequences (for instance using the algorithm of

[97]) and then choosing one at random among the different ones. This approach is

running in exponential time.

A Markov chain Monte Carlo approach may be able to give us acceptable ap-
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proximations (almost uniform) algorithms in polynomial time. The two issues at

hand are the construction of the Markov chain and the evaluation of its mixing

time.

In order to illustrate the principles and the difficulties underlying the design of

the Markov chain algorithm for Du(n), allow us to present the construction of a

simple Markov chain that fails to achieve this goal. Conveniently1, we start from

a sequence of zeros which is a graphic sequence. At each transition, we increment

or decrement by 1 two elements in the sequence (which corresponds to adding or

deleting an edge in the underlying graph). Each state corresponds to a sequence2.

We only consider the new state if the elements of its corresponding sequence are

in the [0, n− 1] interval. We only consider the new state if it is a sequence in non-

increasing order. We only consider the new state if it is a graphic sequences. This is

test using one of the available necessary and sufficient conditions. We thus define a

Markov chain whose states are exactly the graphic sequences of prescribed length.

The Markov chain is ergodic and has a stationary distribution. Unfortunately

different states have different stationary probabilities. It is possible to modify the

weight to make the stationary distribution uniform but it is difficult to find an a

priori strategy to do so while randomly walking and constructing the Markov chain.

We can now present the construction of the Markov chain for the algorithm

Du(n) that we advocate. We consider a chain that contains both graphic and non-

graphic sequences. The initial state is still, conveniently, the zero sequence as it is

graphic. At each transition, we increment or decrement by 1 one element in the

sequence. We only consider a new state if its elements are in the [0, n− 1] interval.

We only consider the new state if it is in non-increasing order. We do not consider

states that are non-graphic and whose sum is even. However the Markov chain

1The initial state could be any other state.
2We use the words “state”and “sequence” indistinctively.
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Figure 6.2: Markov chain for n = 3. The green ovals are graphic sequences and the
gray ovals are non-graphic sequences. The weights associated to the edges lead to
the uniform stationary distribution.

contains both graphic and non-graphic sequences. We call this Markov chain MC,

We call P its transition matrix.

Figure 6.2 illustrates the Markov chain for three vertices, MC, in which Du(n)

is walking. The green ovals represent the graphic sequences and the gray ovals

represent the non-graphic sequences.

We consider the Markov chain MC ′ with transition matrix P 2. We cannot

directly construct and walk on MC ′. Rather we will walk on MC and consider

even numbers of steps.

We remark that two adjacent states in MC cannot be both graphic or both non-

graphic. Therefore MC has the interesting property that states that correspond to

graphic sequences can only be reached in an even number of steps (from a graphic

state). This may look as if compromised the aperiodicity of the Markov chain but

it does not as far as we are concerned since we will walk even numbers of steps and

are only interested in graphic states.

Furthermore, because we have not included in MC the non-graphic states whose

sum is even, only graphic states can be reached in an even number of steps (from

a graphic state). Therefore MC ′ is irreducible and aperiodic, therefore ergodic, as

shown below with Lemma 4 and Lemma 5. The proof of Lemma 4 also implies

that all the graphic states are included in our Markov chain.

Lemma 4. MC ′ is irreducible, that is, each graphic state can be reached from any
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other graphic state in the Markov chain.

Proof. Given two arbitrary graphic states Si and Sj in MC, we can always find a

path between them as follows. Denote by Gi and Gj the corresponding possible

graphs of Si and Sj. Consider the following procedure. We first delete the edges

of Gi one by one until Gi has no edge, and then add edges one by one to construct

Gj. In this procedure, each adding or deleting has a corresponding two-step path

in the Markov chain MC between two graphic states. Then a path from Si to

Sj is simply a connection of all these two steps. Thus, we prove the irreducibility

MC ′.

Lemma 5. MC ′ is aperiodic.

Proof. Consider any two steps of random walk from a graphic state Si in MC. If

another graphic state Sj is visited, the two edges from Si to Sj can be considered

as one edge in MC ′. If we walk back to Si, these two edges indeed constitute a

self-loop in MC ′. As each graphic state in MC ′ has at least one such self-loop,

MC ′ is aperiodic.

Unfortunately different states have different stationary probabilities. It is pos-

sible to modify the weight to make the stationary distribution uniform. We use

a technique suggested by Sinclair in [100] and used by the authors of [50], that

consists in allocating appropriate weights to the transitions. The result that au-

thorizes and justifies these changes is given by Cover and Thomas in [30]. Namely

the stationary probability of each state is proportional to the sum of the weights

of its incident transitions, with the following transition matrix P .

p(i,j) =


w(i,j)∑

l∈adj(i) w(i,l)
if j ∈ adj(i)

0 if j 6∈ adj(i),
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where w(i, j) is the weight of edge corresponding to the transition from state i to

j.

Lemma 6. In MC ′, the stationary probability for a graphic state is proportional

to the total weight incident to that state and the stationary probability for a non-

graphic state is zero for the transition Matrix P 2.

Proof. As in MC ′ the graphic states have even sums and the non-graphic states

have odd sums, we denote by πei the stationary probability for graphic state sei and

πoi the stationary probability for non-graphic state soi , and denote by wei the total

weight for sei and W the sum of total weights for all sei . Given the distribution

πe = (πe1 , πe2 , . . . , πek , πo1 , πo2 , . . . , πol), such that

πei =
wei
W

, i = 1, 2, . . . , k,

πoi = 0, i = 1, 2, . . . , l.

we prove that πe = πeP
2.

Denote by π
(1)
e = πeP and π

(2)
e = πeP

2, we have

π(1)
ei

=
k∑
j=1

πejp(ej, ei) +
l∑

j=1

πojp(oj, ei), i = 1, 2, . . . , k,

π(1)
oi

=
k∑
j=1

πejp(ej, oi) +
l∑

j=1

πojp(oj, oi), i = 1, 2, . . . , l.
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Because p(ej, ei) = 0, p(oj, oi) = 0 and πoj = 0, we get

π(1)
ei

= 0, i = 1, 2, . . . , k,

π(1)
oi

=
∑

ej∈adj(oi)

πejp(ej, oi) =
∑

ej∈adj(oi)

wej
W
× w(ej, oi)

wej

=

∑
ej∈adj(oi) w(ej, oi)

W
, i = 1, 2, . . . , l.

Similarly, We have

π(2)
ei

=
k∑
j=1

π(1)
ej
p(ej, ei) +

l∑
j=1

π(1)
oj
p(oj, ei), i = 1, 2, . . . , k,

π(2)
oi

=
k∑
j=1

π(1)
ej
p(ej, oi) +

l∑
j=1

π(1)
oj
p(oj, oi), i = 1, 2, . . . , l.

As p(ej, ei) = p(oj, oi) = π
(1)
ej = 0, we get

π(2)
ei

=
∑

oj∈adj(ei)

π(1)
oj
p(oj, ei) =

∑
oj∈adj(ei)

∑
ex∈adj(oj)w(ex, oj)

W
× w(oj, ei)∑

ex∈adj(oj)w(oj, ex)

=

∑
oj∈adj(ei) w(oj, ei)

W
=
wei
W

, i = 1, 2, . . . , k,

π(2)
oi

= 0, i = 1, 2, . . . , l.

Here we use the fact that w(i, j) = w(j, i). Thus, πe = πeP
2 and πe is the stationary

distribution of MC ′.

For state i and j where i and j are adjacent, the weight w(i, j) is assigned as

per Equation 6.1 where di is the degree of state i. Remember that i and j cannot

108



be both graphic or both non-graphic.

w(i, j) =


1
di

if i is a graphic state and j is a non-graphic state

1
dj

if i is a non-graphic state and j is a graphic state.
(6.1)

Note that w(i, j) = w(j, i). Consequently, the sum of weights of every graphic

state is 1. According to Lemma 6, the stationary distribution of graphic states is

uniform. Figure 6.2 shows the example of assigning the weights to the edges of the

Markov chain.

In summary, Du(n) is an algorithm that builds and randomly walks in the

Markov chain MC with transition matrix P , yet outputs only evenly (or oddly,

depending on the initial state) reachable states. It simulates the ergodic Markov

chain MC ′ with transition matrix P 2 which has a uniform stationary distribution

thanks to a modification of the weights in MC. The algorithm is illustrated in

Algorithm 12. The parity of t depends on the initial state.

Algorithm 12: Algorithm Du(n)

Input: n : the length of the sequence; t : the steps of random walk
Output: DS : a graphic sequence generated from uniform distribution

1 Start from any initial state S0 of non-increasing sequence;
2 i = 1;
3 while i ≤ t do
4 Compute locally the transition matrix P ;
5 Transfer from state Si−1 to Si according to P ;
6 i = i+ 1;

7 end
8 DS = St;
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Figure 6.3: Markov chain for n = 4, s = 6. The green ovals are the graphic
sequences and the gray ovals are the non-graphic sequences.

6.3.4 Uniformly Random Graphic Sequence with Prescribed

Length and Sum

We consider random graphic sequences with prescribed length and sum uniformly

at random. We call this model Du(n, s).

We propose an algorithm, which we call Du(n, s). It is also a Markov chain

Monte Carlo algorithm. The Markov chain in which Du(n, s) is walking is similar

to the one in which Du(n) is walking. However Du(n, s) considers less states than

Du(n) since the graphic sequences of the model Du(n, s) are only those with pre-

scribed sum s. The states in the Markov chain in which Du(n, s) is walking are

restricted to those that correspond to sequences with sum s , for graphic states

and s− 1 and s+ 1, for non-graphic states. Figure 6.3 illustrates the Markov chain

in which Du(n, s) is walking for n = 4 and s = 6. The weights are assigned using

the method discussed in Section 6.3.3. We do not illustrate the algorithm as it is

a simple variation of Algorithm 12.

6.4 Practical Optimization for Du(n)

A practical optimization for Du(n) is based on the observation that complement

graphs have related graphic sequences. We define the complement sequence to a

graphic sequence as follows.
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Definition 4. Complement Sequence The complement sequence of a graphic

sequence (d1, d2, . . . , dn) is (n− 1− dn, n− 1− dn−1, . . . , n− 1− d1).

Lemma 7. The complement sequence of a graphic sequence is graphic.

Before proving this lemma, we introduce a known theorem that is useful in our

proof.

Theorem 1. (Erdös-Gallai) [32] Let D = (d1, d2, . . . , dn) be a sequence of integers

with n > d1 ≥ d2 ≥ · · · ≥ dn ≥ 0. Then D is a graphic sequence if and only if,∑
i di is even and for i = 1, 2, . . . , n− 1,

i∑
j=1

dj ≤ i(i− 1) +
n∑

j=i+1

min{i, dj}.

Proof. Suppose D = (d1, d2, . . . , dn) is a graphic sequence.
∑

i di is even according

to Theorem 1. Let d′i = n − 1 − dn+1−i. The complement sequence {n − 1 −

dn, n − 1 − dn−1, . . . , n − 1 − d1} is then equal to {d′1, d′2, . . . , d′n}. Apparently,∑
i d
′
i =

∑
i(n− 1− di) = n(n− 1)−

∑
i di is even. We then try to prove that for

i = 1, 2, . . . , n− 1,
i∑

j=1

d′j ≤ i(i− 1) +
n∑

j=i+1

min{i, d′j}, (6.2)

according to Theorem 1.

Let left =
∑i

j=1 d
′
j =

∑n
j=n−i+1(n − 1 − dj) = i(n − 1) −

∑n
j=n−i+1 dj and

right = i(i− 1) +
∑n

j=i+1min{i, d′j}. Assume that i < d′j for 1 ≤ j ≤ k and i ≥ d′j

for k + 1 ≤ j ≤ n. We analyze right in the following three cases:

(a.) 1 ≤ k ≤ i, then

right = i(i−1)+
n∑

j=i+1

d′j = i(i−1)+
n−i∑
j=1

(n−1−dj) = i(i−1)+(n−i)(n−1)−
n−j∑
j=1

dj.
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According to Theorem 1 and the condition that {d1, d2, . . . , dn} is graphic, we have

n−j∑
j=1

dj ≤ (n− i)(n− i− 1) +
n∑

j=n−i+1

min{n− i, dj} ≤ (n− i)(n− i− 1) +
n∑

j=n−i+1

dj.

Thus,

right ≥ i(i− 1) + (n− i)(n− 1)− (n− i)(n− i− 1)−
n∑

j=n−i+1

dj

= i(n− 1)−
n∑

j=n−i+1

dj = left.

(b.) i+ 1 ≤ k ≤ n− 1, then

right = i(i− 1) +
k∑

j=i+1

i+
n∑

j=k+1

d′j = i(i− 1) + i(k − i) +
n−k∑
j=1

(n− 1− dj)

= i(k − 1) + (n− k)(n− 1)−
n−k∑
j=1

dj.

Still using Theorem 1, we have

n−k∑
j=1

dj ≤ (n− k)(n− k − 1) +
n∑

j=n−k+1

min{n− k, dj}

≤ (n− k)(n− k − 1) +
n−i∑

j=n−k+1

(n− k) +
n∑

j=n−i+1

dj

= (n− k)(n− i− 1) +
n∑

j=n−i+1

dj.
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Thus, we get

right ≥ i(k − 1) + (n− k)(n− 1)− (n− k)(n− i− 1)−
n∑

j=n−i+1

dj

= i(n− 1)−
n∑

j=n−i+1

dj = left.

(c.) k = n, then

right = i(i− 1) + i(n− i) = i(n− 1) ≥ left.

So we proved Equation 6.2 and that the complement sequence {n− 1− dn, n− 1−

dn−1, . . . , n− 1− d1} is graphic.

The practical optimization is therefore as follows. The number of states that

Algorithm 12 visits can be reduced to half. The Markov chain only includes states

that correspond to sequences with sum of degrees less than or equal to n(n− 1)/2.

For every random sequence generated, we then further toss a coin to decide whether

we output the sequence or its complement (or, keep the sequence or discard it for

those sequences who equal their complement.)

6.5 Performance Evaluation

In this section, we empirically evaluate the effectiveness and efficiency of the pro-

posed algorithms. We implement the algorithms and run the experiments on a

Microsoft Windows 7 machine with an Intel Core 2 Quad 2.83G CPU and 3GB

memory. All the algorithms are implemented using Visual C++ 9.0.

We do not need to evaluate the effectiveness of D(n, p) and D(n, s) as it derives
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from the effectiveness of the algorithms that we use for the generation of graphs in

the Erdős-Rényi model, respectively. Their efficiency is the same as the one of the

underlying Erdős-Rényi algorithm.

The effectiveness and efficiency of Du(n) and Du(n, s) are evaluated by measur-

ing the fitness of a sample generated by the algorithm to the uniform distribution

after each transition. We use for that purpose the standard deviation. We have

verified and confirmed the results and the conclusions below with other tests of

fitness such as χ2 and Jensen-Shannon divergence. We evaluate the efficiency, that

is the number of steps, needed to achieve a desired effectiveness, measured by the

test of fitness.

6.5.1 A Lower Bound for Du(n) Mixing Time

We can now give an analytical lower bound for the mixing time of Du(n). We can

show that the diameter of the Markov chain MC is n(n− 1). For any two graphic

states i with sum si and j with sum sj, there is a path from i to j whose length is

si + sj via the sequence of all zeros and another path from i to j whose length is

2n(n−1)− (si+sj) via the sequence of all (n−1)s. So no matter si+sj ≤ n(n−1)

or not, there always exists a path between any two graphic states whose length is

less than or equal to n(n−1). As the distance between the sequence of all zeros and

the sequence of all (n− 1)s is exactly n(n− 1), the diameter (the longest shortest

path) of the Markov chain is n(n − 1). Since [72] states that the mixing time for

any error ε < 1/2 of a Markov chain is larger than or equal to half its diameter, a

lower bound for the mixing time of MC is n(n−1)
2

.
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Figure 6.4: Standard Deviation from
Uniform for varying number of steps for
Du(n) for different n.

 0

 50

 100

 150

 200

 250

 300

 350

 10  20  30  40  50  60  70  80  90  100

R
un

ni
ng

 T
im

e 
(S

ec
on

d)

Number of Vertices

Du(n)
Optimized Du(n)

Figure 6.5: Running time of Du(n) and
Du(n) with the practical optimization.

6.5.2 Performance of Du(n)

We vary the length n of the sequences from 3 to 11 for Du(n). We measure the

standard deviation for number of steps in MC varying from n× (n+ 1) to 10×n×

(n+ 1) (there are half this number of steps in MC ′) in increments of n× (n+ 1).

Figure 6.4 illustrates the standard deviation for varying number of steps for

Du(n). For each n the number of generated graphic sequences is k × d(n) where

d(n) is the number of distinct graphic sequences of length n and k = 100 in the

experiments. The numbers of distinct graphic sequences of some lengths can be

found in A004251 of Sloane and Plouffe’s encyclopedia [102].

We observe from Figure 6.4 that the algorithm is quickly reaching a minimum

standard deviation (which is not 0 because of the parameter k). We can also see

that this empirical mixing time increases with n. Empirically, we conservatively

estimate the mixing time to be n3 number of steps. Figure 6.5 shows the average

running time for the generation of 10 graphic sequences of Du(n) for n varying

from 10 to 100 in increments of 10. The curve is expected to be of the order of

n3 by construction. It however reveals the actual value of a high constant which

is the cost of one step in the Markov chain. We further notice that this constant

115



 0

 100

 200

 300

 400

 500

 600

 700

n(n+1) 2n(n+1) 3n(n+1) 4n(n+1) 5n(n+1) 6n(n+1) 7n(n+1) 8n(n+1) 9n(n+1) 10n(n+1)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

fr
om

 th
e 

U
ni

fo
rm

 d
is

tr
ib

ut
io

n

Steps of Random Walk

n=3
n=4
n=5
n=6
n=7
n=8
n=9
n=10
n=11

Figure 6.6: Standard Deviation from
Uniform for varying number of steps for
Du(n) with the practical optimization
for different n.

 0

 5

 10

 15

 20

 25

 30

2 4 6 8 10 12 14 16 18 20

S
ta

nd
ar

d 
D

ev
ia

tio
n 

fr
om

 th
e 

U
ni

fo
rm

 d
is

tr
ib

ut
io

n

Steps of Random Walk

n=3, s=4
n=4, s=6
n=5, s=10
n=6, s=16
n=7, s=22
n=8, s=28
n=9, s=36
n=10, s=46
n=11, s=56
n=12, s=66
n=13, s=78

Figure 6.7: Standard deviation from
Uniform for varying number of steps
for Du(n, s) for different n and s =

2× dn×(n−1)
4
e.

depends on n. Therefore the actual complexity of the algorithm should combine

the number of steps with the processing at each step. We can generate a graphic

sequence of 100 elements uniformly at random in 340 seconds.

The mixing time and the running time can be effectively divided by 2 using

the practical optimization that we have proposed. Figure 6.6 and Figure 6.5 show

the mixing and running performance of Du(n) with the practical optimization. We

observe significant speedup of convergence of the Markov chain. We can generate

a graphic sequence of 100 elements uniformly at random in 160 seconds.

6.5.3 Performance of Du(n, s)

We vary the length n of the sequences from 3 to 13 for Du(n, s). We fix the value

of s to 2×dn×(n−1)
4
e. With this value of s, the number of distinct graphic sequences

is the largest for length n. We measure the standard deviation for number of steps

in MC varying from 2 to 20 in increments of 2.

Figure 6.7 illustrates the standard deviation for varying number of steps for

Du(n, s). For each n the number of generated graphic sequences is k× d(n, s) (k =

116



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 100  200  300  400  500  600  700  800  900  1000

R
un

ni
ng

 T
im

e 
(S

ec
on

d)

Number of Vertices

Du(n,s)

Figure 6.8: Running time of Du(n, s),
for n varies in {100, 200, . . . , 1000}.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

R
un

ni
ng

 T
im

e 
(S

ec
on

d)

Number of Vertices

Du(n,s)

Figure 6.9: Running time of Du(n, s),
for n varies in {1000, 2000, . . . , 10000}.

100 in the experiments) where d(n, s) is the number of distinct graphic sequences

of length n and sum s = 2×dn×(n−1)
4
e. The standard deviation for n = 3 and s = 4

is always 0 because the graphical sequence can only be (2, 1, 1). The standard

deviations for lower values of n and s are not stable because of the small numbers

of distinct graphic sequences. Empirically, we conservatively estimate the mixing

time to be n number of steps.

Figure 6.8 shows the average running time for the generation of 10 graphic

sequences of Du(n, s) for n varying from 100 to 1000 in increments of 100. Fig-

ure 6.9 shows the average running time for the generation of 10 graphic sequences

of Du(n, s) for n varying from 1000 to 10000 in increments of 1000. The curves are

expected to be of the order of n by construction. Similarly to Du(n), they reveal

the cost of each step in the Markov chain. We can generate a graphic sequence of

10000 elements with sum 49, 995, 000 uniformly at random in 4200 seconds.

6.6 Summary

In this work, we present four algorithms for the random generation of graphic

sequences and prove their correctness. We empirically evaluate their performance.
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Two of these algorithms that generate random graphic sequences according to the

underlying distribution of random graphs are trivial and as effective and efficient

as the corresponding Erdős-Rényi algorithms. We also propose two new algorithms

for the uniform random generation of graphic sequences.

To our knowledge these algorithms are the first non trivial algorithms proposed

for this task. There is strong evidence that the problem, if not #P-complete, is

intrinsically difficult. The algorithms that we propose are Markov chain Monte

Carlo algorithms. Our contribution is the original design of the Markov chain and

the empirical evaluation of mixing time. Nevertheless the practical problem of

generating graphic sequences uniformly at random remains open for large length.

We are currently investigating alternative approaches such as local optimization

approaches.
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Chapter 7

Fast Generation of Random

Graphs

7.1 Introduction

Graphs constitute such a versatile data model that they are used in almost every

domain of science and humanities. Researchers usually require random graphs with

particular properties to evaluate efficiency and effectiveness of algorithms [18], to

simulate processes [60] and as the heart of randomized algorithms [87]. In the

domain of information and knowledge management, random graphs are used in such

applications as web mining and analysis [23, 62], data mining [57] and social network

analysis [89] among a multitude of other examples. As a results of the widespread

demand for random graphs, random generation of graphs comes to be interesting.

Two simple, elegant and general mathematical models are instrumental in random

graph generation. The former, noted as Γv,e [33], chooses a graph uniformly at

random from the set of graphs with v vertices and e edges. The second model,

noted as Γv,p [40], chooses a graph uniformly at random from the set of graphs
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with v vertices where each edge has the same independent probability p to exist.

Nevertheless, both of the two models are referred to as Erdős-Rényi models.

When investigating the former model Γv,e, we find that the model is exactly a

sampling procedure which samples e edges from a total number of v21 edges. This

can be implemented using reservoir algorithm[112]. On the other hand, one can

see that Γv,p should behave similar to Γv,e with e =
(
v
2

)
p as v increases. Because

in practise Γv,p is the model that is more commonly utilized and easier to analyze,

we turn to study the fast generation of Γv,p random graphs.

7.2 The Algorithms

7.2.1 The Baseline Algorithm

We start from the naive algorithm to generate an Erdős-Rényi random graph which

is shown as Algorithm 13. We call this algorithm ER.

Algorithm 13: ER

Input: E : maximum number of edges; p : inclusion probability
Output: G : an Erdős-Rényi graph

1 G = ∅;
2 for i = 0 to E − 1 do
3 Generate a uniform random number θ ∈ [0, 1);
4 if θ < p then
5 G← ei;
6 end

7 end

We use a single loop in the algorithm and represent the edges by their indices

instead of the standard notion such as (i, j) where i and j are the two vertices of

an edge. This makes the algorithm succinct and we can depict the optimization

1In the case of a directed graph with self-loops
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more easily below. The decoding is orthogonal to the performance of the graph

generation algorithm and can be relegated to the stage after graph generation.

Thus we omit the presentation of the decoding algorithms. Note that different

types of graphs have different decoding algorithms.

7.2.2 ZER

Instead of processing each possible edge in a graph, one can utilize the idea of

skipping in the algorithm Z [112] to improve the efficiency. Although this idea has

been used by V. Batagelj and U. Brandes [18], we present the complete analysis

for consistency and further discussion of optimization. At any step of the edge

sequence, let k be the number of edges that are skipped before the next edge

is selected. The value of k has a geometric distribution with parameter p. Its

probability mass distribution, i.e., the probability that exactly k edges are skipped

at any step of the sequence, is:

f(k) = (1− p)k × p. (7.1)

The respective cumulative distribution function, expressing the probability that

any number of edges from 0 to k is skipped, is:

F (k) =
k∑
i=0

f(i) = 1− (1− p)k+1

Following the above analysis, we can avoid the per se computation of each

skipped edge during the Bernoulli process. Instead, at the beginning of the process,

and at any point at which an edge has been selected, we can randomly generate

the number of skipped edges k and hence directly select the next (k + 1)th edge.

In order to generate the value of k, we reason as follows. Let α be a number
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chosen uniformly at random in (0, 1]. Then, the probability that α falls in interval

(F (k− 1), F (k)] is exactly F (k)−F (k− 1) = f(k). In other words, the probability

that k is the smallest positive integer such that α ≤ F (k) is f(k). Then, in order to

assure that each possible value of k is generated with probability f(k), it suffices to

generate α and then calculate k as the smallest positive integer such that F (k) ≥ α,

hence F (k − 1) < α ≤ F (k) (or zero, if no such positive integer exists). Setting

ϕ = 1− α, this condition is equivalently written as:

1− (1− p)k < α ≤ 1− (1− p)k+1 ⇔ (7.2)

(1− p)k+1 ≤ ϕ < (1− p)k (7.3)

where ϕ is chosen uniformly at random in [0, 1). By Equation 7.3, k is computed

as

k = max(0, dlog1−p ϕe − 1)

According to the preceding discussion, we give the optimized ER in Algo-

rithm 14. We call this algorithm ZER.

Algorithm 14: ZER

Input: E : maximum number of edges; p : inclusion probability
Output: G : an Erdős-Rényi graph

1 G = ∅;
2 i = −1;
3 while i < E do
4 Generate a uniform random number ϕ ∈ [0, 1);
5 Compute the skip value k = max(0, dlog1−p ϕe − 1);

6 i = i+ k + 1;
7 G← ei;

8 end
9 Discard the last edge;

As argued in [18], a random sampling algorithm that exploits a skipping process
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is expected to be faster than the algorithm that explicitly considers each candidate

sample; accordingly, ZER is expected to be faster than ER, as it considers only

a fraction of the total number of edges. However, as we show in Section 7.3, this

turns out not to be always the case, due to the logarithm computation overhead

(Step 5 of ZER). This motivates us to further improve the efficiency of ZER.

7.2.3 PreZER

The inefficiency of ZER derives from the logarithm computation overhead. We

thus try to avoid this overhead based on the following observation. According to

Equation 7.1, the probability f(k) that k edges are skipped decreases as a function

of k. Figure 7.1 illustrates the f(k) function for several values of p. In effect, the

value of k is likely to be lower than some, sufficiently large, fixed integer m. Then,

instead of computing the value of k as a function of ϕ = 1 − α at each iteration,

we can simply pre-compute the m+1 breakpoints of the intervals in which random

number α is most likely to fall, from which the value of k is directly determined.
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It then suffices to generate α uniformly at random in the interval [0, 1) and
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compare it with F (k) for k = 0 to m. We can then set the value of k to the

smallest value such that F (k) > α, or otherwise, if F (m) ≤ α, compute k by

invoking an explicit logarithm computation as in ZER; such computations should

be invoked rarely for sufficiently large values of m. The exact value of m is to be

decided based on the requirement of the application at hand. Algorithm 15 gives

the pseudocode for the complete algorithm. We call this algorithm PreZER.

Algorithm 15: PreZER

Input: E : maximum number of edges; p : inclusion probability
Output: G : an Erdős-Rényi graph

1 G = ∅;
2 for i = 0 to m do
3 Compute the cumulative probability F [i];
4 end
5 i = −1;
6 loop:
7 while i < E do
8 Generate a uniform random number α ∈ (0, 1];
9 j = 0;

10 while j ≤ m do
11 if F [j] > α then
12 Set the skip value k = j; Break;
13 j = j + 1;

14 end
15 if j = m+ 1 then
16 Compute the skip value k = dlog1−p(1−α)e − 1;

17 end
18 i = i+ k + 1;
19 G← ei;

20 end
21 Discard the last edge;
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7.3 Performance Evaluation

We compare the running times of ER, ZER and PreZER based on various edge

inclusion probabilities and graph sizes. We also show the speedup that ZER and

PreZER gain against ER. All the experiments are run on a 2.33GHz Core 2 Duo

CPU machine with 4GB of main memory under Windows XP. All the algorithms

are implemented using Visual C++ 9.0.

7.3.1 Varying probability

We run the three algorithms to generate directed random graphs with self-loops.

The number of vertices is set to 10,000 and the edge inclusion probability varies

from 0 to 1, with step 0.1. The m parameter for PreZER is set to 9, a value which

is empirically determined to yield the best performance. We runs each algorithm

10 times and take the average running time. We observe from Figure 7.2 that both

ZER and PreZER become faster as the value of p decreases. This is expected,

given that smaller values of p offer more opportunities to skip edges. Still, these

two relatively naive edge-skipping algorithms are not consistently faster than ER.

ZER remains faster than ER only for probability values up to p = 0.3; this poor
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Figure 7.5: Runtime for varying
graph size, p = 0.001.

performance is explained by the overhead due to logarithm computations. PreZER

is more efficient than ER for probability values up to p = 0.7; after that point,

the advantage of having pre-computed values does not suffice to achieve better

performance. Figure 7.3 gives the speedups gained by ZER and PreZER over ER.

The average speedup for ZER and PreZER are 1 and 1.5, respectively. Besides, for

p ≤ 0.5, the average speedup for ZER and PreZER are 1.3 and 2 respectively. We

can also observer that the speedup for small p turns to be more significant.

In practice, the value p for Γv,p is usually very small, say less than 0.1. We thus

evaluate the running times for small values of p. We set p varying in {0.0001, 0.001, 0.01, 1}

and plot Figure 7.4. Because of the enormous number of skips, ZER and PreZER

highly improve the efficiency of ER for small probabilities. The difference between

ZER and PreZER becomes subtle for smaller values of p because skipping domi-

nates the graph generation.

7.3.2 Varying graph size

We also address the question of scalability of our algorithms to larger graph sizes.

We vary the value of p in {0.001, 0.01, 0.1} and for each p we vary the graph

size from 10,000 to 100,000, with step 10,000. Figure 7.5, 7.6 and 7.7 show the
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execution time results. They verify that the difference between ZER and PreZER

is attenuated for smaller values of p.

7.4 Summary

This work has led to the proposal of a new algorithm for the generation of ran-

dom graphs in the Erdős-Rényi model Γv,p, namely PreZER. In order to motivate,

explain, and evaluate this work, we have outlined a succession of algorithms lead-

ing to our contributions. The baseline algorithm, ER, and the two enhancements

thereupon, namely ZER and PreZER,are all sequential algorithms. To our knowl-

edge, PreZER is the fastest known sequential algorithm. Further improvement can

be achieved by implementing parallel algorithms on multi-core processors such as

GPU. However, this is beyond the scope of this thesis. We discuss this issue and

present the corresponding experiment results in Appendix B. The details can be

found in [90].
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Chapter 8

Future Work

We will first complete the work in sampling random induced subgraphs. We have

empirically show that the neighbour reservoir sampling algorithm can generate

nearly uniform connected induced subgraphs of a given size. On the other hand,

we will theoretically analyze the probability distribution of the subgraphs produced

by this algorithm. The analysis will make this work more steady and, probably

give us an opportunity to find an efficient algorithm that produces a true uniform

distribution.

In the domain of sampling streams of continuous data, we will consider bias

sampling. In many applications, frequent data are more interesting than infrequent

ones. Therefore, for a given data stream with unknown length, we consider the

problem of maintaining a fixed-size random sample, such that each data in the

sample is selected with probability proportional to its number of occurrence in the

entire data stream when it is processed. This sampling scheme will generally sample

more frequent data. Actually, by adjusting the proportion of sampling probability

we can generate a sample having bias either to frequent data or infrequent data,

depending on different applications.
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In the domain of graph sampling, we will consider sampling dynamic graphs by

taking into account vertex deletion and edge deletion. As we discussed in this thesis,

existing graph sampling algorithms are designed to sample from static graphs.

However, the real life graphs encountered in modern applications are dynamic.

To avoid re-sampling from scratch, we have proposed incremental algorithms for

sampling dynamic graph with vertex addition and edge addition. The next step is

to develop algorithms for the scenario of vertex deletion and edge deletion.

In the domain of graph generation, we find that although a lot of models have

been proposed, none of them is dedicated for bipartite graph generation. In a

bipartite graph, the vertices are divided into two sets. Edges can only link two

vertices that belong to different sets. In our recent study, we find that some real

bipartite graphs exhibit power-law degree distribution for both sets of vertices,

respectively. Also, the evolution of density and average shortest path length show

some interesting results. We discuss one such example in Appendix D. We will

study more real bipartite graphs and find common properties among them. Then

we are interested in devising models for generating random bipartite graphs.
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Chapter 9

Conclusion

In this thesis, we discuss random sampling and generation problems over data

streams and graphs. We systematically review existing problems and the state-of-

the-art algorithms. We then propose novel algorithms to solve five problems. We

revisit the main results as follows.

• We propose the FIFO sampling algorithm to sample a data stream with a

sliding window. FIFO always maintains a nearly uniform random sample of

size n from the w most recent data, where 1 ≤ n ≤ w. FIFO overcomes the

drawback of periodic sample design of the simple algorithm, and the drawback

of unbounded memory usage of the chain-sample algorithm. However, FIFO

may sample a few expired data. This is because we did not deterministically

exclude expired data in our algorithm. Nevertheless, experiment results show

FIFO is both effective and efficient for sampling a data stream with a sliding

window.

• We propose the NRS algorithm to sample representative subgraphs from orig-

inal large graphs. NRS samples connected induced subgraphs of size k uni-

formly at random from an original graph of size n, where 1 ≤ k ≤ n. To the
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best of our knowledge, we are the first to propose algorithms for sampling

connected induced subgraphs. Experimental results show NRS successfully

realizes the compromise between effectiveness and efficiency, compared with

ARS and MHS. Also, the samples generated by NRS capture important metric

of the original graphs better than state-of-art algorithms. This result suggests

that connected induced subgraphs inherently preserve the properties of their

original graphs and may lead to a new direction of graph sampling. However,

the analytical distribution of samples generated by NRS is unknown and still

needs to be worked out.

• We propose the IMS and SMS algorithms to incrementally sample from dy-

namic graphs. We consider vertex addition and edge addition in a dynamic

graph. The algorithms incrementally maintain a representative sample graph

of size n of a dynamic original graph. Both of the algorithms incremen-

tally apply the idea of Metropolis Graph Sampling. Experiment results show

that our proposed algorithms realize a compromise between effectiveness and

efficiency of the baseline algorithms. The algorithms is practical for the incre-

mental sampling of the large dynamic graphs being created on the Internet,

the World Wide Web and its social media. The next step is to devise algo-

rithms that cater for vertex deletion and edge deletion in the original graph.

• We proposed MCMC algorithms to generate random graphic sequences. We

constructed the Markov chain, analyzed its stationary distribution and em-

pirically evaluated the mixing time. To the best of our knowledge, we are

the first to study the problem of generating random graphic sequences. Ex-

perimental results show our algorithms effectively solve the problem. Our

algorithms may be used as fundamental tools for random graph generation

with prescribed graphic sequences. However, generating long random graphic
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sequences with our algorithm is time-consuming. This is due to the high time

complexity of realizability testing of graphic sequences.

• We propose the PreZER algorithm for fast generation of Erdős-Rényi random

graphs. The algorithm is based on a pre-computation of skip. Experiment

results show significant speedup for PreZER with respect to the baseline

algorithm. To our knowledge, PreZER is the fastest known sequential algo-

rithm. Further improvements can be achieved by paralleling the proposed

algorithms, for instance, on GPU.

We conceptually point out the inherent connection between random sampling

and generation, and introduce the conception of construction, enumeration and

counting. To some extent, our work is motivated by the malpractice of construction,

enumeration and counting in finding representative samples of large-scale datasets.

However, we are interested in revealing the intrinsic relations between the former

and the latter problems, i.e., the transition from construction, enumeration and

counting, to random sampling and generation.
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Appendix A

Sharp-P-Complete Problems

Valiant [108] discussed the problem of computing the permanent of a given (0, 1)-

matrix. The permanent of an n× n matrix A = (ai,j) is defined as

perm(A) =
∑
σ

n∏
i=1

ai,σ(i),

where the summation is over the n! permutations of (1, 2, . . . , n). They proved that

the problem is ]P -complete. This paper also introduced ]P as a complexity class

for the first time.

An equivalent problem of the permanent problem is the problem of computing

the number of perfect matchings in a bipartite graph [34, 91]. A matching of a

graph is a set of non-adjacent edges, that is, no two edges share a common vertex.

A perfect matching of a graph is a matching that contains all the vertices of the

graph. The problem is also ]P -complete.

Another famous problem that is proved to be ]P -complete is the chromatic

polynomial problem [21]. The problem counts the number of graph colorings using

no more than k colors for a particular graph G. The problem of graph coloring is

to color the vertices (edges) of a graph using k colors, such that no two adjacent
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vertices (edges) share the same color.

Other examples of ]P -complete problem include computing the number of vari-

able assignments satisfying a given ]SAT formula, computing the number of vari-

able assignments satisfying a given DNF formula, computing the number of dif-

ferent topological orderings for a given directed acyclic graph, etc.

If there exists a polynomial-time algorithm that solves any ]P -complete prob-

lem, it would imply that P = NP . Till now no such algorithm is found. However,

many ]P -complete problem have a fully polynomial-time randomized approxima-

tion scheme [109], or ”FPRAS” for short. The scheme can produce approximation

results with high probability to an arbitrary degree of accuracy, in polynomial time

w.r.t. both the size of the problem and the degree of accuracy required. For exam-

ple, Bezáková et al. [19] propose an accelerating simulated annealing algorithm to

count the number of perfect matchings in a bipartite graph. The algorithm belongs

to FPRAS.
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Appendix B

Parallel Graph Generation Using

GPU

We leverage the parallel-processing capabilities of a Graphics Processing Unit to

develop three successive data parallel algorithms for random graph generation in

the Γv,p model. These algorithms are the data parallel counterparts of ER, ZER

and PreZER in Section 7.

We use nVidia graphic cards as our implementation platform. In order to

program the GPU, we use the C-language Compute Unified Device Architecture

(CUDA) [2] parallel-computing application programming interface. CUDA is pro-

vided by nVidia and works on nVidia graphic cards.

We use Langdon’s pseudo-random number generator [67, 68], a data-parallel

version of Park-Miller’s pseudo-random number generator [92], to generate random

numbers on GPU. We implement the Prefix Sum algorithm [58] to create a sequence

of partial sums from an existing sequence of numbers. These partial sums are used

to determine the location of selected edges. We also employ stream compaction, a

method that compresses an input array A into a smaller array B by keeping only
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the elements that verify a predicate p, while preserving the original relative order

of the elements [55].

With above architectures and primitives, we implement three parallel counter-

part algorithms of ER, ZER and PreZER. We call them PER, PZER and PPreZER,

respectively. We then evaluate the performance of all the six algorithms we have

presented and introduced to each other. The parallel algorithms run on the same

machine on which we run our sequential algorithms, with a GeForce 9800 GT

graphics card having 1024MB of global memory, 14 streaming processors and a

PCI Express ×16 bus.

Still, we set the algorithms to generate directed random graphs with self loops,

having 10,000 vertices, hence at most 100,000,000 edges. We measure execution

time as user time, averaging the results over ten runs.

We first turn our attention to the execution time of the six algorithms as a

function of inclusion probability p. Figure B.1 shows the results, with the best

parameter settings in those algorithms where they are applicable.

All three parallel algorithms are significantly faster than the sequential ones for

all values of p; the only exception to this observation is that PER is slightly slower

than ZER and PreZER for very small values of p, as it has to generate E random
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numbers whatever the value of p. Figure B.2 illustrates the effect of such small

values of p on execution time on logarithmic axes.

Next, Figure B.3 presents the average speedup over the baseline ER algorithm,

for the other five algorithms in the comparison, as a function of p. The average

speedup for ZER, PreZER, PER, PZER and PPreZER are 1, 1.5, 7.2, 19.3, 19.2,

respectively. Besides, for p ≤ 0.5, the average speedup for ZER, PreZER, PER,

PZER and PPreZER are 1.3, 2, 8.4, 29.9 and 29.4, respectively.

In addition, in Figure B.4 we gather the average speedup of each parallel al-

gorithm over its sequential counterparts. The average speedup for PER, PZER

and PPreZER over their sequential version are 7.2, 22.8 and 11.7, respectively. For

p ≤ 0.5 the average speedup for PER, PZER and PPreZER are 8.4, 23.4 and 13.7,

respectively.

We then further compare the three parallel algorithms in our study. Figure B.5

shows the overall execution times for these three algorithms only. For all probability

values, PZER and PPreZER are faster than PER. PPreZER is slightly faster than

PZER for probabilities greater than 0.4 and slightly slower or identical for the

rest. This result arises from the handling of branching conditions by the GPU, as
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concurrent threads taking different execution paths are serialized.

We also address the question of scalability of our algorithms to larger graph

sizes. Figures B.6, B.7 and B.8 show the execution time results for p = 0.001,

p = 0.01 and p = 0.1, as a function of increasing number of vertices.

The results reconfirm our previous findings and carry them forward to larger

graph structures in terms of vertices. They verify that the difference between ZER

and PreZER is attenuated for smaller values of p, while the advantages of skip-based

parallel algorithm are amplified for such smaller probability values.

In summary, the three algorithms PER, PZER and PPreZER are data paral-

lel versions of their sequential counterparts designed for graphics cards and im-
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plemented in CUDA. To our knowledge, PreZER is the fastest known sequential

algorithm, while PZER and PPreZER can both claim the title of the fastest known

parallel algorithms for a GPU. They yield average speedups of 1.5 and 19 over the

baseline algorithm, respectively.
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Appendix C

Fast Identity Anonymization on

Graphs

In this work, we aim to improve the algorithms proposed in [73] by Liu and Terzi.

They propose the notion of k -degree anonymity to address the problem of identity

anonymization in graphs. A graph is k -degree anonymous if and only if each

of its vertices has the same degree as that of, at least, k-1 other vertices. The

anonymization problem is to transform a non-k -degree anonymous graph into a

k -degree anonymous graph by adding or deleting a minimum number of edges.

Liu and Terzi propose an algorithm that remains a reference for k -degree anonymiza-

tion. The algorithm consists of two phases. The first phase anonymizes the degree

sequence of the original graph. The second phase constructs a k -degree anonymous

graph with the anonymized degree sequence by adding edges to the original graph.

We call this algorithm the K-degree Anonymization (KDA). The algorithm finds a

theoretically optimal solution for anonymizing a graph. However, we observe that

the algorithm is not efficient and not effective for real large graphs. The reasons are

as follows. First, the dynamic programming algorithm in the degree-anonymization
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phase cannot construct a realizable degree sequence in a small number of iterations.

As the testing of realizability of the degree sequence in each iteration is very time-

consuming, the efficiency of the entire algorithm is highly affected. Second, the

graph-construction phase on real large graphs invokes the Probing function too

many times. As the function adds noise to the original degree sequences, the ef-

fectiveness of the entire algorithm is affected. Also, the testing of realizability is

conducted every time after Probing is invoked. Therefore the efficiency is reduced

once again.

Motivated by the above observations, we study fast k -degree anonymization on

graphs at the risk of marginally increasing the cost of degree anonymization, i.e.,

the edit distance between the anonymized graph and the original graph.

We propose a greedy algorithm that anonymizes the original graph by simulta-

neously adding edges to the original graph and anonymizing its degree sequence.

We thereby avoid realizability testing by effectively interleaving the anonymiza-

tion of the degree sequence with the construction of the anonymized graph in

groups of vertices. The algorithm consists of three steps in each iteration, namely,

greedy examination, edge creation, and relaxed edge creation.

The greedy examination step determines the number of consecutive vertices

that are going to be anonymized. The edge creation step anonymizes the vertices

found by greedy examination. The edge creation step relaxes the anonymizing

condition if edge creation cannot find a valid solution, and always outputs a k -

anonymized degree sequence. We call this algorithm the Fast K-degree Anonymiza-

tion (FKDA) algorithm. The details of the algorithm can be found in [78].

We implement KDA and three variants of FKDA, FKDA 1, FKDA 2 and FKDA

3, corresponding to the three heuristics in C++. We run all the experiments on a

cluster of 54 nodes, each of which has a 2.4GHz 16-core CPU and 24 GB memory.
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We use three datasets, namely, Email-Urv, Wiki-Vote and Email-Enron.

We conducts experiments on these three graphs. The different sizes of the three

graphs illustrate the performance of KDA and FKDA on small (1133 vertices),

medium (7115 vertices) and relatively large (36692 vertices) graphs.

We compare the effectiveness of the algorithms by evaluating the variation of

several utility metrics: edit distance (ED), clustering coefficient (CC) and average

shortest path length (ASPL) (following [73]).

We vary the value of k in the range {5, 10, 15, 20, 25, 50, 100}. For each value of

k, we run each algorithm 10 times on each dataset and compute the average value

of the metrics.

Figure C.1-C.3, C.4-C.6 and C.7-C.9 show the results on Email-Urv, Wiki-Vote

and Email-Enron, respectively.
We see that FKDA produces less similar results with that in the original graphs

on Email-Urv and more similar results on Wiki-Vote and Email-Enron than KDA
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does. This is because on small graphs KDA can construct a realizable degree se-

quence with a small number of repetition of Probing, whereas on large graphs KDA

invokes Probing a large number of times before a realizable degree sequence is con-

structed. Moreover, Probing randomly adds noise to the original degree sequence,

while relaxed edge creation increases a small degree only if the corresponding

vertex can be wired to an anonymized vertex with residual degree. The noise added

to the original degree sequence is minimized. Thus Probing adds more noise than

relaxed edge creation does to the degree sequences of the large graphs. Overall,

FKDA adds less edges than KDA does to the two larger graphs.

We further compare the performances of the three variants of FKDA. The overall

results show that FKDA 1 and FKDA 2 preserve the utilities of the original graph

better than FKDA 3 does. Nevertheless, FKDA 3 has an interesting property that

it can generate a random k -degree anonymous graph.

We compare the efficiency of the algorithms by measuring their execution time.

We vary the value of k in the range {5, 10, 15, 20, 25, 50, 100}. For each value

of k, we run each algorithm 10 times on each dataset and compute the average

execution time. We also compute the speedup of FKDA versus KDA for each

parameter setting.

We see that FKDA is significantly more efficient than KDA. The speedup varies

from hundreds to one million on different graphs. The inefficiency of KDA is due to
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the decoupling of the checking of realizability of the anonymized degree sequences

from the construction of graph.

In summary, our algorithm results in larger edit distance on small graphs but

smaller edit distance on large graphs compared with the algorithm of Liu and Terzi.

Our algorithm is much more efficient than the algorithm of Liu and Terzi.
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Appendix D

Bipartite Graphs of the Greek

Indignados Movement on

Facebook

This work studies the use of online media in social movement. The details can be

found in [77]. We focus our attention on the anti-austerity movement of the Greek

‘Indignados’, also known as the ‘aganaktismeni’, or ‘aganaktismènoi’ in Greek. As

Facebook is often reported in the media as a central component of the communi-

cations strategy of the Greek indignados and other movements with similar char-

acteristics, we focus on identifying Facebook pages that are related to the events

that unfolded in Greece, by utilizing a set of keywords.

We use the RestFB package [5] to collect the data. This package in turn consists

of the Facebook Graph API [3] and the Old REST API [4] client written in Java.

The Facebook Graph API gives access to historical data for a period of our choice.

We compile a list of the pages, groups and events that are returned by the search

function of the Facebook Graph API when given each of the following keywords:
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“greekrevolution”, “aganaktismenoi”, “aganaktismènoi”, “syntagma”, “sÔntagma”

(‘syntagma’ in Greek) and “pragmatik  dhmokratÐa ” (‘real democracy’ in Greek).

The keywords were chosen by virtue of being commonly used on Facebook in the

titles and descriptions of pages, and on Twitter as hashtags, to denote content in

relation to the mobilizations. Then for every such page, we collect all the publicly

available posts using the fetchConnection function of RestFB. From the information

available we retain, for every post, the Facebook user id of the author of the post

and the date of creation of the post (in GMT+2, i.e. local time in Greece). We

preemptively performed a few rounds of data collection, in an attempt to mitigate

data reliability and validity issues relating to the collection of big data on the web,

with the last occurring on January 15th, 2012.

We construct a series of graphs, namely, the participation graphs, at different

stages. A participation graph is a bipartite graph without multiple edges. One set

of vertices corresponds to pages. The other set corresponds to users. There is an

edge between a user and a page when the user has contributed at least one post to

the page. A participation graph is thus a graph consisting of what can be conceived

of as affiliative ties: users loosely affiliated with one another through the process of

participating on the same pages. The entire graph contains 43390 vertices (41849

users and 1541 pages) and 72736 edges.

We evaluate several main properties of the graphs that are commonly investi-

gated in literature.

We compute the degree distribution of the graphs. In particular, we compute

the degree distribution of the pages and the degree distribution of the users, re-

spectively. In order to show the evolution of the degree distribution, we define

four stages, from 10000 users to the maximum number of users, in increments of

10000. Figure D.1 and D.2 show the degree distributions of the pages and the
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users, respectively, in log-scale plot. We observe that both sets of vertices exhibit

a heavy-tailed distribution, not only in a single snap shot, but also in the entire

history of graph evolution.

We evaluate the evolution of the density of the graph. We compute the daily

average degree of pages and users, respectively. Figure D.3 and D.4 show the

results. We observe that both sets of vertices exhibit a similar pattern of density

evolution. Basically, the density increases in the entire history of graph evolution.

The evolution can be further divided into three stages, a slow increasing initial

stage, a fast increasing second stage, and a slow increasing final stage.

We evaluate the evolution of the average shortest path length of the graph.
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Figure D.5 shows the results. We observe a shrinking average shortest path length

during the graph evolution.
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