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Summary 

With development of insulin, blood glucose meters and insulin delivery devices, 

automatic regulation of glucose level is feasible. Closed-loop insulin delivery system 

(also known as an artificial pancreas) could potentially be the ultimate solution for blood 

glucose control in diabetic patients. Three indispensable factors of a blood glucose 

regulation device are: glucose sensor for measuring glucose concentration, control 

algorithm regulating external insulin infusion, and insulin infusion device. With good 

knowledge of the physiology of blood glucose regulation, an accurate glucose-insulin 

interaction model and a safe, efficient glucose control algorithm could be developed.  

Many researchers have proposed models of human glucose-insulin system to match 

predicted mechanism of endocrine system and investigate the underlying causes of 

diabetes. Optimal glucose control can be achieved by subcutaneous insulin delivery after 

subcutaneous glucose measurement. It is crucial to investigate dynamics of glucose and 

insulin in the subcutis. A new two-compartmental model with two explicit delays on 

hepatic glucose production and insulin secretion was applied to investigate the oscillatory 

behavior of glucose-insulin system when there is no external insulin delivery. Four 

parameters in insulin system and two delays were analyzed for their influence on glucose-

insulin system; their ranges were estimated for sustaining the oscillations and discussed. 

Effect of these parameters on the lag between glucose and insulin in different 

compartments provide insights on distribution and metabolism of glucose and insulin in 

different compartments. Physiological delay has been demonstrated to be an important 

issue for effective blood glucose regulation. 

Local degradation and time delay of transportation and absorption should be 

considered in the insulin module of the glucose-insulin system if exogenous insulin is 
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injected in the subcutaneous tissues. Based on the two-compartmental model, a modified 

model, including two absorption channels and local insulin degradation, was proposed to 

simulate glucose-insulin system with external insulin delivery. Two rate parameters 

expressing insulin transportation from subcutis to plasma compartment, two delays and 

two parameters expressing the dysfunction of diabetic patients were adjustable and 

estimated using nonlinear least squares method. Clinical data comprising glucose level, 

insulin injection dosage and meals was collected from diabetic inpatients. By comparing 

fitting results with existing model, the proposed model can mimic the dynamics of 

glucose and insulin. The estimated model parameters were physiologically meaningful, 

and provided insights on the subject’s dysfunction due to diabetes. 

The goal of a model predictive control (MPC) is to minimize an objective function 

by selecting optimal input moves. MPC has been used in glucose level regulation. Insulin 

dosage calculated by the MPC controller is the input to the plant (i.e., human body). 

Glucose level was output and feed to MPC controller. Two MPC controllers using the 

two-compartment model and the model including the dynamics of subcutaneous insulin 

were investigated, and results of glucose control were compared with that of Bergman 

minimal model and Hovorka model, respectively. MPC controllers using our models 

were demonstrated to be able to reduce occurrence of hypoglycemia and hyperglycemia, 

cost less insulin and better deal with glucose changes caused by unnoticed glucose 

disturbances. 
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1  Introduction 

1.1 Diabetes Mellitus 

Diabetes Mellitus is a common disease around the world, which can induce various 

systemic diseases and high mortality. The World Health Organization estimates that there 

are more than 180 million people suffering from diabetes, and the number may double by 

2030. Diabetes can be catalogued into Type 1 and Type 2 diabetes. Type 1 diabetes, often 

occurring among children and young, makes up 5% to 10% of diabetes cases, and is 

characterized as inability of producing any insulin by their bodies. While Type 2 diabetes, 

usually developing in middle aged or later, is associated with high insulin resistance, 

which results in unused glucose cumulating in body to cause hyperglycemia and tissue 

damage over time . 

High blood glucose level can cause high osmotic pressure in the extracellular fluid 

resulting in considerable cellular dehydration. Secondly, high level of glucose would 

cause glucose loss in the urine, which is followed by osmotic dieresis depleting fluids and 

electrolytes of the body. Besides, long-term high blood glucose can damage many tissues, 

especially blood vessels. Low glucose concentration below 45-55 mg/dL for a long 

interval may bring about brain function impairment, tremors and convulsions. An 

intensive insulin therapy can reduce the risk of complications resulted from diabetes. 

Hyperglycemia can be minimized and hypoglycemia can be avoided by proper insulin 

delivery. 

The conventional therapy of diabetes is multiple subcutaneous insulin injections 

using long or short acting insulin analogues after glucose level measurement by glucose 

monitor. Insulin pen devices can make insulin delivery more convenient. There are some 
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other routes of insulin delivery such as inhaled insulin, orally administered insulin, 

transdermal insulin delivery and so on. Continuous subcutaneous insulin infusion using 

external insulin pump has been applied to regulate blood glucose concentration. In the 

past decades, some continuous or semi-continuous glucose monitors and insulin infusion 

pumps have received approval, both of which promote the development of closed-loop 

insulin delivery system. A closed-loop insulin delivery system relying on a continuous 

glucose sensor, insulin infusion pump and an advanced control algorithm can be 

developed to control blood glucose concentration automatically. 

The control algorithm can optimize insulin dose to be delivered to the patient by 

insulin pump in order to maintain glucose concentration within the normal range. 

Proportional-integral-derivative (PID) method to control blood glucose level has attracted 

interests of many researchers [4-7]. Difference between measured glucose level and 

reference value multiplied by proportional constant, integrated over a period of time, and 

its derivative are used to control the insulin input. Although the simple control approach 

is easy to implement, it cannot provide insight into the physiological meaning of the 

metabolic system, and human expertise is needed to ensure the successful operation, 

which restricts greatly the functioning of this approach. Due to the complexity of 

nonlinear dynamics of glucose-insulin metabolic system, model predictive control (MPC) 

taking advantage of detailed process models and information regarding process 

constraints or limitations is more advantageous in regulating blood glucose concentration. 

Advanced control algorithm is one of the three important factors developing closed-loop 

insulin delivery system and has been established to aid in the diabetes treatment.  
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1.2 Closed-Loop Insulin Delivery System 

The closed-loop insulin delivery system, which is also called artificial pancreas, is 

composed of three essential components: a stable glucose sensor for measuring the 

glucose concentration, a control system regulating external insulin infusion based on the 

glucose-insulin system and a safe and stable insulin infusion device [1].  

 

1.2.1 Types of Closed-Loop Insulin Delivery System 

There are two ways to divide the closed-loop insulin delivery system: way of 

prandial insulin delivery and the body interface. Glucose excursion by meals is a great 

challenge to closed-loop insulin delivery system. In a closed-loop insulin delivery system, 

insulin is delivered fully automatically without knowledge of exercise or meals’ time, 

size or composites, and it is only based on the evaluation and prediction of the measured 

glucose level. In a closed-loop insulin delivery system with meal announcement, the 

system is informed of the time and size of the meals and gives out advised prandial 

insulin bolus to deliver [2]. There is also a hybrid approach which delivers up to 50% of 

bolus insulin and leaves the remaining to be delivered during the feedback.  

There are three types of closed-loop insulin delivery system according to the body 

interface: sc-sc system (subcutaneous glucose sensing and subcutaneous insulin delivery), 

iv-ip system (intravenous glucose sensing and intraperitoneal insulin delivery), and iv-iv 

system (intravenous glucose sensing and intravenous insulin delivery). Insulin delivery 

via subcutaneous route has advantages over intravenous or intraperitoneal route: low 

incidence of infection, less pain and discomfort and ease of administration.  The sc-sc 

system is easy and safe to implement though it results in insulin absorption delay. The iv-

iv system is usable under some situations such as surgical operations, for critically ill and 
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research investigation. However, this approach is high invasiveness due to the need of 

vascular access for the glucose sensing and insulin delivery. Up to now, there are a few 

prototypes developed and tested under limiting clinical conditions. 

 

1.2.2 Prototypes of Closed-Loop Insulin Delivery System in Market 

Median relative absolute difference (MRAD) is often used to evaluate the 

performance of the continuous glucose monitoring (CGM). Freestyle Navigator CGM 

(Abbott Diabetes Care, Alameda, CA, US) is reported to achieve an average MRAD of 

14% [2]. Continuous Glucose Monitoring System (CGMS, Medtronic Minimed, 

Northridge, CA, US) [3] is reported with slightly higher MRAD than Freestyle Navigator 

CGM, and DexCom Seven STS [4] with an MRAD of 11.4%. The three CGMs can be 

used for 3, 5, and 7 days in a closed-loop insulin delivery system, respectively.  

The earliest closed-loop insulin delivery system was the Biostator, Glucose-

Controlled Insulin Infusion System, introduced in 1977, which was an iv-iv system using 

a glucose oxidase sensor to measure the glucose level in the blood and peristaltic pump to 

deliver insulin and glucose intravenously. The control algorithm of Biostator is 

oversimplified. After Biostator, Shichiri’s group developed a wearable artificial pancreas 

named STG-22 (Nikkiso Co. Ltd., Japan) [5] using the sc-sc route and sc-ip route, and the 

microdialysis type glucose sensor in the system can work up to 7 days. 

Medtronic Minimed developed an external physiologic insulin delivery [6] 

employing the CGMS (Medtronic Minimed, Northridge, CA, US) and the Medtronic 511 

Paradigm Pump with a PID controller [7]. Studies using the system is performed on dogs 

[8] and  10 subjects with Type 1 diabetes [6]. Glucose level keeps in the range 3.9-10 
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mmol/L 75% of the time applying closed-loop treatment, compared with that of 63% for 

open-loop treatment. 

Roche Diagnostics developed a sc-sc semi-closed-loop prototype with meal 

announcement employing subcutaneous continuous glucose monitor (SCGM1, Roche 

Diagnostics GmbH, Germany) which can monitor glucose level for 4-5 days [9]. Insulin 

bolus was administrated every 10 min, which is determined by an “empirical algorithm” 

based on clinical observations. The system was tested on twelve Type 1 diabetic subjects 

over 32 hours. It was shown that the algorithm can reach near-target glucose level and 

reduce the number of hypoglycemia interventions. 60% of SCGM1 readings were in the 

range 5-8.3 mmol/L compared to that of 45% under self-directed treatment. An European 

Commission funded project Advanced Insulin Infusion using a Control Loop [10] also 

developed a sc-sc semi-closed-loop with meal announcement, which is composed of a 

minimally invasive glucose monitor system, an insulin pump (Disetronic D-Tron) and a 

PocketPC computer. An adaptive nonlinear MPC is applied in the system.  

The Renard group developed an implantable insulin delivery system employing a 

long-term sensor system [11, 12] which is an intravenous enzymatic oxygen-based sensor 

by Medtronic Minimed (Northridge, CA, US) implantable in the superior vena cava. The 

pump, implementing Proportional-derivative (PD) control, is implanted in the abdominal 

wall and delivers insulin intraperitoneally. The system implemented test on four elderly 

Type 1 diabetes subjects over 2 days and for 84.1% time glucose level is in the range of 

4.4-13.3 mmol/L [1].  

The sc-sc system will gain wide applications in the near future due to its safety and 

convenience to implement and maintain. However, there are two physiological factors 
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affecting the performance of a sc-sc system. One is the delay between insulin delivery 

and sensed glucose lowering. It would take some time for the glucose level to go down 

after the insulin delivery; therefore, subjects using insulin pumps should be alerted insulin 

overdosing due to insulin administrations in a close sequence, which is followed by 

hypoglycemia. The other factor is the inter-subject variability of insulin delivery. 

Actually, developing a “one size fits all” closed-loop system is difficult due to some 

factors such as age, gender, body mass index, physical exercise or some other diseases. 

For the same person, insulin needs are different day-to-day or even hour-to-hour because 

of some physiological or physical reasons. The problem of insulin absorption delay can 

be solved by including the delay in the model of glucose-insulin metabolic system. The 

second factor causes problem for all the closed-loop insulin delivery systems, which is 

expected to be improved by advanced control algorithm such as MPC. 

 

1.3 Motivation and Scopes 

Subcutaneous glucose monitoring and insulin delivery is advantageous over the 

other two approaches for closed-loop insulin delivery system. Therefore, subcutaneous 

tissue is to become the main measurement site of glucose sensor and administration sit of 

exogenous insulin. It is therefore important to understand the kinetics interactions of 

glucose and insulin between plasma and subcutaneous tissues.      

The timing and amplitude difference of plasma glucose and glucose in interstitial 

fluid (ISF) may reflect the variation of glucose uptake, utilization and elimination in 

blood, ISF and cells [13]. Besides, the lag and amplitude difference are also 

characteristics of insulin kinetics between plasma and ISF. However, in most current 
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studies, glucose [14-18] and insulin [15, 18] are considered as a one-compartment model 

during the study of the physiological processes. The ignorance of the lag and amplitude 

difference of glucose in the two compartments would result in loose control of glucose 

level to cause hyper- or hypoglycemia. Therefore, a new two-compartment model is 

developed to express the glucose and insulin metabolic system.  

The new two-compartment model aims to study the physiological phenomenon and 

pathology in diabetes by analyzing the changes of glucose and insulin level, lags existing 

in the glucose-insulin system and the effect of model parameters on the oscillatory 

behavior of glucose-insulin system. Using the proposed mathematical model, the effect of 

the model parameters on blood glucose regulation is investigated. Some key issues are 

analyzed from the perspective of physiology and pathology: 

• Effect of model parameters on the oscillatory behavior of the glucose-insulin 

system. 

• Pathological relations of parameters’ change with some diseases related to 

abnormal glucose level. 

• Influence of model parameters on the interactions of glucose and insulin between 

plasma and ISF compartment regarding physiological lags and amplitude 

differences. 

The two-compartment model without considering external insulin injection/ 

infusion is developed and analyzed physiologically. For diabetic patients, external insulin 

injected subcutaneously is administered to the two-compartment model to simulate the 

metabolism of glucose and insulin. It is the first model to include the dynamics of 

injected insulin into the glucose-insulin model for type 2 diabetic patients. This model 
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considering the dynamics of injected insulin provides insights on the dynamics of human 

blood glucose regulation, and helps derive control algorithms for treatment of diabetic 

patients. The following points were studied: 

• In order to model insulin absorption delay in the sc-sc insulin delivery system, the 

ISF compartment of insulin in the two-compartment model aforementioned was 

separated into three compartments considering insulin degradation at the injection 

site and two insulin absorption channels.  

• Six model parameters value were estimated by fitting the model with injected 

insulin to clinical data of diabetic patients, and the fitting result of our model is 

compared with that of Hovorka model.  

• The six model parameters were discussed physiologically and pathologically 

considering the situations of the diabetic subjects.  

• MPC controller was investigated using the two-compartment model and the 

modified model with subcutaneous insulin, and compared the control performance 

with that of using Bergman minimal model and Hovorka model, respectively. The 

glucose curves and insulin dosages in the simulations of the models were 

compared accordingly to evaluate the performance of glucose control.  

 

1.4 Thesis Organization 

The aim of this thesis is to study the oscillatory behavior of glucose and insulin and 

assess the feasibility of using the model to control blood glucose concentration for 

diabetic patient. A detailed model of glucose-insulin system is indispensable to achieve 

this. Chapter 2 introduces some established mathematical models of glucose-insulin 
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system. In chapter 3, a two-compartment model was developed and analyzed 

physiologically to investigate the oscillatory behaviors of glucose and insulin. The two-

compartment model was modified to simulate the dynamics of insulin injected 

subcutaneously in Chapter 4. The model parameters in the modified model were 

estimated using the clinical data of diabetic subjects and discussed and related to diabetes. 

MPC controllers were developed in Chapter 5 using the two-compartment model and the 

modified model with injected insulin. The control performance of the two models was 

compared with that of Bergamn minimal model and Hovorka model, respectively. 

Simulation results addressed the challenges in using the current models to design a 

closed-loop insulin delivery system. A discussion on the future modeling of glucose-

insulin system was introduced in Chapter 6. Further investigation of virtual patient model 

is necessary with the growing understanding of diabetes.  
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2  Review of Virtual Patient Models  

Since the development of the concept of “artificial pancreas”, there have been many 

researchers studying on the modeling of glucose-insulin regulation system in order to 

understand the mechanism of endocrine system and causes of diabetes and develop a safe, 

efficient glucose control device to relieve the suffering of the diabetes patients. These 

virtual patient models promote the development of advanced control algorithm to regulate 

glucose concentration and investigation of the pathophysiology of diabetes.  

Most mathematical models of glucose-insulin system are based on the idea of 

compartment. When compartmental model is applied to describe the metabolic system 

composed of a series of interconnected compartments, there are several specifications 

needed to be illustrated: compartment number, input and removal sites, and mathematical 

relations of interdependences and controls [19].   

The glucose-insulin regulatory system is a complex system controlled by many 

cerebral signals and hormones; up to now, there has not been a model which can express 

all the interactions of glucose and insulin in the human body. Even, there is much 

physiological phenomenon in human being body which still cannot be explained by 

researchers. Some models developed during the last few decades are introduced in this 

chapter. The advantages and shortcomings of the glucose-insulin models are reviewed in 

[20-22]. 

Virtual patient models can be catalogued into two groups. One is the 

pharmacokinetic (PK) model, in which absorption and clearance kinetics are expressed, 

and some compartments are determined related to the elimination and absorption. The 

other type is the physiological models in which organ system is considered as a 
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compartment, and mass balance of each organ is written by considering convection due to 

metabolic processes, and diffusion between blood and organ cells. The PK models are 

easier to identify from experimental data compared with the second type. 

The early PK model developed by Bolie consisted of one linear equation for insulin 

and one for glucose [23]. First order rate equations were used to express absorption and 

elimination kinetics. This model was modified by Ackerman et al. [24] by involving 

insulin and other hormones in glucose regulation together as a single variable. The 

glucose regulatory system is still oversimplified due to the fact that insulin or hormone 

secretion is more complex than a first order process.  

A two-compartment model for insulin in normal and diabetic patients was 

developed by Frost et al. [25]. Insulin secretion rate was considered as an exponential 

function of glucose for normal subjects and zero for diabetic subjects. Insulin elimination 

was expressed by a nonlinear saturation function of insulin for normal subjects and a first 

order process for diabetic subjects.  

A three-compartment model was proposed by Sherwin et al. [26] in which a central 

compartment exchanged insulin continuously with other two compartments. Insulin 

appearance and elimination from each compartment were modeled as first order kinetics. 

Another three-compartment model developed by Cerasi [27] is similar to Sherwin model. 

It comprised six ordinary differential equations (ODE) to describe physiological insulin 

secretion. The three-compartment model proposed by Insel et al. [28] included one 

nonlinear term to take into account the effect of insulin on glucose uptake.  

A two-compartment model describing glucose and its regulatory hormones was 

developed and validated with data from intravenous glucose tolerance tests (IVGTT) and 
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oral glucose tolerance tests (OGTT) in [29]. A nonlinear model of free fatty acid glucose 

metabolism was proposed for normal subjects in [30]. The system, consisting of 15 states, 

36 metabolic equations and 22 parameters, comprised of glucose, insulin, epinephrine, 

glucagon, growth hormone and free fatty acid models.  

A new model of glucose-insulin system in normal humans was present to describe 

the physiological events occurring after a meal in [31]. The glucose-insulin system 

consisting of 12 states was decomposed into glucose and insulin subsystem both 

expressed by two compartments. 35 model parameters were estimated for normal and 

Type 2 diabetic patients by fitting the mean data of normal subject database undergoing a 

triple tracer meal protocol. 

The Automated Insulin Dosage Advisor on the website (http://www.2aida.net/) is a 

three-compartment model expressing glucose and insulin dynamics. The insulin 

dynamics in the model was driven by subcutaneous insulin injection. The model, 

proposed as an educational tool, was originally designed to study the use of different 

insulin analogues on the insulin therapy and the effect of different meal sizes on the rate 

of gastric emptying in the system.  

The second type of virtual patient models describes biochemical dynamics at each 

important organ site. The organs with significant appearance or clearance of glucose and 

insulin are selected as main compartments. Foster et al. [32] proposed one model of this 

type assuming glucose compartment for blood, muscle and liver, and assuming a 

compartment each for insulin, glucagon and fatty acid. Guyton et al. modified Foster 

model by adding a central organs compartment to the glucose model, including diffusion 

in the transport equations, and making insulin secretion more complex [33].  
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Sorensen [20] divided the central organs compartment into brain and gut 

compartment and included the effect of glucagon. This model consisted of six-

compartment: brain, heart and lungs, liver, gut, kidney and peripheral tissues. The 

dynamics in the ISF and capillary fluid were detailed in the compartment of brain and 

peripheral tissues. Glucose meal disturbance was directly input into the gut along with the 

intravenous delivery of insulin and arterial blood glucose measurement. The model 

consisting of 21 states and 22 metabolic functions described the dynamics of glucose, 

insulin and glucagon. Puckett [34] proposed a new model similar to Sorensen model, 

however it did not include glucagon and removed transport terms besides metabolic sinks 

and sources.  

A kinetic model of glucose regulation system was developed and validated in [35] 

with 6 parameters to identify. The four states in this model expressed the insulin and 

glucose concentration, overall endogenous glucose balance and the peripheral insulin-

dependent glucose utilization (IDGU).  

Cobelli et al. [14] proposed a nonlinear model consisting of glucose, insulin and 

glucagon subsystems. There were 9 states, 23 metabolic functions and 46 parameters in 

this model. Glucose and glucagon subsystem were modeled using a single compartment 

respectively, and insulin subsystem was expressed as a five-compartment model. There 

were 7 ODEs and 23 metabolic functions to describe the glucose-insulin-glucagon system. 

Although Sorensen’s model is widely used in glucose control, it has also been 

criticized for not accurately representing observed glucose change [22]. In addition, 

model parameters must be estimated accurately to ensure the simulation results. However, 

the accuracy of physiological model is lowered due to the large numbers of model 
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parameters compared with PK models. Model parameters are estimated by comparing 

simulation responses with glucose and insulin data, and selecting the parameter set that 

has the minimal sum of squared residuals. Therefore, lower order models can be 

estimated with a single set of glucose or insulin data, which is an advantage over larger 

models. 

Three virtual patient models will be highlighted in the following sections. The 

Bergman, Sturis and Hovorka models are all PK models and used in following chapters. 

All the three models have some common limitations although the structures of the models 

are different: 

1. The counter-regulatory hormones (e.g., glucagon, epinephrine, etc.) have 

profound effect on the change of glucose and insulin. The effect of these 

hormones in the body is not taken into account in the models. 

2. Some physiological factors such as stress or sickness can greatly affect the 

dynamics of glucose and insulin in the human body.  

3. Exercise or some other physical activities can affect the metabolism of glucose 

significantly, which further compound the modeling of glucose-insulin system. 

This factor is ignored in the three models. 

4. The models do not consider the variations in the absorption of different foods. 

 
2.1 Bergman Minimal Model 

Minimal model suggested by Bergman et al [36] with low-order was for estimation 

of insulin sensitivity and glucose effectiveness. It is widely applied in clinical studies and 

mathematical modeling of glucoregulation studies. A revised model was developed by 

Cobelli et al. [37] to estimate glucose clearance and insulin sensitivity. Minimal model 
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was improved in [38] to represent glucose subsystem using two compartments. Hovorka 

et al. [39] added three glucose and insulin subcompartments to extend the original 

minimal model.  Some other modified models are proposed as well [40, 41]. Most models 

were glucocentric and ignored the effect of free fatty acid (FFA). Roy et al. [42] extended 

the Bergman minimal model by including plasma FFA dynamics focusing on Type 1 

diabetic patients.  

A schematic of the Bergman minimal model is shown in Figure 2.1. The minimal 

model, compatible with some known physiological facts, can simulate the glucose-insulin 

system with minimal identifiable parameters and is computationally suitable for 

parameter estimation and real-time control. 

                            

Figure 2.1. Block diagram of the minimal model. The solid arrows represent material flow, the 
dashed arrows imply the interactions between compartments, and the dotted arrow presents the 
effect of plasma insulin on the remote compartment. 

 

As shown in Figure 2.1, Bergman’s minimal model consists of a glucose 

compartment G, a remote insulin compartment X and an plasma insulin compartment I. 

Glucose uptake is influenced by plasma insulin through a remote compartment. The 

model is composed of three differential equations: 
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where G and I are concentration of plasma glucose (mg/dL) and plasma insulin (mU/L), 

respectively. Gb and Ib are the basal levels of plasma glucose and insulin, accordingly. X 

is proportional to the insulin level in the plasma compartment (min-1). It is introduced to 

account for the accelerating glucose disappearance into the periphery and liver, and 

inhibiting hepatic glucose production (HGP).  

Plasma glucose level decays at a rate (p1: min-1) proportional to the difference 

between the plasma glucose level G(t) and the basal glucose level Gb. If the plasma 

glucose level is below the basal glucose level, glucose enters into plasma, and glucose 

leaves plasma if plasma glucose level is above the basal glucose level. The second term, 

−X(t)G(t) describes an additional mechanism via which glucose disappears from plasma 

by the clearance effect of insulin in the remote compartment. D(t) is glucose intake rate 

due to a meal disturbance (mg/min). The change rate of glucose is the difference between 

net hepatic glucose production and the utilization of glucose by the tissues and organs. 

Glucose uptake within glucose space to peripheral and hepatic tissues is mediated by the 

remote insulin compartment. The insulin dynamics of the model is driven by an 

intravenous infusion of insulin to the system.  

Remote-compartment insulin disappears at a rate (p2: min-1) proportional to itself, 

and enters at a rate (p3: min-2 (mU/L)) proportional to the difference between plasma 

insulin level I(t) and basal insulin level Ib. Insulin enters plasma compartment from 

pancreas at the rate of γ [(mU/L)min-1(mg/dL)-1] with glucose level above h (mg/dL) and 

disappears at a rate (n: min-1) proportional to its concentration. u(t) is the exogenous 

insulin infusion rate (mU/min). 
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Though its wide application, a major limitation was reported that glucose 

production cannot separate from its disposal. The indices insulin sensitivity and glucose 

effectiveness describe not only the effect of glucose and insulin on the glucose utilization 

but also the inhibitory effect on the glucose production [43]. Other limitations include 

poor precision of parameter estimation and unsatisfactory reproducibility of the index 

insulin sensitivity. Although these limitations, the model has been validated extensively 

on human patients.  

 

2.2 Sturis Model 

Oscillatory behavior of glucose and insulin in human body has been revealed from 

in vivo and in vitro experiments. Ultradian oscillation of plasma glucose and insulin 

concentration with large amplitude in humans has been observed after meal ingestion, 

oral glucose, constant intravenous glucose infusion and continuous enteral nutrition. A 

three-compartment model including major metabolic processes in glucose regulation was 

proposed to determine whether the oscillations resulted from the feedback loops between 

glucose and insulin [44], as shown in Figure 2.2. Two major negative feedbacks in the 

model, both including the stimulatory effect of glucose on insulin secretion (IS), describe 

the effect of insulin on glucose production and glucose utilization, respectively.  
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Figure 2.2. Flow diagram of Sturis model. Solid arrows represent exchange rate, flows of input 
and output; dashed arrows represent metabolic relationship between compartments. 

 

The model has three main states: amount of glucose in the glucose space, amount of 

plasma insulin and amount of insulin in the ISF. The model equations are shown as 

following: 
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                                  (2.2) 

 

where x (mU) and y (mU) are the insulin amount in plasma and ISF, respectively; and z is 

glucose amount in glucose space (mg). The variables h1, h2 and h3 express the delay 

between plasma insulin and HGP. f1 and f5 denote IS and HGP, respectively. f2 and f3f4 

describe insulin-independent glucose utilization (IIGU) and IDGU, respectively. 

 The metabolic functions are shown in Eq. 2.3; definition and value of model 

parameters are listed in Table 2.1. 
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Table 2.1. Definition and value of Sturis model parameters. 

Parameter Definition Value 

E Rate constant for insulin exchange between plasma and remote 
compartment 0.2 L/min 

I Exogenous glucose delivery rate 216 mg/min 

t1 Time constant for plasma insulin degradation 6 min 

t2 Time constant for remote insulin degradation 100 min 

t3 Delay time between insulin and glucose production 36 min 

V1 Volume of insulin distribution in the plasma 3 L 

V2 Volume of remote insulin compartment 11 L 

V3 Volume of glucose space 10 L 
 

 

2.3 Hovorka Model 

In a similar manner with Bergman model, Hovorka et al. [45] proposed a nonlinear 

model to develop model predictive controller in subjects with Type 1 diabetes. The 

compartment model includes submodels expressing absorption of subcutaneously 

administered short-acting insulin Lispro and gut absorption. The model outline is shown 

in Figure 2.3. 
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Figure 2.3. Compartment model of glucose-insulin system proposed by Hovorka et al.. Solid 
arrows represent exchange rate, flows of input and output; and dashed arrows represent insulin 
action on glucose metabolism. 

 

The model comprises a glucose subsystem (glucose absorption, distribution and 

disposal), an insulin subsystem (insulin absorption, distribution and disposal) and an 

insulin action subsystem (insulin action on glucose transport, disposal and endogenous 

production). The model equations of glucose subsystem are shown by Eq. 2.4: 

 

          

1 01 1 1 12 2 0 3

2 1 1 12 2 2 1

1 1 max,

2 1 2 max,

2

( ) / [ ( ) ( ) ( )] ( ) ( ) ( ) [1 ( )],
( ) / ( ) ( ) [ ( )] ( ),      ( ) ( ) / ,

( ) / ( ) ( ) / ,
( ) / [ ( ) ( )] / ,

( ) / ( ) /

c
R G

G

I

I

I

dQ t dt F t x t Q t k Q t F t U t EGP x t
dQ t dt x t Q t k x t Q t G t Q t V
dS t dt u t S t t
dS t dt S t S t t
dI t dt S t V

= − + + − + + −
= − + =
= −

= −

= max,

1 1 1 1

2 2 2 2

3 3 3 3

( ),
( ) / ( ) ( ),
( ) / ( ) ( ),
( ) / ( ) ( ).

I e

a b

a b

a b

t k I t
dx t dt k x t k I t
dx t dt k x t k I t
dx t dt k x t k I t

−

= − +
= − +
= − +

     (2.4) 

 

Q1 Q2 

x1 

x2 

x3 

I 

k12 
EGP0 

ke 

kb1 

kb2 

kb3 

ka1 

ka2 

ka3 

Insulin 
absorption 

F01
cQ1/(GVG)-FR 

Gut absorption UG 



21 
 

The functions of metabolic processes are shown in Eq. 2.5. The definition of the 

state variables and model parameters are listed in Table 2.2 and Table 2.3, respectively. 

  

                                    

01
01

01

R

/ max, 2
G G G max,

,                   4.5 /
( )

( ) / 4.5,      4.5 /

0.003( ( ) 9) ,  9 /
F (t)=  

0,                              9 /

U (t)=D A te / .
 

c

G

t t G
G

F G mmol L
F t

F G t G mmol L

G t V G mmol L
G mmol L

t−

≥
=  <

− ≥
 <

              (2.5) 

 
Table 2.2. Definition of Hovorka model variables. 

Variable Definition Unit 

G Plasma glucose concentration mmol/L 

Q1 Glucose mass in accessible compartment mmol 

Q2 Glucose mass in non-accessible compartment mmol 

F01 Insulin-independent glucose flux mmol/(Lmin) 

FR Renal glucose clearance mmol/(Lmin) 

UG Glucose absorption rate mmol/(Lmin) 

I Plasma insulin concentration mU/L 

x1 Insulin action on glucose transport min-1 

x2 Insulin action on glucose uptake min-1 

x3 Insulin action on glucose production min-1 
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Table 2.3. Definition and value of Hovorka model parameters. 

Parameter Definition Value 

k12 
Transfer rate from non-accessible to accessible 
compartment 0.066 min-1 

ka1 Deactivation rate 0.006 min-1 

ka2 Deactivation rate 0.06 min-1 

ka3 Deactivation rate 0.03 min-1 

kb1 Activation rate 3.07e-5 min-1 

kb2 Activation rate 4.92e-5 min-1 

kb3 Activation rate 1.56e-4 min-1 

ke Insulin elimination rate from plasma 0.138 min-1 

VI Insulin distribution volume 0.12 L/kg 

VG Glucose distribution volume 0.16 L/kg 

DG Amount of carbohydrates digested N.A. 

AG Carbohydrate bioavailability 0.8 

tmax,G Time-to-maximum of carbohydrate absorption 40 min 

EGP0 
Endogenous glucose production extrapolated to zero 
insulin concentration 0.0161 mmol kg-1  min-1 

F01 Non-insulin-dependent glucose flux 0.0097 mmol kg-1  min-1 

tmax,I 
Time-to-maximum of absorption of subcutaneously 
injected short-acting insulin 55 min 

 

2.4 Summary 

The Bergman, Sturis, and Hovroka models use different approaches to model the 

dynamics of glucose-insulin system. In order to improve the control algorithm of glucose 

regulation and hence the diabetes treatment, virtual patient models have to be refined 

continually for further understanding of the pathology and physiology of diabetes. In 

Chapter 3, a refined two-compartment model based on the Sturis model is proposed to 

explore the oscillatory behavior of glucose-insulin system and the relation of the 

oscillations and diabetes.  
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3  Model of Glucose – Insulin System with Delays  
    Researchers have studied the oscillatory behavior of the insulin, glucose and 

other hormones for decades. Two delays are suggested to be relevant to the oscillations of 

glucose and insulin as well as some lags existing to affect the regulation of glucose 

concentration. Hepatic glucose production delay and insulin secretion delay are two 

delays studied mostly by the researchers. Some lags are observed such as the lags 

between plasma glucose and glucose in the ISF, between plasma glucose and plasma 

insulin, between plasma insulin and ISF insulin, and between IDGU and ISF insulin. 

Glucose level is regulated by these variables and four negative feedback loops among 

them (refer to Figure 2.A in [44]). Insulin action delay and the feedback loop in the 

glucose-insulin system may be key factors of stimulating the oscillations [15, 44]. 

 

3.1 Periodic Oscillation of Insulin 

Periodic oscillation is one of the most significant characteristics of insulin secretion. 

It can pulsate at different amplitudes and periodicities (Figure 3.1) [44]. Oscillation of 

insulin secretion can be divided into rapid oscillation and ultradian oscillation. 
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Figure 3.1. Different amplitudes and periodicities of insulin and glucose for different glucose 
infusion rates: (A) meal ingestion; (B) oral glucose intake; (C) continuous enteral nutrition; (D) 
constant glucose infusion. 
 

3.1.1 Rapid Oscillation 

The rapid oscillations of insulin, plasma glucose and glucagon concentration have 

been observed in overnight fasting monkeys [46]. A mean period of 9 min for the insulin, 

plasma glucose and glucagon was proposed. Larger amplitudes for insulin and glucagon 

were reported to be ten and five times greater than glucose.  

    Concurrent oscillations of glucose and insulin was reported with averaging 

period of 13 min in normal men in [47]. Plasma was sampled from ten normal subjects 

every two minutes between one and two hours in this study. In five subjects with regular 

cycle of basal plasma insulin, the average concentration of plasma glucose led plasma 

insulin for 2 min. For the less regular subjects, a two-minute lead of plasma glucose to 

rise before the insulin rise was demonstrated. It was proposed that negative feedback loop 

between the liver and the pancreatic beta cells regulated the basal plasma insulin and 

glucose. 
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In order to examine whether the hormone cycles could be sustained without the 

influences of liver or central nerves, isolated canine pancreas was perfused in vitro [48]. 

Sustained regular cycles of insulin secretion, glucagon and somatostatin were observed 

for over 200 min under constant infusion of glucose. The average periods for insulin, 

glucagon and somatostain were 10 min, 8.6 min and 10 min, respectively. Based on the 

experiments results, there might be a pacemaker or a driving oscillator of hormone 

secretion within the pancreas to produce the in-vitro cycles.  

Pancreas was suggested to be possibly a driver or Zeitgeber of the glucose-insulin 

interaction system [48, 49]. The results of in vivo and in vitro experiments were 

compared to study the causes of the oscillations [50]. Samples were taken every minute 

from the portal vein of the dog and from the isolated perfused pancreas in vitro. The data 

from the experiments was in agreement with the proposal in [48] supporting that there 

was a pacemaker within the pancreas to regulate the insulin secretion. The amplitude of 

the oscillation was suggested to be mediated by vagal nerves as well [50].  

 

3.1.2 Ultradian Oscillation 

Ultradian oscillation is regarded as characteristic of intact organism and may be 

inherent to the glucose-insulin feedback system. Some studies on oscillatory behavior of 

glucose and insulin under different situations are listed in Table 3.1.  
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Table 3.1. Studies on the oscillatory behavior of glucose-insulin system. 

Source  Subject  Glucose entrance  

Kraegen et al., [51]  Normal man  Oral glucose administration  

Segre et al., [52] Normal, diabetic, obese man  Constant glucose infusion  

Ookhtens et al., [53] Conscious dog  Constant glucose infusion  

Bowden et al., [54] Conscious dog  Constant glucose infusion  

Simon et al., [55] Normal man  Meals  

Simon et al., [56] Normal man Continuous enteral nutrition 

Polonsky et al., [57] Normal & diabetic man Meals 

Sturis et al., [58] Type 2 diabetic, obese, 
normal man  Fasting  

 

 

Ultradian oscillation is the slower pulsatility of insulin, glucose and some other 

hormones with longer period. The periodic fluctuations of insulin and glucose 

concentration were observed in the arterial plasma of the conscious fasting dogs [53]. The 

measurement of glucose and insulin concentration was taken at frequent regular intervals. 

The observation period varied from 30 minutes to 10 hours and was divided into 64 even 

time sections. It was found that the sustained oscillations of insulin and glucose level 

were observable under constant intravenous glucose infusion.  

A similar experiment was carried on conscious, intact dogs [54]. The oscillations of 

insulin and glucose in the plasma were observed with constant glucose infusion of 10 

mg/kg/min. The glucose level went into regular oscillation after about 3 hours since the 

beginning of the glucose infusion until the end of it. The glucose and insulin 

concentration oscillated with frequencies of 0.54±0.03 cycles/h and 0.6±0.09 cycles/h 

respectively, which were quite close. A lead of glucose before insulin oscillation was 
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observed for 22±5 min. Peripheral glucose utilization was studied as well in this study. It 

proposed that the glucose fluctuation was due to the large fluctuation in peripheral 

glucose utilization; and glucose was the main factor for the hepatic glucose uptake during 

the glucose infusion and insulin for the peripheral glucose utilization. 

Except the constant glucose infusion, meals and constant enteral glucose infusions 

can stimulate the oscillation of glucose and insulin in human body [55, 56]. Eight normal 

subjects were studied for the time profiles of glucose and insulin after three meals in [55]. 

The mean period of the synchronous oscillations of glucose and insulin was about 51-112 

min. The amplitude of the oscillation reached peaks after meals, decreased with time and 

returned to its fasting levels after about 340 min. Rapid oscillations of glucose and insulin 

were observed to superimpose on the ultradian oscillation with different periods of 20-30 

and 9-14 min. The influence of continuous enteral nutrition on the plasma glucose, 

insulin and C-peptide was studied in [56]. The period of the ultradian oscillation and the 

rapid oscillation for plasma glucose and insulin was 53-113 min and 8-14 min 

respectively. A rapid and small-amplitude insulin oscillation of 8-15 min was observed in 

experiments on animals and a slow and large-amplitude oscillation of insulin on human 

every 100-150 min [59]. 

The pulsatility of insulin in 24 hours was studied under 3 mixed meals on 14 

normal subjects and 15 obese subjects [57]. By using a two-compartment kinetics model 

of peripheral C-peptide, insulin secretion rate was derived from the concentration of C-

peptide in the plasma. In the normal subjects, about 11.1±0.5 pulses were observed 

during 24 hours. Obvious pulses of insulin were observable after three meals; and the 

insulin secretion pulsated in the fasting period overnight. For the normal and obese 
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subjects, the number and the time for the insulin secretion pulses was similar, with higher 

amplitudes for the obese subjects. The results suggested that pulse of glucose 

concentration was concomitant with those of insulin especially during postprandial period; 

and the concomitant rate during the fasting period was lower accordingly. 

Sturis et al. investigated the ultradian oscillation of insulin secretion and glucose 

concentration under fasting condition on seven Type 2 diabetes patients, eight obese non-

diabetic subjects and eight normal subjects [58]. Blood was sampled every 15 minutes to 

measure glucose, insulin and C-peptide on the diabetic and obese subjects. For the normal 

subjects, the fasting period was 8 hours. Insulin secretion rate was calculated in the same 

way with [57]. Ultradian oscillation of IS was reported to be evident during the fasting 

period for all the subjects. The rapid oscillation with period of 10-15 min was observed 

using short sampling every 2 minutes. The oscillation frequency was reported to be 

similar for the diabetic and non-diabetic subjects at 12-15 oscillations/24 h; and the 

concomitant rate for the two groups were approaching with mean value of 63%-65%. 

Compared with oscillation of insulin, a slowing of the glucose oscillation in the Type 2 

diabetic subjects was observed.  

 

3.2 Models of Ultradian Oscillation of Glucose-Insulin System 

For better understanding of the endocrine regulatory system and shedding light on 

the oscillatory features of insulin and glucose, many models have been proposed. Some 

of the models exploring the oscillations of glucose and insulin are listed in Table 3.2.  
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Table 3.2. Models of investigating oscillations of glucose-insulin system. 

Source  
No. of 
explicit 
delays 

No. of 
equations 

No. of glucose 
compartment 

No. of insulin 
compartment Remark 

Sturis et 
al. [44] 0 6 1 2 

3 ODEs without 
physiological 
meaning. 

Tolić et al. 
[17] 0 6 1 2 

Express delay using 
Taylor expansion, 
simplify some 
functions. 

Bennett 
and 
Gourley 
[60] 

1 
(HGP 
delay) 

3 1 2 
One equation for 
glucose dynamics and 
two for insulin. 

Li et al. 
[15] 2 2 1 1 

Analyzed 4 
parameters’ effect on 
the oscillatory 
behavior. 

Chen and 
Tsai [18] 2 2 1 1 

Two constants 
included to estimate 
the dysfunction due to 
diabetes. 

 

A three-compartment model was proposed by Sturis et al. [44] to study ultradian 

oscillating behavior of glucose and insulin. The model structure is similar to Bergman 

minimal model: a single compartment was used to express glucose subsystem and insulin 

subsystem was modeled using plasma insulin and remote insulin compartment. The 

model of glucose-insulin system consisted of five metabolic functions and six nonlinear 

ODEs, three of which were auxiliary variables without biological meaning to introduce 

the delay of insulin effect on HGP. Tolic et al. [17] simplified the metabolic functions f1-

f5 in Sturis’ model, and two new functions were introduced into the model representing 

the effect of hyperglycemia on HGP and the splanchnic glucose uptake.  
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Engelborghs et al. [61] introduced the delay of HGP explicitly into the model to 

replace the three auxiliary variables based on the study [44], and one-compartment 

insulin model was used. There were only two differential equations instead of six. 

Another delay of glucose effect on IS was not considered in this model, which was 

proved to be unreasonable by Li et al [15]. In their work, they tried to model exogenous 

insulin infusion assuming that the form of exogenous insulin infusion was the same as the 

endogenous insulin secretion. 

Bennett and Gourley [60] introduced the HGP delay explicitly into the model and 

kept the two insulin compartments to express indirectly the delay of IDGU without 

considering delay of IS. The model consisted of three differential equations and was 

analyzed for the sufficient conditions of global stability. 

Li et al. [15] used one-compartment model of glucose and insulin, introduced 

delays of IS and HGP explicitly into the model, and suggested a model expressed by two 

differential equations. Their simulation results indicated that IS delay was important for 

sustaining oscillation of glucose and insulin. The time delay of IS was therefore 

suspected as one of the possibly causes of ultradian oscillation of glucose-insulin system. 

Chen and Tsai [18] followed Li et al. study [15] and included a glucose submodel 

in the glucose-insulin system. There were two differential equations describing the 

glucose and insulin in the plasma compartment. Keeping the five algebraic equations f1-f5 

unchanged, two functions were introduced to express the effect of hyperglycemia. Two 

constants α and β were included in the differential equations to estimate the dysfunction 

condition due to diabetes. There were other mathematical models with delays to express 

glucose-insulin regulatory system, and a review of these models can be found in [62].  
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The role for each delay or both was considered in different way. In [15, 44], the two 

delays were considered separately for their influence on the oscillation behavior of IS and 

HGP. While the two delays’ effect was considered together by using the sum of the two 

delays in [63]. It was proposed that the combined effect of the two delays influenced the 

dynamics of the glucose-insulin feedback mechanism, but not each individual delay. 

Chuedoung et al  [63] concluded that there was a critical composite delay of HGP delay 

and IS delay to affect the oscillatory behavior of the glucose-insulin system. Below this 

critical composite delay, stability can be expected. Li and Kuang [64] suggested that the 

sustained oscillation can occur in the unstable region divided by a curve. So far, there has 

not been any suitable method to conduct experiments to study and ascertain each delay’s 

effect on the endocrine system. The credibility and applicability of the models remains 

largely debatable till further relevant research investigations and findings. In our work, 

the two delays are studied separately followed by combining them to investigate the 

effect on the glucose-insulin system. 

Table 3.3. Range of time delays. 

 HGP delay IS delay 

Sturis et al. [44] 25-50 min N/A 

Prager et al. [65] 0-23.5 min 0-23.5 min 

Engelborghs et al. [61] N/A 50 min(for simulation) 

Li et al. [15] 6.75-40 min  5-15 min 

Wang et al. [66] 15 min(for simulation) N/A 

 

In different studies on the oscillatory behavior of glucose-insulin system, the range 

of IS delay and HGP delay varied widely (Table 3.3). Delay can influence glucose 
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concentration and the lags of glucose and insulin between different compartments to a 

certain extent [66]. Definitions for the delays were not the same in different studies. HGP 

delay was defined as the time taken for the liver to release glucose responding to the 

plasma insulin change in [60, 67]. HGP delay was the time taken for “remote insulin” to 

stimulate HGP to a significant change (e.g. half-maximal) in [15]. IS delay was 

considered as the time from the elevated plasma glucose to the change point of IS in [63, 

67]. In [15], IS delay was measured from the time plasma glucose concentration increases 

to the moment when newly synthesized insulin is transported to interstitial fluid and 

becomes the “remote insulin”.  

3.3  Modeling Glucose-Insulin  System with Two Explicit Delays 

3.3.1 Structure of Glucose-Insulin Model 

The body tissues and organs were divided into two compartments by the different 

rates equilibrating with plasma compartment: slow-equilibrating with plasma and rapid-

equilibrating with plasma compartment in [26, 31]. The organs with large blood flow 

relative to their interstitial volume have a rapid rate of equilibrating (e.g. heart, liver, gut 

and kidney); while other poorly perfused tissues have slow equilibrating rate (e.g. skin, 

muscle and adipose tissues).  

After the insulin is secreted by pancreas and passes liver, it goes into plasma and 

circulates to various human organs. The insulin then transverses the capillary membrane 

and enters the interstitial fluid. Finally, insulin is bound to the cell receptors on the 

membrane of insulin-dependent tissue cells, and the cells ‘open’ to let the glucose in. 

IIGU mainly happens in brain and nerve cells. The permeability of the cells is so high 

that the cells can utilize glucose even without insulin [68]. IDGU often occurs in insulin-
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dependent tissues, such as muscle and adipose tissues, where glucose in the ISF can be 

utilized under the aid of insulin in the ISF. The glucose uptake correlates closely with 

insulin in ISF rather than with plasma insulin [69]. For diabetic patients, due to insulin 

deficiency or insulin resistance, glucose level cannot be controlled within the normal 

range and complications are induced.  

Glucose dynamic system was expressed as a one-compartment model and insulin 

dynamic system expressed as two-compartment model in [44]. In later studies, glucose 

and insulin dynamic systems were mostly expressed as a one-compartment model to 

study glucose-insulin oscillatory behaviors [15, 66, 67]. Optimal control of glucose level 

can be achieved by subcutaneous delivery of insulin after glucose measurement. It is 

crucial to investigate and understand the dynamics of glucose and insulin in the 

subcutaneous tissues for better regulation of blood glucose level. In order to investigate 

the oscillatory behavior of the glucose-insulin system and interactions between quick- 

and slow-equilibrating tissues and organs, we construct a two-compartment model of 

glucose and insulin with explicit introduction of two delays, and modify the functions of 

HGP [16], IS and IDGU. The model structure is shown in Figure 3.2, and the complete 

model is given by equation sets (3.1) and (3.2).  

 

 
Figure 3.2. Diagram of two-compartment model. The solid and dashed arrows represent input, 
output, exchange of glucose and insulin, respectively. 
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The first compartment, plasma and rapidly equilibrating tissues, is expressed as 

plasma for short; the second compartment, slowly equilibrating tissues, which is also the 

remote compartment [31, 44], is expressed as ISF following the definition in [31]. The 

definition of all the variables and parameters in the model are listed in Table 3.4 and 

Table 3.5. HGP delay, defined in the same way in [60, 67], is the time from the insulin 

appearance in plasma to the moment HGP has significant changes. IS delay is expressed 

as the time difference for plasma glucose effect on IS by pancreas, following the 

definition in [63]. The IS delay is different from that in Li et al. [15] in that IS delay of Li 

et al. included the time lag of transporting plasma insulin to ISF compartment. 

 
 
 
 
 
 



35 
 

 
Table 3.4. Definition of state variables of the two-compartment model. 

Variable Definition  Unit 

Gp

 

Glucose amount in plasma 

 

mg

 

Gi

 

Glucose amount in ISF 

 

mg

 

Ip

 

Insulin amount in plasma 

 

μU

 

Ii

 

Insulin amount in ISF 

 

μU

 

Gin Glucose intake rate mg/min 

HGP Hepatic glucose production mg/min 

Uii Insulin-independent glucose utilization mg/min 

E Renal excretion mg/min 

Uid Insulin-dependent glucose utilization mg/min 

S Insulin secreted by the pancreas mU/min 
 
 

Table 3.5. Parameters definition and nominal value in the model. 

Parameter Definition Nominal values 

Vgp Plasma glucose distribution volume  8.4 L 

Vgi ISF glucose distribution volume  7  L 

Vip Plasma insulin distribution volume  3.15 L  

Vii Insulin distribution volume in ISF  7 L 

e Exchange rate of insulin between plasma and ISF  0.1361 min-1 

ke1  Glomerular filtration rate   0.0005 min-1 [31] 

ke2  Renal threshold of glucose  339 mg/kg [31] 

k1  Transfer rate from plasma to ISF of glucose   0.065 min-1 [31] 

k2  Transfer rate from ISF to plasma of glucose  0.079 min-1 [31] 

m1  Transfer rate from plasma to ISF of insulin 0.042 min-1 [26, 70] 

m2  Transfer rate from ISF to plasma of insulin 0.02 min-1 [26, 70] 

m3  Plasma insulin degradation rate 0.268 min-1 [26] 

m4  ISF insulin clearance rate 0.03 min-1 [26] 

τ1 HGP delay 20 min 

τ2 IS delay 10 min 
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Table 3.6. Distribution volumes for glucose and insulin in different compartments. 

 Glucose space Insulin in plasma Insulin in ISF 

Sherwin et al. [26] N/A 45±3 mL/kg   95 ± 8 mL/kg  

Cobelli et al. [70] 0.2 L/kg 0.045 L/kg  0.1 L/kg 

Sturis et al. [44] 10 L (7-13 L) 3 L (2-4 L) 11 L (7-15 L) 

Hovorka et al. [45] 0.16 L/kg 0.12 L/kg  

Dalla et al. [31] 0.188 L/kg (normal) 
0.149 L/kg (Type 2) 

0.05 L/kg (normal) 
0.04 L/kg (Type 2) N/A 

 

Two state variables are considered in the glucose system: plasma glucose (Gp) and 

ISF glucose (Gi). The state variables in the insulin system are plasma insulin Ip and ISF 

insulin Ii. Their values are converted to mg/dL and μU/ml when we report the simulation 

results. The distribution volumes of glucose and insulin space in some studies are listed in 

Table 3.6. Using the estimation method for the distribution volumes of glucose and 

insulin in [70], Vgp, Vgi, Vip, and Vii are estimated respectively as 12%, 10%, 4.5% and 10% 

of bodyweight [14, 26, 31, 45, 70]. Bodyweight (BW) is assumed to be 70 kg in this 

chapter. 

 

3.3.2 Glucose Dynamics of the Two-compartment Model 

There are two glucose sources in the model: glucose intake Gin from gut and 

glucose production from the liver stimulated by the glucagon. Glucose intake rate is 

variable due to different glucose infusions. Gin(t) can be considered to be constant when 

intravenous glucose infusion is applied. Gin increased toward a maximum value and then 

fell slowly to zero in [18]. More complex models for glucose intake from gut were 

proposed in [71, 72]. 
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HGP increases with decreased plasma insulin concentration. HGP was suggested to 

depend on plasma glucose, liver insulin and plasma glucagon in [14]. Glucagon was 

suggested to be unimportant correlations with the oscillatory behavior of insulin and 

glucose in [44]. With a wide range of HGP delay, oscillations of glucose and insulin were 

observable with HGP delay changing from 4.5 to 36 min in [15]. A range of 0-50 min for 

HGP delay is applicable according to Table 3.3. HGP decreases with the increase of 

plasma insulin, shown in Figure 3.3. 

 
Figure 3.3. Change of HGP with plasma insulin level. 

 

Glucose utilization was revealed to be dependent on plasma glucose and insulin 

concentration [14, 44]. It can be divided into insulin-dependent and insulin-independent 

utilization. There are different functions expressing IIGU. It followed Michaelis-Menten 

kinetics form in [73]. While IIGU was in the form of two hyperbolic-tangent functions’ 

product in [14], relevant to plasma glucose and ISF insulin. In [44], IIGU relevant to 

plasma glucose climbed quickly to the constant value, as shown in Figure 3.4.  
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Figure 3.4. Effect of plasma glucose level on IIGU. 

 

IDGU followed the Michaelis-Menten form in [31].  IDGU depended on the plasma 

glucose and ISF insulin suggested in [14, 16, 44], with the mathematical functions 

different. Glucose uptake by the peripheral tissues occurs in the ISF compartment, 

making IDGU a function of ISF glucose concentration [31]. We therefore modified 

IDGU to be a function relevant to glucose and insulin concentration in the ISF 

compartment. The relationship of glucose and insulin in the ISF compartment with IDGU 

was shown in Figure 3.5. 

 

 
Figure 3.5. Change of IDGU with ISF glucose level when ISF insulin is constant at 6 μU/mL (A), 
and the relationship of IDGU with ISF insulin level when ISF glucose is constant at 90 mg/dL (B). 
 

A B 
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There was no glucose renal excretion in the model in [44, 60]. However, it is an 

important part in the regulatory system of glucose and insulin. The mathematical model 

of glucose renal excretion was adapted from [31]. Glucose eliminated by the kidney 

occurs when the plasma glucose level is higher than the threshold value and is assumed to 

be linear with plasma glucose. Threshold value of plasma glucose concentration is 

different for different subjects. Threshold value in [31] was therefore used in this chapter. 

 

3.3.3 Insulin Dynamics of the Two-compartment Model 

Basal plasma insulin was about 5-10 μU/ml after an overnight fasting in [74]. A 

mean value of 11.5 μU/ml was measured for the fasting arterial insulin level [26]. Insulin 

equilibration between plasma and ISF was governed by the insulin concentration 

difference in the two compartments [44].  

Insulin is secreted by pancreatic beta-cells when stimulated by elevated plasma 

glucose concentration. Insulin has an inhibitory effect on the HGP and enhances glucose 

utilization by the tissue cells. In our work, the function of IS rate from [44] is modified 

following that in [16]. As shown in Figure 3.6, insulin secretion rate increased slowly 

first, followed by fast climbing from about 150 mg/dL and slowed down until reached a 

relatively stable value. 
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Figure 3.6. Change of insulin secretion rate with plasma glucose level. 

 

There are three main clearance sites for insulin: kidney, liver and peripheral tissues. 

Portal insulin degradation happens mainly at liver, and peripheral insulin at kidney, with 

the insulin left to be removed by other tissues [15]. It was suggested that insulin clearance 

in plasma degrades in a single exponential form, and ISF in a linear form with its 

concentration [75, 76]. The process of newly secreted insulin passing liver would degrade 

insulin or recycle via hepatic artery. Insulin destruction by liver on first passage was 

estimated at 40%-55% [26]. In our work, it was assumed the secreted insulin enters 

directly plasma compartment after its first degradation passage through liver [26]. The 

insulin loss by the liver was considered with irreversible plasma insulin loss as a loss 

directly from plasma, which was expressed by the lumped parameter m3.  

Exchange rate of insulin between plasma and ISF compartment e 

The function of IDGU (Uid)  in the proposed model is different from the original 

function in [44]. We define a parameter m4 to express ISF insulin clearance rate. m4 is 

used to replace 1/ti. The parameter e, which is the rate of exchange between plasma and 

ISF compartments, has a different value with that of the original function. 
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Since insulin exchange between plasma and ISF is proportional to the difference 

between the plasma and ISF compartment, the insulin exchange q in the original function 

was: 

                                                   1 2( )q E x V y V= ∗ − , (3.3) 

where x and y are insulin masses in the plasma and ISF respectively, E is the rate constant 

for exchange of insulin between the two compartments, and V1 and V2 are the respective 

distribution volumes for the plasma insulin and remote insulin compartment as defined in 

[44]. In our model, the insulin exchange is: 

                                                                 1 2 ,p iq m I m I= −  (3.4) 

where Ip and Ii were masses of insulin in plasma and ISF compartment respectively, m1 

and m2 were transfer rates of insulin mass between the two compartments. Assuming that 

the two insulin exchanges are equal, two values of E could be obtained, which is relevant 

with IDGU. The two values are averaged to obtain: 

                                       1 1 2 2 1 2( ) 2 ( ) 2.i p iie mV m V mV m V= + = +  (3.5) 

In our model, V1 is expressed as Vip, and V2 is expressed as Vii. 

 

3.4 Physiological Analysis of the Model Parameters Effect on the 

Oscillatory Behavior of the System  

Taking into account the variance of several parameters under different conditions 

and uncertainty of their effects on the oscillatory behavior, computer simulations were 

performed. Results were analyzed for parameters’ impact on the oscillatory behavior of 

the system, and the physiological implication was discussed.  
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In our simulation, a parameter’s value was altered with all the other parameters 

remained constant at their nominal values. The correlation of ISF glucose level with 

blood glucose level varied from 0.76 to 0.92 [77]. Blood glucose level within 80-120 

mg/dL was suggested in existing studies as the target of glucose control [78] or 

normoglycemia range [79]. The optimal range of plasma glucose concentration (80 

mg/dL-120 mg/dl) and glucose concentration difference (10%-25%) between the two 

compartments were therefore considered in deciding the optimal range for each parameter. 

For different subjects, the parameters’ value should be different. Parameter range for 

different subjects was discussed based on physiological analysis of simulation results.  

In order to investigate the oscillatory behavior of the glucose-insulin system and 

interactions between quick- and slow-equilibrating tissues and organs, we constructed a 

two-compartmental model of glucose and insulin with explicit introduction of two delays, 

and modified the functions of HGP, IS and IDGU. Based on the simulation results, the 

influence of parameters on the oscillatory behavior and their physiological implication 

was analyzed. From section 4.4.1 to 4.4.7, Gin was external glucose infusion rate constant 

at 108 mg/min. 

 
3.4.1 Insulin Transfer Rate Constants m1  

The parameter m1 is increased from 0 to 0.1. A range of m1 is estimated at 0.02-0.08 

to sustain the oscillation of the system (Figure 3.7.A). The lower and upper limits of 

plasma and ISF glucose are reduced because more insulin distributing to ISF increases 

glucose uptake by the tissues. This agrees with normal phenomenon. Plasma glucose 

level increases further with more insulin transferring to ISF in the range of 0.02-0.03 

(Figure 3.7.B), which may be caused by insulin resistance in the subcutaneous tissues. It 
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is estimated that for Type 2 diabetes, m1 may be in the range of 0.02-0.03. Difference 

between plasma and ISF glucose concentration widened with increasing m1. Within one 

oscillation period, for a certain glucose level, level difference between plasma and ISF is 

different for rising and falling side [13, 80]. Therefore the glucose level difference in 

plasma and ISF changes like a closed curve (Figure 3.7.C). For m1 greater than 0.06, 

glucose concentration difference is higher than 25% (Figure 3.7.C). This may indicate an 

inefficient glucose transfer from plasma to ISF caused by some illness. 

 
Figure 3.7. Phase plane of glucose and insulin in the plasma (A), glucose and insulin level 
distribution (B), and glucose level difference (C) when m1 changes. The triangle indicates glucose 
and insulin in plasma go to a steady state when m1=0.01. The level difference was calculated as 1- 
ISF glucose level/plasma glucose level. 
 

3.4.2 Insulin Transfer Rate m2 

In Figure 3.8, m2 is increased from 0 to 0.06. For m2 out of the range of 0.01-0.04, 

oscillations of insulin and glucose are damped (Figure 3.8.A). An optimal range of m2 is 

estimated at 0.02-0.04. By the simulation result, m2 in the range of 0.01-0.02 may imply 

impaired function of glucose distribution in the body, which is shown by high difference 

of glucose concentration between the two compartments (Figure 3.8.B). For m2 greater 

than 0.04, glucose-insulin system reached steady state quickly, and glucose 

concentrations in plasma and ISF vary in a narrow range. 
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Figure 3.8. Phase plane of glucose and insulin in the plasma (A), and plasma and ISF glucose 
level difference (B) when m2 changes. 
 

3.4.3 Plasma Insulin Degradation Rate m3 

In our model, the loss of newly secreted insulin cleared by the liver was considered 

together with irreversible loss of plasma compartment as loss directly from the plasma 

compartment, expressed as a lumped parameter m3. This degradation is named following 

the nomenclature in [44] as plasma insulin degradation. For the irreversible loss of 

plasma insulin and insulin degradation by the liver, they are assumed to be linear with 

plasma insulin mass with rate estimated at 0.125 and 0.268 respectively [14, 31]. 

When insulin degradation m3 increases, glucose increases, and insulin decreases in 

both compartments. A range of m3 is estimated at 0.1-0.6 for periodic solution of the 

dynamic system (Figure 3.9.A). The optimal range for m3 may be within 0.2-0.3 (Figure 

3.9.B and C). For m3 less than 0.2, glucose concentrations in both compartments vary in 

wide range (Figure 3.9.B). This may be caused by inefficient glucose distribution. With 

m3 increasing from 0.3 to 0.6, plasma glucose increases to almost 140 mg/dL and plasma 

insulin decreases to about 30 μU/mL. The high glucose and insulin level under low 
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glucose infusion may be induced by insulin resistance. m3 in the range of 0.3-0.6 was thus 

estimated for Type 2 diabetics.  

 

 
Figure 3.9. Phase plane of glucose and insulin in the plasma (A), glucose and insulin level 
distribution (B), and glucose level difference (C) when m3 changes. 
 

3.4.4 ISF Insulin Clearance Rate m4 

ISF insulin clearance rate is affected significantly by the subject’s health conditions, 

exercises and other biological factors. A wide range of ISF insulin clearance rate exists, 

such as 0.001-0.07/min in [15], 0.01/ min in [44], 0.194/min for normal people and 

0.269/min for Type 2 diabetic patients [31]. We observed that the oscillation of the 

dynamic system can be sustained in the range of 0-1. In agreement with existing studies, 

a range of m4 is assumed to be 0-0.2. 

From Figure 3.10.B, plasma glucose and glucose level difference are always within 

the optimal range. When m4 increases from 0 to 0.02, insulin and glucose in plasma 

increase, and ISF insulin decreases rapidly. This may be caused by poor distribution of 

insulin from plasma to ISF due to disease. For sub-healthy people, the range of m4 is 

likely to be 0-0.02. The optimal range of m4 is estimated at 0.02-0.05. For m4 greater than 

0.05, ISF insulin level drops very low, while plasma insulin concentration hardly changes 

(Figure 3.10.A). Higher ISF insulin clearance results in wide glucose difference change, 
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and the pattern of glucose difference curves varies greatly with the increase of m4 (Figure 

3.10.B). ISF insulin clearance rate may be relevant with the sensitivity of subcutaneous 

tissues to insulin; thus the value of m4 for Type 2 diabetics is likely to be higher than that 

for normal subjects.  

 

 
Figure 3.10. Plasma glucose and insulin level distribution (A), and plasma and ISF glucose level 
difference (B) when m4 changes. 
 

3.4.5 HGP Delay τ1  

Plasma insulin is relevant with HGP by transporting ‘signal’ to liver to stimulate or 

suppress the transformation between glycogen and glucose. During this process, a delay 

was reported to exist [65]. In Figure 3.11.A, HGP delay increases from 0 to 40 min. The 

oscillations can occur when τ1 is greater than 14 min. When τ1 increases, the amplitudes 

of the four state variables increases, and the range of the glucose concentration difference 

between compartments grows quickly (Figure 3.11.B). The observation indicates that 

glucose fluctuation become more significant with longer delay.  
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An optimal range of τ1 is estimated at 14-22 min. For HGP delay longer than 22 

min, glucose and insulin level are high by the simulation result, which could be due to 

insulin resistance. It is thus estimated HGP delay may be longer than 22 min for Type 2 

diabetics. Besides, with τ1 increasing, the lower limit of glucose decreases quickly, 

probably resulting in hypoglycemia. This is a potential danger for diabetics. 

 

 
Figure 3.11. Phase plane of glucose and insulin in the plasma (A), and plasma and ISF glucose 
level difference (B) when τ1 changes. Both glucose and insulin in plasma reach a steady state with 
τ1 ≤12 min. 
 

3.4.6 Insulin Secretion Delay τ2 

IS delay was reported to be in the range of 0-23.5 min [65]. An initial range of 0-20 

min of τ2 was assumed for the simulation. 

When τ2 increases, the ranges of glucose and insulin widen significantly. A critical 

value for τ2 to sustain the oscillations is found to be about 4 min (Figure 3.12.A). For IS 

delay shorter than 4 min, the oscillations are damped quickly. For τ2 within 4-12 min, 

glucose concentration is changing within the optimal range. With τ2 increases from 12 

min, glucose and insulin level are higher than normal, which may be caused by insulin 
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resistance. Therefore, the IS delay is estimated to be longer than 12 min for Type 2 

diabetics. The possibility of occurrences of hyperglycemia at the peak is high with τ2 

longer than 12 min. 

 

 
Figure 3.12. Phase plane of glucose and insulin in the plasma (A), and plasma and ISF glucose 
level difference (B) when τ2 changes. 
 

3.4.7 Combined Effect of the Two Delays 

Based on the results in section 3.4.5 and section 3.4.6, the sums of τ1 and τ2 are 

equal to approximately 24 min. In subsequent simulation to investigate the influence of 

the two delays on the system, the sum of the delays is kept constant.  

A critical value for the sum of the two delays is found to be about 24.6 min. When 

the sum of the two delays is greater than the threshold, the ultradian oscillation can be 

sustained. The critical sum of the two delays is quite close to the single delay within the 

range of 0-23.5 min suggested by [65]. Due to compartment split in our work, the time 

delay of glucose transporting and utilization always exists, which was included into IS 

delay in [15]. A critical value for HGP delay to stimulate oscillation was reported at 
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0.109223 [63]. In our simulation, due to the compartment split of insulin subsystem, 

when HGP delay is equal to 0, the oscillation is sustained (Figure 3.13.A). 

When HGP delay increases from 0 to 24.6 min, glucose and insulin concentrations 

in two compartments change stably within the normal ranges, and glucose concentration 

difference between two glucose compartments is always within the optimal range (Figure 

3.13.B). This indicates a good degree of stability of inter-regulation of glucose-insulin 

system.  

The simulation result implies that the glucose-insulin regulatory system may reach 

the optimal situation with the constant sum of the two delays. A possible physiological 

explanation may lie on the negative feedback of human body. For normal subject, when 

one of the two delays becomes longer, in order to bring the body system back to stability 

quickly, the other delay may be accordingly decreased. For the diabetics, regardless of 

Type 1 or Type 2, the ability of adjusting one or both delays may be impaired, and 

therefore hypoglycemia or hyperglycemia may be induced.  

 

 
Figure 3.13. Phase plane of glucose and insulin in the plasma (A), and plasma and ISF glucose 
level difference (B) when the sum of the two delays is equal to 24.6 min. 
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3.4.8 Glucose Infusion Rate Gin 

Ultradian oscillations of glucose and insulin are assumed to be caused by the 

instability of glucose-insulin regulatory system. Different glucose infusion rate is 

suggested to affect the critical delay time of stimulating ultradian oscillation. Glucose and 

insulin level are higher caused by higher glucose infusion rate (GIR). Ultradian 

oscillation was revealed by experiments during 3 meals daily, oral glucose intake, 

continuous enteral nutrition and constant glucose infusion (refer to Figure 1 in [44]).  In 

this section, effect of varied glucose infusion rate on the oscillatory behavior of glucose-

insulin system is investigated.  

With GIR changing from 0 to 250 mg/min, glucose and insulin concentration in 

both compartments increase with growing GIR. Varying GIR has significant effect on the 

amplitudes of glucose and insulin concentration. Oscillations of glucose and insulin 

sustain for moderate GIR; and ultradian oscillation of glucose-insulin system damps 

under small and large GIR, which agrees with the result in [16]. A range of 60-190 

mg/min for GIR is observed to sustain the oscillation (Figure 3.14.A). Oscillation damps 

out and the dynamic system goes for a steady-state for the infusion rate out of the range. 

An upper limit of GIR but without lower limit to stimulate the ultradian oscillations was 

reported in [15], which may be not reasonable in the sense of physiology. When glucose 

rise caused by low glucose intake is relatively small, glucose concentration would be 

reduced to normal level by insulin quickly, and regulation time is too short to induce 

oscillations of glucose and insulin.  

When GIR is kept between 60-115 mg/min, plasma glucose level can be within the 

optimal range 90-120 mg/dL (Figure 3.14.B). The difference of glucose concentration in 
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the two compartments changes from 18% to 25% with growing GIR, and it increases with 

climbing plasma glucose level in each cycle (Figure 3.14.C).  

 

 
Figure 3.14. Phase plane of glucose and insulin in the plasma (A), range of plasma glucose and 
insulin (B), and plasma and ISF glucose level difference (C) when GIR changes.  
 

3.4.9 Discussion 

In existing studies on oscillatory behavior, the interaction between plasma glucose 

and ISF glucose was often ignored. The glucose measured by implantable glucose sensor 

in artificial pancreas is usually the ISF glucose concentration. It is necessary to study the 

dynamic relationship between plasma glucose and ISF glucose before an insulin therapy 

can be applied. The aim of this chapter is to investigate the oscillatory behavior of the 

regulatory system, and interaction between glucose and insulin in the two compartments. 

A 
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Under constant glucose infusion rate, the values of the seven parameters are varied in our 

simulation study. The simulation results agrees with existing studies [15, 16, 44], and 

physiological effect relevant with the parameters is discussed. 

When one of the six parameters: the four m parameters and the two delays varies, 

plasma and ISF glucose changes in the same direction with variable concentration 

difference. For insulin, when insulin transfer rate m1, m2 or ISF insulin clearance rate m4 

changes, insulin in the two compartments changes in the opposite direction and in the 

same direction when one of the other parameters is altered. This implies that m1, m2 and 

m4 may have more significant effect on insulin distribution between the two 

compartments. 

 When each parameter is within the range sustaining the ultradian oscillations, ISF 

glucose concentration is 14% -28% lower than that in plasma compartment. Glucose level 

difference between plasma and ISF always changes, and is different for rising and falling 

side. For the parameters changing in the optimal range, the level difference curves 

changes clockwise, which indicates the plasma glucose changes faster than ISF glucose in 

the rising side.  This agrees with the report from [13] that the change of ISF was less than 

that in plasma when glucose was increasing and was greater when glucose was 

decreasing. There are some situations where the glucose level difference changes in a 

different way. When m4 is equal to 0.2 (Figure 3.8.B), with the closed curve changed 

anticlockwise, glucose level difference during falling was larger than that during rising. 

This may be due to the greater IDGU in subcutaneous tissues that could lower ISF 

glucose quickly.  
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Three lags have often been investigated in existing studies: lag between plasma and 

ISF glucose, lag between plasma glucose and plasma insulin, and lag between plasma and 

ISF insulin. The simulation results are shown in Figure 3.15 and Figure 3.16. 

 

                     
Figure 3.15. The effect of m1, m2, m3, and m4 on the change of lag and oscillation period. The 
oscillation period was divided by 10 in Figure 4.15 and Figure 4.16. In Figure 3.15 and Figure 3. 
16, the definitions for the four lines in each panel are as following: green dash lines with star 
marker: lag of ISF glucose behind plasma glucose; blue solid lines: oscillation period; black dot 
lines with diamond marker: lag of ISF insulin behind plasma insulin; and red dash-dot lines with 
circle marker: lag of plasma insulin behind plasma glucose. 
 
 

A B 

C D 
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Figure 3.16. Effect of τ 1 (A), τ 2 (B), sum of two delays (C) and GIR (D) on the change of lag and 
oscillation period. 
 
 

From the simulation, ISF glucose often lags behind plasma glucose for about 3-6 

min (green dash lines with star marker in Figure 3.15 and Figure 3.16). It approaches the 

physiological lag of 5 min suggested by [13]. However, ISF glucose begins to lead 

plasma glucose with increasing insulin transfer rate from plasma to ISF m1, ISF insulin 

clearance rate m4 and HGP delay τ1. Larger m1 and m4 can increase insulin transfer to ISF 

and glucose utilization respectively; and longer HGP delay would decrease the glucose 

production rate into plasma compartment. Thus ISF glucose begins to lead plasma 

glucose. It was also suggested that increased glucose clearance from ISF would decrease 

the lag [82]. 
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In plasma compartment, glucose is observed to lead insulin to peak and fall for 

about 10-20 min (red dash-dot lines with circle marker in Figure 3.15 and Figure 3.16). 

This is significantly affected by plasma insulin degradation rate m3 and IS delay τ2. The 

lag becomes shorter when m3 increases or τ2 decreases. The reason might be that larger 

insulin degradation in plasma and shorter IS delay would stimulate or accelerate insulin 

secretion, and hence the lag is reduced. 

Plasma insulin always leads ISF insulin for 10-15 min with significant change by 

altering ISF insulin clearance rate m4 (black dot lines with diamond marker in Figure 3.15 

and Figure 3.16). When m4 increases, the lag decreases quickly. A possible explanation is 

that increased larger ISF insulin clearance rate would accelerate insulin distribution.  

Lo nger HGP d elay τ1 or IS delay τ2 would increase the oscillation period of the 

dynamic system and result in higher glucose concentration (blue lines in Figure 3.15 and 

Figure 3.16). Glucose fluctuation becomes more significant when one of the two delays 

increases. Large fluctuation of glucose should be avoided in glucose regulation. The two-

delay bifurcation was also discussed in some studies [63, 64]. Keeping the sum of the two 

delays constant is considered in our simulation. Figure 3.13.A shows that as long as the 

sum threshold is greater than 24.6 min, the ultradian oscillation can be sustained with 

plasma glucose level always changing in the optimal range even if HGP delay τ1 or IS 

delay τ2 is equal to 0. The glucose-insulin system seems to have reached the optimal 

situation. Apart from the lag between plasma glucose and plasma insulin (red dash-dot 

lines with circle marker in Figure 3.16.C), the other two lags and oscillation period do not 

have significant change.  
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Although different GIR has significant influence on the amplitudes of insulin and 

glucose, it hardly affects the oscillation time and lag effect among the four state variables 

(Figure 3.16.D). The oscillation period of the regulatory system is almost constant at 

about 120 min, plasma insulin lags behind plasma glucose for 12-15 min, ISF insulin lags 

plasma glucose for about 27 min, and a lag of about 3 min exists between plasma glucose 

and ISF glucose. Investigation on varying GIR reveals that the effect of constant GIR on 

oscillatory behavior of the oscillatory glucose-insulin system is not important, which 

agrees with the result reported in [16]. 

In this chapter, the four m parameters of insulin dynamics, the two delays and GIR 

are analyzed for their influence on the glucose-insulin regulatory system, their ranges are 

estimated for sustaining the oscillation of glucose-insulin system, and ranges for different 

subjects are discussed. The estimated parameter range for different subjects is shown in 

Table 3.7. The seven parameters are related with the disease relevant to irregular blood 

glucose level. The resultant effect of these parameters on the lag between glucose and 

insulin in the two compartments provide an insight on the distribution and metabolism of 

glucose and insulin in quick- and slow-equilibrating organs and tissues. 

 
Table 3.7. Ranges of model parameters for different subjects. 

 1m  2m  3m  4m  1τ  2τ  GIR 

Sustain oscillation 0.02-0.08 0.01-0.04 0.1-0.6 0-1 14≥  4≥  60-190 

Optimal/Normal 0.03-0.06 0.02-0.04 0.2-0.3 0.02-0.05 14-22 4-12 60-115 

Sub-healthy 0.06-0.08 0.01-0.02 0.1-0.2 0-0.02 / / / 

Type 2 diabetics 0.02-0.03 / 0.3-0.6 >0.05 >22 >12 / 

Nominal value 0.042 0.02 0.268 0.03 20 10 108 

 



57 
 

 
3.5 Summary 

Glucose level measurement and insulin infusion are often implemented in the 

subcutaneous tissues in artificial pancreas. Understanding the dynamics of glucose and 

insulin in the subcutaneous tissues is important in the regulation of blood glucose level.  

We proposed a new two-compartmental model of glucose-insulin interaction with two 

explicit delays that can study the interaction of glucose in different organs and the 

oscillatory behavior of the glucose-insulin system.  

In this chapter, glucose and insulin space are split into plasma compartment and ISF 

compartment respectively. The four m parameters of insulin dynamics, the two delays 

and GIR are analyzed for their influence on the glucose-insulin regulatory system. The 

ranges of the seven parameters are estimated for sustaining the oscillation of glucose and 

insulin, and ranges for different subjects are discussed based on simulation results. The 

effect of these parameters on the oscillatory system is related to diseases and irregular 

blood glucose level. The investigation of lag between glucose and insulin in the two 

compartments sheds light on the distribution and metabolism of glucose and insulin in 

quick- and slow-equilibrating organs and tissues. A model was studied in this chapter that 

can effectively deal with concentration of glucose and insulin in the ISF compartment. 

This is important for the research and development of a clinical viable artificial pancreas. 

The characteristics of the model agree with most of the dynamic properties 

proposed up to now, and support the hypothesis that the ultradian oscillation of glucose 

and insulin in human body may originate from the interaction and negative feedback 

between glucose and insulin. This is consistent with our result that ultradian oscillations 

can still sustain with constant sum of HGP and IS delay, which may be a reflection of the 



58 
 

negative feedback between glucose and insulin. By removing insulin secretion from the 

model to simulate the situation of Type 1 diabetes, ultradian oscillation does not occur 

under constant external glucose infusion. This may indicate that insulin secretion function 

of the pancreas plays an important role of inducing ultradian oscillation of glucose and 

insulin. 
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4 Model of Glucose-Insulin System with 
Subcutaneously-Injected Insulin 
4.1 Introduction 

Reducing glucose fluctuation or duration of hyperglycemia and hypoglycemia can 

improve the morbidity of diabetics. Insulin delivery and glucose measurement via 

subcutaneous route has advantages over intravenous route: low incidence of infection, 

less pain and discomfort, and ease of administration. When insulin is administered 

intravenously, exogenous insulin enters vein directly. It is difficult to implement insulin 

delivery for ordinary people, and may cause infection due to improper operation. The 

development in subcutaneous administered insulin analogues makes the management of 

diabetes more effectively. The pharmacokinetic profile of the latest rapid and basal-acting 

analogues can mimic pancreatic insulin secretion better than previous insulin. When 

insulin is delivered subcutaneously, the delivery site is subcutaneous tissues. Insulin can 

be infused using an insulin pen or insulin pump by ordinary people. Subcutaneous 

delivery of insulin is safer and more convenient for daily use compared with intravenous 

delivery. Intravenous insulin delivery is sometimes applied in the intensive care unit so 

that it takes less time for insulin to take effect.  

The most common therapy for diabetic patients is multiple insulin injections 

subcutaneously based on three or four glucose level measurements daily. Besides, in 

closed-loop glucose control system (artificial pancreas), glucose measurement and insulin 

administration are often implemented in the subcutis. The dynamics of glucose and 

insulin in the subcutis is thus important to achieve tight glucose control. With good 
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knowledge of the physiology of blood glucose regulation, an accurate glucose-insulin 

interaction model and an efficient glucose control algorithm could be developed. 

The absorption of injected insulin is complex and can be affected by many factors 

(site and depth of injection, temperature [83], exercise [84], concentration and volume of 

injected insulin [85], species [86], etc.). The mechanism of how insulin absorption 

kinetics influenced by insulin dose size, concentration, insulin crystals etc. was explained 

in a recent study by quantitative description [87]. Poor absorption of insulin is apparent 

for patients with severely impaired endogenous IS. The mean absorption levels for 

different insulin were estimated in [88].  

Published insulin absorption data was analyzed by non-compartmental analysis and 

pharmacokinetic methods. By this method, Friedberg et al. suggested the mean 

absorption level for different insulin (70% - 80% for regular and lispro, 30% or less for 

NPH, and 30% - 40% for lente insulin) [88]. Insulin remains in the subcutaneous fat layer 

for some time after the rapid injection. Possible reasons of delayed absorption at large 

injection volumes are: self-depression, saturable diffusion through the capillary 

membrane, and that the injected solution may create a separate space in subcutis, thus 

reducing contact with capillary system [89]. 

Polymerization and /or degradation may happen and result in decreased amount of 

insulin and slow rate of insulin diffusion from the injection site. The reduction of insulin 

amount due to polymerization and local degradation was represented by an effectiveness 

factor in [90]. Insulin degradation is relevant to insulin action, and is as important as that 

of insulin secretion.  
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The degradation of subcutaneously injected insulin has been found to occur in rat 

[91-93], pig [94] and human [93, 95, 96]. A considerable amount of insulin was degraded 

at the injection site in some studies [94]. About 40% of the injected insulin was reported 

to be degraded at the injection site of diabetic rats [93]. Local degradation of 

subcutaneously injected insulin was considered to be insignificant or relatively small [89]. 

In Type 1 diabetic patient, the SC degradation of infused insulin was reported to be 

insignificant and negligible [96]. In [97], total degradation of subcutaneous delivered 

insulin was reported to be less than 20% over 4 hours period based on the best-fitting 

parameters. Contrary to the view, a considerable amount of insulin was degraded at the 

injection site in some studies [94, 98, 99]. By studying both control subjects and in 

subjects who may have large SC degradation of insulin, a degradation rate of about 2% 

per milligram per minute was estimated in [100].  

Due to the varying pharmacokinetics of injected insulin, glycemic control by 

insulin injection or continuous insulin infusion in the subcutis is challenging and meets 

significant practical difficulties to become a stable and consistent therapy. Qualitative and 

quantitative estimation of insulin kinetics after SC injection is useful for efficient dosing 

as well as reducing the fluctuation of glucose level. 

Subcutaneous tissue is becoming the main measurement site of glucose sensor and 

administration sit of exogenous insulin in the future artificial pancreas. It is important to 

understand the kinetics interactions of glucose and insulin between plasma and 

subcutaneous tissues. Glucose dynamics was modeled using a one-compartment system 

in some models [15, 44], ignoring the dynamics of glucose in subcutis. Varying 

degradation and absorption of endogenous insulin for different diabetic patient changes 
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the effective dosage of insulin for glucose regulation. Hyperglycemia or hypoglycemia 

may be caused by insufficient or overdose of insulin subcutaneously-injected. The 

ignorance of the physiological changes (e.g., defective absorption or accelerated 

degradation of insulin [101, 102]) on the subcutaneously-injected insulin causes loose 

control of glucose concentration for diabetic patients. 

In Chapter 3, a two-compartment model describing  the oscillatory behavior of 

glucose – insulin system was proposed to investigate the influence of model parameters 

on the system and interactions between quick- and slow-equilibrating tissues and organs 

[103].  There was no exogenous insulin in this model. In this chapter, with exogenous 

insulin delivered subcutaneously, dynamics of both glucose in subcutis and 

subcutaneously-injected insulin [104] are considered for Type 1 and Type 2 diabetic 

patients. A submodel mimicking the kinetics of injected insulin in the subcutis is 

included.  Two compartments expressing the plasma and subcutaneous tissues are used to 

express glucose subsystem, and insulin degradation in the subcutaneous tissues, two 

absorption channels for insulin are considered for the subcutaneously-administered 

insulin. The model of glucose – insulin system with insulin subcutaneously injected is 

evaluated using the clinical data of diabetic inpatients. This model considering the 

dynamics of subcutaneously-injected insulin simulates the situation of diabetic patient 

receiving subcutaneous insulin delivery, and helps derive control algorithms for treatment 

of diabetic patients. 

 
4.2  Models of Subcutaneous Insulin 

The kinetics of insulin injected subcutaneously has been investigated widely. Many 

models mimicking insulin kinetics differ essentially in the subcutaneous insulin 
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absorption, Plasma insulin, in most case, is modeled using a single compartment, except 

that by Hovorka et al. [105].  

 

4.2.1 Compartmental Models 

Kobayashi et al. used a one-compartment model with a delay to model the 

absorption of short-acting insulin injected or infused subcutaneously [106]. It was 

proposed that insulin absorption kinetics for the two modes: continuous infusion and 

bolus injection subcutaneously, did not have significant difference; and the insulin was 

degraded to the same extent using the two administration modes. The model diagram and 

equations were given by Figure 4.1 and Eq. (4.1), respectively. 

                                
                   Figure 4.1. Diagram of SC insulin model proposed by Kobayashi et al.. 
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where x1 is the amount of insulin in the subcutaneous depot (μU), i is plasma insulin 

(μU/mL), ka and ke (min-1) are the rate constants for absorption and elimination 

respectively, Vd (L/kg) is the distribution volume, τ (min) is the time lag and u(t) (U/min) 

the rate of insulin administration. 
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Kraegen and Chisholm suggested a two-compartment model of subcutaneous 

insulin distribution: SC volume and plasma insulin volume [97]. Subcutaneous volume 

consisted of two connected pools. Insulin was modeled to move from a first to a second 

pool in the SC volume before delivered to the plasma volume. Insulin degradation was 

assumed from the two pools in the SC volume respectively, linear with the insulin 

amounts in the two pools (Figure 4.2). The model equations were given by Eq. (4.2).The 

insulin absorption delay was suggested to be important for clinical implications therein.  

                                 
Figure 4.2. SC insulin model proposed by Kraegen and Chisholm. 
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where x1 and x2 are the insulin masses in the subcutaneous compartments, u(t) is the 

subcutaneous infusion rate, kd is the rate constant of insulin degradation in subcutis, and 

k21 and ka are the rate constants describing insulin transport within the subcutaneous 

space and from the subcutaneous depot to plasma, respectively; i is plasma insulin 

concentration, and ke the elimination rate constant. 

In [97], total degradation of SC delivered insulin was reported to be less than 20% 

over 4 hours period based on the best-fit parameters. In their later work [96], in Type 1 

diabetic patient the subcutaneous degradation of infused insulin was proposed 
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insignificant and negligible, and local accumulation in SC space was considerable. The 

insulin absorption delay was suggested to be important for clinical implications. 

A simple linear model was developed and identified using data of diabetic patients 

by Puckett and Lightfoot to predict plasma insulin and provide some insights on clinical 

issues (i.e., interpatient and intrapatient variation and insulin overlapping) [90]. The 

model structure was similar to that in [97]. The model was composed of three 

compartments: pocket insulin (formed by injected insulin solution), interstitium insulin 

and blood insulin (Figure 4.3). The model was described in Eq. (4.3).  

                             
Figure 4.3. SC insulin model proposed by Puckett and Lightfoot. 
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where x1 is the subcutaneous insulin mass per unit plasma distribution volume, x2 is the 

interstitial fluid insulin mass per unit plasma distribution volume and i is plasma insulin 

concentration. D is the injected dose, a is the effectiveness factor accounting for insulin 

degradation at the injection site and Vd is the insulin distribution volume. ka is the rate 

constant from subcutaneous depot to interstitial fluids and from interstitial fluids to blood, 

ke is the rate constant of plasma insulin elimination. ib is the constant plasma term 

describing the effect of ultralente insulin and h(t)=1 for 0<t<24 h. 
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The pure time delay in [106] was replaced using the interstitium compartment. A 

component for long-acting ultralente insulin and representation of cumulative effect of 

multiple injections were considered.  

A three-compartment linear model was proposed by Shimoda et al.  to develop an 

insulin infusion algorithm used on a wearable artificial pancreas [107]. The SC insulin 

was modeled using two compartments: insulin at the injection site and insulin proximal to 

plasma, with exogenous insulin injected into the compartment representing injection site. 

The model was expressed using three differential equations (Eq. (4.4)). The insulin 

degradation in the SC tissues was more significant than that in [97].  
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where x1 is the sc insulin mass where the injection takes place, x2 is sc insulin mass 

proximal to plasma and i is plasma insulin concentration. The rates constants kd and ke are 

the degradation constants in the sc tissue and plasma respectively, Vd is plasma 

distribution volume. 

A five-compartment model to describe the dynamics of insulin was presented by 

Hovorka et al. [105]. The model explored the insulin distribution in systemic plasma, 

hepatic plasma, interstitial fluid, and insulin bound to the liver and peripheral receptors. 

The receptor-mediated and non-receptor-mediated insulin degradation were taken into 

account in the model. Another linear absorption model of subcutaneously administered 

insulin Lispro was proposed and included into a glucoregulatory model to develop a 

model predictive controller in Type 1 diabetic subjects by Hovorka et al. [45]. The 

subcutaneous insulin absorption model was represented by a two-compartment chain, and 
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the plasma insulin was modeled using a single compartment (Figure 4.4). A long delay of 

over 90 min was observed between insulin SC delivery and its peak action. The delay 

may be relevant to the insulin absorption delay in SC depot and the insulin action 

duration. 

                             
Figure 4.4. SC insulin model proposed by Hovorka et al.. 
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where S1 and S2 are a two-compartment chain representing absorption of subcutaneously 

administered short-acting (e.g. Lispro) insulin, u(t) represents administration (bolus and 

infusion) of insulin, and tmax,I is the time-to-maximum insulin absorption. The insulin 

absorption rate (appearance of insulin in plasma) is obtained as UI = S2(t)/t max,I.  

The plasma insulin concentration I(t) is described as 

                                               ( ) ( ) / ( ).I I eI t U t V k I t= −  (4.6) 

ke is the fractional elimination rate and VI is the distribution volume. The model 

represents three actions of insulin on glucose kinetics: 
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X1, X2 and X3 represent the (remote) effects of insulin on glucose distribution, glucose 

disposal and HGP; ka1, ka2 and ka3 represent deactivation rate constants, and kb1, kb2 and 

kb3 represent activation rate constants. 

Wilinska et al. proposed eleven alternative models of insulin Lispro kinetics under 

bolus and continuous delivery subcutaneously of Type 1 diabetes [104]. Insulin delivery 

mode, two channels of insulin absorption, effect of insulin dose on its clearance and 

absorption, insulin degradation at the injection site and insulin association state were 

assessed in the models. The models were validated using data from seven Type 1 diabetic 

patients based on the principle of parisimony and physiological plausibility. Two 

absorption channels and local insulin degradation of insulin were indicated in the four-

compartment model (Figure 4.5) best representing the experimental data. Different with 

most insulin absorption models with linear insulin degradation, Michaelis – Menten 

dynamics was used to model the local insulin degradation. The insulin subsystem with 

injected insulin was described using four differential equations in Eq. (4.8). 

                
                                Figure 4.5. SC insulin model proposed by Wilinska et al.. 
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where Q1a, Q1b and Q2 are insulin masses in the channels, Q3 is insulin mass in plasma 

compartment, k is the proportion of u, the insulin input, that passes through the slower 

channel, ka1 and ka2 are the transport rates between compartments, ke is insulin clearance 

rate of from plasma by the liver and kidneys, and LDa and LDb are the Michaelis-Menten 

degradation in two channels, respectively.  

 

4.2.2 Non-Compartmental Models 

A pharmacokinetic model simulating the kinetics of subcutaneously-injected insulin, 

empirically derived from previous studies and included in the glucose – insulin model, 

was used to estimate the time course of plasma insulin for different combinations of 

preparations (regular, NPH, lente, and ultralente) [108]. The effect of changing insulin 

regimen, dose, or meals timing was investigated in the glucose control program to 

demonstrate the performance of glucose control in Type 1 diabetic patients. In this model, 

the percent of insulin amount absorbed from the subcutaneous space is given by: 

 % 50( ) 100 ( ) 100 100 / ( ),s s sA t A t t T t= = − +  (4.9) 

where s describes absorption rate of the various insulin preparations and T50 is the time 

interval to reach a 50% absorption of the injected insulin. T50 was described as: 

 50 ,T aD b= +  (4.10) 
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where D is insulin dose, and a and b express different values for different insulin 

preparation. Insulin absorption velocity, the time derivative of A(t) multiplied by the 

injected dose, is the insulin input flux into plasma. Thus plasma insulin concentration is: 

 
1

50
2

50
( ) ( ) ( ) / ( ) ,( )

s s

s se d e
d

t sT Di t k i t A t V k i t V T t
−

= − + = − +
+

  (4.11) 

where ke is the rate constant for insulin degradation and Vd is the plasma insulin 

distribution volume. 

Mosekilde et al. presented a model utilizing the chemical relationship between 

insulin oligomers to describe the absorption process of subcutaneously injected soluble 

insulin [89]. In this model, insulin was presumed to be present in three forms: a low 

molecular weight form (dimeric insulin), a high molecular weight form (hexameric 

insulin) and an immobile form where molecules were bound to the tissue (bound insulin). 

Three compartments were used to express the insulin present in three forms: hexameric 

insulin, dimeric insulin and bound insulin in the subcutaneous depot. By presuming that 

mainly dimeric insulin penetrated the capillary wall, the dimeric insulin compartment was 

connected with plasma insulin, and controlled the absorption rate. Effective diffusion 

constant for insulin in subcutis, absorption rate of dimeric insulin, equilibrium constant 

between hexameric and dimeric insulin, binding capacity for insulin in the tissues, and 

the average life time for insulin in its bound state can be determined using this model. 

Only the dimeric state can be absorbed into plasma. Solving the non-linear coupled 

differential equations is computationally burdensome when dose, volume and 

concentration are considered. Due to the number of parameters, model parameters are a 

priori identified from literature. The model is theoretically unidentifiable and 

computationally burdensome to implement. 
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The model by Mosekilda et al. [89] was simplified by Trajanoski et al. for ease of 

parameter estimation [109]. The insulin binding in the subcutaneous space was assumed 

to be negligible at therapeutic concentrations. The model was further extended to describe 

the absorption of both soluble insulin and monomeric insulin analogues. The influence on 

the absorption of various injection volumes, concentration, and injection depth was 

investigated for soluble and monomeric insulin. The mechanism of how insulin 

absorption kinetics influenced by insulin dose size, concentration, insulin crystals etc. 

was explained in a recent study by quantitative description [87]. The model of Trajanoski 

et al. was further extended to include the long-acting basal insulin Glargine [110].  

The non-compartmental models capture published insulin absorption kinetics well 

and are more accurate physiologically than the compartmental models. However, 

computational cost is prohibitive compared to compartmental models, especially if it is 

used for a real-time diabetes decision system or an in silico simulation tool. These six 

model [90, 97, 106-109] were reviewed critically and discussed by Nucci and Cobelli 

[111]. Other reviews were also available to present insulin absorption kinetics in subcutis 

[62, 112]. 

Subcutaneous tissue is to become the main measurement site of glucose sensor and 

administration sit of exogenous insulin in the future artificial pancreas. It is important to 

understand the kinetics interactions of glucose and insulin between plasma and 

subcutaneous tissues. Glucose dynamics was modeled using a one-compartment system 

in some models [15, 44], ignoring the dynamics of glucose in subcutis. Different 

degradation and absorption of endogenous insulin for different people changes the actual 

dosage of insulin effecting on glucose regulation. Hyperglycemia or hypoglycemia may 
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be thus caused by insufficient or overdose of insulin subcutaneously-injected. For 

diabetic patients, loose control of glucose concentration may arise from the ignorance of 

the physiological changes on the subcutaneously-administered insulin.  

In this chapter, the dynamics of both glucose in subcutis and subcutaneously-

injected insulin [104] are considered. A variant of the glucose-insulin model in [103] with 

meals and insulin subcutaneously-administered is proposed for diabetic patient. Two 

compartments expressing the plasma and subcutaneous tissues are used to express 

glucose subsystem, and insulin degradation in the subcutaneous tissues, two absorption 

channels for insulin are considered for the subcutaneously-administered insulin. This 

model considering the dynamics of subcutaneously-injected insulin simulates the 

situation of diabetic patient receiving subcutaneous insulin delivery, and helps derive 

control algorithms for treatment of diabetic patients. 

 

4.3  Modeling Glucose-Insulin System with Subcutaneously-Injected Insulin 

Oscillatory behavior of glucose-insulin system in human body has been observed 

during in vivo and in vitro experiments [51-54, 57]. In the recent models studying the 

ultradian oscillations of glucose and insulin, glucose is often modeled as a one-

compartment system [15, 18, 44, 60], which ignores the dynamics of glucose in subcutis. 

In this model, dynamics of both glucose in subcutis and subcutaneously injected insulin 

[104] are considered. Following the model proposed previously in [103], a model for 

diabetic patient with meal inputs and insulin injection was proposed.  

 

4.3.1 Model of Glucose and Insulin Subsystems 
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The organs with large blood flow relative to their interstitial volume may have a 

rapid rate of equilibrium (e.g., liver, heart, kidney, etc.), while other poorly perfused 

tissues have a slow equilibrating rate (e.g., muscle and adipose tissues). The first 

compartment, plasma and rapidly-equilibrating organs, is named plasma for short; and the 

slowly-equilibrating tissues is expressed as subcutaneous tissues compartment (SC 

compartment for short). The model structure was shown in Figure 4.6, and the complete 

model was described in Eq. (4.12) and (4.13). 
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               (4.13) 

 

In the insulin subsystem, the state variables in the insulin subsystem are plasma 

insulin Ip (mU), Q1a, Q1b and Q2 (mU) in the SC compartment. SC insulin Ii (mU) is 

assumed to be the sum of the three states in the SC compartment. After exogenous insulin 
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(u: mU/min) is administered subcutaneously, local insulin degradation (LDa, LDb: 

mU/min) occurs at the injection site in the two pathways of insulin absorption. Injected 

insulin moves from a first (Q1a: mU) to a second (Q2: mU) pool in the slow channel 

before reaching plasma. Vmax_LD (mU/min) is the saturation rate for continuous infusion 

and bolus; and Km_LD (mU) is the insulin mass at which insulin degradation is equal to its 

half maximal value. p (unitless) is the proportion of insulin flux passing the slow channel. 

ka1 and ka2 are transfer rates (min-1) in the two channels accordingly. Insulin clearance in 

plasma compartment is represented by the rate parameter ke (min -1). 

 
Figure 4.6. Model of glucose-insulin system with subcutaneously-injected insulin. 

 
 

For the glucose subsystem, two state variables were considered: plasma glucose Gp 

(mg) and SC glucose Gi (mg). The concentration of SC glucose was measurable during 

experiments. The state variables in the insulin subsystem were plasma insulin Ip (mU), 

Q1a, Q1b and Q2 (mU) in the SC compartment. Vgp, Vgi, Vip, and Vii were the distribution 

volumes of plasma glucose, SC glucose, plasma insulin and SC insulin accordingly, 

which was estimated respectively as 12%, 10%, 4.5% and 10% of body weight [14, 31, 

45, 81]. τ1 and τ2 are HGP and IS, respectively. BW is the bodyweight of the subject. 
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In the insulin subsystem, after exogenous insulin (u: mU/min) is administered 

subcutaneously, local insulin degradation (LDa, LDb:mU/min) occurs at the injection site 

in the two pathways of insulin absorption. Injected insulin moves from a first (Q1a: mU) 

to a second (Q2: mU) pool in the slow channel before reaching plasma. Vmax_LD (mU/min) 

is the saturation rate for continuous infusion and bolus; and Km_LD (mU) is the insulin 

mass at which insulin degradation is equal to its half maximal value. p (unitless) is the 

proportion of insulin flux passing the slow and fast channel. ka1 and ka2 are transfer rates 

(min-1) in the two channels accordingly. Insulin clearance in plasma compartment is 

represented by the rate parameter ke (min-1).  

IDGU in this model was different with that in [103]. The process of IDGU was 

presented as a function of the sum of insulin mass in the SC compartment. The value of 

insulin exchange rate between SC and plasma compartment e followed that in [44]. The 

effect of diabetes on insulin secretion and IDGU in diabetic patients was estimated by α 

and β [18]. Smaller α and β implies less insulin secretion from pancreas and increasing 

insulin resistance in the diabetic patients, respectively. For the definitions of other 

parameters, refer to previous chapter. 

 

4.3.2  Models of Meal 

When a healthy patient eats a meal, the carbohydrates are broken down into glucose, 

galactose and fructose, with galactose and fructose transformed quickly into glucose. Fats 

are converted to phospholipids, triglycerides, and cholesterol; and proteins are converted 

to amino acids. During this period insulin level increases naturally to stimulate glucose 

uptake.  
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Insulin increase results in increased glucose uptake by liver and peripheral tissues, 

keeping plasma glucose level within normal range. Glucose level of a healthy patient 

rarely goes over 140 mg/dL, even during a meal. 

For a diabetic patient, insulin effect on glucose regulation strongly depends on the 

quality of insulin therapy, depending on the insulin amount administered and the time of 

administration. If insulin level is very low, insulin is not enough for glucose uptake by 

liver and peripheral cells; and low insulin level results in relatively high glucagon level, 

which actually causes higher glucose level in the blood. The time of insulin 

administration plays a major role in maintaining normoglycemic conditions. Early 

administration would cause hypoglycemia before the meal is absorbed and 

hyperglycemia at the end of meal, because insulin is not sufficient for glucose utilization 

from the end of the meals. Late insulin administration would result in hyperglycemia at 

the beginning of the meal and hypoglycemia at the end of the meal or shortly after. 

Glucose from gut absorption is assumed to enter plasma directly into the accessible 

compartment with clearance by first pass splanchnic degradation. Glucose appearance 

rate in plasma was described with a mono-compartment model by Fisher [113], as given 

in Eq.( 4.14). b represents the absorption rate of the meal, A is meal size and tmeal 

represents the beginning time of meal digestion. 

 ( ) exp( ( )).mealD t A b t t= − −  (4.14) 

Plasma described by two compartments, an accessible and non-accessible 

compartment, was suggested by Hovorka et al. [45]. A two-compartment chain with 

identical transfer rates was used to describe digestion, gastric emptying, and the gut 

absorption rate directly into plasma, as shown in Eq. (4.15). Ameal represents the percent 
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availability of the meal consumed, Mmeal is the size of meals, and tmax represents the time 

from the beginning of the meal consumption to reach the maximum of absorption rate.  

 max
2

max

exp( / )( ) .meal mealM A t t tD t
t

−
=  (4.15) 

In the study by Dalla Man et al. [114], model was evaluated against a linear and 

non-linear three-compartment model. This model in Eq. (4.16) consists of dual stomach 

compartments with a non-linear gastric emptying rate. Gastric emptying kempt is a 

constant in the linear model; and in the non-linear model gastric emptying is described by 

a hyperbolic tangent function, as shown in Eq. (4.17).  

                                       

1 21 1

2 2 21 1

2

( ) ( ) ( ),
( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ).

sto sto

sto empt sto sto

gut abs gut empt sto

abs gut

q t k q t D t
q t k q t k q t
q t k q t k q t
Ra t fk q t

δ= − +
= − +

= − +

=





  (4.16) 

                          
min max min( ) ( ) / 2 {tanh[ ( )]

                 tanh[ ( )] 2},
5 / [2 (1 )], 5 / (2 ),

empt sto sto

sto

k q k k k q bD
q cD

D b Dc

α

β
α β

= + − ⋅ −

− − +
= − =

 (4.17) 

where 
qsto1(t)  Amount of glucose in the stomach (solid phase), 

qsto2(t)  Amount of glucose in the stomach (liquid phase), 

δ(t)   Impulse function, 

D Amount of ingested glucose, 

qgut(t)   Glucose mass in the intestine, 

k21         Rate of grinding, 

kempt   Rate of gastric emptying, 

kabs  Rate of intestinal absorption, 

f Fraction of intestinal absorption appearing in plasma, 

kmin      Minimum gastric emptying rate, 
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kmax    Maximum gastric emptying rate. 

The glucose absorption model, relevant to the size of carbohydrate (CHO) in the 

meal, followed that in [18, 115] with k and b as listed in Table 4.1. The value of k for 15 

g and 7.5 g carbohydrate (CHO) was estimated by fitting the curve of k and meal size 

(Figure 4.7). For each meal began at time tm, the glucose intake rate Gm(t) was shown in 

Eq. (4.18). u(t-tm) was the unit step function with unity value only when t ≥ tm. Gin(t) was 

calculated by integrating each meal intake Gm. This model of meal absorption was used in 

the following simulation for its simplicity.

 

                         
                            2 2 2( , , ) exp( ( ) / 2 ) / ( ).m m m mG t k b kt t t b b u t t= − − × −  (4.18) 
 

Table 4.1. Parameters value for the glucose absorption model. 

 7.5 g CHO 10 g CHO 15 g CHO 30 g CHO 60 g CHO 75 g CHO 

b 80 

k 1115 1500 2157 3400 4300 5100 
 

 

 
Figure 4.7. The glucose profiles with various carbohydrate uptake. 
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4.4 Clinical Evaluation of Model with Subcutaneously-Injected Insulin 

4.4.1 Material 

Model cannot give meaningful prediction unless its parameters are accurately 

determined. Average parameter values in literature are often used for modeling, such as 

the organ volumes and blood flow rates of dogs in [116] or humans was used by Sorensen 

[20]. Patient parameters is identified by fitting the model to patient data and selecting 

reasonable parameter values which give the closest fit to the data. 

Twenty five cases (three Type 1 and twenty-two Type 2) with subcutaneously-

injected insulin were studied. Information of gender, age, bodyweight, glucose 

concentration, insulin injections and meals were recorded for each subject. The glucose 

was measured regularly by finger prick before meals. Three meals (60 g, 30 g or 15 g 

CHO contained) and snacks (15 g or 10 g CHO contained) were offered for the subjects. 

Mixtard 30 or short-acting insulin of individually dosage was injected 3-15 min before 

meals. Each insulin injection lasted for about 1 minute.  

In this model, rate parameters in insulin subsystem (ka1, ka2), two delays (τ1 and τ2), 

and two parameters (α and β) expressing the dysfunction of the diabetic patients are 

adjustable. Model constants of the model are listed in Table 4.2. Since blood glucose 

level was measured by finger prick, modeled glucose level in SC compartment was used 

to match that of the clinical glucose data. The first glucose data in each case was set as 

the initial glucose concentration. The initial values of the model parameters were 

determined by adjusting the simulated glucose level with the measured glucose level 

manually and then refining the parameters with successive iterations.  
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Table 4. 2. Model constants of our model. 

Parameter Value Unit 

k1 0.032 min-1 

k2 0.02 min-1 

ke 0.37 min-1 

p 0.55 unitless 

Vmax_LD 235 mU/min 

Km_LD 65 mU 

e 0.2 min-1 
 
 

4.4.2 Methods 

Model-based and sliding scale protocols have been clinically tested for glucose 

regulation. Model-based methods can be accurate, but require identifying patient specific 

parameters and capturing all of the observed dynamics. Currently, most common 

parameter identification methods are non-linear, and sometimes computationally intense 

for real-time use. An accurate identification method is important for refining and testing a 

model. For non-linear methods, fitting or prediction error can be caused by the dynamics 

not captured or not finding the global minima. Using different starting points may find a 

better optimal solution, with increased computational time.  

The most commonly used method for fitting parameters in compartment models is 

non-linear recursive least squares (NRLS) [19, 117, 118]. This method requires a range of 

initial values to produce optimal result. NRLS is computationally intensive as well [19], 

particularly with longer periods of data. Iterative, Bayesian and gradient descent based 

methods have been used in many different forms [39, 119, 120]. These methods are 

computationally intensive and not necessarily robust to noise in the data, and are not 

necessarily generalizable to broader situations. Overall, traditional methods, such as 
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NRLS, generate results with some potential limitations which is dependent on the specific 

problems. These methods require repeated simulations resulting in significantly added 

computation. 

The integral method integrates the differential equations of the model and converts 

the problem to match areas under curves [121]. Using numerical integration and 

measured data, the problem can be converted into a least squares problem. The numerical 

integration can further filter the data and make it robust to noise. Finally, significant 

computation effort can be saved because it does not require gradients or re-simulation of 

the model. The integral method has been used in may glycemic control studies [121-123] 

and in other biomedical models [124]. 

In this section, the model parameters are estimated using least square method which 

fits a set of observations with the proposed model by estimating the values of a subset of 

the unknown parameters. Our objective is to adjust the parameters to best fit the clinical 

data comprising glucose level, insulin injection dosage and meals of anonymous diabetes 

inpatients. Each data set consists of N data pairs (tj, Gj). The least squares method finds 

its optimum when the sum of the squares 

 2

1

N

j
j

S r
=

=∑  (4.19) 

is minimum where the residuals (errors) rj are given by 

 ( , ),Mj j jr G G t θ= −  (4.20) 

where θ=[ ka1, ka2, τ1, τ2, α, β] is a parameter vector to be estimated. Gj and GM(tj, θ) are 

the measured glucose level and modeled glucose level at time tj, respectively. The 

minimum value of S occurs when the gradient for each parameter  
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is zero. 

In nonlinear system the derivatives of S do not have closed solution. With initial 

value of the parameters given, the parameters can be estimated by iterative approximation: 

 1 .k k
i i i iθ θ θ θ+≈ = + ∆  (4.22) 

k is the iteration number and Δθ is the shift vector. At each iteration, the model can 

be linearized by approximation using Taylor series expansion at θk: 
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J is the Jacobian matrix. The residuals is given by 
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Substituting into the gradient equation, we obtain 

 
1 1

2 ( ) 0.
N m

ji j js s
j s

J y J θ
= =

− ∆ − ∆ =∑ ∑  (4.25) 

The nonlinear problem of matching the clinical data with the proposed model is 

approximated as a linear least square problem which can be solved using Gauss-Newton 

algorithm. 

To the best of our knowledge, there has not been any glucose-insulin model 

including the sub-model of subcutaneously-injected insulin for Type 2 diabetic patients. 

Type 2 diabetes is more prevalent than Type 1 diabetes, and the metabolism of glucose-

insulin system and automatic glucose control is more complex for Type 2 diabetes. 
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Developing a model to simulate the metabolism of glucose-insulin system including 

subcutaneously-delivered insulin for Type 2 diabetes is especially important for the 

derivation of control algorithm of closed-loop insulin delivery system.  

Most of them modeled external insulin to be infused directly into the plasma 

compartment such as the Minimal model [36]. This is not applicable for closed-loop 

glucose regulation system applying subcutaneous glucose monitoring and subcutaneous 

insulin delivery. In order to evaluate the performance of modeling the dynamics of 

glucose and insulin, our model was compared with Hovorka model [45]. Since the 

Hovorka model was proposed only for Type 1 diabetic patient, clinical data of the three 

Type 1 cases were fitted using Hovorka model for comparison. 

In Hovorka model, glucose subsystem was represented by two compartments: 

glucose in accessible and non-accessible compartments.  Six differential equations were 

used to describe insulin absorption and action system. Six parameters in the model 

(glucose transfer rate k12, insulin elimination in plasma compartment ke, endogenous 

glucose production EGP extrapolated to zero insulin level EGP0, insulin sensitivity of 

distribution, disposal and EGP: SIT, SID, SIE) were adjusted to fit the clinical data of three 

Type 1 subjects. With the values of other model parameters remained the same as that of 

[45], initial values of the six model parameters were determined by adjusting the 

simulated glucose level with the measured glucose level manually. 

 
4.4.3 Results and Discussion 

The accuracy is determined by normalizing the sum of the square error (SSE) with 

the number of glucose measurement of each case. Figure 4.8 shows the normalized SSE 

of the 25 cases using our model and SSE of the three Type 1 cases using Hovorka model. 
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With the initial values of glucose and insulin level determined explicitly, our model was 

compared with Hovorka model [45] using clinical data of three Type 1 cases (Case 1, 11, 

and 17), as shown in Figure 4.9; and Case 20 and Case 3 of Type 2 patients with 

respectively smallest and largest normalized SSE values are presented in Figure 4.10 to 

illustrate the curve fitting results of Type 2 cases. The information of the five diabetic 

subjects is shown in Table 4.3; and the size and time of glucose intake and insulin 

injection are shown in Table 4.4.  

 

 
Figure 4.8. The normalized SSE of the 25 cases of our model and that of the three Type 1 cases of 
Hovorka model. 

 
 

Table 4.3. Information of the five diabetic subjects. 

 Case 1 Case 3 Case 11 Case 17 Case 20 

Diabetes Type Type 1 Type 2 Type 1 Type 1 Type 2 

Age 22 46 32 39 70 

BW (KG) 58 40.9 82 66.6 52.7 

Gender Male Male Male Male Male 

HbA1c / 16.8% 10.9% / 12.2% 

Mean Glucose Level (mmol/L) 11.5 13.5 11.2 13.0 10.3 
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Table 4.4. Time and size of meal intake and insulin injections of the five subjects. 

Case Glucose Insulin 

Case 
1 

Time (min) Size (g) Time (min) Dose (U) 

540,  660, 750, 900, 
1020, 1320 

60, 15, 60, 15, 
60, 15 

600, 660, 720, 785,840, 
930, 1660, 1730, 1767, 
1830, 1895, 900, 1050, 
1115, 1180, 1240, 1300, 
1360, 1420, 1480, 1540, 
1660 

5, 2.5,1, 1, 1, 1, 
1, 1, 1, 1, 1, 1.5, 
1.5, 1.5, 1.5, 1.5, 
0.5, 0.5, 0.5, 0.5, 
0.5, 0.5 

Case 
3 

0, 1440, 1980, 2880, 
3120, 4320, 240, 540, 
1680, 3420, 420, 840, 
1860, 3300 

60, 60, 60, 60, 
60, 60, 30, 30, 
30, 30, 15, 15, 
15, 15 

0, 540, 1980, 3420, 1440, 
2880, 4320 

16, 6, 6, 6, 14, 
14, 14 

Case 
11 

0, 2645, 720, 2195, 
2715, 3645 

45, 45, 15, 15, 
15, 15 

0, 240, 1215, 1455, 1695, 
1935, 2715, 3435, 480, 720, 
960, 2485, 2955, 3195 

4, 4, 4, 4, 4, 4, 4, 
4, 2, 2, 2, 2, 2, 2 

Case 
17 

10, 370, 1450, 1810, 
180, 1620 

60, 60, 60, 60, 
60, 15 

1205,1795, [365-400], 
[735-900], [2255-2800] 

20, 0.20, 0.23, 
0.2, 0.17 

Case 
20 

10, 1090, 2530, 850, 
2290, 3730, 4030, 
1450, 2890, 4330, 
960, 1260, 2700, 
3070, 4140, 4510 

30, 30, 30, 60, 
60, 60, 60, 60, 
60, 60, 15, 15, 
15, 15, 15, 15 

5, 845, 1085, 4025, 3725, 
2525, 2285, 3255, 4325 

6, 8, 8, 8, 28, 12, 
12, 15, 18 

 
 

 

The proposed model can mimic the change patterns of the observed glucose level, 

and demonstrate ultradian oscillations in Figure 4.9 and Figure 4.10. Although the same 

model structure for short and intermediate acting insulin was applied, our model was 

demonstrated to be adequate for simulating human glucose – insulin system. The value of 

parameters of our model and Hovorka model of the Type 1 cases is listed in Table 4.5. 

The parameter ranges of twenty two Type 2 patients are listed in Table 4.6.  
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Table 4.5. Parameters value of our model and Hovorka model of three Type 1 cases. 

 Our model Hovorka model 

Case 1 ka1=0.34, ka2=0.19, τ1=38, β=0.95 
EGP0=0.016, ke=0.238, k12=0.116, 
SIT =0.00392, SID=0.00062, SIE=0.029 

Case 11 ka1=0.24, ka2=0.13, τ1=31, β =0.88 
EGP0=0.0145, ke=0.14, k12=0.095, 
SIT =0.0031, SID=0.00034, SIE=0.033 

Case 17 ka1=0.13, ka2=0.16,  τ1=29, β =0.61 
EGP0=0.017, ke=0.21, k12=0.105, 
SIT =0.0019, SID=0.00021, SIE=0.013 

 
 

Table 4.6. Parameters range of our model for the twenty-two Type 2 subjects. 

Parameter Range Parameter Range 

ka1 0.095—0.29 τ1 30—49 

ka2 0.085—0.22 τ2 31—51 

α 0.21—0.97 β 0.23—0.75 

 
 

In Figure 4.9, simulated glucose concentration of our model agreed well with that 

of the clinical data. Insulin dosage injected is much less than that of Type 2 cases in 

Figure 4.10 although there is no insulin secreted by the pancreas. It agrees with the large 

β in Table 4.5, implying lower insulin resistance in Type 1 subjects. The sharp change of 

glucose concentration in Type 1 cases, which is significantly different from the disrupted 

oscillations of other Type 2 cases, indicates that the insulin secretion plays an important 

role of stimulating the ultradian oscillations of glucose and insulin. The Hovorka model is 

demonstrated to be able to agree with the clinical data of the three Type 1 cases. Glucose 

level changed more gradually compared with that of our model in Figure 4.9 (A) with 

multiple small-dosage insulin injections. With the reduced sampling of glucose 

measurement in Figure 4.9(B) and (C), simulation results of Hovorka model have higher 

glucose peak levels than ours, which should be avoided for diabetic subjects. There are 
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less sharp changes in the estimated glucose levels with our model under sparse glucose 

measurement in the three Type 1 cases. With more frequent glucose sampling, our model 

could better simulate glucose change, and explain the interactions between glucose and 

insulin in the terms of physiology and pathology of diabetes. 

 

 
Figure 4.9. The comparison result of our model with Hovorka model (Case 1: A, Case 11: B, 
Case 17: C). Modeled glucose level and clinical data were shown in the top panel. In the bottom 
panel the blue solid and black dash curves represented glucose intake rate using our model and 
Hovorka model, respectively (mmol/min); and the green solid line represented insulin injection 
dosage (mU). IS was not considered for Type 1 subjects, insulin secretion delay τ2 and α were not 
estimated. 
 
 

 
Figure 4.10. The fitting result of measured glucose with estimated glucose level using our model 
for the Type 2 cases with the smallest (A: Case 20) and highest (B: Case 3) normalized SSE. In 
the bottom panel, the red dash curve and the blue lines represented glucose intake rate (mmol/min) 
and insulin injection dosage (mU), respectively. In the left figure, the parameters were estimated: 
ka1=0.14, ka2=0.13, τ1=37, τ2=45, α=0.42, β=0.52. In the right figure, the parameters were 
estimated: ka1=0.22, ka2=0.17, τ1=34, τ2=48, α=0.35, β=0.32. 
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In Figure 4.10 (A), most data points can be simulated using our model. Measured 

glucose level is significantly decreased after insulin injections, agreeing well with the 

simulated glucose change pattern using our model. Subcutaneous glucose level oscillates 

mostly between 10-14 mmol/L. However, glucose level decreases sharply immediately 

after insulin injection which is due to the fact that subcutaneous tissue is one of the main 

glucose utilization locations. Glucose oscillations between two successive insulin 

injections are mostly stimulated by endogenous insulin secretion. The subject in Case 20 

is a 70 years old male Type 2 patient with weight 52.7 kg. HbA1c (Glycated hemoglobin) 

measured before 4-day glucose monitoring in hospital was 12.2%. Although this subject 

is older than the one in Case 3 (Figure 4.10 B), average glucose level is much lower than 

Case 3. The situation of this subject is better than Case 3 with lower HbA1c. Larger α and 

β than Case 3 demonstrates more insulin secretion and less insulin resistance of this 

subject. The insulin transport rates and the two delays are all in the reasonable ranges.   

In Figure 4.10 (B), although the sparse glucose measurement resulted in missing 

information of glucose change, our model has been demonstrated to be robust in 

modeling the change in glucose level. This Type 2 case has the largest normalized SSE, 

and the subject is a 46 years old male patient with weight 40.9 kg. HbA1c measured 

before 3-day glucose monitoring was 16.8%. HbA1c for normal is often below 6%, 

which implies that glucose control for this subject is not good in the past several months. 

High glucose level of this Type 2 subject may be caused by severely impaired function of 

pancreas and increased insulin resistance. This agrees with the small values of α and β 

estimated using the clinical data of this subject. High insulin transport rate between the 

SC and plasma compartment from two absorption channels ka1 and ka2 in Figure 4.10 (B) 
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implies quick transfer of insulin, which was reasonable for a thin male. Delay of insulin 

secretion τ2 was quite long, slowing secretion of endogenous insulin; and small α and β 

demonstrated weak ability of insulin secretion and high insulin resistance in the insulin 

sensitive tissues. The above factors may explain the extremely high HbA1c. Extended 

period of high glucose level would result in malfunction of many organs and further 

aggravate the symptoms of diabetes. There is a significant mismatch of modeled glucose 

level with the measured glucose at 2040 min. It is much higher than the glucose levels 

measured at the same time on the previous day (600 min) and the following day (3480 

min) with similar size of insulin dosage in each day. The considerable differences 

between the theoretical estimation and measurement might be caused by other 

disturbances or large change of the subject’s condition. Glucose-insulin system may be 

disrupted by severe diabetes, which changes the parameter values and makes the 

estimation of glucose level using mathematical models more complicated. Frequent 

change of model parameters is surmised to be affected by the severity of diabetes, which 

may cause proposed glucose-insulin unable to predict glucose level for severe diabetic 

patients. This may explain the simulation result in Figure 4.10 that fitting with clinical 

data in Case 20 is better than that of Case 3. 

The large interpatient variation on the model parameters indicates the necessity of 

identifying individual parameters. Regular recalibration is therefore necessary for patients 

using commercial continuous glucose monitoring system (CGMS) with automatic insulin 

delivery. The curve fitting between model simulation and clinical data is limited by low 

sampling frequency, measurement noise, and lack of measurement of pertinent variables 

in the clinical data. These factors introduce a considerable uncertainty on the exact 
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parameter value. When the model was used to predict glucose change, this can be 

improved by glucose controller calculating optimal dosage of injected insulin under more 

frequent glucose sampling. Glucose level could be regulated back to normal range and 

reduced the fast change of glucose level. 

The rate parameter in the SC insulin compartment ka1 and ka2 is relevant to the 

diffusion of injected insulin from SC to plasma through slow and fast channels, 

respectively. More insulin can be delivered to the plasma with larger value of rate 

parameters. In the peripheral tissue where insulin is administered, insulin resistance is 

significantly high which slows down insulin transport via capillary wall [125]. Smaller 

value of ka1 and ka2 implies high insulin resistance in the subcutis. The diffusion and 

action of insulin could also be protracted by thick adipocytes in the subcutis [69].  

HGP delay is relevant to the plasma insulin’s effect on glucose production by liver; 

and IS delay is dependent on the action time of insulin secretion stimulated by the plasma 

glucose. The estimated range of τ1 in this work approximates the value of 25-50 min 

reported in [44]. Insulin secretion delay τ2 was proposed in the range of 0-23.5 min [65]; 

however the experimental results on normal subject is probably different from that of 

diabetic patients. A value of 50 min of τ2 was used in numerical simulation [61], which 

was within the our proposed range. HGP and IS delay are related to the action of glucose 

production by liver and insulin secretion by pancreas, which is significantly affected by 

the situation of the subjects. For younger and healthier subjects, liver and pancreas takes 

faster action to the change of insulin and glucose level, respectively. Long HGP delay 

would probably induce hypoglycemia when external glucose input is not given in time, 
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and hyperglycemia is possible to be caused by long IS delay, especially after meals intake 

which makes glucose level increase fast.  

The parameters α and β indicated the ability of insulin secretion and glucose 

utilization in diabetic patient respectively. α was set to be 0 for Type 1 cases. This was 

different from the situation in [18] that Type 1 subjects had endogenous insulin secretion. 

Decrease in insulin secretion was reported in the elder patients [126], which agrees with 

our result that smaller value of α often occurred in the older subjects. The values of β for 

Type 2 cases are smaller than Type 1 cases. The impairment of IDGU is more significant 

in Type 2 diabetic patient due to insulin resistance in the subcutis. Moderate-to-severe 

muscle insulin resistance may happen in lean Type 2 subjects, while there is no further 

defect in insulin action in obese Type 2 subjects [127].  

Possible mechanisms contributing to insulin resistance included variable capillary 

density [128], large local degradation of insulin [95], and alternations of the receptor-

mediated transendothelial insulin transport [125]. These factors may affect transport of 

glucose and insulin between blood and subcutis and subsequent glucose utilization by 

insulin-sensitive cells, and play an important role of diffusing insulin from injection site 

to other parts of the body and altering of postprandial glucose metabolism.  

     Obesity and aging may deteriorate the situation of diabetic patients. In an obese 

subject, thick fat layer delays the diffusion of injected insulin followed by larger local 

degradation of insulin; reduced number and impaired function of glucose transporter 

slows glucose transport from plasma to insulin-sensitive cells; and impaired IS and 

sensitivity would reduce glucose uptake in the periphery and cause hyperglycemia. Obese 

rat hearts was reported to have decreased total glucose transporter number [129]. Insulin 
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resistance is a common for obese individuals, where the pancreatic β-cell is less sensitive 

to increment of plasma glucose level is compared with subjects with normal insulin 

sensitivity.  

Changes in anthropometric characteristics with increasing age (e.g., increase of fat 

mass and visceral fat) may cause insulin resistance in humans [130]. The decline in 

insulin action has been demonstrated to be relevant to the increasing age under 

euglycemic-hyperinsulinemic clamp conditions [131]. Glucose stimulated insulin 

secretion was reported to be functionally impaired in aging rats [126]. It is obvious that 

functions of body organs (e.g., pancreas, liver, kidney, blood vessels, etc.) are retrograded 

due to aging. The metabolism of glucose and insulin is disrupted and diabetes would be 

further aggravated.  

 

4.5 Summary 

Subcutaneous tissue is to become the main measurement site of glucose sensor and 

administration sit of exogenous insulin in the future artificial pancreas, in any case, it is 

important to understand the kinetics interactions of glucose and insulin between plasma 

and subcutaneous tissues. Subcutaneous tissues cause significant degradation for injected 

insulin, and absorption of endogenous insulin is different for different people, which 

changes the actual dose of insulin taking effect on glucose regulation. Hyperglycemia or 

hypoglycemia is to be caused by insufficient or overdose of insulin subcutaneously-

injected. A model including the dynamics of glucose in the subcutaneous tissues and the 

dynamics of subcutaneously-administered insulin is thus proposed. 
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The number of patients with Type 2 diabetes is more than that of Type 1 diabetes, 

and the metabolism of glucose and insulin, and glucose regulation is more complex for 

Type 2 diabetes. There has not been a glucose-insulin model including the dynamics of 

subcutaneously-injected insulin for Type 2 diabetic patients up to now. therefore, 

developing a model to simulate the metabolism of glucose-insulin system including 

subcutaneously-delivered insulin for Type 2 diabetes is especially important for the 

derivation of control algorithm of closed-loop insulin delivery system. Our study could be 

a possible solution for glucose control of Type 2 diabetes. 

In this chapter, a model of glucose – insulin system was developed to simulate the 

dynamics of glucose and insulin in diabetic patients receiving insulin injection. 

Quantitative estimation of insulin absorption and transport is useful for efficient dosing as 

well as reducing the fluctuations of glucose level. The slowly-equilibrating compartment 

(SC compartment) of insulin was divided into three compartments to simulate the local 

degradation and different absorption rate of subcutaneously-injected insulin. The effect of 

concentration, volume, etc. of injected insulin was not considered in our proposed model.  

The glucose-insulin model including subcutaneous insulin was fit to clinical data of 

diabetic patients. The simulated glucose level agrees well with the measured glucose 

level. The fitting result using our model was compared with that of existing model using 

Type 1 cases, and our model obtains smaller SSE, especially when the glucose 

measurements are sparse. Six model parameters were estimated and analyzed 

physiologically and pathologically. 

Irregular oscillation of glucose level and influence of meals and insulin injections 

are observed in Type 2 cases. The glucose – insulin model is able to mimic the dynamics 
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of glucose and insulin based on long term clinical monitoring of the diabetic subjects. 

The estimated kinetic parameters are physiologically meaningful, and could be related to 

the subject’s dysfunction due to diabetes and the pathology of diabetes.  

     Obesity and aging have significant effect on the situation of diabetic patients. In 

an obese diabetic subject, thick fat layer delays the diffusion of injected insulin followed 

by larger local degradation of insulin, related to the model parameters ka1 and ka2. 

Impaired IS and insulin sensitivity would reduce glucose uptake in the periphery and 

cause hyperglycemia. This agrees with smaller α and smaller β for obese subjects 

implying less insulin secretion and less glucose utilization due to high insulin resistance. 

Insulin resistance is a common for obese individuals, where the pancreatic β-cell is less 

sensitive to increment of plasma glucose level compared with subjects with normal 

insulin sensitivity. In addition, reduced number and impaired function of glucose 

transporter for obese subjects slows glucose transport from plasma to insulin-sensitive 

cells.  

The decline in insulin action and glucose stimulated IS has been demonstrated to be 

relevant to the increasing age. Changes of anthropometric characteristics with increasing 

age (e.g., increase of fat mass and visceral fat) may cause insulin resistance in humans. 

Liver and pancreas takes faster action for younger and healthier subjects. For diabetic 

patient, long HGP delay τ1 would probably induce hypoglycemia when external glucose 

input is not given in time. Hyperglycemia is possible to be caused by long IS delay τ2, 

especially after meals intake which makes glucose level increase fast. 

Severe diabetes disrupts functions of some organs, which changes model 

parameters values from time to time, and complicates the modeling glucose-insulin 
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dynamic system. Glucose measurement and insulin delivery in subcutaneous tissues are 

important in the development of artificial pancreas. The proposed model incorporating 

subcutaneous glucose and subcutaneously-injected insulin, and its validation with patient 

data provides an insight on diabetes therapy via artificial pancreas. 
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5 Glucose Control Using Model Predictive Controller  

5.1 Model Predictive Control 

The most common therapy for diabetic patient is multiple insulin injections 

subcutaneously based on three or four glucose level measurements daily. It is the so-

called ‘open-loop control’. This method is not only painful and inconvenient, but may 

result in hyperglycemia and hypoglycemia. Keeping glucose within the narrow 

normoglycemia range 70-120 mg/dl or 4-7 mmol/L (different ranges were reported: 70-

120 mg/dl [132, 133], 80-110 mg/dl [134, 135] or 70-110 mg/dl [136, 137]) is difficult 

for a diabetic patient using the ‘open-loop control’. Closed-loop glucose control methods 

have been studied to replace the existing therapies due to its convenience and safety [134, 

138-140]. 

The study of human physiology and pharmacokinetics makes MPC suitable for 

glucose control. MPC has some advantages over conventional control methods such as 

PID control to regulate blood glucose level. The anticipatory ability of MPC can reduce 

the fluctuations of blood glucose by controlling insulin delivery carefully, compensate for 

dead time existing in glucose-insulin system [141], and handle the constraints problem 

and patient variability considering hardware specifications of insulin pump [142]. Due to 

its robustness and stability, MPC has been applied widely in the development of artificial 

pancreas [45, 143-145]. 

In MPC, future system output is predicted based on a model simulating the dynamic 

system subject to the change of system disturbance. Future control action to the system is 

calculated using control history and current system measurements by optimizing an 

objective function and considering the tracking error and constraints of system.  
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The MPC control strategy uses current measured output and past input to predict 

the future input within the control horizon and future output trajectory within the 

prediction horizon (Figure 5.1) by solving a finite horizon optimal control problem. The 

cost function (Eq. 5.1) is minimized with respect to the inputs under the system model’s 

state dynamics and constraints of states and inputs. After we obtain the solution of the 

FHOCP, a feedback control law can be obtained by applying the first part of the solution 

to the system, as shown by the diagram of overall control process in Figure 5.2. 

          
Figure 5.1. MPC strategy (Adapted from the Model Predictive Control Toolbox of Matlab). 

 

As shown in Figure 5.1, the future outputs for the prediction horizon P are 

predicted at each instant k using the process model. The predicted output depends on the 

known values up to instant k (past inputs and outputs) and on the future control signals u. 

M 
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The future control signals u are calculated by optimizing a determined criterion to keep 

the process close to the determined reference trajectory r. The criterion is often a 

quadratic function of the errors between predicted output and the determined reference 

trajectory.  

Applying MPC in blood glucose control, the predicted glucose level is calculated P 

sample times into future. The aim is to minimize the square of the difference between the 

predicted glucose level and the desired setpoint trajectory by adjusting M future insulin 

infusion rates. In each step, only the first in the M future insulin infusion rate is 

implemented. At the next sampling instant, the procedure would be repeated with a new 

control move. Control moves are included in the objective function: 

                                2 2
1

1 1

ˆ( ) , 0,
P M

k i k i k i
i i

J r y u kλ+ + + −
= =

= − + ∆ ≥∑ ∑                                       (5.1) 

where λ is the weighting on manipulated input increment Δu, r is the desired glucose 

level setpoint, ŷ  is the predicted glucose level, and k is the sample time index. MPC can 

enforce the system constraints explicitly. This is important for a glucose control system 

with physiological constraints. 

 

 
Figure 5.2. Diagram of overall control process (Adapted from the Model Predictive Control 
Toolbox of Matlab). 
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The objective of designing a controller based on MPC is to mimic a healthy 

pancreas to regulate the glucose concentration for the diabetic patients. The controller 

should be able to keep glucose level within the normal range under different situations 

such as after meal intake, during fasting condition and during exercise as well. Therefore, 

as shown in Figure 5.2, measured disturbance v and unmeasured disturbance d are sent to 

the system together with the control input u; and the measured output including predicted 

output by the model and noise signal z is sent to the model predictive controller. 

 

5.2  Glucose Control using Two-compartment Model and Minimal Model 

To study the effectiveness of using MPC to regulate glucose level, the two-

compartment model in Chapter 3 is used to design a model predictive controller. The 

result of glucose regulation using our model is compared with that of Bergman’s minimal 

model with the same glucose disturbance. The ability of the two controllers to regulate 

glucose level in response to meal disturbance and unnoticed disturbance in plasma 

glucose compartment is investigated by analyzing the glucose response and the insulin 

infusion profile. The minimal model and two-compartment model are shown in Figure 

5.3 and Figure 5.4, respectively. There is no external insulin input in the two-

compartment model in Chapter 3. In agreement with minimal model that external insulin 

is input into plasma compartment, external insulin is added to the plasma insulin 

compartment in the two-compartment model. The nominal value of the two-compartment 

model parameters is adapted from Table 3.5; and the parameter value of minimal model 

is shown in Table 5.1 (adapted from [146] ). 

 
 



100 
 

Table 5.1. Parameter value of minimal model. 

Parameter  Value  

p1 0.0316 

p2 0.0107 

p3 0.0000053 

n 0.264 

h 80.26 

γ 0.0042 

Gb 70 

Ib 7 
 

The imposed constraints for insulin infusion rate and plasma glucose level of the 

two models in simulation are as follows [147]: 

                                 
0 80 / min,

16.7 / min   ,
4 / 7 / ,

u mU
u mU per sample time
mmol L y mmol L

≤ ≤

∆ ≤

≤ ≤

                                 (5.2) 

where u is external insulin input, Δu is the change rate of u and y is measured plasma 

glucose level. The constraint on u maintain insulin level below 80 mU/L. Hard constraint 

on Δu ensure that insulin infusion rate change is within the capability of the pump, and 

gentle glucose reduction is more beneficial and safe for the patient. Constraint on y 

ensures glucose level is within the safe range by avoiding hypoglycemia. The 

normoglycemia range of 4-7 mmol/L is chosen.  
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Figure 5.3. Diagram of the Bergman minimal model in Simulink. 

 

 
Figure 5.4. Diagram of the two-compartment model in Simulink. 

 

In order to compare the performance of the two models in controlling glucose level, 

four different forms of meal intake were used: constant glucose infusion for 10 minutes 

for 3 times, constant glucose infusion, impulse glucose injection and exponentially 

decreasing glucose infusion. In the simulations in this chapter, it was assumed the models 
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can match the virtual glucose-insulin system in the human. The unnoticed glucose 

disturbance was set to happen randomly with positive or negative value in plasma glucose 

compartment to simulate unnoticed meal intake or unexpected exercise. This disturbance 

was set to take place less than 15 times during the simulation and last for 5 minutes each 

time, and the value of this disturbance was taken to be within -500 ~ 500 mg/min.  

Three times of constant glucose infusion for ten minutes is added to the plasma 

compartment. 10 g glucose was infused within ten minutes for the first and third time and 

20 g glucose for the second time. The simulation results are shown in Figure 5.5 and 

Figure 5.6.  

 

 
Figure 5.5. Simulation result using minimal model with three constant glucose infusions. From 
Figure 5.5 to Figure 5.12, A: Plasma glucose concentration (blue), upper and lower limit of 
normoglycemia range (red), and desired glucose level (green). In the simulations of this chapter, 
the prediction horizon and control horizon is set to be 10 and 5, respectively. The sampling time 
is 2 minutes. The weight of manipulated variable and output is 0.1 and 0.9, respectively. 
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Figure 5.6. Simulation result using two-compartment model with three constant glucose infusions. 

 

In Figure 5.5.A, glucose level changes within the normoglycemic range most of the 

time. Slight hyperglycemia and serious hypoglycemia happen for several times for 

minimal model. The time of hypo- and hyperglycemia agrees with that of unnoticed 

glucose disturbance. The hyperglycemia and hypoglycemia is caused by large unnoticed 

disturbance in plasma glucose compartment. Noticed meal intakes and small unexpected 

glucose disturbances do not cause large change of glucose level under the regulation of 

MPC controller. In Figure 5.6.A, slight hyperglycemia happens with each meal intake. 

Glucose oscillates slowly with the meal intake and external insulin infusions as well. 

Unnoticed glucose disturbances do not cause any hyperglycemia or hypoglycemia. The 

effect of unnoticed disturbance is negligible for the two-compartment model, which is 

better than the minimal model. During the period without glucose input, external insulin 

input for minimal model is more than that of the two-compartment model. Less insulin is 

needed for the two-compartment model during the whole simulation. It is harmful for 
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patients with plasma glucose level lower than 60 mg/dL (3.3 mmol/L), and avoiding 

hypoglycemia is more important than avoiding hyperglycemia. The two-compartment 

model performs better than minimal model under this situation. 

 
Figure 5.7. Simulation result using minimal model with constant glucose infusion. 

 
 

 
Figure 5.8. Simulation result using two-compartment model with constant glucose infusion. 
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In Figure 5.7.A, when glucose is infused constantly, glucose level oscillates around 

the desired glucose level except when unnoticed glucose disturbances happen, and insulin 

infusion rate keeps increasing with the time. When large unnoticed glucose disturbance 

increases glucose input, hyperglycemia occurs for minimal model. The increase of 

glucose level caused by small glucose disturbance can be regulated by the MPC 

controller. When negative glucose disturbance occurs at around 100 min, there is a sharp 

increase of insulin infusion (Figure 5.7.B), and slight hypoglycemia occurs. The 

unreasonable result happens as well to the four times of positive glucose disturbances 

which cause fast decrease of insulin infusion. Insulin infusion rate should increases when 

more glucose enters plasma compartment due to unnoticed glucose disturbance. The 

unreasonable simulation result caused by the glucose disturbance may be the inability of 

minimal model to regulate glucose level caused by unnoticed disturbances, which may be 

improved by parameter tuning. 

Glucose level is regulated within normoglycemia for the two-compartment model 

except the single instance of slight hypoglycemia caused by the unnoticed decrease 

glucose level, as shown in Figure 5.8.A. Glucose oscillates within 4~6 mmol/L around 

the desired glucose level with a oscillation period 90~100 min. The oscillation period 

agrees with the simulation result in Chapter 3 for the two-compartment model with the 

same glucose infusion rate of 108 mg/dL. According to the time of insulin infusion and 

unnoticed disturbance, it is estimated that insulin infusion with amplitude larger than 40 

mU/min is caused by the large unnoticed disturbance. Insulin infusions with smaller 

amplitude regulate glucose level  within the normal range under constant glucose intake. 
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With the constant glucose intake and same unnoticed glucose disturbance, the two-

compartment model is better for glucose control compared with minimal model. 

 

 
Figure 5.9. Simulation result using minimal model with impulse glucose injection. 

 

 
Figure 5.10. Simulation result using two-compartment model with impulse glucose injection. 
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After 25 g glucose is infused quickly, glucose level increases slightly under the 

effect of increasing infused insulin for minimal model in Figure 5.9. After the insulin 

infusion rate increases to its maximal value, it decreases slowly. Some small change of 

insulin infusion rate occurs on the time of unnoticed glucose disturbance. Hyperglycemia 

and hypoglycemia happen around the time of large glucose disturbance, the reason of 

which is similar to that of Figure 5.7. Glucose level of the two-compartment model 

increases sharply and slight hyperglycemia occurs after fast glucose intake in Figure 

5.10.A. Under the combined effect of increased insulin infusion and unexpected negative 

glucose disturbance with large amplitude, slight hypoglycemia occurs as well. The 

simulation result is similar to that of some diabetic patients that hyperglycemia occurs 

first after meal intake when the action time of insulin injected before the meal is too long; 

and hypoglycemia follows hyperglycemia after injected insulin takes effect to regulate 

glucose and overdose insulin is injected. As shown in Figure 5.10.A, glucose level keeps 

within the normal glucose range except some obvious change of glucose level caused by 

unnoticed glucose disturbance. Glucose level reaches the steady state quickly after the 

glucose disturbances, and insulin amount infused for the two-compartment model is 

much less than that of minimal model. 
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Figure 5.11. Simulation result using minimal model with glucose infusion decreasing 
exponentially. 

 
 

 
Figure 5.12. Simulation result using two-compartment model with glucose infusion decreasing 
exponentially. 

 

When glucose intake rate is set to be decreased exponentially from 50 mmol/L from 

60 min to 180 min and unnoticed glucose disturbances are included in the minimal model, 
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glucose level can be kept in the desired range most of the time (Figure 5.11.A). However, 

slight hyperglycemia and severe hypoglycemia take place around the time of some large 

glucose disturbances. During the period without disturbance, glucose level is close to the 

desired glucose level. With the effect of disturbance on insulin infusion ignored, insulin 

infusion rate increases to the maximal value and decreases slowly with the decreased 

glucose intake rate. The decrease rate is much slower than that of the two-compartment 

model in Figure 5.12.B. For the two-compartment model, insulin infusion caused by the 

exponentially decreased glucose intake stops before 100 min (Figure 5.12.B), and glucose 

level reaches the lower limit of normoglycemia at around 100 min (Figure 5.12.A), which 

avoids hypoglycemia in time and shows the good performance of MPC controller. 

Glucose level almost changes within the normoglycemia with some negligible glucose 

levels out of this range.  

For the four forms of glucose infusion rate, the MPC controller using the two-

compartment model shows some advantages over that of using minimal model: it causes 

less hypoglycemia and hyperglycemia, less insulin is used and glucose change caused by 

unnoticed glucose disturbance is better controlled. The two-compartment model proposed 

in the thesis is possible to be applied in the future closed-loop insulin delivery system. 

 

5.3 Glucose Control with Injected Insulin 

The glucose-insulin model with subcutaneously-injected insulin in Chapter 4 and 

the Hovorka model [45] were used to design a model predictive controller. With the same 

glucose disturbance, the results of glucose regulation using the two models are compared 

to study the effectiveness of using the two MPC controllers to regulate glucose level. The 

diagrams of the two models in Simulink are shown in Figure 5.13 and Figure 5.14.  
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Figure 5.13. Diagram of our model with subcutaneous insulin dynamics for Type 1 cases in 
Simulink. 
 

 
Figure 5.14. Diagram of the Hovorka model for Type 1 diabetic patients in Simulink. 

 
 

The model parameters of the three Type 1 cases were estimated in Chapter 4 using 

our model and Hovorka model. In this section, the model parameters estimated, the same 
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initial values of the model states and meal intakes of the two models are used in the MPC 

controllers; and glucose level using the two MPC controllers is to be compared with that 

controlled by manually insulin injections. For the five diabetic subjects, two situations for 

the two MPC controllers were proposed: noticed meal intake is the only glucose input, 

and besides noticed meal intake, unnoticed glucose disturbances in the plasma 

compartment occur at random time. 

In the five diabetic cases, case 1, case 11 and case 17 are Type 1 cases; and case 20 

and case 3 are Type 2 cases with the best and worst fitting result in Chapter 4. The 

simulation results of the Type 1 cases under the two situations are shown from Figure 

5.15 to Figure 5.20; and that of the Type 2 cases are shown in Figure 5.22 and Figure 

5.23. 

 

 
Figure 5.15. Simulation result of MPC controller using Hovorka model (left) and our model (right) 
to regulate glucose level of Type 1 diabetic patient (case 1). From Figure 5.15 to Figure 5.20, 
Figure 5.22 and Figure 5.23, black stars represent the measured glucose level, red lines represent 
upper and lower limit of normal glucose range, and green line represents the ideal glucose level. 
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When there is no glucose disturbance in the system (Figure 5.15), glucose level 

controlled by Hovorka model controller reduces fast from initial hyperglycemia and reach 

normal glucose level around 200 min, which is faster than that of using our model (450 

min). However, severe hypoglycemia happens from 600 min using Hovorka model 

controller while glucose level controller using our model reaches the ideal level after 600 

min. Glucose level regulated by the controller using our model is higher than measured 

glucose level before 400 min, which is caused by the limited insulin infusion rate of 

insulin pump. Hovorka controller fails to control glucose level for case 1, while the 

controller using our model is able to regulate glucose level well.  

 

 
Figure 5.16. Simulation result of MPC controller using Hovorka model (left) and our model (right) 
to regulate glucose level of Type 1 diabetic patient (case 1) with unnoticed plasma glucose 
disturbance. 
 

When unnoticed glucose disturbances are added to the system (Figure 5.16), 

compared with simulation results in Figure 5.15, glucose level changes significantly 

using Hovorka model, however glucose level controlled by our controller almost remains 
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unchanged with some negligible changes. Severe hypoglycemia and hyperglycemia 

happen as well to the system using Hovorka model. Hyperglycemia after 200 min is 

stimulated by glucose disturbance and hypoglycemia is improved by glucose input from 

glucose disturbances.  

 

 
Figure 5.17. Simulation result of MPC controller using Hovorka model (left) and our model (right) 
to regulate glucose level of Type 1 diabetic patient (case 11). 
 
 

 
Figure 5.18. Simulation result of MPC controller using Hovorka model (left) and our model (right) 
to regulate glucose level of Type 1 diabetic patient (case 11) with unnoticed plasma glucose 
disturbance. 
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For glucose regulation of case 11, hypoglycemia often happens using Hovorka 

controller when there is no glucose disturbance (Left subplot of Figure 5.17). Glucose 

level oscillates around normoglycemia range stimulated by oscillating insulin infusion 

with period about 250 minutes. When glucose disturbance is included, due to glucose 

disturbance, the oscillation of glucose level is disrupted, severe hyperglycemia occurs 

several times, and hypoglycemia is improved in the length of time for Hovorka model 

(Left subplot of Figure 5.18). Hovorka model controller cannot eliminate the effect of 

unnoticed disturbance on glucose level. Glucose level regulated by our controller is much 

lower that measured glucose level, and our controller is shown to be able to regulate 

glucose level well under these two situations. Glucose reaches normal level fast and 

remains around the ideal glucose using our controller. Glucose disturbances result in 

negligible change to glucose level under the regulation of our controller. The MPC 

controller using our model is demonstrated to be better than Hovorka model controller for 

glucose regulation. 

 

 
Figure 5.19. Simulation result of MPC controller using Hovorka model (left) and our model (right) 
to regulate glucose level of Type 1 diabetic patient (case 17). 
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When there is no glucose disturbance for case 17 (Figure 5.19), glucose level 

controlled by Hovorka model decreases slowly, reaches normal glucose range at 500 min, 

and hypoglycemia takes place from 2000 min. Insulin keeps infusing after glucose lower 

than 4 mmol/L, which is unreasonable and may be explained by the inability of Hovorka 

model controller to regulate glucose level for case 17. However, glucose level is well 

regulated by our controller. Glucose level decreases to normal level at around 100 min, 

and it remains close to the ideal level (Right subplot of Figure 5.19). Except the period 

0~100 min, insulin infusion dosage by our controller is small compared with that of 

Hovorka model controller.  

 

 
Figure 5.20. Simulation result of MPC controller using Hovorka model (left) and our model (right) 
to regulate glucose level of Type 1 diabetic patient (case 17) with unnoticed glucose disturbance. 
 
 

With glucose disturbance introduced into the system, the time of hypoglycemia 

increase for glucose level regulated by Hovorka model controller (Left subplot of Figure 

5.20). Hypoglycemia takes place when the meal intake is zero. Insulin keeps infusion 
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during the period of hypoglycemia, which is similar to the simulation result when there is 

no glucose disturbance. As shown in the right subplot of Figure 5.20, glucose level is 

well regulated within the normoglycemia range. Insulin infusion rate during the periods 

without meal intake is small to facilitate glucose utilization for the Type 1 diabetic 

subject. Under the effect of glucose disturbance and infused insulin, glucose always 

changes around the ideal level. The parameters’ value of Hovorka model was estimated 

using sparse glucose level measurements for case 17, which may cause the failure of 

glucose control using Hovorka model controller. Glucose is better regulated for case 17 

using our controller, which is able to avoid hyperglycemia and hypoglycemia, cost less 

insulin, and regulate glucose close to the ideal level. 

 

 
Figure 5.21. Insulin dosage used in the simulations of glucose control using Hovorka model (Blue 
squares and circles represent insulin cost without and with glucose disturbance, respectively), our 
model (Red squares and circles represent insulin cost without and with glucose disturbance, 
respectively.), and in clinical experiment for the three Type 1 cases (Green stars represent insulin 
dosage injected in the clinical experiment). The y axes is displayed in log form. 

 

Total insulin dosage infused by the two controllers for the three Type 1 cases under 

the two situations were calculated, as shown in Figure 5.21. Insulin cost using the two 
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controllers is less than that of manual insulin injections during clinical observation. 

Insulin infused by Hovorka model controller is more than that of using our model. Insulin 

used to control glucose by our controller is close regardless of the inclusion of glucose 

disturbance, while large difference of insulin dosage infused exists under the two 

situations using Hovorka model controller. Insulin used for case 1 in clinical observation 

was less than that in simulation. However, glucose level regulated by our controller is 

much lower than measured glucose level (Right subplot of Figure 5.15), and glucose 

remains close to the ideal level under the regulation effect of MPC controller. 

 

 
Figure 5.22. Simulation result of MPC controller using our model to regulate glucose level of 
Type 2 diabetic patient (case 20) without glucose disturbance (left) and with glucose disturbance 
(right). The total insulin dosages for the two situations are 57.6 U (left) and 57.4 U (right), 
respectively. 
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Figure 5.23. Simulation result of MPC controller using our model to regulate glucose level of 
Type 2 diabetic patient (case 3) without glucose disturbance (left) and with glucose disturbance 
(right). The total insulin dosages for the two situations are 32.1 U (left) and 32.5 U (right), 
respectively.  

 

Glucose of the two Type 2 cases regulated by our controller decreases quickly to 

the ideal level with insulin infused in the maximal rate during this period (Figure 5.22 

and Figure 5.23). After glucose reaches the ideal level, glucose level remains almost 

unchanged with the stimulation effect of infused insulin on glucose utilization. Glucose 

level under the regulation of our controller is much lower than measured glucose level. 

Severe hyperglycemia often takes place using manual insulin injections, as shown by 

clinical data of glucose level in the figures. When glucose disturbance is included in the 

system, glucose has some small changes around the ideal level; and insulin infusion is 

significantly different from that of the situation when there is no glucose disturbance.  

When there is no glucose disturbance introduced into the system, insulin dosage 

infused by the controller for case 20 and case 3 was 57.6 U and 32.1 U. It is much lower 

than the insulin dosage used in clinical observation, which is 115 U and 76 U for case 20 

and case 3, respectively. Due to the combined effect of positive and negative glucose 
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disturbance, the total insulin cost under the two situations for the two Type 2 cases are 

very close. Although glucose disturbance is not frequent, insulin infusion rate changes 

frequently.  

 

5.4 Summary 

Intravenous glucose sensing and insulin delivery may be applied in closed-loop 

insulin delivery system for diabetic patients in intensive care unit. Intravenous glucose 

sensing providing glucose level in the bloodstream facilitates the controller to calculate 

more accurate insulin dosage and achieves tight glucose control. Intravenous insulin 

delivery shortens the time of insulin taking effect to stimulate glucose utilization. The 

intravenous-intravenous form of closed-loop insulin delivery can be simulated using the 

two-compartment model, which sets plasma glucose to be system output, and insulin 

infusion into plasma compartment to be system input. 

In Section 5.2, the two-compartment model proposed in Section 3.3 was used to 

design a controller, and the simulation results of glucose control were compared with that 

of a MPC controller using the Bergman minimal model. Four forms of glucose infusion:  

constant glucose infusion for 10 minutes for 3 times, constant glucose infusion, impulse 

glucose injection and exponentially decreasing glucose infusion, were included in the 

plasma compartment to compare the two models’ performance of regulating glucose level. 

It was demonstrated that the MPC controller using the two-compartment model shows 

some advantages over that of using minimal model: it causes less hypoglycemia and 

hyperglycemia, less insulin is used and glucose change caused by unnoticed glucose 

disturbance is better controlled.  
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Glucose measurement and insulin delivery in subcutaneous tissues is safe and 

convenient to be implemented in future artificial pancreas. A MPC controller using our 

model proposed in Section 4.3, which included the dynamics of glucose and insulin in 

subcutaneous tissues, was designed for glucose control, and the results are compared with 

that using Hovorka model for the three Type 1 cases. The initial conditions, value of 

model parameters and meal intake remained the same as that in Chapter 4. The two 

controllers were investigated for the performance of glucose regulation without and with 

unnoticed glucose disturbance in Section 5.3.  

Hyperglycemia and hypoglycemia often occurred to the system using Hovorka 

model controller, and insulin infusions calculated by the controller sometimes were 

unreasonable. The parameters’ value of Hovorka model was estimated with sparse 

glucose level measurements, which may cause the failure of glucose control using 

Hovorka model controller. Regardless of the inclusion of glucose disturbance, glucose 

regulated by the controller using our model proposed in Section 4.3 decreased from initial 

hyperglycemia fast and approached the ideal glucose level quickly, with negligible 

change around the ideal glucose level when glucose disturbance was introduced. 

Although the parameter value of model with subcutaneous insulin was estimated using 

the same clinical data with Hovorka model, the performance of glucose control using this 

model is good. Glucose control of the two Type 2 cases using this controller was studied 

following that of Type 1 cases. Glucose level was shown to be well regulated by the 

controller and insulin dosage calculated by the controller is much smaller than that used 

in the clinical observation. 
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Overall, the two-compartment model and the model with subcutaneous insulin 

proposed in this thesis were investigated for the performance of glucose control. 

Compared with the simulation results of glucose regulation of Bergman minimal model 

and Hovorka model, our models were demonstrated to be able to control glucose level 

well.  
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6 Conclusion and Future Work 

6.1  Conclusion 

Closed-loop insulin delivery system (also known as an artificial pancreas) could 

potentially be the ultimate solution for blood glucose control in diabetic patients, which is 

comprised of a glucose sensor for measuring glucose concentration, control algorithm for 

regulating insulin infusion, and an insulin infusion device for delivering insulin to the 

human body. MPC has been widely applied in glucose control. By developing an accurate 

glucose-insulin model, an efficient glucose control algorithm could be developed. 

Glucose measurement and insulin delivery in subcutaneous tissues has been applied 

to design artificial pancreas. A mathematical model of glucose-insulin system 

incorporating the dynamics of glucose and insulin in the subcutis is crucial for the 

investigation of glucose metabolism and MPC controller design. Based on existing 

studies on ultradian oscillations of glucose and insulin, a two-compartment model with 

two explicit delays on hepatic glucose production and insulin secretion was proposed in 

Chapter 3 to explore the oscillatory behavior of glucose-insulin system without external 

insulin delivery. Four model parameters in insulin subsystem, the two delays and glucose 

infusion rate were analyzed for their influence on the oscillations of glucose-insulin 

system. The irregular glucose level caused by different value of the model parameters 

was analyzed physiologically and related to diseases. Range of the model parameters 

were estimated for different cases: sustaining the oscillations of glucose and insulin level, 

Type 1 diabetes, Type 2 diabetes, and normal people. Three lags existing in the glucose-

insulin model were firstly investigated for the change with model parameters and related 

to the distribution and metabolism of glucose and insulin in different compartments. The 
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effect of the sum of the two delays was explored. It was proposed that delay-adjusting 

ability for normal people may regulate glucose level back to normal range quickly. 

However the delay-adjusting ability of delays may be impaired for diabetic patient to 

cause hypoglycemia or hyperglycemia. The characteristics of the model agree with most 

of the dynamic properties reported in literature, and support the hypothesis that the 

ultradian oscillation of glucose and insulin in human body may originate from the 

interaction and negative feedback between glucose and insulin. 

Type 2 diabetes is more prevalent and complex than Type 1 diabetes. There has not 

been a model of glucose-insulin system including the dynamics of subcutaneously-

injected insulin for Type 2 diabetic patients up to now. Therefore, developing a model to 

simulate the metabolism of glucose-insulin system including subcutaneously-delivered 

insulin for Type 2 diabetes is important for the derivation of control algorithm for 

automatic glucose regulation. Local degradation and time delay of transportation and 

absorption should be considered in the insulin module of the glucose-insulin system if 

exogenous insulin is injected in the subcutaneous tissues. Based on the two-compartment 

model, a modified model which includes two absorption channels and local insulin 

degradation was proposed to simulate the glucose-insulin system with external insulin 

injections in Chapter 4. The two rate parameters expressing insulin transportation from 

subcutis to plasma compartment, the two time delays and two parameters expressing the 

dysfunction of the diabetic patients were estimated using nonlinear least squares method. 

The clinical data of anonymous diabetes inpatients was collected, which comprised 

glucose level, insulin injection dosage and meals. Comparing the fitting results with that 

of Hovorka model, the proposed model was demonstrated to be able to mimic the 
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dynamics of glucose-insulin system based on long term clinical monitoring of diabetic 

subjects. The estimated model parameters were physiologically discussed. The discussion 

provided insights on the subject’s dysfunction caused by diabetes. Irregular oscillation of 

glucose level and influence of meals and insulin injections were observed in Type 2 cases. 

The effect of obesity and aging on the parameter value was investigated physiologically 

as well as based on the simulation result of the model. Due to obesity and aging, diffusion 

of injected insulin and glucose transport is slowed, insulin secreted by pancreas may be 

reduced, and insulin resistance becomes stronger resulting in lower glucose utilization. 

The aim of developing a mathematical model of glucose-insulin system is to study 

the physiological behaviors of the feedback system, as well as explore the approaches of 

controlling glucose level using the glucose-insulin dynamic model. MPC has been used in 

glucose level regulation. Insulin dosage calculated by the MPC controller is the input to 

the plant (i.e., human body). Glucose level was output and fed to MPC controller to 

calculate the next input iteratively. Glucose control using the two-compartment model 

proposed in Section 3.3 was used to mimic closed-loop insulin delivery with glucose 

measurement and insulin infusion intravenously, and compared with the simulation result 

of Bergman minimal model using different meal intakes. The model with subcutaneous 

insulin proposed in Section 4.3 was used to design a MPC controller, which simulated the 

closed-loop glucose control using glucose measurement and insulin delivery in the 

subcutaneous tissues. Simulation results of using this model were compared with that of 

Hovorka model. Comparing the simulation results using our proposed models with that of 

the two existing models, glucose level was demonstrated to be regulated within the 

desired glucose range using the two proposed models. The glucose curves and insulin 
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dosages of using these models to design MPC controller were compared to evaluate the 

performance of glucose control. It was shown that MPC controllers using our models are 

more advantageous for glucose regulation: fewer occurrences of hypoglycemia and 

hyperglycemia, less insulin cost and it can better deal with glucose changes caused by 

glucose disturbances. Simulation results demonstrated that the issues and challenges of 

using MPC on glucose control can be addressed adequately. The two-compartment model 

in Chapter 3 and the model with subcutaneous insulin in Chapter 4 proposed in the thesis 

could be applied in closed-loop insulin delivery system in future. 

 

6.2  Future Work 

6.2.1 Model Improvement 

In order to improve the controller performance, the model can be further explored. 

Other physiological and physical factor may be incorporated into the virtual patient 

model to better describe the metabolism of glucose of diabetic patients. 

FFA has been studied and modeled to make the virtual patient model closer to the 

human body. Oxidation of free fatty acids can be increased by increased rate of lipolysis 

in the adipose tissue during overnight fasting, starvation and exercise. The contribution of 

free fatty acids on the metabolism in the body and its interactions with glucose-insulin 

system is often ignored in the mathematical models which are mainly glucocentric. The 

dynamics of FFA was included in the Bergman minimal model, and its interaction with 

the dynamics of glucose and insulin was investigated for Type 1 diabetes in [42]. The 

plasma FFA, effect of remote FFA on glucose uptake, and effect of remote insulin on 

plasma FFA level were described by differential equations in this model. 
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Glucagon, secreted by α cells of pancreas, is another hormone important for 

glucose regulation. Glucagon is released to raise glucose level when glucose level is low 

by converting glycogen stored in the liver into glucose and delivered to the bloodstream. 

Both insulin and glucagon play an important role of maintaining stable glucose level. 

Present control studies focus on glucose and insulin as output and input respectively. 

Glucagon has been studied and incorporated into the mathematical models in some 

studies [14, 148, 149]. Glucagon may be utilized as another input in future controller 

design for its effect of preventing hypoglycemia. 

Exercise has significant influence on epinephrine. The metabolism of most tissue 

cells increases significantly with increasing epinephrine. Glucose production can be 

increased with increasing epinephrine level to provide energy during exercise, and 

glucose uptake into liver is decreased simultaneously. Two exercise models were 

proposed in [150, 151] respectively. Both models described increase of metabolic rates as 

a function of exercise level. The minimal model was extended to include the effect of 

exercise on plasma insulin clearance, elevation of glucose uptake and HGP rate in [150]. 

Mild and moderate intensity exercise was incorporated into an existing model for glucose 

metabolism in [151]. Increase in metabolic rates in both models was described by current 

oxygen consumption level as a percentage of maximum oxygen consumption level. In 

order to investigate the influence of exercise on glucose regulation, three parameters were 

introduced into minimal model to express the effect of exercise in accelerating glucose 

utilization by tissues, increasing insulin utilization and increasing sensibility of muscular 

and liver to the insulin action in [152] . 
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Further research on the effect of stress, sickness, exercise, etc. can provide more 

information about the interaction of these factors and pathology of diabetes. The 

incorporation of other hormones or physiological/physical states can increase the 

accuracy and applicability of the virtual patient model. 

 

6.2.2 Abnormalities of Ultradian Oscillations 

Many physiological and pathological factors can modulate or affect the ultradian 

oscillation of the glucose-insulin system. For non-diabetic people, the frequency of 

ultradian oscillation may be driven or affected by the exogenous disturbance such as 

oscillating glucose infusion [153]. The entrainment of ultradian oscillation and rapid 

oscillation was regarded as a feature of ultradian pulsatility; however, this feature is not 

for Type 2 diabetic patients [154, 155]. In this thesis, only constant glucose infusion was 

investigated for its effect on the ultradian oscillation. The investigation of ultradian 

oscillation of glucose and insulin focused on the influence of model parameters. Different 

forms of glucose infusion (e.g., oscillating, random glucose infusions, etc.) can be further 

explored for its effect on the ultradian oscillation. 

Ultradian oscillations of the non-diabetic obese people was proposed to have higher 

amplitude of oscillations without affecting the oscillation frequency, which was due to 

the impaired response of peripheral tissues to insulin [156]. For long-standing Type 2 

diabetes with the function of insulin secretion and action impaired, ultradian oscillation 

may be disrupted greatly, which showed irregular amplitude, frequency or concomitance 

of insulin and glucose [58]. Besides, oscillation of plasma glucose in Type 2 diabetes was 

observed to be broader and more sluggish, without sharp peaks. The reason may be the 

failure of insulin to suppress HGP and/or the insulin resistance in the periphery, which 
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results in diminished glucose utilization [58]. Further investigation based on Chapter 3 

and Chapter 4 can give insights on the effect of diabetes on ultradian oscillations. Loss of 

oscillation inducement for diabetic patients without exogenous insulin delivery may be a 

symptom of abnormality of the glucose-insulin system, and investigating ultradian 

oscillation and its entrainment using the two-compartment model may find some 

abnormalities of the glucose-insulin system. 
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