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Summary 

In recent years, various enzymes involved in cancer cell metabolism are getting a lot of interest 

as potential targets for the small molecule development towards cancer therapy. Glutaminase is 

the key enzyme responsible for catalysing the conversion of glutamine to glutamate, and 

represents the first step in glutamine metabolism (glutaminolysis). This process provides the 

cancer cell with high energy requirements to meet their accelerated growth and proliferation. In 

humans, two major glutaminase isoforms - KGA (Kidney-type glutaminase) and LGA (Liver-

type glutaminase) have been reported. The KGA isoform is over expressed in several tumour 

types such as lymphoma, prostate, brain and kidney cancers, and it has become an attractive 

cancer target for small molecules. However, the structural and molecular basis of KGA 

inhibition and how the function of KGA is regulated in the cancer cells are still not clearly 

understood. In this thesis we report our structural and functional studies on KGA and its 

implications in cancer cell metabolism.  

 

Chapter I provides a general introduction based on the detailed literature survey on cancer cell 

metabolism and a key metabolic enzyme, glutaminase. In the chapter II we report the allosteric 

inhibition mechanism of KGA by a small molecule inhibitor BPTES [bis-2-(5-phenylacetamido-

1,2,4-thiadiazol-2-yl) ethyl sulfide] and further we identified Raf-Mek-Erk signaling pathway as 

the regulator of KGA. On the basis of crystal structures, we reveal that BPTES binds to an 

allosteric pocket at the dimer interface of KGA, triggering a dramatic conformational change of the 
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key loop (Glu312-Pro329) near the catalytic site and rendering it inactive. The binding mode of 

BPTES on the hydrophobic pocket explains its specificity to KGA. Interestingly, KGA activity in 

cells is stimulated by EGF, and KGA associates with all three kinase components of the Raf-

1/Mek2/Erk signaling module. However, the enhanced activity is abrogated by kinase-dead, 

dominant negative mutants of Raf-1 (Raf-1-K375M) andMek2 (Mek2-K101A), protein 

phosphatase PP2A, and Mek-inhibitor U0126, indicative of phosphorylation-dependent regulation. 

Furthermore, treating cells that coexpressed Mek2- K101A and KGA with suboptimal level of 

BPTES leads to synergistic inhibition on cell proliferation. Consequently, mutating the crucial 

hydrophobic residues at this key loop abrogates KGA activity and cell proliferation, despite the 

binding of constitutive active Mek2-S222/226D. These studies therefore offer insights into (i) 

allosteric inhibition of KGA by BPTES, revealing the dynamic nature of KGA’s active and 

inhibitory sites, and (ii) cross-talk and regulation of KGA activities by EGF-mediated Raf-Mek-

Erk signaling. Chapter III of this thesis reports the crystal structure of catalytic domain of KGA in 

complex with DON (6-Diazo-5-oxo-L-norlucine), an active site inhibitor. The complex structure 

revealed the DON binding pocket of KGA that form a covalent bond with active site residue 

Ser286 of KGA. Further we performed site-directed mutagenesis to validate the importance of key 

residues from the active site to understand the active site inhibition mechanism of KGA. The 

overall conclusion and future directions are provided in Chapter IV.  
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1.1 Cancer 

Among the top killer diseases, cancer is a leading cause of death and it continues to be a 

major public health problem around the world. According to World Health Organization 

(WHO) statistics, cancer caused 7.6 million deaths (13% of all deaths) in 2008, and by 

2030, it is expected to increase to 13.1 million deaths worldwide (estimated by WHO) 

(Boyle P, 2008). Cancer is the term for complex diseases characterized by many 

physiological changes that lead to uncontrolled cell growth. Cells are basic unit of life; 

they grow and divide to produce more healthy cells in a controlled manner (e.g. by 

growth factor control). However, sometimes, cells do not function normally; they keep 

dividing and produce more cells in an uncontrolled manner (abnormal growth), which 

also invades surrounding tissues. This unregulated growth of cells ultimately leads to 

form a clump of tissue called a tumor. The processes by which normal cells are 

transformed into cancer cells are still not well understood and has remained as a key 

biological question yet to be answered (Anand et al., 2008; Seyfried and Shelton, 2010).  

 

1.1.1 The Hallmark of Cancers  

In a recent review, Hanahan and Weinberg proposed six common hallmark features that 

can underlie the transformation of normal cells to cancer cells (Hanahan and Weinberg, 

2000, 2011). These six hallmark features are believed to be shared by most cancers 

(Figure 1). It includes followings: 

 

(1) Cancer cells stimulate their self-growth signals (uncontrolled proliferation) 

(2) Resistance towards antigrowth signals 
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(3) Resistance towards apoptosis (programmed cell death) 

(4) Promoting angiogenesis 

(5) Limitless multiplication potential 

(6) Tissue invasion and spread to distant sites (metastasis)  

Apart from these six common features of cancer, Warburg effect or aerobic glycolysis is 

also now recognized as a hallmark of most cancer cells (Gatenby and Gillies, 2004; 

Seyfried et al., 2008).  

 

 

Figure 1: The hallmark features of cancer cells. This figure is adapted from (Hanahan 

and Weinberg, 2011). 

 
 

 



4 

 

1.2 Cancer Cell Metabolism  

In the 1920s, Otto Warburg first observed that the cancer cells metabolize glucose in a 

way different from normal cells (Warburg et al., 1927). He demonstrated that cancer cells 

exhibit increased uptake of glucose in which glucose is converted to lactate, even in the 

presence of oxygen, termed as the “Warburg Effect” (Brahimi-Horn et al., 2007; 

WARBURG, 1956a; Warburg, 1956b; Warburg et al., 1960a; WARBURG et al., 

1960b)Otto Warburg received Nobel Prize of Physiology or Medicine in 1931 for his 

discovery of “altered metabolism in cancer”. The Warburg Effect is a unique metabolism 

that is observed in most cancer cells and not found in normal cells (Vander Heiden et al., 

2009). The phenomenon of Warburg effect is now broadly accepted, which formed a 

basis for the recent research on the cancer cell metabolism. The metabolic alteration is 

essential to facilitate the incorporation of nutrients into bioenergetics and biosynthetic 

requirements of cell survival and metabolism (Bauer et al., 2005; Locasale and Cantley, 

2010; Vander Heiden, 2011). Figure 2 emphasizes the timeline in the development of 

cancer metabolism.   
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Figure 2: Diagram showing the time line and the development of cancer metabolism. This figure is adapted from (Tennant et al., 

2010). 
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1.2.1 Glucose Metabolism in Normal cells  

In normal cells, glucose is completely metabolized by the following linked metabolic 

pathways:  

a) Glycolysis  

b) Tricarboxylic acid (TCA) cycle 

c) Oxidative phosphorylation  

Glucose is initially metabolized through glycolysis that takes place in the cytoplasm of a 

cell. This process involves a series of enzymatic reactions which ultimately produces two 

molecules of pyruvate and two ATPs from one glucose molecule (Figure 3). The 

generated pyruvate enters mitochondria and is converted to acetyl CoA by the action of 

pyruvate dehydrogenase (PDH). Condensation of acetyl CoA with oxaloacetate (OAA) is 

catalyzed by the enzyme citrate synthetase to form citrate in the TCA (tricarboxylic acid) 

cycle.  Citrate is further completely oxidized in mitochondria to produce a variety of six- 

and three-carbon intermediates, and results in production of thirty-six ATPs molecules at 

the end of oxidative phosphorylation (Lehninger, 1945). Thus, in total thirty-eight ATPs 

are produced from a single molecule of glucose, when oxygen is present. By this process, 

glucose satisfies the cells with most energy (90%) requirements (Vander Heiden et al., 

2009). On the other hand, the series of reactions involved in the conversion of glucose to 

lactate in the absence of oxygen, is called anaerobic respiration or fermentative 

glycolysis, which produces only 2 ATPs (Figure 3). 
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1.2.2 Altered Glucose metabolism in Cancer cells (Warburg effect)  

In order to satisfy the cellular energy demands in the normal cells, the end product of 

glycolysis, pyruvate enters into mitochondria to generate ATP through the TCA cycle. 

However, in cancer cells, the pyruvate has shown to be directed away from the TCA 

cycle and is converted to lactate by the enzyme lactate dehydrogenase (LDH). In a typical 

cell, this lactate production only happens in anaerobic conditions, but, cancer cells are 

able to produce lactate even when oxygen is available, a process termed “aerobic 

glycolysis” or the Warburg Effect (WARBURG, 1956a) (Figure 3). The importance of 

Warburg effect is experimentally validated in most of the cancer cells, where increased 

glucose uptake is found, which thereby promotes the formation of tumors (Altenberg and 

Greulich, 2004; Kroemer and Pouyssegur, 2008; Ortega et al., 2009; Schnelzer et al., 

2000).  

 

According to Otto Warburg, most cancer cells are highly reliant on aerobic glycolysis and 

not on the mitochondrial function (citric acid cycle and oxidative phosphorylation) for 

their energy needs. Since the cancer cells depend on less efficient glycolysis which serves 

only 2 ATP molecules (Figure 3), they require additional glucose to satisfy their 

increased cellular energy demands. Hence, in contrast to normal cells (which produces 38 

ATP molecules), cancer cells need to use 19 more glucose molecules to generate (2 ATP 

X 19 glucose=38 ATP) equivalent 38ATP molecules. The enhanced glucose uptake of 

cancer cells or the Warburg effect is experimentally proved through the recent imaging 

studies called positron emission topography (PET) imaging. The PET imaging is very 

sensitive to radio-active molecules. 
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Figure 3: Modes of glucose metabolism in normal and cancer cells. In the presence of 

oxygen, a normal cell (differentiated) metabolizes glucose via glycolysis, TCA and 

oxidative phosphorylation to generate ATP. Cancer cells (proliferative) tend to convert 

most glucose to lactate, even in the presence of oxygen (aerobic glycolysis). This figure 

is adapted from (Vander Heiden et al., 2009).  

 

To assess the glucose intake of tumors, a radio-active glucose analogue, 18F-FDG (2-

dexoy-2-(18F) fluoro-D-glucose, is injected into patients and a PET scanner is used to 

image the distribution of FDG around the body (Ben-Haim and Ell, 2009; Mankoff et al., 

2007). The imaging technique is currently being used not only in diagnosis of human 

tumors but also in staging and monitoring growth of tumors (López-Ríos et al., 2007). 

The Warburg effect in cancer cells is backed by various explanations. One possible 

explanation is that the abnormal activity of metabolism-related enzymes from different 



9 

 

signaling pathways is responsible for promoting the Warburg effect (Teicher et al., 2012). 

For example, the activity of the enzyme pyruvate kinase that converts 

phosphoenolpyruvate into pyruvate in the glycolytic pathway was found to be different in 

many cancer cells (Christofk et al., 2008a). Two different isoforms of Pyruvate kinase 

(PK) have been known; PKM1 and PKM2. The PKM2 isoform is specifically up-

regulated in most cancer cells, but not in the normal cells (Mazurek et al., 2005). 

Interestingly, pyruvate kinase (PKM2) was suggested to bypass the pyruvate into lactate 

production pathway or alternative glycolytic pathway (Figure 4) (Christofk et al., 2008b; 

Hitosugi et al., 2009). To accommodate this alternative glycolytic pathway, the cancer 

cells appear to adopt increased rates of glutamine metabolism not only to produce ATP 

but also for the synthesis of macromolecular precursors such as nucleotides, certain 

amino acids, and fatty acids, and to generate energetic biomass (DeBerardinis et al., 

2008; DeBerardinis et al., 2007). 

 

1.2.3 Glutamine Metabolism in Cancer Cells (Glutaminolysis)  

Glutamine is the second major energy source for many cancer cells (Lu et al., 2010). 

Cancer cells are highly dependent on alternative glycolysis (pyruvate to lactate), and 

therefore only less pyruvate is processed to generate ATP through mitochondrial TCA 

cycle (truncated TCA cycle in cancer cells), and results in impaired mitochondrial 

function. Since TCA cycle is crucial for generating energy intermediates, the cancer cells 

must find an alternative mechanism to replenish this cycle. Accordingly, many cancer 

cells utilize the glutamine metabolism (known as glutaminolysis) as a new energy source. 

Once glutamine is taken by the cell, mitochondrial glutaminase converts glutamine into 
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glutamate (Figure 4 and Figure 5). Glutamate is then converted into α-ketoglutarate 

through deamination process catalyzed by the enzyme glutamate dehydrogenase.  

 

 

Figure 4: Metabolic differences observed between normal cells and cancer cells. In 

normal cells, glucose is concerted to acetyl CoA (yellow) and is further metabolized via 

TCA cycle (green). In cancer cells, pyruvate is primarily used to generate lactate. The 

pyruvate kinase M2 isoform (PKM2, tumor specific isoform) prevents the pyruvate entry 

to mitochondria. To accommodate this, cancer cells utilize a process called 

glutaminolysis, as an alternate source to replenishing the TCA cycle and energy 

synthesis. Glutaminase is the key enzyme, which converts glutamine to glutamate and 

opens up the glutaminolysis process. This figure is adapted from (Erickson and Cerione, 

2010). 

 

This α-ketoglutarate in turn enters the TCA cycle and is eventually metabolized to 

produce oxaloacetate, which condenses with acetyl-coA (generated from glucolysis) to 

generate citrate. In effect, the glutamine metabolism acts as new energy producing 

pathway, that generates various metabolic intermediates glutamate, aspartate, malate, 

pyruvate, citrate, alanine, and lactate (Dang, 2010a) (Figure 5). In the glutaminolytic 

pathway, degradation of both amino acids glutamine and glutamate plays a key role in 
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anabolic process (Dang, 2010a). The donor amino group of glutamine acts as a precursor 

for the synthesis of certain amino acids like proline, ornithine, and arginine (Wise and 

Thompson, 2010). Glutaminolysis is also essential for the generation of a series of 

intermediates from different metabolic cascades: for example (a) synthesis of acetyl CoA 

serine (for protein and nucleotide synthesis) and for NADH generation (for lipid, 

nucleotide synthesis and redox balance) (Wise et al., 2008). In addition, the citrate 

generated through glutaminolysis is found to be essential for fatty acids and cholesterol 

synthesis (Figure 5) (Dang, 2010b; Wise and Thompson, 2010). Notably, key co-factors 

such as glutathione, NADH and NADPH generated from glutamine are shown to play 

key role in protecting the cancer cells from oxidative stress (Dang, 2010b; DeBerardinis 

et al., 2008). Several recent studies have shown that glutaminolysis is a key metabolic 

process occurring in many tumor cells. Indeed, cell culture studies indicate that many 

cancer cells cannot survive without glutamine, often referred to as “glutamine addiction” 

(Wise et al., 2008; Wise and Thompson, 2010). The enhanced glutamine metabolism in 

the cancer cells is particularly apparent with the observation of ammonium ion release 

from the venous effluent of the cancer-bearing patients (Fischer and Chance, 1990; 

Souba, 1993). 

 

Recent imaging techniques coupled with the improved methods such as nuclear magnetic 

resonance spectroscopy (NMR) and mass spectrometry (MS) play a key role in 

quantifying the glutamine metabolism in cancer cells (Wise et al., 2008). These 

techniques will help in identifying the specific metabolites that can be compared in 

cancer cells versus normal cells. The significance of glutaminolysis is supported by 13C -
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NMR measurements, suggesting cancer cells consume approximately 60% of glutamine 

for the conversion of lactate or alanine (DeBerardinis et al., 2008). 

  

Figure 5: Schematic diagram showing the connection between the glycolysis and 

glutaminolysis. Cancer cells use both pathways to meet their energy demands. In addition 

to glucose metabolism, cancer cells undergo glutaminolysis to generate high energy-

intermediates. This figure is adapted from (http://www.herbalzym.com/wp-

content/uploads/2010/09/glutaminolysis.jpg).   

 

Currently it is believed that targeting the metabolic enzymes which are particularly 

critical for feeding glutamine to the cancer cells, will have therapeutic impact against 

many cancers. Glutaminase expression has been shown to be increased in several tumour 

types such as lymphoma, prostate, brain (glioblastoma) and kidney cancers (Gao et al., 

2009; Seltzer et al., 2010). Thus, glutaminase has become an attractive target for the 

http://www.herbalzym.com/wp-content/uploads/2010/09/glutaminolysis.jpg
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development of small molecules against cancer therapy. In the next section, I will briefly 

discuss the role of signaling pathways that regulates the cancer metabolism.  

 

1.3 Signal Transduction  

Signaling or signal transduction is a process which involves binding of extracellular 

signaling molecules (a ligand or growth factors) to its specific receptors and turning on a 

specific cellular response. Several classes of intracellular signaling pathways exist: 

MAPK/ERK pathway, Hedgehog pathway, JAK/STAT (Janus kinase-signal transducer 

and activator of transcription) pathway and cAMP (cyclic Adenosine monophosphate) 

dependent pathway. Cellular functions are generally mediated by direct modifications of the 

key molecules or signaling complexes which lead to changes in gene expression.  

Phosphorylation is one of the common modes of protein modifications found in most 

signaling pathways. This process involves addition of a phosphate (PO4) group to a 

protein, which mainly occurs through serine (Ser), threonine (Thr) and tyrosine (Tyr) 

residues. Protein kinases are responsible for transferring a terminal phosphate (PO4) of 

ATP to a hydroxyl group (OH) of a protein, whereas, phosphatases can reverse the 

phosphorylation process (Cozzone, 1988) .  

 

1.3.1 Signaling Pathways and Cancer 

There are several signaling pathways that play a key role in controlling cell growth and 

cellular metabolism in response to growth factor stimulation. This is a tightly regulated 

process and any defect or alterations in the intracellular signaling pathways may lead to 

cancers (Braun et al., 2011). For example, mammalian target of rapamycin complex 1 
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(mTORC1) promotes glutamine metabolism in the cancer cells by indirectly regulating 

the activity of glutamate dehydrogenase (Durán et al., 2012; Sancak et al., 2008). In 

addition, increasing evidences suggest that different oncogenic transcription factors 

upregulate metabolic enzymes, which results in altered metabolism and cancer (Kim et 

al., 2006; Vogelstein and Kinzler, 2004). Three major transcription factors such as HIF 

(hypoxia-inducible factor 1), Myc, and Srebp-1 are the key regulators of energy 

metabolism and are often found to be deregulated in most cancers. HIFs are responsible 

for controlling glucose metabolism (Kim et al., 2006; Kondo et al., 2002) c-Myc, alters 

both glucose metabolism and glutaminolysis (Gao et al., 2009; Wise et al., 2008), and 

Srebp-1 increases lipid metabolism in the cancer cells (Figure 6). Taken together, 

targeting the altered signaling pathways in the cancer cells represents a new approach for 

cancer treatment.  
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Figure 6: Oncogenic signaling pathways that controls cancer metabolism. Different 

oncogenes and tumor suppressor genes are illustrated in the figure; which regulates 

specific enzymes involved in cancer metabolism. This signaling pathway is regulated by 

the post translational modifications (phosphorylation and proteolysis) are shown. Directly 

(unbroken lines) and indirectly (unbroken lines) interacting proteins are illustrated. This 

figure is adapted from  (Shaw and Cantley, 2012). 

 

1.3.2 Oncogenic Signaling Pathways and Glutaminolysis   

It was recently shown that the activity of glutaminase could be regulated by many 

oncogenes that are linked with cell metabolism (Figure 7). The oncogenic transcription 

factor, Myc, plays a crucial role in coordinating glutamine metabolism and proliferation 

(DeBerardinis et al., 2008). Previously, the unregulated Myc was noticed in many human 

tumors such as colon, lung, and brain (Nau et al., 1985; Taub et al., 1982). In a search of 

Myc-regulated mitochondrial proteins, Gao et al., have identified that glutaminase is 
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unregulated in the cells which express c-Myc (Gao et al., 2009). Interestingly, it has been 

demonstrated that the c-Myc stimulates the expression of glutaminase through repressing 

miR-23a and miR-23b in human lymphoma and prostate cancer cells. Indeed, these cells 

are very sensitive to glutamine withdrawal or glutaminase knockdown, which in turn 

results in loss of cell growth and survival (Gao et al., 2009). In addition, c-Myc has been 

shown to be involved in controlling many glycolytic enzymes that promote glucose 

metabolism and cancers (Kim et al., 2006; Osthus et al., 2000).  

 

One recent study has shown that the elevated activity of glutaminase could promote 

glutamine metabolism not only in transformed fibroblasts but also in the human breast 

cancer cells (Wang et al., 2010). It has been found that glutaminase activity was up-

regulated by downstream of Rho GTPase signaling in an NF-kB (Nuclear Factor kappa-

light-chain-enhancer of activated B cells) dependant manner (Figure 7). Rho GTPases are 

well studied oncogenes and are commonly activated in wide range of tumors such as 

colon, lung, breast cancers, pancreatic, and urinary tract tumors (Fritz et al., 1999; 

Schnelzer et al., 2000; Suwa et al., 1998). Further, a study links the glutaminolysis 

pathway with the cell cycle/cancer progression, through the observation that glutaminase 

could be targeted by the ubiquitin ligase (APC/C) (Colombo et al., 2010). Taking into all 

these observations, glutaminase therefore represents a promising anti-cancer drug target. 

 



17 

 

 

 

 

Figure 7: Schematic representation of the oncogenic regulation of glutaminase in the 

glutaminolysis pathway. Oncogene, Myc regulates glutaminase through miR-23a/b 

dependent manner; whereas Rho GTPase controls glutaminase in an NF-kB-dependent 

manner. This figure is adapted from  (Lu et al., 2010). 

   

 

1.3.3 Overview of the Ras/MAPK Signaling Pathways 

The Mitogen Activated Protein Kinase (MAPK) pathway has been found in most 

eukaryotic organisms and is highly conserved. This pathway can be activated by 

molecules such as mitogens, cytokines, and also by some physical stressors such as UV 

radiation, osmotic shock and heat. The MAPK module has three protein kinases which 

act sequentially, it including, MAP kinase kinase kinase (MAPKKK or MEKK), MAP 

kinase kinase (MAPKK or MEK) and MAP kinase (MAPK). This pathway is known to 

control diverse cellular functions such as, cell proliferation, differentiation, cell cycle 

progression, gene expression, embryogenesis, cellular metabolism, and apoptosis 

(Dhillon et al., 2007; Pearson et al., 2001). The MAPK pathway is further subdivided into 

four different groups: ERK/MAPK, JNK/SAPK, p38 and ERK5 pathways.   
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1.3.4 ERK/MAPK Pathway 

Receptor tyrosine kinases (RTKs) are the key regulators of cell signaling and are found to 

play a role in apoptosis, cell growth, proliferation and cancer progression (Zwick et al., 

2001). Binding of a growth factor on the extracellular domain of the RTK, induces 

dimerization and which inturn autophosphorylates tyrosine residues and results in the 

activation of RTK.  The activated RTK further triggers the downstream signaling 

pathways, for example ERK/MAPK kinase signaling cascade which has been shown in 

Figure 8.  The auto-phosphorylated tyrosine recruits Grb2 (adaptor protein). The guanine 

nucleotide exchange factor Son of Sevenless (SOS) in turn translocates to the membrane 

and associates with Grb2 to catalyze the activation of Ras (a small GTPase) by 

exchanging GDP to GTP. Activated Ras-GTP, further turns on a signaling cascade. Ras-

GTP directly binds and activates a protein kinase called Raf, (a serine/threonine kinase). 

This Raf subsequently phosphorylates either serine or theoronine residues of the MEK 

(also known as MAP kinase kinase). Consequently, the activated MEK then 

phosphorylates and activates ERK (also known as MAP kinase).  
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Figure 8: An overview of ERK/MAPK cascade. This pathway is commonly activated by 

growth factors (eg. TGFα). Activated ERKs regulates various transcription factors inside 

the nucleus, leading to changes in gene expression. The mutated form of B-Raf, Ras in 

the ERK/MAPK cascade often found in many human cancers. This figure is adapted from  

(Roberts and Der, 2007). 

 

 

Activated Erk then phosphorylates Ser/Thr-Pro motif of many protein substrates to 

control diverse cellular functions. In the RAS/RAF/MEK/ERK signaling pathway, Mek is 

a key protein kinase, which plays an important role in regulating cancer cell growth and 

proliferation. The deregulated activity of MEK is commonly found in wide range of 

human tumors, particularly, those that express mutant form of RAS and RAF oncogenes 

(Friday and Adjei, 2008; Roberts and Der, 2007). It is demonstrated from the preclinical 

studies that MEK inhibitors are found to be synergistic or additive when combined with 

other pathway inhibitors (Kinkade et al., 2008; Meng et al., 2010). 
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In this thesis, we have shown that RAS/RAF/MEK/ERK module could act as a regulatory 

pathway to enhance the activity of glutaminase. These findings are described in detail in 

Chapter II.  

 

1.4 Current Molecular Targets 

From a therapeutic perspective, the effort to develop drugs that could starve the cancer 

cells by blocking their energy requirements are under development. Currently, there are 

several potential lead compounds that are undergoing preclinical development and some 

of them are in clinical trials (Jones and Schulze, 2012) (Table 1). These drugs specifically 

target the metabolic pathway enzymes (glycolysis, TCA, glutaminolysis, and fatty acid 

synthesis pathways) which appear to be responsible for feeding the cancer cell energy 

requirements. Targeting metabolism has the potential to offer an alternative to 

chemotherapy or radiotherapy and any other treatment regimes where these drugs 

selectively kill the cancer cell without affecting the normal cells. One striking example in 

this context is the development of the drug called dicholoro acetate (DCA). DCA is 

shown to shift the altered glucose metabolism that is found in the cancer cells. By 

inhibiting a key enzyme pyruvate dehydrogenase (PDK1), DCA was shown to prevent 

the pyruvate conversion to lactate, thus reversing the Warburg effect. More importantly, 

DCA was shown to effectively shrink the lung, colon cancers (Bonnet et al., 2007). 

Preliminary clinical trial results suggested that DCA is well tolerated by human patients 

with fewer side effects (Michelakis et al., 2010).   
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Table 1: List of potential compounds that target cancer metabolism. These compounds target metabolic enzymes that are responsible 

the altered metabolism and cancer formation. Details of compounds, their molecular targets and status are shown. Table adapted from 

(Jones and Schulze, 2012).     
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In addition, several metabolic enzymes have been identified in recent studies as a target 

for small molecules includingIsocitrate dehydrogenase 1 (IDH1), hexokinase, Pyruvate 

kinase M2 (PKM2) and Glutaminase (GLS). A list of the potential compounds and their 

molecular targets is summarized in the table (Table 1). The glutaminase inhibitors 

BPTES and DON have also been proposed as potential anticancer drugs, which are 

currently in the early stage of clinical development (Table 1). Chapter II and Chapter III 

of this thesis report the structural basis of the inhibition mechanism of glutaminase by 

BPTES and DON respectively. 

 

1.5 Glutaminase: A key enzyme in glutaminolysis 
 

Glutaminase (EC number 3.5.1.2.) is an amidohydrolase enzyme which catalyzes the 

conversion of glutamine to glutamate with the production of an ammonium ion (Figure 

9).  

 

 

                    Glutamine                                                                                 Glutamate 

Figure 4: Reaction catalyzed by glutaminase.  

 

Mitochondrial glutaminase (GA) is the first enzyme in glutaminolysis, and through the 

subsequent enzymatic reactions, glutamine serves as a major substrate of TCA cycle 

which ultimately provides enormous bioenergetics to the cancer cells. 
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1.5.1 Glutaminase Isoforms 

In humans, two major glutaminase isoforms have been described, kidney type 

glutaminase (KGA/GLS/GLS1) and Liver type glutaminase (LGA/GLS2). Both isoforms 

are encoded by two different but closely related genes. The Gls gene that codes for KGA 

isoform is located in chromosome 2 (Aledo et al., 2000). The Gls gene also encodes two 

different splice variants such as Glutaminase C (GAC) and Glutaminase M (GAM) 

isoforms, which are collectively referred as KGA (Elgadi et al., 1999). The LGA isoform 

encoded by Gls2 gene is located in chromosome 12 (Aledo et al., 2000). Though, both 

isoforms of human glutaminase were predicted to have high sequence homology (KGA 

vs LGA is 63% sequence identity), they are found to have difference in their tissue 

distribution, kinetic and biochemical properties (Curthoys and Watford, 1995; Elgadi et 

al., 1999).  

 

The KGA isoform is highly expressed in kidney, brain, intestine, fetal liver, lymphocytes, 

and in many tumors (Curthoys and Watford, 1995). In the kidney, KGA is responsible for 

the renal ammoniagenesis (Curthoys and Godfrey, 1976; Lupianez et al., 1981); whereas 

KGA is the major producer of glutamate, an excitatory neurotransmitter of the central 

nervous system in the brain (CNS) (Yu et al., 1984). Glutaminase C (GAC) is the 

alternatively spliced isoform of the KGA (GAC vs KGA is 83% sequence identity), 

mainly expressed in heart and pancreas but not in liver (Elgadi et al., 1999; Porter et al., 

2002). Similarly, the other alternatively spliced variant of the KGA, namely hGAM, is 

found only in the heart and skeletal muscle (Elgadi et al., 1999). The expression of Liver 

type glutaminase (LGA) was originally thought to be only in liver (Elgadi et al., 1999). 
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Nevertheless, recent studies have demonstrated its expression in extrahepatic tissues such 

as brain, pancreas and cancers (Gómez-Fabre et al., 2000; Pérez-Gómez et al., 2005; 

Turner and McGivan, 2003) (Table 2).  

 

Type Genetic Structure 
Cellular 

Location 
Tissue Expresson References 

hLGA  Chromosome 12 
Mitochondrial, 

Nuclear 

Liver, Pancreas, 

Brain 

(Aledo et al., 2000; 

Curthoys and 

Watford, 1995; 

Olalla et al., 2002) 

hKGA 

Chromosome 2, 

multiple poly-

adenylation sites 

Mitochondrial 

Kidney, Brain, 

Intestine, 

Lymphocytes, Fetal 

Liver 

(Elgadi et al., 1999; 

Porter et al., 2002; 

Shapiro et al., 

1985) 

hGAC 

 KGA isoform: 

Unique 3’  tail 

derived from exon 

15 

Mitochondrial 

Cardiac muscle, 

Pancreas, Placenta, 

Kidney, Lung, Brain 

(Elgadi et al., 1999; 

Porter et al., 2002) 

 

Table 2: Glutaminase isoforms. Different isoforms of human glutaminase, their location, 

and tissue expression are given. This table is adapted from (Erdmann et al., 2006). 

 

The important difference between KGA and LGA isoform is their mode of inhibition and 

activation mechanism. KGA is activated by phosphate and inhibited by glutamate (the 

product), whereas LGA is less dependent on phosphate for its activation and not inhibited 

by glutamate (Curthoys and Godfrey, 1976). The activation of recombinant KGA 

requires inorganic phosphate that converts the inactive dimeric form to active tetrameric 

or oligomeric form (Godfrey et al., 1977; Morehouse and Curthoys, 1981). Besides 

phosphate, acetyl-coA, and ADP were shown to stimulate the activity of KGA (Kvamme 

and Torgner, 1974; Masola and Ngubane, 2010). 
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1.5.2 Sequence Analysis of Glutaminase 

The isoforms of human glutaminase contains distinct combination of signature motifs and 

functional domains, and is often referred to as “multifaceted protein” (Márquez et al., 

2006) (Figure 10 and Figure 11). The glutaminase isoforms KGA and GAC have high 

sequence homology in the N-terminal region of the protein, and only 12% sequence 

identity was found in the C-terminals. Starting from N-terminal, the first 16 amino acids 

of all three isoforms (KGA, GAC and LGA) have conserved sequence, known as transit 

peptides. This is shown to be responsible for the localization of enzyme into 

mitochondria (Gómez-Fabre et al., 2000).  In addition, the nuclear receptor targeting box 

(NR box) has been found in all three glutaminase isoforms, which specifically interacts 

with nuclear receptors (Heery et al., 1997). 

 

 

 

Figure 10: Domain architecture of human KGA. The signature domains and functional 

motifs of KGA are illustrated in the figure. KGA contains Signal peptide (amino acids 1-

16), nuclear targeting box (amino acids 138-144), glutaminase domain (244-530), 

ankyrin repeats (amino acids 556-656), and KEN box (amino acids 656-669) 

(Thangavelu et al., 2012).  

 

Human KGA has NR box with the sequence of LDDLL on the N-terminal residues from 

138-144 whereas LGA has the similar motif from 72-76. Pfam data base suggests the 

presence of glutaminase domain (aa 244-530) in KGA and residues 177–463 form 

glutaminase domain in LGA (Finn et al., 2010).  The C-terminal of glutaminase has a 

protein-protein interaction module, known as ankyrin repeats.  
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KGA             MMRLRGSGMLRDLLLRSPAGVSATLRRAQPLVTLCRRPRGGGRPAAGPAAAARLHPWWGG 60 

GAC             MMRLRGSGMLRDLLLRSPAGVSATLRRAQPLVTLCRRPRGGGRPAAGPAAAARLHPWWGG 60 

LGA             --------------MRSMKALQKALSRAG---SHCGR----------------------- 20 

                              :**  .:. :* **    : * *                        

 

KGA             GGWPAEPLARGLSSSPSEILQELGKGSTHPQPGVSPPAAPAAPGPKDGPGETDAFGNSEG 120 

GAC             GGWPAEPLARGLSSSPSEILQELGKGSTHPQPGVSPPAAPAAPGPKDGPGETDAFGNSEG 120 

LGA             GGWGHP------SRSP-----LLGGGVRHH---LSEAAAQGRETPHSHQPQHQDHDSSE- 65 

                ***         * **      ** *  *    :* .** .   *:.   : : ...**  

 

KGA             KELVASGENKIKQGLLPSLEDLLFYTIAEGQEKIPVHKFITALKSTGLRTSDPRLKECMD 180 

GAC             KELVASGENKIKQGLLPSLEDLLFYTIAEGQEKIPVHKFITALKSTGLRTSDPRLKECMD 180 

LGA             ------------SGMLSRLGDLLFYTIAEGQERIPIHKFTTALKATGLQTSDPRLRDCMS 113 

                            .*:*. * ************:**:*** ****:***:******::**. 

 

KGA             MLRLTLQTTSDGVMLDKDLFKKCVQSNIVLLTQAFRRKFVIPDFMSFTSHIDELYESAKK 240 

GAC             MLRLTLQTTSDGVMLDKDLFKKCVQSNIVLLTQAFRRKFVIPDFMSFTSHIDELYESAKK 240 

LGA             EMHRVVQESSSGGLLDRDLFRKCVSSNIVLLTQAFRKKFVIPDFEEFTGHVDRIFEDVKE 173 

                 :: .:* :*.* :**:***:***.***********:******* .**.*:*.::*..*: 

 

KGA             QSGGKVADYIPQLAKFSPDLWGVSVCTVDGQRHSTGDTKVPFCLQSCVKPLKYAIAVNDL 300 

GAC             QSGGKVADYIPQLAKFSPDLWGVSVCTVDGQRHSTGDTKVPFCLQSCVKPLKYAIAVNDL 300 

LGA             LTGGKVAAYIPQLAKSNPDLWGVSLCTVDGQRHSVGHTKIPFCLQSCVKPLTYAISISTL 233 

                 :***** ******* .*******:*********.*.**:***********.***::. * 

 

KGA             GTEYVHRYVGKEPSGLRFNKLFLNEDDKPHNPMVNAGAIVVTSLIKQGVNNAEKFDYVMQ 360 

GAC             GTEYVHRYVGKEPSGLRFNKLFLNEDDKPHNPMVNAGAIVVTSLIKQGVNNAEKFDYVMQ 360 

LGA             GTDYVHKFVGKEPSGLRYNKLSLNEEGIPHNPMVNAGAIVVSSLIKMDCNKAEKFDFVLQ 293 

                **:***::*********:*** ***:. *************:**** . *:*****:*:* 

 

KGA             FLNKMAGNEYVGFSNATFQSERESGDRNFAIGYYLKEKKCFPEGTDMVGILDFYFQLCSI 420 

GAC             FLNKMAGNEYVGFSNATFQSERESGDRNFAIGYYLKEKKCFPEGTDMVGILDFYFQLCSI 420 

LGA             YLNKMAGNEYMGFSNATFQSEKETGDRNYAIGYYLKEKKCFPKGVDMMAALDLYFQLCSV 353 

                :*********:**********:*:****:*************:*.**:. **:******: 

 

KGA             EVTCESASVMAATLANGGFCPITGERVLSPEAVRNTLSLMHSCGMYDFSGQFAFHVGLPA 480 

GAC             EVTCESASVMAATLANGGFCPITGERVLSPEAVRNTLSLMHSCGMYDFSGQFAFHVGLPA 480 

LGA             EVTCESGSVMAATLANGGICPITGESVLSAEAVRNTLSLMHSCGMYDFSGQFAFHVGLPA 413 

                ******.***********:****** ***.****************************** 

 

KGA             KSGVAGGILLVVPNVMGMMCWSPPLDKMGNSVKGIHFCHDLVSLCNFHNYDNLRHFAKKL 540 

GAC             KSGVAGGILLVVPNVMGMMCWSPPLDKMGNSVKGIHFCHDLVSLCNFHNYDNLRHFAKKL 540 

LGA             KSAVSGAILLVVPNVMGMMCLSPPLDKLGNSHRGTSFCQKLVSLFNFHNYDNLRHCARKL 473 

                **.*:*.************* ******:*** :*  **:.**** ********** *:** 

 

KGA             DPRREGGDQRVKSVINLLFAAYTGDVSALRRFALSAMDMEQRDYDSRTALHVAAAEGHVE 600 

GAC             DPRREGGDQ---------------------RHSFGPLDYES--LQQELALKETVWK---- 573 

LGA             DPRREGAEIRNKTVVNLLFAAYSGDVSALRRFALSAMDMEQKDYDSRTALHVAAAEGHIE 533 

                ******.:                      *.::..:* *.   :.. **: :. :     

 

KGA             VVKFLLEACKVNPFPKDRWNNTPMDEALHFGHHDVFKILQEYQVQYTPQGDSDNGKENQT 660 

GAC             ---------KVSPESNEDISTTVVYRMESLGEKS-------------------------- 598 

LGA             VVKFLIEACKVNPFAKDRWGNIPLDDAVQFNHLEVVKLLQDYQDSYTLSETQAEAAAEAL 593 

                         **.* .::  ..  :     :.. .                           

 

KGA             VHKNLDGLL 669 

GAC             --------- 

LGA             SKENLESMV 602 

 

 

 

 

Figure 11: Sequence-based analysis of human glutaminase isoforms. The sequence 

alignments of three isoforms KGA, GAC and LGA was performed by ClustalW 

(Thompson et al., 1994).  
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The ankyrin repeats has approximately 30 amino acids and found in several signaling 

proteins whose functions include transcriptional initiation, cell cycle regulation, 

cytoskeleton, and signal transducers (Li et al., 2006). According to the Pfam database, 

KGA contains three ankyrin repeats, whereas LGA contains two ankyrin repeats. The 

exact function of ankyrin repeats in human glutaminase is still not known. Interestingly, 

KGA has a KEN box in the C-terminal end that is specifically targeted by ubiqutin ligase 

APC/C during cell-cycle progression (Colombo et al., 2011). On the other hand, LGA 

contains a unique motif EMSV in the C-terminal end which specifically interacts with 

PDZ domain containing proteins (Olalla et al., 2002). 

 

1.5.3 Structure of Glutaminase 

Glutaminase have been reported to present in many organisms including, bacteria, yeast, 

fungi and mammals but not found in thermophiles, archaea and plants (Yoshimune et al., 

2009). A PSI-BLAST search with the KGA sequence suggested the presence of over 50 

homologs from various species and all of them  belong to the glutaminase superfamily. 

Besides, a BLAST search with the KGA sequence against protein data bank (PDB) 

showed several homologs in the PDB. The closest homolog includes microbial 

glutaminase from Micrococcus luteus (PDB: 1U60) and probable glutaminase from 

Geobacillus Kaustophilus (PDB: 2PBY), both shares 38% sequence identity with KGA. 

The monomeric structure of probable glutaminase YbgJ (Geobacillus Kaustophilus ) 

consists of two domains; α/β/α sandwich and associated α-helical domain. The crystal 

structure of YbgJ revealed the presence of five anti parallel β strands (β1, β2, β8,  β9, and 

β10) that are surrounded by several α helices and loops (Figure 12).  Furthermore, YbgJ 
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structure revealed the presence of β lactamase motif 1 (Ser- X-X-Lys), where Ser74 was 

identified to act as a catalytic nucleophile (Brown et al., 2006). The sequence alignment 

of KGA with the selected homologs from E. coli and Micrococcus luteus suggested the  

presence of β-lactamase-like motif in  KGA.  

                                  

Figure 12. Crystal structure of E.Coli glutaminase. The secondary structure elements 

such as α-helices (cyan), β-strands (magenta), loops (magenta) are shown. The location of 

the active site is  indicated by black arrow. This figure adapted from (Yoshimune et al 

2009). 

1.5.4 Binding Partners of Glutaminase 

A recent study by Buschdorf et al., has identified Caytaxin or BNIP-H (brain-specific 

BNIP-2-homology protein) as an interacting partner of KGA (Buschdorf et al., 2006). 

Interestingly, the C-terminal part of the BNIP-H contains a novel protein-protein 

interaction domain, called the BCH domain (BNIP-2 and Cdc42GAP Homology) that 
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directly interacts with KGA. The BCH domain approximately contains 145 residues and 

was initially identified in two proteins; BNIP-2 and Cdc42GAP (Low et al., 2000). It has 

been established that the BCH domain in several proteins regulates a wide range of 

cellular functions including cell apoptosis, cell elongation, migration, rounding and Ras-

MAPK signaling (Low et al., 2000; Lua and Low, 2004, 2005).  

 

 

 

Figure 13: Schematic representation showing the direct interaction of Caytaxin and 

glutaminase (KGA). (A) The C-terminal caytaxin contains a novel domain called BCH 

that directly binds and inhibits the activity of KGA, (B) thereby it reduces the steady-

state level of glutamate (Buschdorf et al., 2006).  

 

 

Caytaxin or BNIP-H is encoded by gene ATCAY and mutation in this gene has been 

implicated in human Cayman cerebellar ataxia (Bomar et al., 2003). The BCH domain of 
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Caytaxin, has been found to directly inhibit the activity of KGA; thereby reducing the 

level of glutamate (Figure 13). Furthermore, it was also found that KGA interaction is 

mediated via atleast two different region of the BCH domain; (aa 191-235) and (aa 288-

331) (Buschdorf et al., 2006). The other isoform LGA is known to directly interact with 

PDZ domain containing proteins such as SNT and GIP (Banerjee et al., 2008; Olalla et 

al., 2008).  

 

1.5.5 Glutaminase in Neurodegenerative Diseases 

In the brain, the role of KGA is briefly described in glutamine-glutamate cycle (Masson 

et al., 2006). Once glutamine is released from the glial cell, mitochondria glutaminase 

(KGA) converts glutamine into glutamate. Upon nerve stimuli, glutamate is released 

from presynaptic terminals and activates glutamate receptors to exert its physiological 

functions. Subsequently, glutamate is converted back into glutamine by glutamine 

synthetase. The glutamine-glutamate cycle is an essential event to maintain low level of 

glutamate in the synapse, avoiding glutamate accumulation and its associated glutamate 

excitotoxicity (Choi and Rothman, 1990). Glutamate excitotoxicity is a principal 

mediator for several neurological disorders including seizures, stroke, trauma, multiple 

sclerosis, and schizophrenia. The excess activity of mitochondrial glutaminase (KGA 

isoform) was found to be associated with stroke and schizophrenia,
 
due to the KGA-

mediated glutamate excitotoxicity (Masson et al., 2006; Newcomb et al., 1997). In 

multiple sclerosis (MS) animal model studies, the activated microglia has been shown to 

play a key role in the generation of excessive glutamate through the release of KGA 

(Shijie et al., 2009). Release of KGA from the HIV-1 infected mononuclear phagocytes 
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was noticed to induce glutamate toxicity that leads to Human immunodeficiency virus 

Associated Dementia (HAD) (Figure 14). Consequently, inhibition of KGA activity by 

small molecule inhibitors resulted in decreased level of glutamate in the cell (Erdmann et 

al., 2009; Erdmann et al., 2006). Taken together, these findings indicate that KGA has 

been considered as a potential target for the development drugs towards several 

neurological conditions.  

                     

 

 

Figure 14: A schematic model for glutaminase activity in HAD. Glutaminase (KGA 

isoform) releases from the infected microglia converts glutamine to glutamate. Over 

stimulation of glutamate receptor NMDAR by glutamate, leads to neuron death. This 

figure is adapted from (Erdmann et al., 2006). 
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1.6 Glutaminase inhibitors  
 

Numerous studies suggest that KGA is a potential therapeutic target for many cancers 

includes lymphoma, prostate, brain and kidney cancers (Erickson and Cerione, 2010; Gao 

et al., 2009; Seltzer et al., 2010; Wang et al., 2010). In this regard, small-molecules 

targeting this enzyme could potentially be used to arrest glutamine-dependent cell growth 

and tumor formation. To date, few small molecule inhibitor of glutaminase have been 

reported. The active site inhibitor that includes 6-Diazo-5-Oxo-l-Norleucine (DON) and 

L-2-amino-4-oxo-5-chloropentanoic acid (CK) are glutamine and glutamate analogs 

respectively (Shapiro et al., 1978, 1979)  (Figure 15).  

 

 

 

Figure 5: Chemical structures of glutamine and glutamate analogs. 6-Diazo-5-Oxo-l 

Norleucine (DON) and L-2-amino-4-oxo-5-chloropentanoic acid (CK) are active site 

inhibitors of KGA. 
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The inhibitor DON is non-specific to human glutaminase, because it not only inhibits 

glutaminase but also is shown to inhibit other glutamine or glutamate utilizing enzymes 

such as glutamine amidotransferase and glutamine synthetase (Barclay and Phillipps, 

1966; Ortlund et al., 2000; Pinkus, 1977). The potential anticancer activity of DON has 

been studied in different animal models, however, it has not progressed to clinical trials 

due to the toxicity concerns (Ahluwalia et al., 1990; Ovejera et al., 1979). 

       

                                                 

 

Figure 6: Chemical structure of glutaminase–allosteric inhibitors: BPTES [bis-2-(5-

phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide] and compound 968, [-(3-bromo-4 

(dimethylamino) phenyl)-2,2-dimethyl-2,3,5,6-tetrahydrobenzo [a] phenanthridin-4(1H)-

one].  
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In recent years, much effort has been taken to develop potent and selective inhibitors of 

glutaminase with better therapeutic efficacy towards human cancers. Recently, BPTES 

[bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide] (Figure 16) was identified 

as a potent and selective inhibitor for KGA (Robinson et al., 2007). This compound was 

originally thought to have therapeutic potential towards the neurological disorders where 

it reduces the glutamate level through the inhibition of glutaminase in cultured neurons. 

However, recent studies highlighted BPTES as a cancer metabolism inhibitor, as it 

inhibits glutaminase that feeds the cancer cells with glutamine. Strikingly, BPTES was 

recently shown to be effective against glioblastoma tumors (low-grade gliomas and 

secondary glioblastomas), by indirectly reducing the activity of R132H mutant form of 

isocitrate dehydrogenase-1 (IDH1) (Figure 17). The enzyme IDH1 usually converts α-

ketoglutarate (α-KG) into isocitrate. However, R132H mutant form of IDH1 is commonly 

found in the brain cancers (glioblastoma cells) that unusually converts α-ketoglutarate (α-

KG) into 2-hydroxyglutaric acid (2-HG), an “onco-metabolite” which supports 

tumorigenesis (Dang et al., 2010). By inhibiting glutaminase, BPTES reduces the 

glutamate derived α-ketoglutarate levels and delays the growth of cells harboring IDH 

mutations (Seltzer et al., 2010).  

 

Furthermore in animal model studies, BPTES has proven to be effective in delaying 

tumor xenograft growth (Keibler et al., 2012). In addition, BPTES is known to be the 

most potent among all the inhibitors studied so far (DeLaBarre et al., 2011; Hartwick and 

Curthoys, 2011; Thangavelu et al., 2012). The selectivity and high potency of BPTES 

against KGA makes this inhibitor an ideal candidate for the therapeutics and notably, this 
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compound has entered in preclinical trials (Garber, 2010; Jones and Schulze, 2012). 

Similarly, Wang et al., identified a compound 5-(3-bromo-4 (dimethylamino) phenyl)-

2,2-dimethyl-2,3,5,6-tetrahydrobenzo[ a] phenanthridin-4(1H)-one, named 968 as an 

allosteric inhibitor of glutaminase. This compound has been shown to inhibits 

recombinant GAC  invitro, and as well blocks the growth of tumors in mouse xenograft 

models invivo (Wang et al., 2010). 

 

 

                               

 

Figure 7: BPTES inhibits IDH1 mutant isoform indirectly. The pathway shows the 

production of 2-HG (an oncometabolite) by IDH1 mutant isoform. BPTES specifically 

inhibits of GLS/KGA in glioblastoma cells and it reduces the glutamate derived α-

ketoglutarate level, a substrate of tumor specific IDH1 mutant isoform. This figure is 

adapted from (Seltzer et al., 2010).  
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1.7 Objectives 
 

The major objective of this thesis is to understand the structural and functional basis of 

human kidney type glutaminase (KGA) and its implications in arresting cancer cell 

metabolism. This will be accomplished through the combination of structural, 

biochemical, molecular, and cell-based studies. Our objectives will be achieved through 

the following studies:  

(a) To study the structure based inhibition mechanism of KGA by small molecule 

inhibitors BPTES and DON. 

(b) To study the regulatory role of KGA in the Raf-Mek-Erk signaling pathway in 

cancer metabolism. 

(c) To identify the growth factors which are connected to Raf-Mek-Erk signaling 

pathway in regulating KGA activity. 

(d) To validate the effect of BPTES in inhibiting cancer cell growth and proliferation 

using different cancer cell lines which express full length KGA. 

(e) To study the functional importance of inhibitors-interacting residues and also to 

explore the specificity of BPTES towards KGA.  

    (h)  To establish a synergistic inhibitory mechanism between both KGA and Raf-Mek-

 Erk signaling pathway and their implications in cancer cell metabolism. 
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2.1 Introduction 
 

The Warburg effect in cancer biology describes the tendency of cancer cells to take up 

more glucose than most normal cells despite the availability of oxygen (DeBerardinis et al., 

2008; WARBURG, 1956a). In addition to altered glucose metabolism, glutaminolysis 

(catabolism of glutamine to ATP and lactate) is another hallmark of cancer cells 

(DeBerardinis et al., 2008; Reitzer et al., 1979). In glutaminolysis, mitochondrial 

glutaminase (GA) catalyzes the conversion of glutamine to glutamate (Curthoys and 

Watford, 1995),
 
which is further catabolized in the Krebs cycle for the production of ATP, 

nucleotides, certain amino acids, lipids and glutathione (DeBerardinis et al., 2008; Wise et 

al., 2008) .  

 

Humans express two glutaminase isoforms, KGA (Kidney-type) and LGA (Liver-type) 

from two closely related genes (Aledo et al., 2000). Although KGA is important for 

promoting growth, nothing is known about the precise mechanism of its activation or 

inhibition and how its functions are regulated under physiological or patho-physiological 

conditions. Inhibition of rat KGA activity by antisense mRNA results in decreased 

growth and tumourigenicity of Ehrlich ascites tumor cells (Lobo et al., 2000), reduced 

level of glutathione, and induced apoptosis (Lora et al., 2004), whereas Myc, an 

oncogenic transcription factor, stimulates KGA expression and glutamine metabolism 

(Wise et al., 2008). Interestingly, direct suppression of miR23a and miR23b (Gao et al., 

2009) or activation of TGF (Andratsch et al., 2007) enhances KGA expression. Similarly, 

Rho GTPase that controls cytoskeleton and cell division also up-regulates KGA 

expression in an NF-kB dependent manner (Wang et al., 2010). In addition, KGA is a 
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substrate for the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C)-

Cdh1, linking glutaminolysis to cell cycle progression (Colombo et al., 2010). In 

comparison, function and regulation of LGA is not well studied although it was recently 

shown to be linked to p53 pathway (Hu et al., 2010; Suzuki et al., 2010). Although 

intense efforts are being made to develop a specific KGA inhibitor such as BPTES [bis-2-

(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide] (Robinson et al., 2007), its 

mechanism of inhibition and selectivity is not yet understood. Equally important is to 

understand how KGA function is regulated in normal and cancer cells so that a better 

treatment strategy can be considered. 

 

The previous crystal structures of microbial (Mglu) and Escherichia coli glutaminases 

show a conserved catalytic domain of KGA (Brown et al., 2008; Yoshimune et al., 2010). 

However, detailed structural information and regulation are not available for human 

glutaminases especially the KGA, and this has hindered our strategies to develop 

inhibitors. In this chapter, we report the crystal structure of the catalytic domain of human 

apo KGA and its complexes with substrate (L-glutamine), product (L-glutamate), 

BPTES, and its derived inhibitors. Further, Raf-Mek-Erk module is identified as the 

regulator of KGA activity. Although BPTES is not recognized in the active site, its 

binding confers a drastic conformational change of a key loop (Glu312-Pro329), which is 

essential in stabilizing the catalytic pocket. Significantly, EGF (epidermal growth factor) 

activates KGA activity, which can be abolished by the kinase-dead, dominant negative 

mutants of Mek2 (Mek2-K101A) or its upstream activator Raf-1 (Raf-1-K375M), which 

are the kinase components of the growth-promoting Ras-Mek2-Erk signaling node. 
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Furthermore, co-expression of phosphatase PP2A and treatment with Mek-specific 

inhibitor or alkaline phosphatase all abolished enhanced KGA activity inside the cells and 

in vitro, indicating that stimulation of KGA is phosphorylation-dependent. Our results 

therefore provide novel mechanistic insights into KGA inhibition by BPTES and its novel 

regulation by EGF-mediated Raf/Mek/Erk module in cell growth and possibly cancer 

manifestation. This paves the way for developing more specific therapeutic inhibitors for 

KGA in glutamine-addicted cancers.  

 

2.2 Materials and Methods 

2.2.1 Cloning, Protein Expression, and Purification 

The human KGA consists of 669 amino acids. We refer to Ile221-Leu533 as the catalytic 

domain of KGA (cKGA) (Figure 11). The cKGA was cloned into a pET-28(b) vector 

fusion with N-terminal His tag (pNICBsa4 cleavable with tobacco etch virus (TEV) 

protease, and the protein was expressed in Escherichia coli BL21 (DE3)-RIL-Codon plus 

cells grown in 6 L LB broth medium. Cells were sonicated in lysis buffer [50 mM Hepes 

(pH 7.5), 500 mM NaCl, 5 mM imidazole, 10% glycerol, 1 mM DTT, 0.1% (vol/vol) 

Triton X-100, and one tablet of complete protease inhibitor mixture] (Roche Diagnostics) 

and further lysed by French press. The soluble fraction was passed on to a Ni-NTA 

affinity column (Qiagen), and the bound protein was eluted with 500 mM imidazole. The 

His6 tag was cleaved with TEV protease at 4 °C for 20 h. The protein was further purified 

by gel filtration column (Superdex-200; GE Healthcare) and then concentrated to 20 

mg/mL in a buffer containing 20 mM Hepes (pH 7.5), 200 mM NaCl, 10% glycerol, and 

3 mM DTT. The recombinant cKGA mutants were generated by site-directed 
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mutagenesis on the pET-28(b)-cKGA plasmid using the KAPA polymerase site-directed 

mutagenesis kit (Kapa Bio-systems) (Table 4). All cKGA mutants were expressed and 

purified using similar protocol as described above. 

 

2.2.2 Inhibitor Synthesis  

All inhibitors (1–5) were synthesized by following the reported procedure (Newcomb, 

2002). The diamino compounds (2–4) were prepared by refluxing thiosemicarbazide (5 

mmol) and appropriate dicarboxylic acid (15 mmol) in the presence of POCl3 for 2 h. 

Upon cooling the reaction mixture was poured over 200 g of ice. The turbid suspension 

was filtered, and the filtrate was basified with potassium carbonate to precipitate the 

product. The precipitate was filtered and washed with plenty of water and dried at 

vacuum to afford the target amines in moderate yield of ≈50%. The amide derivatives (1 

and 5) were synthesized by condensing the diamino compound (1) (1 mmol) and 

corresponding acid chloride (3 mmol) in dry pyridine for 12 h. After cooling, the reaction 

mixture was poured into 50 mL of methanol. The precipitated product was filtered and 

washed with plenty of methanol to afford the target compounds.  

 

General procedure for the synthesis of diamino bis-thiazole derivatives (1–3): 

thiosemicarbazide (0.45 g, 5 mmol) and appropriate dicarboxylic acid (15 mmol) were 

refluxed in 10 mL of POCl3 for 2 h. Upon cooling the reaction mixture was poured over 

200 g of ice. The turbid suspension was filtered, and the filtrate was basified with 

potassium carbonate to precipitate the product. The precipitate was filtered and washed 

with plenty of water and dried at vacuum. 
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Bis-2′-[5-amino-1,3,4-thiazol-2-yl]ethylsulfide (1): 

3,3′-thiodipropionic acid (5.67 g). 0.75 g of product (yield = 53%)  

1,5-(5-amino-1,3,4-thiadiazol-2yl)pentane (2): 

Pentane-1,5-dicarboxylic acid (2.4 g). 0.6 g of product (yield = 45%)  

1,5-(5-amino-1,3,4-thiadiazol-2yl]butane (3):  

1,6-hexanedioic acid (2.2 g). 0.5 g of product (yield = 40%) 

 

General procedure for amide synthesis (4 and 5): diamino compound 1 (1 mmol) and 

corresponding acid chloride (3 mmol) were refluxed in 10 mL of dry pyridine for 12 h. 

Upon cooling, the reaction mixture was poured into 50 mL of methanol. The precipitated 

product was filtered and washed with plenty of methanol to afford the target compound. 

 

Bis-2′-[5- (phenylacetamido)-1,3,4-thiazol-2-yl]ethylsulfide (4): 

Phenyl acetyl chloride (0.45 g). 0.3 g of product (yield = 57%) 

Bis-2′-[5-(3,4,5-trimethoxybenzamido)-1,3,4-thiazol-2-yl]ethyl sulfide (5): 

3,4,5-trimethoxybenzoyl chloride (0.69 g). 0.28 g of product (yield = 41%) 

 

 

Inhibitors were synthesized in collaboration with A/P Valiyaveettil Suresh, Department 

of Chemistry, NUS.  

 

 

 

http://staff.science.nus.edu.sg/~chmsv/SV/Dr.%20Suresh%20Valiyaveettil's%20Research%20Group.htm
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2.2.3 Glutaminase Assay 

Glutaminase assay was performed using a two step assay described previously (Kenny et 

al., 2003). Briefly, 10 μL of wild-type cKGA or cKGA mutant was incubated separately 

with 10 μL of first assay mix [20 mM glutamine, 50 mM Tris·acetate (pH 8.6), 80–150 

mM phosphate, and 0.2 mM EDTA] at 37 °C for 10 min, and the reaction was quenched 

with adding 2 μL of 3 M HCl. Subsequently 200 μL of the second assay mix [2.2 U 

glutamate dehydrogenase, 80 mM Tris·acetate (pH 9.4), 200 mM hydrazine, 0.25 mM 

ADP, and 2 mM nicotinamide adenine dinucleotide] was added and incubated for 30 min 

at room temperature. The absorbance at 340 nm was recorded using a microplate reader 

(SpectraMax 340; Molecular Devices). Compounds were prepared as a 10-mM stock in 

100% (vol/vol) DMSO, and necessary controls were established. The IC50 values were 

calculated from the fitted regression equation using the-log plot (Graphpad prism). Each 

value represents the means ± SD of three independent experiments, each with at least 

three replicates. Statistical significance was analyzed using ANOVA and the Student-

Newman-Kuels multiple range test (StatsDirect). Data are means ± SD (P < 0.05) and 

expressed as fold increase over the control cells. 

 

2.2.4 Crystallization and Data collection 

Crystallization screening was carried out by hanging drop vapor diffusion methods at 20 

°C using crystallization screens from Hampton Research (Aliso Viejo, CA, USA) and 

Jena Bioscience screens (Jena, Germany). apo cKGA crystals were grown in 0.1 M Bis-

Tris propane (pH 7.0), 1.7 M LiSO4, and 5% DMSO. cKGA-L-glutamine complex 

crystals were obtained by adding 10 mM L-glutamine with cKGA in 0.1 M Hepes Na 
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(pH 7.5), 2% PEG 400, and 2.1 M (NH4)2SO4. cKGA-L-glutamate complex crystals 

were obtained by adding 10 mM L-glutamate with cKGA in 0.1 M Bis-Tris propane (pH 

7.0), and 1.4 M LiSO4. The cKGA: BPTES complex was prepared by mixing cKGA (1 

mg/mL) with BPTES (inhibitor 1) to the final molar ratio of 1:7 and incubated at room 

temperature (23 °C) for 1 h. The complex was then concentrated to 22 mg/mL by 

centrifugation. Crystals of the cKGA: BPTES complex were grown in 0.1 M Bis-Tris 

propane (pH 7.0) and 1.8 M LiSO4. Similarly cKGA-inhibitors 2, 3, and 4 complexes 

were prepared and crystals obtained using a similar condition as BPTES complex. 

Crystals were cryoprotected in the reservoir solution with 20% glycerol and flash cooled 

in a N2 cold stream (100 K). Diffraction data were collected at the synchrotron beam lines 

[X12C, Brookhaven National Laboratory, New York, NY; BL13B1, National 

Synchrotron Radiation Research Center (NSRRC), Taiwan; and I911-3, MAX-lab, Lund, 

Sweden]. Data were processed and scaled using HKL2000 (Otwinowski Z and W., 1993) 

and XDS (Kabsch, 2010). The crystallographic data collection statistics are provided in 

Table 5. 

 

2.2.5 Structure Solution and Refinement 

We solved the crystal structure of glutaminase (cKGA)- L-glutamate complex [Protein 

Data Bank (PDB) code 3CZD] by molecular replacement with MolRep (Vagin and 

Teplyakov, 2010) using the coordinates of a homolog from Micrococcus luteus K-3 

(PDB 2DFW; 36% sequence identity with cKGA) as search model (Yoshimune et al., 

2010). This structure was refined using Refmac5 (Murshudov et al., 1997) and the 

models were examined and built in COOT (Emsley and Cowtan, 2004). Similarly the apo 
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cKGA and other complex structures are determined by molecular replacement with 

MolRep using the cKGA coordinates from cKGA–L-glutamate complex. All crystals 

were in space group I4122, and in all cases one apo/complex molecule of cKGA was 

observed in the asymmetric unit. The initial model with the electron density map was 

examined, and the model was fitted with COOT and subsequent refinement carried out 

with CNS (Brünger et al., 1998). Manual fitting of the inhibitor and refinements were 

carried out in O (Jones et al., 1991) and CNS programs respectively, with appropriate 

entries made in their respective libraries. Overall geometry of final models was analyzed 

by PROCHECK (Laskowski RA et al., 1993). The refinement statistics are provided in 

Table 5.  

 

2.2.6 Cell Culture, Growth Factor Stimulation, and Inhibitors Treatment. 

Human embryonic kidney epithelial 293T cells were maintained in RPMI-1640 

(HyClone) with 10% (vol/vol) FBS (from PPA, Cell Culture Company, Austria), 2 mM 

L-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin (HyClone), whereas 

human breast epithelial cancer MCF7 cells were grown in high-glucose DMEM 

(HyClone). All cells were grown at 37 °C, 5% CO2. Confluent cells grown on six-well 

plates were transfected using Mirus (TransIT) with 2 μg of either vector plasmid or 

plasmids encoding wild-type KGA (full length), Raf-1, Mek2, or the various mutants as 

indicated. Twenty-four hours later, cells were treated with indicated doses of BPTES or 

DMSO for 48 h. For growth factor stimulation [using 100 ng/mL of EGF (Sigma), 20 μM 

of LPA (Sigma), 50 ng/mL of PDGF (Sigma), 1 ng/mL of TGF-β (R&D Systems), and 

10 ng/mL of basic FGF (bFGF; Promega)], the transfected cells were starved for 18 h and 
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stimulated with various growth factors and for the time indicated. Quiescent cells were 

treated with 20 μM of U0126 (Promega) and incubated at 37 °C for 30 min before growth 

factor stimulation. Cells were lysed with Hepes buffer [20 mM Hepes (pH 7.4), 150 mM 

NaCl, 1% Nonidet P-40, 20 mM glycerol-2-phosphate, 1 mM sodium orthovanadate, and 

20 mM sodium fluoride and protease inhibitors (Roche Applied Science)], and 260 μL of 

aliquots were used for the glutaminase assays as described. 

 

2.2.7 Phosphatase Treatment  

Beads with immunoprecipitated complex were resuspended with 50 μL of Tris buffer 

(100 mM NaCl, 50 mM Tris·HCl, 10 mM MgCl2, and 1 mM DTT; pH 7.9) and incubated 

with 20 U of calf intestine alkaline phosphatase (NEB) for 3 h at 37 °C. The beads were 

washed thrice with chilled Hepes buffer before glutaminase assay. 

 

2.2.8 Plasmids Construction and Site-Directed Mutagenesis 

The full length KGA cDNA is a generous gift from Norman P. Curthoys (Colorado State 

University, Fort Collins, CO; GenBank accession no. AF327434) and was cloned into 

pXJ40 vector with the addition of HA-tag (previously obtained from Dr. Ed Manser, 

Institute of Molecular and Cell Biology, Singapore). The full-length cDNA was 

generated through PCR with appropriate primers containing either a BamHI or XhoI 

restriction site for cloning into the pXJ40 expression vectors. The residues Phe318, 

Leu321, Phe322, Leu323, and Tyr394 of full-length human KGA were mutated to Ala, 

respectively, as a single-point mutant. Similarly, triple (Leu321- Phe322-Leu323) and 
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tetra (Leu321-Phe322-Leu323-Tyr394) mutant constructs were mutated to multiple 

alanines (Table 3). We used a polymerase site-directed mutagenesis kit (Kapa 

Biosystems) to create all mutants. The wild-type, constitutive active, or dominant 

negative mutants of the human Raf-1, mouse Mek2 cDNAs were gifts from Dr. Graeme 

Guy, Institute of Molecular and Cell Biology (IMCB), Singapore and their inserts were 

subcloned into Flag or HA-tagged pXJ40 vectors and propagated in E. coli strains DH5α. 

The plasmids were purified, transfected, and Mek2 was validated to activate downstream 

Erk/MAPK as previously described (Pan et al., 2010). Plasmids for protein phosphatase 

PP2A were a gift from Sheng-cai Lin (Xiamen University, Xiamen, China). 

 

Table 3: Deoxyoligonucleotides used to generate mutants of full length KGA 

 

F318A        5'-GCCGAGTGGACTAAGAGCCAACAAACTATTTTTGAAT-3’ 

           5'-ATTCAAAAATAGTTTGTTGGCTCTTAGTCCACTCGGC-3’ 

 

L321A        5'-GTGGACTAAGATTCAACAAAGCATTTTTGAATGAAGATGA-3’ 

        5'-TCATCTTCATTCAAAAATGCTTTGTTGAATCTTAGTCCAC-3’ 

 

F322A           5'-GTGGACTAAGATTCAACAAACTAGCTTTGAATGAAGATGATAAACC-3’ 

          5'-GGTTTATCATCTTCATTCAAAGCTAGTTTGTTGAATCTTAGTCCAC-3’ 

 

L323A       5'-GACTAAGATTCAACAAACTATTTGCGAATGAAGATGATAAACCACA-3’ 

        5'-TGTGGTTTATCATCTTCATTCGCAAATAGTTTGTTGAATCTTAGTC-3’ 

 

Y394A       5'- GAAATTTTGCAATAGGATATGCCTTAAAAGAAAAGAAGTGTTTTC-3’ 

       5'- GAAAACACTTCTTTTCTTTTAAGGCATATCCTATTGCAAAATTTC-3’ 

 

L321A-L323A          5'-GTGGACTAAGATTCAACAAAGCAGCTGCGAATGAAGATGATAAACC-3’ 

                     5'-GGTTTATCATCTTCATTCGCAGCTGCTTTGTTGAATCTTAGTCCAC-3’  
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Table 4: Deoxyoligonucleotides used to generate mutants of recombinant cKGA 

 

F318Y  5'- CCGTCGGGGCTGCGCTATAATAAACTGTTTCTGAAC -3' 

  5'- GTTCAGAAACAGTTTATTATAGCGCAGCCCCGACGG -3' 

 

F322S  5'- CGCTTTAATAAACTGTCTCTGAACGAAGATGACAAACCG -3' 

  5'- CGGTTTGTCATCTTCGTTCAGAGACAGTTTATTAAAGCG -3' 

 

F318Y/F322S 5'- TCGGGGCTGCGCTATAATAAACTGTCTCTGAACGAAGAT -3' 

  5'- ATCTTCGTTCAGAGACAGTTTATTATAGCGCAGCCCCGA -3' 

 

F394I   5'- CGCAACTTCGCAATTGGGTATATTCTGAAAGAAAAAAAATGCT-3' 

  5'- AGCATTTTTTTTCTTTCAGAATATACCCAATTGCGAAGTTGCG -3' 

 

2.2.9 Cell Proliferation Assays 

293T cells transfected with vector, KGA, or the KGA mutant plasmids were trypsinized 

and replated into 96-well plates, followed by treatment with BPTES for 48 h, and 

amounts of cell proliferations were determined using an MTT proliferation assay kit 

(Promega) as described by the manufacturer. The assay was repeated with at least three 

independent experiments, each with multiple replicates. Statistical significance was 

analyzed using ANOVA and the Student-Newman-Kuels multiple range test 

(StatsDirect). Data are means ± SD (P < 0.05) and expressed as fold increase over control 

cells. 

2.2.10 Coimmunoprecipitation and Western Blot Analyses 

Transfected 293T cells were lysed with Hepes buffer and immunoprecipitated with anti-

Flag M2 affinity gel (Sigma) as previously described (Low et al., 2000). Samples were 

separated in SDS/PAGE gels, followed by Western blot analyses. Blots were probed with 
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polyclonal anti-Flag (Sigma), polyclonal anti-HA (Zymed), anti-KGA (Santa Cruz), anti-

myc (Santa Cruz), anti-Raf (Santa Cruz), anti-Pan-Erk (Cell Signaling Technology), and 

anti-phospho-ERK (Sigma). The luminescence signals were generated by incubation with 

Pierce Pico ECL (Thermo Scientific) as described by the manufacturer. 

 

Cell biology related studies are performed in collaborations with Prof Low Boon Chuan, 

Mechnobiology Institute of Singapore (MBI), NUS. 

 

2.2.11 PDB Accession Codes 

The coordinates of the apo cKGA and its complexes with L-glutamine, L-glutamate, 

BPTES, L-glutamate- BPTES, and inhibitors 2, 3, and 4 have been deposited under 

accession codes 3VOY, 3VP0, 3CZD, 3VOZ, 3VP1, 3VP2, 3VP3, and 3VP4, 

respectively. 

 

2.3 Results 

 

2.3.1 Purification of Recombinant cKGA 

The human KGA consists of 669 amino acids. We refer to Ile221-Leu533 as the catalytic 

domain of KGA (cKGA) (Figure 11). The plasmid was expressed in Escherichia coli 

BL2 (DE3) RIL-Codon plus cells and the cell pellets were lysed by sonication and 

followed by French press. The protein purification was carried out by two steps: affinity 

purification and followed by gel filtration chromatography. The His6-tagged-cKGA was 
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first purified through affinity purification with the Ni-NTA agarose column. The bound 

protein was eluted in buffer containing 200 mM and 500 mM imidazole, respectively 

(Figure 18).  

      

Figure 8: SDS-PAGE showing the expression and affinity purification profile of His-

tagged cKGA. Samples from different stages of Ni affinity purification were collected, 

verified by coomassie blue stained SDS-PAGE (12.5% gel). Lane 1 – soluble fraction, 

Lane 2 – insoluble fraction, Lane 3 – Flow through,  Lane4– wash 1, Lane5– wash 2, 

Lane6–low molecular weight ladder, Lane7–elution1,  Lane8– elution2, Lane9 –protein 

bound to Ni-NTA beads after elution. 

 

 

 

The eluted protein was further purified through gel filtration chromatography using FPLC 

Hiload 16/200 Superdex200 gel filtration column. A single peak corresponding to the 

molecular weight of cKGA (approximately 36 kDa) was obtained (Figure 19). The eluted 

protein was finally concentrated to 20 mg/ml by ultracentrifugation.   
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Figure 9: Gel filtration profile of cKGA in a 120 ml column volume 16/60 Superdex-200 

column. The cKGA protein was purified to homogeneity, as cKGA was eluted as a single 

peak in the gel filtration. Gel filtration fractions from the peak were analyzed through 

12.5% SDS-PAGE analysis. The X-axis indicates the elution volume in mL; Y-axis 

indicates the UV absorbance (at 280 nm) measured in mAU (arbitrary units). 

 

 

Dynamic Light Scattering (DLS) experiment was performed during concentrating the 

protein and prior to the crystallization screenings, to analyze the homogeneity of the 

protein. DLS experiment indicated a dispersity index of 0.11 at 20 mg/ml of protein, and 

this indicates that the cKGA was mono-dispersed (Figure. 20).  
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Figure 10: Dynamic Light Scattering (DLS) results for purified cKGA. The 

Polydispersity index, and SOS error are indicated in red and blue boxes respectively. 

 

2.3.2 Crystallization  

The initial crystals obtained from the screen were too small to diffract. However, better 

diffraction-quality crystals were obtained through the grid screen optimization process 
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using the crystallization condition of 0.1 M Bis-Tris Propane pH 7.0 and 1.8-2.1 M LiSO4 

(Figure 21).  

            

                           (A)                                                                (B) 

            

                          (C)                                                                (D) 

 

Figure 11: A representative crystals of cKGA. Crystals were obtained from the hanging 

drop vapour diffusion method: (A) apo cKGA crystal (Small), (B) apo cKGA crystal 

(Large), (C) cKGA -L-glutamine complx, (D) cKGA -BPTES  complex.  

 

2.3.3 Data collection, Structure Determination and Refinement 

The crystals were cryo-protected with 15% glycerol and the diffraction data were 

collected at synchrotron beamlines (Figure 22). The apo cKGA and all other complexes 
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crystallized in I4122 space group. The structures of the apo-cKGA, and other complex 

structures were determined by molecular replacement method using the program Molrep 

(Vagin and Teplyakov, 2010) (Table 5).  

 

 

Figure 12: A representative diffraction pattern of apo cKGA crystal. The data collected 

from ADSC Q315 (Area Detector System Corporation) diffractometer system at 13-

b1beamline (NSRRC, Taiwan). 
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Table 5: Crystallographic data and refinement statistics 
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2.3.4 Structures of cKGA and Its Complexes with L-Glutamine and L-Glutamate 

The human KGA consists of 669 amino acids. We refer to Ile221-Leu533 as the catalytic 

domain of KGA (cKGA) (Figure 23A). The crystal structures of the apo cKGA and in 

complex with L glutamine or L-glutamate were determined (Figure 23B and Figure 24). 

A 

 

B 

      

Figure 13: Schematic view and structure of the cKGA-L-glutamine complex. (A) Human 

KGA domains and signature motifs (refer to introduction 1.5.2 for details). (B) Structure 

of the of cKGA and bound substrate (L-glutamine) is shown as a cyan stick. The N- and 

C- termini and the secondary structures such as α-helices and β-sheets are labeled. This 

figure and the following figures of this chapter are prepared by PyMol (DeLano, 2002). 
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The structure of cKGA has two domains with the active site located at the interface. 

Domain I comprises (Ile221-Pro281 and Cys424 -Leu533) of a five-stranded anti-parallel 

β-sheet (β2↓β1↑β5↓β4↑β3↓) surrounded by six α-helices and several loops. The domain 

II (Phe282-Thr423) mainly consists of seven α-helices (Figure 25A). 

 

                              

 

Figure 14: Interactions of cKGA with L-Glutamine. Final 2Fo- Fc electron density map 

in the active-site region of cKGA, map contoured at a level of 1 σ. L-Glutamine is shown 

as a cyan stick that makes hydrogen bond interactions with active site residues (orange). 
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L-Glutamine/L-glutamate is bound in the active site cleft (Figure 25B). Overall the active 

site is highly basic, and the bound ligand makes several hydrogen-bonding contacts to 

Gln285, Ser286, Asn335, Glu381, Asn388, Tyr414, Tyr466, and Val484, and these 

residues are highly conserved among KGA homologs (Figure 26).  

 

 

                          

Figure 15: Structure of cKGA and its complex with L-Glutamate. (A) Cartoon 

representation of the apo cKGA structure. Domain I (amino acids 221–281 and 424–533) 

is shown in orange; domain II (amino acids 282–423) in green. The active site cleft is 

located between the interfaces of the domains. (B) Final 2Fo- Fc electron density map in 

the active-site region of cKGA, map contoured at a level of 1 σ. L-Glutamate is shown as 

a cyan stick that makes hydrogen bond interactions with active site residues. 
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Notably, the putative serine-lysine catalytic dyad (286-SCVK-289), corresponding to the 

SXXK motif of class D β-lactamase (Brown et al., 2008), is located in close proximity to 

the bound ligand. In the apo structure, two water molecules were located in the active 

site, one of them being displaced by glutamine in the substrate complex. The substrate 

side chain is within hydrogen-bonding distance (2.9 Å) to the active site Ser286. Other 

key residues involved in catalysis, such as Lys289, Tyr414, and Tyr466, are in the 

vicinity of the active site. Lys289 is within hydrogen-bonding distance to Ser286 (3.1 Å) 

and acts as a general base for the nucleophilic attack by accepting the proton from 

Ser286. Tyr466, which is close to Ser286 and in hydrogen bonding contact (3.2 Å) with 

glutamine, is involved in proton transfer during catalysis. Moreover, the carbonyl oxygen 

of the glutamine is hydrogen-bonded with the main chain amino groups of Ser286 and 

Val484, forming the oxyanion hole. Thus, we propose that in addition to the putative 

catalytic dyad (Ser286 XX Lys289), Tyr466 could play an important role in the catalysis 

(Figure 26 and Figure 27). 
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Figure 16: Sequence alignment of cKGA homologs. The amino acids are in one-letter 

codes, and the conserved residues are in red. Strictly conserved residues are highlighted 

in red (identity <36%). Numbering is shown for the KGA sequence. The key conserved 

catalytic residues of cKGA are shown with asterisks. This figure was prepared using the 

program Espript2.2 (Gouet et al., 1999). The compared cKAG homologs are E. coli YbaS 

(PDB code IU60), Geobacillus kaustophilus (PDB code 2PBY), Bacillus subtilis (PDB 

code 1MKI), and M. luteus (PDB code 3IF5). 
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Figure 17:  Proposed catalytic mechanism of KGA. The reaction mechanism proceeds 

with the following steps. (i) Formation of tetrahedral intermediate by nucleophilic attack 

of Ser286 on glutamine, which is assisted by Lys289. (ii) Breakdown of tetrahedral 

intermediate to form ammonia and the enzyme intermediate. (iii) Nucleophilic attack of 

water on the enzyme intermediate aided by Lys289 and Try466. (iv) Formation of 

glutamate and free enzyme. 
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2.3.5 Allosteric Binding Pocket for BPTES 

The crystal structure of cKGA: BPTES complex shows that BPTES occupies a 

previously unsuspected allosteric pocket, in the solvent-exposed region at the dimer 

interface of cKGA, located ≈18 Å away from the active site serine (Ser286). The 

chemical structure of BPTES has an internal symmetry, with two exactly equivalent parts 

including a thiadiazole, amide, and a phenyl group and it equally interacts with each 

monomer (Figure 28 and 29). 

 

 

 

 

Figure 18: Structure of cKGA: BPTES complex. The cKGA homodimer figure is shown 

in ribbon representation. The monomer A and monomer B are shown in purple and 

orange color, respectively, and BPTES is shown as a cyan stick representation.  
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Figure 19:  Binding pocket for BPTES. A surface representation of the inhibitor binding 

pocket of BPTES; one molecule of BPTES wedged at the interface of two cKGA 

monomers. BPTES is shown as a stick in the transparent view of the surface of cKGA. 

 

The thiadiazole group and the aliphatic linker are well buried in a hydrophobic cluster 

that consists of Leu321, Phe322, Leu323, and Tyr394 from both monomers, which forms 

the allosteric pocket (Figure 30A and 30B). The side chain of Phe322 is found at the 

bottom of the allosteric pocket. The phenylacetamido moiety of BPTES is partially 

exposed on the loop (Asn324-Glu325), where it interacts with Phe318, Asn324, and the 

aliphatic part of the Glu325 side chain. The side chain of Tyr394, backbone amide of the 

Phe322 and Leu323, makes hydrogen-bonding contacts to inhibitors. Moreover, the 

residues Leu321 and Phe322 flipped out ≈180° to enhance the hydrophobic interactions 
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with the inhibitors (Figure 31). Thus, the conformational changes are required to form the 

allosteric pocket.       

                                             

 

 

Figure 20: A close-up view of the interactions of BPTES in the cKGA allosteric inhibitor 

binding pocket. (A) The residues that interact with BPTES from each monomer are 

labeled and shown in different colors consistent with Figure 28. (B) Electron density map 

(2Fo – Fc map contoured at 1.0 σ) for BPTES (cyan sticks) is shown in grey mesh. 
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Figure 21: A schematic view of cKGA monomer interactions with BPTES. For clarity, 

only half of the BPTES inhibitor that interacts with a monomeric cKGA and the 

interaction residues are shown. The Figure was prepared using LIGPLOT (Wallace et al., 

1995).  
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2.3.6 Inhibitor Optimization of KGA  

The crystal structure of catalytic domain of KGA (cKGA) in complex with BPTES 

(Figure 28) shows that one molecule of BPTES is wedged between two cKGA 

monomers, forming equivalent interactions with each of them. Each of the terminal 

phenylacetamino groups forms fewer interactions with cKGA than the rest of the 

inhibitor. These observations led us to further optimize its inhibitory properties, and 

initially three inhibitors were synthesized (inhibitors 2, 3, and 4) (Figure 32A). Inhibitors 

2, 3, and 4 inhibited cKGA with IC50 values of 8 μM, 11 μM, and 19 μM, respectively 

(Figure 32B). However, BPTES (inhibitor 1) inhibits cKGA with an IC50 of 0.16 μM. 

This clearly indicated the important role of the phenylacetamido group, the length and the 

hydrophobic groups of the linker in cKGA inhibition. To further understand the binding 

mode of these inhibitors, the complex structures of inhibitors 2, 3, and 4 bound to cKGA 

were determined (Table 5 and Figure 33 and 34). Similar to BPTES, compounds 2–4 all 

resides within the hydrophobic cluster of the allosteric pocket and also the side chain of 

Tyr394, backbone amide of the Phe322 and Leu323, makes hydrogen-bonding contacts 

to inhibitors. With these complex crystal structures along with BPTES complex, we 

observed that the inhibitor binding pocket might accommodate larger hydrophobic groups 

and result in synthesizing inhibitor 5 with three methoxy substitutions on both side 

phenyl rings (Figure 32A and Figure 32B). Inhibitor 5 shows an IC50 of 5 μM. This 

demonstrated that adding more hydrophobic groups did not enhance the efficiency of 

BPTES.  
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Figure 22: Enzymatic and structural details of BPTES and its derived inhibitors. (A) 

Chemical structure of BPTES (inhibitor 1) and its derivatives. (B) IC50 determination for 

synthesized inhibitors with cKGA. The IC50 values were determined from a plot of 

percentage inhibition against various inhibitors concentration. Each value represents the 

means ± SD of three independent experiments, each with at least three replicates. This 

figure was prepared using Graphpad prism. 
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Figure 23: Details of the interactions of inhibitor 2 in the cKGA inhibitor binding pocket. 

(A) The residues that interact with inhibitor 2 from each monomer are labeled. (B) 

Electron density map (2Fo – Fc map contoured at 1.0σ) for inhibitor 2 (cyan stick) is 

shown in grey mesh.  
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Figure 24: Details of the interactions of inhibitor 3 in the cKGA inhibitor binding pocket. 

(A) The residues that interact with inhibitor 3 from each monomer are labeled. (B) 

Electron density map (2Fo – Fc map contoured at 1.0 σ) for inhibitor 3 (cyan stick) is 

shown in grey mesh.  

 

Although inhibitors 2-5 showed moderate inhibition compared with BPTES, their 

structural details reveal the key determinants for the high potency and selectivity of the 

inhibitors, and guide the design of next-generation inhibitors. Taken together, we propose 

that the binding specificity of BPTES is dictated by the thiadiazole, amide, and the 
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hydrophobic linker regions, whereas the potency is primarily determined by the presence 

of phenyl rings at both ends. Thus, BPTES was subsequently used to further delineate the 

structural, functional, and regulation aspects of KGA. 

 

2.3.7 Allosteric Binding of BPTES Triggers Major Conformational Change in the 

Key Loop Near the Active Site 

The overall structure of these inhibitor complexes superimposes well with apo cKGA. 

However, a major conformational change at the Glu312 to Pro329 loop was observed in 

the BPTES complex (Figure 35). The most conformational changes of the backbone 

atoms that moved away from the active site region are found at the center of the loop 

(Leu316- Lys320). The backbone of the residues Phe318 and Asn319 is moved ≈9 Å and 

≈7 Å, respectively, compared with the apo structure, whereas the side chain of these 

residues moved ≈14 Å and ≈12 Å, respectively. This loop rearrangement in turn brings 

Phe318 closer to the phenyl group of the inhibitor and forms the inhibitor binding pocket, 

whereas in the apo structure the same loop region (Leu316-Lys320) was found to be 

adjacent to the active site and forms a closed conformation of the active site. Specifically, 

in apo structure Phe318 makes hydrophobic interactions with Tyr466, and side chain of 

the Asn319 makes hydrogen- bonding contact with backbone of the Asn335 (≈2.8 Å). 

Notably, the residues Tyr466 and Asn335 are involved in binding to L-glutamine and 

catalysis. These observations suggest that binding of BPTES induces conformational 

changes of the key residues of the loop (Glu312-Pro329) to stabilize an open and inactive 

conformation of the catalytic site. Figure 36A and B show the electrostatic surface 

potential of the open and closed conformation of active site. 
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Figure 25: Conformational changes on cKGA induced by binding of the BPTES. 

Structure superposition of monomeric BPTES complex (magenta) and apo cKGA 

(green), showing conformational changes of key residues on the loop Glu312-Pro329. 

BPTES binding site and active site residues are labeled. The BPTES binding site is 

located ~18 Å away from the active site (Ser286) region. For clarity, only half of the 

BPTES inhibitor that interacts with a monomeric cKGA and the relevant conformational 

changes are shown. 
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Figure 26: Electrostatic surface representation for apo cKGA and cKGA: BPTES 

complex. (A) Electrostatic surface potential of the apo cKGA monomer. Active site 

(Ser286) and BPTES binding site residues were labeled. The active site region is in the 

closed conformation. Blue indicates the positive charge, and red indicates negative 

charge. The position of key residues of the loop Glu312-Pro329 is labeled. (B) 

Electrostatic surface potential of the BPTES: cKGA monomer. Same residues as 

described in A are shown here. The active site is in the open conformation with the 

residues Phe318 and Asn319 are moved away. The position of the key residues is labeled. 

A and B show the difference in the electrostatic surface potential and molecular surface 

between the apo cKGA and BPTES complex. 
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Besides, we have determined the cKGA-glutamate-BPTES structure and revealed similar 

conformational changes, suggesting that BPTES can stabilize an inactive glutamate- 

bound form of the enzyme (Figure 37). This result is consistent with previous kinetics 

studies showing that BPTES, which is an uncompetitive inhibitor, can inhibit both the 

enzyme–substrate or enzyme–product complex (Robinson et al., 2007). 

 

 

 

 

 

Figure 27: Structure of cKGA-glutamate-BPTES complex. The BPTES molecule, shown 

as a cyan stick, is located at the dimer interface and its interacting loops (Glu312- 

Pro329) from each monomer. The glutamate molecules are shown as magenta stick in the 

active site of each monomer. 
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2.3.8 Binding of BPTES Stabilizes the Inactive Tetramers of cKGA  

To understand the role of oligomerization in KGA function, dimers and tetramers of 

cKGA were generated using the symmetry-related monomers (Figure 38).  

 

   

 

 

 

Figure 28: A close-up view of the BPTES binding pocket. BPTES binding pocket is 

located on the surface exposed region of the loop Glu312-Pro329 at the dimer interface. 

 

The dimer interface in the cKGA: BPTES complex is formed by residues from the helix 

Asp386-Lys398 of both monomers and involves hydrogen bonding, salt bridges, and 
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hydrophobic interactions (Phe389, Ala390, Tyr393, and Tyr394), besides two sulfate ions 

located in the interface (Figure 38 and Figure 39).     

 

 

       

 

 

 

Figure 29: Perpendicular view of dimer interface of the cKGA-BPTES homodimer and 

showing the residues involved in the interaction as sticks. The dimerization interface is 

formed by the sulphate ion, hydrogen bonding, salt bridge, and hydrophobic interactions 

between residues from each monomer. The sulphate ion and the hydrogen bonding 

contacts are shown. 
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The dimers are further stabilized by binding of BPTES, where it binds to loop residues 

(Glu312-Pro329) and Tyr394 from both monomers. Similarly, residues from Lys311-

Asn319 loop and Arg454, His461, Gln471, and Asn529-Leu533 are involved in the 

interface with neighboring monomers to form the tetramer in the BPTES complex. 

Furthermore, the tetrameric structure of the apo and BPTES: cKGA complex reveals a 

significant difference in the interface area of each monomer. These interactions are 

relatively weak in the apo tetramer compared with the BPTES complex. The apo tetramer 

has a total of 16 intermolecular hydrogen bond contacts (<3.2 Å) with a buried area of 

≈1,700 Å
2
 of each monomer, whereas in the cKGA: BPTES complex there are 25 

intermolecular hydrogen bond contacts with a buried area of ≈1900 Å
2
. The interactions 

among the monomers are relatively weaker in the apo tetramer than in the BPTES 

complex Figure 40A and B). We infer that the binding of BPTES promotes the formation 

of a stable but inactive tetramer. 
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Figure 30: Surface representation showing the apo cKGA and cKGA: BPTES tetramer 

(A) Surface representation showing the symmetry-related apo cKGA molecules forms a 

tetramer. Each monomer is colored differently (A, orange; B, purple; C, blue; D, green). 

(B) Surface representation showing the symmetry-related BPTES: cKGA forms tetramer. 

Each monomer is shown in same color as described in A. The BPTES: cKGA forms tight 

tetramer compared with apo cKGA.  
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2.3.9 BPTES Induces Allosteric Conformational Changes That Destabilize Catalytic 

Function of KGA 

Subsequently we examined how BPTES binding could inhibit KGA activity by 

comparing the structures of the cKGA: BPTES inhibitor complex with the apo cKGA 

structure. Because the loop Glu312-Pro329 is located near the active site, we hypothesize 

that BPTES binding induces conformational changes of the key residues of the loop 

(Glu312-Pro329) to stabilize an open and inactive conformation of the catalytic site. To 

test this hypothesis, wild-type KGA and structure-guided KGA mutants Phe318Ala, 

Leu321Ala, Phe322Ala, and Leu323Ala, as well as a Tyr394Ala variant from the 

dimerization helix, were each expressed in human embryonic kidney epithelial cells 293T 

at equal levels, and homeostasis levels of glutamate inside the cells were determined. 

Figure 41 shows that HEK 293T cells overexpressing KGA produced a higher level of 

glutamate compared with the vector control cells. Most significantly, all of these mutants, 

except Phe322Ala, greatly diminished the KGA activity. 
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Figure 31: Mutations at allosteric loop and BPTES binding pocket abrogate KGA 

activity. HEK 293T cells were transfected with vector control or plasmids expressing 

wild-type, single, or multiple point mutants of HA-tagged KGA for 24 h before cell 

lysates were prepared for glutaminase assays. For clarity, the dotted line was included to 

indicate the basal level. Equal expression levels of the wild-type and mutants KGA were 

verified with Western blots. Each value represents the mean ± SD of three independent 

experiments. 

 

 

Next, we examined whether these residues are specifically involved in stabilizing the 

BPTES–KGA interactions. Unlike all of the previous mutants that have Ala substitutions 

to knock out their direct contribution to the actual enzymatic activities, a set of 

recombinant cKGA mutants (Phe318Tyr, Phe322Ser, Phe318Tyr/Phe322Ser, and 

Tyr394Ile) were instead generated to test their BPTES sensitivity. In particular, 

Phe318Tyr/Phe322Ser double mutant was used to mimic the corresponding residues in 

the liver form of glutaminase, LGA. Results show that all these mutants still retain the 
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same KGA activity as the wild-type control (Figure 42). However, the three mutants 

Phe322Ser or Phe318Tyr/ Phe322Ser and Tyr394Ile showed significantly reduced 

sensitivity to BPTES (1,140-, 970-, and 910-fold, respectively) (Figure 43). In contrast, 

Phe318Tyr, which retains the aromatic ring and is still active, remains highly sensitive to 

BPTES. In summary, consistent with our structural analysis, all of the key residues in the 

loop Glu312 to Pro329 and Tyr394 are essential for conferring KGA activity, and at least 

Phe322 and Tyr394 are involved in stabilizing the BPTES–KGA interaction. Any 

conformational change upon BPTES binding would severely affect the stability of the 

catalytic core of KGA, hence affecting its activity. 

 

 

 

 

Figure 32: Glutaminase assay of cKGA mutants. Wild-type, F318Y, F322S, 

F318Y/F322S (a double mutant), and Y394I mutant of the cKGA were expressed, 

purified, and used for in vitro glutaminase assays. 
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Figure 33: Mutational analyses of cKGA residues in the BPTES binding pocket. BPTES 

sensitivity for the wild-type and cKGA mutants indicated were measured and their IC50 

values calculated. Each value represents the mean ± SD of three independent experiments 

performed in duplicate. 

 

2.3.10 Raf-Mek-Erk Signaling Module Regulates KGA Activity 

To demonstrate that treatment of cells with BPTES indeed inhibits KGA activity and cell 

proliferation, both 293T and MCF7 cells were treated with various concentrations of 

BPTES. Figure 44A and B show that BPTES abolished any increase in the glutamate 

levels in 293T and MCF7 cells overexpressing KGA, down to the basal level in a dose 

dependent manner, with more than 75% of the activity inhibited with 10 μM and 

completely inhibited with 50 μM of BPTES (Figure 44C). Consequently, treatment with 

BPTES in these cells also reduced cell proliferation in a dose-dependent manner (Figure 

44D). BPTES therefore specifically inhibits KGA activity and cell proliferation.  
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Figure 34: BPTES inhibits both KGA activity and cell proliferation in a dose-dependent 

manner. HEK 293T (A) and MCF7 (B) cells expressing a vector control or HA-tagged 

KGA were treated with DMSO or 50 μM of BPTES for 48 h. Cells were lysed and 

assayed for glutaminase activity. Equal expression levels of KGA were verified by 

Western blots. All values are means ± SD of three independent experiments, each with at 

least three replicates. Data sharing different letters are statistically significant at P values 

as indicated, as tested by ANOVA. (C) BPTES inhibits KGA activity in HEK 293T cells 

in a dose-dependent manner. HEK 293T cells expressing KGA were treated with the 

range of BPTES concentration as indicated. Cells were lysed and assayed for glutaminase 

activity. Equal expression levels of KGA were verified with Western blot analyses. (D) 

BPTES inhibits cell proliferation in HEK 293T cells in a dose-dependent manner. HEK 

293T cells were seeded into 96-wells and treated with various indicated concentrations of 

BPTES for 48 h, and cell proliferation assays were measured. All values are means ± SD 

of three independent experiments, each with at least three replicates. Data sharing 

different letters are statistically significant at P values as indicated, as tested by ANOVA. 
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Next, as cells respond to various physiological stimuli to regulate their metabolism, with 

many of the metabolic enzymes being the primary targets of modulation (Tennant et al., 

2010), we examined whether KGA activity can be regulated by physiological stimuli, in 

particular EGF (epidermal growth factor), which is important for cell growth and 

proliferation. Cells overexpressing KGA were made quiescent and then stimulated with 

EGF for various time points. Figure 45 shows that the basal KGA activity remained 

unchanged 30 min after EGF stimulation, but the activity was substantially enhanced 

after 1 h and then gradually returned to the basal level after 4 h. Because EGF activates 

the Raf-Mek-Erk signaling module (Roberts and Der, 2007), treatment of cells with Mek-

specific inhibitor U0126 could block the enhanced KGA activity with parallel inhibition 

of Erk phosphorylation (Figure 45). Interestingly, such Mek-induced KGA activity is 

specific to EGF and lysophosphatidic acid (LPA) but not with other growth factors, such 

as PDGF, TGF-β, and basic FGF (bFGF), despite activation of Mek-Erk by bFGF (Figure 

46). 
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Figure 35: EGFR-Raf-Mek-Erk signaling stimulates KGA activity (i). (A) 293T cells 

expressing HA-tagged KGA were starved for 24h and then stimulated with EGF (100 

ng/mL) for the times indicated. Cells were lysed and assayed for their glutaminase 

activities. (B) The expression levels of KGA and the Erk activation profile (as indicated 

by levels of phosphorylated Erk) were verified by Western blot analyses. All values are 

mean ± SD of three independent experiments, each with multiple replicates. Data sharing 

different letters are statistically significant at P values as indicated, tested by ANOVA or 

t test. 

 

 

B 
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Figure 36: Regulation of KGA by different growth factors and stimuli. 293T cells 

expressing HA-tagged KGA were starved and stimulated with various mitogens including 

EGF (100 ng/mL), LPA (20 μM), PDGF (50 ng/mL), TGF-β (1 ng/mL), and bFGF (10 

ng/mL) as indicated for 3 h. The cells were lysed and assayed for glutaminase activity. 

Equal expression of KGA and signaling activation (as indicated by levels of 

phosphorylated Erk) were verified with Western blot. Values are means ± SD of three 

independent experiments, each with multiple replicates. Data sharing different letters are 

statistically significant at P values as indicated, as tested by ANOVA.  

 

 

We next investigated whether Raf-Mek-Erk activated by EGF could indeed directly 

regulate the KGA activity. Cells were transfected with KGA with wild-type, the 

“dominant negative and kinase-dead,” or the constitutive active mutants of Raf-1 and 
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Mek2 and the levels of glutamate determined. Strikingly, KGA activity was completely 

inhibited by both the dominant negative mutants of Raf-1 (K375M) and Mek2 (K101A), 

whereas both wild-type and constitutive active mutants of Raf-1 (Raf-1-Y340D) and 

Mek2 (Mek2-S222, 226D) did not lead to any further increase in the glutamate 

production (Figure 47A). Moreover, expression of these mutants did not affect the 

expression levels of either ectopically expressed or the endogenous level of KGA (Figure 

47B and 47C), indicating that any changes in the KGA activity was not due to their 

protein stability but was due to some posttranslational modifications of KGA. To 

examine whether such regulation is directly associated with the Raf-Mek-Erk complex, 

overexpressd KGA was immunoprecipitated from the cells, and the presence of Raf-1, 

Mek2, or Erk1/2 (endogenous or overexpressed) was examined. The results show that 

KGA could interact equally well with the wild-type or mutant forms of Raf-1 and Mek2 

(Figure 47C). Importantly, endogenous Raf-1 or Erk1/2, including the phosphorylated 

Erk1/2 (Figure 47C and 47D), could be detected in the KGA complex. Taken together, 

these results indicate that the activity of KGA is directly regulated by Raf-Mek-Erk 

downstream of EGF receptor.  
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Figure 37: EGFR-Raf-Mek-Erk signaling stimulates KGA activity (ii). (A) Cells expressing Flag-tagged KGA with or without the HA-tagged wild-type, 

dominant negative mutants (Raf-1-K375M; Mek2-K101A) or constitutive active mutants (Raf-1-Y340D; Mek2-S222, 226D) were lysed and assayed for 

glutaminase activity. (B) Ectopic expression of the Mek2 mutants does not affect the endogenous levels of KGA. 293T cells expressing wild-type and mutants of 

Mek2 (Mek2-K101A; Mek2-S222, 226D) were lysed, and the endogenous levels of KGA of these samples were analyzed by Western blot. (C) Same batch of 

cell lysates prepared for the glutaminase assay in A were subjected to immunoprecipitation (IP) with anti-Flag M2 beads. Bound proteins and their expression in 

whole-cell lysates (WCL) were analyzed with Western blot. (D) Cells expressing Flag-tagged KGA were lysed for immunoprecipitation using anti-Flag M2 

beads and analyzed for the presence of endogenous Raf-1 or Erk1/2 by Western blot analyses. Arrow denotes band for Raf-1. Values are means ± SD of three 

independent experiments, each with multiple replicates. Data sharing different letters are statistically significant at P values as indicated, as tested by ANOVA. 

A 
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To further show that Mek2-enhanced KGA activity requires both the kinase activity of 

Mek2 and the core residues for KGA catalysis, wild-type or triple mutant 

(Leu321Ala/Phe322Ala/ Leu323Ala) of KGA was coexpressed with dominant negative 

Mek2-KA or the constitutive active Mek2-SD and their KGA activities measured. The 

result shows that the presence of Mek2- KA blocks KGA activity, whereas the triple 

mutant still remains inert even in the presence of the constitutively active Mek2 (Figure 

48A), and despite Mek2 binding to the KGA triple mutant (Figure 48B). Consequently, 

expressing triple mutant did not support cell proliferation as well as the wild-type control 

(Figure 48C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 

 

   

 

 

Figure 38: EGFR-Raf-Mek-Erk signaling stimulates KGA activity (iii). (A) 293T cells 

were transfected with vector control or plasmids expressing wild-type KGA or the KGA 

triple mutant (L321A/F322A/L323A), in the absence or presence of Mek2-K101A or 

Mek2-S222,226D for 24 h before lysates were prepared for glutaminase assays. 

Expression levels of these proteins were verified by Western blot analyses. (B) 293T cells 

transfected with wild-type and triple mutant of HA-tagged KGA in the presence of Flag-

tagged Mek2-SD were lysed for immunoprecipitation with anti-Flag M2 beads and 

analyzed for their interaction with Western blot analyses. (C) 293T cells were transfected 

with plasmids expressing wild-type KGA, or the triple-mutant for 24 h, and reseeded 

with equal number into 96-well plates for another 48 h before being assayed for cell 

proliferation. All values for glutaminase and proliferation assays are means ± SD of three 

independent experiments, each with multiple replicates. Data sharing different letters are 

statistically significant at P values as indicated, tested by ANOVA or t test. 

 

A 
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We have demonstrated that the KGA activity is dependent on the regulation of Raf-Mek2 

signaling and core residues for KGA catalysis. To determine its physiological relevance, 

we tested whether blocking Raf-Mek2 signaling by the dominant negative mutant of 

Mek2, and inhibiting KGA by BPTES, could lead to any synergistic effect on cell 

proliferation. Cells were made to overexpress KGA or/ and Mek2-K101A, and then 

treated with 20 μM of BPTES for the next 24 h. Figure 49 shows that transient expression 

of Mek2-K101A alone did not affect cell proliferation. However, it reduced the level of 

cell proliferation by 10% when cells were treated with a subthreshold dose of BPTES 

which by itself did not lead to any loss of cell proliferation over this period of treatment. 

Interestingly, when cells expressing both KGA and Mek2-K101A were treated with 

subthreshold levels of BPTES, there was a further reduction in cell proliferation by 30% 

(p < 0.02). 

 

Figure 39: Dominant negative form of Mek2 potentiates BPTES inhibition on cell 

proliferation. Cell expressing KGA and/or the Mek2-K101A for 24 h were re-seeded with 

equal numbers into 96-well plates, followed by treatment with suboptimal concentration 

of BPTES (20 μM) for a further 24 h before being assayed for cell proliferation. Values 

are means ± SD of three independent experiments, each with multiple replicates. Data 

sharing different letters are statistically significant at P < 0.02, as tested by ANOVA. 
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Lastly, to determine whether regulation of KGA by Raf- Mek-Erk depends on its 

phosphorylation status, cells were transfected with KGA with or without the protein 

phosphatase PP2A and assayed for the KGA activity. PP2A is a ubiquitous and conserved 

serine/threonine phosphatase with broad substrate specificity. The results indicate that 

KGA activity was reduced down to the basal level in the presence of PP2A (Figure 50 

A). Coimmunoprecipitation study also revealed that KGA interacts with PP2A (Figure 

50B), suggesting a negative feedback regulation by this protein phosphatase. 

Furthermore, treatment of immunoprecipitated and purified KGA with calf-intestine 

alkaline phosphatase (CIAP) almost completely abolished the KGA activity in vitro 

(Figure 50C). Taken together, these results indicate that KGA activity is regulated by 

Raf-Mek2 signaling, and KGA activation by EGF could be part of the EGF-stimulated 

Raf-Mek-Erk signaling program in controlling cell growth and proliferation (Figure 51). 
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Figure 40: KGA activity is regulated by phosphorylation. (A) Lysates were prepared 

from cells expressing Flag-tagged KGA in the presence or absence of myc-tagged 

catalytic subunit of the protein phosphatase PP2A and assayed for the glutaminase 

activity. Values are means ± SD of three independent experiments. Data sharing different 

letters are statistically significant at P < 0.02, as tested by ANOVA. (B) Separate aliquots 

from the same batch of cell lysates prepared for the glutaminase assay in A were 

subjected to immunoprecipitation (IP). Bound myc-PP2A and their expression levels in 

whole-cell lysates (WCL) were analyzed by Western blots. (C) Cell lysates containing 

Flag-tagged KGA were immunoprecipitated with anti-flag M2 beads, washed and then 

treated with or without the calf intestine alkaline phosphatase CIAP at 37 °C for 3 h 

before assayed for glutaminase activity. Values are means +/− SD of 3 independent 

experiments. Data sharing different letters are statistically significant at P < 0.005, as 

tested by ANOVA. 

C 
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Figure 41: Schematic model depicting the synergistic cross-talk between KGA-mediated 

glutaminolysis and EGF-activated Raf-Mek-Erk signaling. Exogenous glutamine can be 

transported across the membrane and converted to glutamate by glutaminase (KGA), thus 

feeding the metabolite to the ATP-producing tricarboxylic acid (TCA) cycle. This 

process can be stimulated by EGF receptor mediated Raf-Mek-Erk signaling via their 

phosphorylation-dependent pathway, as evidenced by the inhibition of KGA activity by 

the kinase-dead and dominant negative mutants of Raf-1 (Raf-1-K375M) and Mek2 

(Mek2- K101A), protein phosphatase PP2A, and Mek-specific inhibitor U0126. 

Consequently, inhibiting KGA with BPTES and blocking Raf-Mek pathway with Mek2-

K101A provide a synergistic inhibition on cell proliferation. Refer to the text for more 

detail 
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2.4 Discussion 

Small-molecule inhibitors that target glutaminase activity in cancer cells are under 

development. Earlier efforts targeting glutaminase using glutamine analogs have been 

unsuccessful owing to their toxicities (DeBerardinis et al., 2008; Ovejera et al., 1979). 

BPTES has attracted much attention as a selective, non-toxic inhibitor of KGA (Robinson 

et al., 2007), and preclinical testing of BPTES toward human cancers has just begun 

(Garber, 2010). BPTES selectively suppresses the growth of glioma cells (Seltzer et al., 

2010) and inhibits the growth of lymphoma tumor growth in animal model studies (Le et 

al., 2012). Wang et al. (Wang et al., 2010) reported a small molecule that targets 

glutaminase activity and oncogenic transformation. Despite extensive studies, nothing is 

known about the structural and molecular basis for KGA inhibitory mechanisms and how 

their function is regulated during normal and cancer cell metabolism. Such limited 

information impedes our effort in producing better generations of inhibitors for better 

treatment regimens. 

 

Comparison of the complex structures with apo cKGA structure, which has well-defined 

electron density for the key loop, we provide the atomic view of an allosteric binding 

pocket for BPTES and elucidate the inhibitory mechanism of KGA by BPTES. The key 

residues of the loop (Glu312-Pro329) undergo major conformational changes upon 

binding of BPTES. In addition, structure-based mutagenesis studies suggest that this loop 

is essential for stabilizing the active site. Therefore, by binding in an allosteric pocket, 

BPTES inhibits the enzymatic activity of KGA through (i) triggering a major 

conformational change on the key residues that would normally be involved in stabilizing 
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the active sites and regulating its enzymatic activity; and (ii) forming a stable inactive 

tetrameric KGA form. Our findings are further supported by two very recent reports on 

KGA isoform (GAC) (Cassago et al., 2012; DeLaBarre et al., 2011) although these 

studies lack full details owing to limitation of their electron density maps. BPTES is 

specific to KGA but not to LGA (Robinson et al., 2007). Sequence comparison of KGA 

with LGA (Figure 52A) reveals two unique residues on KGA, Phe318 and Phe322, which 

upon mutation to LGA counterparts, become resistant to BPTES. Thus, our study 

provides the molecular basis of BPTES specificity.  

 

It was recently reported that KGA is up-regulated by Myc and Rho and is subjected to 

ubiquitination (Colombo et al., 2010; Gao et al., 2009; Wang et al., 2010). However, little 

is known regarding how the glutaminolytic pathway is functionally linked to growth-

promoting signaling pathway(s). Many metabolic enzymes are thought to serve as 

housekeeping enzymes that control fluxes of metabolites to sustain rather than to 

primarily regulate cell growth. Here we show that a high level of KGA activity can lead 

to the increased cell proliferation that is inhibited by BPTES. Most significantly, we 

show that KGA activity is activated by EGF via the Raf-Mek-Erk signaling module 

because inhibition of both kinases by their dominant negative mutants or treatment with a 

specific Mek inhibitor completely abrogates the KGA activity. Consistent with the 

regulation being phosphorylation-dependent, co-expressing KGA with protein 

phosphatase PP2A or treatment of purified KGA with alkaline phosphatase all block the 

elevated KGA activity. When key residues on the loop that stabilizes the catalytic core of 
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KGA are mutated, such stimulation is lost. These results indicate that Raf-Mek-Erk 

signaling is linked to reprogramming of growth metabolism. 

 

 

 

 

Figure 42: Sequence and structure-based analysis of KGA. (A) Sequence alignment 

between KGA with LGA around the BPTES binding pocket. The residues that form the 

binding pocket of BPTES are marked with asterisks. The sequence identity between full-

length human KGA and full-length LGA is 63%, and their glutaminase domain alone is 

81%. Numbering is shown for the KGA sequence. The figure was prepared using 

Espript2.2 (Gouet et al., 1999). (B) Superposition of the domain II of the cKGA with 

death domain containing protein (PDB code: 2OF5). Cα trace showing the superposition 

of domain II of the cKGA (magenta) and death domain of the TNF superfamily protein 

(yellow). These two protein domains superimpose with an rmsd of 2.9 Å for 91 Cα 

atoms, superposed using the DALI server (Holm and Rosenström, 2010).  
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We show that the combined inhibitory effect of Mek2 and BPTES on KGA and cell 

proliferation could offer an exciting regime for multidrug therapy in cancers. 

Understanding how KGA itself is activated by the Raf-Mek signaling will also provide an 

alternative approach to further examine whether deregulation of KGA and its 

hyperactivation can be linked to this pathway. This could be the basis for abnormal cell 

growth in cancers and possibly other metabolic and neuronal disorders involving 

glutamate or ammonia as a main metabolite, such as hyperinsulinism/ hyperammonemia/ 

hepatic encephalopathy and neurotransmission (Kelly and Stanley, 2001; Romero-Gómez 

et al., 2010). In this regard, we show that KGA forms a complex with Raf-1, Mek2, and 

Erk1/2, as well as the protein phosphatase PP2A, which can be anchored on a common 

scaffold protein or present as different subcomplexes. Whether this activation would 

involve KGA directly as a substrate of Raf-1, Mek2, or/and Erk or whether other 

immediate substrate(s) of these kinases exist to act as a co-regulator for KGA remains to 

be further investigated. This is of particular interest because we show that bFGF, despite 

activating Mek/Erk, does not activate the KGA activity. This result highlights tight 

regulation of these three-tier kinases that could be spatially coordinated through different 

scaffolds or by other yet-unknown coregulators. In addition, the domain II of cKGA is 

homologous to several DEATH domain-containing proteins (Figure 52B), which are 

known to regulate many signaling pathways, such as NF-κB and apoptosis (Jeong et al., 

1999). 
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In summary, the current structural, biochemical, molecular, and cell-based studies 

provide detailed insights into allosteric inhibition of human KGA by BPTES, the 

regulation of KGA activity and cell proliferation by EGF receptor-mediated Raf/ 

Mek/Erk signaling module, and phosphorylation-dependent regime in cancer cell 

metabolism. This could pave the way for developing more specific therapeutic inhibitors 

toward KGA and Mek2-linked pathways and may offer a more effective strategy to 

tackle glutamine-addicted cancers with greater efficacy. 
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Structural basis of the active site 

inhibition mechanism of human kidney 

type glutaminase (KGA) 
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3.1 Introduction 

The glutamine analogue, 6-Diazo-5-oxo-L-norlucine (DON), was previously shown to 

inhibit KGA through binding to the active site (Shapiro et al., 1979). DON is an antibiotic 

that was originally isolated from Streptomyces. It is a diazo analogue of L-glutamine and 

known to interfere with a number of nucleotide and protein synthetic pathways where 

glutamine primarily act as a nitrogen substrate (Kisner et al., 1980). However, DON lacks 

selectivity against glutaminase, because it is structurally similar to glutamine that was 

shown to inhibit many glutamine utilizing enzymes such as amidotransferases, and 

glutamine synthetase (Ortlund et al., 2000; Pinkus, 1977). The potential anticancer 

activity of DON has been studied in different animal models; however, it has not 

progressed to clinical trials due to the toxicity concerns (Ahluwalia et al., 1990; Ovejera 

et al., 1979), so it warrants the optimization. In addition to DON, the glutamate analogue 

CK (L-2-amino-4-oxo-5- chloropentanoic acid) was previously reported to act on the 

active site of KGA. DON is shown to be more effective at high concentrations of 

phosphate to inhibit KGA (Shapiro et al., 1979) whereas CK effectively inhibits KGA in 

decreased phosphate concentrations (Shapiro et al., 1978). 

Recent crystal structure of glutaminase from Bacillus subtilis, with the DON bound form 

reveals the key role of a serine residue as a catalytic nucleophile (Brown et al., 2008). We 

recently reported the crystal structure of catalytic domain of kidney type glutaminase 

(cKGA) in complex with L-glutamine and L-glutamate in active site and proposed the 

catalytic mechanism of KGA (Thangavelu et al., 2012). The catalytic dyad of KGA 

consists of Ser286 and Lys289, with the Ser286 acting as a catalytic nucleophile. In 

addition, we and others have reported the allosteric inhibition mechanism of KGA/ and 
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GAC isoforms by BPTES (DeLaBarre et al., 2011; Thangavelu et al., 2012). Moreover, 

we recently have shown that KGA activity can be regulated by Ras\Raf\Mek\Erk 

signaling in response to growth factor stimulation (Thangavelu et al., 2012). 

Subsequently, Cassaga et al. have solved the structure of GAC isoform in complex with 

phosphate, and they proposed the activation mechanism of GAC isoform (Cassago et al., 

2012).  

So far, there has been no crystal structure reported for any of KGA isoforms in complex 

with active site inhibitors. Previous kinetic studies have suggested that DON could act on 

the active site of the glutaminase (Robinson et al., 2007; Shapiro et al., 1979). 

Nevertheless, the structural basis for the active site inhibition mechanism of DON 

towards human KGA remains to be elucidated. As a first step towards improving its 

potency and selectivity with KGA, here we report the crystal structure of cKGA in 

complex with DON, refined to 2.3 Å resolution. The complex structure revealed the DON 

binding pocket of KGA. DON makes covalent bond contact with active site residue 

Ser286 of KGA. Further we performed site-directed mutagenesis to validate the 

importance of key residues involved in interactions with DON. Based on our studies, 

currently we are in the process of optimizing the inhibitor.   
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3.2 Materials and Methods 

3.2.1 Expression and Purification of cKGA 

Human cKGA was purified following the procedures described in the chapter II. The 

purified protein (20 mg/mL) was kept in a storage buffer (20 mM Na-Hepes pH 7.5, 200 

mM NaCl, 10% glycerol and 3 mM DTT) and used for crystallization experiments.  DON 

(6-diazo-5-oxo-L-norleucine, NSC 7365), azaserine (O-diazoacetyl-L-serine, NSC 742), 

Glufosinate Ammonium, and L-Methionine Sulfoximine were purchased from Sigma. 

 

2.2.3 Glutaminase Assay  

Glutaminase assay was performed using a two step assay described previously (Kenny et 

al., 2003). Briefly, 10 μL of wild-type cKGA or cKGA alanine mutant was incubated 

separately with 10 μL of first assay mix [20 mM glutamine, 50 mM Tris·acetate (pH 8.6), 

100 mM phosphate, and 0.2 mM EDTA] at 37 °C for 10 min, and the reaction was 

quenched with adding 2 μL of 3 M HCl. Subsequently 200 μL of the second assay mix 

[2.2 U glutamate dehydrogenase, 80 mM Tris·acetate (pH 9.4), 200 mM hydrazine, 0.25 

mM ADP, and 2 mM nicotinamide adenine dinucleotide] was added and incubated for 30 

min at room temperature. The absorbance at 340 nm was recorded using a microplate 

reader (SpectraMax 340; Molecular Devices). Compounds were prepared as a 10-mM 

stock in water. The IC50 values were calculated from the fitted regression equation using 

the-log plot (Graphpad prism). Each value represents the means ± SD of three 

independent experiments, each with at least three replicates.  
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3.2.2 Crystallization and Data Collection 

Crystallization screening was carried out by hanging drop vapor diffusion methods at 

22ºC. Prior to crystallization the complex was made by incubating 20 mg/mL of cKGA 

with 10 mM DON (approximately 1:10 molar ratio) for 30 minutes at 4 °C. The 

crystallization drop consists of 1 µl cKGA: DON complex and 1 µl of the crystallization 

solution from the reservoir well. The cKGA: DON crystals grew after 2 days in the 

presence of 0.1 M Bis-Tris Propane pH 7.27 and 1.83 M LiSO4. For the diffraction 

studies, crystals were cryo-protected with the reservoir solution supplemented with 15% 

glycerol as a cryoprotectant and flash frozen in liquid nitrogen. Diffraction data were 

collected at the synchrotron beam line 13B1 (wavelength 1.000 Å) at National 

Synchrotron Radiation Research Centre (NSRRC, Taiwan). Data sets were processed and 

scaled resolution using HKL2000 (Otwinowski Z and W., 1993). The crystallographic 

data collection statistics are provided in Table 7. 

 

3.2.3 Structure Solution and Refinement 

The structure of cKGA-DON complex was determined by molecular replacement using 

the program MolRep (Vagin and Teplyakov, 2010) using the coordinates of apo cKGA as 

the search model (Protein data bank 3VOY, (Thangavelu et al., 2012). One molecule of 

cKGA: DON complex was observed in the asymmetric unit. The initial R-factor was 39% 

for cKGA: DON complex from the molecular replacement solution. The model was 

examined and built in COOT (Emsley and Cowtan, 2004) and subsequent refinement 

carried out with Phenix-refine (Zwart et al., 2008). Fitting of the inhibitor and 

refinements were carried out in COOT and Phenix programs respectively. Water 
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molecules were included at the final stage of the refinement. The final structure was 

refined up to 2.3 Å resolution with the R-factor and R-free values of 19% and 21% 

respectively.  The overall geometry of final model was analyzed by Ramachandran plot 

with the program PROCHECK (Laskowski RA et al., 1993). Details of the refinement 

statistics are provided in Table 7.  

 

3.2.4 Site-Directed Mutagenesis of cKGA  

We performed site-directed mutagenesis using the kit from Kapa biosystems to create all 

structure-guided mutants of cKGA (Table 6). The cKGA cloned into the PET-28 (b) 

vector was used as a template for mutagenesis. The residues Tyr249, Ser286, Lys289, 

and Tyr466 of cKGA were mutated to Ala, respectively, as a single-point mutant. All 

mutations were verified by DNA sequencing. Plasmids containing the point mutations 

were transformed into the E. coli BL21 (DE3) RIL strain and the mutant cKGA proteins 

were over expressed and purified in the similar manner as the wild-type cKGA.   

 

Table 6: Deoxyoligonucleotides used in this work 

 
Y249A  5'-GGGAAAGTTGCGGATGCTATTCCGCAGCTGGCC-3’ 

  5'-GGCCAGCTGCGGAATAGCATCCGCAACTTTCCC-3’ 

 

S286A  5'-TCTGCCTGCAAGCCTGTGTGAAACCGCTGAAAT-3’ 

  5'-ATTTCAGCGGTTTCACACAGGCTTGCAGGCAGA-3’ 

 

K289A   5'-CTGCAAAGCTGTGTGGCACCGCTGAAATACGCG-3’ 

                5'-CGCGTATTTCAGCGGTGCCACACAGCTTTGCAG-3’ 

 

Y466A  5'-CACTCATGCGGGATGGCTGACTTTTCCGGCCAA-3’ 

                    5'-TTGGCCGGAAAAGTCAGCCATCCCGCATGAGTG-3’ 
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3.3 Results and Discussions 
 

3.3.1 Inhibition studies of cKGA by Glutamine and Glutamate analogues 

DON and azaserine are glutamine analogs that are known to inactivate several glutamine-

utilizing enzymes such as glutaminase, amidotransferases and glutamine synthetase 

(Barclay and Phillipps, 1966). Besides glutamine analogs, two other glutamate analogs 

such as glufosinate ammonium and L-methionine sulfoximine were previously shown to 

inhibit the glutamate dependent enzymes (Gill and Eisenberg, 2001; Liaw and Eisenberg, 

1994). We intend to test whether these four inhibitors can inhibit KGA (Figure 53). 

 

 

 

 

Figure 43: Inhibition studies of cKGA with selected glutamine/glutamate analogs. The 

relative inhibition percentage of cKGA by selected glutamine/glutamate analog inhibitors 

at 1 mM concentration (IC50 of DON: approximately 0.991 mM) was compared. The 

assays were performed in triplicates and values are means +/− SD of three independent 

experiments.   
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Inhibition assay showed that DON inhibits cKGA with an inhibition value (IC50) of 

approximately 0.991 mM. However, compared to DON, cKGA activity was not 

significantly inhibited by other three inhibitors (Figure 53). Thus, DON was taken 

forward to study KGA’s active site based inhibition mechanism. Towards this objective 

we have determined the complex structure of cKGA and DON.  

 

3.3.2 Crystallization and Data Collection   

Single crystals of cKGA: DON complex were obtained after 2 days in hanging drop 

vapour diffusion method and were grown to full size in 5 days (Figure 54). The crystals 

were cryo-protected with 15% glycerol and the data was collected at synchrotron source.  

 

                                       

 

Figure 44: The cKGA: DON complex crystals were obtained with the reservoir solution 

consists of 0.1 M Bis-Tris Propane pH 7.27 and 1.83 M LiSO4. 
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Table 7: Crystallographic data and refinement statistics for cKGA: DON complex 

 

 

 cKGA: DON complex                                     

Space group I4122 

Cell parameters (Å, º) 
a= 139.27,b= 139.27,c= 

156.50, α= β=γ=90 

Resolution range (Å) 30-2.3 (2.34-2.30) 

Wavelength (Å) 1.000  

Observed hkl  392469 

Unique hkl  34102 

Completeness (%)  99.6 (95.7) 

Overall I/σI  12.7 

a
Rsym  

  0.054 (0.392) 

 

Refinement and quality of the model  

*Resolution range  25.7-2.30  
b
Rwork (%) no. reflections  19.28 (23221) 

c
Rfree (%) no. reflections  21.08 (1722)               

Root mean square deviation  

Bond length (Å)  0.007 

Bond angle (º)  1.02 

Ramachandran plot (%)  

Favored region  88.1 

Allowed regions  11.2 

Generously allowed region  0.7 

Disallowed regions   0 
d
Average B-factors (Å

2
)  

Main chain atoms  52.04 

Side chain atoms  57.43 

Overall protein atoms (no. 

atoms)  

54.63 (2412) 

Waters (no. atoms)  54.63 (89) 

Ligand (no. atoms)  53.26 (10) 
 

 

a
 Rsym = |Ii − <I>|/|Ii| where Ii is the intensity of the i

th
 measurement, and <I> is the 

mean intensity for that reflection. 
b 

Rwork = |Fobs − Fcalc|/|Fobs| where Fcalc and Fobs are the calculated and observed 

structure factor amplitudes respectively. 
c
 Rfree is as for Rwork, but only for 5.06% of the total reflections chosen at random and 

omitted from refinement. 
d
Individual B-factor refinement was carried out. 
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As shown in table, a complete data set was collected up to a resolution of 2.3 Å (Table 7). 

The data were scaled with I4122 space group with the Rsymm <0.1, suggesting the good 

quality of the data.  

 

3.3.3 Overall Structure of cKGA: DON complex 

 

                      

 

Figure 45: Ribbon representation of the cKGA: DON complex. The secondary structures 

such as α-helices and β-sheets are shown in cyan and magenta, respectively. The DON is 

located in the active site cleft and is shown as yellow stick. This figure was prepared 

using Pymol (DeLano, 2002).  
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The structure was determined by the molecular replacement method using coordinates 

derived from apo cKGA (PDB code 3voy). The final model has been refined with good 

stereochemical parameters (Figure 55). The final electron density map (2Fo-Fc) for the 

active site region of cKGA shows the well defined electron density for the DON 

molecule (Figure 56). The complex structure of cKGA: DON shows that the inhibitor 

form covalent bond contact with the side chain hydroxyl (OH) group of the catalytic 

nucleophile Ser286 (1.4 Å) and is conserved among all KGA isoforms. This is clearly 

evident from the observed continuous electron density from the active-site residue Ser286 

with the inhibitor and indicates the possibility of covalent interaction. Based on the 

structure we reveal that cKGA interacts and remove the diazo group from the 6-Diazo-5-

oxo-L-norlucine (cKGA-DON), thereby covalently connecting the enzyme with 5-oxo-l-

norleucine (ON), and forms cKGA-ON complex.  

 

The complex structure of cKGA: DON shows that the inhibitor is positioned in the 

catalytic pocket through several hydrogen bonding, and hydrophobic interactions. The 

bound inhibitor makes several interactions with Gln285, Ser286, Asn335, Glu381, 

Asn388, Tyr414, Tyr466, and Val484 (Figure 3.4). The cKGA: DON complex, the 

carbonyl oxygen of the inhibitor makes two hydrogen bonding interactions with 

backbone amino (NH) groups of Ser286 (2.9 Å and Val484 (2.8 Å), and forms an 

oxyanione hole. The α-carboxyl oxygens of the inhibitor makes two hydrogen bonding 

contacts with the side chains of Asn335 (3.1 Å) and Tyr414 (2.8 Å). 
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Figure 46: Interactions made by DON in the catalytic pocket of cKGA. DON is shown in 

yellow and cKGA residues are shown in cyan color. Final 2Fo-Fc electron density map 

for the DON and its covalent attachment to Ser286 of cKGA is shown. The map is 

contoured at σ level of 1.0. This figure was prepared using Pymol (DeLano, 2002).  
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On the other hand, the backbone NH group of the inhibitor involves in a hydrogen 

bonding contact with the side chains of Gln285 (2.7 Å) and Glu381 (2.8 Å) (Table 7).  

Besides, the hydrophobic cluster formed by the side chains of three tyrosine residues such 

as Tyr249, Tyr414 and Tyr466, which further stabilize the interactions with DON (Figure 

56). Notably the Tyr466 is located close to the DON (3.2 Å) and also close to catalytic 

Ser286 (2.7 Å), which is responsible for the proton transfer during catalysis. Previously 

we have shown that Tyr466 play key role in catalytic mechanism along with the active 

site dyad (Ser286 XX Lys289) (Thangavelu et al., 2012). The electrostatic surface 

potential of the cKGA: DON complex shows a predominantly positively charged active 

site (Figure 57), which is mainly contributed by the neighboring residues (Lys299 and 

Lys491) of the active site of KGA.  

 

Table 8: Hydrogen bonds (Å) formed by DON in the active site of cKGA   

 

 

 

 

 

 

 

 

 

 

 

DON atom cKGA atom Distance (Å) 

O5 Ser286N 2.98 

O5 Val484N 2.82 

O1 Asn335ND2 3.13 

O5 Tyr466OH 3.25 

NH Gln285OE1 2.79 

NH Glu381OE2 2.85 

O5 Tyr249OH 3.24 

O1 Tyr414OH 2.84 
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Figure 47: Binding pocket of DON in the active site cleft of cKGA. (A) Electrostatic 

surface potential representation of cKGA-DON complex, DON is shown as yellow stick.  

(B) A close view of electrostatic surface potential representation shows that positively 

charged pocket around DON. (C) The residues interacts with DON in the active site cleft 

are labeled.  
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The direct one-to-one comparison (superposition) of cKGA: DON and the apo-cKGA 

revealed no significant structural changes in KGA upon interacting with DON (Figure 

58). This superposition yield a root-mean-square deviation (rmsd) of 0.3Å for 315 Cα 

atoms superimposed.   

 

                                      

Figure 48: Crystal structure of apo cKGA is superposed with cKGA: DON. The active 

site residues of apo cKGA and cKGA: DON is shown in cyan and magenta respectively.  
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3.3.4 Mutational Studies of cKGA Residues in the DON Binding Pocket 

The complex structure described in this chapter revealed the key residues of KGA that is 

essential in interactions with DON. To validate the enzymatic activity of DON-

interacting residues of KGA, we have generated alanine mutants and measured their 

activities through the glutaminase assay. Glutaminase activity assay showed that the 

mutant proteins (Tyr249A, Ser286A, Lys289A, and Tyr466A) significantly reduced the 

activity when compared to wild type cKGA (Figure 59). The structure-based mutagenesis 

study indicates that substitution of alanine in the DON-interacting residues greatly affects 

binding of the substrate. Thus, our study confirms that the putative catalytic dyad (Ser 

289 XX Lys289), other residues (Tyr249A and Tyr466A) could play a key role for the 

activity of KGA. 

 

 

Figure 49: Site directed mutagenesis of cKGA residues in the DON binding pocket. The 

activities of wild type cKGA were compared with key structure guided-cKGA alanine 

mutants. Triplicates of data sets were obtained for each of the cKGA constructs, and 

values are means +/− SD of 3 independent experiments.   
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3.4. Conclusion 

We have solved the crystal structure of cKGA in complex with glutamine analog 

inhibitor, DON, at resolution of 2.3 Å. On the basis of cKGA: DON complex structure  

we show that the DON is bound to the active site of KGA through the covalent 

modification of the residue Ser286, a catalytic nucleophile of the active site. Notably, the 

sequence and structural homologies between KGA and its homologs proteins suggesting 

a common mode of the active site inhibition mechanism. Besides, the structure based 

mutagenesis and kinetic studies were performed to validate the importance of key 

residues involved in the catalytic function of KGA. Although DON or other glutamine 

analogs such as acivicin, and azaserine has been widely used for the in vitro and in vivo 

studies and shown to have potential antitumor activity against human cancers, they lack 

selectivity and have toxicity concerns (Ovejera et al., 1979). A recent renewed interest in 

cancer metabolism raises the possibility that systematic usage of these agents may have 

effect against human cancers. In our studies, we found DON inhibits the activity of 

cKGA with an IC50 of approximately 1 mM. Hence, it is necessary to improve the affinity 

and specificity of DON using cKGA: DON complex structure to optimize the design and 

synthesis of new series of DON analogs towards therapeutic intervention.  
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4.1 Conclusions 
 

Cancer cells exhibit a characteristic metabolism and they use glucose and glutamine as 

their major energy sources. The kidney-type glutaminase (KGA) is a key enzyme 

responsible for the process of glutaminolysis that promotes Warburg effect in cancer cells 

to thrive and become a tumour. KGA is considered to be an attractive and a promising 

molecular target for human cancer therapies. More importantly, the small molecule 

inhibitors of KGA are in the early stage of clinical development to treat human cancers. 

However, the effort to design better inhibitors of KGA and plan for new treatment 

regimes for cancers is greatly hindered due to the lack of clear understanding on the 

molecular mechanism of inhibition of KGA and how the function of KGA is controlled 

by hormones and signaling pathways inside the cells.  

 

In this thesis, we clearly showed that BPTES binds at the dimeric interface of KGA, near 

the active site. More strikingly, we show that binding of BPTES on the KGA, confers a 

drastic conformational change of a key loop (Glu312- Pro329), which is essential in 

stabilizing the catalytic pocket and thus rendering it inactive. Moreover, our site-directed 

mutagenesis study provides the molecular basis of BPTES specificity to KGA, verified 

through the mutants that mimic LGA isoform. Besides, the complex structural studies of 

a few BPTES derived inhibitors with KGA revealed the molecular basis of the potency, 

selectivity and pharmacophore feature of BPTES. The findings of this study on the 

BPTES and KGA novel allosteric inhibition mechanism provides valuable information 

for the optimization and development of improved versions of BPTES derived inhibitors 

with more selectivity and potency.  



118 

 

 

Though KGA is a key metabolic enzyme, its regulations and linking to many 

physiological signaling pathways is not clearly understood. In the chapter II, we 

demonstrated that the KGA activity can be upregulated by phosphorylation upon 

stimulation of cells with epidermal growth factor (EGF), a hormone that is linked to 

cancer growth and metastasis in various tumours. Furthermore we have established that 

KGA activity is mediated by a key signaling node, the Ras-Raf-Mek2-Erk signaling 

pathway. Even if BPTES can inhibit KGA activity, but nothing is known about any 

possible synergism of cancer drug treatments. Interestingly, our studies show that 

combination of BPTES and U0126, a compound which blocks Mek kinase (a kinase in 

Ras-Raf-Mek2-Erk signaling pathway) is synergistic and inhibits cancer cell growth and 

proliferation. These findings open up the possibilities for developing more specific 

therapeutic agents towards KGA/Mek2-linked pathways and offer a more effective 

strategy to tackle glutamine-addicted cancers with greater efficacy. 

 

Besides BPTES, DON is a known active site inhibitor of KGA; however there is no 

structural information available for any of the human glutaminase isoforms in complex 

with any active site inhibitors. In chapter III, we have reported the structure and structure 

based studies on cKGA, in complex with DON. The complex structure revealed the DON 

binding mode on KGA and that form a covalent bond contact with active site. Moreover, 

we have performed site-directed mutagenesis to validate the importance of a few key 

residues involved in interactions with DON.  This study will lead to design and 

development of potent and selective active site inhibitors of human glutaminase isoforms.  
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In conclusion, current structural, biochemical, molecular and cell-based studies provide 

detailed insights into (i) allosteric inhibition of KGA by BPTES (ii) active site inhibition 

of KGA by DON (iii) crosstalk and regulation of KGA activities by EGF-mediated Raf-

Mek-Erk signaling and (iv) synergism between KGA activity and Mek2 in cancer cell 

metabolism. These novel findings will help in designing better inhibitors and in 

development of multi-drug strategies for the treatment of cancers addicted to glutamine 

metabolism. 

 

4.2 Future directions 

The knowledge obtained through the present studies on KGA can be effectively utilized 

to generate a series of optimized next generation inhibitors of BPTES (allosteric) and 

DON (active site) analogs. Besides, the current knowledge on KGA: BPTES complex 

could be systematically expanded to discover small molecule inhibitors for other 

glutaminase isoform LGA (Liver type glutaminase). This can be achieved by 

synthesizing a new series of BPTES-modified inhibitors that can specifically interact 

with LGA isoform.  

 

As a continuation of our studies on KGA: the information of the KGA: BPTES and 

KGA: DON complex structure will be completely extended to develop chimeric (hybrid) 

inhibitors to specifically and effectively target KGA. The chimeric (hybrid) inhibitors can 

be generated using optimized individual allosteric and active-site inhibitors. These 

chimeric inhibitors will be optimized to have the desirable pharmacological properties of 
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both inhibitors.  By combining these inhibitors, it is expected that DON can help BPTES 

overcome the problem of water solubility. On the other hand, a reduced dose of DON 

may be sufficient in the presence of BPTES, thereby lowering its current toxic effects. 

Hence, compared to single inhibitors, a chimeric of DON and BPTES could offer a 

greater potent effect on glutaminase. 

 

Following the synthesis of chimeric and optimized inhibitors, kinetic characterizations 

can be performed for KGA to determine the selectivity and potency of each of the 

inhibitors. Subsequently, the structures of these optimized individual/chimeric inhibitors 

will be determined in complex with KGA. Such structural studies will further help to 

optimize the design and synthesis of these inhibitors.  BPTES and DON-derived 

individual inhibitors or their chimeric compounds can be tested alone and in conjunction 

with Mek2 inhibitors (dual-hit inhibition) for their efficacy against cancer cell 

proliferation in culture or any other cancer animal model studies. We therefore believe 

that the combined chimeric DON and BPTES, along with Mek2 inhibitor (dual-hit), will 

have greater efficacy, with minimum side-effects. The findings from these studies will 

result in the identification of potential anti-cancer agents or drug lead inhibitors that will 

subsequently be developed for clinical trials and applications. 
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