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SUMMARY 
 

Brain tumors such as gliomas have poor prognosis despite advanced surgical 

intervention and adjuvant chemo- and radiotherapies. The highly infiltrative 

and recurrent nature of this disease has often been attributed to stem-like 

cells with extensive self-renewal potential. These cells, termed “glioma-

propagating cells” (GPCs), can be isolated from clinical material, and we now 

have a way to cryopreserve them, with maintenance of essential primary 

tumor hallmarks such as karyotype and transcriptomic profile. Our 

foundational work established that histologically similar glioblastoma (GBM, 

grade IV) tumors yield GPCs with very distinct transcriptomic profiles, 

suggesting molecular heterogeneity and possibly accounting for the 

frequently observed inter-patient variability to treatment response. 

Importantly, we were able to show in the major glioma variants, 

oligodendroglial tumors and GBM, that GPCs contain signaling pathways, 

manifested as transcriptomic programs which dictate primary tumor behavior, 

disease progression and patient survival outcome. These findings emphasize 

that GPCs are clinically relevant and can serve as a valuable cellular platform 

for further studies. We explored one of these transcriptomic programs, Wnt, in 

detail. We showed pharmacologically and genetically that Wnt activation 

promotes GPC growth and tumorigenicity, mediated through the MITF 

transcription factor. GPCs (oligodendroglial and GBM) with high MITF 

expression were more sensitive to pathway inhibition, highlighting the 

limitation of relying solely on histology to diagnose and subsequently treat 

patients. Our study provides evidence that tumor growth can be mitigated by 

targeting Wnt signaling. 
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CHAPTER 1 – INTRODUCTION 

Preamble 

This thesis explores the molecular characteristics of glioma-propagating cells 

(GPCs) and shows that GPC core activation pathways contribute to primary 

tumor behavior, glioma disease progression and patient survival outcome. In 

addition, we explore the Wnt signaling pathway in GPC maintenance, and 

show that glioma growth can be abrogated by targeting these long-term, self-

renewing cells. The “Introduction” chapter is divided into the following 

sections which form the basis of our exploration: 

i. Molecular classification of glioma. 

ii. Glioma-propagating cells (GPCs). 

iii. Mouse models relevant for glioma studies. 

iv. Targeting GPCs for an effective cure – signaling mechanisms. 

v. The Wnt signaling pathway. 

1.1 Classification of Gliomas 

 Gliomas are the most common primary brain tumors of the central 

nervous system with heterogeneous morphology and variable prognosis. 

Variants such as glioblastoma multiforme (GBM) portend poor prognosis with 

a mean survival period of 15 months despite advanced surgical intervention, 

accompanied by adjuvant radio- and chemotherapies (Louis et al, 2007) . The 

most widely used current classification of human gliomas is that of the World 

Health Organization (WHO) system (Louis et al, 2007).  The WHO system 

divides diffuse gliomas into astrocytic tumors, oligodendrogliomas, and 

oligoastrocytomas. These are then graded into histological degrees of 

malignancy. Two major subtypes are recognized, namely the astrocytic and 

the oligodendrocytic tumors. Astrocytic tumors are further subdivided into 

grades I (pilocytic astrocytomas, PA), II (low grade), III (anaplastic), and IV 
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(glioblastoma multiforme, GBM) (Table 1.1). Oligodendrocytic tumors are 

separated into grades II (low grade) and III (anaplastic). GBM, a WHO grade 

IV tumor, is characterized by rapid, highly invasive growth, extensive 

neovascularization and high mortality. The key reason for unsuccessful 

therapy is the infiltration of tumor cells into the surrounding brain parenchyma 

cells, preventing complete glioblastoma resection. Furthermore, glioma cells 

are notoriously resistant to chemotherapies. 

 

 

 Gliomas of better prognosis include the oligodendroglial tumors. 

These tumors possess genetic indicators such as the 1p/19q co-deletion 

status which renders the tumors highly sensitive to chemotherapy (Cairncross 

et al, 1998). Patient survival, time to progression and response to therapy are 

all associated with subtype and grade of the tumor (Louis et al, 2007). The 

current WHO classification of glioma, combined with the patient’s prognostic 

features (e.g. age and Karnofsky Performance Score, KPS), guides treatment 

decisions. Traditional anatomic and pathologic classification of tumors has 

Table 1.1. WHO classification of glial tumors based on histology. WHO 
grading of glial tumors into grades I-IV is based on the presence or absence 
of four criteria: (1) nuclear atypical, (2) mitoses, (3) endothelial cell 
proliferation, (4) necrosis. Adapted from Kleihues et al. (2002) 
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very limited ability to stratify patients into meaningful subgroups for prognosis 

and intervention. Differences between histological subtypes are very subtle, 

and classifying gliomas is subjected to large inter-observer variability (Murphy 

et al, 2002). Consequently, this can result in misdiagnosis. Since treatment 

protocols often depend on the diagnosed histological subtype, accuracy in 

diagnosis is very important for patients to get optimal treatment (Murphy et al, 

2002). Therefore, more accurate methods to diagnose gliomas are urgently 

required.  

1.2 Molecular Classification of Gliomas  

 There have been extensive studies on the molecular characteristics of 

gliomas over the years in order to provide more objective and accurate 

methods of identifying distinct molecular tumor subgroups, and to identify 

specific molecular tumor markers that can assist diagnosis, and consequently 

impacting on treatment decisions. In 2006, the National Cancer Institute, 

USA, initiated a multi-consortial effort to deep profile, as one of the first 

cancers, glioblastoma multiforme (GBM), because of its dismal prognosis 

(Louis et al, 2007). This effort is predicated on the belief that histologically 

similar tumors can be molecularly heterogeneous, and that distinct pathways 

drive the biological phenotype. The first publication arising from The Cancer 

Genome Atlas (TCGA) effort showed that patients with GBM sustain 

mutations that can be grouped into 3 major signaling networks: Receptor 

tyrosine kinases (RTKs), p53 and Retinoblastoma (Rb) tumor suppressor 

pathways (Atlas, 2008). Importantly, GBM tumors are molecularly 

heterogeneous, further highlighting the limitations of relying solely on 

morphology-based histological methods to diagnose and subsequently treat 

patients. There have been several attempts to molecularly classify GBM 

(Table 1.2). At a transcriptomic level, Philips et al. described 3 subclasses of 
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GBM tumors; Proneural, Proliferative, and Mesenchymal that correspond to 

different stages of neurogenesis (Phillips et al, 2006a). Notably, proneural 

GBM comprises of patients with primary diagnosis, younger age, and better 

prognosis. In contrast, older age patients and patients with tumor relapses 

more often associate with Mesenchymal GBM (Lee et al, 2008; Phillips et al, 

2006a). A follow-up study at a genomic level then showed that GBM tumors 

can be further molecularly classified into four subgroups; Proneural, Classical, 

Mesenchymal and Neural, with each subgroup exhibiting unique gene 

expression, genomic aberrations and clinical profile (Verhaak et al, 2010). To 

complement the initial molecular sub-classification of GBM by proteomic 

analysis, Brennan et al. identified active platelet-derived growth factor (PDGF) 

signaling and loss of neurofibromatosis (NF1) tumor suppressor gene 

expression as characteristic features of proneural and mesenchymal GBM 

respectively (Brennan et al, 2009). Using an integrative subtype analysis to 

characterize subtypes with coordinated genomic, epigenomic, and 

transcriptomic alterations, Shen et al. applied the iCluster algorithm on a 

subset of 55 GBM samples and showed the existence of three distinct 

integrated tumor subtypes: (1) iCluster1, a subtype that is enriched for the G-

CIMP phenotype and displays a proneural expression profile; (2) iCluster2, a 

subtype that is characterized by near complete association with EGFR 

amplification, overrepresentation of promoter methylation of homeobox and 

G-protein signaling genes, and a classical expression profile; (3) iCluster3 is 

characterized by NF1 and Pten alterations and exhibits a mesenchymal-like 

expression profile (Shen et al, 2012). With the strength of an integrative 

clustering analysis, the authors were able to discover and visualize 

coordinated patterns of genomic alterations, providing a biologically 

comprehensive context for subtype discovery. 
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 A major inference from these studies is that GBM patients can now 

potentially be treated according to their molecular subclasses and pathway 

activation. Indeed, Wiedemeyer et al. recently showed via pharmacological 

targeting in a panel of GBM cell lines that co-deletion of CDKN2A and 

CDKN2C served as a strong predictor of sensitivity to a selective inhibitor of 

CDK4/6 (Wiedemeyer et al, 2010). This mapped to similar patterns of 

CDKN2A and CDKN2C mutations in TCGA patients, leading to 

hyperactivated CDK4/6. The Wiedemeyer study thus demonstrates that the 

integration of genomic, functional and pharmacologic data can be exploited to 

inform the development of targeted therapy directed against specific cancer 

pathways. Importantly, the TCGA effort emphasizes that gene expression 

drives GBM disease progression and clinical outcome.   

1.3 Glioma-propagating Cells (GPCs) 

 The understanding of the normal development of the nervous system 

has dramatically increased in recent decades. The nervous system has a 

complex cellular hierarchy ranging from a neural stem cell (NSC) that can 

give rise to all of the major lineages in the brain parenchyma (neurons, 

astrocytes, and oligodendrocytes) to lineage-committed progenitors that have 

a more restricted differentiation potential to terminally differentiated cells 

(Rietze et al, 2001; Uchida et al, 2000). The expression of nestin, a common 

Table 1.2. Molecular classification of GBM tumors. Overview of the 
molecular subtypes of GBM at genomic, transcriptional, proteomic and 
integrated levels. Clustering methodology is shown on the left column. 
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marker of neural stem-progenitor cells was subsequently demonstrated in a 

variety of neuroepithelial brain tumors (Dahlstrand et al, 1992; Tohyama et al, 

1992). The interest in applying normal developmental biology to the field of 

cancers is perhaps fueled by work of John Dick and colleagues on the 

identification of cancer-initiating cells in leukemia (Bonnet & Dick, 1997). 

Subsequently, similar identifications of cancer-initiating populations have 

been found in multiple systemic cancer types including the breast, colon, 

pancreatic, prostate and brain (Al-Hajj et al, 2003; Collins et al, 2005; Li et al, 

2007; O'Brien et al, 2007; Singh et al, 2003).  

 Conceptually, cancer stem cells (CSCs) define a small, biologically 

unique subset of cells with the capability to self-renew and generate the 

diverse cell types that constitute the whole tumor (Reya et al, 2001). These 

cells are termed cancer stem cells because of their “stem-like” properties 

shared commonly with normal tissue stem cells. These properties include 

extensive self-renewal ability (symmetrical and asymmetrical) and 

differentiation capacity. The latter, however, is not a mandatory feature of 

CSCs. Nevertheless, the concept of CSC is of considerable importance as it 

highlights the need to eradicate the CSC populations to achieve an effective 

cure. In recent years, the several terminologies such as cancer/ tumor-

initiating cells (CICs or TICs) and cancer/ tumor-propagating cells (CPCs or 

TPCs) have emerged in part due to the operational detection of cells with 

CSC properties in different contexts. CICs or TICs are more accurately 

referred to the original cells from which the malignancy first arose as shown 

elegantly by several lineage tracing mouse models (described in Section 1.5) 

(Alcantara Llaguno et al, 2009; Jacques et al, 2010; Zheng et al, 2008). CPCs 

or TPCs, on the other hand, refer to cancer cells that can perpetuate and 

sustain tumor growth, at least in a serial xenotransplantation model, with the 
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ability to maintain key karyotypic hallmarks, stemness expression and 

multipotentiality. As such, in the context of our studies in gliomas, we termed 

glioma-propagating cells (GPCs) as patient-derived cancer cells from gliomas 

with the ability to serially transplant and perpetuate tumors that recapitulate 

the original patient pathophysiology in a xenograft model. 

1.3.1 Markers to identify GPCs 

 The seminal work by Singh et al. demonstrated that the expression of 

a putative neural stem cell marker, CD133, in malignant tumor cells derived 

from gliomas and medulloblastomas, was sufficient and necessary to initiate 

and recapitulate the tumor upon transplantation into immunodeficient mice 

(Singh et al, 2003). Since these initial observations, numerous groups have 

joined the effort in elucidating the role of cancer stem cells in brain tumors. 

Recent studies have suggested that several additional but not overlapping 

markers represent the tumor-propagating cells in brain tumors. These include 

stage-specific embryonic antigen 1 (SSEA-1) or CD15 (Son et al, 2009), 

nestin (Bar et al, 2007b), aldehyde dehydrogenase (Bar et al, 2007b), Sox2 

(Gangemi et al, 2009), CD44 (Anido et al, 2010), integrin-α6 (Lathia et al, 

2010), Bmi-1 (Abdouh et al, 2009) and the side population (Bleau et al, 2009; 

Chua et al, 2008). Since many of these markers are also expressed on 

normal cellular counterparts, they do not present the best targeting 

candidates in any therapeutic strategy. In addition, the initial finding that only 

CD133-positive cells are the tumor-initiating population has been disputed as 

tumors have been demonstrated to also arise from CD133-negative cells in a 

subset of GBM tumors (Beier et al, 2007; Sakariassen et al, 2006). 

Importantly, CD133 expression has been shown to change with surface 

sialylation according to disease state and progression, further complicating its 

definition as a marker of bona fide tumor-initiating capacity (Kemper et al, 
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2010; Zhou et al, 2010). Henceforth, the field of cancer stem cell biology is 

moving away from heavy reliance on surface marker identification of tumor-

initiating cells, to complementing findings that measure the functional 

activities of tumor stem cells (Figure 1.1). 

1.3.2 Functional assays to identify GPCs 

 The GPC is defined functionally and there are assays to measure this. 

One such frequently used assay is the neurosphere assay (Reynolds et al, 

1992). The neurosphere assay is often used to approximate neural stem cell 

frequency in the normal neural stem and progenitor cells of the adult central 

nervous system (CNS). Neurospheres are heterogeneous and comprise of 

bona fide long-term, self-renewing neural stem cells, as well as lineage-

committed short-term, transit-amplifying progenitors (Singec et al, 2006). 

Therefore, sphere-forming frequency defined by sphere number is typically 

scored over three to four generations to measure the activity of bona fide 

neural stem cells, compared to transit-amplifying progenitors which loses 

sphere-forming ability typically after one or two generations (Reynolds & 

Rietze, 2005). Importantly, this sphere forming frequency has been 

demonstrated to translate to in vivo animal survival outcome (Anido et al, 

2010; Clement et al, 2007). In addition, the readout of individual neurosphere 

size, which approximates proliferation, is important as it distinguishes 

proliferation arising from the bona fide stem cell population which would 

otherwise be masked if general short-term viability assays (e.g. MTT assay) 

are carried out that also measure the proliferation of progenitor cells.  

 The central theme of the cancer stem cell hypothesis is the ability of a 

subpopulation of cells at the apex of the hierarchy to propagate tumors and 

promote tumor progression in an orthotopic xenograft transplantation model 

as compared to the non-tumorigenic cells within the tumor bulk (Figure 1.1). 
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The gold standard to identify GPCs functionally is the ability for the GPCs to 

reform a phenotypic copy of the original tumor in an orthotopic transplantation 

model, usually performed as a limiting dilution assay. Non-GPCs, by 

definition, lack this ability and fail in the transplant model. It is important to 

note that the hierarchy model of the CSC hypothesis may not be ubiquitous 

for all cancers or be represented in certain experimental cancer models. For 

instance, Quintana et al. challenged the CSC hypothesis by demonstrating 

that CSC frequency could be altered based on several parameters: (1) 

addition of extracellular matrix in the form of matrigel; (2) extending the 

duration for tumor formation; (3) varying the severity of immune-compromised 

mice depending on strains used. This study demonstrated that the tumor-

initiating capacity, at least in melanoma, is an artifactual consequence of the 

conditions employed in the xenografts model. Despite the lack of ability of in 

vitro cultured stem-like GPCs to reflect the actual transformational cell in 

tumorigenesis, the use of GPCs remains important for several reasons. First, 

GPCs have been shown to retain their transcriptomic and karyotypic features 

commonly found in the primary tumor in contrast to the commercially 

procured serum-grown glioma cell lines that often contain additional genomic 

aberrations (Lee et al, 2006; Li et al, 2008). Second, only GPCs establish 

xenografts tumors that recapitulate the patient’s original histopathology (Lee 

et al, 2006). Finally, transcriptomic analyses suggest that the stemness 

properties of GPCs and other cancer stem cells are enriched in high grade, 

malignant tumors, and contributes to disease progression and survival 

outcome (Shats et al, 2011). These reasons underscore the importance of 

GPCs as a more reliable and physiologically relevant cellular system to study 

disease mechanism.  
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 Our work here describes the isolation and characterization of patient-

derived GPCs (Chong et al, 2009). We demonstrate that histologically similar 

GBM tumors yield GPCs with very different transcriptomic profiles, suggesting 

that these underlying differences may account for the frequently observed 

inter-patient variability to treatment response. In addition, Shats et al. has 

shown that a stemness signature derived from embryonic stem cells could 

predict the breast cancer patient cohort sensitive to small molecules linked to 

this signature using the Connectivity Map (Lamb et al, 2006; Shats et al, 

2011), highlighting the clinical contribution of cancer-initiating cells to patient 

outcome. As with many studies involving the prospective isolation of tumor-

initiating cells, only limited amounts of clinical material are available, and this 

limitation is compounded by the lack of methods to preserve such cells at 

convenient time points. Although in vivo serial passage of GPCs can provide 

a reliable means to maintain such primary cells, however in practice it is not 

always possible to have access to immune-compromised animals of suitable 

ages to continuously maintain these cells. In addition, serial propagation of 

GPCs in animals has been shown to result in a genetic drift towards highly 

proliferating genes as evident by the over-representation of the proliferative 

expression signature (Hodgson et al, 2009; Phillips et al, 2006a). Eventually, 

the original features and characteristics of these lines will be lost.  

 Using our novel modified cryopreservation technique, we essentially 

resolved the bottleneck in maintaining these cells. That is, we now have a 

reliable repository of different primary patients’ lines that can be thawed upon 

experimental needs, and since these lines are characterized, we now 

understand how each patient’s phenotypic and transcriptomic profiles looks 

like. This will greatly enhance any projects that deal with larger patient 

numbers to address the patient stratification hypotheses.  
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1.3.3 GPCs contribute to primary tumor phenotype 
 

In assessing the contribution of stem-like GPCs to the primary tumor 

phenotype, several studies have focused on analyzing common GPC marker 

expression in tissue paraffin sections, often with ambiguous data. This may 

be reconciled by the fact that GPC properties that sustain the tumor 

phenotype may reside in more than just specific marker profiles (Bar et al, 

2007b; Beier et al, 2007; Sakariassen et al, 2006; Singh et al, 2004; Son et al, 

2009). Consequently, pathway activation resembling those functioning in 

stem-like cells, represented by a set of genes, is more likely to correctly 

Figure 1.1. Cancer stem cells are defined by a set of functional 
characteristics. Some of the required functional characteristics that define 
cancer stem cells include sustained self-renewal, persistent proliferation, and 
the ability of tumor initiation and propagation. Other characteristics that are 
often, but not necessarily, associated with cancer stem cells include rarity 
within a tumor, expression of stem cell markers, and multi-lineage 
differentiation. 
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interrogate the clinical contribution of GPCs. An elegant study was carried out 

by Visvader et al. in BRCA1 mutation-associated breast tumors (Lim et al, 

2009). The authors derived differentially regulated genes in subsets of 

epithelial cells and found that luminal progenitors were highly represented in 

BRCA1 mutation-associated breast tumors, even more than the commonly 

anticipated stem cell population. This suggests that luminal progenitors are 

more likely the cells-of-origin for BRCA1 mutation-associated breast cancers, 

later confirmed in a transgenic mouse model study (Molyneux et al, 2010). 

Such studies underscore the predictive capability of gene expression 

mapping of pathway activation, instead of focusing on a specific marker 

identity. In another separate study, John Dick and colleagues recently 

demonstrated that serial tumor-initiating (and not marker-defined) acute 

myeloid leukemia stem cells contribute to disease progression and patient 

survival outcome (Eppert et al, 2011), highlighting the importance of 

functionally defining the cancer stem cell.  

 Two other relevant studies demonstrated that GPCs contribute to 

GBM patient survival outcome, with preferential activation of core stem cell 

programs (hematopoietic, neural and embryonic stem cells) (Shats et al, 

2011; Yan et al, 2011). Yan et al. performed a transcriptomic profiling of 

CD133+ and CD133- from human GBM and established a CD133 gene 

expression signature composed of 214 differentially expressed genes. The 

authors subsequently compared their gene signature with a compendium of 

published gene expression profiles and found that the CD133 gene signature 

transcriptomically resembles the human embryonic stem (ES) cells. Most 

importantly, the CD133 gene signature identifies an aggressive subtype of 

GBM seen in younger patients with shorter survival who bear excessive 

genomic mutations as surveyed through TCGA GBM mutation spectrum. 

Hence, the study by Yan et al. provides molecular and genetic support for the 
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stem-like nature of cells and an objective means for evaluating cancer 

aggressiveness. In support, Shats et al. has shown that a stemness signature 

derived from embryonic stem cells could predict the breast cancer patient 

cohort sensitive to small molecules linked to this signature using the 

Connectivity Map (Lamb et al, 2006), demonstrating the clinical contribution of 

cancer stem cells to patient outcome. 

 The key message from these studies is that cancer stem cells 

perpetuate tumors not merely in terms of their cell numbers or surface marker 

expression, but more accurately reflected by their pathway activation. 

Consequently, the primary tumor phenotype is a manifest of cancer stem cell 

behavior and signaling. 

1.4 Mouse models of glioma 

 Gliomas are heterogeneous, both at the molecular and cellular levels. 

The complex biology of these tumors makes understanding glioma 

pathogenesis and the development of novel effective therapies extremely 

challenging. Unlike in vitro culture system using established glioma cell lines 

or primary cells, tumor development in mice is accompanied by other complex 

processes such as invasion, angiogenesis and metastasis, similar to those in 

human cancer. More importantly, mouse models provide a temporally and 

genetically controlled environment for studying the tumorigenic mechanisms 

and treatment response. Of note, mouse models of molecularly characterized 

GBM provide opportunities to determine whether activation of certain 

pathways can lead to a specific GBM subtype and to generate histologically 

and genetically accurate mimics of the human disease. Some of the 

genetically engineered mouse models (GEMMs) that are driven by the genes 
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known to be key drivers for each clinically distinct glioma subtype are 

discussed below. 

1.4.1 Xenograft Mouse Models 
 

 Xenografts are created by implanting tumor cells derived from clinical 

material or immortalized glioma cell lines into immunocompromised mice. 

There are two models of xenografts: (1) orthotopic (tumor cells implanted into 

the original site of occurrence) and (2) heterotypic (non-autochthonous site). 

The traditional glioma xenograft models uses glioma cell lines (commercially 

procured and immortalized, usually grown in serum-containing medium) that 

have been passaged and maintained in tissue culture for long periods of time. 

Gliomas that are generated from these cell lines do not recapitulate the 

classical glioma pathophysiology of human gliomas (Lee et al, 2006). In 

addition, they have not been predictive for response in preclinical trials.  

 The use of patient-derived tumor cells for orthotopic xenograft 

transplantation has yielded valuable information on important aspects of GBM 

histology. In particular, tumor cells derived from freshly isolated human glioma 

tumors, when cultured in serum-free conditions optimized for tumor stem cell 

growth and injected orthotopically in animals, more closely mirror the 

phenotype and genotype of the primary tumor than when cultured in serum-

containing medium (Lee et al, 2006). These tumors typically recapitulate the 

diffuse invasion of glioma cells into the normal brain structures. Moreover, 

serial passage of these cells in mice can lead to changes in tumor phenotype, 

suggesting that the progression from lower grade tumor to higher grade GBM 

may be modeled in such systems (Wang et al, 2009). Furthermore, the 

importance of recreating the tumor in an anatomically correct site is 

emphasized in Galli et al. where only orthotopic but not subcutaneous tumors 
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recapitulated the original patient tumor histopathology (Galli et al, 2004). 

Several groups are currently using these modern xenograft models in 

preclinical testing. The advantage to such systems is that they are derived 

from human gliomas. These orthotopic models have also allowed for 

experiments aimed at studying the biology of glioma-propagating cells 

(GPCs) and have recently been utilized to recreate the microenvironment and 

cellular heterogeneity seen in human tumors. Importantly, efforts from TCGA 

have shown that glioma xenografts established from clinical but not 

commercially procured material/cells recapitulate the 4 molecular subclasses, 

each with distinct gene expression, genetic aberrations and clinical profile 

(Verhaak et al, 2010). 

1.4.2 Genetically Engineered Mouse Models (GEMMs) 

 A second popular cancer model in animals is to use genetically 

engineered mouse models (GEMMs) with close genetic resemblance to 

human disease. The advantages of this model includes: (1) the ability to 

provide appropriate material for comparative onco-genomic studies, which are 

directed at identifying additional genes that are altered in the development of 

tumor; (2) tumors derived from these GEMMs can be used to validate the 

functionality of specific genes in tumorigenesis; (3) GEMMs can also be used 

to analyze network of genes with specific genetic mutations, hence allowing 

the assignment of genetic lesions into defined pathways and the testing of 

drugs targeting these activities. Taken together, GEMMs address the 

molecular causation of tumor initiation, progression, therapeutic response and 

histology, contributing to the understanding of the molecular pathways 

implicated.  

 Using germline genetic modification techniques, it was demonstrated 

that GEMMs with activation of receptor tyrosine kinase (RTK) pathways in the 
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brain along with simultaneous loss of cell cycle-related genes, develop 

gliomas with high penetrance. This was confirmed by TCGA project which 

showed that the core signaling pathways are crucial for gliomagenesis. With 

additional loss of the tumor suppressor phosphatase and tensin homolog 

(Pten), a higher grade malignancy and reduced survival in mouse glioma 

models occurred, recapitulating the clinical profile (Kwon et al, 2008).  

 Mouse modeling that enforces PDGFRB expression produces tumors 

that ranges from the low-grade oligodendroglioma or oligoastrocytoma to the 

high-grade GBM with oligodendroglial features (Shih et al, 2004; Uhrbom et 

al, 2002). The grade of these tumors is regulated by several factors such as 

the expression levels of PDGF, loss of p53 and Ink4a/arf, and Pten (Dai et al, 

2001; Fomchenko et al, 2011; Shih et al, 2004; Uhrbom et al, 2002). 

Expression profiling of these tumors shows a parallel expression pattern to 

the human proneural molecular subgroup, which is predominated by PDGF 

signaling (Lei et al, 2011). In addition, amplification and activating mutation of 

EGFR is the canonical genomic alteration in the classical molecular subgroup 

of GBM (Brennan et al, 2009; Verhaak et al, 2010). The mouse model of 

EGFR-driven gliomagenesis, with germline constitutive active variant of 

EGFR, in conjunction with deletion of Ink4a/arf and Pten, develops high 

penetrance GBM that histologically resembles the classical GBM in humans 

(Zhu et al, 2009). Creation of GBM in mice by deletion of NF1 and p53 tumor 

suppressors shed light on our understanding that NF1 loss is the canonical 

alteration in the mesenchymal subgroup of GBM (Atlas, 2008; Reilly et al, 

2000; Zhu et al, 2005). Furthermore, tumors with NF1 loss often exhibit loss 

of p53, Ink4a/arf, and Pten (Verhaak et al, 2010).  

 Recently, variations in genetic mouse models have been used to 

investigate one of the most important gaps in the knowledge of glioma biology 
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– the origin of glioma progression and development. With the availability of 

inducible Cre recombinase transgenes that allow both temporal and spatial 

induction of Cre recombinase, thereby effecting gene expression or knockout 

in cell type-specific compartments with a Rosa reporter to trace evolving 

progeny, the cells of origin alongside with its differentiated progeny, have 

been elegantly demonstrated in intestinal cancers (Barker et al, 2009; Barker 

et al, 2007). Recent works have highlighted the importance of neural stem 

cells as the cells-of-origin with mutations in NF1/Pten/p53, or p53/Pten, as 

opposed to arising from the more mature progeny such as astrocytes, in 

contributing to GBM formation (Alcantara Llaguno et al, 2009; Jacques et al, 

2010). GEMMS are useful as they offer a window into the events governing 

the tumorigenic process.  

1.5 Cell-of-origin of glioma 

 One of the major contributing factors to glioma heterogeneity is the 

tumor cell-of-origin. Cells-of-origin are the normal cells in which tumorigenic 

mutations first occur and accumulate to form a full-blown malignancy. Cancer 

stem cells (CSCs), on the other hand, are defined as cells that maintain an 

already formed tumor. Therefore, the term “tumor-initiating cells” is more in 

line with the “cells-of-origin”, whereas CSCs would be more accurately be 

referred to as “tumor-propagating cells” (Visvader, 2011).  

 There are several theories on the identity of the origin of gliomas. 

Before the discovery of adult neural stem cells (NSCs), the astrocytes, the 

only known replication-competent population, were thought to be the cells-of-

origin of gliomas. The theory of dedifferentiation of astrocytes to malignant 

forms is supported by recent findings that reprogramming a panel of 

transcription factors can turn terminally differentiated cells back to the 
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pluripotent state (Takahashi & Yamanaka, 2006). Moreover, Verma and 

colleagues most recently demonstrated that ectopic lentiviral knockdown of 

key tumor suppressor genes in astrocytes and neurons initiated glioma 

formation, which later dedifferentiated (Friedmann-Morvinski et al, 2012). 

However, to-date, definitive evidence supporting that astrocytes are the cells-

of-origin are lacking due to the lack of good astrocyte marker. Glial fibrillary 

acidic protein, GFAP, a widely used marker for astrocytes is also expressed 

in NSCs (Doetsch et al, 1999).  

 As NSCs have been shown to be the self-renewing population in 

postnatal mammalian brains, they were subsequently suspected to be the 

glioma cell of origin (Zhao et al, 2008). The long-term self-renewal capacity of 

NSCs offers an advantage to allow accumulation of oncogenic mutations or 

hits. Recent evidences have supported the NSCs as cells-of-origin. Alcantara 

et al. demonstrated that deleting the tumor suppressors p53, NF1, and Pten 

specifically in postnatal murine neural stem or progenitor cells resulted in 

glioma formation with 100% penetrance (Alcantara Llaguno et al, 2009). On 

the other hand, ablation of these genes in non-neurogenic adult murine brain 

regions did not produce any tumors. Similarly, Jacques et al. showed that 

ablation of p53, Pten, and/or Rb in stem cells of the subventricular zone 

(SVZ), but not in the peripheral astrocytes, generated gliomas (Jacques et al, 

2010). However, these studies were not able to distinguish between the more 

quiescent, long-term self-renewing NSCs from the more rapidly dividing 

progenitor cells. More recently, using mosaic analysis with double markers 

(MADM), Liu et al. demonstrated that the early expanding tumor cells in the 

Nf1;p53-based mouse oligoastrocytoma model are cells that express 

oligodendrocyte precursor cell (OPC) markers (Liu et al, 2011a).  
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 An ideal model to study the cell-of-origin should address: (1) whether 

the cells in question are capable of transformation after harboring a set of 

oncogenic events; and (2) the kinds of mutations that accumulate in these 

transformed cells. The development and identification of cell-specific markers 

and other technologies that enhance precise temporal and spatial somatic 

gene manipulation would greatly facilitate the study of cell-of-origin.  

1.6 Selected signaling pathways regulating GPCs 

 Key signaling pathways that are crucial for normal neural stem cells, 

such as Notch, Hedgehog, and the PI3K-Akt axis, have been a focus of 

increasing interest in cancer therapy as these pathways may underlie GBM 

therapeutic response and targeting of these pathways may preferentially 

deplete GPCs. Indeed, our lab’s earlier work with Eli Lilly pharmaceutical 

company utilizing a small molecule screen of several inhibitors against key 

oncogenic pathways showed that GPCs can be targeted via PI3K/Akt, 

GSK3β, mTOR, CDK9, PLK1 and TAK1 (Foong et al, 2011; Foong et al, 

2012). Certainly, there is much literature supporting our observations that 

these regulatory pathways promote GPC growth and survival (Bao et al, 

2006; Eyler et al, 2008; Kotliarova et al, 2008; Lee et al, 2012). Although the 

role of these pathways in glioma is not new, their effectiveness against 

specifically GPCs, the long-term self-renewing population, is of interest in 

designing a therapy with effective cure, abrogating the infiltrative and 

recurrent nature of the disease. The targeting of the slowly-dividing population 

also calls into place the appropriate endpoints for measuring drug 

effectiveness, since most conventional cancer assays detect short-term and 

mainly anti-proliferative effects. This would imply that the drugs selected 

could have been prioritized, paradoxically, against the eventually terminal 

progenitor population instead of targeting the actual tumor-sustaining fraction. 
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The cancer stem cell hypothesis thus forces a re-evaluation of endpoints for 

efficacious drug development. 

1.6.1 EGFR/PI3K/AKT axis in GPC regulation 

 The presence of autocrine and paracrine growth factor loops are 

common in malignant gliomas and these pathways regulate numerous pro-

tumorigenic cellular functions including cellular proliferation, apoptotic 

resistance, invasion and angiogenesis. Epidermal growth factor (EGF), 

routinely used in culturing EGF-responsive neural precursors, is a key growth 

factor used in the maintenance of GPCs (Lee et al, 2006). GBMs frequently 

display EGFR amplification, with expression of the constitutively active variant 

EGFRvIII, mediated through PI3K-Akt and Ras/mitogen-activated protein 

kinase (MAPK) downstream signaling in GBMs and is associated with 

enhanced tumorigenic potential and more aggressive phenotypes, such as 

invasiveness and therapeutic resistance (Brandes et al, 2008). Shinojima et 

al. evaluated 87 primary GBM patients and found EGFR amplification to be 

an independent, unfavorable predictor for overall survival (Shinojima et al, 

2003). In this cohort, EGFRvIII overexpression in the presence of EGFR 

amplification is the strongest indicator of a poor survival prognosis.  

 

 Intratumoral heterogeneity plays a major role in contributing to GBM 

resistance to EGFR targeted therapy due either to pre-existing resistant 

clones within the tumor or the interaction of non-resistant clones with the 

tumor cells or the tumor niche. Mazzoleni et al. showed that despite both the 

molecularly and functionally distinct EGFRpos and EGFRneg GPCs being able 

to form tumors on their own that phenocopy the original tumor sample, only 

EGFRpos  GPCs had elevated tumorigenic proliferation and highly invasive 

characteristic (Mazzoleni et al, 2010). Hence, the presence of distinct 
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subpopulations within the same tumor might contribute to GBM resistance 

and EGFR targeted therapies since EGFRneg GPCs are insusceptible to 

treatment and will survive to reform the tumor mass. Inda et al. demonstrated 

that EGFRvIII cells secrete IL-6 and LIF, which in turn promote the growth 

and proliferation of wild-type EGFR cells that form the tumor bulk. This small 

subset of EGFRvIII cells, driven in a paracrine manner to recruit wild type 

EGFR cells into accelerated proliferation, enhances the tumorigenic potential 

of the bulk tumor and actively maintains a heterogeneous expression of both 

the wild type and the mutant form (Inda et al, 2010). Mice orthotopic tumors 

overexpressing EGFRvIII are refractory to radiation therapy, with sustained 

repopulation and nondescript effect on overall survival. The efficacy of EGFR 

kinase inhibitors have been disappointing so far  as silencing of EGFRvIII 

compels GBM cells to undergo selective pressure in vivo to employ 

alternative compensatory pathways such as upregulating receptor tyrosine 

kinases (PDGFR, IGF1-R and c-Met) to maintain aggressiveness. These 

findings suggest that tumor cells are adept at bypassing single EGFR 

targeted therapies, reforming the tumor after an initial period of stasis, and 

inhibition of EGFR alone will not be adequate for translation into a beneficial 

clinical response in GBM patients. An effective therapeutic strategy should 

take into account the role of residual EGFRneg GPCs or that of the secreted 

factors in the tumor niche, and the development of a tailored combinatorial 

therapy targeted at both the aggressive EGFRpos GPCs and the less 

malignant EGFRneg GPCs or the microenvironment will be imperative to 

improve the clinical response of GBM patients.  

 One of the main molecular changes accompanying progression of 

gliomas to high grade, with simultaneous elevated stem cell expression and 

resistance to chemotherapy, is the loss of phosphatase and tensin homolog 



 

23 
 

(PTEN) and consequent elevation of Akt pathway activities (Hu et al, 2005). 

Deficiency in PTEN modulates Chk1 localization, initiating genetic instability 

and thereby conferring chemo-radioresistance in GBMs. A number of 

intracellular signaling cascades are activated upon EGFR stimulation, but the 

PI3K-Akt module has been predominantly linked to GPC biology and 

contribution to the resistant phenotype (Dreesen & Brivanlou, 2007; Eyler et 

al, 2008). Various studies have shown that hyperactivation of the PI3K/Akt 

and Ras/MAPK signaling pathways in cancer cells promotes tumorigenesis, 

increases tumor cell survival, proliferation, invasion and is significantly 

associated with radiotherapy resistance, either through the modulation of cell 

survival signaling or, by direct regulation of the DNA repair machinery. In 

human gliomas, there is evidence at genomic, mRNA and protein levels 

showing that aberrant Akt signaling prognosticates poorer survival (Phillips et 

al, 2006a). Indeed, chemoresistance in hepatocarcinoma stem cells may be 

conferred by activation of Akt (Ma et al, 2008), and Akt signaling promotes 

survival of stem-like tumor cells in the perivascular niche of mouse 

medulloblastoma models (Hambardzumyan et al, 2008). It has been recently 

demonstrated that GPCs are more dependent on Akt signaling than their 

matched non-stem counterparts (Eyler et al, 2008). Chakravati et al. observed 

that GBMs expressed significantly higher levels of phospho-PI3K and 

phospho-p70s6k, but not of phospho-Akt, compared to their non-GBM 

counterparts, implying that GBMs display dependency on these pathways 

possibly for their survival, proliferation and therapeutic resistance (Chakravarti 

et al, 2004). In addition, inverse correlation between phospho-PI3K, phospho-

Akt, and phospho-p70s6k levels with cleaved caspase 3 implicates the likely 

mechanisms employed by the members of the PI3K family in the inhibition of 

apoptosis and promotion of  radioresistance in GBMs (Chakravarti et al, 

2004). Functional inhibition of Akt with the pharmacologic inhibitors 
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preferentially disrupts GPC neurosphere formation, reduces motility and 

invasion, induces apoptosis in vitro, and significantly prevents intracranial 

tumor formation of GPCs (Bleau et al, 2009; Eyler et al, 2008). Although in 

vitro targeting of the EGFR-PI3K-Akt signaling cascade may have specific 

effects on GPC self-renewal and tumorigenic progression, clinical trials of 

EGFR inhibitors, such as Imatinib, have not resulted in significant survival, 

suggesting that EGFR inhibition solely is an insufficient therapeutic paradigm, 

prompting greater focus on PI3K inhibitors.  

 EGFR/EGFRvIII’s cross-interaction with the oncogenic transcription 

factor STAT3 and receptor tyrosine kinases (c-Met and PDGFR) mediates 

GPC resistance to anti-EGFR therapy. JAK-STAT3 pathway is constitutively 

activated in the majority of GBMs and the dynamic interactions between 

STAT3 and EGFR underlie resistance of GBM cells to Iressa (Lo et al, 2008). 

Combinatorial inhibition of JAK and EGFR/EGFRvIII abolishes STAT3 

activation and synergistically suppresses the GPC proliferation. JSI-124 acts 

as a highly selective inhibitor of the JAK/ STAT3 signaling pathway 

(Blaskovich et al, 2003) and has been shown to sensitize malignant glioma 

and medulloblastoma cells to TMZ, 1,3-bis(2-chloroethyl)-1-nitrosourea, and 

cisplatin (Lo et al, 2008).  In addition, the direct role of EGFR in the regulation 

of DNA repair was demonstrated by Bandyopadhyay et al. where they 

showed direct physical interaction of EGFR and DNA-dependent protein 

kinase (DNA-PK), a key component of the nonhomologous end-joining 

(NHEJ) machinery (Bandyopadhyay et al, 1998). Furthermore, a follow-up 

observation by Dittmann et al. showed that ionizing radiation (IR) and the use 

of a radiomimetic drug, cisplatin induces the translocation of EGFR into the 

nucleus, where it interacts and increase the activity of DNA-PK (Dittmann et 

al, 2005). 
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 Taken together, these findings discussed here suggest that EGFR 

signaling, either directly through the interaction with the DNA repair 

machinery or indirectly through the activation of key oncogenic PI3K/ Akt and 

JAK/STAT signaling pathways, modulates sensitivity to radiation. Therefore, 

elucidation of the dynamic interactive EGFR networks will enable us to 

identify mechanisms that circumvent therapeutic resistance in GPCs and 

improve the modest efficacy of current EGFR-targeted therapy in GBM 

patients. Given the central role of the EGFR signaling pathway in conferring 

the aggressive phenotype in tumors, treatment resistance, and poor 

prognosis, considerable effort has been invested in the development of 

imaging strategies to non-invasively ascertain EGFR status and therapeutic 

response to EGFR targeting agents. Such approaches would enable more 

accurate stratification of the patients who are likely to benefit from EGFR 

targeting therapeutics and for monitoring treatment efficacy (Hatanpaa et al, 

2010).  

1.6.2 Notch signaling  

 Activation of the Notch signaling cascade involves proteolytic 

cleavage by γ-secretase and is critical for the maintenance of stem and 

progenitor cells in promoting self-renewal and repressing differentiation 

(Lathia et al, 2008). Aberrant Notch signaling has been implicated in the 

pathogenesis of multiple tumors including gliomas, and the overexpression of 

Notch and its ligands, Delta-like-1 and Jagged-1, is commonly associated 

with glioma survival and proliferation. The role of Notch signaling in GBMs 

has been widely characterized and it has been shown that downregulation of 

NOTCH1, Delta-like-1, or Jagged-1 leads to glioma cell apoptosis and 

translates into a prolonged survival in a mouse orthotopic brain tumor model 

(Purow et al, 2005). Fan et al. demonstrated that specific Notch targeting of 
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patient-derived GPCs by γ-secretase inhibitor (GSI) attenuated  neurosphere-

forming ability with marked decrease in the expression of stemness-related 

markers, increased sensitivity to chemotherapeutic agents in vitro and 

blocked tumor propagation in vivo, suggesting a potential dependence on 

Notch signaling in GPCs (Fan et al, 2010). Activation of Notch by upstream 

oncogenic stimuli and microenvironmental cues is essential for the 

maintenance of GPCs and the facilitation of tumor propagation, suggesting a 

role of Notch at the center of key regulatory GPC signaling networks.  

 Previous reports have demonstrated that exposure to radiation 

modulated the activation of Notch signaling in the CD44+/CD24-/low breast 

cancer stem cells (Phillips et al, 2006b). In addition, Notch signaling has been 

implicated in the radioresistance phenotype of GPCs where knockdown of 

NOTCH1 or NOTCH2 effected radiosensitivity of GPCs but not that of 

differentiated glioma cells (Wang et al, 2010), suggesting that inhibition of 

Notch signaling may not only deplete GPC frequency and engraftment 

potential but also reduce the radioresistance of GPCs. Furthermore, inhibition 

of the Notch cascade in irradiated GPCs brought about increased apoptotic 

marker caspase 3/7 and positive labeling of apoptotic marker Annexin V. 

Thus, these data suggest that, in the case of gliomas, Notch may be a 

possible target in stem-like glioma cells as GPCs express Notch family  genes 

and gliomaspheres have elevated Notch activity (Lee et al, 2006) and might 

be involved in evading apoptosis and promoting proliferation.  Therefore, 

targeting Notch and its components underlying the radioresistance of GPCs 

promise to confer sustained benefit for glioma therapeutics. 

1.6.3 Hedgehog-Gli signaling 

 The Sonic Hedgehog signaling pathway is one of the classic examples 

of cancer cells regulated by paracrine and autocrine mechanism, supporting 
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an intimate relationship between tumor cells and their stroma, the 

microenvironmental niche (Clement et al, 2007; Yauch et al, 2008). Indeed, 

this pathway is controversial but has been ascribed an autocrine mode of 

signaling in GPCs (Clement et al, 2007). This pathway is one of key 

regulatory pathways critical for the maintenance of several types of adult stem 

cells, including neural stem cells (Clement et al, 2007). The Hedgehog 

signaling cascade is commonly known to be expressed by tumor-associated 

endothelial cells and astrocytes in platelet-derived growth factor (PDGF)-

driven mouse models of GBM (Becher et al, 2008). The main components of 

this signaling pathway are the ligands (secreted Hedgehog proteins), the 

Patched receptor (Ptch, a 12-pass transmembrane protein), the intracellular 

transducing molecules Smoothened (Smo - a second transmembrane protein) 

and Gliotactin (Gli, zinc-finger transcription factors). Ligand-binding of 

Hedgehog to Ptch represses Smo inhibition, allowing the activation of the 

canonical Hedgehog pathway through Gli-dependent transcription of multiple 

targets, including N-myc, cyclin D, Ptch, Gli1, and Gli2.  

 Hedgehog signaling is highly deregulated in a small subpopulation of 

human medulloblastoma and Gli1, a key Hedgehog target, was highly 

expressed in primary GBMs and CD133+ GBMs (Bar et al, 2007b). 

Conventional sources of Hedgehog ligands include CD133+ GPCs and 

tumor-induced vasculature in GBMs (Clement et al, 2007). Several groups 

have investigated the role of Hedgehog-Gli signaling in GPCs and found that 

this signaling pathway regulates GPC function, self-renewal and 

tumorigenesis (Bar et al, 2007a; Clement et al, 2007; Ehtesham et al, 2007). 

Forced differentiation of gliomaspheres reduced both stemness and 

Hedgehog activity expression. However, not all GBMs have activated Shh 

signaling as determined by Gli expression (Bar et al, 2007b), indicating the 

presence of molecular subgroups of brain tumors in which targeting of Shh 
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would be ineffective. Treatment of GPCs with the Hedgehog inhibitor 

cyclopamine or Gli knockdown drastically depleted the GPCs by suppressing 

self-renewal ability and proliferation while increasing apoptotic cell death in 

vitro and inhibiting tumor propagation in vivo. Importantly, cyclopamine 

inhibition of Hedgehog-Gli signaling enhances the efficacy of TMZ to abolish 

GPC proliferation and improve the effect of radiation on GPCs. Taken 

together, these studies indicate that the Hedgehog-Gli module is critical for 

GPC maintenance and targeting this pathway with specific pharmacologic 

inhibitors may attenuate GPC self-renewal and offer improved therapy 

efficiency against gliomas.   

 Gli1 acts at the distal end of the Hedgehog pathway, where it 

regulates transcription in response to activation or inhibition of the pathway. 

Moreover, Gli activity correlates with tumor grade in a genetically engineered 

mouse model (Becher et al, 2008). As such, further investigation must be 

performed to explore its role in GPC growth, maintenance and GBM 

recurrence. Cui et al. investigated the role of Gli1 in primary and recurrent 

gliomas and its ability to confer chemosensitivity or chemoresistance of 

glioma cells (Cui et al, 2010). Overexpression of Gli1 associated with GPC 

chemoresistance, resulting in glioma perpetuation. Conversely 

downregulation of Gli1 enhanced the susceptibility of GPCs to the synergistic 

effects of cyclopamine and chemotherapeutic agents, promoting apoptotic cell 

death, thus suggesting that Gli1 is a key mediator of chemoresistance in 

GBMs with aberrant Hedgehog signaling. Moreover, the constitutive 

Hedgehog pathway activity contributes to the resistance of glioma cells to 

chemotherapeutic agents by promoting self-renewal and tumor regrowth 

following therapy in an autocrine and/or paracrine manner (Bar et al, 2007b). 

In contrast, abolishment of Hedgehog pathway activity abrogates tumor 

growth and restricts tumor recurrence, by downregulation of the expressions 
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of multidrug resistance protein-1 (MDR1), multidrug resistance associated 

protein-1 (MRP1), lung resistance-related protein (LRP), O-6-methylguanine-

DNA methyltransferase (MGMT), B-cell lymphoma 2 (Bcl-2) and Baculoviral 

IAP repeat-containing protein 5 (BIRC5 or Survivin), which play important 

roles in glioma chemoresistance and repopulation, thus providing a 

mechanism to explain the recurrence of some gliomas.  

 

1.7 WNT Signaling and Regulation 

 The Wnt proteins are a family of small (39-46 kDa) lipid-modified 

secreted cysteine-rich glycoproteins (Tanaka et al, 2002). The first Wnt gene 

was initially discovered by Roeland Nusse and Harold Varmus in 1982 

through viral mammary tumorigenesis experiments where they observed 

integration of the mouse mammary tumor virus (MMTV) into the promoter 

region of a gene called Int-1 (integration 1) could induce tumors (Nusse & 

Varmus, 1982). Int-1 is orthologous to the Drosophilia segment polarity gene 

Wingless (Wg) and the terms were combined to generate the name Wnt 

(Nusse et al, 1991). Since the identification of Int-1 (now termed WNT1), the 

gene family of WNT has grown to 19 paralogous members at present (The 

Wnt Homepage, http://www.stanford.edu/group/nusselab/cgi-bin/wnt/). 

 Wnt signaling plays diverse roles both during embryogenesis and 

normal stem cell development. It is crucial for embryonic patterning through 

the control of cell proliferation, determining the fate of stem cells, tissue 

homeostasis and the regulation of stem cell self-renewal. In somatic tissues, 

Wnt signaling is essential for the maintenance of normal architecture and 

function of many tissues through the regulation of stem cell renewal (He et al, 

2004; Reya et al, 2003; Willert et al, 2003).  

http://www.stanford.edu/group/nusselab/cgi-bin/wnt/
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 In the normal development of CNS, the tight control and regulation of 

neural stem and precursor cells’ proliferation are crucial. The loss of the 

glycoprotein Wnt1, a protein normally expressed in the caudal midbrain, leads 

to failure of neural precursor expansion, resulting in malformation and an 

almost complete loss of the mid/hindbrain region (McMahon & Bradley, 1990). 

In addition, ectopic expression of Wnt1 in the mid/hindbrain region enhances 

the proliferation of neural precursors mediated by the induction of cyclin D 

and the shortening of cell cycle (Panhuysen et al, 2004). These observations 

suggest the role of Wnt signaling regulation in normal developing brain. 

Furthermore, Wnt3a mutant mice displayed marked reduction in hippocampal 

layers due to decreased proliferative expansion of caudomedial cortical 

progenitor cells (Lee et al, 2000). Recent work by Lie et al. demonstrated that 

Wnt signaling is a crucial regulator of adult hippocampal stem/ progenitor 

cells (Lie et al, 2005). They showed that in vitro and in vivo overexpression of 

Wnt3a in adult hippocampal stem/progenitor cells increased neurogenesis, 

whereas Wnt inhibition resulted in almost complete abrogation of 

neurogenesis in vivo. In addition, Kalani et al. demonstrated the regulatory 

role of Wnt signaling in the self-renewal of neural stem cells (Kalani et al, 

2008). Importantly, the authors showed that Wnt signaling is required for the 

expansion of single-cell derived neural stem cell populations that are capable 

of giving rise to neural stem cells and other cells of multipotent lineages. 

Taken together, these observations highlight the importance of Wnt signaling 

in the normal development of neural stem/progenitor cells. 

 Wnt signaling cascades can be broadly classified into canonical and 

non-canonical pathways as determined by the composition of the 

Wnt/Frizzled complex. A critical and heavily studied Wnt pathway is the 

canonical Wnt/β-catenin signaling pathway, which functions by regulating the 
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amount of transcriptional co-activator β-catenin that controls key downstream 

developmental gene expression programs. The phosphorylation status and 

degradation of cytoplasmic β-catenin and its regulation by Wnt proteins are 

the essence of canonical Wnt/β-catenin signaling. Regulation of Wnt/β-

catenin signaling occurs at several different levels to ensure that cytoplasmic 

levels of free β-catenin protein remain low. For simplicity, the Wnt/β-catenin 

signaling activity can be viewed as being in a dichotomous state of either “Off” 

or “On” (Figure 1.2).  

1.7.1 Wnt/β-catenin signaling: “Off”-state 

 In the absence of Wnt ligands or stimulus, β-catenin is recruited into a 

multiprotein “destruction complex”. This destruction complex consists of Axin1 

(or Axin2 homologue) that forms the central scaffold of this complex and 

provides binding sites for β-catenin, adenomatous polyposis coli (APC), 

glycogen synthase 3β (GSK3β), casein kinase Iα (CKIα), and protein 

phosphatase 2A (PP2A). Once the complex is formed, it is stabilized by the 

GSK3β-mediated phosphorylation of Axin and APC. Within the stabilized 

complex, GSK3β phosphorylates the N-terminus of β-catenin. Phosphorylated 

β-catenin is then recognized by β-transducin repeat containing protein (β-

TrCP), an F-box-containing protein, which together with Skp1, Cullin, and 

Rbx-1 constitutes the ubiquitin ligase (E3). This, together with ubiquitin 

conjugating enzyme (E2) and ubiquitin activation enzyme (E1), causes 

ubiquitination of β-catenin at lysine resides, which is subsequently destroyed 

by the proteasome system. In the nucleus, prospective Wnt target genes are 

kept in a repressed state by interacting with T-cell factor (TCF) and lymphoid 

enhancer-binding protein (LEF) transcription factors, with associated co-

repressors. Hence, in the “Off”-state, cells maintain low cytoplasmic and 

nuclear levels of β-catenin. In addition, extracellular Wnt ligands can interacts 
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with a variety of endogenous antagonists, including secreted Frizzled-related 

protein (sFRP), Dickkopf (DKK) family of proteins, and Wnt-inhibitory factor-1 

(WIF-1). All these secreted proteins can inhibit Wnt/β-catenin by sequestering 

Wnt ligands and prevent receptor-mediated activation of the pathway. 

1.7.2 Wnt/β-catenin signaling: “On”-state  

 Wnt/β-catenin signaling is triggered by the interaction of Wnt ligands 

with Frizzled receptors in the presence of the transmembrane LRP5/6. The 

association of Wnt ligands with Fz receptors and LRP5/6 initiate the 

recruitment of phosphoprotein Dishevelled (Dvl) to the cell surface, which 

subsequently recruits Axin and the “destruction complex” to the cell 

membrane, where Axin directly binds to the cytoplasmic tail of LRP5/6. Axin is 

then degraded, which decreases β-catenin degradation and a consequent 

increase in β-catenin levels in the cytoplasm. The activation of Dvl also leads 

to the inhibition of GSK3β, which further reduces the phosphorylation and 

degradation of β-catenin. Therefore, activation of Wnt/β-catenin pathway 

involves increasing the post-translational stability of β-catenin, via the 

degradation of Axin and inhibition of GSK3β. As β-catenin levels rises in the 

cytoplasm, it is translocated into the nucleus where it competes with Groucho 

(a transcriptional co-repressor of TCF/LEF) for binding with the TCF/LEF 

proteins. The TCF/LEF proteins allow β-catenin and other co-activators to 

bind to the DNA, where it forms the basis of a large complex for activating 

transcription of Wnt target genes.  
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1.8 Dysregulation of WNT Signaling in Tumorigenesis 

 Given the crucial roles of Wnt/β-catenin signaling in development and 

homeostasis, it came as no surprise that mutations of the Wnt pathway 

components are associated with many hereditary disorders, including 

cancers. The Wnt/β-catenin signaling pathway has been demonstrated to be 

the predominant driving force of stem cells of the colonic crypt, hematopoietic 

and central nervous system (Barker et al, 2007; Kalani et al, 2008; Reya et al, 

Figure 1.2. Overview of Wnt/β-catenin signaling. A, In the absence of Wnt 
(”Off”-state), cytoplasmic β -catenin forms a “destruction complex” with Axin, 
GSK3β, APC, and CKIα. Phosphorylation of β -catenin by CKIα primes 
subsequent phosphorylation events by GSK3β. Phosphorylated β-catenin is 
recognized by the E3 ubiquitin ligase β-TrCP, which targets β-catenin for 
proteosomal degradation. In the nucleus, Wnt target genes are repressed by 
transcriptional repressors such as Groucho and histone deacetylases 
(HDAC). B, In the presence of Wnt ligand (”On”-state), Fzd and LRP5/6 
forrms a receptor complex. The formation of Wnt-Fzd-LRP5/6 complex, 
together with the recruitment of the scaffolding protein Dvl, results in LRP5/6 
phosphorylation and activation and the recruitment of Axin to the cytoplasmic 
tail of the receptors. This disrupts the formation of the “destruction complex”, 
allowing β-catenin to accumulate in the nucleus where it functions as a 
coactivator for TCF/LEF to activate Wnt-responsive genes. 
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2003). In particular, tumor-initiating cells of the colon, breast and 

hematopoietic system have been shown to promote tumorigenesis through 

major contributions from aberrant Wnt/β-catenin signaling (Barker et al, 2009; 

Chen et al, 2007; Woodward et al, 2007; Zhao et al, 2007) 

 The association of dysregulated Wnt/β-catenin signaling with cancer is 

perhaps best document with colorectal cancer. APC represents the most 

frequently mutated gene among the Wnt components. Genetic defects in 

APCs results in a heritable syndrome, familial adenomatous polyposis (FAP), 

where individuals affected develop hundreds of polyps in the large intestine at 

an early age and ultimately succumb to colorectal cancer (Clements et al, 

2003). Another most commonly mutated proto-oncogene of the Wnt/β-catenin 

pathway is the β-catenin gene, CTNNB1. It is frequently reported that 

mutations of CTNNB1 occur in exon 3 and specifically disrupt GSK3β-

mediated phosphorylation. The effect of such mutations renders β-catenin not 

being able to be recognized by the “destruction complex” for degradation.  

1.9 WNT Signaling in Glioma 

 The fact that Wnt signaling is also dysregulated in multiple solid 

cancers suggests that it may also play a role in the maintenance of GPCs. A 

study by Pu et al. demonstrated that WNT2, an activator of the Wnt/β-catenin 

canonical pathway, was significantly overexpressed in gliomas and their 

expression levels correlated positively with malignancy (Pu et al, 2009). 

Similarly, higher grade gliomas were observed to express elevated CTNNB1 

expression (Liu et al, 2011b), which subsequently correlated with poorer 

prognostic impact in GBM patients (Liu et al, 2011c; Sareddy et al, 2009b). In 

addition, the expression of other Wnt regulators, including Dvl2, Dvl3, FRAT-

1, Pygo-2, TCF4, and LEF-1 and of specific Wnt target genes, CCND1 and 
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MYC, also increases with glioma grades. Of note, recent reports 

demonstrated that the knockdown of Dvl2 abrogated both the self-renewal 

ability and proliferation of gliomas and stimulated the differentiation of patient-

derived glioma samples. Tumor propagation in immune-compromised mice 

was repressed upon Dvl2 depletion.  

 In addition to regulation of the expression of the Wnt members, 

antagonists of the Wnt pathway are often repressed in GBMs and their 

expression is mostly inversely correlated with glioma grades. Frequent 

aberrant promoter hypermethylation of these Wnt antagonists, such as WIFs, 

sFRPs, and DKKs is significantly associated with GBMs. Furthermore, Zheng 

et al. identified a novel proto-oncogene PLAGL2, which is overexpressed in 

GBMs and induces GPCs proliferation and tumorigenic potential. PLAGL2 

stimulates the expression of Wnt-6, Fz-9 and Fz-2, inhibits differentiation, and 

increases proliferation of neural progenitors. PLAGL2 amplification also 

associates with elevated levels of CTNNB1 in GBMs, suggesting a possible 

role of PLAGL2 in GPCs via the regulation of Wnt signaling. Jiang et al. 

showed that hypermethylation of paternally expressed gene 3 (PEG3) 

promoter in glioma mitigates expression of PEG3 and correlates with high 

grade gliomas (Jiang et al, 2010). Upon PEG3 promoter hypermethylation, β-

catenin accumulates, resulting in GPC proliferation. A recent study by Zhang 

et al. showed that the interaction between the transcription factor Forkhead 

box M1 (FoxM1) and β-catenin promotes β-catenin nuclear localization, 

controls transcriptional activation of Wnt target genes expression and 

maintains GPC self-renewal (Zhang et al, 2011). Together, these findings 

validate the role of Wnt and activated β-catenin signaling in mediating GPC 

self-renewal.  
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1.10 Gap in knowledge 

In following chapters, we will address the following gaps in knowledge in the 

field of glioma and GPCs: 

1. We characterized patient-derived glioma-propagating cells (GPCs) 

 that are enriched in spheroid structures (gliomaspheres) and can be 

 reliably maintained through a combination of in vitro and in vivo serial 

 passaging. We seek to demonstrate that GPCs established from 

 patient tumors with similar histology are transcriptomically distinct, 

 highlighting molecular heterogeneity and the limitation of relying solely 

 on histology to diagnose and subsequently treat patients. In addition, 

 we address the question of whether using our modified method of 

 vitrification if we could reliably preserve and maintain the biological 

 phenotype and transcriptomic profiles of GPCs. This is important, as it 

 will greatly facilitate the study of GPCs as we have a reliable 

 establishment of a GPC repository for subsequent experimental 

 designs and studies. 

2. Secondly, we seek to determine the GPC contribution to patient 

 survival and prognosis by analyzing gene expression profiles of GPCs 

 derived from 2 major variant of human gliomas – the oligodendroglial 

 and GBM tumors. This is important as it will provide a direct link 

 between GPCs and disease progression, highlighting the clinical 

 relevance and applicability of GPCs. 

3. Next, we will test the hypothesis of whether Wnt/β-catenin signaling 

 (as identified in our oligodendroglial gene signature) is differentially 

 regulated between the oligodendroglial and GBM tumors. We sought 

 to investigate if the Wnt/β-catenin signaling is crucial in the survival 
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 and maintenance of GPCs through the use well-established 

 pharmacological and genetic methods. Importantly, we will investigate 

 the in vivo efficacy of β-catenin knockdown to show that Wnt/β-catenin 

 signaling is important in maintaining the tumorigenic capacity of 

 GPCs. 

4. Finally, we seek to find potential novel regulators of the Wnt/β-catenin 

 signaling implicated in differential regulation of Wnt/β-catenin signaling 

 and its requirement for the self-renewal, maintenance and survival of 

 GPCs. 
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CHAPTER 2 – MATERIALS AND METHODS 

2.1 Tissue Collection and Primary Gliomasphere Culture 

Graded brain tumor specimens were obtained with informed consent, as part 

of a study protocol approved by the institutional review board. In this study, 

NNI-1 was from a patient with recurrent GBM (grade IV) who had received 

radiation therapy, and NNI-2, 3, 4, 5, 10, 11 and12 were from patients with 

primary GBM who were treatment naive. NNI-7 and NNI-8 are GPC lines 

derived from patients with primary anaplastic oligoastrocytoma who were 

treatment-naive. All GPC lines presented in this thesis except NNI-10 and 

NNI-11 belong to the proneural subclass. NNI-10 and -11 GPCs represent the 

mesenchymal subclass based on the molecular classification by Lottaz et al. 

(Lottaz et al, 2010). Tumors were processed according to Gritti et al. (Gritti et 

al, 1996) with slight modifications. Cells were seeded at a density of 2, 500 

per cm2 in chemically defined serum-free selection growth medium consisting 

of basic fibroblast growth factor (bFGF; 20 ng/ml; Peprotech, New Jersey), 

epidermal growth factor (EGF; 20 ng/ml, Peprotech), heparin (5 μg/ml; Sigma-

Aldrich, St Louis), and serum-free supplement (B27; 1x; Gibco, Grand Island, 

NY) in a 3:1 mix of Dulbecco’s modified Eagle’s medium (DMEM; Sigma-

Aldrich) and Ham’s F-12 Nutrient Mixture (F12; Gibco). The cultures were 

incubated at 37oC in a water-saturated atmosphere containing 5% CO2 and 

95% air. To maintain the undifferentiated state of the gliomasphere cultures, 

growth factors were replenished every 2 days. Differentiation was carried out 

over 14 days in DMEM/F12 without growth factors, supplemented with 5% 

fetal bovine serum (FBS; Invitrogen, Carlsbad) and 1x B27. Successful 

gliomasphere cultures (1 to 4 weeks) were expanded by mechanical 

trituration using a flame-drawn glass Pasteur pipette, and cells were reseeded 

at 100,000 per ml in fresh medium.  
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All GPCs except Pollard lines used in this study were cultured as spheroid 

structures in serum-free media supplemented with bFGF and EGF. Although 

Pollard lines were cultured on laminin (Pollard et al, 2009), a recent molecular 

classification study showed that both culture methods preserved the biological 

and functional signaling pathways (Lottaz et al, 2010). This provides 

justification for our subsequent analyses.  

“Gunther” lines: GS-1, 3, 4, 5, 6, 7, and 8 are GBM-initiating cells whereas 

GS-2 was derived from a high-grade tumor with oligodendroglial features as 

previously described (Gunther et al, 2008). Cell lines were cultured for up to 

14 passages in vitro with preservation of transcriptomic profiles. “Pollard” 

lines: G144, 144ED, 166, 179, and GliNS2 are GBM-initiating cells whereas 

G174 was derived from a patient with anaplastic oligoastrocytoma as 

previously described (Pollard et al, 2009). Pollard lines could be cultured for 1 

year (>20 passages) with preservation of key stemness or differentiation 

expression, karyotypic hallmarks, and tumor propagation. 

2.2 Cryopreservation and thawing of gliomasphere cultures for 

viability count 

In the conventional cryopreservation method, 5, 000 gliomaspheres per ml of 

freezing media (50-100 μm diameter) were frozen in a slow-cooling protocol 

using a freezing container (Nalgene) in -80oC for 24 hours before transfer into 

-196oC liquid nitrogen storage for 30 days. Freezing media contained 

DMEM/F12 media supplemented with 10% dimethylsulfoxide (DMSO; Merck 

& Co., Whitehouse Station, NY) only; or 10% DMSO and 90% FBS. These 

samples were thawed at 37oC water bath for 1-2 minutes, washed with 

excess DMEM/F12 media before being cultured in chemically defined serum-

free selection growth medium supplemented with growth factors (DMEM/F12, 
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20 ng/ml each of bFGF and EGF, 1x B27 and 5 μg/ml heparin). Viability 

counts were carried out after incubation periods of 1, 5 and 10 days (Gunther 

et al, 2008). 

In the vitrification method (Figure 2.1 and Table 2.1), gliomaspheres from the 

same passage were subjected to either vitrification or continuous culturing 

(non-vitrified). Five thousand gliomaspheres (50-100 μm) were frozen in a 

rapid cooling protocol. Gliomaspheres were resuspended in 100 μl of holding 

medium (HM) of DMEM/F12 containing HEPES buffer (Gibco) with or without 

20% FBS before being transferred by pipetting into sequentially increasing 

concentrated vitrification solutions (VS1 and VS2). Gliomaspheres were 

incubated for 1 minute in 100 μl of VS1 consisting of 10% DMSO and 10% 

ethylene glycol (EG; Merck), followed by a 25-second incubation in 100 μl of 

VS2 consisting of 20% DMSO, 20% EG and 0.3 M sucrose. The mixture was 

immediately transferred into 0.78 mm inner diameter borosilicate glass 

capillaries (Harvard Apparatus), snap-frozen and stored in liquid nitrogen. All 

procedures were performed in an aseptic manner at room temperature.  

The following periods of freezing for vitrified cultures were evaluated prior to 

thawing: NNI-1 and NNI-2 for 30 days, NNI-5 for 8 months, NNI-4 for 1.5 

years and NNI-3 for 2.5 years. Thawing was performed in sucrose solutions 

of sequentially decreasing concentrations (SS1 and SS2). After removal from 

liquid nitrogen, the contents of the glass capillaries were released by reverse 

capillary action into SS1 containing HM supplemented with 0.2 M sucrose for 

1 minute. It was then transferred by pipetting into SS2 containing HM 

supplemented with 0.1 M sucrose and incubated for 5 minutes in HM alone. 

The mixture was washed with excess HM before being cultured in chemically 

defined serum-free selection growth medium supplemented with growth 

factors at abovementioned concentrations (DMEM/F12, bFGF, EGF, B27 and 
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heparin). Viability counts were carried out after incubation periods of 1, 5 and 

10 days (Gunther et al, 2008).  

 

 

 

 

 

 

Table 2.1. Materials and solutions used for vitrification and thawing 
procedures of patient-derived gliomaspheres. 
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2.3 Small-molecule inhibitors and reagents 

The small-molecule inhibitor of Wnt signaling, Cercosporin (Lepourcelet et al, 

2004), IWP2 (Chen et al, 2009), IWR1 (Chen et al, 2009) and XAV939 

(Huang et al, 2009) were purchased from Sigma. CCT036477 (Ewan et al, 

2010) was manufactured and synthesized by Laviania Corporation according 

to the published chemical structure. The small-molecule inhibitors of Notch 

Figure 2.1. Outline of vitrification procedure. A, Gliomaspheres are 
collected as pellet form by centrifugation. B, Gliomaspheres in DMEM-
HEPES are transferred into VS1 solution for 1 min and subsequently into 
VS2 solution for an additional 25 sec. C, Suspension of gliomaspheres in 
vitrification solution is drawn into a fine borosilicate capillary using a 
micropipettor fitted with a 200 µl pipette tip. D, Capillary filled with 
suspension of gliomaspheres is immediately plunged into a cryovial 
containing liquid nitrogen. 
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signaling, γ-secretase inhibitor (Wolfe et al, 1998) and DAPT (Hovinga et al, 

2010) were purchased from Sigma. TGFβR1 inhibitor, SB525334 (Grygielko 

et al, 2005) was procured from TOCRIS bioscience. GPCs were treated at 10 

µM for IWP2, IWR1, XAV939, γ-secretase inhibitor, DAPT, and SB525334, 

and at IC50 concentrations for Cercosporin and CCT036477. TGFβR1, used 

at 200 pM, was obtained from R&D.  

2.4 Cell Viability Assays 

2.4.1 Dose-response curves and IC50 calculations 

Gliomaspheres were dissociated into single cells with AccutaseTM 

(eBioscience Inc., San Diego; non-trypsin-based) and seeded into 96-well 

plates, at a density of 200 cells/µl, with DMEM/F12 medium supplemented 

with growth factors. Cells were allowed to recover over two to three days prior 

to drug treatment. Cell viability post-drug treatment was assessed using 

alamarBlue® (Serotec, Oxford, UK). Briefly, cells were incubated with 10% 

culture volume of alamarBlue® for approximately 16 hours before absorbance 

readings were measured at 570 and 600 nm. Dose response curves for each 

line were generated using GraphPad Prism (GraphPad Software, Inc; USA) 

and IC50 values were computed from 12-point titration curves ranging from 

10-4 to 102 μM. 

2.4.2 Cell viability assessment post lentiviral transduction of GPCs 

Lentivirus-infected GPCs were plated into 96-well plates at a density of 2, 500 

cells/well. Cell viability was quantified using the alarma Blue® cell viability 

assay at 5, 10, and 15 days post-infection. Cell viability at each time point 

was normalized to the cell viability at time zero.  
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2.5 Quantitative real time RT-PCR 

Real-time polymerase chain reaction (PCR) was carried out according to the 

manufacturer’s protocol for the LightCycler Fast- Start MasterPLUS SYBR 

Green I real-time PCR kit (Roche Diagnostics, Basel, Switzerland, 

http://www.roche-applied-science.com). A standardized amount of 50 ng of 

cDNA was used for each PCR. The PCR was carried out with specific 

oligonucleotide primer pairs at the optimized annealing temperatures stated 

(supporting information Table 1). Cycle parameters on the LightCycler (Roche 

Diagnostics) were 38 cycles of 95°C for 10 sec, 55°C for 10 sec, and 72°C for 

5 sec. Each real-time PCR was done in triplicate, and the level of expression 

of each gene was determined relative to the normalizer gene, hypoxanthine 

phosphoribosyltransferase (HPRT). Gene-specific primers (with melting curve 

analysis performed to ensure a single product was formed) used in this study 

are shown in Table 2.2. 

 

 

 

 

Table 2.2. Intron-exon-spanning, gene-specific primers used for 
quantitative real time RT-PCR 
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2.6 Immunofluorescence Analyses 

Gliomaspheres from vitrified and non-vitrified conditions were dissociated into 

single cells using AccutaseTM (eBioscience Inc., San Diego; non-trypsin-

based) and seeded at a cell density of 2 x 104 cells per well (stemness 

markers)/ 1 x 104 cells per well (differentiation markers) 1 x 104 cells per well 

(nuclear β-catenin staining) of laminin-coated (Sigma-Aldrich) eight-well 

culture slides (BD Biosciences, San Diego). Plated cells were fixed with 4% 

paraformaldehyde (Sigma-Aldrich) for 30 minutes, permeabilized with 0.1% 

Triton X-100 (Sigma-Aldrich) for 2 minutes, blocked with 5% FBS for 1 hour, 

all at room temperature and stained for the following markers. 

Stemness markers. The undifferentiated cells (stem state) were stained for 

Nestin (Chemicon), Oct4 (Santa Cruz Biotechnology Inc., Santa Cruz, CA), 

Musashi-1 (Chemicon), and Ki-67 (Chemicon). As negative controls, isotypes 

of respective antibodies were used. In events where no appropriate isotype is 

available, incubation with secondary antibody conjugated to Alexa-Fluor-488 

or -594 (Molecular Probes, Eugene, OR) was carried out. The cells were then 

counterstained with 4’6-diamidino-2-phenylindole (DAPI, 100 mg/ml, Sigma-

Aldrich) to visualize the nuclei. 

Multipotentiality markers. Induction of differentiation was carried out with 

DMEM/F12 in the absence of growth factors and supplemented with 5% FBS 

and 1x B27. After 14 days, differentiated cells were stained for neurons 

(neuron-specific class III beta-tubulin, TuJ1; Chemicon), astrocytes (glial 

fibrillary acidic protein, GFAP; Dako, Glostrup, Denmark), and 

oligodendrocytes (O4; Chemicon).  

Nuclear β-catenin staining. Undifferentiated states of GPCs were stained 

for active β-catenin (8E7, 1:1000; Millipore, #05-665) overnight at 4oC and 
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incubated with Alexar-Fluor-488 secondary antibody. The cells were then 

counterstained with 4’6-diamidino-2-phenylindole (DAPI, 100 mg/ml, Sigma-

Aldrich) to visualize the nuclei. 

2.7 Limiting Dilution Assay 

Gliomaspheres were dissociated into single cells by AccutaseTM. The cells 

were then dispensed into each well of a 96-well plate at decreasing cell 

numbers of 100, 80, 60, 40, and 20. Sphere formation was scored 7 days 

after seeding. To carry out sequential minimal dilution assays, the secondary 

gliomaspheres were similarly dissociated into single cells and then dispensed 

into each well of a 96-well plate at similar decreasing numbers. Tertiary 

gliomasphere formation was scored 7 days after seeding. Sequential minimal 

dilution experiments were carried out for at least 3 passages.   

2.8 Gliomasphere Formation Assay 

For analysis of GPC frequency, gliomaspheres were dissociated into single 

cells by AccutaseTM (eBioscience) and 30 cells were subsequently flow-sorted 

into each well of 96-well plates. Cells were then treated with indicated 

amounts of drugs, or DMSO as a vehicle control. Gliomasphere-forming 

ability and gliomasphere sizes were determined after 7, 14, and 21 days. A 

bona fide gliomasphere is defined as a single sphere of diameter exceeding 

20 μm. Scoring and diameter measurements were performed using Nikon 

Eclipse Ti Microscopy, accompanied with digital camera (DS-Qi1) and NIS-

Element Imaging Software (Nikon Instruments Incoporation; New York, USA). 

2.9 Luciferase Reporter Assay 

L-Wnt-STF cells (obtained from A/Prof. Lawrence Lum, Department of Cell 

Biology, University of Texas Southwestern Medical Center, USA) were 
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generated by transfecting L-Wnt cells (ATCC) with SuperTopFlash (STF) and 

SV-40 Renilla luciferase plasmids and selecting for clones resistant to G418 

and Zeocin. Briefly, 5, 000 L-Wnt-STF cells were seeded into each well of a 

96-well plate, and individual Wnt inhibitors were added 24 hr later into each 

well. Firefly and Renilla luciferase activities, as indicated by relative 

luminescence units (RLU) were determined 24 hr later using Dual-Glo 

luciferase assay kit (Promega) according to the manufacturer's instructions.  

2.10 Flow Cytometry 

Gliomaspheres were dissociated with AccutaseTM and stained with anti-

CD133/2-allophycocyanin (APC) and IgG1 isotype (negative control) 

according to manufacturer’s instructions (Miltenyi Biotech, Bergisch 

Gladbach, Germany). Dead cells were distinguished by propidium iodide 

staining. A total of 10000 events were acquired on the FACSCalibur (BD 

Biosciences). Data were plotted using FlowJo software (Treestar, Ashland, 

OR). 

2.11 Stereotaxic Intracranial Implantations of NOD/SCID gamma (NSG) 

Mice 

Mice were treated according to the guidelines of the Institutional Animal Care 

and Use Committee, National Neuroscience Institute, Singapore. 

Tumorigenicity was determined by injecting GPCs from dissociated 

gliomaspheres orthotopically in NOD/SCID gamma (NSG, NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ JAX®, The Jackson Laboratory, Maine) mice. Five 

hundred thousand cells in 2 μl of phosphate-buffered saline were delivered 

into the right frontal lobe (0.1 μl/ minute) by stereotaxic injection through a 

glass electrode connected to a Hamilton syringe (Narishige, Toyko). The 

coordinates used were +2 mm mediolateral, +1 mm anteroposterior and -2.5 
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mm dorsoventral. Mice were euthanized by means of transcardiac perfusion 

with 4% paraformaldehyde upon presentation of neurological deficits with 

ataxia, cachexia, lethargy, or seizure. Where secondary cultures were 

generated, non-perfused tumors were surgically removed, avoiding mouse 

tissue and dissociated into single cells using AccutaseTM and treated as 

described in our previous work (Chong et al, 2009). For intracranial 

transplantation of lentiviral transduced GPCs, 500,000 cells were lentivirally-

transduced with pLKO.1-β-catenin knockdown constructs [clones: shβcat1 

(TRCN0000003843) and shβcat2 (TRCN0000003844)] from Open 

Biosystems or a non-targeting (NT) control shRNA (SHC002, Sigma), and 

packaged with pLenti-X-packaging system according to the manufacturer’s 

instruction (Clontech). Animals were monitored for time to development of 

neurological deficits. Kaplan-Meier survival analyses were carried out using 

the log-rank test in GraphPad Prism software. 

2.12 Immunohistochemistry 

Hematoxylin-and-eosin staining and immunohistochemistry were performed 

on 5 μm-thick paraffin sections. Antibodies used for primary tumor or tumor 

xenograft paraffin sections included: (1) Mouse monoclonal anti-active β-

catenin (1:300, Millipore, #05-665); and (2) Rabbit polyclonal anti-CD133 

(1:500, Abcam, ab19898); anti-activated Notch (1:500, Abcam, ab8925); anti-

MITF (1:200, Sigma, HPA003259) and anti-phospho-Smad2 (Ser465/467) 

(1:50, Millipore, AB3849). 

2.13 Karyotypic Analysis of Gliomaspheres 

Two million cells from dissociated gliomaspheres were cultured in a T-25 flask 

(BD Biosciences). The cells were then treated within 3-5 days with 0.1 μg/ml 

colcemid (Invitrogen) for 24 hours. Metaphase-arrested cells were pelleted 
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(180g for 10 minutes) and hypotonic-treated with 0.075 M potassium chloride. 

Chromosomes were fixed in methanol:acetic acid (3:1), re-centrifuged and 

resuspended in fixative. Twelve μl of the fixed cell suspension was dropped 

on a clean, moistened glass slide and place on a hot plate at 48oC to obtain 

chromosome spreads. Spectral karyotyping (SkyPaint; Applied Spectral 

Imaging, Israel) was performed on metaphases according to the 

manufacturer’s instructions. 

2.14 Immunoblot analysis 

GPCs were harvested and pelleted prior to lysis with radio-

immunoprecipitation assay (RIPA) buffer containing 0.5% sodium 

deoxycholate, 1% NP-40 detergent, 0.1% sodium dodecyl sulphate, 0.15 M 

NaCl, 10 mM Tris-HCl (pH 7.4), with protease and phosphatase inhibitor 

cocktail tablets (Roche). Equal amounts of protein lysate were resolved by 

SDS-PAGE and electrotransferred onto polyvinylidene difluoride (PVDF) 

membranes. Membranes were processed according to standard procedures 

and proteins detected using the imaging system, SYNGENE G:Box, 

iChemiXT. The following antibodies were used: Anti-active β-catenin (8E7, 

1:1000; Millipore, #05-665), anti-β-catenin (1:1000, BD Transduction 

Laboratories, #610153), anti-cleaved Notch 1 (NICD; 1:1000; Cell Signaling, 

#2421), anti-phospho-Smad2 (Ser465/467; 1:1000; Cell Signaling, #3108), 

anti-Smad2 (1;1000; Cell Signaling, #3122), anti-phospho-Smad3 

(Ser423/425; 1:1000; Millipore, #07-1389), anti-Smad3 (1:1000; Cell 

Signaling, #9523), anti-MiTF (C5, 1:1000; Abcam, #ab12039) anti-β-actin 

(AC-15, 1:10000; Sigma Aldrich, A5441). Goat anti-mouse or anti-rabbit 

horseradish peroxidase (HRP)-conjugated secondary antibody (1:10000, ECL 

Amersham Biosciences; Buckinghamshire; UK) was used.  
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2.15 Co-immunoprecipitation assay 

Protein lysates were pre-cleared by incubating 1 mg of protein with sepharose 

beads (Protein A-Sepharose®; Zymed Laboratories Inc,; San Francisco; 

USA) for 30 min. Subsequently, protein lysates were incubated overnight with 

agitation at 4oC using 5 μg anti-β-catenin (E-5, Santa Cruz, #sc-7963) or anti-

LEF-1 (N-17, Santa Cruz, #sc-8591).  Fresh sepharose beads were then 

added to the protein-antibody mixture and incubated at 4oC with agitation for 

another 4 hrs for protein-antibody complex to bind to the beads. Sepharose 

beads were collected and washed 3 times with lysis buffer. The beads were 

subsequently resuspended in 5x SDS loading buffer and boiled for 10 

minutes prior to gel loading. 

2.16 Lentiviral Transduction 

Human lentiviral shRNA clones (Sigma Mission RNAi) targeting β-catenin 

[Clones: shβcat1 (TRCN0000003843) and shβcat2 (TRCN0000003844)], 

MITF [Clones: shMITF(C1) (TRCN0000019122) and shMITF(C2) 

(TRCN0000019123)], scrambled non-targeting control (SHC002) and 

TurboGFP positive control (SHC003) were purchased from Sigma. These 

vectors were co-transfected using the Lenti-XTM HTX Packaging System 

(Clontech, CA, USA) into HEK293FT cells according to the manufacturer’s 

instruction (Clontech). Viral titer of supernatant collected was determined 

using Lenti-X™ p24 Rapid Titer Kit (Clontech) according to manufacturer’s 

instructions. 

2.17 Statistical Analysis 

Data are expressed as means ± standard error of the mean (SEM) of at least 

3 independent experiments. Student’s t or Mann-Whitney U test was used 

where appropriate. P ≤ 0.05 was accepted as statistically significant.  
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Bioinformatics Analyses (with help from Edwin Sandanaraj, SICS) 

2.18 Processing of microarray data, gene signature generation and 

pathway analysis 

Affymetrix U133 Plus 2.0 CEL files were mas5 processed and quantile 

normalized in the R statistical software using the affy packages (Gautier et al, 

2004; Team, 2009).  Probes with ‘Absent’ call in all samples were removed.  

Microarray data were obtained from the Gunther (Gunther et al, 2008) and 

Pollard (Pollard et al, 2009) publications and were processed similarly.  To 

understand the transcriptomic differences between oligodendroglial gliomas 

and GBM, a linear model was fitted with batch correction using the limma 

package (Gentleman R, 2005).  Additionally, a linear model was applied to 

gene expression data of NNI-8 GPC cells and its primary tumor.  For both 

analyses, probesets with adjusted p-value ≤ 0.05 were considered significant 

and used as inputs for pathway analysis in MetaCore from GeneGo, Inc.  

Significantly enriched process networks and canonical pathways were 

analyzed and top ranking results were reported. All array platform gene 

annotation was derived from Biomart . Raw and processed data are available 

on the GEO public database: GSE31545 

To further interrogate the oligodendroglial feature of glioma, we defined an 

“oligodendroglial GPC signature” using a log ratio cut-off of 0.8. Similarly, the 

“NNI-8 GPC versus tumor” stemness signature was obtained by taking the 

top ranking differentially expressed probesets using the log ratio cut-off of 6. 

These signatures were used in the Connectivity Map analysis.   

2.18.1 Connectivity Map analysis 

We adapted the Connectivity Map method (Lamb et al, 2006) to score glioma 

gene expression databases based on the extent of pathway activation 
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associated with our GPC gene signature. (i) First, we defined an 

“oligodendroglial GPC signature” – a set of genes exhibiting altered 

expression between two cell states (oligodendroglial GPC versus GBM GPC), 

(ii) Second, we generated databases of reference gene expression profiles 

from 2 glioma databases – REMBRANDT and “Gravendeel” (Gravendeel et 

al, 2009; Madhavan et al, 2009), (iii) Third, using a non-parametric, rank-

based pattern matching procedure, we mapped the GPC signature onto each 

patient gene expression profile and calculated activation scores based on the 

strength of association to the GPC signature, and finally, (iv) The patients 

were sorted according to their pathway activation scores.  Two patient 

classes were identified, (+) and (-), where a positive activation score indicates 

that the patient gene expression profile is positively associated to the gene 

signature and vice versa. The two-tailed test p-values associated with each 

activation score were calculated as described in Lamb et al. (Lamb et al, 

2006).  P-values ≤ 0.1 were considered significant.  

2.18.2 Reference profile generation for Connectivity Map analysis 

Public GBM datasets with clinical data, in terms of survival length, histology, 

grade and age were obtained from the REMBRANDT database  and the GEO 

database in the case of the Gravendeel dataset (GSE16011).  To generate 

the reference profiles, all raw files were processed separately using the mas5.  

Expression values less than the threshold value of 50 were replaced with the 

threshold value.  Next, the data was quantile normalized and gene expression 

values were row-wise median centered.  Median centering each probeset 

allows us to study the range of gene expression values in a large dataset. 

2.18.3 Survival analysis 

Kaplan-Meier and Cox regression analysis of (+) and (-) groups were done in 

R using the survival package (Burkhardt et al, 2011).  For the REMBRANDT 
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dataset, only survival ranges were available.  Hence, the lower limit of the 

range was used in this analysis.   

2.18.4 Prediction of Phillips Classification in REMBRANDT and 

Gravendeel datasets 

To classify the REMBRANDT and Gravendeel samples according to the 

Phillips et al. classification (Phillips et al, 2006a), Affymetrix U133A probes for 

the Phillips molecular subtypes were extracted from the publication.  A 

shrunken centroid model was trained and tested on the Phillips dataset 

(Supplementary Table S1; overall error rate 0.12) using the R package pamr 

(Tibshirani et al, 2002).  Next, classification of the REMBRANDT and 

Gravendeel datasets was performed using the trained model. 

2.18.5 REMBRANDT SNP array processing and 1p/19q LOH analysis 

CEL files from the Affymetrix 100K SNP Arrays of oligodendroglioma and 

oligoastrocytoma patients were downloaded from the REMBRANDT database 

and all samples were normalized in dChip (Li & Wong, 2001; Lin et al, 2004).  

Genotyping calls were generated in the Affymetrix Genotyping Console 

(Affymetrix Inc.) software using the BRLMM algorithm.  Chromosome 1p and 

19q loss-of-heterozygosity inference was performed using an HMM algorithm 

in dChip with default parameters. 

2.18.6 Gene Set Enrichment Analysis (GSEA) 

The gene signature was further evaluated in molecular signature database 

using gene set enrichment approach. GSEA tool was downloaded from Broad 

Institute portal. The significantly enriched genesets in molecular signature 

database (MSigDB) were further analyzed for phenotypic correlation in the 

reference datasets. 
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CHAPTER 3 – CRYOPRESERVATION OF GLIOMASPHERES 

DERIVED FROM HUMAN GLIOBLASTOMA MULTIFORME 

3.1 Introduction and objectives 

 Gliomas represent the most prevalent of primary adult malignant brain 

tumors, with GBM exhibiting the worst prognosis and mean survival period of 

15 months post-diagnosis (Louis et al, 2007). The highly recurrent, infiltrative 

and heterogeneous nature of the disease has prompted much research into 

the origin of gliomas to develop more effective therapeutic targeting. In 

lineage-tracing mouse modes, a cellular hierarchy exists where neural stem 

cells propagate tumor-causing mutations or deletions in key tumor suppressor 

genes (Alcantara Llaguno et al, 2009; Zheng et al, 2008). Such findings 

underscore the difficulty in eradicating GBM growth at its root. In vitro, glioma-

propagating cells (GPCs) derived from clinical material are purportedly 

enriched in tumor-initiating cells (Galli et al, 2004). This makes future studies 

using GPCs as a cellular platform very important for recapitulating the 

disease pattern. We and others have shown that patient-derived GPCs 

contain phenotypic, karyotypic and transcriptomic information that dictates 

primary tumor behavior (Chong et al, 2009; Foong et al, 2011; Ng et al, 

2012). Importantly, GPCs recreate orthotopic xenograft tumors that mirror the 

patient’s original tumor phenotypically and transcriptomically. In this chapter, 

we describe our foundational work at establishing a well-characterized GPC 

repository. 

 In many studies involving the prospective isolation of GPCs, only a 

small amount of clinical material is available, and this limitation is 

compounded by a lack of methods to preserve such cells at convenient time 

points. In gliomas for instance, it has been shown that in vivo serial passaging 

of gliomaspheres [spheroid structures containing a heterogeneous mix of 
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glioma stem and progenitor cells (Reynolds & Rietze, 2005; Singec et al, 

2006)] can provide a means to reliably maintain such primary cell lines (Galli 

et al, 2004). However, in practice it is not always possible to have access to 

suitably-aged immune-compromised animals to continuously maintain the 

stem and progenitor cells. Lee et al. demonstrated that tumor stem-like cells 

grown in serum-free condition closely mirrors the genotype, gene expression 

profile and biology of their parental tumors (Lee et al, 2006). In contrast, the 

frequently studied, commercially procured serum-grown glioma cells (typically 

purchased from American Type Culture Collection, ATCC) often contain 

karyotypic aberrations not found in the primary tumor (Li et al, 2008). 

Furthermore, we and others showed that xenografts established from patient-

derived GPCs, but not serum-grown glioma cells, recapitulate the patient’s 

original pathophysiology (Figure 3.9) (Chong et al, 2009; Li et al, 2008; Ng et 

al, 2012; Wakimoto et al, 2012). These observations bring into question the 

relevance of standard serum-grown cancer cell lines for studying the biology 

of human cancers and for screening new therapeutic agents. We therefore 

sought to explore a novel method of vitrification for gliomaspheres that is 

effective at preserving the cells’ biological and genetic properties. We believe 

this method could provide many researchers with the means to establish a 

repository of primary GPCs that can be readily tapped upon for expansion or 

experimental design. In addition, such a method would also allow 

investigators to return to the same experimental cell line passages to reduce 

variability in experimental replication. 

 We explored vitrification for the following reasons: Vitrification is a 

process of glass-like solidification in which an aqueous solution is prevented 

from crystallization by rapid cooling (Rall et al, 1987). Vitrification has been 

commonly used for the cryopreservation of embryos at different 
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developmental stages from various species such as murine, rabbit, sheep 

and bovine (Ali & Shelton, 1993; Kasai et al, 1992; Kasai et al, 1990; Saha et 

al, 1996). Furthermore, human and mouse multi-cell embryos have been 

successfully cryopreserved using this strategy (Mukaida et al, 1998). This 

highlights the feasibility of cryopreserving cell aggregates. In addition, it has 

been demonstrated that vitrified embryonic stem cells retained their 

pluripotency and viability upon thawing (Reubinoff et al, 2001). Taken 

together, vitrification could provide an effective means of storage of GPCs 

cultured as spherical structures (i.e. gliomaspheres). To assess the efficacy of 

such a method, we compared vitrification with the most commonly and easily 

utilized method in labs, i.e. serum-containing medium with 10% 

dimethylsulfoxide (DMSO). We scored for parameters such as sphere-forming 

ability (GPC frequency) and sphere size (proliferation). The neurosphere 

assay has been well-studied for the maintenance and propagation of neural 

stem cells (Reynolds et al, 1992), and has been successfully adapted for 

GPCs (Galli et al, 2004). Additionally, serial sphere propagation reliably 

maintains GPC frequency (Reynolds & Rietze, 2005). We also assessed the 

expression of stemness and differentiation markers, gene expression profiles, 

as well as the retention of karyotypic hallmarks, and the ability to engraft and 

form orthotopic tumors that recapitulate the pathophysiology of the patient’s 

original tumor. These criteria define GPCs phenotypically and functionally 

(Rich & Eyler, 2009). 
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3.2 Vitrification maintains the morphology, viability and proliferation 

rate of gliomaspheres 

 An important criterion for efficacious vitrification is the preservation of 

cellular properties upon thawing after long-term cryopreservation. We 

analyzed essential properties such as viability, expression of stem cell 

markers and multipotentiality. All patients’ lines generate free-floating 

gliomaspheres except for NNI-4 and NNI-11 which generate semi-adherent 

spheres. Such morphological characteristics have previously been observed 

by others (Beier et al, 2007). The reasons are unclear but semi-adherent 

cultures, often displaying cells with neurite outgrowths, may represent more 

differentiated cells.  

 Gliomaspheres were frozen either conventionally in a slow-cooling 

protocol with 10% DMSO in the presence or absence of 90% FBS, or vitrified 

in 20% serum or serum-free medium by exposing glass capillaries containing 

gliomasphere aggregates to liquid nitrogen. The cell aggregates were then 

stored in liquid nitrogen for 30 days to as long as 2.5 years to mimic long-term 

storage prior to analyses. We assessed the viability of gliomaspheres at 1, 5 

and 10 days post-thawing from liquid nitrogen storage by counting the 

number of gliomaspheres measuring at least 50 – 100 µm in diameter 

(Gunther et al, 2008). Gliomasphere formation has previously been shown to 

indicate GPC frequency and proliferation (Diamandis et al, 2007; Gal et al, 

2007).  A visual scan of cellular morphology indicated that vitrification with low 

serum best maintains initial frozen gliomasphere size with little or no cell 

death, with cells remaining relatively undifferentiated for up to 15 days in 

culture (Figures 3.1  and 3.2). Cryopreservation by vitrification lacking serum, 

or by conventional freezing with 10% DMSO showed greater cell death and 

vastly smaller gliomaspheres compared to non-vitrified cultures, suggesting 
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sphere disintegration (Figure. 3.1). We could not recover sufficient cells for 

further analyses due to extensive cell death. Standard freezing with 90% FBS 

yielded the best viability and preservation of spheroid structures for all the 

samples except NNI-2 where vitrification with 20% serum yielded the best 

viability (Figure 3.2ii). However, the peripheries of all gliomaspheres 

cryopreserved in 90% FBS exhibited clear signs of differentiation by 5 and 10 

days post-thawing (Figure 3.1xi and xii). Our finding indicates that freezing 

with 10% DMSO + 90% FBS is an attractive alternative that should be 

explored in future studies. Encouraged by the good viability and lack of visual 

differentiation demonstrated by vitrified gliomaspheres, we proceeded with 

our analyses by comparing vitrified and non-vitrified samples. Proliferation 

rate as determined by using a standard alamarBlue® assay showed that all 

vitrified and non-vitrified gliomaspheres continued to proliferate at similar 

rates except for NNI-3 which displayed a moderate but significant change 

(Figure 3.3).  
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Figure 3.1. Vitrification results in greater viability and absence of 
differentiation in gliomaspheres after thawing. Gliomaspheres were 
frozen by various methods: i-iii, vitrification with 20% serum; iv-vi, 
vitrification without serum; vii-ix, 10% DMSO; x-xii, 10% DMSO + 90% 
serum. After storage in liquid nitrogen for 30 days (vitrification with 20% 
serum and without serum, 10% DMSO, and 10% DMSO + 90% FBS) and up 
to 2.5 years (vitrification with 20% serum only), the gliomaspheres were 
thawed and subjected to morphological analyses while in culture under 
serum-free conditions supplemented with growth factors. Shown are 
representative images obtained from one patient’s gliomasphere line, NNI-1. 
Note the appearance of extended processes (indicated by arrows) at the 
periphery of the spheroid structure (typical signs of differentiation) on days 5 
and 10 of the sample frozen with 90% FBS (arrows). Scale bar = 100 µm. 
Experiments carried out in duplicate. 
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Figure 3.2. Quantitative analysis of viability and signs of differentiation 
10 days post-thawing. Conventional cryopreservation with 10% DMSO + 
90% FBS yielded best viability post thawing in majority of the gliomasphere 
lines (i, iii, iv, v) except NNI-2 (ii). Signs of differentiation post-thawing were 
scored and the proportions were represented as grey bars for each freezing 
condition. Cryopreservation with 10% DMSO + 90% FBS showed highest 
number of differentiated gliomaspheres 10 days post-thawing (i, iv, v) 
compared to vitrification with 20% FBS. 
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Figure 3.3. Vitrification maintains the proliferative capacity of 
gliomaspheres. Patient’s gliomaspheres (i-v) were subjected to vitrification, 
and proliferation rate compared to gliomaspheres without vitrification (non-
vitrified) was determined using a standard alamarBlue® assay. *p<0.05, n=3. 
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3.3 Vitrification preserves the stemness expression and 

multipotentiality 

 Markers of the stemness state such as Nestin, Sox-2, CD133, 

Musashi-1 (Msi-1), Bmi-1, Nanog and Oct4 were assayed by quantitative real-

time qRT-PCR. Differentiation markers such as TuJ1, MOBP and GFAP were 

also evaluated as gliomaspheres are heterogeneous and comprise of more 

differentiated progenitors in addition to bona fide stem cells (Reynolds & 

Rietze, 2005; Singec et al, 2006). Nestin is expressed in neural precursors 

(Cai et al, 2002); Sox-2 is a gene known to play a role in maintenance of the 

neural progenitor state (Graham et al, 2003); CD133 is a marker for neural 

stem cells as well as glioma-propagating cells (Singh et al, 2004; Uchida et al, 

2000); Msi-1 is a marker for self-renewal (Kaneko et al, 2000) ; Bmi-1 is a 

Polycomb group (PcG) gene and epigenetic silencer that prevents premature 

growth arrest in most differentiated tissue cells and is essential for the self-

renewal of several types of adult stem cells (Lessard & Sauvageau, 2003; 

Park et al, 2003); Nanog is a transcription factor essential for the 

maintenance of an undifferentiated state (Ivanova et al, 2006), and Oct4 is a 

transcription factor implicated in maintaining the pluripotency of stem cells 

(Mountford et al, 1998). TuJ1 marks neurons, MOBP represents myelin-

associated oligodendrocytes basic protein and GFAP marks astrocytes.  

 We observed that vitrification preserved the expression of essential 

stem cell markers for patient samples NNI-2, NNI-4 and NNI-5 (Figures 3.4A, 

C and D). Between vitrified and non-vitrified samples, expressions of Nestin, 

CD133, Bmi-1, Nanog and TuJ1 for NNI-1 were minimally altered by less than 

two-fold (Figure 3.4B), but there was significant variation in virtually all genes 

examined for NNI-3 (Figure 3.4E). We will provide justification later for this 

variation (Page 70). 
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 Additionally, we carried out immunofluorescent staining experiments 

to verify the stemness and multipotentiality profiles of the vitrified and non-

vitrified samples. All patients’ gliomaspheres demonstrated preservation of 

stem-like characteristics in vitrified and non-vitrified samples (Figures 3.5A 

and 3.6). As cell morphology changes accompany the induction of 

differentiation of neural stem cells, we assessed multipotentiality by scoring 

for neurons (TuJ1), astrocytes (GFAP) and oligodendrocytes (O4). All 

samples displayed the ability to differentiate into neurons, astrocytes and 

oligodendrocytes (Figures 3.5B and 3.6). Furthermore, we scored for 

differentiated cells staining positively for Nestin and Msi-1 stemness markers 

Figure 3.4. Vitrification preserves essential neural precursor gene 
expression. (A-E): Quantitative real-time RT-PCR analysis of five patients’ 
gliomaspheres. The undifferentiated states of both vitrified and non-vitrified 
gliomaspheres were analyzed for the presence of stem/progenitor and 
differentiation markers. *p<0.05; **p<0.01, n=3. 
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to determine the retention of self-renewal in otherwise normally terminal 

differentiated neural lineages, an aberrant developmental feature previously 

observed by others (Galli et al, 2004; Hemmati et al, 2003; Yuan et al, 2004). 

We also scored for cells co-expressing GFAP and TuJ1. All patients’ 

gliomaspheres when differentiated showed no significant differences between 

the vitrified and non-vitrified states, supporting that vitrification preserves the 

multipotentiality property of the cells (Figure 3.6). We observed that all 

samples displayed 70-95% Nestin- and Msi-1-stained cells despite being 

cultured under differentiating conditions (Figure 3.5B). This may in turn 

reflect an aberrant regulatory pathway in cancer stem cells. Differentiated 

cells were detected that co-stained for GFAP and TuJ1; notably, NNI-4 

differentiated cells expressed the highest proportion of such cells (Figure 

3.6). Others have also demonstrated the co-existence of such normally 

distinct neural development pathways (Galli et al, 2004; Hemmati et al, 2003; 

Singh et al, 2003; Yuan et al, 2004). 
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Figure 3.5. Vitrification preserves stemness and differentiation 
markers expression. Immunofluorescent staining of representative 
vitrified patient sample NNI-1 with (A) stem cell/precursor or proliferative 
markers (Nestin, Msi-1, Oct4, and Ki-67) and (B) multipotentiality markers 
(TuJ1, GFAP, and O4). Scale bar = 50 µm. 
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Figure 3.6. Vitrification maintains stemness and multipotentiality in 
GPCs. Quantification of immunofluorescent staining in five gliomasphere 
lines (NNI-1, 2, 3, 4, and 5) with or without vitrification. Stemness and 
multipotentiality markers were scored. p>0.05 for all sample pairs, indicating 
that there was no significant difference between vitrified and non-vitrified 
samples; n=3. 
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3.4 Vitrified gliomaspheres demonstrate secondary sphere formation 

and self-renewal potential 

 For an effective cryopreservation method, GPCs must be reliably 

maintained and not subject to cell death upon thawing and expansion. To 

investigate the stem cell frequency and self-renewal potential of 

gliomaspheres, we dissociated gliomaspheres into single cells and dispensed 

into 96-well plates at decreasing cell numbers and then scored for secondary 

sphere formation after 7 days (Figure 3.7A). Cell clustering played no 

apparent role in sphere formation as cells were plated at clonal densities 

(Singec et al, 2006). As gliomaspheres are heterogeneous and the 

neurosphere assay does not distinguish initially proliferating neural precursors 

from bona fide stem cells with self-renewal potential, we sought to carry out 

sequential minimal dilution assays for at least three passages, which 

confirmed that these single-cell derived gliomaspheres possess the potential 

to grow infinitely, underscoring self-renewal as an important criterion for 

glioma-propagating cells. The proportion of sphere-forming cells remained 

stable throughout the course of culture (>6 months), indicating asymmetrical 

cell divisions (Lathia et al, 2011). There was no significant difference between 

the vitrified and non-vitrified samples of all patients’ gliomasphere lines except 

for NNI-3, indicating that the vitrification procedure does not reduce the 

secondary sphere-forming ability of these cells (Figure 3.7A). This implies 

that GPC frequency is maintained through vitrification. Moreover, the CD133-

expressing population within the spheres that is often associated with tumor-

initiating potential was also maintained throughout the course of culture (>6 

months; Figure 3.7B).  
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Figure 3.7. Vitrification preserves self-renewal capability and CD133 
expression in gliomaspheres. A, Gliomaspheres were dissociated into single 
cells, plated at decreasing cell numbers, and analyzed for their ability to form 
secondary gliomaspheres. p>0.05 for all sample pairs (except NNI-3, *p<0.05; 
**p<0.01) indicating that vitrified and non-vitrified samples maintained self-renewal 
capability; n=3. B, Gliomaspheres were dissociated into single cells and stained 
with CD133/2 antibody conjugated to APC according to the manufacturer’s 
instructions (Miltenyi Biotec). Percentage of CD133 expression was determined by 
fluorescence-activated cell sorting. Each vitrified or non-vitrified sample was gated 
according to its own isotype control; n=3. 
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3.5 Vitrification preserves the karyotypic hallmarks of glioblastoma 

multiforme 

 To conclusively demonstrate the tumor origin of our gliomaspheres, as 

well as to ascertain if vitrification preserves the karyotypic integrity and 

hallmarks of GBM, we karyotyped all patients’ gliomaspheres before and after 

the vitrification process. Our data indicate that all gliomaspheres were of 

tumor origin, preserved their karyotypic integrity as well as maintained the 

hallmarks of GBM in both vitrified and non-vitrified samples (Figure 3.8). 

Notably, typical GBM primary tumor features such as polysomy of 

chromosome 7 (where EGFR is located) and loss of chromosome 10 (where 

PTEN is located) were present, which is consistent with a previous report by 

Wakimoto et al. (Wakimoto et al, 2012). In addition, Lee et al. reported that 

GPCs cultured under serum-free conditions preserved the karyotypic profiles 

of the primary tumors (Lee et al, 2006). In contrast, conventional serum-

grown cells contained chromosomal aberrations not reflective of the primary 

tumors (Li et al, 2008). These findings underscore the importance of studying 

GPCs and we now have a method to reliably cryopreserve these cells. 

Interestingly, we observed aneusomy of chromosomes 12 and 13 across all 

five patients’ gliomaspheres. We were able to detect additional karyotypic 

changes in NNI-3 non-vitrified cells (Supplementary Figure S1) that had 

been in vitro passaged for the longest period compared to all other lines (> 50 

passages). It is probable that this resulted in changes in proliferation rate, 

surface marker expression, self-renewal potential and gene expression as 

previously shown, likely resulting in cell line transformation. We believe this 

highlights the importance of the vitrification method in being able to freeze 

down low passage cells, and thaw them only when needed for further 

experiments. Continued passaging in vitro to maintain the cells would be 

deleterious.  
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Figure 3.8. Vitrified gliomaspheres maintain karyotypic integrity and 
GBM hallmarks. Single 2 x 105 cells from dissociated gliomaspheres were 
karyotyped by metaphase-fluorescent in situ hybridization (mFISH) 
analyses according to the manufacturer’s instructions (MetaSystems 
XCyte mFISH). Arrows indicate polysomy of chromosome 7 and loss of 
chromosome 10. Asterisks denote aneusomy of chromosomes 12 and 13. 
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3.6 GPC-derived xenograft tumors recapitulate glioma 

pathophysiology in NOD-SCID gamma mice 

 The ability of GPCs to serially transplant and reform gliomas that 

recapitulate the original tumor pathophysiology provides unequivocal 

evidence for the definition of a cancer-initiating cell (Vescovi et al, 2006). 

Accordingly, we were able to recapitulate glioma disease patterns when we 

orthotopically implanted our vitrified gliomaspheres in immune-compromised 

mice (Figure 3.9). In this case, the NOD-SCID gamma (NSG) mouse was 

chosen for its superior ability at engrafting clinical material (Quintana et al, 

2008).  

 When we implanted NNI-1 and NNI-8 gliomaspheres, we obtained 

tumors that demonstrated extensive infiltration into the surrounding cerebral 

cortex, a pathognomonic feature of human GBMs (Galli et al, 2004; Singh et 

al, 2004) (Figure 3.9A). Intriguingly, when we implanted NNI-8 (a GPC line 

derived from a patient with anaplastic oligoastrocytoma) into NSG mice, we 

obtained glioma xenografts that were highly infiltrative and displayed the 

typical “fried egg” histology of oligodendroglial cells with “chicken wire” 

patterning of the stroma, recapitulating features present in oligodendroglial  

tumors (Cairncross et al, 1998). This emphasizes the ability of patient-derived 

GPCs to capture primary tumor behavior. This is further validated in the effort 

by The Cancer Genome Atlas (TCGA) which demonstrated that orthotopic 

xenografts established from clinical material, but not commercially procured, 

serum-grown cells (Figure 3.9B), formed xenografts that mirrored the primary 

tumor phenotype and gene expression profiles (Verhaak et al, 2010). 
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Figure 3.9. Vitrified gliomaspheres form tumor xenografts that 
recapitulate glioma pathophysiology. A, Anaplastic oligoastrocytoma 
GPC intracranial xenograft exhibited extensive infiltration, hemorrhaging 
and displayed the typical “fried egg” morphology and “chicken wire” 
patterning of stroma. Also note the migration of glioma cells along the 
white matter tract (black arrow head), typically found in patients with 
invasive glioma. Scale bar = 20 µm. B, Intracranial xenograft established 
from serum-grown U87MG displayed spatially constrained, well-lineated 
tumor margins, non-reflective of human GBM disease pathology. 
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3.7 Gene expression studies demonstrate the clustering of vitrified 

and non-vitrified gliomaspheres, and histologically similar GBM tumors 

yield GPCs of very distinct transcriptomic profiles 

 

 

  

 

 Verhaak et al. showed for the first time that histologically similar GBM 

tumors can be molecularly classified into four subgroups, each with distinct 

gene expression, genomic aberrations and clinical history (Verhaak et al, 

2010). Such findings indicate that gene expression drives glioma disease 

progression and outcome. For vitrification to be an efficient cryopreservation 

method, we would expect that vitrified and non-vitrified gliomaspheres should 

Figure 3.10. Vitrification preserves transcriptomic profiles of 
gliomaspheres. Dendrogram determined by unsupervised hierarchical 
cluster analysis of five patients’ gliomaspheres (V, vitrified and NV, non-
vitrified) cultivated under serum-free conditions supplemented with 
growth factors (S-suffix) or differentiated by withdrawal of growth factors 
with addition of serum (D-suffix). Samples with the T-suffix represent the 
original primary patient tumor specimen. 
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generate transcriptomic profiles that cluster together, indicating the genetic 

stability of the samples. We therefore performed microarray gene expression 

analyses on all five patient’s gliomasphere lines (NNI-1, 2, 3, 4, and 5; vitrified 

and non-vitrified) as well as on their differentiated counterparts (vitrified and 

non-vitrified) and primary patient tumor specimens. This gene expression 

data was also subsequently utilized in Chapter 4. Indeed, unsupervised 

clustering analysis showed that the vitrified form of each sample in the stem/ 

progenitor or differentiated state, clustered together with its respective non-

vitrified form (Figure 3.10). This supports our study that vitrification preserves 

the transcriptomic profile of GPCs.  

 Intriguingly, through Principal Component Analysis (PCA) map which 

allows us to view molecular grouping with a third dimension, thereby 

separating planes of cell groups, we observed that histologically similar GBM 

tumors yielded GPCs with very distinct transcriptomic profiles (Figure 3.11). 

This molecular heterogeneity has in recent years been emphasized in many 

cancer types (Atlas, 2008; Gerlinger et al, 2012; Ooi et al, 2009), and alludes 

to the likely reason for the frequently observed inter-patient variability to 

treatment response. 
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  Figure 3.11. Vitrification preserves genetic profiles of 
gliomaspheres, which are transcriptomically distinct from primary 
tumors and differentiated cells. Principal component analysis (PCA) 
map of gliomaspheres (free-floating and semi-adherent) and primary 
tumors showed that histologically similar GBM tumors yielded GPCs with 
distinct transcriptomic profiles. 
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3.8 Summary 

 Tissue repositories have traditionally been maintained either as frozen 

samples stored in liquid nitrogen tanks, or embedded in paraffin wax. While 

both methods of storage allow the retrieval of cellular material, it is static as it 

does not allow the isolation and subsequent cultivation of live cells from the 

stored tumor. In our study, we present data for the first time on a modified 

vitrification method for patient-derived brain tumor gliomaspheres which 

enriches for tumor-propagating cells, more commonly referred to as “cancer 

stem cells”. Such a method evaluates essential stem cell-like properties, 

multipotentiality capacity, genotypic profile and ability to recapitulate glioma 

pathophysiology. Vitrification now provides a solution to the long-term storage 

of tumor-propagating cells without the need to maintain a constant supply of 

suitably-aged immune-compromised animals to in vivo serially passage the 

cells. With the vitrification approach, a glass-like solidification of the freezing 

solution is achieved by using a high concentration of cryoprotectant and rapid 

cooling. This method eliminates cell injury due to ice crystal formation. 

Although various cryopreservation techniques have been developed for a 

range of cells such as human or mouse embryonic stem cells (Ha et al, 2005; 

Reubinoff et al, 2001) and mouse neural precursor cells (Hancock et al, 2000; 

Milosevic et al, 2005; Tan et al, 2007), these studies have largely relied on 

gross morphological appearances and have ignored examining the genetic 

profiles and quantitative analysis of cell types (both stem and differentiated 

forms) of samples. For validation of vitrification as a method of 

cryopreservation for GPCs, the cellular heterogeneity of tumor cells and their 

ability to recapitulate glioma pathophysiology would have to be taken into 

consideration. 
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 Standard freezing techniques with high serum content have been 

used in many cellular systems due to their less complex preparatory steps. 

Previous work has evaluated the use of such a method in the 

cryopreservation of human embryonic stem cells which resulted in 

differentiated outgrowths (Ha et al, 2005). Here, we demonstrated that 

although freezing with 90% FBS yielded the best viability of gliomaspheres; it 

also resulted in differentiated outgrowths. Serum contains many unknown 

growth factors and cytokines that can induce differentiation of stem cells 

when applied at high concentrations (Ha et al, 2005; Richards et al, 2004). 

Nevertheless, given the significantly better viability by the method, slow 

freezing with high serum presents an attractive alternative that should be 

explored in future studies.  

 Taken together, we have demonstrated that vitrification maintains 

essential stem/progenitor-like properties, multipotentiality and transcriptomic 

profiles. Importantly, the vitrified cells retain the capacity to form tumor 

xenografts that recapitulate glioma pathophysiology. This validates GPCs as 

a useful cellular platform for further studies. 
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CHAPTER 4 – PROGENITOR-LIKE TRAITS CONTRIBUTE TO 

PATIENT SURVIVAL AND PROGNOSIS IN OLIGODENDROGIAL 

TUMORS 

4.1 Introduction and objectives 

 Although our earlier findings indicated that in vitro low passage GPCs 

recapitulate the phenotypic and karyotypic profiles, as well as tumor 

morphology of the primary tumor, the contribution to patient survival and 

clinical outcome is unclear. To make sense of targeting GPCs and their self-

renewing function in any therapeutic design, we must first show that GPCs 

are clinically relevant, and that their presence in the primary tumor affects 

disease progression. In other words, we ask if GPCs contain genomic and 

transcriptomic information that dictates primary tumor behavior. The 

plausibility of this hypothesis has been shown in lung cancer stem cells using 

a mouse model (Curtis et al, 2010). In that instance, the combination of 

KRAS, TP53 and EGFR mutations in lung cancer stem cells determines the 

cell lineage and histotype specificity of the primary tumor, suggesting that the 

oncogenotype of GPCs drives primary tumor behavior.  

 We explored this hypothesis in 2 major brain tumor variants, GBM and 

oligodendroglial tumors, the latter of which has significantly better prognosis 

and increased chemosensitivity (Cairncross et al, 1998; Louis et al, 2007). 

Recent works have shown that these 2 tumor types are molecularly 

heterogeneous, with each subclass distinguished by unique gene expression, 

genetic aberrations, and clinical profile (Atlas, 2008; French et al, 2005; 

Gravendeel et al, 2009; Verhaak et al, 2010). These findings highlight that 

gene expression drives disease progression and survival outcome. 

Accordingly, we used gene expression analyses to explore the clinical 

relevance of GPCs isolated from GBM and oligodendroglial tumors, by 
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tapping into our own data, as well as that from publicly available GPC 

collections (Chong et al, 2009; Gunther et al, 2008; Pollard et al, 2009) to 

enlarge the statistical pool of cells. We subsequently interrogated their clinical 

contribution in 2 large patient glioma databases, REMBRANDT (Madhavan et 

al, 2009) and “Gravendeel” (Gravendeel et al, 2009). We adapted the 

Connectivity Map method (Lamb et al, 2006) to determine strengths of 

association between the GPC gene signature (that distinguished 

oligodendroglial from GBM GPCs) and individual patient gene expression 

data. This method is advantageous as it allows us to make connections 

between different data platforms and biological information through the 

common vocabulary of genome-wide expression profiling. Since then, the 

Connectivity Map has been successfully applied to determine the degree of 

oncogenic pathway activation in gastric cancer (Ooi et al, 2009). We also 

recently successfully used this method to define the tumor suppressor 

function of Parkin in glioma (Yeo et al, 2012). Furthermore, as the 1p/19q co-

deletion status is currently a clinical indicator for enhanced chemosensitivity 

of oligodendrogliomas and consequently better prognosis (Cairncross et al, 

1998), we asked if our molecularly defined GPC signature performed better. 

This would shed light on the value of molecular signatures over current 

clinical indicators in patient prognosis and treatment regimens. Finally, we 

validated the pathway networks identified by our gene signature using a panel 

of prospectively collected primary tumors. Our study in this chapter supports 

that GPC genomic and transcriptomic information dictates primary tumor 

behavior, consequently impacting on disease progression and patient survival 

outcome. 
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4.2 An oligodendroglial GPC signature is defined 

 We first determined differentially regulated genes between 3 

oligodendroglial GPCs (NNI-8, GS-2, G174) and 17 GBM GPCs collectively 

obtained from our study (Chong et al, 2009), as well as that of Gunther et al. 

(Gunther et al, 2008), and Pollard et al. (Pollard et al, 2009) (Figure 4.1). This 

differential gene list, “oligodendroglial GPC signature”, is shown in 

Supplementary Table S2. An analysis of the associated pathway networks 

using MetaCore from GeneGo Inc. revealed that the signature is enriched in 

the Wnt, Notch and TGFβ signaling pathways (Figure 4.2). Interestingly, 

Notch (Fan et al, 2010; Zhu et al, 2011), TGFβ (Anido et al, 2010; Penuelas 

et al, 2009), and the recently published Wnt (Zhang et al, 2011; Zheng et al, 

2010) signaling pathways have been shown to be crucial in maintaining the 

growth of GBM GPCs. 

 

 

 

 

 

 

Figure 4.1. Study flowchart. Oligodendroglial GPCs (NNI-8, GS-2, G174) 
and 17 GBM GPCs were collectively obtained from our study plus Gunther and 
Pollard. 
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4.3 Functional validation of the Wnt, Notch, and TGFβ pathways in 

GPCs 

 Although the Wnt, Notch, and the TGFβ pathways regulate GBM GPC 

survival, their relation to the 2 glioma variants – oligodendroglial versus GBM 

GPCs, is unclear. In the previous section 4.2, we showed that the 

oligodendroglial gene signature is enriched for the Wnt, Notch, and TGFβ 

signaling pathways (Figure 4.2); however, their precise activation or 

downregulation remains to be tested. To assess pathway activation in GPCs 

(NNI-4, 7, 8, 10, 11 and 12), we carried out two assays: (i) immunoblot 

analysis of key pathway components; and (ii) dependence on pathway by 

using well-established pharmacological inhibitors. NNI-7 and NNI-8 

oligodendroglial GPCs showed increased sensitivity to Wnt pathway 

Figure 4.2. GeneGo process networks. Top-ranking process networks 
include Wnt, Notch and TGFβ signaling pathways. 
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inhibitors, Cercosporin (Lepourcelet et al, 2004) and CCT036477 (Ewan et al, 

2010), compared with the other 2 of 3 GBM GPCs (NNI-11 and NNI-12) 

tested, consistent with the highest level of active β-catenin (nuclear-localized) 

detected (Figure 4.3Ai). Gliomasphere frequency was significantly reduced 

upon pathway inhibition, indicating that GPCs were effectively targeted 

(Figure 4.3Bi).  

 Next, we assessed the Notch signaling pathway activation in our 

GPCs. Using γ-secretase inhibitor (Wolfe et al, 1998) and DAPT (Hovinga et 

al, 2010), we observed that NNI-7 and NNI-8 oligodendroglial GPCs were 

more sensitive to pathway inhibition compared with NNI-4, -11, and -12 GBM 

GPCs (Figure 4.3Bii). Again, these findings were consistent with the 

immunoblot analysis showing the highest level of Notch intracellular domain 

(NICD) detected in NNI-8 GPCs (Figure 4.3Aii).  

 Finally, we tested the TGFβ signaling pathway by using SB525334 

(Grygielko et al, 2005). Interestingly, all three GBM GPCs showed sensitivity 

to SB525334 with up to 80% inhibition in NNI-4 (Figure 4.3Biii). A less clear 

pattern of phospho-Smad2 and phospho-Smad3 levels was observed upon 

TGFβ1 stimulation (Figure 4.3Aiii). This may reflect the redundant roles of 

various Smad proteins in GPC regulation (Penuelas et al, 2009). Our data 

indicate that GPC-forming capacity and gliomasphere size were preferentially 

targeted in GBM GPCs. 

 Collectively, our data indicate, albeit a limited panel of GPCs used, 

that Wnt and Notch signaling pathways are upregulated in NNI-7 and NNI-8 

oligodendroglial GPCs, while TGFβ pathway is active in GBM GPCs tested. 
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Figure 4.3. Functional validation of the Wnt, Notch and TGFβ 
signaling pathways in GPCs. A, Representative immunoblot analyses 
of key signaling components of the Wnt, Notch and TGFβ pathways 
using (i) active β-catenin, (ii) NICD, and (iii) pSmad2/3 respectively. 
Densitometric values of activated components compared to their 
respective controls are shown from representative immunoblots (n=3). B, 
Pathway dependence was assessed using well-established 
pharmacological agents: (i) Cercosporin and CCT036477 for Wnt, (ii) γ-
secretase inhibitor and DAPT for Notch, and (iii) SB525334 for TGFβ 
signaling pathways in a gliomasphere forming assay over 21 days (to 
detect slow-growing GPCs). Fresh aliquots of drugs and media 
supplemented with growth factors were replenished every 7 days; 
*p<0.05, **p<0.01, ***p<0.001 compared to respective DMSO controls; 
n=3. 
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4.4 The oligodendroglial GPC signature stratifies glioma patient 

survival 

 We rationalized that our hypothesis would imply that oligodendroglial 

GPCs confer a better prognosis in their primary tumors compared to GBM 

GPCs, likely because of pathway activation programs depicted in their 

transcriptomic profiles [since gene expression drives glioma disease 

progression (Verhaak et al, 2010)]. Thus, moving forward, we utilized the 

Connectivity Map to analyze the strength of association of the 

oligodendroglial GPC signature with individual patient gene expression data 

from REMBRANDT and Gravendeel. We assigned positive “(+)” and negative 

“(-)” activation scores with significant P values (Supplementary Table S3) 

and observed that the gene signature separated (+) and (-) patient cohorts 

that make up 30% to 50% of all patients in each database (Table 4.1). Most 

importantly, the gene signature stratified patient survival (Figure 4.4).  

 

 

 

 Patients with better survival composed of (+) association (i.e. more 

oligodendroglial GPC association) whereas poorly surviving patients tended 

to be of (-) association (i.e. more GBM GPC association; REMBRANDT P-

value, 1.93 E-05; Gravendeel P-value, 0.0082). The (+) activation score also 

contained more low-grade gliomas, especially enriched for 

oligodendrogliomas; whereas the (-) activation score enriched for high-grade 

Table 4.1. Summary of results from Connectivity Map, Logrank and Cox 
Regression Analysis for all patient samples. (+) represents patients with 
concordance to oligodendroglial GPC signature; (-) represents patients with 
inverse gene expression relationship to oligodendroglial GPC signature. 
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gliomas with mainly GBMs. Cox regression analysis indicated that the GPC 

gene signature served as a significant prognostic indicator and the positive 

score patients (oligodendroglial GPC-like) in REMBRANDT had 54% lower 

risk of death; the HR (95% confidence interval, CI) was 0.462 (0.322 - 0.664) 

in a univariate model (P = 2.90 E-05) (Table 4.1). Consistently, the positive 

score patients in Gravendeel were associated with 47% lower risk of death 

and the HR (95% CI) was 0.535 (0.334 – 0.856) in a univariate model (P = 

0.009). This association remains significant in REMBRANDT after adjusting 

for other clinical factors such as age and tumor grade (P = 2.22 E-05).  

 Although we did not detect a significant multivariate analysis P-value 

in the Gravendeel data set, this does not mean the absence of GPC 

transcriptome contribution to patient survival as shown in the REMBRANDT 

data set. First, most glioma databases are retrospectively generated and 

therefore, this limits our ability to assess the true predictive value of the gene 

signature. Second, a significant P-value was observed in the univariate 

analysis, highlighting the relevance of the gene signature as an alternative 

prognostic tool. Collectively, these results suggest that GPCs contribute to 

disease progression and survival outcome, thus representing that these cells 

are clinically relevant. 
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Figure 4.4. Oligodendroglial GPC signature stratifies patient survival. 
Patient survival is shown in all glioma patients in A, REMBRANDT; and B, 
Gravendeel databases. Tumor grade (“Grade”) and molecular classification 
(“Phillips”) distribution corresponding to (+) and (-) classes are shown below 
the activation score graphs. 
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4.5 The oligodendroglial GPC signature correlates with “Phillips” 

molecular classification of gliomas 

 We next attempted to strengthen our findings based on the 

Connectivity Map by asking whether our GPC-derived gene signature could 

predict glioma survival outcome similar to other existing molecular-based 

classification schemes. This would be important to further validate the 

significance of the GPC-derived gene signature in relation to disease 

progression. We applied as an independent gene expression-based 

approach, the “Phillips” classification of gliomas (Phillips et al, 2006a) which 

molecularly categorizes the tumors into three subclasses: proneural, 

proliferative, and mesenchymal. We observed that the (+) activation score 

enriched for the proneural subclass, whereas the (-) activation score tended 

to be proliferative or mesenchymal (Figure 4.4; Supplementary Table S4). 

The proneural subclass typically consists of lower grade gliomas with 

oligodendroglial features, frequently associated with better prognosis; in 

contrast, the mesenchymal subclass characterizes highly aggressive, 

recurrent gliomas such as GBM. Interestingly, recent work in a transgenic 

mouse model suggested that oligodendrogliomas are more chemosensitive 

because their cells-of-origin are oligodendrocyte precursor cells (OPCs), 

compared with the more resistant neural stem cells and astrocytes in GBM 

(Persson et al, 2010). We therefore find it intriguing that all cultured patient-

derived GPCs from multiple studies are transcriptiomically consistent with this 

hypothesis; however, we cannot definitively pinpoint the identity of GPCs due 

to their human origin. It should be noted that we chose the “Phillips” molecular 

classification scheme since that original work subclassed all gliomas (Grades 

1 to IV of astrocytic lineage), a situation analogous to our REMBRANDT and 

Gravendeel patient glioma databases. 
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 As our method above compared GPCs from a better surviving 

histology (oligodendroglial tumor) to a worse histology (GBM), we could have 

artificially biased our findings without assessing the true contribution of the 

GPC in a primary tumor. We therefore in addition derived a “stemness” gene 

signature by comparing NNI-8 GPCs to its primary tumor (Note: not 

comparing to another GPC; Supplementary Tables S5-7). This, we 

rationalized, would allow an assessment of the GPC traits within the bulk 

tumor mass, and if its presence contributed to eventual disease progression 

and survival outcome. This “stemness” gene signature similarly stratified 

patient survival, with the (+) class enriched for lower grade tumors of 

proneural classification, whereas the (-) class enriched for higher grade 

tumors with mesenchymal features (Figure 4.5). Collectively, our data 

support that patient-derived oligodendroglial GPC’s contribute to a favorable 

prognosis, likely mediated by more chemosensitive OPC-like properties 

(Figure 4.6). 
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Figure 4.5. “NNI-8 GPC versus primary tumor” gene signature 
stratifies patient survival. Patient survival is shown in all glioma patients 
in A, REMBRANDT; and B, Gravendeel databases. Tumor grade (“Grade”) 
and molecular classification (“Phillips”) distribution corresponding to (+) and 
(-) classes are shown below the activation score graphs. 

 



 

93 
 

 

 

 

 

 

 

 

Figure 4.6. Oligodendroglial GPCs express OPC markers. 
Oligodendroglial tumor GPCs (OA) of NNI-8 and Pollard reflect higher 
immature OPC marker expression: Olig2, Nkx2.2 and GalC, in comparison 
to GBM GPCs (GBM). The Gunther line expresses mature oligodendrocyte 
marker, GalC, and may reflect its diagnosis as a GBM with oligodendroglial 
features. 
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4.6 The oligodendroglial GPC signature is enriched in the Wnt, 

Notch, and TGFβ pathways in patient glioma databases 

 Our previous findings indicate that the oligodendroglial GPC signature 

is enriched in the Wnt, Notch, and TGFβ signaling pathways (Figure 4.2); 

however, their precise activation or downregulation remains unclear. On the 

basis of our in vitro data in a limited but unique GPC collection (Figure 4.3), 

we suggested that oligodendroglial GPCs were more sensitive to Wnt and 

Notch inhibition, whereas GBM GPCs tended to be responsive to TGFβR1 

inhibition. In recognizing the limitations posed by a small GPC panel, as with 

any such studies to-date, we sought to understand whether our GPC-derived 

conclusions bore similar significance in primary tumors of REMBRANDT and 

Gravendeel. We rationalized that our hypothesis would suggest the similar 

regulation of signaling pathways as predicted by our GPCs in Figure 4.3 and 

the sheer number of patients in REMBRANDT (N = 298) and Gravendeel (N = 

276) would provide firm evidence. Accordingly, using Gene Set Enrichment 

Analysis (Subramanian et al, 2005), we observed the following (Table 4.2): (i) 

The (-) activation score patients defined by our Connectivity Map, which 

correlate inversely with the oligodendroglial gene signature (i.e., more GBM 

GPC-like) in both databases, showed upregulated TGFβ1 response pathways 

upon closer analysis of the gene modules, further supported by 

downregulation of this pathway in Gravendeel (+) cohort. This is consistent 

with our in vitro data which suggest that GBM GPCs respond more strongly to 

TGFβR1 inhibition than oligodendroglial GPCs (Figure 4.3Aiii and Biii). 

Furthermore, Gravendeel (-) patients showed upregulation of the Nutt_GBM 

versus AO (anaplastic oligodendrogliomas) gene module, providing an 

independent verification that our GBM versus oligodendroglial GPCs mirror 

their primary tumor transcriptomic profile; (ii) The (+) patient cohort in 

Gravendeel showed upregulation of Wnt signaling pathway, again consistent 
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with our in vitro data where NNI-7 and NNI-8 oligodendroglial GPCs were 

more sensitive to Wnt inhibition (Figure 4.3Ai and Bi); and (iii) The 

REMBRANDT (-) patients showed upregulation of Notch signaling. Upon 

closer analysis, this upregulation comprised the Notch inhibitor, Numbl 

homolog, which acts to inhibit Notch signaling. This is thus consistent with our 

in vitro findings where NNI-7 and NNI-8 oligodendroglial GPCs were more 

sensitive to Notch pathway inhibitors (Figure 4.3Aii and Bii).  

 Furthermore, we analyzed a panel of primary tumors by 

immunohistochemical staining and observed similar pathway regulation 

(Figure 4.7); that is, GBM tumors exhibited elevated p-SMAD2 expression (P 

= 0.0122) whereas oligodendroglial tumors displayed elevated NICD 

expression (P = 0.0331) and a trend toward elevated active β-catenin (3 of 4 

tumors). We also analyzed the enrichment of core stem cell programs 

(embryonic, hematopoietic, and neural stem cell) in the patient cohorts (Shats 

et al, 2011). The (+) patients display an enrichment of progenitor-like 

behaviour with lower tumor grade, whereas (-) patients resemble the CD34+ 

leukemia-initiating and propagating cells (Table 4.2). These data, derived in 

large patient glioma datasets, independently suggest that core stem cell 

programs do contribute to the survival-correlated (+) and (-) patient cohorts. 

Collectively, we show that predictions made by our oligodendroglial GPC 

signature produced congruent data in GPCs, primary tumors, and patient 

databases. This thus supports our hypothesis that GPCs mirror their primary 

tumors and contribute to disease progression and survival outcome.  
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Figure 4.7. Analysis of Wnt, Notch and TGFβ signaling 
pathways in primary patient tumors. A, active β-catenin; B, 
Notch intracellular domain (NICD); and C, p-Smad2 were 
immunohistochemically detected in patient tumors of GBM and 
oligodendroglial features. 
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4.7 The oligodendroglial GPC signature defines molecular 

heterogeneity within oligodendroglial tumors 

 Among the major subtypes of gliomas, oligodendrogliomas are 

distinguished by their remarkable sensitivity to chemotherapy, with 

approximately two thirds of anaplastic (malignant) oligodendrogliomas 

responding dramatically to combination treatment with procarbazine, 

lomustine, and vincristine (termed PCV). Anaplastic oligodendrogliomas are 

also distinguished by a unique constellation of molecular genetic alterations, 

including coincident loss of chromosomal arms 1p and 19q in 50-70% of 

tumors (Cairncross et al, 1998). Cairncross et al. demonstrated that combined 

loss involving chromosomes 1p and 19q is statistically significantly associated 

with both chemosensitivity and longer recurrence-free survival after 

chemotherapy. 

 Accordingly, we interrogated this GPC gene signature in patients with 

oligodendroglial tumors. The (+) class enriched for lower grades associated 

with the 1p/19q co-deletion (Figure 4.8). Interestingly, patients without loss-

of-heterozygosity (LOH) at 1p/19q (yellow) were spread throughout both 

classes, indicating that our oligodendroglial gene signature detected 

molecular heterogeneity and survival profiles that cannot be accounted for by 

the 1p/19q status alone. Although these retrospective data cannot determine 

whether the gene signature is an independent predictor of survival; 

furthermore, the 1p/19q status is specifically related to PCV chemotherapy; 

nevertheless, these data do suggest that the signature is a positive prognostic 

factor for glioma patients. 
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Figure 4.8. Oligodendroglial GPC gene signature is associated with 
lower tumor grade and 1p/19q co-deletion. Patient survival is shown in all 
glioma patients in A, REMBRANDT; and B, Gravendeel databases. Tumor 
grade (‘Grade’) and 1p/19q co-deletion distribution corresponding to (+) and 
(-) classes are shown below the activation score graphs. Of note, patients 
without loss of heterozygosity (LOH) at 1p/19q were spread throughout both 
classes, indicating that the oligodendroglial gene signature can detect 
molecular heterogeneity and survival profiles that cannot be accounted for by 
the 1p/19q status alone. 
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4.8 Summary 

 GPCs mirror the phenotypic and molecular fingerprint of the primary 

tumors (Lee et al, 2006; Wakimoto et al, 2012). Consequently, they serve as 

a useful in vitro platform to carry out further investigations. However, much 

less is known about their direct contribution to disease progression and 

survival outcome. In this chapter, we attempted to address this gap in 

knowledge by: (i) Tapping into our own and publicly available GPC gene 

expression and determining the differential gene list between 2 major 

variants, oligodendroglial GPCs versus GBM GPCs for which distinct patient 

survival patterns are seen in their primary tumors; (ii) Using a rank-based, 

pattern-matching approach, the Connectivity Map (CMAP), to interrogate the 

strength of association between the oligodendroglial gene signature and 

individual patient gene expression profiles, as gene expression drives glioma 

disease outcome (Verhaak et al, 2010); (iii) Drawing connections between (+) 

or (-) patients, tumor grade, and primary tumor molecular classification. 

 We found that oligodendroglial GPCs could be distinguished from 

GBM GPCs by Wnt, Notch, and TGFβ regulation. Although these findings are 

not entirely novel in that these pathways were previously implicated in GBM 

GPCs, their relation between the 2 major variants – oligodendroglial versus 

GBM GPCs is unclear. Our in vitro analysis showed that Wnt and Notch 

pathways were upregulated in NNI-7 and NNI-8 oligodendroglial GPCs, 

whereas TGFβ signaling was upregulated in GBM GPCs. Moreover, these 

pathways were similarly detected in primary tumors. Interestingly, Lottaz and 

colleagues showed that mesenchymal GPCs map into the mesenchymal 

class of primary tumors and exhibit upregulated TGFβ signaling pathway 

(Lottaz et al, 2010). In recognizing that a limited number of patient specimens 

were available for our in vitro and primary tumor analyses, we sought to tap 
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into major patient glioma gene expression and molecular signature databases 

to substantiate our hypothesis that GPCs contribute to disease outcome. 

Indeed, using our oligodendroglial gene signature, our GSEA study indicated 

that patients with GBM (i.e. CMAP-) are enriched in the TGFβ signaling 

module, whereas patients with oligodendroglial tumors (i.e. CMAP+) are 

enriched in the Wnt and Notch signaling pathways. Moreover, CMAP+ 

patients display a progenitor-like transcriptomic program that correlates with 

lower tumor grade, consistent with the idea previously established in a 

transgenic mouse model of oligodendroglioma that identified the more 

lineage-committed oligodendrocyte progenitor cell as the tumor cell-of-origin 

(Persson et al, 2010). Furthermore, these cells are more sensitive to standard 

chemotherapeutic drugs than neural stem cells or astrocytes.  

 In summary, our study is important because it provides clinical 

evidence that GPCs contain signaling pathways that dictate primary tumor 

progression, consequently impacting on survival outcome. These findings 

emphasize the relevance of in vitro cultured GPCs as investigational tools. 

Interestingly, our oligodendroglial gene signature stratified survival of 

oligodendroglial tumor patients without 1p/19q LOH, suggesting that the 

previously “untreatable” class can now be further subdivided into drug-

sensitive and –resistant patients. This indicates that our gene signature 

detects molecular heterogeneity in patients with oligodendroglial tumors that 

cannot be accounted for by the 1p/19q status alone. This further highlights 

the limitation of morphology-based histological analyses to diagnose and treat 

patients. Although oligodendroglial tumors are traditionally more 

chemosensitive than GBM tumors and would seemingly render our findings 

expected, our study is important because we provide a direct clinical link 

between these controversial GPCs and their primary tumors. Essentially, we 
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show that GPCs of different histologies not only mirror the phenotype and 

molecular fingerprint of their primary tumor, but also contain transcriptomic 

profiles that reflect the different survival outcomes. Therefore, clinically 

amendable molecular tests may be developed by profiling unsorted bulk 

tumor cells because disease progression is in part, a manifest of the 

activation of stemness-related pathways. Our findings further suggest 

effective glioma treatment by targeting these signalling pathways which 

operate at the level of self-renewing GPCs. Taken together, we provide 

evidence that patient-derived GPCs are clinically relevant.  
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CHAPTER 5 – SMALL MOLECULE INHIBITORS OF THE WNT 

PATHWAY TARGET GLIOMASPHERE FREQUENCY AND 

PROLIFERATION 

5.1 Introduction and objectives 

 The Wnt/β-catenin signaling pathway has been implicated in various 

cancers (Barker & Clevers, 2006; Polakis, 2007). More importantly, Wnt 

signaling has been reported to play a role in the establishment and 

maintenance of cancer stem cells (CSCs) of the hematological and 

gastrointestinal systems (Reya & Clevers, 2005). Increasing reports for the 

existence of rare CSCs that initiate and sustain tumors have spurred efforts to 

identify novel therapeutic strategies for selectively targeting these cells. CSCs 

have been shown to be resistant to several chemotherapeutic agents (Eyler & 

Rich, 2008). Hence, identifying compounds that target signal transduction 

pathways (e.g. Wnt, Notch, TGFβ) controlling CSC self-renewal and 

maintenance would open up new possibilities for combinatorial therapeutic 

options that may improve current large majority of strategies that target 

general mechanisms of rapid cell growth. It may be that the often slow-

growing, long-term self-renewing cellular fraction may be responsible for 

initiating and sustaining tumor growth. 

 There is much evidence for a cellular hierarchy in cancers of the 

hematopoietic and colorectal origins and recent studies implicate a role for 

Wnt in maintaining their pluripotency. Jamieson et al. showed that excessive 

Wnt signaling was present in the granulocyte-macrophage progenitors 

isolated from patients with chronic myelogenous leukemia (CML), and their 

self-renewing and proliferation capacity was attenuated by ectopic expression 

of Axin, an inhibitor of the Wnt pathway (Jamieson et al, 2004). In addition, 

Vermeulen and colleagues showed that Wnt signaling activity level in colon 
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CSCs was heterogeneous and that cells with high Wnt signaling activity 

possessed stem cell-like clonogenic potential (Vermeulen et al, 2010). 

Importantly, the authors further demonstrated that high Wnt activity was 

observed preferentially in colon CSCs located close to stromal 

myofibroblasts, suggesting that microenvironmental cues regulated Wnt 

signaling activity in these cells. Earlier, we and others showed that Wnt 

signaling is active and is required for the survival and maintenance of GPCs 

(Ng et al, 2012; Zhang et al, 2011; Zheng et al, 2010). These studies form the 

rationale for the development of new therapeutic agents targeting the Wnt 

signaling pathway in glioma.  

 In recent years, several small molecule inhibitors of the Wnt pathway 

have been identified (Table 5.1). Lepourcelet et al. identified several 

antagonists that disrupt the β-catenin/TCF complex of the Wnt signaling 

pathway via a high throughput screening (HTS) of 7000 natural compounds 

for inhibitory activity (Lepourcelet et al, 2004). Notably, they identified two 

fungal derivatives, PKF115-854 and CGP049090 (also known as 

Cercosporin), both of which disrupted the interaction of TCF and β-catenin 

and consequently inhibited colon cancer cell proliferation and interfered with 

β-catenin-mediated axis duplication in vivo.  In another study, Emami et al. 

screened a small molecule library of 5000 compounds using a cell-based 

assay and identified a small molecule ICG-001 that showed activity in 

downregulating β-catenin/TCF target genes (Emami et al, 2004). The authors 

showed that ICG-001 bound to the CREB-binding protein (CBP, a 

transcriptional activator of the Wnt pathway that binds to β-catenin) and 

competed for binding to β-catenin.  
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 More recently, Chen et al. conducted a screen of 200, 000 compounds 

using mouse L-cells stably expressing the Super (8x) TOPFLASH Wnt 

reporter and a Wnt3A expression vector via multiple cell-based screening 

strategy (Chen et al, 2009). Compounds with inhibitory activity were further 

subcategorized into two groups based on their site of action within the Wnt/β-

catenin signaling pathway: (i) inhibitors of Wnt production (IWPs), and (ii) 

inhibitors of Wnt response (IWRs). IWPs inhibit the secretion of the Wnt 

ligands through binding to porcupine (Porcn), an important component of the 

Wnt ligand secretion that mediates addition of a palmitoyl group to Wnt ligand 

proteins in the endoplasmic reticulum. IWRs, on the other hand, bind directly 

to Axin and stabilize it, which eventually leads to β-catenin degradation.  

 In addition, Huang et al. also demonstrated that stabilization of Axin by 

a small molecule inhibitor, XAV939 mediates Wnt signaling inhibition (Huang 

et al, 2009). Using a protein affinity capture technique, they identified 

Tankyrases (TNKS1 and 2) as targets of XAV939. Axin is stabilized through 

destruction of Tankyrases. Disruption of Tankyrase-mediated ADP-

ribosylation activity resulted in increased Axin protein stability, possibly 

through changes in Axin ubiquitinylation status. Furthermore, the authors 

showed that the mode of action of IWR-1, previously reported by Chen et al., 

is similar to XAV939. In addition, Ewan et al. identified several novel small 

Table 5.1. Small-Molecule Wnt Pathway inhibitors. 
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molecules that target distinct levels of the Wnt signal transduction pathway 

(Ewan et al, 2010). Of note, they identified CCT036477 that blocks 

transcription at the β-catenin/TCF level and showed the strongest phenotypic 

effects in vivo where it blocked development of zebrafish and Xenopus 

embryos and expression of Wnt target genes.  

 In this chapter, we explore the use of Wnt inhibitors to study the 

effects of pharmacological inhibition of Wnt/β-catenin signaling in GPCs.  

5.2 Screening for potential Wnt inhibitors  

 To quantify compounds that specifically inhibit Wnt/β-catenin pathway, 

we screened a modest but well-characterized collection of small molecules 

using L-Wnt-STF cells (kind gift of A/Prof. Lawrence Lum, Southwestern 

Medical Center, USA) that stably express a well-characterized Wnt-

responsive firefly luciferase (FL) reporter plasmid (SuperTopFlash or STF), 

control reporter Renilla luciferase (RL), and an expression construct encoding 

for the Wnt protein (Wnt3A) (Figure 5.1A) (Chen et al, 2009).  

 L-Wnt-STF cells were exposed to Wnt inhibitory molecules for 24 

hours prior to measurement of reporter activities using standard luciferase 

assay. We procured several well-published small molecule inhibitors of Wnt 

(Cercosporin, IWP2, IWR1, XAV939, and CCT036477) that have well-

described mechanisms of action (Chen et al, 2009; Ewan et al, 2010; Huang 

et al, 2009; Lepourcelet et al, 2004).  

 We observed that all small molecules showed dose-dependent 

inhibition of luciferase expression (Figure 5.1B). We then proceeded to 

determine the half maximal inhibitory concentrations (IC50) for all Wnt 
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inhibitors on our GPC lines so as to determine working concentrations for 

downstream in vitro assays (Table 5.2).  

 

 

 

 

 

Specifically, we adopted the method published by Diamandis et al. to 

determine the IC50 of the Wnt inhibitors (Figure 5.2A) (Diamandis et al, 

2007). We observed that well-characterized Wnt inhibitors targeting the 

production of Wnt ligands (IWP2) and the stabilization of Axin-destruction 

complex (IWR1 and XAV939) did not affect the cell viability of GPCs up to a 

Figure 5.1. Screening of small molecule inhibitors of the Wnt/β-catenin 
signal transduction pathway. A, Schematic diagram illustrating the 
identification of potential Wnt/β-catenin antagonists using L-Wnt-STF cells. 
Compounds of known concentrations were incubated with L-Wnt-STF cells 
that stably harbor Wnt-responsive firefly luciferase (FL) and internal control 
Renilla luciferase (RL) reporters for 24 hours prior to measurement of 
luciferase activity. B, Well-described Wnt inhibitors showed concentration-
dependent inhibition of FL activity that was normalized to control RL activity. 
*p<0.05, **p<0.01 compared to DMSO control (n=4). 

 



 

110 
 

maximal concentration of 10 µM (Table 5.2). In contrast, compounds 

(Cercosporin and CCT036477) that target the downstream components of the 

Wnt signaling pathway i.e. the β-catenin/TCF complex significantly reduced 

the cell viability of GPCs with oligodendroglial GPCs demonstrating lower IC50 

values compared to GBM GPCs (Figures 5.2B and C). This data is 

consistent with our earlier findings that oligodendroglial GPCs possess an 

elevated Wnt pathway compared to GBM GPCs. 

 

 
Table 5.2. Half-maximal inhibitory concentrations (IC50) of several well-
characterized Wnt inhibitors in gliomaspheres. IC50 values are presented in 
micromolar units; N.D., Not determined at maximal concentration of 10 µM 
from dose-response curves. 
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Figure 5.2. Standard assay for measuring half-maximal inhibitory 
concentrations (IC50) and dose-response curves in GPCs. A, Schematic 
diagram illustrating the generation of dose-response curves and IC50 values 
for Wnt compounds of GPC lines. Briefly, gliomaspheres (100-150 µm) were 
collected and enzymatically digested for 5 min at 37oC using Accutase. 
Viable cells were plated at cell densities (20 cells/µl) in 96-well plates and 
recovered for two to three days prior to drug treatment. After two days of 
initial drug treatment, cells were supplemented with additional fresh aliquots 
of drug and growth medium and incubated for an additional three days before 
quantification of viability by standard alamarBlueTM assay.  B, Dose-response 
curves of Wnt inhibitor, Cercosporin for four GPC lines (NNI-4, 8, 11, and 
12). Cercosporin concentrations were titrated across a series of ten half-log 
dilutions, n=4. C, Representative images of GPCs treated with Cercosporin 
at their respective IC50 concentrations after 5 days. Note the disintegration of 
gliomaspheres after Wnt inhibitor treatment (arrows). Scale bar = 50µm. 
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5.3 Wnt inhibitors mitigate GPC frequency and proliferation in vitro   

 Several surface markers such as CD133, CD15 (SSEA-1) and nestin 

have been shown to enrich for GPCs (Bar et al, 2007b; Singh et al, 2004; Son 

et al, 2009). However, surface markers often do not reflect the bona fide 

properties of cancer stem cells as marker expression has been shown to 

change with disease state and progression (Quintana et al, 2008; Shackleton 

et al, 2009). In addition, conventional short-term viability assays also detect 

the majority of fast-growing progenitors and thus mask the minority frequency 

of bona fide cancer stem cells. Consequently, there is a need to rely on 

functional assays such as the neurosphere assay described earlier to 

measure GPC frequency (Rich & Eyler, 2009).   

 We plated GPCs at clonal density (30 cells/well of a 96-well plate) to 

allow spheres to arise from single GPCs, termed clonogenicity (Kalani et al, 

2008). We treated GPCs with Wnt inhibitors over an extended time frame of 

over 7, 14 and 21 days using their respective IC50 values for each GPC line. 

Interestingly, we observed a variable trend of the Wnt inhibitory effects on our 

GPCs. Our data illustrated that IWR1 and XAV939, both of which inhibit Wnt 

signaling by stabilizing the Axin-degradation complex and IWP2 which inhibits 

Wnt signaling via the blocking of Wnt ligand production in cells had barely any 

effect on the gliomasphere-forming capacity and proliferation (Figures 5.3B 

and C). In contrast, using Cercosporin and CCT036477 which target the β-

catenin/TCF complex, we effectively abrogated the self-renewal and 

proliferation capacity of GPCs (Figures 5.3B and C). This observation 

corroborates with a recent work demonstrating that FoxM1 directly interacts 

with β-catenin and is necessary and sufficient for its nuclear localization and 

transcriptional activation in glioma cells (Zhang et al, 2011).  
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Figure 5.3. Well-characterized small molecule inhibitors of Wnt/β-catenin 
pathway abrogates gliomasphere-forming ability and proliferation in vitro. 
A, Schematic diagram demonstrating the measurement of gliomasphere-
forming capacity and proliferation using the neurosphere assay. Gliomaspheres 
were collected and enzymatically dissociated prior to plating into 96-well plates 
at clonal density (0.3 cells/µl) via fluorescent-activated cell sorting (FACS). 
Cells were allowed to recover prior to initial drug treatment at their IC50 doses. 
The number and size of secondary gliomaspheres formed were quantified 7, 
14, and 21 days post drug treatment and replenishment. B, Gliomasphere-
forming capacity of GPCs was measured after 7, 14, and 21 days post 
incubation with respective well-characterized Wnt inhibitors. Notably, Wnt 
inhibitors targeting β-catenin/TCF complex (Cercosporin and CCT036477) were 
more effective at reducing GPC frequency. *p<0.05, **p<0.01, ***p<0.001 
compared to respective DMSO controls (n=5). C, Individual gliomasphere sizes 
(an approximate of proliferation) were measured and categorized post 
incubation with respective Wnt inhibitors at days 7, 14, and 21. 
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 Furthermore, we also observed that oligodendroglial GPCs (NNI-8) 

were more sensitive to Wnt inhibitors that target the β-catenin/TCF complex 

(i.e. Cercosporin and CCT036477) as compared to the GBM GPCs (NNI-11 

and NNI-12). This is consistent with the levels of active β-catenin (nuclear-

localized) detected as previously shown in chapter 4. In summary, our data 

show that GPCs can be effectively targeted specifically at the terminal stages 

of Wnt signaling, rather than at the Wnt ligand production stage. This finding 

is important to grasp as the site of inhibition likely points to the genetic lesion 

in glioma cells that maintains elevated Wnt signaling. Knowing the genetic 

lesion is important for effective glioma therapeutic design. 

5.4 Common activating mutations of the Wnt pathway are not 

present in GPCs 

 We earlier demonstrated that GPCs were more sensitive to 

pharmacological compounds that disrupt the β-catenin/TCF complex, 

suggesting that genetic lesion that resulted in the hyperactivated Wnt activity 

in GPCs may lie between the destruction complex (Axin-GSK3β-APC) and 

the β-catenin/TCF complex. In addition, we also showed that inhibition of the 

upstream components of the Wnt pathway that involves Wnt ligand 

production did not affect GPC frequency and proliferation. Since mutations in 

the Wnt pathway should serve as a guide in determining where the 

prospective lesion(s) may be located and where inhibitors would be expected 

to work, we sought to determine the commonly known Wnt pathway 

mutations in cancers that resulted in hyperactivation of the Wnt pathway via 

direct sequencing.  

 Activating mutations in the Wnt pathway have been described in 

various cancers (Polakis, 1999; Polakis, 2000). Loss-of-function mutations in 
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the tumor suppressor, adenomatous polyposis coli (APC) and gain-of-function 

mutations in the amino-terminal region of the proto-oncogene CTNNB1 that 

encodes for β-catenin are two commonly found mutations in colorectal and 

gastric cancers (Clements et al, 2002; Rowan et al, 2000). Interestingly, it 

was observed that in colorectal cancer, β-catenin mutations are mutually 

exclusive to those that harbor APC mutations and the frequency of detecting 

a mutation in CTNNB1 increases in colorectal tumors lacking APC mutations 

(Iwao et al, 1998; Sparks et al, 1998).  

 CTNNB1 mutations commonly occur at serine/ threonine residues 

encoded in exon 3 of the β-catenin gene (Hart et al, 1998; Polakis, 2000). 

These mutations abrogate the phosphorylation-dependent interaction of β-

catenin with β-TrCP, a component of an E3 ubiquitin ligase that makes direct 

contact with amino terminal sequence in β-catenin. Hence, β-catenin is 

stabilized and allowed to accumulate in the nucleus and activate Wnt 

signaling.  We specifically screened for these “hotspot” mutations (in exon 3) 

by direct PCR sequencing of 6 GPC lines and observed absence of common 

CTNNB1 mutations when compared to the human wild-type CTNNB1  exon 3 

DNA sequence (Figure 5.4).  

 Mutations of the APC protein are frequently located in the mutation 

cluster region (MCR) (codon 1286-1513) on exon 15 (Miyoshi et al, 1992; 

Polakis, 2000). Since the majority of somatic mutations in APC occur within 

the MCR, we sequenced the MCR as 3 overlapping fragments. Again, no 

mutations were identified between codons 1286 and 1513 (Supplementary 

Figure S2).  
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Figure 5.4. Common activating “hotspot” mutations of CTNNB1 
are absent in GPCs. Electropherograms showing absence of 
common mutations located at serine-33 (S33), serine-37 (S37), 
threonine (Thr41), and serine-45 (S45) of β-catenin. 
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5.5 Summary 

 Taken together, our data demonstrate that GPCs are sensitive to 

small molecule inhibitors of Wnt pathway that target the β-catenin/TCF 

complex. In addition, we also show that oligodendroglial GPCs are more 

sensitive to Wnt inhibition compared to GBM GPCs. Common APC and 

CTNNB1 hyperactivating mutations are absent, suggesting that novel 

mechanism(s) modulating the β-catenin/TCF complex exist in GPCs. This 

lays the groundwork for our analysis of likely mechanisms in chapter 7. 
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CHAPTER 6 – GENETIC KNOCKDOWN OF BETA-CATENIN 

ABOLISHES IN VITRO AND IN VIVO TUMORIGENIC POTENTIAL 

6.1 Introduction and objectives 

Earlier, we showed that oligodendroglial GPCs are more sensitive to β-

catenin/TCF inhibition than GBM GPCs, suggesting the possibility of 

effectively eradicating GPCs via the Wnt pathway. Although this therapeutic 

approach may seem redundant in the case of oligodendrogliomas which are 

typically chemosensitive and already have a better prognosis, the important 

finding we wish to point out is: The oligodendroglial gene signature detected 

Wnt sensitive and resistant patients within the cohort that does not have the 

1p/19q co-deletion status. This essentially means that the previously 

“untreatable” class is now amenable to Wnt inhibitory therapy if the patients 

demonstrate positive association with the signature despite lack of LOH at the 

1p/19q locus (CMAP+). 

 The Wnt/β-catenin signaling pathway has been shown to be the 

predominant driving force of stem cells of the colonic crypt, hematopoietic and 

central nervous systems (Barker et al, 2007; Kalani et al, 2008; Reya et al, 

2003). In particular, cancer stem cells of the colon (Barker et al, 2009), breast 

(Chen et al, 2007; Woodward et al, 2007) and hematopoietic system (Zhao et 

al, 2007) have been shown to cause tumorigenesis via aberrant Wnt 

signaling. Wnt activation has been shown to play a role in the progression of 

gliomas (Sareddy et al, 2009a) although clarification of its role at the level of 

GPCs has only recently begun.  Here, using genetic approaches, we seek to 

understand the role and function of the Wnt/β-catenin pathway in GPCs. 

Functional assays to measure GPC frequency and mouse models were 

utilized. Additionally, this would serve as validation of our previous findings 

that Wnt/β-catenin is active in a subset of GPCs. 
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6.2 GPCs are effectively transduced by lentiviruses 

 For the purpose of our study, we selected lentiviruses as a genetic 

manipulation tool to investigate Wnt regulation in GPCs. Lentiviruses are 

highly efficient at infection and stable integration of the desired target gene of 

interest or short hairpin RNA (shRNA) into a cell system (Fuerer & Nusse, 

2010). Lentiviral particles infect both dividing and quiescent cells efficiently as 

their pre-integration complex (i.e. viral shell) can enter the intact membrane of 

the nucleus of the target cell. This makes them ideal for genetic manipulations 

in slowly-dividing stem-like GPCs. In addition, lentiviral-mediated transduction 

has frequently been used as a tool in the study of GPC survival and 

tumorigenesis (Clement et al, 2007; Eyler et al, 2008; Wang et al, 2008).  

 

 

 

 

 

 

 

Figure 6.1. pLKO.1-based lentiviral vector maps. A, pLKO.1-puro non-
targeting control vector containing a shRNA insert that does not target 
human and mouse genes, serving as a negative control in experiments. B, 
pLKO.1-puro-CMV-TurboGFPTM vector containing a gene encoding 
TurboGFP, under the control of the CMV promoter. It is useful as a positive 
transduction control in experiments. Abbreviations: U6, U6 promoter; cPPT, 
central polypurine tract; hPGK, human phosphoglycerate kinase eukaryotic 
promoter; puroR, puromycin resistance gene for mammalian selection; 
WPRE, Woodchuck Hepatitis Post-Transcriptional Regulatory Element; 
SIN/3’LTR, 3’ self-inactivating long terminal repeat; f1 ori, f1 origin of 
replication; ampR, Ampicillin resistance gene for bacterial selection; pUC ori, 
pUC origin of replication; 5’ LTR, 5’ long terminal repeat; Psi, RNA packaging 
signal; RRE, Rev response element. 
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 As initial optimization and monitoring of the transduction efficiency of 

the lentiviral transduction system using the pLKO.1-puro-based vector 

(Figure 6.1A), we performed our knockdown in parallel with a control clone 

SHC003 (Figure 6.1B), a TurboGFP-containing, non-targeting lentiviral 

vector of similar backbone as pLKO.1. This enables visualization of the green 

fluorescent protein (GFP) that can be quantified by immunofluorescent 

methods (Figure 6.2).  

 

 

 

 

 

 

 

Figure 6.2. pLKO.1-based lentiviral vector effectively transduces 
GPCs. GPCs were transduced with pLKO.1-puro-CMV-TurboGFP vector 
and transduction efficiency monitored by visualization of green fluorescent 
protein (GFP). Scale bar = 50 µm. 
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6.3 Wnt/β-catenin signaling is active in GPCs 

 To investigate the biological function of Wnt/β-catenin regulation of 

GPCs, we first determined expression of active β-catenin, the key 

downstream effector of the canonical Wnt signaling pathway. We ascertained 

the protein expression levels of nuclear-localized activated β-catenin 

(dephosphorylated on Ser-37 or Thr41) and demonstrated that 

oligodendroglial GPC, NNI-8 and a subset of GBM GPCs possessed active 

Wnt/β-catenin signaling pathway (Figure 6.3A). In addition, we show, by 

immunofluorescent staining of active β-catenin in vitro that active β-catenin 

was nuclear-localized (Figure 6.3B), a key hallmark of active Wnt/β-catenin 

signalling (Ganesan et al, 2008).  

 

 

 

Figure 6.3. Wnt/β-catenin signaling is active in GPCs. A (Similar to 
Figure 4.3 A(i)), Representative immunoblot analyses of active β-
catenin (dephosphorylated at Ser-37 and Thr-41) in oligodendroglial 
(NNI-8) and GBM (NNI-4, 10, 11, 12) GPCs; n=3. B, Representative 
immunofluorescent staining images of active β-catenin in GPCs showed 
distinct nuclear localization (arrows); n =2; Scale bar = 50 µm. 
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 In addition, we assessed the activity of Wnt signaling in vivo using a 

selectable, fluorescent detectable lentiviral vector (7TGC) that can monitor 

successfully transduced GPCs with mCherry, and the status of Wnt activity by 

eGFP expression driven by the TCF promoter (Fuerer & Nusse, 2010). 

Specifically, we transduced GPCs with 7TGC and transplanted the cells into 

immunocompromised mice (NOD-SCID gamma, NSG) and harvested the 

brains after the mice displayed neurological deficits. Interestingly, we 

observed significant active Wnt signaling in vivo, as indicated by the presence 

of both mCherry- and eGFP-positive cells in the glioma xenografts (Figure 

6.4). Collectively, we demonstrate strong evidence that Wnt/β-catenin 

signaling is active in GPCs and their resultant xenograft tumors. 
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Figure 6.4. Wnt signaling is active in human xenografted gliomas. 
A, Schematic diagram of the 7xTCF-eGFP//SV40-mCherry vector 
(7TGC) LTR: Long Terminal Repeat, H: packaging signal, RRE: Rev 
Response Element, cPPT: central PolyPurine Tract, WPRE: Woodchuck 
hepatitis Post-transcriptional Regulatory Element, dPPT: distal 
PolyPurine Tract, SIN: Self Inactivated (LTR). B, Mouse brains implanted 
with GPCs expressing 7TGC were harvested and examined under 
immunofluorescence for mCherry (detecting successfully transduced 
cells) and eGFP (detecting cells with Wnt activity). Scale bar = 200 µm. 
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6.4 Wnt/β-catenin activity is diminished in shβ-catenin-transduced 

GPCs 

 To investigate if the Wnt signaling pathway is crucial in the survival 

and maintenance of GPCs, we carried out β-catenin knockdown by utilizing 

lentiviral short hairpin RNAs (shRNAs) to achieve high multiplicity of infection 

(MOI). We have selected β-catenin as the knockdown target because it 

represents the key downstream effector of the canonical Wnt signaling 

pathway. Two different sequences of shRNA directed against β-catenin, and 

a non-targeting (NT) shRNA were used for each experiment to control for 

potential off-target shRNA effects. Both β-catenin shRNA constructs (shβcat1 

and shβcat2) significantly and effectively knocked down the protein levels of 

β-catenin in GPCs compared to non-targeting control (Figure 6.5A). 

 In addition, we performed qRT-PCR analyses of known downstream 

Wnt target genes to determine the effectiveness of the knockdown constructs 

on canonical Wnt/β-catenin signaling pathways. AXIN2, TCF7L2, and BIRC5 

are classic examples of known direct downstream target genes of the Wnt 

signaling pathway (Roose et al, 1999; Yan et al, 2001; Zhang et al, 2001). 

Accordingly, we demonstrated that knockdown of β-catenin significantly 

down-regulated the expression of these Wnt target genes after 48 hours post-

transduction compared to non-targeting control, providing evidence that the 

lentiviral constructs shβcat1 and shβcat2 are effective at down-regulating the 

Wnt/β-catenin signaling pathway in GPCs (Figure 6.5B).  
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Figure 6.5. Targeting β-catenin using lentiviral shRNAs effectively 
reduces β-catenin protein expression and associated Wnt-target 
genes. A, Representative immunoblot analyses of active β-catenin 
protein expression of 4 GPC lines expressing NT, shβcat1, or shβcat2 
constructs. Densitometric values of active β-catenin protein normalized 
to β-actin are shown from representative immunoblots; n=3. B, 
Quantitative real-time RT-PCR analyses of Wnt-target genes in 3 
representative GPC lines expressing NT, shβcat1, or shβcat2 constructs. 
All values were given as the mean ± SEM (n=3) and were normalized to 
HRPT control. NT control vectors were set as 1 and expression profiles 
of shβcat1 or shβcat2 vectors were presented as a multiple (fold change) 
of target gene expression. **p<0.01; ***p<0.001 compared to NT 
control. 
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6.5 β-catenin depletion reduces self-renewal capability and viability 

of GPCs 

 As gliomasphere formation is a key behavior of GPCs and is used as 

a measure of stem cell self-renewal, we proceeded to investigate the effects 

of Wnt inactivation in GPCs by scoring for secondary gliomasphere formation 

(an estimation of self-renewing GPCs) and assessing gliomasphere number 

(GPC frequency) and size (an indication of proliferation potential). Targeting 

β-catenin expression markedly decreased the ability of GPCs to form 

gliomaspheres as indicated by the reduction in gliomasphere-forming number 

and consequently efficiency (Figure 6.6A) and the size of the gliomaspheres 

formed (Figure 6.6B). Gliomaspheres that formed from β-catenin-targeted 

GPCs were significantly smaller than those forming from non-targeting (NT) 

GPCs, suggesting decreased proliferation (Figure 6.6B). In addition, β-

catenin knockdown resulted in significant decrease in GPC viability compared 

to NT control as determined by the cell viability assay (Figure 6.6C). These 

data provide firm evidence for the role of β-catenin in maintaining the self-

renewal properties of GPCs and suggest that targeting β-catenin decreases 

GPC self-renewal due to decreased survival.  
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Figure 6.6. Targeting β-catenin expression in GPCs reduces cell 
growth associated with decreased proliferation and gliomasphere-
forming capacity. A, Targeting β-catenin expression significantly 
attenuated the efficiency of GPCs to form gliomaspheres; **p<0.01, 
***p<0.001 (n=3). B, Upper panels, representative images demonstrating 
reduced gliomasphere sizes and formation in GPCs transduced with β-
catenin targeting shRNAs (shβcat1 or 2) constructs compared to non-
targeting (NT) control. Scale bar = 50 µm. Lower panels, gliomasphere size 
distribution of GPCs transduced with β-catenin targeting shRNAs (shβcat1 
or 2) constructs compared to non-targeting (NT) control after 14 days. 
***p<0.001 compared to NT control. C, β-catenin knockdown with 2 distinct 
lentiviral shRNA constructs resulted in decreased cell viability as assessed 
by the cell titer assay. *p<0.05, **p<0.01 compared to NT control at the 
same time point (n=3).   
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6.6 Targeting β-catenin increases survival of mice bearing 

xenografts established from patient-derived GPCs 

 Based on the requirement of β-catenin for self-renewal, growth and 

survival in GPCs in vitro, we examined the role of β-catenin expression in 

tumorigenicity. GPCs were infected with NT control lentivirus or lentivirus 

targeting β-catenin (shβcat1 and 2). Five hundred thousand cells of each 

group were injected into the right frontal lobes of NOD-SCID gamma (NSG) 

mice. Our data showed a significant, improved survival in all mice implanted 

with GPCs expressing shβcat1 and shβcat2 compared to NT control (Figure 

6.7A). All mice bearing NT infected cells developed neurological deficits after 

2.5 months and displayed large tumors with pleomorphic cells, consistent with 

high grade glial malignancy (Figure 6.7B). Collectively, these data 

demonstrate that β-catenin is required for maintaining the tumorigenic 

capacity of GPCs in vivo.  
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Figure 6.7. Targeting β-catenin decreases GPC tumorigenic 
potential and increases the survival of mice bearing intracranial 
human glioma xenografts. A, Kaplan-Meier curves demonstrate 
increased survival with β-catenin targeting in NSG mice injected with 
500,000 GPCs. ***p<0.001 for shβcat1 or 2 groups compared to NT 
group with log-rank analysis of survival curves (n=8). B, 
Representative images of mice brains bearing NT, shβcat1 or 2; n=8; 
Scale bar = 0.2 cm. 
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6.7  Summary 

 The Wnt/β-catenin signaling pathway is aberrantly activated in human 

cancers and is critical for cancer formation and maintenance. A key feature of 

Wnt signaling activation is the nuclear localization of β-catenin. In this 

chapter, we identified Wnt/β-catenin signaling pathway as being active in 

GPCs, consistent with observations made by other investigators (Zhang et al, 

2011; Zheng et al, 2010). In addition, we demonstrated that targeting β-

catenin expression in GPCs using shRNAs significantly reduces proliferation 

and gliomasphere-forming capacity. More importantly, targeting β-catenin 

expression increases the survival of mice bearing intracranial patient-derived, 

glioma xenografts. Taken together, our findings provide evidence for targeting 

the Wnt pathway as a therapeutic strategy; and more importantly, an effective 

approach that eradicates the slow-growing, self-renewing tumor-initiating and 

sustaining cellular fraction. 
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RESULTS 
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CHAPTER 7 – MITF/ΒETA-CATENIN/LEF-1 AXIS REGULATES 

SELF-RENEWAL AND PROLIFERATION POTENTIAL OF GLIOMA-

PROPAGATING CELLS THROUGH WNT SIGNALING 

7.1 Introduction and objectives 

 In previous chapters, we demonstrated that Wnt signaling is crucial in 

the maintenance of self-renewal and proliferation of GPCs. In addition, we 

showed that oligodendroglial GPCs present higher sensitivity towards β-

catenin/TCF pathway inhibition compared to the majority of GBM GPCs. We 

attempted to address this higher β-catenin/TCF activation status in GPCs by 

screening for common “hotspot” mutations reported to cause Wnt signaling 

dysregulation in cancers. However, we did not observe any common hotspot 

mutations in CTNNB1 and APC in GPCs. To further elucidate the mechanism 

by which oligodendroglial GPCs display higher Wnt/β-catenin status 

compared to GBM GPCs, we further analyzed our initial differential gene list 

(shown in chapter 4) and observed that microphthalmia-associated 

transcription factor (MITF) was among the top most differentially regulated 

genes with a significant log2 fold change of 2.33 (absolute fold change, 5.03) 

between the oligodendroglial and GBM GPCs (Supplementary Table 2). In 

addition, we looked at the individual expression levels of MITF of 

oligodendroglial and GBM GPCs across 3 GPC databases (Chong et al, 

2009; Gunther et al, 2008; Pollard et al, 2009) and observed that MITF is 

upregulated in oligodendroglial GPCs compared to majority of GBM GPCs 

(Figure 7.1A). To confirm our observations, we performed a qRT-PCR for 

MITF and validated that MITF is significantly upregulated in the 

oligodendroglial GPC (NNI-8) compared to GBM GPCs (NNI-1, 2, 3, 4, and 5) 

(Figure 7.1B).  
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 MITF is a transcription factor belonging to the family of basic helix-

loop-helix and leucine-zipper (bHLH/LZ) proteins and is a master regulator of 

melanocyte development and function (Hodgkinson et al, 1993). In addition, it 

has been demonstrated that MITF is a frequently amplified oncogene in 

melanomas (Ugurel et al, 2007). Importantly, MITF has been shown to 

interact with LEF-1, a nuclear mediator of Wnt signaling, to enhance the 

transcription from the dopachrome tautomerase (DCT) gene promoter, an 

early melanoblast marker (Yasumoto et al, 2002). It has also been 

demonstrated that β-catenin is a significant regulator of melanoma cell 

growth, with MITF as a critical downstream target (Widlund et al, 2002).  

 These observations suggest that MITF may play an important role in 

the differential regulation of Wnt signaling between the oligodendroglial and 

GBM GPCs.  In this chapter, we explore the role of MITF as an important 

mediator of the Wnt/β-catenin signaling in GPCs.  

 

 

 

 

Figure 7.1. MITF expression is higher in oligodendroglial GPCs 
compared to GBM GPCs. A, MITF gene expression of oligodendroglial 
and GBM GPCs in 3 major GPC databases; p=0.00222. B, Quantitative 
real time RT-PCR analysis of MITF mRNA expression in oligodendroglial 
(NNI-8) and GBM (NNI-1, 2, 3, 4, and 5) GPCs. **p<0.01, ***p<0.001 
compared to NNI-8 GPC; n=3. 
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7.2 MITF positively correlates and interacts with CTNNB1 in 

oligodendroglial GPCs 

 We performed genome-wide pair-wise correlation coefficient analysis 

to evaluate potential genes having inverse relationship in oligodendroglial and 

GBM GPCs collated from 3 GPC databases (including ours) to enhance 

statistical power. Specifically, we identified 160 genes having entirely 

opposite correlation in GBM and oligodendroglial GPCs. Interestingly, among 

these 160 genes, we identified that the MITF gene has a positive correlation 

of coefficient 0.7 with CTNNB1 in the oligodendroglial GPCs but with a 

negative correlation of -0.6 in GBM GPCs (Figure 7.2). This data provides 

further support that the β-catenin/LEF1-MITF signaling axis is inversely 

correlated in oligodendroglial and GBM GPCs. 

 

 

 

 

Figure 7.2. MITF correlates positively and negatively with 
CTNNB1 in oligodendroglial and GBM GPCs respectively. Pair-
wise correlation of MITF and CTNNB1 in GPCs reveal positive 
correlation of 0.7 in oligodendroglial GPCs and a negative 
correlation of -0.6 in GBM GPCs. 
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 In addition, we also detected the endogenous levels of MITF protein 

by immunoblot analysis in a panel of GPCs and demonstrated that 

oligodendroglial GPC (NNI-8) possesses higher MITF protein expression 

compared to the GBM GPCs (Figure 7.3). This suggests that MITF may play 

an important role in the differential regulation of Wnt/β-catenin signaling 

between the oligodendroglial and GBM GPCs. Interestingly, NNI-11, a GBM 

GPC, demonstrated high MITF protein level. This may suggest that MITF 

protein level stratifies a group of GBM and oligodendroglial GPCs 

independently of histology. This is an exciting avenue to be followed up in 

future directions. 

 

 

 

 

 

 

 

 

 

Figure 7.3. Endogenous MITF protein expression is higher in 
oligodendroglial GPC compared to majority of GBM GPCs. 
Representative immunoblot analyses of MITF protein expression of 
oligodendroglial (NNI-8) and GBM (NNI-1, 2, 5, 10, 11, and 12) GPC 
lines. Densitometric values of MITF protein normalized to β-actin are 
shown from representative immunoblots; n = 3. 
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 Furthermore, to confirm observations made by others that MITF 

interacts with components of the Wnt signaling pathway i.e. β-catenin and 

LEF-1, we performed a co-immunoprecipitation (co-IP) between the three 

proteins in lysates of NNI-8 oligodendroglial GPCs where endogenous MITF 

is relatively higher than majority of the GBM GPCs. MITF formed a complex 

with β-catenin (Figure 7.4A) and LEF-1 (Figure 7.4B) in NNI-8 

oligodendroglial GPCs, consistent with published literature (Schepsky et al, 

2006; Yasumoto et al, 2002).  

 

 

 

 

 

 

 

 

Figure 7.4. Co-immunoprecipitation of MITF with β-catenin and LEF-1 
in GPCs. Co-immunoprecipitation assays were performed to test the 
interaction between A, MITF and β-catenin and B, MITF and LEF-1.   
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7.3 MITF expression is higher in patients with oligodendroglial 

tumors  

 To demonstrate that GPCs contribute to primary tumor progression, 

we analyzed a panel of patient tumors by immunohistochemical staining and 

observed similar trend of higher MITF expression in oligodendroglial tumors 

compared to GBM tumors (Figure 7.5A and B). This is consistent with earlier 

observations where we detected higher MITF mRNA and protein expression 

in oligodendroglial versus GBM GPCs. Once again, we show that GPCs 

mirror their primary tumors and contribute to disease progression.  

 

 

Figure 7.5. MITF expression is higher in oligodendroglial patient 
tumors. A, MITF protein expression was immunohistochemically 
detected and scored in patient tumors of GBM and oligodendroglial 
features. B, Representative immunohistochemical staining sections of 
MITF in primary patient tumors (arrows indicate positive MITF staining). 
Scale bar = 50 µm. 
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 In addition, we also looked into patient glioma database – 

REMBRANDT, to determine the levels of MITF in CMAP+ and CMAP- 

patients (described in chapter 4). Interestingly, CMAP+ patients (more 

oligodendroglial GPC association) significantly exhibit higher levels of MITF 

compared to CMAP- patients (more GBM GPC association) in REMBRANDT 

glioma database (Figure 7.6). This indicates that patient tumors with 

oligodendroglial features are more likely to express more MITF. Collectively, 

these results suggest that MITF is differentially regulated between 

oligodendroglial and GBM tumors. 

 

 

 

 

 

 

 

 

 

Figure 7.6.  MITF microarray gene expression is higher in CMAP+ 
patients. CMAP+ patients (consisting mainly of lower grade oligodendroglial 
tumors) expressed higher MITF expression compared to CMAP- patients 
(consisting mainly of higher grades III and IV astrocytic and GBM tumors) in  
REMBRANDT (p-values = 0.00386 and 1.47E-05 for MITF probes 207233 
and 226066 respectively) database. 
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7.4 Lentiviral-mediated knockdown of MITF strongly abrogates self-

renewal and proliferation in oligodendroglial GPCs  

 Although our findings demonstrate that MITF is significantly up-

regulated in oligodendroglial GPCs, no studies to-date have suggested a 

functional role for MITF in GPCs. As MITF physically interacts with β-catenin 

and LEF-1, the crucial mediators of the Wnt/β-catenin signaling pathway, we 

first assessed the ability of MITF to regulate GPC cell growth by targeting 

MITF expression using lentiviral transduced short hairpin RNAs (shRNAs).  

 

 

 

 

 

 To control for potential off-target shRNA effects, two different 

sequences of shRNA directed against MITF and a non-targeting (NT) shRNA 

were used. Transduction with MITF shRNA reduced MITF mRNA and protein 

level in GPCs in comparison to the non-targeting control (Figure 7.7). MITF 

targeting profoundly impacted GPC growth in oligodendroglial GPC (NNI-8) 

Figure 7.7. Targeting MITF using lentiviral shRNAs effectively reduces 
MITF mRNA and protein expression. A, Quantitative real-time RT-PCR 
analyses of MITF mRNA in GPC expressing NT, shMITF(C1), or shMITF(C2) 
constructs. All values were given as the mean ± SEM (n=3) and were 
normalized to HRPT control. NT control vectors were set as 1 and expression 
profiles of shMITF(C1) or shMITF(C2) vectors were presented as a multiple 
(fold change) of target gene expression. ***p<0.001 compared to NT control. 
B, Representative immunoblot analyses of active β-catenin protein expression 
of NNI-8 GPC expressing NT, shMITF(C1), or shMITF(C2) constructs. 
Densitometric values of MITF protein normalized to β-actin are shown from 
representative immunoblots; n=3.  
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as demonstrated by the marked reduction in viability over time (Figure 7.8) 

compared to GBM GPCs (NNI-12).  

 

 

 

  

 

 Cancer stem cells are functionally defined through their capacity for 

sustained self-renewal. As the growth and survival of GPCs was affected by 

MITF knockdown, we next examined whether MITF was crucial for self-

renewal. To more definitively evaluate this possibility, we utilized the in vitro 

indicator of self-renewal in normal and cancer stem cells as described before 

- the neurosphere assay. We found that targeting MITF in GPCs decreased 

gliomasphere formation more profoundly in oligodendroglial GPCs than GBM 

GPCs in comparison to their respective non-targeting controls (Figure 7.9A). 

Gliomaspheres that did form from MITF-targeted GPCs were much smaller in 

oligodendroglial GPCs than GBM GPCs when compared to those forming 

from their respective non-targeting GPCs (Figure 7.9B), suggesting 

decreased proliferation. Hence, the formation of gliomaspheres is significantly 

Figure 7.8. Targeting MITF decreases GPC growth. MITF knockdown 
with 2 distinct lentiviral shRNA constructs (C1 and C2) resulted in 
decreased cell viability as assessed by the cell titer assay. **p<0.01, 
***p<0.001 compared to NT control at the same time point (n=3). Note the 
more pronounced cell death in oligodendroglial GPC (NNI-8) compared to 
GBM GPC (NNI-12) at similar time points assessed. 
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mitigated by the loss of MITF, especially in oligodendroglial GPCs, indicating 

a more important role for MITF in oligodendroglial GPC self-renewal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9. Targeting MITF expression in GPCs reduces 
gliomasphere-forming capacity and proliferation.  A, Targeting MITF 
expression significantly attenuated the efficiency of GPCs to form 
gliomaspheres (effect was especially more prominent in NNI-8 
oligodendroglial GPCs); **p<0.01, ***p<0.001 (n=3). B, Representative 
images demonstrating reduced gliomasphere sizes and formation in 
NNI-8 GPCs transduced with MITF targeting shRNAs (C1 or C2) 
constructs compared to non-targeting (NT) control. Scale bar = 100 µm. 
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7.5 Summary 

 Taken together, our results demonstrate that MITF is implicated in the 

differential regulation of Wnt/β-catenin signaling between oligodendroglial and 

GBM GPCs through interaction with β-catenin and LEF-1. In addition, we 

demonstrate that oligodendroglial GPCs are more sensitive to MITF inhibition 

compared to GBM GPCs as shown by the marked reduction in self-renewal 

capacity and proliferation. Our findings present MITF as a novel target 

molecule that is crucial in the maintenance of self-renewal and growth 

through the Wnt signaling pathway in oligodendroglial tumors.  
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GENERAL DISCUSSION 
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CHAPTER 8 – GENERAL DISCUSSION 

8.1 Discussion 

 When we first explored the field of glioma-propagating cells (GPCs), 

there was considerable attention to their importance. First, several teams 

showed that clinically derived GPCs contain phenotypic and karyotypic 

hallmarks found in the primary tumor (Lee et al, 2006; Wakimoto et al, 2012). 

Second, xenografts established from GPCs recapitulate the patient’s original 

pathophysiology. Such findings emphasize that GPCs may present a relevant 

cellular platform for further studies. However, we also noted that at the 

National Neuroscience Institute which sees most of the brain tumor cases in 

Singapore, we lacked a constant supply of clinical material that would be 

typically found in larger populations such as China or USA. Moreover, to 

serially passage such tumors in immune-compromised mice would mean 

gene expression drifts towards mesenchymal and proliferative features 

(Hodgson et al, 2009). This is further compounded by a lack of a constant 

supply of mice at the right age for individual tumors that come along. To 

address this issue, with knowledge that extensive serial passage changes 

karyotype of cells and effects transformation, we evaluated several 

cryopreservation techniques with a few criteria in mind: 

1. Svendsen et al. have elegantly documented the need to passage normal 

neural stem cells (NSCs) as spheroid structures in serum-free medium 

(Svendsen et al, 1998). Essentially, they showed that if NSC spheroids 

were dissociated into single cells, senescence eventually occurred with 

loss of proliferation. In contrast, if spheroid structures were cut into 

smaller spherical structures using a mechanical method, the spheres 

proliferated exponentially. These findings highlight the importance of cell-

cell contact in promoting the survival of NSCs. We now know that 
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intercellular contact through integrins and extracellular matrix proteins 

such as laminin are vital to maintaining clinically derived GPCs in culture 

(Lathia et al, 2010; Pollard et al, 2009). 

2. Effective freezing and thawing techniques should enable the efficient 

preservation of stocks of early passage cells, as well as the conservation 

of specific clones that are developed from the original cell lines such as 

genetically modified clones. Slow-freezing and rapid thawing methods 

are most commonly used; however, while these methods are sufficiently 

adequate for mouse cells, they perform very poorly with cells of human 

origin, and most cells either differentiate or die (Reubinoff et al, 2001).  

3. We explored vitrification because it has been used successfully to 

preserve embryos and embryoid bodies (spherical structures), and has 

been highly efficient in bovine species, pig and hamster, all of which 

poorly withstand freezing and thawing by other methods (Lane et al, 

1999; Yokota et al, 2000).  

 With the vitrification approach, a glass-like solidification of the freezing 

solution is achieved by using a high concentration of cryoprotectant and rapid 

cooling. While this approach can eliminate cell injury due to ice crystal 

formation, the high concentration of cryoprotectant may induce significant 

toxic and osmotic damage. The concentrations of cryoprotectants required to 

achieve vitrification are inversely related to the rate of cooling. Therefore, an 

increased speed of cooling can lessen the cryoprotectant-induced toxicity, as 

it minimizes the exposure time to these toxic compounds and allows their use 

at reduced concentrations. Our data illustrates for the first time the effective 

cryopreservation of clinically derived GPCs by vitrification (Chong et al, 2009). 

Importantly, we characterized preservation of essential features similar to the 

primary tumor, such as marker expression, GPC frequency, karyotype and 
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transcriptomic profiles. The advance we made in our Stem Cells publication 

include documenting gene expression changes and xenograft morphologies, 

compared to an earlier work which focused on only phenotypic features of 

cryopreserved NSC spheroid structures (Tan et al, 2007). This is an important 

approach since in 1996, The Cancer Genome Atlas project was initiated, 

which subsequently proved that gene expression drives brain tumor disease 

progression and clinical outcome (Atlas, 2008; Verhaak et al, 2010). 

Essentially, we showed that histologically similar tumors could yield GPCs 

with very different transcriptomic profiles, possibly accounting for the 

frequently observed inter-patient heterogeneity to treatment response. 

Indeed, we now know that genome-informed therapeutic decisions have 

proven to be valid in several cancers (Ooi et al, 2009; Wiedemeyer et al, 

2010). 

 It is with this knowledge that we continued to ask if our GPCs, besides 

showing primary tumor hallmarks, contain gene expression-driven activation 

pathways that dictate primary tumor behavior. We rationalized that this would 

be a major advance, since we would directly connect GPCs (or “cancer stem 

cells”) to their primary tumor. If this were so, individual patient-derived GPCs 

(and their matching xenografts) would be an extremely valuable resource to 

recapitulate the entire patient molecular heterogeneity spectrum. We 

hypothesized that GPCs could contribute to brain tumor disease progression 

and patient survival outcome. For this, we chose to study 2 major brain tumor 

variants with disparate clinical outcomes: oligodendroglial versus 

glioblastoma multiforme (GBM) tumors. Recognizing that no number of GPC 

lines collected would be meaningful; we sought to increase our statistical 

power by combining GPC information from several investigators. This serves 

2 purposes: First, we have a bigger dataset to work with, improving 
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robustness of conclusions, and second, by aligning our GPC collection with 

others (Gunther et al, 2008; Pollard et al, 2009), we could validate our cell line 

repository using published molecular classification systems. Indeed, our data 

highlights that transcriptomic programs in oligodendroglial GPCs dictate 

signaling pathways that confer better prognosis compared to GBM tumors. 

Importantly, our gene signature prognosticated patient survival independently 

of current clinical indicators of age and histology, underscoring that GPCs 

contain molecular patterns that contribute to the heterogeneity of tumors. This 

highlights the limitation of relying solely on morphology-based histological 

methods to diagnose and subsequently treat patients. Our bioinformatical 

method using the Connectivity Map (CMAP) was first executed successfully in 

a collaborative work with A/Prof. Lim Kah Leong on evaluating the tumor 

suppressor role of Parkin in glioma (Yeo et al, 2012). Here, our study taps 

into the multi-data platform capability of CMAP and we analyzed patterns of 

association between our GPC gene signature and individual patient gene 

expression information. This approach assumes that patients with gene 

expression likeness to the GPC gene signature will demonstrate features 

related to for example, the oligodendroglial or GBM GPCs, and be linked to 

performance of that signature in patient tumors. This thus provides a direct 

connection of cancer stem cells in the context of their primary tumor. We 

therefore show that GPCs are clinically relevant and contribute to clinical 

profiles, and most importantly, gene expression drives brain tumor disease 

progression and patient survival outcomes. This message of molecular 

heterogeneity as defined by gene expression is well-supported in the 

analyses of primary tumors by large efforts such as TCGA, the Phillips 

classification scheme and that by Fine and colleagues (Li et al, 2009; Phillips 

et al, 2006a; Verhaak et al, 2010). It should be noted that it is no trivial task to 

assess these schemes compared to one another to determine superiority, 
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simply because while the signatures hold true in prognostic databases, no 

true predictive datasets are available to query each classification method 

appropriately. Thus, our study utilized the most common Phillips classification 

scheme applicable to gliomas of all grades (Phillips et al, 2006a). We had 

attempted to align our GPC gene signature to TCGA classification scheme 

but the CMAP was not significantly associated, most likely arising from our 

internal observations that CMAP usually works well with only databases of 

heterogeneous histologies (TCGA contains only GBM tumors). This was also 

seen in Ooi et al. which used CMAP to interrogate against different gastric 

cancer subtypes (Ooi et al, 2009). Our data showed that the gene signature 

prognosticated survival independently of the 1p/19q co-deletion status of 

oligodendrogliomas, the latter of which confers enhanced sensitivity to 

chemotherapeutic agents. Although this finding would seemingly render our 

work less meaningful, given that oligodendrogliomas are already well-

treatable with PCV therapy, we want to highlight that we could further detect 

sensitive and resistant patient cohorts without LOH at 1p/19q. This means 

that the previously “untreatable” patients could now be treated according to 

their pathway activation if they fell into the sensitive profile. This is a 

significant advance as incomplete surgical resection of brain tumors often 

means that chemotherapy is the remaining option to combat the infiltrative 

and recurrent nature of the disease. 

 Our GPC gene signature enriched for the Wnt, TGFβ and Notch 

signaling pathways. Wnt and Notch are upregulated in oligodendroglial 

tumors, while TGFβ is upregulated in GBM tumors. Although there is 

significant knowledge that these pathways do regulate glioma growth, their 

activation between these 2 major variants is unknown (Fan et al, 2010; 

Penuelas et al, 2009; Zheng et al, 2010). The knowledge gleaned from our 
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study includes: (1) GPCs contribute to disease progression, (2) Tumors can 

now be viewed as manifestations of their pathway activation as defined by 

gene expression information, and (3) Genome-informed approaches may 

guide therapeutic choices. To prove point (3), we subjected GPCs to small 

molecules targeting each of these pathways and showed GPC response as 

predicted. Next, to draw the link between GPC response and primary tumor 

behavior, we interrogated large patient databases and showed that pathway 

activation, in terms of core programs, mapped similarly. We then focused on 

the Wnt pathway because its role in GPCs is relatively unknown. We adopted 

the approach of using well-characterized small molecule Wnt pathway 

inhibitors to assess GPC response. We highlight that although our study did 

not investigate the GPC-specificity of these inhibitors, these published Wnt-

inhibitors has been shown to be effective and specific to cancer cell lines 

harboring hyperactivated Wnt/β-catenin signaling pathway as compared to 

their normal counterparts (Ewan et al, 2010; Lepourcelet et al, 2004). 

Furthermore, Chen et al. reported that the in vivo use of the Wnt inhibitor, 

IWR1, did not incur permanent damage of normal stem cell function with 

transient repression of Wnt signaling. This suggests the practicability of these 

inhibitors in a clinical setting (Chen et al, 2009). Notably, any inhibitors 

targeting Wnt secretion were ineffective, while inhibitors targeting the β-

catenin stage were highly effective against GPC proliferation. This is an 

interesting result for a few reasons: (1) Cancers of the breast, for instance, 

are typically responsive to Wnt secretion inhibition (Proffitt et al, 2012), while 

(2) Glioma cells are most likely to manifest genetic lesions leading to Wnt 

pathway activation late in the pathway, at the β-catenin/TCF stage. Knowing 

this is important to select the appropriate Wnt pathway inhibitor for the 

treatment of gliomas. Indeed, during the progress of our work, 2 other 

publications arose on assessing β-catenin/TCF role in gliomas (Zhang et al, 
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2011; Zheng et al, 2010). We add incremental knowledge in demonstrating 

Wnt regulation in specifically GPCs, the cells that sustain tumor growth. In 

addition, the dependence on the downstream Wnt signaling pathway in 

GPCs, more specifically, the β-catenin/TCF cascade, suggests that β-

catenin/TCF complex formation may be uncoupled from Wnt ligand 

production and the Axin degradation complex activity. Furthermore, as β-

catenin mutations are not the cause of heightened β-catenin/TCF activity in 

GPCs, these lead us to suggest that β-catenin signaling activity can be 

modulated by Wnt-independent mechanisms including post-translational 

modifications or regulation of nuclear localization of β-catenin. The forkhead 

box M1 (FoxM1) transcription factor has been shown to interact with β-catenin 

and directs its nuclear import in glioma formation (Zhang et al, 2011). In 

addition, insulin growth factor-2 (IGF-2) can induce redistribution of β-catenin 

from the plasma membrane to the nucleus and cause transcriptional 

activation of β-catenin/TCF target genes (Morali et al, 2001). Novak et al. 

demonstrated that increased expression of integrin-linked kinase (ILK), an 

ankyrin repeat containing serine-threonine protein kinase leads to 

translocation of β-catenin into the nucleus and transactivates β-catenin/LEF 

activity of intestinal and mammary epithelial cells (Novak et al, 1998). Other 

mediators of Wnt-independent mechanisms that result in modulation of β-

catenin signaling activity include IGF-1 , growth factor Gas6, vascular 

endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and G-

proteins (Carmeliet et al, 1999; Goruppi et al, 2001; Hiscox & Jiang, 1999; 

Kawasaki et al, 2000; Papkoff & Aikawa, 1998; Playford et al, 2000).  

 Moving forward, we then validated these findings genetically both in 

vitro and in vivo and implicated MITF as a downstream effector of β-

catenin/TCF. Importantly, we showed that β-catenin and MITF are both 
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upregulated in oligodendroglial tumors compared to GBM tumors, providing 

clinical evidence for our GPC-driven hypothesis that cancer stem cells dictate 

primary tumor behavior. 

8.2 Future Directions 

Our study has been described in 2 manuscripts of which I am co-first author 

of (Chong et al, 2009; Ng et al, 2012). We plan to perform the following 

experiments to complete and publish the work on MITF as a downstream 

effector of β-catenin/TCF activation. Briefly: 

1. We will determine that MITF is downstream of β-catenin/TCF activation 

by assessing the rescue ability of MITF overexpression in a TCF- or LEF- 

dominant negative (dn) background. We have these plasmids from our 

collaboration with Prof. David Virshup. We will assess effects on GPC 

frequency and proliferation. 

2. We will determine these similar rescue effects in vivo using the orthotopic 

xenograft mouse model, using NOD-SCID gamma mice. We expect to 

see poor survival for implanted vehicle cells, and best survival with MITF 

knockdown (2 clones plus 1 non-targeting control), TCF- or LEF-dn 

expression. In contrast, this good survival should be reversed with MITF 

overexpression (Figure 8.1). Briefly, we will stereotaxically implant 10 

NOD-SCID gamma mice per arm and monitor the time to development of 

neurological deficits. We calculated the number of mice we need 

on http://www.biomath.info/power/index.htm. We will sacrifice the animals 

by transcardiac perfusion with 4% paraformaldehyde. Mouse brains will 

be embedded in paraffin sections and analyzed as previously described 

(Ng et al, 2012). Kaplan-Meier survival curves will be calculated using the 

log-rank test in GraphPad Prism software (www.graphpad.com).  

http://www.biomath.info/power/index.htm
http://www.graphpad.com/
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3. Recognizing that no number of GPC lines or the animal model is perfect 

at recapitulating the tumorigenic process, we will assess MITF role in 

patient tumor databases with gene expression information. We will 

determine MITF-associated core modules and determine patient cohorts 

associated with favorable or worse profiles, correlating with low and high 

MITF respectively, as shown by our earlier gene expression and 

immunohistochemistry data. We have previously successfully performed 

such a bioinformatical approach when evaluating PLK1 role in glioma 

(Foong et al, 2012). This MITF-associated gene module approach 

enables us to examine gene events upstream and downstream of β-

catenin/TCF. We will also identify patient molecular subclasses amenable 

to MITF inhibitory therapy. Notably, we had observed that 

oligodendroglial or GBM GPCs that exhibited high MITF could be 

effectively targeted, suggesting that MITF may be a better predictor of 

response than histology, albeit a modest pool of cells. This approach that 

we will employ will present a significant advance in that we will have 

statistical power of hundreds of patients in the database to verify our 

hypothesis that patient subclasses can be identified who will be 

amenable to anti-MITF therapeutic approaches. 

 

Figure 8.1. Hypothetical Kaplan-
Meier survival analysis to determine 
rescue effects using overexpression 
of MITF in vivo. 
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8.3 Conclusion 

We show that GPCs contain transcriptomic programs that dictate pathway 

activation in the primary tumor. This genome-informed approach can direct 

treatment strategies and identify patient cohorts most likely to receive 

treatment benefit. Collectively, our work establishes that GPCs are clinically 

relevant, and contribute to glioma disease progression and patient survival 

outcome. Furthermore, our data highlight the limitation of current morphology-

based histologic analyses in tumor classification, consequently impacting on 

treatment decisions. In addition, given the importance of Wnt/β-catenin 

signaling pathway in human cancers in general, our findings not only 

improved the understanding of the molecular mechanisms underlying β-

catenin/TCF activation but also suggest additional targets for therapeutic 

intervention.  
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Supplementary Figure S1. Spectral karyotyping analyses. Data for all 
other patients’ gliomaspheres are shown. A total of 15-20 metaphases were 
karyotyped for each sample. Arrows indicate polysomy of chromosome 7 
and loss of chromosome 10. Asterisks indicate aneusomy of chromosomes 
12 and 13. Karyotypic changes were observed in NNI-3 non-vitrified sample 
and these are indicated with arrowheads: t(15;y), t(4;8). 
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Supplementary Figure S2. Common mutations of APC in the 
mutation cluster region (MCR) are absent in GPCs. 
Electropherograms showing absence of mutations in majority of GPCs 
sequenced between codons 1255 and 1513 (Fragments A-C). We 
observed a degenrate base substitution (circled in red) on codon 1493 
(ACG --> ACA) for NNI-4 GPC that does not result in change in amino 
acid sequence. 
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Supplementary Table S1. Confusion Matrix for cross-validation of Phillips classification signature. Mes, 

Mesenchymal; PN, Proneural; Prolif, Proliferative. 

 

 
Predicted  

Mes PN Prolif Class Error Rate 

Actual 
Mes 30 0 5 0.14285714 
PN 2 34 1 0.08108108 

Prolif 4 0 24 0.14285714 
Overall Error Rate 0.12  
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Supplementary Table S2. Probesets in the oligodendroglial GPC gene signature. 

Probeset ID Entrez 
Gene ID 

Gene 
Symbol Description Log Fold-Change 

212507_at 23505 TMEM131 transmembrane protein 131  -0.931307621 
241612_at 27022 FOXD3 forkhead box D3  1.372986027 
201368_at 678 ZFP36L2 zinc finger protein 36, C3H type-like 2  -1.105289687 
201369_s_at 678 ZFP36L2 zinc finger protein 36, C3H type-like 2  -0.904474969 
201564_s_at 6624 FSCN1 fascin homolog 1, actin-bundling protein (Strongylocentrotus purpuratus)  -1.072722937 
220231_at 10842 C7orf16 chromosome 7 open reading frame 16  2.645835821 
228035_at 65975 STK33 serine/threonine kinase 33  -1.243243529 
215241_at 63982 ANO3 anoctamin 3  1.090294876 
218163_at 28985 MCTS1 malignant T cell amplified sequence 1  1.017692402 
231840_x_at 90624 LYRM7 Lyrm7 homolog (mouse)  0.891245471 
206067_s_at 7490 WT1 Wilms tumor 1  0.827289917 
218988_at 55508 SLC35E3 solute carrier family 35, member E3  1.67648345 
205386_s_at 4193 MDM2 Mdm2 p53 binding protein homolog (mouse)  1.884030655 
211832_s_at 4193 MDM2 Mdm2 p53 binding protein homolog (mouse)  1.788934315 
1553426_at 285668 C5orf64 chromosome 5 open reading frame 64  -1.147145398 
211138_s_at 8564 KMO kynurenine 3-monooxygenase (kynurenine 3-hydroxylase)  1.260883191 
205306_x_at 8564 KMO kynurenine 3-monooxygenase (kynurenine 3-hydroxylase)  1.335650833 
241765_at 1368 CPM carboxypeptidase M  3.226405764 
243403_x_at 1368 CPM carboxypeptidase M  2.660052824 
225591_at 26260 FBXO25 F-box protein 25  1.023236638 
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1557260_a_at 84911 ZNF382 zinc finger protein 382  1.763574339 
209565_at 7737 RNF113A ring finger protein 113A  0.993408597 
235502_at 5515 PPP2CA protein phosphatase 2, catalytic subunit, alpha isozyme  1.026294597 
243282_at 54520 CCDC93 coiled-coil domain containing 93  -0.893187785 
226462_at 29091 STXBP6 syntaxin binding protein 6 (amisyn)  1.408107909 
236290_at 220164 DOK6 docking protein 6  0.808537521 
214440_at 9 NAT1 N-acetyltransferase 1 (arylamine N-acetyltransferase)  1.762236745 
50400_at 196743 PAOX polyamine oxidase (exo-N4-amino)  1.059361819 
237029_at 3081 HGD homogentisate 1,2-dioxygenase  0.971522564 
244829_at -- C6orf218 chromosome 6 open reading frame 218  1.411926375 
227109_at 120227 CYP2R1 cytochrome P450, family 2, subfamily R, polypeptide 1  1.414119526 
225846_at 54845 ESRP1 epithelial splicing regulatory protein 1  1.270624793 
219121_s_at 54845 ESRP1 epithelial splicing regulatory protein 1  1.120675543 
213638_at 221692 PHACTR1 phosphatase and actin regulator 1  1.535840464 
215000_s_at 9637 FEZ2 fasciculation and elongation protein zeta 2 (zygin II)  -0.957606762 
242989_at 6801 STRN striatin, calmodulin binding protein  -1.055129989 
204077_x_at 9583 ENTPD4 ectonucleoside triphosphate diphosphohydrolase 4  0.815264939 
218870_at 55843 ARHGAP15 Rho GTPase activating protein 15  1.017607164 
221427_s_at 81669 CCNL2 cyclin L2  -0.850386591 
222999_s_at 81669 CCNL2 cyclin L2  -0.954468271 
205512_s_at 9131 AIFM1 apoptosis-inducing factor, mitochondrion-associated, 1  0.954516011 
207344_at 10566 AKAP3 A kinase (PRKA) anchor protein 3  2.654311598 
244825_at 57477 SHROOM4 shroom family member 4  1.054431061 
205281_s_at 5277 PIGA phosphatidylinositol glycan anchor biosynthesis, class A  0.836793751 
226764_at 152485 ZNF827 zinc finger protein 827  -0.996757033 
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1554509_a_at 80013 FAM188A family with sequence similarity 188, member A  1.293780634 
206334_at 8513 LIPF lipase, gastric  1.947198374 
204644_at 10495 ENOX2 ecto-NOX disulfide-thiol exchanger 2  0.879076665 
218807_at 10451 VAV3 vav 3 guanine nucleotide exchange factor  -1.573828653 
223423_at 26996 GPR160 G protein-coupled receptor 160  1.266788929 
215153_at 9722 NOS1AP nitric oxide synthase 1 (neuronal) adaptor protein  -0.882741057 
1563512_at 9722 NOS1AP nitric oxide synthase 1 (neuronal) adaptor protein  -1.07867364 
37512_at 8630 HSD17B6 hydroxysteroid (17-beta) dehydrogenase 6 homolog (mouse)  1.128384226 
212631_at 8417 STX7 syntaxin 7  1.113525058 
225308_s_at 85461 TANC1 tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 1  -0.854227497 
200665_s_at 6678 SPARC secreted protein, acidic, cysteine-rich (osteonectin)  -1.027737524 
229000_at 58492 ZNF77 zinc finger protein 77  0.944812365 
204759_at 1102 RCBTB2 regulator of chromosome condensation (RCC1) and BTB (POZ) domain 

containing protein 2  
-1.668131465 

221289_at 1750 DLX6 distal-less homeobox 6  1.041848794 
206552_s_at 6863 TAC1 tachykinin, precursor 1  1.705027503 
222767_s_at 79794 C12orf49 chromosome 12 open reading frame 49  0.808709328 
204713_s_at 2153 F5 coagulation factor V (proaccelerin, labile factor)  1.431619627 
204714_s_at 2153 F5 coagulation factor V (proaccelerin, labile factor)  1.504311671 
206426_at 2315 MLANA melan-A  0.890635292 
206427_s_at 2315 MLANA melan-A  1.431212371 
206135_at 9705 ST18 suppression of tumorigenicity 18 (breast carcinoma) (zinc finger protein)  1.131230985 

206058_at 6539 SLC6A12 solute carrier family 6 (neurotransmitter transporter, betaine/GABA), 
member 12  

1.091850355 

1561969_at 131368 ZPLD1 zona pellucida-like domain containing 1  1.316003453 
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224999_at 1956 EGFR epidermal growth factor receptor  -1.990616663 
201983_s_at 1956 EGFR epidermal growth factor receptor  -2.165112816 
204238_s_at 10591 C6orf108 chromosome 6 open reading frame 108  1.111934072 
242727_at 221079 ARL5B ADP-ribosylation factor-like 5B  1.32300753 
235356_at 374354 NHLRC2 NHL repeat containing 2  0.931504627 
231569_at 203562 TMEM31 transmembrane protein 31  1.032880572 
205647_at 5893 RAD52 RAD52 homolog (S. cerevisiae)  -0.833601355 
202746_at 9452 ITM2A integral membrane protein 2A  3.632094429 
202747_s_at 9452 ITM2A integral membrane protein 2A  3.720860606 
228891_at 10507 SEMA4D sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) 

and short cytoplasmic domain, (semaphorin) 4D  
0.981611103 

207540_s_at 6850 SYK spleen tyrosine kinase  1.381598219 
204011_at 10253 SPRY2 sprouty homolog 2 (Drosophila)  -0.96891126 
221035_s_at 56155 TEX14 testis expressed 14  0.988947099 
209848_s_at 6490 PMEL premelanosome protein  1.830948971 
215643_at 223117 SEMA3D sema domain, immunoglobulin domain (Ig), short basic domain, secreted, 

(semaphorin) 3D  
0.977345169 

203122_at 51112 TTC15 tetratricopeptide repeat domain 15  -1.208989641 
231068_at 146802 SLC47A2 solute carrier family 47, member 2  -1.501602291 
239738_at 117154 DACH2 dachshund homolog 2 (Drosophila)  1.361110621 
225651_at 7325 UBE2E2 ubiquitin-conjugating enzyme E2E 2 (UBC4/5 homolog, yeast)  1.451235296 
244419_at 2487 FRZB frizzled-related protein  1.045474278 
219212_at 51182 HSPA14 heat shock 70kDa protein 14  0.825224502 
206375_s_at 8988 HSPB3 heat shock 27kDa protein 3  1.769496044 
219099_at 57103 C12orf5 chromosome 12 open reading frame 5  1.237422609 
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222613_at 57102 C12orf4 chromosome 12 open reading frame 4  1.105505079 
212954_at 8798 DYRK4 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 4  1.57075808 
226066_at 4286 MITF microphthalmia-associated transcription factor  2.334568409 
208606_s_at 54361 WNT4 wingless-type MMTV integration site family, member 4  0.859407907 
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Supplementary Table S3A. Activation scores, associated p-value and metadata of REMBRANDT samples identified as (+) or (-) based 

on the oligodendroglial GPC signature. 

Samples Activation 
Score 

Normalized 
Score 

p-value Age Survival 
(mths) 

Status Histology Grade 

HF0505 0.749457969 1 0.0271 35 3.2 1 GBM IV 
HF1246 0.732100118 0.976839461 0.003 65 0.2 1 ASTROCYTOMA II 
E08021 0.731966357 0.976660984 0.0097 40 81.5 1 OLIGODENDROGLIOMA III 
HF1269 0.694346941 0.926465486 0.0014 55 13 1 GBM IV 
HF0599 0.688132241 0.918173226 0.0444 70 42.8 1 OLIGODENDROGLIOMA II 
E10193 0.680597094 0.908119098 0.0269 50 34.2 NA GBM IV 
HF1502 0.654386806 0.873146771 0.0595 70 6.4 1 OLIGODENDROGLIOMA III 
HF1032 0.640376005 0.854452194 0.0471 40 28.1 1 ASTROCYTOMA III 
HF1227 0.632969918 0.844570269 0.018 50 251.7 0 OLIGODENDROGLIOMA II 
E09688 0.624472362 0.833232 0.0144 55 50.8 1 MIXED II 
E09787 0.622652421 0.830803657 6.00E-04 55 86.5 0 GBM IV 
HF0180 0.616102353 0.822063916 0.0479 35 0.3 1 GBM IV 
E09956 0.603754355 0.805588012 0.001 70 21 1 GBM IV 
HF1587 0.590356299 0.787711017 0.0511 30 75.3 0 ASTROCYTOMA III 
E10184 0.586292819 0.782289125 0.0947 30 28.3 1 GBM IV 
HF0087 0.586151619 0.782100723 0.0099 60 78.8 1 ASTROCYTOMA III 
E09606 0.584952923 0.780501305 0.0162 30 13.3 1 GBM IV 
E09515 0.584812915 0.780314493 0.0474 35 65.4 0 ASTROCYTOMA II/III 
E09278 0.58381164 0.778978494 0.0363 40 36.6 0 GBM IV 
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HF0963 0.575711213 0.768170114 0.04 10 10.6 1 GBM IV 
HF1493 0.57332728 0.764989237 0.0684 65 41.9 1 OLIGODENDROGLIOMA III 
E10252 0.569847595 0.760346302 0.0644 55 53 1 GBM IV 
E09670 0.566785165 0.756260108 0.0575 75 14.2 1 GBM IV 
E09454 0.565155368 0.754085474 0.0828 55 18 1 GBM IV 
E09846 0.559234143 0.746184798 0.0508 65 14.3 1 GBM IV 
HF0285 0.558833826 0.745650656 0.0393 80 14.4 1 OLIGODENDROGLIOMA II 
E10312 0.557733116 0.744181981 0.0856 35 37.9 1 GBM IV 
HF1677 0.557606793 0.744013429 0.0491 50 63.5 0 ASTROCYTOMA II 
E09930 0.557353343 0.743675251 0.0686 50 5.1 1 GBM IV 
HF0026 0.554987055 0.740517919 0.0633 60 57.1 1 ASTROCYTOMA II 
HF0252 0.554987055 0.740517919 0.0552 35 123.1 0 ASTROCYTOMA II 
E09938 0.554812915 0.740285564 0.0303 45 25.2 1 GBM IV 
E09893 0.554807183 0.740277916 0.0153 40 111.9 1 OLIGODENDROGLIOMA III 
E10072 0.550695692 0.734791963 0.0179 65 37.2 0 OLIGODENDROGLIOMA II/III 
E09513 0.544168132 0.726082255 0.0911 55 13.4 1 OLIGODENDROGLIOMA II/III 
HF0251 0.5391027 0.719323462 0.0012 65 22.7 1 OLIGODENDROGLIOMA III 
E09920 0.537674994 0.717418476 0.0367 25 59.4 1 ASTROCYTOMA III 
HF1058 0.530737231 0.708161435 0.0242 40 18 1 GBM IV 
HF1511 0.526839197 0.702960298 0.0256 25 56.6 1 ASTROCYTOMA II 
E09262 0.525938162 0.701758049 0 50 13.6 1 MIXED II/III 
HF0434 0.52223726 0.696819944 0.0083 60 6.1 1 ASTROCYTOMA II 
HF1667 0.519023712 0.692532115 0.0019 60 2.5 1 GBM IV 
HF0445 0.515744412 0.688156552 0.0388 40 47.2 1 GBM IV 
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E09212 0.507821892 0.677585553 0 40 7.1 1 ASTROCYTOMA II/III 
E09601 0.503894105 0.672344716 0.0034 70 13.2 1 GBM IV 
E09921 0.497126104 0.663314188 0.0602 40 36.4 0 ASTROCYTOMA II/III 
HF1489 0.496517546 0.662502191 0.0539 50 68.3 1 ASTROCYTOMA II 
E10258 0.488339677 0.651590479 0.0539 50 20.6 1 GBM IV 
HF0936 0.488324253 0.651569899 0.0039 55 5.1 1 ASTROCYTOMA II 
E09988 0.484443639 0.646392006 0.0127 70 64.6 1 OLIGODENDROGLIOMA III 
HF0962 0.483030037 0.644505839 0.0278 45 116.5 0 OLIGODENDROGLIOMA II 
E09605 0.480872441 0.641626964 0.0053 45 59.3 1 GBM IV 
HF1492 0.468710079 0.625398754 0.0344 30 2.2 1 GBM IV 
HF0953 0.466790317 0.622837219 0.0829 35 44.6 1 ASTROCYTOMA II 
E09818 0.464049666 0.619180375 0.0338 30 38.1 0 ASTROCYTOMA II/III 
E09531 0.462403898 0.61698443 8.00E-04 55 19.3 1 ASTROCYTOMA II/III 
E09664 0.461318096 0.615535648 0.0155 40 27.1 1 OLIGODENDROGLIOMA II/III 
HF0022 0.459908744 0.613655152 0.0678 20 133.9 0 ASTROCYTOMA II 
HF0914 0.452628786 0.603941522 0.032 40 146.9 0 ASTROCYTOMA II 
E10551 0.451868661 0.602927288 0.0669 65 12.3 1 GBM IV 
E09907B 0.443791064 0.59214937 0.0024 60 55.2 1 GBM IV 
HF1345 0.433641331 0.578606606 0.0145 15 83.5 0 ASTROCYTOMA II 
HF1588 0.431310239 0.575496235 0.0735 40 75.2 0 ASTROCYTOMA II 
E09802 0.429940365 0.573668415 0.0306 80 32.2 1 GBM IV 
HF1585 0.425210527 0.567357403 0.031 25 19.9 1 GBM IV 
HF0520 0.422798129 0.564138546 0.0122 40 8.7 1 GBM IV 
E09852 0.422437933 0.563657938 0.0288 50 48.3 1 GBM IV 
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HF0108 0.420665649 0.561293184 0.0404 35 132 0 ASTROCYTOMA III 
E09192 0.404265925 0.53941107 0.0641 75 13.4 1 GBM IV 
HF0024 0.4034404 0.538309574 0.0562 45 5.8 1 GBM IV 
E09471 0.399568094 0.533142766 0.0065 70 27.2 1 ASTROCYTOMA II 
E10026 0.398363859 0.531535958 0.0281 65 15.4 1 GBM IV 
HF0608 0.398032902 0.531094363 0.0107 50 10.6 1 ASTROCYTOMA II 
E09690 0.389382233 0.519551795 0.0354 75 62.3 0 GBM IV 
E09647 0.382230723 0.510009552 0.0426 55 19.3 1 GBM IV 
E10144 0.380705674 0.507974683 0.0099 50 25.9 1 GBM IV 
HF1409 0.379186615 0.505947806 0.0143 50 12.7 1 ASTROCYTOMA III 
E09661 0.376503249 0.502367397 0.0076 65 48.5 0 OLIGODENDROGLIOMA II 
E09867 0.368241369 0.49134359 0.0267 75 38.7 0 OLIGODENDROGLIOMA II 
HF0778 0.363984009 0.485663005 0.0013 65 8.1 1 ASTROCYTOMA II 
HF1262 0.357766443 0.477366921 0.0163 30 23.7 1 GBM IV 
HF1178 0.356451664 0.475612614 0.0369 35 15.8 1 GBM IV 
HF0152 0.341086864 0.455111398 0.0564 30 131.5 0 ASTROCYTOMA III 
HF0543 0.334896186 0.44685119 0.049 30 67.6 0 GBM IV 
HF0996 0.322142945 0.429834571 0.0493 50 120.5 0 GBM IV 
HF0138 0.306071311 0.408390229 0.0594 60 1.2 1 GBM IV 
HF1509 -0.299523658 -0.386689141 0.0852 40 2.7 1 GBM IV 
HF1517 -0.304781874 -0.393477569 0.0358 55 8.3 1 GBM IV 
HF1078 -0.31280225 -0.403831985 0.0685 50 22.8 1 GBM IV 
HF0790 -0.317019359 -0.40927633 0.0439 45 7.5 1 GBM IV 
HF0855 -0.323567174 -0.417729649 0.0293 55 13.7 1 ASTROCYTOMA II 
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HF0510 -0.336784038 -0.434792801 0.0494 45 19.6 1 OLIGODENDROGLIOMA II 
HF0894 -0.337132125 -0.435242187 0.0477 40 14.1 1 GBM IV 
HF0835 -0.34490649 -0.445278998 0.0021 20 45.3 1 OLIGODENDROGLIOMA II 
E10031 -0.352909446 -0.455610923 0.0213 55 27.5 1 GBM IV 
HF0327 -0.362469071 -0.467952531 0.0057 75 19.6 1 OLIGODENDROGLIOMA II 
E09917 -0.367243861 -0.47411685 0.0036 50 6.1 1 GBM IV 
HF0960 -0.383971676 -0.495712688 0.033 45 88.7 1 OLIGODENDROGLIOMA II 
HF0408 -0.387273163 -0.499974953 4.00E-04 30 15.8 1 GBM IV 
HF1090 -0.395275411 -0.510305964 0.0306 50 8.5 1 OLIGODENDROGLIOMA III 
HF0450 -0.407202966 -0.525704601 0.0508 30 29.5 1 ASTROCYTOMA II 
E09791 -0.416213927 -0.537337876 0.0619 60 13.4 1 GBM IV 
E09730 -0.419038557 -0.540984511 0.0168 40 61.7 1 GBM IV 
HF0442.5 -0.422172569 -0.545030563 0.0252 30 19.6 1 GBM IV 
HF1122 -0.440157815 -0.568249762 0.0091 40 7.3 1 GBM IV 
HF1534 -0.445761091 -0.575483669 0.0165 20 7.8 1 GBM IV 
HF1057 -0.450285554 -0.581324812 1.00E-04 55 24.5 1 OLIGODENDROGLIOMA III 
HF1671 -0.453315816 -0.585236922 0.0711 50 13.3 1 GBM IV 
HF0031 -0.462637223 -0.597270985 0.0601 35 0.5 1 GBM IV 
E10300 -0.46358746 -0.598497754 0.0218 60 9.4 1 GBM IV 
HF0702 -0.480207693 -0.619954703 0.0205 50 8.5 1 ASTROCYTOMA III 
E10102 -0.485464009 -0.626740679 0.014 45 38.8 0 GBM IV 
E10271 -0.485974839 -0.627400166 0.0716 30 12.5 1 GBM IV 
HF0460 -0.491378375 -0.634376206 0.0796 45 10.7 1 OLIGODENDROGLIOMA III 
E09348 -0.496743594 -0.641302777 0.0536 35 18.5 1 GBM IV 
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E09139 -0.497586056 -0.642390407 0.028 45 36.5 1 GBM IV 
HF1186 -0.500533627 -0.646195762 0.0111 30 20.1 1 ASTROCYTOMA III 
HF1185 -0.506307341 -0.653649705 0.0285 25 95.2 0 ASTROCYTOMA III 
HF1344 -0.506640166 -0.654079386 0.061 60 9 1 ASTROCYTOMA II 
HF0990 -0.508177096 -0.656063585 0 NA 88.3 1 GBM IV 
HF1608 -0.510846262 -0.659509514 0.0827 60 7.9 1 GBM IV 
E10483 -0.513600598 -0.663065399 0.0754 25 66.4 1 ASTROCYTOMA II 
HF1538 -0.521697579 -0.673518713 0.0756 55 3.2 1 GBM IV 
HF1286 -0.530642368 -0.685066558 0.0333 75 13.2 1 ASTROCYTOMA III 
HF1618 -0.537184 -0.693511895 0.022 50 2.4 1 GBM IV 
HF0816 -0.543687185 -0.701907595 0.0361 60 46.7 1 OLIGODENDROGLIOMA III 
E50074 -0.546405102 -0.705416463 0.0368 50 5.4 1 GBM IV 
HF1382 -0.551104735 -0.711483754 0.0141 35 48.3 1 GBM IV 
E09967 -0.574153706 -0.741240291 0.002 45 4.4 1 GBM IV 
E09610 -0.57500937 -0.742344965 0.0061 55 12.5 1 GBM IV 
E10227 -0.601182757 -0.776135166 0.008 45 12.6 1 GBM IV 
HF0066 -0.601470694 -0.776506897 0.0016 50 9.1 1 GBM IV 
HF0986 -0.603858685 -0.779589825 2.00E-04 15 62.4 1 GBM IV 
HF1139 -0.628805522 -0.811796533 0.0117 40 15.8 1 GBM IV 
HF1191 -0.64276171 -0.829814163 7.00E-04 25 0.3 1 GBM IV 
HF1150 -0.651136485 -0.840626112 0 70 21.2 1 ASTROCYTOMA III 
HF0142 -0.6526464 -0.842575432 0.0021 25 0.3 1 GBM IV 
E09833B -0.661856328 -0.854465576 0.0192 45 20.8 1 GBM IV 
HF1297 -0.665978187 -0.859786953 0 60 17.2 1 GBM IV 
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E09966 -0.678273537 -0.875660417 0.0042 55 17.7 1 ASTROCYTOMA III 
HF0184 -0.681526594 -0.879860159 0 65 12 1 OLIGODENDROGLIOMA III 
HF1628 -0.684914765 -0.884234334 0.084 70 14.6 1 GBM IV 
E10284 -0.686683443 -0.886517721 0.0026 55 4.8 1 GBM IV 
E10267 -0.686925784 -0.886830587 0.004 75 12 1 GBM IV 
HF1077 -0.702421737 -0.906836074 5.00E-04 45 73.4 1 GBM IV 
HF1490 -0.722523361 -0.932787546 0.073 65 4 1 ASTROCYTOMA III 
HF1589 -0.774585129 -1 0.0162 25 3.3 1 GBM IV 
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Supplementary Table S3B. Activation scores, associated p-value and metadata of Gravendeel samples identified as (+) or (-) based on the 

oligodendroglial GPC signature. 

 
Samples Activation 

Score 
Normalized 
Score 

p-value Age Survival 
(yrs) 

Status Histology Grade CHR1p CHR19q EGFR 

GSM405355 0.801064034 1 0.0074 73 1.19 1 ASTROCYTOMA II NA NA NA 
GSM405256 0.737876569 0.921120582 0.0866 38 4.79 1 ASTROCYTOMA II no 

LOH 
no LOH wild type 

GSM405461 0.716299484 0.894185051 0.0947 49 0.76 1 GBM IV LOH LOH wild type 
GSM405246 0.682859857 0.852441038 0.0305 33 6.31 1 GBM IV LOH LOH NA 
GSM405203 0.66280444 0.827405066 0.0025 39 8.92 1 OLIGODENDROGLIOMA III LOH LOH wild type 
GSM405212 0.658658913 0.82223004 0.02 23 17.49 1 OLIGODENDROGLIOMA III LOH LOH wild type 
GSM405370 0.643329952 0.803094291 0.0192 47 1.61 1 GBM IV no 

LOH 
no LOH wild type 

GSM405318 0.634974336 0.792663644 0.0118 62 6.21 0 OLIGODENDROGLIOMA III no 
LOH 

no LOH NA 

GSM405216 0.615021607 0.76775586 0.0045 52 3.28 1 GBM IV NA no LOH wild type 
GSM405207 0.605455573 0.755814201 0.0052 44 8.12 1 OLIGODENDROGLIOMA III LOH LOH wild type 
GSM405409 0.59181949 0.738791739 0.0477 54 10.36 1 OLIGODENDROGLIOMA III LOH LOH NA 
GSM405324 0.566705887 0.707441431 0.0436 14 0.67 1 GBM IV no 

LOH 
no LOH amplification 

GSM405234 0.554016145 0.691600324 4.00E-
04 

58 0.62 1 GBM IV NA NA NA 

GSM405283 0.538231934 0.671896267 0.0183 38 4.07 1 OLIGOASTROCYTOMA III LOH LOH wild type 
GSM405205 0.533253927 0.665682023 0.0317 48 3.24 1 OLIGODENDROGLIOMA III LOH LOH wild type 
GSM405386 0.521886757 0.651491935 0.0114 54 3.76 1 OLIGODENDROGLIOMA II LOH LOH wild type 



 

194 

GSM405325 0.519420906 0.648413715 0.0449 43 3.65 1 OLIGOASTROCYTOMA III NA NA wild type 
GSM405441 0.517104497 0.64552205 0.0178 45 3.27 0 OLIGODENDROGLIOMA II LOH LOH wild type 
GSM405204 0.516167462 0.644352312 0.0954 34 8.59 1 OLIGODENDROGLIOMA III LOH LOH wild type 
GSM405320 0.515438603 0.643442448 0.017 70 0.6 1 GBM IV NA NA wild type 
GSM405411 0.507483079 0.633511251 5.00E-

04 
38 0.05 1 ASTROCYTOMA III LOH no LOH NA 

GSM405217 0.506733901 0.632576024 0.0389 33 6.77 0 GBM IV NA no LOH wild type 
GSM405314 0.504431242 0.629701523 2.00E-

04 
54 0.65 1 GBM IV no 

LOH 
LOH wild type 

GSM405343 0.489292619 0.610803379 0.0816 67 NA 0 GBM IV NA NA wild type 
GSM405457 0.486971348 0.607905645 0.0523 71 0.3 1 OLIGODENDROGLIOMA III no 

LOH 
no LOH wild type 

GSM405287 0.486856457 0.607762221 0.0345 44 6.87 1 OLIGODENDROGLIOMA III LOH LOH wild type 
GSM405330 0.483717775 0.603844081 0.0869 33 0.71 1 GBM IV no 

LOH 
NA wild type 

GSM405261 0.476668599 0.595044314 0.0015 60 0.98 1 OLIGODENDROGLIOMA III no 
LOH 

no LOH NA 

GSM405227 0.47341699 0.590985202 0.07 48 4.77 1 OLIGODENDROGLIOMA III NA NA NA 
GSM405243 0.470390141 0.587206667 0.0156 61 0.88 1 GBM IV NA NA NA 
GSM405395 0.464586642 0.579961928 0.0425 55 3.76 1 OLIGOASTROCYTOMA II LOH LOH wild type 
GSM405382 0.459041423 0.573039611 0.0015 44 4.86 1 OLIGOASTROCYTOMA III LOH LOH NA 
GSM405420 0.458788616 0.572724023 0.0413 50 3 1 OLIGODENDROGLIOMA III no 

LOH 
no LOH wild type 

GSM405278 0.458173812 0.571956538 2.00E-
04 

58 0.73 1 GBM IV NA NA amplification 

GSM405462 0.454461768 0.567322647 0.0601 50 7.52 1 ASTROCYTOMA II LOH LOH NA 
GSM405415 0.438470443 0.547360042 0.0062 67 0.5 1 GBM IV no 

LOH 
no LOH NA 
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GSM405301 0.426132041 0.531957526 0.0979 65 0.3 1 GBM IV NA NA NA 
GSM405465 0.420244949 0.524608435 0.0242 69 0.63 1 GBM IV NA no LOH NA 
GSM405211 0.419707136 0.523937062 0.0445 35 1.83 1 OLIGODENDROGLIOMA III LOH LOH NA 
GSM405342 0.417912408 0.521696632 0.0872 47 2.99 1 OLIGODENDROGLIOMA III NA NA wild type 
GSM405396 0.416841065 0.520359231 0.0331 77 0.02 1 GBM IV no 

LOH 
no LOH NA 

GSM405403 0.415940255 0.519234715 0.0034 38 0.04 1 ASTROCYTOMA III NA NA NA 
GSM405333 0.40417074 0.504542362 0.0697 58 9.11 1 OLIGODENDROGLIOMA III LOH LOH wild type 
GSM405249 0.40304092 0.503131964 0.002 23 0.04 1 GBM IV NA NA wild type 
GSM405475 0.39505561 0.493163584 0.0501 34 1.05 1 GBM IV NA NA wild type 
GSM405481 0.392048822 0.489410092 0.0018 34 10.37 0 PILOCYTIC 

ASTROCYTOMA 
I NA NA NA 

GSM405268 0.385988137 0.481844298 0.0039 48 0.64 1 GBM IV no 
LOH 

no LOH amplification 

GSM405311 0.381022431 0.47564541 0.0427 43 7.48 0 ASTROCYTOMA II NA NA NA 
GSM405265 0.377448173 0.471183522 0.0795 32 1.81 1 ASTROCYTOMA III NA NA wild type 
GSM405483 0.373761793 0.466581668 0.0012 32 0.19 0 PILOCYTIC 

ASTROCYTOMA 
I NA NA NA 

GSM405334 0.364091978 0.454510454 0.0214 57 1.47 1 OLIGODENDROGLIOMA III no 
LOH 

no LOH wild type 

GSM405321 0.363960116 0.454345846 0.0406 34 3.97 1 ASTROCYTOMA III NA NA wild type 
GSM405459 0.36310793 0.453282028 0.0099 64 1.14 1 GBM IV no 

LOH 
no LOH NA 

GSM405210 0.348355938 0.434866532 0.0782 39 10.28 1 OLIGODENDROGLIOMA III LOH LOH wild type 
GSM405464 0.340105521 0.424567209 0.0132 55 0.56 1 GBM IV NA NA NA 
GSM405250 0.317464016 0.39630292 0.0848 31 1.48 1 ASTROCYTOMA II NA NA NA 
GSM405466 0.302478925 0.377596437 0.0725 67 0.28 1 GBM IV no no LOH NA 
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LOH 
GSM405377 0.28692836 0.35818405 0.0854 42 0.6 1 OLIGODENDROGLIOMA III LOH LOH NA 
GSM405356 -

0.342749828 
-
0.460064457 

0.0371 43 0.18 1 GBM IV NA no LOH wild type 

GSM405298 -
0.349169162 

-
0.468680968 

0.0271 43 1.96 1 OLIGOASTROCYTOMA III no 
LOH 

no LOH NA 

GSM405240 -
0.351520541 

-
0.471837164 

0.0206 33 6.62 0 GBM IV no 
LOH 

no LOH NA 

GSM405391 -
0.371763333 

-
0.499008553 

0.0328 56 1.05 1 GBM IV no 
LOH 

no LOH NA 

GSM405339 -
0.373760087 

-
0.501688746 

0.0043 78 NA 0 GBM IV NA NA amplification 

GSM405436 -
0.375071936 

-
0.503449608 

0.0199 79 0.48 1 GBM IV NA NA NA 

GSM405450 -
0.379106436 

-
0.508865015 

0.0134 37 13.3 0 OLIGOASTROCYTOMA III NA NA NA 

GSM405372 -
0.380450453 

-
0.510669056 

0.0961 37 3.32 1 GBM IV LOH LOH NA 

GSM405439 -
0.381414955 

-
0.511963683 

0.0096 33 3.7 0 OLIGOASTROCYTOMA II no 
LOH 

NA wild type 

GSM405384 -
0.383888277 

-
0.515283561 

0.0174 70 0.02 0 GBM IV no 
LOH 

no LOH NA 

GSM405424 -
0.401716738 

-
0.539214255 

0.0365 33 3.2 1 ASTROCYTOMA II no 
LOH 

no LOH wild type 

GSM405230 -
0.430676082 

-
0.578085652 

0.0297 63 0.47 1 GBM IV no 
LOH 

no LOH NA 

GSM405438 -
0.433696491 

-
0.582139871 

0.0301 43 2.3 1 GBM IV LOH LOH NA 

GSM405388 -
0.444215467 

-
0.596259227 

0.0413 79 0.53 1 OLIGOASTROCYTOMA III no 
LOH 

no LOH amplification 

GSM405337 - - 0.0197 15 0.28 1 GBM IV NA NA amplification 
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0.445057768 0.597389827 
GSM405440 -

0.445411877 
-
0.597865138 

0.0352 70 0.53 1 GBM IV NA NA wild type 

GSM405326 -
0.450820952 

-
0.605125604 

0.0235 75 0.27 1 GBM IV NA NA amplification 

GSM405422 -
0.459443511 

-
0.616699447 

0.034 71 0.91 1 GBM IV no 
LOH 

no LOH NA 

GSM405294 -
0.465957579 

-
0.625443117 

0.0319 56 0.8 1 GBM IV partial 
LOH 

partial 
LOH 

amplification 

GSM405476 -
0.466653593 

-
0.626377359 

0.0131 65 1.31 1 OLIGOASTROCYTOMA III no 
LOH 

no LOH amplification 

GSM405443 -
0.486639715 

-
0.653204227 

0.0605 57 0.98 1 GBM IV NA NA amplification 

GSM405312 -
0.491071311 

-
0.659152647 

0.0293 61 1.02 1 GBM IV NA NA amplification 

GSM405226 -
0.512661405 

-
0.688132486 

0.0028 49 0.28 1 OLIGOASTROCYTOMA III no 
LOH 

LOH amplification 

GSM405474 -
0.524231599 

-
0.703662865 

0.0344 61 0.29 1 GBM IV NA NA amplification 

GSM405390 -
0.554141148 

-
0.743809699 

0.0917 70 0.02 1 OLIGOASTROCYTOMA III NA NA NA 

GSM405405 -
0.581116167 

-
0.780017587 

0.0126 71 0.61 1 GBM IV no 
LOH 

LOH NA 

GSM405267 -
0.591581464 

-
0.794064892 

0.0358 53 0.65 1 GBM IV no 
LOH 

NA NA 

GSM405292 -
0.605376456 

-
0.812581563 

0 66 1.11 1 GBM IV NA NA amplification 

GSM405347 -
0.616268217 

-
0.827201299 

0.0143 43 0.19 1 OLIGOASTROCYTOMA III NA NA amplification 

GSM405428 -
0.622239739 

-
0.835216722 

0.0052 71 0.79 1 GBM IV no 
LOH 

no LOH amplification 
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GSM405376 -
0.637951306 

-
0.856305963 

0.016 53 1.85 1 GBM IV no 
LOH 

NA amplification 

GSM405289 -0.67705098 -
0.908788469 

0.003 37 0.19 1 ASTROCYTOMA III NA NA amplification 

GSM405352 -
0.715537781 

-
0.960448333 

0.0752 70 0.4 1 GBM IV NA NA amplification 

GSM405341 -
0.745003928 

-1 0.0565 71 0.63 1 OLIGOASTROCYTOMA III NA NA amplification 
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Supplementary Table S4. Contingency tables for classification of (+) and (-) patient based on Phillips molecular subtypes. 

 
 
(a)      REMBRANDT Dataset 

 Mesenchymal Proneural  Proliferative Total 
(-) 32 5 24 61 
(+) 16 60 10 86 
Total 48 65 34 147 

             X-squared = 9.609, df = 2, p-value = 0.008193 
 
  
(b)     Gravendeel Dataset 

 Mesenchymal Proneural  Proliferative Total 
(-) 8 5 21 34 
(+) 8 27 23 58 
Total 16 32 44 92 

            X-squared = 54.9748, df = 2, p-value = 1.154e-12 
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Supplementary Table S5. Probesets in the NNI-8 GPC versus Primary Tumor stemness gene signature. 

 

Probeset ID Entrez Gene 
ID 

Gene 
Symbol Description Log Fold Change 

1553635_s_at 200132 TCTEX1D1 Tctex1 domain containing 1  -6.215791136 
209156_s_at 1292 COL6A2 collagen, type VI, alpha 2  -6.493620158 
209448_at 10553 HTATIP2 HIV-1 Tat interactive protein 2, 30kDa  -6.42297587 
222484_s_at 9547 CXCL14 chemokine (C-X-C motif) ligand 14  -8.105582051 
202018_s_at 4057 LTF lactotransferrin  -8.54583883 
230422_at 2359 FPR3 formyl peptide receptor 3  -7.35868863 
203032_s_at 2271 FH fumarate hydratase  6.389162912 
204122_at 7305 TYROBP TYRO protein tyrosine kinase binding protein  -7.451463342 
213975_s_at 4069 LYZ lysozyme  -8.567997622 
204570_at 1346 COX7A1 cytochrome c oxidase subunit VIIa polypeptide 1 (muscle)  -6.10959307 

204158_s_at 10312 TCIRG1 T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 
subunit A3  

-6.005341469 

209183_s_at 11067 C10orf10 chromosome 10 open reading frame 10  -6.05532165 
209047_at 358 AQP1 aquaporin 1 (Colton blood group)  -6.969067359 
205572_at 285 ANGPT2 angiopoietin 2  -7.511111563 
236034_at 285 ANGPT2 angiopoietin 2  -6.482834194 
235639_at 28513 CDH19 cadherin 19, type 2  6.235154529 
209901_x_at 199 AIF1 allograft inflammatory factor 1  -6.32542485 
213095_x_at 199 AIF1 allograft inflammatory factor 1  -7.499645133 
215051_x_at 199 AIF1 allograft inflammatory factor 1  -7.64616928 
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1555460_a_at 25800 SLC39A6 solute carrier family 39 (zinc transporter), member 6  6.466383357 
220311_at 29104 N6AMT1 N-6 adenine-specific DNA methyltransferase 1 (putative)  6.090119758 

203240_at 8857 FCGBP Fc fragment of IgG binding protein  -6.279670112 
202628_s_at 5054 SERPINE1 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor 

type 1), member 1  
-6.169187776 

201743_at 929 CD14 CD14 molecule  -9.061228844 
225400_at 116461 TSEN15 tRNA splicing endonuclease 15 homolog (S. cerevisiae)  6.564806667 

219386_s_at 56833 SLAMF8 SLAM family member 8  -6.439653705 
218345_at 55365 TMEM176A transmembrane protein 176A  -7.028336131 
219167_at 51285 RASL12 RAS-like, family 12  -7.447403055 
225502_at 81704 DOCK8 dedicator of cytokinesis 8  -6.431728356 
234023_s_at 55835 CENPJ centromere protein J  6.500186173 
209619_at 972 CD74 CD74 molecule, major histocompatibility complex, class II invariant chain  -6.392605538 
223434_at 2635 GBP3 guanylate binding protein 3  -7.428950443 
207054_at 3617 IMPG1 interphotoreceptor matrix proteoglycan 1  -7.236493758 
205374_at 6588 SLN sarcolipin  -6.139099986 
203535_at 6280 S100A9 S100 calcium binding protein A9  -6.508034002 
203571_s_at 10974 C10orf116 chromosome 10 open reading frame 116  -6.322842462 
204128_s_at 5983 RFC3 replication factor C (activator 1) 3, 38kDa  6.363690078 
218559_s_at 9935 MAFB v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (avian)  -6.671432912 
201842_s_at 2202 EFEMP1 EGF containing fibulin-like extracellular matrix protein 1  -6.040243322 
212268_at 1992 SERPINB1 serpin peptidase inhibitor, clade B (ovalbumin), member 1  -6.972772922 

209723_at 5272 SERPINB9 serpin peptidase inhibitor, clade B (ovalbumin), member 9  -6.55138368 
223620_at 2857 GPR34 G protein-coupled receptor 34  -7.926594277 
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219607_s_at 51338 MS4A4A membrane-spanning 4-domains, subfamily A, member 4  -8.180055654 
226034_at 1846 DUSP4 dual specificity phosphatase 4  6.838468179 
225314_at 132299 OCIAD2 OCIA domain containing 2  -8.275917817 
204990_s_at 3691 ITGB4 integrin, beta 4  -6.364422156 
203854_at 3426 CFI complement factor I  -6.363714998 
202310_s_at 1277 COL1A1 collagen, type I, alpha 1  -7.130038944 
1556499_s_at 1277 COL1A1 collagen, type I, alpha 1  -9.238542552 
213566_at 6039 RNASE6 ribonuclease, RNase A family, k6  -7.823580016 
204482_at 7122 CLDN5 claudin 5  -6.460963571 
221816_s_at 51131 PHF11 PHD finger protein 11  -6.825731298 
239132_at 4842 NOS1 nitric oxide synthase 1 (neuronal)  -6.386282534 
209395_at 1116 CHI3L1 chitinase 3-like 1 (cartilage glycoprotein-39)  -10.14439331 

209396_s_at 1116 CHI3L1 chitinase 3-like 1 (cartilage glycoprotein-39)  -9.362700349 

219719_at 51751 HIGD1B HIG1 hypoxia inducible domain family, member 1B  -6.669433848 

203540_at 2670 GFAP glial fibrillary acidic protein  -7.35128303 
201721_s_at 7805 LAPTM5 lysosomal protein transmembrane 5  -6.25877809 
232887_at 644139 PIRT phosphoinositide-interacting regulator of transient receptor potential 

channels  
-6.331567906 

204787_at 11326 VSIG4 V-set and immunoglobulin domain containing 4  -7.189520229 

208161_s_at 8714 ABCC3 ATP-binding cassette, sub-family C (CFTR/MRP), member 3  -6.929235405 

210055_at 7253 TSHR thyroid stimulating hormone receptor  -6.141153984 
202859_x_at 3576 IL8 interleukin 8  -8.035544596 
235417_at 90853 SPOCD1 SPOC domain containing 1  -6.444542888 
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203835_at 2615 LRRC32 leucine rich repeat containing 32  -6.267902391 
202238_s_at 4837 NNMT nicotinamide N-methyltransferase  -6.6617682 
202237_at 4837 NNMT nicotinamide N-methyltransferase  -7.208303354 
229391_s_at 441168 FAM26F family with sequence similarity 26, member F  -6.297620939 
223467_at 51655 RASD1 RAS, dexamethasone-induced 1  -8.103012345 
239461_at 117248 GALNTL2 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase-like 2  
-7.696742518 

228501_at 117248 GALNTL2 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase-like 2  

-6.995008809 

205786_s_at 3684 ITGAM integrin, alpha M (complement component 3 receptor 3 subunit)  -6.272756493 

208747_s_at 716 C1S complement component 1, s subcomponent  -8.132346089 

201859_at 5552 SRGN serglycin  -8.765885577 
201858_s_at 5552 SRGN serglycin  -8.111413158 
207397_s_at 3239 HOXD13 homeobox D13  6.35025642 
1568604_a_at 8618 CADPS Ca++-dependent secretion activator  -7.030383795 
231068_at 146802 SLC47A2 solute carrier family 47, member 2  -8.52812485 
215049_x_at 9332 CD163 CD163 molecule  -7.402833043 
218729_at 56925 LXN latexin  -6.457187984 
209875_s_at 6696 SPP1 secreted phosphoprotein 1  -7.285379742 
200986_at 710 SERPING1 serpin peptidase inhibitor, clade G (C1 inhibitor), member 1  -8.060359753 

225353_s_at 714 C1QC complement component 1, q subcomponent, C chain  -7.877615852 

202953_at 713 C1QB complement component 1, q subcomponent, B chain  -9.175565222 
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Supplementary Table S6. Results from Pathway Activation Score, Log Rank and Cox Regression analysis (NNI-8 GPC versus 

Primary Tumor gene signature). (+) represents patients with concordance to GPC signature; (-) represents patients with inverse gene 

expression relationship to GPC signature. 

 
 

Dataset Connectivity Maps Analysis Log Rank 
p-value 

Multivariate Cox Univariate Cox 

# of 
probes 

# of 
samples 

(+) (-) total(+)(-) %(+)(-) Hazard Ratio p-
value 

Hazard Ratio p-value 

REMBRANDT 84 298 80 54 134 44.97 0.007 0.671 

(0.455 - 0.989) 

0.044 0.596 

(0.406 - 0.874) 

0.008 

Gravendeel 84 276 86 77 163 59.06 0.0007 0.691 

(0.488 - 0.977) 

0.036 0.567 

(0.407 - 0.791) 

0.0008 

 
Multivariate Cox Regression: 
REMBRANDT:  coxph(formula = Surv(survival, status) ~ age + grade + class, data = dat) 
Gravendeel:  coxph(formula = Surv(survival, status) ~ age + grade + class, data = dat) 
 
Univariate Cox Regression: 
REMBRANDT:  coxph(formula = Surv(survival, status) ~ class, data = dat) 
Gravendeel:  coxph(formula = Surv(survival, status) ~ class, data = dat) 
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Supplementary Table S7A. Activation scores, associated p-value and metadata of REMBRANDT samples identified as (+) or 

(-) based on the NNI-8 stemness signature. 

 
Samples Activation 

Score 
Normalized 
Score 

p-value Age Survival 
(mths) 

Status Histology Grade 

E08021 1.522597165 1 0 40 81.5 1 OLIGODENDROGLIOMA III 
E09448 1.422752629 0.934424851 0 60 229.1 1 OLIGODENDROGLIOMA III 
HF0891 1.303831733 0.856320873 0 35 28.8 1 GBM IV 
HF0142 1.288468221 0.84623054 0 25 0.3 1 GBM IV 
HF0066 1.216406036 0.798902076 0 50 9.1 1 GBM IV 
E10110 1.176753544 0.772859408 0 50 23.1 1 GBM IV 
HF0996 1.119487883 0.735248895 0 50 120.5 0 GBM IV 
E09804 1.103850023 0.724978378 0 70 42.4 0 OLIGODENDROGLIOMA II 
HF1136 1.084938272 0.712557659 0 35 45.3 1 ASTROCYTOMA III 
HF0108 1.077128487 0.707428407 0 35 132 0 ASTROCYTOMA III 
HF1227 1.074604481 0.705770709 0 50 251.7 0 OLIGODENDROGLIOMA II 
E10105 1.067544582 0.701133961 0 40 1.1 NA ASTROCYTOMA III 
E09278 1.050937357 0.690226792 0 40 36.6 0 GBM IV 
HF0920 1.049199817 0.689085624 0 40 1 1 OLIGODENDROGLIOMA II 
E09867 1.04340192 0.685277724 0 75 38.7 0 OLIGODENDROGLIOMA II 
E09690 1.029117513 0.675896118 0 75 62.3 0 GBM IV 
E09893 1.027983539 0.675151355 0 40 111.9 1 OLIGODENDROGLIOMA III 
E09394 1.019807956 0.669781857 0 30 51.7 1 MIXED III 
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HF1628 1.007590306 0.66175764 0 70 14.6 1 GBM IV 
E09802 0.99482396 0.653373054 0 80 32.2 1 GBM IV 
HF0184 0.987032465 0.648255814 0 65 12 1 OLIGODENDROGLIOMA III 
HF0975 0.978033836 0.642345762 0 60 36.5 1 ASTROCYTOMA III 
HF0251 0.974357567 0.63993129 0 65 22.7 1 OLIGODENDROGLIOMA III 
HF1382 0.962780064 0.632327503 0 35 48.3 1 GBM IV 
HF1511 0.960128029 0.63058572 0 25 56.6 1 ASTROCYTOMA II 
E09722 0.958006401 0.629192293 0 50 28.5 1 GBM IV 
HF1587 0.919524463 0.603918412 0 30 75.3 0 ASTROCYTOMA III 
HF0180 0.911165981 0.598428791 0.0105 35 0.3 1 GBM IV 
HF1677 0.903978052 0.593707957 0 50 63.5 0 ASTROCYTOMA II 
E09656 0.891229995 0.585335383 0 65 34.1 1 OLIGODENDROGLIOMA III 
HF1551 0.888523091 0.583557563 0 30 70.9 0 ASTROCYTOMA II 
E10299 0.878079561 0.576698539 0 40 44.6 0 ASTROCYTOMA II/III 
HF1613 0.870233196 0.571545262 0 35 66.8 1 ASTROCYTOMA III 
E10013 0.860045725 0.564854411 5.00E-04 55 4.9 1 GBM IV 
E09855 0.850022862 0.55827167 0.0247 25 38.4 0 ASTROCYTOMA III 
E10252B 0.846566072 0.556001345 0 55 53 1 GBM IV 
E09988 0.84526749 0.555148472 0 70 64.6 1 OLIGODENDROGLIOMA III 
HF0702 0.831184271 0.545899001 0.0011 50 8.5 1 ASTROCYTOMA III 
E09818 0.829263832 0.544637709 0 30 38.1 0 ASTROCYTOMA II/III 
E09997 0.827471422 0.543460504 0 35 46.9 0 ASTROCYTOMA II/III 
E09966 0.822496571 0.540193158 0.002 55 17.7 1 ASTROCYTOMA III 
HF1469 0.821326017 0.539424371 0 25 22.2 1 GBM IV 
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HF1640 0.81911294 0.537970882 0 50 5.5 1 GBM IV 
HF1295 0.80175583 0.526571209 0 55 19.1 1 ASTROCYTOMA III 
E09688 0.800877915 0.525994618 0 55 50.8 1 MIXED II 
E10267 0.789062643 0.518234672 0 75 12 1 GBM IV 
HF0408 0.770900777 0.506306458 0.0032 30 15.8 1 GBM IV 
E09454 0.760987654 0.499795791 0 55 18 1 GBM IV 
HF1344 0.758536808 0.498186143 0 60 9 1 ASTROCYTOMA II 
E10262 0.755884774 0.496444359 0.0074 50 18 1 GBM IV 
E09569 0.738052126 0.484732366 0 70 37.4 1 GBM IV 
E10211 0.736131687 0.483471074 0 85 28.4 1 GBM IV 
E09920 0.725761317 0.4766601 0.0074 25 59.4 1 ASTROCYTOMA III 
E10271 0.722981253 0.47483423 0.0044 30 12.5 1 GBM IV 
HF1191 0.715116598 0.469668941 6.00E-04 25 0.3 1 GBM IV 
E09959 0.713580247 0.468659908 0 50 46.4 1 ASTROCYTOMA III 
HF0966 0.709958848 0.466281472 2.00E-04 50 137.7 0 ASTROCYTOMA III 
E50123 0.674183813 0.442785412 0 30 17.5 1 GBM IV 
E10001 0.672610882 0.441752354 0 50 8.7 1 OLIGODENDROGLIOMA III 
HF0960 0.669666209 0.439818374 0 45 88.7 1 OLIGODENDROGLIOMA II 
E10252 0.666575217 0.437788295 0 55 53 1 GBM IV 
HF1490 0.665532693 0.437103594 0.0025 65 4 1 ASTROCYTOMA III 
HF0990 0.651906722 0.42815443 0 NA 88.3 1 GBM IV 
E09860 0.621490626 0.408177974 0 40 36.8 0 OLIGODENDROGLIOMA II 
HF1338 0.604572474 0.397066596 0 35 5.9 1 GBM IV 
E09956 0.604444444 0.39698251 0 70 21 1 GBM IV 
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HF0963 0.566035665 0.371756679 0.009 10 10.6 1 GBM IV 
E09610 0.565743027 0.371564482 0.0243 55 12.5 1 GBM IV 
HF1057 0.554513032 0.364188929 0.0021 55 24.5 1 OLIGODENDROGLIOMA III 
E09623 0.547379973 0.359504132 3.00E-04 50 20.7 1 GBM IV 
E10184 0.541033379 0.355335864 0 30 28.3 1 GBM IV 
HF1487 0.530132602 0.348176533 0 50 9.9 1 OLIGODENDROGLIOMA II 
E09921 0.511476909 0.335923986 0 40 36.4 0 ASTROCYTOMA II/III 
HF0442.5 0.509044353 0.33432635 0.0137 30 19.6 1 GBM IV 
HF0992 0.496607225 0.326157986 2.00E-04 30 20 1 GBM IV 
E10144 0.477750343 0.313773304 0.0012 50 25.9 1 GBM IV 
E10138 0.459789666 0.301977225 2.00E-04 25 46.9 0 ASTROCYTOMA II/III 
E09801 0.459021491 0.301472708 5.00E-04 30 42.5 1 ASTROCYTOMA III 
HF0654 0.387965249 0.25480492 0.0299 20 14.6 1 GBM IV 
HF1357 0.382094193 0.250948972 0.0141 40 30.8 1 OLIGODENDROGLIOMA III 
HF0816 -0.432245085 -0.40731102 0.0376 60 46.7 1 OLIGODENDROGLIOMA III 
E09471 -0.454631916 -0.428406467 0.0028 70 27.2 1 ASTROCYTOMA II 
HF1534 -0.478372199 -0.450777291 7.00E-04 20 7.8 1 GBM IV 
E10226 -0.53223594 -0.501533901 0.0285 65 18.7 1 GBM IV 
E10031 -0.545569273 -0.514098101 0.0032 55 27.5 1 GBM IV 
HF0316 -0.551641518 -0.519820068 0 40 73.4 1 ASTROCYTOMA II 
HF0954.2 -0.593379058 -0.559149978 0 70 11 1 ASTROCYTOMA III 
HF0606 -0.612821216 -0.577470615 0 30 76.8 1 ASTROCYTOMA II 
E09451 -0.636707819 -0.599979318 0 60 5.3 1 GBM IV 
HF0024 -0.649272977 -0.611819655 0 45 5.8 1 GBM IV 
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E09664 -0.661088249 -0.622953363 0.0094 40 27.1 1 OLIGODENDROGLIOMA II/III 
E09673 -0.665441244 -0.627055255 0 45 213.8 0 ASTROCYTOMA II 
E10158 -0.667142204 -0.628658095 0 70 40.6 0 GBM IV 
HF0844 -0.672281664 -0.633501086 0 30 63.8 1 ASTROCYTOMA II 
HF1538 -0.68349337 -0.644066044 0 55 3.2 1 GBM IV 
E10193 -0.687242798 -0.647599187 0 50 34.2 NA GBM IV 
HF1671 -0.689437586 -0.649667368 0 50 13.3 1 GBM IV 
E10284 -0.691687243 -0.651787253 0 55 4.8 1 GBM IV 
HF1077 -0.697960677 -0.657698804 0 45 73.4 1 GBM IV 
HF1137 -0.711074531 -0.670056186 0 35 18.3 1 GBM IV 
E09430 -0.715354367 -0.674089139 0 45 32 1 GBM IV 
HF0543 -0.715628715 -0.674347661 0 30 67.6 0 GBM IV 
E09483 -0.715829904 -0.674537244 0 65 10.3 1 GBM IV 
E10514 -0.716671239 -0.675330047 0 75 23.7 1 GBM IV 
HF0089 -0.72698674 -0.685050498 0 65 7.9 1 ASTROCYTOMA III 
E10551 -0.734192958 -0.691841026 0 65 12.3 1 GBM IV 
E09661 -0.739515318 -0.696856365 0 65 48.5 0 OLIGODENDROGLIOMA II 
E10488 -0.758774577 -0.715004653 0 55 21.9 1 GBM IV 
E10103 -0.764389575 -0.72029575 0 50 3.3 1 ASTROCYTOMA II/III 
E09930 -0.772565158 -0.727999724 0 50 5.1 1 GBM IV 
E09531 -0.773699131 -0.729068284 0 55 19.3 1 ASTROCYTOMA II/III 
HF1178 -0.788367627 -0.742890628 0 35 15.8 1 GBM IV 
HF0936 -0.797567444 -0.751559753 0 55 5.1 1 ASTROCYTOMA II 
E09649 -0.804773663 -0.758350281 0 70 9.7 1 GBM IV 
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HF0757 -0.813644262 -0.766709179 0 40 74.9 1 ASTROCYTOMA II 
HF0460 -0.816899863 -0.769776981 0 45 10.7 1 OLIGODENDROGLIOMA III 
HF1246 -0.829721079 -0.781858605 0 65 0.2 1 ASTROCYTOMA II 
E09602 -0.841481481 -0.792940609 0 60 4.1 1 GBM IV 
E10227 -0.845834476 -0.797042501 0 45 12.6 1 GBM IV 
E09239 -0.849419296 -0.80042053 0 30 63.3 1 ASTROCYTOMA III 
E09331 -0.864618198 -0.814742684 0 55 38.9 0 GBM IV 
E10290 -0.880951075 -0.830133398 0 30 6.9 1 GBM IV 
E10077 -0.88698674 -0.835820896 0 55 25.8 1 GBM IV 
E10300 -0.88870599 -0.837440971 0 60 9.4 1 GBM IV 
E09334 -0.89223594 -0.840767295 0 50 85.2 1 MIXED III 
E10305 -0.90434385 -0.852176761 0 40 10.1 1 GBM IV 
HF1585 -0.910068587 -0.857571266 0 25 19.9 1 GBM IV 
HF0953 -0.940283493 -0.886043225 0 35 44.6 1 ASTROCYTOMA II 
E09348 -0.942075903 -0.887732239 0 35 18.5 1 GBM IV 
E10002 -0.944691358 -0.890196822 0 55 8.4 1 GBM IV 
HF1356 -1.01733882 -0.958653614 0 50 13.5 1 GBM IV 
HF0608 -1.035354367 -0.975629933 0 50 10.6 1 ASTROCYTOMA II 
HF1220 -1.039433013 -0.979473303 0 35 10.4 1 GBM IV 
E09759 -1.061216278 -1 0 45 20.1 1 GBM IV 
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Supplementary Table S7B. Activation scores, associated p-value and metadata of Gravendeel samples identified as (+) or (-) based on 

the NNI-8 stemness signature. 

 

Samples Activation 
Score 

Normalized 
Score 

p-
value Age Survival 

(yrs) Status Histology Grade CHR1p CHR19q IDH1 EGFR 

GSM405
467 

1.226995885 1 0 43.9 1.34 1 OLIGODENDROGLI
OMA 

III no 
LOH 

no LOH mutation wild type 

GSM405
476 

1.216186557 0.991190412 0 64.97 1.31 1 OLIGOASTROCYT
OMA 

III no 
LOH 

no LOH no 
mutation 

amplifica
tion 

GSM405
475 

1.200091449 0.978072921 0 33.74 1.05 1 GBM IV NA NA no 
mutation 

wild type 

GSM405
431 

1.147946959 0.935575232 0 80.65 0.92 1 GBM IV no 
LOH 

no LOH no 
mutation 

wild type 

GSM405
210 

1.13399177 0.924201771 0 38.53 10.28 1 OLIGODENDROGLI
OMA 

III LOH LOH mutation wild type 

GSM405
399 

1.132766347 0.923203053 0 52.07 1.18 1 OLIGOASTROCYT
OMA 

III no 
LOH 

NA no 
mutation 

amplifica
tion 

GSM405
349 

1.128376772 0.919625555 0 24.42 2.41 1 GBM IV NA NA no 
mutation 

wild type 

GSM405
246 

1.126127115 0.917792088 0 32.59 6.31 1 GBM IV LOH LOH mutation NA 

GSM405
369 

1.106776406 0.902021286 0 50.34 4.13 1 GBM IV LOH LOH mutation wild type 

GSM405
201 

1.089437586 0.887890171 0 44.57 9.82 1 OLIGODENDROGLI
OMA 

III LOH LOH mutation NA 

GSM405
208 

1.088834019 0.887398265 0 51.4 3.04 1 OLIGODENDROGLI
OMA 

III LOH LOH mutation wild type 

GSM405
338 

1.064581619 0.867632591 0 50.23 7.96 1 OLIGODENDROGLI
OMA 

II LOH LOH mutation wild type 
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GSM405
370 

1.054485597 0.859404347 0 46.52 1.61 1 GBM IV no 
LOH 

no LOH no 
mutation 

wild type 

GSM405
323 

1.005102881 0.819157499 0 58.78 0.62 1 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
319 

1.003950617 0.818218406 0 53.65 5.62 1 OLIGODENDROGLI
OMA 

III LOH LOH mutation NA 

GSM405
257 

1.000164609 0.815132815 0 46.04 10.86 0 OLIGODENDROGLI
OMA 

III LOH LOH mutation wild type 

GSM405
437 

0.981545496 0.799958263 0 51.63 3.44 0 OLIGODENDROGLI
OMA 

II NA NA mutation NA 

GSM405
378 

0.975290352 0.794860329 0 57.22 0 1 OLIGODENDROGLI
OMA 

II NA NA no 
mutation 

wild type 

GSM405
382 

0.972491998 0.792579674 0 44.15 4.86 1 OLIGOASTROCYT
OMA 

III LOH LOH NA NA 

GSM405
227 

0.967773205 0.788733864 0 48.1 4.77 1 OLIGODENDROGLI
OMA 

III NA NA NA NA 

GSM405
449 

0.95820759 0.780937901 0 45.39 2.02 1 OLIGODENDROGLI
OMA 

III LOH LOH no 
mutation 

wild type 

GSM405
247 

0.941362597 0.767209254 0 39.36 1.59 1 GBM IV no 
LOH 

no LOH no 
mutation 

NA 

GSM405
420 

0.939899406 0.766016755 0 49.94 3 1 OLIGODENDROGLI
OMA 

III no 
LOH 

no LOH mutation wild type 

GSM405
327 

0.937796068 0.764302537 0 66.86 3.3 1 OLIGODENDROGLI
OMA 

III LOH LOH mutation wild type 

GSM405
329 

0.936406036 0.763169663 0 60.33 5.02 1 OLIGODENDROGLI
OMA 

III LOH LOH mutation NA 

GSM405
212 

0.936296296 0.763080225 0 23.33 17.49 1 OLIGODENDROGLI
OMA 

III LOH LOH no 
mutation 

wild type 

GSM405
204 

0.929382716 0.757445667 0 33.89 8.59 1 OLIGODENDROGLI
OMA 

III LOH LOH no 
mutation 

wild type 

GSM405
283 

0.896223137 0.730420654 0 38.07 4.07 1 OLIGOASTROCYT
OMA 

III LOH LOH NA wild type 
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GSM405
234 

0.882725194 0.719419849 0 57.68 0.62 1 GBM IV NA NA NA NA 

GSM405
347 

0.875793324 0.713770384 0 43.11 0.19 1 OLIGOASTROCYT
OMA 

III NA NA mutation amplifica
tion 

GSM405
441 

0.871568358 0.710327043 0 44.74 3.27 0 OLIGODENDROGLI
OMA 

II LOH LOH no 
mutation 

wild type 

GSM405
308 

0.868696845 0.707986763 0 47.4 3.1 0 GBM IV NA NA mutation NA 

GSM405
377 

0.859625057 0.700593268 0.007
1 

41.98 0.6 1 OLIGODENDROGLI
OMA 

III LOH LOH no 
mutation 

NA 

GSM405
434 

0.848870599 0.691828399 0 67.01 0.24 1 GBM IV NA NA NA NA 

GSM405
386 

0.84528578 0.688906776 0 53.85 3.76 1 OLIGODENDROGLI
OMA 

II LOH LOH mutation wild type 

GSM405
232 

0.844078647 0.687922965 0 35.7 0.98 1 GBM IV no 
LOH 

no LOH mutation wild type 

GSM405
223 

0.839561043 0.684241123 0 53.26 1.92 1 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
207 

0.835976223 0.6813195 0 44.41 8.12 1 OLIGODENDROGLI
OMA 

III LOH LOH no 
mutation 

wild type 

GSM405
366 

0.833836305 0.67957547 0 75.13 2.21 1 OLIGODENDROGLI
OMA 

III LOH LOH mutation wild type 

GSM405
388 

0.817704618 0.666428167 0 78.52 0.53 1 OLIGOASTROCYT
OMA 

III no 
LOH 

no LOH no 
mutation 

amplifica
tion 

GSM405
337 

0.816479195 0.665429449 0 15.02 0.28 1 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
344 

0.81571102 0.664803387 0 34.71 1.19 1 OLIGODENDROGLI
OMA 

II partial 
LOH 

no LOH no 
mutation 

wild type 

GSM405
253 

0.794549611 0.647556867 4.00E-
04 

34.84 12.56 0 GBM IV no 
LOH 

no LOH no 
mutation 

NA 

GSM405
330 

0.794494742 0.647512149 0 33.12 0.71 1 GBM IV no 
LOH 

NA mutation wild type 
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GSM405
380 

0.786465478 0.640968309 0 39.99 6.04 1 OLIGODENDROGLI
OMA 

III LOH LOH mutation wild type 

GSM405
289 

0.767480567 0.625495632 0 37.44 0.19 1 ASTROCYTOMA III NA NA no 
mutation 

amplifica
tion 

GSM405
341 

0.766620942 0.624795039 0.072 71.11 0.63 1 OLIGOASTROCYT
OMA 

III NA NA mutation amplifica
tion 

GSM405
316 

0.742386831 0.605044272 0 40.06 10.34 1 OLIGOASTROCYT
OMA 

III NA NA no 
mutation 

wild type 

GSM405
461 

0.737997257 0.601466774 0 49.14 0.76 1 GBM IV LOH LOH no 
mutation 

wild type 

GSM405
318 

0.725358939 0.591166562 0 62.46 6.21 0 OLIGODENDROGLI
OMA 

III no 
LOH 

no LOH mutation NA 

GSM405
383 

0.711970736 0.580255195 0.029 37.6 1.32 1 ASTROCYTOMA II no 
LOH 

no LOH no 
mutation 

wild type 

GSM405
231 

0.707599451 0.576692604 0.001
7 

62.96 1.26 1 GBM IV no 
LOH 

no LOH NA NA 

GSM405
312 

0.697082762 0.568121516 0 61.31 1.02 1 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
292 

0.685980796 0.559073428 0 65.52 1.11 1 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
396 

0.682414266 0.556166711 2.00E-
04 

77.31 0.02 1 GBM IV no 
LOH 

no LOH mutation NA 

GSM405
309 

0.682359396 0.556121993 0.004 54.6 0.26 1 GBM IV NA NA mutation NA 

GSM405
220 

0.668971193 0.545210625 0 54.12 1.27 1 GBM IV NA NA no 
mutation 

wild type 

GSM405
225 

0.667636031 0.54412247 0 31.56 3.47 1 OLIGOASTROCYT
OMA 

III no 
LOH 

no LOH NA wild type 

GSM405
249 

0.660027435 0.537921474 0 23.02 0.04 1 GBM IV NA NA mutation wild type 

GSM405
468 

0.65395519 0.532972602 0 33.48 7.04 0 PILOCYTIC 
ASTROCYTOMA 

I NA NA no 
mutation 

NA 
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GSM405
215 

0.651083676 0.530632323 0.005
6 

51.44 2.3 1 GBM IV no 
LOH 

no LOH no 
mutation 

NA 

GSM405
460 

0.644554184 0.525310795 0 52.52 0.48 1 OLIGODENDROGLI
OMA 

III no 
LOH 

no LOH no 
mutation 

amplifica
tion 

GSM405
303 

0.643219021 0.52422264 0.005
5 

56.64 0.55 1 GBM IV NA NA no 
mutation 

NA 

GSM405
352 

0.638372199 0.520272486 0 69.95 0.4 1 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
427 

0.633763146 0.516516114 0.001
4 

50.83 1.53 1 GBM IV NA NA NA NA 

GSM405
262 

0.63122085 0.514444146 0.006
2 

43.26 2.89 1 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
392 

0.616680384 0.502593686 0.016
1 

48.35 0.47 1 GBM IV NA no LOH NA NA 

GSM405
284 

0.613260174 0.499806219 0 57.7 1.6 1 OLIGOASTROCYT
OMA 

III no 
LOH 

no LOH NA amplifica
tion 

GSM405
242 

0.60696845 0.494678472 0.011
9 

30.33 0.18 1 GBM IV NA NA NA NA 

GSM405
363 

0.605724737 0.493664848 2.00E-
04 

48.84 9.79 1 GBM IV no 
LOH 

no LOH mutation wild type 

GSM405
385 

0.602487426 0.491026444 0 34.78 1.26 0 GBM IV no 
LOH 

NA mutation NA 

GSM405
391 

0.599725652 0.488775601 0.007
1 

55.55 1.05 1 GBM IV no 
LOH 

no LOH NA NA 

GSM405
355 

0.598171011 0.487508571 0.013 73.19 1.19 1 ASTROCYTOMA II NA NA no 
mutation 

NA 

GSM405
222 

0.590507545 0.481262857 0.007
4 

54.06 1.3 1 GBM IV NA NA NA NA 

GSM405
372 

0.572748057 0.466788898 0 37.12 3.32 1 GBM IV LOH LOH NA NA 

GSM405
294 

0.565852766 0.461169245 0 56.41 0.8 1 GBM IV partial 
LOH 

partial 
LOH 

no 
mutation 

amplifica
tion 
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GSM405
281 

0.561847279 0.457904779 0 37.12 3.32 1 ASTROCYTOMA III NA NA no 
mutation 

NA 

GSM405
205 

0.557274806 0.454178219 0.006 48.03 3.24 1 OLIGODENDROGLI
OMA 

III LOH LOH mutation wild type 

GSM405
302 

0.543557385 0.442998539 0.010
7 

41.39 0.74 1 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
339 

0.53907636 0.43934651 9.00E-
04 

78.08 NA 0 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
419 

0.518829447 0.422845303 0.007
3 

36.27 2.93 1 GBM IV NA NA mutation wild type 

GSM405
483 

0.50780064 0.41385684 6.00E-
04 

32.35 0.19 0 PILOCYTIC 
ASTROCYTOMA 

I NA NA no 
mutation 

NA 

GSM405
362 

0.507123914 0.41330531 4.00E-
04 

38.11 1.06 1 GBM IV no 
LOH 

no LOH no 
mutation 

NA 

GSM405
422 

0.494759945 0.403228692 1.00E-
04 

70.67 0.91 1 GBM IV no 
LOH 

no LOH no 
mutation 

NA 

GSM405
325 

0.468020119 0.381435769 4.00E-
04 

42.98 3.65 1 OLIGOASTROCYT
OMA 

III NA NA mutation wild type 

GSM405
203 

0.458655693 0.373803774 0 38.58 8.92 1 OLIGODENDROGLI
OMA 

III LOH LOH no 
mutation 

wild type 

GSM405
452 

-
0.405048011 

-0.352486153 0.011
9 

71.02 0.35 1 GBM IV NA NA no 
mutation 

wild type 

GSM405
464 

-
0.452857796 

-0.394091806 1.00E-
04 

54.72 0.56 1 GBM IV NA NA no 
mutation 

NA 

GSM405
299 

-
0.475189758 

-0.413525817 0.003
2 

54.94 1.75 1 GBM IV NA NA NA NA 

GSM405
238 

-
0.516140832 

-0.449162794 0.056 37.25 0.94 1 GBM IV NA NA no 
mutation 

NA 

GSM405
417 

-
0.530644719 

-0.461784555 2.00E-
04 

77.31 0.02 1 GBM IV no 
LOH 

no LOH NA NA 

GSM405
361 

-
0.531028807 

-0.462118801 0 79.19 1.64 1 OLIGODENDROGLI
OMA 

III no 
LOH 

no LOH no 
mutation 

wild type 
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GSM405
368 

-0.55473251 -0.482746546 0 32.14 1.81 1 GBM IV NA NA NA NA 

GSM405
321 

-
0.555390947 

-0.483319539 0 33.83 3.97 1 ASTROCYTOMA III NA NA mutation wild type 

GSM405
446 

-
0.558408779 

-0.485945757 0.011
1 

68.18 0.73 1 GBM IV NA no LOH mutation NA 

GSM405
470 

-0.56354824 -0.490418285 0 31.72 1.92 1 GBM IV NA NA mutation NA 

GSM405
445 

-
0.563712849 

-0.490561533 7.00E-
04 

56.15 3.33 0 OLIGODENDROGLI
OMA 

III no 
LOH 

no LOH no 
mutation 

NA 

GSM405
304 

-
0.570132602 

-0.496148214 0 66.39 0.56 1 GBM IV NA NA no 
mutation 

NA 

GSM405
340 

-
0.574833105 

-0.500238747 0.036
6 

52.88 5.56 0 GBM IV no 
LOH 

no LOH mutation wild type 

GSM405
455 

-
0.587288523 

-0.511077863 0 55.49 0.23 1 GBM IV NA NA mutation NA 

GSM405
277 

-
0.590525834 

-0.513895079 0 43.89 2.76 1 ASTROCYTOMA III NA NA mutation wild type 

GSM405
450 

-
0.593854595 

-0.516791876 1.00E-
04 

36.66 13.3 0 OLIGOASTROCYT
OMA 

III NA NA NA NA 

GSM405
443 

-
0.610992227 

-0.531705609 0.031
8 

56.62 0.98 1 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
402 

-
0.611028807 

-0.531737442 0 23.72 4.55 0 ASTROCYTOMA II no 
LOH 

NA no 
mutation 

amplifica
tion 

GSM405
263 

-
0.611394604 

-0.532055771 0 61.74 1.55 1 GBM IV NA NA no 
mutation 

wild type 

GSM405
453 

-
0.612985825 

-0.533440504 0 70.23 0.21 1 GBM IV NA no LOH no 
mutation 

amplifica
tion 

GSM405
296 

-
0.614302698 

-0.53458649 0.016
8 

41.09 0.29 1 GBM IV no 
LOH 

no LOH no 
mutation 

wild type 

GSM405
400 

-
0.630855053 

-0.548990896 0.002
8 

49.64 0.45 1 ASTROCYTOMA III no 
LOH 

NA no 
mutation 

wild type 
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GSM405
268 

-
0.631458619 

-0.549516139 0 48.04 0.64 1 GBM IV no 
LOH 

no LOH no 
mutation 

amplifica
tion 

GSM405
273 

-
0.632556013 

-0.550471128 0 56.42 0.54 1 OLIGOASTROCYT
OMA 

III NA NA no 
mutation 

NA 

GSM405
271 

-
0.643895748 

-0.560339339 0 69.89 0.3 1 GBM IV NA NA NA NA 

GSM405
365 

-0.66085048 -0.575093907 0 64.29 2.66 1 GBM IV no 
LOH 

no LOH no 
mutation 

NA 

GSM405
211 

-
0.661234568 

-0.575428153 0.002
3 

34.93 1.83 1 OLIGODENDROGLI
OMA 

III LOH LOH mutation NA 

GSM405
214 

-
0.664252401 

-0.578054371 0 37.84 1.5 1 GBM IV no 
LOH 

no LOH no 
mutation 

wild type 

GSM405
348 

-
0.674659351 

-0.587110842 0.001
1 

11.72 0.03 0 PILOCYTIC 
ASTROCYTOMA 

I NA NA NA NA 

GSM405
295 

-
0.679890261 

-0.591662953 0.001
1 

41.77 1.99 1 ASTROCYTOMA III NA NA NA NA 

GSM405
218 

-
0.693315043 

-0.603345642 0 32.36 0.64 1 GBM IV no 
LOH 

no LOH no 
mutation 

amplifica
tion 

GSM405
334 

-
0.700429813 

-0.609537149 0 57.01 1.47 1 OLIGODENDROGLI
OMA 

III no 
LOH 

no LOH NA wild type 

GSM405
393 

-
0.701874714 

-0.61079455 0 70.67 0.08 1 GBM IV NA NA no 
mutation 

NA 

GSM405
390 

-0.70266118 -0.611478958 0.026
1 

70.07 0.02 1 OLIGOASTROCYT
OMA 

III NA NA no 
mutation 

NA 

GSM405
375 

-
0.706191129 

-0.614550837 0 67.03 0.06 1 GBM IV no 
LOH 

NA no 
mutation 

NA 

GSM405
463 

-
0.710983082 

-0.618720952 0 65.53 2.22 1 GBM IV NA no LOH no 
mutation 

wild type 

GSM405
261 

-0.71303155 -0.620503597 0 60.46 0.98 1 OLIGODENDROGLI
OMA 

III no 
LOH 

no LOH mutation NA 

GSM405
477 

-0.71478738 -0.622031578 0 73.64 0.11 1 GBM IV NA NA NA NA 
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GSM405
471 

-
0.721572931 

-0.627936589 0 78.12 0.15 1 GBM IV NA NA mutation NA 

GSM405
290 

-
0.738692273 

-0.642834405 0 45.5 1.16 1 GBM IV NA NA NA NA 

GSM405
288 

-
0.742021033 

-0.645731203 0 41.93 1.53 1 OLIGOASTROCYT
OMA 

III no 
LOH 

no LOH NA wild type 

GSM405
364 

-
0.746977595 

-0.650044566 0 37.61 9.85 1 OLIGODENDROGLI
OMA 

III LOH LOH mutation wild type 

GSM405
397 

-
0.748861454 

-0.651683963 0.018
7 

60.36 0.35 1 GBM IV no 
LOH 

no LOH no 
mutation 

amplifica
tion 

GSM405
240 

-
0.771504344 

-0.671388553 0.004
9 

33.09 6.62 0 GBM IV no 
LOH 

no LOH mutation NA 

GSM405
447 

-
0.782130773 

-0.680636022 0 59.03 2.79 1 GBM IV no 
LOH 

no LOH NA NA 

GSM405
301 

-
0.785788752 

-0.683819316 0 65.35 0.3 1 GBM IV NA NA NA NA 

GSM405
233 

-0.79310471 -0.690185904 0 51.64 0.86 1 GBM IV NA NA no 
mutation 

wild type 

GSM405
472 

-
0.796360311 

-0.693019036 0 62.11 0.34 1 GBM IV NA NA mutation NA 

GSM405
241 

-
0.811650663 

-0.706325205 0 55.98 0.16 1 GBM IV NA NA NA NA 

GSM405
236 

-
0.829208962 

-0.721605017 0 52.2 1.03 1 GBM IV NA NA no 
mutation 

NA 

GSM405
407 

-
0.844938272 

-0.735293181 0 81.18 0.82 1 ASTROCYTOMA III no 
LOH 

no LOH no 
mutation 

NA 

GSM405
259 

-
0.864252401 

-0.752100974 0 64.01 0.41 1 ASTROCYTOMA III NA NA no 
mutation 

NA 

GSM405
442 

-
0.866758116 

-0.754281531 0 63.61 0.3 1 GBM IV NA NA no 
mutation 

wild type 

GSM405
243 

-
0.868221308 

-0.755554848 0 61.33 0.88 1 GBM IV NA NA NA NA 
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GSM405
423 

-
0.871129401 

-0.758085567 0 35.67 6.12 1 ASTROCYTOMA III LOH no LOH mutation NA 

GSM405
421 

-
0.872812071 

-0.759549882 0 38.4 6.08 0 ASTROCYTOMA III no 
LOH 

no LOH no 
mutation 

wild type 

GSM405
457 

-
0.879048925 

-0.764977399 0 70.98 0.3 1 OLIGODENDROGLI
OMA 

III no 
LOH 

no LOH no 
mutation 

wild type 

GSM405
282 

-
0.889638775 

-0.774193035 0 51.92 0.12 1 GBM IV NA NA no 
mutation 

NA 

GSM405
412 

-
0.897759488 

-0.781259948 0 55.71 0.65 1 GBM IV NA no LOH no 
mutation 

NA 

GSM405
320 

-
0.902039323 

-0.784984402 0 70.28 0.6 1 GBM IV NA NA no 
mutation 

wild type 

GSM405
416 

-
0.912757202 

-0.794311453 0 64.26 0.34 1 GBM IV NA NA NA NA 

GSM405
353 

-
0.918573388 

-0.799372891 0 55.39 0.7 1 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
426 

-
0.920859625 

-0.80136245 0 67.1 0.05 1 GBM IV NA NA mutation wild type 

GSM405
415 

-
0.933004115 

-0.811930986 0 67.48 0.5 1 GBM IV no 
LOH 

no LOH no 
mutation 

NA 

GSM405
374 

-
0.940448102 

-0.81840899 0 58.58 1.21 1 GBM IV LOH LOH no 
mutation 

wild type 

GSM405
456 

-0.94083219 -0.818743236 0 52.5 NA 0 GBM IV NA NA no 
mutation 

NA 

GSM405
278 

-
0.947105624 

-0.824202585 0 58.23 0.73 1 GBM IV NA NA no 
mutation 

amplifica
tion 

GSM405
313 

-
0.963090992 

-0.83811358 0 32.5 3.31 1 GBM IV NA NA mutation wild type 

GSM405
235 

-
0.969108368 

-0.843350099 0 71.09 0.21 1 GBM IV NA NA no 
mutation 

NA 

GSM405
245 

-0.97561957 -0.849016362 0 37.98 1.4 1 GBM IV no 
LOH 

NA no 
mutation 

NA 



 

221 

GSM405
293 

-
1.006474623 

-0.875867448 0 63.73 0.88 1 GBM IV NA NA mutation amplifica
tion 

GSM405
403 

-
1.025624143 

-0.892531992 0 38.42 0.04 1 ASTROCYTOMA III NA NA NA NA 

GSM405
430 

-
1.052967535 

-0.916327115 0 61.1 0.35 1 GBM IV no 
LOH 

no LOH no 
mutation 

wild type 

GSM405
265 

-
1.082524005 

-0.942048131 0 32.14 1.81 1 ASTROCYTOMA III NA NA no 
mutation 

wild type 

GSM405
459 

-
1.102222222 

-0.95919017 0 64.28 1.14 1 GBM IV no 
LOH 

no LOH no 
mutation 

NA 

GSM405
479 

-
1.102807499 

-0.959699497 0 63.3 0.38 1 GBM IV NA NA mutation amplifica
tion 

GSM405
440 

-
1.149117513 

-1 0 69.88 0.53 1 GBM IV NA NA NA wild type 
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