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Summary

Modern web browsers serve as a run-time platform for executing web applications.

New technologies built into web browsers have enabled a new generation of interactive

and responsive web applications that are more powerful than ever. However, the lag-

ging progress in enhancing browser security has made various attacks possible, such as

cross-site scripting (XSS), cross-site request forgery (CSRF), clickjacking in web appli-

cations, as well as drive-by download, buffer overflow, and heap spray attacks against

browsers.

Many existing approaches address specific security vulnerabilities or particular types

of attacks; however, new features are constantly being introduced into web browsers, of-

ten giving rise to new security issues. Thus, reactive approaches are insufficient in this

era of rapid evolution in browser functionality. Instead, we need more proactive and

principled approaches to redesign web browsers as a more secure platform for online

transactions and sensitive data. In this thesis, we systematically analyze the existing

execution environment in web browsers. Our analysis finds that traditional security

principles [142] that are protecting our operating systems and critical programs today

have not been profoundly embodied in web browsers. Such principles include separa-

tion of privilege, least privilege, complete mediation, and the often overlooked economy

of mechanism, etc. We thus develop a line of novel solutions to bring in these security

principles into web browsers, effectively combating threats in modern web applications

and browsers.

We propose a new JavaScript isolation primitive to transparently isolate untrusted

JavaScript-based advertisements (ads). It allows web applications to securely embed

such untrusted ads, without risking the integrity and confidentiality of their application

logic and user data. As there usually exist various program partitioning alternatives in

privileged-separated browser designing, we develop a measurement-driven methodol-

ogy to quantify security-performance trade-offs in browser designs. This methodology

can help browser designers identify potential performance bottlenecks in their designs

that would require additional optimization. Even with privilege-separated web browser

designs, security incidents could occur within a program partition. We thus propose a

general security framework to support intra-partition application behavior monitoring

and control. With more sensitive data being processed in online transactions, browsers

need to provide strong protection to secure such data. We propose a new abstraction for

data-centric isolation, which provides complete mediation on access to sensitive data,

and eliminates most of client-side code in browsers out of the Trusted Computing Base

(TCB).

Solutions proposed in this thesis demonstrate their effectiveness and practicality in

real-world scenarios. We foresee that this thesis will evoke more fundamental rethink

and redesign of web browsers with comprehensive security support to modern web

applications.
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Chapter 1

Introduction

Web browsers have evolved from a simple document viewer in the old days, to a run-

time platform for web applications today. Beyond fetching, processing, and rendering

content downloaded from web servers, modern web browsers allow active components

from various sources to execute in its execution environment, such as advertisements,

JavaScript libraries, web gadgets, and Flash objects. Such a powerful platform enables

web applications to provide convenient and attractive services to users in almost all

areas once dominated by desktop software, including communications, business trans-

actions, health-care, and even games. A lot of sensitive data are also processed in online

transactions, such as credit card numbers, medical records, tax statements, etc. How-

ever, the development of security mechanisms in web browsers are not matching the

pace of browsers’ evolution in functionality. The integrity of online transactions and

data privacy are at stake, given the overwhelming number of attacks on the web, and

numerous vulnerabilities in web browsers and applications [151, 147]. Existing reactive

approaches to browser security fix vulnerabilities discovered by developers or attackers,

or propose security improvements to defend browsers against specific attacks. Never-

theless, such approaches do not fundamentally change the situation where security sup-

port in browsers is lagging behind the fast evolution in functionality. In this decade,

new web features are constantly being introduced and implemented in web browsers,

which often give rise to new security loopholes [69, 12]. Instead of existing reactive

approach, we advocate more proactive rethink and redesign of web browsers as a new

execution platform with principled approaches.

In retrospect, the operating system (OS) is the traditional execution platform that

allows different programs to interact with different resources, such as files, network,

memory spaces, etc., in the system. Similarly, the web browser platform has also

evolved into such a complex environment, supporting web applications from different

websites to run and interact with each other. Thus, we study the principles that guide

the software design on the OS platform, to better design web browsers. Throughout the

years, research on OS security has identified a number of fundamental principles [142]

in protecting computer systems, such as separation of privilege, least privilege, com-

plete mediation, as well as often overlooked economy of mechanism, etc. Many modern

computer systems [131, 18, 57, 22, 25] have benefited from these principles in protect-
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ing the integrity of themselves and user data. Unfortunately, such security principles

are not well embodied in browser designs. Few initial attempts are limited to pro-

tecting browser extensions [13] or isolating resources from different web origins1 or

websites [15, 169, 62, 63]. Nevertheless, these attempts are limited in the scope of

threats addressed and security goals actually achieved by the proposed systems. For

example, recent browser extension frameworks are found to have failed some of their

design goals [96, 86]. Thus, existing solutions lack the fundamental security princi-

ples to guide the efforts on securing web browsers. Lack of such security cornerstones

leaves the browser platform with loopholes for various attacks to the browser and web

applications.

In this thesis, we revisit the fundamental security principles and use them to guide

our rethinking of the browser design. One key mechanism we identify in embodying

security principles to design web browsers is practical and efficient in-browser isola-

tion of code and data. To be practical, the mechanism should be able to effectively

address real-word security threats in browsers, and be as transparent to existing web

applications as possible to avoid heavy adoption cost. At the same time, the mechanism

should not burden browsers with excessive performance overhead. This thesis proposes

new primitives and infrastructures for developing and evaluating such isolation-related

mechanisms in web browsers. These proposed solutions address several fundamental

challenges during building principled security into the browser platform.

Unlike traditional web applications, where boundaries between distrusting parties

can be statically defined, components in modern web applications such as web mashups,

JavaScript libraries and advertisements (ads), have made such boundaries blurred and

dynamic. These components closely interact with each other. We need flexible and

transparent primitives that allow dynamic isolation of untrusted content loaded into web

sessions during run time. To maintain compatibility to existing functionalities, such

primitives should not only be transparent to web applications, but also to the JavaScript

libraries or ads scripts included into the applications. On the other hand, with existing or

new isolation primitives, there can be various ways to partition the browser and enforce

isolation. In deciding browser partitioning for privilege separation, we need to strike a

fine balance between competing concerns, such as security and performance. Privilege-

separated designs improve the browser’s resilience against vulnerability exploits, yet

excessive program partitioning may incur high performance overhead that have pre-

vented systems with desirable security properties from being adopted in practice. We

need a systematic approach to evaluate the security and performance implications in

privilege-separated designs. This would enable browser designers to identify potential

performance bottlenecks in their design, rectify them, or optimize them in the imple-

mentation.

Isolation provides desirable security guarantees against attacks exploiting browser

vulnerabilities, while modern web applications bring in new challenges at a new level.

Web 2.0 applications tend to include resources and active objects, such as JavaScript,
1An origin is defined as a triplet of the protocol, host name, and port [76].
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from multiple sources into the same web origin, some of which cannot be fully trusted.

Thus, even within one isolated program partition, we still need mechanisms to monitor

and control the run-time behaviors of different running components. Such mechanisms

should capture and discern details of sensitive operations and events occurring in web

applications, and provide sufficient details for security solutions to detect and pinpoint

suspicious behaviors and components among web mashups.

With flexible and effective isolation, access control or behavior monitoring mecha-

nisms, the web browser can constrain and regulate resource access and run-time capa-

bilities from untrusted parties in the web browser. However, in practice, it is difficult to

achieve complete mediation with isolation and access control, though it is a desirable

security guarantee for certain pieces of critical data. Data are often exposed to all code

that process or transfer them. Without complete mediation, it is difficult to control in-

formation release, since leakage of information is out of control once it is released to

any permitted party. The large size of code from different parties running in the browser

necessitates centralized and sustained control of sensitive data throughout their lifecy-

cle. Such challenges require new security primitives that provide effective data-centric

isolation in modern web applications.

Thesis Overview. We develop solutions to secure web browsers by incorporating fun-

damental security principles into their designs. Specially, we abstract a security ref-

erence model to represent major browser components and their interactions. We use

this model to drive the analysis of security support required by modern web applica-

tions, and thus develop a) a flexible confinement solution for JavaScript-based ads, b)

a methodology to quantitatively evaluate security-performance trade-offs in browser

designs, c) a general security framework supporting existing and new security solu-

tions within isolated partitions, and d) a new abstraction for sensitive data protection in

browsers.

A comprehensive and flexible confinement of JavaScript-based advertisements.
We propose an in-browser isolation mechanism to combat attacks from untrusted scripts

in advertisements [45]. Attackers may attempt to steal data from web applications or

compromise their integrity, via popular attack vectors such as cross-site scripting, cross-

site request forgery, prototype hijacking, etc. Further, attackers may compromise the

browsers themselves by exploiting their vulnerabilities of buffer overflow, heap spray,

dangling pointers, etc. In fact, the latter case is more severe. As most of web browsers

today are implemented in C/C++, once an attacker exploits a memory vulnerability,

he/she can gain access to web applications inside the victim components as well. To

secure web browsers against different web-based attacks, we propose a comprehen-

sive solution to combat threats to both web applications and browsers in a typical sce-

nario among today’s web applications: trusted web applications embedding untrusted

JavaScript advertisements.

Online advertising has become a core business model of the web. For instance, in
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2011, more than 96% of Google’s revenue was from advertising. Driven by consid-

erable financial attractions, popular websites today tend to embed advertisements (ads)

into their pages. To select ads contents that are potentially more relevant to the users, on-

line ads tend to dynamically decide contents to be displayed according to users’ contexts

and profiles, which is called ads targeting. Such advertisements are mostly JavaScript-

based, so that they can check the contents of the web pages the users are currently

viewing. However, when an ad script is included in a web page, it runs in the same

privilege as the hosting application. Malicious or compromised ads not only have full

access to web application data, but can also potentially exploit browsers’ vulnerabilities

to launch attacks such as drive-by downloads. Our solution divides the mixed JavaScript

execution environment into two separate JavaScript engines. The scripts from the web

applications are executed in the original JavaScript engine accessing the Document Ob-

ject Model (DOM) normally, while untrusted ads scripts are executed in a separate

and sandboxed shadow JavaScript engine, whose accesses to page DOM are tunneled

through a policy enforcer. This solution enables isolation-by-default for trusted and

untrusted scripts previously executed in the same environment. It also enables flexible

policy enforcement to regulate the behaviors of untrusted JavaScript.

A quantitative evaluation of privilege separation in web browser designs. On the

other hand, although isolation mechanisms have been widely adopted in enforcing priv-

ilege separation and least privilege in various systems including web browsers, little

attention has been paid to the other side of the story: isolation of software components

also incurs additional performance cost. In practice, privilege-separated designs require

a fine balance between security benefits and performance costs. Prior work on privilege

separation measures performance overhead “after-the-fact”. In fact, performance over-

head has been a main cause that prevents many privilege separation proposals from be-

ing adopted in real systems. We thus develop a new measurement-driven methodology

that quantifies security benefits and performance costs for a given privilege-separated

browser design. Our methodology analyzes historical bug database and code size to

evaluate security benefits in component isolation, and applies empirical measurements

on a browser blueprint over a large-scale test harness to measure performance costs. It

then leverages the measurement data to evaluate the security-performance trade-offs in

isolation designs among different browsers.

A general security framework for behavior control Within one isolated program

partition, or when it is difficult to pre-determine the partitions, we need intra-partition

security mechanisms that monitor and control web application behaviors. Such mech-

anisms also allow security researchers to quickly experiment with different alternatives

of program partitioning before implementing it. As such, the browser needs to provide

sufficient security support to mediate and regulate sensitive behaviors of web appli-

cations, establish finer-grained identities, e.g., intra-origin principals and associate run-

time events with these identities. To achieve such goals, we perform systematic analysis
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based on a reference model of browser internals, and design a security framework for

the browsers [43]. The framework enables general, flexible and extensible support to

allow security solutions to monitor and control web application behaviors. We envision

this browser security framework would enable a myriad of novel solutions to enhance

web security. To demonstrate such capabilities of the framework, we show how our

framework can support existing security solutions in browsers, as well as new security

solutions that can be built on top of it.

A new abstraction for data-centric isolation. The amount of sensitive data pro-

cessed on the web platform is increasing steadily. However, as the main execution

environment of the web platform, web browsers protect data based on web origins,

while not paying special attention to sensitive data that are more critical to their owners.

Current web applications have to trust the entire codebase at the client side to protect

sensitive data for their users. Such client-side codebase include web browsers, browser

add-ons, and web applications, which are known to have many security vulnerabili-

ties. We propose a new data-centric isolation abstraction that bundles sensitive data

with permitted operations, controlled by web developers to compute over the data. This

abstraction provides strong security guarantees on the integrity and confidentiality of

protected data, with a very small Trusted Computing Base (TCB). Our evaluation on 3

real-world applications and a large-scale study on Alexa Top 50 websites demonstrate

the practicality and applicability of our approach.

Summary of contributions.

• We design and implement a comprehensive confinement solution ADSENTRY

for third-party JavaScript advertisements. It sandboxes untrusted ads scripts and

regulates all access from them to the DOM of the hosting page, according to a se-

curity policy. We evaluate it with all major online ads providers, and demonstrate

its effectiveness and practicality.

• We develop a measurement-based methodology to quantitatively evaluate secu-

rity benefits and performance costs for privilege-separated browser designs. We

build an assistance tool PRIVGAUGE to automate the measurements, and apply

it to study recent browser designs. Our results provide empirical guidelines for

future browser designs.

• Based on our systematic analysis on security requirements in browsers, we pro-

pose a general security framework BSM to monitor and control web application

behaviors inside one program partition. We show that it provides the key supports

required by existing security solutions, and its potential in enabling new security

solutions.

• We propose a new abstraction CRYPTON for data-centric isolation in web browsers,

which effectively protects sensitive data in various real-world web applications

during our experiments.
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Chapter 2

Background on Browser Security:
Threats & Defenses

In this section, we elaborate the internals of the web browser, and summarize existing

attacks against web applications and web browsers. We also discuss existing security

solutions against these attacks, and new security requirements raised by modern web

applications.

2.1 The Web Browser

A web browser is a key component on the World Wide Web. It is a client-side execution

environment that communicates with web servers, executes and renders various con-

tents downloaded from the web to end users. It also receives user interactions, such as

keystrokes and mouse movements, and triggers additional communications and content

rendering accordingly.

The Mosaic browser, released in early 1993, was considered the first well known

graphical web browser. Since then, web browsers have experienced a rapid evolution

in its functionality, architecture, and in its applications. Figure 2.1 illustrates major

components inside a modern web browser, extracted from Mozilla Firefox and WebKit-

based browsers, Google Chrome and the Android Browser.

The Network module handles the communications of the browser with the Internet;

the Parser takes in the raw web content received in HTTP responses, and processes it

according to HTML format. During parsing, the Parser builds the HTML content into a

tree structure called Document Object Model (DOM) that represents the web page. The

JavaScript Engine executes JavaScript in the web page and accesses DOM via standard

interfaces, and initiates HTTP requests via XMLHttpRequest. The Layout/Rendering

engine constructs the rendering tree according to DOM, and renders the pixels onto

the screen via system libraries or GPU commands. The Browser Event Manager is

a conceptual component that handles event registration, and invokes registered event

handlers when events occur. As modern browsers are event-driven software, in real-

ity, the functionality of event management spreads over all major browser components.
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Figure 2.1: Browser Internals
Rectangles denote major components in the browser, dotted lines denote interactions between
components, and arrows represent the directions of interactions. Circled numbers denote the

categories of inter-component communications.

Browsers also provide interfaces for application developers to write add-ons to enhance

the functionality of browsers.

Now we will use typical web browsing scenarios to illustrate the interactions be-

tween major components in the reference model. Normally, a user loads a new web

page by starting the browser with the pre-configured homepage, or by loading a new

page entered in the address bar, or by selecting an entry in the bookmark or brows-

ing history. Such user input behaviors are processed by the Browser Event Manager.

According to the different protocols of the resource specified by the user action, the

Browser Event Manger in turn invokes the Network module to load a web resource

(Category 12 as in Figure 2.1), or sends the script to the JavaScript engine for execution

(Category 10).

The Network module handles the transport layer communications (Category 1) with

web servers. When it receives the raw web content from the network, it passes them to

the Parser (Category 2).

The Parser in turn parses the raw web content according to its encoding and content

type. If the content is in HTML, it parses the HTML content and builds it into the

Document Object Model (Category 3).

When elements that require additional resource requests are inserted into DOM,

such as HTML image elements, HTML script elements, or iframes, the DOM module
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invokes the Network module to load them (Category 5). When the inline script elements

are added to DOM, or third-party scripts have been loaded into DOM, the DOM module

sends the script to the JavaScript Engine for execution (Category 6).

On the other hand, JavaScript can also dynamically modify DOM (Category 7),

by adding/updating elements or attributes, or by inserting new fragments of page con-

tent. After that, newly introduced page content is sent back to the Parser for parsing

(Category 4), as such new content may also contain JavaScript that inserts another new

script. In this thesis, we use DOM to refer to both the standard DOM specification [166]

and conventional Legacy DOM or DOM Level 0 interfaces [172] implemented in most

modern browsers, such as the window object.

We do not include a separate Layout Engine in this reference model, as it is not

directly accessible by web applications. In our security reference model, we consider

the layout as part of the DOM module that handles the UI rendering.

The JavaScript Engine also registers to certain events (Category 9) upon the de-

mand of running scripts. Similarly, HTML elements can also specify event listeners via

attributes such as onclick, onmouseover, etc. This is handled by the DOM module in

our model (Category 8). When the registered events occur, the Browser Event Manager

invokes their corresponding event handlers registered earlier (Category 10).

The JavaScript Engine creates XMLHttpRequest, invokes the Network module to

send it out (Category 11), and receives the response from event listeners (Category 10).

The Layout and Rendering engines construct the rendering tree according to el-

ements and attributes in the DOM tree (Category 13). Recently proposed features

<canvas> [164] and WebGL [87] allow web applications to directly render a par-

ticular region using JavaScript (Category 16).

Local storage and session storage interact with the page DOM via interface Cate-

gory 14.

We model all behaviors related to event registering and handling in the Browser

Event Manager (Category 15).

Browser add-ons interact with the browser components and data using interfaces

provided by web browsers (Category 17).

The primary security model in browsers: the same-origin policy (SOP). A single

browser instance can load web contents from various sources. To prevent data leakage

from one source to another, web browsers enforce the same origin policy (SOP) [113].

Under SOP, resources from one origin can only be accessed by JavaScript from the same

origin. SOP establishes the corner stone for browser security, although it has various

insufficiencies as discussed below.

1. The inconsistent enforcement of SOP under different scenarios. As documented

in detail by the Browser Security Handbook [183], SOP is enforced differently

for different resources. For example, cookie access is subject to the values of

document.domain set by the target domain, and XMLHttpRequests can be
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used to communicate with other origins with the Cross-Origin Resource Shar-

ing (CORS) [165] technology. Such inconsistency in resource access restrictions

causes it difficult to protect all resources in the browser [149].

2. Third-party resources included. When SOP was first proposed in late 1990s, the

division between different web origins was much clearer. However, in today’s

web applications, active components are frequently included from third parties,

and they are executed in the origin of the hosting page. Under such scenarios,

origin-based security seems too coarse-grained, and is insufficient for preventing

attacks that occur right inside the victim application’s origin.

3. Limited to web application protection. SOP is only enforced on contents from

web applications. Browser code, either in native languages, or in JavaScript,

is not subject to SOP. Besides, the correct enforcement of SOP requires the as-

sumption of the sanity of relevant browser code. However, this assumption can

be broken by attacks against vulnerabilities in the browser code itself, which has

many.

As we can see that although SOP lays down a useful foundation to protect data

across origins, it is far from providing comprehensive protection to web applications

and browsers. Next, we overview popular web-based attacks that threaten the web

clients.

2.2 Threats to Web Clients & Existing Countermeasures

Attackers can launch web-based attacks targeting vulnerabilities in any portion of the

web clients, including those in web applications, web browsers, operating systems, and

even hardware. In this thesis, we focus on web-based attacks against web application

and browser vulnerabilities.

2.2.1 Threats to Web Applications & Existing Defenses

Malicious JavaScript. The most dangerous attacks to web applications are caused

by malicious JavaScript. Under the same origin policy, once a piece of malicious

JavaScript is included in an origin, it can send requests to the web application server

with the current user’s privilege, access web applications’ data and disclose sensitive

information. It can also include new scripts at runtime or modify other scripts in order

to change the behaviors of web applications.

• Cross-site scripting (XSS). In this attack, malicious JavaScript is injected into

victim web applications. According to same-origin policy, the injected script is

granted with the privilege of the victim origin.

• Malicious mashup, JavaScript advertisement or library. A mashup website com-

bines content from more than one source. To enable interactive and responsive
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user experiences, web applications commonly include JavaScript from various

untrusted sources, such as, third-party JavaScript libraries, and mashups. They

may also include JavaScript ads for profit. All embedded components in a web

page run with the privilege of the integrator, so malicious components can directly

access the integrator’s data and tamper with its execution.

Defense. To prevent XSS attacks, a common idea is to distinguish different pieces

of JavaScript in a web application and enforce policies on them [67, 83, 150]. For

example, Noncespaces [67] appends random prefixes to HTML tags at the server side,

and detects injected tags at the client side since they would not have the correct prefixes.

The Content Security Policy [150] allows web applications to specify the list of sources

where JavaScript, images, or iframes can be loaded from. Noxes [88] is a lightweight

application-level firewall that blocks suspicious XSS attempts with rules specified by

users or inferred automatically.

These solutions need support from the web browser to fetch and enforce policy on

the received HTML content by intercepting HTTP response processing (Category 2 as

in Figure 2.1) and the parsing of HTML content (Category 3).

For mashup web applications, another line of solutions [82, 168, 37] regulate JavaScript’s

accesses to resources. For example, ESCUDO [168] employs a ring-based security

model to enforce that JavaScript can only access DOM content of less trust. Mashu-

pOS [168] proposes new primitives to allow web applications to choose different priv-

ilege models for third-party contents with different trust. ADJAIL [158] isolates un-

trusted JavaScript-based advertisements in iframes, and regulates their access to the

hosting web page content by tunneling its DOM data via messages to the iframes.

Such solutions require the browser to distinguish and track scripts in a web appli-

cation and regulate their access to browser resources. To implement these solutions,

various components in the web browser need to be intercepted, including HTML con-

tent parsing (Category 3), and JavaScript’s accesses to DOM and XMLHttpRequest

(Category 7, and Category 11).

Another category of solutions on malicious JavaScript tends to restrict its function-

ality with a safe subset of the JavaScript language [38, 156, 50, 79, 52]. These solutions

allow rewriting of untrusted JavaScript into a subset with reduced resource access and

language functionality. They have been applied in real-world applications to prevent

untrusted JavaScript from compromising the hosting pages.

Prototype hijacking. JavaScript engine is an active component in browser reference

model, which provides standard function objects to JavaScript during execution. JavaScript

allows overriding of function objects at runtime. In this attack, malicious script exploits

this feature to overwrite standard global JavaScript objects or objects of other scripts.

This way, it subverts the behavior of the victim web application.

Defense. To protect the environment modification by malicious script, JCShadow [124]

partitions JavaScript code in a web page into multiple groups and isolates JavaScript
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objects of one group from another. To implement this solution needs intercepting access

to JavaScript object inside JavaScript engine.

Other malicious requests. HTTP requests expose the APIs of web applications to

clients. In the complex browser environment, malicious requests can also be generated

without JavaScript.

• Cross-site request forgery (CSRF) [14]. In a CSRF attack, a malicious website or

malicious content embedded in another website automatically sends or tricks the

user into issuing a malicious request to a web server where the victim user has

already logged in. The reason CSRF attacks can succeed is that web browsers

automatically attach users’ session cookies to outgoing HTTP requests.

• Clickjacking [70]. Clickjacking is a malicious technique that overlays a victim

web page in a transparent frame over an attacker’s web page. It aims to trick web

users into clicking on victim web page to unwittingly perform actions, such as

deleting emails, transferring funds, etc.

Defense. To prevent CSRF attacks, a class of research solutions [39, 84, 101] are pro-

posed that focus on enforcing security policies at the client side (Category 2, and Cat-

egory 5). Other research works [14, 85] aim to prevent CSRF by sending additional

information in the request to the web server (Category 5, and Category 11).

To prevent clickjacking, ClickIDS [10] introduces a solution to automatically de-

tect clickjacking attacks by intercepting user events (Category 10) and retrieving all

elements when a click occurs (Category 7). If at that time more than one click-able

element is under the mouse pointer, it shows an alert to users.

In summary, defenses to this type of attack require understanding the execution

environment of web applications to decide the legitimacy of runtime behaviors.

Privacy violation. Since browsers are the shared environments of multiple web ap-

plications, privacy violation attacks on user data and behavior are possible [81].

• History sniffing. In history sniffing attacks, the attacker can use, for instance,

JavaScript or requests to CSS background to determine the color or style of links

to discover which sites the user has visited.

• Behavior tracking. This attack allows website to track users’ keyboard or mouse

behaviors when they visit the web sites with tracking facilities, which may violate

users’ privacy without informed consent.

Defense. There have been several studies on privacy violation behaviors [81, 161]. To

capture or prevent history sniffing, it requires mediating accesses to properties of CSS

or DOM elements by JavaScript (Category 7). To monitor or prevent behavior tracking

attacks, it needs tracking of the principals and JavaScript’s accesses to DOM and events

(Category 7, and Category 9). The principal of the script needs to be checked against
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the principal of the DOM element or event being accessed to decide whether to allow

or deny such accesses.

2.2.2 Threats to Web Browsers & Existing Defenses

The web browser as a software is also susceptible to traditional vulnerabilities such as

buffer overflow [119], integer overflow [121], heap spray [42], dangling pointer [6],

etc. According to our study, such vulnerabilities amount for around 76.5% of historical

security vulnerabilities of Firefox throughout the past years [55].

Defense. Current countermeasures taken by most browser vendors are to patch these

vulnerabilities whenever detected by testing, exploited by attackers, or reported by

users.

More systematically, researchers have been applying privilege separation into browser

designs [36, 169, 15, 75, 154]. The basic idea is to divide the browser into multiple par-

titions, each isolated from each other, using processes, or even virtual machines. Under

such isolation, each partition can only be granted with the least privilege in accessing

other partitions or system resources. Privilege-separated designs can mitigate the dam-

age caused by exploits since the attacks will be contained in the victim partition. We

provide detailed analysis and measurements on these proposals in Section 4.

2.3 New Security Requirements from Modern Web Applica-
tions

Existing defenses can defeat a large portion of prevailing attacks against web applica-

tions and browsers. However, they are not sufficient, especially with the new challenges

coming from modern web applications aggregating contents from multiple parties.

Stronger and more flexible isolation mechanisms. Mixed contents in the same web

application call for intra-origin isolation mechanisms that allow web developers to ren-

der untrusted contents in a controlled environment. Nevertheless, the comprehensive-

ness and flexibility of existing intra-origin isolation mechanisms are not satisfactory.

Solutions such as MashupOS [168] and ADJAIL [158], mainly focus on access to DOM

data. However, untrusted contents are not constrained from attempting to exploit the

browser codebase, such as the JavaScript engine that executes the untrusted JavaScript.

On the other hand, maintaining compatibility for legitimate access is also important.

For example, we need to keep the original orders of execution of different scripts on

the hosting page to avoid unnecessary alternation of web application logic. We also

need to have the capability of dynamically regulating access from untrusted contents to

trusted contents. Existing isolation mechanisms are short of either comprehensiveness

or flexibility for modern web applications with heavy content aggregation.

Security and performance implications of privilege partitioning in browsers. Decades

ago, web pages in the browser are displayed as separate entities without much interac-
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tion between each other. Today, different web contents from different sources have

close interaction in the browser, in terms of sub-resource loading, postMessage

communication, script inclusion, etc. Privilege-separated browser designs that divide

browser components and resources into different partitions will inevitably cause perfor-

mance overhead for inter-partition communications. Such performance overhead can

amount to a tremendous scale with excessive partitioning. Prior practices of privilege

separation tend to evaluate performance implications after a certain implementation has

already been developed. However, in practice, even if the performance is unsatisfac-

tory, it could be very difficult and costly to change the redesign and re-implement the

system. A more practical solution would be to evaluate potential security and perfor-

mance implications during the design phase, and determine their tradeoffs before the

implementation.

General support for flexible control of web application behaviors The newborn

Web 2.0 has revolutionized how web applications are built. The boundaries set by

origins are blurred in modern web applications, where resources from different origins

are executed in the same origin of the integrator. To address threats within such new

environments, security solutions need to have a deeper understanding of the run-time

accesses to resources from web applications, and accurately identify the application

code or events that initiate the access. Reasonable security decisions can only be made

with such detailed information, instead of blindly blocking or allowing certain types

of access for all application code. Once built into the browsers, such general security

support will enable various security solutions to be deployed without the need of directly

modifying the browser.

Protecting sensitive web content with data-centric isolation. With more sensitive

corporate and user data being migrated to the web platform, it becomes crucial to en-

sure data security on the web. However, modern browsers are complex systems with

numerous components, principals, and convoluted interactions between these compo-

nents and principals. Moreover, tons of security vulnerabilities exist in web browser and

application code. Existing efforts in securing the browser either fail to achieve complete

mediation in such complex browser code base (such as access control), or lose control

of the information once it is released to any party (such as information flow tracking).

Considering the critical business values or personal privacy behind sensitive informa-

tion, it is desirable to have new primitives that provide web applications with strong

data protection, without trusting a large client-side codebase.
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Chapter 3

ADSENTRY: Comprehensive and
Flexible Confinement of
JavaScript-based Advertisements

Internet advertising is one of the most popular business models of today’s Internet com-

panies. For example, in 2011, more than 96% of Google’s revenue was from Internet

advertising [61]. In Internet advertising, website owners or web publishers include ad-

vertisements (or “ads”) from advertisers in their pages, and get paid by advertisers when

users view and click on these ads.

To increase the likelihood for users to click on the ads, advertisers commonly use

(JavaScript) code in ads to check a user’s browser environment to select advertisements

that are believed to be more attractive to the users. As third-party code, these ads unfor-

tunately pose great security threats to both web applications and the underlying oper-

ating systems. For example, such ads require close integration with the displayed page

contents, which may leak users’ private data [102] and break web applications’ integrity.

Worse, malicious ads can further exploit software vulnerabilities in web browsers to

launch drive-by downloads and surreptitiously install malware on users’ machines. A

recent research shows that “about 1.3 million malicious ads are being viewed online

every day, most pushing drive-by downloads and fake security software” [115].

To mitigate the threats from untrusted ads, a number of solutions have been recently

proposed. They address the threats to user privacy and web application integrity by

sandboxing JavaScript ads through functionality restriction or isolation [38, 156, 158,

50, 52, 64, 99, 98, 79, 125, 135, 180, 105, 168]. However, they cannot block ads from

triggering drive-by downloads, which have been “persistently” plaguing online users

as one of the main attack mechanisms. In addition, these solutions are not flexible in

controlling behaviors of JavaScript advertisements: the allowed access of an ad must

be decided before it starts to run. In the face of these limitations, there is a need for

an integrated solution that can not only flexibly regulate the ad access to various web

contents, but also effectively block drive-by downloads from malicious ads.

In this work, we present the design, implementation and evaluation of ADSENTRY,
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a comprehensive and flexible isolation framework to confine JavaScript-based adver-

tisements. Instead of supporting only a subset of JavaScript functionality or isolat-

ing the ad execution through significant changes to web pages, ADSENTRY provides a

shadow JavaScript engine for untrusted ad execution. The purpose of having a shadow

JavaScript engine is to ensure that the ad will not affect the host web content without

proper control, thus protecting user privacy and the integrity of web applications. More

importantly, it provides the control in a transparent manner and still exposes the full

spectrum of JavaScript functionality to the untrusted ads. Meanwhile, to block possible

drive-by downloads and preserve the integrity of the host system, the shadow JavaScript

engine is strictly sandboxed.

By design, ADSENTRY effectively mediates all accesses made by untrusted ads to

the web application. We stress that the shadow JavaScript engine (for the ad execu-

tion) by default cannot access the original page DOM (Document Object Model). To

accommodate legitimate accesses by ads to some part of the page content, ADSENTRY

transparently interposes related DOM accesses from the ads. For every such access,

ADSENTRY checks its legitimacy (according to a given access control policy) and, if

benign, redirects it to the original page DOM to substantiate the access. Our framework

is flexible in allowing both web publishers and end users to specify or customize the

access control policies for ads, as well as allowing dynamically changing policy after

an ad starts to execute.

We have implemented a proof-of-concept ADSENTRY prototype. The shadow JavaScript

engine implementation is based on the open-source Mozilla SpiderMonkey. Its execu-

tion is strictly sandboxed with Native Client [179], which has demonstrated its effective-

ness in confining third-party code with high efficiency and reliability. Our development

experience further indicates that ADSENTRY is a generic framework that can be conve-

niently implemented as a regular browser extension without requiring the modification

of the browser code. Our evaluation results with a number of ad-related exploits show

that ADSENTRY is effective in successfully blocking all of them. The performance

evaluation shows that the protection is achieved with a low overhead.

3.1 Problem Overview

In Internet advertising, advertisers pay web publishers directly to display their ads on

these websites, or more often, pay advertising networks to get their ads displayed on

popular sites, easily reaching out to a large amount of audiences. Moreover, advertisers

usually allow web sites or advertising networks to dynamically decide what kind of ads

to display to their visitors, based on the web contents users are viewing. This behavior

is called “targeting” of ads. It makes Internet advertising more relevant and presumably

more helpful to visitors. The profit of web publishers hosting ads can be calculated by

different revenue models, including measuring how many times the ads are displayed,

how many visitors have seen the ads, or how many times the ads have been clicked by

visitors, etc. [173].
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Internet advertising brings in new challenges to web security and privacy. One

possible way for publishers to include advertisements is to completely isolate them in

separate iframes. However, such a complete isolation makes advertisement targeting

impossible. As a result, third-party ads are often included in <script> elements, so

they have the same privilege as other JavaScript on the web page.

In this work, we focus on such third-party JavaScript-based advertisements (ads)

that are deployed on web pages. These ads are hosted outside web publishers’ servers,

but included as JavaScript on the web pages. If some of them become malicious, they

may abuse their privileges in accessing web application data for various purposes, such

as leaking confidential user information and issuing unauthorized transactions. More-

over, they may exploit software vulnerabilities in browsers to take over the users’ sys-

tems.

Our goal in this work is to comprehensively confine these untrusted JavaScript ads

and effectively protect users’ privacy and the integrity of both web applications and the

users’ computer systems.

3.2 System Design

To effectively confine untrusted ads, we have four design goals, i.e., comprehensiveness,

flexibility, transparency, and efficiency. By comprehensiveness, we aim to provide an

integrated scheme that not only regulates ad access to the host web page, but also con-

tains malicious ads from launching drive-by downloads. The flexibility requirement al-

lows both web publishers and end users to specify access control policy for ads. Users

can also dynamically change access control decisions based on application run-time

states. The transparency goal requires no modification to the browser for the support

and preserves the timing of the JavaScript behaviors in the web applications. It also

requires that the current billing model of ads is not affected, e.g., in the number of user

clicks and impressions. Also, the proposed solution needs to be efficient in introducing

low performance or maintaining a similar level of user experience.

Following these design goals, we have developed a novel ad isolation framework

called ADSENTRY, whose overall architecture is shown in Figure 3.1. In essence, AD-

SENTRY provides a shadow JavaScript engine to confine untrusted ads. This shadow

JavaScript engine by default has no direct access to the original browser environment

and the operating system. Therefore, the ads can be fully confined, and the host web

page and OS will remain intact even if the ads are malicious. To meet the transparency

requirement, the shadow JavaScript engine can be seamlessly integrated into current

browsers through the standard browser’s extension application programming interfaces

(APIs), i.e., no browser modification will be necessary.

With the introduction of a shadow JavaScript engine, ADSENTRY essentially works

with two JavaScript engines: the untrusted ads run inside the shadow engine while the

rest (normal) JavaScript in the web page runs as usual in the default engine. Untrusted

ads can be specified by web publishers and end users, or automatically identified by
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Figure 3.1: An Architecture Overview of ADSENTRY

The core components of ADSENTRY are highlighted in the figure.

tools, as we detail in Section 3.3.1. We point out that an ad may have legitimate reasons

to access certain web content (e.g., for the purpose of advertisement targeting). To

accommodate these requests, ADSENTRY provides a virtualized DOM to the shadow

JavaScript engine. The virtual DOM has all the standard DOM interfaces, including

XMLHttpRequest, so page accesses made by ads running in the shadow engine will be

received by the virtual DOM. When the virtual DOM is being accessed, it will relay the

access to the page agent in the browser through a policy enforcer. The policy enforcer

will decide whether a page access is allowed by users’ security policies. If yes, the

page agent proceeds with the access request on behalf of the isolated ad, and returns

the results back to the isolated ad through the virtual DOM. If not, the access will be

blocked to protect the integrity of the web page.

Besides virtualizing the DOM access for untrusted ads, ADSENTRY also sandboxes

the ad execution within the shadow engine, preventing them from compromising users’

operating systems.

It is important to note that ADSENTRY is transparent to web pages by automatically

dispatching ads to the shadow engine and seamlessly supporting their accesses. As

a result, the billing model of ads is not affected. ADSENTRY preserves the original

execution timings of all JavaScript in the web page, including ads scripts running in

the shadow JavaScript engine. This is a key advantage of ADSENTRY over iframe-base

isolation techniques, such as AdJail. This ensures that the behaviors of the applications

and user experience will not be altered unless for security concerns, making ADSENTRY

applicable to securing a wider class of untrusted JavaScript code in web applications.

17



3.2.1 Shadow JavaScript Engine

By introducing a shadow JavaScript engine to host untrusted ads, ADSENTRY allows

us to achieve the comprehensiveness goal: resilience against exploits to browsers them-

selves and protection for the confidentiality and integrity of web application data. As

mentioned earlier, the shadow JavaScript engine is executed inside a Native Client

(NaCl) [179] sandbox. Our solution is not dependent on any specific sandboxing mech-

anism. The requirement is just to restrict the program’s access to system resources.

We choose NaCl for two practical reasons. First, NaCl sandbox has been shown to be

secure against code injection attacks with minor performance overhead. Second, NaCl

has been supported on a number of platforms, such as x86, x86-64 and ARM [148],

which can be very helpful for adopting ADSENTRY by end users, especially with the

rising popularity of the Google Chrome browser and the Chrome OS that ships NaCl as

one built-in component.

Like the normal JavaScript engine in the current browser, the shadow JavaScript

engine is shared across web pages in the browser. To distinguish different ads from

different pages, each ad will be assigned a unique identification number. With that in

place, when an ad needs to be executed, ADSENTRY sends its JavaScript and the ad’s

identification number to the shadow engine. To preserve the original execution timing of

the web page, the browser waits until the ad’s JavaScript finishes in the shadow engine,

in the same way that the original browser JavaScript engine handles its execution.

Specifically, once the sandboxed JavaScript engine receives a JavaScript to execute,

it creates a new JavaScript context for the ad with the associated identification number.

A virtualized DOM will be initiated to contain a set of global objects, which are then

made accessible to the JavaScript context. The virtual DOM has all standard DOM in-

terfaces, but each interface is simply a stub that forwards the access to it to the page

agent in the browser. After the initialization, the shadow JavaScript engine starts ex-

ecuting the received JavaScript. If the script accesses a particular DOM interface, the

access is intercepted by the virtual DOM, which in turn communicates with the page

agent to handle the access request.

3.2.2 Page Agent

The intercepted DOM access requests from the virtual DOM are forwarded to the page

agent, which resides on the same page with the web application. After the verification

from the policy enforcer, the page agent will perform the requested DOM access on

behalf of the ad. If the request is to create or modify DOM element(s), the page agent

takes special care to capture all resulting JavaScript executions and forwards them back

to the shadow engine for processing. For instance, when a user clicks on a button created

by an ad, the triggered onclick() function call will be captured and executed in the

shadow engine.

The communication between the virtual DOM and the page agent is in the form of

message passing. When the page agent receives a message requesting a DOM access
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from the shadow JavaScript engine, it extracts the access from the message, and pro-

cesses it in the context of the original web page. The page agent then sends the result

back to the virtual DOM, and in turn, to the shadow JavaScript engine, completing the

access made by the confined ad.

ADSENTRY also naturally regulates access to HTTP requests from untrusted ads.

Specifically, ads may initiate HTTP requests by either generating new DOM elements

(that have already been controlled by the page agent), or by directly initiating XML-

HttpRequest. As XMLHttpRequest is not part of the JavaScript engine, but is provided

by the virtual DOM, the invocation to XMLHttpRequest is also regulated by our system.

In order to ensure that the relayed DOM access is transparent to the executing ad,

we need to address a few issues – some of them come from innate JavaScript features.

Dynamically generated JavaScript. Ads can insert a new piece of JavaScript into a

web page. The new JavaScript must also be executed in the same shadow JavaScript

engine. Otherwise, the newly generated JavaScript can escape the isolation of ADSEN-

TRY.

There are several ways for ads to introduce new JavaScript into the original web

page. Examples include abusing document.write or setting the innerHTML at-

tribute of an element. Accordingly, whenever ADSENTRY receives a message from

the shadow JavaScript engine requesting to invoke such DOM interfaces, the request is

interpreted and all newly introduced JavaScript is properly flagged to ensure they will

execute in the shadow JavaScript engine. We detail this solution in Section 3.3.

Timers and event listeners. One interesting challenge comes from the support of

asynchronous events, such as timers, where ads register callback routines to be executed

later. Such callback routines need to be executed in the shadow JavaScript engine.

To handle these asynchronous events, ADSENTRY dynamically creates a stub as the

corresponding event handler in the web page. This stub will notify or invoke the true

callback routine in the shadow JavaScript engine.

Unfortunately, as asynchronous events occur unexpectedly, the notifying message

sent to the shadow JavaScript engine may arrive in the middle of the execution of some

other DOM accesses, which causes an undesirable race condition. To avoid that, the

messages from asynchronous events will be separately marked and temporally buffered

by the shadow JavaScript engine. These messages will then be processed after the

ongoing DOM accesses are finished.

Anonymous functions. The JavaScript language supports anonymous functions. For

example, the following code snippet creates an anonymous function with a function

body alert(0).

window.addEventListener("click",

function () { alert(0); },

false);
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As an ad may create these anonymous functions, we need to isolate them properly.

Particularly, if these anonymous functions are being used as event listeners, they should

be invoked within the shadow JavaScript engine when the corresponding events occur.

Unfortunately, anonymous functions are represented as native function objects in the

JavaScript engine, rather than strings of JavaScript code. Therefore, we cannot handle

them in the same way as we do for JavaScript code on the page.

To address this problem, in our system, when the shadow JavaScript engine exe-

cutes a statement that creates an anonymous function, we record the function’s internal

identification number, associate that number with the related DOM access, and for-

ward it to the page agent. When the page agent receives the message at the real DOM

side, it dynamically composes a new JavaScript function whose task is just to send a

message containing the identification number of the anonymous function to the shadow

JavaScript engine. After that, it assigns the newly composed function as the argument to

the event listener. When the event occurs, the newly composed function will be invoked

(at the real DOM side) to send a message to the shadow JavaScript engine and ask it to

run the anonymous function with the specified identification number.

3.2.3 Policy Enforcer

By confining the shadow JavaScript engine within a sandboxed environment, our system

effectively blocks possible drive-by downloads that target the underlying JavaScript

engines (more concrete examples will be shown in Section 3.4). In the meantime, it

is important to point out that the sandbox itself does not provide any guarantee on the

confidentiality or integrity of the web application. As a result, it needs to work in concert

with the policy enforcer to achieve this goal. Specifically, the policy enforcer checks

the requests intercepted by the virtual DOM according to a given user security policy.

Only if allowed by the enforced security policy, the request will then be forwarded to

the page agent for processing.

As mentioned earlier, our system allows both web publishers and end users to cus-

tomize the access policy for ads. Specifically, for web publishers, as they can simply

change the web page content, they may choose to wrap the ad and confine its execution

in the shadow JavaScript engine. For end users, our current system leverages Adblock

Plus [123] to automatically identify ads and confine them with a customized JavaScript

wrapper. We will present the details as well as the supported policies in the next section.

3.3 Implementation

We have implemented a proof-of-concept prototype of ADSENTRY based on the browser

extension support of Firefox, and it is implemented and tested in Mozilla Firefox 3.5.8.

Our implementation of the shadow JavaScript engine is based on Mozilla SpiderMon-

key version 1.8.0. The virtual DOM code has around 3595 SLOC, which is generated

offline with a code generator of 770 SLOC in perl. On the browser side, the other two

components (i.e., the policy enforcer and the page agent), are implemented entirely in
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the JavaScript language. These two components add about 3100 SLOC.

3.3.1 Specifying Advertisement Scripts

ADSENTRY is flexible in deployment. It allows both web publishers and end users to

specify the scripts to be executed in the sandbox. The intuitive way is to associate an

attribute with the script indicating it is an advertisement script. However, this solution

requires the browser to be modified to recognize the attribute. In ADSENTRY, we pro-

vide a function sandboxAds. It takes the body of an ad or the URL of an ad script,

and notifies ADSENTRY to execute it in isolation.

Therefore, to use ADSENTRY, web publishers can process the advertisement with

the function sandboxAds, as illustrated by the following example, where the last

argument indicates whether the first argument is the URL (true) or the body of an ad

script (false).

<script>

sandboxAds(’http://ads.com/ad.js’,

id, true)

</script>

ADSENTRY also provides the option to end users by automatically identifying ads

instances at the client side. It uses Adblock Plus [123] to identify ads and automatically

processes them with sandboxAds.

3.3.2 Shadow JavaScript Runtime and Virtual DOM

We use NaCl to sandbox the SpiderMonkey JavaScript engine in a separate process

from the original browser process. The shadow JavaScript engine communicates with

the original browser process via Unix pipes. For convenient deployment, we develop a

Firefox extension that dynamically spawns the NaCl-sandboxed process at run time for

untrusted ads scripts. We found this step relatively straightforward to implement.

The main challenge comes from the extension we make to the original JavaScript

engine. Specifically, to enable ads running in the JavaScript environment to access

related page content (e.g., for ad rendering), there is a need to provide virtual DOM

objects. In our prototype, a virtual DOM is made available to the JavaScript engine

in the form of a tree of objects. The root of this tree is called the global object. 1 In

the case of a web page, the global object is the window object. This global object

has a number of properties, including global JavaScript variables and functions, such as

the document object, the location object, and the eval function. With this tree

structure, all other virtual DOM objects are also properties of their parent objects.

We obtain a standard DOM structure from the standard DOM specifications [166],

construct virtual DOM objects and expose them to the shadow JavaScript engine as

host objects. More specifically, the virtual DOM for SpiderMonkey is generated in
1Note that the concept of the global object here is different from that of global objects in a JavaScript

program.
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the following steps: 1) Create a new JSRuntime object and set up initial configura-

tions and in runtime, create JSContexts for the execution of ads scripts. 2) Create a

JSClass for each class of DOM objects. 3) Specify properties and member functions

for each JSClass. 4) Implement property and function accessor methods for each

JSClass, most of which will invoke one of the centralized access handling functions,

respectively. 5) Implement the centralized access handling functions for virtual DOM

accesses. These functions will then relay the access to the page agent (on the browser

side). To relay the access, they also perform other tasks, such as preparing arguments to

actual DOM function calls, looking for anonymous functions, buffering event listener

code for later execution, etc. These functions interpose each and every access from ads

to the real DOM. 6) Create instances of standard objects from JSClass definitions,

starting from the window global object. For non-global objects, we will specify their

parent objects during the creation to form the tree structure.

Considering the large number of virtual DOM objects we need to construct and

the associated tree structure we need to maintain, we have a code generator in place

to automate the above steps for all virtual DOM objects. The code generator reads in

an XML file that specifies the DOM tree objects and structures, and then generates an

output file that embeds the JavaScript engine and sets up its host environment with the

virtual DOM.

3.3.3 Page Agent

To facilitate the communication between the shadow JavaScript engine and the page

agent, we define a simple message format for data exchange. The format is summarized

as follows:

msg::= command data

command::= script | callFunc | getProp

| setProp | return

data::= <text>

Each message contains a command field and a related data field. Our prototype has

defined five different commands: a script command is used to notify the page agent

that an ad script needs to be sent to the shadow engine for execution. Upon receiving

the message, the shadow engine will prepare the runtime environment and then start

executing it. During execution, it will intercept any DOM access from the ad script

and based on the type of access, translate it into three other types of messages to the

page agent: callFunc for function invocations, getProp for property retrievals,

and setProp for property (re)initialization. Finally, a return command carries the

results in the message body, i.e., the data field.

The page agent extends the Firefox browser through its standard extension inter-

faces. We create a Firefox extension, which monitors the dispatched message events

notified by sandboxAds. Specifically, following the above message format, if a script

command is received, it parses the message stored in the event object, and communi-

cates with the sandbox. We stress that web pages cannot directly communicate with the
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sandbox, and all communications are done via the Firefox extension. During the ad ex-

ecution, if it needs to access a DOM object, the sandbox intercepts it and encapsulates

the access by sending a message to the page agent requesting a DOM access. Here,

the DOM access is meant for the access of the real web page and the extension cannot

evaluate it in its own execution environment.

There are two possible approaches for our extension to evaluate the intended DOM

access in the web page context. The first approach is straightforward: simply posting

a message (or dispatching a custom event) to the web page. After receiving it, the web

page can then evaluate the requested DOM access (encoded in the message or event).

However, message passing is asynchronous, which allows other JavaScript on the same

web page to preempt the execution of the current ad script. This kind of preemption

may cause serious problems as it alters the original execution order of different scripts

on the page. For example, scripts may have dependency on each other, and a premature

execution of a later script may fail if the dependent script has not been executed. As an-

other example, document.write is normally executed before a web page is loaded.

If it is executed after a page is loaded, it creates a new page, completely eliminating the

original one. To execute sandboxed scripts normally, ADSENTRY should not alter the

original execution order of scripts on the web page, so this first approach is not suitable

here.

The second approach is to implement the communication between the web page and

the extension like a function call. Mozilla Firefox provides a mechanism for extensions

to evaluate JavaScript code in web pages’ privileges, called evalInSandbox [109].

In our prototype, we leverage this method to call a function in the context of the web

page that contains the ad script, which in turn evaluates the DOM access being re-

quested, and returns the result to the extension. After that, the extension sends it back

to the sandbox via a pipe. By doing so, when an ad script is being executed, we can

ensure the JavaScript engine in the original browser environment is always in one of the

three states: a) waiting for messages from the sandbox; b) executing our script in the

extension; or c) executing the message processing function in the host web page while

our extension is waiting for the return. As a result, no other scripts on the web page

could preempt the current execution of ads script.

Consequently, our implementation is based on the second communication approach.

More details are discussed below.

Multiple ads scripts. ADSENTRY supports processing multiple ads scripts at run

time. To avoid mix-ups of ad scripts from different web pages, our browser exten-

sion maintains a message queue to ensure that only one ad script is being processed at

any point of time. Each message sent to the shadow engine is marked with an iden-

tification number, enabling the engine to evaluate each ad script in its own JavaScript

context. When evaluating DOM accesses requested by the sandbox, ADSENTRY also

makes sure the accesses will be evaluated in the same page that originally contains the

ad script being executed.
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Object maps. The communication mechanisms implemented in ADSENTRY are text-

based, but in some cases we need to pass objects as parameter or return values. This is

achieved by maintaining object maps at both the page agent and the shadow JavaScript

engine, and only communicating the objects’ indices in the messages. Before a JavaScript

object is to be communicated to the other end, it is checked against the local object map.

If it already exists in the map, its index is returned; otherwise, it is inserted into the map

with its new index returned. Then in the message sent, the index of the object is in-

cluded, rather than the object’s real data. Next time when a message is received from

the other end containing an object index, the object is restored by querying its index

from the local object map.

Parameter buffering. ADSENTRY enforces security policies on the result of JavaScript

actions, which will be described in Section 3.3.4. One possible way to bypass our ac-

cess control policy enforcement is to insert content into the web page piece by piece.

For example, instead of calling

document.write("<scr" + "ipt> some script <"

+ "/scr" + "ipt>");

malicious ad script may attempt to avoid being detected by inserting a script

element like the following

document.write("<scr");

document.write("ipt> some script <");

document.write("/scr");

document.write("ipt>");

This way, checks on parameters to each individual DOM function call would not detect

that a new script element is being inserted. To prevent such misuses, ADSENTRY

buffers such consecutive calls to document.write by not sending them one by one

to the shadow JavaScript engine for execution, but finally replaces them with a single

call with the entire piece of content being inserted, which is checked by the access con-

trol policy enforcer as normal. Although aggregating multiple program statements into

one is a difficult problem in general, we find our technique quite effective for segmented

calls to document.write among ads scripts.

3.3.4 Access Control Policy Enforcement

To regulate the communication between the host web page and the confined ad script,

our policy enforcer acts as a moderator. Any communication between the two parties

needs to be approved according to a given policy. ADSENTRY is flexible in allowing

both web publishers and end users to specify the access control policies for ads.

ADSENTRY has a default policy. The default policy disallows any JavaScript code

originated from ads to run in the host web page. In other words, all untrusted scripts

will be guaranteed to be only executed inside the shadow JavaScript engine. To enforce
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that, we examine all incoming messages from the sandbox, distinguish page updates

containing dynamic JavaScript content versus static HTML, and then handle them ac-

cordingly.

Specifically, for the static HTML content, our system first normalizes the HTML

into the corresponding XML format and then serializes the XML back to HTML be-

fore processing. The HTML code is widely known as badly formed, to the point that

badly written code is often called “tag soup” [175]. Also, all major browsers have per-

missive parsing behaviors by supporting a rendering mode called “quirks mode” beside

the “standards mode” [174]. These browser quirks have many negative implications,

one of which is that malicious attacker can embed JavaScript code inside a malformed

fragment of HTML code. To strive a balance between security and the support of po-

tential browser quirks, we took three phases for parsing HTML code. First, we attempt

to reformat the code by correcting popular mistakes in web authoring. For instance,

we close all open tags and correct all improperly nested tags. Second, we leverage the

XML parser in the web browser to parse this reformatted code into a XML model. Note

that a malformed HTML is considered dangerous and will be rejected by our parser.

Since XML parser is strictly standard-compliant, any surviving formation will bear no

ambiguity. Finally, we serialize this XML model back to HTML code before handing

to the page agent for further processing.
For the JavaScript dynamically generated by ads scripts, we install wrappers that

request the sandbox to run the dynamic JavaScript code. In other words, all untrusted
scripts are guaranteed to execute inside the shadow page, not the real page. In our pro-
totype, we apply the code wrapping based on the above XML model. Specifically, we
leverage the XML XPath facility available in most browsers to traverse the XML model
tree and inspect the enclosed nodes. We first query for patterns of dynamic code on the
model. These patterns of dynamic code include event handlers such as onclick(),
as well as related JavaScript functions such as
addEventListener() , setTimeout() and setInterval(). The resulting
node set will then be properly wrapped or transformed. In our prototype, we have
installed wrappers on all 32 possible vectors of dynamic code and ensure that no poten-
tially malicious code will ever be injected to the real page. As an example, the following
code snippet

setTimeout(’ slideAd(10,100); ’, slideDelay);

will be transformed into the following code fragment:

setTimeout(’ sandboxAds(" slideAd(10,

100);", id, false); ’, slideDelay);

To further ensure the privacy of sensitive user data in the web page, we allow users

to configure the data to be shared with the script. As mentioned earlier, we do not copy

all the content of the real DOM to the virtual DOM. Instead, we choose to interpose on

every access to the virtual DOM from the untrusted ad and subject it for policy verifi-

cation. As such, users can decide to be extremely cautious with certain kind of ads, and

block any read access from the ad to the entire page. On the other extreme, a user might

want to trust certain ads, and allow free accesses to the real DOM content. In addition
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Bugzilla ID Attack Behavior Outcome

426520 Browser crashed by memory corruption with crafted XML
namespace Contained by shadow JS engine

454704 Browser crashed by exploiting a vulnerability of XPCSafeJ-
SObjectWrapper Contained by shadow JS engine

465980 Browser crashed by pushing to an array of length exceeding
limit Contained by shadow JS engine

493281 Browser crashed by stack corruption starting at unknown sym-
bol Contained by shadow JS engine

503286 Browser crashed by exploiting a vulnerability of Escape()’s re-
turn value Contained by shadow JS engine

507292 Browser crashed by incorrect upvar access on trace involving
top-level scripts Contained by shadow JS engine

561031 Browser crashed by overwriting jump offset Contained by shadow JS engine

615657 Browser crashed by buffer overflow due to incorrect copying
of upvarMap.vector Contained by shadow JS engine

Table 3.1: ADSENTRY Evaluation Using Browser Exploits

to the above two policies, a user is also allowed to specify a policy that blocks accesses

to the document.cookie object or mandates that ad can only read from its own

elements and not the surrounding content. Moreover, an ad can be prohibited from ap-

pearing outside of the allocated region of the web page (by stating the allowed values of

width, height and overflow property of ad elements). This is helpful to thwart

some types of phishing attacks. In fact, as a comprehensive isolation framework, our

system provides a mediation capability that can accommodate existing access control

polices [158] for ads. And both web publishers and end users can take the advantage of

the same capability to enforce security policy on ad behaviors.

Beyond the default policy ADSENTRY supports more complex access control policy

to constrain the access from ads to the web page DOM, and to the network. We focus

on the default policy and we test with detecting and preventing common privacy viola-

tion attempts in our evaluation. However, it is also possible to enforce more complex

policies, such as ring-based access control [82]. ADSENTRY provides the infrastructure

for enforcing different policies for untrusted ads, but devising and verifying effective

access control policy would merit separate research, which is beyond the scope of this

thesis.

3.4 Evaluation

In this section, we evaluate the functionality and performance of ADSENTRY. In partic-

ular, we have conducted four sets of experiments. The first one is based on real-world

browser exploits to evaluate ADSENTRY’s defense against drive-by download attacks.

The second one is to test its resilience against malicious attempts that inject JavaScript

into web applications. The third one is to evaluate ADSENTRY’s protection of privacy

against rogue information-stealing ads; The fourth one is to measure the performance

overhead. Our experiments were conducted on a Dell E8400 workstation with a Core

2 Duo CPU (3GHz 6 MB L2 Cache) and 4GB of RAM. The system runs Ubuntu 9.10.

We mainly use its default web browser – Mozilla Firefox 3.5.8 – for our experiments.
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Scenario Attack Vector Attack Behavior Outcome Description

1 Direct code injection Inject script Blocked Denied by the default
policy

2 Browser parsing quirk Malformed < img > tag Blocked Rejected by message
normalization

3 Browser parsing quirk Malformed < script > tag Blocked Rejected by message
normalization

4 Browser parsing quirk Malformed < script > tag Blocked Rejected by message
normalization

5 Browser parsing quirk Malformed < b > tag Blocked Rejected by message
normalization

6 Browser parsing quirk Malformed < script > tag Blocked Rejected by message
normalization

7 Browser parsing quirk Malformed < iframe > tag Blocked Rejected by message
normalization

Table 3.2: ADSENTRY Evaluation Using JavaScript Injection Attacks

When evaluating on specific JavaScript engine exploits, we evaluate on the correspond-

ing version of Firefox, such as Firefox 3.0.

3.4.1 Browser Exploits

To evaluate the effectiveness of ADSENTRY in sandboxing ads, we conducted experi-

ments with a few real-world exploitations, obtained from existing research work [97]

as well as vulnerability databases [108, 107]. All the exploits we tested with caused the

vulnerable versions of the Firefox browser to crash during our experiments. They are

all marked as critical by Mozilla developers, and can be further crafted to launch severe

attacks such as drive-by download.

Our experiments are summarized in Table 3.1. The eight examples exploit the vul-

nerabilities in the SpiderMonkey JavaScript engine. Most of them are various instances

of buffer overflow or memory corruption attacks, and they could lead to arbitrary code

execution. With ADSENTRY installed in the vulnerable versions of the Firefox browser,

each of the exploits was successfully contained by the shadow JavaScript engine. This

confirmed and demonstrated one of our design goals that we would like to run un-

trusted ads scripts in an isolated environment so that even in the worst case, they would

not crash the entire web browser. As ADSENTRY sandboxes the JavaScript engine, so

any memory attack against vulnerabilities in the JavaScript engine would be contained

by the sandbox.

3.4.2 Script Injection by Ads

In our second experiment, we evaluated the effectiveness of our default policy in pre-

venting untrusted code from being injected from the ad to the web page. In particular,

we examined the XSS Cheat Sheet [141] and identified a number of cases that can suc-

cessfully result in injecting JavaScript from the ad into the web page for execution. We

confirmed the successful injection and execution in the default Firefox without ADSEN-

TRY being installed. During our experiments, we explicitly cleared the browser’s cache

between each step.
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Our results are shown in Table 3.2. The first one is a direct attempt to include an ex-

ternal JavaScript to execute in the web page while the other six exploit numerous parsing

quirks [141]. Such attacks are created to execute a simple script that displays a message

box “hacked!” The use of browser parsing quirks reflects the current trend [159] in part

because they are much harder to repair without breaking compatibilities with legacy

web applications. This was blocked by the default policy in ADSENTRY that direct

injection of scripts into the web page is disallowed.

For the rest examples, we use the second scenario as the representative. Specifi-

cally, in the second scenario, the attempt is to exploit a parsing quirk by embedding

a <script> tag as literal text inside a <img> tag, which will cause the browser to

interpret the text string as JavaScript code, thus causing an injection:

<IMG """><SCRIPT>alert("XSS")</SCRIPT>">

The related code snippet is shown above. It contains three pairs of double-quotes,

encapsulating different parts of the text. If a parser were properly implemented, there

would be three literal strings: an empty string "", the second string "><SCRIPT>alert("

and the last string ")</SCRIPT>". These three strings are orphaned as they are not

assigned to any property of the tag and therefore should be discarded. As such, the entire

tag should simply collapse to <IMG XSS>, which can also be disregarded. However,

this is not the case in most modern browsers. In fact, existing browsers tend to be very

permissive in their parsing behavior [174]. For instance, we observed that Firefox in-

terpreted <IMG """> as the first tag and <SCRIPT>alert("XSS")</SCRIPT>

as the second tag; the remaining "> was accepted as plain text and displayed as is. As a

result, the “malicious” code alert("XSS") was executed. This attempt was blocked

because of the normalization through the standard-compliant XML in our system. We

successfully detected this malformed HTML content and substituted it with the benign

static text “Script Injection Blocked.”

3.4.3 Privacy Protection

In our third set of experiments, we test our system from the privacy perspective. In par-

ticular, it has been known that third-party JavaScript can violate user privacy in various

ways. Examples include cookie stealing, location hijacking, history sniffing, and be-

havior tracking [81]. In our experiments, we evaluated ADSENTRY with a synthesized

ad that simulates the above information-stealing behaviors.

In particular, the synthesized ad is developed to perform all these four types of

behaviors: The cookie stealing is implemented to access the cookie property of

document object; The location is hijacked by setting the location property of

window (or document); The previously browsed URLs are sniffed by obtaining the

color of the populated hyperlinks, which can be done by invoking the getPropertyValue

function of the ComputedCSSStyleDeclaration object (with the argument “color”)
2; Behavior tracking is achieved by registering related event listeners of interested ele-

2Recent browsers return the same computed styles for visited and unvisited links.
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Website Properties of Ads
www.msn.com Ads on different domain of same company
www.aol.com Ads on content distribution network (CDN)
www.livejournal.com Ad network DoubleClick
espn.go.com Ad network DoubleClick
www.cnet.com Ads on different domain of same company
imageshark.us Ad network Google
www.nytimes.com Ad network Checkm8
www.ehow.com Ad network YieldManager
sourceforge.net Ad network DoubleClick
www.reference.com Ad network DoubleClick
www.dailymail.co.uk Ad network DoubleClick
www.guardian.co.uk Ad network Google
www.gmx.net Ad network Uimserv
yfrog.com Ad network Rubicon Project
www.comcast.net Ad network Yahoo!

Table 3.3: Websites Used in User Experience Evaluation

ments, such as onclick, onmouseover, etc.

ADSENTRY successfully detected each of the above four types of behaviors. For the

first two types, our system simply denies the read access to the document.cookie

and the write access to the window.location and document.location. For

the third type of ad behavior, it is detected by monitoring any invocations to the related

getPropertyValue function. For behavior tracking, ADSENTRY refused the reg-

istration of callback routines of those elements that we marked as non-readable by ads.

We discuss more on the tool for specifying access permissions in the next paragraph.

We stress that our privacy protection enforcement does not suffer from JavaScript object

and property aliasing problems. This is because the access is intercepted by the virtual

DOM that, when invoked, has already resolved all object and property aliasing, if any.

Figure 3.2: A Firebug-based Tool to Facilitate Specifying Access Permissions for Ads

We also evaluated the user experience of ADSENTRY using 15 popular website with

ads, shown in Table 3.3. The embedded ads are automatically recognized by the Ad-

block Plus extension and then transparently confined with ADSENTRY. To allow users

to interactively specify security policies, we integrate a Firefox extension called Fire-
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Performance Test with ADSENTRY (ms) without ADSENTRY (ms) Overhead (%)

Google Adsense Rendering 381 363 4.96
DoubleClick Ad Rendering 601 578 3.98

MSN Ad Rendering 1224 1188 3.03
Yahoo Ad Rendering 1539 1475 4.34

Table 3.4: Runtime Page Load Overhead of ADSENTRY

bug [53] and extend it with a pop-up menu that can be triggered with a right mouse

click (shown in Figure 3.2). Specifically, we use the Firebug to visually capture avail-

able screen regions and for a selected region, a right mouse click will activate the pop-up

menu. From the menu, a user will be shown the list of ads (grouped by domains) cur-

rently embedded in the current page and can then choose which ad can have a read ac-

cess to the chosen screen region or can register call-back routines (e.g., event listeners).

By default, these ads are only allowed to read their own elements, not the surround-

ing areas. Users can also specify new policies during run time, which will overwrite

existing ones if necessary.

Our experiments did not find any suspicious information-stealing behavior for these

websites.

3.4.4 Performance Evaluation

In order to assess the performance overhead, we conducted experiments to measure the

page load overhead. We picked four banner ads from the embedding websites, one for

each of the top four ad networks. We created a test page for each ad and ran the test

page with and without ADSENTRY. Each experiment was repeated for 20 times, and

the average results were recorded.

Our results are shown in Table 3.4. Overall, ADSENTRY incurs small overhead.

The relative overhead ranges from 3.03% in MSN Ad Network ad to 4.96% in Google

Adsense ad. We observed that a typical ad might only infrequently access DOM names-

pace, which might attribute to the low overhead. From another perspective, the relative

overhead can be low because ad content such as images are often dynamically loaded

from a remote server, this process experiences network round trip delay that is typically

much more significant than local computation time in web browsers. Also, to improve

responsiveness, modern browsers typically start rendering any elements immediately

once they are available. Therefore, a user may not notice the difference in the speed

of ad loading time at all. In other words, this pipelining of the rendering process con-

tributes to masking the delay that may be experienced by any single element in a web

page.

To further evaluate the potential performance overhead, we apply 2 microbench-

marks. We measure the time needed to initialize our sandbox. Our results show that it

takes 31 ms to initialize and set up the sandbox. Though it is lightweight, we expect

opportunities still remain to reduce the time by further optimizing the JavaScript engine

and NaCl sandbox. Finally, we evaluate a round-trip communication delay for a vir-

tual DOM access. Without our system, it typically took 0.001 ms for the ad to finish
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the reading of a particular DOM property. When being confined, it will take 0.59 ms.

This is expected as it needs to cross the sandbox boundary and go through the normal-

ization for policy verification. Note that this overhead will be effectively amortized in

real-world scenarios – as demonstrated in the four real ads.

3.5 Discussion

In this section, we discuss the limitation of ADSENTRY and future work. First, our

current work focuses on the JavaScript-based advertisements and has not yet explored

the support of other types of advertisements. In particular, Flash technology is another

popular way to write and display ads, which still remains to be investigated how flash-

based ads can be supported.

Second, ADSENTRY protects the browsers from attacks exploiting vulnerabilities

of the JavaScript engine, but it is not designed to prevent attacks to other browser

components, such as the HTML rendering engine. If the malicious HTML segment

is dynamically generated by JavaScript code, ADSENTRY’s policy engine can mitigate

the attack by the HTML normalization and signature-based attack blocking. A more

general solution is to extend our solution to isolate other components of the browser.

Our prototype implementation is able to handle typical JavaScript advertisements,

which has limited ways in accessing other parts of the web page. However, third-party

JavaScript code in general has much tighter integration with the rest of the web page.

As our future work, we will improve the support for transparently isolating a wider class

of JavaScript code in web applications. It will also be interesting to investigate possible

ways (e.g., in software testing) that automatically test ADSENTRY’s compatibility with

a broader set of web applications.

Lastly, it is possible for malicious ads to monopolize the execution, thus prevent-

ing other regular scripts from being executed. However, this issue also exists with web

browsers today. Although ADSENTRY is not designed to prevent denial-of-service at-

tacks, it can mitigate them by enforcing certain timeouts in the Policy Enforcer, during

the execution of untrusted ads.

3.6 Related Work

In this section, we discuss existing work that mitigates threats from untrusted web con-

tent embedded into web applications, including those compromising user data, web

application integrity as well as users’ operating systems.

Drive-by download prevention. Drive-by downloads are serious threats to web and

host security [132, 133]. BLADE [97] proposes a detection system for drive-by down-

load exploits. This type of attacks has recently received lots of attention. For example,

heap-spraying attacks can pre-populate a large heap space with attack code and a soft-

ware bug can be exploited to redirect execution flow to the heap sprays (with attack
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code). In addition, several systems [49, 134, 42] have been proposed to leverage spe-

cific memory characteristics of these attacks to identify them and prevent browsers from

being exploited. WebShield [92] proposes a middlebox framework that processes page

contents in a shadow browser, and transforms DOM updates to the client browser to

reflect DOM changes there. As a result, drive-by downloads can be detected at the

middlebox without affecting the client browser. Other existing sandbox and isolation

solutions [60, 93] can also be used to protect the operating system against drive-by

download attacks. Compared to ADSENTRY, solutions in this category are not designed

to protect user privacy and web application integrity from malicious JavaScript ads.

Isolation in web browsers. Several recent research projects [62, 36, 169] attempt to

achieve better browser security architecture by running different browser components

in isolated environments. The Google Chrome browser also uses a sandbox to iso-

late browser components and protect the operating system [104, 15]. The IBOS [154]

system steps further by designing a secure architecture for both the operating system

and the web browser altogether, minimizing default sharing and trust between software

components. However, they do not support isolating JavaScript ads from the rest of

web applications, while ADSENTRY executes untrusted ads scripts in a separate and

sandboxed environment from trusted scripts, mediating every access from ads to web

applications.

Web application integrity protection. To prevent tightly-integrated third-party JavaScript

from affecting the integrity of web application, one type of solutions [38, 50, 64, 99,

98, 52] restricts the “dangerous” functionality of JavaScript. For example, ADsafe [38]

only allows ads to use a safe subset of the JavaScript functionality. It removes dangerous

JavaScript features, such as global variables, eval, this, and with. ADsafety [126]

proposes a lightweight and efficient verification for JavaScript sandboxes, and has been

successfully applied to ADsafe. Another line of solutions [156, 79, 125, 135, 180]

protects web application against JavaScript ads through code transformation, enforcing

policies against malicious JavaScript at runtime. Similarly, ConScript [105] introduces

aspect into JavaScript language to enforce users’ security rules. MashupOS [168] pro-

poses new script integration primitives reflecting different trust relationships between

the integrator and the mashup content provider. Besides enabling web publishers to

protect their web applications, ADSENTRY also allows end users to flexibly specify

access control policies according to their own requirements.

AdJail [158] addresses the privacy and web application integrity threat from ads by

isolating them into an iframe-based sandbox. Using a separate origin in the sandbox,

AdJail leverages browser’s native origin-based protection to isolate ads. It is a solution

for publishers to isolated third-party ads. Compared to ADSENTRY, AdJail assumes the

ads on a web page are relatively independent and do not have tight dependencies with

the page environment. For example, ad scripts cannot access global JavaScript objects

defined or overwritten by other trusted scripts in the same hosting page. ADSENTRY

32



transparently supports tight dependency between ads and the host page, without sig-

nificant modification of the web page. It also provides flexible control of behaviors of

JavaScript ads.

In addition, solutions in this category cannot prevent malicious ads from exploiting

browser vulnerabilities.

Privacy protection. One of users’ major concerns about JavaScript ads is privacy.

Privad [66] proposes a solution to protect users’ privacy by making users anonymous

to the advertisers and publishers, but it does not prevent users’ data from being used by

the ad script, which may implicitly leak our user data. Adnostic [160] uses a browser

extension to perform ad targeting, selecting ads to display from a larger set of ads sent

by the advertisement network. Compared to ADSENTRY, both solutions only focus on

protecting users’ privacy, and do not address the ad’s threat to integrity of web applica-

tions and the underlying operating system.

3.7 Summary

JavaScript-based advertisements are ubiquitous on the Internet. They pose threats to the

privacy and integrity of web applications, as well as security of operating systems. In

this work, we present the design, implementation, and evaluation of ADSENTRY, a com-

prehensive and flexible framework to confine untrusted JavaScript advertisements. AD-

SENTRY not only separates the untrusted ad execution in a shadow JavaScript engine,

but also mediates their access to the main page with access control policies, which can

be specified by both web publishers and end users. We have implemented a Linux-based

prototype of ADSENTRY that supports current Firefox browsers. Our experiments with

a number of ad-related exploits show that ADSENTRY is effective in blocking these at-

tacks. Our performance evaluation shows that the comprehensive protection is achieved

with a small performance overhead.
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Chapter 4

A Quantitative Evaluation of
Privilege Separation in Web
Browser Designs

Privilege separation is a fundamental concept for designing secure systems. It was first

proposed by Saltzer et al. [142] and has been widely used in redesigning a large number

of security-critical applications [131, 18, 15]. In contrast to a monolithic design, where

a single flaw can expose all critical resources of a privileged authority, a privilege-

separated design groups the components of a system into partitions isolated from each

other. The principle of least privilege suggests that each partition must be assigned the

minimum privileges it needs for its operation at run-time. Intuitively, this reduces the

risk of compromising the whole system. In a privilege-separated design, by exploiting

a vulnerability the attacker gains access only to the small subset of privileges granted to

the vulnerable component.

Web browsers are the underlying execution platform shared between web applica-

tions. Given their importance in protecting against threats from the web, web browsers

have been a prime area where privilege separation is being applied. For instance, nu-

merous clean-slate browser proposals [15, 36, 169, 62, 63, 75, 154, 92] and commercial

browsers like Bromium [1] and Invincea [2] are customizing privilege separation bound-

aries in web browsers. In retrofitting the principle of least privileges to web browsers,

numerous important design questions are actively being debated. Should browsers put

each web origin in its own partition? Should browsers host sub-resources (such as im-

ages, SVG, PDF, iframes) of a web page in separate partitions? Should sub-resources

belonging to one origin be clubbed into the same partition? Should two code units (say,

the JavaScript engine and the Document Object Model (DOM)) be assigned to different

partitions? A systematic methodology to seek answers to these questions is important,

but has not been investigated so far.

In this work, we argue that these design decisions are not completely governed by

security demands. Security benefits of privilege separation can come at the cost of

performance. If we isolate browser components too much, the cost of communication

34



between these components can pose a heavy performance penalty. Then, significant

development effort must be invested to overcome the performance bottlenecks that can

lead to increased investment in development costs. A practical privilege-separated de-

sign should balance security with other competing concerns such as performance.

Problem & approach. How does one estimate the performance bottlenecks that will

arise after redesigning a web browser with a chosen privilege partitioning configura-

tion? In this work, we take a first step towards quantitatively studying this question.

We seek a measurement-based methodology to identify the security benefits and per-

formance costs incurred by a privilege-separated design. This methodology is based

on widely-used practices in system designs. Security architects often use similar back-

of-the-envelope calculations to identify these bottlenecks before a design is finalized.

However, such reasoning has been based on the security architect’s intuition and do-

main knowledge, and has not been scientifically studied in prior research. In previous

research on privilege-separated browsers, performance measurements have been “after-

the-fact”, i.e., after a chosen partitioning configuration has been implemented, and on

a small scale (typically on 5-10 sites). We suggest evaluating these performance costs

and benefits upfront on a larger-scale dataset.

Our methodology aims to measure weak upper bounds on the performance incurred

by a proposed browser partitioning scheme. These bounds can, of course, be reduced in

real implementations with careful use of communication channels and/or redesign of the

interfaces between components. However, this methodology lets us identify the likely

bottlenecks where significant engineering effort needs to be invested. On the security

front, most prior works (somewhat informally) argue security based on two artifacts:

(a) the reduction in size of the trusted computing base (TCB), and (b) the reduction

in number of known vulnerabilities affecting the TCB after the redesign. To unify the

security arguments previously proposed, we systematically measure these using real-

world large datasets. Specifically, our methodology takes a conceptual blueprint of the

web browser components, an annotated vulnerability database, and the application ex-

ecutable as the input, and measures parameters over a large test harness. The empirical

data from the measurements are then leveraged to quantify security benefits and per-

formance costs in design dimensions of a given privilege-separated design. Based on

such empirical quantification, security architects can make trade-offs between security

and performance, compare two partitioning configurations, and iterate quickly over the

proposed partitioning design before implementation.

We develop an assistance tool PRIVGAUGE to automate our measurements to a

large extent. We apply PRIVGAUGE to study the design decisions in 9 recent browser

designs that are being debated actively. Our approach successfully scales to Mozilla

Firefox, which is a complex web browser with 8 years of development history and over

3 million lines of code.
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Browser Isolation
Primitive

Partitioning
Dimension Plugins JS HTML

Parser DOM Layout Network Storage

Firefox Process Nil Separate ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Chrome Process By Origin, By
Component

With Host-
ing Page or
Separate

⊕ ⊕ ⊕ ⊕ ◦ ◦

Tahoma VMs By Origin With Hosting
Page ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Gazelle Process
By Origin, By
Sub-resource,
By Component

Separate Per
Origin ⊕ ⊕ ⊕ ⊕ ◦ ◦

OP Process By Origin, By
Component

Separate Per
Origin & Plugin ⊕ ◦ ◦ ◦� � �

OP2 Process
By Origin, By
Sub-resource,
By Component

Separate Per
Origin ⊕ ⊕ ⊕ ⊕ � �

IE8/9 Process Per Tab With Hosting
Page (ActiveX) ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

IBOS Process
By Origin, By
Sub-resource,
By Component

Separate ⊕ ⊕ ⊕ ⊕ ◦ �

WebShield Host Nil With Hosting
Page ⊕ ⊕ ◦ ◦ ⊕◦ ⊕

Table 4.1: Privilege Separation in Browsers The table explains different partitioning
dimensions in browser designs. For the right part of the table, same symbols denote the
corresponding components are in the same partition. e.g., in Chrome, JS, HTML Parser,
DOM, and Layout belong to one partition (⊕), while Network and Storage belong to
another partition(◦).

Our results. We provide the first detailed measurement of the security benefits and

performance costs in the recent 9 browser designs. Our measurements lend pragmatic

insights into some of the crucial design questions on how to partition web browsers. For

example, isolating web origins incurs negligible overhead in client-side cross-origin

communication, whereas using separate processes to load cross-origin sub-resources

would on average require 51 processes per web site.

The results of our work correlate well with browser redesign proposals that have

been adopted. We also identify the key performance bottlenecks in our browser blueprint.

For instance, isolation between the JavaScript engine and DOM would create a perfor-

mance bottleneck. Detailed results are presented in Section 4.4. We hope our browser

blueprint and identified bottlenecks will be instructive to understand how existing com-

mercial browsers and future designs overcome these practical constraints we observe.

Our goal in this work is not to suggest new browser designs, or to undermine the

importance of clean-slate designs and measurement methodologies proposed in prior

work. On the contrary, without extensive prior work in applying privilege separation of

real systems, the questions we ask in the work would not be relevant. However, we argue

to unify the methodology in quantifying the trade-offs of a privilege-separated design

and to reason about it on a more systematic foundation. Although our explanation of

the methodology and the foundations is on web browsers, our main arguments can be

more generally applied in privilege separation of other applications too.
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4.1 Overview

In this section, we introduce the concept of privilege separation, and then discuss privilege-

separated designs in web browsers, including their goals and various design dimensions.

4.1.1 Privilege Separation in Concept

B:
[]

A:
[t1]  [t2]

C:
[]

B:
[]

A:
[t1]

C:
[]

A:
[t2]

Sample
Partitioning

Blueprint of a Legacy Application Sample Privilege Separation Partitioning

Figure 4.1: Overview of Privilege Separation

Web browsers, just like operating systems, aim to securely manage access to the

resources of different authorities such as web origins. The executing instruction is part

of a code unit, which can be defined to be a logical component, a method, a program

statement, or even a block of instructions. Privilege separation divides resources of

different authorities into different partitions, and limits code units to access resources

outside their partitions. Figure 4.1 illustrates a blueprint of an application’s code units

and run-time authorities (in brackets) each code unit may carry at any given instant

during its execution. In Figure 4.1, the code unit A has two instances running with

separate authorities, t1 and t2, whereas code units B and C are shared resources such as

libraries, which do not carry any default authorities.

Privilege separation aims to determine how to minimize the attacker’s chances of

obtaining unintended access to another authority’s resources. Specifically, let pi be the

probability for any authority other than i to get unintended access to resources ri be-

longing to i. From a purely security perspective, the goal is to minimize the attacker’s

advantage. We can model this advantage using a variety of mathematical functions.

For instance, an attacker’s worst-case advantage from compromising a single vulner-

ability may be defined as max(pi); a privilege separated design is good if it yields a

large quantity 1 −max(pi) 1. However, as we argue in this work, a practical privilege-

separated design often departs significantly from this conceptual formulation. We argue

that this purely security-focused viewpoint ignores the implicit performance costs asso-

ciated with partitioning. Rather than focusing on mathematical modeling, we focus on

the key methodology to quantify the benefits of a privilege partitioning scheme in this

work.
1Alternative definitions of attacker’s advantage are easy to consider—for example, considering the

average case with avg rather than max. We can assign additional weights to the resources ri via a severity
function S(j, ri) if failing to protect ri from j has higher severity than other resources, etc.
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4.1.2 Privilege Separation in Browsers

Blueprint. To discuss trade-offs in partitioning, we use a conceptual blueprint that

shows the various code units in a typical browser. We have manually extracted this

from Mozilla Firefox, a popular web browser, as shown in Figure 2.1 in Section 22.

We have confirmed that this conceptual blueprint is also consistent with WebKit-based

browsers and models sufficient details for comparing prior works on browser redesign.

This blueprint intuitively explains the processing of web pages by various browser com-

ponents, which are the code units we consider in this study. A web page is first received

by the Network module that prepares content to be parsed by the HTML parser. The

HTML parser creates a DOM, which can then invoke other execution engines such as

the JavaScript engine, CSS, and so on. The legitimate flow of processed content be-

tween components is illustrated by time-ordered arrows; for brevity, we skip explaining

the details. In a single-process browser, all these components execute in the same par-

tition. Web browser designs utilize privilege separation to isolate the resources owned

by different authorities, which are defined next.

Isolating authorities. Web browsers abstractly manage resources owned by one of

the following authorities:

• Web origins. A web origin is defined by the same origin policy as the port, pro-

tocol and domain of the web site serving web content. All content belonging

to a web origin including HTML data, sourced scripts, CSS and so on in a web

session is owned by the active web origin [4].

• System authority. This authority denotes the core part of the browser code and

storage, which is also sometimes referred to as the chrome privilege. A number

of sensitive resources belonging to the underlying OS system, such as the file

system, network, display, and so on, are owned by the system authority.

• User authority. Certain resources are granted discretionary access based on the

consent by human users [139]. Several UI elements in the browser are expected

to convey to users the correct and necessary security indicators to allow them to

make sensible security decisions, such as security prompts, certificate warnings,

access to preferences and settings. These resources are conceptually grouped to

belong to the user authority.

Security threats. Security vulnerabilities can result in one authority gaining unin-

tended access to resources of another. In web browsers, we can classify threats based

on which authority gains privileges of which other authority.

• CROSS-ORIGIN: Cross-Origin Data & Privilege Leakage. Vulnerabilities that

allow access across origins are considered under this category of vulnerabilities.
2Security analysts can pick different blueprints in their design; our methodology is largely agnostic to

the blueprint used.
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Bugs in enforcing SOP fall into this category, such as missing checks on a certain

path of cross-origin access, capability leaks [17], and leaking descriptive infor-

mation such as XMLHttpRequest status or heap addresses.

• WEB-TO-SYS: Web-to-System Privilege Escalation. A strictly more severe cat-

egory of vulnerabilities permits a web origin the full privileges of the system

(or chrome) privileges. This category includes vulnerabilities that allow access

to system authority resources via limited interfaces (such as exposed JavaScript

APIs), but do not necessarily grant arbitrary code execution capabilities (next

category). Vulnerabilities in browser plugins, browser helper objects, and com-

ponents that run with default privileges of the system authority lead to these bugs.

• WEB-TO-COMP: Web-to-Component Privilege Escalation. This category in-

cludes the vulnerabilities that could potentially allow attackers to run arbitrary

code in the privilege of a vulnerable browser component. Vulnerable browser

components may or may not run with system privileges at the time of exploit.

This category includes memory corruption vulnerabilities that allow arbitrary

code execution in the component’s runtime authority.

There are also other categories of browser vulnerabilities. For completeness, we list

them below. However, these are beyond the scope of the same-origin policy and we do

not measure the security benefits of applying privilege separation to mitigate them.

• USER: Confusion of User Authority. These vulnerabilities may allow attackers

to manipulate user interfaces to confuse, annoy, or trick users, hijacking their

abilities in making reasonable security decisions. Recent incidents of mistakenly

accepting bogus or compromised certificates [171] also belong to this category.

• INTRA-ORIGIN: Intra-Web-Origin Data & Privilege Leakage. This category of

browser vulnerabilities result in running code within the authority of a web origin.

These include bugs in parsing malformed HTML content, identifying charsets,

providing HTTP semantics and so on. They can introduce popular forms of web

attacks, such as XSS, CSRF and so on.

Partitioning dimensions. We study the various dimensions along which 9 recent

browser designs propose partitioning authorities to mitigate the aforementioned threats.

Table 4.1 summarizes the design dimensions considered in each browser design, and

we explain these dimensions below.

• By origin: Each origin has a separate partition. This mitigates CROSS-ORIGIN

vulnerabilities between web pages. For example, IBOS [154], Gazelle [169],

Google Chrome [15], OP [62] and OP2 [63] all isolate primarily on origins 3. In
3OP and OP2 propose isolating web pages within the same origin, but the same-origin policy does not

recognize such intra-origin boundaries and permits arbitrary access between web pages of the same origin.
From a security analysis perspective, we treat them as the same.
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Chrome, by default web pages from different origins but belonging to the same

“site instance”4 are an exception to this isolation rule.

• By sub-resource: When an origin is loaded as a sub-resource in another origin,

say as an iframe or as an image, web browsers can isolate the sub-resources.

This provides additional isolation between cross-origin resources, especially in

mashups that integrate contents from various origins, and prevents CROSS-ORIGIN

vulnerabilities from sub-sources explicitly included by an origin. For example,

Gazelle [169] allocates a separate process for each destination origin of the re-

source and IBOS [154] uses a separate process for each unique pair of requester-

destination origins; Google Chrome does not isolate sub-resources.

• By component: Different components are isolated in different partitions. Web

browsers have proposed isolating individual components that are inadvertently

exposed across origins, but not need the full privileges of the system authority.

For example, the OP browser [62] isolates the HTML parser and the JavaScript

engine in different partitions. This prevents an exploits of a WEB-TO-COMP vul-

nerability. Browsers also isolate components that need heavy access to resources

of the system authority (such as the file system, network) from components that

need only access to web origin resources. For example, Google Chrome [15] and

Gazelle [169] separate components into web components (renderers) and system

components (browser kernels). Partitioning along this dimension prevents WEB-

TO-SYS vulnerabilities in the codebase of renderer partitions.

In this work, we apply systematic methodology to study the security and perfor-

mance trade-offs in these partitioning dimensions.

4.2 Quantifying Trade-offs with Empirical Measurements

How do we systematically evaluate the performance and security trade-offs of a given

partitioning configuration? To answer this question, we measure several security and

performance parameters. Our methodology places arguments made previously on a

more systematic foundation backed by empirical data.

4.2.1 Security Parameters

The goal of measuring security improvements is to estimate the reduction in the like-

lihood of an attacker obtaining access to certain privileged resources, which we intro-

duced as probabilities pi in Section 4.1.1. Estimating resilience of software to future

or unforeseen has been an open problem [137, 94, 71]. In this work, our goal is not

to investigate new metrics or compare with existing ones; instead, we aim to system-

atize measurements of metrics that have already been proposed in works on privilege
4Connected web pages from the domains and subdomains with the same scheme.[35]
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separation. Security analysts argue improvements in security using two metrics: (a) re-

duction in TCB, i.e., the size of code that needs to be trusted to protect resource ri, and

(b) reduction in impact of previously known security vulnerabilities 5. We explain the

intuitive rationale behind these and systematically measure them using the following

parameters S1-S3.

S1: Known vulnerabilities in code units. One intuitive argument is that if com-

ponent A has more vulnerabilities historically than B, then A is less secure than B.

Therefore, for a given partitioning scheme, we can compute the total number of vulner-

abilities for code units in one partition as the vulnerability of that partition. The smaller

the count, the less is the possibility of exploiting that partition to gain unintended access

to its resources.

S2: Severity weightage. It is important to characterize the impact or severity of vul-

nerabilities. As we discuss in Section 4.1.2, different vulnerabilities give access to

different resources. For instance, WEB-TO-SYS vulnerabilities give web attackers full

access to system resources (including all other origins), so they are strictly more severe

than CROSS-ORIGIN vulnerability. To measure this, we categorize security vulnera-

bilities according to their severity.

S3: TCB reduction. An intuitive argument is that if the code size of a trusted parti-

tion is small, it is more amenable to rigorous formal analysis and security analysis by

human experts. If a resource ri, such as the raw network access, is granted legitimate

access to one component, then the size of the partition containing that component is

the attack surface for accessing ri. In security arguments, this partition is called the

trusted computing base (TCB). By measuring the total code size of each partition, we

can measure the relative complexity of various partitions and compute the size of TCB

for different resources6.

We explain how we measure each of these metrics in Section 4.4.

4.2.2 Performance Parameters

The precise performance costs of a privilege-separated design configuration can truly be

determined only after it has been implemented, because various optimization techniques

can be used to eliminate or mitigate performance bottlenecks. However, implementing

large redesigns has a substantial financial cost in practice. We propose a systematic

methodology to calculate upper bounds on the performance costs of implementing a

given partitioning configuration. These bounds are weak because they are calculated

assuming a straightforward implementation strategy of isolating code units in separate
5Note that these metrics are instances of reactive security measurement, which have been debated to

have both advantages [16] and disadvantages [137].
6We do not argue whether code size is the right metric as compared to its alternatives [29, 103]; of

course, these alternatives can be considered in the future. We merely point out that it has been widely used
in previous systems design practice and in prior research on privilege separation.
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containers (OS processes or VMs), tunneling all communications over inter-process

calls as proposed in numerous previous works on browser redesign. This strategy does

not discuss any optimization that can be used in the final implementation. We argue that

such a baseline is still useful and worthy of systematic investigation. For instance, it lets

the security analyst identify parts of the complex system that are going to be obvious

performance bottlenecks. Our methodology is fairly intuitive and, in fact, often utilized

by security architects in back-of-the-envelope calculations to estimate bottlenecks. We

explain the performance cost parameters C1-C7 we are able to quantitatively measure

below. Mechanisms for measuring these parameters and the inference from combining

them are discussed in Section 4.4.

C1: Number of calls between code units. If two code units are placed in separate

partitions, calls between them need to be tunneled over inter-partition communication

channels such as UNIX domain sockets, pipes, or network sockets. Depending on the

number of such calls, the cost of communication at runtime can be prohibitive in a

naive design. If a partitioning configuration places tightly coupled components in sep-

arate partitions, the performance penalty can be high. To estimate such bottlenecks, we

measure the number of calls between all code units and between authorities when the

web browser executes the full test harness.

C2: Size of data exchanged between code units. If two code units are placed in

separate partitions, read/write operations to data shared between them need to be mir-

rored into each partition. If the size of such data read or written is large, it may create a

performance bottleneck. Two common optimizations can be used to reduce these bottle-

necks: (a) using shared memory or (b) redesigning the logic to minimize data sharing.

Shared memory does not incur performance overhead, but has trades-off security to an

extent. First, as multiple parties may write to the shared memory regions, it is subject

to the time-of-check-to-time-of-use (TOCTTOU) attack [122]; second, complex data

structures with deep levels of pointers are easily (sometimes carelessly) shared across

partitions that makes sanitization of shared data error-prone and difficult to implement

correctly. To estimate the size of inter-partition data exchange, we measure the size

of data that are exchanged between different code units. This measurement identifies

partition boundaries with light data exchange, where Unix domain sockets or pipes are

applicable, as well as boundaries with heavy data exchange where performance bottle-

necks need to be resolved with careful engineering.

C3: Number of cross-origin calls. Client-side web applications can make cross-

origin calls, such as postMessage, and via cross-window object properties, such as

window.location, window.top, and functions location.replace,

window.close(), and so on. We measure the number of such calls to estimate the

volume of inter-partition calls if different origins are separated into different partitions.
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C4: Size of data exchanged in cross-origin calls. Similar to C2, we also measure

the size of data exchanged between origins to estimate the size of memory that may

need to be mirrored in origin-based isolation.

C5: Number & size of cross-origin network sub-resources. One web origin can

load sub-resources from other origins via network interfaces. If the requester is sep-

arated in a different partition than the resource loader, inter-partition calls will occur.

We measure the number and size of sub-resources loading to evaluate the number of

partitions and size of memory required for cross-origin sub-resource isolation.

C6: Cost of an inter-partition call under different isolation primitives. Partition-

ing the web browser into more than one container requires using different isolation

primitives, such as processes and VMs. These mechanisms have different performance

implications when they are applied to privilege separation. We measure the inter-

partition communication costs of 3 isolation primitives in this work: Linux OS pro-

cesses, LAN network hosts, and VMs; other primitives such as software-based isolation

(heap isolation [13], SFI [167]) and hardware-based methods (using segmentation) can

be calculated similarly.

C7: Size of memory consumption for a partition under different isolation prim-
itives. With different isolation primitives, memory overhead differs when we create

additional partitions in privilege separation. This is also an important aspect of perfor-

mance costs dependent on design choices.

Measurement methodology. To measure the outlined parameters for a full web browser

is challenging. We address this challenge by developing an assistance tool PRIVGAUGE

that takes the following inputs:

• An executable binary of a web browser with debug information,

• A blueprint of the browser, including a set of code units and authorities for parti-

tioning,

• A large test harness under which the web browser is subject to dynamic analysis.

We focus our measurements on the main browser components and we presently

exclude measurements on browser add-ons and plugins. Our measurements are com-

puted from data measured during the execution of the test harness dynamically, since

computing these counts precisely using static analysis is difficult and does not account

for runtime frequencies. With empirical measurements of the parameters we elaborate

later, PRIVGAUGE outputs a database of empirical data that can assist security archi-

tects in finding privilege partition configurations with desired security and performance

characteristics.

PRIVGAUGE is a binary-based measurement tool, and is applicable to different

legacy applications. In our work, we apply it to a debug build of Firefox, a blueprint
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manually abstracted from Firefox and WebKit designs, and historical Firefox vulnera-

bilities retrieved from Mozilla Security Advisories [55], and Alexa Top 100 websites

(around August 2011).

4.3 Implementation of PRIVGAUGE

To apply our methodology to perform a large-scale evaluation, we develop a tool PRIV-

GAUGE to assist our measurements on the number of inter-component function calls

and the size of data exchange.

The tool is built as a pin tool [77] for Linux with 1,600 SLOC. It instruments the

Firefox binary executable on function invocations, returns, and instructions that have

memory accesses. We conduct our measurement on a Ubuntu 10.04 64bit machine.

Re-establishing caller-callee information. For function call counting, PRIVGAUGE

drives its execution of Firefox over the test harness of Alexa Top 100 websites. It dy-

namically instruments all function calls before they are invoked and before they return,

respectively. For each running thread, it maintains a separate simulated call stack to

record currently active functions. When a function is invoked, it pushes an entry with

information detailed below onto the simulated call stack. Before a function returns,

PRIVGAUGE pops out its corresponding entry on the simulated call stack for the run-

ning thread. This way PRIVGAUGE rebuilds the caller-callee information.

The entry generated for each function call contains a list of properties of the caller

and the callee, including the original function name, the unmangled function name, the

image name, the source file name, the source file line number, and the authority (if any).

PRIVGAUGE extracts such information with interfaces provided by pin, with binaries

built with debug information.

In the pin tool, we use RTN Insert to insert our instrumentation function before

and after the execution of each routine (function). Within the instrumentation function,

we leverage RTN Name to obtain the name of the function, and

PIN UndecorateSymbolName to remove C++ mangling. We call RTN Address

to get the starting address of the function, and PIN GetSourceLocation to obtain

relevant information of the source code file and line number of the current function in

that file.

To maintain a separate simulated stack for each thread, PRIVGAUGE tracks the

current thread ID with the pin parameter IARG THREAD ID, and uses PIN Mutex

to ensure synchronized access to PRIVGAUGE’s own data from different threads.

Counting inter-partition function calls. PRIVGAUGE counts inter-partition function

calls with the simulated stack. When a function call is intercepted by PRIVGAUGE, it

retrieves its caller from the top of the simulated stack. PRIVGAUGE counts the number

of function calls whose caller and callee belong to each pair of different code units.

These numbers will later be aggregated for each pair of different partitions to calculate
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the numbers of run-time inter-partition communications, for a given partition configu-

ration.

Measuring the size of data exchange. To measure the size of data exchanged be-

tween components, PRIVGAUGE instruments all instructions that have memory read or

write access. When a memory region is written by an instruction, it associates a tag

with that memory region. A tag corresponds to the currently executing code unit and

its associated authority. When a memory region is read by an instruction, it checks

whether the code unit and authority of the tag associated with memory region is differ-

ent from those of the instruction. If so, it records the size of the memory region together

with the writer’s and reader’s code units and authorities. For multiple read operations

by the same code unit and authority to the same memory region of the same writer,

PRIVGAUGE only records the first of such accesses.

In our implementation, we use INS InsertCall to instrument every instruction

before and after execution. Within the instrumentation function, we call

INS IsMemoryRead to check whether the instruction is a read operation, and

INS IsMemoryWrite to check whether it is a write operation. Our tool also access

parameters such as IARG MEMORYWRITE EA, IARG MEMORYWRITE SIZE,

IARG MEMORYREAD EA, IARG MEMORYREAD SIZE for the address and size of mem-

ory region being written to and read from, respectively.

4.3.1 Challenge: Handling “Bridge” Components

In legacy applications, there may exist “bridge” components in the executable that do

not appear in the blueprint of the legacy application. The main responsibilities of these

components are just to bridge function calls between other components, such as the

XPCOM component in Firefox. For our purpose of measuring inter-partition calls and

data exchanges, communications with the bridge components are irrelevant. Therefore,

PRIVGAUGE processes calls from and into them transparently, by only recording the

actual callers and callees whose communications are bridged by any bridging compo-

nent.

When measuring function call numbers across code units, PRIVGAUGE remembers

the original caller for each call into the bridging components, and passes the caller in-

formation along the call sequences within the bridging components. Afterwards, when

the function call goes out of the bridging components and the callee is another com-

ponent, PRIVGAUGE only records a call from the original caller code unit to the first

callee code unit out of the bridging components.

Similarly, when measuring data exchanges between code units, PRIVGAUGE al-

ways marks the writer of a memory region with the original caller code unit if the actual

writer is a bridge component.
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Category Number of Vulnerabilities
USER 20

INTRA-ORIGIN 14
CROSS-ORIGIN 38
WEB-TO-SYS 11

WEB-TO-COMP 277

JS:88, DOM:59, Layout:43, GFX:22, Plug-ins:12
Modules:10, XPConnect:10, Network:7, Security:5, Internationalization:4

Widget:4, Editor:3, Accessible:2, XPCOM:2, DocShell:1
General:1, Media:1, NSPR:1, Toolkit:1, URILoader:1

Table 4.2: Number of Historical Security Vulnerabilities in Firefox, Categorized by
Severity and Firefox Components

4.4 Experimental Evaluation

To measure security benefits, we analyze the database of Firefox security vulnerabili-

ties [55]. For the size of source code in different browser components, we use the wc

tool to count the lines of source code for Firefox 8.0.

We measure performance overhead by running PRIVGAUGE over Alexa Top 100

websites [7]. Our study on these 100 websites gives us a comprehensive data set of all

the run-time cross-code-unit calls and data exchanges.

We ran measurements on 3 isolation primitives: Unix domain sockets, network

communications, and cross-VM communications over 10,000 times, with message lengths

varying from 50 to 8K bytes. We measured memory overhead with processes, and Vir-

tualBox and QEMU VMs.

Our measurements are mainly conducted on a Linux Dell
TM

server with 2 Xeon R©

4-core E5640 2.67GHz CPUs and 48GB RAM. For the measurement of inter-partition

communication overhead, we connected two Dell
TM

desktop machines with a dual-core

i5-650 3.2GHz CPU and 4GB RAM via a 100 Mbps link.

4.4.1 Measurement Goals

Our measurements aim to figure out the following:

Goal 1. Security benefits of isolating a browser component with regard to the num-

ber of historical security vulnerabilities that can be mitigated.

Goal 2. Worst-case estimation of additional inter-partition calls and data exchange

that would be incurred by isolating a component, and by isolating an authority (web

origin).

Goal 3. Memory and communication overhead incurred by different isolation prim-

itives.

4.4.2 Measurement over Alexa Top 100 Websites

We conduct our experiments on Alexa Top 100 websites, and obtain the following mea-

surement results. Next, we explain how we measure these metrics and present their

results.
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Comp# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LOC 136 367 74 155 32 3 131 21 77 366 10 269 763 17 223 24 137 478 24 188 53

Table 4.3: Kilo-lines of Source Code in Firefox Components. In our experiments, we
consider the following components: 0. NETWORK, 1. JS, 2. PARSER, 3. DOM,
4. BROWSER, 5. CHROME, 6. DB, 7. DOCSHELL, 8. EDITOR, 9. LAYOUT,
10. MEMORY, 11. MODULES, 12. SECURITY, 13. STORAGE, 14. TOOLKIT, 15.
URILOADER, 16. WIDGET, 17. GFX, 18. SPELLCHECKER, 19. NSPR, 20. XPCON-
NECT, and 21. OTHERS.

Figure 4.2: Gray-scaled Chart of Call Counts across Code Units. Components are
numbered as with Table 4.3. Each cell at (i, j) corresponds to the call counts between
Code Unit i and j.

For Goal 1: security benefits. We perform two measurements for measuring security

benefits.

M1: Number of historical security vulnerabilities in each Firefox component, cate-

gorized by severity.

M2: Size of source code in Firefox components.

We measure historical Firefox vulnerabilities (Security Parameters S1, S2) with

M1, and code size of different Firefox components (Security Parameter S3) with M2.

Measuring M1. We implement a Perl utility with 95 lines of code to crawl and fetch

Firefox bug reports online [55]. According to the blueprint of browser components,

and our classification of vulnerability severity, we count the 362 vulnerabilities we have

access to7, by 1) browser component, and 2) severity category.
72 of them are uncategorized due to insufficient information available.
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Results of M1. Table 4.2 depicts the number of Firefox vulnerabilities with our cate-

gorization outlined in Section 4.1.2. We can see that 76.5% of the security vulnerabili-

ties are WEB-TO-COMP vulnerabilities (277), which can lead to code execution. There

is also a large amount of CROSS-ORIGIN vulnerabilities (38), whereas the number of

other categories is much smaller. Among browser components, the JavaScript engine

has the largest number of vulnerabilities (88). The Layout module (43) and DOM (59)

also have large amount of vulnerabilities. These are all major components consisting

of complex browser logic. On the other hand, more peripheral components, such as

Editor has only 3 WEB-TO-COMP vulnerabilities. Such results are in line with our

intuition that more complex and critical components tend to have more vulnerabilities

discovered.

Measuring M2. We use the wc utility to obtain the number of lines of source code

for all .h, .c and .cpp files in Firefox components.

Results of M2. Table 4.3 lists the number of lines of source code we measure for dif-

ferent components in Firefox. Components such as JavaScript, Layout and Security, etc.

have large code size. These data reflect the (relative) complexity of different browser

components (See S3).

For Goal 2: performance costs. We dynamically measure performance costs over

Alexa Top 100 websites with the following. These measurements correspond to Perfor-

mance Parameters C1-C5, respectively.

M3: Number of function calls between browser components.

M4: Size of data exchanged between browser components.

M5: Number of client-side cross-origin calls.

M6: Size of data exchanged in client-side cross-origin calls.

M7: Number of different origins of sub-resources.

Measuring M3 & M4. As described in Section 4.2, we apply PRIVGAUGE to browse

Alexa Top 100 websites, counting the number of function calls whose caller and callee

belong to two components, and the size of data exchanged during the process.

Results of M3. Table 4.4 lists the number of function calls (in 1000s) where the caller

is in a different component than the callee when we browse over the Alexa Top 100

websites. These calls may become inter-partition calls after privilege separation. Thus,

the larger the number is between the two components, the higher is the communication

cost if they are isolated into different partitions. From the table, we see that there

are 4,270,599,380 times of calls between the Layout engine and the DOM during our

measurements, 369,305,460 times between the GFX rendering engine and the Layout

engine, and 133,374,520 times between the JavaScript engine and the DOM. Heavy

calls between these components correspond to tight interactions during run time, such

as DOM scripting and sending layout data for rendering.
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Cross-Origin Access Number of Calls Data Size of Calls (KB)

Browser Side

postMessage 4,031 587
location 9 -

window.parent 24 -
window.frames 3,330 -

Network sub-resource Images, CSS, etc. 10,745 131,920

Table 4.6: Cross-Origin Calls & Sub-Resource Loading
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Figure 4.3: Occurrence Frequencies of Unique Pairs of Different Requestor-Destination
Origins 746 unique pairs only occur once, while only 164 unique pairs occur more than
15 times.

To better illustrate these results, Figure 4.2 depicts different volumes of inter-component

functions calls with gray scales. Darker colors indicate heavier communications be-

tween the corresponding components.

Results of M4. Table 4.5 lists the measured data exchange sizes between components.

For example, the DOM and the Layout engine have larger data exchange than other

components: 172,206.36 Kilobytes over the 100 websites.

Measuring M5 & M6. We intercept the calls to client-side communication channels

in Firefox, retrieve the caller and callee origins, and record the size of data passed in

postMessage calls.

Results of M5. Table 4.6 summarizes the number of client-side calls to access other

origins.

Results of M6. Size of data exchange in client-side cross-origin calls. Table 4.6 also

summarizes the size of data exchanged in client-side calls (passed in postMessage

calls).

Measuring M7. We intercept all network responses to Firefox, and identify whose

requester and destination origins are different. We record such cases with the size of

data passed in the HTTP response body.

Results of M7. To evaluate in more detail the performance implications in using sep-

arate partitions for sub-resource loading, we measure the number of cross-origin sub-

resources for each of the Alexa Top 100 websites. Table 4.6 summarizes the overall
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Size of Message
(in bytes)

Average RTT for
Unix Domain Socket

Average RTT for
Network Comm

Average RTT for Cross-
VM Communication

50 4673 87642 252008
500 5045 176160 288276
1000 5145 276841 252107
2K 5821 367356 251605
4K 6838 449262 269845
8K 9986 638598 336999

Table 4.7: Round-Trip Time (RTT) of Unix Domain Socket, Network and Cross-VM
Communications, in nanoseconds, Averaged over 10,000 Runs Each

call numbers of size of data exchanged during cross-origin sub-resource loading. In our

measurement, the largest number is 51, with www.sina.com.cn. Figure 4.3 shows

that the re-occurrence rate of unique pairs of different requester and destination origins

is very small. More than 746 pairs occur only once. In fact, there are in total 1,515 such

unique pairs, averaged to 1,515 / 100 = 15 pairs for each page.

For Goal 3: isolation primitive overhead. We also measure performance overhead

with different isolation primitives, in communication cost M8 for Performance Param-

eter C6, and in memory consumption M8 for Performance Parameter C7.

M8: Communication delay with sockets, network and VMs.

M9: Size of memory consumption of a partition of a process, or an VM.

Measurement & Results of M8. We use a simple client-server communication pro-

gram to measure the inter-partition call costs between Unix domain sockets, between

hosts connected via LAN, and between virtual machines on the same VM host. We

average over 10,000 rounds of each primitive with varying message lengths. Table 4.7

summarizes our measurements on round trip times for inter-partition communications

with the three isolation primitives. Unix domain sockets is 6-10 times more efficient

than cross-VM communications.

Measurement & Results of M9. By checking the size of empty process on different

hosts, we conclude that the memory used by an almost-empty process is about 120k-

140K on Ubuntu with the pmap utility. As this number was very stable across different

runs, we take this as the memory consumption of creating processes. For the Ubuntu

guest OS we created, the write-able/private memory used by VirtualBox was about

25M bytes and the memory used by guest OS running in VirtualBox was about 90M

bytes. We take 90M as the size of VM partition memory cost, and 25M as the memory

overhead from a VM daemon in our quantification. Therefore, a Linux process incurs

90M / 130K = 709 times lower memory overhead than a VM.

4.4.3 Summary of Findings

In this section, we summarize the high-level findings from our detailed measurements.

Specifically, we revisit the partitioning dimensions outlined earlier and evaluate their
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Partitioning Dimension #Vulnerabilities
Mitigated

#Lines of Code
Partitioned

Comm
Cost

Data
Exchanges
Cost

Memory
Cost

Single Process 0 N.A. 0 0 0.13K
One Process per Origin
(w/o Cross-Origin Sub-
Resource Isolation)

0 N.A. 0 0 130K

One Process per Origin
(with Cross-Origin Sub-
Resource Isolation)

38 N.A. 0.37ms 5.87MB 1.4MB

One Process per Pair of
Requester-Destination of
Sub-Resource

38 N.A. 0.91ms 7.19MB 2.1MB

Renderer/Browser Division 81 1,863K 2.59min 3.54MB 130KB

JS/DOM Separation (Process) 147 JS:367K
DOM:155K 6.67s 572.6KB 130KB

JS/DOM Separation (Network) 147 JS:367K
DOM:155K 3.78min 572.6KB 125MB

Layout/Window Manager
(GFX+Widget) Separation 69 Layout:367K

GFX+Widget:615K 19.15s 739.3KB 130KB

DOM/Layout Separation 102 DOM:155K
Layout:367K 3.56min 1.68MB 130KB

Table 4.8: Security Benefits and Performance Costs of Partitioning Dimensions Perfor-
mance costs are per page, averaged over Alexa Top 100 websites.

security-performance trade-offs. We also summarize the performance bottlenecks that

our measurements highlight.

Table 4.8 summarizes the security and parameters for each design point along the

dimensions being debated in present designs. The values in the table for performance

costs are per web page, averaged over the Top 100 Alexa pages.

Origin-based isolation. One process per origin without separating cross-origin sub-

resources have no security benefits. If contents from another origin hosted as sub-

resources (such as PDF) can still be processed in the same partition, security vulnera-

bilities can still permit unintended escalation of privileges. This is consistent with the

observations made by several browser designs which propose hosting sub-resources in

separate containers, as we explain below.

Sub-resource Isolation. Several browsers propose isolating each pair of requester-

destination of sub-resources to be further isolated in separate partitions, such as Gazelle [169]

and IBOS [154]. Our data suggests that such a design mitigates CROSS-ORIGIN vul-

nerabilities, but has a large performance cost. For instance, the memory cost of creating

several partitions (using processes) is large and will be a performance bottleneck. In

our measurement, one web page can include up to 51 third-party sub-resources. If all

these cross-origin sub-resources are to be isolated by different processes, and consider

that a typical browser process would need 20 Megabytes [5], then around 1 Gigabyte

memory overhead will be incurred just for loading third-party resources for this single

web page. Therefore, although sub-resource isolation can mitigate 38 CROSS-ORIGIN

vulnerabilities, browsers may need to optimize memory usage for processes that load

sub-resources before they can practically adopt this proposal.

It is interesting to compare our identified bottlenecks to choices made by today’s
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web browsers. For instance, Google Chrome does not suffer from this performance

bottleneck by making a security-performance trade-off. It adopts a different strategy by

grouping resources according to a site-instance [35] of the hosting page, which signif-

icantly reduces the number of processes created [35]. We leave the detailed definition

and discussion of this strategy out of scope; however, we believe that our methodology

does identify realistic practical constraints.

Component-based isolation. Isolation by components mitigates WEB-TO-COMP

vulnerabilities. For example, the JavaScript engine and the DOM have 147 such vul-

nerabilities. At the same time, the 367K of source code (TCB) in the JavaScript engine

can be isolated, which is 10% of the entire browser. Nevertheless, since they have fre-

quent interactions, such isolation costs prohibitively high communication and memory

overhead. Hence, although beneficial for security, such a partitioning dimension is less

practical for adoption. For instance, designers of OP redacted the decision to isolate

JavaScript engine and the HTML parser within one web page instance in OP2; our

measurement identifies this high overhead as a bottleneck in Table 4.4.

Renderer/Browser kernel isolation. We also take a popular architecture of render-

er/browser kernel division for evaluation. We evaluate our methodology on the Google

Chrome design model to measure the security benefits and performance costs. Such a

partitioning dimension would prevent WEB-TO-COMP vulnerabilities in the renderer

process, and WEB-TO-SYS vulnerabilities. If we apply Firefox code size to this de-

sign, the size of TCB in the kernel process would be around 1,863K, i.e., 53.5% of

the browser codebase. Note that this is just a rough estimation based on our blueprint

of coarse-grained components. Further dividing components can reduce the necessary

code size that needs to be put into the browser kernel process.

Our measurements identify potential performance bottlenecks that correlate with

actual browser implementations. Specifically, we find that isolation between compo-

nents in the renderer processes and the browser kernel process, as in Chrome, would in-

cur very high performance overhead, such as between the GFX and the Layout engine.

However, such performance bottlenecks do not appear in Chrome. We observe substan-

tial effort [146] with Chrome that is relevant in optimizing render-kernel communication

performance. Besides, Chrome also uses GPU command buffers and other optimization

techniques to improve performance of rendering and communication [128].

Component partitioning with high security benefits. We identify a few browser

components that have high security benefits to be isolated from other components. For

example, the JavaScript engine is a fairly complex component with 367K lines of source

code, and 88, i.e., 31.8% of, WEB-TO-COMP vulnerabilities. Isolating it from other

browser components will mitigate a large fraction of vulnerabilities. Other typical ex-

ample components include the Layout engine with 367K lines of source code and 43

(15.5%) WEB-TO-COMP vulnerabilities, as well as GFX, the rendering component for
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Firefox, with 478K lines of source code and 22 (7.9%) WEB-TO-COMP vulnerabili-

ties.

Component partitioning with high performance costs. We identify the main browser

components that have tight interactions with other browser components. Thus, isolat-

ing them from others would incur high performance costs. For example, as shown in

Table 4.4, our measurements find 133,374,520 function calls between the JavaScript en-

gine and the DOM, and 369,305,460 calls between the GFX rendering engine and the

Layout engine. To show why they can become performance bottlenecks, here is a simple

calculation. Suppose they are separated by processes, a single RTT with Unix domain

sockets costs around 5000 nanoseconds delay. If there is no additional optimization

in place, these numbers correspond to 133,374,520 * 5000 nanoseconds / 100 pages =

6.67 seconds/page and 18.47 seconds/page, respectively. Such performance overhead

is prohibitively high. Security architects should either avoid such partitioning, or take

further measures to optimize these performance bottlenecks.

4.4.4 Discussion

Our identified bottlenecks provide data-driven insights into which parts of browser

design need careful engineering. As we have discussed earlier, careful engineering

and implementation-level design can mitigate these bottlenecks. Below we discuss the

scope where our results are applicable and point out some alternative choices a secu-

rity analyst can make while re-applying our methodology to obtain potentially different

results.

Finer-grained blueprint. In our experiments, we use the blueprint based on major

browser components. A security architect can easily re-configure the boundaries or

granularity of the definitions of code unit. We foresee that applying our methodology to

finer-grained blueprints may yield other interesting results in guiding browser designs.

For example, blueprints on source code classes or functions may help developers redraw

the boundaries of browser components.

Applying other isolation mechanisms to browsers. Our methodology is focused on

isolation based on OS primitives, host isolation and VMs. This is because most prior

works on applying privilege separation to browser redesigning have focused on isolation

primitives based on processes, VMs, and hosts, etc. There is another line of isolation

mechanisms based on dynamic taint analysis [116], software-based isolation [167] and

so on. We expect that modifications to our methodology will be necessary to accom-

modate these in the future, though several of our insights will continue to hold. We

hope further researches will explore these possibilities to quantify privilege-separated

designs in web browsers.
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4.5 Related Work

Privilege separation. The concept of privilege separation in computer systems was

proposed by Saltzer et al. [142]. Since then it has been used in the redesign of sev-

eral legacy OS applications [131, 18] (including web browsers) and even web ap-

plications [51, 5, 13]. Similar to PRIVGAUGE’s goals, several automated techniques

have been developed to aid analysts to partition an existing application, such as Priv-

Trans [25], Jif/Split [184], and Wedge [22]. Most of these works have focused on the

problem of privilege minimization, i.e., inferring partitions where maximum code ex-

ecutes in partitions with minimum or no privileges, while performance is measured

“after-the-fact”. Our work, in contrast, aims to quantify performance overhead with

privilege-separated designs with only a blueprint without the actual implementations.

Our work also differs with them by performing measurements on binary code, rather

than source code.

Privilege separation in browsers. Our work is closely related to redesign of web

browsers, which has been an active area of research [111, 15, 36, 169, 62, 63, 75,

154, 92]. Our work is motivated by the design decisions that arise in partitioning web

browsers, which performs a complex task of isolating users, origins and the system.

Among them, IE uses tab-based isolation, Google Chrome [15] isolates web origins

into different renderer processes, while Gazelle [169] further isolates sub-resources and

plugins. Our measurements have shown that some web pages may include 51 sub-

resources of different destination origins. Our data quantifies the number of partitions

that may be created in such designs as well as in further partitioned browsers, such as

OP [62] and OP2 [63]. In addition, our measurements also evaluate the performance

costs in VM-based isolation, such as Tahoma [36], and memory consumption from sep-

arate network processes for sub-resources in IBOS [154] design. Our work advocates

privilege-separated browsers for better security, and identifies potential performance

bottlenecks that need to be optimized to trim their performance costs.

Evaluation metrics. Estimation of security benefits using bug counts is one way of

quantifying security. Riscorla et. al. discuss potential drawback of such reactive mea-

surement [137]. Other methods have been proposed, but are more heavy-weight and

require detailed analysis of source code [94, 71, 138]. Measurement of performance

metrics such as inter-partition calls and data exchange has been identified in the de-

sign of isolation primitives such as SFI [167]. We provide a comprehensive in-depth

empirical analysis of these metrics in a widely used web browser (Mozilla Firefox).

4.6 Summary

In this work, we propose a measurement-based methodology to quantify security bene-

fits and performance costs of privilege-partitioned browser designs. With an assistance

tool PRIVGAUGE, we perform a large-scale study of 9 browser designs over Alexa
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Top 100 websites. Our results provide empirical data on security and performance

implications of various partitioning dimensions adopted by recent browser designs.

Our methodology will help evaluate performance overhead in designing future secu-

rity mechanisms in browsers, and we hope this will enable more privilege-separated

browser designs to be adopted in practice.
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Chapter 5

BSM: Towards General Security
Support in Browsers

In the previous two chapters, we propose a new primitive for transparent isolation of

untrusted JavaScript, and a methodology for evaluating security and performance im-

plications for different program partitioning schemes in browser design. They enable

more effective and efficient isolation solutions in the browser environment. However,

there are additional requirements for principled security in browsers. After a carefully

chosen program partitioning, within the same partition, we need additional mechanisms

to monitor and control web application behaviors. Moreover, such a behavior control

framework may also allow browser designers to quickly test with different partitioning

schemes by applying access control on scripts and resources with different identities.

We thus propose a general security framework to achieve intra-partition behavior mon-

itoring and control.

Traditional web security mechanisms, such as the same-origin policy (SOP) [113]

and cookie-based session authentication, are no longer sufficient to secure web applica-

tions in the complex browser environment, which often involves third-party JavaScript

libraries, web mashups, and Internet advertisements inside the same origin. As a result,

many web-based attacks have emerged, leveraging the complex execution environment

and layout of web applications. Examples include cross-site scripting (XSS) [120],

cross-site request forgery (CSRF) [14], and privacy violation [81].

To mitigate these threats to web applications, a wide range of solutions have been

developed [158, 37, 105, 20, 67, 88, 68, 83, 162]. The focuses in these solutions are spe-

cific security enhancement or mitigation. However, the fundamental reason for the ever-

emerging web application attacks is that the existing security mechanisms in browsers

cannot cope with the browsers’ new role as a complex operating environment for rich

Internet applications.

There are also proposals for enhancing browsers’ security mechanisms. For exam-

ple, the recent trend of including executable contents from external parties demands

additional isolation and access control within a hosting page. MashupOS [168] ad-

dresses this problem by providing new abstractions designed for different trust scenar-
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ios in mashup applications. As another example, ESCUDO [82] adopts a ring-based

security model to regulate JavaScript’s accesses to different regions of the page DOM.

Both solutions are achieved through browser modification.

There has been no systematic analysis for general security support that is required

to enforce flexible security solutions in browsers. Such an analysis will give us a clear

picture on how to systematically enhance web browsers, so that instead of changing the

web browser for a specific type of attacks, we can build general security support into

the web browser. With such support, new security proposals can be readily developed

and adopted without directly modifying the browser itself.

In this work, we systematically analyze the requirement for a flexible security frame-

work in web browsers, aided by the reference model of the browser presented in Chap-

ter 2 (Figure 2.1). Following the traditional security principles in operating systems [142],

we identify several critical security requirements needed in web browsers. We then pro-

pose a general security framework, Browser Security Modules (BSM)1, to incorporate

these requirements into web browsers.

BSM is designed to be general, flexible and extensible. A general design provides

interfaces to implement security solutions that are not specific to any particular web

browser or any particular attack. Once a solution is developed, it can be applied to many

web browsers. It is flexible as it provides the necessary interception points with essen-

tial security information, and allows security solutions to use their own logic. Moreover,

we understand that in certain special cases, a security solution may require uncommon

functionality that is not generally needed by other security solutions. Therefore, our

security framework also provides interfaces to extend its functionality according to se-

curity solutions’ needs.

To demonstrate its feasibility, we have prototyped BSM into Firefox 3.5 and 8.0.

We show how BSM supports the functionality required by existing browser-based so-

lutions for web application security. Our preliminary evaluation on performance show

that BSM itself incurs negligible performance overhead, and a security module with a

reference implementation of ESCUDO [82] has reasonable performance overhead.

In addition, we also show that BSM can be used to monitor HTTP request depen-

dency and the evolving states of web applications to detect sophisticated attacks.

5.1 Requirements for Flexible Security in Web Browsers

In this section, we identify the general security requirements needed by browsers to

regulate run-time behaviors of web applications. Note that our analysis is not specific

to any attack. Instead, we analyze the underlying mechanisms of existing attacks to

discover the weaknesses of the existing protection mechanism. We then follow tradi-

tional OS security principles [142] to identify the security requirements in supporting

enhanced web application security.

We focus on threats to the web platform that can be mitigated by security mecha-
1The name BSM is inspired by Linux Security Modules (LSM) [176].
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nisms in the browsers, as discussed in Section 2.2.1. Therefore, browser-based attacks

to the operating system, such as drive-by download attacks, are not in the scope of our

work. The solutions to such problems are orthogonal to our approach [36, 62, 15, 169,

154].

First of all, general and flexible security support would require the web browser to

mediate sensitive operations of web applications running in it. Specifically in an event-

driven model of modern web applications, client-side events occurring in the browser

environment are essential triggers to sensitive actions, thus also need to be monitored

by the browser. For example, the browser needs to intercept the click event that would

subsequently trigger the deletion of an email in a webmail system. With such intercep-

tion, the browser also needs to have finer-grained principals than origins to mount any

flexible control. Otherwise, behaviors of web mashups that are included into the same

origin cannot be regulated distinctly. Finally, the browser needs to provide sufficient

information for any security solution to discern the legitimacy of requested accesses

from web applications.

We thus summarize the requirements as follows.

• Requirement 1: Intercepting sensitive operations and events in the browser. We

need to intercept security-sensitive operations and events in browsers, so that web

applications can enforce additional checks and regulations on cross-principal ac-

cess. For example, this can be used to isolate the execution of untrusted scripts

and strictly monitor and control their accesses to other resources in the web ap-

plication. Moreover, we also need to provide the capability to abort or alter the

execution of operations intercepted.

To identify the set of security-sensitive operations, we must examine the browser

internals and their components carefully. The interception should cover the be-

haviors of interactions among major browser components, including the network

module, the JavaScript engine, the parsers for HTML, CSS, URIs, etc., as well

as the Document Object Model (DOM). There is also another level of operation

interception inside the JavaScript engine [124], while in this work we focus on

the operations between major browser components.

• Requirement 2: Flexible and finer-grained principals in the browser. SOP uses

origin, defined as <protocol, host, port>, to separate resources in the browser.

Recent threats from XSS and malicious mashups have already called for further

division of resources included in one origin. We need to provide web applica-

tions the ability to assign fine-grained principals to components, so that they can

accurately control the interactions among different components, with the flexibil-

ity to update the principals at runtime. This is also the basis to achieve the least

privilege principle for scripts.

Scripts can insert or modify components in web applications, such as inserting

a new piece of script in DOM element attributes. Such dynamic features are
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required by modern web applications. We need to track the effective principals

of components to accurately decide the access.

• Requirement 3: Extracting context information and browser state. Modern web

applications are event-driven. To accurately understand their behaviors, web

browsers need to maintain the causal relationships between triggering events and

actions, such as request initiation, DOM mutations, etc. Such information is also

required to discern sophisticated attacks that attempt to mimic normal behaviors.

Security mechanisms should be able to examine necessary browser states to de-

termine the nature of behaviors intercepted. This includes the details of the events

and other browser objects relevant to HTTP requests.

Many existing security solutions can be built upon the security support we discuss

here, as we will analyze in Section 5.3.3. In addition, with such security support, we

are also able to develop other types of security solutions. For example, with the in-

terception over sensitive browser operations and events, we can monitor the execution

of web applications to detect malicious behaviors according to the runtime dependency

between events.

The requirements discussed above outline the crucial aspects in supporting flexi-

ble security solutions in web browsers. However, admittedly, they do not constitute a

complete list of all requirements for web browser and application security in general.

We demonstrate that by supporting such requirements in the browser environment, we

enable effective security solutions. On the other hand, we advocate principled analysis

of other security requirements, such as trust management, verified execution, etc., for

the browser platform.

5.2 Design of Browser Security Modules

To support the security requirements we have identified, we present the design of a

general security framework for web browsers: Browser Security Modules (BSM), with

design goals of general security support, flexibility, and extensibility.
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Category Example Interfaces
Network Communications httpchannel init, process response, process redirection
Parse Content parser read buffer, parse web content, handle token
Construct DOM create html element, set principal, get principal
Load Resources scriptloader load, frameloader load, imageloader load
Process Scripts scriptloader process script

JavaScript’s Access to DOM js dom call, document getelementbyid, document cookie, window open,
cookie obj access

Register to Events dom addjseventlistener, js add event listener
Invoke Event Listeners js call event handler
XMLHttpRequest xmlhttprequest open, xmlhttprequest send
Capture & Process Events event manager handle event, checkbox selected, input entered, button clicked, etc.
Plugins plugin instantiate

Table 5.1: Example Interfaces Defined in BSM Hooks

5.2.1 BSM Architecture

Figure 5.1 illustrates the architecture of BSM. It contains four major components: BSM

Hooks, the Event Tracker, the Browser Object Access Helper, and browser-independent

Security Modules that implement security solutions.

BSM Hooks intercept security-sensitive operations and events in the browser. After

the sensitive operations or event handlers in the browser are intercepted, the functions

registered on the hooks, which is in Security Modules, are invoked to implement addi-

tional security mechanisms. When a function in a security module returns to the BSM

Hook in the browser, it can optionally abort or alter the current operation according to

the return value from the security module.

The Event Tracker is a component that provides additional dependency informa-

tion among events for security applications. The Browser Object Access Helper is a

browser-specific module that understands the internal data structures of specific browsers,

and provides helper functions for accessing browsers’ custom objects to security mod-

ules.

We explain how the security requirements we identified are supported in this de-

sign. Requirement 1 is met by BSM Hooks, and Table 5.1 lists some examples of the

interfaces defined by BSM. Next, we describe how other BSM components supports

the rest two requirements identified in Section 5.1.

5.2.2 Fine-grained Principal Support and Tracking

To support Requirement 2, BSM keeps track of fine-grained principals, such as intra-

origin principals, and provides APIs to access them, i.e., set principal and

get principal. get principal allows security modules to obtain principal in-

formation from the DOM elements, and store it internally, while set principal

allows them to update the principals of DOM elements. These interfaces allow security

modules to track the identity of DOM elements, which may be updated during runtime.

In BSM Hooks where a new DOM element could be created, they receive an ad-

ditional argument propagate principal. When this argument is set to true by

security modules registered to the hook, BSM propagates the current principal of the

subject element to the object element created.
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5.2.3 Accurate Browser States and Context Information

The interception of an operation and identification of its principal provide the basis of

implementing new security mechanisms in security modules. However, the power of

such mechanisms is largely dependent on how Requirement 3 is met. For example,

given an operation, security modules need the access to details of the operation, such

as the arguments of the current function call and the events triggering this operation.

Based on such browser environment information, a security module knows whether a

request is triggered by a user action or by JavaScript, which provides the key insight in

distinguishing legitimate and malicious behaviors of injected scripts.

Providing accurate browser states and context information in the dynamic browser

environment is challenging. Modern web browsers are event-driven and multi-threaded.

Therefore, events may occur asynchronously in web browsers. The chronological or-

der of event occurrences is not suitable for security checking and regulation, as the

order may vary in different runs. Rather, BSM needs to provide the exact dependency

relationships among browser internal events to build reliable detection models. For ex-

ample, when an HTTP request is generated, instead of telling that it is preceded by a

user click, we need information such as it is triggered by a user click, or by a JavaScript

timer, etc.

Besides, function arguments or local variables in the original browser function calls

are typically of custom types defined by the browser, so another challenge is to hide spe-

cific browser implementation details in BSM Hooks to make security modules generally

applicable, but still make necessary data accessible to them for effective examination

on the ongoing browser operations.

BSM solves these two challenges with the Event Tracker and the Browser Object

Access Helper, respectively, as detailed below.

Tracking context of browser operations The Event Tracker is used in conjunction

with BSM Hooks to track the events currently being processed. When an event oc-

curs and is processed by the web browser, we register the event with the Event Tracker.

When the browser finishes processing the event, we de-register the event with the Event

Tracker. When registering events with the Event Tracker, we also pass important pa-

rameters with it, such as the subject and object of the event. The security module will

extract information from the parameters using the Browser Object Access Helper, con-

vert them into standard data structures, and construct a new Event Tracker entry. Each

entry is composed in the form of

<Event Type, Subject Reference, Object Reference, Attribute References>,

where the first element is compulsory and the latter three are optional. This way,

the Event Tracker keeps track of the dependency relations between currently occurring

events.

Nevertheless, such instantaneous dependency relations are not sufficient, as it does

not provide any information regarding events that occurred previously and have been

finished processing but still affect the current events. Sometimes security applications
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also need the dependency relations at different points of time. For example, after an

HTTP channel is initialized, the function will return, and the browser will send an HTTP

request at a later time using this channel. However, when it is actually about to send

the HTTP request, the event of the channel initialization has been de-registered with

the Event Tracker. As a result, at that time, we would have no idea how the HTTP

request was generated. Another example is that JavaScript functions on web pages

are always evaluated whenever the parser finds them, but JavaScript functions may be

invoked at a later time scheduled by timers, or triggered by asynchronous events such

as HTTP response arrivals or mouse clicks. Hence, when they are actually executed,

the Event Tracker would have no context information when they were first inserted into

web pages.

To overcome such limitations, the Event Tracker correlates additional dependency

relationships at different points of time, according to the targets of the events. For the

HTTP channel example, although the initialization and request sending are two asyn-

chronous events that typically occur at different points of time, they operate on the same

HTTP channel object, and thus can be correlated with it. Similarly, the evaluation and

invocation of a JavaScript function can also be correlated with the same JavaScript func-

tion object. By such additional correlation, the Event Tracker extends the dependency

relations of one event to its correlated events.

Security modules can select the events they want to track with the Event Tracker,

while in our current prototype, we focus on user interactions, timers, and important

actions such as HTTP requests, DOM mutations, etc.

Accessing browser objects When invoking security modules, each BSM Hook will

pass a list of parameters to them. It includes important parameters in the original

browser function call as well as local variables that are commonly required by secu-

rity applications. However, such parameters are of the custom types defined by the

browser. By design, security modules are general to all browsers, so they must be in-

dependent of a specific browser implementation, thus independent of browser data type

definitions. To facilitate security modules to access the parameter objects, we introduce

the Browser Object Access Helper that provides access to browser object types. The

Browser Object Access Helper is a browser-specific module that understands the in-

ternal data structures of specific browsers, and provides helper functions for accessing

browsers’ custom objects to security modules.

For the list of parameters passed by BSM Hooks to security modules, we select

function arguments and local variables that are useful in security applications we need

to support in our case studies. They are expected to cover the needs by most security

solutions. However, to provide further extensibility, we pass an additional parameter of

the this pointer from the interception point to security modules.

The Browser Object Access Helper also allows security modules to overwrite the

values of browser objects through parameters or the this pointer, although such mod-

ification needs to be done with special care as it may cause unpredicted browser errors.
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5.3 Experiments and Evaluation

To evaluate our BSM design and its compatibility with existing web browsers, we im-

plemented prototypes of the security framework in Firefox 3.5 and Firefox 8.0 on Linux.

Our code is mainly written in C++, together with some utilities in python. The goal of

our evaluation is to demonstrate the feasibility and preliminary performance results. We

will discuss our plan on guaranteeing the completeness of the BSM implementation in

Section 5.4.

5.3.1 Implementation

Table 5.2 summarizes the functions we have intercepted and SLOC of the hooks added

into the browser source code and sample security modules.

Version #Hooks SLOC of Hooks SLOC of Security Module
Firefox 3.5 476 11,639 15,013
Firefox 8.0 39 1,065 1,506

Table 5.2: Summary of Hooks and SLOC

Firefox 3.5 was our first experimental platform, and we worked in a conservative

way where we tried to hook any function that is related to security. The security module

in Firefox 3.5 prototype basically serves as a daily experimental platform to test new

web security research ideas. Thus, it has more hooks and security module logic than

the prototype on Firefox 8.0. However, our prototype on Firefox 8.0 contains all the

interfaces discussed in this paper, including the support required for our case studies. In

Section 5.3.3, we will show that with this set of hooks, BSM supports the functionality

required by existing browser-based security solutions. In Section 5.3.5, we demonstrate

BSM’s potential in supporting new applications.

The sample security module in the Firefox 8.0 has an optimized implementation

of the Event Tracker and Browser Object Access Helper. It also contains a reference

implementation of the solution proposed in ESCUDO written in less than 50 SLOC.

For the communication between the instrumented browser and security modules, we

added a dynamic library to Firefox, which was linked with all of Firefox’s own dynamic

libraries during the building of Firefox source. This new dynamic library serves as the

bridge between the browser and security modules, which in turn used dlopen to load

security modules. BSM Hooks invoke security modules via function pointers stored

in the connector. With such an implementation, security modules are independent of

the instrumented browser, and end users can switch between different security modules

without the need of rebuilding the instrumented browser.

5.3.2 Supporting Security Requirements

Intercepting important operations Table 5.3 summarizes the mapping between in-

terfaces of different categories in our reference model and sample files where we in-

serted hooks in our prototype on the three browsers.

65



Category Firefox 3.5 Firefox 8.0
1 Network Connection nsHttpChannel.cpp As in Firefox 3.5
2 Network->Parser nsScanner.cpp nsHtml5StreamParser.cpp
3 Parser->DOM nsParser.cpp, CNavDTD.cpp nsHtml5StreamParser.cpp
4 DOM->Parser nsHTMLContentSink.cpp nsHTMLContentSink.cpp

5 DOM->Network
nsGenericElement.cpp, nsScriptLoader.cpp,
nsFrameLoader.cpp, nsImageLoadingCon-
tent.cpp

As in Firefox 3.5, and nsContentU-
tils.cpp

6 DOM->JS nsScriptLoader.cpp As in Firefox 3.5

7 JS->DOM

nsDocument.cpp, nsHTMLDocument.cpp,
nsLocation.cpp, nsGlobalWindow.cpp,
xpcwrappednative.cpp, xpcconvert.cpp,
qsgen.py

As in Firefox 3.5

8 DOM->Event nsGenericElement.cpp As in Firefox 3.5

9 JS->Event nsGlobalWindow.cpp, nsDocument.cpp, ns-
GenericElement.cpp As in Firefox 3.5

10 Event->JS nsJSEnvironment.cpp, nsXMLHttpRe-
quest.cpp As in Firefox 3.5

11 JS->Network nsXMLHttpRequest.cpp As in Firefox 3.5
12 Event->Network nsHttpChannel.cpp As in Firefox 3.5

15 Event Processing nsWindow.cpp, nsWebShell.cpp, nsEv-
entListenerManager.cpp As in Firefox 3.5

17 Add-ons nsPluginHostImpl.cpp
nsNPAPIPlugin.cpp, nsPlug-
inHost.cpp, nsPluginInstance-
Owner.cpp

Table 5.3: BSM Implementation in Different Browsers

Supporting fine-grained principals In our prototype in Firefox 3.5 and 8.0, to sup-

port fine-grained principals, we used an additional map to record the principals of scripts

on the page. When a script is first processed, we record its principal in the map, and

when later the script executes, we retrieve its principal from the map. Our prototype

also supports propagation of principals with the hook to create a new script element.

Maintaining context information We implemented the Event Tracker in Firefox 3.5

and 8.0. Each time when a BSM Hook at the entry of an intercepted function is in-

voked, we push an entry to our Event Tracker stack, which contains the information

of the function as well as important arguments. When a BSM Hook before the exit

of an intercepted function is invoked, we pop its entry from our Event Tracker stack

accordingly. This Event Tracker stack is available to security modules to examine for

the callers of the current function.

Supporting access to browser states The Browser Object Access Helper is imple-

mented as a separate dynamic library that enables security modules to access Firefox

data types through its helper functions. Currently, we have implemented several ex-

ample helper functions for accessing HTML element attributes as well as conversions

between custom and Firefox-specific types to demonstrate its functionality. Security

module developers can add more to support their own requirements.

5.3.3 Case Studies: Supporting Existing Security Solutions

MashupOS MashupOS [168] proposes a few new primitives for including third-party

web content into the integrator pages, aiming at solving the all-or-nothing (i.e.,<script>
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or <iframe>) dilemma that currently exist. For unauthorized content, where the inte-

grator does not trust the third-party content embedded, two types of sandbox primitives

are proposed to host different type of unauthorized content. Both of the two types do

not have any built-in principal, so they cannot access any other web content except their

enclosing sandboxes.

• <Sandbox> For private unauthorized content. Only the integrator from the same

origin can access the content inside a <Sandbox>.

• <OpenSandbox> For open access, i.e., any principal has direct access to content

embedded in it.

Another two primitives are also proposed for access-controlled content: <ServiceInstance>

and <Friv>. The <ServiceInstance> abstraction provides an isolated environment for

hosting third-party content. The <ServiceInstance> abstraction does not have display

resource, and the parent of <ServiceInstance> primitives can assign <Friv> abstrac-

tions to them to provide display.

Communications between the primitives above are supported by CommRequest and

CommServer, two new objects exposed to web application JavaScript.

Now we will show how BSM supports the implementation of the different func-

tionalities required by MashupOS.

New primitives As all the proposed new primitives were actually implemented us-

ing iframes in MashupOS, and access controls were performed by implementing DOM

object wrappers, they require intercepting sensitive operations and events and extract-

ing context information. With support from BSM, new access control rules with the

proposed primitives can be implemented with the BSM hook to js dom call, as

illustrated in Figure 5.2.

Here we first obtain the reference to the subject from the Event Tracker that records

the dependency relationship between triggering events and the subsequent actions. Such

relationship is built up according to control and/or data dependency. Then we get the

origins and names of the subject and the object passed to the hook from the browser

function. Finally, we apply the checks according to the specifications of the new primi-

tives.

Alternatively, access control specific to a particular scriptable DOM interface can

also be implemented separately in the corresponding hook. For example, we may im-

pose specific restriction to document.getElementById as shown in Figure 5.3.

In the original implementation of MashupOS, <OpenSandbox> was not imple-

mented. This might be because it would actually need to relax the existing same-

origin policy in current browsers, if implemented based on iframes. Our BSM frame-

work supports flexible and finer-grained principals to be defined by security modules.

With the hook to the DOM access checker, new access control rules proposed for
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int js_dom_call_hook(Object * object, ...) {
...
Object * subject = get_subject_from_dstack();
char * subject_origin = get_origin(subject);
char * object_origin = get_origin(object);
char * subject_name = get_name(subject);
char * object_name = get_name(object);

if (subject_name == NAME_SANDBOX) {
if (object_name != NAME_SANDBOX) {
return DENY;

}
}
else if (object_name == NAME_SANDBOX) {

if (!subject.is_ancestor_of(object)) {
return DENY;

}
}
else if (object_name == NAME_OPENSANDBOX) {

return ALLOW;
}
else if (subject_origin == object_origin) {

return ALLOW;
}
else {

return DENY;
}

}

Figure 5.2: MashupOS: New Primitives

int document_getelementbyid_hook(Document * doc, char * id) {
Object * subject = get_subject_from_dstack();
char * subject_url = get_url(subject);
if (contains(safe_url_list, subject_url)) {

return ALLOW;
}
else {

return DENY;
}

}

Figure 5.3: MashupOS: Specific Access Control Example

<OpenSandbox> can be implemented in a similar way as other proposed primitives, as

shown in Figure 5.4.

This example illustrates the extensibility BSM provides to security modules, as

they are allowed to redefine existing principals and access control rules in browsers.

However, great caution must be taken by security modules when changing the existing

security principals and mechanisms, and they are responsible for verifying the newly

implemented security model will not weaken existing security guarantees.

CommRequest To implement CommRequest proposed by MashupOS, two new host

objects need to be constructed and exposed to JavaScript. This can be implemented

in JavaScript with the postMessage cross-origin communication mechanism, illus-

trated in Figure 5.5.

Shown in Figure 5.6, this piece of JavaScript needs to be inserted into the JavaScript

contexts when they are initialized, with the hook that intercepts the execution of JavaScript.
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int check_dom_property_access_hook(char * framename) {
if (framename != NULL &&

framename == NAME_OPENSANDBOX) {
return SKIP_SOP;

}
else {

return SOP;
}

}

Figure 5.4: MashupOS: <OpenSandbox>

// JavaScript
var url_to_window_map = new Array();
var CommServer = new Object();
CommServer.listenTo =

function(port, handler) {
url_to_window_map[‘‘local:’’ + location.href + port] = window;
window.addEventListener(‘‘commreq’’, handler, false);

}
var CommRequest = new Object();
CommRequest.def_handler = function(req) {

if (req.origin === location.origin) {
this.responseBody = req.data;

}
}
CommRequest.open = function(action, url) {

this.win = url_to_window_map[url];
this.url = url;
window.addEventListener(‘‘commreq’’, this.def_handler, false);

}
CommRequest.send = function(data) {

postMessage(data, url);
}

Figure 5.5: MashupOS: CommRequest in JavaScript

int js_eval_script_hook(out string script_to_insert) {
script_to_insert = "...scripts to execute...";
...

}

Figure 5.6: MashupOS: JavaScript Insertion
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int parser_read_buffer_hook(out string buffer, out int buf_len) {
search_list[0] = ‘‘sandbox’’;
replace_list[0] = ‘‘iframe’’;
search_list[1] = ‘‘opensandbox’’;
replace_list[1] = ‘‘iframe’’;
search_list[2] = ‘‘serviceinstance’’;
replace_list[2] = ‘‘iframe’’;

for (i = 0; i < search_list.length(); i++) {
string search_tag = search_list[i];
string replace_tag = replace_list[i];
string search_opening = ‘‘<’’ + search_tag;
string search_end = ‘‘</’’ + search_tag + ‘‘>’’;
int opening_index = buffer.search(search_opening);
int end_index = buffer.search(search_end);
while (opening_index) {
string orig_tag = buffer.substr(opening_index, end_index);
buffer.replace(opening_index, search_opening.length(),

‘‘<script><!--/** ’’ + orig_tag +
‘‘ **/--></script>’’ + replace_tag);

end_index = buffer.search(search_end);
buffer.replace(end_index, search_end.length(),

‘‘</’’ + replace_tag + ‘‘>’’);
opening_index = buffer.search(end_index + 1,

search_opening);
end_index = buffer.search(end_index + 1,

search_end);
}

}

buf_len = buffer.length();
...

}

Figure 5.7: MashupOS: Primitive Translation

Translation from new primitives to existing tags As all new primitives need to be

transformed into iframes before they can be processed by web browsers, MashupOS

needs to intercept HTTP responses and translate all new primitives into iframes while

appending some identification information so that MashupOS DOM object wrapper

would identify the underlying primitives denoted by the iframes. This is supported in

our framework as follows. After the hook to the parser’s buffer reader of the HTTP

response is invoked, it starts to match the opening and closing tags in the search list,

replaces them with iframes, and appends their original content into script comments for

future processing by DOM object wrappers for access control. Figure 5.7 illustrates

such implementation.

Other browser security solutions In the rest of this section, we briefly discuss how

functionalities in other security solutions are supported by BSM.

ESCUDO [82] adopts a ring-based security model to perform access control on

host objects in web applications. Their basic idea is to further partition web applica-

tion content into different regions with different ring numbers, and each region can

specify regions with which ring numbers can access it for reading, writing, or im-

plicit access. It requires interception to JavaScript-to-DOM calls and defining finer-

grained principals, which are supported by BSM Hooks js dom call hook, and the

get principal, set principal pair, respectively. We have implemented a ref-
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erence implementation in the sample security module of our prototype, with less than

50 SLOC.

Similar to MashupOS, OMash [37] also offers fine-grained access control for mashup

applications, while differing in 1) providing a single abstraction for expressing all

trust relationships, and 2) independent of SOP. Its implementation requires intercepting

JavaScript’s accesses to DOM and authentication credentials. BSM supports it with the

hook to JavaScript-to-DOM calls and the hook to the document cookie interface,

respectively,

However, in their actual implementation to mediate DOM access in a Firefox ex-

tension by setting Configurable Security Policies (CAPS), SOP was still retained as it

would require browser modification, otherwise. BSM supports all its required function-

alities without the restriction of the SOP currently in the browser.

Besides, for the mediation of authentication credentials, their original implementa-

tion needed to modify 3 lines of Firefox code regarding access to cookies. This is readily

supported by our hook to cookie setter and getter functions, document cookie hook.

App Isolation [31] analyzes the security benefit of using separate web browsers for

sensitive and non-sensitive online transactions, and summarizes it into two as aspects:

entry-point restriction and state isolation, which are supported by the interception of

JavaScript to DOM access with the hook httpchannel init hook, and with the

hooks to persistent storage data, such as

cookie obj access hook and localStorage

localstorage getitem, etc. Our current prototype implementation of BSM does

not support process-level isolation as implemented in App Isolation.

The entry-point restriction restricts requests to entry-point URLs from a different

web application. With the hook httpchannel init hook to the initialization of

a new HTTP channel, entry-point restriction can apply checks on which URLs are al-

lowed to load from.

The other aspect is state isolation, including the isolation of in-memory state and

persistent state. Our current prototype implementation of BSM is based on Firefox,

and does not support process-level isolation. However, BSM provides the functionality

required to achieve the same effect of persistent state isolation with the hooks to cook-

ies cookie obj access hook and localStorage localstorage getitem, etc.

With these hooks, we can overwrite the existing cookie access logic in the web browser,

and return a different cookie or localStorage object according to different applications.

Noncespaces [67] proposes an approach to assign randomized prefixes to HTML

tags at the server side to detect injected script tags that would not have the current

prefixes.

The client-side implementation is to fetch and enforce the policy on the received

HTML content, which are supported by the interception of HTTP response processing

using hooks process response hook and the interception of parsing with

parser read buffer hook, respectively, as shown in Figure 5.8.

The policy specifies which untrusted tags are allowed for processing. The policy
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and the random prefix are transmitted to the client side in HTTP headers. The original

solution was implemented in a proxy, but it can also be readily implemented using our

framework. With the support of BSM, the policy and prefix information can be retrieved

using the hook to the function processing HTTP responses process response hook,

and policy enforcement can be implemented in the hook to the parser’s reader of the

HTTP response buffer parser read buffer hook, where an external parser is em-

ployed to enforce security rules.

int process_response_hook(array_list headers, array_list values) {
for (i = 0; i < headers.length(); i++) {

if (headers[i] == HEADER_NONSPACE_POLICY) {
nonspace_policy = values[i];

}
else if (headers[i] == HEADER_NONSPACE_PREFIX) {

nonspace_prefix = values[i];
}

}
...

}

int parser_read_buffer_hook(out string buffer, out int buf_len) {
// init an external parser
DTDSpec * d_spec = new DTDSpec(filename);
XMLParser * parser = new XMLParser(buffer, d_spec);
try {

parser->parse();
}
catch(XMLException e) {

...
return DENY;

}
...

}

Figure 5.8: Noncespaces: Policy Enforcement and Prefix Parsing

Noxes [88] is a lightweight firewall-like application for web-based attacks. With

user-specified or inferred rules, it can detect some XSS and privacy violation attacks. Its

original implementation was not integrated into web browsers. BSM supports the link

extraction with the interception to the operation of the parser reading the HTTP response

buffer, via parser read buffer hook, and to the HTTP request initialization, via

http channel init hook. Noxes also inserts a piece of “controlling” JavaScript

code in the beginning of each web page to control the pop-up windows and frames,

and a warning will be shown to the user asking whether to continue it or not. With our

framework, it can be implemented in a non-invasive manner with the interception to

window open and frameloader load operations.

Jim et al. [83] propose a mechanism for web applications to specify security policies

that are enforced in web browsers. Before any script is executed, a JavaScript security

hook provided by the web application is invoked. The browser proceeds to execute the

script only if the security hook returns true. The hook proposed in this work corresponds

to scriptloader process script hook in BSM.

Another work by Hallaraker et al. [68] mainly consists of two parts. The first is an

auditing module that records JavaScript’s access to host objects, and the second part is

a simple misuse IDS. Its instrumentation to the web browser is supported by BSM’s
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Test Suite Original Firefox (runs/s) BSM with Lib (runs/s) BSM w/o Lib (runs/s)
Recommended 287.76 245.5 (17.21%) 284.13 (1.27%)
All DOM 1286.41 1144.39 (12.41%) 1269.77 (1.31%)
JS test 165.49 163.19 (1.40%) 164.5 (0.60%)

Table 5.4: Dromaeo Test Results for BSM

interception to JS-to-DOM calls with js dom call hook.

5.3.4 Performance

We evaluated the performance impact introduced by our prototype of BSM in Firefox

8.02. All the experiments were conducted on a computer with Intel Core 2 Duo CPU at

2.33GHZ, 250GB 7200 rpm disk, and 4GB RAM, running Ubuntu 11.10.

We measured the performance overhead in two ways. One was the page load time,

which is defined as the time between HTTP request initialization and the page onload

event. The other evaluation method was using vendor benchmarks to measure the im-

pact on the JavaScript execution. We compared performance between the Firefox with

BSM prototype and the unmodified Firefox.

Page load time To assess impact of our approach on user browsing experience, we

measured the page load time. The page load time represents how long it takes to load a

page. We used Alexa top 10 websites (in early 2012) to measured page overhead. The

delay in page load time is negligible3.

The page load time does not give an accurate assessment on the actual performance

overhead incurred by our prototype, as other factors dominate the load time. However,

this experiment demonstrated that incorporating BSM into Firefox 8.0 would not cause

user experience degradation even with a security module of a reference implementation

of ESCUDO [82].

Vendor benchmarks We also evaluated the performance with vendor benchmarks

provided by Dromaeo [110]. Dromaeo is a benchmark suite provided by Mozilla to test

web browsers’ performance of JavaScript and DOM. Table 5.4 shows the experiment

results of the recommended, all DOM and JS test tests of Dromaeo. We observed a

1.27% overhead on the recommended test suite, a 1.31% overhead on all DOM test

suite and a 0.60% overhead on JS test without any security module enabled. With

Event Tracker and Browser Object Access Helper, and a security module of a reference

ESCUDO implementation, we noticed a 17.21% overhead on the recommended test

suite, a 12.41% overhead on all DOM test suite and a 1.40% overhead on JS test. The

all DOM and recommended test suites incurred larger overhead, because the security

module needs to check for the ring attribute for each DOM access from JavaScript,

and the benchmark contains focused and repetitive DOM accesses. We can see that
2We did not measure the performance overhead on our prototype with Firefox 3.5 since that is an

experimental platform with many hooks currently not leveraged to support any security module.
3In fact, during our experiments of page load time averaged over 10 runs, we were not able to get stable

results showing that it would take more time to load a web page with BSM than in the original Firefox.
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//A sample web page from www.example.com
<img src="http://www.example.com/img1.jpg"

id=’img1’ />
<iframe

src="http://www.thirdparty.com/page.html" />
<a href="#" id=’link1’>click here</a>
<script>
// modify link
var lk=document.getElementById(’link1’);
lk.href="www.example.com/page2.htm";
//Create new script element that sends XHR
//request to example.com
....
</script>

Figure 5.9: A Sample Web Page Snippet

BSM itself only incurs little performance overhead, while security solutions developed

with BSM would incur reasonable overhead.

5.3.5 Supporting New Security Applications

Extracting request dependency to detect session misuse attacks Web requests are

the cornerstone of modern web applications. Web application servers expose HTTP-

based interfaces to browser-based web clients, allowing them to request services or

resources from servers. In the increasingly complex browser environment, web re-

quests can be generated in many ways, which is actively explored by attackers to attack

web applications. In contrast, web servers only have limited information to decide

whether a request is generated legitimately or triggered by attackers. As a result, many

attack techniques have been developed to hijack or ride users’ web sessions through

malicious web requests, including cross-site scripting (XSS) [120], cross-site request

forgery (CSRF) [14], and clickjacking [70], which we call session misuse attacks. Re-

cently, attackers turned to a new class of attacks, which use social engineering to trick

users to assist session misuse attacks [46, 26].

With the support provided by BSM, we extract request dependency at run time to

detect anomalous requests. For example, let us consider a sample web page snippet

from www.example.com that initially contains a link, an image, an iframe and a script

element. The script modifies the attribute of the link and also creates another piece of

script on the fly, which in-turn sends XMLHttpRequest request. The iframe loads a

page from a third-party server, which in turn loads an image and a script element. This

is shown in Figure 5.9.

Figure 5.10 shows the request dependency extracted for this page. As shown in the

figure, www.example.com is a web domain that generates various HTTP requests. First,

it sends HttpRequest0 for its front page. Then during parsing, it sends HttpRequest1 and

HttpRequest2 to load an iframe and an image resource, respectively. The iframe further

requests HttpRequest4 and HttpRequest5 for external image and script resources, and

the script in the iframe also generates a new request HttpRequest6 during its execution.

74



www.example.com

Link0Image0 Script0

Script1HttpRequest2

HttpRequest3

Click

HttpRequest7

DOM 
Mutation

Load

Execute

Parse
ParseParse

DOM 
Mutation

Frame0HttpRequest1

Parse

Image1

HttpRequest4

Load

Parse

Script2

HttpRequest6

Execute

Parse

HttpRequest0
Addressbar

Load

HttpRequest5

Load

Figure 5.10: Graph Showing Request Dependency for The Sample Web Page Snippet

Back to the main page, some inline script creates a new script element by mutating the

DOM, which in turn sends out HttpRequest7. The inline script Script0 also modifies

the HTML hyperlink. The link is clicked, so it sends HttpRequest7 to navigate to an-

other page. We further slice the RDG for specific requests to reduce the size of data

communicated to servers. In Figure 5.10, the slice extracted for HttpRequest7 is shown

in gray color. With such request dependency, we can detect malicious requests that are

generated in an unexpected way. For example, if during run time our system detects

HttpRequest7 is generated by a piece of JavaScript, rather than by a user click, it is

alerted since the way of generating the request is suspicious.

Leveraging the security support provided by BSM, we are able to detect existing

and new session misuse attacks with request dependency. This application demonstrates

the potential of the general security support of BSM in supporting new security appli-

cations to solve new security issues.

Capturing evolving client-side states of web applications We can also leverage

BSM to address challenges in diagnosing foreign behaviors in web applications [44].

With Ajax and HTML5 technologies, a large fraction of such behaviors occur at the

client side. Since HTML5 and its supporting frameworks [3, 74] introduce new APIs to

mobile applications, these new type of applications have access to more sensitive data

to traditional web applications on PCs. For example, HTML5-based mobile applica-

tions may have direct access to camera, geolocation, contacts and files on users’ mobile

devices, more security and privacy concerns will arise. Since these applications may

also dynamically take in web contents from third-parties for execution, even legitimate

applications are susceptible to web-based attacks.

Figure 5.11 illustrates a sample fragment of a normal behavior model for Twitter.

The model is extracted by a tool built on top of BSM. By registering to BSM hooks,

it monitors the behaviors of web applications and establishes the correlation between

different events and operations.

From the model, we can see that, for example, a normal procedure of posting a tweet

would be to first login, and then to click the “Tweet” button. Such a model can be used

to diagnose abnormal behaviors in XSS attacks, e.g., sending a tweet posting request

on a page rather than “Timeline”, or automatically generating the posting request by

JavaScript without users’ consent.

75



State 0
Login

State 1
Timeline

State 2
Mentions

Click on
“Login” button

Clic
k o

n 

“@
M

en
tio

ns
” l

ink

Clic
k o

n 

'Ti
m

eli
ne

' li
nk

Request
/update

Request
/receiver

Request
externalURL

Click on 
“Tweet” button

JavaScript Click on an 
external link

State 3
Retweets

Click on 

“Retweets” link
Click on 

'Tim
eline' link

Figure 5.11: A Sample Behavior Model
Rectangles denote Application States, and ovals denote Action States. Transitions between

states are marked with triggering events.

5.4 Discussion and Future Work

Completeness To verify the feasibility of the BSM design, we have implemented a

prototype on Firefox. We are working on migrating BSM to the Android browser and

Chromium, both of which are based on WebKit.

At this stage, our prototype has no guarantee on the completeness in mediating

sensitive operations in the browser. We understand that given the complexity of modern

browser implementations, proving the completeness of the entire BSM is prohibitively

difficult, and we are planning to start with partial verification on the completeness of

BSM on the JavaScript engine, using program analysis techniques such as those in

[185, 48].

Flexible access control with a high-level policy language Currently, security mod-

ules of BSM have to be written in C/C++. Although this provides the greatest flexibility

to develop security solutions, it is not convenient and not entirely portable on different

operating systems. As our ongoing work, we are designing a flexible access control

framework to allow security solutions to regulate web application behaviors with a high-

level policy language, without the need of writing C/C++ code. This access control

framework will allow the specification of conditional and contextual transition of prin-

cipals, enabling adaptive policy enforcement with finer-grained control under different

scenarios. For example, in the beginning an untrusted script may have full privilege as

the hosting page until suspicious behaviors are detected out it, such as accessing the

user’s account number or password on the page, when its privilege is degraded accord-

ing to the policy.

Supporting information flow tracking in JavaScript Our current prototype does

not support information flow tracking inside the JavaScript engine, and we are going to

include it in our future implementation to provide additional support.
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Regulating browser add-on behaviors Browser add-ons can run binary code and

directly communicate with underlying operating system as well as any component in

our reference model. Therefore, they are out of the scope of this work. To capture and

regulate their behaviors, traditional static and dynamic approaches on binary programs

are required.

5.5 Related Work

In this section, we briefly discuss related work in web security as well as traditional

security research works that share similar ideas with our work.

5.5.1 New Web Browser Architecture

Recently, security researchers have proposed several new browser architectures as a

more secure runtime environment for web applications. The main idea in this line of

work is to use OS mechanisms to isolate components or resources in the browser, and

mediate the access among different components or resources. The detailed methodol-

ogy in isolation varies with different approaches. For example, Tahoma [36] uses virtual

machines to isolate web applications. The OP browser [62] isolates different browser

components, called subsystems, i.e., the browser kernel, storage, network, UI and web

page instances using processes. The Chromium browser [15, 136] and Gazelle [169]

also use processes to isolate rendering engines for web pages, according to site in-

stance, and origins, respectively. Tang et al. [154] reduces the trusted computing base

by designing an operating system specifically for browsers. These research works are

complementary to BSM as they mitigate attacks against browsers’ memory vulnerabil-

ities, rather than those on web applications’ integrity and user data.

Mickens et al. propose Atlantis [106], which is a new browser design that pro-

vides low-level APIs for web applications to customize their execution environment.

The primary goal of Atlantis is to enable more control from web applications over the

complex, obscure and potentially incompatible implementation of different browsers.

Compared to Atlantis, BSM is designed specifically for enhancing security support in

web browsers, and such support is provided to security solution developers, rather than

to web applications.

5.5.2 Defenses to Attacks on Web Applications

One the other hand, various solutions have been proposed to address the threats to web

applications.

For client-side solutions, Yue et al. [182] instrument web browsers to obtain JavaScript

execution traces and perform offline analysis on these traces. This is similar as the work

of Hallaraker et al. [68], which audits JavaScript code executions and then analyze the

traces using misuse IDS, that is, based on known signatures. They need to intercept

the interfaces between the JavaScript engine and DOM. Alhambra [153] proposes a
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browser-based system that enables automatic creation, enforcement as well as testing

of security policies to prevent web-based attacks without the need of modifying web

server or web applications. Compared to it, BSM is a more general framework that

provides more comprehensive interception of browser operations and events, extensi-

ble functionality as well as deep diagnosis of web application behaviors. However,

the current prototype of BSM does not support taint tracking, which is supported by

Alhambra.

Information flow tracking is an important technique that has a wide range of ap-

plications in web security, including detecting malicious behaviors in browser exten-

sions [41], preventing XSS attacks from leaking sensitive session information [163],

and enhancing policy enforcement on a wide range of attacks [177], etc. As our cur-

rent BSM framework works at the level of major browser components, our prototype

does not support it. As discussed in Section 5.4, we will include support for it in future

development.

In previous sections, we have also discussed other related works for mashup protec-

tion and XSS defense [158, 88, 168, 37, 82, 67, 83, 65, 152]. Their need of modifying

the browser can be supported by BSM.

More recently, researchers start to collaborate the server and the client side together

to detect and prevent web-based attacks. One example is BLUEPRINT by Ter Louw et

al. [159]. It replaces the attack-prone document parsing process in web browsers with a

parse tree generated on web servers. Another example is Document Structure Integrity

(DSI) by Nadji et al. [114] that proposes a solution involving both the server-side and

the client-side to enforce the document structure integrity and prevents untrusted content

from compromising the trusted data. They require interception to the parsing process

and JavaScript taint tracking. BSM provides support to the parsing interception.

5.5.3 Operating System Security

Solutions on access control [143, 19, 9] have been proposed for operating system secu-

rity, and the most closely related work to ours is Linux Security Modules (LSM) [176].

LSM is a general framework that supports various access control enhancements to the

original discretionary access controls in Linux. It provides security mechanisms hooks

to important Linux kernel functions to allow them to enforce access control policies.

5.6 Summary

In this work, we analyze the weaknesses of current security mechanisms in web browsers,

and identify the key security support required to protect web applications. We propose

Browser Security Modules (BSM) to provide general security support for web appli-

cations by intercepting sensitive events and operations in the browser and maintaining

correlations among them. Through extensible interfaces, BSM allows easier develop-

ment of security solutions and experiments with new browser security mechanisms. We
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prototyped BSM in Firefox, and demonstrated its functionality by demonstrating its

support for existing and new browser-side security solutions.
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Chapter 6

Protecting Sensitive Web Content
from Client-side Vulnerabilities
with CRYPTONs

Presently, web browsers are designed to isolate content between web origins [113],

preventing data owned by one origin from being accessed by other origins. However,

in practice, information processed within a web origin’s protection domain often has

different levels of sensitivity. Some application data — which we refer to as sensitive

data in this work — is critically sensitive and more important than the rest of application

data. Social security numbers, medical reports, enterprise emails with financial data,

tax-related information, bank transactions, and user passwords are all examples of such

sensitive data. Web application owners often wish to strongly isolate sensitive data

within their applications, to protect it from vulnerabilities resulting from processing

non-sensitive information in its code.

Under the origin-based model, several applications processing sensitive data, such

as password managers [91] and encrypted chat or email clients [89], have to completely

trust the client-side browser’s origin isolation abstractions and the correctness of its

client-side application code [5, 150]. Information belonging to one origin is accessible

to all application code running within the protection domain of that origin, as well as

browser code (including add-ons), even if they do not need to access such information.

The client-side web application and the underlying browsers consist of millions of lines

of code and have had their steady share of security vulnerabilities historically; client-

side application vulnerabilities (like DOM-XSS [145]) are pervasive in client-side ap-

plication code and browser addons [28]. Given the scope of client-side vulnerabilities,

protecting sensitive data within the browser environment is a serious practical concern.

Problem. The crux of the problem is that the web lacks abstractions for information

owners to specify what information is sensitive and how it must be processed in the

client-side web browser environment. To address this problem, we envision new ab-

stractions that give owners control over the processing during the lifetime of selective
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sensitive data in the client-side browser. We term these as intra-origin data control

abstractions. In particular, we advocate that web browsers provide these controls as

first-class abstractions on the web, independently of strengthening the browser’s origin

isolation.

Although there has been extensive prior work on browser design, principled mech-

anisms for intra-origin information control have not received much direct attention. For

instance, recent browser designs have significantly improved privilege separation be-

tween code components [36, 15, 63, 169, 154, 31, 158, 13]. However, these techniques

do not directly allow web applications to enforce control on their data; a compromised

component with access to sensitive data can still launder it through its export inter-

faces. For example, the sandboxed renderer process in Google Chrome [15], if com-

promised, can still exploit legitimate network interfaces provided by the Chrome kernel

to leak data to attack-controlled domains (say via an img load) [32]. Although infor-

mation control has been investigated through language-based enforcements in specific

languages [105, 150, 72, 37], these mechanisms fail to extend the protection to the low-

est level (e.g. against attacks targeting low-level memory access). Although piecemeal

techniques (such as SFI [167], JIT hardening [140], CSP [150], and language-based

techniques) could be a plausible basis for sensitive data protection, we argue to build

more direct information control primitives on the present web instead.

Our Solution. We design and implement a novel data abstraction and browser prim-

itive CRYPTON that enables protecting sensitive data throughout their lifetime in the

browser. CRYPTONs are programmed directly in existing web languages (HTML/-

JavaScript), without requiring major re-engineering of existing application logic. A

CRYPTON explicitly marks a unit of sensitive data in a web page; its semantics enforce

that sensitive data and information computed from them are tightly isolated at the low-

est level (in the raw program memory). To support rich web applications that need to

execute flexible operations on sensitive data, CRYPTONs tie sensitive data with func-

tions that are allowed to compute over them. These few select CRYPTON functions are

trusted to be statically verified by web developers and are the only channels for releas-

ing information about sensitive web content. In addition, a CRYPTON provides other

important capabilities for sensitive data in web applications — guaranteed rendering

(with a proof-of-impression), and certified delivery of user inputs in the browser.

Building trustworthy implementations of these abstractions is an important, but

challenging goal. The main challenge stems from the monolithic trust model of to-

day’s web — application servers have to completely trust the client-side code in web

browsers, add-ons and applications.

To address this practical concern, we rethink the monolithic trust model that web

applications have on client-side code. In our design, the web server trusts a small piece

of client-side code called the CRYPTON-KERNEL— a small, trusted standalone engine,

which acts as a root-of-trust for the server on the client device. CRYPTON-KERNEL

runs in a separate OS process and sandboxes the untrusted browser, which invokes
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the CRYPTON-KERNEL on-demand to securely interpret CRYPTONs. A compromised

browser can deny access to sensitive information (denial-of-service) by refusing the

invoke the CRYPTON-KERNEL, but it cannot subvert the integrity and confidentiality of

sensitive data. In effect, our design of CRYPTON-KERNEL allows web applications to

specify information controls on sensitive information, bootstrap rich computation on it

and to build trusted paths between the user and the sensitive application code [118].

Unlike prior research on origin isolation in browsers, we do not isolate code com-

ponents or memory regions; instead we isolate sensitive data within a web application’s

origin using authenticated encryption. CRYPTONs make novel use of the concept of

memory encryption[95], wherein data computed from sensitive data remain encrypted

throughout their lifetime inside the untrusted browser’s memory. This ensures that any

unintended malicious or compromised code, whether part of the browser or the applica-

tion logic, can only access sensitive data in their encrypted form. Memory encryption

allows sensitive data to be opaquely accessed by an untrusted browser functionality

(such as the network stack, data stores, language parsers, rendering logic, and so on) as

well as application logic, without risking their confidentiality and integrity.

Therefore, the CRYPTON-KERNEL enforces its security guarantees while reusing

browser functionality — it does not rely on the browser’s same-origin policy enforce-

ment, its components such as the HTML parser, the JavaScript/CSS engine, and the

network engine to ensure its security properties. CRYPTON-KERNEL has a TCB about

40 − 50 times smaller than that of a real web browser, such as Firefox and Google

Chrome, consisting of roughly 20K lines of code. Through manual analysis, we find

that this design can prevent more than 92.5% of known security vulnerabilities from

exfiltrating or tampering with sensitive information, in a web browser such as Firefox

(Section 6.3).

Evaluation on Real-world Applications. First, we manually modify 3 popular web

applications to selectively use CRYPTONs to protect sensitive web content within them,

including a webmail, a web messenger and a web forum. The results show that CRYPTON-

KERNEL strengthens their security against a broad range of client-side vulnerabilities,

with a small (˜3-5 days) of adoption effort. Next, we conduct an extensive macro eval-

uation of applicability of CRYPTONs on real-world web sites including Alexa Top 50

websites, including account signup pages like Gmail, social networking sites like Face-

book, banking sites like Bank of America, e-commerce applications like eBay, and sev-

eral others. We treat all user inputs (form fields, text-boxes, selections, etc.) and other

manually marked contents in these case studies as sensitive information. Our macro

study shows the effectiveness of our solution and small adoption cost in these real-

world web applications. Finally, we evaluate the performance of our initial prototype.

Although our WebKit-based prototype implementation is still an unoptimized proof-

of-concept, we do not perceive noticeable slowdown when running it over real-world

applications. Further evaluation also shows that performance overhead from encryp-

tion/decryption operations is also modest, less than 8% when 100% of the texts on 5
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test pages from the Dromaeo web benchmarks are marked as sensitive.

Contributions. In summary, we make the following contributions in this work.

• We propose a novel solution for protecting sensitive web content with a small

trusted computing base (TCB), roughly 40x − 50x smaller than a full browser.

Our design advocates rethinking the monolithic (all-or-nothing) trust model be-

tween servers and clients on the existing web.

• We employ memory encryption to protect sensitive data in web browsers at a

byte-level granularity, offering strong protection at a low overhead. To the best

of our knowledge, we are the first to propose a data-centric abstraction for end-

to-end data protection in web browsers.

• We perform a large-scale evaluation of the applicability of intra-origin abstrac-

tions like CRYPTON in existing popular applications. We demonstrate the adopt-

ability of these abstractions into a large number of real-world web sites today

with a small developer effort.

6.1 Problem & Overview

To illustrate the need for new abstractions for sensitive data, consider the example of a

webmail application, such as Gmail. Currently, all emails rendered to the user by the

client-side Gmail application are treated equally in protection. However, this does not

match the security requirements in practical settings. Users may use the Gmail account

to access both leisure emails and corporate emails. As corporate emails may contain

sensitive information pertaining to trade secrets or financial information, for corporate

security, a user Alice may be willing to instruct Gmail to mark her corporate emails as

sensitive and strongly protect them from being leaked or tampered with. Unfortunately,

even if Alice and her webmail service provider (Gmail) are willing, it is difficult for

Gmail to guarantee the privacy of sensitive emails when they are processed and dis-

played in the client’s web browser. The current web provides no abstractions for Gmail

to isolate enterprise emails and specify controlled (but rich) computation on it at the

client-side.

6.1.1 Threat Model

In web applications like the above Gmail example, sensitive data are exposed to a large

threat landscape due to vulnerabilities in the client-side web stack. We give a back-of-

the-envelope enumeration of the in-scope threats of our approach, based on our investi-

gation of vulnerability databases [55].

• Browser components. Vulnerabilities in browser components can lead to viola-

tion of the confidentiality and integrity of sensitive information. We measure the

number of such vulnerabilities in Mozilla Firefox. We manually study security
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vulnerabilities of Firefox over the past 7 years from its bug database [55]. We find

that out of the 360 vulnerabilities accessible to us, at least 280 (80%) ones could

expose sensitive information to arbitrary malicious script or binary code running

in the browser’s chrome privilege. We present more details of our methodology

in Section 6.3.4.

• Browser add-ons. Browser add-ons and extensions may access sensitive data

processed in browsers. Although web browsers may prompt users to approve

the permissions requested by add-ons during their install time, many users may

“click-through” to grant them to the addons. We surveyed the Top 30 Chrome

extensions, and find that 23 request access to Gmail; if these are installed and have

vulnerabilities, they can be compromised by attackers to access sensitive email.

15 out these 23 have been confirmed to contain code-injection vulnerabilities in

Carlini et al.’s recent work [28].

• Application components. Web application components can also access the sen-

sitive data in web applications. The Gmail Inbox page contains 171.1 KB code

(including HTML, CSS, JS), while only 1.7 KB of it needs to access email con-

tents. However, client-side web application vulnerabilities are pervasive, includ-

ing mixed content, unsafe evals, capability leaks, DOM-XSS, and insufficient

origin validation.1

In this work, we focus on providing two security guarantees on sensitive data pro-

cessed in the client-side browser: integrity and confidentiality. Our design assumes

that there are client-side vulnerabilities in web applications (including add-ons) and

browsers, but trusts the underlying OS, its windowing and graphics interfaces. Our

defenses preclude many vulnerabilities (outlined above) from corrupting sensitive data

or leaking unprotected sensitive data to adversaries. For instance, attackers can exploit

client-side vulnerabilities to leak sensitive emails to remote adversaries. However, those

emails are in encrypted form and the decryption keys are inaccessible to attackers. Sev-

eral attacks are outside the scope of the guaranteed security properties; we discuss them

in Section 6.1.4.

6.1.2 CRYPTON: A New Abstraction

We introduce a new data protection abstraction called CRYPTON. Conceptually, CRYP-

TONs are akin to classes in object-oriented languages, which encapsulate sensitive data

together with the operations that can legitimately operate on them. CRYPTONs provide

the following 4 main capabilities.

Information isolation. We enable transparent isolation of sensitive data from other

data and code in web browsers. In our Gmail example discussed earlier, the confiden-
1Gmail does not include external libraries and does not mix content from HTTP sites; nevertheless,

several other web applications we study in Section 6.3 include external libraries and mixed content, which
poses serious threat to sensitive information.
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tiality of the sensitive corporate emails must be maintained by authenticated encryption.

Other examples include credit card numbers, contents of shopping carts in e-commerce

applications, user passwords in login pages, payee accounts in online banking sites,

and so on. Our assumption is that preventing malicious code from running in the com-

plex web browser is not tractable; however, we aim to prevent unauthorized leakage or

tampering of sensitive data.

Controlled operations. If we isolate sensitive data from all computations, it would

severely disincentivize web applications from outsourcing rich functionality to the client-

side browser. There is a trade-off between the information isolation guarantees and the

richness of functionality that can operate on sensitive information. In our Gmail exam-

ple, Alice should be able to use Gmail’s interfaces on her corporate emails for reading,

composing, formatting (configuring fonts, colors, HTML formatting or alignments),

archiving, forwarding and so on. For practical usage, we aim to allow such owner-

specified operations to compute output from sensitive data. However, such output must

be protected from confidentiality and integrity attacks from all other code in the browser,

and thus is encrypted by default. The data owner (e.g., Gmail) can also specify which

operations reveal computed information; however, we leave the design and choice of

these functions up to the owner. In this work, we make encryption possible on simple

data types, such as strings and integers, to limit the TCB size — of course, more com-

plex data (such as arrays, formatted HTML) can still include encrypted data in them

(see Section 6.2.4).

Certified user inputs. If the browser and web application code are not trusted, user

inputs, such as keyboard inputs and mouse clicks, can be easily changed before they

are processed by code in the TCB. In this work, we focus on enabling users to enter

sensitive text strings via a trusted keyboard. Specifically, we provide a trusted path

for user inputs between the OS keyboard events and the trusted web application event

handlers (specified as CRYPTON functions), through the untrusted web browser. Our

focus on keyboard events is guided by the observation that a significant fraction of

sensitive data on the web pertains to user keyboard inputs. In our Gmail example, Alice

signs in by using her password, composes a sensitive email by typing, and searches for

keywords also by using the keyboard.

Proof of impression. Malicious client-side code can attempt to disable critical mes-

sages that are supposed to warn users of potential threats. For example, the webmail

server may show a warning for emails suspected to be scams and banks may want to

warn of fraudulent activities. As another example, when the Gmail servers detect suspi-

cious login activities, such as simultaneous logins from different geolocations, it alerts

users to change their passwords. Such messages are crucial, and may be helpful for

users to prevent attacks or to stop them at an early stage.

In this work, we focus on providing a “proof of impression” of simple data types

such as strings and byte streams. This includes verifiable rendering of string content and
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bitmaps, during which rendering of other untrusted content into the same region is tem-

porarily blocked for t seconds (t=3 by default) [73]. Such a guarantee is useful beyond

the Gmail example, such as online advertisements (ads). Proof of impression can help

advertisers that bill publishers for ad impressions to disambiguate real ad impressions

from ad fraud with “laundered” traffic [47].

6.1.3 Design Overview

Our design changes the monolithic trust model where web servers trust the entire browser

(including add-ons) and client-side application code. In our design, developers encapsu-

late sensitive data, such as corporate emails or bank statements, into CRYPTONs and di-

rectly embed them in HTML documents. To enforce the security guarantees and seman-

tics of CRYPTONs, the web server trusts a small, standalone engine at the client called

the CRYPTON-KERNEL. The CRYPTON-KERNEL executes outside the web browser

and is protected from a compromised browser by standard OS sandboxing mecha-

nisms, similar to those used by existing browsers such as Google Chrome [130, 129].

A CRYPTON-compliant web browser recognizes CRYPTONs during HTML document

parsing and delegates their handling to the CRYPTON-KERNEL, as detailed in Sec-

tion 6.2.

The CRYPTON-KERNEL acts as a root-of-trust to protect sensitive CRYPTONs at the

client-side. Specifically, CRYPTON-KERNEL builds three trusted paths passing through

the untrusted browser: (a) a secure communication channel between the web server and

itself, (b) a trusted path from the CRYPTONs to the user’s screen (i.e., to the software

rendering pixel maps or the GPU display buffers), and (c) a trusted path between the

user’s keyboard inputs to CRYPTONs functions that handle keyboard events. These

trusted (data) paths run through the untrusted browser code, reusing existing browser

functionality. We design our system to use memory encryption to protect data on these

trusted paths using authenticated encryption at the granularity of memory bytes [95].

Secure Channel To Server. At the start of a web session exchanging sensitive data,

the web server establishes a secure channel with the trusted CRYPTON-KERNEL. This

secure channel enables the web server to share a session key set K with the CRYPTON-

KERNEL, used by both parties to encrypt/decrypt CRYPTONs in the session. To avoid

bloating our TCB, the CRYPTON-KERNEL delegates all network communication to the

untrusted browser. Thus, it is important to establish a secure channel against man-in-

the-middle attacks, in case the browser gets compromised. We use the standard mutual

SSL authentication protocol to establish this channel [54]2. SSL certificate verification

for server authentication is a common, backwards compatible mechanisms for HTTPS

sites today. To enable the server to authenticate the CRYPTON-KERNEL’s certificate,

we assume the CRYPTON-KERNEL uses a certificate self-signed by an RSA private
2An alternative is to use a shared symmetric key between the server and the CRYPTON-KERNEL.

However, we choose the SSL-based authentication for easier implementation, as we can reuse off-the-
shelf libraries.
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stored in the CRYPTON-KERNEL. The corresponding public key is uploaded by the

user to the server via an out-of-band secure channel (or via “first-time trust” mode as in

SSH [170]). Relying on users to upload public keys is a common practice used by web

services such as Github [59] and BitBucket [21], so we expect a similar user experience

for using a CRYPTON-enabled website.

Secure Display. Sensitive content, such as corporate emails, must remain encrypted in

the untrusted browser until the final rendering of the content. The CRYPTON-KERNEL

provides a trusted data path between the CRYPTON content received from the server to

the GPU buffer [15], which finally render bitmaps and pixels to the screen. This trusted

path is implemented as part of the CRYPTON-KERNEL. To enable the browser’s func-

tionality, sensitive content must be given opaque access to the untrusted browser, say for

deciding the layout dimensions or for storing them in the DOM or untrusted JavaScript

heaps. To enable this functionality to work, the CRYPTON-KERNEL encapsulates en-

crypted sensitive content into opaque objects before passing them to the web browser.

These opaque objects (e.g. encrypted string class) allow the browser to process sensitive

data as opaque blobs of text, determine the length of the underlying plaintext for layout,

but do not permit any malicious operation that would leak plaintext data. Opaque ob-

jects are finally rendered by the CRYPTON-KERNEL using a “sandboxed GPU buffer”

mechanism [15], which enables it to ensure that content is rendered on top for at least t

seconds.

Trusted Path For User Input. For sensitive content generated at the client, such as

by user keyboard inputs, the CRYPTON-KERNEL provides a trusted path between the

OS keyboard events to the CRYPTON functions designated to handle input events. To

enable these, CRYPTON-KERNEL intercepts all keyboard events from the OS, similar

to Chrome’s sandboxing mechanism [15]. It uses opaque string objects to establish the

trusted data paths via the untrusted browser code.

We expect the user Alice to recognize and enter sensitive keyboard inputs (e.g.,

passwords) through the CRYPTON-enabled trusted path. To help users securely inter-

act on and across multiple CRYPTON-enabled sessions, CRYPTON-KERNEL displays 2

security indicators above the untrusted browser UI. For distinguishing when her user

inputs are going to be encrypted (vs. when she is interacting with a non-CRYPTON-

enabled session), CRYPTON-KERNEL displays a user-selected secret image icon. This

image icon states that the user’s key events will be encrypted until Alice invokes a spe-

cial pre-selected key sequence to signal end of the encrypted keyboard session. This

indicator informs users whether their sensitive keystrokes are going to be encrypted; we

expect users to only enter sensitive information when seeing the right image icon.

Second, CRYPTON-KERNEL displays the URL of the website whose keys are being

used to encrypt the keystrokes, in a special unspoofable URL bar above the browser

chrome. This allows Alice to distinguish to which of the multiple CRYPTON sessions

her present keystrokes are being delivered. This indicator informs the user of the in-
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tended recipient of the encrypted keystrokes; users are expected to verify this URL

indicator and ensure that it is the right recipient for the sensitive data they are about to

enter.

Both UI indicators are securely rendered to the screen directly by the CRYPTON-

KERNEL and can not be overlaid by the attacker. The CRYPTON-KERNEL does not

allow the untrusted browser to inject key sequences or read sensitive GPU buffers using

standard sandboxing techniques. We discuss more details in Section 6.2.

Assumptions. A CRYPTON-compliant server uses an HTTPS frontend as the server-

side interface to the CRYPTON-KERNEL. HTTPS frontends often handle authentication

and are common for load balancing, before delegating the session to backend server —

we believe our design can be deployed in existing HTTPS frontends.

CRYPTON-compliant servers must be careful to default-deny access to sensitive

content outside the secure channel established with a trusted CRYPTON-KERNEL. Oth-

erwise, this would incentivize attackers to fool users into accessing the sensitive content

over non-CRYPTON-enabled sessions.

To protect the CRYPTON-KERNEL, our solution leverages OS processes and system

call sandboxing to isolate the untrusted browser from the CRYPTON-KERNEL. Robust

sandboxing mechanisms are known and used by existing browsers such as Chrome [15].

For additional protection, especially in emerging Web OS stacks [112, 127], hardware-

assisted dynamic root of trust measurement (DRTM) (such as those provided by Intel

TXT [78, 117]) can be used to ensure the dynamic code integrity of the CRYPTON-

KERNEL.

6.1.4 Out-of-scope Threats

Our focus is on providing integrity and confidentiality of data. So, for example, our

defenses cannot be used to protect data used in server-side authorization such as CSRF

tokens, session cookies and authentication tokens (for single-sign on mechanisms), as

blocking these attacks require ensuring the authenticity of the sender of sensitive data.

Similarly, browser vulnerabilities may be used to completely deny access to sensitive

data (denial-of-service); our defenses do not enforce data availability to the intended

recipient.

In our design, a trusted component (the CRYPTON-KERNEL) acts a root-of-trust on

the client device. The CRYPTON-KERNEL establishes a trusted path to receive sensitive

user input (via keyboard inputs). There are several attacks that can elicit sensitive infor-

mation from the user outside the trusted paths, say by utilizing phishing [181, 186, 58],

confusing the user with fake security indicators [178, 80], exploiting time-of-check-

to-time-of-use (TOCTTOU) windows in our security indicators, clickjacking [11, 73],

shoulder surfing or through social coercion [23]. We recognize that these are important

channels of information loss to consider for guaranteeing end-to-end security; however,

defenses for these specific attacks are of independent interest. We admit that a usabil-

ity evaluation of our additional indicators would be useful before a full deployment;
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however, such an evaluation would merit from a separate research.

Finally, we point out that our design requires developers to carefully design CRYP-

TON functions to avoid side-channels via timing and control flow, which are declassifi-

cation interfaces to sensitive data. These are well-studied classes of attacks on informa-

tion flow and encryption systems [33, 24, 30]; tools to detect and minimize the capacity

of side channels are useful for developers [90].

6.2 Design

We propose a novel data protection solution with CRYPTONs that can be directly pro-

grammed into web pages.

6.2.1 CRYPTON Definition

The CRYPTON abstraction incorporates sensitive data protected with integrity and con-

fidentiality, the operations permitted to decrypt and process the information, as well as

the functional policy that determines which keys to use for decrypting sensitive infor-

mation and for encrypting outputs.

More formally, we define a CRYPTON as a 5-tuple W = ( ~D, ~F ,U ,V, I). As de-

fined later, ~D is a sequence of information blocks and ~F is a sequence of CRYPTON

functions. U is the web address URI of the CRYPTON-enabled web server, the HTTPS

frontend of the web server. The external verifier V is the HTTPS web URI accepting

proof-of-impression tokens. I is a unique identifier (ID) for the CRYPTON.

A CRYPTON W syntactically binds permitted operations and sensitive data in its

definition; this binding is signed by the SSL public key corresponding to U and is

verified and maintained by CRYPTON-KERNEL. When the CRYPTON-KERNEL first

processes a CRYPTON, it communicates with U over a secure channel and fetches a set

of symmetric encryption keys K corresponding to that specific CRYPTON. Note that

CRYPTON keys K are not sent as part ofW , which would otherwise permit them to be

read by adversaries. The set K consists of a default encryption/decryption key κ0, an

HMAC key κhmac, and optionally other keys κ1, ..., κn, for authenticated encryption us-

ing symmetric key ciphers (256-bit AES-GCM). These keys are kept secret and known

only to the CRYPTON-KERNEL; they are referenced by their key indices in CRYPTON

functions and information blocks as explained below.

Conceptually, each CRYPTON function Fi is a 3-tuple Fi = (P,R, τF ). The syn-

tactic definition of Fi binds tuple elements together; these bindings are signed to ensure

their integrity. P : K×K is a set of policies defined for eachFi over keys inK∪{⊥, κint
}, where⊥means public (no encryption), and κint is a CRYPTON-KERNEL-specific key

to protect user inputs, such as keystrokes. Such a policy dictates how a CRYPTON func-

tion encrypts and decrypts sensitive data. A policy κ1 → κ2 for a function Fi indicates

that Fi decrypts sensitive data using the key κ1. Global or local variables written dur-

ing the function execution, arguments of calls to the untrusted browser, as well as return

values, are encrypted with the key κ2. Policies are optional; the default policy enforced
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Figure 6.1: Overview of the CRYPTON-KERNEL, consisting of 4 components in gray,
and the sandbox of a dashed red rectangle.

is κ0 → κ0, i.e., decryption and encryption both with the default key. We explain the se-

mantics of the execution of each function in detail later. All values computed in implicit

or explicit flows from CRYPTON functions are encrypted with CRYPTON keys. R op-

tionally lists the arguments to the function and the return value. Finally, functions have

a type field τF which separates 2 kinds of functions: (a) a proof-of-impression (PoI)

function that must be invoked to handle impression tokens, and (b) all other functions.

PoI functions compute encrypted messages over the nonce token and the impressions

of sensitive messages and send them to the external verifier V .

An information block is a 6-tuple Di = (I, κ, ID,A, τD,FD). I and ID are iden-

tifiers for the owner CRYPTON and the information block, respectively. The encryption

key forDi is specified by κ ∈ K. A is the encrypted ciphertext of the enclosed sensitive

data. Finally, if a certain information block requires proof-of-impression for its render

valueA, the field τD indicates the nonce token for this information block, andFD refers

to the function to be invoked with the impression token by CRYPTON-KERNEL.

6.2.2 CRYPTON-KERNEL Design

The CRYPTON-KERNEL provides secure processing of sensitive web content for a

CRYPTON-KERNEL-compliant web browser, while never exposing decrypted data to

the browser. Our solution needs to instrument the untrusted browser, which communi-

cates with the CRYPTON-KERNEL via IPC channels. We present a brief overview of

our solution with a hypothetical example demonstrating protecting sensitive emails in a

webmail application (Figure 6.2).

When the CRYPTON-KERNEL-compliant web browser parses an HTML document,

such as the sample web page in Figure 6.2, it encounters the CRYPTON header, functions

or information blocks. At this time, the browser invokes the CRYPTON-KERNEL via an

IPC interface. Once invoked, the Manager component of the CRYPTON-KERNEL pro-

cesses these special tags, including validating their integrity, and retrieving CRYPTON

keys via a secure channel from the server URLs embedded in the CRYPTON header.

The Manager component returns opaque objects to the untrusted browser for processed
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<html>
<head>

<cryptonheader
owner=’https://www.gmail.com’
https_frontend_url=

’https://www.gmail.com/crypton_keys.json’
verifier_url=

’https://www.gmail.com/crypton_verifier’
iv=’fVrXgz3pQ2kL7gHW...’
hmac=’DtTjG0vEvJ4YkVqF...’ ></cryptonheader>

...
<script>

[crypton] function searchEmail(keywords) {
’fun_body’:
’{ var words = keywords.split(...); ...}’,

’policy’: ’$\kappa_{int} \rightarrow \kappa_0$’,
’hmac’ : ’Vukhwo5Wug1Dmnhr...’

}
[crypton] function parseJson(json)

... details omitted for brevity...
</script>

</head>
<body>

...
<crypton
id=’ib_txt’
owner=’https://www.gmail.com’
key=’$\kappa_0$’
sensitive-data=’Wi1jGq2M69E8w6xn...’
hmac=’jOiLlDboZ0G7jNAx...’ ></crypton>

<button type=’button’ id=’email_search_btn’ onclick=’’searchEmail(...)’’ >
Search</button>

...
</body>

</html>

Figure 6.2: CRYPTON Tags Embedded in HTML. An example of search emails match-
ing user-input keywords, including the CRYPTON header, functions, and information
blocks.

CRYPTONs. These opaque objects encapsulate encrypted values and metadata such as

the corresponding CRYPTON ID and decryption key. They are propagated internally by

the untrusted browser, akin to ordinary browser objects. (Step A in Figure 6.3).

The untrusted browser handles the layout of web content, and composes interme-

diate constructs for rendering. Another CRYPTON-KERNEL component, called the Se-

cure Display, intercepts rendering requests from the untrusted browser, and converts the

layout constructs into pixel maps written into the GPU buffer. When opaque objects

enclosing encrypted texts traverse through untrusted code paths in the browser, and

finally reach the Secure Display component, the Secure Display decrypt them before

transforming them into pixel data for the GPU buffer. For example, sensitive emails

in our example are encrypted when they are downloaded into the browser. When they

are being rendered, the Secure Display component of the CRYPTON-KERNEL decrypts

them into plaintext that is displayed to users (Step B).

To protect user inputs, the Keyboard Encryptor component of the CRYPTON-KERNEL

encrypts all user inputs for the CRYPTON-enabled webmail application. For example, it

encrypts the search keywords while the user enters them in the untrusted browser. The

resulted opaque object containing the encrypted user inputs is finally dispatched into the
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Figure 6.3: Sequence Diagram for CRYPTON-KERNEL Operations

event handler function searchEmail triggered by a user click on the “Search” button.

The webmail developer marks searchEmail as a CRYPTON function with a policy

κint → κ0, allowing it to decrypt user inputs (such as search keywords) encrypted

with the CRYPTON-KERNEL’s internal key κint. When searchEmail is invoked,

the untrusted browser transmits the execution to a reduced execution environment in

the CRYPTON-KERNEL, called the Thin Encrypted Memory Interpreter (TEMI). The

TEMI decrypts the search keywords encrypted in the opaque event object during the

execution of

searchEmail. This allows the function to preprocess the search terms, such as re-

placing ’+’ with ’ADD’, and encode the texts. Then searchEmail constructs an

XMLHttpRequest containing the preprocessed search terms and sends it to the webmail

server. When the webmail server receives the request, it decrypts the search terms and

search for them in the email database. (Step C).

Subsequently, search results are returned to the untrusted browser in JSON format

where innermost email headings are encrypted. The registered XMLHttpRequest han-

dler function parseJson is invoked to tokenize and validate the JSON string, and

return a composed HTML fragment to be rendered to the user. The email headings in

the HTML fragment remain as opaque objects to untrusted code in the browser, and the

Secure Display decrypts them when rendering the headings for the webmail user (Step

D).
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6.2.3 Security Invariants

To protect the confidentiality and integrity of sensitive web content in an untrusted

browser, our solution enforces the following semantics as security invariants for CRYP-

TONs.

For information isolation:

P0: Maintaining Syntactic Bindings. A CRYPTON syntactically binds its elements

to each other (such as K to I, P to each Fi and so on) with mentioned keys. These

bindings are checked and enforced throughout the lifetime of the CRYPTON. Authen-

ticated encryption ensures that any attempt to tamper with such bindings by malicious

code will be detected.

P1: Secure Storage. All CRYPTON information blocks, functions and intermediate

computation by CRYPTON functions is stored in private memory outside the browser,

or encrypted when stored in memory shared with the browser. The standard guarantees

of authenticated encryption apply to these.

P2: Secrecy of K. The keys K are only stored in the CRYPTON-KERNEL and not

accessible to the CRYPTON-compliant browser.

For controlled operations:

P3: Functional Policy. If a functionFi is bound to a policy κ→ κ′, then all sensitive

data processed by it are decrypted using κ, and all values written by Fi are encrypted

with κ′, e.g., modified global variables, local variables, arguments of calls to untrusted

browser functions, and return values. See P5 as the only exception.

P4: Non-interfering Execution. The execution of two functions F1 and F2 are non-

interfering on the CRYPTON-KERNEL, if they are bound to policies κ1 → κ′1 and κ2 →
κ′2 respectively, and {κ1, κ′1} ∩ {κ2, κ′2} = ∅.

P5: Information Release. Only functions bound to policies → ⊥ output plaintext

to the browser3.

For certified user inputs:

P6: User Input Encryption. User keyboard inputs are encrypted with the CRYPTON-

KERNEL’s internal key κint, and only CRYPTON functions bound to policy κint →
can decrypt the inputs.

3 denotes any key or ⊥
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P7: Restricted Keyboard Access. The CRYPTON-KERNEL intercepts all keyboard

events before they are delivered to the browser.

For proof of impression:

P8: Proof of Impression. When an information block Di is rendered, it should be

displayed for a certain period of time without obstruction or overlay by other UI con-

tent. The PoI function specified by the developer is invoked to compute an encrypted

message acknowledging the rendering to the verifier V in a secure channel.

P9: Restricted Display Access. The CRYPTON-KERNEL mediates the rendering op-

erations initiated by the browser.

With these security invariants, CRYPTONs ensure the confidentiality and integrity

of enclosed sensitive data throughout their lifecycle in untrusted web browsers.

6.2.4 Key Techniques and Security Analysis

To ensure the security invariants above, the CRYPTON-KERNEL provides a reduce en-

gine for permitted operations on sensitive data, and interposes browser display and key-

board events to support trusted paths for display and user inputs.

Thin Encrypted Memory Interpreter. To execute controlled operations on sensitive

data, we design the Thin Encrypted Memory Interpreter (TEMI) — a reduced scripting

engine. In designing TEMI, we face a tradeoff between supporting rich functional-

ity and minimizing the TCB. A full-fledged JavaScript engine typically has 200,000

(JavaScriptCore) to 400,000 (the V8 engine) LOC. However, we observe most of po-

tential sensitive data types are integers and strings, which accounts for only a very small

fraction of the entire JavaScript engine. Of course, these primitive types are aggregated

into higher-level abstract data types (such as arrays, lists, objects, and so on), and much

of the logic that operates on the higher-level data types is agnostic or independent of the

inner nested data. By leveraging this observation, we design a “thin” TEMI, which has

a TCB of only 13, 000 lines of code.

The TEMI runs inside the CRYPTON-KERNEL’s process, communicating with the

process(es) of the untrusted web browser via IPC messages (shown in Figure 6.4). The

TEMI has a private virtual register set (for local computation) in its private memory

region. It decrypts sensitive data in opaque objects when they are loaded into virtual

registers, and re-encrypt all values written from virtual registers to opaque objects, in-

cluding global variables, arguments, and return values. By default, the TEMI uses the

default CRYPTON key κ0 for encryption and decryption; a developer-specified policy

κ1 → κ2 of a CRYPTON function dictates κ1 used for decryption, and κ2 for encryption

(P3). A CRYPTON function that is allowed to disclose information has a policy → ⊥
(P5). The TEMI retrieves CRYPTON keys from CRYPTON-KERNEL’s private memory

storing keys transferred from the web server (P2).
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During the execution of a CRYPTON-KERNEL function, any access to higher-level

abstract data types results in an IPC message to a proxy in the JavaScript engine of the

untrusted browser with opaque objects as arguments. The proxy translates the message

into operations that are executed in the untrusted JavaScript engine. For operations ini-

tiated by the CRYPTON-KERNEL, any string and integer operation that emerges during

execution in the untrusted JavaScript engine is tunneled back to the CRYPTON-KERNEL

for processing opaque objects. In our running example in Figure 6.2, the parseJson

function sends a message to the untrusted browser to access complex data structures,

such as arrays to perform parsing operations. The execution then switches back to the

TEMI when an Array.toString function is invoked so that operations on sensi-

tive strings can still be processed in the decrypted form. This unmodified CRYPTON

function runs in our TEMI as it switches back and forth between the untrusted browser

and the CRYPTON-KERNEL. For data exchange, the TEMI and the untrusted browser

passes integer and string data in the IPC messages, while only pass references to high-

level data structures as they are processed exclusively at the untrusted browser side.

In our design, accessing higher-level data types defined in the untrusted browser

from the TEMI incurs no explicit data leakage, since all arguments are encrypted (P1).

Implicit control flow leakage is possible, while we assume it can be largely ignored

in legitimate code [30], such as CRYPTON functions. For compatibility with existing

browsers, when one process is running JavaScript, we halt the other process until the

running process returns.

To prevent interference between different CRYPTON functions, the TEMI executes

each CRYPTON function in a separate context, which is destroyed upon returning of the

function (P4). This includes virtual registers stored in the private memory region, as

well as encrypted intermediate variables written in the shared memory region. Similar to

garbage collectors, the TEMI clears all these values when a CRYPTON function returns.

Secure Display. The CRYPTON-KERNEL allows automatic decryption of opaque ob-

jects when they are being rendered, but prevents untrusted browser code to access the

decrypted information. The Secure Display component of the CRYPTON-KERNEL can

use sandboxing techniques similar to Google Chrome [15], such as restricted tokens and

Windows job and desktop objects on Windows [130] and seccomp on Linux [129], to

intercept untrusted browser’s access to the GPU buffer and graphic libraries on the OS
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(P9). To render any UI content, the untrusted browser must pass the rendering requests

to the Secure Display. The Secure Display in turn converts web contents and browser

widgets into intermediate rendering constructs (such as Glyphs that are basic shapes

in text rendering [27]) and sends them to the graphics library for rendering. During this

process, the Secure Display decrypts opaque objects containing sensitive strings, with

the keys specified in the opaque objects. To prevent UI obstruction, while rendering

such opaque objects, for t seconds, the Secure Display temporarily suspends other ren-

dering requests to the same destination GPU buffer location. It also invokes the PoI

function for the opaque string being rendered, if applicable. The PoI function then

computes an acknowledgement token encrypted with the CRYPTON’s default key κ0
and sends it to the external verifier (P8).

Keyboard Encryptor. The Keyboard Encryptor interposes on keyboard events from

the graphics toolkit that receives keystrokes. For each keystroke event, it encrypts it

with a CRYPTON-KERNEL-specific internal key κint before it reaches the web browser

code (P6, P7). Therefore, web applications cannot read the clear-text of user inputs

unless by calling the CRYPTON functions with a policy like κint → . Together with

P3, this ensures that keyboard inputs are protected, and are available only to intended

functions.

Resilience against malicious code in web browsers. Although the CRYPTON-KERNEL

closely integrates the untrusted web browser, the security guarantee ensured by the

CRYPTON-KERNEL are independent from the untrusted web browser, i.e., all disclo-

sure of the sensitive information is controlled by CRYPTON functional policy.

To allow non-invasive operations that do not require plaintext, the encrypted data

in CRYPTON information blocks are stored on the browser’s storage as opaque objects.

These objects are protected by authenticated encryption for their integrity and confiden-

tiality. The keys are available only to the CRYPTON-KERNEL. Untrusted code has no

access to it (P2), and thus cannot decrypt sensitive data, unless by explicitly invoking in-

formation releasing CRYPTON functions (P5). User inputs are automatically encrypted

before they reach the untrusted web browser (P6), so they are under the same protec-

tion as sensitive data coming from web servers. Web servers can also verify sensitive

messages are properly displayed via proof of impression (P8).

Although malicious code cannot decrypt the sensitive data in ciphertext, it can tam-

per with them. However, this will be detected by integrity verification built into au-

thenticated encryption. This ensures the integrity of all CRYPTONs from the web and

sensitive user inputs at the client.

6.2.5 Prototype & Deployment

We implement a prototype of the CRYPTON-KERNEL integrated with WebKit-GTK (rev

45311) with JIT disabled, for the ease of implementation. Figure 6.1 closely resembles

the design of our prototype. Our prototype reuses the OpenSSL code for AES-GCM
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App Name Sensitive Data Server-side
Change Client-side Change Estimated Total

Conversion Effort

RoundCube Mails with subject
marked as “[sensitive]” 8 LOC php 9 Functions, 0.5K LOC JS 2-3 Man-Days

AjaxIM Instant messages 6 LOC php 9 Functions, 0.4K LOC JS 2-3 Man-Days

WordPress
Blogs containing “[sen-
sitive]” in titles and
search keywords

10 LOC php 19 Functions, 1.2K LOC
JS 4-5 Man-Days

Table 6.1: Summary of Case Studies on 3 Popular Web Apps, demonstrating modest
adoption effort

encryption/decryption. We intercept signal dispatch from the GTK+/Glib to the browser

to encrypt user inputs. As user input events are fired for each keystroke, we use a stream

cipher to encrypt user inputs. Thus, positions of user input characters are maintained

as original, and this naturally supports mouse text selection. When user inputs are sent

to web servers, we use a CRYPTON function to re-encrypt them with the AES-GCM

blocker cipher with the specified key. Table 6.2 lists the estimated sizes of components

in our design of the CRYPTON-KERNEL. Comparing to a web browser, such as Firefox

and Chromium, which typically has around 800K to 1,100K lines of source code, the

TCB in our unoptimized prototype is about 40-50 times smaller.

CRYPTON-KERNEL Component LOC
Manager 2.9K

TEMI 12.7K
Secure Display 4.8K

Keyboard Encryptor 0.5K
Total 20.9K

Table 6.2: Estimated Size of TCB in CRYPTON-KERNEL Prototype

Our prototype implements functionalities sufficient to support our studies with real-

world web applications. In a full deployment, several browser components need to be

modified to propagate the opaque objects with encrypted data, including support for un-

trusted browser sandboxing, browser spell checkers, all CSS styling features, web page

printing, WebGL and GPU accelerations. Such support has not been implemented in our

current prototype. For deployment into real web browsers, we consider an alternative

deployment into Google Chrome’s browser kernel, leveraging existing privilege sep-

aration and sandboxing mechanisms in Google Chrome. This alternative deployment

would move the code of browser renderers out of the TCB for data protection.

6.2.6 Alternative Deployment into Google Chrome

Our current design only requires a very small TCB completely outside web browsers.

However, it requires extensive changes to existing web browsers. We also consider

an alternative deployment scenario with slightly larger TCB but smaller adoption cost

into Google Chrome. Google Chrome partitions more vulnerable components into the

renderer processes, and leave more security-sensitive components in the browser ker-

nel process. It has also implemented sandboxing mechanisms to prevent renderer pro-

cesses from directly accessing UI rendering, user inputs, file systems, and network. All

such access has to go via interfaces exposed and checked by the browser kernel. Thus,
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it is straightforward to implement the CRYPTON-KERNEL into the browser kernel of

Chrome, leveraging the existing UI and user input sandboxing mechanisms. Under this

alternative deployment, the reduction of the code size that can access sensitive data is

still significant. It removes more than 900K lines of code in renderer processes and all

client-side code in web applications out of the TCB for data protection.

6.3 Evaluation

We apply our solution to real-word web applications to study the applicability and adop-

tion cost. We first manually convert 3 popular web applications to use our solution to

protect typical sensitive data in those applications, and then extend our study to Alex

Top 50 web pages. Both micro and macro studies show the effectiveness of our solu-

tion in protecting typical sensitive data on the present web with modest adoption effort

required.

6.3.1 Applicability to Real-world Applications

Micro-study on open-source web applications. We perform case studies on 3 open-

source web applications to measure 2 aspects, i.e., a) how effectively our solution can

protect sensitive content in real-word applications, and b) how much developer effort

is required for adopting our solution. We choose applications of different categories:

RoundCube [157], a webmail server, AjaxIM4, a web-based instant messenger, and

WordPress [56], a web blog service. We manually convert the source code of the 3

applications by: 1) modifying the server-side code to encrypt sensitive content be-

fore sending it to clients; 2) identifying client-side JavaScript functions that need to

decrypt sensitive data for operations and converting them into CRYPTON functions;

and 3) rewriting client-side JavaScript functions that receive and process user inputs

into CRYPTON functions; these CRYPTON functions encrypt user inputs before sending

them to web servers. We check all tests with a server-side proxy.

We find that with modest effort in converting these applications, our solution can

effectively protect typical sensitive data, such as sensitive emails, instant messages,

blog entries and comments. We write a 450-line custom PHP library for common func-

tionalities to process CRYPTONs in PHP applications. We manually rewrite the 3 web

applications, leveraging the custom library to wrap sensitive web content into CRYP-

TONs. Table 6.1 summarizes the results of our case studies on the three applications.

Typical client-side operations on sensitive data we observe include trimming whites-

paces in strings, serializing HTML content, emotion text replacement, URI encoding,

etc. We mark them as CRYPTON functions in our experiments to support the legitimate

functionalities. For brevity, we leave out detailed steps here, and a summary of our

modification to application source-code is available online [8].
4We use the AjaxIMRPG fork [40] that is better maintained than the trunk.
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Web App
Detail Sensitive Info

# & Size of Functions Requir-
ing Decrypted Sensitive Info
[Percentage of Total Code
Size]

# & Size of
All JS Func-
tions

# Browser-TEMI In-
teractions vs.
# All Access to JS Data
Types

Gmail Login Username, Pass-
word 2 (0.29 KB) [0.43%] 196

(66.5KB) 0.7% (956/141492)

Gmail Com-
pose Email

To, Subject,
Content 9 (1.84KB) [0.98%] 745

(186.8KB) 0.01% (89/541883)

Gmail Read
Email

From, Subject,
Content 2 (1.1KB) [0.64%] 730

(171.1KB) 0.02% (92/390206)

Ask Search Search Terms 3 (1.3KB) [0.31%] 569
(416.2KB) 0.01% (40/218922)

Google Search Search Terms 6 (0.92KB) [0.26%] 581
(352.9KB) 0.2% (437/206675)

Google+ Post Post Content 5 (1.01KB) [0.13%] 1150
(750KB) 0.005% (48/947254)

NetFlix Username, Pass-
word 1 (0.6KB) [0.2%] 419

(289.9KB) 0.1% (170/162853)

IMDb Search Search Terms 1 (0.24KB) [0.02%] 1131
(1.1MB) 0.1% (422/323208)

Facebook
Read Post Post Content 1 (0.5KB) [0.18%] 730 (268KB) 0.02% (347/1216952)

Facebook
Friend Search Search Terms 9 (1.7KB) [0.50%] 959

(336.6KB) 6.4% (60305/937108)

eBay Item List Item’s Descrip-
tion 8 (1.49KB) [0.62%] 725(239.2KB) 0.1% (326/241901)

Amazon Login Username, Pass-
word 2 (1.87KB) [1.28%] 240 (146KB) 0.5% (1629/321275)

Amazon
Search Search Terms 9 (1.77KB) [0.24%] 485

(732.7KB) 0.1% (544/433110)

MSN Search Search Terms 5 (1.4KB) [0.08%] 1185
(1.7MB) 0.5% (2096/435124)

StackOverflow Post Content 5 (2.36KB) [1.18%] 429
(198.9KB) 0.2% (830/406328)

Twitter Login Username, Pass-
word 3 (0.61KB) [0.27%] 472

(223.6KB) 0.004% (27/622874)

Wikipedia
Search Search Terms 6 (1.9KB) [0.23%] 438

(794.1KB) 0.45% (382/84818)

Babylon
Purchase

Email Address,
Credit Card Info 3 (1.17KB) [0.70%]) 485 (165KB) 0.6% (3232/515586)

Bank
(anonymized)
Login

Username, Pass-
word, PassKey 3 (1.49KB) [1.01%] 250

(146.3KB) ˜0% (1/100037)

BankOfAmerica
Login

Username, Pass-
word 2 (1.01 KB) [0.23%] 780

(430.4KB) ˜0% (3/441534)

Table 6.3: Study of 20 Popular Web Applications. < 1% of web application code needs
to run in the TEMI to access sensitive info; < 1% of all calls to JS data types trigger
browser-TEMI interactions.

Macro-study on real-word web applications. To further evaluate the applicability

of the CRYPTON-KERNEL to other web applications, we perform a larger-scale macro

study. First, we select Alexa Top 50 web pages, and identify all of those fields that

require sensitive username / password inputs for signup – 18 out of the 50 applications

have signup pages (Figure 6.5). We choose these applications because they often have

client-side checking code on sensitive passwords (e.g. checking strength requirements).

Next, we select 20 popular web applications of 5 categories, and identify scenarios

where the CRYPTON-KERNEL can strengthen security against real attacks:

• Web search pages. We select sites that allow user to search terms. We mark search

terms as sensitive because leaking search terms may permit third-party tracking.
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• Social networking sites. These sites can be used to exchange private messages,

or post comments that may be politically-sensitive. Hence, we mark posts and

comments as sensitive.

• Banking sites. Banking sites are prime targets of browser-based attacks and sev-

eral malware disguise as browser extensions. We select a local bank (anonymized

for submission) that uses additional authentication mechanisms such as one-time

PassKeys. In these bank web pages, username, passwords and the one-time

PassKey are marked as sensitive. The one-time PassKey is interesting because

banks are increasingly considering this as a second-factor authentication beyond

long-lived passwords.

• E-commerce sites. We test eBay, Amazon and Babylon online commerce sites.

On eBay, we mark one auction listing created by a seller as sensitive. Different

auction listings can be loaded in the same page, and each may contain its own

JavaScript. If the listing is not protected, the script from one seller may deface or

tamper with that from another seller. We also consider Babylon, since users can

purchase items without creating an account with Babylon. Therefore, by tam-

pering with the purchaser’s email in the browser, an attacker can have a software

license being purchased be delivered to that attacker’s email address. We mark

the email address as a sensitive field on Babylon. We mark product search terms

as sensitive for Amazon.

• Gmail. It is a rich webmail client used as our running example. We mark search

terms and certain emails as sensitive.

We manually (with browser instrumentation) identify all functions that legitimately

operate on sensitive information, including event handlers. Our analysis details are

shown in Table 6.3. We assign the default policy κ0 → κ0 to these functions, and all

user keyboard inputs are marked as sensitive. We mark the Gmail spam warning mes-

sage as requiring proof-of-impression. We also mark a post on Facebook as requiring

proof-of-impression, which is necessary if a post is politically-sensitive and it’s owner

want to evade censorship (via censoring browser plugins, say).

Results. We dynamically modify these web pages to encode sensitive contents into

CRYPTONs using a proxy server. We find that these applications render correctly in our

CRYPTON-KERNEL-compliant browser implementation, and the applications remain

functional. This confirms our hypothesis that existing application can be easily up-

graded to using CRYPTON-KERNEL’s functionality. Our test proxy decodes encrypted

contents returned from the browser and checks them against the expected values. It also

verifies that it receives proof-of-impression tokens.

Developer effort. Table 6.3 demonstrates that the developer effort to enable this func-

tionality is modest. On average, only 1% of the total functions in the applications need
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Figure 6.5: Number of User Input Fields and CRYPTON Functions Required in Signup
Pages

to be included in CRYPTONs; this accounts to 2 KB of minified JavaScript per web page.

The effort required to verify such code as CRYPTON functions is feasible, around 1-9
functions for each application. Figure 6.5 shows similar results that about 0-9 functions

need to be verified for each signup page.

6.3.2 Reduction in Attack Surface

The isolation and controlled operations provided by CRYPTONs significantly reduce the

size of code that sensitive information is exposed to. We evaluate this reduction in both

web application code as well as in browser code.

Exposure to untrusted application code reduces by 99%. As we show in Table 6.3,

on average less than 1% of web application code actually needs access to sensitive

information, and is thus run in CRYPTON functions. All the rest of web application code

only has access to opaque objects with encrypted data. On the contrary, in current web

browsers, all information is exposed to the entire web application. Any malicious or

compromised JavaScript library can steal the information and leak it to external parties.

By isolating sensitive information into CRYPTONs, the CRYPTON-KERNEL places 99%
of web application outside the TCB.

Exposure to browser vulnerabilities reduced by 92.5%. In existing web browsers,

sensitive information being processed is largely accessible to browser code running

in the same process. To evaluate how the CRYPTON-KERNEL reduces such over-

exposure of sensitive information to browser vulnerabilities, we study how many histor-

ical browser security vulnerabilities are prevented from affecting the security guarantees

provided by the CRYPTON-KERNEL. Our study with historical security vulnerabilities

in Firefox show that in total 333 of them (92.5%) cannot be exploited to violating the

security guarantees provided by the CRYPTON-KERNEL. The remaining vulnerabili-

ties either reside in our TCB (7 of them), or compromise our assumptions (another 20
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vulnerabilities). The vast reduction in the exposure to browser vulnerabilities verifies

the effectiveness of the CRYPTON-KERNEL in information protection. We leave more

details on our methodology to Section 6.3.4 at the end of this section.

6.3.3 Performance

We run the CRYPTON-KERNEL over the 20 web applications listed in Table 6.3, with

sensitive information transformed into CRYPTONs. The web sites remain responsive,

without any perceivable slowdown. To further evaluate potential performance bottle-

necks, we apply microbenchmarks to measure the performance overheads (averaged

over 20 runs each) arising from encryption/decryption operations and browser-TEMI

interactions when the TEMI executes CRYPTON functions.

Encryption/decryption overhead. Figure 6.6 shows the performance overhead of

the CRYPTON-KERNEL compared to a vanilla WebKit-GTK browser. We use 5 CPU-

intensive test pages from the Dromaeo benchmark. To vary the workload of encryption

and decryption, we mark different portions of texts in the pages as sensitive, ranging

from zero-sensitive pages (no sensitive text) to fully sensitive pages (all texts marked as

sensitive). During these tests, the browser remains responsive and shows a maximum

of 7.5% performance overhead. We also manually craft a test page to evaluate the per-

formance of the CRYPTON-KERNEL under pathological scenarios. The performance

overhead reaches 11.7% when all texts on the page are marked as sensitive, which re-

quire heavy encryption/decryption operations. Considering such performance overhead

is measured from an initial unoptimized prototype, it is reasonable.

0	  

2	  

4	  

6	  

8	  

10	  

12	  

0	   20%	   40%	   60%	   80%	   100%	  

Dromaeo:	  user	  input	   Dromaeo:	  hash	  MD5	  
Dromaeo:	  regular	  expression	   Dromaeo:	  SHA	  long	  string	  
Dromaeo:	  string	   handy	  craBed	  pages	  

%
	  C
PU

	  O
vr
eh

ea
d	  

%
	  C
PU

	  O
vr
eh

ea
d	  

%	  of	  sensi2ve	  data	  in	  HTML	  page	  

Figure 6.6: Performance Overhead of CRYPTON-KERNEL with Dromaeo Benchmarks
& Manual Test Page, with varying portions of sensitive texts

Overhead of browser-TEMI interactions. We run the CRYPTON-KERNEL over the

20 web sites listed in Table 6.3, and measure the number of IPC calls between the

untrusted web browser and the TEMI. The last column in Table 6.3 shows that for most
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cases, less than 1% of all access to JavaScript data types require crossing the browser-

TEMI boundary. Given that the overhead of sending a message via Unix domain socket

is around 5 microseconds, a web site with 1,000 IPC messages may only incur 0.005

second overhead.5 Thus, the design of separating the execution of CRYPTON functions

in the TEMI does not cause any performance bottleneck.

6.3.4 Study on Firefox Vulnerabilities

To estimate the reduction of sensitive data’s exposure to browser vulnerabilities, we

choose Firefox, which is an open-source and standalone browser with the longest de-

velopment history. We manually map the 21 high-level Firefox components to our

design of the CRYPTON-KERNEL, and estimate the number of security vulnerabilities

that could compromise the security guarantees provided by the CRYPTON-KERNEL.

We find that all major Firefox components, such as the HTML parser, the JavaScript

engine, the Document Object Model (DOM), the network module, etc., belong to the

browser code used by the CRYPTON-KERNEL, and are outside our TCB.

We leverage the results in Chapter 4, and categorize historic security vulnerabili-

ties [55] in each component according to 6 severity levels, as shown in Table 4.2. We

find that Category 5, i.e., arbitrary code execution vulnerabilities have the largest num-

ber. They could allow an attacker to bypass all existing security mechanisms in the

browser, and to read or write arbitrary information. If these vulnerabilities fall outside

the CRYPTON-KERNEL’s TCB, they do not affect the security properties provided by

the CRYPTON-KERNEL, as the CRYPTON-KERNEL does not rely on browser code to

enforce the properties. However, we find 7 of them roughly map to the functionality

of the CRYPTON-KERNEL, such as the server to the CRYPTON-KERNEL communica-

tion, and rendering operation processing, etc. These 7 vulnerabilities could potentially

compromise our TCB and break the security guarantees provided by the CRYPTON-

KERNEL.

20 vulnerabilities in Category 1 break our assumptions, as they may cause mistaken

trust on fake SSL certificates, or trick users into making unintended actions. They

cannot be addressed by our solution.

The rest of vulnerabilities lead to information leakage or privilege escalation be-

tween different web origins, or between web origins and browser chrome. These vul-

nerabilities cannot affect the TCB of the CRYPTON-KERNEL, and thus are prevented

from violating sustained information control guaranteed by our solution. Thus, in to-

tal, our solution is not applicable to 27 vulnerabilities, but eliminates the rest of 333

(92.5%) vulnerabilities from compromising the confidentiality and integrity of sensi-

tive web content.
5Outliers are Facebook Friend Search and WindowsLive Signup, with high browser-TEMI interactions.

A closer look at them reveals that they are caused by a particular CRYPTON function in each of them,
which processes both sensitive and non-sensitive information. We separate each function into two versions
accordingly, and browser-TEMI interactions fall below 1% among all JavaScript data type accesses.
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6.4 Related Work

In this section, we discuss research related to protect sensitive information in web

browsers, and key differences with our work.

6.4.1 Enhancement of Browser Security Mechanisms

There has been substantial amount of research on enhancing security mechanisms of

web browsers. One direction is to develop flexible and fine-grained access control on

the web platform. ESCUDO [82] is a framework for fine-grained access control over

JavaScript’s access to DOM elements. It adopts the hierarchical protection rings (HPR)

as the security model to assign different pieces of JavaScript in the same application

with different privileges. JavaScript can only access DOM elements with the same or

larger ring numbers, i.e., same or less privileged. JCShadow [124] controls access to

general JavaScript object. It divides a JavaScript context into multiple shadow con-

texts. By default, shadow contexts are isolated from each other. Any sharing between

them has to be explicitly allowed by access control rules specified by web applications.

Zhou et al. [187] propose a similar fine-grained access framework, which also provides

mechanisms for automatic policy generation based on identifying third-party scripts and

public contents.

Another active area of research aims to improve separation of privileges in browsers

through browser redesign [36, 15, 62, 63, 169, 154, 75, 31, 158, 13]. They use various

techniques to reduce the impact of untrusted components of browsers and web applica-

tions.

A main issue with above solutions is that once sensitive information passes the

check, it is no longer under control. The JavaScript will obtain the full information

and is free to leak to any party. The web application cannot control how sensitive

information can be used, but has to decide either to give up the full information or deny

the access. In fact, the assumption of trusting any JavaScript in the web application is

ungrounded in practice. Cross-site scripting, malicious browser components or add-ons

may tamper with the privileged JavaScript code.

Information flow tracking has also been used for detecting and preventing informa-

tion leakage in web applications [163]. However, without controlling the usage of sen-

sitive information of client-side JavaScript, malicious scripts can still leak information

via self-exfiltration attacks [32]. Moreover, such solutions rely on the trust of browsers.

On the contrary, our solution protects information from unauthorized access using

cryptographic techniques. It only disclose the original sensitive information to verified

and signed CRYPTON-processing functions. All other code can only process the in-

formation by calling these functions. By doing so, we achieve sustained information

control all the time. Another advantage of our solution is that we only need to trust a

small set of code, while leaving the bulk of browser components outside our TCB.
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6.4.2 Cryptographic Techniques

Cryptographic techniques have long been protecting security in different systems. Lie

et al. [95] propose an abstract machine of execute-only memory (XOM) to prevent

tampering of instructions stored on memory.

A recent work [34] further applies memory encryption to data confidentiality. The

idea proposed in the work, self-protecting data, is similar to Data Capsules [100]. It al-

lows unvetted programs to use sensitive data while enforcing policy to confine activities

they can perform on the data. The high-level application-specific policy is translated

into low-level tags enforced by the underlying hardware. The major weakness with this

solution is that leakage via control flows is not considered. This is the consequence of

the same fact with access control mechanisms: once the plaintext is disclosed to certain

code, it is very hard to control information leakage any further. For example, according

to different bits in a secret value, the application code can send a different request to

an attacker-controlled server. Our solution maintains the control on potential leakage

via control flows by limiting the plain-text only to CRYPTON functions, whose return

values are also encrypted by default.

CleanOS [155] uses information flow tracking and encryption to protect mobile

devices against threats when the mobile device is lost. Compare to our work, CleanOS

mainly focuses on protecting data on mobile devices from device loses, while our work

gives stronger security guarantee on a class of sensitive data.

Policy-sealed data [144] is a recent proposal on building trusted cloud services,

protecting data from unintended access. Their abstractions and cryptographic primi-

tives (attribute-based encryption) are well suited for the cloud environment. However,

unlike on the cloud, where environments can be summarized as configurations, in web

browsers, there is no static context or environment. Code from multiple sources with

various privileges are running in and molding the mixed browser environment. There-

fore, we need more dynamic mechanisms to control data access and processing.

6.5 Summary

In this work, we present a novel abstraction, CRYPTON, which protects sensitive data

with memory encryption and allows operations to securely compute over them. We

propose a small standalone engine the CRYPTON-KERNEL that is integrated into web

browsers to interpret sensitive web content in CRYPTONs. Our large-scale evaluation

demonstrates our solution can effectively protect sensitive web content on the web, with

reasonable performance.
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Chapter 7

Conclusion

In this thesis, we identify the fundamental lack of security support in current web

browsers, which is the underlying cause for the overwhelming number of web-based

attacks in the wild. To improve browser security for modern web applications, we ar-

gue that we need to proactively build well-established security principles into the web

browser, such as separation of privilege, least privilege, complete mediation, and econ-

omy of mechanism. As our solutions, we develop a comprehensive and flexible confine-

ment mechanism for untrusted JavaScript libraries (such as ads), which is a common

threat to modern web applications. It isolates the execution of untrusted scripts in a

separate environment and regulates all their access to the hosting page. Following our

argument for the importance of balancing security-performance trade-offs, we propose

a measurement-based methodology to quantify the security and performance implica-

tions of privilege-separated browser designs. We apply our methodology to study 9 re-

cent browser designs. To control web application behaviors within a program partition,

we propose a general security framework to allow flexible development and deploy-

ment of security solutions in the browser. It provides key security support for existing

and potentially new security solutions. Lastly, to protect critical pieces of sensitive data

on the web, we propose a novel solution to secure their confidentiality and integrity.

Our solution provides sustained and complete control on such information throughout

its lifecycle, which is not practically achievable via isolation or access control in the

complex codebase of browsers. This thesis demonstrates the necessity and practical-

ity of securing web browsers with traditional security principles, which is a promising

direction to build a more secure platform for modern web applications.
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