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ABSTRACT 

A body sensor network (BSN) refers to a set of communicating, wearable computing 

devices. They are gaining popularity especially in bio-monitoring applications. In body 

sensor networks, the hardware and software often need to be co-designed specifically 

for an application. BSN applications are particularly sensitive to the tradeoff between 

performance and energy, both of which are also often severely constrained.  However, 

often the hardware is still under development when the application running on it is 

being implemented. This makes any estimation of this tradeoff in the design of the 

hardware and the software inaccurate. In this thesis, we propose a unified design 

framework to manage the complex development of BSN application with the aims of 

enhancing modularity and reusability.  

The proposed framework consists of a set of Unified Modeling Language (UML) 

2.0 profiles for both software and hardware designs. For software portion, we have 

chosen to use nesC-TinyOS, the most popular programming language (nesC), and 

runtime system (TinyOS) platform for BSN applications. For hardware, we have 

chosen to use SystemC, the de facto standard specification language for hardware 

design. The proposed UML profiles abstract the low-level details of the application, 

and provide a higher level of description for application developers to graphically 

design, document and maintain their BSNs that consist of both hardware and software 

components.  Using profiles for hardware platforms, we are able to customize a UML-

based hardware simulator for BSNs. Our interface synthesis technique allows us to 

reuse existing design components (IPs) with a “plug-and-play” approach. This highly-
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reconfigurable simulator acts as a fast and accurate performance evaluation tool to aid 

both software and hardware design.  

 With the aid of a UML profile for TinyOS and a pre-defined component 

repository, minimum knowledge about TinyOS is needed to construct a body sensor 

network application. The hardware simulation environment allows users to customize 

the hardware platform before a commitment is made to the real hardware. In our 

framework, we have also modeled our simulator in UML. Customized simulator can be 

automatically generated after refining system model or re-configuring the hardware 

parameters. Key design issues, such as timing and energy consumption can be tested on 

this automatically generated simulator. The framework ensures a separation of software 

and hardware development while maintaining the close connection between them.  

The thesis will describe the design and implementation of the proposed 

framework, and how the framework is used in the development of nesC-TinyOS based 

body sensor network applications. Actual cases studies are used to show how the 

proposed framework can be used to adapt quickly to changes in the hardware while 

automatically morphing the software implementation quickly and efficiently to fit the 

changes. 
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1.1 Body Sensor Network  

With the recent advances in wireless sensor network and embedded computing 

technologies, wearable sensing devices have become feasible in meeting the demands 

for healthcare and bio-monitoring. There are now numerous examples of such body 

sensor network (BSN) applications [25][34]. Generally speaking, a BSN system 

collects, processes, and stores physiological (such as electrocardiogram (ECG), and 

blood pressure), activity (such as walking, running, and sleeping), and environmental 

(such as ambient temperature, humidity, and presence of allergens) data from a host’s 

body and its immediate surroundings. It may even be able to perform actuation (such as 

in the form of drug delivery) based on the data collected[10]. BSNs can be very useful 

in assisting medical professionals to make informed decisions about the course of the 

patient’s treatment by providing them with continuous information about the patient’s 

condition. 

Due to its reliability and the ability to detecting the onset of acute diseases, or 

monitoring chronic illnesses, BSNs have been used in a wide range of applications. The 

common and important applications of BSN include the monitoring of patients who 

have left hospital care, or the detection of the onset of different conditions such as 

asthma, or heart attacks. The following are two examples of sound BSN applications: 

• A BSN worn by a patient that automatically alerts the hospital at the critical 

moment just before the onset of a heart attack, through measuring changes in 

the patient’s vital signs. 
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• A BSN on a diabetic patient that automatically injects insulin through a pump, 

as soon as the level of insulin falls below a certain critical level.   

Other applications of this technology include sports, military, and security where there 

is a need for the seamless exchange of information between individuals, or between 

individual and machines. 

1.2 Conventional Design Methods 

Given the wide variety of BSN applications, each with its own customized hardware 

and software, the design of these applications is attracting more concerns. The basic 

structure of a BSN is shown in Figure 1. As shown in the figure, wireless wearable 

sensors and a local processing unit (LPU) are attached to human body to measure the 

status of the patient. The latter is normally a PDA or a smart phone.  The sensors 

collect information, and after doing some basic processing, they will send the results to 

the LPU via wireless communication channels. The LPU processes the data collected 

from sensors, and makes decisions such as sending alert, or making a call to the doctor 

in charge.  

Figure 2 outlined the conventional design flow for BSN applications. It usually 

starts with some informal design specifications. These specifications include functional 

and performance requirements. Designers will then partition the BSN system into 

software and hardware portions, and assign them to different developers. The hardware 

and software designers will then work independently based on these specifications. 

Hardware components are refined from the specifications to the implementation. 
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Software components are subsequently implemented and integrated with the hardware 

components to complete the system. It is only after this integration, the functionality 

and performance metrics can be evaluated. If bugs are found at this stage, identifying 

and fixing the bugs is tedious and time-consuming. A large amount of effort generally 

needs to be spent at the post-developing stage.  
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Accelerometer 

microphone 
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Figure 1: A typical Body Sensor Network design 
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Integration puts together the separate software and hardware components to form 

the complete system. It is also a time consuming and error-prone process. The separate 

development of hardware and software restricts the ability to study the tradeoffs 

between hardware and software. A “hardware first” approach is often pursued with the 

following consequences:  

• Hardware is specified without a full understanding the computational 

requirements of the software. 

• Software development does not influence hardware development, and changes 

made to hardware may not be reflected promptly in software. 

Following this approach, any problem encountered as a result of late integration can 

cause costly modifications and schedule slippage.  

 

Figure 2: A traditional design flow of BSN applications 
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1.3 Challenges of Body Sensor Network Application Design 

Developing BSN systems is not easy. The nature of BSN system brings unique 

challenges to BSN designers. BSN applications have to operate in a continuous manner 

on the host body. Much of the theoretical foundation for general wireless sensors also 

applies to BSNs, with particular emphasis on issues such as power optimization, battery 

life performance, and radio design. There are also other issues, such as usability, 

durability, robustness, how well the sensor ‘fits’ in with the application, and the 

reliability and security of the data, that must be considered for a successful deployment 

of any BSN system. Sensor networks often suffer from the so-called ‘reliability 

dilemma’ -- the more reliable and secure is the data transmission, the higher is the 

overhead, and consequently more power is required. This leads to a reduction in battery 

life which is generally a bad thing for BSNs.    

Another of the frequent issues that a BSN designer encounters is that hardware 

components have to be customized to meet any new design requirements. Continuous 

monitoring requires a lot of energy, and to give accurate and immediate detection 

result, a BSN node has to meet  processing speed and transmission rate requirements 

that are often very energy consuming. On the other hand, BSN devices must be small 

enough to be wearable or even implanted, hence limiting its computational power and 

energy. This challenges the BSN designer to find an optimal design that can achieve the 

right balance of battery life and accuracy of measurement. The challenge for the 

designer would be how he can use these components in such a way that the stringent 

requirements of the application are met. There are also standard BSN devices available. 
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The designer also has the flexibility to customize the BSN hardware components, for 

example, increasing the bit width, or adjusting the clock’s speed when trying to match 

the computational accuracies and energy requirements. Given the large design space, 

searching for the optimal solution may be very time-consuming.  

To achieve the optimal solution, designers need to explore the different design 

alternatives and tune their application constantly. The often non-availability of real 

hardware is a particularly serious challenge. Because the target hardware and the 

software are being developed concurrently, BSN application designers have to rely on 

existing BSN platform to verify and test their implementation. However, differences in 

the hardware make the timing and energy analysis inaccurate, and the implementation 

will require another round of customization before the final integration with new 

hardware platform. A flexible and efficient tool for pre-integration testing would be 

useful.  

In BSN application, hardware and software components have greater impact on 

each other than in other platforms. However, without actual integration, the exact 

nature of this dependence becomes very difficult to characterize. Continuous 

assessment of the overall performance metrics will help designer find the optimal 

solution more efficiently.  

Moreover, the late integration also postpones the evaluation of design metrics 

and bug identification, such as bugs in communication channel which may only be 

found after integration. Identifying and fixing a bug after integration can be very 

difficult and expensive for both hardware and software designers. Figure 3 shows the 
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recommended design flow for BSN application designs is supported by our proposed 

framework. 

 

Figure 3: Our recommended design flow for BSN application 

1.4 Embedded System Design and UML 

A BSN application is a kind of embedded system. Therefore the design techniques for 

embedded systems also apply to BSN. In this section, we will elaborate the design and 

co-design techniques using UML that is inherited from general embedded systems.  

An embedded system is a computer system designed to perform specific functions 

often with real-time computing constraints.  It is embedded as part of a more complete 

device typically including hardware and software parts. The uses of embedded systems 

are virtually limitless, because every day new products are introduced to the market that 
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utilizes embedded computers in novel ways. Products with embedded systems include 

computer parts, mobile phones, machine control units, automobile, etc, and they are 

closely related to our everyday life. All of these makes embedded system evolve very 

rapidly. On the other hand, embedded system designs are performed in a rather ad hoc 

way. Different types of algorithms (e.g. signal processing, communications, and 

controls) are implemented using a variety of technologies (e.g., digital signal 

processors, microcontrollers, field-programmable gate arrays, application-specific 

integrated circuits, and real-time operating systems). The complexity and scale of 

embedded systems bring many challenges to embedded system designers. 

With advances in semiconductor technology, it is now possible to integrate most 

if not all the hardware modules required by an embedded systems into a single chip, 

giving rise to the so-called “system-on-a-chip” (SOC) platform. With complexities of 

SOCs rising rapidly following Moore’s Law, the design community has been searching 

for new methodologies that can handle the complexities with increased productivity 

and decreased times-to-market. The obvious solution that comes to mind is increasing 

the levels of abstraction. In other words, using a modular approach to compose the 

overall system with increasing larger basic building blocks (or “intellectual property” 

(IP) blocks). However, it is not clear what these basic blocks should be beyond the 

available processors and memories. Furthermore, with multitude of processors and 

variety of IP blocks on the chip, the difference between software and hardware design 

has become indistinguishable. However, the existence of often incompatible tools for 
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utilizing and deploying the hardware and software components has prevented the 

creation of a comprehensive and integrated design flow. 

Hardware and software essentially share the same development pattern. With 

dramatic increases in the size and complexity of both hardware and software, more user 

friendly and reusable design and development methodologies were introduced to cope 

with these issues.  

Introducing the Unified Modeling Language (UML) into the design of system-

on-chip has become an accepted solution to the ever increasing complexity. UML is a 

standardized general specification language which was originally created for software-

based system. For decades, software designers have been applying it to every stage of 

software design and implementation. With the power of the UML, designers are able to 

model their application from different points of view, share their ideas with commonly 

understood notations.  

A key strength of UML is its ability to be extended with domain-specific 

customizations, as so-called profiles. A profile in the Unified Modeling Language 

(UML) provides a generic extension mechanism for customizing UML models for 

particular domains and platforms. Extension mechanisms allow refining standard 

semantics in strictly additive manner, so that they can't contradict standard semantics.  

Profiles are defined using stereotypes, tag definitions, and constraints that are applied to 

specific model elements, such as Classes, Attributes, Operations, and Activities. A 

Profile is a collection of such extensions that collectively customize UML for a 
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particular domain. In this thesis, we will propose a few UML profiles to model BSN 

applications in different domains. 

By decoupling the specification from implementation and using formal 

mathematical models of computation for specification, we gain the ability to perform 

fast simulation and efficient synthesis of complex heterogeneous systems. We model 

complex systems as a hierarchical composition of the simpler models of computation. 

Some of these simpler models of computation, such as types of finite state machines, 

dataflow models, and synchronous/reactive models, have finite state. Because they 

have finite state, all analyses of the system can be performed at compile-time. For 

example, memory usage and execution time can be determined without having to run 

the system. These models can be overlaid on an implementation technology (such as C 

or VHDL). 

1.5 Levels of Abstractions  

Design of anything, from a web application to an embedded software system to a 

hardware device, is done at some level of abstraction. Simply, a level of abstraction is 

the term that the designer uses to describe the thing being built. Level of abstraction 

usually refers to the level of complexity by which a system is viewed or programed. 

The higher the level, the less detail. The lower the level, the more detail. A level of 

abstraction is determined by the objects that can be manipulated and the operations that 

can be performed on them. In programming terms, the objects are data types and the 

operations are the operators that can be used in expressions and control constructs. 
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The notion of abstraction levels was introduced with software systems, since 

there were several obvious levels: machine code, assembly language, subroutine 

libraries, and eventually interpreted application languages like SQL. In hardware design, 

we are familiar with several low levels of abstraction: polygon, transistor, gate, and 

register-transfer (RTL).  On top of these layers, hardware designers have introduced a 

few more levels to cope with the ever increasing complexity. Figure 4 gives a list of 

typical levels of abstraction being used in software/hardware design. The levels from 

top to bottom are: Application level, assembling level, machine code level, hardware 

level, transaction level(TLM), behavioral level, Register transfer level(RTL) and netlist 

level, and gate level.  

 

Figure 4: Typical levels of abstraction  in software/hardware design 

 

 

Software Domain 

Hardware Domain 
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Gate level 

At gate level, hardware is described as connected logic gates or transistors. The 

combinations of these gates will react at the edge of clock and perform the logic 

functionalities.  

Netlist 

In Netlist level, hardware systems are described as directed graph with simple boolean 

gates as nodes.  

Register transfer level 

RTL level code is characterized by arithmetic expressions, including conditionals and 

control constructs, which execute in a fixed schedule of cycles. The data objects, 

registers and wires, typically correspond to hardware objects. Low level details such as 

clock signals are also modeled. RTL simulation is normally defined as cycle accurate.  

Behavioral 

Behavioral code looks like normal sequential code found in a general purpose 

programming language. It does, however, have structural information in the form of 

modules and ports. Simulation at behavior level can be defined as cycle accurate, and 

the simulation is faster than RTL level.  

Transaction level  

A transaction object is an abstraction of an interface between modules (or more 

generally, concurrent processes). An example would be a FIFO buffer. The transaction 

object would take the place of several ports in the module port list. The operations done 
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on the object would be get and put, and perhaps query status. Another example would 

be an AMBA bus interface. Simulation at transaction level is usually faster than the 

previous levels and not cycle accurate.  

These levels of abstractions are used in different stages of the hardware design 

process. Gate level and netlist level are very close to the real hardware, and they are 

used by circuit designers for physical designs. Hardware designers spend great effort on 

system level designs, which is at RTL and higher levels. Simulation speed varies in at 

great scare. For example, the RTL level simulation can be 100 time slower than the 

simulation at TLM level models. However, simulation at RTL level is defined as cycle-

accurate, which is much more accurate comparing to the transaction level. The lower 

level simulation will take even more time. Our design framework will lift the 

abstraction level up to UML level, and designer will be able to focus on the relatively 

high abstraction levels, starting from UML level and evolves to the register transfer 

level. Our research is focusing on system level designs, although the produced 

implementations might require further optimization in physical design procedure. The 

main objective of the UML framework is to help the designers on refinement of 

codesign system with fast prototyping and integrated simulation models. 

Our framework will focus on system level design procedures where simulation 

models are used to describe the design. In our framework, model simulation is the main 

method for the system analysis and validation. Transitions are made automatically from 

higher level to lower level with minimal user interaction. By working at a high level of 

abstraction, our framework can be used earlier in the design process than existing tools. 
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We automatically generate the working code which can be used directly for simulation, 

and through simulation, we can obtain accurate evaluation of the system, and therefore 

the designers can optimize their design based on the simulation result. 

1.6 Our Contributions 

This thesis summarizes our research on exploring usage of UML on BSN design. 

The main contribution of this thesis is the unification of software and hardware design 

using a single design platform: UML, and subsequently applying it to the design of 

BSN applications. The detail contributions are as follows.   

• We explored how UML can be used to design the digital components of the 

embedded system. We used UML to capture functional and behavioral 

specification of what are low level designs. A mapping was established between 

UML and a hardware description language, namely SystemC. Different levels 

of executable implementation can be automatically generated to perform 

simulation and verification. The semantics of chosen UML notations are then 

been extended to capture more design constraints such as clocking.  

• We extended the UML profile for digital hardware to also handle analog and 

mixed signal systems. Many sensors are analog in nature, and their output need 

to be translated by mixed signal components for digital processing and 

communication. In order to express analog and mixed signal designs, we have 

chosen to use SystemC-AMS, a SystemC-complaint hardware description 

language for analog systems, as the implementation language. In a similar way, 
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UML is used to capture the specifications of mixed signal systems. Mappings 

are established between the design and its implementations. Using this novel 

approach, the analog part of the application can be seamlessly integrated with 

the digital components to capture hardware designs with a high degree of 

fidelity.  

• We introduced a UML-based interface synthesis technique that solves the 

problem of integration heterogeneous “intellectual property” (IP) blocks by 

reconfiguring their bus interfaces.  An IP block refers to a pre-defined hardware 

or software functional component that has a well-defined interface. IP blocks 

may perform similar functionalities but their interfaces may differ, and are 

normally incompatible with the current design.  Reusing existing IP blocks for a 

new design makes a lot of economic sense as they already have been purchased, 

or designed and tested.  However, the incompatible interfaces make reuse 

technically challenging. To facilitate reuse, we chose the OCP (Open Core 

Protocol) as the standard bus interface. We use UML to model the IP 

communication interfaces, and automatically generate wrappers, so that the 

packaged IP cores can be easily assembled together using the OCP bus standard 

for simulation. In order to do this, we extracted the essential aspects of the bus 

communication, and modeled the interfaces using UML notations. UML 

notations are then used to produce wrapper code. The generated wrappers can 

be directly used to wrap up IP blocks for test and simulation.  
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• We developed a customizable simulator for BSN hardware platforms using the 

proposed hardware profiles and interface synthesis technique based on UML. 

Exiting IP blocks can be reconfigured and added in to the simulation platform, 

and our interface synthesis technique allows us to reuse existing design 

component (IPs) with a “plug-and-play” approach. The hardware simulation 

environment allows users to customize the hardware platform before a 

commitment is made to real hardware. In our framework, we have also modeled 

our simulator in UML. Implementations can be automatically generated by 

simply configuring some hardware parameters. Key performance issues, such as 

timing and energy consumption can be tested by simulating the generated 

implementation on this automatically generated simulator. This highly-

reconfigurable simulator provides a fast and accurate performance evaluation 

tool to aid both software and hardware design. 

• We proposed a UML profile for the software portion of BSN applications, and 

we have chosen TinyOS as our target platform. TinyOS is the most popular 

software platform of BSN application. The program running on TinyOS is 

written in nesC, a dialect of C. Using this UML profile, a designer can focus on 

the high level specifications rather than worry about the low level nesC 

implementation during the design stage. The models of the TinyOS components 

are kept in a repository. We find that the BSN applications often share similar 

structures, and these models are highly reusable.  With the aid of a UML profile 

for TinyOS and a pre-defined component repository, minimum knowledge of 

TinyOS is needed to construct a body sensor network system.  
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• We proposed a novel co-design framework for BSN applications that is based 

on UML. The proposed UML profiles abstract the low-level details of the 

application and provide a higher level of description for application developers 

to graphically design, document and maintain their systems that consist of both 

hardware and software components. The framework ensures a separation of 

software and hardware development while maintaining the close connection 

between them. 

The thesis will describe the design and implementation of the proposed framework, and 

how the framework is used in the development of nesC-TinyOS based body sensor 

network applications. Realistic cases studies are used to show how the proposed 

framework can be used to adapt quickly to changes in the hardware while automatically 

morphing the software implementation quickly and efficiently to fit the changes. 
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Figure 5: Structural diagram of our BSN co-design framework 

1.7 Thesis Structure  

Figure 5 shows the structural contents of the thesis. In the structures, several UML 

profiles are the directly contributions. Based on these profiles, we apply them to aid 

BSN software and hardware design and implementation.  

Reminder of thesis is organized as follows. In next chapter, we will present UML 

profile for SystemC which are used to model the digital portion of an application. Some 

related works, such as UML, SystemC, will also be introduced in chapter 2. UML-

based interface synthesis technique is presented in chapter 3, which will be used to 

specify and generate glue logic between pre-defined hardware components. In chapter 
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4, we outline the UML profiles for SystemC AMS which can be used to model the 

analog portion of system. In Chapter 5, we will apply the profiles to a BSN hardware 

simulator, the details of UML profiled SystemC simulator for BSN hardware platform 

will be presented. In chapter 6, we first present the design framework for TinyOS, and 

then we will show how we can unify the software and hardware portion of BSN 

application by integrating the generated software code with the SystemC based 

simulator. Chapter 7 concludes the thesis and presents possible directions for future 

works.  
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Chapter 2  Background and Related Works on 

our UML-based Framework 
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2.1 UML 

With the increasing complexities of embedded systems, designers have been searching 

for new methodologies that can manage the complexity as well as yielding high 

productivity. The Unified Modeling Language (UML) is a proven modeling and 

specification language that has been used widely in development of complex software 

applications [80]. Embedded designer found that embedded system design can benefit 

from UML in similar way.  

UML is an object-oriented modeling language standardized by the Object 

Management Group (OMG) mainly for software systems development[80]. It is a 

visual modeling tool for specifying, visualizing, constructing and documenting 

software systems and business processes. UML consists of a set of basic building 

blocks, rules that dictate the use and composition of these building blocks, and common 

mechanisms that enhance the quality of the UML models. Its rich notation set has made 

UML a popular modeling language in multiple application domains for system 

documentation and specification, for capturing user requirements and defining initial 

software architecture. It is considered the best understanding of system by designers 

and programmers.  

While UML is well-suited for modeling software systems in general, it lacks 

support for some aspects important to embedded real-time systems, e.g. modeling of 

timing constraints, signals, and independent components[97]. Therefore, different 

proposals to extend the UML for modeling real-time systems have been made. The 
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Object Management Group (OMG) proposes to extend the UML by building UML 

“profiles” that contain the needed extensions[81]. However, this extension mechanism 

is currently not part of the standard and it is still discussed how to realize it. In parallel 

the leading CASE tool vendors implement proprietary extensions to the UML. Rational 

and Telelogic adapt UML for modeling embedded real-time systems by combining it 

with the modeling languages from the real-time (ROOM) and telecommunication 

domains (SDL), while I-Logix stays with Standard-UML, but provides a very powerful 

implementation of statecharts. [68] 

The current version of UML called UML2, which is a large collection of 

diagrams and notations. It has 13 diagrams types. Here, we briefly introduce the 

diagrams we use in our framework. UML class diagram and state chart are chosen to 

capture the structure, behaviors and the deployment of the hardware components.  

Class diagrams show the building blocks of the system, their inter-relationships, 

and the operations and attributes of the classes. We found that class diagram can 

represent the structural information of embedded system in a quite natural way. The 

individual components of the hardware components can be drawn as classes, and 

wiring among them can be modeled as relations or interfaces bindings via UML port.  

Stereotypes can be used to distinguish the difference types of hardware components. 

The composite classes enables designer to view the under design system from system 

level view down to detailed implementation of a building class. Each of the class in 

class diagram can be associated with a state chart diagram to specific its behaviors. 

State charts depict the dynamic behavior of an entity based on its response to events, 
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showing how the entity reacts to various events depending on the current state that. 

This event-triggered model is well-suited abstraction to the signal-triggered hardware 

components, where signals can be considered as events, and output signals are modeled 

as reactions. From practice, we found that these two types of diagrams are well-suited 

to our specification requirements.  

2.2 SystemC 

SystemC[75] is a system level modeling language based on C++. It provides library 

supporting system level design. It has become de facto standard for embedded 

hardware design language. SystemC has desirable properties for system level design. 

Besides, SystemC use most of C++ grammar, and this allows user to learn it in a very 

short time. Even those who have no experience with programming in SystemC can read 

and understand the code. 
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Figure 6: Different levels of SystemC model 

Using the SystemC library, designer can model a system at various levels of 

abstraction as shown  in Figure 6. At the highest level, only the functionality of system 

may be modeled. For hardware implementation, model can be written either in a 

functional (behavioral) style or RTL (register-transfer level) style. [40] The software 

part of a system can be naturally described in C++. Interfaces between software and 

hardware and between hardware blocks can be described either at the transaction-

accurate level or at the cycle-accurate level. Moreover, different parts of the system can 

be modeled at different levels of abstraction and these models can co-exist during 

system simulation. C++ and SystemC classes can be used not only for the development 
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of the system, but also for the test-bench. SystemC consists of a set of header files 

describing the classes and a link library that contains the simulation kernel. Any ANSI 

C++ compliant compiler can compile SystemC, together with the program. During 

linking, the simulation kernel of the SystemC library is used. The resulting executable 

serves as a simulator for the system designed.  

SystemC provides an ideal platform for developing embedded systems. Software 

and hardware parts can both be specified using the same language and verified using a 

common test-bench. The hardware parts may be refined up to RT level and 

implemented by using synthesis tools. The hierarchical modeling features of SystemC 

are supported by the hierarchical specification model. This facilitates not just a 

structured design, it also enable IP reuse. The FSMs can also be organized in a 

hierarchical manner, implementing a Hierarchical control flow.  

SystemC-AMS[76] is an extension of SystemC[75] to describe mixed-signal design, 

and it has been popularly studied to model mixed signal systems such as an inertial 

navigation system [18], the I2C protocol communication [50], and wireless sensor 

network node [54]. We will focus on SystemC-AMS profile in chapter 3.  

2.3  UML-based SystemC Design Methodology  

This section briefly discusses other projects that have investigated integrating formal 

and informal approaches to systems development, where multiple modules are used to 

describe a system.  

 



 

 

 

36

2.3.1 Our previous works on UML to SystemC  

Some of our previous works was focusing on the UML-based design technique on 

hardware[37][38][93][97]. In these works, we have proposed a UML profile for 

SystemC to capture the design specification of a system, including its architecture and 

behaviors. Two types of UML diagrams, namely class diagram and statechart diagrams 

are chosen as the modeling tool. With proposed profile, designers can leverage the 

design abstractions to UML level, and with the designed models can be translated into 

SystemC executable programs to do simulation so that designer can verify whether the 

design satisfies the requirements based on the simulation results. If the results are not 

satisfactory, designers can go back to UML model and modify it, re-generate SystemC 

code and check its behaviors again.  

The UML models can be mapped into different levels of abstraction for different 

purposes. We have supported transaction level modeling(TLM), behavioral and register 

transfer level(RTL). TLM level offers faster simulation rate, and the BSN simulator 

presented in chapter 5 will employ this level of simulation. Designer can also target the 

code generation to RTL level, which describe the operation of a digital circuit with 

hardware registers and signals, the RTL level components can be considered the 

program running on the target platform.  

2.3.2 YAML 

Most of the effort we have seen in the UML-SystemC translation was to generate 

skeleton SystemC code from, in particular, class diagrams and object diagrams. An 
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example of this kind of projects is YAML[84]. YAML uses UML notations to model 

hardware and allows user to input information about objects and relationships into a 

UML class diagram (for behavioral hierarchy) and object diagram(for structural 

modeling). YAML generates the C++ code for the design, using information input by 

the user to the UML class and object diagrams.  

YAML provides a user friendly graphical interface to model systems under the 

guidelines of UML, using the SystemC and ICSP C++ class libraries. Users can specify 

the details of SystemC and ICSP classes into the UML front end. The code generated 

by YAML conforms to the syntax of ICSP and SystemC classes and can be directly 

compiled and simulated. 

The major advantage of using YAML is the ability to avoid the complex 

syntactic details involved in using the C++ libraries. User can generate the SystemC + 

ICSP code from YAML, after specifying the various details in the class and object 

diagram. YAML has been used to model various designs including a DLX compatible 

processor pipleline. The DLX pipeline code consists of around 2000 lines of C++ code. 

Most of which was generated automatically by YAML. It raises good results in 

generating and simulating the models. 

YAML gives some ideas of modeling the system functional and structural information. 

However, it lacks of the behavioral requirement support, and hence cannot capture the 

requirement of control information.  
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2.3.3 Auto-generation of SystemC model from Extended Task Graphs 

To model the behavior of hardware, Klaus proposed to use extended task graph[70]. 

Task graph gives an accurate definition of time and different model of computation are 

emphasized. Task graphs are a widely-spread means for the specification of embedded 

systems behavior. Task graphs have a well-defined execution semantic and a temporal 

order and other abstract modeling characteristics. A task graph represents operations 

and data dependencies between them. Its main features are both the modeling of control 

flow and a hierarchical structuring of functionality.  

The methodology was successfully applied to complex specification consisting of more 

than 200 tasks. Besides scheduling, the complexity is linear in the number of tasks and 

allows handling such complex systems very easily. The produced code is quite readable 

using well-defined signal names derived from the specification and, as mentioned 

earlier, the code is synthesizable. 

2.3.4 RoseRT to SystemC translation 

Another team in our department is exploring a similar method to translate from 

UML to SystemC.[88] A RoseRT wrapper of SystemC has been built to produce 

SystemC code from restricted RoseRT design. Despite its intention as a tool for general 

purpose software development, RoseRT has close similarities to SystemC. Capsules in 

Rose RT communicate via ports and protocols just as modules communicate via ports 

and channels in SystemC. A capsule undergoes a state transition when a specified 

trigger signal arrives whereas in SystemC this corresponds to an incoming signal on 
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one of the ports specified in the sensitivity list of an SC_METHOD. RT2SystemC 

translator exploits these similarities to identify and extract important sections of the 

C++ code generated by the RoseRT tool. 

 

Figure 7: Translation flow of RT2Code 

 

RT2Code translation starts from UML model in RoseRT, and then the rose 

generated C++ code are further compiled into XML documents. RT2SystemC 

generator uses the XML documents as input, and generated synthesizable SystemC 

code. There are interesting similarities as well as differences between their translation 

and our approach.  (Figure 7) 
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There are still some limitations in the translation. Firstly, the generation is based 

on the generated code of RoseRT, and it is very software dependent. Furthermore, 

RoseRT lacks of complex statechart support, therefore, the behavioral functionalities of 

larger system may not be well captured. By studying their project, we can add in more 

value to our approach. 

2.4 Summary  

In this chapter, we have presented some background information on UML, SystemC, 

and they will be the essentials in the framework. We also presented some previous 

works on UML-based design framework targeting at SystemC implementation 

including our UML-profile for SystemC.  
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Chapter 3  Heterogeneous IP Integration based 

on UML 
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In last chapter, we presented some background information on UML to SystemC 

transformation, which can be used to design a functional building block for embedded 

system. In this chapter, we focus on the customization of existing IP blocks. As the 

legacy IPs contribute to most of current SoC design usage, maximizing the reuse of 

them will greatly cut the design effort.  

3.1 Contribution of This Chapter 

With growth of embedded systems, systems are too large to be handled by single team, 

and a system has to be partitioned into smaller parts and designed by different 

engineers. One of the greatest design challenges for hardware developers today is to 

integrate different parts of hardware system together. IPs, or Intellectual Properties, are 

predefined functional blocks which have been tested for future integration. The use of 

pre-designed IP blocks to reduce the complexity of system integration has gained 

popularity lately. Using pre-designed IP blocks leads to the reduction of time and 

complexity of system level design. However, these IP blocks often have interfaces that 

are incompatible due to differences in protocol and/or unmatched I/Os. Integration 

suffers from these incompatibility issues which also hampers design exploration 

especially when there are many alternative solutions [65]. The problem of incompatible 

IP protocols is well-known, and efforts have been made to address it by standardizing 

the communication protocol. Several standards have been proposed. Among these, the 

Open Core Protocol (OCP) by OCP-IP [59] has gained wide industrial acceptance. 

Today, many IPs are OCP-compliant. However, for existing non OCP-compliant IP 
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cores, it is expensive to customize them to comply with the OCP standard.  The process 

of IP integration also suffers from mis-matched I/O ports. For example, a 16-bit 

processor will have problems connecting to a 32-bit bus interface. These kinds of 

situations require logic to be introduced in between the interfaces. Design of such logic 

circuit is typically done manually and is therefore tedious and error prone. In chapter, 

we address the above problems by the automatic generation of OCP-compliant adapters 

for non-compliant components with fixed interfaces from UML structural and 

behavioral models. 

With the shorten time and cost requirement, IP reuse becomes more important 

than ever. Interface synthesis consists of interface modeling and realization. The 

incompatible problem has been addressed by previous works in the literature. A 

common way to capture the system interface specification is the utilization of software 

programming language or an interface description language, such as variants of C, 

C++, or Java[32][67][79][94]. Such a specification has the advantage of being 

executable, and thereby facilitates early verification and simulation. However, for the 

purpose of system level specifications, the use of these programming languages does 

not satisfy all the requirements. One key issue is that the different phases of a system 

design flow  namely the requirement, design, implementation, and deployment  

are not sufficiently separated. This can seriously confuse the issues that have to be 

addressed by each of these phases because of duplication or oversight.  

Earlier efforts have also been made in context of timing analysis and verification. 

Interfaces synthesis tools based on specifying low level data port behaviors through 

timing diagrams have been proposed. In [21], a method to synthesize interface blocks 
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that consist of logic circuits and software routines were presented.  Other works 

propose the use of control flow graph [61], event graphs [41], and signal transition 

graphs [6] to model interface behaviors. All these works address the interface synthesis 

problem for certain platform environment. However, there can be a large choice of IP. 

Therefore, the unified modeling for heterogeneous IP would benefit designers working 

through a top-down design process.  UML-based approaches also have been studied 

[53][66][85]. However, these methods are not matured enough and the mapping rules to 

low level synthesis are usually too simple to handle realistic scenarios. 

Our approach differs from others in the use of high level UML notations for 

heterogeneous IP integration. The following are features that are unique in our 

approach: 

• To ensure correctness and reusability, we use UML structural and state diagrams to 

specify and formalize system interfaces. This single model is used consistently 

throughout the entire design process. It not only gives a system level view of the 

design but also allows for reuse in future designs. 

• Automation is applied in every level of abstractions, and between different 

environments. Code is generated from the same source model, minimizing 

ambiguity. 

• Our framework supports both interface protocol customization and glue logic 

generation, thereby maximizing IP integration.   

• All changes are applied at the higher level, and user will only need to deal with the 

high level design decisions. 
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The main goal of this work is to generate the communication links between 

predefined blocks with minimal user inputs. In chapter, we present our solution which 

makes use of standards to enable transparency as well as the early validation of designs 

and the subsequent verification of resultant systems. Figure 8 shows the design flow of 

our approach. We built UML profiles to capture the system level communication 

interfaces. The solution is laid out using UML structural diagrams. State diagrams are 

added to customize functional behaviors of the interfaces. We built a software tool to 

automatically generate the interface and glue logic to connect the devices while 

meeting bandwidth and performance requirements. We experimented with our 

implementation under different scenarios including the “plug-and-play” of OCP-

compliant, Verilog and PCI-compliant components into a SystemC simulation 

environment.  The automatic generation of interfaces and glue code leads to the fast 

prototyping of possible design solutions. These can then be tested and optimized.  

 

Figure 8: Design flow of UML based interface synthesis 
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3.2 Problem Description 

To clearly explain our framework, we define following terms to represent different 

notations used in our system.  

• UMLport: UML notation which called port in UML level, and it is presented in 

a small square with UML interface attached.  

• SLport: System Level data port, and they can carry certain types of data. 

• SystemC port: Port defined in SystemC, and they are usually defined as sc_in, 

sc_out, or sc_inout. 

• Interface: A point of interaction between system level components, and they are 

key component in system level designs. 

• UML interface: A UML notation represents an interaction between UML 

modules.  

We will define our problem scope first using the terminologies. IP blocks can be 

viewed as black boxes which communicate with each other through pre-defined 

interfaces. Each interface contains several system level data ports (SLport) that can 

send or receive certain type of data.  Consider a scenario where an IP block is 

connected to an existing interface of a system. Let’s assume that the IP block has only 

one exterior interface. A failure to perform the connection may be due to one of two 

possible reasons: (1) the interface protocol does not matched, or (2) the SLports of one 

interface are not sufficient to drive the other. We say that an IP core is compatible to an 

environment if all the output ports of each interface are able to drive the corresponding 

input port of the other interface while satisfying all timing constraints. For two 
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compatible interfaces that have different protocols, they form one of two types of 

compatible pair: 

Type 1 compatible pair: There is a one-to-one correspondence between the SLports 

of the two interfaces. 

Type 2 compatible pair:  The output SLport of one interface can be made to drive 

the input SLport of the other through some runtime transformation of its data. 

To establish a connection, signal mapping must be setup between the interfaces. For 

a type 1 compatible pair, a port-to-port mapping is specified through a contract 

associated with the connection. For a type 2 compatible pair, glue logic has to be 

introduced. We will synthesize both types of the connection from their descriptions 

specified in wrapper classes.  

3.3 User Input 

Graphical notations can give designers a direct view of the overall picture, and it can 

facilitate designers on adaptation and control of their designs. Unified Modeling 

Language (UML) from OMG is one of the most successful graphical formalisms[80]. It 

has been proven very successful and is widely used in software designs. In our 

framework, we chose UML to be our specification language for its user friendliness and 

wide adoption. UML provides a large set of notations. We carefully chose a subset for 

modeling the interface communications. In our framework, we will use structural 

diagram and statechart diagram to capture the interface models.  
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UML structural diagrams are predominantly used to describe the component 

structure of a system. IP blocks and their wrappers are treated as black-boxes and 

modeled as UML classes. We begin with modeling the communication interfaces of 

existing IP cores. Wrapper modules with interfaces adapters will then be modeled. 

After the classes are drawn, interfaces are added as UML ports to capture interface 

information. We shall use ‘UMLport’ to distinguish these ports from SLports. 

Communication channels are modeled as connections between the UML ports. To fix 

the inconsistency between unmatched interfaces, state charts are added to a wrapper’s 

model to describe the behavior of the glue logic needed to drive the interface. The 

modeling procedure can be divided into following three steps: 

Step 1: Formalize the IP interfaces using UML notations 

IP cores are modeled as a UML class with UML ports attached. An UMLport is a real-

time system elements introduced in UML 2.0. It is a property of classifiers that 

specifies a distinct interaction points between the classifier and its environment or 

between the classifiers. These UMLports will capture the module’s communication 

interfaces. Each UMLport models a group of one or more SLports. The associated 

SLports will be described in the properties of the UMLport. 

The details of an IP’s interfaces are captured in the properties and contracts of its 

wrapper’s UMLports. A contract specifies the services that a classifier provides (offers) 

to its environment as well as the services that a classifier expects (requires) of its 

environment [80]. If two UMLports have a port-to-port match in the communication 

path then they will share the same interface contract. A connection will be established 
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between them directly or indirectly (through other ports). The stereotype of an 

UMLport specifies the communication protocol. In our experiments, the default 

stereotype for UMLport is SystemC. However, we also used other stereotypes such as 

OCPSystemC, Verilog, and PCI. The communication parameters of interfaces are 

captured in the UMLport’s attributes. For IPs with interfaces matched to each other, 

port-to-port communication paths are specified directly in their specification, and only 

external UMLports to the environment are used for generating the wrappers later on. 

Step 2: Define the wrapper classes 

To mask the interfaces, the internal UMLports of IP models are connected to the user 

defined UMLport in the outer class, i.e., a wrapper class. The diagrams capture two 

main aspects of the models: the structure of the model and the characteristics of the 

interfaces. 

The links and blocks in the structure diagram lay out the structure of the model. 

The wrapped classes communicate with each other using defined channels, and the 

connections between the internal components are hidden. The adapters are defined 

using the exterior UMLports of the wrapper classes. We shall call these UMLports 

adapter ports. Each adapter port has a stereotype that indicates the protocol of the 

outgoing communication. Each wrapper class can hold one or more adapter ports, while 

each adapter port can have different protocol types and connects to different external 

modules. Table 1 summarizes the mapping between UML notations and the 

components of our model.  
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Figure 9 shows an example of a model after wrapping. The arbiter has 2 clients  

one non-blocking and one blocking master. master_nb is the UML model of a 

SystemC module. The UMLports (say read) of this UML module represent groups of 

SLports, of the underlying SystemC module. The interface of simple_bus includes 

the interfaces to the arbiter as well as to the memory, because they have no 

compatibility problem, we will not model the details of these interfaces. In this 

example, the simple bus’ SLports (and thus the encapsulating UMLports) are 

implemented in an OCP protocol, while the clients are not. Therefore, two wrapper 

classes were used to customize the interfaces of the clients. The clients will 

communicate with simple_bus through the OCP adapter ports. 

Step 3: Define the behavior for incompatible interfaces 

Connections are made between adapter ports and the environment. For connections 

without port-to-port matchings, additional models have to be added to capture the 

logical relations between input and output SLports. As an example of a connection that 

requires glue logic, we consider the IDCT filter used in our MPEG-2 case study (see 

adapter port � of Figure 13). To implement the 8X8 IDCT filter, some IP blocks take 

an address of two dimensional 8X8 array, while other takes 64 inputs in a linear array. 

To solve this problem, we introduce an interface state machine to transform the signals. 

Our framework allows the user to customize the predefined interface behaviors using 

such state charts.  
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Figure 9: Structural diagram of Simple-bus example 
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Parent Class Wrapper module 

 

Name 
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UMLport Interface adapter 

Subclasses IP cores 

UMLPort of 

subclass 
Interface 

 

Port name 

 

Name 

port type Type 

Interface type Direction 

Stereotype Protocol 

Port properties Driving signals 

State chart 
Driving 

behaviors 

Contract Attributes Signals 

 

Name 

 

Name 

Stereotype type 

Tag Width 

UMLport State 

Chart 

Adapter’s control 

code 

 
States and 

transitions 
 

Finite state 

machine 

 
Table 1: Mapping between UML notations and design properties 
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Figure 12 shows the state diagram of the IDCT example, where the master 

interface has three SLports: Fast_IDCT_signal, Fast_IDCT_addr, 

Fast_IDCT_ack, and slave interface has 4 SLports: start, datain, dataout 

and done. The diagram defines how the transformation needed for the output SLports 

to drive the input SLports across the connection.  

3.4 Interface Synthesis 

A key feature of our framework is the automatic code generation. In our experiments, 

we use IBM Rhapsody [68] to input the UML diagrams. The model is then fed into our 

code generator. The analyzer filters out the interfaces and produces abstract models of 

the design containing the communication specifications. The adapter code is generated 

from templates using Velocity [86], a template engine that generates code from 

predefined templates. The Velocity engine merges the code templates and the extracted 

wrapper models, and performs the final code generation. Figure 10 shows the work 

flow of our framework. The code generator reads the model and produces the interface 

synthesis code in 4 steps: 

In the first step, models that have the stereotype Wrapper are extracted and the 

corresponding interface adapter code will be generated. For example, to integrate a 

module in the SystemC environment, each adapter will be generated as a SC_MODULE, 

a primitive type of SystemC. On the other hand, to adapt a FPGA PCI module, an 

adapter file will be generated which contains the routines for checking and opening 

communication channels, as well as the communication routines for communicating 
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with the board. We assume that all the modules without stereotype are normal modules, 

and they will not be generated in the compilation process. The interfaces extracted from 

the models are also stored for future references. 

In the next step, the code generator will extract and analyze the connections from 

the model. According to the stereotypes of the UMLports connected to each adapter 

port, the connections are classified into groups. Currently, we have generators for OCP-

SystemC, OCP-Verilog, and OCP-PCI connections. After retrieving the type of each 

connection, we can now determine if a pair of connections is of Type 1 or Type 2. If a 

pair of interfaces connecting to the UMLport shares the same contract but has different 

protocol types, then they are classified as Type 1 incompatible pair.  If the connections 

do not match up with each other but state diagrams were defined to fix the 

incompatibility, then they are classified as Type 2. 

For Type 1 pairs, we build adapters (corresponding to the adapter ports) that 

forward the output source signals to the destination SLports through the desired 

protocol channel. We shall now explain how this is done for OCP compliant adapters.  

An OCP compliant adapter is built to fit the OCP bus fabrics. There are three 

levels of SystemC OCP communication models: generic, OCP TL1, and OCP TL2. We 

chose to use OCP TL2 as our wrapper communication model. The advantage of OCP 

TL2 is that it allows for burst transfers and the communication is faster and more 

reliable. 

When an adapter gets a message from an OCP channel via an OCP port, it first 

decodes the message, and then forwards the message to the corresponding interface 

using a SystemC signal. After the internal SystemC component has completed its 
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operation, a response message will be created and placed in the OCP channel. 

Correspondingly, when a wrapper gets signaled by an internal component that wants to 

communicate with the environment, the wrapper will create a message labeled with 

identifier number of the interface, and puts it on the OCP channel. After the response is 

received, it is decoded and a reply signal will be forwarded to the component in 

waiting.  

 

Figure 10: Work flow of wrapper generator 
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OCP master and slave ports are predefined OCP interfaces, and OCP 

communication is performed between them. The pair of master and slave ports forms a 

communication path. Each communication path starts with one OCP master port and 

ends with one OCP slave port. A ‘provided’ interface will be connected to OCP slave 

port, while a ‘required’ interface will be connected to an OCP master port. Each OCP 

port has three threads to control its actions. We call these a communication group. 

Communication groups are paired together and each pair controls an OCP channel. The 

channel is configured by reading the information extracted from the UML model.  

Figure 11 shows the transactions of a communication group, where the master is 

a wrapped component of the master side object, and the slave is a wrapped component 

of slave side object. They communicate with each other using the services provided by 

Figure 11: Sequence diagram of OCP communication groups 
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their wrappers, i.e., the communication is controlled by master_wrapper and 

slave_wrapper respectively.  

Adapters for SystemC-Verilog, and SystemC-PCI are generated in a similar way. 

A SystemC-Verilog adapter is a SystemC header file that describes the SLport 

connection of the Verilog module. A SystemC-PCI adapter not only interprets 

incoming data but also needs to perform the access routines in accordance to the 

protocol. The wrapping is generic, therefore, multiple levels of wrapping is possible.  

For a Type 2 pair, the state diagram shows how the outputs drive the inputs of the 

client program. A state machine is then generated. Code 1 shows the pseudo code for 

the state machine that drives IDCT interface using the Fast_IDCT interfaces. 

 

Figure 12: State diagrams of glue logic between IDCT master and slave interfaces at  

of Figure 13 
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Code 1: Pseudo code of glue logic generated from IDCT of Figure 12 

3.5 Experiments and Results 

3.5.1 Simple-bus 

Our first example, Simple-bus is taken from SystemC open source library. We have 

used it as our illustration example in previous sections. The system consists of a bus 

kernel, a bus arbiter, two memory slaves (fast_mem, and slow_mem), and two 

masters (master_nb and master_b). We wrapped the master_b and master_nb 

up and substituted the communication channels between the bus and the masters with 

OCP channels. Figure 9 shows the structural diagram of the Simple-bus example 

after wrapping. We then model the exterior SLports of the bus kernel and the masters, 

while(true){ 

switch (state){ 

 case IDLE: //in idle state 

  wait_until(Fast_IDCT_signal.read()=true); 

//state is guarded by Fast_IDCT_signal 

   start.write(true); //drive driver port 

   state=INPUT_DATA; //change state 

 case  INPUT_DATA: 

   addr=Fast_IDCT_addr.read(); 

   for i from 1 to 8, j from 1 to 8 

     din.write(addr[j*8+i]; 

   state=WAIT; 

 case WAIT: 

   wait_until(done.read()=true); 

   state=SEND_RESULTS; 

 case SEND_RESULTS: 

   for i from 1 to 8, j from 1 to 8 

     addr[j*8+i]=dout; 

   Fast_IDCT_ack.write(true); 

   state=IDLE; 

 }} 
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and wrapped them up. The wrapper code is generated and assembled for the simulation. 

The unwrapped version of the simple bus SystemC code had 2,684 lines while the 

wrapped version had 3,743 lines of code. We measured the performance of the 

unwrapped and wrapped code on a Linux machine with a dual core AMD Opteron 280 

CPU running at 2.4GHz. The unwrapped simple bus system finished a million bus 

transactions in 41.978 seconds, while the wrapped system took 52.188 seconds. Thus, 

the overall overhead caused by wrapping is 24.3%. Over head is caused by the 

additional the transactions between wrappers.  

3.5.2 MPEG-2 Decoder 

MPEG is an encoding and compression system for digital multimedia content defined 

by the Motion Pictures Expert Group (MPEG) [56]. It is widely used in our audio/video 

system. MPEG-2 extends the basic MPEG system to provide compression support for 

TV quality transmission of digital video. We used an open source MPEG-2 decoder 

originally written in C. We analyzed the functionality and structure of the system, and 

made it SystemC-compliant.  

To test the performance of our adapter code, we customized a SystemC version 

of MPEG-2 decoder and divided it into five groups. Five wrapper classes were created 

to wrap up the components. They communicate with each other using OCP channels 

which are highlighted using bold lines. Each wrapper consists of several OCP ports, 

and they are connected to other OCP ports as well as to interfaces of wrapped 

components. The MPEG-2 decoder is partitioned into five communication groups. The 
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SystemC code is generated and wrapped components are reconnected for simulation 

using the SystemC simulator.  

We experimented with the plug-and-play of the IDCT unit. IDCT (Inverse 

Discrete Cosine Transform) [17] is a key component in the MPEG-2 decoder system. 

In our experiments, four IDCT modules were used: F-IDCT and R-IDCT, Verilog-

IDCT, and PCI-IDCT. F-IDCT implemented an integer IDCT while R-IDCT used 

floating point operations. The latter ran at a lower speed but has higher accuracy. They 

shared the same interface signature but has different interface names. Verilog-IDCT 

and PCI-IDCT are Verilog version and FPGA version of IDCT respectively. We 

modeled the IDCT blocks and their interfaces in UML and wrapped them up. 

Fast_IDCT and R-IDCT is a Type 1 pair connection, while Verilog and PCI-IDCT 

were used to demonstrate a Type 2 pair connection. The wrappers were generated and 

plugged into the decoder system. The simulation ran correctly even after switching the 

IDCT module. The rest of design remains unchanged. 
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Figure 13: Structural diagram of MPEG-2 decoder after wrapping 
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Figure 14: Overhead with different number of wrappers 

 

 

Input Unwrapped 

w/R-IDCT 
Wrapped w/R-

IDCT 

Extra 

Overhead 

short.m2v 0.422s 0.444s 5.21% 

fball.m2v 162.84s 184.004s 13.00% 

zoo.m2v 699.8335s 789.0175s 12.74% 

dhl.m2v 910.759s 1024.9585s 12.54% 

Table 3: Simulation results of decoders with R-IDCT 

Input Unwrapped 

w/F-IDCT 

Wrapped 

w/F-

IDCT 

Extra 

Overhead 

short.m2v 0.412s 0.450s 9.22% 

fball.m2v 154.886s 172.415s 11.32% 

zoo.m2v 629.155s 730.5275s 16.11% 

dhl.m2v 801.406s 932.31s 16.33% 

Table 2: Simulation results of decoders with F-IDCT 
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Because IDCT is the most frequently used component in the system, and has a 

significant impact on overall performance, the overhead of wrapping has to be 

measured against unwrapped version of the respective integer or floating point IDCT. 

Table 2 and Table 3 show the simulation results of MPEG-2 decoder with five 

wrappers using different version of IDCT processors. From the tables, we can see that 

the wrapped decoder takes about 9%-16% more simulation time than the unwrapped 

decoder in both cases.  

For Verilog-IDCT and PCI-IDCT, we generated the adapters and then compiled 

and simulated the entire system using ModelSim. These IDCTs share similar exterior 

interfaces, and the same UML model can be used for the two cases while marked with 

different stereotypes. The results of these versions of the MPEG-2 decoder as well as 

those simulated in the SystemC simulator were identical to the correct outputs of the 

original program. The simulation is, however, slow due to the overhead of co-

simulating in both SystemC and ModelSim.   

The test result also shows that the overhead of wrapping is not proportional to the 

number of wrappers (Figure 14). Instead, it is proportional to the number of 

transactions passing through the wrappers. Wrapping components with lower workload 

will have a lesser impact on overall performance. There is therefore a tradeoff between 

configurability and performance. The case studies also show that wrapping can easily 

be applied to any number of components or groups of components. With the support of 

our synthesis framework, we can plug different IP implementations into a system, and 

automatically generate the code needed for system-level simulation. 
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3.6 Summary 

In this chapter, we presented a framework for the integration of heterogeneous 

and incompatible predefined IP cores. It involves using UML to specify high-level 

communication models and the automatic generation of glue logics. Two types of 

incompatible interface are supported: interfaces that are port-to-port matched but use 

different protocols, and interfaces that require more complex logic to fix the 

incompatibility.  Structural diagrams are used to layout the system, while additional 

state diagrams are used to model the interactions between interfaces. We tested our 

algorithms under several environments using SystemC, Verilog, and FPGA modules in 

a SystemC-OCP environment. The resultant glue logics can be used to test the designs 

using simulation. Our experiments show that the performance overhead of our wrappers 

is acceptable. 

This algorithm can be extended easily to cross platform designs. For systems that 

operate in different environments, bridges can be modeled and generated using our 

framework. Currently, the Velocity templates are hand-written. As a future work, we 

are exploring the use of behavioral diagrams to automatically generate them. 



 

 

 

64

 

 

 

 

Chapter 4  Analog and Mixed Signal System 
 

 

 

 

 

 

 



 

 

 

65

 

In this chapter, we present the part that how UML-based system level design 

framework can be applied to mixed signal system design.  There have been previous 

proposals for the use of UML in hardware-software co-design, and we will use it also 

in the modeling of system consists of both digital and analog components. Our design 

flow generates SystemC behavioral level code for simulation and verification. We will 

describe the notations used and how this automatic code generation is performed. We 

will present three case studies on digital and analog communication components.   

With the growth of integration, increasingly more digital chips are designed with 

analog components embedded. Continuously time-to-market pressures necessitate the 

raising of the level of abstraction. However, to date it is still not possible to have high 

level models of a comprehensive system involving software and both analog and digital 

hardware [10]. As illustrated in Figure 15, a typical embedded system will consist of 

three portions: software, digital, and analog. Software is normally talked with digital 

components, and the digital components are connected to analog devices.  The Unified 

Modeling Language (UML)[80] has been used extensively as system level modeling of 

software. Tools exist that will automatically generate implementations in high level 

programming languages (C++, Java, etc.) from UML descriptions with support of 

domain specific models. On the other hand, design of digital side of the system is well 

supported by CAD tools. However, system level tools for analog modeling tools are not 

as well developed. Therefore, analog subsystems cannot be modeled at the same level 

as their software and digital counterparts as shown in Figure 15.  
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It would be ideal to have a unified framework that can model all components of 

an embedded system and their interactions. Previous works [37][88] have been 

demonstrated that UML can be used to represent both software and digital subsystems, 

and mapping can be established from UML to the appropriate hardware description 

language for prototyping implementations. If there can be a similar methodology to 

map analog subsystems from UML to a mixed signal language, then an overall 

description of mixed signal system can be completed, and designers can model 

seamless integration between the three portions. This in turn will complete the 

modeling process, bridging all three partitions of an embedded system’s design. There 

are many advantages to such a rapid prototyping framework. To reduce the time-to-

market and cost, it is necessary to evaluate key aspects of a design including the trade-

offs involved in meeting timing, performance, and space constraints. Early verification 

through this prototyping helps to demonstrate and validate design concepts. Rapid 

prototyping is also helpful in testing various implementation strategies and identifying 

implementation bottlenecks. Furthermore, a unified description will help clarify 

requirement, design and implementation specifications.   

Unlike digital and software design, analog designs require a high level of analog 

domain knowledge, especially in mathematics. Matlab [55] provides powerful 

mathematical support and is widely used as tool for mixed signal design. Mapping 

Simulink modules to hardware has also been proposed [47]. Our framework will also 

take advantage of Matlab to incorporate mathematical models in the process of code 

generation.  
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Figure 15: Typical embedded system design and partitions 

In this chapter, we will show how UML can be used to effectively model a high 

level mixed system that includes both digital and analog subsystems. Designers will 

then be able to capture the overall system specification at UML level for all three 

partitions of the design. We propose combining the high level abstraction capability of 

UML 2.0 with SystemC-AMS [76], extending UML to express mixed signal design 

concept while maintaining the mappings between them. The code for arithmetic 

computations can also be derived from their Matlab models and embedded into UML 

models. Both digital and analog components of the system are uniformly modeled 

using UML-notations. This approach allows for the automatic conversion from unified 

UML specifications of both digital and analog components to executable SystemC(-

AMS) implementation. Our design flow produces not only system level, intuitive, and 

reusable graphic models for mixed signal designs that also leads to the automatic 
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generation of the detailed implementation for simulation. Our objective is to build a 

unified framework to model and generate the topology and interactions for different 

types of subsystems. We have implemented a code generator to experiment with our 

ideas. We would like to distinguish our work from those involving hybrid systems[43], 

where it involved fine granularity interactions between the discrete and continuous 

elements. Our approach, on the other hand, targets component-level digital and analog 

entities of coarser granularities. We believe this more common in practice. 

4.1 SystemC-AMS Overview 

SystemC-AMS[76] is an extension of SystemC[75] to describe mixed-signal design, 

and it has been popularly studied to model mixed signal systems such as an inertial 

navigation system [18], the I2C protocol communication [50], and wireless sensor 

network node [53].   It currently supports two semantic models: conservative and multi-

rate synchronous dataflow (SDF) [76]. At the moment, the conservative view is 

restricted to linear networks and does not allow for the design of real analog 

subsystems. The SDF modeling formalism used in SystemC-AMS expresses 

continuous time (CT) models as directed connections of dataflow blocks on ports. The 

multi-rate SDF domain is of particular interests in our experiments. In SDF, the 

behavior of an analog component is defined as a cluster which is a set of interconnected 

modules with communicating input and output ports. A cluster is managed by a 

dedicated SystemC process that handles synchronization with the rest of the system. 

When scheduled by the SystemC simulation kernel, a dataflow cluster runs at a 
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constant time step, defined by the sampling duration time assigned to one port of one of 

the modules and automatically propagated to others. The communication between 

dataflow blocks is represented by streams of sampled signals (discrete in time, discrete 

or continuous in amplitude), called SDF signals. 

A SDF module is the basic structural building block for describing CT behavior 

in SystemC-AMS. Other than the attributes and functions normally found in SystemC 

modules, there are SDF ports and member functions. Behaviors of SDF modules are 

defined in SDF member functions. Four types of member functions are currently 

predefined in SystemC-AMS, they are namely: sig_proc(), sig_post(), 

init() and attributes().  During every time step, sig_proc() will be 

evaluated once, and it will read from input ports, compute and propagate the result data 

to output ports. attributes() may be used for setting port attributes (e.g. sampling 

rate, delay, sampling period, etc) and  init() can be used to initialize member data 

or data ports. post_proc() will be evaluated at very end of simulation.  

A SDF port is an object that provides a SDF module with a means to communicate with 

its surroundings. A SDF port has the sca_sdf_interface interface and may be a 

simple port (one interface) or a multiport (N interfaces, N > 1).   

There are currently four classes of SDF ports: 

• sca_sdf_in and sca_sdf_out ports are respectively input and output ports 

that allow SDF modules to communicate. 
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• sca_scsdf_in and sca_scsdf_out ports are respectively input and output 

ports that allow SDF modules to interact with discrete-event SystemC 

(sc_signal)  

The number of samples during every time step is set by SDF attributes, Thus, if 

the rate attribute of an input port is 2 (using inp.set_rate(2)), then 2 samples 

will be read during a evaluation cycle. The evaluation cycle is set by using 

set_T(duration).    

4.2 Modeling AMS Design Using UML Notations 

UML profile has been used effectively to model SystemC components. In our work, we 

further extend the profile, by adding domain specific information to the UML modeling 

elements. We use UML structural and state chart diagrams for modeling. Structural 

diagrams are predominantly used to describe the components structure of a system, 

while state chart diagrams are used to capture the module behaviors. 

4.2.1 Structural diagram and communication specification 

Each module is modeled as one class in structural diagram. To address the needs of 

abstract representations of mixed signal system in UML, we resort to a few notations 

introduced in UML 2.0, namely ports, and flow. Ports and flows provide the means for 

specifying the exchange of information between system elements at a high level of 

abstraction. This functionality enables user to describe the flow of data and commands 

within a system at a very early stage, before committing to a specific design. As the 
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system specification evolves, the abstraction can be refined to eventually match that of 

the concrete implementation. 

A one to one mapping is established between module interfaces and UMLports. 

Each module interface consists of one or several data ports, and each data port carries 

one type of data. The notation of UMLport is defined to capture the data interaction 

between the components. Contracts are used in defining complicated incoming and 

outgoing interfaces. Our work is done in the IBM Rhapsody [68] UML 2 context. In 

Rhapsody’s terminology, the interface contract for incoming messages is called a 

“provided interface”, while the interface contract for outgoing messages is termed a 

“required interface”, and they are shown as full or semi cycles attached to UMLports. 

Each UMLport support at least one contract, and the attributes of contract define the 

characteristics of the incoming or outgoing data, such as the name and type of the data.  

All of the components are modeled as a capsule with ports attached. To differentiate the 

type of signals that the ports can handles, each UMLport is marked using stereotypes, 

namely digital or analog.  

In mixed signal designs, two types of signals are used for communication. Digital 

signals consist of pulses or digits with discrete levels of values, and they are non-

continuous signals, changing in individual steps. All the signals modeled in SystemC 

are digital signals (sc_singal). Analog signals are continuous signals that vary in 

time, and they do not have constant value over steps. SystemC-AMS library provide the 

means to model analog signals (sca_sdf_signal). Mixed-signal system design can 

be viewed as a collection of black boxes with exterior interfaces, communicating with 
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each other using the proper signals. Generalized system information is captured in 

UML structure diagrams. Due to the language differences, stereotypes and other 

extensions are used to differentiate analog communications.    

We use class hierarchy to describe the computational entities together with their 

methods and their attributes. However, class diagrams are also used in a crucial way to 

give the overview of a system in terms of components and how the components are 

connected to each other. Flows are drawn between ports, which indicate a message 

transferring from the start port to the end port. Flows link the components together to 

form the communication.  Settings of port are stored in their tags, where tags are pair of 

messages that can be stored in the description. Four types of tags can be defined in a 

port’s property. They are sample time, rate and delay. We have added some features 

using UML stereotypes extension mechanism, where digital part and analog part of the 

system can be distinguished using the defined stereotypes.   

Composition classes are supported in our approach, and designers can better manage 

complexity by grouping several objects together to form nested structural diagrams. . 

4.2.2 State chart diagram and behavior specification 

Behaviors of components are modeled using state chart diagrams. Each UML classes 

can have one or more state charts to define the interactions between its UMLports and 

environments. For digital components, the state charts are translated into finite state 

machine[37]. The code that implements the states are derived from their specifications 

or Matlab. However, for analog components, up to 4 states state charts can be used to 
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define the behaviors of each evaluation steps. Figure 16 shows a complete state chart 

with 4 states. As mentioned in Section 3, behaviors of mixed signal components are 

defined in its member functions. We use states with the same name to capture these 

actions in state diagram. The computation code is directly derived from their Matlab 

models. It can be tested through Matlab simulation. A state chart of analog component 

needs to contain at least one state. One mixed signal component may have more than 

one state charts to define its behaviors of communication with digital and analog 

components. 

 

Figure 16: Complete UML state chart of mixed signal components 

 



 

 

 

74

  

Figure 17: UML Class and state chart diagrams of low pass filter 

We will use the low pass filter (LPF) from section 5.1 as a running example. As 

shown in Figure 17, LPF is modeled as a class with name “lpf”, it contains several 

attributes, and a constructor. The state chart will contain only two main states, namely, 

init and sig_proc. And the implementation code of member functions will be 

embedded in the actions of states. Two ports are attached to the lpf class, namely, inp 

and outp. They are labeled using stereotype analog.  

4.3 Implementation  

As the UML frontend, we used Rhapsody which supports the main features of 

UML2.0.  The intermediate representation is the Rhapsody sbs document file which we 

parse to gather the necessary information to build the abstract syntax tree(AST). The 

AST can be used as input to a template engine. SystemC-AMS code is generated using 

Velocity [86], a template engine which generates code from predefined templates. With 

the help of the Velocity, the parsing of the modeling document is decoupled from code 
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generation so the target code can be changed without affecting model extraction. Figure 

18 shows the workflow of the code translation. 

In our design flow, users do not have to specify the types of the components at the 

UML level. These will be identified based on the exterior ports that they own. If all 

ports are digital, then it is a digital component. Similarly, if all ports are analog, then it 

is an analog module. Otherwise, it is mixed.  Each component is mapped to a SystemC 

module of corresponding types: digital to sc_module, while analog and mixed type 

components are mapped to the SDF class, sca_sdf_module. Attributes and 

primitive operations are written directly to their module declarations. 

All the ports and the flows connected to them are extracted from the module. The 

declaration of the SDF ports are then generated and added to the module’s code. Based 

on the flow directions, the digital ports will produce sc_in, sc_out or sc_inout 

ports. Analog ports are produced in one of two types - sca_sdf_in, or 

sca_sdf_out. To connect between a digital port and analog components, the data 

port on analog modules has to be defined as sca_scsdf_in or sca_scsdf_out, 

and the declaration need to be exported as public. The export code segment will be 

added to the initialization of the module (normally inside the main class).   

Behaviors of modules are generated according to the state charts. For a digital 

component, a process is created for each state chart, and a FSM is created to manage 

the interactions between the process and environment.  For components with analog 

portions, the implementation of member functions is extracted from the corresponding 

state’s actions.  
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Figure 18: Workflow of our implementation 

The top module is generated to initialize the simulation. Constructor of the top class 

contains the code to create and instantiate the object. The connections of the 

components are also created. sca_sdf_signal are created to link the sdf_port 

together. The top class is associated with every runnable class. It will initialize all the 

objects, and connect them with the proper signals. Checking for the matching of data 

types and sampling rates can also be performed. After code generation, validation can 

be carried out using SystemC simulation. This will enable the early detection of 

possible design errors, and reduces the costs of debugging. 
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4.4 Case Studies 

4.4.1 Phase Lock Loop 

This is an example taken from the SystemC-AMS library. We used it to show how one 

can model analog circuitry at the UML level and translated the model into SystemC-

AMS code. A phase-locked loop or phase lock loop (PLL) is a control system that 

generates a signal that has a fixed relation to the phase of a “reference” signal. A phase-

locked loop circuit responds to both the frequency and the phase of the input signals, 

automatically raising or lowering the frequency of a controlled oscillator until it 

matches the reference in both frequency and phase.  

The system consists of a phase detector (phc), a low pass filter (lpf), and a voltage-

controlled oscillator (vco). A sine wave generator (src_sin) is used as the input, while, 

after tuning, the wave will be written out for display (Display). The top class initialize 

all the objects of system, in this case, 5 objects comes from 5 classes of modules. 

Figure 19 shows the class diagram of this example 

#include "systemc-ams.h" 

SCA_SDF_MODULE(lpf) { 

//Port List 

  sca_sdf_in<double>   inp; 

  sca_sdf_out<double>  outp; 

//Attibutes List 

  double   fp;      // pole frequency 

  double   h0;      // DC gain 

  double   tau;     // time constant 

  double   outn1;   // internal state 

  double   tn1;     // t(n-1) 

//Operations List 

void init() { 

    tau = 1.0/(2.0*M_PI*fp); 
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 } 

void sig_proc() { 

  double tn=sc_time_stamp().to_seconds(); 

  double dt = tn - tn1; 

  outn1=(outn1*tau+h0*inp.read()*dt)/(tau +dt); 

  tn1 = tn; 

  outp.write(outn1); 

  } 

SCA_CTOR(lpf) {//constructor 

   outn1 = 0.0; tn1 = 0.0;  

   fp = 112e3; 

   h0 = 1.0;   

 }}; 

Code 2: Code Generated for low pass filter in SystemC-AMS 

 

Figure 19: UML structural diagram of PLL example 

We first captured this UML-level model using Rhapsody by applying the UML profile. 

Code 2 shows the generated code for Low pass filter in SystemC-AMS. We then 

simulate the resultant code using the SystemC simulation kernel. The sin_src generate a 

stream of 7MHz sine wave, and the basic time step duration of analog components is 

set to 0.001µs. The simulation of generated code execute in same speed as original 

code from SystemC-AMS library.  
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4.4.2 Binary phase shift keying transmitter with noising  

Our second example is a BPSK transceiver. BPSK (Binary Phase Shift Keying)[64] is a 

modulation technique that has proven to be effective for low and medium FER 

operation, as well as for amateur HF work.[64] As shown in Figure 20, the system 

consists of a transmitter, an antennas/propagation channel, and a receiver. Binary shift 

keying uses binary polar signals to modulate the phase of carrier by 180 degrees. 

Digital data is converted to an analog signal by passing through a 1-bit D/A converter. 

The analog signal is then up-converted, amplified, and transmitted into the noisy 

channel. The received signal is amplified, down-converted, low-pass filtered, and 

converted back into the digital domain.  

The structure of BPSK System is shown in Figure 20. We use a random generator to 

generate a sequence of bits as input. The source data’s voltage levels are then shifted by 

regulator, and the shifted data is then multiplied with a cosine source to form the 

BPSK-modulated signal. The modulator blocks are implemented in an ideal manner 

with no noise.  Additional White Gaussian Noise(AWGN) is added to the transmission 

media. The noise is generated every evaluation cycle with a random value. The 

propagation channel adds noises to the transmitting signals and propagates them to the 

receiver. A low pass filter is used at receiver end to filter out the noises. The filtered 

signals are then fed into A/D converter, and the ADC will produce the demodulated 

data. The UML-Diagram of BPSK transmitter is shown in Figure 21, the top module is 

waived for clearer view.  
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The BPSK system consists of several blocks which we modeled using UML(as shown 

in Figure 21). The model is then fed into translator which generates the corresponding 

SystemC code. Note that, the digital to analog converter (DAC), and analog-to-digital 

converter (ADC) are mixed signal components, and the rest of the system are in RF 

domain. The sampling rate is set to 10GHZ, and the data transfer rate is of 10MBPS. 

The power amplifier and low noise amplifier each has a gain of 1.0. 

Figure 22 shows the waveforms generated from the BPSK simulation. Waveform (a) 

shows the transmitted digital data stream(taken from the output of Digital/Analog 

converter). Waveform (b) shows the digital shows filtered signals. The bit error rate 

(BER) for our simulator is Eb/N0= 0dB. However, when we increase the level of noise, 

we did pick up some error bits during the transmission. 

Data
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Figure 20: Block diagram of BPSK example 
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Figure 22: (a) Transmitted data stream (b) Samples after filtering  

4.5 Summary  

In chapter, we have presented a UML-based system level framework that holistically 

integrates software, digital hardware and analog components into a single design. Our 

tool automatically translates UML models to SystemC-AMS implementations of analog 

and mixed signal components. By using ports and flows as well as their stereotype 

extensions, we are able to capture the interactions between the subsystems and integrate 

models of communication of analog modules into digital and software models. We 

demonstrate our approach with several examples, including a couple of analog 

transmission units.  
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In the future, we would also like to target our modeling method for hybrid mixed-

signal hardware platforms such as ASIC and FPGA chips, especially since the 

generated SystemC-AMS code is nearly synthesizable. The performance of generated 

code needs to be improved.  
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Chapter 5   SystemC-based BSN Hardware 

Platform Simulator 
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In previous chapters, we have presented UML profiles for SystemC and SystemC-AMS 

designs. In this chapter, we will show how the profiles are used to define a SystemC-

based BSN hardware simulator. This simulation-based based performance evaluation is 

going to be the fundamental component for the co-design framework.   

The simulator is part of Embedded and Hybrid System II program in Singapore, 

centered on the development of a Body Sensor Node (BSN) system and of relevant 

health-care applications.[35][36][77] The project is carried out by Singapore Agency of 

Science Technology and Research (A*STAR) with collaborations from Institute of 

Infocomm Research (I2R), Institute of Microelectronics (IME), Nanyang Technological 

University (NTU) and National University of Singapore (NUS). The simulator provides 

a high level executable model of wireless body sensor network platform. The model is 

based on SystemC, an IEEE standard language for system level design of embedded 

systems. The simulator provides detailed breakdown of the timing and energy behavior 

of individual software and hardware components in the system. For example, the 

workload on the sensors can be tuned according to their energy consumption 

characteristics so as to obtain optimal system efficiency. The simulation speed is fast 

thanks to the modeling level and techniques that we use to optimize simulation speed. 

The simulator has been tested with a medical application that monitors the patient 

wellbeing by measuring the ECG and the SpO2 blood level [19]. 

As member of the development team of simulator, I was able to understand the 

detail behaviors of the simulator. Each components of the simulator was studied and 

modeled using our proposed UML profiles. As a result, we have built a UML-based 
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simulator model for BSN hardware node. After then, the simulator are no longer the 

SystemC code, they become visualized functional components. This helps designers to 

quickly and easily customize the simulator and make it as close to the target BSN 

hardware platform as possible. Customizations can be applied at these UML models, 

and the changes are reflected to lower level implementation via our code generator. The 

UML-based simulator model provides an efficient and re-usable framework for 

designers to prototype and verifies their BSN hardware designs  

In next section, we will present some previous works on BSN simulators. The 

introduction of our BSN simulator will be divided into 2 parts. In section 5.2, we focus 

on the SystemC-based implementation of the simulator. We will show the structure of 

the simulator and how we can use it to optimize an application. In section 5.3, we will 

present UML-modeled simulator after we have applied the UML profiles.  

5.1 Previous Works on BSN Simulators 

There are numerous simulation tools available to aid programmers in understanding the 

performance and behaviors of Body Sensor Networks (BSNs). These tools vary widely 

in scalability, accuracy and feedback details. Surprisingly, relatively few exists for the 

purpose of timing and power analysis—the two most essential aspects in the design and 

optimization of body sensor applications. In fact, to the best of our knowledge, none of 

the existing instruction-level simulation tools for MSP430 platform supports timing and 

power analysis of sensor motes at the functional level.[36]  
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Well-known discrete event-based simulation environments such as NS-2 [39], 

TOSSIM [63], and OMNeT++ [4] provide effective ways to validate the behaviors of 

network protocols. However, they do not capture internal operations of the individual 

motes that might assist developers in debugging and optimizing applications.  

There have been a number of instruction level mote simulators; for example, 

Atemu [52], Avrora [71], COOJA [20] and their extensions. Atemu simulates the 

operations of individual motes and communication between them, though it does not 

supply timing and power consumption information of the motes. Similar to our 

simulator, Avora and its extension AEON [58] allow for the evaluation of energy 

consumption and lifetime prediction of sensor network. However, they are both limited 

to Mica2 2009 Body Sensor Networks platform, which is not applicable to our context 

where our focus is on the MSP430 platform.  

Eriksson et al. [31] introduces an instruction level simulator called MSPsim, 

targeting the MSP430 microcontroller that contains a sensor board simulator as well 

which simulates hardware peripherals such as sensors, communication ports, LEDs, 

and sound devices. Although comprehensive in features and easy to be integrated into 

the cross-level simulation plat- form COOJA, MSPsim shares the same limitation as 

Atemu: it supports source-level stepping and run-time variable inspection only, without 

displaying any timing or power consumption information of the various components of 

a mote.  

Recently, TOSSIM has been extended to estimate the power consumption of the 

Mica2 sensor mote. The extension, Power- TOSSIM [51], is built on top of TinyOS and 
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is highly scalable. This benefit comes at a price as the tool is coupled with the TinyOS 

written code. In contrast, our simulator works on machine code level, and it can 

simulate sensor network applications written in any language with any operating 

system components, such as both TinyOS and SOS. Further, Power- TOSSIM follows a 

high-level of abstraction approach, which might not provide enough details necessary 

for application optimization and may potentially lead to poor accuracy in the analysis 

results.  

Several other tools that work at the abstract level, for example, SensorSim [71] 

and SENS [73], unfortunately, assume rather simplistic power usage and battery 

models which may not be realistic in actual hardware and practical applications.  

In the Embedded System domain, several power simulation tools for energy 

profiling have been proposed (see e.g. [2][78]). However, most of these tools are 

limited to profiling of microprocessor energy consumption only as they are designed 

for general embedded systems.  

Despite simulation being the de-facto standard tool for the evaluation of body 

sensor networks, lately there is a growing interest in the formal method community. 

Owing to their expressiveness, automata-based techniques have been used to analyze 

wireless communication and protocols (see e.g. [1], [51]). Recently, Timed-automata 

has been employed to validate QoS properties of BSNs such as packet end-to-end 

delay, packet delivery ratio and network connectivity [74].  

Another contrasting line of work is the Sensor Network Calculus (SNC) [30], a 

worst-case analysis framework that uses algebraic techniques. It is developed based on 
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the Network Calculus in Computer Networks domain. SNC has been continuously 

adapted and extended to effectively model and analyze worst-case behaviors of sensor 

networks, such as these examples in [46] and [29]. Although comparatively much less 

explored and limited by their ability to scale up, formal techniques are much faster than 

simulation and provide formal guarantees. Thus, they can be used in early 

development, for instance to identify worst-case scenarios of the systems for a given 

architecture. With further investigation and appropriately incorporated with simulation- 

based techniques, such formal techniques will certainly benefit system designers and 

developers to a great extent. 

5.2  SystemC-based BSN hardware simulator  

5.2.1 Simulator 

We implemented a fast, cycle-accurate simulator for BSN applications. This simulator 

allows the developer to determine accurately the processing and energy performance of 

individual modules in the application, under different configurations. The simulator 

assumes the applications utilize multiple motes which are connected via a wireless 

BSN. Following is a brief description of the simulator; for a full description please refer 

to [35].  

The mote simulator is implemented in SystemC and it takes in any application 

code written in NesC. In order to handle a network of sensor motes, multiple instances 

of these simulators are created as different threads in the same simulation process. 
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Figure 24 shows the general structure of our mote simulator. It consists of four 

main components: a micro-controller module, a ChipCon2420 module, a sensor 

module, and a power monitor. The micro-controller in the BSN IC mote is Texas 

Instruments MSP430. This module incorporates a CPU module, a clock module, RAM, 

Flash and other peripherals. The CPU module includes an instruction set simulator and 

an interrupt manager.  

The CC2420 module is an abstraction of the real radio chip. It provides only the 

basic functionalities, as our focus is to capture information on timing and power 

consumption.  

The power monitor is not part of the MSP430 architecture and it is designated 

solely to monitor the power consumed by each component of the mote. It is also able to 

compute the energy consumed by each function of the application being simulated. 

This information is very useful for determining the functions that need to be optimized 

in order to reduce the energy consumption.  

5.2.2 Application  

The SystemC-based BSN simulator can provide simulation for the full system of a 

generic wireless BSN. Typically, a wireless BSN consists of several wearable sensors 

on a human body. These sensor motes transmit vital body parameters such as ECG or 

SpO2 blood level through wireless technology to a gateway mote which in turn is 

connected to a PDA, whose job is to process data, send commands to the motes, and 

forward data to a doctor’s clinic. Additional information on full system simulation can 
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be found in our previous work [36]. The users interact with our simulator through a 

friendly Graphical User Interface. To simulate an application, the users follow these 

steps:  

• Choose the number of sensor motes.  

• Choose the application running on the gateway mote and on each sensor mote.  

• Start the simulation.  

While running, the GUI displays the PDAs screen and a multi-tab window for the 

motes. For example, the PDA screen can show graphs of data received from the motes. 

Each tab in the sensor window shows the current status of the corresponding mote. • 

Stop the simulation. A summary of total energy and timing for each mote is showed on 

its corresponding window tab.   

5.2.3 Functionalities  

Our simulator provides the following functionalities to help developers debug or 

optimize their applications:  

1) Total Energy and Timing: After simulating an application, the total energy and 

timing are shown. This in- formation is extremely important to evaluate the 

overall performance of an application.  

2) Functions Energy and Timing: A breakdown of timing and energy for each 

application function running on each mote is also listed. These numbers enable 

developers to optimize the application by providing deep insights into the 
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behaviors of the application and help them focus effectively on the most time-

consuming or energy- consuming functions.  

3) Monitoring points: The user can choose several critical points in a program as 

monitoring points. During simulation, whenever the execution reaches these 

monitoring points, an instant snapshot of the following information is 

automatically saved in a log file:  

• Energy and timing: This is the energy and time consumed so far by that 

mote. It gives user a quick look at the rate the code running on the mote is 

consuming power. 

• Register values: The values of CPUs registers are shown for functional 

debugging. For example, a jump instruction whose destination is indexed mode 

jumps to different locations depending on the run- time value of the indexing 

register. Thus, the value of that indexing register could tell which instruction 

and/or function the simulator is going to execute next. This knowledge is useful 

for user to validate the control flow. 

• Radio buffer: The number of filled bytes in CC2420s transmitting and 

receiving buffers are captured and displayed. This helps detecting buffer 

overflow and dropped messages, which enable the developer to adjust the 

message sizes and the sampling rates. 
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• Transmission summary: the snapshot provides a count of bytes sent or 

received so far by the radio chip and the serial port. These data, together with 

timing information, can be used to compute the average transmission rate.  

 

Figure 23: Simulation data collected at monitor points. 

Figure 23 shows an example of the collected data at various monitor points. 

This is particularly useful when the user wants to compute time or energy for a 

fragment of code which could be part of a function or a combination of several 

continuous functions. 

5) Monitoring memory addresses: The user can choose several important 

memory addresses in a program to monitor their evolution. These addresses may 

refer to variables used by the application or they may correspond to the internal 

registers of various peripherals. During simulation, whenever the value of such a 
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monitored address is modified the new value and the address of the current 

instruction are logged to a file.  

5) Battery life computation: We employ Rakhmatov’s battery model [14] to 

capture the battery performance and to compute its life time. Since BSN 

applications are on human body, they require mobility, flexibility and long 

duration. Thus, the battery life time is a critical factor while developing the 

applications; the longer the battery can last, the more convenient it is for device-

wearing patients.  

6) Control flow: Last but not least, our simulator provides users with an option to 

record the control flow of the application running on a mote in a log file. Since 

applications written in NesC code are compiled with TinyOS library to generate 

complete C code and then executable code on a specific platform, details of an 11 

applications control flow is only available at C/assembly code level which is 

significantly different and much more comprehensive than the original nesC 

code. Understanding the control flow of an application is vital for debugging and 

optimizing purposes.  

5.2.4 Guideline to debug/optimize an application 

We give a general list of guidelines which the developers can adopt in the process of 

debugging or optimizing applications. These guidelines are created based on our 

experiences and on the general principle of top-down problem solving. The steps and 
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their order are flexible and could be modified to suit different applications, problems 

and objectives.  

Step 1) First, the user should set up and run the application once to get a summary 

of the total time and energy consumed by the application for a standard sensor 

input. Together with a breakdown of timing and energy for each function, this 

gives a comprehensive overview of the application. Based on this overview, the 

user might have a general idea if a problem exists and what the problem is.  

Step 2) Other information such as battery life and transmission rate could also be a 

good source to detect the problem.  

Step 3) Look at the generated C code or control flow log file to understand the 

application, such as how different functions are linked together either as caller-

callee relationship or as a sequence of tasks/events.  

Step 4) Check the control flow log file if everything is in order. If something goes 

wrong, the control flow may show some unexpected runtime behavior.  

Step 5) With a good understanding of the application control flow, the user can 

identify critical points in the program where local information may reveal the 

cause of the problem. She can run the whole simulation once more to collect data 

at these monitoring points. Then she may investigate the result to narrow down the 

problem.  

Step 6) If the problem is with application code, fix or improve it. If the problem is 

with TinyOS code, consult TinyOS developer guide to find if there is any solution 
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or possible optimization. After fixing the code, go back to step 1) run the 

simulation one more time to get the new performance summary. If the result is not 

satisfying, repeat the steps for further optimization.  

This SystemC-based simulator is very fast, incurring only 5–20 times slower than 

native execution on real motes yet able to provide critical performance data for 

developers to tune their applications. This is apparently an advantage compared to other 

methods. For example, running applications multiple times directly on the real 

hardware gives very little insight about the applications running on it. In chapter 6, we 

will present an example of how we use our simulator to obtain useful data about the 

performance of an application and how the developer uses this information to identify 

and remove a bottleneck in the application.    
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Figure 24: Block diagram of BSN simulator  
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5.3 UML-modeled BSN hardware simulator 

5.3.1 UML-modeled BSN simulator 

With help of the UML profiles for SystemC and SystemC-AMS, we constructed 

UML models for BSN simulator. The structural diagram of this simulator is shown in 

Figure 27. The UML diagram mainly shows the interfaces and communications 

between the hardware components, other details such as local operations and properties 

are hidden for better presentation.  

The UML-modeled simulator has two main parts: the digital part process the data 

collected from the sensors and pass the results to wireless transmitter, where sensors 

and the transmitter is from analog domain. The RF processing starts from radio 

transmitter of CC2420, it modulates the data packet and send the data out to base 

station over the air. Figure 25 shows the selected portion of BSN simulator from dashed 

area of Figure 24. Note that all the connections in the diagram are from digital domain, 

except the transmit function to the radio transmitter.  

The CC2420 uses an OQPSK (Offset Quadrature Phase-Shift Keying) modulator 

to modulate the data, which is from RF domain. OQPSK is a special version of 

QPSK(Quadrature Phase-Shift Keying) in which the transmitted signal has no 

amplitude modulation. UML profile for SystemC-AMS is applied here. Figure 26 

shows the composite class diagram of the OQPSK transmitter, in the system, the data 

packet is formed in CC2420, and then sent to transmitter to modulate and send via 

digital signals.  
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The power monitor module PowerMonitor is not part of the hardware 

peripherals; however, we modeled such module to collect energy consumption of 

selected component at execution time in BSN mote. As shown in Figure 27, 

CPU(MSP430) and wireless transmitter(CC2420) is under monitoring, and they have 

interfaces connected to the power monitor module for the state update. Every change in 

operating modes in these two components will update the power monitor. The power 

monitor, in turn, will obtain the simulation time spent in the previous operating mode. 

Power monitor contains the energy profile for the monitored components, which can be 

obtained from datasheet or experiment. With simulation time, operation modes and the 

energy profile, power monitor can compute the energy consumed during each 

simulation period. By accumulating the energy consumed by the individual components 

and by the BSN mote, when the application completes execution, we obtain a 

breakdown of total energy.  
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Figure 25: Selected part of UML class diagram of the BSN simulator 

5.3.2 Simulator customization 

The UML-based simulator can be customized to adapt the hardware changes. For 

example, in the simulator, MSP430 (CPU) and transmitter are connected to a clock 

component, and designer wants to increase the clocking rate to achieve faster 

computation speed and transmission speed. This can be achieved by changing the 

parameter value that controls the self-ticking rate of ClockModule in the UML model. 
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On the other hand, energy profile of the components is required to be updated 

accordingly. Therefore, by changing the parameters of clock module and power 

monitor module in the UML, we can obtain a customized BSN simulator, while other 

components in model remain unchanged.  

Customization of modeled components can be made at UML level. With the 

external interface fixed(UML-port), the functional specification can be change through 

changing the embedded code or the state chart attached to this module. For example, if 

we want to change the functionality of ADC and make perform some filter function, we 

need to add the filtering function implementation to its class diagram and state chart. 

The modification will be reflected to generated code.  

Modeled components can be replaced with third party pre-defined modules, ie. 

IPs. We achieve this by applying the wrapping technique outlined in chapter 3. The 

wrapper ensures that the external interfaces to other component on BSN simulator 

remain unchanged. After code generation, the wrapper code will be generated, and it 

will be used to interact with the wrapping component and communicate with other BSN 

simulator component. 

Mapping between the UML models and SystemC implementation has been 

established through our code generator. The code generation process is similar to what 

we have presented in section 4. User can customize the simulation environment by 

changing or replacing the components. The updated simulator can be generated 

automatically from customized UML model. Key performance issues, such as timing 

and energy consumption, can now be tested by simulating the generated 
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implementation on this automatically generated simulator. This highly-reconfigurable 

simulator provides a fast and accurate performance evaluation tool to aid both software 

and hardware design. 

5.4 Summary  

In this chapter, we first outlined our SystemC-based BSN simulator. The simulator is a 

well-defined tool to test and evaluate given BSN software code. The simulator ensures 

accurate and fast simulation speed. Users are able to evaluation the software/hardware 

design by doing simulations using the simulator. A guideline was given to optimize a 

BSN application based on the simulation and energy information collected through 

simulation.  

We further extend the simulation by formalized it with UML profiles that we have 

defined. The simulator becomes more manageable and reusable through these UML-

models. With this high-level UML model, designers will be able to customize BSN 

hardware in short time, and the auto-generator ensures an executable simulator will be 

ready as soon as the high level models are refined. The usages of simulation in our 

framework will be discussed in next chapter.   
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Chapter 6  UML 2.0-based Co-Design 

Framework for Body Sensor Network 

Application 
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In last chapters, we have presented the UML-based design approach for hardware 

simulator. This chapter proposes a new model-driven development framework, which is 

intended to manage the complexity of BSN application development. The framework 

consists of (1) a Unified Modeling Language (UML) profile to capture the 

specifications of BSN applications, and (2) a fast simulation environment to perform 

validation and testing.  

A UML profile [81] extends (or specializes) the standard UML elements (e.g., 

class and association) in order to precisely describe domain-specific or application-

specific concepts. The proposed UML profile abstracts away the low-level details of 

TinyOS and provides higher abstractions for application developers (even non-

programmers) to graphically design and maintain their applications. It also allows 

developers to understand and communicate their application designs in a visual and 

intuitive manner. A model repository is designated to store available models of tinyOS 

components, and it helps designer to create and manage their designs while maximizing 

the model reusability. 

Our UML-based simulator provides a fast and accurate simulation environment 

that can be customized to capture and simulate hardware changes. Code generator is 

implemented to maintain the link between simulator UML models and its 

implementation. The simulation environment is therefore can be customized at UML 

level. The implementation generated from the software designs can be executed directly 

on the customized environment. Fast and acute simulation helps user to estimate timing 

properties as well as energy consumption throughout the software design process. 
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Both design and verification environment are now unified under the name of 

UML, and they yield a complete design flow for pre-integration design and validation. 

Refinement and tuning will benefit from the formalized reuse model. Our design flow 

essentially supports a "design-generate-simulate-refine" cycle. We shall present several 

case studies to show how BSN applications are produced from specifications and how 

refinement can be done effectively with aid of simulation results.  

6.1 Previous Works on UML Profile on TinyOS Simulator 

UML-based design flows for embedded system designs have gained popularity in the 

recent years[82]. Several profiles have been proposed to address various design issues 

[37][45][81]. In our framework, we proposed and implement UML profile for TinyOS-

based BSN systems.  

Similar design flows based on other languages have also been proposed. In [11], a 

mapping from high level Specification and Description Language (SDL) models to 

TinyOS implementations was presented. A driver model based design approach was 

also proposed [69]. Code generation are outlined or proposed in these works. However, 

they did not tackle the issues of heterogeneous design. Furthermore, reuse is not well 

supported in these frameworks. Other researches focus applied UML for wireless 

sensor network(WSN) designs. In [27], the authors focused on the sensor's behavior 

instead of the components that reside on the sensor node. A simulation framework for 

WSN based on VisualSense, a Ptolemy II-based visual language, that captures node 
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behaviors was proposed in [60]. However, it does not support code generation which 

we deem as the key to rapid prototyping. 

Several simulators, such as OMNET++ [3], J-Sim [38], Em* [44], have been built 

to analyze runtime behaviors of TinyOS applications. However, to date, none of them 

have supports the cycle-accurate simulation of BSN node devices. One simulator that 

has modeled both the CPU and the peripherals of sensor nodes for cycle accurate 

simulation is the Avrora simulator [5]. However, for the moment, Avrora does not 

support the architecture that we are targeting, namely a BSN board built with the 

MSP430 microcontroller. None of these simulators are integrated into a high-level 

design flow such as ours. 

VIPTOS [15] bears some similarity with our framework in that a high level 

design methodology is combined with a simulation environment. However, the 

simulation environment of VIPTOS focuses on network level, while our work focuses 

on hardware simulation. Furthermore, it is based on the Ptolemy flow. 

Gratis [26] provides a graphical design environment to create and generate 

TinyOS implementation. It has some powerful features such as the ability to extract 

graphical models from nesC code. Their graphical notation, called the Generic 

Modeling Environment, is based on the UML class diagram and the Object Constraint 

Language. However, the main aim of Gratis is model the structure of the TinyOS 

application. It therefore does not model the behavior of the application. Our framework 

captures both structural as well as behavioral specifications at the UML level. 

Furthermore, Gratis does not support simulation environment. 
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One unique feature has exclusively differentiated our work from others, that is, 

both design and simulation layers of design flows are now in high reusable manner to 

cope with ever-changing nature of BSN applications. We believe this will cut down the 

design and verification cost greatly.   

6.2 TinyOS and nesC 

TinyOS [12] is a component-based operating system designed to meet programming 

requirement of embedded networks with limited resources. The components of TinyOS 

interact through well defined interfaces. TinyOS software is written in nesC [12], a 

dialect of C. nesC programs are written in the way of interacting components that are 

connected together by interfaces. There are two types of components in nesC 

implementation: modules and configuration. Modules implement specific functionality, 

while configurations define how components are connected.  

Interfaces are bidirectional. They consist of commands that are calls made by a 

user to a service provider, and events which are calls that a provider can make on a 

user. For example, sending a packet is a command, while receiving a packet is an event. 

All the interactions between components happen through interfaces. This allows for 

implementations to be changed easily. For example, a component named App that uses 

SendMsg can be directly connected to different types of communication protocols 

without changing App’s code. This "plug and play" style of interchangeability is 

predicated on how modular the implementations are. In general, the object-oriented 
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nature of modules with interface encapsulation allows us to reuse the same modules for 

different applications. 

nesC programs are event-driven. Hardware interrupts trigger events whose effect 

will propagate through the interfaces. Event handling functions may also send 

command calls back down interfaces as part of the overall response to the initiating 

event. If an event is not time-critical, overall responsiveness may be improved by 

postponing the response until the processor is idle. Deferred execution is achieved by 

posting a task which responds to the event. Both synchronous and asynchronous 

commands are supported in nesC. 

6.3 UML-Based Framework 

In this section, we will introduce our proposed UML-based framework for TinyOS-

based BSN systems. It consists of a UML-profile for TinyOS[62] through which 

designer can create reusable UML models, and store them in a TinyOS model 

repository. The repository stored models of both predefined components supported in 

nesC library and user-designed components. Methodology of applying our framework 

will be discussed in section 6.3.2. 

6.3.1 UML Profile 

The proposed UML profile specifies the conventions to build UML models of TinyOS-

based BSN applications by defining stereotypes and tagged-values to capture domain 

specific information. In this profile, an input model is a set of UML 2.0 structural 
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diagrams, activity diagrams and interface state charts.  Structural diagrams are used to 

model both modules and their configurations, while the interface state chart together 

with activity diagrams are used to model event-triggered behaviors. The UML profile 

lifts both structural and behavioral features of the design to UML level. This will give 

designers an overall view, abstracting away low level details.  

6.3.1.1 Modeling Modules 

The basic components in nesC program are modules. There are two kinds of modules in 

a TinyOS application: predefined modules from the nesC library and user defined 

modules. Each module is modeled as a UML class. The stereotype 

<<UserDefined>> is given to UML classes that model user-created modules. 

Similarly, the <<SystemDefined>> stereotype is used to identify predefined 

modules supported by the nesC library. For a module that contains other components, a 

composite class will be needed. Commands and tasks are modeled as operations, and 

they are differentiated using stereotype <<command>> and <<task>>, respectively. 

Tag types sync or async, are introduced to indicate whether a command is 

synchronous or asynchronous. 

The module interfaces are modeled as UML ports attached to the classes. A UML 

port defines a distinct point of interaction between a class and the environment. The 

UML port takes the name of the nesC interfaces it specifies. It can have the following 

two types of interfaces:  
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• Required interfaces: These characterize the requests that can be made from the 

port's class (via the port) to its environment (external objects). A required 

interface is denoted by a socket notation. 

• Provided interfaces: These characterize the requests that can be made from the 

environment to the class via a port. A provided interface is denoted by a lollipop 

notation. 

 

Figure 28: An example class diagram of tinyOS application
1
 

By definition, the “required interfaces” model the "uses” interfaces of nesC 

modules, while, the “provided interfaces” model their “provides” interfaces.  The 

“provide” and “required” properties identify the service directions, and the service 

definitions of nesC interfaces are captured in UML interface contracts. 

As discussed in section 6.2, nesC commands are calls made on the service 

providers. Each provided service (command) has to be implemented in the owner 

                                                 
1 The original drawings in the Rhapsody tool that we used can at times be too detailed and confusing. As such, some 

of the UML diagrams shown in the paper has been re-drawn and simplified for readability. 
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module. To do that, classes inherited from these interfaces are introduced to realize the 

detailed implementation. These implementation classes will share the same name with 

its implemented service (i.e., the command's name) and aggregated to the owner class. 

Figure 28 shows an example of the class diagram for a moduleA. Class A and B will 

implement the command A and command B of moduleA respectively. And A, B will 

provide contracts named interfaceA and interfaceB. Another example in the 

figure is that a system module LedsC  provides a service interface Leds, while the 

implementation is hidden.  

After a module is modeled, nesC code can be generated automatically from the 

model. The modules can be validated through simulation before they are added to a 

repository. This repository is a collection of UML models that can be reused. It forms 

the backbone of our framework and is the key to rapid prototyping and reuse.  

6.3.1.2 Modeling New Application and Configuration 

From the modules, a designer can start to build the application. Object diagram are 

predominantly used to capture structural information of objects. In nesC, inter-

communication between modules is established by ‘wiring” the interfaces together and 

implementing the trigger actions. The application consists of two parts, an application 

module and a configuration for the application. UML object diagrams are well-suited to 

meet the modeling requirements here. A new module class with required interfaces is 

added, and the application configuration is represented by the whole object diagram. 

Predefined modules are added to the configuration, and they will provide the “required” 
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interfaces. The interfaces are connected using links, and the links correspond to the 

“wires” in nesC.  

Figure 29 shows an object model diagram for the Blink example given in the 

nesC2.x library. It contains BlinkC, and three timers, each of which will trigger the 

LEDs with different frequencies. Among the components, BlinkC is the application 

module, and the rest are obtained directly from the repository. The “require” interfaces 

specified in BlinkC are connected to the “provided” interfaces of the timers, leds and 

the main routine. 

 

Figure 29: Object model diagram of Blink example 
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6.3.1.3 Modeling Behaviors 

State charts are the natural choice for modeling objects' behavior.[72] In TinyOS, all 

the components are running concurrently and execution is preemptive. This is hard to 

model in a single state chart. TinyOS is a event-driven system, and all the events have 

to be sent through the corresponding interfaces. Moreover, nesC allows events with the 

same name. For example, if the system is connected to two separate sensors, both of 

them can have events with the same name, say dataReady()This is a potential 

source of confusion. On the other hand, if we use different state charts, one for each 

components, it will prevent the user from having an overall picture of the interaction 

between components, making the system's behavior hard to understand. Furthermore, 

this does not solve the problem of event ambiguity.  
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Figure 30: Interface state chart for Timer2.fired() and Collaboration diagram of Blink 

example 

module BlinkC { 

uses interface  Boot; 

uses interface Timer<TMilli> as Timer0; 

uses interface Timer<TMilli> as Timer1; 

uses interface Timer<TMilli> as Timer2; 

uses interface  Leds; 

} 

implementation { 

event void Boot.booted(){ 

call Timer0.startPeriodic( 250 ); 

call Timer1.startPeriodic( 500 ); 

call Timer2.startPeriodic( 1000 ); 

} 
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event void Timer2.fired(){ 

call Leds.led2Toggle(); 

} 

… 

}} 

Code 3: nesC code of Blink module 

configuration BlinkAppC {} 

implementation 

{ 

  components MainC, BlinkC, LedsC; 

  components new TimerMilliC() as Timer0; 

  components new TimerMilliC() as Timer1; 

  components new TimerMilliC() as Timer2; 

  BlinkC -> MainC.Boot; 

  BlinkC.Timer0 -> Timer0; 

  BlinkC.Timer1 -> Timer1; 

  BlinkC.Timer2 -> Timer2; 

  BlinkC.Leds -> LedsC; 

} 

 Code 4: nesC code of Blink configuration 

To solve these problems, we use a combination of collaboration diagrams and 

local interface state charts to model system behaviors. Each structure diagram shall 

have a corresponding collaboration diagram to capture the interactions between the 

components. Using collaboration diagrams, the user will have a clearer picture of the 

interactions in the system. To the collaboration diagram, the designer can add the 

trigger-actions to the corresponding interface state chart. Each action specified on the 

association indicates a trigger event. The trigger actions will be specified using an 

interface state machine. Using the state chart attached to the interfaces will solve the 

ambiguity problem. Figure 30 shows the behavioral diagrams for Blink. In the 

collaboration diagram, 4 events are captured, namely, 3 fired, and 1 booted. The source 
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party of the actions is the initiator of the event, and the destination party of the actions 

shall take responses against these events. The state chart in Figure 30 captures the 

reaction of blinksC when it been triggered by event fired() from Timer2. 

6.3.1.4 Code generator and implementation 

Both the basic module and application models are used for code generation. Each class 

with the stereotype <<UserDefined>> is transformed into two parts: a nesC module 

and a configuration. The attributes and operations defined in the model will be 

translated to variables, and methods or tasks. Links will be translated as “wires”. The 

operations of classes that implement interfaces will be extracted and added to its 

aggregate module. The implementation of an event is derived from the corresponding 

interface state chart. Specifically, these are the actions embedded under the trigger 

action.   

Code 3 shows a fragment of Blink module generated by our code generator. The 

used interfaces are generated from the links of structural model, and each event 

specified in collaboration diagram maps to an event trigger action, while the detailed 

implementation is generated from state diagram. For example, the event action of 

Timer2 is derived from of interface state chart of UML port Timer2. Code 4 shows 

the configuration file of Blink. The connections of the interfaces are mapped into 

“wires” in nesC code. For each links in the structural diagram, a corresponding 

interface connection is made. 
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6.4 Design Methodology 

 The TinyOS module repository serves as a key role in the design process. It contains a 

set of UML classes formalized using our proposed UML profile. To design a new 

application, designer can either choose a similar application from repository or design 

from scratch. nesC library provided essential components such as timing, storage, 

ADC, and etc. All of system modules will be modeled as UML classes with stereotype 

<<SystemDefined>> and maintained in the repository together with user-define 

modules. The predefined module can facilitate user with a fast start. Figure 31 shows 

design flow using our proposed TinyOS repository. Designer will start to build new 

application by looking into the TinyOS module repository. If a new module is required, 

designer will need to build a new module by constructing UML class model using the 

UML profile. The newly defined module will be added to the repository, and the search 

continues until all the required modules are ready in the repository. Application will be 

build using structural diagram, simple select and drag can add the components into the 

application model. Links will be added to link the ports together which corresponding 

to the “wiring” in nesC. Because the TinyOS are highly event-oriented system, the 

behaviors of interfaces will be modeling in the corresponding interface state machine 

associated with the UML ports. Both module and application model will be used to 

generate nesC code. The generated code can be used for simulation or mote 

deployment.  
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Figure 31: Design a new TinyOS application using our proposed framework 

6.5 Case Studies 

The ultimate goal of our framework is to create a user-friendly development 

environment for designer to create, modify and maintain their TinyOS applications. In 

this section, we will show how our framework can be applied in two cases studies.  

6.5.1 Wheeze detection  

Our first example is a microphone array used in a wheeze detection system. The 

system is a sound based health condition monitoring system and it is designed to detect, 

identify and selectively record the respiratory sounds of interest (e.g. wheezes). The 



 

 

 

120

system consists of three parts: a sensor array and preprocessor, a mote, and a PDA. The 

application is designed to be running on TinyOS and periodically receiving the 

processed data from the data collection module. The data features are extracted and 

compared with the thresholds. If a clip of sound is classified as wheeze sound, it will be 

sent to PDA for storing.  

To begin the design, we understand from specification that 1 microphone is used 

as sensor and it will be connected to ADC for data acquisition. The wheeze detection 

process will be controlled by a timer with period of 32ms. The detection results will be 

indicated by lighting on LEDs and sending out through wireless channel.  

We will start the design by adding in predefined components: 1 

timers(MilliTimerC), 1 ADC(MSP430ADC12C), 1 main routine(MainC), and 1 leds 

controller(LedsC). Object instances are created from each of the Modules. A control 

module, WheezeDetectionC, is then added in and marked using the stereotype 

<<UserDefined>>, and it will model the central controller who did all the sound 

classification.  Properties such as buffers, and variables are written in as class 

properties, and other utility functions such detection, filtering, are added in as class 

methods. The implementation is in native C code. UML ports are added to 

WheezeDetectionC module to the services provided by those predefined modules, and 

they are connected to corresponding UML ports on the predefined modules.  

Collaboration diagram is used to capture the interaction between the modules. 

We need to add in all the object instances into collaboration diagram. Lines and 

message calls are added if two modules have interactions. For example, event Boot 
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from MainC will be trigger the initialization of WheezeDetection, and the initialization 

code will be writing in the message call named Boot() from Main to Detector.  

Our code generator takes in both structure and collaboration diagrams and 

produces nesC implementation. To estimate the timing and energy consumption, we 

execute the compiled nesC code on our simulator. When hardware is not ready to test, 

this could help us to optimize our application. We will show our tuning process in the 

experiment result section.  

itsWheezeDetection:WheezeDetection1

AverageFilter():void

WheezeDection():void

receved():void

AMsend

AMSend

Control

SplitControl

Boot Boot
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Figure 32: Object diagram of wheeze detection module 
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Figure 33: Collaboration diagram of wheeze detection application 

 

6.5.2 ECG and SPO2 monitor 

Our second example is a MEMSWear Biomonitoring application, ie. SpO2nECG 

application, taken from [19].  In this application, a single sensor mote collects data such 

as RED, IR and ECG from attached sensor at a sampling rate of 250Hz and then sends 

them all to the gateway station (PDA) for processing. The gateway station uses these 

data as input to compute heart rate, SpO2 and blood pressure. These outputs will be 

sent to the clinical department for further analysis. In case of emergency, a alarm will 

be raised to doctor and further action will be performed. 

As the ECG and SPO2 sensors and their Analog to Digital Converter(ADC) are 

not available in the repository, we have to model them first. Figure 35 shows the 

structural diagram of ECGnSPO2 sensor, named as PpgSensorC. It has provided an 

interface named “PpgSensor”.  After construct the PpgSensor module, we have all the 

necessary modules in the repository. With similar approach described in section 6.2, we 
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use UML profile to construct the ECGnSPO2 application. We then build a new 

application by drawing a new structural diagram to capture the application. Figure 36 

shows how the components are linked together. A class called ECGnSPO2 will use 

necessary interfaces provided by system modules Timer, ActiveMessage, Leds, Main 

and user-defined module PpgSensor.  

6.6 Experiment Results 

During the experiments, we draw UML using Rhapsody, and a java program called 

UML2nesC is build to generate the nesC code. The generated code is then deployed 

onto BSN2.0 node from Empire College platforms[69] and BSN simulator for 

simulation. The generated applications produce identical result as compare to hand 

written code. Our experience also shows that building new application out of 

predefined modules using visualization tools can improve design efficiency and save 

effort of write code. Building applications such as Blink only takes a few minutes, 

while it may take dozens of minutes in typical way. Table 4 shows the application size 

and execution time of the code generator. From the table, the generator can generate the 

code within seconds. Table 5 shows the estimated implementation time of writing in 

hand and using our proposed framework. We can achieve 3-5times of speedup. In fact, 

during our design process, previous UML models can be reused. When we design 

ECGnSPO2 application, part of the structure model can be taken from Wheeze 

Detection application directly.  
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With aid of simulator, we are able to estimate the timing and energy consumption 

without the real hardware. WheezeDetection application has a tight time budget of 

32ms to finish a detection cycle. The existing hardware platforms are not able to meet 

the timing requirement, and a new sensor node is under development with doubled 

processor speed. We adjusted the clock rate in simulator, and we can still keep our 

tuning work going before the hardware is made. Energy consumption is more of 

concern for ECGnSPO2 application, by executing ECGnSPO2 implementation, we are 

able to retrieve the detailed energy profile. We found that the wireless transmission 

takes more than 90% of the total energy consumption. Therefore, suggestions are made 

to put wireless transmitter into sleep mode while there are less workload. The top of 

Figure 34 expresses the original implementation consuming 39.58 mW (total 

energy/simulation time). With the proper adjustments, we could reduce 21% energy 

consumption comparing to the original design. 
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Figure 34: Experiment result of power consumption of the ECGnSpO2 application (a) 

hardware energy information of original design(top) (b) result after tuning (bottom) 

 

Application Lines of generated nesC code Time for code generation 

BlinkC 55 0.37 second 

WheezeDetection 361 0.59 second 

ECGnSPO2 1046 1.1 second 

Table 4: Code Size and execution time of code generator 
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Application Written by hand Design using UML 

BlinkC 30mins <10mins 

WheezeDetection 1 week 1working day 

ECGnSPO2 2 weeks 2-3 working days 

Table 5: Estimated implementation time 
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Figure 35: Structure diagram for ECGnSPO2 application 



 

 

 

128

Figure 36: Class diagram for PpgSensor module 
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6.7 Summary 

This chapter glues the previous chapters together and built a UML2.0-based framework 

to manage the complexity and reusability of TinyOS applications during pre-integration 

stage. The proposed framework consists of a UML profile for TinyOS and a 

corresponding simulation environment. The proposed UML profile abstract away the 

low-level details, and provide graphical high level models for designer to create and 

maintain their application. A TinyOS module repository, which contains UML models 

of the system and user defined module, will not only facility designer with quick 

development, but also encourages model exchanges. Customization of simulation 

environment is done at UML-level, and automatically customized simulator can be 

used to achieve accurate estimation of time and energy consumption. This will in turn 

facilitate the design space exploration and running. Our design flow will cut down 

design cost and effort greatly. Case studies over Body Sensor Network applications 

show that the complexity and reusability of application is well handled in the 

framework. And code generator has been proved to produce nesC code in a fast speed.  

We summarize our design experiences in BSN application designs, and try to 

find for a design patterns. Another of the future works involves applying our 

framework to more complex platform such as WSN.   
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Chapter 7  Conclusion 
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In this thesis, we have presented a UML-based framework to accelerate the 

development of Body Sensor Network system design. Under this framework, UML 

plays a key role. Firstly, all the designs are done at UML level and it formalize the 

design specifications and facilitate the model exchange and reuse. Secondly, UML 

unified the design environment of BSN hardware and software components. Designers 

just need to focus on single.  The approach not only save the design effort, but also 

enhance the reusability.  
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Figure 37: Summary of UML-based BSN design framework 
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Figure 37 summarized our framework. First, we have proposed a modeling 

language initial specification of requirement, structure and behavioral of a system. Both 

hardware and software components of the BSN application can be specified and 

designed with the profiles. UML has wide range of diagrams and notations for 

modeling different aspect of a system. We have chosen a subset of UML together with 

some extension mechanism. Among them, structure diagram is used to capture the 

structure of the system. Statecharts are used to model the components behaviors. We 

also use an activity diagram to capture the interactions between components interfaces.  

With the chosen subset of UML, we have proposed unified modeling profiles for 

SystemC, SystemC-AMS. These profiles leverage the abstraction level of the SystemC 

design modules, and designers can focus on overall structure and behaviors of 

components rather than dive into the code level. Models are then refined to lower level 

specification. As we have shown, these UML profiles can capture the lower details of 

hardware system in easy maintain and exchange form. Using the automatic code 

generator, designer can get the implementation of their design as soon as they finish the 

refinement at UML level.  

Using the profiles, a hardware Simulator to simulate the hardware process of 

BSN node are built.  The simulator are the key component our framework. It serves as 

the linkage between software portion and hardware portion. Hardware designers will be 

able to customize BSN mode with the different sensors or processors. Predefined 

components (IPs) can be easily added or replaced in the simulator platform using the 

wrapped interfaces. Simulator can also execute the code which is under development, 
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and through the simulation can help the software designer to locate the bugs in the early 

stage. Moreover, the simulator servers as a pre-integration evaluation tools to the 

software designs. Design metrics such as timing and energy consumption, which can 

only be verified after the available of real hardware, can now be evaluated before the 

real integration.  

We have also proposed a UML profile for TinyOS, the software operation system 

which is used by BSN nodes. This profile will lift the abstraction level of nesC 

implementation. The BSN designs often encounter similarity across deferent 

application. Patterns can be found for the time-triggered data collection and processing. 

In such situation, the basically components of the BSN application are often reusable. 

In our framework, these features are enhanced. We defined a model repository to 

collect existing BSN models, so that new designs can start by reusing/modifying 

existing models. 

We have automated the model transformation process whereby all the motioned 

high level models can be converted to executable representation for simulation-based 

validation. This automation maintains the close bond between UML model to the 

implementation, and it greatly saves the implementation effort, and at the same time 

reduces the error. Automated code generation has been applied to both hardware and 

software portion of BSN designs. The purpose of automate model synthesis is to enable 

fast design realization and execution so that the performance factors can be verified at 

as early stage as possible.  
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Our practices of applying the framework to BSN applications show encouraging 

results. We are able to specify several BSN applications. With a few customizations, 

models can be reused cross these applications. 

Our key results can be summarized as follows 

• We have proposed UML profiles for both software and hardware components of 

BSN applications. With the profiles, we are able to do software and hardware 

design at much higher abstraction level. Automate code generation enforce the 

linkage between the high level models and lower level implementation, and this 

has relief the design from error-pruning coding, which lead to increase 

productivity and lower cost.  

• A UML-modeled BSN simulator has been built with re-configurable 

components. Customization can be done at UML only, and the modified 

implementation can be automatically generated with our code generator. 

Interface synthesis ensures the "plug and play" style of interchangeability of 

new components. 

• With help the customized simulator, we perform tests and performance 

evaluation before the real hardware commits. This pre-integration simulation is 

essential for the BSN software designers to tune their application code to meet 

the tight energy-computation requirements.  The early stage refinement helps to 

reduce the re-work and debug effort in real software/hardware integration. 
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• We have made UML the single tool required in the co-design process of the 

BSN application.  

7.1 Future works 

In this thesis, we have outlined a framework to address co-design needs for Body 

sensor network designs. This framework unified the design tools of software and 

hardware component under the name of UML. A UML-modeled SystemC-based 

simulator enables rapid customization with “plug-in-and-play” tricks.  

One direction for future work is adding in design space exploration tools. As we 

have presented in the chapter 5, performance metrics can be obtained from simulation 

results. This result can be used as inputs to design exploration tool, and thereby guild 

software/hardware refinement or system tuning to archive optimal solutions. Since the 

designs are abstract models and the code generation is automated, the exploration 

process can be semi-automated or even automated.  

Another extension of our solution would be extending Body Sensor Network 

design principles to Wireless Sensor Networks (WSN). BSN normally has a centralized 

control station, while WSN often has a discrete infrastructure. By adding in networking 

specification, we should be able extend our framework to Wireless Sensor Network 

designs.  We believe WSN designers can use our framework to address their co-design 

issues.  
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