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Abstract

Today’s Internet-enabled mobile devices are equipped with geo-positioning

sensors that can readily identify location information, notably GPS data. This

has resulted in the availability of rapidly increasing volumes of GPS data that

record the movement histories of moving objects. In addition, real-time GPS

data can stream into the server, enabling location-based services and real-time

movement-pattern findings.

Many interesting applications that target moving objects have already emerged,

and there is an urgent call for efficient algorithms to support these applications.

At the same time, challenges to answer spatial queries efficiently in those appli-

cations also arise. In this thesis, we have identified problems that are related to

moving objects and have real-life applicationsf and then proposed frameworks

with efficient algorithms to solve these problems.

In particular, this thesis studies three types of spatial queries: moving contin-

uous queries, group discovery queries, and optimal segment queries. First, we

study the efficient processing of moving continuous queries. Such queries are

issued by mobile clients who need to be continuously aware of other clients

in its proximity. Past research on such problems has covered two extremes of

the interactivity spectrum: It has offered totally centralized solutions, where

a server takes care of all queries, and totally distributed solutions, in which

there is no central authority at all. Unfortunately, none of these two solutions

scales to intensive moving object tracking application, where each client poses

a query. We propose a balanced model where servers cooperatively take care



of the global view, and handle the majority of the workload. Meanwhile, mov-

ing clients, having basic memory and computation resources, share a small

portion of the workload. This model is further enhanced by dynamic region

allocation and grid size adjustment mechanisms to reduce the communication

and computation cost for both servers and clients.

Second, we study the processing of group discovery queries. Given a trajectory

database, a group discovery query finds clusters of moving objects traveling

together for a period. We propose a group discovery framework that efficiently

supports their online discovery. The framework adopts a sampling-independent

approach that makes no assumptions about when positions are sampled, gives

no special importance to sampling points, and naturally supports the use of

approximate trajectories. The framework’s algorithms exploit state-of-the-art,

density-based clustering to identify groups. The groups are scored based on

their cardinality and duration, and the top-k groups are returned. To avoid

returning similar subgroups in a result, notions of domination and similarity

are introduced that enable pruning low-interest groups.

Third, we study the processing of optimal location queries. Given a road net-

work, existing facilities, and routes of customers, an optimal location query

identifies a road segment where building a new facility attracts the maximal

number of customers by proximity. Optimal segment queries are a variant of

the optimal region queries, which are variants of the well-studied optimal loca-

tion (OL) queries. Existing works addressing the optimal region queries treat

only static sites as the clients. In practice, however, routes produced by mobile

clients (e.g. pedestrians, vehicles) are a more general form of clients than static

points such as residences. Many types of business are also interested in both

static points and mobile clients. We propose a framework to solve the optimal

segment problem. The main idea of this framework is to assign each route a

6



score which is distributed to the road subsegments covered by the route based

on an interest model. The road segments with the highest scores are identified

and returned to the user.

For each framework we propose in the thesis, we conduct extensive experi-

ments in realistic settings with both real and synthetic data sets. These ex-

periments offer insight into the effectiveness and efficiency of the proposed

frameworks.

Keywords: Moving objects, real-time location data, trajectory data, spatial

query processing, range and k-nearest-neighbor query, continuous queries, group

movement patterns, optimal segments, performance study
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Chapter 1

Introduction

1.1 Motivations

Today’s Internet-enabled mobile devices, e.g. Smart phones, PDAs, and laptops, are equipped

with geo-positioning sensors that can readily identify location information, notably GPS

data. Good connectivity (e.g. via GSM, Wi-fi, Bluetooth, or EDGE) can be easily es-

tablished to communicate GPS data with the server, which provides useful services to the

users, e.g. digital mapping services, traffic control, and taxi sharing etc. Recently, the rise

of social networking web sites and apps has made particularly easy the sharing of small

amount of location data (e.g. hiking and biking GPS traces), and thus has fueled the usage

of GPS devices. For instance, Foursquare 1, a location-based social networking web site

that allows a mobile user to discover friends and events that are nearby, has a community

of over 15 million people worldwide. An app named MapMyRun 2 allows users to share

their hiking or biking GPS traces to Facebook 3 and Twitter 4. In addition, the development

of digital mapping services has enabled the so-called third generation, more sophisticated

traveling planning services, e.g., NileGuide5 and YourTour6.

Figure 1.1 illustrates the general infrastructure that manages moving object data and

1https://foursquare.com/
2http://www.mapmyrun.com/
3http://www.facebook.com/
4http://www.twitter.com/
5http://www.nileguide.com
6http://www.yourtour.com
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queries. The mobile clients (e.g., vehicles or pedestrians) receive their current GPS loca-

tions from the satellites and update the server via WiFi (through wireless access point) or

3G network (through base stations in cellular network). The server, with the knowledge

of the current location of every mobile client, is able to answer a spatial query such as

“Continuously monitor my nearest 2 cars ”.
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Figure 1.1: Infrastructure of Managing Moving Objects Data and Queries

From the server’s perspective, moving objects data can be classified into two categories:

real-time data and historical data. For some applications, moving objects data continuously

stream into the server that in turn uses the data to process real-time queries. For some

other applications, the increasing number of location-aware devices has resulted in the

accumulation of a large amount of trajectory data that capture the movement histories of a

variety of objects. In addition, the server can utilize both real-time data and trajectory for

even more sophistried queries. When processing queries, the server can choose to process
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queries online or offline. Table 1.1 is a table that can be used to classify the works in the

thesis.

Online Offline
Real-time data Moving Continuous Query –

Trajectories – Optimal Segment Query
Both Group Query –

Table 1.1: A Classification of Queries

The first query addressed in this thesis is real-time processing of moving continuous

queries (MCQ) issued by mobile clients. In this problem, each mobile client has to be

continuously aware of its neighbors in its proximity by issuing either a range query or kNN

query. Several applications, such as massive multi-player online games (MMOG) (e.g.,

World of Warcraft), virtual community platforms (e.g., Second Life), real-life friend locator

applications, and marine traffic management systems employed by port authorities, require

efficient real-time processing of such queries. In all such applications, a large population

of clients are moving around; their data continuously stream into the server. As Table 1.1

shows, we require that the server processes this type of query in an online setting. The

large number of mobile clients and the fact that these mobile clients continuously move

around have resulted in high workloads that a single server may not be able to handle well.

Therefore, we design a scheme where a cluster of servers are interconnected to handle the

workload cooperatively in such a highly dynamic environment.

The second query addressed in this thesis, so-called group query, is to find group pat-

terns by examining both trajectories and real-time data. A group pattern is one where a

number of moving objects travel together for a duration. With the increasing availability

of trajectory data, the analysis of these data have important applications in entity behavior

analysis (e.g. animal migration patterns [1]), socio-economic geography [32], transport

analysis [73], and defense and surveillance areas [68]. Group patterns can be found by

examining trajectories of mobile clients. Although there exist previous works in finding
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flock [34, 35], convoy [47], and swarm [61], we find none of them satisfies our four re-

quirements, (1) Sampling independence, that is, the use of different representations (sam-

pling points) of the same trajectories in an algorithm should not affect the outcome of the

algorithm. Sampling independence prevents losing interesting patterns, as will be shown

in the sequel. (2) Density connectedness, that is, members of the same group are density-

connected as defined in DBScan [24]. Comparing to other clustering technique such as

k-means that finds circular clusters, density-connectedness allows clusters with arbitrary

shape. (3) Supporting trajectory approximation, that is, simplified trajectories can be used

in place of original ones, and (4) Online processing, that is, real-time data is allowed to

stream in for new patterns to be discovered. Motivated by it, we propose the GroupDiscov-

ery framework, which is the first to satisfy all of the four requirements. From the require-

ments, we can see that this query falls in the category where the server online processes

both trajectories and real-time data (See Table 1.1).

The third query addressed in this thesis is called optimal segment query. It is a new

variant of the classic facility location problem. In this query, the server finds the optimal

road segment to setup a new facility, given the road network, the customers’ trajectories

and existing facilities. Similar to facility location problems, it has wide applications in

both private and public sectors, e.g., planning hospitals, gas stations, banks, ATMs or bill-

boards. Earlier work aiming to solve the facility location problem has used the residences

of customers as the customer locations [87, 90, 97]. However, customers do not remain

stationary at their residences, but rather travel, e.g., to work. Thus, consumers are not only

attracted to facilities according to the proximity of these to their residences. The increasing

availability of moving-object trajectory data, e.g., as GPS traces, calls for an update to the

facility location problem to also take into account the movements of the customers that

are now available. When processing this query, the server processes trajectories in offline

mode. It falls in the category where the server processes trajectories offline (See Table 1.1).

There is great linkage among the three pieces of works. In MCQ, the thesis only deals
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with real-time locations. In Group Query, the thesis takes the query processing to another

level by taking into account of both real-time locations and past movement histories of

moving objects in order to find co-movement patterns. In Optimal Segment Query, the

thesis continues to show how the useful information buried inside a trajectory database can

be valuable to identify optimal segments from a road network for various businesses.

1.2 Challenges

1.2.1 Challenges in Moving Continuous Query

Traditional techniques for continuous spatial query processing are based on a centralized

client-server architecture or assume that there are significantly fewer queries than moving

clients [66, 67, 80, 94]. Unfortunately, such techniques do not scale well to applications

where each of a large number of mobile clients poses its own query. The applications we

target call for solutions designed for the particular scalability challenges they pose. The

solution to the scalability problem can be to buy a more powerful server or to buy more

pieces of less powerful machines and then interconnect them to cooperatively handle the

workload. We believe that the second solution is more viable and affordable than the first

one. In the second solution, the challenge is to dynamically balance the workload among

the servers. When mobile clients are moving around, data skew can happen, leading to

deteriorated performance. In this case, servers need to re-balance the workload.

A second challenge in processing moving continuous query is that communication be-

tween the server and the clients is found to be the bottleneck to scale up. In our experiments,

we found that it takes much longer time for client/server communication than the server to

process queries when the workload is moderate. In addition, mobile clients have limited

battery life. Too many messages sent by a client may rapidly exhaust its battery. Chapter 3

shows how these challenges are tackled.
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1.2.2 Challenges in Group Query

In managing moving objects, one is not only interested in real-time data, but also in the

trajectories, movement histories of moving objects accumulated over time. The volume of

trajectories makes it almost impossible to extract any knowledge by plotting and observing

them with human eyes on a map. In order to detect interesting moving patterns, e.g. flock,

leadership, convergence, and encounter, these patterns have to be rigorously defined. And

effective algorithms have to be devised.

The challenge in processing group query lies in our requirement that the framework has

to satisfy four properties.

• Sampling independence. A trajectory, being a continuous function from time to loca-

tion, can be sampled at different rates, called sampling rate. The resulted points are

called sampled points. Many existing algorithms rely on the sampled points in order

to detect moving patterns, and thus they are sampling point dependent. However, as

will be shown in Chapter 4, a sampling point dependent algorithm suffers from miss-

ing interesting patterns. In order not to lose any interesting patterns, an algorithm has

to produce the same result no matter how trajectories are sampled, a property called

sampling point independent. Sampling point independence is formally defined in

Chapter 4.

• Density connected. In our framework, the need to cluster moving objects arises at

certain time points to find out candidates of groups. Density-connectedness should

be used because the clusters of moving objects can be of any shape.

• Online trajectory simplification. Efficiency is a key requirement in an online pro-

cessing setting. Online trajectory simplification allows to smoothen trajectories, and

can improve the efficiency. It also allows the trading result accuracy with efficiency.
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• Incremental processing. In an online setting, when new data stream in, results should

be computed incrementally, in order to re-use the results computed before and thus

improve the efficiency.

Chapter 4 shows how these challenges are tackled.

1.2.3 Challenges in Optimal Segment Query

Unlike conventional facility location problems, the optimal segment problem addressed in

Chapter 5 takes route traversals as customers, which is a natural generalization of the use of

static customer sites. It is the first such proposal. For route traversals, different from static

customer sites, their scoring function and how they affect setting up new facilities have to

be carefully designed to reflect the real-world scenario.

Second, the optimal segment problem finds optimal segments instead of optimal points

on a road network. A straightforward approach that computes the optimal segment by

enumerating and scoring all possible segments is not feasible, because there is an infinite

number of possible segments. In order to reduce the huge search space quickly, efficient

pruning techniques are devised and shown in Chapter 5.

.

1.3 Contributions

The contributions of this thesis can be divided into three parts based on the temporal dimen-

sion. In the first query, we consider real-time queries where the server uses the current-time

location information of moving clients to process queries. The results are also sent to the

clients in real time. In the second query, we combine both current-time locations and move-

ment histories to find interesting group movement patterns. In the third query, we look even

further back of the histories of mobile clients to find optimal segment(s) on a road network

to set up a new facility
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1.3.1 Moving Continuous Query

We formulate the moving continuous query. A Moving Continuous Query (MCQ) is is-

sued by a mobile client who needs to be continuously aware of other mobile clients in

its proximity. We consider two types of MCQs: range queries (MCQ-range) and kNN

queries (MCQ-kNN). To answer MCQs, we present a dynamic framework where a cluster

of servers cooperatively take care of the global view and handle the majority of the work-

load. The entire service space is also divided into smaller service regions, and the mobile

clients in the same region are served by the same server. These regions are dynamic; they

can be divided into smaller ones or be merged into larger ones, in order to reflect the current

distribution of mobile clients. Service regions are served by servers. In the macro level,

the framework balances the server workloads by region adjustment and reallocation. In the

micro level, a server is allowed to fine tune its indexing structure to improve its processing

efficiency and to handle data skew.

Meanwhile, moving clients, having basic memory and computation resources, handle

small portions of the workload by maintaining their local results. Our experiments have

proven that this approach is effective in reducing communication cost between clients and

servers.

We implement the proposed framework and compare with the state-of-the-art algo-

rithm. Experiments show that communication and computation costs for both servers and

clients are reduced and our architecture is more scalable.

1.3.2 Group Query

Our proposal is the first to satisfy the four properties listed above. We propose a sampling-

independent group discovery framework that efficiently supports the online, incremental

discovery of moving objects that travel together. It supports the use of simplified trajecto-

ries, and exploits state-of-the-art, density-based clustering to identify groups.
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In order to return most significant groups, the computed groups are scored based on

their cardinality and duration, and only the top-k groups are returned. To avoid return-

ing similar subgroups in a result, notions of domination and similarity are introduced that

enable the pruning of low-interest groups.

We implement the algorithms and compare them with Convoy [47]. The experimental

results show that our framework finds patterns that cannot be found by Convoy and the

performance is better in most data sets and settings.

1.3.3 Optimal Segment Query

Although the optimal location problem is intensively studied before, we are the first to con-

sider using trajectory data to solve the problem. We carefully define the optimal segment

problem which takes as input a collection of routes, a collection of existing facilities and a

road network, and finds the optimal segments of the road network to set up a new facility.

The following considerations are essential in solving the problem.

1. A route has a value to a business depending on factors such as its length, the number

of people who take it, and the frequency that each person takes it.

2. A route is attracted by a facility if the route covers or is near the facility, because

customers who take the route has a possibility of visiting the facility,

3. If a route is attracted by multiple facilities, the possibility of visiting each of them

depends on the business.

4. When many high-valued routes cover the same road segment, this road segment is

likely to be a candidate to set up a new facility.

For (1), each route is assigned a score based on the factors such as its length, the number

of people who take it, and the total number of times that each person take it. For (2), we

find out the attraction relations between routes and facilities. For (3), we propose various

9



interest models for various businesses. We make sure our scheme is generic to different

interest models. For (4), a route distributes its score to the segments covered by the route

based on the specified interest model. A segment accumulates the scores distributed from

its covering routes. In the end, the road segment(s) with the highest score is identified and

returned to the user.

With these at place, we then propose two algorithms, AUG and ITE, to solve the optimal

segment problem. AUG augments the road network graph with the facilities and the start

and the end points of the routes. The augmented graph has the property that each route

starts from a vertex and ends at a vertex. Then each vertex stores the identifiers of the

routes covering it, and the score of each edge is the summation of the distributed scores of

the routes that cover both its vertices. Next, AUG examines every edge in the augmented

graph with a score and identifies the edges with the highest score (the optimal edges).

Finally, AUG maps the optimal edges back to the original graph, where they are segments.

Then AUG merges connected segments, if any, to form maximal segments, and returns

them as the result.

The idea of the ITE algorithm is to quickly identify a subsegment of an optimal seg-

ment (optimal subsegment) and then extend the optimal subsegment into an entire optimal

segment. Therefore, ITE organizes the segments using a heap such that those segments that

are most likely to contain an optimal subsegment get examined first. If the segment under

examination is an optimal subsegment then the entire optimal segment can be found by ex-

tending it. In addition, the optimal score can be calculated easily. Otherwise, the segment

is partitioned into smaller segments, whose likelihoods of having an optimal subsegment

are also calculated, upon which they are inserted back into the heap.

We conduct extensive experiments to evaluate the performance of these two algorithms.

Experiment results show that they are effective and efficient.
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1.4 Organization

The rest of the thesis is organized as follows.

• Chapter 2 reviews related topics. The surveyed topics include basic concepts, spatial

queries and some indexing structures in Moving Object Databases (MOD).

• Chapter 3 presents our study on Moving Continuous Query. We focus on moving

continuous range and kNN queries, which are two of the most fundamental queries

in MOD.

• Chapter 4 presents our framework to find movement patterns (groups) from trajectory

data.

• Chapter 5 presents our framework that uses routes of mobile clients to find optimal

segments in a road network.

• Chapter 6 concludes this thesis and discusses several possible directions for future

work.

1.5 Published Material

• The work in Chapter 3 has been published as a conference paper [60] in IEEE Mobile

Data Management (MDM) 2013:

Xiaohui Li, Panagiotis Karras, Lei Shi, Kian-Lee Tan, Christian S Jensen: Cooper-

ative Scalable Moving Continuous Query Processing. IEEE 13th International Con-

ference on Mobile Data Management, 2012: 69 – 78.

• The work in Chapter 4 has been published as a Journal paper [59] in IEEE Transac-

tions on Knowledge and Data Engineering (TKDE) 2013:

Xiaohui Li, Vaida Ceikute, Christian S Jensen, Kian-Lee Tan: Effective Online
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Group Discovery in Trajectory Databases. IEEE Transactions on Knowledge and

Data Engineering, 2012

• The work in Chapter 5 is ready for submission:

Xiaohui Li, Vaida Ceikute, Christian S Jensen, Kian-Lee Tan: Trajectory Based

Optimal Segment Computation in Road Network Databases, 2012
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Chapter 2

Background and Related Work

In this chapter, we review existing works that are related to this thesis. As the queries

addressed in this thesis are spatial queries that are usually handled in a moving object

database (MOD), we first introduce MOD and selectively describe spatial queries that can

be answered in MOD.

2.1 Moving Object Databases

Moving Object Databases (MOD) is an important research area and attracts a great deal

of research interest during the last decade. The objective of MOD is to extend database

technology to support the representation and querying of moving objects and their trajec-

tories. MODs have become an emerging technological field due to the development of the

ubiquitous location-aware devices, such as PDAs and mobile phones etc., as well as the

variety of the information that can be extracted from such databases. Currently a number

of decision support tasks exploit the presence of MODs, such as traffic estimation and pre-

diction, analysis of traffic congestion conditions, fleet management systems, battlefield and

animal immigration habits analysis [37].

Moving objects stored in MOD are geometries, such as points, lines and regions. If

a subset of their physical phenomenons, such as shape, position, speed etc. changes over

time, a trajectory mapping from time to the physical phenomenon can be derived to describe
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this change. In this thesis, we focus on moving points representing moving objects and

trajectories recording their 2D positions over time.

2.1.1 Basic Concepts in MOD

Many real world applications involve entities that can be modelled as moving objects. As

such, the histories of these entities can be modelled as trajectories. For instance, in the

application that fleet management systems monitor cars in road networks, cars are viewed

as moving objects, the history of which are modeled as trajectories. In MOD, the location

of a moving object o at time t is (t, p⃗), where p⃗ is a point in the n-dimensional Euclidean

space Rn. For most typical applications, n = 2.

In some applications, the times when these locations are reported are not important.

They only indicate an ordering of the locations. In this case, the sequence of locations of

each moving object forms a route. In Chapter 5, we show the formal definition of a route

and how the routes can be important for deriving the optimal locations for setting up new

facilities.

Apart from a route, a trajectory takes into account the time information and can be

defined as a function from the temporal domain T to the Euclidean space Rn. In a 2D

space, a trajectory tr is defined as

T→ R2 : t 7−→ a(t) = (xt, yt)

In practice, the trajectory of an object is collected by sampling the object’s positions ac-

cording to some policy, resulting in a set of sampling points. A trajectory is then given

by the stepwise linear function obtained by connecting temporally consecutive sampling

points with line segments. And in a 2D space, a trajectory tr is represented as

tr = {(x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn)}

where xi, yi ∈ R and ti ∈ I and t1 < t2 < ... < tn, the actual trajectory curve is ap-

proximated by applying spatio-temporal interpolation methods on the set of sample points
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(Figure 2.1).

Figure 2.1: The spatio-temporal trajectory of a moving object: dots are sampled postions
and lines in between represent linear interpolation.

2.1.2 Spatial Queries in MOD

Common spatial queries in MOD can be divided into location-based queries and non-

location-based queries.

There are many location-based queries, and the services to answer these queries are

generally referred to as location-based services. Location-based queries distinguish them-

selves from other spatial queries by containing location information in themselves. The

conventional location-based queries that commonly appear in MOD are static range queries

(also called window queries) and k Nearest Neighbors (kNN) queries. A static range query

retrieves objects that are within a distance (range) from a query point. A kNN query, on

the other hand, retrieves the k objects that are the nearest to the query point.

Recent years, several new kinds of location-based queries have been proposed. They in-

clude the Reverse k Nearest Neighbors (RkNN) query [52], Constrained Nearest Neighbor

query [28], Group Nearest Neighbor (GNN) query [70], Nearest Surrounder query [56],

and Spatial Skyline query [75].

These queries can be either snapshot or continuous, depending on whether the results

have to be returned at a time instant or continuously. The former can be viewed as a

special case of the latter. Depending on whether the query point is static or moving around,

location based queries can be either static or mobile. Table 2.1 [88] provides a taxonomy of

the location-based queries based on whether the query is a continuous query and whether

the query location changes with time.
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Static query location Mobile query location
Snapshot static snapshot query moving snapshot query
Continuous static continuous query moving continuous query

Table 2.1: A Taxonomy of Location-Based Queries

The first problem addressed in this thesis, the MCQ problem, falls in the lower right

category, i.e., mobile query location and continuous query.

On the other hand, other spatial queries that do not contain location information them-

selves are non-location-based. For example, Spatial Join [36, 71] is an operation of com-

bining two inputs based on their spatial relationships. Proximity queries [94] look for the

neighbors in proximity for each moving object in the database. Convoy queries [47] search

a trajectory database for patterns that several moving objects travel together for several

consecutive time points. Optimal-location queries [90] find the optimal location(s) to set

up new facilities based on the spatial attractions between existing facilities and customers.

The second and third problem addressed in this thesis are non-location-based queries.

2.1.3 Indexing Structures in MOD

Here, we review common indexing structures in MOD. The ultimate goal of indexing is to

answer queries efficiently. Indexing structures are especially important in MOD, where it is

usually computationally expensive to process queries, due to the complex underlying data

structures representing spatial data and the complexity of the query processing algorithms.

Besides, we are faced with the challenge of dealing with a huge volume of data in MOD

due to the wide-spread use of location-aware devices. We will have to resort to indexes

once performance is concerned.

We summarize the main research issues in indexing moving objects data below.

• Simplicity. Minimal effort should be required to maintain the index.

• Update efficiency. Comparing with other types of databases, MOD usually receives

higher volume of updates continuously, due to the dynamic nature of moving objects.
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Updating operations have to be fast in order to give up resources for other operations.

• Query answer efficiency. It indicates how fast a query can be answered. Perhaps it is

the most important metric in MOD.

The indexing of moving objects can be grouped into main memory based indexing or

disk based indexing.

Moving object disk-based indexes can be further classified into two categories. The

larger category is R-tree variants [38] (e.g. TPR-tree [84] and TPR*-tree [76]). This is

actually an expected phenomenon given the popularity of the R-tree in spatial databases.

These indexing structures are based on data partitioning. The distribution of data deter-

mines the index’s structure. Although these indexing structures are great improvement over

traditional indexing structures, they can show deficiency in update-intensive applications.

The second, smaller category of indexes relies on space partitioning. Examples are the

B+-tree based indexes [43, 46, 95, 18]. They are reported to support both efficient updates

and queries. In these structures, the space is divided into cells, and a space-filling curve is

employed to assign identifiers to these cells. Then objects are indexed with a B+-tree with

the identifiers of the cells they belongs to. The time dimension is partitioned into intervals

depending on the maximum time duration between two updates of an object. Each time

interval has a certain reference time. A portion of the B+-tree is reserved for each time

interval.

Space partitioning based indexes surpass their counterparts that are based on data parti-

tioning in two ways. First, both the B+-tree and the grid index are well established indexing

structures present in virtually every commercial DBMS. The index can be integrated into

an existing DBMS easily. No additional physical design is required to modify the under-

lying index structure, concurrency control and the query execution module of the DBMS.

Second, in comparison with spatial indexes such as the R-tree, operations such as search,

insertion and deletion on the B+-tree and the grid index can be performed very efficiently.
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On the other hand, R-tree based indexes such as the TPR-tree are less susceptible to

data diversities and changes as a result of MBRs splitting and merging. In contrast, because

existing space partitioning indexes, such as the Bx-tree [43], partition space using a single

uniform grid, the workload across different parts of the index may not be balanced. Such

imbalance does impact the performance of existing indexes based on space partitioning

Recently, the main memory size becomes larger and more affordable. To meet the

need of real-time monitoring and query processing, main memory indexing techniques are

proposed [66, 67, 91]. These indexing structures are also space partitioning grids, due to the

minimal maintenance and simplicity. They indexes partition space with a grid in advance.

An object is indexed by the cell it belongs to. Same as the disk-based space partitioning,

in-memory space partitioning completely ignores the feature (distribution) of objects. The

indexing technique used in Chapter 3 follows the in-memory space-partitioning strategy.

2.2 Processing Moving Continuous Query

While much work has studied the problem of handling moving queries on stationary ob-

jects and stationary queries over moving objects, research on the most general form of

the problem, Moving Continuous Query (MCQ), where both queries (range and kNN) and

objects are moving, is still taking shape. In this general form, the problem poses the chal-

lenge of handling frequent location updates, while at the same time evaluating numerous

moving continuous queries. Here, we review the principal techniques used to address these

challenges.

Past approaches to this generalized problem can be divided into distributed and cen-

tralized solutions. Amir et al. [3] take a distributed approach and consider moving objects

forming a peer-to-peer (P2P) network, where each object is a computing unit and no central

server is present. Each pair of moving objects defines and maintains safe region informa-

tion, capturing the region of their mutual proximity. Unfortunately, the performance of this
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method does not scale well as the number of objects, and hence peers for each of them, in-

creases. On the other hand, in a centralized methodology [80], all proximity computations

occur at the server, while each moving object sends location updates there. Each moving

object also continuously checks whether its changing position falls within a moving sec-

tor region, defined by an angular threshold θ, a minimum speed Vmin, and a maximum

speed Vmax. Farrel et al. [27] propose to relax query accuracy requirement for continuous

range queries in order to cope with location uncertainty and reduce energy consumption

of the clients. However, predefined values for these parameters have a detrimental effect

on performance [94]. Chow et al. [20] propose a distributed query processing framework

for continuous spatial queries (range and kNN queries). They argue that finding accurate

results can be very costly in a mobile P2P environment, so their framework tradeoff quality

of services (coverage and accuracy) with communication cost.

In a central setting, Lee et al. [56, 58] studies a new type of spatial query called Nearest

Surrounder (NS), which searches the nearest surrounding spatial objects around a query

point. In particular, given a set of objects O and a query point p, this query returns a set

of tuples in the form of ⟨o, [α, β)⟩ where o ∈ O and [α, β) is a range of angles in which o

is the NN of q. Among the two works, [58] focuses on answering NS queries in moving

objects environments. Compared with our scheme, NS is a more specific query, but our

scheme can be applied with more general queries.

Lee et al. [57] targets general query processing in a mobile and wireless environment.

They argue that when processing these queries, certain result reevaluations are not neces-

sary when results do not change. Therefore, computing valid scopes, within which results

do not need to be reevaluated, for query results avoids unnecessary result reevaluation and

can reduce communication overhead and battery usage.

Yiu et al. [94] propose the Reactive Mobile Detection (RMD) algorithm to solve a

similar problem, which is called proximity detection (PD) problem. Arguing that using

predefined mobile safe region radius renders it difficult to control the messaging cost, they
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propose the RMD scheme that expands and contracts the radii of mobile regions when

needed. The intuition is to contract the mobile regions to reduce the probing cost at the

cost of more updates if the probing cost is too high, and vice versa, in order to minimize

the overall cost. The MCQ problem is different from the PD problem. (a) In PD, a distance

threshold is defined for each pair of clients, whereas in MCQ, each client can have its own

distance threshold. (b) In PD, the server must have the exact solution. So it fails to exploit

the computational power of clients, which can lead the way to higher scalability.

The adaptive grid-based solution in [92] treats a more general problem, where the objec-

tive is to detect whether a specified set of k objects can be enclosed by a circle of diameter

at most ϵ. The server can detect definite positives and definite negative sets of objects,

while the rest are probed to determine whether they satisfy the constraint or not. Still, as

discussed above, this solution focuses on resource utilization at the server at the expense of

already-high communication cost between server and clients.

Similar to our scheme, both MobiEyes [33] and DKNN [89] try to achieve a balance

between server and client computation and aim at solving moving continuous range- and

kNN-queries. Although a central server is employed in both works, computation occurs

mostly on the moving clients, with the server and base station being mainly responsible for

relaying messages among the clients, using an inflexible space-partitioning index that in-

curs high communication overhead. The major difference between our scheme and DKNN

is whether service regions are dynamic and the extent to which mobile clients should share

the workload. Different from DKNN where service regions are pre-defined and static in

query processing, our scheme allows splitting and merging service regions in order to better

cope with data skew and balance workloads in a highly dynamic environment. In addition,

in DKNN, computation occurs mostly on the moving clients, while servers mainly relay

messages. In contrast, in our scheme, mobile clients only share a small portion of the

workload, saving limited battery lives of the clients.

Another related work is Wang et al. [85], where multiple servers also cooperatively han-
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dle queries. However, different from MCQ, [85] targeted static continuous range queries.

Therefore, their scheme cannot be easily adapted for answering MCQs.

Chen et al. [19] study the efficient processing of predictive range queries, proposing

spatio-temporal safe regions (STSR) to bound the movements of objects in order to reduce

update costs. Adopting a centralized approach, STSRs are computed at the server side.

Moving objects are only capable of sending update messages. Chen et al. [19] also consider

two types of update messages, active and passive updates. An active message is sent when a

moving object detects its STSR is no longer valid for the current status. A passive message

is sent when the server processes predictive queries. A cost model was proposed to find

the optimal STSR, by which they aimed to both reduce update cost and guarantee query

accuracy.

2.3 Finding Moving Patterns from Trajectories

Several recent proposals aim to identify objects that travel together based on trajectory data.

Co-Movement Discovery

Several recent proposals aim to identify objects that travel together based on trajectory data.

The notion of flock was introduced by Laube and Imfeld [54] and further studied by

others [2, 34, 35, 81, 8, 6]. A flock is a set of moving objects that travel together in a

disk of radius r for a time interval whose duration is at least k consecutive time points.

One similar notion identifies a set of objects as a moving cluster [50] if the objects when

clustered at consecutive sampling times exhibit overlaps above a given threshold. Another

similar notion, Herd [39], relies on the F-score to identify cluster overlaps at consecutive

sampling times. A recent study by Jeung et al. [47] proposes the notion of convoy that uses

density connectedness [24] for spatial clustering. Aung et al. [5] proposed the notion of

evolving convoys to better understand the states of convoys. Specifically, an evolving con-

voy contains both dynamic members and persisted members. As time passes, the dynamic
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members are allowed to move into or out of the evolving convoy, creating many stages of

the same convoy. At the end, the evolving convoys with their stages are returned. The

differences between evolving convoys and our work are: (1) evolving convoys are sam-

pling dependent, and (2) instead of collapsing convoys into stages, our work relies on a

scoring function to return meaningful results. The advantages of the scoring approach are

its simplicity and the control it offers.

In contrast to the above, the notions of group pattern [86] and swarm [61] permit pat-

terns where moving objects travel together for a number of non-consecutive sampling

times. Group patterns rely on disk-based clustering, while swarms use density connect-

edness for the spatial clustering.

Our scheme is different from all of the above proposals in that it is the first work to

satisfy the four requirements that motivate our work.

In order to avoid running expensive incremental clustering (e.g., DBscan) at each time

point, our proposal predicts the time when an event may occur. The motivation is that the

number of events can be much fewer than the total number of time points, which can be

very large, depending on the sampling technique.

The techniques used for supporting convoy and swarm discovery are capable of ex-

ploiting trajectory simplification. In convoy discovery, line segments are first clustered to

identify candidate clusters. Then a refinement step considers the sampling points for these

candidates. Thus, the accurate trajectories are only needed in the refinement step. The

techniques used for swarm discovery apply sampling in a pre-processing step.

The techniques for computing convoys and swarms cannot be adapted easily to on-

line settings. Convoys are computed by partitioning the time domain into intervals, upon

which line segment clustering is applied to each interval. When new data stream in, the

time domain needs to be redivided, and the computation needs to start from scratch. The

techniques used for swarm discovery assume a static trajectory collection; without this as-

sumption, swarms may not be maximal with respect to time. The pruning rules used in
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swarm discovery also require the time domain to be known beforehand. In contrast, our

proposed solution employs an existing online simplification technique in the pre-processing

step, monitors clusters continuously and records the histories of clusters. The evaluation of

groups is only dependent on the most recent history, so the GroupDiscovery framework is

amenable to online processing.

Moving Objects and Trajectory Clustering

The continuous clustering of the current positions of moving objects is related to the prob-

lem studied here. Jensen et al. [44] proposed a disk-based, incremental approach to continu-

ously cluster moving objects. The scheme incrementally maintains and exploits a summary

structure, called a clustering feature, for each cluster. During a time period, a moving ob-

ject may be inserted into, or deleted from, a moving cluster. Next, the techniques monitor

the radii of moving clusters, which change over time as the member objects move. When

the average radius of a cluster c exceeds a threshold, c is split. In addition, a cluster is split

if its cardinality exceeds a given threshold. Clusters may be merged if their cardinalities

fall below a threshold.

Since this approach is disk-based, it is lossy as pointed out by Jeung et al. [47]. As such,

it cannot be directly applied in our scheme, which uses density-connectedness to avoid the

lossy problem.

Another line of research is trajectory clustering, in which the goal is to find the common

paths of a group of moving objects. Trajectory clustering builds on advances in time-series

data analysis. Thus, many clustering techniques that resemble their counterparts in time-

series data analysis have been proposed, such as Dynamic Time Warping (DTW) [93],

Longest Common Subsequences (LCSS) [83], Edit Distance on Real Sequence (EDR) [17],

Edit distance with Real Penalty (ERP) [16], and a partition-and-group framework [55]. Li

et al. [61] point out that these approaches are ill suited to find groups because the trajectories

in a group may be quite different although they are close to each other (e.g., straight line
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trajectories vs. wave-like trajectories).

Trajectory Simplification

Trajectory simplification can improve the efficiency of many algorithms that operate on

the trajectories by removing relatively unimportant data points. Trajectory simplification

algorithms can be classified into batch or online algorithms. Batch algorithms, such as

the Douglas-Peucker (DP) algorithm [22] and its variants, require the entire trajectory to

be available, and thus are expected to produce relatively high quality approximation. In

contrast, online algorithms, such as reservoir sampling algorithms [82] and sliding window

algorithms [64], can work with partial trajectories and can be used for compressing data

streams.

The GroupDiscovery framework employs the Normal Opening Window (NOPW) algo-

rithm [64]. This algorithm starts by initializing an empty sliding window and setting the

first point as an anchor point pa. When a new location point pi is added into the sliding

window, a line segment papi is used to fit every location point in the sliding window. If

no location point deviates from papi by more than a user-specified error bound, the sliding

window grows by including the next new point pi+1. Otherwise, the point with the highest

error pe is selected. The line segment pape is included as part of the approximate trajectory,

and pe is set as the new anchor point. The time complexity of NOPW is O(n2), where n is

the number of data points in a trajectory.

In another line of research, Fagin et al. [25] propose the Threshold Algorithm (TA) that

has some similarity with the history handler module. TA operates on a database where

each object has m grades, one for each of m attributes, e.g., a multimedia database. Given

a monotone aggregation function, e.g., min or average, that combines the individual grades

to obtain an overall grade, TA finds the objects with top-k overall grades by concurrently

accessing the sorted list of the attributes. It is shown that TA is instance optimal.
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2.4 Finding Optimal Locations from Routes

A large body of literature on the classical facility location problem exists [15, 14, 13, 26,

30, 65, 69, 62, 41, 9, 51, 10] that assumes a static set of customer point locations. In general,

the problem takes as input a finite set C of customers and a finite set P of candidate facility

locations, and it returns a subset of k (k > 0) facilities in P that optimizes a predefined

metric. However,we have not found any formalizations of and solutions to the problem we

study here.

Many works [23, 87, 90, 96, 97, 13] study a variant of the facility location problem, the

so-called the optimal location (OL) query, where only the optimal locations are returned

from an infinite number of candidate locations, given that a finite set of facilities F already

exists. Some works [13, 23, 87, 96, 97] study the problem in Lp space. Recently, Xiao et

al. [90] extends the problem setting by taking the road network into account, using network

distance in place of Lp distance. Our optimal segment query is related to OL query, but it

uses route traversals instead of static customer point locations. The techniques presented

in previous works cannot be applied to the optimal segment query.

Two other variants of the facility location problem are the single facility location prob-

lem [26, 69], and the online facility location problem [30, 65, 4, 31]. The single facility

location problem finds one location in P that optimizes a predefined metric with respect to

a given set C of customers. It requires that no facility has been built previously, whereas

the optimal segment query consider the existence of a set F of facilities.

The online facility location problem assumes a dynamic setting where (i) the set C of

customers is initially empty, and (ii) new customers may be inserted into C as time evolves.

The solution to this problem constructs facilities one at a time, such that its quality (with

respect to some predefined metric) is competitive against any solutions that are given all

customer points in advance. This problem is different from the optimal segment problem

because those techniques assume that the set P of candidate facility locations is finite.
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Chapter 3

Processing Moving Continuous Query

3.1 Introduction

Recall that a Moving Continuous Query (MCQ) is issued by a mobile client who needs to

be continuously aware of other clients in its proximity. We consider two types of queries:

range query (MCQ-range) and kNN query (MCQ-kNN). In MCQ-range, each moving

client issues a continuous range query with a custom radius r and centered at its own

location to the database servers that are monitoring the entire service region. In contrast, in

MCQ-kNN, each moving client issues a continuous kNN query. In MCQ, a moving client

has a circular MCQ region that has its center at the moving client and has either a fixed ra-

dius r (in MCQ-range) or a varying radius (in MCQ-kNN). Every moving client functions

both as a query issuer in its own right, and a potential participant in other clients’ query re-

sults. Under these circumstances, central servers have to facilitate large-scale tracking and

communication among the moving clients. Thus, the challenge is to keep both the server

workload and the communication cost among servers and clients low.

In this chapter, we propose a framework that caters to these increased scalability re-

quirements and leverages a ubiquitous computing environment. We propose a distributed

architecture where servers take care of the global picture, tracking moving clients and com-

municating results to them; at the same time, mobile clients, having basic memory and

computational resources, perform part of the required computational workload by updating

their own results. In this framework, a cluster of inter-connected servers handle the majority
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of the workload in a cooperative manner. To that end, we partition the space into subre-

gions (called service regions), each monitored by a separate server that is only responsible

for computing the results for the moving queries in its service region. The server-server

communication cost can be kept minimal by only exchanging information at the service re-

gion boundaries for cross-boundary queries. Three important metrics are considered here:

client-server communication cost, client workload, and server workload. We assume that

server-server communication is much less expensive than client-server communication be-

cause servers are inter-connected by high-speed cables.

The communication needs of mobile client monitoring applications can be divided into

three components.

Location updates. In the framework, each server is indexing the mobile clients with an

in-memory grid structure. Each server is allowed to freely have a different but coordinated

grid cell side length depending on the distribution of mobile clients. This flexibility greatly

reduces the total amount of update messages. To further reduce the number of update

messages, each server negotiates a mobile region with every mobile client in its service

region. A mobile region R of a mobile client o moves from the most recently updated

position of o at o’s most recently known velocity. Such regions are assigned by servers to

clients in their service region. A client o needs not send location updates as long as it does

not exit its most recently assigned mobile region [45].

Probe messages. These messages are sent from a server to its clients when the server needs

to know the exact location of a client.

Results update. In the framework, results are maintained by the clients which do not need

to notify the server when result objects exit the query circles. We employ an adaptation of

the trigger time concept [40]. A trigger time is the time when a moving client no longer

satisfies another client’s MCQ, and a trigger event is the event of exiting that MCQ region.

Each mobile client maintains a queue of events, ordered by their trigger times. Servers can

insert events into the event queues of each client so that each client verifies whether the
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pending trigger events in its queue have occurred at each time point and updates its local

results accordingly. The amount of communication is reduced because no messages are

being exchanged.

Our major contributions can be summarized as follows:

• We propose Moving Continuous Queries (MCQ) that have wide application in both

real-world and gaming applications. We consider two types of MCQs: MCQ-range

queries and MCQ-kNN queries. MCQs are distinct from existing queries in the fol-

lowing aspects: (1) Each client is allowed to issue at least one MCQ, and thus the

number of queries can be larger than the number of moving clients. (2) Each client

must have exact answer to its own query, while servers do not need to store the an-

swer to each query.

• We propose balanced computational models to efficiently answer MCQs. In these

models, servers cooperatively take care of the global view and share the majority of

the workload among them. Clients are only concerned with their vicinity and also

carry out a small portion of the workload.

• We also propose a mechanism to dynamically allocate regions to handle the problem

of skew so that it is possible to balance the workload among the servers even in the

extreme case that all mobile clients cluster at one service region.

• We report on extensive experiments that offer insight into the efficiency of the pro-

posed framework.

The rest of this chapter is structured as follows. Section 3.2 formally defines the prob-

lem that we address. Section 3.3 describes our system architecture. Section 3.4 details

the operation of query processing in MCQ-range. Section 3.5 explains how the framework

handles MCQ-kNN. In Section 3.6, we examine how our system adapts to a highly dynamic

environment. Section 3.7 covers our experimental studies. Finally, Section 3.8 summarizes

this chapter.
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3.2 Problem Definition

The section formalizes the problem we set out to solve. Important notation is summarized

in Table 3.1.

α A grid cell side length
β The ratio to determine overloading
γ The ratio to determine skew in one service region
σ The average number of moving objects per cell
tr o1(o2) The trigger time when o2 is no longer o1’s result
td The time threshold for dynamic region allocation
te The time threshold for dynamic cell side length adjustment
R Service Region

Table 3.1: Notation Used in the Chapter

First of all, let D(o1, o2) denote the Euclidean distance between two moving clients o1

and o2. We assume an environment where each moving client issues a continuous range

query; one moving object issues only one query at a time. The problem is to keep track of

all moving clients, and to update the results of the queries they issue accordingly.

Definition 1 (MCQ-range) Given a moving client o with a location p, a moving continuous

range query (MCQ-range) of o is a circular range query ⊙(p, r) centered at p and with

radius r that continuously retrieves all objects within that circle.

As this definition suggests, it is important for a client to have the result of its MCQ-

range query. The server may or may not have that result. A moving client is represented as

oi = ⟨oid , p⃗refi , v⃗refi , trefi , r⟩, where oid is an object identifier, p⃗refi is the the most recently

updated location of o at time trefi , v⃗refi is the most recently updated velocity at time trefi , and

r is the radius of the query issued by o. To reduce the amount of location updates sent by

mobile clients to the server, we use a linear function to model o’s movement, based on the

latest known location and velocity of o, at time trefi . Thus, the location of oi at time t is

p⃗i(t) = p⃗refi + v⃗refi · (t− trefi ), where t ≥ trefi .
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In our setting, space is partitioned into cells by a grid; furthermore, the server assumes

the responsibility of sending to each client a set of candidate results, which may satisfy

the client’s query (circle with radius r centered at o.p). In effect, the server has to know

which cells overlap with the query of each client o. We define that set of cells as o’s alert

region. The shaded grid cells in Figure 3.1 illustrate the alert region of o. Its query radius

is r and mobile region radius is λ, which is introduced and discussed in the sequel. The

server has to keep track of the alert region of each object o by indexing that object with the

grid cells. Therefore, for each cell c, the server maintains a list of queries to whose alert

regions contain c.

To reduce the server workload, servers take a simple approach to computing alert re-

gions. Servers implement grids by using two dimensional arrays. Knowing that alert re-

gions are the intersection of grid cells and bounding rectangles of MCQ-range queries,

servers only need to compute the indices of the intersected cells. Suppose the location of o

is p = (x0, y0). The server of o computes

xl = max(
x0 − r

α
, 0), yl = max(

y0 − r

α
, 0)

yh = max(
y0 + r

α
,maxIdxx ), yh = max(

y0 + r

α
,maxIdxy)

where maxIdx x and maxIdx y are the maximum x and y indices for the 2D array. The alert

region of o is then {G[i][j] |xl ≤ i ≤ xh ∧ yl ≤ j ≤ yh ∧ (G[i][j] ∩ o.q ̸= ∅)}, where G is

the grid and o.q is o’s query region.

A trigger time in our setting has the form ⟨t, oid⟩ indicating that the moving client with

the identifier oid exits the query circle of another moving client at time t. Each client

maintains a heap structure indexing on the trigger times for its results.

Definition 2 (Trigger Time) Given a moving client o1, suppose o2 is another moving client

that satisfies o1.q. The trigger time for o2 is the earliest time t so that o2 no longer satisfies

o1.q.

tr o1(o2) = min{t | t > tref ∧D(po1(t), po2(t)) > o1.r}
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The queue is ordered on the trigger time and stored as a heap in each moving client.

Figure 3.1: Alert Region and Query Region Augmentation

3.3 System Overview

We now proceed to present the system architecture that supports scalable query processing.

We assume that moving clients and their queries fit into main memory of the database

server. This assumption is valid in most applications where real-time evaluation is needed.

As we have discussed, a single-server centralized solution cannot easily scale to a large

number of queries in a highly dynamic environment. Thus, our system architecture employs

a cluster of servers, dividing the service space into service regions.

3.3.1 Space Division Model

Each server is assigned to monitor a part of the space (called service region), and it is only

responsible for computing the results for moving queries in its service region. The chal-

lenge with this design is that the distribution of the moving clients can be highly skewed.

In the extreme case, all mobile clients can be in a single service region. Such skew may

cause unbalanced workloads among servers and significant overhead of client-server com-

munication cost. In the framework, we introduce two mechanisms to handle skew in order

to achieve a balanced server workload and minimize the client-server communication cost.

The macro-level mechanism is to dynamically split and merge regions. When a server de-

tects that its workload is significantly higher than the average workload, the server is able
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to further divide its service region for servers with less workload to take up. On the other

hand, compatible regions with very few moving clients can be merged and then monitored

as one single service region.

This model also allows the same server to monitor more than one, potentially non-

adjacent, regions. In case any service region R has more than β times the average number

of moving objects in each region, R is split into two new smaller service regions, one of

which is then taken over by the server with the least number of moving objects in its service

region. We use the term configuration for a space division. Obviously, there can be infinite

many configurations in a system.

The micro-level mechanism is to allow each server to tune its own grid cell side length.

As service regions may have different densities of clients, each server needs to pick the

right granularity of the grid structure that reduces the amount of messages being exchanged

between clients and the server.

3.3.2 Server Cluster Initialization

When the server cluster is initialized, a bootstrap server, which can be any server in the

system, obtains the total number of available servers and partitions the entire service space

using binary space partitioning. Ideally, each service region should contain almost the

same number of moving objects. Each server is assigned the task of monitoring the moving

objects in its service region, while the moving clients themselves are also informed about

the server they should report their location updates to. We assume that each server knows

the addresses of all other servers. For a small number of servers, the resulting routing tables

can be stored in each server’s main memory.

In the event that a new server S ′ requests to join an existing server cluster, the following

steps occur.

1. The bootstrap server selects the service region R that contains the largest number of

moving objects; assume R is currently assigned to server S.
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2. R is divided into two regions of equal area, R1 and R2.

3. R2 is assigned to S ′, which obtains from S the list of moving objects in R2.

4. S informs the moving objects in R2 that they should report to S ′ and removes them

from its list.

5. S broadcasts messages about this event to other servers.

Each server maintains its own space-partitioning grid as its own local index. Another

important task for server-server initialization is that each server tunes its cell size to the

density of objects in its region aiming at the same average object per cell ratio σ. Suppose

a server is monitoring N moving clients in a space of area A. Recall that α is the length of

a grid. We have the following relation between σ and α.

σ =
α2

A
·N (3.1) α =

√
A · σ
N

(3.2)

When the system initializes, the bootstrap server picks up a value for its cell length, cal-

culates its σ, and broadcasts σ to all other servers. Upon receiving the σ value, each server

computes its own cell length with equation 3.2, substituting its own number of moving

clients and service region area.

Note that after initialization, the cell side lengths may still be adjusted in circumstances

such as the distribution of the moving clients is highly skewed. In system optimization,

we give a discussion on how to dynamically adjust cell side lengths when the system is

running.

3.4 Processing MCQ-range

We now consider query processing on a single server S. We use terms moving query and

moving object interchangeably, depending on the context, as each object issues one query.

We use the term query circle to refer to the query issued by a moving object.

As discussed, the server maintains an in-memory grid index, in which each cell has side

length α. We assume there is the maximum speed limit, Vm, for all objects. It should hold
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that α ≥ tu ·Vm, where tu is the basic time unit, so that no object enters more than one cell

from one time point to the next.

For each cell, the server maintains a list of its overlapping query circles, as well as a list

of moving objects. The moving objects themselves maintain information for computation.

Each moving object also maintains the following data: its own id (oid ), the query radius (r),

its velocity (v), its current server (currS ), its current location (−→p ), a list of MOs satisfying

the MCQ (lRes), and an event priority queue (eventQ). Query processing is divided into

two phases, namely initialization and continuous monitoring.

3.4.1 Query Processing at Initialization

During initialization, a server S identifies all queries in its service region, and computes

initial results for every query with the following steps.

1. S broadcasts a request for data to its service region R.

2. Each moving object o in R sends ⟨oid, p⃗0, v⃗0, t0, r⟩ to S.

3. S receives the locations of all moving objects in R, populates each grid cell’s list of

overlapping queries, computes the initial result for every query, and sends it to the

respective client o, along with the information on moving objects in o’s alert region.

4. Upon receiving the message from S, a moving client oi initializes its variables with

the correct values and populates its event priority queue, eventQ .

The eventQ is used to implement a concept similar to the trigger time [40], as follows:

For each moving client oi, the server calculates the expected time at which each current

query result will cease being a result. The server then sends to oi a message containing

the identifier, location, velocity, and expected exit time of each result object, in the form

⟨tj, oid j,
−→p ,−→v ⟩, signifying that object with identifier oid j is expected to exit the query re-

sult at time tj . These entries are indexed by eventQ on the exit times. As will be illustrated
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later, the number of messages exchanged between clients and server is kept minimal with

the help of the eventQs.

Following the representation of a moving client in Section 3.2, the squared Euclidean

distance between o1 and o2 at time t, t > tref , can be computed as follows [7].

Do1o2(t) = (p⃗1(t)− p⃗2(t))
2

= (pref1 + vref1 (t− tref1 )− (pref2 + vref2 (t− tref2 )))2

= (vref1 − vref2 )2 · t2

+ 2(vref1 − vref2 )(pref1 − pref2 − vref1 tref1 + vref2 tref2 ) · t

+ (pref1 − pref2 − vref1 tref1 + vref2 tref2 )2

We need to compute the time t when a result object exits the query circle, which is

given by finding the positive root of the formula: Do1o2(t) = r2. The calculation above is

carried out by the function getExitTime().

3.4.2 Continuous Monitoring

We re-iterate that each client is responsible for monitoring its own query result, preferably

without updating the server, unless that is deemed necessary; this approach serves to reduce

both the communication cost and the computational burden at the server, at the cost of a bit

more local computation.

In the next sections, we show two computational models.

3.4.3 Monitoring without Mobile Regions

We first illustrate query processing in our system without using the mobile region concept.

In this algorithm, as soon as a moving client o moves to a new location, it updates its

server So about its new location and velocity. So computes the cells that appear in new

alert regions of o and checks if there are moving clients in these new cells. Specifically,

So does not need to send candidate messages if no other clients exist in new overlapping
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Algorithm 1: Server Procedure without Mobile Region
1 foreach moving client o that sends a location update do
2 C1 ← newly contained cells by o.q;
3 C2 ← partially intersected cells in the alert region;
4 O ← {o′|o′ ∈ C1.objSet ∪ C2.objSet};
5 if O ̸= ∅ then
6 Ores ← ∅;
7 foreach o′ ∈ O do
8 if isResult(o′, o) then
9 t← getExitTime(o′, o);

10 Ores .add(⟨t, o′⟩);
11 if Ores ̸= ∅ then sendMsg(Ores , o);

cells. However, it is not enough to only compute the difference between old and new alert

regions. Some objects may move into o’s query circle even if o does not move at all. For

correctness, So has to send candidate objects located in the partially intersected cells in the

new alert region, even if some of them might be already in the result of o. Note that So does

not need to send moving objects in the fully contained cells in the new alert region, thanks

to the maximum speed assumption. The detailed steps are summarized in Algorithm 1.

Algorithm 2: Client Procedure without Mobile Region
input : Ores from the server

1 while eventQ .peek() ≤ currTime do
2 (t, o)← eventQ .pop();
3 if Ores .has(o) then
4 ts ← Ores .getNewExitTime(o);
5 eventQ .update(ts, o);
6 Ores .remove(o);
7 else lRes.remove(o);
8 foreach (t, o) ∈ Ores do
9 lRes.add(o);

10 eventQ .add(t, o);

The procedure that takes place at the client side consists of two phases, namely the

deletion phase and addition phase. The detailed steps are summarized in Algorithm 2.

The client procedure takes the message Qres sent from server as input. In the deletion

phase, from the eventQ , the algorithm pops out the result object that is expected to exit

from the query circle (lines 1-2). If the result object is in Qres (line 3), then the object
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is still in the query circle. The new expected exit time is taken from Qres (line 4), and

the eventQ is updated with the new time (line 5). Qres removes the result object to avoid

duplicate operation (line 6). Otherwise, the result object is removed from the result set

(line 7). In the addition phase, the result objects in Qres are added into the result set, and

into the eventQ together with their expected exit times.

3.4.4 Monitoring with Mobile Regions

The procedure just outlined incurs high location update cost. To render our solution more

efficient, we introduce the concept of a vector-based mobile region.

Definition 3 (Mobile Region) Given a mobile client o and a radius λ, a mobile region is

the set of points in the circular range ⊙(o.−→p , λ, o.−→v ). The mobile region has the same

velocity as the mobile client o.

In our setting, mobile regions are agreed upon by each moving client o and its server So

at the most recent update of o. Subsequently, both parties are aware of the mobile regions.

As long as o stays in its mobile region, it does not need to send location updates to So. We

say the mobile region is valid for o. Since So does not have o’s exact location, the query

region of o has to be augmented by the mobile region (see Figure 3.1) to ensure correctness.

Lemma 3.4.1 Let mr o be the mobile region for a mobile client o. Let λ be the radius of

mr o. As the server side, the new query region of o is guaranteed to contain the original

query region if the new query region radius is o.r + λ . (Proof omitted)

Proof 3.4.1 With the mobile region definitions, o is bounded by mro . The extreme case is

that o is located on the boundary of mro , where the sum of the mobile region radius and

the query region circle is o.r + λ. Therefore, a region with radius o.r + λ is guaranteed to

contain the original query region.
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Algorithm 3: Server Procedure with Mobile Region
1 foreach moving client o do
2 if receive message that o exits mro then
3 create new mro;
4 sendMsg(o,mro);
5 q ← augmentQuery(mro);
6 R← ∅;
7 C1 ← newly contained cells in q;
8 C2 ← partially intersected cells in q;
9 O ← {o′|intersects(mro′ , C1 ∪ C2) = true};

10 foreach o′ ∈ O do
11 sendMsg(o′,PROBE);
12 cacheLoc(o′, τoid );
13 if contains(q, o′) then
14 R← R ∪ {o′};
15 if R ̸= ∅ then sendMsg(R, o);

Treating the augmented circular range as the new query, So can compute the alert region

exactly as the case without mobile regions. In this algorithm, servers keep track of the

global picture, while details are left upon the clients. However, unlike in the procedures

for continuous monitoring without mobile regions, So no longer has the exact location of

the query object qo. Instead, knowing the augmented alert region of qo, it identifies cells

that may contain candidate results for qo, followed by probing the exact locations of these

candidates and caching their exact locations. So then sends qo a candidate message with

the exact locations. Upon receiving the candidate results, qo has to filter them based on its

own location and query radius.

If a moving client exits its mobile region, a new mobile region is created to contin-

uously bound its movement. With the mobile regions, location updates can be reduced

greatly. However, this comes at the expense of increasing probe messages. This tradeoff is

investigated in the experimental studies.

It is important for server So to cache exact locations of some moving clients because

these exact locations may be re-used for queries issued by other moving clients in future.

Caching exact locations can potentially save a large number of probe messages. But it is

also important to allocate a cache of a small size to save precious memory space. In our
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implementation, the server allocates a fixed amount of buffer space to cache exact locations,

e.g., 2KBytes. In addition, the server assigns identical life time τoid to each moving client

o. Every time the exact location of o is re-used, its life time is renewed. If by τoid the exact

location of o is not re-used, it is removed from the buffer. The detailed server procedure is

summarized in Algorithm 3.

In this setting, the objects must send updated locations to their server when they exit

their mobile regions. Each client also monitors its own result changes based on the eventQ

and its current location. As in the procedure without mobile regions, this procedure has a

deletion and an addition phase. In the deletion phase, the client removes any previous re-

sults that no longer satisfy the query. In the addition phase, the moving client verifies which

candidates are true results according to candidate-message sent by the server and then up-

dates both the lRes and eventQ accordingly. The detailed client procedure is summarized

in Algorithm 4.

Algorithm 4: Client Procedure with Mobile Region
input : R from the server

1 if exit(−→p ,mr) then
2 sendMsg(−→p ,−→v );
3 mr ← mr from server;
4 while eventQ .peek() ≤ currTime do
5 (t, o)← eventQ .pop();
6 if o ∈ R then
7 if isResult(−→p , r, o) then
8 t← getExitTime(−→p ,−→v , o);
9 eventQ .update(t, o);

10 R.remove(o);
11 else lRes.remove(o);
12 foreach o ∈ R do
13 if isResult(−→p , r, o) then
14 lRes.add(roid);
15 t← getExitTime(−→p ,−→v , o);
16 eventQ .add(t, o);
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3.4.5 Cross Boundary Queries

When the query circle of a client o covers several service regions, the server So answers the

query by communicating with respective servers.

Figure 3.2 illustrates a scenario where a moving object o has its query cover both service

regions of S1 and S2. S1 probes the exact location of o and sends it to S2, together with

the query radius o.r and the mobile region o.λ. According to Lemma 3.4.1, to ensure the

correctness of the result of o, S2 overlaps the new query region of radius (o.r + o.λ) and

retrieves its overlapping cells. Recall that each cell maintains a list of identifiers of objects

inside the cell. S2 probes the locations and velocities of these clients and sends them to S1.

S1 computes and sends the candidate set for each query object as usual. This approach can

be easily generalized to the case where a query overlaps with multiple service regions.

1 2

r
+

Figure 3.2: A Cross Boundary Query

3.4.6 Client Handover

When an object moves across a region boundary, the server of the old region informs the

server in the new region by sending it a handover message. Upon receiving a handover

message, the server in the new region probes the exact location of the moving client, and

send candidate results in its service region. The handover should occur seamlessly, in that

the handover should not affect the correctness of the result of the object. Handling this type

of event is particularly straightforward in our query processing scheme because the moving
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clients compute the exact results. The only thing that the moving clients have to be aware

of is to send location updates to the server responsible for the new service region.

3.5 Processing MCQ-kNN

This section describes how kNN queries are handled in the proposed framework. Note that

the proposed system architecture and optimizations are orthogonal to the processing of the

kNN queries. Therefore, both the architecture and the optimizations are still applicable in

the kNN query. We focus on the query processing in the remainder of this section.

First, we define MCQ-kNN query.

Definition 4 (MCQ-kNN) Given a moving client o with a location p and an integer ko,

a moving continuous kNN query (MCQ-kNN) of o continuously retrieves its ko nearest

neighbors.

The main difference between MCQ-range and MCQ-kNN is that the radii of the query

circles in MCQ-kNN are no longer static. For each moving client oi, its query radius

changes as the kth nearest neighbor oj moves around. We call the Euclidean distance

between oi and oj the critical distance.

In the following subsections, we explain how query processing is done in a single server.

Then, we explain how the servers cooperatively handle the entire workload.

3.5.1 Query Processing at Initialization

Recall that a server S has a grid index structure for its service region in its memory. Similar

to MCQ-range query processing, MCQ-kNN query processing is divided into two phases:

the initialization phase and the continuous processing phase.

During initialization, S also identifies all MCQ-kNN queries in its service region and

computes the initial result for every MCQ-kNN query with the following steps.

1. S broadcasts a request for data to its service region R.
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2. Each moving object o in R sends ⟨oid , p⃗0, v⃗0, t0, ko⟩ to S.

3. S receives the locations of all moving objects in R, populates each grid cell’s list of

overlapping queries, computes the initial result for every query and the trigger time

when the result can change, and sends it to the respective client o.

4. Upon receiving the message from S, a moving client oi initializes its variables with

the correct values and populates its event priority queue, eventQ .

There are several important difference between MCQ-range and MCQ-kNN initializa-

tions. First, the message sent from o to S has the integer ko instead of a fixed radius r.

Second, the initial result computation is different, as the query radius is not fixed. The

framework uses Algorithm 5 to compute the initial result for each query.

Algorithm 5: FindMCQ-kNN
input : a mobile client o, an integer ko
output: ko nearest neighbors

1 mark every cell in the grid as unvisited;
2 currCells ← {cell(o)};
3 R ← moving clients in cell(o);
4 mark cell(o) visited;
5 while |R| < ko do
6 currCells ← neighbors(currCells)− currCells;
7 foreach cell c ∈ currCells and c is unvisited do
8 R← R∪ moving clients in c;
9 mark c visited;

10 compute the distances between the moving clients in R and o;
11 sort R based on the distances;
12 keep only the nearest ko moving clients in R;
13 return R;

Third, contrary to the static query radius of a mobile client o, the radius of a query circle

changes continuously with the client movements. Therefore, it is necessary to update the

server once the alert region is changed for correctness.

Fourth, the handling of trigger times is different from MCQ-range. After the ko nearest

neighbors of a mobile client o are identified, the query result will not change until new
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mobile clients enter the query circle defined by the koth nearest neighbor.

3.5.2 Continuous Monitoring

Continuous processing is started once the initial processing is completed. It is responsible

to keep the query results updated while mobile clients are moving around and some of

them may change their results. Similar to MCQ-range continuous query processing, it is

conducted in an incremental manner.

It is a challenging task to continuously process MCQ-kNN. Due to the movements of

both query mobile clients and result clients, continuous processing of the queries can incur

substantial communication cost and server workload. The framework minimizes these costs

by following the same design philosophy as in MCQ-range. The server monitors the global

picture, while clients take care of their own results. In particular, MCQ-kNN uses trigger

times extensively, which can save substantial messaging cost between the server and the

clients, because no message needs to be exchanged between server and clients in-between

two trigger times. Recall that an internal trigger time is stored at a mobile client oi. When

it triggers, oi needs to recompute its internal trigger time based on the current locations

and velocities of its result clients. No message needs to be exchanged between oi and its

server. When an external trigger time occurs, on the other hand, the server needs to send

the location and the velocity of the “move-in” client to oi, which then recomputes its koi

nearest neighbors and the trigger.

Next, we explain how to compute triggers for a mobile client o. For each of the ko

nearest neighbors, oi, except for the koth neighbor oko , the client computes the time ti

when the distance between oi and o is no less than the critical distance. That is, Dooi(t) −

Dooko(t) = 0, where D(t) is defined above. The trigger is then the minimum of all the

positive roots. Similarly, for each of the clients oj in the alert region but outside the query

circle, the server checks if oj moves into the query radius by comparing the Dooj with

the critical distance. If Dooj is no more than the critical distance, then servers sends oj’s
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location, velocity and Dooj to o, which in turn determines its ko nearest neighbors.

Unlike MCQ-range, mobile safe region is not used in MCQ-kNN because a mobile

client has to update the server about its critical distance, together with their current loca-

tions and velocities in a single message. Now we present the detailed server procedure in

Algorithm 6.

Algorithm 6: MCQ-kNN Server Procedure
1 foreach moving client o that sends ⟨oid , p⃗0, v⃗0, d, lRes⟩ do
2 Co ← new alert region for o;
3 Oo ← all mobile clients in Co;
4 if Oo − lRes ̸= ∅ then
5 Ores ← ∅;
6 foreach o′ ∈ Oo − lRes do
7 if Doo′ ≤ d then
8 Ores .add(o

′);
9 if Ores ̸= ∅ then

10 send Ores to o;

From the analysis above, a mobile client

• keeps the server updated about the critical distance (query radius) while mobile

clients are moving around,

• updates the koth nearest neighbor when a mobile client from inside the query circle

replaces the old koth nearest neighbor by using trigger

• recomputes its nearest neighbors and the critical distance when the result set changes.

The detailed steps are summarized in Algorithm 7.

3.6 System Optimization

In this section, we outline how our system adapts itself to a highly dynamic environment

by dynamically re-allocating service regions to servers.
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Algorithm 7: MCQ-kNN Client Procedure
input : Ores from the server

1 if Ores ̸= ∅ then
2 recompute ko nearest neighbors;
3 update critical distance;
4 update eventQ ;
5 else if eventQ ..peek() ≤ currTime then
6 (t, oi)← eventQ .pop();
7 update critical distance to be Dooi;
8 update eventQ ;
9 send to server ⟨oid , p⃗, v⃗, d, lRes⟩;

In the applications that we target, the objects issuing queries and being queries move

continuously. At times, a significant number of these objects may locate in the service re-

gion of a single server, possibly due to an event that has occurred at that site. The server in

question is then overloaded. Meanwhile, some other servers may be idle because there are

only few moving objects to serve in their regions. Under such circumstances, a necessity

arises to re-balance the workload among servers so that the quality of service is kept sta-

ble.In order to detect this kind of circumstance, we follow a simple yet effective strategy

to estimating each server’s status. We use the number of moving clients as an indicator.

Ideally, each server has N
M

moving clients if the system has N objects and M servers. A

server is overloaded if it is serving more than βN
M

objects, where β > 1. If β is too large, a

server may get overloaded and unnoticed, and the performance of the system deteriorates.

But if β is too small, system re-balancing happens too often, which also wastes system

resources. In our experiments, we set β = 3.

3.6.1 Adjusting the Service Region Allocation

When skew causes a server S to become overloaded, S divides its service region into

two halves, and hands over the moving objects in the one half service region to a lightly

utilized server S ′ so as to balance the workload. Next, the framework also seeks to merge

compatible regions that are adjacent, and have the same width and height, in order to (1)
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prevent space fragmentation and (2) to further balance the workload.

Algorithm 8: DynamicAllocation
1 while S.numClients() > βN

M do
2 R← getServiceRegions();
3 (R1, R2)← divideRegion(R);
4 S′ ← the server with the least clients;
5 if R1.numClients() > R2.numClients() then
6 R′ ← R2;
7 else R′ ← R1;
8 allocate(S, S′, R′);
9 foreach o ∈ R′.getObjSet() do o.currS ← S′;

10 foreach RegionR1 do
11 foreach AdjacentRegionR2 do
12 n← R1.numClients() +R2.numClients();
13 if compatible(R1, R2) ∧ (n < βN

M ) then
14 S1 ← getServer(R1); S2 ← getServer(R2);
15 if S1 ̸= S2 then
16 allocate(S1, S2, R1);
17 R← merge(R1, R2);
18 S2.setServiceRegions(R);
19 if S1.getServiceRegions() = ∅ then
20 Rm ← the region with the most objects;
21 (R′

1, R
′
2)← divideRegion(Rm);

22 allocate(Sm, S1, R
′
1);

23 else merge(R1, R2);

In the server cluster, each server continuously monitors the number of clients in its ser-

vice region. When a server S is overloaded for a period longer than td, Algorithm 8 is

invoked to dynamically adjust the service region allocation, in order to balance the work-

load among the servers. Suppose server S with a service region R is overloaded.

In Algorithm 8, the function getServiceRegions returns the current set of service re-

gions. The function numClients returns the number of clients in a service region as moni-

tored by a server. Each server by definition should have one region, but the region may not

be a connected region. In line 3, the function divideRegion divides a given region into two

equal halves. In line 4, the server S gets another server, S ′, with the least clients by sending

broadcast messages to the server cluster. Then the half region with fewer clients is allocated

to S ′ (lines 5–8). The function allocate(S, S ′, R′) allocates the region R′ belonging to S to
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S ′. Each object in R′ then updates their server to S ′ (line 9).

In next loop, every pair of adjacent service regions are compared to see if they can be

merged (line 13). If any two compatible regions of different servers are merged, the new

region is allocated to one server (lines 14–18). Next, if the other server is idle, the server

with the heaviest workload allocates half of its service region to the idle server (lines 19–

22). On the other hand, if two compatible regions belong to the same server, they are simply

merged (line 23).

3.6.2 Dynamic Cell Side Lengths

As discussed above, when the system is initializing, the bootstrap server picks up a value for

its cell length, calculates its σ, with which the remaining servers calculates their respective

cell length α with Equations 3.1 and 3.2.

However, a need for dynamically adjusting the cell side length arises when data are

highly skewed at certain servers. In our setting, each server monitors the distribution of the

mobile clients in its service region. If a server detects skew, it is allowed to adjust its cell

length. Specifically, if a server finds that a single cell holds more than γ of all objects in the

service region for a period longer than a threshold te, the server halves its current cell side

length and rebuilds its grid. This process continues until no cell has more than γ of total

moving clients. Once the distribution of moving clients is no longer skewed, the server

restores its original cell length, which was saved before the adjusting occurred. Note that

cell side length adjust should not happen very often because of the expensive index rebuild.

In the experiments, we empirically set γ to be 50% and set te to be 10 time points.

3.6.3 Extension to Multiple MCQs by One Client

We also consider relaxing the assumption that one moving client is issuing one MCQ at

any time. Our system could also be used to satisfy the needs of a mobile client to issue

many MCQs. In this case, many queries may be sharing the same focal object or the

same alert region, and a query grouping technique may be employed to reduce both the
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communication cost and the computation workload at server side. Specifically, if a moving

client issues three MCQs at the same time, and thus three alert regions at server side. The

server could group these MCQs and return the candidates in one message instead of three

messages. Server could also use minimal encoding to indicate in which alert region a

candidate is located in order to reduce client side processing.

3.7 Experiments

In this section, we evaluate the effectiveness and efficiency of the proposed distributed

architecture and algorithms. All experiments are carried out on a Linux machine with an

Intel(R) Core2 Duo 2.33 GHz CPU and 16GB memory. Each simulated server is an object

that records various statistics, e.g. workload and number of messages. The servers are

assumed to have a mechanism to communicate with each other. With the data sets, our

simulation replays the movement of the moving clients, and records the server workload

and the messages sent by both clients and servers. We use the following metrics for our

performance study: (1) query result change rate, (2) message rate between servers, (3)

message rate between server and clients, (4) server workload (running time for processing

the messages), and (5) workload at moving object side (average number of queries each

moving object monitors).

As the RMD scheme [94] cannot be directly applied to solve the MCQ problem, we

need to adapt it for MCQ problem. Instead of finding pairs in proximity, RMD is modified

so that the server finds the result for each client, with the contraction and expansion prop-

erties still kept. We set the parameters in the RMD algorithm according to the recommen-

dations used in [94], namely the scale factor has default value 2. We compare MCQ-kNN

with DKNN [89] for moving continuous kNN queries.

The data sets were generated using Brinkhoff’s road-network-based moving-objects-

generator [11]. The moving object datasets consist of the location update reports for each

moving object, at each time point. Three default velocity values (slow, middle, and fast) are

48



used to generate data of objects moving at different speeds. The Oldenburg map is used to

generate trajectories. The generated data space has width 23,572 meters and height 26,915

meters. Our simulator generates cells that cover this area. As we have discussed, the cell

side length α is an internal parameter for each server; its impact on the system performance

is studied in our experiments. All parameters under investigation are gathered together in

Table 3.2.

Parameter Default Range
Query radius r (meters) 20 10–50
k 4 2–10
Mobile region radius λ (meters) 20 10–50
Cell side length α (meters) 40 20–100
Number of Moving Clients N 300k 100k–500k
Number of Servers M 8 4–12

Table 3.2: Experimental Parameter Settings

The organization of the experiment part is as follows. First, we separately show the

results of comparing MCQ-range with RMD and comparing MCQ-kNN and DKNN. Then

we conduct experiments to show the effectiveness of the system architecture by running

both MCQ-range and MCQ-kNN on it.

3.7.1 MCQ-Range: Varying Grid Side Length
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Figure 3.3: Server Messages
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We first investigate the effect of the (default) side length of grid cells. Remember that

setting grid cell side length at the bootstrap server also determines the grid cell side length

of other servers during initialization phase. In this set of experiments, we set various cell

side lengths at the bootstrap server. This comparison is only between the two variants

of scheme, the scheme without mobile safe region (NMR) and the scheme with mobile

safe region(MR), since these settings do not apply to RMD. Figures 3.4 and 3.3(a) show

results for computational load and exchanged messages, respectively. We observe that

performance is best with a cell length of 40 meters, which we choose as our default setting.
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Figure 3.4: Server Workload vs. Cell Length

3.7.2 MCQ-Range: Varying Mobile Region Radius

We now evaluate the effect of the mobile (safe) region radius on both servers’ workload and

communication cost with our MR variant. Figure 3.3(b) shows our results. As expected,

as the size of mobile regions increases, the server has to send out probe more messages.

Hence the communication cost increases at the sever-side. On the other hand, as the size

of safe regions increases, such events as a client exits its safe region become less frequent,

and hence the communication cost of uplink message sent by clients drops.
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3.7.3 MCQ-Range: Client Handover

In this set of experiments, we examine the number of moving clients that actually cross the

boundaries of two servers. Both the total number and the speed of moving clients affect

the number of handovers. Therefore, we generate data sets with size varying from 100K to

500K. The speed for each data set can be either slow or fast, which is the default value of

the data generator. From the result shown in Figure 3.5(a), we observe that for each data

set with slow speed, the handover rate is around 1% with smaller variation.
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Figure 3.5: Handovers and Result Change Rate

In contrast, for each data set with fast speed, the handover rate can be as high as 6%,

with bigger variation. As expected, the speed of moving clients has a great impact on the

rate of handovers. It also causes bigger variations because the servers have shorter time to

respond to the event that many moving clients cluster in one region. In summary, this set of

experiments shows that the proposed architecture is effective in adapting to highly dynamic

environment.

3.7.4 MCQ-Range: Query Result Change Rate

In this set of experiments, we conduct a sensitivity test on how the population size and the

speed of moving clients affect the result change rate. We generated four different data sets:

Slow100k, Fast100k, Slow500k, and Fast500k. As the names suggest, we have two data

sets with 100k moving clients, and two with 500k moving clients. The speed for each data
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set can be either slow or fast which are the default values of the generator. We measure the

average times that moving clients result changed for each time point against query radius.

Figure 3.5(b) shows the results. We observe that both higher speed and larger population

increase the result change rate. However, speed has greater impact than population.

We only show the result for MR algorithm. NMR exhibits the same results since speed

and population affect only performance, not correctness. This set of experiments show that

both MR and NMR can capture the frequent MCQ-range query result changes. Unlike

centralized systems where the query processing is based on periodical location updates,

MR and NMR perform true continuous monitoring. In MR and NMR, servers handle fast

changes as they perform light computations, delegating part of the workload to the moving

clients. Thus, they avoid the problem that the more frequently the query result changes, the

more likely that it is the server gives wrong results as it occurs in a centralized solution due

to the delay of updates.

Figure 3.6: Client Messages

3.7.5 MCQ-Range: Effect of Number of Moving Clients

We also study the scalability of our method in the number of moving clients. Figure 3.6

shows that NMR has the most client messages, whereas MR has the fewest client messages,

thanks to the use of mobile regions. For the same reason, RMD has fewer messages than
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NMR. In Figure 3.7, both NMR and MR outperform RMD because of the push of compu-

tation to the client side. Quite a number of messages (about one order of magnitude) are

actually saved in both MR and NMR. There are more messages in MR because of probe

messages sent by servers. Figure 3.8 shows server workloads for the three methods. We

compare total time of the four servers in MR and NMR with the time in RMD for fair-

ness. Both MR and NMR outperform RMD by more than 50% in terms of computation

time at the server side. These results indicate the scalability advantage of our methods in

comparison to the RMD scheme. Again, these advantages are due to the exploitation of

computational capacities at the client side.
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Figure 3.7: Server Messages
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Figure 3.8: Server Workload
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3.7.6 MCQ-range: Varying Query Region Radius

We also experimented with tuning the query region radius. The advantage of our system

is allowing each client to select its customized query radius. But in order to compare with

RMD, which assumes the same radius for each moving client, we set query radius to be the

same value. Results are shown in Figures 3.9(a) and 3.9(b). It is observed that as the query

radius increases, the number of cells in each client’s alert region also increases, hence the

number of candidate message sent by servers increase with all algorithms.
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Figure 3.9: Effect of Query Region Radius

Still, both variants of our scheme outperform RMD in this experiment. This result

verifies our expectations and reconfirms the advantages of our method. It also observed

that MR improves the performance by a factor of 6 compared to RMD.

3.7.7 MCQ-kNN: Effect of Number of Moving Clients

Figure 3.10 and Figure 3.11 compares the number of messages sent by clients and by

servers in both DKNN and MCQ-kNN.

Recall that in DKNN, the space partitioned is pre-determined by base stations and their

transmission radii, whereas MCQ-kNN has a mechanism to dynamically adjust the space

partitioning. The flexibility leads to a reduction in the messaging cost in MCQ-kNN by

a factor around 10 in both client and server side messaging cost. There is a trade-off for

saving the communication cost, as is shown in Figure 3.12 where MCQ-kNN spends around
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Figure 3.10: Client Messages, kNN

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

1 2 3 4 5

T
o
ta

l 
S

e
rv

e
r 

M
e
s
s
a
g
e
s

Num Mobile Clients(x10
5
)

DKNN
MCQ-kNN


Figure 3.11: Server Messages, kNN

twice processing time at server side. This trade-off is worthwhile because in the distributed

setting where both DKNN and MCQ-kNN both assume, communication cost contributes

to the most of the total cost.

3.7.8 MCQ-kNN: Varying k

We compare DKNN and MCQ-kNN by varying k. The result is shown in Figure 3.13.

We observe that MCQ-kNN outperforms DKNN for every k value in terms of messag-

ing cost. In addition, compared to DKNN, the increase in messaging cost of MCQ-kNN

with the increase of k is less dramatic. The reason is that DKNN cannot handle data skew

very well, especially when the number of mobile clients is big. Thanks to the macro and
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Figure 3.12: Server Workload, kNN

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

2 4 6 8 10

S
e
rv

e
r 

M
e
s
s
a
g
e
s
(s

)

k

DKNN
MCQ-kNN


Figure 3.13: Server Workload vs k

micro level tuning mechanisms, our system handles data skew better, and thus MCQ-kNN

has better scalability than DKNN.

3.7.9 Effectiveness of Server Architecture

In our system, servers divide their service regions among themselves according to the dis-

tribution of moving clients therein so as to balance their workloads. In this set of experi-

ments, we try various numbers of moving clients, and check the workload of each server.

Figures 3.14(a), 3.14(b) and 3.15 show our results on each server’s workload (i.e., time

taken) as a function of the number of moving clients. Note that server 1 is pre-selected as

the bootstrap server, therefore it has a bit more workload than the other servers. But we
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Figure 3.14: Server Workloads, Range

still observe that the servers share the workload almost equally.

 10

 20

 30

 40

 50

1 2 3 4 5

S
er

ve
r 

W
or

kl
oa

d 
(s

)

Num Mobile Clients (x105)

S1
S2
S3
S4


Figure 3.15: Server Workload, kNN

3.7.10 Effect of Number of Servers

We also study the scalability when the number of servers increases. Figure 3.16 presents

the amount average workload on each server when the number of servers increases from

4 to 12. It is observed that with the increase of number of servers, the average workload

decreases linearly which indicates that the architecture is able to scale well.

3.8 Summary

In this chapter, we address the problem of answering multiple moving continuous queries

in an environment where each moving client poses its own range query. We propose a dis-
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Figure 3.16: Effect of Number of Servers

tributed client-server architecture for efficiently processing such queries. In our solution, a

cluster of interconnected servers takes care of the global view, while part of the computa-

tion is relegated to the clients to verify actual results. We demonstrate the effectiveness and

efficiency of our approach through extensive simulation experiments. Our method reduces

both the server-side workload and the client-server communication cost in comparison to

the most recent state-of-the-art scheme, while it is much more scalable to growing number

of moving clients.
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Chapter 4

Processing Group Movement Query

4.1 Introduction

In the previous chapter, we have discussed real-time processing of range and kNN queries.

In this chapter, we extend our time scope to also include the movement histories of moving

objects in order to find interesting movement patterns.

The increasing availability of trajectory data renders it increasingly important to be

able to extract movement patterns from trajectory data. A central pattern is that of objects

that have traveled together. Existing definitions, notably flock [34, 35], convoy [47], and

swarm [61], capture different notions of objects traveling together. For example, a flock

consists of objects that travel together within a disk of a user-specified radius. However, the

disk radius influences the result greatly and is a difficult-to-set parameter. Convoys, on the

other hand, do away with this parameter by employing the notion of density-connectedness.

Swarms also relax the requirement that objects must form groups for consecutive time

points.

We may think of the true trajectory trT of a moving object as a continuous function

from the time domain T to points in the n-dimensional Euclidean space Rn where the

movement occurs. For most typical applications, n = 2. In practice, the trajectory of an

object is collected by sampling the object’s positions according to some policy, resulting

in a set of sampling points (t, r⃗) ∈ T × Rn. A trajectory tr is then given by the stepwise

linear function obtained by connecting temporally consecutive sampling points with line
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segments, as shown in Figure 4.1(a). Different sets of sampling points may represent the

same such function. This holds for {(3, 3), (7, 7)} and {(3, 3), (5, 5), (7, 7)}, shown in

Figure 4.1(b).

The use of different representations (sampling points) of the same trajectory in an al-

gorithm should not affect the outcome of the algorithm. We call this property sampling

independence.
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Figure 4.1: Trajectory Semantics and Pattern Loss

Definition 5 (Sampling Independence1) Let two trajectory sampling point sets trrepa and

trrepb that represent the same trajectory be denoted as trrepa ≡ trrepb . Next, two collections

of trajectory sampling point sets, TR0 and TR1, represent the same trajectories, denoted as

TR0 ≡ TR1, if and only if ∀i ∈ {0, 1} (∀trrepa ∈ TRi (∃trrepb ∈ TR1−i(tr
rep
a ≡ trrepb ))).

With these definitions in place, we say that an algorithm A operating on collections

of trajectory point sets satisfies sampling independence if and only if ∀TRa,TRb(TRa ≡

TRb ⇒ A(TRa) = A(TRb)).

Sampling independence has several benefits. First, we observe that sampling-dependent

approaches that simply compare trajectories as of given sampling times suffer from the

lossy-pattern problem. Consider the trajectories of two objects o1 and o2 in Figure 4.1(b).

1While the term “sampling point independence” may be more precise, we use the shorter term “sampling
independence” throughout this chapter.
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Solid circle points are real sampling points. Hollow circle and square points are expected

locations of the two objects. Assume that for a set of objects to form a group, their distance

e must not exceed 2 for at least 2 time units. The two trajectories satisfy this requirement

because they are within distance 2 from time 3 to time 5. However, the two trajectories

are sampled at different times. If we introduce an artificial sampling point for o2 at time 3,

which existing techniques (e.g., convoys and swarms) would do to enable comparison, no

group is found because we are missing a sampling point at time 5. Sampling independence

rules out such approaches.

Second, the approach of adding sampling points so that all points are sampled at the

same times is not scalable. To see why, assume a trajectory collection TR in which each

trajectory is sampled S times, and let the sampling times be chosen at random from a

continuous time domain. Each time a new trajectory is added to the collection, a total of

2|TR|S artificial sampling points must be added (S to each existing trajectory, and |TR|S

to the new trajectory). While these assumptions are extreme, the argument illustrates well

that sampling dependence does not scale with |TR| and S.

Third, sampling independence offers a foundation for seamless integration of approx-

imate trajectories. With sampling independence, a computation does not have to occur at

each sampling time, and approximate trajectories can be used seamlessly in place of more

accurate trajectories.

Sampling independence requires decoupling defining and finding travel-together pat-

terns from sampling points. Among the existing definitions, only flocks satisfy this prop-

erty, while the other definitions, e.g., of convoy and swarm, are based on sampling points

and so cannot be used in a sampling-independent framework.

Our framework achieves sampling independence by first defining a travel-together pat-

tern that is independent of sampling points, and second, by adopting an event based ap-

proach that is also sampling independent.

The second property that the framework considers is density-connectedness that aims to
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avoid the lossy-flock problem identified by Jeung et al. [47]. The problem occurs because

(1) a flock is very sensitive to a user-specified disc size that is independent of the data

distribution. and (2) the use of circular shape may not always be appropriate. To achieve

this property, our framework employs DBScan [24] for continuous clustering.

The third property of the framework is to support online processing, where sampling

data arrives continuously. Efficiency is a key factor in online processing. Processing the

raw trajectories may be too time consuming, so the framework needs to support online tra-

jectory simplification that trades result accuracy with efficiency. This is the fourth property

of the framework.

Table 4.1 categorizes previous work and our proposed solution (denoted Group) with

respect to the four requirements as discussed above. Previous work is discussed in detail in

Chapter 2

In our framework, a group is a cluster that has at least m moving objects being density-

connected for at least a specified duration of time. This definition fundamentally differs

from sampling dependent definitions (e.g., convoy and swarm) by requiring moving objects

to be density-connected for a time duration instead of at consecutive or non-consecutive

sampling times (continuous vs. discrete).

Property Flock Convoy Swarm Group
Sampling independence X 7 7 X
Density connectedness 7 X X X
Traj. approximation X X X X
Online processing X 7 7 X

Table 4.1: Algorithm Comparison

To find groups from a collection of trajectories without relying on sampling points, our

main idea is to predict events that can happen in the future according to the motions of the

moving objects. This is carried out by the continuous clustering function module in the

framework (Figure 4.2). This module first uses DBScan to find clusters with an arbitrary

spatial extent and to avoid a disk radius parameter. As new data arrive, these clusters are
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continuously monitored. Objects exiting or joining a cluster and cluster expiry or merg-

ing are all modeled as future events, and then processed when they actually occur. The

event-based approach enables sampling independence—computation occurs when events

occur, not at sampling times. This design also enables online processing: as new trajectory

samples arrive, events can be derived and processed in due course. There is no need to re-

compute the entire result. Online trajectory simplification is applied when new data arrive

in order to smoothen the trajectories and thus reduce the total number of events.

Continuous 

Clustering Module

History Handler 

Module

GroupDiscovery framework

Trajectories

Figure 4.2: The Sampling Independent Framework

The second module serves to handle efficiently the history of each existing group to

find groups to return to the user. This module inherently has high time complexity because

it potentially has to consider exponential numbers of subgroups. To improve its efficiency,

we avoid materializing every subgroup by exploiting the relations between subgroups. The

main idea is that a group may have many subgroups that may contain a subset of its objects

or may exist for a sub-interval of its time interval. Such dominated subgroups do not offer

new information and are pruned early.

Next, two groups may share too many common members. We propose a similarity

measure for groups and return only a set of groups such that no two groups are more

similar than a given similarity threshold.

Further, we score groups according to their cardinality and duration and then return the

top-k groups. To enable this functionality, the framework maintains a candidate result list

and a variable minScore that is the lowest score among all the candidates found so far.

For each group to be scored, the framework first computes an upper bound on the score of

the group for its entire lifespan. The group is pruned if the upper bound is smaller than
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minScore. Otherwise, possible groups with higher scores in the cluster are inserted into

the candidate list, and minScore is updated.

In Section 4.2, we formalize the notions covered above.

The main contributions of this chapter are as follows.

• We propose a novel definition of group that we believe enables the computation of

interesting patterns.

• We propose a corresponding, efficient group discovery framework that is the first to

satisfy the four requirements listed in Table 4.1.

• We conducted an extensive empirical study on both real and synthetic datasets to

evaluate the proposed framework. Our results offer insight into the effectiveness and

efficiency of the proposed framework.

The remainder of the chapter is organized as follows. Preliminaries and Definitions

are covered in Section 4.2. We describe the GroupDiscovery framework in Section 4.3.

Section 4.4 reports on the empirical evaluation of the GroupDiscovery framework. Finally,

Section 4.5 summarizes this chapter.

4.2 Preliminaries and Definitions

4.2.1 Definitions

We proceed to define the group query along with supporting definitions. The notations used

in this section and throughout the chapter are summarized in Table 4.2.

As we aim to return interesting groups to the user, we introduce a scoring function for

groups.

Definition 6 (Scoring Function) Let C be a set of Nc objects that travel together during a

time interval [ts, te]. The score of C is:

Score(C) = αNc + (1− α)ρ ,
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N Total Number of trajectories
Nc Cardinality of a group
δ Tolerance for line simplification
τ Duration threshold
e Distance threshold in density-based clustering
m Cardinality threshold in density-based clustering
ρ Duration of a cluster
θ Similarity threshold

Table 4.2: Symbols Summary
where α (0 ≤ α ≤ 1) is a user-provided parameter and ρ = (te − ts).

The idea underlying the definition is that larger and longer groups are more interesting

than smaller and shorter groups. Parameter α allows us to balance cardinality and duration.

Next, we define a domination relation that allows us to prune groups that do not con-

tribute any new information. Some other related work, e.g., [34] and [61], has similar

notions, either explicitly or implicitly.

Definition 7 (Domination)

Given two groups C1 and C2, we say C1 dominates C2, denoted by C1 ≻ C2, if:

1. C1 is a superset of C2, and

2. the time interval of C1 contains that of C2.

Now we are ready to define the group query to be supported.

Definition 8 (Group Query) Given a trajectory collection TR, a distance threshold e, a

cardinality threshold m, a duration threshold τ , an integer k, and the scoring function

given above, the group query returns k groups of objects, so that each group

1. is a density-connected cluster with respect to e and m,

2. has a duration no shorter than τ ,

3. is not dominated by any other group, and

4. has a top-k score.
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4.3 Group Discovery Framework

In this section, we describe the GroupDiscovery framework and its two functional modules

in detail. This online algorithm (Algorithm 9) first initializes the variable U to store the

unclassified objects, H to store the history of the clusters, and R to store the result. It

then receives new trajectory data at each iteration, and calls Normal Opening Window

(NOPW) algorithm [64] to simplify the trajectories. Recall that the NOPW algorithm is

an online algorithm that employs a sliding window to simplify trajectories. Please refer to

related works in chapter 2 for a detailed description of how NOPW works. These simplified

trajectories are then processed by the Continuous Cluster and History Handling modules to

find groups.

Algorithm 9: DiscoverGroups(e,m, τ, k, δ, θ)
1 U ← ∅; H ← ∅; R← ∅;
2 while true do
3 TR ← receiveNewTR();
4 NOPW(TR, δ);
5 FindContinuousCluster(TR, e,m, τ, k, δ, U,H) ;
6 S ← RevHist(H);
7 CheckCandidates(S,R, θ, k);

4.3.1 Continuous Clustering Module
4.3.1.1 Overview

Given a trajectory collection TR, we aim to discover groups of objects that travel together.

A trajectory represents the movement history of an object for some time interval. As all

trajectories are not defined for the same time interval, TR represents the movement of a

dynamic set O of objects. The objects in O at time t can be retrieved by the function

getObjects(TR, t).

The overall approach is to maintain a heap eventQ that contains events that affect the

clustering of the moving objects. Each event is associated with the time when it occurs,

and the heap is ordered on these times. Events are inserted into eventQ that correspond to
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the object movements given by the trajectories in TR. The module then processes events in

eventQ in time order, causing additional events to be entered into eventQ and eventually

processed.

An event has the format (t, obj , cid1, cid2, type), where t is the time when the event

occurs, obj is an object, cid1 and cid2 are cluster identifiers, and type is the event type,

which is one of the following.

• APPEAR: an object appears in the system. Four mutually exclusive cases can hap-

pen: The object may stay by itself being unclassified; it may join an existing cluster,

thus causing a JOIN event to be created; it may cause multiple clusters to merge, thus

causing one or more MERGE events to be created; or it may form a new cluster with

other objects.

• DISAPPEAR: an object disappears from the system. As for object appearance, there

are four cases: No clusters are affected; a cluster loses a member, causing an EXIT

event to be created; a cluster splits into multiple smaller clusters; or a cluster expires,

which results in the creation of an EXPIRE event.

• UPDATE: an object updates its velocity, which affects the predicted exit time of

object(s), which in turn possibly affects the merging or expiry of clusters.

• EXIT: an object exits from a cluster. The exit event can cause a cluster to expire, e.g.,

because it has fewer than m members, in which case an EXPIRE event is inserted

into eventQ .

• JOIN: an object joins a cluster.

• EXPIRE: a cluster expires. When this occurs, the former cluster members may be in

no new cluster, rendering them unclassified.

• MERGE: multiple (at least two) clusters merge.
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• SPLIT: one cluster splits into multiple clusters.

Among these events, the first three events, APPEAR, DISAPPEAR, and UPDATE, can be

read directly from the data stream, and thus are called primary events. In contrast, EXIT,

JOIN, EXPIRE, MERGE, and SPLIT are secondary events.

Each object o in the system has a data structure (oid , p⃗, v⃗, cid , label), where oid is

its identifier, p⃗ and v⃗ are its current location and velocity, and cid is the identifier of the

cluster o currently belongs to, if any. An object o initially has o.cid = 0, indicating that

it is unclassified. The field label represents the type of the object in the cluster. In DB-

Scan [24], clusters contain two types of objects. A core object has at least MinPts objects

in its e-neighborhood, where MinPts is a user-specified parameter that we set to m. Any

other object is a border object. A core object has (o.label = CORE); a border object has

(o.label = BORDER).

The top-level algorithm keeps the currently unclassified objects in a set U , and attempts

to cluster them each time an event occurs. In addition to eventQ , we employ a mapping

getMemByCid from cluster identifiers to the sets of objects in a cluster.

Upon termination of the algorithm, the histories of clusters are recorded in a data struc-

ture that is passed on to the history handler module for computation of domination relations

and thus the true groups.

4.3.1.2 Event Processing

Algorithm 10 contains the pseudo-code of FindContinuousCluster, the top-level continuous

clustering algorithm. It takes the following arguments: a trajectory collection TR, the four

parameters e, m, τ , and k from the group query definition, δ for RangeQuery, and U and

H for storing the unclassified objects and the cluster history, respectively.

The algorithm initially scans TR and inserts APPEAR, DISAPPEAR, and UPDATE

events into eventQ . The algorithm then repeatedly pops and processes events. Given an

event (t, o,⊥,⊥,APPEAR), o is inserted into U . Given an event (t, o,⊥,⊥,DISAPPEAR),
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Algorithm 10: FindContinuousCluster(TR, e,m, τ, k, δ, U,H)
1 insert new primary events into eventQ ;
2 while eventQ is not empty do
3 evt← eventQ.pop;
4 O ← getObjects(TR, evt .t);
5 C ← getMemByCid(evt .cid);
6 if evt .type = APPEAR then U.add(evt .obj );
7 else if evt .type = DISAPPEAR then
8 HandleObjDisapp(evt , O,H);
9 else if evt .type = UPDATE then

10 HandleObjUpdate(evt , O,H);
11 else if evt .type = EXIT then
12 o← evt .obj ; C.delete(o); o.cid ← 0;
13 U.add(o); update H;
14 if o.label = BORDER then CheckCore(o, C);
15 if o.label = CORE then
16 L← o.getNeighbors();
17 foreach o′ ∈ L do
18 if o′.label = BORDER then
19 L′ ← o′.getNeighbors();
20 if L′ has no core objects then
21 C.delete(o′); o′.cid ← 0; U.add(o′);
22 if (|C| < m) ∨ (C has no core objects) then
23 insert (evt .t , o, C.cid ,⊥,EXPIRE) into eventQ ;
24 else if evt .type = JOIN then
25 o← evt .obj ; o.cid ← C.cid ;
26 C.add(o); U.delete(o);
27 update H;
28 if o.label = BORDER then
29 t← getExitTime(o, C);
30 insert (t, o, C,EXIT) into eventQ ;
31 else if evt .type = EXPIRE then
32 mark members in C unclassified;
33 update H;
34 else if evt .type = MERGE then
35 HandleMerge(evt , O,H); update H;
36 else if evt .type = SPLIT then
37 HandleSplit(evt , O,H); update H;
38 Insert(U,O, e,m, τ, δ,H);
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o is removed from the system. If o is a member of the cluster C, o is also removed from C

which then expires if it has less than m members.

Given an event (t, o,⊥,⊥,UPDATE), if o is a border object of the cluster C iden-

tified by cid , o’s exit time is re-computed and updated in eventQ . If o is a core object,

the algorithm re-computes the exit times of the border objects in o’s e-neighborhood and

the expected split time, and updates the eventQ . Lastly, if o is a unclassified object, the

procedure Insert is eventually called to cluster o.

Given an event (t, o, cid ,⊥,EXIT), the object o is removed from the cluster identified

by cid and marked as unclassified. If o is a border object, CheckCore procedure is called

to check whether o’s core object still has enough neighbors. If o is a core object, o’s border

neighbors that are not density-connected by any other core objects are also removed. The

cluster identified by cid expires if it has fewer than m members after the event. Given an

event (t, o, cid ,⊥,EXPIRE), all objects in the identified cluster C are marked as unclassi-

fied and inserted into U .

Given an event (t, o, cid1, cid2,MERGE), the two clusters identified by cid1 and cid2

are merged. The cid field of the members of the new cluster is updated.

Given an event (t, o, cid ,⊥, SPLIT), the cluster identified by cid splits into two clus-

ters. Depending on their specific connectedness to core members, the members in C have

their cid field updated. In Algorithm 10, we provide pseudo-code for APPEAR, EXIT

and JOIN events.

The Insert procedure used at the end of Algorithm 10 inserts an unclassified object into

an existing cluster if the object moves into the cluster, and detects any new clusters in U that

contains the set of unclassified objects. The detailed pseudo-code of the Insert procedure

is shown in Algorithm 11. It first initializes a variable G that records already classified

objects that are in the e-neighborhood of any object in U . Variable G is populated by

calling a RangeQuery procedure for each object o in U , that returns all objects in O that are

in the e-neighborhood of o (lines 2–6).
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Algorithm 11: Insert(U,O, e,m, τ, δ,H)
1 G← ∅;
2 foreach o ∈ U do
3 L← RangeQuery(o, e+ 2δ,O);
4 foreach o′ ∈ L do
5 if o′.cid > 0 then
6 G.add(o′);

7 foreach o ∈ G do
8 C ← getMemByCid(o.cid);
9 L← RangeQuery(o, e+ 2δ, O);

10 if |L| ≥ m then
11 L.delete(o); o.label ← CORE;
12 ExpandCluster (O, o, C, L, e+ 2δ,m, U,H);
13 if |U | ≥ m then
14 CS ← DBScan(U, e+ 2δ,m);
15 foreach C ∈ CS do
16 foreach o ∈ C do
17 if o.label = BORDER then
18 t← getExitTime(o, C);
19 insert (t, o.oid , C.cid ,EXIT) into eventQ ;
20 update H;

In lines 7–11, if the RangeQuery result for an object o ∈ G contains at least m ob-

jects, o’s label is updated to CORE, and every unclassified object in o’s neighborhood is

removed from U and inserted into the cluster that o belongs to. The procedure Expand-

Cluster (line 12) recursively expands a cluster by exploring the new core object. After

every object in G is considered, if U still has at least m objects, the procedure clusters the

remaining objects in U (lines 13–19). It uses a variable CS that contains a set of clusters.

First, it clusters all the moving objects as of the current time. Second, it calculates the exit

time for each border object. These objects and their time to exit are inserted into eventQ

as events.

The ExpandCluster procedure expands a cluster by recursively exploring the new core

object of the cluster. The detailed pseudo-code is shown in Algorithm 12. In the parameters,

crObj is a core object of cluster C and L is crObj ’s current neighbors. The global variable

crTime records the current time. For each o′ ∈ L, if o′ is unclassified, a JOIN event is
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detected (line 3). The global variable crTime records current time. Then the procedure

retrieves o′ neighbors in line 4. If o′ has at least m neighbors, o′ is also a core object, and

thus ExpandCluster is called recursively (lines 5–7). If o′ has fewer than m neighbors (it

Algorithm 12: ExpandCluster(O, crObj , C, L, e,m, U,H)
1 foreach o′ ∈ L do
2 if o′.cid = 0 then
3 insert (crT ime, o′,C .cid , JOIN) into eventQ ;
4 L′ ← RangeQuery(o′, e, O);
5 if |L′| ≥ m then
6 o′.label ← CORE;
7 ExpandCluster(O, crObj , C, L, e,m, U,H);
8 else
9 o′.label ← BORDER;

10 t← getExitTime(o ′, C);
11 insert (t, o′,C .cid ,EXIT) into eventQ ;
12 else if o′.cid ̸= crObj .cid ∧ o′.label = CORE then
13 insert (crT ime, o′,C .cid ,MERGE) into eventQ ;
14 update H;

is a border object), the procedure calculates the exit time of o′. An EXIT event is created

for o′ and inserted into eventQ (lines 8–11).

When o′ is a core object from another cluster, cluster C is merged with the cluster

identified by o ′.cid . A MERGE event is created and inserted into eventQ (line 13).

4.3.1.3 Detecting Cluster Expiry and Split Events

The exit of a single object can cause a cluster to expire. We show how to detect when

cluster expiry occurs, so that repeated checking is avoided.

In DBScan, an object o is directly density-reachable from an object o′ if o is within

o′’s e-neighborhood, and o′ is surrounded by sufficiently many objects. Next, o is called

density-reachable from o′ if there is a sequence of objects o1, o2, · · · , on with o1 = o′ and

on = o such that oi+1 is directly density-reachable from oi. Then an object o is density-

connected to an object o′ with respect to e and m if there is an object o′′ such that both o

and o′ are density-reachable from o′′ with respect to e and m.
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Since a group is required by definition to have at least m objects, and at least one object

in the group is a core object by the definition of density-connectedness, core objects should

have at least (m− 1) neighbors within their e-neighborhood, whereas border objects have

fewer neighbor objects.

The removal of a border object o from a cluster C causes C to expire if only (m −

1) members remain. The removal of a core object o from C is more complicated. The

neighbors of o may no longer be connected after the removal of o. Thus, we have to check

(1) the possibility to remove o’s neighbors and (2) the cardinality of C to determine whether

or not C expires.

Two core objects may travel apart from each other, causing the cluster to split. The

expected time of such each can also be calculated in a similar way.

4.3.1.4 Object Exit Time and Join

Once a cluster has formed, the getExitTime procedure computes the exit time for each

border object in the cluster. It starts by identifying the boarder objects and the core ob-

jects. Next, it models the movement of an object o in R2 as a linear function of time:

o = (xtref , ytref , vx, vy), where (xtref , ytref ) is the position of o at reference time tref and

(vx, vy) is its latest reported velocity. Then it computes the exit time for a boarder object by

calculating the time when the distance between boarder object and its core object is e [7].

After a boarder object exits its cluster, its core object has one less neighbor. When the

core object has less than m− 1 neighbors, this core object becomes a boarder object.

We follow a passive strategy for detecting join events, which is carried out by the Insert

procedure at the end of each iteration.

4.3.1.5 Distance Bounds

As explained in Section 2.3, trajectory simplification can improve the efficiency of many

algorithms that operate on the trajectories by removing relatively unimportant data points.
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With trajectory simplification, in order not to miss clusters, a relationship has to be es-

tablished between the simplified and original trajectories. In the Insert procedures using

RangeQuery, the following lemma is applied.

Lemma 4.3.1 Let tri, trj be the trajectories of oi and let oj , and let tr′i, tr
′
j be their tra-

jectories after trajectory simplification with the sliding window algorithm explained in

trajectory simplification in Section 2.3. Let tri(t) be the position of oi at time t. Then

D(tr′i(t), tr
′
j(t)) > 2δ + e⇒ D(tri(t), trj(t)) > e.

Proof 4.3.1 To prove the lemma by contradiction, assume the inequality D(tri(t), trj(t)) ≤

e holds. After simplification, tr′i(t) is either the position of a sampling point or a position

on a line segment. By definition of the sliding window algorithm, in the first case, tr′i(t) =

tri(t), and in the second case, D(tr′i(t), tri(t)) ≤ δ. In both cases, D(tr′i(t), tri(t)) ≤ δ.

Similarly, we have D(tr′j(t), trj(t)) ≤ δ. According to the triangle inequality, we have

D(tr′i(t), tr
′
j(t)) ≤ D(tr′i(t), tri(t)) +D(tr′j(t), trj(t)) +D(tri(t), trj(t)) ≤ 2δ + e. This

contradicts the assumption that D(tr′i(t), tr
′
j(t)) > 2δ + e.

According to Lemma 4.3.1, the range search distance 2δ+e used in the GroupDiscovery

framework is safe.

4.3.2 A Running Example

Figure 4.3 shows the trajectories of six moving objects, o1, . . . , o6 being sampled at every

time point from time t0 to time t9. It is assumed that the objects move beyond the 10 time

units shown. We use o1, . . . , o6 as the identifiers of the objects. APPEAR events are solid

squares, UPDATE events are solid dots, and DISAPPEAR events are crosses. In contrast,

hollow and square points mean that there are no primary events. For instance, object o4 has

an APPEAR event, an UPDATE event, and a DISAPPEAR event.

Let the group query parameters m (cardinality) and τ (duration) each be 3. Parameter

e (clustering distance threshold) is as shown in the figure, and parameter k is not needed.

FindContinuousCluster runs as follows.
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Figure 4.3: Trajectories of Six Moving Objects

As the trajectory data stream in, at t1, events (t1, o1,⊥,⊥,APPEAR) and (t1, o3,⊥,⊥

,APPEAR) are handled, resulting in U = {o1, o3} (unclassified objects).

At time t2, 5 events are handled. Objects o2, o4, and o5 appear and are added to

set U , and objects o1 and o3 update their velocities. Then Insert finds a cluster C1 =

{o1, o2, o3, o4} where o3 and o4 are core objects, and o1 and o2 are border objects. Suppose

both o1 and o2 are calculated to exit at t10. Then exit events for border objects are in-

serted into eventQ : (t10, o1, C1,⊥,EXIT) and (t10, o2, C1,⊥,EXIT). After this iteration,

U = {o5}.

No events occur at time t3. At t4, o2 and o3 update their velocities. A join event for o5

is detected and handled. The result is that C1 = {o1, o2, o3, o4, o5}, where o2 is promoted

to a core object. Thus, the exit event for o2 in eventQ is deleted. Finally, an exit event is

created for o5, (t7, o5, C1,⊥,EXIT), as o5 is a border object.

At t5, objects o2, o3, o4, and o5 update their velocities. It is detected that o3 becomes a

border object and that o5 becomes a core object. The exit event of o5 in eventQ is deleted.

A new exit event (t6, o3, C1,⊥,EXIT) is created and inserted into eventQ .

At t6, o6 appears and is added to U . Core object o2 updates its velocity, causing border

objects to update their expected exit time and to update the eventQ. Object o3 exits C1, and

o5 becomes a border object. An exit event is created for o5: (t7, o5, C1,⊥,EXIT). Now

U = {o3, o6} and C1 = {o1, o2, o4, o5}.
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At time t7, o3 disappears and o1 updates its velocity. After the exit of o5, o2 downgrades

to a border object, triggering the expiry of C1 because no core objects exist. An expire

event (t7, o5, C1,⊥,EXPIRE) is created and inserted into eventQ. It is then immediately

handled yielding U = {o1, o2, o4, o5, o6}. Insert then finds a new cluster C2 = {o1, o4, o6}.

New exit events are created for border objects o4 and o6. Now U = {o2, o5}

At time t8, o4 disappears, resulting in the expiry of C2 because |C2| < m. Now U =

{o1, o2, o5, o6}.

4.3.3 History Handler Module

The GroupDiscovery framework needs to deal with potentially large numbers of groups. In

our first approach, the history handler module manages the groups using a trie. However,

we observe that not all subgroups need to be materialized. Based on this, the history handler

module can employ a hash structure that maps clusterIDs to lists of cluster statuses (called

cluster histories). We call the first method GroupDiscovery (GD) and the improved method

GroupDiscoveryPlus(GD+).

4.3.3.1 Group Discovery

In this approach, the history handler module employs a modified trie to represent subgroups

during group discovery. A trie, or prefix tree, is an ordered tree data structure where each

vertex represents a string (a word or a prefix). The descendants of a vertex have the string

associated with that node as a common prefix; the root is associated with the empty string.

We represent a subgroup as the string that contains the identifiers of its member objects

in sorted order. Each path in the trie structure represents a subgroup, and each leaf contains

the subgroup members, and the subgroup’s start and end time for computing the subgroup’s

score.

In our running example in Section 4.3.2, cluster C1 = {o1, o2, o3, o4} is formed at time

t2. Its subgroups are shown in Figure 4.4 with m = 3. The starting time of all subgroups is

t2. The ending time (te) is undefined initially, but is set to the time when a cluster expires.
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Figure 4.4: Trie for Example Cluster C1 at Time t2

When an object joins a cluster, new subgroups containing the object are created, and

new paths are inserted into the trie. In our running example, object o5 joins C1 at t4. The

trie of the resulting cluster is presented in Figure 4.5. The starting time of each new path

with object o5 is set to t4.
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Figure 4.5: Trie After Insertion of o5

When a border object exits a cluster, every path in the trie representing a subgroup that

contains this object should be removed. Before the removal, the algorithm follows these

paths, retrieve the leaf nodes, and sets the end times (te) in these leaf nodes to be current

time. These leaf nodes represent subgroups that are then scored and returned. In our

running example, when o3 (a border object) exits C1 at time t6, the resulting trie structure

is presented in Figure 4.6(a).

If an exiting object is a core object, its exit can cause other objects to also exit the

cluster. Then every path containing any exit object is removed from the trie. Suppose

object o2 is a core object of a cluster C1 = {o1, o2, o4, o5, o6} which starts from time t7. Its

exiting causes the exit of o5. The resulting cluster is then {o1, o4, o6}. The corresponding

trie is shown in Figure 4.6(b).
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When two clusters are merged, it is straightforward to update the trie with new paths.

No paths are removed because objects in existing subgroups still travel together. However,

updating the trie when a cluster expires is complicated because some objects from the old

cluster may form a new cluster after re-clustering.
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(b) After o2 and o5 Exit

Figure 4.6: Tries after Removals

Suppose C1 = {o1, o2, o3, o4} expires and that C2 = {o1, o3, o4, o7} and C3 = {o2, o5, o6}

result from re-clustering. Although o2 is in a new cluster, o1, o3, and o4 still travel together.

This fact can be found by intersecting C1 and C2. In general, when a cluster expires, all

its subgroups are enumerated. It is then checked for each subgroup whether its members

belong to the same cluster after re-clustering. If not, the path representing the subgroup is

removed. After removing a path, its leaf node is then checked by the procedure CheckCan-

didate (Algorithm 14).

4.3.3.2 Group Discovery Plus

In the naive approach, many subgroups are materialized and inserted into the trie. Although

search for subgroups is efficient, there are still an exponential number of subgroups. Thus,

the trie becomes a bottleneck for large clusters.

The following simple, yet important, observation contributes to solving the exponential

subgroup problem.

Lemma 4.3.2 A subgroup that forms no earlier and expires no later than does a superset

group is dominated by that superset group.
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Proof 4.3.2 Let C2 be a subgroup of C1 with a lifetime contained in that of C1. Then

|C1| ≥ |C2|, C1.ts ≤ C2.ts and C2.te ≤ C1.te. Thus, C1 dominates C2.

Thus, only subgroups that are formed earlier or expire later than their superset clusters

need to be considered. The GroupDiscoveryPlus (GD+) algorithm only maintains such

subgroups.

GD+ uses a hash table H that maps cluster identifiers to the history statuses of the

clusters. A history status is similar to a leaf in the trie and contains the object identifiers

of the members in the cluster together with a time interval. Update occurs only to the

most recent information, called the active status. Once an event happens the active status

is updated, and the score is computed. Then a new active status is appended to the list.

In case a cluster expires, GD+ goes through the history of the cluster and generates each

possible candidate.

In our running example, we have a cluster C1= {o1, o2, o3, o4} at t2, and m=3. GD+

inserts ⟨C1, ⟨{o1, o2, o3, o4}, t2, nil⟩⟩ into H . At t4, o5 joins C1, which becomes C1 =

{o1, o2, o3, o4, o5}. GD+ then sets the end time in the active entry to t3 and appends a new

entry ⟨{o1, o2, o3, o4, o5}, t4, nil⟩ to the history for C1 in H .

At t6, o3 leaves C1. At t7, the exits of o2 and o5 cause C1 to expire. Then C2 =

{o1, o4, o6} forms. At t9, cluster C2 also expires. At this time, the entries in H are

{⟨C1, ⟨{o1, o2, o3, o4}, t2, t3⟩, ⟨{o1, o2, o3, o4, o5}, t4, t5⟩, ⟨{o1, o2, o4, o5}, t6, t6⟩⟩,

⟨C2, ⟨{o1, o4, o6}, t7, t8⟩⟩}

GD+ accesses the entry for each cid in reverse order and finds (1) that o1, o2, and

o4 travel together from t2 to t6, (1) that o1, o2, o3, and o4 travel together from t2 to

t5, (2) that o1, o2, o3, o4, and o5 travel together from t4 to t5, (3) that o1, o2, o4, and

o5 travel together from t4 to t6, and (4) that o1, o4, and o6 travel together from t7 to

t8. So the final entries in H are {⟨C1, ⟨{o1, o2, o3, o4}, t2, t5⟩, ⟨{o1, o2, o3, o4, o5}, t4, t5⟩,

⟨{o1, o2, o4, o5}, t4, t6⟩, ⟨{o1, o2, o4}, t2, t6⟩⟩ ⟨C2, ⟨{o1, o4, o6}, t7, t8⟩⟩}.
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The RevHist algorithm that manages the history statuses of clusters is shown in Algo-

rithm 13. Recall that the history statuses of a cluster is a list of items with members and

their starting and ending times.

Algorithm 13: RevHist(H)
1 for i← H.size()− 1; i ≥ 0; i−− do
2 curr ← H.get(i);
3 for j ← i− 1; j ≥ 0; j −− do
4 prev ← H.get(j);
5 if curr .ts = prev .te + 1 then
6 mem ← curr ∩ prev ;
7 if mem = curr then curr .ts ← prev .ts;
8 else if mem = prev then prev .te ← curr .te;
9 else if mem.size() ≥ m then

10 create a new entry e with members mem;
11 e.ts ← prev .ts;
12 e.ts ← curr .te;
13 curr ← e;
14 H.add(e);

The procedure starts from the last item (curr ) of the list, and compares the previous

items (prev ) in reverse order. If curr is a subset of prev , the current subgroup actually

travels together from the previous item’s start time. If curr is a superset of prev , the pre-

vious subgroup travels together until the current item’s end time. Lastly, if the intersection

between curr and prev has at least m objects, a new entry is created with the previous

item’s start time and the current item’s end time. This new entry is then inserted into the

list.

4.3.4 Returning Meaningful Results

The GD and GD+ algorithms may return groups that are similar to each other. Similar

groups brings little new knowledge and promises limited insight into the data. In order to

improve the quality of results, we propose a similarity measure for groups.
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Definition 9 We define the similarity of two groups C1 and C2 as

Sim(C1, C2) =
∥C1 ∩ C2∥
∥C1 ∪ C2∥

We then require that result groups are more diverse than a given threshold θ. The

following statement should then be true. ∀C1, C2 ∈ R(C1 ̸= C2 ⇒ (Sim(C1, C2) ≤ θ)).

The similarity checking is carried out by the algorithm 14.

The CheckCandidate procedure takes a candidate group collection S, the top-k set R,

a threshold θ, and k as parameters. The groups with top-k scores are to be inserted into R,

and R.minScore = minC∈R C.score, i.e., the smallest top-k score. The procedure iterates

over every candidate group C, and validates that the duration of C exceeds τ . The variable

dominated captures whether C is dominated by some entry in R. The variable updated

captures whether R has been updated. The variable Csim refers to a similar entry in R, if

any, and is set to null initially. For each entry C ′ in the candidate list R, if C ′ dominates

C, then dominated is set to true. C cannot be in the result and the program terminates.

Otherwise, if C dominates C ′, C ′ is removed from R, as C ′ cannot be in the result. If C ′

and C are similar, then Csim refers to C ′. If C is neither dominated by nor similar to any

entry, C is inserted into R, and updated is set to true. Otherwise, the algorithm includes

into R the group with the higher score between C and Csim, and it excludes the other group.

Updated is set to true if R is updated. In the end, if R is updated and its size exceeds k, the

algorithm picks the top-k groups in R. R.minScore is updated accordingly.

4.3.5 Avoiding RevHist Calls

Recall that the group query returns k results that score the highest and that a cluster gener-

ates many groups or subgroups during its entire life. We can save actual-score computations

(invocations of the RevHist procedure) by computing instead upper bounds on the scores

of groups. If the upper bound score for a cluster is smaller than the lowest actual score of

the k’th candidate group, the groups generated by the cluster cannot be in the result.
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Algorithm 14: CheckCandidate(S,R, θ, k)
1 foreach C ∈ S do
2 if C.te − C.ts ≥ τ then
3 dominated← false;
4 updated← false; Csim ← null;
5 foreach C ′ ∈ R do
6 if C ′ ≺ C then dominated← true; break;
7 else if C ≺ C ′ then R.delete(C ′);
8 if Sim(C ′, C) > θ then Csim ← C ′ ;
9 if ¬ dominated then

10 if Csim = null then
11 R.add(C);
12 updated← true;
13 else if Score(C) > Score(Csim) then
14 R.delete(Csim);
15 R.add(C);
16 updated← true;
17 if updated then
18 if R.size() > k then
19 R← R.topK ();
20 update R.minScore;

Here, we develop an upper bound score of a cluster. Suppose that the candidate list

initially maintains k candidates. When a cluster C expires, we compare the upper bound

of C with R.minScore. The RevHist procedure is invoked only if the upper bound of C

exceeds R.minScore.

The cardinality of a cluster C can change over time. We calculate the upper bound

score of C by using C’s maximal cardinality.

Definition 10 Let Nmax denote the maximal cardinality of C during its lifetime, the dura-

tion of which is ρC . The upper bound score of C, ScoreUB(C), is defined as:

ScoreUB(C) = αNmax + (1− α)ρC

The upper bound score of C is never smaller than the actual score of any group of C.

Lemma 4.3.3 Let ScoreUB(C) be as defined as above and let Ci be a group generated by
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C. We have:

Score(Ci) ≤ ScoreUB(C)

Proof 4.3.3 Because Ci is a group of C, we have |Ci| ≤ Nmax . The lifetime of Ci also

cannot exceed the lifetime of C, so ρCi ≤ ρC . Thus, Score(Ci) = αNCi + (1 − α)ρCi ≤

αNmax + (1− α)ρC = ScoreUB(C).

4.3.6 Complexity Analysis

In this section, we characterize the running time of the GD and GD+ algorithms.

Lemma 4.3.4 Let TR be a trajectory collection of N trajectories, let Q be the total num-

ber of primary events in TR, and let M be the total number of events that change the status

of any cluster, i.e., exit, join, expire, and merge events. The running time of FindContinu-

ousCluster is O(Q +MNlgN ).

Proof 4.3.4 We use a Fibonacci-heap to implement eventQ , where an insertion takes O(1)

time. We also assume that RangeQuery has time complexity O(lgN ). FindContinuousClus-

ter first inserts primary events into eventQ , taking O(Q) time. For each event that changes

the status of clusters, FindContinuousCluster calls the Insert procedure. In Insert, U and

G are mutually exclusive sets that sum up to N . Each object in either U or G calls Range-

Query at most once, so the two loops in Insert take O(NlgN) time. Lastly, the Insert

procedure calls DBScan, which has complexity O(NlgN ). So the Insert procedure has time

complexity O(NlgN ). The total complexity of calling Insert for M events is O(MNlgN ).

The time complexity of FindContinuousCluster is then O(Q +MNlgN ).

Next, we consider the time complexity of handling subgroups.

Lemma 4.3.5 Given P clusters, the time complexity for the History Handler module in

GD is O(M
∑P

i=1 2
Ni) where

∑P
i=1 Ni = N and 0 ≤ P ≤ N

m
.
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Proof 4.3.5 In the History Handler module, every operation needed when the statuses of

clusters are updated is performed on the trie structure. If the objects do not form clusters,

there is no need to update the trie, so the worst case is that every moving object is a member

of a cluster. Let the N moving objects form P clusters (0 ≤ P ≤ N
m

) at each event time.

The worst case is that these clusters have to be completely re-built at each event time. Let

the cardinalities of these clusters be N1, N2, · · · , NP (
∑P

i=1 Ni = N ). For a cluster Ci, the

number of combinations is:(
Ni

m

)
+

(
Ni

m+ 1

)
+ · · ·+

(
Ni

Ni

)
≤ 2Ni

where m is the cardinality threshold. Then the total number of combinations for all clusters

is
∑P

i=1 2
Ni . Again, let M be the number of events that change the status of clusters, the

complexity is O(M
∑P

i=1 2
Ni).

Lemma 4.3.6 Given P clusters, the time complexity for the History Handler module in

GD+ is O(PM 2).

Proof 4.3.6 We consider again the worst case where every object is in a cluster and let the

N moving objects form P clusters at each event time. The worst case is that for each event

time, every cluster has to create a new snapshot at the end of its history list. In total, each

cluster has to create M snapshots. Maintaining the data structures of these snapshots takes

linear time. The input size for RevHist is P clusters, each with a list of snapshots of size

M . For each cluster, every snapshot may have to intersect with the snapshots in front of

it, which takes time O(M2) in the worst case. Therefore, the complexity of going through

every cluster is O(PM 2). So the complexity of the History Handler module in GD+ is

O(PM + PM 2) = O(PM 2).

Theorem 4.3.1 The time complexity for GD is O(
∑N

i=1 n
2
i +Q+MNlgN +M

∑P
i=1 2

Ni),

whereas the time complexity for GD+ is O(
∑N

i=1 n
2
i + Q +MNlgN + PM 2), where ni is

the number of data points in the ith trajectory.
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Proof 4.3.7 The time complexity of the framework is the total of NOPW and its two func-

tional modules. The time complexity of NOPW is O(
∑N

i=1 n
2
i ). From the lemmas above,

Continuous Clustering in either GD or GD+ has complexity O(Q +MNlgN ). In GD and

GD+, the History Handler Module has complexity O(M
∑P

i=1 2
Ni) and O(PM 2), respec-

tively. Therefore, GD has complexity O(
∑N

i=1 n
2
i +Q+MNlgN +M

∑P
i=1 2

Ni). GD+ has

complexity O(
∑N

i=1 n
2
i +Q+MNlgN + PM 2).

4.4 Experiments

The experiments were performed on a PC with Intel Xeon (2.66Ghz) quad-core and 8

GB of main memory running Linux (kernel version 2.6.32). Every instantiation of JVM

allocates 2 GB of virtual memory. All the algorithms were implemented in Java, including

the Convoy algorithm [47].

4.4.1 Data Sets and Parameter Settings

To evaluate the performance of the proposed framework, we use three real trajectory data

sets obtained from vehicles and animals, and one synthetic data set generated by a free

space trajectory data generator, the GSTD generator [77].

Figure 4.7 shows a subset of trajectories from these data sets.

(a) Car (b) Truck (c) Starkey

Figure 4.7: Visualization of Data Sets

Car This data set stems from the INFATI project [42], and has around 1.8 million data

points obtained from 20 different vehicles collected during a 4-month period. A new trajec-
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tory is created each time the duration between two consecutive data points from the same

vehicle exceeds 10 minutes. Also, to increase the probability of finding more objects that

travel together, we omit the dates from timestamps and consider only the time of day. After

pre-processing, 2,305 separate trajectories were obtained.

Truck This data set contains 111,930 data points, representing 267 trajectories from 50

trucks moving in the Athens, Greece region2. As in Car, the dates are removed. Each trip

of a truck is represented as one trajectory.

Starkey This data set contains 252 trajectories obtained from the Starkey Project3, a

radio-telemetry study of elk habitats (elk, mule deer, and cattle) in Northeastern Oregon

from 1993 to 1996. The collection has 268,216 data points. Each trajectory represents the

movement of a particular animal. In this data set, dates were taken into account because

each animal was tracked for a long period of time. Also, since the sampling varies substan-

tially across different animals, it was difficult to consistently partition the trajectory of an

animal into shorter trajectories.

GSTD We use the GSTD generator to generate data sets with varying numbers of trajec-

tories. The data points are assumed to be taken from the same day.

We partition Car, Truck, and GSTD into 144 parts, each containing data for 10 min,

and we partition Starkey into 146 parts, each containing data for 10 days. In the following

experiments, after GD and GD+ process one part, the next part is streamed in as new data,

resulting in new events being inserted into eventQ . Statistics on the data sets and default

settings for key parameters are shown in Table 4.3.

We report on both efficiency and effectiveness studies of our proposed framework, and

we compare with the Convoy algorithm [47]. In the studies of the effects of polyline sim-

plification, we use the existing online simplification technique, Normal Opening Window

(NOPW) [64]. For Car and Truck, the reduction rate is high even for small tolerances.

Table 4.4 shows the number of remaining data points when the tolerance δ ranges from 25

2http://www.rtreeportal.org
3http://www.fs.fed.us/pnw/starkey/data/tables/

86



Parameter Car Truck Starkey GSTD
N 2,305 267 252 5k – 25k
m 6 10 5 5
τ 3 min 3 min 5 days 10 min
e 400 m 10 m 1,000 m 30 m
δ 25 m 5 m 100 m 10 m
θ 0.5 0.5 0.5 0.5
α 0.5 0.5 0.5 0.5

Table 4.3: Settings for Experiments
to 200 in Car and Starkey and from 5 to 25 in Truck. The numbers of data points in GSTD

(both original and after simplification) are summarized in Table 4.5.

Tolerance Car Starkey
0 1,747,757 268,216

25 109,907 214,277
50 98,460 179,059

100 95,476 135,211
150 95,239 107,885
200 95,202 90,523

Tolerance Truck
0 111,930
5 76,557

10 64,677
15 57,157
20 51,881
25 47,766

Table 4.4: Simplification
Num Traj. Num Data Points After Simpl.

5k 210,130 186,265
10k 420,296 382,187
15k 630,268 697,271
20k 840,813 812,276
25k 1,050,876 972,138

Table 4.5: Synthetic Data Set

4.4.2 Effects of Varying m, e, and τ

We proceed to consider the number of groups returned when varying cardinality m, dis-

tance threshold e, and lifetime τ . We use Starkey with tolerance values being 0 (original),

50, 100, and 200 meters. Starkey0 thus serves as the ground truth. Figure 4.8 shows the

result.

As the cardinality threshold m increases, the number of discovered groups decreases

quickly with all simplification tolerances because more animals are needed to form clusters.

For Starkey0 and Starkey50, very few groups are discovered when m > 10, whereas for
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Starkey100 and Starkey200, a marked decrease is observed even before m = 10. It is

also observed that Starkey50 displays the pattern that is most similar to Starkey0, whereas

Starkey200 deviates the most from Starkey0. The four collections behave similarly when

varying distance threshold e—as e increases, groups are allowed to be less dense, and more

groups are found.

Finally, all collections exhibit a decreasing trend as parameter τ is increased.
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Figure 4.8: Effect of Varying m, e and τ on Groups Identified

4.4.3 Comparing GD and GD+

To observe the practical implication of the observation in Lemma 4.3.2, which is exploited

in GD+, we ran GD and GD+ on Car and counted the number of candidate groups. Fig-

ure 4.9(a) shows that the running time of GD is around 10 times that of GD+. Figure 4.9(b)

shows that the number of checked candidates by GD+ is reduced by up to three orders of

magnitude. Note that both figures have a log-scaled y-axis.

We were only able to run GD on Car as GD is rather inefficient because of frequent trie

updates when the memberships of clusters changes. On the other data sets, GD exhausted

the Java heap space. In conclusion, Lemma 4.3.2 greatly improves the performance of the

GroupDiscovery framework.

4.4.4 Effect of Varying θ

Figure 4.10(a) (y-axis logscaled) shows the effect of θ on the number of pruned candidate

groups. It is observed that with the increase of the θ value, fewer candidate groups are
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Figure 4.9: Comparing GD and GD+

pruned. When θ is small, more candidate groups having common objects are treated as

similar groups and are thus discarded by CheckCandidate. Among the three data sets, Car

has the least pruned similar candidate groups, whereas Starkey has the most pruned similar

candidate groups. Recall that for Car and Truck, we disregard the dates to increase the

number of similar trajectories in order to find groups, while in Starkey, we take dates into

account when tracking the same groups for three years. Thus, many more similar groups

are found in Starkey due to recurring patterns. In Truck, the routes that the vehicles follow

are more fixed than in Car, so more similar groups are found in Truck. Note that in both

Truck and Starkey, many similar candidate groups are found along the way even when θ is

large (0.8). Also note that no candidate groups are pruned when θ = 1.0 for the three data

sets.

Figure 4.10(b) shows that for each data set, the average similarity among the top-k

groups actually increases with the increase of θ, though the difference between any two

average similarity values is not significant in the same data set. It is also observed that the

average similarity value depends highly on the data set.

There is a tradeoff between the total score of the groups in the top-k list and the average

similarity. In order to have more diversity in the top-k list, we need to decrease the θ value,

which may result in pruning some high-scoring candidates in the top-k list because they

are similar to other group candidates in the top-k list. Figure 4.10(c) shows that with the
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increase of θ, the total score ratio (normalized by total value when θ = 1) increases, and

the average similarity among the top-k also increases, i.e., the diversity decreases.
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Figure 4.10: Effect of Varying θ

4.4.5 Effect of Varying α

We conduct experiments on the effect of α on the average cardinality and duration of the

results, which can be seen in Figure 4.11. The average duration of the result drops greatly

when α increases from 0 to 0.2, and then decreases slowly. In contrast, the average cardi-

nality of the result increases slowly from 5.53 to 6.28 with the increase of α.
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Figure 4.11: Average Cardinality and Duration vs. α

Recall the score definition in Section 4.2.1. Generally, small α values favor groups of

longer durations, whereas large α values favor groups of larger sizes.
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4.4.6 Effect of Varying k on Runtime

Figure 4.12(a) shows the effect on the runtime of GD+ of varying k when using Starkey.

The figure shows that when k is smaller than 15, the running time is relatively low. But

when k exceeds 15, the running time increases markedly. The reason is that many candi-

dates have already been pruned based on the upper bound on group scores and R.minScore.

Thus, the use of pruning based on the lower bound on group scores is effective, and GD+

is able to exploit small k values to obtain better performance.
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Figure 4.12: Top-k Results

4.4.7 Comparing Top-k Results

We next consider the effect of simplification on the top-k results produced on Starkey. We

compare the results obtained from the original and from default simplified data sets. We

apply the Precision@k ranking performance metric that measures the fraction of the number

of groups that are found in both original and simplified data sets vs. total number of found

groups (k). The metric Precision@k is widely used in information retrieval [63, 12].

We vary the cardinality threshold m from 5 to 15(Figure 4.12(b)) and the distance

threshold e from 500 to 2,000 meters (Figure 4.12(c)), while using the simplification tol-

erance values 50, 100, and 200. When varying m, the precision ranges from 61% to 89%.

The results are affected only little by simplification for m = 7 and m = 10. The highest

drop in precision occurs for m = 15 and δ = 200. Next, when varying e, the precision
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for different simplification tolerances ranges from 35% to 95%. The highest precisions are

obtained when δ = 50 and e = 2, 000.

It is also observed that varying the distance threshold affects the results more than

varying the cardinality threshold. The results from varying the distance threshold are also

less stable.
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Figure 4.13: Effect of Simplification Tolerance on Efficiency

4.4.8 Comparing GD+ and Convoy

We proceed to consider the runtime performance of the GD+ algorithm when varying the

polyline simplification δ, comparing with the Convoy algorithm [47]. To be fair, we run

both algorithms in an offline setting, because Convoy can only be applied offline. The

Douglas-Peucker (DP) polyline simplification algorithm [22] is used to simplify the trajec-

tories for both algorithms. The results are shown in Figure 4.13.

As δ increases, fewer data points remain in the trajectories, which in turn improves the

runtimes of both algorithms. The GroupDiscovery framework achieves speedups because

fewer events need to be handled. The situation for the Convoy algorithm is more complex.

This algorithm has a filter step that applies DBScan to line segments, and it has a refinement

step that applies DBScan to data points. In both steps, with fewer sampling points, a line

segment may have more time-overlapping line-segments for each clustering, but the total

number of clustering performed is reduced.

On Car and Starkey, GD+ outperforms Convoy for all tolerances. However, on Truck,

GD+ only runs faster than Convoy when the tolerance is high. When applied to Truck,
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GD+ finds much larger numbers of groups than does Convoy for small tolerance values,

as shown in Figure 4.14. When the tolerance value is high, although GD+ still finds more

groups, the filter step in Convoy takes more time because of larger numbers of candidates,

so GD+ outperforms Convoy.

We also studied the effect of simplification on the number of discovered groups in both

GD+ and Convoy. We first ran GD+ with δ = 0 on each data set to obtain the total numbers

of groups, which is treated as the base-line. Then we applied simplification with various

δ values and ran both GD+ and Convoy on the simplified data sets. For each tolerance

value, the groups obtained by the two algorithms are compared with each other and with

the baseline. It is observed that the groups returned by Convoy were consistently subsets

of those returned by GD+. Figure 4.14 shows the ratio of the number of groups found with

different tolerance values with the baseline.
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It is seen that more groups are found than with Convoy. As discussed before, GD+ is

able to find patterns that are missing by Convoy because of sampling independence. The

reduction in the number of sample points due to simplification affects both Convoy and

GD+. We observe that GD+ consistently finds increasing numbers of groups for all data

sets as the tolerance is increased. The number of convoys found also increases with the

tolerance for Truck and Starkey. The main reason is that the smoothing effect of trajectory

simplification results in clusters of longer duration. However, the number of convoys in Car

decreases for small tolerance values. This is mainly because with small tolerance values,

the number of sampled points decreases significantly, which affects the Convoy algorithm
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very much. For both Car and Truck, the numbers of groups and convoys found are very

sensitive to simplification because cars and trucks are constrained by a road network, and

the smoothing effect of simplification is significant.
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Next, we compare GD+ and Convoy on the synthetic data sets. Figure 4.15 shows the

result, when the number of trajectories varies from 5k to 25k. It is observed that GD+ con-

sistently outperforms Convoy. The performance gap between GD+ and Convoy increases

with the number of trajectories.

The filtering step in Convoy relies on time-domain partitioning and segment clustering.

With a larger number of trajectories, it is more likely to have many trajectories near each

other during certain time periods. Thus, the filtering step in Convoy is less effective, re-

sulting in more candidates to be checked by the time-consuming refining step. In contrary,

thanks to the event-driven design, GD+ always processes events when necessary. So it is

less affected by the increased number of trajectories.

4.5 Summary

In this chapter, we propose the concept of trajectory group that is different from related

notions in previous works and that enables the prioritized discovery of interesting mov-

ing object clusters from trajectories. We also propose the first framework that satisfies

the four requirements, sampling independence, online processing, density-connectedness,
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and supporting trajectory simplification. Techniques based on the continuous clustering of

moving objects using an effective pruning strategy are proposed to efficiently discover such

groups. A scoring function enables the ranking of the discovered groups according to their

size and duratixon. The effectiveness and efficiency of our schemes are studied using real

and synthetic data sets.
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Chapter 5

Processing Optimal Segment Query

5.1 Introduction

In Chapter 3, we process the MCQ query that only focuses on real-time location data of

moving objects. In Chapter 4, we solve the group discovery problem that take both real-

time location data and trajectories. With the increasing availability of trajectory data, it

is interesting and important to be able to use trajectories to support many real-life appli-

cations. In this chapter, we re-look at the classic facility location problem and explore a

relatively new dimension, i.e., taking the movements of customers.

The problem of identifying new, attractive locations with respect to a given set of cus-

tomer locations and existing facilities, known as the facility location problem, has been

studied extensively [13, 23, 87, 90, 96, 97, 26, 69, 14]. This problem has applications in

strategic planning of resources (e.g., hospitals, gas stations, banks, ATMs, billboards, and

retail facilities) in both the public and private sectors [49, 48].

Earlier work has used the residences of consumers as the customer locations [87, 90,

97]. However, customers do not remain stationary at their residences, but rather travel, e.g.,

to work. Thus, consumers are not only attracted to facilities according to the proximity of

these to their residences.

The increasing availability of moving-object trajectory data, e.g., as GPS traces, calls

for an update to the facility location problem to also take into account the movements of

the customers that are now available.
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In particular, we study the optimal segment problem. Given a road network G, a set

of facilities F , a set of route traversals R each of which can be taken by different users

multiple times, the objective is to find the optimal road segments such that a new facility

built on any of these segments maximizes the number of attracted route traversals. A route

traversal is attracted by a facility if the distance between the route and the facility is within

a given threshold.

Figure 5.1 shows an instance of the problem. Solid lines and dots form the road net-

work. Hollow circles are existing facilities (f1, f2, f3, and f4). Dashed lines indicate route

traversals (r1, r2, and r3). We draw them next to the roads for clarity.
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Figure 5.1: An Optimal Segment Problem Example

The gray bar that covers f3 indicates that r3 is attracted by f3 because f3 is within

distance δ of one of the end points of r3. The underlying rationale is that a facility that is

sufficiently near a route will attract customers who follow the route. Therefore, the ends of

each route are extended by distance δ.

With δ, r1 starts and ends at A and D, respectively. Route r2 starts and ends at v1 and

B, respectively. Route r3 starts and ends at C and H , respectively. Suppose that each of

the routes is traversed by one customer exactly once. Intuitively, the optimal segment for

a new facility is the segment AH , because building a new facility on this segment attracts

the most route traversals (in this particular example, three traversals). Later, we will show

that it is not only important to attract the most route traversals—not all route traversals are

equally important.

The optimal segment problem is different from the traditional facility location prob-

lems [26, 69] and the optimal location problem [13, 23, 87, 90, 96, 97]. First, the optimal
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segment problem works with route traversals completed by mobile customers instead of

static customer locations. This use of route traversals is a natural generalization of the use

of static customer sites. This is so because, static customer sites can be derived from routes

traversals. Often, the static customer sites are start and end points of routes. Also, in real-

ity, a facility location close to many routes, e.g., near an intersection of several highways,

but far from residential regions, may be quite attractive. Many shopping malls, fast food

shops (e.g., McDonald’s), and billboards target drivers. For example, billboards are often

drivers’ primary method of finding lodging, food, and fuel on unfamiliar highways. It is

reported that there were approximately 450,000 billboards along United States highways

in 2010 [74].

The second difference is that the optimal segment problem returns optimal road seg-

ments instead of optimal point locations. It is more appropriate to identify road segments

than point locations because the former allows for more flexibility.

We propose a framework to solve the optimal segment problem. The main idea of the

framework is to assign each route traversal a score and to distribute the score to the road

network segments that are covered by the route traversal. The scoring of segments is based

on three factors: the number of customers who take the route (the count), the number of

traversals by each customer (the usage), and the length of the route. A scoring function

satisfies the property that they are independent of the route partitioning.

Intuitively, road segments that are covered by many route traversals that are attracted

by few existing facilities, are good result candidates. But customers of different types of

businesses can have different spatial preferences with respect to the businesses they are

likely to visit. For example, customers may visit stores that sell everyday items frequently,

while they may visit stores that sell expensive items only infrequently. Likewise, customers

may prefer grocery stores near their homes or work places, but may have equal probability

to visit clothing stores along the routes they travel. To accommodate such preferences,

we support different functions for the assignment of scores to the routes that customers
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follow as well as allow different models for the distribution of the score of a route to the

underlying segments. Specifically, we require the framework to be generic with respect to

the functions used for assigning scores to routes according to the traversals of the routes

and with respect to the score distribution models that capture score distribution.

We propose two algorithms to solve the optimal segment problem. The first algorithm,

AUG, uses a graph augmentation approach. The idea is to augment the original road net-

work graph with the facilities and the start and end points of the route traversals as vertices.

Each vertex in the new graph records a list of attracted routes. The score of an edge is

the sum of scores of the route traversals that cover both vertices of an edge. The edges

with the highest score are mapped back to the original road network graph and are possibly

extended into longer road segments.

The second algorithm, ITE, uses a heap to prioritize the most promising road segments,

and it iteratively partitions and scores these based on intersecting routes. ITE keeps par-

titioning the road segments that most likely contain an optimal subsegment until such an

optimal subsegment is obtained. Then it extends the partial optimal segment to its full

length and adds it to the result set.

Our contributions can be summarized as follows:

• Formalization of the new optimal segment problem that identifies the optimal road

network segments for the placement of new facilities according to customer trajec-

tory data.

• Development of a computational framework where route traversals are used instead

of static customer sites for the optimal segment problem. This is the first such frame-

work. Two algorithms, AUG and ITE, are proposed to solve the problem.

• The framework accommodates different scoring functions and score distribution mod-

els that may apply to a variety of businesses.
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• Coverage of an empirical study that indicates that AUG and ITE are efficient in real-

istic settings.

The remainder of the chapter is structured as follows. Section 5.2 formalizes the prob-

lem setting. Section 5.3 presents a preprocessing procedure that is used by both of the two

proposed algorithms. We describe in detail algorithm AUG and provide a theoretical anal-

ysis in Section 5.4. We then describe in detail algorithm ITE and give an accompanying

theoretical analysis in Section 5.5. Section 5.7 reports the results of an empirical evaluation

of the proposed algorithms. Finally, Section 5.8 summarizes this chapter.

5.2 Definitions

We proceed to model the road network and formulate the optimal segment problem along

with supporting definitions.

5.2.1 Road Network Modeling

A road network is modeled as a spatially embedded graph G = (V,E), where V is a set

of vertices, and E is a set of edges that connect ordered pairs of vertices. Every vertex vi

has (xi, yi) coordinates in 2D space, denoted as loc(vi) = (xi, yi). We use either ei,j or

(vi, vj) to refer to the directed edge from vertices vi to vj . The length of an edge is defined

as the Euclidean distance between its two vertices: ∥ei,j∥ = ∥loc(vi), loc(vj)∥. Vertices

and edges are assigned unique identifiers. In this model, an edge between two vertices

represents a part of a road. The polyline obtained by connecting the vertices of consecutive

edges approximates the center line of part of a road.

We use the term network point to refer to a point location anywhere on an edge.

Definition 11 (Network Point) A road network point p is defined as p = (eid , d), where

eid is the identifier of an edge e = (vi, vj) and d (0 ≤ d ≤ 1) is the ratio of the distance

between vertex vi and the point to the length of e. P denotes the set of all network points

on the road network.
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It can be seen that given an edge (vi, vj) identified by eid , vi = (eid , 0) and vj =

(eid , 1). Therefore we have V ⊂ P . For example, in Figure 5.1, the network point of f1 is

f1.p = (e2,3, 0.5). Note that a vertex can have more than one eid , depending on the number

of incident edges. So we use v.EID to denote the set of eids of v. The distance between

two network points pi and pj on the same edge e is defined as dist(pi, pj) = ∥e∥ · |di− dj|.

A road segment is a polyline that starts at a network point, traverses a sequence of

vertices, and ends at a network point.

Definition 12 (Road Segment) A road segment s is defined as a sequence of network points,

s = ⟨p1, p2, . . . , pn⟩, where n ≥ 2, p1, pn ∈ P, pi ∈ V, ∃eid such that eid ∈ p1.EID and eid ∈

p2.EID , ∃eid such thateid ∈ pn−1.EID and eid ∈ pn.EID and (pi, pi+1) ∈ E (1 < i <

n− 1).

The length of s is the network distance from p1 to pn.

length(s) =


dist(p1, p2) n = 2

dist(p1, p2) +
n−2∑
i=2

∥ei,i+1∥+ dist(pn−1, pn) n > 2

The set of road segments is denoted as S.

It follows from definition that an edge is also a segment, i.e., E ⊂ S. Further, we use

the notion route for a segment that a customer has traversed.

When there is no ambiguity from the context, we use AB to mean the segment between

network points A and B. For example, the short segment between A and H in Figure 5.1

is AH . Otherwise, we write the segment in full, e.g., the road segment ⟨pf3 , v5, v6, pf4⟩

between facilities f3 and f4, supposing the network points for facilities f3 and f4 are pf3

and pf4 , respectively.

5.2.2 Facilities and Route Usage

A facility f located at a network point p is denoted as (fid , p), where fid identifies the

facility. F denotes the set of all facilities.
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A route is a segment and thus starts at a network point, traverses a sequence of con-

nected edges, and stops at a network point. The same route can be traversed many times by

the same or many customers. For instance, many customers who live in the same building

may take the same route r to the same grocery store. We use count to denote the number

of customers who take r. On the other hand, one customer can take the same route many

times, e.g., a customer may take the same route from home to work on most weekdays. We

use usage i to denote the number of times r is taken by customer i (1 ≤ i ≤ count).

Definition 13 (Route Usage Object) A route usage object ro is defined as

ro = (rid , r, count , ⟨usage1, . . . , usagecount⟩)

where rid identifies the object, r ∈ S is a segment traversed by the user. R is a set of all

route usage objects.

A route ro.r covers a road segment s if ∀p ∈ s′ p ∈ ro.r. A route ro.r intersects a

segment s if ∃p ∈ s p ∈ ro.r. The set of route usage objects whose routes cover s is

denoted as s .C. The set of route usage objects whose routes intersect s is denoted as s .I .

It is straightforward to see that s .C ⊆ s .I . We also say that ro1 ≡ ro2 if ro1.r = ro2.r.

In Figure 5.1, the routes r1, r2, and r3 are traversed by three different customers. We

assume that each route is traversed once by each customer.

A route r is attracted by a facility f and f is an attractor for r if distG(f.p, ro.r) ≤ δ,

where distG(p, s) gives the shortest network distance between a network point p and a

segment s and δ is the distance threshold that was introduced earlier. Note that the same

facility can attract several routes. In Figure 5.1, facility f1 attracts routes r1 and r2, and f3

attracts r3.

5.2.3 Scoring a Route

In the optimal segment problem, route traversals play the role that customer locations play

in the classical formulation of the optimal location problem. Thus, we need to decide how
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to assign a score to a route based on the traversals of the route. The scoring of a route

is thus based on three factors that are all captured in the route usage object for the route:

the number of customers taking the route, the number of traversals by each customer, and

the length of the route. The route’s score is subsequently distributed among the segments

covered by the route. The intuition of distributing the score of a route to its segments is that

when a customer traverses the route, the customer may visit facilities located on segments

along the route.

To ensure that the framework yields meaningful results, the scores eventually assigned

to segments must be invariant under the splitting and concatenation of route usage objects.

To achieve this, we require the following property to hold.

Route Scoring Property A route scoring function should be independent of the par-

titioning of the route of a route usage object. Let ro1◦ro2 be the concatenation of ro1.r and

ro2.r. Let ro = (id , r1 ◦ r2 ◦ · · · ◦ rm, count , u) and roi = (id i, ri, count , u) (1 ≤ i ≤ m).

Then we require score(r) =
∑m

i=1 score(ri).

This property ensures that partitioning a route usage object or combining several route

usage objects with the same count and usages does not change the total score that is avail-

able for assignment to segments.

Many scoring functions are possible that satisfy the property. Next, we show two of

them.

Definition 14 (Scoring a Route) Let a route r with an associated route usage object ro =

(rid , r, count , ⟨usage1, . . . , usagecount⟩) be given. Then the score of r can be defined as

follows

scoreall(r) = length(r)
count∑
i=1

ro.usagei

scorecap−x(r) = length(r)
count∑
i=1

min(ro.usage i, x)

where x is a user-defined value.
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Depending on the products or services offered by a facility, different scoring functions

may be appropriate. For example, a facility that sells everyday necessities (e.g., a bakery)

may attract the same customer on each route traversal by the customer. Thus, scoreall is

appropriate. In contrast, if a store sells products that are bought less frequently (e.g., a

furniture store), the store may not benefit from a large number of traversals by the same

customer, making scorecap−x more appropriate. Thus, we keep the framework open to the

use of different scoring functions.

Unless specified otherwise, we use the function scoreall for illustration.

In Figure 5.1, assuming that the lengths of routes r1, r2, and r3 are 2, 4, and 3, and the

number of traversals per customer are ⟨2, 2⟩, ⟨2, 1⟩, and ⟨2⟩, respectively. Then we have

three route usage objects: ro1 = (id1, r1, 2, ⟨2, 2⟩), ro2 = (id2, r2, 2, ⟨2, 1⟩), and ro3 =

(id3, r3, 1, ⟨2⟩). The score of r1 can be calculated as follows, score(r1) = length(r1) ·

(ro1.usage1 + ro2.usage2) = 2 · (2 + 2) = 8 Similarly, we calculate the scores of r2 and

r3, score(r2) = 12 and score(r3) = 6.

5.2.4 Score Distribution Models

A score distribution model determines how to distribute the score of a route to the underly-

ing segments. Interest models are orthogonal to the scoring of route, i.e., they do not affect

how a route is scored.

Intuitively, segments covered by a route with many traversals that are not attracted

by many other facilities are good candidates for placing a new facility. Therefore, they

should be assigned high scores. But customers can have different spatial preferences for

visiting different kinds of businesses. Therefore, we leave the framework open to the use

of different score distribution models.

When n facilities are located on a segment, they partition the segment into k subseg-

ments where k is one of n− 1, n, or n+ 1 depending on whether two, one, or no facilities

are located at the ends of the segment.
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The following are example score distribution models.

• Equal weight is assigned to each subsegment. In this model, the score of a route r is

distributed such that a customer has an equal probability to visit any business along

the route. For example, any clothing store on the way back home. The score assigned

to the ith subsegment si, 1 ≤ i ≤ k is 1
k
· score(r).

• Decreasing/increasing weights are assigned to the subsegments. The score of the

ith subsegment si (1 ≤ i ≤ k) is given by 1
2i
· 1∑k

i=1
1

2i

· score(r), (1 ≤ i ≤ k).

This definition gives exponentially decreasing scores to subsegments and normalizes

the scores such that the full score of the route is distributed. This model indicates

a preference for the facilities at the beginning of the route. Symmetrically, there is

a model that prefers the facilities at the end of the route. For example, a customers

might prefer to have a meal before the trip back home or to work, but it is also

possible (with lower probability) that the customer will visit any restaurant along the

route

• All of the score is evenly distributed to the first and the last subsegment. This model

indicates that customers consider only businesses that are located nearest to the route

destinations. For example, a customer would like to visit the store, which sells dairy

products, closest to home, but for regular items closest store to work place can be

used.

• The original facility location problem considers simply the attraction of customer

locations to facility locations. In our setting, where customer route traversals are

attracted to segments where facilities may be placed, the model that assigns the entire

score of a route traversal to the route’s first subsegment may be the one that most

closely resembles the original problem.
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In Figure 5.1, route r2 is attracted by facilities f1 and f2, and k = 3. In previous

examples, we showed that the score of r2 is 12. According to the first proposed score

distribution model, each subsegment (v1f1, f1f2, and f2B) receives score score(r2)
k

= 12
3
=

4. According to the second model, 1∑k
i=1

1

2i

= 1
1
2
+ 1

4
+ 1

8

= 1
7
8

= 8
7
, score(v1f1) = 1

2
· 8
7
· 12 =

4
7
· 12, score(f1f2) = 1

4
· 8
7
· 12 = 2

7
· 12, and score(f2B) = 1

8
· 8
7
· 12 = 1

7
· 12.

So far, we have distributed the score assigned to a single route to the segments covered

by the route. However, a segment s may be covered by multiple routes that assign score

to the segment. The total score of the segment, scoreM(s), where M indicates the score

distribution model used, is simply the sum of these scores. Similarly, we can calculate the

score of a network location p, scoreM(p).

We show how to score the subsegment AH in Figure 5.1 using the first proposed model.

AH is covered by all of the three route usage objects. So scoreM(AH) =
∑3

i=1
score(roi.r)

ki
=

8
2
+ 12

3
+ 6

2
= 11.

Since our framework is generic with respect to. score distribution models, unless spec-

ified otherwise, we use the first model for illustration.

5.2.5 Problem Formulation

With the above definitions in place, we can define the optimal segment query.

Definition 15 (The Optimal Segment Query) The optimal segment query finds every seg-

ment sopt from a road network G such that

1. ∀p1, p2 ∈ sopt : scoreM(p1) = scoreM(p2)

2. ∀p ∈ sopt ∀p′ ∈ P : scoreM(p′) ≤ scoreM(p)

3. @s′ ⊆ S : sopt ⊂ s′ and 1 and 2 hold.

This definition ensures that every point in the optimal segment has the same score, that

the score is optimal, and that the optimal segment is maximal.
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Notation used introduced this section and to be used throughout the chapter is summa-

rized in Table 5.1.

R The set of route usage objects
F The set of facilities
S The set of road segments
P The set of sites
G, G′ The (augmented) road network graph
V , V ′ The set of vertices in G, G′

E, E ′ The set of edges in G, G′

n The total number of GPS points in R
δ The maximum distance of attraction

Table 5.1: Summary of Notation

5.3 Preprocessing

A straightforward approach to compute the optimal segment query is to enumerate and

score all possible segments and then return the one with the highest score. However, this

is not feasible as this approach has to test infinite number of possible segments. As will

be shown by our scheme, only finite number of segments or edges need to be compared

in order to find the optimal segments, because optimal segments are flanked by vertices or

route start and end points which are finite.

The two algorithms we propose both rely on the same preprocessing algorithm, which

we present here. This algorithm determines the relationships between the facilities and the

edges, between the routes and the edges, and between the facilities and the routes. It needs

to be run only once for one set of routes.

The algorithm makes each edge record its facilities and route start and end points, if

any. It also makes each vertex record the covering routes’ identifiers. The routes record

the facilities they cover. The facilities record the edge they are located on and the covering

routes, if any. Also the algorithm populates a lookup table so that given an edge, one can

quickly determine the routes that intersect with the edge.
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Recall that G is the spatially embedded graph, f is a facility, and r is a route. Algorithm

PreProcess calls getEdges(f,G) to retrieve the edge(s) where f is located. Note that f may

be located at a vertex and thus two edges. The function onEdge test if a network location is

located on an edge. It also calls getEdges(r,G, δ) to retrieve the set of edges that intersect

r.

The PreProcess procedure is presented in Algorithm 15 and explained next.

Algorithm 15: PreProcess(G,R, F, δ)
1 foreach f ∈ F do
2 E1 ← getEdges(f,G);
3 foreach e ∈ E1 do e.Fc.add(f);
4 f.Ec.add(E1);
5 foreach ro ∈ R do
6 r ← ro.r;
7 r.Ec ← getEdges(r,G, δ);
8 foreach e = (vs, ve) ∈ r.Ec do
9 if (onEdge(r.ps, e)) ∧ (r.ps.d ̸∈ {0, 1}) then

10 e.Oc.add(r.ps);
11 if (onEdge(r.pe, e)) ∧ (r.pe.d ̸∈ {0, 1}) then
12 e.Oc.add(r.pe);
13 e.Rc.add(r);
14 if contains(r, e) then
15 r.Fc ← r.Fc ∪ e.Fc;
16 foreach f ∈ e.Fc do f.Rc.add(r);
17 else if intersects(r, e) then
18 F ′ ← {f |f ∈ e.Fc ∧ attracts(f, r, δ)};
19 r.Fc ← r.Fc ∪ F ′;
20 foreach f ∈ F ′ do f.Rc.add(r);
21 if attracts(vs, r, δ) then
22 vs.Rc.add(r);
23 i← the position of vs relative to the r.Fc;
24 vs.L.add(i);
25 if attracts(ve, r, δ) then
26 ve.Rc.add(r);
27 i← the position of ve relative to the r.Fc;
28 ve.L.add(i);

A facility f keeps the edge where it is located in the variable f.Ec, and the set of routes

it attracts in f.Rc. An edge e keeps a set of route start and end network points that are
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located on e in e.Oc. This list is used by the AUG algorithm for augmentation purpose.

Each vertex v of e maintains a list of routes that it attracts in v.Rc, and v’s relative position

in v.L. These two lists are used later by AUG for scoring purpose. e.Fc and e.Rc are the

set of facilities that are located on e and the set of routes that intersect edge e, respectively.

A route r keeps its set of attracting facilities in r.Fc.

For each facility f , PreProcess retrieves its edge E1 so that e adds f to its set of facilities

e.Fc, and f.Ec adds E1 (lines 1–4).

Next, for each route r, the set of intersected edges is retrieved, and the r.Ec field is

updated (lines 7)). Then, if the start network point of r is not a vertex in G, it is added to

the e.Oc set of the edge e where it is located. Similarly, r’s end network point is added to

a e.Oc set. (lines 9–12). Route r is also added to the list e.Rc (lines 13). For each edge e

covered by the route r, the facilities and r record each other (lines 14–16). For each edge e

intersected by a route r, on the other hand, the attraction relationship between the facilities

and r is determined before updating each other’s corresponding field (lines 17–20). Next,

each vertex of e records r in the v.Rc list if r is attracted by it. In addition, the relative

position of v is also kept in v.L for scoring purpose (lines 21–28).

In Figure 5.1, edge e2,3 has e2,3.Fc = {f1} and f1.e = e2,3. Route r1 traverses one edge

and is attracted by one facility, so, r1.Ec = {e2,3} and r1.Fc = {f1}. Edge e2,3 is covered

by r1, r2 and r3, so, e2,3.Rc = {r1, r2, r3}. Three start or end network points of the routes

are located on edge e2,3, so, e2,3.Oc = {A,D,H}. Vertex v2 is covered by r2 and r3 and

vertex v3 is covered r2, so v2.Rc = {r2, r3} and v3.Rc = {r2}. Facility f1 attracts r1 and

r2, so f1.Rc = {r1, r2}.

The following lemma states the time complexity of PreProcess.

Lemma 5.3.1 Algorithm PreProcess has time complexity O(|F | + |R||Em|), where |Em|

is the maximum number of edges that any route traverses.

Proof 5.3.1 The first loop in the algorithm takes time O(|F |). In the second loop, the

outer loop runs O(|R|) times. The inner loop depends on the number of edges that a route
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traverses. Let |Em| be the maximal number of edges that any route traverses. Then the

second loop has time complexity O(|R||Em|). In total, the time complexity is O(|F | +

|R||Em|).

5.4 Graph Augmentation

5.4.1 Overview

The main idea of the graph augmentation algorithm (AUG) is to augment the road network

graph G with the facilities and the first and the last network points of each route. In the

augmented graph G′ = (V ′, E ′) it is guaranteed that each route starts from a vertex and

ends at a vertex. Meanwhile, each vertex in G′ stores the identifiers of the covering routes.

Then each edge’s score in G′ can be calculated by summing up the scores distributed

by the routes that cover both ends points. The score contributed by a route is calculated

based on the specific score distribution model used, as discussed in Section 5.2.4.

Next, AUG examines every edge in G′ with a score, and identifies the edges with the

highest score (the optimal edges).

Finally, the algorithm maps the optimal edges back to the original graph G, where they

are segments. Then AUG merges connected segments, if any, to form maximal segments,

and returns them as the result.

Figure 5.2 illustrates the graph in Figure 5.1 after being augmented with routes r1, r2,

and r3 and facilities f1, f2, and f3. Note that each vertex in the augmented graph has a list

of the identifiers of the routes that cover the vertex. We use AL(vi) to denote the attraction

list of vi. Intersecting the sets of two adjacent vertices gives the routes that cover the edge,

whose score can then be calculated according to a score distribution model. For example,

AL(A) = {r1, r2, r3} and AL(H) = {r1, r2, r3}. So, the set of routes that cover edge eA,H

is AL(A) ∩ AL(H) = {r1, r2, r3}. Then the score of eA,H is calculated based on the score

distribution model used.
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Figure 5.2: The Augmented Road Network Graph

Next, AUG finds the edges with the highest score by examining all edges in the aug-

mented graph. These edges are then mapped back to the original graph, and become road

segments, which are possibly merged into longer segments. These segments are returned

as the result. In Figure 5.2, after edge eA,H is identified as the optimal edge with the highest

score, it is mapped back to the original graph, and the segment AH is returned as the result.

5.4.2 The AUG Algorithm

Algorithm 16 presents details of the AUG algorithm. The set of edges that have network

points either from facilities or routes is obtained (lines 1–2). Graph G′ is obtained by

augmenting graph G with the network points of F and R (line 3). Note that some network

points of routes or facilities may happen to be vertices. These network points are excluded

from being augmented into G. Then AUG updates the covering routes of the newly added

vertices (lines 4–6). It initializes the result set S and the highest score seen so far, optS

(line 7). In the next loop (lines 8–14), the scores of the edges in G′ are calculated according

to the score distribution model used (line 10), and the optimal edges in G′ are identified and

stored in S. In lines 15–17, each edge in G′ is mapped back to G. Mapping back to the

original graph is a trivial task. Recall that each new network point has an eid field that helps

identify the original edge. If a segment can be extended (i.e., the neighbouring segment is

also an optimal segment), it is extended (line 17). This procedure is done by the canExtend

method, which also detects cycles with an internal Depth First Search (DFS). Finally, the

result set S is returned (line 18).

This process has two implications. First, an edge in G may be split into several edges in
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Algorithm 16: AUG(G,R, F, δ,M )
1 EF ← the set of edges where F are located;
2 ER ← the set of edge that R intersect;
3 G′ ← Augment(G,F,R);
4 foreach e ∈ (EF ∪ ER) do
5 foreach vi ∈ e.Fc ∪ e.Oc do
6 vi.Rc ← getCoverRouteIds(vi, e.Rc);
7 S ← ∅; optS ← 0;
8 foreach e = (vs, ve) ∈ G′.E ′ do
9 R′ ← vs.Rc ∩ ve.Rc;

10 scoreM(e)← compute the score of e based on M ;
11 if score(e) > optS then
12 optS ← score(e);
13 S ← {e};
14 else if score(e) = optS then S ← S.add(e);
15 foreach s ∈ S do
16 map s to G;
17 if canExtend(s,G) then extend(s,G);
18 return S;

G′. After the optimal edges are identified in G′, they must be mapped back to G. Second,

for an edge in G′, a route either covers it or does not cover it. The partial intersection

relationship between a route and an edge is eliminated in G′.

It can be seen that it is sufficient to just augment the original graph with the start point

and the end point of each route for finding the optimal segments because the internal points

in a route are vertices in G.

The algorithm splits some road segments.

• If the two end points of a route do not happen to be vertices in G, they are added as

new vertices into the road network, as they are covered by at least one route.

• If a facility does not happen to be a vertex in G, it is added as a new vertex if it

attracts any route, e.g., f1, f2, and f3 in Figure 5.2. Facility f4 no longer exists in the

augmented graph because it does not attract any routes.

• In order to accommodate these new vertices, some edges in G are replaced with
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“smaller” edges in G ′. For example, in Figure 5.2, the edge e2,3 is replaced with the

following edges: ev2,A, eA,H , eH,f1 , ef1,D, and eD,v3 .

When the road network is augmented, every vertex in G′ records the identifiers of the

routes that cover this location. Figure 5.2 also shows the identifiers of the routes that are

recorded at each vertex in the augmented graph.

In Figure 5.2, r2 has score 12, and is attracted by 2 facilities. Thus, each edge in G ′

that is covered by r2 should receive a score score(r2)
3

= 4. Route r1 has score 8, and is

attracted by one facility. Each edge covered by it in G ′ receives a score score(r1)
2

= 4. Route

r3 has score 6, and is attracted by 1 facility. Therefore, each covered edge received score

score(r3)
2

= 3.

For each edge in the augmented road network, the algorithm takes an intersection of the

route identifiers of its two vertices, and computes its score. For instance, score(ev2,A) =

4 + 3 = 7, score(eA,H) = 4 + 4 + 3 = 11. The scores of other edges can be computed in a

similar way.

After that, AUG identifies the optimal edge(s) with the highest score. Since AH has

the highest score in G′, the optimal edge is (A,H). It is mapped back, and becomes the

segment AH . As AUG cannot extend it to a longer segment, AH is returned as the result.

5.4.3 Analysis

We analyze the time complexity of the AUG algorithm, and show its completeness and

correctness.

Theorem 5.4.1 The AUG algorithm has time complexity O((|E| + |F | + |R|)|R| + |S|),

where S is the result set.

Proof 5.4.1 In AUG, the graph augmentation takes O(|F | + 2|R|) (line 4), because each

route contributes exactly two vertices.
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In the first nested loop (lines 5–9), the worst case is that facilities and routes are evenly

distributed to the road network so that every edge in G is augmented. In this case, for an

edge e, e.Fc + e.Oc =
|F |+2|R|

|E| . The outer loop takes |EF | + |ER| ≤ |E|. The complexity

of the nested loop is the product of the two loops. That is, (e.Fc + e.Oc) · (|EF |+ |ER|) ≤

|E| · |F |+2|R|
|E| ≤ |F |+ 2|R|. So the nested loop takes time O(|F |+ 2|R|).

In the second loop (line 11–18), |E ′| ≤ |E|+ |F |+2|R|. In line 15, |R′| ≤ |R|. There-

fore, this loop takes time O((|E| + |F | + 2|R|)|R|). The third loop takes time complexity

|S|. Note that |S| is usually very small.

To summarize, the time complexity of AUG is O(|F |+2|R|+(|E|+|F |+2|R|)|R|+|S|).

After simplification, the time complexity is O((|E|+ |F |+ |R|)|R|+ |S|).

We proceed to show the correctness and completeness of AUG.

Theorem 5.4.2 A segment output by the AUG algorithm is an optimal segment.

PROOF SKETCH. In AUG, every edge in the augmented graph is checked to find the

the value for optS . AUG then adds a segment iff the segment has a score equal to optS . It

implies that any segment in the result set S must be optimal.

Theorem 5.4.3 The AUG algorithm finds every optimal segment in the graph.

PROOF SKETCH. This theorem can be proven with the following two points. First,

AUG searches the graph to make sure that every edge is scanned. Second, if an edge has a

score equal to optS , it either is appended to an existing segment in S or is added to S as a

new segment that might be extended later. Therefore, no segment with score equal to optS

is missed.

5.5 Iterative Partitioning

5.5.1 Overview

Although the augmentation approach is effective at finding the optimal segments, we can

improve its efficiency by pruning unpromising segments.
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The idea of the ITE algorithm is to quickly identify a subsegment of an optimal seg-

ment (optimal subsegment) and then extend the optimal subsegment into an entire optimal

segment. Therefore, ITE organizes the segments using a heap such that those segments that

are most likely to contain an optimal subsegment get examined first. If the segment under

examination is an optimal subsegment then the entire optimal segment can be found by ex-

tending it. In addition, the optimal score can be calculated easily. Otherwise, the segment

is partitioned into smaller segments, whose likelihoods of having an optimal subsegment

are also calculated, upon which they are inserted back into the heap.

Given a segment s, we use the scores of the intersecting routes to measure its likelihood

of having an optimal subsegment. The segment containing the optimal subsegment is likely

to have many intersecting routes, from which it is likely to receive a high score.

For example, in Figure 5.1, initially the edges that intersect any route are inserted into

the heap. The edge v1v3 has the most intersecting routes and so is likely to contain an

optimal segment. So v1v3 is partitioned into equal-sized, smaller segments. ITE calculates

the intersecting routes for each of them, and adds them to the heap. This process continues

until a subsegment of an optimal segment is found. In this case, a subsegment s of AH is

found. Then s is extended to find that AH is the entire optimal segment.

Both AUG and ITE partition the edges of the network graph into smaller pieces. The

main difference between ITE and AUG lies in how a subsegment of the optimal segment

is found. In AUG, the partitioning of edges in the network graph is unguided. Every edge

that has an attracting facility or a route end point is partitioned. In ITE, the partitioning of

edges is guided by the likelihoods of the edges to have an optimal subsegment.

5.5.2 The ITE Algorithm

Recall that we are interested in finding those segments that contain an optimal subsegment.

Before presenting the ITE algorithm, we need definitions that relate the score of a segment

to the scores of its network points, as defined in Section 5.2.4.
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Definition 16 Given a road segment s, we define its min score s.min and max score s.max

as follows.

s.min = min
p∈s

scoreM(p)

s.max = max
p∈s

scoreM(p)

By definition, an optimal segment sopt has sopt .min = sopt .max .

Next, we define upper and lower bound scores of a segment s in order to only process

those segments that may contain an optimal location.

Definition 17 Given a segment s and a score distribution model M , let s.I and s.C be

defined as in Section 5.2.2, and let s.lb and s.ub denote the upper and lower bound scores

of s. We define:

s.lb =
∑

ri∈s.C

wM(ji, ki)score(ri)

s.ub =
∑
ri∈s.I

wM(ji, ki)score(ri)

where s is the jith segment of ri with ki attracting facilities, and wM(ji, ki) computes the

fraction of ri’s score to be assigned to s based on M .

If a segment has facilities located on it, the segment has subsegments that may be as-

signed different scores based on the score distribution model. In this case, the lower bound

score of the segment still takes the smallest score value being assigned to the subsegments,

while the upper bound score takes the largest score value.

Lemma 5.5.1 Let M be a score distribution model where a route can only distribute non-

negative scores. Let the min and max scores and the lower and upper bound scores of s be

defined as above. Given a road segment s, we have s.lb ≤ s.min and s.ub ≥ s.max .
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Proof 5.5.1 Suppose a network location p1 ∈ s s.t. scoreM(p1) = s.min. Since each route

r ∈ s.C contains s, we have p1 ∈ r. So p1 at least gains the scores distributed by the routes

in s.C. Then scoreM(p1) ≥
∑

ri∈s.C wM(ji, ki)score(ri).

Let p2 ∈ s be a location s.t. scoreM(p1) = s.max . We show that the set of routes

that contribute scores to p2 is a subset of s.I . The set of routes that contribute scores to p2

consists of two sets, the set of routes that contain s (s.C) and the set of routes that cover

p2 (s.I ′). Each route in s.I ′ must also intersect s, so s.I ′ ⊂ s.I . Since s.C ⊆ s.I , we have

(s.C ∪ s.I ′) ⊆ s.I . That is, scoreM(p1) ≤
∑

ri∈s.I wM(ji, ki)score(ri).

Recall that Algorithm PreProcess builds a mapping from each edge e to its intersecting

routes e.Rc. We then compute the upper and lower bound scores for a segment s ⊆ e

by retrieving its s.I and s.C from e.Rc. The algorithm can use the bounds to prune the

segments that cannot contain an optimal subsegment.

Lemma 5.5.2 Given two segments s1 and s2, if s1.lb > s2.ub, then s2 does not contain an

optimal subsegment.

Proof 5.5.2 We prove lemma 5.5.2 by showing that s2 cannot contain any optimal location.

Assume two points p1 ∈ s1 and p2 ∈ s2. We have scoreM(p1) ≥ s1.lb > s2.ub ≥

scoreM(p2). So p2 cannot be an optimal location.

With Lemma 5.5.2, segments that do not contain an optimal subsegment can be pruned.

The second strategy employed in ITE is to prune the segments that eventually lead to

the same optimal segment. These segments should be detected and pruned early to avoid

partitioning them further and making unnecessary calculations.

Lemma 5.5.3 Given two segments s1 and s2, if s2.I ⊂ s1.C and s2 contains an optimal

subsegment of an optimal segment, then s1 also contains an optimal subsegment of the

same optimal segment.
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Proof 5.5.3 Let the optimal segment be sopt , and let s2 contain an optimal subsegment of

sopt . Then we have sopt .C ⊆ s2.I because every route that contain the optimal subsegment

must intersect with s2.

Since s2.I ⊆ s1.C, we have sopt .C ⊆ s1.C. By the definitions of segment score and

optimality, we also have sopt .C = s1.C. Therefore, by the definition of segment score, s1 is

also an optimal subsegment of sopt .

Once the result set is not empty, Lemma 5.5.3 allows us to prune segments that lead

to the same optimal segment. We study the effectiveness of the pruning strategies in the

experimental evaluation.

Figure 5.3 shows the edge e2,3 from Figure 5.1. It illustrates the calculation of segment

score upper bound and lower bound. The edge e2,3 has a facility f1 built on it, resulting

in two subsegments, s1 from the beginning to f1 and s2 from f1 to the end. The routes

r1 and r3 are attracted by one facility, whereas r2 is attracted by two facilities. We show

how to calculate the score upper and lower bounds for both s1 and s2. Segment s1 is

intersected by r1 and r3, and contained by r2. Therefore, s1.lb = 1
3
score(r2), s1.ub =

1
2
score(r1) +

1
3
score(r2) +

1
2
score(r3)
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Figure 5.3: Segment Upper and Lower Bound

Similarly, s2 is intersected by r1, and contained by r2. Therefore, s2.lb = 1
3
score(r2),

2.ub = 1
2
score(r1) +

1
3
score(r2)

Algorithm 17 shows the pseudo-code of the ITE algorithm. This algorithm uses a

priority queue Q that is sorted on the upper bound score of every segment. A variable

called maxLb is used to keep track of the maximum lower bound score seen so far.
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Algorithm 17: ITE(G,R, F, δ, β,M )
1 Init. e ∈ G.E s.t. e.lb ← 0 and e.ub ←

∑
ri∈e.Rc

wM(ji, ki)score(ri);
2 S ← ∅; Q.enqueue(G.E); maxLb ← 0;
3 while Q ̸= ∅ do
4 currSeg ← Q.dequeue;
5 split ← false;
6 if currSeg .ub > maxLb then
7 split ← true;
8 else if currSeg .ub = maxLb then
9 if currSeg .ub = currSeg .lb then

10 S.add .(currSeg);
11 else if @s ∈ S such that currSeg .I ⊆ s.C then
12 split ← true;
13 if split then
14 ss ← SplitSegment(currSeg , β);
15 foreach s ∈ ss do
16 foreach r ∈ currSeg .I do
17 if intersects(r , s) then
18 s.I ← s.I.add(r);
19 s.ub ← s.ub + wM(j, k)score(r);
20 if contains(r , s) then
21 s.C ← e.C.add(r);
22 s.lb ← s.lb + wM(j, k)score(r);
23 if s.lb > maxLb then
24 maxLb ← s.lb;
25 Q.enqueue(s);
26 foreach s ∈ S do
27 Find the entire optimal segment of s by overlapping the route usage objects

r ∈ s.C one by one.

First, ITE initializes the edges such that each has a lower bound score 0 and an upper

bound score computed as in Definition 7 (line 1). It also initializes the result set S, enqueues

the edges G.E of the road network graph, and initializes variable maxLb (line 2). It then

enters the loop and pops out the top element from Q (lines 3–4). The flag variable split ,

indicating whether or not the current segment needs to be partitioned, is set to false at the

beginning of each iteration (line 5). Next, if the upper bound score of currSeg exceeds

maxLb then it needs to be further partitioned, so split is set to true (lines 6–7). If the upper

bound score of currSeg is equal to maxLb, we have found a result segment if the upper
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and lower bound scores are the same. Then currSeg is added to the result set (lines 8–10).

However, if the upper and lower bound scores differ, ITE tests whether currSeg might lead

to an optimal subsegment of a new optimal segment that is not seen before. Then ITE

checks if there is a result s in S such that s.C is subset of currSeg .I (see Lemma 5.5.3). If

no, split is set to true (lines 11–12).

If split is true, the function partitions currSeg into subsegments with the procedure

SplitSegment, which partitions a segment G into β equal length subsegments (lines 13–

14). Here β is a tunable parameter. In the experimental studies, we show the effect of

β.

The intersection set, contain set, and lower and upper bound scores for each segment

output by SplitSegment are computed and inserted into Q (lines 15–22). Next, maxLb

is updated if the subsegment has a higher lower bound score (lines 23–24). Then these

subsegments are added back to Q (line 25).

Upon exiting the loop, each optimal segment is extended to its full length by overlap-

ping the routes that contribute scores to the segment (lines 26–27).

We continue to use Figure 5.1 to illustrate the execution of Algorithm 17. We show

the iterative partitioning of e2,3 in Figure 5.4. Table 5.2 shows the top entries of the queue

obtained from partitioning e2,3, together with their upper and lower bound scores during

the execution of ITE. Double lines separate iterations. The segment at the top of the queue

is in bold.

Below, we calculate the upper and lower bound scores of v2p1, which is intersected

with r1, r2, and r3, and contained by r2 and r3. Therefore, ub(v2p1) =
∑3

i=1 score(ri)ki =

8
2
+ 12

3
+ 6

2
= 11 and lb(v2p1) =

∑3
i=2 score(ri)ki =

12
3
+ 6

2
= 7. The upper and lower

bound scores of other segments can be computed in a similar way.

Since segment v2p1 has the largest upper bound score and its upper bound is not the

same as the lower bound, it is split as shown in Figure 5.4(b). The upper and lower bound

scores of the subsegments are also computed. Now maxLb = 11
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Figure 5.4: ITE Execution Example

In the next iteration, segment p1p2 has the largest upper bound score. But still, its upper

bound is not the same as its lower bound. It is then split (Figure 5.4(c)). The upper and

lower bound scores of the subsegments are also computed, and maxLb = 11.

The next segment under examination is p5p6, which is split again because its upper

bound is different from its lower bound (Figure 5.4(d)). Still, maxLb = 11.

The next segment under examination is p6p1, whose upper and lower bounds are the

same. The upper bound of p6p1 is also same as maxLb. Therefore, p6p1 is added into the

result set as an optimal subsegment.

The process continues until an optimal subsegment of every optimal segment in the

network graph is found. Q is updated at the end of each iteration. Note that ITE does not

need to examine those segments with score upper bound less than maxLb (11 in this case),

resulting in a substantial reduction of the search space.
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Segment ub lb Segment ub lb
v2p1 11 7 p2p3 8 8
p1p2 11 8 p3v3 8 4
p1p2 11 8 p2p3 8 8
p5p6 11 8 p3v3 8 4
p6p1 11 11 · · ·
p5p6 11 8 p2p3 8 8
p6p1 11 11 p3v3 8 4
p1p7 11 8 · · ·
p6p1 11 11 p12p6 11 11
p1p7 11 8 p2p3 8 8
p11p12 11 7 · · ·

Table 5.2: ITE Execution Example

In the end, the entire optimal segment AH can be found by overlapping the routes

AH .C, r1, r2, and r3.

5.5.3 Analysis

We consider the correctness and completeness of ITE and analyze its time complexity.

The correctness of ITE depends on finding the subsegments with the maximum score

correctly. Here, we prove that the algorithm terminates and returns subsegments that have

the maximum score. We must show that after a finite number of iterations, ITE produces

a subsegment s such that s.ub = s.lb where s.ub is the maximum score among all the

subsegments. First, we know that when s.ub = s.lb, s is a consistent segment with the score

s.ub. Since s.ub is the maximum among all the subsegments ensured by the property of

the priority queue, s is a subsegment with the maximum score. Since ITE always examines

the subsegment with the maximal s.ub, we only need to show that ITE terminates. This

can be shown by the following properties. (1) The maximum ub value decreases. (2) The

maximum lb value increases. (3) The maximum ub and lb values converge to the same

value after a number of iterations. (1) and (2) are straightforward because longer segments

intersect with more routes and subsegments are more likely to be contained in a set of

routes. To show the correctness of (3), line 23 in Algorithm 17 has to be true indefinitely
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often. It is so because there is at least one segment in the priority queue with its lb same as

maxLb and this removes the possibility that line 23 is not true from certain iteration. Since

its ub keeps decreasing, ub converges to lb eventually and the algorithm terminates.

Next, to prove completeness, we show that for each optimal segment, ITE is able to find

a subsegment with the maximum score that is contained within the optimal segment. Let

si and sj be the subsegment of two distinct optimal segments. Without loss of generality,

suppose ITE has found si. We show that ITE also finds sj instead of pruning it. Recall that

ITE uses two pruning criteria to prune a subsegment. The first criterion says that sj can be

pruned if si.lb > sj.ub. Since both si and sj are subsegments of optimal segments with the

same optimal score OPT, we have sj.ub ≥ OPT ≥ si.lb. Therefore, this pruning criterion

does not apply. The second criterion states that sj can be pruned if sj.I ⊆ si.C. Since si

and sj are subsegments of different optimal segments, sj.C * si.C. We also know that sj

is a subsegment with the maximum score, hence sj.I = sj.C. Putting them together, we

have sj.I = sj.C * si.C. Hence the second pruning criterion also do not apply. Thus,

ITE does not prune sj , but detects it as a part of an entire segment which is also found.

Therefore, ITE will find all the optimal segments.

Theorem 5.5.1 The time complexity of ITE is O((log |R|+ |S|)|R|).

Proof 5.5.4 In the priority queue operations, ITE iteratively splits the segment with the

maximal score upper bound. The number of splits corresponds to the height of the tree with

fan-out β. If β = 4, we get a quadtree. According to [29], the asymptotic height of the

quadtree is log |R|. For each subsegment s, ITE uses a loop to find its intersection set s.I

and contain set s.C. We have ss .I ⊆ R, so the time complexity of the loop is O(|R|). Thus,

time complexity of the while loop is O(|R|log |R|).

The second loop depends on the size of the result set S. Since s.C ⊆ R, the time

complexity of this loop is O(|R||S|).

In total, the time complexity of ITE is O((log |R|+ |S|)|R|).
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5.6 Finding topK segments

In real life, often there are factors that may not be taken into account the scoring function,

e.g. policy-related factors and qualitative factors, our scheme is able to find topK segments

in order to provide the user with more choices. For example, when building a new gasoline

service station, decision makers might need to consider issues such as land price and pol-

lution control. In this case, the right candidate may not be the optimal segment. Hence, our

scheme computes topK segments to provide more choices.

5.6.1 AUG-topK

The original AUG algorithm finds top1 segment. It is straightforward to extend it to find

topK segments. In AUG-topK, as in AUG, the graph is first augmented and the score

for each edge in the augmented graph is calculated (lines 1–6 in AUG). AUG-topK then

initializes an empty candidate set to store the best candidates found so far. While iterating

through the edges in the augmented graph (corresponding to the second loop in AUG), the

edges with the highest topK scores seen so far are kept in the set. Then every edge in the

set is mapped back to the original graph to find its corresponding segment (the third loop

in AUG). In the end, the set, containing topK optimal segments, is returned as the result.

Note that in order to output k different segments, AUG-topK takes adjacent edges with the

same score as one in the second loop.

Following the example in Figure 5.1. Suppose k = 2. That is, AUG finds top2 seg-

ments. After augmentation, the network graph is the same as in Figure 5.2. The score

for each edge in the augmented graph is computed. From the above, we already know

that scoreeA,H = 11. Slightly smaller than scoreAH , scoreeH,f1 = score(r1)
1+1

+ score(r2)
2+1

=

8
2
+ 12

3
= 8, scoreef1,D = score(r1)

1+1
+ score(r2)

2+1
= 8

2
+ 12

3
= 8, and scoreev2,A = score(r2)

2+1
+

score(r3)
1+1

= 12
3
+ 6

2
= 7. So, eA,H , eH,f1 , and ef1, D are the edges having top2 scores.

Mapped back to the original graph, they become segments AH , Hf1, and f1D. AUG finds
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that Hf1 and f1D are adjacent to each other and have the same score. Therefore, these two

segments are merged, resulting in HD. In the end, AH and HD are returned as result.

5.6.2 ITE-topK

Recall that the ITE algorithm prunes sub-optimal segments early in order to achieve a good

performance. However, in ITE-topK, we have to avoid pruning those segments (early-

pruning) that do not have the optimal score but are among the topK segments. It is a

challenge to identify them during the runtime of ITE. Recall that in ITE, the score lower

bounds are used to prune sub-optimal segments (See lemma 5.5.2). To solve the early-

pruning problem, we delay updating the maximum score lower bound seen so far (maxLb).

In particular, we use the set Sk to keep candidate segments with the topK score seen so far.

The maxLb is only updated when there are already k segments in Sk and there is an update

in the membership.

Another problem arises when Sk is maintained. Many segments in Sk may be subseg-

ments of the same segment, resulting in fewer than k segments being found after finding

the entire segment for each segment in Sk.

The following lemma helps solve the problem.

Lemma 5.6.1 Given two segments si ∈ C and sj ∈ C, if si.C ̸= sj.C, si and sj are

subsegments of two different segments.

Proof 5.6.1 We prove this lemma by contradiction. Suppose, on the contrary, si and sj are

subsegments of the same segment s. Since s is a consistent segment, we have score(si) =

scoresj = scores. Then we have si.C = sj.C = s.C, which contradicts to si.C ̸= sj.C.

So we conclude that si and sj are subsegments of two different segments.

The ITE-topK algorithm is presented in Algorithm 18 and explained next. Same as

ITE, ITE-topK also uses a priority queue Q that is sorted on the upper bound score of every

segment. A variable called maxLb is used to keep track of the maximum lower bound score
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seen so far. Sk denotes the result set, and its function Sk.size() computes the number of

distinct scores in Sk.

First, ITE-topK initializes the edges such that each has a lower bound score 0 and an

upper bound score computed as in Definition 7 (line 1). It also initializes the result set Sk,

enqueues the edges G.E of the road network graph, and initializes variable maxLb (line 2).

It then enters the loop and pops out the top element from Q (lines 3–4). The flag variable

split , indicating whether or not the current segment needs to be partitioned, is set to false

at the beginning of each iteration (line 5). Next, if the upper bound score of currSeg is no

less than maxLb then there are two cases (line 6). If currSeg .ub ̸= currSeg .lb, currSeg is

not a consistent segment yet and needs to be further split. So split is set to true (lines 7–8).

Otherwise, if currSeg .ub = currSeg .lb and no other candidates in Sk have the same set of

covering routes (line 9), ITE-topK considers adding currSeg into Sk. First, if Sk.size() is

less than k then Sk adds currSeg (lines 10–11). maxLb is updated if Sk.size() now becomes

k (lines 12–13). Second, if Sk.size() is k then Sk adds currSeg if currSeg .ub = maxLb

(lines 14–16). If currSeg .ub > maxLb, however, the segments with smaller scores are

removed from Sk, Sk adds currSeg and updates maxLb (lines 17–20).

If split is true, the function partitions currSeg into subsegments with the procedure

SplitSegment, which partitions a segment G into β equal length subsegments (lines 21–

22). Similar to ITE, β is a tunable parameter.

The intersection set, contain set, and lower and upper bound scores for each segment

output by SplitSegment are computed and inserted into Q (lines 23–31). .

Upon exiting the loop, each optimal segment is extended to its full length by overlap-

ping the routes that contribute scores to the segment (lines 32–33).

With the example in Figure 5.1, the execution of ITE-topK is quite similar to what is

demonstrated in Section 5.5. The difference exists in maintaining the result set Sk. In ITE-

topK, candidates with k different scores are kept in the result set instead of just one as in

ITE.
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Algorithm 18: ITE-topK(G,R, F, δ, β,M, k)
1 Init. e ∈ G.E s.t. e.lb ← 0 and e.ub ←

∑
ri∈e.Rc

wM(ji, ki)score(ri);
2 Sk ← ∅; Q.enqueue(G.E); maxLb ← 0;
3 while Q ̸= ∅ do
4 currSeg ← Q.dequeue;
5 split ← false;
6 if currSeg .ub ≥ maxLb then
7 if currSeg .ub ̸= currSeg .lb then
8 split ← true;
9 else if @si ∈ Sk, si.C = currSeg .C then

10 if Sk.size() < k then
11 Sk.add(currSeg);
12 if Sk.size() = k then
13 maxLb ← minsi∈Sk

score(si);
14 else if Sk.size() = k then
15 if currSeg .ub = maxLb then
16 Sk.add(currSeg);
17 else if currSeg .ub > maxLb then
18 remove ∀si ∈ Sk, s.lb = maxLb;
19 Sk.add(currSeg);
20 maxLb ← minsi∈Sk

score(si);
21 if split then
22 ss ← SplitSegment(currSeg , β);
23 foreach s ∈ ss do
24 foreach r ∈ currSeg .I do
25 if intersects(r , s) then
26 s.I ← s.I.add(r);
27 s.ub ← s.ub + wM(j, k)score(r);
28 if contains(r , s) then
29 s.C ← e.C.add(r);
30 s.lb ← s.lb + wM(j, k)score(r);
31 Q.enqueue(s);
32 foreach s ∈ S do
33 Find the entire optimal segment of s by overlapping the route usage objects

r ∈ s.C one by one.
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5.6.3 Theoretical Analysis

We analyze the correctness, completeness, and complexity of ITE-topK.

The correctness of ITE-topK depends on finding the subsegments with the maximum

score correctly. Here, we prove that the algorithm terminates and returns subsegments that

have the topK scores. We must show that after a finite number of iterations, ITE-topK

produces a subsegment s such that s.ub = s.lb where s.ub is the topK scores. First, we

know that when s.ub = s.lb, s is a consistent segment with the score s.ub (or s.lb). Since

s.ub is larger than scorel(s), s is a subsegment with the topK scores. Since ITE-topK

always splits subsegment s with the s.ub greater than scorel(C), we only need to show that

ITE-topK terminates. This can be shown by the following properties. (1) The maximum

ub value decreases, (2) The maximum lb increases, and (3) The maximum ub and lb values

converge to the same value after a number of iterations.

Next, to prove completeness, we show that for each optimal segment, ITE-topK is able

to find a subsegment of it. Let si and sj be two subsegments of distinct optimal segments.

Without loss of generality, suppose ITE-topK has found si and si.lb = mathrmscorel(C).

We show that ITE-topK also finds sj instead of pruning it. Recall that ITE-topK uses two

pruning criteria to prune a subsegment. The first criterion says that sj can be pruned if

si.lb > sj.ub. Since both si and sj are subsegments of topK segments, we have sj.ub ≥

mathrmscoreh(C) ≥ si.lb. Therefore, this pruning criterion does not apply. The second

criterion states that sj can be pruned if sj.I ⊆ si.C. Since si and sj are subsegments of

different topK segments, sj.C * si.C. We also know that sj is a consistent subsegment,

hence sj.I = sj.C. Putting them together, we have sj.I = sj.C * si.C. Hence the second

pruning criterion also does not apply. Thus, ITE-topK does not prune sj , but detects it.

Therefore, ITE-topK finds all the optimal segments.

Theorem 5.6.1 The time complexity of ITE-topK is O((klog |R|+ |S|)|R|).
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Proof 5.6.2 In the priority queue operations, ITE-topK iteratively splits the segment with

the maximal score upper bound. The number of splits corresponds to the height of the tree

with fan-out β. If β = 4, we get a quadtree. According to [29], the asymptotic height of

the quadtree is log |R|, For each subsegment s, ITE-topK uses a loop to find its intersection

set s.I and contain set s.C. We have ss .I ⊆ R, so the time complexity of the loop is

O(|R|). ITE-topK maintains k best segments seen so far. So the total cost of the while loop

is O(k|R|log |R|).

The second loop depends on the size of the result set S. Since s.C ⊆ R, the time

complexity of this loop is O(|S||R|).

In total, the time complexity of ITE-topK is O((klog |R|+ |S|)|R|).

5.7 Experimental Study

This section reports on empirical studies that aim to elicit design properties of the proposed

framework and, in particular, of the AUG and ITE algorithms. The studies use a real spatial

network and real facility and trajectory data, as well as synthetic data.

The experiments covered in this section were performed on an Intel Xeon (2.66Ghz)

quad-core machine with 8 GB of main memory running Linux (kernel version 2.6.18).

Both of the algorithms were implemented in Java. Every instantiation of JVM was allo-

cated 2 GB of virtual memory. We first describe the data used in the experiment as well

as the parameter settings. Then we cover experiments that target different aspects of the

algorithms.

5.7.1 Data Sets and Parameter Settings
5.7.1.1 Road Network

The digital road network TOP10DK 1 was used for our experiments. It contains all of

Denmark at a fine granularity. To construct the road network graph, we first identify the

1http://tinyurl.com/bqtgh2g
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vertices. An edge exists between two vertices v1 and v2 as long as there exists a road

segment connecting v1 and v2. In total, the graph contains 465,057 vertices and 920,218

edges.

In order to study the performance of the algorithms thoroughly, we used a real-world

data set and a synthetic data set. Each data set contains a collection of routes (GPS record-

ings received from drivers) and a collection of facilities. Both data sets share the same

underlying road network.

5.7.1.2 Route Data Preparation

We obtained the real route traversal data set from the ”Pay as You Speed” project [53] 2. The

data set is obtained from vehicles driving in North Jutland, Denmark. The data set contains

39,688,695 GPS points produced by 151 different drivers in the period from October 1,

2007 to January 31, 2008. In this data set, each route is represented by a sequence of

GPS points that may deviate from the underlying road network. To solve this problem, we

use an existing technique by Tradišauskas et al. [79] to map-match the route data onto the

underlying road network. Then the sequence of traversed edges has also to be determined

because two consecutive GPS points may be matched to different edges. To achieve it, we

use a bidirectional Dijkstra’s algorithm provided by Pohl [72].

In addition, stationary points, when reported GPS locations are the same for consecutive

time points for the same user, are removed. Further, different trips of users were identified

from the set of GPS recordings. We distinguish a new route when the time period between

two consecutive GPS points is more than 3 minutes. In total, we obtain 51,146 routes. The

median number of GPS points of the routes is 488. The median length of the routes in the

real data sets is 6524.81.

We generate synthetic routes by simulating the movement of a vehicle that emits GPS

points with a fixed frequency (e.g., 0.1 Hz). The length of the each route is thus the speed

of the car times the number of GPS points it emits. In the simulation, routes are allowed to

2http://www.trafikdage.dk/td/papers/papers07/tdpaper27.pdf
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have variable lengths. So when starting a new synthetic route, we first generate a random

number between 480 and 520 for the number of GPS points. We use 480 and 520 because

the median number of GPS points of the routes in the real data set is 488. Then we randomly

select a network point to start a new route. When taking the next point, we follow the graph

and traverse to the next edge (randomly pick one if more than one outgoing edge exists).

The sampling frequency is fixed for one data set to simulate a real life application. We then

vary the sampling frequency, resulting in three different data sets, i.e., short, medium, and

long, with the median lengths of routes being 3405.76, 8030.42, and 12890.12, respectively.

In both the real and synthetic data sets, for each route, we use a random number gener-

ator to generate the user count and route usage randomly from 1 to 20.

5.7.1.3 Facilities

The facility data set contains 16,577 places of interest located throughout Denmark. The

exact address of each facility can be looked up from yellow pages. Since it is meaningless

to take businesses of different types, we group the facilities according to their types (e.g.,

fast food, salon, supermarket). In all the experiments below, the facilities are of the same

type. When generating the synthetic facility data set, we randomly pick network points

from the network. Every facility in either the real data set or the synthetic attracts at least

one route.

Statistics on the data sets and the settings for key parameters are summarized in Ta-

ble 5.3. The default values are in bold.

5.7.1.4 Scoring Function and Score Distribution Model

We observe from the experiments that the scoring function and the score distribution model

do not affect the performance of the two algorithms. Therefore, we show the experimen-

tal results produced when using the first scoring function and the first proposed model

here. Experimental results for using the other scoring function and interest models are also

shown.
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Parameter Range
δ 0.02, 0.04, 0.06, . . ., 0.12
β 2, 3, 4, 5, 6

Num Routes in Real Data 5k, 10k, . . ., 25k
Num Routes in Synthetic Data 10k, 15k, . . ., 30k

Num Facilities 600, 800, 1k, . . ., 1.4k

Table 5.3: Experimental Settings

5.7.2 Effect of δ

Recall that a facility attracts a route if their distance is no further than δ. Figure 5.5 shows

the performance and optimal scores when varying δ on real data.
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Figure 5.5: Effect of δ

Although the running times for both algorithms increase when δ increases (Figure 5.5(a)),

the two algorithms exhibit different patterns. When δ increases from 0.02 to 0.1, AUG in-

creases much faster than ITE. AUG has to explore further on the edges to find the attracting

facilities for each route traversal, in order to decide whether to include them in the aug-

mented graph. This may be the reason why AUG increases more rapidly than ITE. When δ

increases from 0.1 to 0.12, the running time of AUG increases slower. The reason may be

that less facilities are taken into account. In reality, some facilities prefer locations near the

junctions, so the density of facilities in the middle of roads might be less. The increase of

the running time of ITE is less, and there is no sudden change, indicating that δ has little

effect on ITE.

132



Since the optimal scores output by both algorithms are the same, we plot one figure

to show the effect of δ (Figure 5.5(b)). The optimal scores decrease like a staircase. The

reason is that increasing δ may increase the number of attracting facilities for a route,

resulting in decreased scores of segments received from the routes according to the score

distribution model.

5.7.3 Effect of β

Recall that β is the number of subsegments produced when a segment is partitioned. It is a

user-specified parameter. Figure 5.6 shows the effect of β on the running time of ITE.
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Initially, as β value increases, the running time decreases. However, beyond a certain

β value (4 in the figure), with further increase in the next value, the running time starts to

increase. The best performance of ITE occurs when β = 4. When the β value is smaller

than 4, the “zooming-into” an optimal subsegment may not be as fast as when β = 4. On

the other hand, when the β value is greater than 4, computing the lower and upper bounds

of the subsegments can take substantial time, and thus the increase in running time.

5.7.4 Effect of the Number of Routes

Figure 5.7 shows the performance when varying the number of routes using real and syn-

thetic data. Algorithms AUG and ITE perform equally well for a small number (5k) of

routes. But the running time of AUG grows much more rapidly than that of ITE with the
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increase of the quantity of routes. This is expected from the time complexity analysis of

AUG and ITE.
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Figure 5.7: Effect of the Number of Routes on Performance

5.7.5 Effect of Route Length

In this set of experiments, we study the effect of the length of routes on the performances

of both algorithms. The three data sets used in the experiments are explained above. Fig-

ure 5.8 shows the results. For both algorithms, more time is needed for longer routes when

the number of route traversals ranges from 5k to 25k. Again, the running time of AUG

increases faster than that of ITE.
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For AUG, computing the Attraction List for the vertices takes longer time as each route

covers more vertices on average. For ITE, each edge intersects more routes on average. So

after splitting a segment, more routes have to be examined to calculate the lower and upper

bound scores of the subsegments, resulting in longer running time.
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5.7.6 Effect of the Number of Facilities

Figure 5.9 shows the running time of AUG and ITE when varying the number of facilities.
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Figure 5.9: Effect of the Number of Facilities

For both real and synthetic data sets, it can be seen that AUG is affected a little more

by the increased number of facilities. The reason is that in AUG, facilities have to be

augmented, and then the attraction lists have to be calculated for them, resulting in much

computational overhead. In contrast, there is no need to augment facilities in ITE. When

ITE partitions the segments, no house-keeping work is necessary for facilities. It just needs

to take care of the relative positions of the newly produced segments to the facilities.

5.7.7 Effectiveness of Pruning Strategies

In this set of experiments, we study the effectiveness of the pruning strategies in ITE by

keeping track of the number of segments generated, partitioned, and pruned in the course of

finding the optimal segments. Figure 5.10 shows the respective segments generated, split,

and pruned by Lemma 5.5.2 and Lemma 5.5.3 when running ITE with default settings.

Label “total” means the total number of generated subsegments, “splits” is the number of

subsegments that needs further splitting, “prune1” is the number of subsegments that are

pruned using lemma 5.5.2, and “prune2” is the number of subsegments that are pruned

using lemma 5.5.3.
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Figure 5.10: Effect of Pruning Strategies

It is observed that in the real data set the number of segments that require further split-

ting is 4,273, which is approximately 25% of the number of total segments, whereas the

number is between 5% and 10% in the synthetic data set.

In the real data set, almost 60% of the generated segments that cannot contain an opti-

mal segment are been pruned by Lemma 5.5.2. In contrast, Lemma 5.5.3 prunes 2.7% of

the total segments.

In the synthetic data set where route traversals are generated more evenly throughout the

entire map, Lemma 5.5.2 prunes almost 10% of the total generated segments. Lemma 5.5.3

prunes around 1% of the total segments.

5.7.8 AUG-topK and ITE-topK

Here, we compare the performances of AUG-topK and ITE-topK by varying k. The exper-

iment results are shown in Figure 5.11.

For both data sets, we observe the running times of both AUG-topK and ITE-topK

increase with k. In addition, for both data sets, ITE-topK outperforms AUG-topK by a

wide margin, thanks to the pruning techniques that greatly reduce the search space in ITE-

topK. The difference is even bigger in the synthetic data set where the number of routes is

greater and the chance for routes to overlap with each other is bigger.
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Figure 5.11: Effect of k

5.7.9 Effect of Scoring Functions

We show experimental results of AUG and ITE with the scoring function scorecap−x(r).

The results are shown in Figure 5.12
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Figure 5.12: Effect of the Number of Routes on Performance

It is verified with ITE consistently outperforms AUG with different scoring functions.

Comparing these two figures with Figure 5.13(a) and Figure 5.13(b), it is also verified that

scoring functions have very little effect on the performances.

5.7.10 Effect of Interest Models

We also show experimental results for the second interest model. The results are shown in

Figure 5.13
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We also observe that the running time is almost the same with different interest models.

The result is reasonable because to both AUG and ITE, absolute values of the scores of

the segments or edges do not have any meanings. Instead, only their relative values to

each other are meaningful. Different scoring functions and interest models only affect the

absolute value of the score of each segment or edge. Therefore, they have little effect on

the running times of the experiments.

5.8 Summary

The chapter formalizes a modern version of the classical facility location problem that

takes into account the availability of customer trajectory data that is constrained to a road

network, rather than simply assuming the availability of static customer locations. In the

resulting framework, route traversals by customers rather than customer locations are at-

tracted by facilities. The framework enables a wide variety of choices for assigning scores

to the routes traversed by customers and for distributing these scores to segments in the

underlying road network, thus offering flexibility that aims to enable applications with

different types of facilities. We believe that this is the first work to explore this natural

generalization of the classical facility location problem.

Two algorithms, AUG and ITE, are provided that solve this generalized problem. AUG

takes a graph augmentation approach, ITE iteratively partitions road segments into smaller
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pieces (subsegments), and uses a scoring mechanism to guide the selection of promising

segments for further partitioning. We also extend AUG and ITE to find topK optimal

segments, in case that users might want to take other factors into account. We report ex-

perimental results with both real and synthetic data that demonstrate the efficiency of our

proposed algorithms. For the data sets considered, ITE outperforms AUG and ITE-topK

outperforms AUG-topK, thanks to the pruning techniques employed by ITE to reduce the

search space quickly.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

With the proliferation of GPS-enabled devices and the accumulation of GPS data, it is

challenging to devise efficient algorithms to process large-scale, real-time location-based

queries, and devise sophisticated algorithms to extract information and knowledge from

trajectory data. This thesis addresses these challenging tasks by working on three types of

queries, the Moving Continuous Query (MCQ), the group query, and the optimal segment

query.

A location-based query is called a Moving Continuous Query (MCQ) if both the query

issuer and query result are mobile clients, and the query issuer has to continuously know

the result. We propose a distributed client-server architecture for efficiently processing

such queries. In our solution, a cluster of interconnected servers takes care of the global

view, while part of the computation is relegated to the clients to verify actual results. In

particular, we consider processing two most important queries in spatial-temporal database,

range query and kNN query. We demonstrate the effectiveness and efficiency of our ap-

proach through extensive simulation experiments. Our method reduces both the server-side

workload and the client-server communication cost in comparison to the most recent state-

of-the-art scheme, while it is much more scalable to growing number of moving clients.

The notion of trajectory group enables the prioritized discovery of interesting moving

object clusters from trajectories that are sampled differently. Techniques based on the con-
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tinuous clustering of moving objects using an effective pruning strategy are proposed to

efficiently discover such groups. A scoring function enables the ranking of the discovered

groups according to their size and duration. Unlike existing techniques, our approaches

offer sampling independence, integrate trajectory simplification seamlessly, and function

in online settings. The effectiveness and efficiency of our schemes are studied using real

data sets.

We study the problem of finding optimal locations to setup new facilities for a more

general form of customer data, the routes, than static customer points. To the best of our

knowledge, this is the first work which exploits the movement history of customers in-

stead of static customer points in the line of research. This knowledge allows us to find

better locations. Two interest models are presented to reflect various types of businesses.

Two algorithms, AUG and ITE, have been designed to solve this generalized problem with

these interest models. AUG takes a graph augmentation approach, whereas ITE iteratively

partitions the road segments into smaller pieces (subsegments), and uses a scoring mech-

anism to guide the selection of promising subsegments for further partitioning. We have

also extended AUG and ITE to find topK segments for users who may wish to take other

factors into consideration. Extensive experiments with a real and a synthetic data set were

conducted. The results have demonstrated the effectiveness and efficiency of our proposed

algorithms.

6.2 Future Work

There are several directions that we would like to work on in the future.

For Chapter 3, the proposed architecture for processing MCQ queries is actually very

generic with respect to. queries. We are interested in adopting it for more spatial queries

(e.g., Continuous Reverse kNN query) and in comparing its performance with other schemes.

In Chapter 4, in the group discovery framework, in order to improve its efficiency,

we need to smoothen the trajectories and thus reduce the number of possible events. In
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this thesis, we have explored the possibility of applying online trajectory simplification

technique. Future work can also employ shared prediction-based tracking [21, 78] when

collecting locations points. In addition, tries are used widely due to their simplicity and

efficiency. Although the computational overhead is substantial, using a trie for storing and

representing clusters is promising, and future work that aims to reduce the computational

overhead is in order. Another direction is to relax the distance constraint in order to allow a

member to exit the cluster for a short while and then join back. Relaxing distance constrain

is expected to have two effects. Some previously un-discovered groups may be found by

relaxing distance constraint. Some groups that are already found may also have higher

scores because of the longer duration, and thus become more important.

In Chapter 5, interesting directions also exist for the optimal segment query. We show

two of them. First, the optimal segments can be incrementally evaluated when new routes

are available. Incremental evaluation allows more flexibility when several sets of routes

are continuously added and may help improve the performance. Second, future work may

consider finding topk segments. It may be both valuable and interesting to decision makers.

With the rise of online social networking, it is interesting to support location-aware

applications in online social networks with real-time location information and/or trajecto-

ries. One direction is to target more sophiscated path queries. Given a number of places of

interest and time/financial constraints, it is useful to propose possible paths to visit them,

especially when these places are different cities. Symmetrically, after the user selects her

favorite path, it is useful to propose places of interest along the path to make the journey

more fun. Taking it one step further. It can be attractive to a traveler to find friends who

share a common (partial) traveling path, so that they can travel together. In order to sup-

port such applications, efficient algorithms operating on real or hypothetical itinerary are

required.

Another possible direction is to support applications in the so-called “Smart City”

project. It is possible look at past traffic conditions and other supplementary informa-
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tion (e.g., working day/holiday, weather condition, and calendar etc.) to predict today’s

traffic condition and to provide transportation suggestions to the the user, in order to have

a smoother journey in a city.

Many works in this area, including this thesis, do not take into account of user location

privacy. However, in many real-life applications, location privacy is an important issue,

especially when these applications target people. We believe that a good location privacy

protection mechanism should be employed in many applications. In the future, we would

work on proposing location privacy protection techniques and investigate how the location

privacy-protected data may affect existing schemes.
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