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Summary

In this thesis, we study a multiperiod mean-variance portfolio optimization

problem in the presence of proportional transaction costs. Many existing

studies have shown that transaction costs can significantly affect investors’

behaviour. However, even under simple assumptions, closed-form solutions

are not easy to obtain when transaction costs are considered. As a result,

they are often ignored in multiperiod portfolio analysis, which leads to subop-

timal solutions. To tackle this complex problem, this thesis studies a market

consisting of one risk-free and one risky asset. Whenever there is a trade af-

ter the initial asset allocation, the investor incurs a linear transaction cost.

The single-period and the two-period cases are investigated before we extend

the results to a longer horizon. For single-period and two-period problems,

we derive the closed-form expressions of the optimal thresholds for investors

to re-allocate their resources. These thresholds divide the action space into

three regions. In every region, one investment strategy is recommended out

of three options, namely, buy, sell and hold. Some important properties of

the analytical solutions to the single-period and two-period models are iden-

tified, which shed light on solving investment problems involving more time

periods. When more time periods are considered, it becomes intractable since

the quadratic structure of the model cannot be retained due to the incorpo-

ration of transaction costs. Therefore, based on the features of the optimal

solutions identified in single-period and two-period analyses, we develop an



approximation method to obtain near optimal solutions. The approximation

can work efficiently and effectively under mild assumptions. A series of nu-

merical experiments are conducted to show that the proposed method can

significantly improve the investment performance compared to the case when

transaction costs are ignored. The recursive property of the proposed approx-

imation method also makes it efficient to solve the multiperiod problem over

a long planning horizon.
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Chapter 1

Introduction

Portfolio optimization is a class of studies aiming at optimizing the allocation

of an investor’s wealth among a basket of assets available on the market ac-

cording to the investor’s preference. The way for modern portfolio selection

theory has been paved by Markowitz (1952) using mean and variance as the

measures of reward and risk of the portfolio respectively. Such a mean-variance

analysis is the first effective approach to treat the trade-off between reward

and risk quantitatively. For decades, the mean-variance approach has received

great attention, and intensive research has been done in this area. Steinbach

(2001) gives an extensive literature review of this approach.

Portfolio optimization can be studied by single-period models and long-

term models. To distinguish from single-period models, long-term portfolio

optimization models defined in this thesis allow for interim rebalancing of

the portfolio. The long-term portfolio selection can be further classified into

two categories, namely discrete-time multiperiod models and continuous-time

1



models.

1.1 Mean-Variance Theory

The classic mean-variance model considers a one-period investment problem.

The objective is either to maximize the expected final wealth while keeping the

variance within a certain level or to minimize the variance while ensuring that

the expected final wealth meets a desired level. With such an objective, an

investor constructs a portfolio by selecting a number of assets and allocating

a portion of his wealth to each asset selected at the beginning of the period,

based on observation of the market and anticipation of the performance of

financial assets. After the initial investment decision has been made, it is

assumed that there is no further adjustment allowed during the investment

period.

1.1.1 Return and Risk

Suppose there are N assets in the market to choose from to construct a port-

folio. Let x be the portfolio vector which indicates the amount of wealth allo-

cated in each asset, R̊ = (R̊1, R̊2, . . . , R̊N)′ be the random return rate vector

with expectation R̄ = ( E(R̊1), E(R̊2), . . . , E(R̊N))′ , and C be the covariance

matrix where

C =


Var(R̊1) · · · Cov(R̊1, R̊N)

...
. . .

...

Cov(R̊N , R̊1) · · · Var(R̊N)


2



Each portfolio is associated with two performance indicators, return and

risk. The return is represented by the expected final wealth R̄x, and the

risk is indicated by the variance x′Cx. Under the assumption of quadratic

utility functions, mean-variance analysis provides the exact optimal strategies.

Within a certain range of returns, quadratic functions provide good approxi-

mation to general concave utility functions (Markowitz, 1959, Chap. 13).

1.1.2 Efficient Portfolios

In mean-variance theory, every portfolio is associated with two indicators , i.e.,

expected return (mean) and variance. For a portfolio y1, if there is a portfolio

y2 that has the same mean and variance as y1, then the two portfolios are called

equal. If there exists a portfolio y3 that outperforms y1 by having higher mean

and no higher variance, or lower variance and no lower mean than y1, then y1

is called inefficient (Markowitz et al., 2000). All the feasible portfolios which

cannot be outperformed by others are called efficient. Figure 1.1 shows a

curve that contains all the efficient portfolios. This curve is called the efficient

frontier. All the portfolios under the curve are considered inefficient.

1.1.3 Mean-Variance Formulation

In a classic one-period mean-variance problem, an investor observes the finan-

cial market and makes prediction on the performance of the assets, and then

selects a number of assets from the market and allocates a certain proportion

of his wealth to each of them to construct a portfolio. Suppose the investor

with an original total wealth of w0 wants to allocate his wealth to the N assets

3



Figure 1.1: Efficient frontier

in the market. As discussed in Section 1.1.1, the portfolio is evaluated by its

reward and risk, represented by R̄x and x′Cx respectively. The investor can

either choose to maximize his reward within a certain risk level σ or minimize

the risk of the portfolio given a desired reward µ . The two formulations are

shown as follows:

max R̄x

s.t.x′Cx ≤ σ

1′x = w0 (1.1)

x ≥ 0

4



and

minx′Cx

s.t. R̄x ≥ µ

1′x = w0 (1.2)

x ≥ 0

where 1 is a vector of all ones, and 0 is a vector of all zeros. There is another

commonly used formulation equivalent to (1.1) and (1.2). It maximizes the

expected value of a concave quadratic utility. The formulation is given below.

max R̄x− λx′Cx

s.t.1′x = w0 (1.3)

x ≥ 0

where λ > 0 is a parameter reflecting the investor’s risk tolerance. A higher

value of λ indicates a stronger aversion towards investment risk. By changing

the value of λ, different risk attitudes can be addressed by the mean-variance

model. The Markowitz efficient frontier can be generated by solving (1.3) para-

metrically in terms of λ. A risk-averse investor will be expecting his portfolio

on the left side of the efficient frontier as shown in Figure 1.1, while a risk-

seeker will select a portfolio on the right side of the efficient frontier. Through-

out this thesis our analysis is based on a similar mean-variance framework but

with transaction costs.

5



1.2 Transaction Costs

In the portfolio studies, perfect liquidity of the market is often a basic as-

sumption. Such a market is characterized by the absence of transaction costs.

Ignorance of transaction costs is unrealistic and may result in overly active

trading strategies. Unnecessary transactions will reduce the profit of the in-

vestment. Therefore, one of the main goals of our research is to find investment

strategies with better performance in the situation when transaction costs are

incorporated.

In asset investment, transaction costs are those fees triggered by trading

activities in asset investment including brokerage fees, big-ask spreads and

other forms of costs. In real practice, transaction costs are often proportional

to the trade amount, such as fixed-rate commission or bid-ask spreads. Other

arrangements also exist such as lump-sum charge or transaction fee brackets.

In our study, transaction fees are assumed to be charged at constant rates, i.e.

linear, at all times.

1.3 Thesis Contribution

This thesis studies discrete-time multiperiod mean-variance portfolio optimiza-

tion models incorporating proportional transaction costs. We start the analysis

with a simple single-period problem considering two assets. Closed-form re-

sults are obtained. The results allow us to gain important management insights

on the optimal investment strategy and shed light on the solution to multi-

period investment problems. Then the analysis is extended to solve two-period
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problems assuming that the rate of return follows a uniform distribution and

a discrete distribution respectively. By investigating the two-period models,

we grasp the key complication involved in the multiperiod case. To improve

the performance for investment over more time periods, we develop an ap-

proximation method to solve the problem. Numerical experiments show that

the proposed approximation method provides close-to-optimal solutions under

certain assumptions. The main contributions of this thesis include:

1. We solve a single-period problem analytically considering one risk-free

asset and one risky asset under proportional transaction-cost assump-

tion. In addition to the results obtained in the existing studies, we

provide theoretical insights on the optimal investment strategies for in-

vestors with different risk attitudes by conducting sensitivity analysis on

the parameter λ.

2. We solve a two-period problem considering two assets with no borrow-

ing and short selling under the assumption that the return rate of the

risky asset follows a uniform distribution. Such problem has never been

solved before in the existing literature. The problem becomes very com-

plicated due to the fact that the value function of the first period becomes

cubic. The solution obtained is interpreted as the optimal investment

decisions. An analysis of how transaction cost rate would affect the

investment strategy, the non-transaction region and the mean-variance

efficient frontier is also performed. The closed-form expressions of the

thresholds where the optimal investment action is changed are obtained

as well.
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3. We develop an efficient approximation method to provide close-to-optimal

solution to the multiperiod portfolio optimization problem with propor-

tional transaction costs. Numerical experiments show that the approx-

imate method provides almost identical efficient frontiers to the true

efficient frontiers in various situations under certain distribution assump-

tions of the random return rate.

Compared to the existing approximation methods, our model makes

more realistic assumptions and imposes less constraints for application.

Additionally, our methods can be applied to solve investment problems

with more periods.

Compared to solving the model exactly in the static manner, the approx-

imation method requires significantly less computational effort. Besides,

the solution to multiperiod mean-variance problem is often unattainable

for most random distributions of return rates. In these cases, our ap-

proximation method can still be used to recommend investment strategy

with satisfactory performance.

The theoretical contribution of this thesis is that it provides an approach

to tackle a typical class of problem in dynamic programming whose true value

functions are continuous. The solution to such problem is not attainable using

the standard backward dynamic programming method. Therefore, we try to

find a good approximate value function to replace the true value function as in

the approach of Approximate Dynamic Programming. Interested readers can

refer to Powell (2007) for more details on Approximate Dynamic Programming.
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1.4 Thesis Overview

This thesis is organized as follows.

The next chapter gives an extensive review of the research work on both

single-period and long-term portfolio optimization, ignoring and considering

transaction cost influence.

In Chapter 3, we describe the mean-variance model of portfolio optimiza-

tion in the presence of transactions costs and embed the mean-variance model

in an equivalent quadratic model.

In Chapter 4, we first provide the solution to a single-period problem with

transaction costs. Then, the special case where there is no transaction cost is

also discussed.

In Chapter 5, we consider a two-period investment problem and formulate

the problem as a stochastic dynamic program. Analytical solution for the

two-period problem is obtained. Numerical experiments were conducted to

illustrate the method and mean-variance efficient frontiers were plotted under

different transaction fee schedules.

Chapter 6 describes an approximation method to get near-optimal solu-

tions. The performance of the approximation is discussed over extensive nu-

merical experiments.

Lastly, we draw conclusions and suggest future research directions in Chap-

ter 7.
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Chapter 2

Literature Review

This chapter reviews literature in portfolio optimization, especially, focusing

on studies under the mean-variance framework. Firstly, different choices of

risk measure are discussed. Then, portfolio optimization without and with

transaction costs are reviewed. For each assumption, we classify the research

work into single-period and long-term studies. Research gaps are identified at

the end of this chapter.

2.1 Measures of Risk

The mean-variance theory uses mean as the indicator of the portfolio return

and variance as the portfolio risk. There exist other common measures of

risk in addition to variance. One class of measures favored by the academic

world is downside risk measures. Compared to variance, measures that min-

imize the downside risk seem more plausible since in most cases only capital

loss is undesirable for investors. However, usually the optimal solutions to
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the models with downside risk control can only be found through numerical

algorithms (Nawrocki, 1999; Estrada, 2007a). Common quantitative indica-

tors of downside risk include downside volatility (Roy, 1952), semivariance

(Estrada, 2007b; Huang, 2008b), Value-at-Risk (Huang, 2008a), probability of

exceeding certain loss level (Campbell et al., 2001), and worst case (Gülpınar

and Rustem, 2007). Among these measures, VaR and CVaR are widely used

in the finance field. Semivariance is also common in research studies due to

its long history and developed numerical solving techniques (Nawrocki, 1999).

Another popular definition of risk is the downside volatility, firstly proposed

by Roy (1952) for a single-period problem. In his work, risk is defined to be

the probability of the occurrence of an investment “disaster”. Later, this ap-

proach has been extended to the long-term portfolio optimizations (Li, 1998;

Chiu and Li, 2009; Karatzas et al., 1987; Chiu et al., 2012). Markowitz (1959)

analyzes the pros and cons of different measures of risk.

In this thesis, we follow the mean-variance framework and use variance as

the measure of risk. The reason is threefold. Firstly, the mean-variance theory

is well-established. Closed-form solutions have been found. Therefore, we can

take advantage of the existing theories and methods to solve the problem.

Secondly, in the case when the underlying distribution of returns is symmetric,

it is equivalent to use either variance or downside risk measures. Lastly, it has

been shown that mean-variance also provides a good approximation for various

utility functions and empirical distributions of returns (Markowitz et al., 2000).

Therefore, it can be applied to a wider range of problems.
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2.2 Portfolio Optimization without Transac-

tion Costs

The modern portfolio theory is built on the groundwork of Markowitz’s mean-

variance analysis. Since then, the mean-variance theory has gained great at-

tention from both the academic world and the business world. Numerous

papers have been published in this field.

The classical Markowitz mean-variance model analyzes a single-period prob-

lem. Later on, Merton (1971) extends Markowitz’s mean-variance analysis to

solve continuous-time investment problems. However, there is greater diffi-

culty in applying the mean-variance method to the discrete-time multiperiod

scenario. Not until the recent paper by Li and Ng (2000) has the discrete-time

multiperiod mean-variance portfolio optimization gained much success. The

mean-variance theory also inspires Treynor (1961a,b), Sharpe (1970), Lintner

(1965) and Mossin (1966) to develop the capital asset pricing model (CAPM)

that incorporates risk into the asset pricing (Frencha, 2003).

2.2.1 Single-Period Portfolio Optimization without Trans-

action Costs

The paper of the Nobel Prize winner Harry Markowitz (1952) has built the

foundation of modern portfolio theory. His work in 1950s has initiated in-

tensive studies in academia. The classic model has been extended in various

directions. Tobin (1958) uses the mean-variance approach to study the invest-

ment with liquidation. That is, the portfolio to be managed contains a risk-free
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cash account. Investors can lend the risk-free asset at a positive interest rate

r0, or borrow cash at the same rate. Black (1972) forbids borrowing and lend-

ing but allows unlimited short selling in risky assets, i.e. the non-negativity

constraints were removed from the classic model and thus the only constraint

is 1′x = 1. Lin and Liu (2008) consider minimum transaction lots for the

one-period portfolio selection problem and use genetic algorithm to solve the

model. Feasible solutions can be found efficiently, and near optimality can be

achieved in some cases. Bonami and Lejeune (2009) extend the classical model

by adding a probabilistic constraint over the asset returns. Markowitz et al.

(2000) examines the case when upper bounds are imposed on the holdings of

each asset.

2.2.2 Long-Term Portfolio Optimization without Trans-

action Costs

The mean-variance framework has been widely used to solve single-period

problems. However, this method has gained relatively less success when ap-

plied to long-term investment analysis. This is partly due to the aggregated

uncertainty when long-term investment is considered (Li and Ng, 2000). Dif-

ficulties of extending the single-period mean-variance model to a multiperiod

scenario have been reported by Chen et al. (1971), Li and Ng (2000) and

Steinbach (2001).
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Discrete-Time Multiperiod Portfolio Optimization without Transac-

tion Costs

Long-term problems include two categories, i.e., discrete-time models and

continuous-time models. In discrete-time multiperiod models, portfolio rebal-

ancing can be conducted at the beginning of each period. Hakansson (1971)

models the discrete-time multiperiod investment problem with the objective

of maximizing the average return rather than optimizing the trade-off between

mean and variance of the portfolio. Gülpınar and Rustem (2007) measure risk

by the downside volatility instead of variance. Li et al. (1998) and Li and Ng

(2000) embed the multiperiod mean-variance model into an auxiliary quadratic

model. The solution to the auxiliary model was then used to derive the solution

to the original mean-variance model. Zhu et al. (2004) later extend the study

by imposing the bankruptcy control, i.e., the total wealth of the investor should

be non-negative for all time periods. Çakmak and Özekici (2006) adopt the

same embedding method as Li and Ng’s to solve an investment problem with

the assumption that the market moves according to a Markov chain. Çelikyurt

and Özekici (2007) further generalize the study of Çakmak and Özekici (2006)

by considering the problems under various assumptions including safety-first

approach, coefficient of variation and quadratic utility functions. Wei and Ye

(2007) then follow their work and modify the model by adding the bankruptcy

constraint. However, in all these studies, no transaction costs are considered

in the formulation. The drawbacks of neglecting transaction costs will be

addressed in Section 2.3.1.
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Continuous-Time Portfolio Optimization without Transaction Costs

The continuous-time portfolio optimization problems assume that the portfo-

lio can be rebalanced at any time. Instead of using mean-variance objectives,

most continuous-time models maximize the expected constant relative risk

aversion (CRRA) form of utility of consumption over a time horizon or the

investor’s wealth at the end of the investment horizon. Samuelson (1969) dis-

cusses lifetime portfolio optimization under deterministic asset return rates.

Merton (1971), known as the pioneering work in continuous-time investment

planning, develops the optimal investment policies under the assumptions that

the utility functions belong to the HARA (hyperbolic absolute risk-aversion)

family and the asset price process follow a geometric Brownian motion. Cox

and Huang (1989) later improve the model by imposing non-negativity con-

straints on the investor’s consumption amounts and the final wealth. The op-

timal consumption and investment strategies are derived by a technique using

martingales. These studies adopt an objective function maximizing the cumu-

lative discounted utility of consumption or final wealth. Since then, there have

been enormous amounts of literature studying continuous-time approaches for

portfolio selection problems.

The continuous-time problem with mean-variance objectives has received

less attention and success as compared to Merton’s model. Closed-form solu-

tion is only achievable with various constraints. Efficient solving methods have

been developed to tackle the problem and various properties of the solutions

have been identified through insightful analyses. Zhou and Li (2000) adopt the

method used by Li and Ng (2000) for solving discrete-time problems and em-
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bed the continuous-time mean-variance model into auxiliary linear-quadratic

models. Though the analytical solution is still unattainable, the closed-form of

the efficient frontier is derived. Later, their model under the linear-quadratic

framework is extended for various assumptions. Li et al. (2002) study the

model that forbids short selling of assets. Lim and Zhou (2002) assume ran-

dom coefficients including interest rates, appreciation rates, and volatility co-

efficients. Bielecki et al. (2005) use the same framework with an additional

constraint to prohibit bankruptcy. However, none of these studies have found

the closed-form of the optimal solutions.

As discussed by Merton (1971), the main advantage of the continuous-time

approach is that it makes use of the established research in stochastic processes

and reduces the number of parameters in the model. Nevertheless, discrete-

time models are still important in practice. They are easier to understand

and implement. Besides, it may not be optimal to have infinitesimal trading

and we can shorten the period of discrete-time models to approximate the

performance of the continuous-time models.

2.3 Portfolio Optimization with Transaction

Costs

Transaction costs are fees triggered by trading activities. Common transaction

cost schemes include linear fees that are proportional to the trading amount,

fixed lump-sum charges for each transaction and mixture of fixed and propor-

tional fees. The bid-ask spread can also be viewed as a type of transaction
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costs incurred by the trader (Demsetz, 1968). Arnott and Wagner (1990)

treat transaction costs as the commission charged for the transaction together

with the impact of the executed trade over the market. This section reviews

portfolio optimization studies considering transaction costs.

2.3.1 Impact of Transaction Costs

Most existing studies on portfolio optimization ignore the impact of transac-

tion costs on investment decisions. No consideration of transaction costs may

result in investment policies characterized by extremely heavy trading. It is

reported that investors’ behaviors can be significantly affected when taking

into account the transaction costs. Constantinides (1979) shows that transac-

tion costs lead to less frequent trading. Pelsser and Vorst (1996) prove that

transaction fees as modest as 0.5% of the trading amount can make the opti-

mal strategy of considering no transaction costs inferior to simple stop-loss and

lock-in strategies. Yoshimoto (1996) shows by numerical analysis that discard-

ing the impact of transaction costs leads to suboptimal solutions. Atkinson and

Mokkhavesa (2003) consider overseas investments and concluded that markets

with low transaction costs attract more equity investments. Fleten and Lind-

set (2008) study the strategies for insurance companies to hedge multiperiod

guarantee in the framework of stochastic programming. It has been shown

that the case with proportional hedging costs results in less active rebalanc-

ing compared to the case ignoring trading fees. Feng et al. (2011) examine

investment with a strategy adhering to constant fraction of wealth allocated

to each asset in the presence of transaction costs and concluded that transac-

17



tion costs lead to less frequent rebalancing. Therefore, it is a known fact that

ignoring transaction costs affects the performance of a portfolio. However, in-

corporating such transaction costs brings challenges to obtaining closed-form

solutions. In this section, we review portfolio selection models with transac-

tion costs and their corresponding solving methods for both single-period and

multiperiod settings.

2.3.2 Single-Period Portfolio Optimization with Trans-

action Costs

Single-period portfolio optimization with transaction costs is first studied by

Constantinides (1979). In this paper, a non-transaction region has been de-

fined qualitatively. Perold (1984) later incorporates concave piecewise linear

transaction costs into a one-period mean-variance portfolio revision model.

This methodology is later adopted by Konno and Wijayanayake (2001) to an-

alyze a mean-absolute-deviation model. Yoshimoto (1996) obtains numerical

solutions to a mean-variance portfolio revision model using a nonlinear pro-

gramming algorithm. Li et al. (2000) use linear approximation to efficiently

solve the quadratic model assuming constant transaction fee rates. Best and

Hlouskova (2005) develop an efficient algorithm that solves a large-scale single-

period investment problem with proportional transaction costs. Lobo et al.

(2007) obtain approximate results for a one-period rebalancing problem with

concave transaction costs. Dan (2008) solves the single period mean-variance

problem with proportional transaction costs. The solution obtained agrees

with the solution derived in Chapter 4 of this thesis. Kozhan and Schmid
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(2009) study an investment problem with transaction costs where the invest-

ment risk is determined based on subjective beliefs instead of using any prob-

ability distribution. Jana et al. (2009) incorporate proportional transaction

costs into a mean-variance model with an additional diversification criterion.

Zhang et al. (2010) consider transaction costs in a one-period rebalancing

model treating the random return rates as fuzzy numbers. Although single-

period models involving multiple assets or various transaction costs have been

developed, their results cannot be easily extended to multiperiod scenarios

as the complexity of the problem grows rapidly with increasing number of

investment periods.

2.3.3 Long-Term Portfolio Optimization with Transac-

tion Costs

Recently, more attention has been placed on long-term portfolio optimization

in the presence of transaction costs. Transaction costs usually have larger

impact on the performance of a multiperiod investment, because, in such an

investment, the investor may adjust the portfolio one or more times during the

investment horizon. In this section, we review studies on both discrete-time

models and the continuous-time models.

Discrete-Time Multiperiod Portfolio Optimization with Transaction

Costs

There is a limited number of existing studies focusing on the discrete-time

mean-variance portfolio optimization with transaction costs. The main chal-
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lenge to solve such problems lies in the fact that for each period, there exists

three action spaces, namely, buy, sell and hold. Therefore, a general expression

of the value function cannot be obtained easily. This creates difficulty for solv-

ing the problem recursively. Mulvey and Vladimirou (1989) use the stochas-

tic network framework to consider financial planning problems. Proportional

transaction costs are incorporated by assigning multipliers to scale the trading

amounts. Dantzig and Infanger (1993) study a multiperiod linear model where

the nonlinear utility function is approximated by a piecewise linear function.

Gennotte and Jung (1994) adapt the model of Dumas and Luciano (1991)

for continuous-time analysis to solve a discrete-time multiperiod problem. It

maximizes a power utility function but no closed-form solution is obtained.

Following the work of Gennotte and Jung, Schroder (1995) further considers

fixed costs and identifies some properties of the optimal solution through nu-

merical studies. Boyle and Lin (1997) adopt a similar method but it maximizes

the indirect utility function, which is the maximum value of the power utility

function used by Gennotte and Jung. In this way, the dimension of the prob-

lem is reduced, and thus, analytical solutions are provided. Chryssikou (1998)

models the multiperiod portfolio optimization problems with transaction costs

under the mean-variance framework and obtains near-optimal solutions. How-

ever, the transaction costs are assumed to be quadratic functions of the trading

amounts, which means that the unit transaction costs increase as the trading

amounts go up. Such cost schemes are rarely seen in practice. Bertsimas

and Pachamanova (2008) solve the corresponding problem by maximizing the

worst-case return to get a robust solution instead of providing optimal solu-
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tions according to the investor’s risk tolerance. This robust design offers a safe

investment option but it is conservative and restricts the risk-taking investors

from seeking higher returns.

Continuous-Time Portfolio Optimization with Transaction Costs

In terms of continuous-time problems, most existing models focus on maxi-

mizing the discounted utility of consumption or bequest instead of studying

the trade-off between reward and risk as in the mean-variance models. Mag-

ill and Constantinides (1976) are the first to incorporate linear transaction

costs into Merton’s continuous-time portfolio optimization model. They gain

qualitative insights on the change of trading behaviors when transaction is

no longer costless. Davis and Norman (1990) obtain closed-form solutions to

a problem that maximizes the cumulative utility of consumption on an infi-

nite horizon under proportional transaction costs. Dumas and Luciano (1991)

solve a similar model with an objective to increase the final utility. Shreve and

Soner (1994) generalize the model of Davis and Norman by removing some of

the restrictions and identify the properties of the value function and the non-

transaction region. Liu (2004) further incorporates fixed transaction costs

into the continuous-time model, but no closed-form transaction thresholds are

identified. Muthuraman and Kumar (2006) extend the model of Liu (2004) by

imposing restrictions on borrowing. Numerical results to a continuous-time

mean-variance problem have been obtained by Dai et al. (2010) assuming two

assets and proportional transaction costs. In their work, the return rate of the

risky asset is assumed to follow a standard one-dimensional Brownian motion,

21



i.e., the price of the risky asset has a constant volatility. On the contrary,

our model puts a much milder restriction on the return rates. The method

introduced in this thesis can be applied to any symmetric distributions, which

is a basic assumption for mean-variance analysis.

2.4 Research Gaps

Since the first introduction of the mean-variance theory by Markowitz in 1950s,

intensive research has been done in this field in the past decades. The mean-

variance studies can be categorized into single-period, discrete-time multi-

period and continuous-time models. For the single-period and continuous-

time scenarios, the studies are well established. Closed-form solutions have

been found for the single-period models. The continuous-time studies pio-

neered by Merton have also gained much success in obtaining solutions to

problems maximizing the utility of consumption or bequest. On the contrary,

the discrete-time mean-variance problems have attracted less attention due to

the great difficulties in decomposing the variance term. Nonetheless, discrete-

time models are an important class of problems because of their common

presence in real life.

Another challenge that this thesis tackles is to incorporate the transac-

tion costs. Compared to the counter-parting portfolio optimization without

transaction costs, investment with transaction costs is greatly under-studied.

This is because that considering transaction costs often leads to intractable

models. However, as many studies have shown, ignoring such costs may lower
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the investment performance to a considerable extent.

In order to address the research gaps that have been discussed in the previ-

ous paragraphs, this thesis studies a discrete-time multiperiod mean-variance

portfolio optimization problem in the presence of linear transaction costs. To

our best knowledge, no closed-form solution for this type of problem has been

obtained.
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Chapter 3

Problem Formulation with

Transaction Costs

3.1 Problem Definition

We consider a multiperiod portfolio optimization problem using mean-variance

framework. Suppose the investor wants to maximize his mean-variance objec-

tive function over an investment horizon which is divided into T time periods.

The time variable t is set to be 0 at the beginning of the entire investment

horizon, and t equals 1, 2, ..., T at the end of each period. At t = 0, a port-

folio y will be constructed by selecting assets from a market containing two

assets, and later be rebalanced at t = 1, 2, ..., T − 1. Asset 0 is a risk-free

asset with a fixed return rate r0 through all the time periods. This asset can

be a cash deposit or a government bond. Such investment is considered as a

safe investment with no risk, therefore the variance of the return of this asset
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equals to zero. Asset 1 is a risky asset that yields a random return in every

time period. Examples of such asset include stocks, mutual funds and other

variable-return securities. The return rate of the risky asset is denoted by a

random variable R̊1
t from time t to time t + 1. The return rate of the risky

asset in each period is assumed to be independent from each other. Further

let hit denote the holding of asset i at time t, and wt = h0t + h1t represent the

investor’s wealth at time t. Observing hit, the investor chooses transaction

amount to rebalance the portfolio. The amount of risky asset bought and sold

at time t are denoted by x1+t and x1−t . All the money which is not invested

in the risky asset goes to the risk-free account. Once a transaction occurs on

the risky asset, the investor has to pay a proportional transaction fee which is

deducted from the risk-free account at a rate of α for buying and β for selling.

Thus the buying and selling costs are αx1+t and βx1−t respectively.

3.2 Conditions on x1+
t and x1−

t :

Both x1+t and x1−t should be non-negative. It then follows that at least one

of the two decision variables at each period should be equal to zero if it is

an optimal action, for otherwise we can always find a better action which can

reduce the transaction cost and thus increase the reward. The proof to this

theorem will be given in Section 3.6.

Furthermore, if borrowing and short selling behaviors are prohibited, then
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x1+t ≤
h0t

1 + α
(3.1a)

x1−t ≤ hit. (3.1b)

This set of constraints indicates that all the capital is financed from internal

sources. At the same time, the investor can only sell the amount of asset up

to the maximum amount on hand.

3.3 Recursive Rebalancing Equations

At the beginning of each period, the investor can change his portfolio by

trading the risky asset. And the transaction costs incurred will be deducted

from the risk-free asset. The recursive rebalancing equations are

h0t+1 = r0
(
h0t − (1 + α)x1+t + (1− β)x1−t

)
(3.2)

for the risk-free asset, and

h1t+1 = R̊1
t

(
h1t + x1+t − x1−t

)
(3.3)

for the risky assets respectively.

Here we introduce a new set of post-decision state variables ĥ0t and ĥ1t to

represent the asset levels immediately after the transactions have been per-
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formed:

ĥ0t = h0t − (1 + α)x1+t + (1− β)x1−t (3.4)

ĥ1t = h1t + x1+t − x1−t (3.5)

Combining (3.2), (3.3), (3.4) and (3.5) yields the rebalancing equations in

terms of ĥ0t and ĥit:

h0t+1 = r0ĥ0t , (3.6)

h1t+1 = R̊1
t ĥ

1
t , (3.7)

The recursive rebalancing equations reflect how the wealth is accumulated

through each time period.

3.4 Multiperiod Mean-Variance Formulation

Having defined the recursive dynamics in the previous section, the single-

period mean-variance formulation (1.3) can be extended to the multiperiod

case by incorporating the rebalancing equations.

The multiperiod mean-variance portfolio optimization problem can be for-
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mulated as

PB[̊λ]: max E (wT )− λVar (wT )

s.t. wT = h0T + (1− β)h1T

h0t+1 = r0
(
h0t − (1 + α)x1+t + (1− β)x1−t

)
h1t+1 = R̊1

t

(
h1t + x1+t − x1−t

)
x1+t , x1−t ≥ 0, (3.8)

for t = 0, 1, . . . , T − 1. The final wealth wT is the sum of the risk-free asset

and the risky asset after liquidation. For notational simplicity, denote

R1
t = R̊1

t for t = 0, 1, ...T − 2,

R1
T−1 = R̊1

T−1 (1− β) . (3.9)

Note that if liquidation is not required at the end of the investment horizon,

then R1
T−1 = R̊1

T−1. Now PB[̊λ] can be rewritten as

PB[λ]: max E (wT )− λVar (wT )

s.t. wT = h0T + h1T

h0t+1 = r0
(
h0t − (1 + α)xi+t + (1− β)x1−t

)
h1t+1 = R1

t

(
h1t + x1+t − x1−t

)
x1+t , x1−t ≥ 0. (3.10)

Since the variance term cannot be decomposed with respect to time stages,
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PB[λ] cannot be solved directly using dynamic programming. In the following

sections, we obtain the optimal solutions by solving an auxiliary model.

3.5 Auxiliary Model

In the multiperiod mean-variance model, the objective at each time period is

to maximize

E (wT )− λVar (wT ) (3.11)

Since the variance term is non-decomposable with respect to time stages,

the multiperiod mean-variance model cannot be solved directly using dynamic

programming. Under certain assumptions, the mean-variance model can be

embedded in a quadratic model to be solved by dynamic programming (Li and

Ng, 2000). The objective function of the quadratic model takes the form

δ E (wT )− λE (wT )2 . (3.12)

As proven in Li and Ng (2000), under same constraints, the optimal solution to

a model optimizing (3.11) is same as the optimal solution to a model optimizing

(3.12), given that

δ = 1 + 2λE(wT )|π∗ (3.13)

where π∗ is the optimal investment policy. Conclusively, the auxiliary quadratic
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model PB[δ, λ] is defined as follows:

PB[δ, λ]: max δ E(wT )− λE(wT )2

s.t. wT = h0T + h1T

h0t+1 = r0
(
h0t − (1 + α)x1+t + (1− β)x1−t

)
h1t+1 = R1

t

(
h1t + x1+t − x1−t

)
x1+t ≤

h0t
1 + α

x1−t ≤ h1t

x1+t , x1−t ≥ 0, (3.14)

for t = 0, 1, . . . , T − 1. For notational convenience, we use E(·)2 to represent

E[(·)2] and E2(·) to represent [ E(·)]2 throughout this thesis.

3.6 Property of the Solution

This section provides an important property of the optimal solution to make

it simpler to solve PB[δ, λ]. The property of the optimal solutions is given in

Proposition 3.1.

Proposition 3.1. Under the optimal investment policy, we have the following

condition:

x1+t · x1−t = 0 for t = 0, 1, ..., T − 1. (3.15)

Proof. Let U be the objective function in PB[λ], and xt = (x1+t , x1−t ), for t =
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0, 1, ...T − 1 . Assume that π̇ = (ẋ0, ..., ẋs, ..., ẋT−1) is a feasible investment

policy for PB[λ], where ẋs contains two strictly positive elements ẋ1+s and ẋ1−s ,

∀i. Suppose there is another feasible policy π̈ which is identical to π̇ in all the

periods except period s where

 ẍ1+s = ẋ1+s − ẋ1−s

ẍ1−s = 0 if ẋ1+s ≥ ẋ1−s ,

or  ẍ1+s = 0

ẍ1−s = ẋ1−s − ẋ1+s if ẋ1+s < ẋ1−s .

The two policies make the same adjustment on the risky asset while π̇ induces

more transaction costs charged from the risk-free account. If ẋ1+s ≥ ẋ1−s , then

U |π̇ = U |π̈ − (r0)
T−s

(α + β)ẋ1−s < U |π̈.

This means that a policy can always be improved for PB[λ] if there are both

purchasing and selling actions at the same time. In other words, a necessary

condition for an optimal solution is

x1+t · x1−t = 0 for t = 0, 1, ..., T − 1.

Similarly, we have the same conclusion for the case of ẋ1+s ≤ ẋ1−s . As PB[λ]

and PB[δ, λ] have the same optimal solution, this property also applies to the

latter.

31



Chapter 4

The Single-Period Problem

In order to gain some first insights, we start with solving a single-period invest-

ment problem considering two assets, asset 0 as the risk-free asset and asset 1

as the risky asset. The single-period problem can be viewed as a special case

of the multiperiod problem.

Define

ξα0 = R1
0 − r0(1 + α) (4.1)

ξβ0 = R1
0 − r0(1− β) (4.2)

ξα0 and ξβ0 can be interpreted as the excess return. We assume E(R1
0) ≥

r0(1+α) to ensure that the investor expects a higher return by taking up extra

risk. It can be easily verified that E(ξα0 ) < E(ξβ0 ). The objective function in
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PB[δ, λ] can be rewritten in terms of x1+0 and x1−0 :

f(x1+0 , x1−0 ) =δE(h01 + h11)− λE(h01 + h11)
2.

=δ E
{
r0h00 +R1

0h
1
0 + ξα0 x

1+
0 − ξ

β
0 x

1−
0

}
− λE

{
r0h00 +R1

0h
1
0 + ξα0 x

1+
0 − ξ

β
0 x

1−
0

}2

(4.3)

The one-period model with transaction costs can be written as

max δ E
{
r0h00 +R1

0h
1
0 + ξα0 x

1+
0 − ξ

β
0 x

1−
0

}
− λE

{
r0h00 +R1

0h
1
0 + ξα0 x

1+
0 − ξ

β
0 x

1−
0

}2

s.t. x1+0 ≤
h00

1 + α

x1−0 ≤ h10

x1+0 , x1−0 ≥ 0. (4.4)

4.1 Analytical Solution to the Single-Period

Problem

Since it has been proved in Proposition 3.1 that at least one of the decision

variables equals zero, it is easy to tell that the objective function in (4.4) is

a concave objective function of both x1+0 and x1−0 . Therefore, we can find the

optimal solution by simply applying KKT conditions. The KKT conditions
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for the quadratic program (QP) (4.4) are

x1+0 ≤
h00

1 + α
(4.5)

x1−0 ≤ h10 (4.6)

x1+0 ≥ 0 (4.7)

x1−0 ≥ 0 (4.8)

y00 ≥ δ E(ξα0 )− 2λ
[
r0 E(ξα)

(
h00 − (1 + α)x1+0 + (1− β)x1−0

)
+ E(R1

0ξ
α
0 )
(
h10 + x1+0 − x1−0

)]
(4.9)

y10 ≥ −δ E(ξβ0 ) + 2λ
[
r0 E(ξβ0 )

(
h00 − (1 + α)x1+0 + (1− β)x1−0

)
+ E(R1

0ξ
β
0 )
(
h10 + x1+0 − x1−0

)]
(4.10)

x1+0
{
y00 − δ E(ξα0 ) + 2λ

[
r0 E(ξα0 )

(
h00 − (1 + α)x1+0 + (1− β)x1−0

)
+ E(R1

0ξ
α
0 )
(
h10 + x1+0 − x1−0

)]}
= 0 (4.11)

x1−0

{
y10 + δ E(ξβ0 )− 2λ

[
r0 E(ξβ0 )

(
h00 − (1 + α)x1+0 + (1− β)x1−0

)
+ E(R1

0ξ
β
0 )
(
h10 + x1+0 − x1−0

)]}
= 0 (4.12)

y00

(
h00

1 + α
− x1+0

)
= 0 (4.13)

y10
(
h10 − x1−0

)
= 0 (4.14)

where y00 and y10 are the Lagrange multipliers.
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We further denote

dα0 =
E2(ξα0 )

E(ξα0 )2
(4.15)

dβ0 =
E2(ξβ0 )

E(ξβ0 )2
(4.16)

qα0 =
E (R1

0ξ
α
0 )

E(ξα0 )
(4.17)

qβ0 =
E(R1

0ξ
β
0 )

E(ξβ0 )
(4.18)

Since E(ξα0 ) < E(ξβ0 ), it can be derived that dα0 < dβ0 and qα0 > qβ0 .

Having proved that at least one of the two decision variables equals zero,

we will discuss the three cases where (1) only x1−0 = 0; (2) only x1+0 = 0 and (3)

both are zero. The optimal strategy is found after solving the KKT conditions.

The results are summarized in Table 4.1. It shows that for different initial asset

holding levels which are represented by the values of h00 and h10, five investment

strategies are recommended respectively. A correspondent piecewise value

function representing the optimal value of the objective is associated with each

optimal investment strategy. Detailed derivation of the optimal solution and

the value function can be found in Appendix A and Appendix B respectively.

As shown in Table 4.1, g
(1)
0 , g

(2)
0 , g

(3)
0 and g

(4)
0 are the four thresholds for

change in investment strategy. They divide the action space into five regions.
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Table 4.1: Solution to the one-period problem

Range of δ
2λ

Solution & value function V0(h
0
0, h

1
0)

1
[
g
(1)
0 ,∞

) x1+0 =
h00
1+α

, x1−0 = 0

V
(1)
0 = δ E(R1

0)
(

h00
1+α

+ h10

)
− λE(R1

0)
2
(

h00
1+α

+ h10

)2
2
[
g
(2)
0 , g

(1)
0

) x1+0 =
E(ξα0 )

E(ξα0 )
2

(
δ
2λ
− g(2)0

)
, x1−0 = 0

V
(2)
0 = δ E(r0h00 +R1

0h
1
0)− λE(r0h00 +R1

0h
1
0)

2
+ λdα0

(
δ
2λ
− g(2)0

)2
3
[
g
(3)
0 , g

(2)
0

) x1+0 = 0, x1−0 = 0

V
(3)
0 = δ E(r0h00 +R1

0h
1
0)− λE(r0h00 +R1

0h
1
0)

2

4
[
g
(4)
0 , g

(3)
0

) x1+0 = 0, x1−0 =
E(ξβ0 )

E(ξβ0 )
2

(
g
(2)
0 − δ

2λ

)
V

(4)
0 = δ E(r0h00 +R1

0h
1
0)− λE(r0h00 +R1

0h
1
0)

2
+ λdβ0

(
δ
2λ
− g(3)0

)2
5
[
0, g

(4)
0

) x1+0 = 0, x1−0 = h10

V
(5)
0 = δr0 (h00 + (1− β)h10)− λ(r0)2 (h00 + (1− β)h10)

2

The four thresholds are defined as follows:

g
(1)
0 =

qα0
1 + α

h00 + qα0 h
1
0 (4.19)

g
(2)
0 =r0h00 + qα0 h

1
0 (4.20)

g
(3)
0 =r0h00 + qβ0h

1
0 (4.21)

g
(4)
0 =r0h00 + r0(1− β)h10 (4.22)

According to the interval that δ
2λ

falls in, five different investment strategies

are recommended respectively.

In the first two intervals, when g
(2)
0 ≤ δ

2λ
, the optimal strategy is to increase
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the holding level of the risky asset using the fund deposited in the risk-free

account. The threshold g
(2)
0 is written as

g
(2)
0 = r0h00 + qα0 h

1
0 =

(
r0h0 + E(R1

0)h
1
0

)
+

Var(R1
0)

E(ξα0 )
h10. (4.23)

It can be interpreted in such a way: (r0h0 + E(R1
0)h

1
0) represents the expected

return of the current portfolio before rebalancing, and the latter part
Var(R1

0)

E(ξα0 )
h10

is the ratio of the variance of the random return rate over the excess return,

also known as the dispersion index (Cox and Lewis, 1966), times the amount of

risky asset on hand. This could be interpreted as the risk borne by the current

portfolio. Therefore, g
(2)
0 ≤ δ

2λ
means that the expected return of the current

portfolio plus the risk of purchasing more risky asset is below the desired level.

Thus the investment decision is to purchase more risky asset to increase the

return and risk simultaneously.

In the second interval, where δ
2λ
∈
[
g
(2)
0 , g

(1)
0

)
, it is recommended to buy

more of the risky asset to rebalance the holdings to the target levels ĥ0αT−1 and

ĥ1αT−1 with the following expressions:

ĥ0α0 = h00 − (1 + α)x1+0

= −dα0
(

(1 + α)
δ

2λ
− qα0 h00 − qα0 (1 + α)h10

)
(4.24)

ĥ1α0 = h10 + x1+0

= dα0

(
δ

2λ
− r0h00 − r0(1 + α)h10

)
(4.25)

In the first interval where δ
2λ
≥ g

(1)
0 , the buying amount has hit the up-
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per limit
h00
1+α

, the maximum amount of fund that can be financed internally.

Therefore, the optimal solution is to buy as much as possible, i.e., to use up

all the fund deposited in the risk-free asset to buy the risky asset.

Symmetrically, for the last two intervals, the optimal solution is to sell the

risky asset since the current portfolio exposes the investor to too much risk.

It is indicated by g
(3)
0 > δ

2λ
, where

g
(3)
0 = r0h00 + qβ0h

1
0 =

(
r0h0 + E(R1

0)h
1
0

)
+

Var(R1
0)

E(ξβ0 )
h10. (4.26)

Similar to g
(2)
0 , it can be interpreted as the expected return of the current

portfolio plus the risk of holding the current risky asset level. When δ
2λ

is less

than g
(3)
0 , the investment strategy is to shift the fund in the risky asset to the

risk-free account. The post-decision holding levels are

ĥ0β0 = h00 + (1− β)x1−0

= −dβ0
(

(1− β)
δ

2λ
− qβ0h00 − q

β
0 (1− β)h10

)
, (4.27)

ĥ1β0 = h10 − x1−0

= dβ0

(
δ

2λ
− r0h00 − r0(1− β)h10

)
. (4.28)

Lastly, between the buying and selling intervals, there exists a non-transaction

region (when g
(3)
0 ≤ δ

2λ
< g

(2)
0 ). The investor is recommended to take no ac-

tion since the increase of the investor’s expected utility cannot compensate the

transaction costs incurred from rebalancing the portfolio.

The optimal value function that we obtained is found to be smooth on the
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entire domain. (see Appendix C)

4.1.1 Numerical Example

This section presents a numerical example to illustrate the results obtained

for the single-period problem. Suppose an investor with 10 million dollars

deposited in the risk-free asset is to make a yearly investment plan. The

investor makes investment and constructs his portfolio at the beginning of the

year with the goal to maximize his mean-variance utility defined by (4.3) at

the end of the year. It is assumed that there is no further adjustment to

the portfolio during the year. The allocation is based on one risky asset and

one risk-free asset. The risk-free asset has a return rate of 1.04, while the

return rate of the risky asset follows a uniform distribution U(0.95, 1.3) for

both periods. λ takes the value of 0.5 to represent the investor’s risk profile.

The buying and selling transaction costs are both 1.5%.

As it is assumed that there is no balance in the risky asset at the beginning

of the investment horizon, x1−0 should equal to zero naturally. This statement

is further supported by studying the value of the breakpoints defined by (4.19)

to (4.22):

g
(1)
0 =12.5329 (4.29)

g
(2)
0 =10.4 (4.30)

g
(3)
0 =10.4 (4.31)

g
(4)
0 =10.4 (4.32)

39



Since g
(2)
0 = g

(3)
0 = g

(4)
0 = 10.4, the third, fourth and fifth intervals become

empty. Thus x1−0 can only take the value of zero in all the situations.

Now we study the value of δ
2λ

for the two intervals. Since h10 = 0, then

g
(1)
0 =

qα0
1+α

h00 =
E(R1

0)+
Var(R1

0)

E(ξα0 )

1+α
h00. From (3.13), we obtain the expressions for

the two intervals.

For interval 1,

δ

2λ

(1)

=
1

2λ
+

E(R1
0)

1 + α
h00

=
1

2λ
+
qα0 −

Var(R1
0)

E(ξα0 )

1 + α
h00

= g
(1)
0 +

(
1

2λ
− Var(R1

0)

E(ξα0 )(1 + α)
h00

)
. (4.33)

For interval 2,

δ

2λ

(2)

=
1

2λ
+ r0h00 +

E2(ξα0 )

E(ξα0 )2

(
δ

2λ
− r0h00

)
=

1

2λ
+ r0h00 +

(
1− Var(R1

0)

E(ξα0 )2

)(
δ

2λ
− r0h00

)
⇒ δ

2λ

(2)

=
E(ξα0 )2

Var(R1
0)
· 1

2λ
+ r0h00

=
E(ξα0 )2

Var(R1
0)
· 1

2λ
+ g

(1)
0 −

E(R1
0) +

Var(R1
0)

E(ξα0 )

1 + α
h00 + r0h00

=
E(ξα0 )2

Var(R1
0)
· 1

2λ
+ g

(1)
0 −

E(ξα0 )2

E(ξα0 )(1 + α)
h00

= g
(1)
0 +

E(ξα0 )2

Var(R1
0)

(
1

2λ
− Var(R1

0)

E(ξα0 )(1 + α)
h00

)
. (4.34)

From (4.33) and (4.34), it can be concluded that if 1
2λ
− Var(R1

0)

E(ξα0 )(1+α)
h00 ≥ 0, then
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the value of δ
2λ

will fall into the first interval. Otherwise, it will fall into the

second one. Since

1

2λ
− Var(R1

0)

E(ξα0 )(1 + α)
h00 = −0.4492 < 0, (4.35)

δ
2λ

falls into the second interval. Therefore, the optimal solution for this single-

period problem is

x1+∗0 = 6.7984 (4.36)

x1−∗0 = 0. (4.37)

The expected final wealth is

E(w1) = r0h00 + E(ξα0 )x1+∗0 = 10.8718. (4.38)

The variance of the final wealth is

Var(w1) = Var(R1
0)x

1+∗
0 = 0.4718. (4.39)

4.1.2 Sensitivity Analysis on λ

The example given above has 1
2λ
− Var(R1

0)

E(ξα0 )(1+α)
h00 < 0. This section studies the

change of optimal investment strategy with the change in value of λ.

When 1
2λ
− Var(R1

0)

E(ξα0 )(1+α)
h00 ≥ 0, i.e., 0 < λ ≤ 0.3450, δ

2λ
falls into the first
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interval [g
(1)
0 ,+∞). Thus, we have

x1+∗0 =
h00

1 + α
= 9.8522 (4.40)

x1−∗0 = 0. (4.41)

The value of optimal x1+∗0 is the maximum amount of the risky asset that can

be purchased due to the no-borrowing constraint.

When
Var(R1

0)(g
(2)−g(1))

E(ξα0 )
2 ≤ 1

2λ
− Var(R1

0)

E(ξα0 )(1+α)
h00 < 0 , i.e., λ > 0.3450, δ

2λ
falls

into the second interval [g
(2)
0 , g

(1)
0 ). The optimal solution is

x1+∗0 =
E(ξα0 )

E(ξα0 )2

(
δ

2λ
− g(2)0

)
=

E(ξα0 )

E(ξα0 )2

(
g
(1)
0 +

E(ξα0 )2

Var(R1
0)

(
1

2λ
− Var(R1

0)

E(ξα0 )(1 + α)
h00

)
− g(2)0

)
= 4.6191

(
2.1329 + 1.4718

(
1

2λ
− 1.4492

))
= 6.7984

(
1

2λ

)
(4.42)

x1−∗0 = 0. (4.43)

From Equation 4.42, we can conclude that the optimal amount of risky

asset to be purchased decreases as the value of λ increases. Since a higher

value of λ indicates a greater level of risk aversion, thus a lower purchase

amount is expected in real-life situations. Another interesting observation of

Equation 4.42 is that x1+∗0 will always be positive as long as λ stays positive.

It means that as long as the investor has the slightest intention to take extra

risk for higher return, he will purchase some amount of risky asset given that
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the expected return of the risky asset is higher than the risk-free asset. As

the value of λ decreases, the investor becomes more risk-taking. Therefore, he

is willing to invest more in the risky asset until the purchase amount hits the

limit.

4.2 Special Case: No Transaction Costs

In this section, we consider a special case with no transaction costs. Short

selling and borrowing are still prohibited. The model with no transaction

costs is equivalent to setting α and β to zero in (4.4). Therefore, the optimal

solution to (4.4) can be applied to the no-transaction-cost formulation with

some minor changes. First of all, two threshold g
(2)
0 and g

(3)
0 now equals to

each other and consequently the third interval in Table 4.1 disappears. The

following updated notations need to be introduced:

ξ0 =R1
0 − r0 (4.44)

q0 =
E(R1

0ξ0)

E(ξ0)
(4.45)

d0 =
E2(ξ0)

E(ξ0)2
(4.46)

g
(1′)
0 =q0h

0
0 + q0h

1
0 (4.47)

g
(2,3)
0 =r0h00 + q0h

1
0 (4.48)

g
(4′)
0 =r0h00 + r0h10 (4.49)

The solution and optimal objective are summarized in Table 4.2.

In Table 4.2, the investment strategy for the second and third intervals
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Table 4.2: Solution to the one-period problem with no transaction costs

range of δ
2λ

solution & value function V0(h
0
0, h

1
0)

1
[
g
(1′)
0 ,∞

) x1+0 = h00, x1−0 = 0

V
(1)
0 = δ E(R1

0) (h00 + h10)− λE(R1
0)

2 (h00 + h10)
2

2
[
g
(2,3)
0 , g

(1′)
0

) x1+0 = E(ξ0)
E(ξ0)2

(
δ
2λ
− g(2,3)0

)
, x1−0 = 0

V
(2)
0 = δ E(r0h00 +R1

0h
1
0)− λE(r0h00 +R1

0h
1
0)

2
+ λd0

(
δ
2λ
− g(2,3)0

)2
3
[
g
(4′)
0 , g

(2,3)
0

) x1+0 = 0, x1−0 = E(ξ0)
E(ξ0)2

(
g
(2,3)
0 − δ

2λ

)
V

(4)
0 = δ E(r0h00 +R1

0h
1
0)− λE(r0h00 +R1

0h
1
0)

2
+ λd0

(
δ
2λ
− g(2,3)0

)2
4
[
0, g

(4′)
0

) x1+0 = 0, x1−0 = h10

V
(5)
0 = δr0 (h00 + h10)− λ(r0)2 (h00 + h10)

2

result in the same expression for asset holding levels after rebalancing. The

new holding levels for the two assets are

ĥ00 = h00 − x1+0 + x1−0 =h00 −
E(ξ0)

E(ξ0)2

(
δ

2λ
− g(2,3)0

)
=h10 −

E(ξ0)

E(ξ0)2

(
δ

2λ
− r0h00 −

E(R1
0ξ0)

E(ξ0)
h10

)
=

E(ξ0)

E(ξ0)2

(
q0h

0
0 − q0h10 −

δ

2λ

)
, (4.50)
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and

ĥ10 = h10 + x1+0 − x1−0 =h10 +
E(ξ0)

E(ξ0)2

(
δ

2λ
− g(2,3)0

)
=h10 +

E(ξ0)

E(ξ0)2

(
δ

2λ
− r0h00 −

E(R1
0ξ0)

E(ξ0)
h10

)
=

E(ξ0)

E(ξ0)2

(
δ

2λ
− r0h00 − r0h10

)
. (4.51)

That is the reason why the two intervals have the same value functions. Note

that no borrowing or short selling is allowed in our formulation. Interval 1

indicates that when the target buying amount of risky asset has exceeded the

amount of risk-free asset on hand, the investment strategy is to transfer all

the fund invested in the risk-free asset to the risky account. Symmetrically,

interval 4 shows the situation when the target selling amount has hit the upper

limit, the strategy is just to sell as much as possible. When borrowing and

short selling are allowed, the first and the fourth intervals in Table 4.2 will no

longer exist. These results exactly agree with the solution obtained by Li and

Ng (2000).
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Chapter 5

The Two-Period Problem

In this chapter, we extend the results obtained in the previous chapter to a

multiperiod setting by investigating a two-period portfolio optimization. The

two-period problem is modeled as a dynamic program. We still assume a mar-

ket consisting of two assets, one risk-free asset and one risky asset. Borrowing

and short selling are allowed. Two models assuming two types of distribution

of the random return rates for the risky asset are studied.

5.1 Uniformly Distributed Return Rate

5.1.1 Analytical Solution to the Second Period

Assume that the solution to the first period has been obtained. For the second

period, the value function of dynamic programming is V1(x
1+
1 , x1−1 |h01, h11) =

δ E(h02 +h12)−λE(h02 +h12)
2. The one-period optimization problem is modeled
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as follows:

max V1(x
1+
1 , x1−1 |h01, h11)

s.t. h02 = r0
(
h01−(1+α)x1+1 +(1−β)x1−1

)
h12 = R1

1(h
1
1 + x1+1 − x1−1 )

x1+1 , x1−1 ≥ 0. (5.1)

The results obtained in the previous chapter for single-period problem can

be adapted to derive the solution to the second period in the two-period prob-

lem. The optimal solution for the second period allowing borrowing and short

selling is concluded in Table 5.1. It can be seen that gα1 and gβ1 are two thresh-

olds for switching the investment strategy. They divide the action space into

three regions. According to the range that δ
2λ

falls into, three investment

strategies are recommended respectively.

Table 5.1: Solution to the last period of PB[δ, λ]

range of δ
2λ

solution & value function V1(h
0
1, h

1
1)

[gα1 ,+∞)
x1+1 = bα1

(
δ
2λ
− gα1

)
, x1−1 = 0

V
(1)
1 = δ E(r0h01+R1

1h
1
1)−λE(r0h01 +R1

1h
1
1)

2

+λ dα1
(
δ
2λ
−gα1

)2
[
gβ1 , g

α
1

) x1+1 = 0, x1−1 = 0

V
(2)
1 = δ E(r0h01+R1

1h
1
1)−λE(r0h01 +R1

1h
1
1)

2

[
0, gβ1

) x1+1 = 0, x1−1 = bβ1

(
gβ1 − δ

2λ

)
V

(3)
1 = δ E(r0h01+R1

1h
1
1)−λE(r0h01 +R1

1h
1
1)

2

+λ dβ1

(
δ
2λ
−gβ1

)2

47



The following notations are used in Table 5.1

ξα1 = R1
1 − r0(1 + α) (5.2)

ξβ1 = R1
1 − r0(1− β) (5.3)

dα1 =
E2(ξα1 )

E(ξα1 )2
(5.4)

dβ1 =
E2(ξβ1 )

E(ξβ1 )2
(5.5)

qα1 =
E (R1

1ξ
α
1 )

E(ξα1 )
(5.6)

qβ1 =
E(R1

1ξ
β
1 )

E(ξβ1 )
(5.7)

gα1 = r0h01 + qα1 h
1
1 (5.8)

gβ1 = r0h01 + qβ1h
1
1. (5.9)

Note that the intervals in Table 5.1 are simply the second, third and fourth

intervals of Table 4.1. Therefore, the optimal value function is also smooth on

the entire domain.

5.1.2 Analytical Solution to the First Period

At the beginning of period 1, we are faced with a two-period problem ahead

(period 1 and period 2). Solving the two-period problem is the same as finding

the optimal actions to take in the next two time periods, i.e., looking for the

optimal values of x1+0 , x1−0 , x1+1 and x1−1 . Given the initial asset level of h00 and

h10 at the beginning of period 1, we have to decide how much risky asset to

buy or sell (x1+0 and x1−0 ), and the action taken will affect the asset levels of
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the next period, h01 and h11. Once h01 and h11 are known, we can find the best

actions at period 2 from Table 5.1 and the final reward is immediately known.

Thus, we can obtain the optimal set of actions to maximize the final reward.

We apply backward dynamic programming for solving. Combining (3.6),

(3.6), (5.8) and (5.9), the two thresholds gα1 and gβ1 can be rewritten as

gα1 = (r0)
2
ĥ00 + qα1R

1
0ĥ

1
0 (5.10)

gβ1 = (r0)
2
ĥ00 + qβ1R

1
0ĥ

1
0 (5.11)

From equations (5.10) and (5.11), we can derive the two thresholds for R1
0 :

Bα
0 =

δ
2λ
− (r0)

2
ĥ00

qα1 ĥ
1
0

(5.12)

Bβ
0 =

δ
2λ
− (r0)

2
ĥ00

qβ1 ĥ
1
0

(5.13)

Then the value function for the first period can be written as

V0 = max

∫ Bα0

ru

p(r10)V
(1)
1 dr10 +

∫ Bβ0

Bα0

p(r10)V
(2)
1 dr10 +

∫ ru

Bβ0

p(r10)V
(3)
1 dr10 (5.14)

where ru and ru are the lower bound and the upper bound of the random

return rate of the risky asset.

In the multiperiod setting, considering sophisticated distributions adds

much difficulty for solving. Therefore, existing studies often choose simple re-

turn rate assumptions, e.g., Gennotte and Jung (1994) assume a distribution

with two possible outcomes, Bertsimas and Pachamanova (2008) use worst-
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case returns with correlations for robust optimization. Instead of considering

only a finite set of realizations of the return rate, we use the uniform distribu-

tion assumption for the first period in our paper for its simplicity and frequent

usage in financial analysis (McFarland, 1988; Shalit and Yitzhaki, 2002; Kuan

et al., 2009; Wagner, 2010). The only information needed to apply a uniform

distribution is the upper bound and lower bound of the return rate. With

the uniform distribution assumption, a closed-form solution to the two-period

problem can be obtained. It is also worth noting that our analysis for the sec-

ond period is not affected by the choice of probability distribution of the return

rate for the first period, i.e., there will always exist three solution intervals as

long as the transaction costs are present.

We assume R1
0 ∼ U(ru, ru), where ru and ru satisfy

ru > r0
1 + α

1− β
(5.15)

ru < r0 (5.16)

to ensure that investing in one asset is not strictly dominated by the other.

Additionally, all the wealth is assumed to be deposited in the risk-free account

at the beginning of the first period, i.e., h00 = w0 and h10 = 0. The investor

decides the amount of wealth to be shifted from the risk-free asset to the risky

asset. Therefore, x1+0 ≥ 0 and x1−0 = 0. The resulting value function for the
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first period is

V0 =δ E
[
(r0)

2
ĥ00 +R1

1R
1
0ĥ

1
0

]
− λE

[
(r0)

2
ĥ00 +R1

1R
1
0

(
ĥ10

)]2
− λ

3(ru − ru)ĥ10

×

{
dβ1

qβ1

[
δ

2λ
− (r0)

2
ĥ00 − q

β
1 ru ĥ

1
0

]3
− dα1
qα1

[
δ

2λ
− (r0)

2
ĥ00 − qα1 ru ĥ10

]3}
.

The derivation details can be found in Appendix D.

In order to find the global optima to the problem, the concavity of V0 needs

to be established. As such, we further define a random variable

ξα0 =R1
1R

1
0 − (r0)

2
(1 + α) (5.17)

and two constants

L0 =qβ1 ru − (r0)
2
(1 + α) (5.18)

L0 =qα1 ru − (r0)
2
(1 + α) (5.19)

Then we have the following results:

Lemma 5.1. E (ξα0 )2 >

dβ1
qβ1

(L0)
3
−
dα1
qα1

(L0)
3

3(ru−ru) .
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Proof.

E (ξα0 )2 −
dβ1
qβ1

(
L0

)3 − dα1
qα1

(L0)
3

3(ru − ru)

= E(R1
1)

2 ru
3 − ru3

3(ru − ru)
− E(R1

1)(ru + ru)(r
0)

2
(1 + α) +

[
(r0)

2
(1 + α)

]2
− 1

3(ru − ru)

[(
dβ1 (qβ1 )

2
ru

3 − dα1 (qα1 )2ru
3
)
− 3

(
dβ1q

β
1 ru

2 − dα1 qα1 ru2
)

(r0)
2
(1 + α)

+3
(
dβ1ru − dα1 ru

)(
(r0)

2
(1 + α)

)2
−

(
dβ1

qβ1
− dα1
qα1

)(
(r0)

2
(1 + α)

)3]

=
Var(R1

1)

3(ru − ru)r0


(
r0(1− β)ru − (r0)

2
(1 + α)

)3
E(ξβ1 )(1− β)

−
(
ru − r0

)3
E(ξα1 )(1 + α)


+

Var(R1
0)

r0(1 + α)(1− β) E(R1
1ξ
α
1 ) E(R1

1ξ
β
1 )

[(
αE(ξα1 ) + β E(ξβ1 )

)
E(R1

1 − r0)

+ (α + β) Var(R1
1) + r0(α + β) E

(
R1

1 − r0(1 + αβ)
) ]

> 0

Thus, Lemma 5.1 is proved.

Lemma 5.2. Under the optimal investment policy π∗, δ
2λ
> (r0)2ĥ00+(r0)2(1+

α)ĥ10.

Proof. As PB(λ) is equivalent to PB(δ, λ) if and only if δ = 1 + 2λE(wT )|π∗ ,

thus under the optimal investment policy,

δ

2λ
=

1

2λ
+ E(wT )|π∗

≥ 1

2λ
+ (r0)2ĥ00 + E(R1

1) E(R1
1)ĥ

1
0

>(r0)2ĥ00 + (r0)2(1 + α)ĥ10. (5.20)
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Lemmas 5.1 and 5.2 lay a preliminary foundation for proving the concavity

of V0. It will be shown in Theorem 5.1 that V0 is strictly concave with respect

to x1+0 and the KKT conditions can be applied for solving the problem.

Theorem 5.1. The KKT conditions are sufficient for finding the optimal

solution to the two-period problem that has the objective function given by

(5.17).

Proof. From Lemma 5.1 and 5.2, we can derive

d2V0(x
1+
0 )

d(x1+0 )2
=− 2λ

E (ξα0 )2 −
dβ1
qβ1

(
L0

)3 − dα1
qα1

(L0)
3

3(ru − ru)


−
(
dβ1
qβ1
− dα1

qα1

)(
δ
2λ
−(r0)2ĥ00−(r0)2(1+α)ĥ10

ĥ10

)3
< 0

Hence, the objective function is a concave function of x1+0 , and the KKT

conditions are sufficient for finding the optimal solution.

Theorem 5.1 allows the optimal solution to be obtained by solving the

KKT conditions as listed below.

(i)
dV0(x

1+
0 )

dx1+0
− y = 0

(ii) x1+0 ≥ 0

(iii) y ≥ 0

(iv) x1+0 y = 0
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where y is the Lagrange multiplier.

By solving the KKT conditions, the optimal solution is found and given

by Corollary 5.30.

Corollary 5.1. The optimal solution for the first period is

x1+∗0 =
γ
2
− (r0)

2
w0

u0
(5.21)

x1−∗0 =0 (5.22)

where γ = δ/λ.

Proof. Let y = 0. Then condition (i) becomes

0 =
dV0(x

1+
0 )

dx1+0

=δ E (ξα0 )− 2λE
[
ξα0
(
(r0)2h00 +R1

1R
1
0h

1
0 + ξα0 x

1+
0

)]
+

λ

3(ru − ru)
(
x1+0
)2
{

3
dβ1

qβ1

[
δ

2λ
− (r0)2w0 − L0x

1+
0

]2
L0x

1+
0

−3
dα1
qα1

[
δ

2λ
− (r0)2h00 − L0x

1+
0

]2
L0x

1+
0 +

dβ1

qβ1

[
δ

2λ
− (r0)2w0 − L0x

1+
0

]3
−d

α
1

qα1

[
δ

2λ
− (r0)2w0 − L0x

1+
0

]3}
. (5.23)
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Multiplying both sides by
3(ru−ru)
λx1+0

yields

0 =

(
dβ1

qβ1
− dα1
qα1

)(
δ
2λ
− (r0)2w0

x1+0

)3

+ 3

(
2(ru − ru) E(ξα0 )− dβ1

qβ1

(
L0

)2
+
dα1
qα1

(
L0

)2)( δ
2λ
− (r0)2w0

x1+0

)

− 6(ru − ru) E(ξα0 )2 + 2
dβ1

qβ1

(
L0

)3 − 2
dα1
qα1

(
L0

)3
. (5.24)

Let

u =
δ
2λ
−(r0)2w0

x1+0
(5.25)

c1 =
dβ1
qβ1
− dα1

qα1
(5.26)

c2 =3

(
2(ru − ru) E(ξα0 )− dβ1

qβ1

(
L0

)2
+
dα1
qα1

(
L0

)2)
(5.27)

c3 =− 6(ru − ru) E(ξα0 )2 + 2
dβ1

qβ1

(
L0

)3 − 2
dα1
qα1

(La)3. (5.28)

Then (5.24) can be written as

c1u
3 + c2u+ c3 = 0 (5.29)

As proven in Lemma 5.1, c3
c1

is negative, which implies that (5.29) has at

least one positive root. Additionally, V0 is strictly concave and so there can at

most be one optimal solution. Denoting u0 as the positive root of (5.29), x1+∗0

can be expressed as
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x1+∗0 =
γ
2
− (r0)

2
w0

u0
, (5.30)

where γ = δ/λ .

With the optimal policy for the first period provided in Corollary 5.1, we

can further derive the mean-variance frontier of our model. The derivation

details are as follows:

The targeted holdings of assets under such a policy are given by

ĥ00 =
−(1 + α)γ

2
+ qα0w0

qα0 − (r0)2(1 + α)

ĥ10 =
γ
2
− (r0)

2
w0

qα0 − (r0)2(1 + α)

where qα0 = u0 + (r0)
2
(1 + α). The expected final wealth is (see Appendix E

for derivation details)

E(w2(γ)) =

∫ BαT−2

ru

p(r10)w
(1)
1 dr10 +

∫ BβT−2

BαT−2

p(r10)w
(2)
1 dr10 +

∫ ru

BβT−2

p(r10)w
(3)
1 dr10

=(r0)2w0 + ζ

( γ
2
− (r0)2w0

qα0 − (r0)2(1 + α)

)
, (5.31)

where

ζ = E(ξα0 ) +
1

2(ru − ru)
dα1
qα1

(
qα0 − qα1 ru

)2 − 1

2(ru − ru)
dβ1

qβ1

(
qα0 − q

β
1 ru

)2
. (5.32)
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Further, we have

E (w2(γ))2

=

∫ BαT−2

ru

p(r10)(w
(1)
1 )

2
dr10 +

∫ BβT−2

BαT−2

p(r10)(w
(2)
1 )

2
dr10 +

∫ ru

BβT−2

p(r10)(w
(3)
1 )

2
dr10

= ν

( γ
2
− (r0)2w0

qα0 − (r0)2(1 + α)

)2

+ 2ζ(r0)2w0

( γ
2
− (r0)2w0

qα0 − (r0)2(1 + α)

)
+
(
(r0)2w0

)2
(5.33)

where

ν = E(ξα0 )2 +
1

3(ru − ru)

[
dβ1

qβ1

(
qα0 − q

β
1 ru

)3
− dα1
qα1

(
qα0 − qα1 ru

)3]

− 1

ru − ru

[
dβ1

qβ1

(
qα0 − q

β
1 ru

)2
− dα1
qα1

(
qα0 − qα1 ru

)2]
. (5.34)

Combining (5.31) and (5.33) yields

Var(w2(γ)) = E (w2(γ))2 − E2 (w2(γ)) =
(
ν − ζ2

)( γ
2
− (r0)2w0

u∗0

)2

. (5.35)

Thus let

U = E (w2(γ))− λVar(w2(γ))

=(r0)2w0 + ζ

( γ
2
− (r0)2w0

u∗0

)
− λ

(
ν − ζ2

)( γ
2
− (r0)2w0

u∗0

)2

(5.36)
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Differentiating (5.36) with respect to γ yields

dU

dγ
=

ζ

u∗0
− 2λ

ν − ζ2

u∗0

( γ
2
− (r0)2w0

u∗0

)
(5.37)

Solving ∂Ũ
∂γ

= 0 yields

γ∗ =
ζu∗0

λ(ν − ζ2)
+ 2(r0)2w0 (5.38)

Substitute (5.38) into (5.31) and (5.35), we have

E (w2(γ
∗)) =(r0)2w0 +

ζ2

2λ(ν − ζ2)
, (5.39)

Var(w2(γ
∗)) =

ζ2

4λ2(ν − ζ2)
. (5.40)

The mean-variance efficient frontier is

Var(w2) =
ν − ζ2

ζ2

(
E(w2)− (r0)

2
w0

)2
. (5.41)

Var(w2) is a quadratic function of E(w2) in (5.41), indicating a risk-averse

utility function. Additionally, when E(w2) is equal to (r0)
2
w0, Var(w2) = 0.

It means that if all the wealth has been allocated to the risk-free asset in the

first and second periods, there is no uncertainty in this investment strategy.

5.1.3 Numerical Example

We modify the single-period investment example discussed in Section 4.1.1

into a two-period problem by allowing a rebalancing time point at the end of
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the sixth month. All the rest of the assumptions remain the same. Then the

optimal strategy for the first period is

x1+∗0 = 9.4849 and x1−∗0 = 0, (5.42)

while at the second period, the optimal strategy is


x1+∗1 = 4.1478(12.4871− 12.2989R1

0), x
1−∗
1 = 0, if 0.95 ≤ R1

0 < 1.0153

x1+∗1 = 0, x1−∗1 = 0, if 1.0153 ≤ R1
0 < 1.0735

x1+∗1 = 0, x1−∗1 = 4.9500(11.6324R1
0 − 12.4871), if 1.0735 ≤ R1

0 ≤ 1.3

(5.43)

The optimal portfolio yields an expected final wealth of 11.8904 million

dollars with a variance of 1.0744 square million dollars.

In (5.43), 1.0153 and 1.0735 are the two thresholds where the optimal

action changes. When R1
0 is below 1.0153, a relatively low level of holdings

of the risky asset will occur at the end of the first period, and therefore the

optimal solution is to buy more risky asset. On the other hand, if R1
0 exceeds

1.0735, the investor should shift the wealth from the risky asset to the risk-free

asset in order to reduce the risk. When R1
0 is between 1.0153 and 1.0735, we

have x1+∗1 = x1−∗1 = 0, which means that no adjustment should be made to

the current portfolio. This is the non-transaction region.

In conclusion, at the end of the first period, the realization of R1
0 can be

observed. It will decide the asset levels at the beginning of the second period

(h01 and h11). As shown in Table 5.1, based on the observation of h01 and h11,

the investor can easily find the best investment strategy for the second period.
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Figure 5.1: Optimal investment strategy in the second period

In Figure 5.1, we plotted values of the two thresholds for R1
0 by changing the

value of transaction costs (α and β), while keeping other data the same as

those in the example in Section 4.1.1.

Figure 5.2 shows the efficient frontiers under three transaction fee sched-

ules. The three frontiers meet at one end when Var(w2) = 0 and E(w2) =

10.8160. As the transaction fee increases, the expectation of the investors’

final wealth decreases for the same exposure to investment risk. The efficient

frontier with no transaction costs is an upper bound of efficient frontiers with

transaction fees. If transaction costs are ignored, an investor will be faced with

a lower reward than expected from a portfolio constructed according to the

investor’s risk tolerance or exposed to a higher risk for the investor’s target

return.
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Figure 5.2: Markowitz efficient frontiers with proportional transaction costs.

5.2 Discretely Distributed Return Rate

Section 5.1 shows that the value function has a non-quadratic structure as-

suming that the random return rate follows a simple uniform distribution.

Therefore, the results for the two-period problem assuming a continuous dis-

tribution has little potential to be extended to a multiperiod case. In order to

maintain the quadratic structure, we explore a model under the assumption

that R1
0 follows a discrete distribution and use a scenario tree to represent its

realizations. Note that any continuous distribution can be approximated by

a discrete distribution. In other words, the realizations of a random variable

can be represented by a scenario tree with sufficiently many scenarios. For

simplicity, we illustrate the method by assuming that there are only two pos-

sible random outcomes. The representing two-branch scenario tree is shown
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in Figure 5.3.

Figure 5.3: A two-branch scenario tree.

In Figure 5.3, r1lt and r1ht are the two outcomes of R1
t which represent

respectively the lower return and the higher return of the risky asset for period

t, and plt and pht are the corresponding probabilities for the two outcomes which

satisfy plt + pht = 1.

We start the analysis from the beginning of the second period (the end of

the first period), i.e. t = 1. For the second period, the analytical solution is

obtained in Section 5.1.1 and summarized in Table 5.1. Three different invest-

ment strategies are recommended and three corresponding optimal objectives

are derived.

Now let us move backward to t = 0. For the first period, we assume that

the asset holding levels h00 and h10 are given at the beginning the period. Since

h11 = R1
0(h

1
0 + x1+0 − x1−0 ), the realization of R1

0 and the decisions taken in

period T − 2 (x1+0 and x1−0 ) determine the value of h11 , and thus determine

the value of the two thresholds for the next period. As we assume a two-branch

realization of R1
0, once the investor takes an action, i.e. chooses a set of x1+0

and x1−0 , there is a probability pl0 that h11 equals r1l0 (h10 + x1+0 − x1−0 ), and the

other probability ph0 that h11 equals r1h0 (h10+x1+0 −x1−0 ). The two realizations of
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h11, denoted by h1l1 and h1h1 , may fall into any of the three intervals in Table 5.1

with the corresponding objective functions V l
1 and V h

1 . The value function for

T − 2 is

V0(h
0
0, h

1
0)

= max
x1+0 ,x1−0 ≥0

{
E
(
V1(h

0
1, h

1l
1 , h

1h
1 )
)}

= max
x1+0 ,x1−0 ≥0

{
pl0V

l
1 (h01, h

1l
1 ) + ph0V

h
1 (h01, h

1h
1 )
}
, (5.44)

where V l
1 (h01, h

1l
1 ) and V h

1 (h01, h
1h
1 ) is one of the three value functions listed in

Table 5.1, depending on which interval δ
2λ

falls into. In this way, the stochastic

model is transferred to a deterministic model.

We manage to formulate the problem as a dynamic program, though a

general form to express the optimal solution is still not available. However,

we are able to understand some of the complication involved in the solving

process.

The two thresholds for the random return rate, Bα
0 andBβ

0 , defined in (5.12)

and (5.13), divide the space into three regions. r1l0 and r1h0 can fall into any of

the three regions as long as r1l0 < r1h0 is satisfied. Therefore, there are totally

six possible region combinations of two return rate realizations. Consequently,

there will be six possible forms of the objective functions. As the number

of time periods and return rate realizations increase, the problem becomes

intractable. Moreover, the two thresholds contain the decision variables, i.e.

the values of the thresholds change according to the values of decision variables.

This makes it even harder to formulate the objective function. Therefore, a
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closed-form solution is very difficult to be obtained.
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Chapter 6

An Approximation Method for

Solving Multiperiod Portfolio

Optimization

As shown in Chapter 5, even for the two-period investment problem consid-

ering two assets under the simple assumption that the random return rate

follows a uniform distribution or a discrete distribution, the problem becomes

intractable. In order to solve the multiperiod problem, we introduce an ap-

proximation method in this chapter.

We use dynamic programming approach to solve PB[δ, λ]. A series of value

functions Vt(h
0
t , h

1
t ) is defined to represent the utility to hold certain amounts

of the two assets (h0t and h1t ) at time t and it is written as

Vt(h
0
t , h

1
t ) = max

x1+t ,x1−t ≥0

{
E
(
Vt+1(h

0
t+1, h

1
t+1)

)}
(6.1)
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with the boundary condition

VT (h0T , h
1
T ) = δ

(
h0T + h1T

)
− λ

(
h0T + h1T

)2
. (6.2)

Thus we have formulated the multiperiod portfolio optimization problem as a

dynamic program.

6.1 Notations

For easy reference, before introducing the approximation method, we make the

following notations which are used in the rest of the thesis. Their expressions

will be derived later in this chapter.

mt : the minimizer of the 2-norm distance between the

value function and the actual value function. Its

expression is given in Appendix F

ξαt =
T−1∏
i=t

R1
i −

(
r0
)(T−t)

(1 + α) (6.3)

ξβt =
T−1∏
i=t

R1
i −

(
r0
)(T−t)

(1− β) (6.4)

bαt =

E(ξαt )− 1

2

T−1∑
i=t+1

mi E
(
Qα,α
t,i +Qβ,α

t,i

)
E(ξαt )2 −

T−1∑
i=t+1

mi E
(
Qα,α
t,i Q

β,α
t,i

) (6.5)
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bβt =

E(ξβt )− 1

2

T−1∑
i=t+1

mi E
(
Qα,β
t,i +Qβ,β

t,i

)
E(ξβt )2 −

T−1∑
i=t+1

mi E
(
Qα,β
t,i Q

β,β
t,i

) (6.6)

dαt =

(
E(ξαt )− 1

2

T−1∑
i=t+1

mi E
(
Qα,α
t,i +Qβ,α

t,i

))2

E(ξαt )2 −
T−1∑
i=t+1

mi E
(
Qα,α
t,i Q

β,α
t,i

) (6.7)

dβt =

(
E(ξβt )− 1

2

T−1∑
i=t+1

mi E
(
Qα,β
t,i +Qβ,β

t,i

))2

E(ξβt )2 −
T−1∑
i=t+1

mi E
(
Qα,β
t,i Q

β,β
t,i

) (6.8)

qαt =
1

bαt
+ (r0)

(T−t)
(1 + α) (6.9)

qβt =
1

bβt
+ (r0)

(T−t)
(1− β) (6.10)

gαt = (r0)
(T−t)

h0t + qαt h
1
t (6.11)

gβt = (r0)
(T−t)

h0t + qβt h
1
t (6.12)

for t = 0, 1, . . . , T − 1. We further define

Gα
t,s = (r0)

(T−t)
h0t + qαs

s−1∏
j=t

R1
jh

1
t (6.13)

Gβ
t,s = (r0)

(T−t)
h0t + qβs

s−1∏
j=t

R1
jh

1
t (6.14)
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Qα,α
t,s = qαs

s−1∏
j=t

R1
j − (r0)

(T−t)
(1 + α) (6.15)

Qα,β
t,s = qαs

s−1∏
j=t

R1
j − (r0)

(T−t)
(1− β) (6.16)

Qβ,α
t,s = qβs

s−1∏
j=t

R1
j − (r0)

(T−t)
(1 + α) (6.17)

Qβ,β
t,s = qβs

s−1∏
j=t

R1
j − (r0)

(T−t)
(1− β) (6.18)

for t = 0, 1, . . . , T − 2 and s = t+ 1, t+ 2, . . . , T − 1.

6.2 The Approximation Steps

In this section, we introduce an approximation method for obtaining the value

functions which works even when α or β is non-zero. It includes the following

steps:

1. Find the approximate value function for the last period.

2. Solve the second last period using the approximate value function.

3. Derive approximate solutions and value functions recursively for the ear-

lier periods.

4. Find the approximate value for δ.

In the following sections, we will develop the approximation method ac-

cording to the steps listed above. A series of numerical experiments will be

conducted to show the performance of the method.
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6.3 Approximate Value Function for the Last

Stage

The solution and the value function for the last period of a multiperiod problem

can be easily obtained by adapting the results to the second period of a two-

period problem provided in Table 5.1. The only adaption needed is to change

the period-indicating subscription from “1” to “T −1”. In Table 5.1, the value

function contains three parts. The only difference among the three parts is

the last part. Thus the exact value function for the last period VT−1 can be

written as:

VT−1 = δ E
(
r0h0T−1 +R1

T−1h
1
T−1
)
− λE

(
r0h0T−1 +R1

T−1h
1
T−1
)2

+ V̂T−1 (6.19)

where

V̂T−1 =


λdαT−1

(
ρ− gαT−1

)2
when ρ ≥ gαT−1

0 when gβT−1 ≤ ρ < gαT−1

λdβT−1

(
ρ− gβT−1

)2
when 0 ≤ ρ < gβT−1

(6.20)

As such a problem cannot be solved recursively, we construct an approxi-

mate quadratic value function which has only one expression by interpolation.

Let

ρ =
δ

2λ
. (6.21)

The breakpoints ρ = gαT−1 and ρ = gβT−1 are chosen as the two data points for

interpolation as these are the two thresholds where the investment decision
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changes. Therefore, the approximate function would be of the following form:

ṼT−1 =δ E
(
r0h0T−1 +R1

T−1h
1
T−1
)
− λE

(
r0h0T−1+R1

T−1h
1
T−1
)2

+ λmT−1
(
ρ− gαT−1

) (
ρ− gβT−1

)
(6.22)

The coefficient mT−1 assigned to the term (ρ− gαT−1)(ρ− g
β
T−1) minimizes

the cumulative 2-norm distance between ṼT−1 and VT−1. To obtain the explicit

expression for such a cumulative distance, we impose the following conditions:

 dαT−1
(
ρ− gαT−1

)
≤ h0T−1

1+α

dβT−1

(
gβT−1 − ρ

)
≤ h1T−1

These conditions set upper bounds for the optimal transaction amount for

the last period. It indicates that the investment is still self-financing, i.e.,

borrowing and short selling are not considered. Thus, mT−1 can be derived by

solving the below quadratic function, in which the subscript T − 1 is omitted

to simplify notations.

(
Ṽ − V

)2
=

∫ ρ

r0(1−β)

0


∫ ρ−qαh1

r0

ρ−qαh1
qα/(1+α)

[
m (ρ− gα)

(
ρ− gβ

)
− dα (ρ− gα)2

]2
dh0

+

∫ ρ−qβh1

r0

ρ−qαh1
r0

[
m (ρ− gα)

(
ρ− gβ

)]2
dh0

+

∫ ρ−r0(1−β)h1

r0

ρ−qβh1
r0

[
m (ρ− gα)

(
ρ− gβ

)
− dβ

(
ρ− gβ

)2]2
dh0

 dh1 (6.23)
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It is easy to see the strict concavity of (6.23) with respect to mT−1, and so

there exists a single optimal mT−1 minimizing the cumulative 2-norm distance

between ṼT−1 and VT−1. The expression of the optimal mT−1 is given in

Appendix F. When α and β are equal to zero, mT−1 = dαT−1 = dβT−1.

6.4 Approximate Solution to the Second Last

Stage

After deriving the approximate value function for the last period, we go back-

wards and find the approximate solution to the second last period. Since there

is only one value function instead of three for the last period there is no need

to determine the asset level at the beginning of the last period in order to find

out which value function to use. Using the notations defined in Section 6.1,

we can write the approximate model for the second last period as

APBT−2[δ, λ] :

VT−2 = max
x1+T−2,x

1−
T−2≥0

E
(
ṼT−1

(
h0T−1, h

1
T−1
))

= max
x1+T−2,x

1−
T−2≥0

δ E
(

(r0)
2
h0T−2 +R1

T−1R
1
T−2h

1
T−2 + ξαT−2x

1+
T−2 − ξ

β
T−2x

1−
T−2

)
−λE

(
(r0)

2
h0T−2 +R1

T−1R
1
T−2h

1
T−2 + ξαT−2x

1+
T−2 − ξ

β
T−2x

1−
T−2

)2
+λmT−1 E

[(
ρ−r0h0T−2−qαT−1h1T−2−Q

α,α
T−2,T−1x

1+
T−2+Qα,β

T−2,T−1x
1−
T−2

)

·

(
ρ− r0h0T−2 − q

β
T−1h

1
T−2 −Q

β,α
T−2,T−1x

1+
T−2 +Qβ,β

T−2,T−1x
1−
T−2

)]
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The solution to APBT−2[δ, λ] is summarized in Table 6.1. Comparing Ta-

ble 6.1 with Table 5.1, the following similarities between the solutions to the

last two periods were observed:

1. For both periods, there are three optimal investment strategies depend-

ing on the relationship between ρ and the two thresholds.

2. The expressions for all the parameters in both periods are similar in

form.

3. The optimal solution and value function for t = T − 2 retain the same

structure as that for t = T − 1.

From Table 6.1, the value function is again a piecewise function contain-

ing three intervals. To continue to analyze the earlier periods, the piecewise

value function for APBT−2[δ, λ] has to be approximated by a general function

ṼT−2 using the same method that has been applied to the last period. The

corresponding approximate value function is

ṼT−2 =δ E
(

(r0)
2
h0T−2 +R1

T−1R
1
T−2h

1
T−2

)
− λE

(
(r0)

2
h0T−2 +R1

T−1R
1
T−2h

1
T−2

)2
+ λmT−1 E

[(
ρ−Gα

T−2
) (
ρ−Gβ

T−2

)]
+ λmT−2

(
ρ− gαT−2

) (
ρ− gβT−2

)
(6.24)

Thus, ṼT−2 also shows a similar structure as ṼT−1. In the next section, the

results obtained for the last two periods will be extended to an approximation

method that can be applied to all time periods.
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Table 6.1: Solution to APBT−2[δ, λ]

Range of ρ Solution & value function VT−2(h
0
T−2, h

1
T−2)

[
gαT−2,+∞

) x1+T−2 = bαT−2
(
ρ− gαT−2

)
, x1−T−2 = 0

V
(1)
T−2 = δ E

(
(r0)

2
h0T−2 +R1

T−1R
1
T−2h

1
T−2

)
−λE

(
(r0)

2
h0T−2 +R1

T−1R
1
T−2h

1
T−2

)2
+λmT−1 E

[(
ρ−Gα

T−2,T−1
) (
ρ−Gβ

T−2,T−1

)]
+λ dαT−2

(
ρ− gαT−2

)2
[
gβT−2, g

α
T−2

) x1+T−2 = 0, x1−T−2 = 0

V
(2)
T−2 = δ E

(
(r0)

2
h0T−2 +R1

T−1R
1
T−2h

1
T−2

)
−λE

(
(r0)

2
h0T−2 +R1

T−1R
1
T−2h

1
T−2

)2
+λmT−1 E

[(
ρ−Gα

T−2,T−1
) (
ρ−Gβ

T−2,T−1

)]
[
0, gβT−2

) x1+T−2 = 0, x1−T−2 = bβT−2

(
gβT−2 − ρ

)
V

(3)
T−2 = δ E

(
(r0)

2
h0T−2 +R1

T−1R
1
T−2h

1
T−2

)
−λE

(
(r0)

2
h0T−2 +R1

T−1R
1
T−2h

1
T−2

)2
+λmT−1 E

[(
ρ−Gα

T−2,T−1
) (
ρ−Gβ

T−2,T−1

)]
+λ dβT−2

(
ρ− gβT−2

)2
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6.5 Approximation for the Earlier Periods

The similarities shared by the solutions for the last two periods lead us to

make the following proposition:

Proposition 6.1. Using the approximation method applied to the last two

periods, the solution to the approximate problem APBt[δ, λ] is


x1+t = bαt (ρ− gαt ) , x1−t = 0 if ρ ≥ gαt

x1+t = 0, x1−t = 0 if gβt ≤ ρ < gαt

x1+t = 0, x1−t = bβt

(
gβt − ρ

)
if ρ < gβt

The corresponding approximate value function is

Ṽt(h
0
t , h

1
t ) =δ E

(
(r0)

(T−t)
h0t +

T−1∏
i=t

R1
ih

1
t

)
− λE

(
(r0)

(T−t)
h0t +

T−1∏
i=t

R1
ih

1
t

)2

+ λ
T−1∑
i=t+1

mi E
[(
ρ−Gα

t,i

) (
ρ−Gβ

t,i

)]
+λmt (ρ− gαt )

(
ρ− gβt

)
(6.25)

for t = 0, 1, . . . , T − 1.

Proof. We will use mathematical induction to prove this proposition.

Proposition 6.1 is already shown to be true for t = T − 1 and t = T − 2 in

sections 6.3 and 6.4 respectively.

74



Assume that Proposition 6.1 holds for t where t ∈ {2, . . . , T − 1}. Then

Vt−1 = max
{

E(Ṽt)
}

= max

{
δ E

(
(r0)

(T−t+1)
h0t +

T−1∏
i=t−1

R1
ih

1
t + ξαt−1x

1+
t−1 − ξ

β
t−1x

1−
t−1

)

− λE

(
(r0)

(T−t+1)
h0t +

T−1∏
i=t−1

R1
ih

1
t + ξαt−1x

1+
t−1 − ξ

β
t−1x

1−
t−1

)2

+ λmT−1 E

[(
ρ−Gα

t−1,T−1 −Q
α,α
t−1,T−1x

1+
t−1 −Q

α,β
t−1,T−1x

1−
t−1

)
·
(
ρ−Gβ

t−1,T−1 −Q
β,α
t−1,T−1x

1+
t−1 −Q

β,β
t−1,T−1x

1−
t−1

)]

+ λmT−2 E

[(
ρ−Gα

t−1,T−2 −Q
α,α
t−1,T−2x

1+
t−1 −Q

α,β
t−1,T−2x

1−
t−1

)
·
(
ρ−Gβ

t−1,T−2 −Q
β,α
t−1,T−1x

1+
t−1 −Q

β,β
t−1,T−2x

1−
t−1

)]

· · ·

+ λmt E

[(
ρ−Gα

t−1,t −Q
α,α
t−1,t x

1+
t−1 −Q

α,β
t−1,t x

1−
t−1

)
·
(
ρ−Gβ

t−1,t −Q
β,α
t−1,t x

1+
t−1 −Q

β,β
t−1,t x

1−
t−1

)]}
. (6.26)

Since the approximate objective function for t− 1 is concave with respect

to x1+t and x1−t , we can obtain the following solutions by solving the KKT

conditions:
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1. When δ
2λ
≥ gαt−1, the optimal solution is

x1+t−1 =


E(ξαt−1)−

1

2

T−1∑
j=t

mi E
(
Qα,α
t−1,i +Qβ,α

t−1,i

)
E(ξαt−1)

2 −
T−1∑
i=t

mi E
(
Qα,α
t−1,iQ

β,α
t−1,i

)


·
(
δ

2λ
− (r0)

(T−t+1)
h0t−1 − (r0)

(T−t+1)
(1 + α)h1t−1

)
− h1t−1

= bαt−1

(
δ

2λ
− gαt−1

)
(6.27)

x1−t−1 = 0. (6.28)

The value function is

Vt−1 =δ E

(
(r0)

(T−t+1)
h0T−1 +

T−1∏
i=t−1

R1
ih

1
t

)

− λE

(
(r0)

(T−t+1)
h0T−1 +

T−1∏
i=t−1

R1
ih

1
t

)2

+ λmT−1 E

[(
δ

2λ
−Gα

t−1,T−1

)(
δ

2λ
−Gβ

t−1,T−1

)]

+ λmT−2 E

[(
δ

2λ
−Gα

t−1,T−2

)(
δ

2λ
−Gβ

t−1,T−2

)]

· · ·

+ λmt E

[(
δ

2λ
−Gα

t−1,t

)(
δ

2λ
−Gβ

t−1,t

)]

+ λ dαt−1

(
δ

2λ
− gαt−1

)2

(6.29)
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2. When gβt−1 ≤ δ
2λ
< gαt−1, the optimal solution is

x1+t−1 =0 (6.30)

x1−t−1 =0. (6.31)

The value function is

Vt−1 =δ E

(
(r0)

(T−t+1)
h0T−1 +

T−1∏
i=t−1

R1
ih

1
t

)

− λE

(
(r0)

(T−t+1)
h0T−1 +

T−1∏
i=t−1

R1
ih

1
t

)2

+ λmT−1 E

[(
δ

2λ
−Gα

t−1,T−1

)(
δ

2λ
−Gβ

t−1,T−1

)]

+ λmT−2 E

[(
δ

2λ
−Gα

t−1,T−2

)(
δ

2λ
−Gβ

t−1,T−2

)]

· · ·

+ λmt E

[(
δ

2λ
−Gα

t−1,t

)(
δ

2λ
−Gβ

t−1,t

)]
(6.32)
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3. When 0 ≤ δ
2λ
< gβt−1, the optimal solution is

x1+t−1 = 0 (6.33)

x1−t−1 =h1t−1 −


E(ξβt−1)−

1

2

T−1∑
j=t

mi E
(
Qα,β
t−1,i +Qβ,β

t−1,i

)
E(ξβt−1)

2 −
T−1∑
i=t

mi E
(
Qα,β
t−1,iQ

β,β
t−1,i

)


·
(
δ

2λ
− (r0)

(T−t+1)
h0t−1 − (r0)

(T−t+1)
(1− β)h1t−1

)
= bβt−1

(
gβt−1 −

δ

2λ

)
. (6.34)

The value function is

Vt−1 =δ E

(
(r0)

(T−t+1)
h0T−1 +

T−1∏
i=t−1

R1
ih

1
t

)

− λE

(
(r0)

(T−t+1)
h0T−1 +

T−1∏
i=t−1

R1
ih

1
t

)2

+ λmT−1 E

[(
δ

2λ
−Gα

t−1,T−1

)(
δ

2λ
−Gβ

t−1,T−1

)]

+ λmT−2 E

[(
δ

2λ
−Gα

t−1,T−2

)(
δ

2λ
−Gβ

t−1,T−2

)]

· · ·

+ λmt E

[(
δ

2λ
−Gα

t−1,t

)(
δ

2λ
−Gβ

t−1,t

)]

+ λ dβt−1

(
δ

2λ
− gβt−1

)2

(6.35)
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From (6.29), (6.32), and (6.35), the value function can be concluded as

Vt−1 = δ E

(
(r0)

(T−t+1)
h0t +

T−1∏
i=t−1

R1
ih

1
t

)
− λE

(
(r0)

(T−t+1)
h0t +

T−1∏
i=t−1

R1
ih

1
t

)2

+ λmT−1 E

[ (
ρ−Gα

t−1,T−1
) (
ρ−Gβ

t−1,T−1

)]

+ λmT−2 E

[ (
ρ−Gα

t−1,T−2
) (
ρ−Gβ

t−1,T−2

)]

· · ·

+ λmt E

[ (
ρ−Gα

t−1,t
) (
ρ−Gβ

t−1,t

)]

+ V̂t−1 (6.36)

where

V̂t−1 =


λ dαt−1

(
ρ− gαt−1

)2
when ρ ≥ gαt−1

0 when gβt−1 ≤ ρ < gαt−1

λ dβt−1

(
ρ− gβt−1

)2
when 0 ≤ ρ < gβt−1

(6.37)

Using the earlier approximation method for the piecewise value function

Vt−1, the approximate value function for t− 1 is

Ṽt−1 = δ E

(
(r0)

(T−t+1)
h0t +

T−1∏
i=t−1

R1
ih

1
t

)
− λE

(
(r0)

(T−t+1)
h0t +

T−1∏
i=t−1

R1
ih

1
t

)2

+ λ
T−1∑
i=t

mi E
[(
ρ−Gα

t−1,i
) (
ρ−Gβ

t−1,i

)]
+ λmt−1

(
ρ− gαt−1

) (
ρ− gβt−1

)
(6.38)
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Thus we have shown that if Proposition 6.1 is true for t where t ∈ {2, . . . , T −

1}, it also holds for t− 1. Therefore, it can be concluded that Proposition 6.1

is true for all time periods.

6.6 The Value of δ

In the previous section, we have derived the general expression of the approx-

imate solution for every time period. However, the value of δ remains to be

determined. Equation (3.13) indicates that the value of δ is related to the

value of E(w∗T ), where w∗T is the final wealth at the end of the entire horizon

under the optimal investment policy. Now let us study the value of E(w∗T ) in

our approximate model.

Starting with the last period, it is being treated as a one-period problem.

With the optimal solution provided in Table 5.1, We can calculate the corre-

sponding expected final wealth at time T − 1, which is denoted by ET−1(wT ).

The results are listed in Table 6.2.

Table 6.2: Expected final wealth for the last period

Range of ρ Expected final wealth ET−1(wT )[
gαT−1,+∞

)
ET−1(wT )(1) = r0h0T−1 + E(R1

T−1)h
1
T−1 + dαT−1

(
ρ− gαT−1

)
[
gβT−1, g

α
T−1

)
ET−1(wT )(2) = r0h0T−1 + E(R1

T−1)h
1
T−1[

0, gβT−1

)
ET−1(wT )(3) = r0h0T−1 + E(R1

T−1)h
1
T−1 + dβT−1

(
ρ− gβT−1

)

Similar to the value function for the last period, the function of the ex-
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pected final wealth also contains three intervals as shown in Table 6.2. For

portfolio selection with more time periods, the closed-form of Et(wT ) can-

not be obtained. Therefore, we will use an approximation that replaces the

actual function with three intervals by a general linear function for the ex-

pected wealth in order to obtain an approximate Et(w̃T ) recursively. Et(w̃T )

represents the approximate expected final wealth at t. For the last period, we

define

ET−1(w̃T ) = r0h0T−1 + E(R1
T−1)h

1
T−1 +mT−1

(
ρ− 1

2

(
gαT−1 + gβt−1

))
(6.39)

The first part of ET−1(w̃T ), r0h0T−1 + E(R1
T−1)h

1
T−1, comes from the exact

expected final wealth function as it is a common expression shared by the

three intervals. The second part of ET−1(w̃T ) contains ρ − 1
2

(
gαt−1 + gβt−1

)
,

which is the arithmetic mean of (ρ − gαT−1) in ET−1(wT )(1) and (ρ − gβT−1) in

ET−1(wT )(3), and mT−1 is the corresponding coefficient.

Replacing h0T−1 and h1T−1 in (6.39) with the recursive rebalancing equations

(3.2) and (3.3), we obtain

ET−2(w̃T ) = (r0)
2
(
h0T−2 − (1 + α)x1+T−2 + (1− β)x1−T−2

)
+ E(R1

T−1) E(R1
T−2)

(
h1T−2 + x1+T−2 − x

1−
T−2
)

+mT−1

(
ρ− (r0)

2
(
h0T−2 − (1 + α)x1+T−2 + (1− β)x1−T−2

)
−
qαT−1 + qβT−1

2
E(R1

T−2)
(
h1T−2 + x1+T−2 − x

1−
T−2
))
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= (r0)
2
h0T−2 + E(R1

T−1) E(R1
T−2)h

1
T−2

+mT−1

(
ρ− (r0)

2
h0T−2 −

qαT−1 + qβT−1
2

E(R1
T−2)h

1
T−2

)

+

(
E(ξαT−2)−

1

2
E
(
Qα,α
T−2,T−1 +Qβ,α

T−2,T−1

))
x1+T−2

−
(

E(ξβT−2)−
1

2
E
(
Qα,β
T−2,T−1 +Qβ,β

T−2,T−1

))
x1−T−2 (6.40)

After substituting the optimal solution for APBT−2(δ, λ) presented in Ta-

ble 6.1, the approximate expected final wealth for T−2 is as shown in Table 6.3.

Table 6.3: Approximate expected final wealth for the second last period

Range of ρ Solution & value function E(wT−2(h
0
T−2, h

1
T−2)[

gαT−2,+∞
)

ET−2(w̃T )(1) = (r0)
2
h0T−2 + E(R1

T−1) E(R1
T−2)h

1
T−2

+mT−1 E
(
ρ− 1

2

(
Gα
T−2,T−1 +Gβ

T−2,T−1

))
+dαT−2

(
ρ− gαT−2

)
[
gβT−2, g

α
T−2

)
ET−2(w̃T )(2) = (r0)

2
h0T−2 + E(R1

T−1) E(R1
T−2)h

1
T−2

+mT−1 E
(
ρ− 1

2

(
Gα
T−2,T−1 +Gβ

T−2,T−1

))
[
0, gβT−2

)
ET−2(w̃T )(3) = (r0)

2
h0T−2 + E(R1

T−1) E(R1
T−2)h

1
T−2

+mT−1 E
(
ρ− 1

2

(
Gα
T−2,T−1 +Gβ

T−2,T−1

))
+dβT−2

(
ρ− gβT−2

)

Using the same method applied to the last period to approximate the
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piecewise function of the expected final wealth then yields

ET−2(w̃T ) =(r0)
2
h0T−2 + E(R1

T−1) E(R1
T−2)h

1
T−2

+mT−1 E

(
ρ− 1

2

(
Gα
T−2,T−1 +Gβ

T−2,T−1

))
+mT−2

(
ρ− 1

2

(
gαT−2 + gβT−2

))
(6.41)

The expression retains the same structure from the last period. Based on the

observed structure of Et(w̃T ), the following proposition can be obtained:

Proposition 6.2. The approximate expected final wealth at time t is

Et(w̃T ) = (r0)
(T−t)

h0t +
T−1∏
i=t

E(R1
i )h

1
t

+
T−1∑
i=t+1

mi

(
ρ− 1

2
E(Gα

t,i +Gβ
t,i)

)
+mt

(
ρ− 1

2

(
gαt + gβt

))
(6.42)

Proof. We will again use mathematical induction to prove Proposition 6.2.

Proposition 6.2 is already shown to be true for t = T − 1 and t = T − 2.

Assume that Proposition 6.2 holds for t, where t ∈ {1, 2, . . . , T − 1}.
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Substituting (3.2) and (3.3) into (6.42) yields

Et(w̃T ) = (r0)
(T−t+1) (

h0t−1 − (1 + α)x1+t−1 + (1− β)x1−t−1
)

+
T−1∏
i=t−1

E(R1
i )
(
h1t−1 + x1+t−1 − x1−t−1

)
+

T−1∑
i=t+1

mi

(
ρ− (r0)

(T−t+1) (
h0t−1 − (1 + α)x1+t−1 + (1− β)x1−t−1

)
−q

α
i + qβi

2

i−1∏
j=t−1

E(R1
j )
(
h1t−1 + x1+t−1 − x1−t−1

))

+mt

(
ρ− (r0)

(T−t+1) (
h0t−1 − (1 + α)x1+t−1 + (1− β)x1−t−1

)
−q

α
t + qβt

2
E(R1

t−1)
(
h1t−1 + x1+t−1 − x1−t−1

))

= (r0)
(T−t+1)

h0t−1 +
T−1∏
i=t−1

E(R1
i )h

1
t−1

+
T−1∑
i=t

mi

(
ρ− 1

2
E(Gα

t−1,i +Gβ
t−1,i)

)

+

(
E(ξαt−1)−

1

2

T−1∑
i=t

mi E
(
Qα,α
t−1,i +Qβ,α

t−1,i

))
x1+t−1

−

(
E(ξβt−1)−

1

2

T−1∑
i=t

mi E
(
Qα,β
t−1,i +Qβ,β

t−1,i

))
x1−t−1 (6.43)

By further substituting the solution for t− 1, we can then obtain the three in-

tervals for Et−1(w̃T )(1), which are shown in Table 6.4. Using a general function
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Table 6.4: Approximate expected final wealth for t− 1

Range of ρ Solution & value function E(wt−1(h
0
t−1, h

1
t−1)[

gαt−1,+∞
)

Et−1(w̃T )(1) = (r0)
(T−t+1)

h0t−1 +
∏T−1

i=t−1 E(R1
i )h

1
t−1

+
∑T−1

i=t mi

(
ρ− 1

2
E
(
Gα
t−1,i +Gβ

t−1,i

))
+dαt−1

(
ρ− gαt−1

)
[
gβt−1, g

α
t−1

)
Et−1(w̃T )(2) = (r0)

(T−t+1)
h0t−1 +

∏T−1
i=t−1 E(R1

i )h
1
t−1

+
∑T−1

i=t mi

(
ρ− 1

2
E
(
Gα
t−1,i +Gβ

t−1,i

))
[
0, gβt−1

)
Et−1(w̃T )(3) = (r0)

(T−t+1)
h0t−1 + E(R1

T−1) E(R1
t−1)h

1
t−1

+
∑T−1

i=t mi

(
ρ− 1

2
E
(
Gα
t−1,i +Gβ

t−1,i

))
+dβt−1

(
ρ− gβt−1

)

to approximate the piece-wise function of Et−1(w̃T )(1) yields

Et−1(w̃T ) = (r0)
(T−t+1)

h0t−1 +
T−1∏
i=t−1

E(R1
i )h

1
t−1

+
T−1∑
i=t

mi

(
ρ− 1

2
E(Gα

t−1,i +Gβ
t−1,i)

)
+mt−1

(
ρ− 1

2

(
gαt−1 + gβt−1

))
(6.44)

Thus, Proposition 6.2 also holds for t− 1 and this concludes the proof.

Combining (6.21), (3.13) and (6.42) yields the approximate δ:

δ̃ =
1 + 2λ

(
(r0)

T
h00 +

∏T−1
i=0 E(R1

i )h
1
0

)
− λ

∑T−1
i=1 mi E(Gα

0,i +Gβ
0,i)− λ(gα0 + gβ0 )

1−
∑T−1

i=0 mi

(6.45)
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This completes the description of our proposed approximation method for

solving the multiperiod mean-variance portfolio optimization problem. The

main advantage of such an approximation is that it retains the structure of

the optimal solutions and value functions at each period. This allows the

problem to be solved recursively.

6.7 Numerical Experiments

In this section, results of numerical experiments are presented to show the

performance of the proposed approximation method. We use a four-month

investment problem to compare the investment policy obtained by the ap-

proximation method with the actual optimal policy. Here, one period is set to

be one month. At the beginning of each month, the portfolio will be reviewed

and rebalanced to maximize the final mean-variance utility. The rate of return

of the risky asset is assumed to follow a binary distribution. At each period,

the return rate of the risky asset has two possible outcomes ru and rd. ru rep-

resents the return rate of the risky asset in the scenario that its price goes up

and the rd indicates the corresponding return rate when its price goes down.

Figure 6.1 illustrates such a process. At time t, there are 2t possible scenarios

in total. A node in the scenario tree can be located by its time and scenario.

For instance, node (2,4) indicates the fourth scenario at t = 2. Assuming that

the random return rate is symmetrically distributed, the probabilities of the

realization of the two outcomes are both equal to 50%. For the risk-free asset,

we assume that it has a constant monthly return denoted by r0.
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Figure 6.1: Four-period two-branch scenario tree
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We will use the mean and standard deviation of the S&P500 annualized

returns from year 1928 to 2010 as the inputs of the risky asset, and the Treasury

Bill as the risk-free asset. The annual inputs are

Average annual return of Treasury Bill: r[Tbill] = 1.0370

Average annual return of S&P500: r[SP500] = 1.1165

Average std of the annual return of S&P500: σ[SP500] = 0.2069

Thus, the monthly returns and standard deviation are

r0 = 1.0030 (6.46)

E(Ri) = 1.0092 (6.47)

σ = 0.0597 (6.48)

ru = 1.0690 (6.49)

rd = 0.9495 (6.50)

The initial holdings of the risk-free asset and the risky asset are assumed to be

h00 = 10 and h10 = 0 respectively. In order to evaluate the performance of the

proposed approximation method for investment under different conditions, ex-

periments were performed under different assumptions of transaction fee rates,

i.e., 0%, 0.3%, 0.5% and 1% transaction costs. In these four situations, the ap-

proximation method is compared with the method ignoring transaction costs,

with the optimal results as the benchmark. Later, the proposed approxima-

tion method is also compared with the optimal method in terms of the solving

efficiency.
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Figure 6.2: Efficient frontier at t = 0 for α = β = 0%

6.7.1 Investment with no transaction cost

We start with the special case when there is no transaction cost. Figure 6.2

plots the efficient frontiers at the beginning of the investment horizon. For

this special case, the method ignoring transaction costs provides the optimal

solution. The two frontiers in Figure 6.2 are obtained by (1) solving the

multiperiod mean-variance model ignoring transaction costs (it is also the

optimal frontier) and (2) using the proposed approximation method. As shown

in Figure 6.2, the three methods generate identical efficient frontiers.

It is shown that our approximation method solves the multiperiod portfolio

optimization problem exactly.

Proposition 6.3. Under the assumption that there is no transaction cost, the

approximation method provides the exact solutions.
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Proof. When there is no transaction cost, i.e., α = β = 0, the value function

for the last period of the multiperiod portfolio optimization problem is

V̊T−1 = δ E
(
r0h0T−1 +R1

T−1h
1
T−1
)
− λE

(
r0h0T−1 +R1

T−1h
1
T−1
)2

+λd̊T−1
[
ρ− r0h0T−1 − q̊T−1h1T−1

]2 (6.51)

where d̊T−1 =
E2(R1

T−1−r
0)

E(R1
T−1−r0)2

and q̊T−1 =
(

E2(R1
T−1−r

0)

E(R1
T−1−r0)

+ r0
)

. By solving recur-

sively, the value function for period t is

V̊t =δ E

(
(r0)

(T−t)
h0t +

T−1∏
i=t

R1
ih

1
t

)
− λE

(
(r0)

(T−t)
h0t +

T−1∏
i=t

R1
ih

1
t

)2

+ λ
T−1∑
i=t+1

d̊i E
(
ρ− G̊t,i

)2
+λ d̊t (ρ− g̊t)2 (6.52)

where G̊t,i = (r0)
(T−t)

h0t + q̊s
∏s−1

j=t R
1
jh

1
t and g̊t = (r0)

(T−t)
h0t + q̊th

1
t .

In the case of no transaction cost, the proposed approximation method gen-

erates m̊t = d̊t (see Appendix F). Therefore, the three models are equivalent

when there is no transaction cost.

6.7.2 Investment with Transaction Costs

Consider the case in which the investors have to pay transaction fees whenever

there is purchasing or selling of the risky asset. The results obtained by the

proposed approximation method are compared with the optimal results and

the results obtained by ignoring the transaction costs. In addition, the mean-

variance efficient frontiers for the three cases are plotted as well.

Figure 6.3 shows the efficient frontiers at 0.3% transaction fee rate. In this
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case, the transaction fees are low and therefore, efficient frontiers for the three

methods, i.e., the optimal solution, the approximate solution and the solution

ignoring transaction costs, are close to each other. The extra costs incurred

due to the active rebalancing are negligible, and so ignoring transaction costs

has little impact on the investment performance for this case.

In Figure 6.4 where the transaction fee rate increases to 0.5%, it can be seen

that the proposed approximation method generates an almost optimal efficient

frontier, while the difference between the efficient frontiers for the optimal so-

lution and that of ignoring transaction costs becomes larger. This is because

the increase in transaction costs results in less frequent trading activities in the

optimal solution. However, if transaction costs are ignored, trading of assets

occurs at every time period. This results in more undesired transactions and

thus lower expected return for the same risk level. On the other hand, the pro-

posed approximation method has taken into account of the transaction costs.

For every time period, the approximate solution has a non-transaction region

where the investor is recommended not to make any rebalancing action on the

existing portfolio. This improves the overall performance of the investment.

When the transaction fee rate further increases to 1%, Figure 6.5 shows

the proposed approximation method still provides almost the same efficient

frontier as the optimal one, and the portfolio ignoring transaction costs is

noticeably inferior to that of the first two investment policies. The reason

is that for high transaction costs, the two methods both recommend “buy-

and-hold” investment strategy, i.e., to buy the risky asset at the beginning of

the entire investment horizon to a desired level and hold the same portfolio
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Figure 6.3: Efficient frontier at t = 0 for α = β = 0.3%

without any further trade until the end of the last period. In contrast, the

solution obtained when the transaction costs are ignored is still characterized

by heavy trading.

In Figures 6.2 to 6.5, under the four different transaction fee rate assump-

tions, all the curves start at the same point of Var(wT ) = 0, where the investor

is completely risk averse, i.e., the maximum tolerable variance for the invest-

ment is 0. In this case, the investor allocates all his wealth in the risk-free

asset. After four months, the final wealth will be accumulated to

w4 = (h0)
(
r0
)4

= 10× 1.0370(4/12) = 10.1218 (6.53)

Comparing Figures 6.2 to 6.5, we can also conclude that the increase in the
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Figure 6.4: Efficient frontier at t = 0 for α = β = 0.5%

Figure 6.5: Efficient frontier at t = 0 for α = β = 1%
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transaction costs reduces the expected final wealth for the same tolerable risk

level. However, the approximation method mitigates the loss resulting from

the transaction fees when a solution ignoring transaction costs is used.

6.7.3 Sensitivity Analysis

In this section we study how sensitive the performance of the approximation

methods is to changes in the expected value and standard deviation of the

return rate of the risky asset, assuming other parameters remain same and

0.5% of transaction fee rate.

Figure 6.6 plot the mean-variance efficient frontiers for the yearly expected

returns of SP500 to be 1.1165, 1.265, 1.1365 and 1.1465 respectively. As it is

shown in the figures, the overall expected return of the portfolio grows for a

given risk level as the expected return of SP500 increases. The performance of

the approximation method remains stable with the expected annual return of

SP500 changing from 1.1165 to 1.1465. It provides an almost identical efficient

frontier as the optimal solution. The approximation method outperforms the

method ignoring transaction cost in all the four situations.

Figure 6.7 show the mean-variance efficient frontiers for the yearly stan-

dard deviation of the returns of SP500 to be 0.2069, 0.2269, 0.2469 and 0.2669

respectively. The overall expected return of the portfolio decreases for a given

risk level as volatility of the market increases. The approximation method con-

tinues to provide very good performance with the standard deviation increases

from 0.2069 to 0.2669.
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(a) Efficient frontier at t = 0 for r[SP500] =
1.1165

(b) Efficient frontier at t = 0 for r[SP500] =
1.1265

(c) Efficient frontier at t = 0 for r[SP500] =
1.1365

(d) Efficient frontier at t = 0 for r[SP500] =
1.1465

Figure 6.6: Efficient frontiers by changing the value of expected return of
SP500

6.7.4 Investment for More Time Periods

When there are more time periods, the number of scenarios grows exponen-

tially, and it becomes computationally expensive to solve the multiperiod prob-

lem exactly. Figure 6.8 compares the calculation times of using the exact

method and the approximation method given that λ = 0.035 and the trans-

action fee rates are 1%. It can be seen that the computing time using the

exact method grows drastically as the number of time periods increases while
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(a) Efficient frontier at t = 0 for σ[SP500] =
0.2069

(b) Efficient frontier at t = 0 for σ[SP500] =
0.2269

(c) Efficient frontier at t = 0 forσ[SP500] =
0.2469

(d) Efficient frontier at t = 0 for σ[SP500] =
0.2669

Figure 6.7: Efficient frontiers by changing the value of expected return of
SP500

the computing time using the approximation method rises in a much slower

pace. For a 7-period problem, the total solving time of using the exact method

reaches as high as 787.26 seconds on a computer with Intel Core 2 Duo CPU

and 4GB RAM. If the problem considers more than 7 periods, the computer

fails to provide an optimal solution. In contrast, the proposed approximation

method makes it possible to solve much more periods as it significantly reduces

the computational effort needed for solving. Figure 6.9 plots the efficient fron-
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Figure 6.8: Computing times using the exact method and the approximate
method

tiers for problems with an investment horizon consisting of 2 to 12 months. As

shown in Figure 6.9, the expected wealth accumulated increases as the length

of the investment horizon increases.
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8

Figure 6.9: Efficient frontiers at t = 0 for multiperiod problems using approx-
imation method
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Chapter 7

Conclusion and Future Research

Directions

This thesis studies a multiperiod mean-variance investment problem incorpo-

rating proportional transaction costs. Since the variance term is non-decomposable

in terms of dynamic programming, we get the solution to the mean-variance

model by solving a quadratic model. Under some assumptions, the two mod-

els are proved to be equivalent. Another difficulty to solve the multiperiod

problem is the incorporation of transaction costs. Most existing studies ne-

glect such costs for simplicity. However, our results show that ignorance of

transaction fees can lead to suboptimal solutions and thus significantly affect

the portfolio performance. In order to find an investment policy that improves

the overall investment performance, this thesis incorporates linear transaction

costs into a multiperiod mean-variance portfolio optimizations problem.
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7.1 Conclusion and Contribution

In this thesis, closed-form solutions for the single-period and two-period prob-

lems are obtained. The optimal solutions obtained are translated into invest-

ment decisions. As it has been shown, the results for the two-period problem

agree with the multiperiod mean-variance portfolio studies when transactions

are costless. When the transaction costs are in presence, there will be a non-

transaction region where the investor take no action since the enhanced utility

by rebalancing cannot cover the transaction costs incurred. The explicit ex-

pressions of the upper bound and lower bound of this non-transaction region

are given. They are also referred to as the thresholds where the optimal in-

vestment decision switches.

For investment problems containing more periods, the quadratic structure

of the value function cannot be retained when transaction costs are consid-

ered. Therefore, it becomes challenging to solve the multiperiod optimization

problem by dynamic programming. Solving the model in a static manner is

also difficult as it becomes considerably expensive since the scenarios of the

random returns increases exponentially as the number of time periods rises.

In order to obtain near optimal solutions in an efficient manner, we develop

an approximation method which works for mild assumptions of the return rates

of the risky asset. The approximation overcomes the difficulty of preserving

the quadratic structure of the value function for the multiperiod model so

that dynamic programming can be used to find the solutions. By mathemat-

ical induction, we have proved that the approximate solution and the value

function retain the same structure. Therefore, the model can be solved re-
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cursively. Such an approximation provides the exact solution in the special

case when there is no transaction cost. In the case when transaction costs

are applicable, a series of numerical experiments show that the approximation

provides close-to-optimal solutions for a four-period problem assuming that

the return rate has two possible outcomes for each period. The approxima-

tion method provides almost optimal results for various values of parameters.

The development of such an approximation thus enables the investor to obtain

near-optimal solutions in an efficient manner.

7.2 Future Research Directions

One straight continuation of the present work is to develop an approximation

method using a similar approach discussed in this paper to handle a portfo-

lio containing more than one risky asset. The model defined in Chapter 3

can be easily extended to address a N-asset problem. For solving, we need

to consider correlation among the return rates of the risky assets. Different

assumptions can be made on the correlation. The future study can examine

different types of correlation and develop approximation methods for solving

under each assumption.

Another interesting research direction is to consider different transaction

cost schemes. In this thesis, we assumed the transaction costs to be linear.

Other common cost schemes in real practice include fixed lump-sum, piece-wise

linear transaction fees, combination of fixed and linear fees, and transaction

fee brackets. Assuming nonlinear transaction costs may result in a different
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structure of the value functions from this thesis. Therefore, new approxima-

tion methods may need to be developed to solve such problems. However,

similar techniques can still be adopted to solve the problem recursively with

the objective of retaining the structure of the value function.

102



Bibliography

Arnott, R., Wagner, W., 1990. The measurement and control of trading costs.

Financial Analysts Journal, 73–80.

Atkinson, C., Mokkhavesa, S., 2003. Intertemporal portfolio optimization with

small transaction costs and stochastic variance. Applied Mathematical Fi-

nance 10 (4), 267–302.

Bertsimas, D., Pachamanova, D., 2008. Robust multiperiod portfolio man-

agement in the presence of transaction costs. Computers and Operations

Research 35 (1), 3–17.

Best, M., Hlouskova, J., 2005. An algorithm for portfolio optimization with

transaction costs. Management Science 51 (11), 1676–1688.

Bielecki, T., Jin, H., Pliska, S., Zhou, X., 2005. Continuous-time mean-

variance portfolio selection with bankruptcy prohibition. Mathematical Fi-

nance 15 (2), 213–244.

Black, F., 1972. Capital market equilibrium with restricted borrowing. The

Journal of Business 45 (3), 444–455.

103



Bonami, P., Lejeune, M., 2009. An exact solution approach for portfolio op-

timization problems under stochastic and integer constraints. Operations

research 57 (3), 650–670.

Boyle, P., Lin, X., 1997. Optimal portfolio selection with transaction costs.

North American Actuarial Journal 1 (2), 27–39.
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Appendix A

Optimal Solution for the

Single-Period Problem

The optimal investment decision for the single-period problem with no bor-

rowing and short selling is represented by x1+0 and x1−0 , which stand for the

amount of the risky asset to buy and sell respectively. By solving the KKT

conditions, the optimal solution can be obtained. The derivation details are

as follows:

A.1 x1+
0 > 0 and x1−

0 = 0

From (4.13), y00 = 0 or
h00
1+α
− x1+0 = 0.
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A.1.1 When y0
0 = 0

From (4.11),

δ E(ξα0 )− 2λ
[
r0 E(ξα0 )

(
h00 − (1 + α)x1+0

)
+ E(R1

0ξ
α
0 )
(
h10 + x1+0

)]
= 0

⇒ δ E(ξα0 )− 2λ
[
r0 E(ξα0 )h00 + E(R1

0ξ
α
0 )h10 + E(ξα0 )2x1+0

]
= 0

⇒ x1+0 =
δ
2λ

E(ξα0 )− r0 E(ξα0 )h00 − E(R1
0ξ
α
0 )h10

E(ξα0 )2

⇒ x1+0 =
E(ξα0 )

E(ξα0 )2

(
δ

2λ
− r0h00 −

E(R1
0ξ
α
0 )

E(ξα0 )
h10

)
(A.1)

and x1−0 = 0. To ensure that 0 ≤ x1+0 <
h00
1+α

, the following condition should

be satisfied:

r0h00 +
E(R1

0ξ
α
0 )

E(ξα0 )
h10 ≤

δ

2λ
<

E(R1
0ξ
α
0 )

E(ξα0 )(1 + α)
h00 +

E(R1
0ξ
α
0 )

E(ξα0 )
h10 (A.2)

A.1.2 When h00
1+α − x

1+
0 = 0

x1+0 =
h00

1 + α
and x1−0 = 0. (A.3)

This case happens when the ideal x1+0 exceeds its upper limit
h00
1+α

, i.e.

δ

2λ
≥ E(R1

0ξ
α
0 )

E(ξα0 )(1 + α)
h00 +

E(R1
0ξ
α
0 )

E(ξα0 )
h10 (A.4)

A.2 x1+
0 = 0 and x1−

0 > 0

From (4.14), y10 = 0 or h10 − x1−0 = 0.
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A.2.1 When y1
0 = 0

From (4.12),

δ E(ξβ0 )− 2λ
[
r0 E(ξβ0 )

(
h00 + (1− β)x1−0

)
+ E(R1

0ξ
β
0 )
(
h10 − x1−0

)]
= 0

⇒ δ E(ξβ0 )− 2λ
[
r0 E(ξβ0 )h00 + E(R1

0ξ
β
0 )h10 − E(ξβ0 )2x1+0

]
= 0

⇒ x1−0 = −
δ
2λ

E(ξβ0 )− r0 E(ξβ0 )h00 − E(R1
0ξ
β
0 )h10

E(ξβ0 )2

⇒ x1−0 =
E(ξβ0 )

E(ξβ0 )2

(
r0h00 +

E(R1
0ξ
β
0 )

E(ξβ0 )
h10 −

δ

2λ

)
(A.5)

and x1+0 = 0.

To eusure that x1−0 is within the correct range, we have

r0h00 + r0(1− β)h10 ≤
δ

2λ
< r0h00 +

E(R1
0ξ
β
0 )

E(ξβ0 )
h10 (A.6)

A.2.2 When h1
0 − x1−

0 = 0

x1+0 = 0 and x1−0 = h10, (A.7)

when

δ

2λ
< r0h00 + r0(1− β)h10. (A.8)
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A.3 x1+
0 = 0 and x1−

0 = 0

x1+0 = 0 and x1−0 = 0, (A.9)

when

r0h00 +
E(R1

0ξ
β
0 )

E(ξβ0 )
h10 ≤

δ

2λ
< r0h00 +

E(R1
0ξ
α
0 )

E(ξα0 )
h10. (A.10)
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Appendix B

Value Functions for the

Single-Period Problem

In this section, the value functions for the five intervals in terms of δ
2λ

will be

presented.

1. When δ
2λ
≥ E(R1

0ξ
α
0 )

E(ξα0 )(1+α)
h00 +

E(R1
0ξ
α
0 )

E(ξα0 )
h10

• The optimal solution is

x1+0 =
h00

1 + α
(B.1)

x1−0 = 0. (B.2)

We substitute the optimal solution into the objective function (4.3):

• The value function is

V0(h
0
0, h

1
0) =δE(R1

0)
(

h00
1+α

+ h10

)
− λE(R1

0)
2
(

h00
1+α

+ h10

)2
(B.3)
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2. When r0h00 +
E(R1

0ξ
α
0 )

E(ξα0 )
h10 ≤ δ

2λ
<

E(R1
0ξ
α
0 )

E(ξα0 )(1+α)
h00 +

E(R1
0ξ
α
0 )

E(ξα0 )
h10

• The optimal solution is

x1+0 =
E(ξα0 )

E(ξα0 )2

(
δ

2λ
− r0h00 −

E(R1
0ξ
α
0 )

E(ξα0 )
h10

)
(B.4)

x1−0 = 0 (B.5)

• The value function is

V0(h
0
0, h

1
0) =δ E

(
r0h00 +R1

0h
1
0

)
− λE

(
r0h00 +R1

0h
1
0

)2
+ λ

E2(ξα0 )

E(ξα0 )2

(
δ

2λ
− r0h00 −

E(R1
0ξ
α
0 )

E(ξα0 )
h10

)2

(B.6)

3. When r0h00 +
E(R1

0ξ
β
0 )

E(ξβ0 )
h10 ≤ δ

2λ
< r0h00 +

E(R1
0ξ
α
0 )

E(ξα0 )
h10

• The optimal solution is

x1+0 = 0 (B.7)

x1−0 = 0 (B.8)

• The value function is

V0(h
0
0, h

1
0) =δ E

(
r0h00 +R1

0h
1
0

)
− λE

(
r0h00 +R1

0h
1
0

)2
(B.9)

4. When r0h00 + r0(1− β)h10 ≤ δ
2λ
< r0h00 +

E(R1
0ξ
β
0 )

E(ξβ0 )
h10
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• The optimal solution is

x1+0 = 0 (B.10)

x1−0 =
E(ξβ0 )

E(ξβ0 )2

(
r0h00 +

E(R1
0ξ
β
0 )

E(ξβ0 )
h10 −

δ

2λ

)
(B.11)

• The value function is

V0(h
0
0, h

1
0) =δ E

(
r0h00 +R1

0h
1
0

)
− λE

(
r0h00 +R1

0h
1
0

)2
+ λ

E2(ξβ0 )

E(ξβ0 )2

(
r0h00 +

E(R1
0ξ
β
0 )

E(ξβ0 )
h10 −

δ

2λ

)2

(B.12)

5. When δ
2λ
< r0h00 + r0(1− β)h10

• The optimal solution is

x1+0 = 0 (B.13)

x1−0 = h10 (B.14)

• The value function is

V0(h
0
0, h

1
0) =δr0

(
h00 + (1− β)h10

)
− λ(r0)2

(
h00 + (1− β)h10

)2
(B.15)

120



Appendix C

Piecewise Continuity of the

Value Functions

In this section, the piecewise continuity of value functions will be investigated.

Firstly the partial derivatives for the five value functions will be derived. Then

we will examine the continuity at the four thresholds by matching the left and

right derivative of the two neighbouring value functions at each threshold.

1. When δ
2λ
≥ g

(1)
0 ,

V
(1)
0 (h00, h

1
0) = δ E(R1

0)

(
h00

1 + α
+ h10

)
− λE(R1

0)
2
(

h00
1 + α

+ h10

)2

(C.1)

The partial derivative of V0 with respect to h00 is

∂V
(1)
0 (h00, h

1
0)

∂h00
=

2λE(R1
0)

1 + α

[
δ

2λ
− E(R1

0)
2

E(R1
0)

(
h00

1 + α
+ h10

)]
, (C.2)
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and the partial derivative of V0 with respect to h10 is

∂V
(1)
0 (h00, h

1
0)

∂h10
= 2λE(R1

0)

[
δ

2λ
− E(R1

0)
2

E(R1
0)

(
h00

1 + α
+ h10

)]
(C.3)

2. When g
(2)
0 ≤ δ

2λ
< g

(1)
0 ,

V
(2)
0 =δ E

(
r0h00 +R1

0h
1
0

)
− λE

(
r0h00 +R1

0h
1
0

)2
+ dα0λ

(
δ

2λ
− g(2)0

)2

=δ E
(
r0h00 +R1

0h
1
0

)
− λE

(
r0h00 +R1

0h
1
0

)2
+ dα0λ

(
δ

2λ
− r0h00 − qα0 h10

)2

(C.4)

The partial derivatives are

∂V
(2)
0 (h00, h

1
0)

∂h00

= 2λr0
[(

δ

2λ
− r0h00 − E(R1

0)h
1
0

)
− dα0

(
δ

2λ
− r0h00 − qα0 h10

)]
= 2λr0

[(
δ

2λ
− r0h00 − E(R1

0)h
1
0

)
− dα0

(
δ

2λ
− g(2)0

)]
(C.5)

and

∂V
(2)
0 (h00, h

1
0)

∂h10

= 2λE(R1
0)

[(
δ

2λ
− r0h00 −

E(R1
0)

2

E(R1
0)
h10

)
− dα0 q

α
0

E(R1
0)

(
δ

2λ
− r0h00 − qα0 h10

)]
= 2λE(R1

0)

[(
δ

2λ
− r0h00 −

E(R1
0)

2

E(R1
0)
h10

)
− dα0 q

α
0

E(R1
0)

(
δ

2λ
− g(2)0

)]
(C.6)
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3. When g
(3)
0 ≤ δ

2λ
< g

(2)
0 ,

V
(3)
0 = δ E

(
r0h00 +R1

0h
1
0

)
− λE

(
r0h00 +R1

0h
1
0

)2
(C.7)

The partial derivatives are

∂V
(3)
0 (h00, h

1
0)

∂h00
= 2λr0

(
δ

2λ
− r0h00 − E(R1

0)h
1
0

)
(C.8)

∂V
(3)
0 (h00, h

1
0)

∂h10
= 2λE(R1

0)

(
δ

2λ
− r0h00 −

E(R1
0)

2

E(R1
0)
h10

)
(C.9)

4. When g
(4)
0 ≤ δ

2λ
< g

(3)
0 ,

V
(4)
0 = δ E

(
r0h00 +R1

0h
1
0

)
− λE

(
r0h00 +R1

0h
1
0

)2
+ dβ0λ

(
δ

2λ
− g(3)0

)2

(C.10)

The partial derivatives are

∂V
(4)
0 (h00, h

1
0)

∂h00

= 2λr0

[( δ
2λ
− r0h00 − E(R1

0)h
1
0

)
− dβ0

(
δ

2λ
− r0h00 − q

β
0h

1
0

)]

= 2λr0

[( δ
2λ
− r0h00 − E(R1

0)h
1
0

)
− dβ0

(
δ

2λ
− g(3)0

)]
(C.11)
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and

∂V
(4)
0 (h00, h

1
0)

∂h10

= 2λE(R1
0)

[(
δ

2λ
− r0h00 −

E(R1
0)

2

E(R1
0)
h10

)
− dβ0q

β
0

E(R1
0)

(
δ

2λ
− r0h00 − q

β
0h

1
0

)]

= 2λE(R1
0)

[(
δ

2λ
− r0h00 −

E(R1
0)

2

E(R1
0)
h10

)
− dβ0q

β
0

E(R1
0)

(
δ

2λ
− g(3)0

)]
(C.12)

5. When 0 ≤ δ
2λ
< g

(4)
0 ,

V
(5)
0 = δr0

(
h00 + (1− β)h10

)
− λ(r0)2

(
h00 + (1− β)h10

)2
(C.13)

The partial derivatives are

∂V
(5)
0 (h00, h

1
0)

∂h00

= δr0 − 2λ(r0)2
(
h00 + (1− β)h10

)
= 2λr0

(
δ

2λ
− r0h00 − r0(1− β)h10

)
(C.14)

∂V
(5)
0 (h00, h

1
0)

∂h10

= δr0(1− β)− 2λ(r0)2(1− β)
(
h00 + (1− β)h10

)
= 2λr0(1− β)

(
δ

2λ
− r0h00 − r0(1− β)h10

)
(C.15)
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Having all the five sets of differentiation equations derived, the next step is

to study the continuity at the four thresholds. The left and right derivatives

of the neighbouring functions at each threshold will be compared.

1. δ
2λ

= g
(1)
0

V
(1)
0 and V

(2)
0 are connected at δ

2λ
= g

(1)
0 . We will match the left and

right partial derivatives with respect to h00 and h10. The right derivative

of V
(1)
0 with regards to h00 at threshold δ

2λ
= g

(1)
0 is

∂+V
(1)
0

∂h00

∣∣∣∣∣
δ
2λ

=g
(1)
0

=
1

1 + α

[
δE(R1

0)− 2λE(R1
0)

2

(
h00

1 + α
+ h10

)]∣∣∣∣
δ
2λ

=g
(1)
0

=
2λ

1 + α

(
E(R1

0)q
α
0 − E(R1

0)
2
)( h00

1 + α
+ h10

)
=

2λ

1 + α

E2(R1
0) E(ξα0 )+ E(R1
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125



and the left derivative at this threshold is
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Therefore, the left and right derivatives of the two neighbouring functions

with respect to h00 agree at breakpoint δ
2λ

= g
(1)
0 . Now, let us move on

to the case with respect to h10. Since
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, (C.18)

126



and
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Thus, the value function is shown to be continuous with respect to h00

and h10 at threshold δ
2λ

= g
(1)
0 .

2. δ
2λ

= g
(2)
0

V
(2)
0 and V

(3)
0 are connected at this threshold.
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With respect to h00,

∂+V
(2)
0

∂h00

∣∣∣∣∣
δ
2λ

=g
(2)
0

=2λr0
[(

δ

2λ
− r0h00 − E(R1

0)h
1
0

)
− dα0

(
δ

2λ
− g(2)0

)] ∣∣∣∣∣
δ
2λ

=g
(2)
0

=2λr0
(
g
(2)
0 − r0h00 − E(R1

0)h
1
0

)
=2λr0

(
qα0 − E(R1

0)
)
h10

=2λr0
Var(R1

0)

E(ξα0 )
h10 (C.20)

and
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For h10,
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and
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Therefore, the value function is continuous with respect to h00 and h10 at

threshold δ
2λ

= g
(2)
0 .
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3. δ
2λ

= g
(3)
0

V
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0 and V

(4)
0 are connected at this threshold.

For h00,
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and
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For h10,
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and
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Therefore, the value function is continuous with respect to h00 and h10 at

threshold δ
2λ

= g
(3)
0 .
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4. δ
2λ

= g
(4)
0

For h00,
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and

∂−V
(5)
0

∂h00

∣∣∣∣∣
δ
2λ

=g
(4)
0

= 2λr0
(
δ

2λ
− r0h00 − r0(1− β)h10

) ∣∣∣∣∣
δ
2λ

=g
(4)
0

= 0 (C.29)

132



For h10,
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and
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Therefore, the value function is continuous with respect to h00 and h10 at

threshold δ
2λ

= g
(4)
0 as well.

In conclusion, since the value function of the one-period problem is a piece-

wise function containing five pieces of smooth functions and it is continuous

on each thresholds, the value function is a continuous function on the entire

domain.
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Appendix D

Value Function for the First

Period

We apply the backward DP algorithm. After we have obtained the piece-wise

value function for the latter period, we can derive the value function for the

first period:
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− (r0)2ĥ00 − qα1 r10ĥ10

)2
]

dr10

+

∫ Bβ0

Bα0

1

ru − ru

[
δ E
(

(r0)2ĥ00 +R1
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+
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Since
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the value function can be simplified to
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1
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0ĥ

1
0ru

2 +
1

3
E(R1

1)
2
(
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We assumed that R1
0 ∼ U(ru, ru), which implies

E(R1
0) =

ru + ru

2
(D.5)
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. (D.6)
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Therefore, the value function can be further simplified to:
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0
0, ĥ
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− (r0)2ĥ00 − q

β
1 ruĥ
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Appendix E

Expressions for E(w2(γ)) and

E(w2(γ))
2

The expectation of w2 is
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where
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)3
+

1

3

dβ1

qβ1

(γ
2
− (r0)

2
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qα0 − (r0)2(1 + α)

)
γ

2

}

=ν

(
γ
2
− (r0)

2
w0

qα0 − (r0)2(1 + α)

)2

+ 2ρ(r0)
2
w0

(
γ
2
− (r0)

2
w0

qα0 − (r0)2(1 + α)

)
+
(

(r0)
2
w0

)2
,
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where

ν = E(ξα0 )2 +
1

3(ru − ru)

[
dβ1

qβ1

(
qα0 − q

β
1 ru

)3
− dα1
qα1

(
qα0 − qα1 ru

)3]

− 1

ru − ru

[
dβ1

qβ1

(
qα0 − q

β
1 ru

)2
− dα1
qα1

(
qα0 − qα1 ru

)2]
. (E.3)
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Appendix F

The Value of mt

The optimal mt is a minimizer of function
(
Ṽt − Vt

)2
:

(
Ṽt − Vt

)2
=

∫ ρ

(r0)
(T−t)

(1−β)

0


∫ ρ−qαt h

1
t

(r0)
(T−t)

ρ−qαt h
1
t

qαt /(1+α)

[
mt (ρ−gαt )

(
ρ−gβt

)
−dαt (ρ−gαt )2

]2
dh0t

+

∫ ρ−qβt h
1
t

r0

ρ−qαt h
1
t

(r0)
(T−t)

[
mt (ρ− gαt )

(
ρ− gβt

)]2
dh0t

+

∫ ρ−(r0)
(T−t)

(1−β)h1t
(r0)

(T−t)

ρ−qβt h
1
t

r0

[
mt (ρ−gαt )

(
ρ−gβt

)
−dβt

(
ρ−gβt

)2]2
dh0t

dh1t (F.1)

As
(
Ṽt − Vt

)2
is obviously a strictly convex function of mt, the optimal mt is

mt = − c2
2c1

(F.2)
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where c1 and c2 are the coefficients of the square term and linear term respec-

tively. The expressions of c1 and c2 are as follows.

c1 =

∫ ρ

(r0)
(T−t)

(1−β)

0


∫ ρ−(r0)

(T−t)
(1−β)h1t

(r0)
(T−t)

ρ−qαt h
1
t

qαt /(1+α)

[(
ρ−(r0)

(T−t)
h0t−qαt h1t

)

·
(
ρ−(r0)

(T−t)
h0t−q

β
t h

1
t

)]2
dh0t

}
dh1t

=

∫ ρ

(r0)
(T−t)

(1−β)

0


∫ ρ−(r0)

(T−t)
(1−β)h1t

(r0)
(T−t)

ρ−qαt h
1
t

qαt /(1+α)

[(
ρ−(r0)

(T−t)
h0t−qαt h1t

)4
− 2

(
qβt − qαt

)
h1t

(
ρ−(r0)

(T−t)
h0t−qαt h1t

)3
+
(
qβt − qαt

)2
(h1)2

(
ρ−(r0)

(T−t)
h0t−qαt h1t

)2]
dh0t

}
dh1t

=

∫ ρ

(r0)
(T−t)

(1−β)

0



(
ρ−(r0)

(T−t)
h0t−qαt h1t

)5
−5(r0)(T−t)

− 2
(
qβt − qαt

)
h1t

(
ρ−(r0)

(T−t)
h0t−qαt h1t

)4
−4(r0)(T−t)

+
(
qβt −qαt

)2
(h1t )

2

(
ρ−(r0)

(T−t)
h0t−qαt h1t

)3
−3(r0)(T−t)


∣∣∣∣∣∣∣
ρ−(r0)

(T−t)
(1−β)h1t

(r0)
(T−t)

ρ−qαt h
1
t

qαt /(1+α)

 dh1t
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=

∫ ρ

(r0)
(T−t)

(1−β)

0



(
qαt − (r0)

(T−t)
(1−β)

)5
5(r0)(T−t)

(h1t )
5

+

(
qβt −qαt

)(
qαt − (r0)

(T−t)
(1−β)

)4
2(r0)(T−t)

(h1t )
5

+

(
qβt −qαt

)2 (
qαt − (r0)

(T−t)
(1−β)

)3
3(r0)(T−t)

(h1t )
5


−

−
(

1− (r0)
(T−t)

qαt /(1+α)

)
5(r0)(T−t)

(
ρ− qαt h1t

)5

+

(
qβt − qαt

)(
1− (r0)

(T−t)

qαt /(1+α)

)
2(r0)(T−t)

(
ρ− qαt h1t

)4
h1t

−

(
qβt − qαt
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1− (r0)
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qαt /(1+α)

)
3(r0)(T−t)

(
ρ− qαt h1t

)3
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2


 dh1t

=


(
qαt − (r0)
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(1−β)

)5
30(r0)(T−t)

(h1t )
6

+

(
qβt −qαt

)(
qαt − (r0)

(T−t)
(1−β)

)4
12(r0)(T−t)

(h1t )
6

+

(
qβt −qαt

)2 (
qαt − (r0)

(T−t)
(1−β)

)3
18(r0)(T−t)

(h1t )
6 −

(
1− (r0)

(T−t)

qαt /(1+α)

)
30(r0)(T−t)qαt

(
ρ− qαt h1t

)6
+

(
qβt − qαt

)(
1− (r0)

(T−t)

qαt /(1+α)

)
2(r0)(T−t)(qαt )2

ρ+ 5qαt h
1
t

30

(
ρ− qαt h1t

)5
−

(
qβt − qαt

)2 (
1− (r0)

(T−t)

qαt /(1+α)

)
3(r0)(T−t)(qαt )3

(
(ρ− qαt h1t )

6

6
− 2ρ

(ρ− qαt h1t )
5

5

+ (ρ)2
(ρ− qαt h1t )

4

4

)]∣∣∣∣∣
ρ

(r0)
(T−t)

(1−β)

0
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=



(
qαt − (r0)

(T−t)
(1−β)

)5
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(
qβt −qαt

)(
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−
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+
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and

c2 =

∫ ρ

(r0)
(T−t)

(1−β)
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1
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