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Abstract: 

 

The L-type CaV1.2 calcium channel forms a hetero-oligomeric complex which is 

comprised of a transmembrane pore-forming 1-subunit, associated and modulated 

by auxiliary - and 2-subunits. CaV1.2 channels are abundantly expressed in the 

cardiovascular and nervous systems where their activation initiates a rapid influx of 

Ca
2+

 ions through their membrane spanning pores, triggering various cell responses 

such as excitation-contraction coupling in the heart muscle, gene expression and 

synaptic plasticity in the CNS. Alternative splicing of CaV1.2 has been associated 

with changes in the electrophysiological and pharmacological properties of the 

channel (Liao et al., 2007; Liao et al., 2004; Tang et al., 2004) and is furthermore 

implicated in severe cardiovascular and neuronal dysfunctions (Splawski et al., 

2004; Tiwari et al., 2006). This PhD thesis focuses on how the significance of 

alternative splicing in generating channel functional diversity could be evaluated by 

using an in vitro expression system as well as a more complex ex vivo system. We 

show that the exclusion of the single cassette exon 33 of CaV1.2 in a mouse genetic 

mutant, deleted specifically of alternative exon 33, results in Torsade de pointes, a 

severe form of arrhythmia well documented in cardiovascular disease of humans. 

Specific exon exclusion, which results in altered channel gating property, triggers 

arrhythmia in our animals and is due to a 4 times higher single-channel open 

probability of CaV1.2∆33 compared to the wild type channel. This emphasizes that  
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single alternative exon exclusion in CaV1.2 can result in severe electrophysiological 

changes coupled to cardiac electrical remodeling leading to ventricular arrhythmia 

of the heart. 

In a related question, the electrophysiological and expression characteristics of the 

mutually exclusive N-terminal exons 1a/b of CaV1.2 was evaluated. This pair of 

mutually exclusive exons in combinations with another pair of mutually exclusive 

exons 8/8a define the smooth muscle SM isoform of exon 1b/8 and the cardiac 

muscle CM isoform of 1a/8a (Abernethy and Soldatov, 2002; Biel et al., 1990; Liao 

et al., 2004; Tang et al., 2004; Zuhlke et al., 1998). Preliminary data support the 

hypothesis that the SM 1b isoform compared with the cardiac muscle CM isoform 

1a showed higher level of membrane surface expression. Data obtained from whole-

cell recordings clearly indicated for a 2-fold increase in current density for the SM 

channels, which could be determined by a tail current analysis. A gating current 

analysis obtained from tail currents did support the notion that the higher current 

density was due to higher channel surface expression. Furthermore, we could 

demonstrate that exon 1b in combination with exon 8a changes the channel kinetic 

by shifting the steady-state inactivation to a more hyperpolarized potential. Similar 

findings indicating for the possible role of exon 1b in channel inactivation could be 

obtained from single-channel recordings. However, the basic single-channel 

properties did not reveal any differences in channel gating supporting our findings 

that an elevated current density is more likely due to a higher SM CaV1.2 channel 

surface expression than to a higher channel gating probability.  
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In a collaborating work with the group of Nicolas Singewald, Austria, we wanted to 

address the question of whether alternative splicing of CaV1.2 is a major contributor 

in fear response in HAB, LAB, NAB animals. In this context dissected brain areas 

associated with the fear circuitry were analyzed with the transcript-scanning 

method (Soong et al., 2002) to determine the transcript levels for various mutually 

exclusive exons of CaV1.2 in the amygdala, hippocampus and prefrontal cortex. We 

detected no overt changes in splicing patterns that would predict any 

electrophysiological changes in CaV1.2 brain regions associated with fundamental 

emotional and social traits. Interestingly, from its physiological function the brain 

channel isoform CaV1.2 seems to be more of a cardiac version in regards to the high 

expression of exons 8a/22/32. 

Taken together, this PhD thesis provided additional conceptual support in regards 

to the physiological and pathophysiological implications and consequences that 

underlie alternative splicing in CaV1.2 calcium channel isoforms. The work further 

demonstrates that electrophysiological characterization at the single-channel level is 

a powerful tool to help further dissect the mechanisms to account for alterations in 

whole-cell channel properties in alternative splice variants of the CaV1.2 channels in 

both ex-vivo and in-vitro systems.  
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1.1 Role of voltage-gated calcium channels VGCCs in human physiology 

The examination of the physiological role of voltage-gated Ca
2+

 channels VGCCs has 

been the research focus of scientists for a long time. The families of Ca
2+

 channels are 

expressed in various cell types where they open upon sensing membrane depolarization 

to allow an influx of divalent Ca
2+

 ions into the cell. The influx of Ca
2+

ions is carefully 

controlled by fine-tuned mechanisms as these divalent ions cannot be metabolized and 

therefore need to be sequestered within intracellular organelles or shunted out of the cell 

into the external matrix. However, the cytoplasmic increase in Ca
2+

 ions triggers a 

number of physiological responses including: (1) muscle contraction via activation of 

Ca
2+

 dependent/sensitive Ryanodine receptors RyRs by releasing Ca
2+ 

ions out of the 

Sarcoplasmic Reticulum (SR) into the cytoplasm (Bers, 2002; Reuter, 1979); (2) 

transduction of Ca
2+ 

signals via complex signaling pathways (CREB/MAPK), regulating 

gene expression in the cell (Dolmetsch et al., 2001; Greenberg et al., 2008);(3) releasing 

of neurotransmitters from the pre-synaptic terminals and modulation of neuronal 

plasticity in the brain(Catterall and Few, 2008; Moosmang et al., 2005). Furthermore, 

various clinically relevant drugs against VGCCs or against their auxilliary subunits have 

been reported to reduce neuropathic pain (Fossat et al., 2010; Olivera et al., 1994)or even 

having an influence on severe major depression and bipolar disorder (Mallinger et al., 

2008; Pazzaglia et al., 1998). 
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Figure 1: Overview  of the CaV calcium channel family. The pedigree showing the 

sequence identity of the 10 genes encoding for  HVA high- and LVA low voltage-

activated calcium channels. Adopted and modified from Catterall  et al., 2003. 

 

The physiological and pharmacological properties of recorded nativeCa
2+ 

currents had led 

to the assumption of the presence of various types of VGCCs (Reuter, 1979). 

Bean and Nilius could demonstrate in1985for the presence of two different Ca
2+ 

currents 

in cardiomyocytes with high and low threshold activation characteristics, and with fast 

and slow channel inactivation components. The Ca
2+ 

current activation profiles in 

smooth, cardiac and skeletal muscle were very similar and predominantly detectable at 

higher voltage steps whereas inactivation was long lasting when Ba
2+

was used as a 

charge carrier (Tsien et al., 1988). Additionally, these currents could be blocked by Ca
2+

 

channel antagonists such as dihydropyridines, phenylalkylamines and benzothiazepines 

(Reuter 1979; Tsien et al., 1988). This led to the categorization of the high-voltage 

activated (HVA), long-lasting (L-type) calcium channels and their low-voltage activated 

counterparts showing a faster and transient (T-type) inactivation kinetic (Nowycky et al., 

1985) and being insensitive to conventional Ca
2+

 channel antagonists. The L-type 

channels were further known to be regulated by second messenger proteins, auxiliary 

subunits and Ca
2+

 binding proteins. In 1975 Hagiwara could show the different types of  
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L-type calcium channels in starfish eggs which was then further characterized by 

Carbone and Lux in voltage-clamped dorsal root ganglion cells (Carbone and Lux, 1984). 

Nowycky and colleagues could later demonstrate from dissociated DRG and single-

channel experiments about the presence of the N-type calcium currents which were 

activated at voltage ranges in between the potentials that activate L-and T-type currents. 

Additionally, this channels could be blocked selectively by the peptide ω-conotoxin 

GVIA from the marine cone snail Conus geographus (Tsien et al., 1988; Olivera et al., 

1994). Characterizations of other Ca
2+

 channel subtypes followed like the P/Q- and R-

types being identified by pharmacological blockade using various other spider toxins 

(Llinás and Yarom, 1981; Llinás et al., 1989). Whereas, L- and T-types can be found in 

nearly all cell types, the latter subtypes can be found predominantly in the central nervous 

system CNS.   
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1.2 The L-type family of voltage-gated calcium channels 

The gene family of voltage-gated calcium channels (VGCC) consists of 10 membrane 

spanning proteins (CaV) (Figure1) that all differ in their unique electrophysiological and 

pharmacological properties. The voltage-gated calcium channels are hetero-multimeric 

protein structures that are composed of a pore-forming α1-subunit that opens in response 

to membrane depolarization, whereas the accessory proteins such as the α2δ, β and  

subunits modulate channel kinetics, surface expression and serve as molecular 

chaperones (Hullin et al., 2003; Bannister et al., 2011) 

 

 

Figure 2 Schematic overview of  the 1C channel pore  with auxiliary α2δ, β and   

subunit. 1 C  is incorporated into the plasma membrane by its various transmembrane 

segments. Adopted from (Arikkath and Campbell, 2003) . 

 

Owing to the pharmacologically distinct character of CaV1.2 in human physiology, these 

channels are important targets for already well established therapeutics (Catterall et al.,  
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2003). Furthermore, CaV1.2 channels may demonstrate promising new targets in the 

treatment of mental disorders due to their previously described physiological role in 

mood and mental conditions (Bauer et al., 2002; Sinnegger-Brauns et al., 2004; 

Casamassima et al., 2010).  

The physiological/pathophysiological implications of alternative splicing in CaV1.2 

channels have been suggested by our group and others in an extensive manner. In this 

context it could be demonstrated that several diseases maybe linked directly to aberrant 

or altered splicing of 1C. There is extensive and growing evidence for altered splicing 

patterns contributing to cardiovascular diseases (Gidh-Jain et al., 1995; Tiwari et al., 

2006) as well as exon-dependent phenotypes in complex neurological disorders such as 

the Timothy Syndrome (Splawski and Keating, 2004) or spinocerebellar ataxia-6 (Watase 

et al., 2008). These reports described altered splicing patterns of mutually exclusive 

exons as 21/22 or 8/8a from CaV1.2 which change their transcript levels during 

development or are simply affected by a single nucleotide polymorphism (SNP), resulting 

in severe pathophysiological consequences. 

 

A central aspect of this PhD thesis is to better understand the structural and functional 

diversity of CaV1.2 generated by alternative splicing and to further understand the 

physiological relevance of these altered protein structures. For that, we analysed 

alternative splicing loci within the CACNA1Cgene which we believe do have a prominent 

relevance on the overall electrophysiology of the channel structure resulting in altered 

channel gating, with a possible consequence on physiology/pathophysiology.   
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Throughout the last decade, growing evidences strongly suggest the possible role of L-

type calcium channels in mental diseases such as bipolar disorder or schizophrenia (Levy 

and Janicak, 2000; Sklar et al., 2011). Some calcium channel blockers, e.g. verapamil, in 

combination with lithium were demonstrated to have a positive effect on people with 

depression (Mallinger et al. 2008). However, the understanding of the physiologic 

mechanism for this efficacy is largely unknown. An indirect effect could also be stated 

for complex neuronal diseases as Parkinson’s disease (PD). Chan et al.(2010) showed in 

their work that the subtype unselective calcium channel blocker isradepine was capable 

of slowing down the onset of dying neurons in the substantia nigra by a “rejuvenation” 

process in neurons(Chan et al., 2010).  

These reports emphasized the significant roles of calcium channels in biomedicine and 

form a fundamental motivation for this PhD thesis. Investigating the molecular nature of 

CaV1.2 can contribute to a better understanding of the patho-mechanisms of diseases 

associated with alternative splicing and may help to inform on new pharmacological 

strategies in the management of human diseases such as CaV1.2 channelopathies.  

 

1.2.1. Physiological implication of calcium channel CaV1.2 in the cardiovascular 

system 

 

The human heart is a powerful myogenic muscular organ which pumps around 2.5 billion 

times during an average human lifespan, supporting the circulatory system of the body 

with blood (Bers, 2000). The conducting system of the heart is a specific system allowing  
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the cells and the heart for its automaticity. From the sinoatrial (SA) node the conduction 

spreads over to the atrioventricular (AV)note, further to the His bundle to the very end of 

the ventricular tip allowing a time delayed depolarization over the whole sarcolemma of 

the heart within half a second. Any aberrant function of this well defined system 

inevitably leads to severe pathological conditions of the heart often affecting the whole 

body. 

 

Figure 3: Excitation-contraction coupling.  Activation of CaV1.2 calcium channels 

trigger the calcium release from the sarcoplasmatic reticulum ( SR) and initiate the 

contraction (systolic) phase of the heart. A fine tuned assembly of various proteins 

aid in regulating calcium homeostasis in cardiac muscle cells.  Adopted and adjusted 

from Bers 2000.  

 

The molecular background behind this electrical conducting system is the presence of 

voltage-gated ion channels which sustain a balanced system of fine-tuned voltage-gated 

membrane proteins allowing ion flow across the membrane. The physiological 

implications of voltage-gated calcium channels of the heart are the conduction of Ca
2+

 

ions into cardiomyocytes upon membrane depolarization to initiate excitation-contraction 

coupling. Based on their electrophysiological properties high- (HVA) and low- (LVA)  
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Voltage activated calcium channels fulfill different physiological requirements, according 

to the electrical conductance in the heart. The L-type CaV1.3 and CaV1.2 and T-type 

CaV3.2 and CaV3.1 channels are known to be highly expressed in the heart and their 

expression pattern is developmentally regulated and tissue dependent. At early embryonic 

stages CaV1.3 is predominantly expressed in the ventricles. This is changed by a later 

embryonic state where the “nearly” mature heart will predominantly express CaV1.2 in 

the ventricles(Marsh, 1989). Similar expression and developmental rearrangements can 

be described for the T-type in the heart, where CaV3.1 is mainly expressed (Cribbs, 2010) 

and the CaV3.2 form is finally absent in the adult murine heart (Niwa et al., 2005) 

The CaV1.3 channels which play a role in pace-making activity are highly expressed in 

the sinoatrial node and atrioventricular node (Mangoni et al., 2003; Zhang et al., 2005), 

while the CaV1.2 channels serve its function mainly in the ventricular cardiomyocytes 

where they are conduits for Ca
2+

 influx into the myocardial cells(Bers and Guo, 2005; 

Schröder et al., 2007). From fetal to adult development of the heart, calcium channel 

composition is subject to a highly dynamic remodeling process (Reuter et al., 1983; An et 

al., 1996). The CaV1.2 calcium channels in rats are known to be expressed to a different 

extent in a developmental and tissue dependent manner (Liao et al., 2005; Tang et al., 

2008). This calcium current ICa triggers the calcium induced calcium release (CICR) from 

the sarcoplasmatic reticulum (SR) via Ryanodine receptors (RYRs) which set in motion 

for the muscle to contract (contraction phase). During relaxation phase, the clearance of 

Ca
2+

 ions from the cytosol brings the Ca
2+

concentration back to a normal physiological 

level. Subsequent relaxation of the muscle cell (dilatation phase) is promoted by the  
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activities of the Na/Ca exchanger (NCX) and the Sarco-Endoplasmatic Reticulum 

Calcium ATPase pump (SERCA) (see fig. 3).Further reports described another role of the 

CaV1.2 channels and that involved the cleaved carboxy-portion of CaV1.2 channel that 

was purported to translocate into the nucleus to initiate gene transcription (Ospina et al., 

2005). 

1.2.2 Cardiovascular diseases (CVDs) in the global society 

 

Cardiovascular diseases still remain as the most dominant burden to human and economic 

costs in the modern society and they are the number one cause of death and disability in 

the world. In 2008, 17 million people died of CVDs and of these 3 million deaths were of 

individuals who were below the average age of 60 years (WHO, Global Atlas on 

cardiovascular disease prevention and control, 2011). The economic costs of CVDs in the 

USA are estimated to be at a level of €310 billion compared to €146 billion for cancer 

and €22 billion for HIV infection (Thom et al., 2006). The trend in the last two decades in 

CVD prevalence around the world has been alarming as the number is increasing in the 

second- and third-world countries, whereas it is slowly declining in the first-world 

countries. Among CVDs, arteriosclerosis and cardiac arrhythmia represent only two out 

of a wide spectrum of diseases affecting the vascular and cardiac systems that should be 

addressed in the context of this PhD work in more detail.  

For that, these facts about CVDs make it compelling to further understand the complexity 

of physiological and pathophysiological conditions of the human heart for better 

intervention and to find new therapeutic approaches in cardiovascular disease 

management.   
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1.2.3 Mental disorders in modern global society 

 

Mental diseases are one of the most costly and challenging diseases in modern societies 

aside from cardiovascular diseases, cancer and metabolic disease (Bloom et al., 2011). A 

survey carried out by the National Institute of Health, NIH, revealed that mental disorders 

have an societal cost of US$193 billion per year on the American economy with an 

increasing trend (Kessler et al., 2003).According to the WHO, more than 30% of people 

face at least one severe mental episode during their lifetime (WHO International 

Consortium in Psychiatric Epidemiology (Anon et al., 2000). Among all mental 

disorders, anxiety disorders seem to be the most common in all countries, followed by 

mood disorders such as depression and bipolar disorders (The World Mental Health 

Survey Initiative). In the European society, anxiety disorders, depression, post-traumatic 

stress disorders (PTSD) or panic disorders occur with a prevalence of 11-20% 

spearheading the most frequent occurring disease among mental disorders (Sobocki and 

Wittchen, 2005). 

Although medical intervention is broad and often useful, medication can only alleviate 

the symptoms and not cure the disease. The antidepressants of the SSRI class (Prozac
®
, 

Seroxat
®
) and benzodiazepines (Xanax

®
) or tricyclic antidepressants (Elavil

®
) are 

effective and commonly prescribed drugs in anxiety disorders (Ravindran and Stein, 

2010)with often a good response helping to enhance quality of living. However, they 

often come with severe side effects for those who respond to the drug. For that, a deeper 

understanding of the physiological and pathophysiological conditions of mental diseases 
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is required to explore new drug targets and to tailor individual therapies to patients with 

mental problems. 

 

1.2.4 Neurobiology of fear and anxiety 

 

Fear and anxiety are well encoded fundamental emotional traits accompanying human 

beings throughout their whole live. A clear cut between both features is often hard to 

make and dependent on the scientific discipline. In neuroscience, fear can be defined as a 

response to an explicit threat whereas anxiety is understood as a response to a rather 

undetermined, potential hazardous situation (Sylvers et al., 2011). Although both traits 

are closely interrelated, fear and anxiety certainly differ in terms to their behavioral 

response.  Latter one often results in severe pathological forms of anxiety disorders where 

a response is not anymore proportional to the receiving stimuli (PTSD, phobia). In that 

case, the aimed evolutionary beneficial character of anxiety to serve and protect and to 

increase the survival chances has been lost.  

In humans and rodents, limbic and cortical areas as the amygdala, hippocampus, 

thalamus, hypothalamus and the prefrontal cortex are known to be phylogenetically 

related structures (Pine 2009, Canteras et al., 2010). The well known facts about 

molecular biological imbalance in terms of neurotransmitter release, the high comorbitity 

of anxiety and depression of 60% (Kessler et al., 2003) and the apparently slight crossing 

between physiological and pathological states are the subject to current research interest.  



  Chapter I

  1. INTRODUCTION  

13 

 

1.2.5 A physiological implication of voltage-gated calcium channels in mood 

disorders 

 

Although the possible implication of L-type calcium channelsCaV1.2 and CaV1.3 in fear 

memory and anxiety disorders is nothing unfamiliar (Bauer et al., 2002; McKinney and 

Murphy, 2006; Busquet et al., 2008; 2010), there is new and compelling evidence about 

the role of CaV1.2 channels in mental disorders (Bauer et al., 2002; Sinnegger-Brauns et 

al., 2004; McKinney and Murphy, 2006; Busquet et al., 2008; Ferreira et al., 2008; 

Greenberg et al., 2008; Busquet et al., 2010; Green et al., 2010; Sklar et al., 2011). The 

group headed by Nicolas Singewald could demonstrate in their publication from 2008 

about the physiological implication of CaV1.2 in fear extinction (Busquet et al., 2008). In 

this study the group evaluated the contribution of CaV1.2 and CaV1.3 in fear extinction. 

As there is no selective calcium channel blocker available till today to distinguish 

between the two channel subtypes, DHP insensitive CaV1.2DHP
-/-

 mice were used to 

address this question. In accordance with previous publications, WT CaV1.2 mice showed 

impaired fear extinction upon systemic administration of nifedipine whereas the DHP 

effect was completely abolished in their CaV1.2DHP
-/-

 counterparts, indicating that fear 

extinction are mediated by CaV1.2 and not by CaV1.3. However, this effect seemed to be 

mediated by peripheral CaV1.2 channels as intracerebroventricular (i.c.v) injection of 1 

mg/kg nifedipine did not trigger the fear extinction effect in WT.  

Based on the findings from our and other laboratories (Tang et al., 2004, Liao et al., 

2004, Tiwari et al., 2006, Splawski et al., 2004) on how alternative splicing can influence 

the physiological/pathophysiological equilibrium of certain disease we asked if mental 
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circumstances may also lead to general or maybe fundamental anomalies in the splicing 

profile of CaV1.2. Hence, we wanted to elaborate if various splice combinations of 

mutually exclusive exons in CaV1.2 influence electrophysiological (Liao et al., 2007, Li 

et al., manuscript in progress) properties of the channel. As a model to address our 

question we used mouse strains showing different levels of anxiety. The genotype of 

these High-, Low- and No- anxiety animals, respectively named HAB, LAB and NAB is 

unclear. The animals were tested upon their performance on the elevated plus maze and 

bred with equal performers. 

 

Figure 4 Diagram showing the performance on HAB, NAB and LAB animals  on 

the elevated plus maze EPM in regards of time spent on the open arm (gender and 

generation specific). Kindly provided by Dr. Ludwig Czibere and Prof Landgraf. B 

Statistics is based on 7 animals per group, one way ANOVA, p < 0.05) .  

 

1.3 Trait anxiety mouse model HAB/LAB/NAB. Implications of CaV1.2 

in mental disease 

The animal models for trait anxiety were kindly provided by our collaborating partner 

Prof. Dr. Nicolas Singewald, Innsbruck, Austria. The models for the study of 

pathological anxiety were selectively and bi-directionally bred for extremes in anxiety- 

*** 
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related behavior by Prof. Rainer Landgraf and colleagues (Behavioral and 

Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany). The 

outbreed CD1 animals were categorized for selective and bidirectional breeding 

according to their performance on the elevated plus-maze (EPM) and their exposure time 

to the open arms (OA). The aim of a bidirectional selective breeding process is the 

accumulation of genes associated with a specific trait, thus shifting the phenotypes from 

the population mean. Rodents are characterized by a natural innate fear of unprotected 

and heightened areas (Pellow et al., 1985; Lister, 1987) and the EPM principle generates 

an avoidance conflict between the exploratory drive of the animal and its innate fear. A 

genetic predisposition for trait anxiety is considered to correlate with the time spent on 

the EPM open arms. The open arm dwell time (%) of the mice is an indicator for the 

breeding partner respectively and the animals were bred with the corresponding partners 

to generate the behavioral extreme phenotypes. Animals spending less than 10% of the 

test time on the open arms were categorized as the high anxiety-related behavior (HAB) 

line, whereas mice spending most of the test time on the open arms (~50% or more) were 

categorized as low anxiety related behavior (LAB) line. Normal anxiety-related behavior 

(NAB) mice display an intermediate phenotype (time spent on open arms ~30%). Various 

publications have reported the usefulness and importance of theses mouse lines in 

identifying genetic factors that regulate the development of anxiety (Murgatroyd, 2005; 

Bosch and Neumann, 2008; Busquet et al., 2008) For this PhD study, we further 

characterized the animals with regards to their innate trait anxiety and molecular 

biological characteristics as transcriptional modification of the calcium channel CaV1.2. 
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Recent publications have shown a possible physiological/pathophysiological implication 

of CaV1.2 in anxiety and depression (Busquet et al. 2008, Sinnegger-Brauns et al., 2004). 

 

1.4 Molecular aspects of CaV1.2 L-type calcium channels in human 

physiology 

 

1.4.1 Alternative splicing 

 

Posttranscriptional modification (PTM) is a molecular remodeling process of the early 

pre-mRNA which allows a system to adapt in a tissue- and development-dependent 

manner (Black, 2003). Alternative splicing, as a main contributor to post-transcriptional 

modification (PTM), besides RNA editing, is a highly organized and defined shuffling 

process of alternative exons to assemble protein variations with diverse biological and 

functional options. It is estimated that more than 60% (Modrek and Lee, 2002) of human 

genes undergo alternative splicing; hence this puzzling process depicts a major 

contributor to protein isoform diversity in all vertebrates. The shuffling of exons can 

happen in many different ways (figure 4). Most of the exons are constitutively expressed, 

which means that they are always included and translated. The excision of the intronic 

region is guided by pre-determined nucleotide sequences, such as GU at the 5’splice 

donor site marking the exon/intron boundary and the AG di-nucleotide sequence at the 

3’splice acceptor site and the branch point (Burge et al., 1999). These splice sites are 

initial sequences for the spliceosome that recognize the boundary sequences whereas an 
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adenine within the branch site represents a key element for the excision of the intron. 

Exons that are either excluded or included are called cassette exons.  

 

 

 

 

 

 

 

 

Figure 5: Shematic overview of alternative splicing  as a fundamental molecular  

process of PTM. Exon shuffling can be arranged to many different transcripts. In 

each scenario) to d), a single RNA transcript is spliced into two possible mRNA 

fragments finally resulting in a broad spectrum of functional diversified proteins.  

 

 

Inclusion or exclusion of exon pairs can be mutually exclusive, meaning only the specific 

exon sequence or its counterpart is added to the final transcripts. However, recent 

findings by our group showed that mutually exclusive exons can indeed appear in a 

sequence together, resulting in a dominant negative effect (Tang et al., 2007). Exon 

extension or truncation is also known either at the 5’splice or 3’splice site whereas the 

mature transcript results in a longer or shorter exon version. Finally, intron retention is 

the most controversial form of splicing as the intronic region is maintained in the mature 

transcript (Matlin et al., 2005) and often degraded due to inserted stop codons (Lareau et 

al., 2004). Taken together, alternative splicing results in a wide array of transcripts that 

once encoded can produce a large range of protein isoforms that respond differently to 
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ligand binding, enzymatic activity, or protein localization, resulting in various changes in 

cellular or developmental processes. Although alternative splicing is processed with high 

fidelity, errors in the splicing machinery often lead to severe errors with sometimes fatal 

cellular and pathophysiological consequences (Black, 1998; Grabowski and Black, 2001; 

Splawski et al., 2004; Tiwari et al., 2006). In the following paragraph, these 

consequences shall be addressed in more detail in regards to the expression of the CaV1.2 

calcium channels.  

 

1.4.2 Alternative splicing of L-type CaV1.2 calcium channel isoforms 

 

1.4.2.1 Functional role in biology and disease 

 

Understanding the structure-function and distribution of alternative exons can be of great 

help in providing plausible explanations for disease severity. This is especially obvious in 

the patients who suffer from Timothy syndrome. Mutations discovered in the mutually 

exclusive exons 8/8a that was found to be expressed at a higher level in heart were 

associated with more severe cardiac disorder phenotype (Splawski et al., 2004; 2005). 

Hence data obtained from in-vitro heterologous expression systems do have an important 

role to finally evaluate the functional changes which underlie splicing and produce 

different electrophysiological and pharmacological CaV1.2 channel variants (Liao et al., 

2007). 
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Figure 6: Hypothetical topology of the Ca V1.2 splice variants.  Four hexa-helical 

(S1-S6) transmembrane domains (I -IV) encode for the alpha1 subunit.S4 depicts the 

voltage sensor with 3 -5 positively charged residues. The ext ra-cytosolic S5-S6 loop 

structures lines the pore and serves as a selective filter. Mutually exclusive exons 

are highlighted in red circles.  N-terminus 1a/1b/1c, IS6 8/8a, IIIS2 and IVS3. In 

blue: exon 33 a cassette exon.  

 

 

The human CaV1.2 channel is known to be extensively spliced where 20 out of 56 exons 

are subject to alternative splicing (Abernethy and Soldatov, 2002; Tang et al., 2004; Liao 

et al., 2005; Cheng et al., 2007; Bannister et al., 2011). The CaV1.2 splice patterns carry 

their own tissue signature and isoforms can be segregated into smooth-muscle and 

cardiac-muscle versions containing specific splice combinations (Welling et al., 1997; 

Liao et al., 2004; 2005; 2007). Of therapeutic importance is mutually exclusive exon 8/8a 

which encodes for the IS6 segment which is well known to affect the sensitivity to 

dihydropyridines (DHP) (Liao et al., 2007; Welling et al., 1997). Tissue-specific 

alternative splicing revealed that both exons affect pharmacological properties differently 

(Liao et al., 2007).  
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1.4.3.2. N-terminal human CaV1.2 isoforms and implication on structure and 

function relationship 

 

The N-terminus of murine CaV1.2 can either be comprised of the mutually exclusive 

exons 1a/1b or the recently discovered 1c isoform by the group of Jonathan Jagger 

(Cheng et al., 2007). Jagger’s group further demonstrated that exon 1b and 1c are both 

tissue dependently expressed in rat and human resistant cerebral arteries. Moreover they 

showed that short hairpin shRNA specific against either the 1b or 1c isoform can 

compensate/up regulate the opposed version by reducing the whole cell CaV1.2 currents 

and induce either a vasoconstriction or a vasodilatation. In the late 1990s, Nathan 

Dascal’s group described the significant structure and functional role of a rabbit 1C 

cardiac isoform, demonstrating that deletion of the initial 46 aa of the N-terminus resulted 

in an increased Ca
2+

 current density by changing the channel open probability without 

altering channel surface expression (Shistik et al., 1998; Kanevsky and Dascal, 2006). 

Further studies of exon 1a of rat heart and brain provided evidence for the interaction of 

PKC and the β2a subunit within the first 20 aa residues, underpinning the important 

functional role of the N-terminus (Shistik et al., 1999) 

 

Figure 7: Amino acid sequence representing the long form (1a) 46 aa and short 

form (1b) 16 aa  of human CACNA1C.  

.   
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In this regard, it is important for this study to understand to which extent tissue-specific 

expression of exon 1a and 1b may change structure and functional properties of the 

human CaV1.2 channels. However, attempts to isolate the exon 1c isoform from human 

arteries was not successful and we therefore focused on the abundantly expressed cardiac 

and smooth muscle versions of the CaV1.2 channels (Figure6). Single-channel recordings 

in combination with whole-cell electrophysiological recordings should allow a closer 

insight into the channel gating properties and allowing for a discrimination of the 

mechanistic understanding of changes in channel gating. In this thesis and based on 

previous published data by Jagger’s and Dascal’s group we hypothesize that channel 

gating based on the two mentioned isoform 1a/1b changes the fundamental functional 

properties of CaV1.2.We further believe that tissue specific splicing fulfills its need 

 

1.4.3.3. Mutually exclusive exons 21/22, 31/32 and cassette exon 33 and its 

contribution to physiology and disease 

 

Since the last decade, alternative splicing has been linked to disease in several crucial 

publications. The Soldatov group demonstrated changes in splicing patterns of CaV1.2 in 

proliferation of vascular smooth muscle cells VSMC in arteriosclerosis. Remodeling of 

mutually exclusive 21/22 in combination with exon 41A was found to be expressed to a 

different extent and repertoire in arteriosclerosis tissue compared to non-arteriosclerotic 

tissue. The switch to exon 22 in arteriosclerotic tissue significantly changed the 

electrophysiological properties of CaV1.2 indicating a Pathophysiological relevance of 
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exon 22 in arteriosclerosis. In a related work, mutually exclusive exon 31/32 distribution 

was changed in an induced myocardial infarction rat model (Gidh-Jain et al., 1995). El- 

Sherif’s group showed that the expression levels of the ratio of fetal: adult isoform in the 

myocardium reemerged, whereas the fetal phenotype was predominantly expressed in the 

rat model of post myocardial infarction. A subsequent study showed that this critical fetal 

isoform also reemerged in human heart failure tissue (Yang et al., 2000). An attempt to 

screen for human CaV1.2 splice variation was carried out by our group with the transcript 

scanning method to screen for full length CaV1.2 splice variants in fetal/adult brain and 

heart. A large variation of functional active transcripts was discovered to be expressed in 

a development-dependent manner bringing our focus to the IVS3-S4 segment 

representing a large combinatorial profile of exons 31-33. These variations revealed an 

unmistakable shift in steady-state activation whereas the IVS3-S4 linker length correlated 

with channel activation at higher depolarized potentials (Tang et al., 2004). Similar 

finding from in-vitro studies from our group demonstrated the important functional role 

of exon 9* and ∆33 of smooth muscle and cardiac muscle isoforms of CaV1.2 channels 

(Tang et al., 2007). In agreement with our in vitro findings from 2004, inclusion or 

exclusion of cassette exon 33 clearly changed basic electrophysiological properties in 

regards of its steady-state activation and inactivation kinetics. Furthermore, our group 

also demonstrated that exon 33 expression can be regulated in pathology where 20% of 

exon 33 was excluded in CaV1.2 within the surviving rat myocardial infracted left 

ventricles (Liao et al., 2008). However, these in vitro experiments uncovering functional 

changes of the CaV1.2channel properties at best only provide limited predictions for the 
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in vivo consequences. That is why we focused on the exclusion of cassette exon 33 in a 

mouse genetically targeted to remove exon 33 from the mouse genome.  

A. 

 

B. 

 

Figure 8: Whole cell steady-state kinetics  of ∆33 of CaV1.2 in cardiomyocytes. A. 

Activation/inactivation profile in -/- is significantly left shifted towards +/+. B. 

Current density of -/- is enlarged by 30%. Adopted from Li et al., ( manuscript in 

preparation).  

 

The cardiac phenotypes of the exon 33
-/-

 KO were more prone to developing cardiac 

arrhythmia and the echocardiographic profile showed increased contractility resulting in 

ventricular arrhythmia of a Torsade de pointes form (Li et al., manuscript in preparation) 

The underpinning mechanism could be explained by altered steady-state 

activation/inactivation profile and a robust  increase in calcium current density (fig. 8). 

However, since the larger current influx could not be explained by a higher CaV1.2 

channel surface expression, we predicted that only individual channel gating can be 

altered due to the exclusion of exon 33. That is why single-channel recording was 

performed to test the hypothesis of an altered channel function of CaV1.2∆33. The 

usefulness of single-channel recordings as a tool to highlight biophysical and 

* 

* 
* 
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pharmacological changes has been reported in the past by various groups (Yue et al., 

1990; Schröder and Herzig, 1999; Gröner et al., 2004) in the context of cardiovascular 

studies. For example, Schroeder et al. demonstrated in their work in 1998, that CaV1.2 

from human failing heart samples show a significant increase of single-channel open 

probability accompanied by significantly higher channel availability. The latter result 

provided further explanation to a general mechanism implying Phosphatase 2B (PP2B) is 

compromised in the failing cardiac system increasing channel availability. However, this 

technique is gaining more and more popularity in the field of electrophysiology although 

the idea to detect and record single ion channels is not new. This thesis provides strong 

evidence about the usefulness of single-channel patch-clamp recordings towards the 

commonly used whole cell patch-clamp techniques especially in terms of structure-

function changes of CaV1.2 channels that result from alternative splicing. The next 

paragraph will highlight the advantages of the cell attached mode of single-channel 

recordings in relation to the whole cell technique. 

 

1.5. Single-channel vs. whole cell recordings in cardiovascular studies 

 

Studying the gating of unitary single-channel events in recombinant systems or in 

cardiomyocytes is per se nothing new. Neher and Sakmann were awarded the Nobel 

Prize in Medicine and Physiology for this seminal technique in 1991. However, cell 

attached recording was exciting and new at the beginning of the 1990s but seemed to lose 

its popularity within the last two decades, most likely because of often unpredictable 
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technical problems due to noise or amplification limitations. Furthermore, an increasing 

amount of required data due to large scale sampling and software limitations made this 

technique redundant. Since whole-cell recording was also available, more approachable 

and often sufficient for most of the required needs, single-channel recordings became an 

uncommonly used technique and the expertise is still difficult to find nowadays. In any 

case, whole-cell recordings only allow for a limited insight into channel gating as an 

entire channel population expressed on the cell is recorded at the same time. Detecting 

single ion channel allows making predictions about open and close events on a micro 

scale. Furthermore, drug interaction can be studied in real-time (Michels et al., 2005) and 

biophysical approaches can help to understand fundamental gating principles (Bartels et 

al., 2009). Since the completion of the human genome project and an increasing new 

knowledge and interest in molecular compounds and interaction sites, electrophysiology 

is getting more and more popular especially in the fields of fundamental science like 

physiology and pharmacology. This argument inevitably leads to new interests in 

electrophysiological approaches and hence to a significant interest in single-channel 

detection. (For a broader introduction of single-channel recording please refer to the 

Material and Methods section of this thesis.) 
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1.6 Aims and goals of the study 

 

The understanding of the structure and function of L-type calcium channels in human 

physiology lays the basis for decisions on what novel directions to take in expanding on 

the management of various pathological conditions such as cardiovascular or 

neurological diseases (Tiwari et al. 2006, Splawski et al., 2004). Since the last 10 years 

and after the completion of the first draft of the human genome project, there are more 

evidences to indicate that L-type calcium channels may play a direct or indirect role in 

mental disorders, such as in depression, bipolar disorder, schizophrenia and posttraumatic 

stress disorder (PTSD) (Sinnegger-Brauns et al., 2004, Busquet et al., 2008, Bauer et al., 

2002). Mental disorders are, beside cardiovascular disease and diabetes; undoubtedly a 

huge burden for modern societies and a financial burden for the global economy. For that, 

a better physiological understanding and new pharmacological agents for therapeutic 

treatments are highly desirable in cardiovascular and neurological diseases. 

The ultimate goal and aim of this PhD thesis is to further understand the functional 

consequences that are linked to aberrant alternative splicing of L-type CaV1.2.calcium 

channels in vitro and ex vivo. Our group has already demonstrated in previous work 

about the significant role of exon 33 inclusion/exclusion in a recombinant system and in a 

exon 33 knock-out mouse, they showed that a severe form of cardiac arrhythmia was 

expressed (Torsade des pointes) (Li et al., manuscript in preparation). Hence this work 

shall contribute to a better physiological understanding of how posttranscriptional 

modifications can correlate with complex disease like cardiovascular disease and anxiety 

disorders. For the latter we used our anxiety mouse models hypothesising that different 
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phenotypes of anxiety, respectively HAB, LAB and NAB can be correlated with aberrant 

splicing of CaV1.2. For that, single-channel recording technique helped to better 

understand the biophysical properties that go along with aberrant calcium channel gating. 

Furthermore, pharmacological approaches can be evaluated in more detail with this 

technique, allowing the investigation of interaction of the channel with potentially new 

therapeutics. Understanding the physiological and pathophysiological nature of L-type 

calcium channel splice isoforms can certainly help to understand how disease states 

develop in patients.  
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2.1 Cell culture and plasmids 

 

2.1.1 Culture of native HEK293 cells 

Cryo shock-frosted tubes with cells were immediately transferred to a 37 °C water bath 

and thawed. Cells were then transferred to a 50 ml falcon tube containing 9 ml of fresh 

selective Dulbecco’s Modified Eagle Medium (DMEM) and centrifuged for 5 min. at 500 

rpm. The supernatant was discarded and the process repeated 2 times; subsequently the 

cell pellet resuspended in fresh medium and transferred to a T25 flask for growing 

overnight at 37 °C, 5% CO2. Cells usually reach a confluency of 70-80% after 48 hours 

and are ready then for splitting. 

After 48 hours, cell medium was evacuated and cells washed 2x with 4 ml phosphate 

buffer (10% PBS). To detach the adherent cells from the flask, 1 ml of a 0.05% trypsin 

was pipetted into the flask and removed immediately after. The HEK 293 cells were 

trypsinised for 2 min. at 37 °C, 5% CO2 and the reaction stopped with 5 ml of fresh 

medium. Approximately 1 ml of resuspended cells was grown again in a T25 flask 

containing 4 ml of fresh DMEM containing antibiotics. Further splitting needed to be 

carried out 48-72 hours after. 

 

2.1.2 Plasmids and generation of constructs 

HEK 293 cells were transiently transfected with pcDNA3.1 vector carrying a coding 

sequence for either the human smooth muscle CaV1.2 77WT 1b/8/∆9/32/33(Liao et al., 

2007) or the cardiac 1a/8a/∆9/32/33 (provided by Dr. Roger Zuhlke). Exon 1a/1b was 
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sub-cloned either into the cardiac or smooth muscle backbone resulting in 778aand 

1a77respectively. (s. figure 9). Beside neomycin or ampicillin resistance, the vector 

carries a multiple cloning site (MCS), 5’ downstream of a promoter region (PCMV).The 

CaV1.2 isoforms 1a77,77WTand1a77were kindly provided by Dr Liao Ping (NNI, 

Singapore). 

 

 

Figure 9: N-terminal splice variants with backbone structure  cloned into the 

MCS of a pcDNA3.1 vector.  Isoform 778a was created by simply swapping exon 1b 

from the 77WT isoform into the cardiac CM isoform. 778a was then positively 

identified by sequencing.  
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2.1.3 Sub-cloning of humCaV1.2 variant 778a into a cardiac backbone structure 

 

Figure 10: Identification of  representativeCaCNA1Cbandson a 1% gel after  

digestion of pcDNA3.1 with Afe1 and Xba1 . Bands showed the correct expected size 

of around 6500bp and 5400 bp were dissected and ligated for 4 hours at RT, 

respectively. 
 

For electrophysiological studies, 778a clone was constructed from the already existing 

77WT and cardiac CaV1.2 CM clones. Both plasmids were digested with Afe1 and Xba1 

for 2 hours and the resulting bands were identified on a 1% agarose gel (figure 10). Afe1 

digested the channel coding sequence once leaving blunt ends within exon 2 whereas 

Xba1 digested once within the pcDNA 3.1 vector leaving sticky ends. After 4 hours of 

ligation at RT with T4-Ligase (Invitrogen), E.coli was transformed by heat shock and 

plated on an ampicillin containing agar plate overnight at 37 °C. On the next day 12 

clones were picked and DNA was amplified with a Minikit (Quiagen). The chimera 1b/8a 

was digested with HindIII and the resulting band later identified against a positive control 

on a 1% agarose gel. A sequencing analysis and gating analysis was later carried out to 

check for functional integrity of the channel. 

 

  

6500 bp 

5400 bp 
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2.1.4 Transient transfection of HEK 293 cells 

 

2.1.4.1 Calcium phosphate method 

For whole-cell recordings cells at a confluence of > 70% were transiently transfected 

with the calcium phosphate method using HBS (ph = 6.8) and 1M CaCl2. Ratio of 

transfected subunits was kept at 1:1:1. In a freshly autoclaved 1.5 ml tube A1C, β2a, α2σ 

and TAG were pipetted to 150 µl of CaCl2 and subsequently 150µl of HBS was added 

drop wise. The whole reaction mix was incubated at RT for 20 min. and then given to a 

T25 flask containing cells and 4 ml of DMEM without antibiotics. The incubation was 

carried out at 37 °C, 5 % CO2 for not longer than 6 hours. Medium was changed after 6 

hours with 4 ml of DMEM containing antibiotics. On the following day, cells were 

trypsinised, resuspended and plated onto 60 mm Petri dishes containing 2 ml of DMEM 

(Ampicillin) before electrophysiolocal recordings. 

 

2.1.4.2 The Effectene
®
method 

Transfection was carried out usually 24 hours after subcultivation at a confluence of 20-

30%, as the transfection efficiency was about 40-50% at this stage. Effectene
®
 is a mild 

transfection reagents that is best used for cells recorded in the cell attached configuration. 

The non liposomal lipid reagent Effectene
®

 spontaneously forms micelles and 

compresses the DNA. In a ratio of 1:1:1:1 of α1c, β2a, α2σ and TAG were given to an 

enhancer solution, whereas 1 µg of DNA was added to 8 ml of enhancer, vortexed for 5 

sec and incubated at RT for 5 min. The DNA concentrations were adjusted to a minimal 
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to ensure a low level of expression to detect single-channel events. To the reaction mix 

was then added 25 ml per 1µg of DNA, vortexed for 10 sec and additionally incubated 

again at RT for 10 min. The mix was dissolved in 1ml of fresh DMEM (antibiotics) and 

given to a T25 flask containing 4ml DMEM and cells. Incubation time was 6-24 hours at 

37 °C, 5% CO2. Cells were only recorded 72 hours after transfection. 

 

2.3. Molecular biology 

 

2.3.1 mRNA extractions from HAB, LAB and NAB mouse brains for colony 

screening 

 

For mRNA extraction, brain samples (kindly dissected and provided by Dr. Simone 

Sartori, Innsbruck, Austria) were prepared by using either RNeasy
®

 Kits (QIAGEN 

Science, Maryland, USA) for colony screening purposes or by using a guanidinium 

isothiocyanate solution (Trizol
®
 method) for real-time PCR. For the Trizol

®
method, -80 

°C frozen samples (amygdala, hippocampus and prefrontal cortex) were soaked in 0.8 – 

1ml of Trizol
®
 and homogenized with a common homogenizer (Heidolph, DIAX 900, 

Germany). Samples were then incubated at RT for 5 min. and centrifuged at 12 000 rpm 

for 15 min. Upon centrifugation, the upper phase containing the mRNA was carefully 

sucked up with a pipette and treated with an equal amount of isopropanol. Samples were 

centrifuged at 12 000 rpm for further 10 min. After centrifugation the pellet was 

resuspended in 70% of ethanol. Further centrifugation at 7500 rpm for 5 min extracted a 
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clear pellet that was dried on air and finally dissolved in RNAse free water. The RNA 

quantity was measured by spectrometry and used for further experiments. Samples 

measured at a wavelength of 260/280 had usually a ratio of > 1.6 and were immediately 

used for reverse transcription or stored at -80 °C. 

 

2.3.2 Reverse Transcription and transcript-scanning by Polymerase Chain Reaction 

 

The mRNA was reverse transcribed using oligo(dT) primers and Superscript™ III 

Reverse Transcriptase (Invitrogen). For obtaining first strand DNA an initial heating step 

of 65°C was used for five min. before a quick chill on ice. The reaction mix containing 

5x first strand buffer, 0.1 M DTT and 200 Units enzyme were then incubated at 50 °C for 

60 min. and additionally inactivated by heating at 70°C for 15 min. First strand DNA was 

then either stored at -80 °C or directly used for further experiments. 

 

Table 1: Primer pairs used for PCR with used cycle length and expected amplicon size. In Bold: 

Specific primers used for colony screening. Italic: Primers for mutually exclusive amplicon scanning.  
Exon 

spanning 

region 

Primer pairs 

Expected 

Size (bp) 

Tm (°C) No.of cycles 

Forward Primer Reverse Primer 

7-11 5'-GTGTATCACCATGGAGGGCTGG-3' 5'-CTGAATTTGGATTTGGAGATCCGATGG-3' 437 55 35 

19-23 5'-GAGCTGCACCTTAAGGAAAAGG-3' 5'-GGATGCCAAAGGAGATGAGG-3' 370 50 45 

30-34 5'-CACTATGGCCAGAGCTGCCTC-3' 5'-GGACTTGATGAAGGTCCACAGC-3' 351 60 35 

8-11 5'-GTCAATGATGCCGTAGGAAGG-3' 5'-CTGAATTTGGATTTGGAGATCCGATGG-3' 397 53 25 

8a-11 5'-ATGCAAGACGCTATGGGCTAT-3' 5'-CTGAATTTGGATTTGGAGATCCGATGG-3' 397 53 25 

21-23 5'-TACCACCATTTTCACCATTGAAATTGC-3' 5'-GGATGCCAAAGGAGATGAGG-3' 140 57 25 

22-23 5'-AGGCAATGCAGACTATGTCTTCACTAGTATC-3' 5'-GGATGCCAAAGGAGATGAGG-3' 161 57 25 

31-34 5'-AATTGATGTCATTCTCAGTGAGACTA-3' 5'-GGACTTGATGAAGGTCCACAGC-3' 187 53 25 

32-34 5'-TGTTGATATAGCAATCACCGAGGTAC-3' 5'-GGACTTGATGAAGGTCCACAGC-3' 187 53 25 
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For Polymerase Chain Reaction, primers (tab.1) were designed with DNAstar 

(Lasergene) and obtained from Sigma-Aldrich
®
 (Singapore). GoTaq

®
 flexi DNA 

polymerase (Promega) was used for amplification and diluted 120X in autoclaved H2O 

together with 10 mM of dNTP, 5 mM specific Primers and 25 mM MgCl2. Annealing 

temperature for primers was used according to the manufacturer’s recommendation or 

determined by calculation as follows: 

 

Tm = 4 x (number of G or C) + 2 x (number of A and T) 

 

The following PCR protocol was used for transcripts not exceeding 1kb in length, 

varying by the Tm, respectively (tab. 1): 

The PCR protocol consisted of an initial denaturation step at 95°C for 2 min, followed by 

a further denaturation step of 95°C for 30 sec. The second denaturation step precedes the 

annealing phase of the specific primers at a temperature of 58 °C for 30 sec. touching 

down the temperature by 1 °C for each cycle to 53 °C. Between 56 °C and 53°C, 25 

cycles were repeated. The extension time was chosen to be no longer than 30 sec for an 

amplicon length of ~1kb, and the final extension time was chosen to be 6½ min. PCR 

products of < 500 bp were identified on a 2% (w/v) agarose gel containing ethidium 

bromide. DNA was always directly compared against a positive control and a water 

control as negative control. The samples were stored at -20 °C. 
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2.3.3 Transcript scanning of mutually exclusive exons 8/8a, 21/22 and 31/32 and 

cloning into a pGEM®-T Easy vector 

 

The transcript-scanning method (Soong et al., 2002) was used to screen for mutually 

exclusive exons,: 7-11 for 8/8a, 19-23 for 21/22 and 30-34 for 31/32 to determine their 

distribution in amygdala, hippocampus and the prefrontal cortex. Positive and non 

contaminated bands were identified under a UV-luminator and excised with a scalpel 

from the gel. The DNA was gel-extracted using manufacturer’s method (Qiagen, Gel 

extraction kit). The PCR products were further sub-cloned into a pGEM
®

-T Easy vector 

and transformed into DH10B E. coli. A selection of colonies was performed according 

the blue/white screening system that allows the detection for a positive ligation. In brief: 

This system is based on the principle of a α-complementation of the enzyme β-

galactosidase. The β-gal is encoded by lacZa which belongs to the lac operon of E.coli. If 

the lac coding region, which carries an internal multiple cloning site (MCS) is disrupted 

by the insert; no functional β-gal can be expressed. As the bacteria are grown in the 

presence of X-gal - a colorless derivative of lactose which is usually cleaved by an intact 

β-gal into a blue pigment (5, 5’-dibromo-4, 4'-dichloro-indigo) - the positive ligation can 

be observed in the white remaining colonies. Blue colonies indicate the existence of an 

intact lacZa system. 

For transcript-scanning, at least 96 colonies per animal and brain region were picked and 

used for colony PCR. Positive colonies were picked then in 96-well plates containing LB 

medium (Amp.) and incubated at 37 °C for 16 hours. Two PCR reactions were carried 

out with exon specific primers for the detection of mutually exclusive exons (see tab.1). 
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Amplicon were detected on a 2% agarose gel and compared against a (+) control and 

water (-) control. At least 100 clones were sent for DNA sequencing and later compared 

against the genomic sequence (NC_000072; Gene ID: 12288) of the National Center for 

Biotechnology Information (NCBI) public databases using the Basic Local Alignment 

Search Tool (BLAST). For statistical analysis, a one way ANOVA was carried out 

between the anxiety models with additional Bonferroni correction. Data were considered 

as statistical significant at a 95% confidence interval. 
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2.4. Electrophysiology 

 

2.4.1 The Patch-Clamp Technique 

 

 

Figure 11: Overview of several patch clamp configurations .  A: cell-attached 

(single-channel), B: Whole-cell, C. outside-out and D: Inside out.  

 

Beyond doubt, Erwin Neher und Bert Sakmann can be nominated as the leading pioneers 

of the Patch-Clamp Technique which truly revolutionized the field in modern 

electrophysiology. For their seminal work to record single ion channel both were 

awarded the Nobel Prize in medicine and physiology in 1991 (Neher and Sakmann, 

1976a; 1976b). Although, Hodgkin und Huxley already founded the basics of modern 

neuroscience with their work on Loligo in 1952, describing the flow of multivalent 

charge carriers over a “capacitor” like membrane leading to the Hodgkin Huxley model, 

Neher and Sakmann could successfully distinguish between ion currents and background 
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noise. This was possibly due to a highly isolated membrane part - the patch - which 

allowed, based on an achieved seal in the giga-ohm range, to detect micro-ampere 

currents with a conductance of several pico Siemens. For the very first time it was 

possible to study the nature of ion currents through the protein complexes (s. picture 1.a, 

Cell-attached-Configuration) and hence to understand the molecular processes and 

functional characteristic of these structures in more detail. With growing time and 

experience, more electrophysiological methods developed and are still important tools to 

understand the processes in modern cell biophysics and physiology. 

 

2.4.1.1 Whole-cell configuration 

Transiently transfected HEK 293 cells were treated by the calcium phosphate method 

(Tang et al., 2004). IBa
2+

 currents were detected at RT after 48-72 hours of transfection. 

External bath solution contained (in mM) 10 HEPES, 140 tetraethyl ammonium 

methanesulfonate, 5 BaCl2, (pH was adjusted to 7.4 with CsOH and osmolarity to 290–

310 with glucose). The internal pipette solution contained (in mM) 138 Cs-MeSO3, 5 

CsCl, 0.5 EGTA, 10 HEPES, 1 MgCl2, 2 mg/ml Mg-ATP, pH 7.3 (adjusted with CsOH). 

Glucose was used to adjust the osmolarities of solutions to between290 and 330 mOsm. 

Junction potentials were not considered for any analysis. IBa
2+

 currents were detected 

with an Axopatch 200B amplifier (Axon Instruments). Raw data were filtered at 1 kHz 

and sampled at 10 kHz. The series resistance was usually <5 MΩ after 70% capacity 

compensation. Leak and capacity transients were subtracted with a P/4 protocol. The IV 

relationship was determined from a holding potential of -100mV and a series of 

depolarizing test potentials (∆10 mV increment) starting at -60mV to +50 mV, pulsed for 
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900ms. IBa
2+

 currents were normalized to the maximum peak current and the obtained IV 

curve was fitted with a Boltzmann and liner fit, respectively: 

 

   IBa
2+ 

= Gmax(V-Erev)/(1+exp((V-V1/2)/k)) 

 

Where Gmax is the maximum conductance; Erev the reverse potential; V1/2is the half-

activation potential and k is the slope. The steady-state activation (G-V curves) was 

determined by tail currents where cells were depolarized by a 20 ms test pulse of a 

serious of activating potentials starting from -60 mV to +120 mV. The tails were then 

measured after repolarisation to -50 mV for 10 ms. Normalized tails were fitted with a 

dual Boltzmann respectively, 

 

G/Gmax = Flow/ (1+exp ((V1/2,low-V)/klow))/(1-Flow)/{1-exp((V1/2,high-V)/khigh)) 

 

 

With G as the tail current and Gmax as the peak tail current, Flow is the fraction of low 

threshold component;V1/2,low, V1/2,high, klow, and khigh are the half-activation potentials and 

slope factors for the low and high threshold components and V1/2act was determined when 

G = 0.5Gmax.The steady-state inactivation was determined by stepping from a holding 

potential of -100mVto a 30-ms normalizing pulse to 10mVfollowedby a serious of 15-s 

prepulses starting from -120 to 10 mV. An additional 104 ms test pulse to 10 mV was 

recorded. After normalization data were fitted with a single Boltzmann fit: 

 

Irelative = Imin + (Imax - Imin)/(1 + exp((V1/2 - V)/k) 
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, where Irelative is the normalized current; V1/2 is the potential for half-inactivation, and k is 

the slope value. 

 

2.4.1.2 The cell-attached configuration: detecting single ion channels 

One aim of this PhD thesis is the characterization of CaV1.2 calcium channels in the cell-

attached configuration, which allows detecting micro-ampere currents via a single ion 

channel. This configuration allows a closer insight into the biophysical and 

pharmacological nature of the channel and hence needs to be explained in more detail. 

The aim of this technique is to bring a borosilicate micropipette in close vicinity of the 

cell membrane in order to form a stable patch between the pipette and the membrane. A 

patch can be of several giga ohms (gigaseal) through a large resistance, whereas the 

current inversely decreases given through: 

 

Rseal = UTP/ILeak 

Of fundamental importance is the background electrical noise which needs to be 

considered in brief. Noise is of physical origin and can be described as charge 

fluctuations, appearing in several areas within the patch, the head stage and the pipette, 

resulting in an adverse signal/noise ratio (S/N). Large noise often results in errors during 

the analysis of the data and should be avoided strictly. A good S/N quality is 
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indispensable and eases any further raw data analysis. In this chapter, we will further 

focus on the basics of the patch clamp technique. 

 

The setup is the heart of each patch-clamp system and is comprised of several modules 

(s.). The inverse microscope and fluorescence source should be usually placed within a 

faraday cage – being placed on a shock absorbing table - in order to keep away disturbing 

electromagnetic factors. The micromanipulator can be of electric or mechanic origin and 

its fine drive allows an easy interplay between the pipette and membrane and is essential. 

Detected signal will be transduced over a head stage which allows a first amplification 

(CV-4 Head stage, Gain x1/100, Axon Instruments) and then further inducted into a main 

amplifier (Axopatch 200B, Axon Instruments). Finally, the amplified, analogue signal is 

converted into a digital signal by a 16 bit AD/DA converter before it is saved by a CPU.  
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2.4.2 The Single-Channel Setup 

 

   

 

 

Figure 12: Oversimplified diagram of a patch-clamp setup.  Cells can be selected 

according to their GFP distribution through an inverse microscope that is attached to  

a fluorescence source (not shown). Bath and stimulation electrode ( -Gain) are 

interconnected via a BNC (banana network cable) with the amplifier (-Gain). The 

amplified signal (analogue) is converted via a 16 BIT AD/DA -converter into a 

digital signal and further supplied into a CPU.  

 

2.4.3 Experimental design and theoretical background 

 

As charge carrier, divalent Ba
2+

 ions (in mM)110 BaCl2, 10 HEPES (pH 7.4 with TEA-

OH) were used which show a higher permeability for Ba
2+

 then Ca
2+

 ions in HVA 

channels compared to LVA channels. This brings the advantage that Ba
2+

 ions also block 

native sodium channels, allowing us to detect for Ba
2+

 currents only. TEA added into the 

pipette solution additionally guaranteed that outward currents through potassium 

channels were eliminated. 



  Chapter II

  2. MATERIALS AND METHOD  

44 

 

The petri dishes containing depolarizing bath solution (in mM), 120 K-glutamate, 25 

KCl, 2 MgCl2, 10 HEPES, 2 EGTA, 1 CaCl2,1 Na2-ATP, 10 dextrose (pH 7.4 with 

KOH)allows collapsing the membrane potential, bringing it close to ±0 mV. After 

immersing the pipette into the bath solution, the offset needs to be corrected due to 

appearing junction potentials between the ground- (Utheo)/detecting- (Upip) electrodes and 

the electrolyte solution in the bath chamber. The potential differences can be seen in 

forms of a baseline shift on the screen and need to be compensated through the offset, 

respectively: 

 

Upip + Utheo = 0 mV  

 

The positive pressure, that was acquired prior to the immersion of the pipette into the 

bath solution, will be released if the pipette tip is in close vicinity to the cell, whereas a 

giga seal forms through releasing the positive pressure, resulting in an under pressure. 

Additional suction through a catheter that is connected to the pipette holder can be 

performed to achieve a stable gigaseal and we achieve: 

 

Upatch = Upip – URMP = U pip, by URMP = 0 mV 

 

As we create capacity transients while charging the membrane we need to compensate 

those currents, respectively. Usually, the cells were hold at a holding potential (HP) of -

100 mV, allowing the channels to fully close and pulsed over 160 ms to a testing 
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potential (TP) of +10 mV which allows the channels to open again. The gigaseal can be 

determined through the occurring leak current Ileak which leaked through the pipette tip.  

The total noise, recorded at a cut-off frequency of 5 kHz, was usually below an IRMS of 

300 fA whereas IRMS> 350 were not considered for any recordings due to a bad S/N ratio 

and a likelihood to overestimate events. The activation of a channel (opening) can be 

explained by a Ba
2+

 influx and an efflux of positive charges out of the pipette solution. At 

the same time feedback compensation in form of a compensational current Icomp drives 

back the voltage to its theoretical value, respectively: 

 

    U(PIP)act = Utheo ; 

 

whereas the voltage difference is now being reconstituted. The electron flow can be 

further quantified through the redox-reaction (Ag/AgX), with Ag/AgCl  BaCl2, 

respectively, 

 

  2 Ag
0
 + BaCl2 ↔ 2 Ag

+
Cl

- 
+ 2e

-
 + Ba

2+
 

 

The influx is based on a oxidation reaction, whereas Ba
2+

-ions efflux out of the pipette. 

At the same time, the silver from the wire is being reduced; cations efflux out of the 

solution into the pipette (negative current). 
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Figure 13: Indirect current registration of a patch clamp setup.  The bath solution 

contains 140mM potassium, the pipette solution, 110 mM Ba2+. The aimed testing 

potential UTP  of +5mV equal the holding-/test potential. The current circuitry is 

comprised of two operational amplifiers ( OPA) in series (β-gain head stage and α-

gain amplifier). Recharging of the membrane results in compensation current s,  

whereas the head stage indicates the difference between U the o  and Upip.  The 

compensational current I comp  flows through the circuitry R f in order to correct the 

potential difference.  
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2.4.4 Data Analysis and Statistics 

 

Figure 14: Overview how to analyze single-channel data  from recording of raw data 

to idealizing traces. The summation of blank sweeps and the subsequent subtraction of 

active sweeps from the passive ones are called leak subtraction. This leads to a 

reduction in background noise as well as cutting out the capacity transients which built 

up the membrane charging process.  

 

The depolarized current traces are of 160 ms length, whereas at least 180 consecutive 

traces were recorded for each experiment. Raw data acquisition was carried out with 

Pclamp 10 (Molecular Device. The single-channel events were detected using the half-

height criterion (Sachs et al., 1982) and raw data were digitally leak- and capacity-
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corrected (Clampfit 10.2). The number of channels in the patch was estimated by the 

occurring number of staged openings recorded over several minutes at different test 

potentials. The mean ensemble average current was derived from 180 traces, whereas the 

local maximum (Ipeak) was estimated by using a simple smoothening algorithm (Fast 

Fourier transformation) to abolish high frequency noise (Origin 6.0). Fraction of active 

sweeps (availability) was calculated by the number of active traces (Mactive) divided by 

the total number of sweeps (M0). The binning of histograms was performed according to 

Sigworth and Sine and fitted with a mean simplex method (Sigworth and Sine 1987).  

The statistical analysis was either carried out with Origin 6.0 or GraphPad Prism 5. 

Pooled data are shown as mean values with standard error. Data were considered as 

statistical significant at a 95% confidence interval by using Student’s t-test.  

 

2.4.5 Writing event lists 

 

Figure 15: Illustration of a leak subtracted current  trace with the activity of one 

calcium channel (T-type). Open levels  (I1) are defined by the half -height criterion  

(I1 /2) and leak subtracted traces are transformed  into rectangular current traces  

(Sachs et al., 1982) . 
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The computational writing of event lists resulted from the leak subtraction and 

subsequent idealization of current traces. Leak subtraction aimed to cut off the capacity 

transient at the beginning and the end of the pulses minimized background noise. The 

objective is to add up and average all blank traces. What are left are the active traces. The 

average mean value of the passive traces depicts a timely superimposition of all artifact 

afflicted currents of passive traces. The idealizations first step is to define a baseline (I0) 

of the leak subtracted current traces. It can be further understood as the standard noise (σ) 

of a mean value sometimes described as “Root Mean Scare” (RMS). The unitary current 

amplitude sets apart from the standard noise and can be described as the first opening 

level (I1). Staggered openings can be described through several opening levels (In), 

according to the channel number. Multi openings can be corrected later through the 

number of channels in the patch (Schröder et al., 1998). If an event is considered an 

opening or closure by the program, is based on the half height criterion (McManus et al., 

1987; Sakmann und Neher, 1995). Current amplitudes – the detection is according to our 

sampling frequency (10 ms) - above the half height open level are registered as openings, 

whereas values below are considered as baseline (fig.15). 

 

2.4.6 Determine the unitary current amplitude 

 

Unitary current amplitude Iunitary (pA) was determined from fully resolved openings after 

leak subtraction. Ten active traces were averaged which resulted in the size of Iunitary. 

Furthermore, All Point Histograms were used to determine the amplitude size (data not 

shown). Thereby, the pA-value was depicted towards all collected data points by the 
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program, according to a 10 kHz sampling frequency, which results in a bi-exponential 

gauss distribution. The maximum of the standard distribution around a mean is 

considered the RMS (σ), whereas the maximum amplitude is described as µ.   

 

2.4.7 Correction of multiple channels (k ≥ 1) 

The number of channels in the patch was estimated from staggered openings as described 

in Horn 1991. As the likelihood to record from a single ion channel (k = 1) is rather small 

(Horn 1991), the possibility is given to correct for the number of channels (k ≥ 1), 

without losing any data information (Schröder et al., 1998, Schröder und Herzig, 1999; 

Hohaus et al., 2000; Meir et al., 2000; Barg et al., 2001; Michels et al., 2002). The 

minimum amount of channels in the patch can be estimated by the number of staggered 

openings. It can be described as the ratio of the highest detectable amplitude Imax and the 

unitary current amplitude Iunitary, whereas the number of channels is described as an 

integral multiple.  

Ion channel can be described with the following parameters: 

 

I. Fast gating 

II. Slow gating 

III. Sum and maximum current 

IV. Kinetic time constant tau (τ) 
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I. Fast gating 

Mean open time (mot) 

This parameter describes the average mean open time of a channel. The MOT is the 

arithmetic mean of all open times and can be described by: 

 

mot = topenI…N /Nopen [ms] 

 

Mean open probability (Popen), or mpo 

The ratio of total open time and total time of all active traces is described by: 

 

mpo = topenI…N /Mactive * t0[%] 

The Mean Popen considers the open time as a parameter of the fast kinetic as well as 

the availability, describing the slow gating, hence a parameter of fast and slow 

kinetics. 
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II. Slow gating 

Availability (Factive) 

The availability describes a relative frequency (%) of active traces of an experiment. 

It is the ratio of active traces to passive traces: 

 

ƒ = Mactive/M0   [%] 

 

Correction of availability 

Given that k ≥ 1, we correct, respectively 

 

    √ 
 

           ƒ‘ = 1-√ 
 

   

 

Correction of open probability 

Given that k ≥ 1, we correct, respectively 

 

  Popen = mpo’ = topenI…N/ n * ƒ´* M0 * t0  

Ptotal= topenI…N/ M0 * t0      

 

Popen= mpo/n * ƒ/ƒ´  

  



  Chapter II

  2. MATERIALS AND METHOD  

53 

 

3. Sum/ Peak current (peak ensemble average current Ipeak) and I150 

The sum current describes a temporary delineation of all idealized traces of a single 

experiment, which are superimposed at the given instant ti. The summation of all 

data points I(ti) at a given instant ti over all traces j is divided by the amount of traces 

M0 and given as: 

     Ιsum(ti ) =∑   *(ti)j/M0 [fA] 

 

Based on the sum current, the local maximum Ipeak can be estimated (Schroder und 

Herzig, 1999) through: 

 

     Ipeak pi + Isum (ti) [fA] 

 

The maximum current arises out of the local extremum of the sum function Isum 

(t).The sum current was created with Origin 6.0 and smoothing done by a fast 

Fourier transformation FFT. Based on the smoothening the inactivation can be 

determined through: 

 

     I150 = 100 * (1- I150/ Ipeak) [%] 
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4. Kinetic Time constant tau (τ) and MLE 

 The biophysical parameter tau quantifies the open-state life/closed time (dwell-

time) of a channel and is a parameter of the fast kinetic. As open times do not 

result of arithmetic nature they can be best described with a sum of exponential 

functions based on a Poisson distribution. Tau can be calculated by a “Maximum 

Likelihood Estimate (MLE) analysis. The local maximum of a mono-exponential 

L ()-function is estimated and specified by (max). The first derivation of the L 

()-function results in the maximum-likelihood value max. 

 

 

2.5 Statistics 

Recorded raw data were analyzed for significance by Student’s t-test. Comparison of 

parameter with more than 3 datasets was performed by using a one-way ANOVA with 

Bonferroni-corrected post-tests. Data were considered as significant at a confidence 

interval below 0.05. A p-value indicated with * is considered < 0.05, ** is < 0.01 and *** 

is < 0.001. P values > 0.05 were considered as not significant (n.s.). All data are given as 

mean values ± standard error of the mean, based on n as the number of independent 

experiments. 
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3.1 Exon 33 Deletion of murine CaV1.2 increases the current density by 

increasing single-channel open probability 

Previous in vitro studies by our group showed altered 

functional and pharmacological properties for the 

exclusion of exon 33 (33
-/-

) in a smooth muscle CaV1.2 

splice variant when expressed in a recombinant HEK 

system (Liao et al., 2007). Whole-cell data revealed a 

hyperpolarizing shift in window current allowing us to 

speculate on a possible role this splice  

 

Figure 16: Representative  

isolated cardiomyocyte used for 

patch-clamp experiments. Cell 

morphology after Langendorf 

isolation. Kindly provided by 

Dr Li Guang.  

variant plays in generating or maintaining vasotone in arterial smooth muscle or in 

supporting cardiac contraction. We now investigated the physiological consequences in a 

knock-out model, where exon 33 (33
-/-

) was ablated in the mouse genome, to further 

understand how altered CaV1.2 calcium channel property may relate to cardiac 

physiology. Consistent with the in vitro studies from Liao et al, data recorded from Dr Li 

Guang revealed a significant increase in current density (> 30 %) over a wide range of 

test potentials paired with an early onset in steady-state. Steady-state inactivation was 

shifted to more hyperpolarized potentials indicating an early inactivation The results were 

accompanied by investigating the ventricular action potentials and we found increased 

occurrence of early after depolarisation  and delayed after depolarisation, and both 

parameters are associated with increased ability for the development of ventricular 

arrhythmia (unpublished data, Li et al., manuscript in preparation).To now further 

analyze if the increased current-density of ∆33 is the result of altered unitary channel 
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+/+ -/- 

gating or an increased number of functional channels, single-channel recordings were 

acquired. 

The data, obtained from four (WT) and four (33
-/-

) animals, clearly indicated a significant 

increase in open probability of individual channels (Popen (%); WT (n = 7), 5.6±1.0; 33
-/-

 

(n = 6), 18.6±3.2, ***p < 0.001), fig. 21A. 

 

 

 

 

 

 

Figure 17: 20 consecutive exemplary traces of murine ventricular CaV1.2 wild type 

(+/+) and CaV1.233
- / -

ablated knock-out (-/-).A.  Exemplary traces indicate increased 

basic gating properties of 33
- / -

.  B.  Mean ensemble average current obtained from 180 

traces (n = 1) Cells were depolarized for 150ms from holding potential of -100mV to 

+10mV. Scale bar in pA refers to unitary events. Sum current is depicted in fA.   
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These data were accompanied by an increased mean ensemble average current (Ipeak [fA] 

180 traces, WT (n = 7), 48±8; 33
-/-

 (n = 6), 139±29, **p < 0.01), fig. 21B. Additionally, it 

could be shown how the open probability changes over higher depolarizing voltage steps 

(TP: -10, 0, 10, 20 mV) and it could be verified that channel open probability (NPopen) 

was significantly increased over all conditioned test potentials (V50act. (mV) WT (n = 5), 

4.9±1.5; slope: 3.6, 33
-/-

 (n = 5); 13.4±7.8, slope: 3.9; p < 0,001 < 0.001 < 0.001 < 0.01), 

fig. 18A. 

 

 

Figure 18: A. Altered channel open probability NPope n (k<2) of cardiomyocytes 

upon depolarization over several TP. Pooled datafrom 5 experiments. A significant  

difference in open probability could be observed for -/- over a wide range of tested 

potentials (V50ac t .  (mV) WT, 4.9±1.5 ; k: 3.6; 33
- / -

: 13.4±7.8 ,  k: 3.9; Students-t test  

was applied for each potential;*** p <0,001 < 0.001 < 0.001 ** < 0.01). Data were 

fitted with a single Boltzmann function. B: Exemplary traces at different test  

potentials. 
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A. 

 

 

D. 

B. E. 

C. 

 

 

 

 

F. 

Figure 19: Exemplary time course representing the open probability of CaV1.2 wild type (+/+) (black) and the CaV1.2 33-/-

(red) at consecutive testing potential. A-C, D-F 0-20 mV, Arrows marking periods of mode 0 gating at which the channel is not 

available.  

0 mV 0 mV 

10 mV 10 mV 

20 mV 
20 mV 
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A. 0 mV; 25 fA 

 

D. 0 mV, 75 fA 

B.+10 mV; 50 fA E.+10 mV; 180 fA 

C. +20 mV; 50 fA 

 

 

F. +20 mV; 270 fA 

Figure: 20 A-C.  Exemplary mean ensemble average currents  from CaV1.2 wild 

type (+/+) and CaV1.233
- / -

at different test potentials. D-F  represents exemplary 

CaV1.2 33
- / -

 mean currents at the same test potentials . Scale bars are represented in 

fA 

 

This clearly indicates that globally the likelihood to detect the 33
-/-

 CaV1.2 channel in the 

open-state is increased by 3 times within a pulse length of 150 ms. The parameter 

describing slow gating of the channel was not altered in the experiments (availability 

(%)); WT (n = 7); 57±7; 33
-/-

(n = 6); 48±10, n.s.), fig. 21C. 
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A.Popen (%)  

 

 

 

 

 

B.           Ipeak[fA] 

 

C.     availability (%) 

 

Figure 21: Statistics for Single-channel experiments. A.  Parameter describing the 

likelihood to detect a channel in a given pulse length (Pop en)B. Local maximum 

derived from the mean ensemble average current of 180 consecutive traces (Ipea k).  C. 

Fraction of active traces (availability).  Data were analyzed by Student’s t -test,  ***p 

< 0.001 and **p < 0.01.  

 

3.1.1 Single-channel fast kinetic parameters of CaV1.2 33
-/-

are significantly altered 

compared to CaV1.2
 (+/+)

 

 

To further determine the molecular determinants of this higher open probability, the fast 

kinetics of individual channels was analysed. Mean open time (MOT) of ∆33 already 

predicted to be increased, (WT (n = 7), 0.53±0.08; 33
-/-

 (n = 6), 0.83±0.07, ** p < 0.01) 

whereas the closed time was reduced by nearly 4 times (MCT (ms), WT, 12.1±1.4; 33
-/-

, 

3.3±0.5, *** p < 0.001), fig. 22A and B. 
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A.  

 

 

 

 

 

B.  

 

Figure 22: Open- and closed-time statistics describing arithmetic mean values.  

A.  The mean open-(n =6) and B . the channel mean closed-time (n= 7) of real single-

channel experiments.  Data were analyzed by Student’s t -test, p < 0.05 and p < 0.001.  

 

 

 

However, since ion channels open and closed time cannot be represented in a Gaussian 

distributed manner, their probability density function PDF was assumed to be of a 

Poisson distributed origin. 

Dwell-time histograms describing the more relevant biophysical time constant tau 

revealed the open-state live time of a single-channel being highly significant (fast (ms); 

WT; 0.54±0.01; 33
-/-

; 0.36±0.04, slow (ms); 1.5±0.12, n.s.), fig. 23C. Furthermore, a bi-

exponential component could be fitted in all histograms for the 33
-/-

 with a probability 

portion of 0.34 (tab. 3) 
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C. 

 

Figure 23: Representative dwell-time open histograms  quantifying the open-state-

life time. Tau values were obtained from mono -or bi-exponential fits with the mean-

simplex method, 10bin/decade-width. A.  WT with a single exponential component 

(τ fa s t at 0.37ms) versus.  B .  The 33
- / -

 with a τ fas t  exponential component at0.2ms, 

0.84% and a second exponential component τ s lo wat1.3ms, 0.16.C.Statistics describing 

the distribution of the fast and the slow component for the WT (grey) and 33
- / -

 

(red).The second slow exponential component for the 33
- / -

 is represented with 

0.34±0.04 %. Data were analyzed by Student’s t -test, n.s.  

 

Similar significant results were obtained for dwell-time histograms describing the tau 

values for the slow closed component of a single-channel (closedfast (ms); WT; 

0.47±0.09; closedslow (ms); 12.1 ±1.1 and 33
-/-

; 0.56±0.07, closedslow (ms); closedslow 

(ms); 5.7±0.52, **p < 0.01), fig. 24C. 

τfast τfast 

τslow 
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A 

 

B 

 

 

C. 

 

Figure 24: Representative dwell-time close histograms  quantifying the channel 

closed-time .  I-exponential fits were determined with the mean-simplex method based 

on a 10bin/decade-width. B. The 33
- / -

 shows a diminished second fit component  τ s lo w  

3.7 ms; 0.24 towards the A.WT τ s lo w9.8 ms; 0.54.C.Statistics describing the 

distribution of the fast and the slow component for the WT (grey) and 33
- / -

 (red). 

Data are based on WT (n=7) and 33
- / -

 (n=6) experiments. Data were analyzed by 

Student’s t -test, **p < 0.01.  

 

3.1.2 Single-channel activation of CaV1.2 33
-/-

 is significantly reduced by 3 times 

compared to CaV1.2
+/+

 

 

Finally, the required time between first channel opening and applied test pulse, the mean 

first latency (MFL) was analyzed. 33
-/-

tends to open much faster when compared with the 

WT channel form (MFL (ms); WT; 17.2±1.9; 33
-/-

; 5.4±1.1, **p < 0.01), fig. 25B.  
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A.  

 

 

B. 

Figure 25:A.Exemplary first latency distribution quantifying the channel 

activation time of WT and 33
- / -

.WT activates with  fas t 1.1 ms; s l ow 10.5 ms. The 

33
- / -

activates faster  f as t  0.8 ms and s low  4.0 ms compared to the WT.B.  Mean first 

latency statistics based on n = 6 animals per group. Data were analyzed by Student’s 

t-test, **p < 0.01.  

 

Table 2: Synopsis of channel properties of murine CaV1.2 (+/+) and CaV1.2 ∆33 (-/-) based on 

real single-channel experiments (k =1). Both groups are based on 4 animals. Student’s t-test was 

applied, *p< 0.05, **p<0.01, ***p<0.001. 
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3.2 Functional role of the N-terminus of hum CaV1.2 in a recombinant 

system (HEK 293) under whole-cell conditions. 

 

3.2.1 Exon 1a/1b of humCaV1.2 regulates channel inactivation in a voltage-

dependent manner. 

 

In order to study the functional role of the N-terminus of human CaV1.2 the SM isoform 

composed of exon 1b/8 and the CM isoform composed of 1a/8a were compared to their 

constructed counterparts 1b/8a and 1a/8 in a HEK 293 expression system. To analyze the 

steady-state kinetics of activation a tail protocol was run where the remaining tail at a 

steady resting potential of +60 mV and different activation potentials was analyzed (fig. 

26, A and B). An ANOVA with post-test did not reveal any significant difference among 

groups (tab 3). However, a steady-state inactivation protocol revealed a significant 

alteration in an enhancing additive manner with the strongest inactivation when exon 1b 

is combined to exon 8a (fig. 27) (V1/2inact. -43.1±0.7 (9) vs.V1/2inact. -36.4±1.1 (9), ***p < 

0.001). Interestingly, similar findings have been reported by our group in the past by the 

same CaV1.2 splicing variants obtained from a cDNA full length library from Wistar 

Kyoto (WKY) rats (Tang et al., 2004). The same holds true when comparing the 

activation profile of the IV relationship between 1b8a and 1a8a (V1/2-16.7±1.2 (7) vs. -

14.1±1.5 (11), n.s.). In fact, in Tang’s publication from 2004 the 1b8a full length version 

was found to be present in the heart with 23% over the predominant 1a8a isoform which 

is expressed at 50%.  
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The steady-state activation of humCaV1.2 isoforms 
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Figure 26: Steady-state activation  obtained from tail currents. A. Exemplary traces.  

B .  Pulse protocol,  cells were pulsed from a HP of -100mV to various TP, ∆10 mV, 

for 20ms under 5mM Ba
2+

.  C. Activation curve fitted with a dual Boltzmann 

equation .  Statistics was analyzed with a one-way ANOVA, Bonferroni corrected.  
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In this work we also showed that the predominant SM CaV1.2 1b8 isoform significantly 

differs in inactivation from the 1b8a isoform ( V1/2inact.: -37.3±1.0 (10) vs. - 43.1±0.7 (9),* 

p < 0.05) fig. 27C,D, hence pointing out the importance of assessing the influence of 

alternative splicing on steady state inactivation in a combinatorial fashion and in this 

regards between exons 1a/1b and exons8/8a. The biggest difference in inactivation of 

more then -10mV was observed when comparing the 1a8 and 1b8a isoform (V1/2,inact.: 

-31.2±0.7 (8) vs.- 43.1±0.7 (9), ***p < 0.001), fig. 27C,D. The predominantly expressed 

isoforms from CM 1a8a and SM 1b8 do not differ in their steady-state inactivation 

profiling (V1/2inact.: -36.4±1.1 (9) vs. -37.3±1.0 (10), n.s.) fig. 27C,D. However, it is 

noteworthy to mention that the 1a8 isoform has not been reported to be functionally 

expressed until now. 

3.2.2 Exon 1b/1a of humCaV1.2 influences the current density [pA/pF] 

The analysis of the IV relationship clearly indicated that the N-terminal portion encoding 

exon 1b significantly increased the current density by nearly 2 times. An increased Ba
2+

 

current could be observed over a wide range of testing potentials (fig. 28D) with exon 

1b8 and 1b8a overall showing a larger current-density compared to exon 1a8 and 1a8a 

(V1/2,act: -35.2±0.8 and -39.7±1.6 towards -19.4±2.2 and -19.1±0.2, ***p < 0.001). 

Additionally, these experiments could be further replicated by using a GV curve obtained 

from a tail protocol to analyze the current density (fig. 29) Again, 1b8a and 1ba showed a 

current density significantly increased over 1a8 and 1a8a (V1/2,act: 315.2±11.2 and 

117.7±6.2 towards 96.3±6.4 and -80.1±7.1, ***p < 0.001) but this time much more 

pronounced as under simple IV conditions. To now further analyze the functional change 
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that resulting from the utilization of exon 1b, we looked into the individual channel 

gating. 

The steady-state inactivation (SSI) of humCaV1.2 isoforms 
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Figure 27: Steady-state inactivation SSI by stepping and prepulses  A.  Exemplary 

traces. B .  Pulse protocol,  cells were pulsed from a HP of -100mV to various TP, ∆10 

mV, for 30ms followed by a 15s prepulse from-120 to +10 mV. A test pulse of 104 

ms to +10mV was recorded finally.  C. Inactivation curve fitted with a single 

Boltzmann equation..D.  Statistics was analyzed with a one-way ANOVA, Bonferroni  

corrected, *p<0.05, **p<0.01, ***p<0.001). 
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3.2.2.1 The N-terminal exon 1b increases the current-density of humCaV1.2 (IV) 
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Figure 28: IV relationship of CaV1.2 SM and CM isoforms .  A.  Exemplary traces 

were pulsed to their  maximum currents.  B. Pulse protocol: Cells were held at -

100mV and pulsed from -50 to +50 mV for 900 ms. C. Normalized current.  D. 

Current density pA/pF, Data were tested for significance by a one-way ANOVA and 

a Bonferroni post -test, **p < 0.01.  
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3.2.2.2 The N-terminal exon 1b increases the current-density of humCaV1.2 (GV) 
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Figure 29:  Current density obtained from tail currents.  A. Exemplary tails.  

B. Current density plot. Data were analyzed for significance by a one-way ANOVA, 

Bonferroni corrected, *** p<0.001 
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3.3 Structure and functional analysis of the N-terminus of hum CaV1.2 

under single-channel conditions 

 

3.3.1 The N-terminus of hum CaV1.2isoforms does not alter single-channel gating 

properties 

 

In order to reveal the significance behind altered channel inactivation and the increased 

current density obviously modulated by exon 1b, we analyzed single-channel events to 

reveal if a possible modulating character of exon 1b is manifested in the basic gating 

properties of CaV1.2. A higher channel current density can be either explained by a 

higher channel open probability or an increased channel surface expression. The former 

did not hold true as basic gating parameters under single-channel conditions remained 

unaltered among analyzed groups (one-way ANOVA, p > 0.05; s. table 4). Figure 30 

depicts twenty consecutive exemplary traces representing the gating properties of all used 

CaV1.2 isoforms recorded under 110 mM Ba
2+

. The open probability (Popen (%):5.0±0.9 

(6), 4.3±0.5 (6), 3.8±0.6 (5), 6±0.6 (8), n.s.), tab.4 as well as the channel availability 

(availability (%):53±5 (6); 72±9 (6); 64±8 (5), 54±10 (8), n.s.), tab.4, are consistent with 

the overall analyzed isoforms. Figure 32 (A-D) demonstrates an exemplary time-course 

distribution of the open probability. Channel open probability was consistent over 19000 

ms and below 10% in all groups. Appearance of mode gating was rare, although 

occasionally this was observed. Open- and closed-time histograms were fitted according 

a maximum-likelihood estimated (MLE) function. Exemplary Dwell-time histograms 
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quantifying the open-state life time were best described using a single-exponential fitting 

function (fig. 31, A-D), whereas closed-time histograms were bi-exponentially fitted (fig. 

31, E-H). Exemplary latency histograms were fitted with a bi-exponential function best 

describing the activation of the channel going through two closed-states before entering 

the open-state (Herzig et al., 2007). Overall, the basic gating parameters should not 

profoundly be significantly different among the CaV1.2 isoforms. 

 

3.3.2 Exon 1b of humCaV1.2 decelerates and exon 1a accelerates time-dependent 

inactivation in single-channel experiments (I150ms) 

 

We further wanted to verify if the effect of the N-terminus (exon 1a/1b) on inactivation 

could be detected at the single-channel level. For that, the inactivation of the mean-

ensemble average current was detected by determine the percental amount (%) of 

remaining current after 150ms (Herzig et al., 2007, Jangsangthong et al., 2009). Fig. 33 

A-E, clearly indicates that exon 1b8 decelerates the channel inactivation at a given TP of 

+10mV whereas exon 1a8a accelerates channel inactivation (I150ms (%): 24±5 (5) 

vs.52±21 (5), ***p < 0.001), fig. 33E. A similar trend was found among the isoforms 

1b8a and 1a8 (I150ms (%):32.6±7.6 (5) vs.39.3±11.6 (5), n.s.), fig. 33E, although not 

significantly different. 
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Figure 30: Consecutive exemplary single-channel traces ,  respectively 1a8, 1a8a, 1b8 and 1b8a.Above .20 consecutive exemplary 

traces showing the basic gating properties .  Below.  Mean ensemble average current obtained from 180 trac es Cells were depolarized 

for 160ms from holding potential of -100mV to +10mV. Scale bar in pA refers to unitary events. Average currents are depicted in 

fA. 

   3pA 

300fA 

        10 ms 

 

        0.2s 
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Figure 31: Representative exemplary dwell time histograms describing the open-and shut-times of four real single-channel 

experiments at a TP of +10 mV, respectively 1a8, 1a8a, 1b8 and 1b8a. A-D Open-time histograms were described by a mono-

exponential probability-density function (PDF) with a single tau component .  E-H  Closed-time histograms were described by a bi-

exponential PDF. Histograms were fitted based on a 10bin/decade-width by MLE , square-root method. Exemplary data are given as 

mean values with standard deviation (SD) and their percentage amount on PDF.  
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Figure 32: A-D. Exemplary time-course distribution of CaV1.2 isoforms representing the open probability at +10 mV, respectively 

1a8, 1a8a, 1b8 and 1b8a .  Channel time-course was recorded over 180 traces and gave no hint upon channel non availability mode 

(MODE 0)  E H. Cumulative first latency function showing a bi-phasic distribution upon activation. 
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Exon 1a/1b of CaV1.2 influences the time-dependent inactivation (I150ms) 

A. B. 
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Figure 33: Channel inactivation estimated from mean-ensemble average 

currents. A-D Exemplary traces. ∆I was calculated from the local maximum I pea k  

and the remaining current after 150 ms at +10mV. E. Statistical significance was 

determined by an ANOVA with Newman-Keuls multiple comparison, ***p < 0.001. 
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3.3.3 Exon 1b of humCaV1.2 increases channel surface expression in HEK 293 cells 

(A gating current analysis) 

 

Since the findings at the single-channel level turned out to be not significantly different in 

regards to channel open probability, we wanted to determine the mechanism by which 

exon 1b increases the current density of CaV1.2. For that, the ON-gating currents (QON), 

describing the capacitive voltage-sensor movement across the cell membrane upon 

channel activation, was analyzed. Cells were pulsed to depolarizing potentials at which 

the remaining net current was nearly zero (ionic inward current and outward currents 

compensate) when holding at the reversal potential, Erev.(Baig et al., 2011, Wang et al., 

2011) We found that exon 1b8a and exon 1b8 clearly increase QON compared to exon 

1a8a and exon 1a8 to a significant level by > 50% (QON: 11.0±1.6 (9)and 8.7±2.0 (9) vs. 

3.5±1.0 (11) and 3.7±1.3 (9),* p < 0.05,** p < 0.01), s. tab. 3 and fig. 34C.This clearly 

indicates for a higher number of functional CaV1.2 1b8a and 1b8 in the cell membrane of 

HEK 293 cells. Figure 34 describes the gating current analysis in more detail. Figure 34 

A shows representive currents close or at Erev. Fig. 34B shows the magnification of the 

capacity transients upon repolarisation.  

Taken together, these data in combination with our whole-cell and single-channel 

experiments strongly support our findings that exon1b of CaV1.2 increased the channel 

surface expression. 
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Exon 1b of humCaV1.2 increases channel surface expression in HEK 293 cells 

A. 

 

B. 

 

C. 

Figure 34Gating current analysis .  A. Representative current traces show QO N  

determined by tail currents when holding to the E re v.B .  Magnification representing 

the capacitive transient evoked when holding to E re v.B . Data were analyzed with a 

one-way ANOVA, Bonferroni corrected, *p < 0.05, **p < 0.01.  
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Table 3: Electrophysiological properties of CaV1.2 isoforms recorded in 5mM Ba2+ at a glance. Electrophysiological effect of the N-terminus of 

exon 1a/1b on CaV1.2 channel isoforms. A one-way ANOVA was carried out among the groups. The significance tests were then performed between the 

WT and their mutant counterparts. Data in bold show a significant difference with †/†p < 0.05*, #/#p < 0.001** and ∆p < 0.001***. The n number of 

experiments is given in parenthesis. 
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Table 4: Single-channel properties of CaV1.2 isoforms recorded with 110 mM Ba

2+
 at a glance. Effect of the N-terminus of exon 1a/1b on CaV1.2 

channel isoforms. All data were recorded and analyzed at a HP of -100mV and a TP of +10mV. Pulse length was 160 ms with inter pulse duration of 1 

Hz. Sampling rate was 10 kHz. A one-way ANOVA was carried out among the groups. The significance tests were performed between the WT and their 

mutant counterparts. The n number of recorded cells is given in parenthesis. 

 

Parameter 1a8a 1a8 1b8a 1b8 p 

Availability 53±5 (6) 72±9 (6) 64±8 (5) 54±10 (8) n.s. 

Popen(%) 5±0.9 (6) 4.3±0.5 (6) 3.8±0.6 (5) 6±0.6 (8) n.s. 

Ipeak[fA] 40±9 (6) 54±8 (6) 53± 18(4) 54±11 (8) n.s. 

I150 ms[%] 52±21 (5)* 39.3±11.6 (5) 32.6±7.6 (5) 24±5 (5)* 0.001 

Mean first latency (ms) 26.9±7.6 (3) 19±3.7 (4) 17 (1) 18.8±4.1 (4) n.s. 

MOT (ms) 0.44±0.4 (6) 0.44±0.4 (6) 0.44±0.4 (5) 0.49±0.9 (8) n.s 

τopen (ms) 0.28±0.3 (6) 0.34±0.04 (6) 0.35±0.05 (5) 0.34±0.05 (8) n.s. 

τclosed fast (ms) 

τclosed slow(ms) 

0.54±0.03 (3) 

12.8±3.8 (3) 

0.61±0.07 (4) 

19.1±4.7 (4) 

0.51 (1) 

11.3 (1) 

0.95±0.16 (4) 

19.6±4.4 (4) n.s. 
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3.4. Splicing profile and distribution of murine CaV1.2mutually 

exclusive exons of HAB/LAB and NAB mice did not reveal any 

differences in brain areas associated with fear/anxiety 

 

3.4.1 Generation of exon specific transcripts of mutually exclusive hot spot regions 

of the murine alpha1C subunit (Cav1.2). 

 

 

Figure 35 Transcript scanning of alpha1C from prefrontal cortex (PFC), 

hippocampus (HIP) and amygdala (AM). A. Backbone structure of the alpha1C 

subunit shows the hexa-helical structures of the domains I to IV. B. Relative exon 

assembly of targeted amplicons within the channel structur e. Representative gels 

(1%) showing the expected amplicon size together with the negative control ( -RT.) 

The flanking primers are highlighted with blue arrows.  
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We wanted to test our hypothesis that the CaV1.2 subunit of mice manifesting different 

traits of anxiety, respectively high-, low and normal-anxiety (HAB/LAB/NAB) shows 

altered splicing patterns in brain areas associated with anxiety/fear. For that, we looked 

into the mutually exclusive splice loci of the CaV1.2 subunit – we named them hot spot 

regions – which have already been associated with pathological conditions in 

neurological and cardiovascular disorders (Splawski et al., 2004, Tiwari et al., 2006). At 

first, we generated amplicons with RT-PCR and flanking primers for amplicon 7-11 to 

analyze exons 8/8a, amplicon 19-23 for exons 21/22 and amplicon 30-34 for exons 31/32 

(fig. 35) A negative control (-RT) was always used to make sure that a prior RNA 

contamination could be excluded from other sources. Three animals of each trait 

(HAB/LAB/NAB) where analyzed regarding their hippocampus and amygdala 

expression patterns. For the prefrontal cortex only one animal triplicate was analyzed. 

The dissected amplicon regions were ligated in a pGEM-T Easy system and transformed 

in E-coli for final detection with the blue/white selection method. For each amplified 

region 96 bacteria colonies from HIP, 46 from AM and 96 from the PFC were screened. 

 

3.4.2 Exon patterns of mutually exclusive regions in CaV1.2 of HAB/LAB/NAB mice 

do not reveal any significant difference among animals with trait anxiety 

 

In the next step we wanted to reveal mutually exclusive exon expression by PCR with 

region specific primers (tab. 1) by colony screening. Figure 36 shows representative gels 

describing the exon distribution from different brain areas of HAB/LAB/NAB animals.   
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Figure 36.Exemplary gel photos showing spec ific exon profiles  of mutually exclusive 

hot spot regions in alpha1C from different brain areas of HAB/LAB/NAB mice. A 

negative water control is indicated as – whereas the + positive control was used from 

already established amplicons carrying tissue specific exons.  A 100bp marker was used 

to discriminate among exons.  
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A water negative control was used to assess any DNA contamination from other sources 

and a positive control from a clone containing the respective amplicon was used (left 

ventricle and cerebellum for 8/8a, aorta and left ventricle for 21/22 and left ventricle and 

aorta for 31/31). Bands detected from hippocampus and amygdalae were excised and 

send for sequencing. Bands from prefrontal cortex were estimated according to their 

relative size to the positive controls. More than 95% of the screened clones from HIP, 

AM and PFC express exon 8a. Similar findings were also observed for exon 22 in all 

areas in which expression level was more than 95%. The expression patterns regarding 

exon 32 are also consistent among the analyzed groups at 80-90% and 20-10% for exon 

31. An ANOVA analysis did not reveal any significant difference among groups. 

Taken together, these results implicated that mutually exclusive exons encoding for 

CaV1.2 do not differ among mice with different manifestations of trait anxiety and that 

exon combination 8a/22/32 are the predominantly expressed splice pattern in 

hippocampus, amygdala and prefrontal cortex. 

 

3.4.3 Combinatorial splicing of HAB/NAB and LAB animals 

 

Figure 37 gives an overview of a total of 16 identified CaV1.2 isoforms of HAB/LAB and 

NAB animals obtained by sequencing. Most of these isoforms have been described 

already by our group in the past to be expressed in the human brain. M5, M8, M9, M14, 

M15 and M16 are predicted to be non functional (Tang et al., 2004) 
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Figure 37:A total of 16 different splice combinations  were identified with the 

transcript scanning method. Data from hippocampus and amygdala are pooled data 

from 3 animals of each group. Prefrontal cortex data are based on one animal triplet  

only. The absolute  abundance of the transcripts of  HAB, NAB and LAB mice is 

based on at least 100 picked clones 
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4.1 Final discussion 

This thesis provides evidence and highlights the usefulness of single-channel recordings 

compared to commonly used whole-cell techniques to elaborate posttranscriptional 

modification of alternatively spliced CaV1.2 calcium channelsin vitro and ex vivo. As far 

as we are aware we here describe for the very first time how complex pathophysiological 

conditions that are associated with alternative splicing alter the channel biophysical 

properties and hence electrophysiological properties of a single CaV1.2 calcium channel. 

Furthermore, this thesis exemplifies how the cell-attached configuration represents a 

suitable tool to augment whole-cell recording in order to better understand functional 

changes evaluated in in vitro and ex vivo systems.  

 

4.2 Exon 33 of mouse CaV1.2plays an important role in channel function 

with severe pathophysiological consequences. 

 

We demonstrated in a previous work about the significant role of the inclusion/exclusion 

of the cassette exon 33 of CaV1.2in a recombinant system altering the general gating 

properties of the channel. (Liao et al., 2007). However, since an in vitro system can never 

predict the actual physiological responses that coincide with altered electrophysiological 

properties, a KO model was established where the cassette exon 33 of CACNA1Cwas 

ablated from the mouse genome. We hypothesized that this ablation of exon 33 which 

encodes for an extra cytosolic motif in the IS3 segment of domain IV changes the 

electrophysiological properties of CaV1.2∆33 changing the overall current density. This 
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increased current density was already detected in a previous work in 

CaV1.2∆33cardiomyocytes by whole-cell recordings performed by Dr Li Guang. At the 

same time an increased CaV1.2∆33 surface expression which can also explain a higher 

current density could be excluded. However the whole-cell current (I) depicts a function 

of both the number of functional channels and their individual properties and can be best 

described by (Schröder et al., 1998): 

 

    I = N * i * Popen * Factive 

 

Whereas N represents the number of functional channels, i is the unitary current 

amplitude, P the open probability and F, the availability of the channel. Hence, we 

speculated that the higher current density we see in our whole-cell experiments can be 

either due to a higher CaV1.2∆33 channel open probability, channel availability or 

alterations in the biophysical parameter i which describes an overall conductance of the 

channel by the unitary current amplitude. The latter one could be excluded due to visual 

estimation (data not shown). The first two parameters are known to be mediated 

physiologically by cAMP-dependent phosphorylation (Reuter et al., 1983, Yue et al., 

1990, Herzig et al., 1993, Hirano et al., 1994). 

Our hypothesis was confirmed showing a 4-fold increase in single-channel open 

probability (Popen) when comparing the currents of cardiomyocytes of KO CaV1.2∆33and 

WTCaV1.2 of 4 individuals (6-8month) of each group leading to a severe form of 

arrhythmia in 50% of our animals. These results suggest that exon 33 plays a crucial role 

in mice developing cardiac arrhythmia and possibly serves as a protecting factor in the 
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development of arrhythmia. We came to this conclusion when analysing the distribution 

of exon 33 in human samples with a cardiovascular history. In these samples, exon 33 

was significantly up regulated (data not shown) letting us speculate about the potentially 

protective or adaptive role of exon 33.  

In fact our single-channel data are reminiscent of already published data from Stefan 

Herzig’s group (Schröder et al., 1998) in human cardiomyocytes with a heart failure 

background. The same trend can be seen when comparing the single-channel data of both 

groups with an increased channel open probability and an altered fast gating kinetics. 

Although the molecular background in Schroeder’s publication was not the subject of 

their work, it is tempting to speculate about the possible role of exon 33 in failing human 

hearts. An additional aspect of our increased channel open probability arising from exon 

33 deletion with no change in channel surface expression is corroborated by the 

publication of Gröner et al., 2004. In this work a transgenic mouse model with a 

significant over expression ofCaV1.2 channel was described to be of lower or unaltered 

single-channel open probability when compared with the wild type. 

The Additional data analysis for describing the fast kinetic parameters mean open/closed 

time (MOT, MCT) and mean first latency (MFL) of CaV1.2∆33 allowed us a deeper 

insight into aberrant channel kinetics. For the data analysis we assumed a simple 

sequential three-state model underlying our channel kinetics with two closed- and one 

open-state (Brown et al., 1982, Fenwick et al., 1982). Although not precise (ion channels 

are known to have several open and closed states) (Bezanilla et al., 2000, Chanda et al., 

2004), it turned out to be sufficient in describing our short < 1ms and long open states 

>1ms with nearly no long open states in our WT. This finding supports the idea that exon 
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33 deletion enhances the longer open periods of CaV1.2∆33in a voltage-dependent manner. 

The opposite effect seems to occur when the channel dwells in the closed-state. The 

second closed-state is reduced (“depressed”) allowing the channel finally to become 

faster activated again. 

All our additionally obtained biophysical data matched the program predicted data of 

MOT and MCT and are in good agreement with already published data describing the 

kinetics of CaV1.2 in cardiomyocytes of mice (Gröner et al., 2004). This is particularly 

relevant in the context that single-channel recording was established in our group for the 

first time and that data usually recorded under old DOS based programs may not match 

with newer windows based version of Clampfit10.  

Taken together the data perfectly matched a higher channel CaV1.2∆33open probability in 

the context that the channel relatively seen closed faster and was easier to activate. 

Moreover, the data are in accordance with the already obtained whole-cell data by Dr. Li 

Guang from our group. Although, a head to head comparison of whole cell and single-

channel recordings is difficult to balance, a higher whole-cell current density can 

certainly be explained by a larger single-channel open probability that is accompanied by 

a longer open time. The larger mean ensemble average current describing the local 

current maximum Ipeak of CaV1.2∆33 (tab. 2) is an additional bonus allowing us to 

speculate on an analogy of two independently derived kinetics. 

 

What is finally the biophysical explanation behind the higher gating frequency of 

CaV1.2∆33? Cassette exon 33 encodes a peptide sequence which is in close vicinity to the 

voltage sensor of domain IV. Hence it is tempting to speculate that steric effects may 
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alter channel gating of CaV1.2∆33to an extent where open and closed-dwell times are 

simply differentially affected to enhance the overall open probability of the channel. In 

the same manner, this could explain a smaller channel mean first latency allowing the 

channel to open faster. However, this approach of steric prediction is highly speculative 

and difficult to prove.  

In summary, these data give a good insight into CaV1.2channel gating under aberrant 

alternative splicing conditions. This work demonstrated how to pinpoint the severe 

effects of exon 33 deletion in CACNA1C in a complex pathophysiological context, all the 

way downstream to a molecular single-channel level. The higher channel open 

probability of CaV1.2∆33clearlyexplains the previously described results in action 

potentials prolongation in the QT interval, displaying more after-depolarization and 

autonomous action potentials. These typical features of human arrhythmia in cardiac 

ventricles of the mouse may represent a suitable model to study the pathological origin of 

arrhythmia in human patients. Supporting human data from failing heart patients indicate 

for a significant aberrant transcript regulation of cassette exon 33 in CACNA1C. Samples 

from heart failure patients indeed showed clearly the inclusion of exon 33 is significantly 

up regulated letting us to suggest a potential compensatory effect of exon 33 to 

ameliorate the symptoms of arrhythmia (Manuscript in preparation). Hence, the 

established arrhythmia model of our group may also represent an important target to 

study new pharmacological tools on a DHP basis under single-channel recordings.  
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4.2.1 Limitations of this study 

 

Although the trend of single-channel parameters of CaV1.2∆33is in agreement with 

previous studies from failing heart, this work does not consider a possible physiological 

role of phosphatase (PP2A/PP2B) in the context of cAMP stimulation (Schröder et al., 

1998, Yue et al., 1990). Schroeder et al (1998) showed using an, elegant approach in 

Markov modelling to indicate a possible role of blunted phosphatase activity. This could 

be demonstrated by the significant increased parameter of channel availability under the 

administration of 8-Br-cAMP. However, due to time and scholarship limitations these 

questions could not be addressed in this context and remained speculative. 

 

4.3 The N-terminus of CaV1.2 regulates channel inactivation and surface 

expression 

Ion channel inactivation is a fundamental mechanism in biological systems which aim to 

prevent ionic gradients to collapse and to determine action potentials of nerve cells in 

their duration. Voltage-dependent inactivation (VDI) ofCaV1.2 calcium channels and 

calcium-dependent inactivation (CDI) are precisely tuned mechanisms that obviate cell 

toxicity due to calcium overload. Whereas CDI is regulated and controlled by the C-

terminus and calmodulin CAM (Peterson et al., 1999) the mechanism behind VDI is not 

fully understood in detail. 

Our data on the structure and functional relationship of the N-terminus of CaV1.2 

isoforms clearly indicate for a significant functional role of exon 1a and 1bin both whole-

cell and single-channel electrophysiology. Voltage-dependent inactivation of isoform 
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1b8a is significantly shifted to more hyperpolarised potentials when compared with their 

SM and CM counterparts 1b8 and 1b8a. Although, 1a8 shows a massive right shift in SSI 

the data are not significant different when compared to 1b8 and 1b8a, revealed by an 

ANOVA (p > 0.05). Based on these findings we can confirm a functional role of the N-

terminus where exon 1b modulates CaV1.2 to close at more hyperpolarised potentials. 

This effect is completely compensated and abolished among the predominant SM and 

CM isoforms 1b8 and 1a8a. Additionally and only to some extent, single-channel results 

on the time-dependent inactivation support our findings that exon 1b/1a influences 

CaV1.2 channel inactivation with a faster inactivation rate for exon 1a and a slower 

inactivation rate for exon 1b. This finding was supported at least to some extent by an 

ANOVA (p < 0.05). The SM isoform 1b8 inactivates 50 % slower compared to the CM 

isoform 1a8a and a trend can be seen for 1b8a and 1a8, respectively. Another supporting 

source regarding the role of N-terminal macroscopic inactivation comes from our own 

group. Tang et al., could show in 2007 that the 1b8a isoform is indeed functionally 

expressed with 23% in Wistar-Kyoto rats (WKY) analysing full-length transcripts of 

CACNAIC from the heart. His finding is overlapping with our findings in terms of the 

steady-state inactivation kinetics with the 1b8a isoform to inactivate at more 

hyperpolarised states (V1/2inact. of -40.11±1.51 and our data V1/2inact.-43.1±0.7). However, 

any mechanism behind an alteration of humCaV1.2 inactivation by the N-terminal exons 

1b/1a is not clear and remains speculative. The shorter version of the N-terminal 16 aa 

encoding heart isoform of exon 1a and the longer smooth muscle encoding 46 aa long 

1bisoform have been described not to be of functional character by Nathan Dascal’s 

group (Blumenstein et al., 2002). However, their findings were more focused on a 
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modulating role of PKC than a functional role of the N-terminus. In publications from 

recent years, the VDI has been described to arise at least in part by the1-subunit itself 

and to be modulated also by auxilliary -subunits (Lacerda et al., 1991, Varadi et al., 

1991). Consistent with our findings regarding a possible role of exon8/8a in VDI the data 

fit well with the assumption of Richard Tsien’s group describing the involvement of the 

IS6 segment in inactivation which is encoded by exon 8/8a (Zhang et al., 1994). Tsien’s 

group suggested a sort of concerted interaction of all IS6 segments to induce inactivation. 

A further functional role of the N-terminus in inactivation has been described by Annette 

Dolphin’s group in the CaV2.2 1-subunit. Truncation of the amino-terminus of 

CaV2.2clearly accelerated the channel inactivation and suggested an additional role for 

the-subunit in inactivation (Stephens et al., 2000).Additional reminiscent findings to our 

data comes from Jonathan Jagger’s group. In their work they could combine their 

findings on the N-terminus oftheCaV1.2 and different-subunits to influence channel 

inactivation(Cheng et al., 2007).Cheng reports that the-subunit (β1b,β2a and β3) 

expressed either with the 1b or 1c isoform from cerebral arteries caused shifts in both 

steady-state activation and inactivation 

Comparing the findings from recent years to our findings on our macroscopic inactivation 

kinetics we conclude that the shift in SSI is at least partially induced by the β2a we used in 

our experiments. In agreement with Zamponi’s interpretation about the VDI in their 

publication from 2001 we suggest that the N-terminus (1a/1b) of different length possibly 

interacts with the -subunit with a different affinity, initiating channel inactivation with 

different characteristics. 
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Figure 38. Hypothetical model of calcium channel inactivation. Multiple elements of 

the alpha1C subunit could contribute to channel in activation including the 

cytoplasmic transmembrane motifs S6 (blue) in a concerted manor. The 

cytoplasmatic I -II  linker of the pore (purple) interacts with the beta subunit (green) 

and the N-terminal long (46 aa) or short (16aa) form of the N -terminus of alpha1C. 

Adopted from Stotz and Zamponi, 2001) 

 

The data regarding channel inactivation on the single-channel level (only tested at one 

TP) only support our findings to some extend and need be further evaluated in more 

detail. Additional single-channel experiments analysing the I150 rate at different holding 

potentials with a constant testing potential should light up the role of exon 1a/1b in 

CaV1.2 channel inactivation.  

We here further demonstrate in our work by running a simple IV protocol that the current 

density is significantly increased when comparing the SM isoform 1b8 with the CM 

isoform 1a8a. The same finding holds true when analysing the 1b8a and 1a8a isoforms 

suggesting that the N-terminus of CaV1.2 determines the current density. We further 

verified in a second approach channel current densities by a tail current analysis 

(Takahashi et al., 2003, Wang et al., 2011). CaV1.2 channel current densities of SM 

isoform 1b8 and 1b8a were significantly increased by more than 40% over the cardiac 
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isoform 1a/8a and 1a/8 isoform. Similar significant findings hold true for the tail currents 

being larger by more than 50%. 

Ion channel surface expression can be determined by either western blotting analysis in 

combination with channel tagging or by immune-staining (Li et al., manuscript in 

preparation). Analysing gating currents which predicts the movement of ion charges in 

the membrane due to depolarising test potentials is a well accepted semi-quantitive 

measurement which allows making predictions on channel surface expression 

(Armstrong and Bezanilla, 1973; Hodgkin and Huxley, 1952). This could be already 

demonstrated by others and our group in the past (Wang et al., 2011). 

In a representative number of experiments here the demonstrated data support the 

hypothesis that SM CaV1.2channel surface expression is enhanced by the increased 

maximum gating currents (Fang and Colecraft, 2011). This is in strong agreement with 

already obtained whole-cell data of the various used CaV1.2isoforms used in this study 

indicating a similar gating profile. Analyses of whole-cell steady-state kinetics and 

single-channel experiments demonstrated that an increased current density induced by the 

SM isoform was theoretically underpinned by a higher CaV1.2channel surface expression. 

Wang et al., could show in 2011 that channel surface expression of CaV1.2 indeed 

correlated with the maximum gating currents. The cytosolic N-terminal portion is known 

to interact with various signalling molecules and enzymes. Moreover auxiliary CaV1.2 

subunits like the beta or alpha2delta is known to support channel trafficking via a 

retention signal from the ER. Bannister could show in his work from 2011 that arterial 

smooth muscle cells that both expressed exon 1b and1c showed different surface 

expression patterns in arterial smooth muscle cells. This was further evaluated by a 
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mechanism with different preferential trafficking of the alpha1C subunit by the 

alpha2delta subunit. Such a potential mechanism should indeed be analysed by 

expressing different alpha2delta subunits with the CaV1.2 channel pore.  

 

4.4 Physiological/Pathophysiological relevance and limitations 

 

Alternative splicing was reported over the last decades to be linked to diseases, 

development, sex determination and physiology in general. (Hammes et al., 2001, 

Gerzanich et a., 2003, Ule et al., 2003). A widely accepted idea today is that the number 

of occuring splice variants in a system is linked to a certain condition, rather than being 

expressed in a random manner (Neves et al., 2004).With this thesis we show for the first 

time on the single-channel level that the N-terminus by all means determines the structure 

and functional relationship of hum CaV1.2 calcium channelsin a HEK 293 system. To our 

knowledge, we are the first group comparing the predominantly expressed CaV1.2 SM 

isoform 1b/8/9/22/32 with the predominantly expressed cardiac isoform 1a/8a/9/22/32 in 

a broad electrophysiological approach. In previous publications by others and our group 

the hum CaV1.2 1b splice variant has been reported to be predominantly expressed 

together with exon 8ain the brain> 50%and to a lesser extend in the heart (Blumenstein et 

al., 2002, Soldatov et al., 1992, Tang et al., 2004).On the other hand, the human cardiac 

1a isoforms occurs in combination with exon 8a in the heart with more than 50 % 

expression level (Tang et al., 2004). We now show in our experiments that exon 1b8a 

significantly shifts the inactivation of hum CaV1.2 to more hyperpolarised potentials and 
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at the same time increases the current due to a larger channel surface expression. 

Differences in SSI could not be observed for the SM specific 1b8 isoform when 

compared to the cardiac expressed 1a8a 

CM isoform. The 1b8a isoform could be 

indeed described to be functionally 

expressed in the heart (Tang et al., 

2007) and we do have reasonable 

arguments, a posteriori, that it could be 

the predominantly expressed isoform in the 

brain and also in smooth muscle tissue. A 

shifting window current to more 

hyperpolarized potentials is linked to a faster inactivation of CaV1.2 channel population 

which on the other hand allows the channels to get activated earlier. Hence the 

diminished window current for 1b8a would reduce the time period of channel activation-

inactivation cycle allowing a faster channel response upon membrane depolarization. 

Furthermore, a predominant expression of exon 8 over 8a in smooth muscle cells would 

benefit any calcium channel blocker induced pharmacological application due to a higher 

DHP sensitivity described to exon 8 over exon 8a (Welling et al., 1997). Such a selective 

distribution of alternatively spliced exons would certainly be beneficial knowledge when 

deciding on any potential treatment with DHPs in mood disorders in a dose-dependent 

manner. 

However, any predictions of physiological significance for the utilization of the 

predominant 1b8a isoform remains unsolved; and the mystery why a cell requires a 

Figure 39: Idealized steady-state 

activation/inactivation kinetics for the 

SM (black) and cardiac (grey) isoform. 

The 1b8a isoform is depict in a dashed 

line (black)  
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plethora of different splice isoforms for optimal biological function still remains 

speculative. That’s why it is important to establish specific alternative exon KO models 

to better study the functional and physiological/pathophysiological consequences which 

may be associated with a particular alternative splicing profile. 

 

4.5 The N-terminus of CaV1.2 does not alter basic single-channel gating 

properties. 

To further evaluate the origin of altered current densities mediated by exon 1a/1b we 

looked into single-channel events recorded under 110 mM Ba
2+

. As already described in 

the first part of this thesis a larger current density can be either a result from a higher 

channel surface expression or due to higher channel open probability. However, the 

results did not indicate any changes in basic gating properties among the analysed groups. 

Although there are limitations in real single-channel events, the data are consistent and a 

posteriori unlikely to differ in basic gating, even at higher amounts of real single-channel 

experiments. In recent years, CaV1.2 has been extensively studied under single-channel 

conditions by various groups in vitro and ex vivo. Here the underlying in vitro results 

recorded under similar conditions in regards with charge carrier and used CaV1.2species 

strongly matched with already published cell-attached data from smooth muscle cells and 

heart (Benham et al., 1987; Herzig et al., 2007, Jangsangthong et al., 2009). For our 

kinetic analysis we again assumed a sequential 3-state model although mode gating could 

be observed to some extent. Exemplary dwell-time histograms were described with a 
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mono- (open-time) or biexponential fit (shut times). Mean first latency was further 

analysed by a bi-exponential fitting function according to Herzig et al., 2007. 

 Hence, a change in channel surface expression of SM CaV1.2 is the most likely scenario 

which could explain a higher channel current density underlying exon 1b.  

 

4.6 Alternative splicing of CaV1.2 in animals with trait anxiety does not 

reveal any potential pathophysiological splicing fingerprints. 

 

Here we demonstrated with preliminary data that alternative splicing of CaV1.2 might be 

subject to anxiety related behaviour in rodents (HAB/LAB/NAB mice). Previous 

publications about the role of CaV1.2 in mood and mental disorders have already 

uncovered the physiological implications and the potential pharmacological benefit of 

CaV1.2 as a drug target (Busquet et al., 2008, Sinnegger-Brauns et al., 2004, 

Casamassima et al., 2010). For the first time, we looked into specific brain regions 

associated with anxiety and fear related behaviour of mouse strains manifesting different 

traits of anxiety, respectively high-, low- and no- anxiety related behaviour. Our data 

revealed no characteristic changes in splicing patterns as we hypothesized. Mutually 

exclusive exons 8/8a, 21/22 and 32/33 were detected in a broad attempt with specific 

primers by colony PCR over all samples from amygdala, hippocampus and prefrontal 

cortex with no flamboyant expression profile in HAB/LAB and NAB animals. Our data 

indicate that exon 8a is the predominant expressed isoform in the brain of mice. This 

finding is overlapping to already published data from Nicolas Soldatov and our group 
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although in human brain samples (Tang et al.,2004, Soldatov et al., 1992). These results 

need further clarifications as the brain contains neurons, glia and is highly vascularised 

suggestion presence of smooth muscles. Franz Hofmann’s group described in 1997 about 

the tissue specific dihydropyridine sensitivity of the IS6 segment of CaV1.2 in cardiac and 

smooth muscle cells with the 8 isoform being exclusively expressed in the aorta and the 

8a isoform being reduced to smooth muscle cells (Welling et al., 1997). The smooth 

muscle variant 8 is known to be more sensitive to DHP compared to the cardiac 8a 

variant(Welling et al., 1997, Liao et al., 2007) which provides useful information to our 

findings since an anti-depressant-like effect in rodents has been reported by several 

groups in the past (Cohen et al., 1997, Galeotti et al., 2006). Several case studies also 

reported about the potential beneficial characteristic of calcium channel blockers in 

patients with depressions (Biriell et al., 1989, Hullet et al., 1988). However, the evidence 

is rather controversial at this point and needs to be further evaluated. 

Colony PCR further revealed that exon 22 isoform being the predominantly expressed 

isoform in the brain with more than 90 %. This finding has been also described in the past 

in rat (Soldatov et al., 1995, Tang et al., 2004). Furthermore, exon 22 is also involved in 

DHP binding with a higher sensitivity over exon 21 (Soldatov et al., 1995).Exon 32 is 

expressed to the highest extent in all three brain regions at a level of more then 80 %.  

The data we present here are the first approach describing mutually exclusive exon 

distribution in the brain of rodents. We did not find any convincing argument which 

supports the hypothesis that anxiety may correlate to some extent with exon profiling. 

Our data based on 16 discovered exon combinations indicate that exon 8a, 22 and 32 built 

the fundamental backbone structure of CaV1.2 in the mouse brain. Since the brain and 
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brain activity is sustained by an intense blood flow though blood vessels it is difficult to 

speculate about the exact origin of our detected exons. However, it is likely that the 

combinations found in our samples originate from the larger amount of brain tissue 

analysed in our study. Supporting data about the predominant expression of exon 22 and 

32 in human brain comes from the Soldatov and our group. An exact clarification could 

be obtained by an approach to screen for full length CaV1.2 transcripts in the rodent brain. 

Moreover, the expression levels of exon 1a and 1b in our anxiety samples could not be 

addressed in this project due to limited time of this PhD. Real time PCR should clarify 

about the expression levels in the brain. Furthermore, the already described exon 1c 

isoform described in the brain and human and rodent samples from Jonathan Jaggar’s 

group would be of additional interest. 

However, we have indeed good reason to believe that CaV1.2 plays a significant 

pathological role in mental disorders. Whether CaV1.2 is the primary trigger in a potential 

pathological history still remains elusive at this time. We could see in a first approach by 

real-time PCR (data not shown) that CaV1.2 is significantly increased in the hippocampus 

of our HAB animals when comparing it to LAB and NAB animals. A similar trend for an 

up regulation of CaV1.3 transcripts could be seen in HABs towards LAB animals. In this 

context it would be certainly of interest to assess whether the expression levels exons 

1a/1b and 1c isoforms may alter in the various brain areas associated with trait anxiety. 

Especially if exon 1b could play a role in the up regulation of CaV1.2 in the hippocampus 

of our trait anxiety animals should be evaluated in further experiments.   
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4.7 General conclusion and future prospects 

This PhD thesis delivers useful information on how to combine single-channel patch 

clamp recordings in addition to whole-cell patch clamp recordings. It furthermore 

provides a good guideline on how to analyse and evaluate single-channel raw data. It is 

demonstrate that the exclusion of a single cassette exon (exon 33) of CACNA1C encoding 

for CaV1.2is tethered to severe pathophysiological consequences in a mouse model with 

Torsade de pointes arrhythmia. Various groups have shown in previous publications that 

aberrant alternative splicing of CaV1.2 can result in severe cardiovascular and 

neurological dysfunction (Tiwari et al., 2006; Gidh-Jain et al., 1995). In this thesis it is 

demonstrated that alternative splicing is not only subject to developmental and tissue 

dependent function and regulation, but also to pathological states. The single-channel 

data underpin these data and exemplify the pathophysiological background in terms of 

altered biophysical channel function to a large extend. In subsequent studies, it needs to 

be further clarified to which extend other modulating proteins such as PP2B are involved 

in the pathophysiology of arrhythmia (Schröder et al., 1998). Single-channel recordings 

of our ∆33 cardiomyocytes under application of okadaic acid, 8-cAMP with or without a 

stimulating prepulse should make channel availability more profound. An additional 

gating analysis will show on how a possible pathophysiological role of PP2B may 

correlate to arrhythmia in our KO animals.  

The role of the N-terminus of CaV1.2 could only be addressed in this thesis to some 

extend due to the limited time of the project. Although here evidence was provided that 

exon 1a/1b of CaV1.2 indeed regulates channel kinetics, the regulatory mechanisms 

behind it could not be revealed. The increased current density that is linked to an elevated 
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surface expression under exon1b should be analyzed to a broader extend. The human 

exon 1c isoform which could not be detected so far should be implicated in this project. 

Further electrophysiological analysis of exon 1a/1b/1c in a recombinant system expressed 

with different auxiliary subunits (alpha2delta1-4 and beta1-4) should clarify the structure 

and functional role of the N-terminus of CaV1.2. Moreover, knock down experiments of 

alpha2delta in a native system would be reasonable in terms ofCaV1.2 channel integration 

into the cell membrane (Bannister et al., 2011). A possible implication of RGK proteins 

like Rem or Rad which interact with exon1 of CaV1.2 and alter the surface expression 

should be considered as shown by Henry Colecraft’s group.  

The hypothesis about a pathophysiological role of CaV1.2 in trait anxiety due to aberrant 

splicing could not be verified. Bona fide, we analyzed HAB/LAB/NAB animals in terms 

of altered splicing profiles in CACNA1C of brain areas associated with fear. Indicators of 

isoform specific splicing correlating with trait anxiety in our animals could not be found. 

However, the transcript scanning experiments and the colony PCR provide useful insight 

into the expression pattern of mutually exclusive exons of CACNA1C in the brain of 

rodents and match with already published data. It would be further interesting to evaluate 

the transcript levels of mutually exclusive exon 1a/1b in the brain of the trait anxiety 

model. Preliminary data obtained by real time PCR clearly indicate for significant altered 

transcript levels of alpha1C and alpha1D in HABs towards NABs and LABs (data not 

shown). Based on these findings it would be interesting to verify how full length 

transcript of alpha1c and alpha1D correlate in terms of alternative splicing. 
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