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SUMMARY 

 

Sepsis is a hyperimmune response that occurs during microbial infection and 

is characterised by severe inflammation leading to hypotension, multiple organ 

failure and in some cases, death. To date, there is no perfect treatment for 

sepsis. Toll-like receptors (TLR) were identified as a major source that 

triggers sepsis-stimulated pathways. Understanding regulators of TLR 

signaling pathway may hold the key to managing sepsis. Annexin-1 (ANXA1) 

is a 37 kDa Ca
2+

 dependent, glucocorticoid-inducible anti-inflammatory 

protein. It also serves homeostatic role for major cellular mechanisms such as 

cell proliferation, apoptosis, phagocytosis, cell adhesion and migration. It was 

previously reported that ANXA1 may play a role in TLR mediated immune 

response. Our lab has identified ANXA1 to be linked to the regulation of NF-

κB. To investigate the role of ANXA1 in TLR signaling further, TLR agonists 

that stimulate several distinct TLR pathways were chosen (CpG DNA-

ODN1826 to stimulate TLR 9, LPS to stimulate TLR4 and Poly I:C to 

stimulate TLR3). The agonists were chosen for the capacity to stimulate either 

or both MyD88-depedent and MyD88-independent (TRIF) pathway. Our 

collective results show that ANXA1 KO macrophages show impaired IL-12 

and IP-10 response after LPS and poly (I:C) stimulation, but not CpG DNA 

stimulation. Macrophage and B cell activation were suppressed when ANXA1 

was absent.  Furthermore, macrophage nuclear translocation of IRF3 and NF-

κB p65 after TRIF activation was regulated by ANXA1. 
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Macrophages are known to undergo polarization during immune 

response. The polarization status are type I (or M1: pro-inflammatory) and 

type II (or M2: tolerogenic) polarization, and constitute two extremes of a 

continuum of cytokine and chemokine profile. The capacity for macrophage to 

polarize into M1 or M2 state plays a critical role in overall immune system 

polarization. Therefore macrophage polarization status in ANXA1 KO mice 

was investigated to determine if it contributes to the impaired immune 

response observed in ANXA1 KO mice compared to its wild-type equivalents. 

ANXA1 was observed to suppress M2 polarization.  

We also investigated whether an endogenous inhibitor of NF-κB was 

involved in the inhibition of cytokine and chemokine production after TLR 

activation. PPAR-γ, an endogenous suppressor of inflammatory response, was 

targeted using PPAR-γ specific ligand PGJ2 and troglitazone, as well as 

PPAR-γ specific inhibitor GW9662. Our data demonstrates that PPAR-γ was 

responsible for the suppression observed in ANXA1 KO macrophages, and 

therefore ANXA1 regulates PPAR-γ activity. Taken together, the thesis 

demonstrates ANXA1 plays an important role in regulating TRIF dependent 

pathway, macrophage polarization and PPAR-γ activity. 
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CHAPTER I:  

INTRODUCTION 
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1. INTRODUCTION 

RI find it astonishing that the immune system embodies a degree of 
complexity which suggests some more or less superficial though striking 

analogies with human language, and that this cognitive system has 

evolved and functions without assistance of the brain.” 

Q Niels K. Jerne, Nobel Prize in Physiology or Medicine, 1984  

1.1. Inflammation 

During acute inflammatory response in diseases, various factors come together to 

present an overall phenotype, namely a pro-inflammatory or anti-inflammatory response. 

Inflammation occurs through dynamically varying levels of pro- and anti- inflammatory 

cytokines competing for an upper hand either by activation of signaling cascades or 

inhibition of downstream signals. 

Pro-inflammatory mediators are the causative agents (thereby the main focus of 

concern during an acute inflammation) while anti-inflammatory mediators are the key 

players in bringing inflammation down to pre- inflammation levels. While most 

inflammation is resolved rapidly through the production or activity of anti-inflammatory 

mediators, some remain as chronic inflammation either when the source of inflammation 

persists or insufficient anti-inflammatory response is present (Figure 1.1).  
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Figure 1.1. Inflammation is a dynamic process between pro- and anti- 

inflammatory mediators of inflammation. Prolonged inflammation is 

caused by the absence or limited capacity of anti- inflammatory mediators 

to act upon the site to resolve the inflammation. On the other hand, rapid 

resolution of inflammation is directly dependent on the level of activity of 

anti- inflammatory mediators. Therefore inflammation is caused by pro-

inflammatory mediators and its resolution is dependent upon anti- 

inflammatory mediators (Kamal et al., 2005). 

 

Induction of pro-inflammatory mediators is bound by inflammatory insults that 

are usually based on rapid response to external stimuli and sometimes beyond the control 
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of the host (e.g. systemic activation of pathogen receptor signaling cascades such as Toll 

like Receptors (TLRs), CLRs, Nod like Receptors(NLRs) and Rig-I like receptors (RLRs) 

will cause rapid build-up of pro-inflammatory response). Whether some stimuli will 

trigger an overwhelming pro-inflammatory response is almost impossible for the host to 

decipher beforehand. Anti-inflammatory mediators are molecularly existing targets that 

are involved in inflammation yet working to curb inflammatory response. They are 

therefore the present focus of research interest. In particular, anti-inflammatory mediators 

that exist endogenously within the host are of great interest, since their presence at 

physiologically relevant levels do not cause toxicity issues. Patients that may already be 

facing the risk of toxicity and complication through other channels of medical 

intervention may find such a drug invaluable for survival. 

Rapid activation of an acute inflammatory response involves the concerted effort 

of many leukocytes. Among the many innate immune cells that mediate initial response 

to pathogenic stimuli found within the body, macrophages are the key players in innate 

immunity. Macrophages dictate the initial pro-inflammatory response during microbial 

infection, as it possesses a diverse array of receptors that are capable of microbial pattern 

recognition and immune response. (Takeuchi and Akira, 2010).  

1.2. Inflammation during sepsis  

Sepsis is a hyperimmune response that occurs during microbial infection (bacteria, 

viruses, fungi, etc.) and is characterised by severe inflammation leading to hypotension, 

multiple organ failure and in some cases, even death (Rice and Bernard, 2005). Sepsis 

continuously ranks among the top causes of illness and death worldwide. It accounts for 
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at least 20% of mortality in critically ill patients in U.S. and Europe (Angust et al., 2001; 

Vincent et al., 2006). In the United States alone, more than 210,000 deaths occurs 

annually and some 40% of all intensive care patients encounter sepsis during the course 

of their hospitalization (Skrupky et al., 2011). In Singapore, patients admitted to 

intensive care units for severe sepsis showed hospital mortality of more than 40% (Phua 

et al., 2011). However, very few therapeutic interventions exist to modulate the immune 

response other than clinical measures that involves maximizing oxygen delivery and 

prescribing broad-spectrum antibiotics to the patient. To date there is no perfect antidote 

to sepsis (Bernard and Bernard, 2012).  

Most treatment for the management of sepsis involves down-regulation of 

inflammatory response during initial stages of sepsis (Pinsky, 2004). If the patient 

survives the initial septic shock induced by an overwhelming surge of cytokines 

produced by lymphocytes and macrophages, the patient goes into immune paralysis, 

where  he completely loses the immune ability to oppose and eliminate any microbial 

infection he faces. The clinical outcome of such a septic patient is therefore determined 

both by the damage caused by the initial cytokine storm and the subsequent immune 

tolerance that prevents complete infection clearance (Rice and Bernard, 2005; Hotchkiss 

and Karl, 2003; Skrupky et al., 2011). As gram-negative bacteria are the major cause of 

sepsis, inhibiting the primary mediator of sepsis such as LPS using antibodies were 

initially proposed as a treatment. LPS specific antibodies were discovered and a patient 

cohort study based on such antibodies showed that it provided some improvement in 

mortality in some cases of bacteria associated sepsis, but septic patients without gram-

negative bacteremia showed no treatment benefit (Fink, 1993; Ziegler et al., 1991). Later 
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on, Toll-like receptors (TLR) were identified as a major source that triggers intracellular 

signaling cascade which produce inflammatory cytokines upon binding microbial 

molecules during initial stages of sepsis (Salomao et al., 2008). Inhibitors for TLRs were 

developed to inhibit these receptors, in a hope to elucidate a treatment for bacterial sepsis. 

A trial for TLR4 inhibitor on septic patients showed mixed results; only severe patients 

showed slight improvement in mortality (Rice et al., 2010). Inhibiting pro-inflammatory 

cytokines produced during sepsis using antibodies is not a solution either. Tumor necrosis 

factor alpha (TNF-α), a pro-inflammatory cytokine is persistently elevated in patients that 

expire after sepsis (Qiu et al., 2011; Reinhart and Karzai, 2001). Several clinical trials 

were focused on monoclonal antibodies that inhibit TNF-α over the years but were met 

with mediocre results (Abraham et al., 1995; Cohen and Carlet, 1996; Abraham et al., 

1998). This may be partially due to the non-canonical activity of TNF-α that stimulates 

other immune responses Animal models with blocked TNF-α activity reduced the  

animal’s immune system to clear microbes (Qiu et al., 2011). Instead, negatively 

regulating TLR induced signaling pathway may hold the key to managing sepsis (Ishii 

and Akira, 2004). 

1.3. Innate immunity and TLRs  

All cells of the immune system originate from the bone marrow. They include 

myeloid (neutrophils, basophils, eosinophils, dendritic cells and macrophages) and 

lymphoid (T lymphocytes, B lymphocytes and Natural Killer) cells. The immune system 

comprises two major arms that work synergistically to provide immunity to its host: 

Innate immunity (i.e. non-specific immunity), and adaptive immunity (i.e. specific 

immunity). While adaptive immune response require more time to respond to pathogen 
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invasion, innate immune response reacts almost immediately to a wide variety of 

organisms through the recognition of pathogen via pathogen associated molecular 

patterns (PAMPs), pattern recognition receptors (PRRs) and  action of cytokines and 

chemokines (Cook et al., 2004).  

PAMPs are molecular patterns derived from microorganisms that commonly 

invade our body. They are uniquely conserved motifs found predominantly in 

microorganisms but not vertebrates. Examples of PAMPs encountered by the innate 

immune system include lipopolysaccharide (LPS) from bacteria, bacterial DNA motif 

such as cysteine-phosphodiester-guanine repeat DNA stands (CpG) , double stranded 

RNA such as poly (I:C) and zymosan from yeast cell walls. When found inside a human 

body, PAMPs are distinguished by PRRs found on endothelial cells, mucosal epithelial 

cells, dendritic cells, macrophages and lymphocytes, and a downstream cascade of 

inflammatory response is immediately triggered. There are many types of PRRs found on 

the surface and the endosomes of cells. Among PRRs, toll-like receptors (TLRs) which 

comprise a family of PRRs found on both the surface and in the cytoplasm are the most 

diversely responsive PRRs for triggering an inflammatory response from the cells 

(Takeda and Akira, 2007).  

Toll-like receptors gained their name from a receptor found from Drosophila 

melanogaster named Toll, which was found to play an important role in innate immunity 

in adult flies. TLRs possess repeated motifs high in leucine which is known as leucine-

rich repeats (LRRs), and a cytoplasmic domain called the toll/interleukin 1 receptor (TIR) 

domain. To date, thirteen TLRs are found in mammals, and each member of the TLR 

family is highly specialized to bind and recognize specific PAMPs. TLR2, TLR3, TLR4, 
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mouse TLR7 (TLR8 for humans) and TLR9 function as signaling receptors for a diverse 

range of PAMPs, such as LPS, viral single-stranded RNA, CpG DNA, etc . The 

molecular patterns recognized by TLR family are all essential for the integrity, function 

and/or replication of microbial pathogens, thereby rendering TLRs difficult to evade by 

changing molecular sequences. For example, LPS which is recognized by TLR4, is 

critical to the integrity of Gram-negative bacteria such that any mutation in LPS is lethal 

to most species of bacteria (Rietschel et al., 1994). TLR3 which recognizes double 

stranded RNA, a central intermediate for all RNA viruses, makes it difficult for viruses to 

evade detection. Similar to examples afore mentioned , zymosan is recognized by TLR 2 

and is also an integral component to the yeast cell wall, making it difficult for yeast 

infection to hide from cells from the innate immune system that possess TLRs (Cook et 

al., 2004). TLR9 is able to act as a receptor to cytosine-phosphodiester-guanine (CpG) 

DNA that is from bacteria (Akira, 2003). 

1.3.1. TLR-specific signaling pathways 

Microbial recognition of TLRs causes dimerization of TLR which triggers the  

activation of downstream cascade of signals through the activation of TIR domain of the 

TLRs. The activation causes a TIR domain containing adaptor MyD88 to induce 

inflammatory cytokine production such as TNF-α and IL-12, and is true for all members 

of the TLR family except TLR3. TLR3 is activated through a MyD88 independent, TIR 

domain-containing adaptor inducing IFN-β (TRIF) adaptor protein which subsequently 

triggers IRF-3 dependent anti-viral response.  
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There are distinct and specific pathways which exist to activate and/or trigger a 

cascade of downstream activity for the unique stimuli a cell is exposed to. Amongst many 

major pathways that are known for their capacity to cause transcription of inflammatory 

response, focus shall be placed on the following signaling molecules and transcription 

factors: retinoid acid-inducible gene 1 (RIG-I), nuclear factor kappa-light-chain-enhancer 

of activated B cells (NF-κB), IRF-3, STAT-1 and other pathways ANXA1 is associated 

with (Takeda and Akira, 2007). 

1.3.2. MyD88 pathway and TRIF pathway 

Engagement of TLRs by various PAMPs leads to the activation of MyD88 

pathway, a controller for TLR-mediated responses for all TLRs except TLR 3 (Akira et 

al., 2006). The MyD88 pathway is capable of activating NF-κB, a master regulator of 

inflammation. Upon activation of TLR by ligand-receptor binding, MyD88 adaptor 

protein binds to cytosolic end of MyD88 depdendent TLRs. MyD88 then recruits IL-1 

receptor-associated kinases (IRAK), which leads to activation of Mitogen-activated 

protein kinase (MAPK) pathway. IRAK activation also causes activation of Tumor 

Necrosis Factor Receptor Associated Factor 6 (TRAF6), an E3 ubiquitination ligase that 

ubiquitinates itself. This ubiquitination of TRAF6 attracts ubiquitin binding NEMO, an 

important subunit of Inhibitor of kappa B kinase (IKK) complex which is required for 

NF-κB activation. This leads to degradation of inhibitor of κB (IκB) protein, which leads 

to activation of NF-κB.  

TRIF dependent pathway activates both IRF-3 and NF-κB. However, TRIF is 

distinct and unique for its activation of IRF-3 which induces interferon beta transcription, 



9 
 

leading to anti-viral responses to be activated. TRIF recruits TBK1 and IKKi (or IKKε) 

which catalyses the phosphorylation of IRF-3 at specific serine residues in the C-terminal 

regulatory domain. Dimerization of IRF-3 allows for nuclear translocation and interaction 

with transcriptional coactivator p300 or CREB-binding protein in the nucleus, leading to 

transcription of IFN-β. MyD88 and TRIF dependent pathways therefore signal through 

different adaptor proteins leading to activation of different transcription factors (Figure 

1.2).  

 

Figure 1.2: The MyD88 dependent and TRIF dependent pathways. Bacterial peptides 

such as CpG DNA bind to TLR9 and recruits MyD88 to trigger only MyD88 dependent 

pathway, causing early phase NF- κB activation. TLR 2 and TLR5 also activates 

specifically MyD88 pathway only. On the other hand, virus double stranded RNA or poly 

(I:C) binds to TLR3 to activate TRIF dependent pathway. LPS can trigger both MyD88 

and TRIF pathways through the formation of TLR4-MD2-LPS complex, which can then 

internalize into an endosome to recruit TRAM and TRIF adaptor proteins. This leads to 

activation of late phase NF-κB and IRF-3 which lead to induction of type 1 interferon 

(TRIF-dependent pathway) (Adapted from Kawai and Akira, 2010).  
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1.3.3. NF-κB 

NF-κB’s role and association in linking immunity, inflammation and cancer is 

unprecedented. Known as the “master regulator of inflammation” or the “central mediator 

of inflammatory process”, the triggering of NF-κB leads to a signalling cascade that 

releases countless downstream activity leading to an overall pro-inflammatory response 

by the activated cell (Baldwin, 1996). NF-κB is believed to target more than 250 genes in 

the mouse or human genome (Natoli et al., 2005). First discovered in 1986 by 

Baltimore’s group as a B-cell-specific transcription factor, NF-κB has the capacity to 

translocate into the nucleus to bind directly to DNA, yet it is bioavailable in the 

cytoplasm as an inactive form. A wide range of surface receptors relay signals to activate 

the NF-κB pathway, notably the TNF receptor, TLR, IL-1 receptor and antigen receptor 

superfamilies. Growing number of intracellular receptors which are able to activate NF-

κB are elucidated, and amongst them the known pathways are responses to DNA damage, 

reactive oxygen species as well as recognition of intracellular pathogens through NOD-

like and RIG-I-like family of receptors (Hayden and Ghosh, 2012). 

 The NF-κB/Rel family consists of NF-κB1 (p50/p105), NF-κB2 (p52/p100), p65 

(RelA), RelB and c-Rel (Chen et al., 1999). The most prevalent, activated form of NF-κB 

is a heterodimer consisting of a p50 or p52 subunit and p65, which contains all the 

necessary domains for transcriptional activation and gene expression. It is believed that 

each member of the Rel/NF-κB family play different roles in vivo (Ruan and Chen, 2012). 

Mice deficient in p65 (RelA) are embryonically lethal (Berg et al., 1995), and RelB-

deficient mice suffer from severe autoimmune-like inflammatory diseases (Gerondakis et 

al., 1996). Mice that are NF-κB2 deficient suffer from severe developmental defects 
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(Caamaño et al., 1998). Mice deficient in c-Rel have severe impairment in T cell immune 

response but possess normal non-lymphoid organs (Liou et al., 1999), while NF-κB1 

(p50) deficient mice are susceptible to bacterial infections due to compromised B cell 

responses (Sha et al., 1995). The knockout mice reflect the importance of each member 

of the NF-κB family in physiological systems ranging from healthy organ development to 

homeostatic immune function and regulation. NF-κB exists in the cytoplasm associated 

with inhibitory protein IκB. The IκB is made of IκBα, IκBβ and IκBε. Each of the IκB 

subunits inhibit specific subsets of NF-κB. The inhibition of NF-κB by IκB is released 

upon phosphorylation. The phosphorylating kinase was identified as IKKs. IKKs are 

made up of three subunits that forms the IKK complex: IKKα, IKKβ and IKKγ (NEMO). 

NF-κB activation always involves activation of IKK complex which phosphorylates IκB. 

Once IκB is phosphorylated and degraded, a point of no return is reached: NF-κB 

translocates to the nucleus and proceeds with transcription of NF- κB target genes 

(Gilmore, 2006).  

NF-κB affects both innate and adaptive immune response (DiDonato et al., 2012). 

It is activated by a diverse range of external stimuli which causes inflammatory response, 

and is particularly important in TLR signaling, as all the TLR except TLR3 activates the 

MyD88 adaptor protein that triggers a downstream cascade leading to degradation of IκB 

and activation of NF-κB.  

NF-κB plays an important role in immune response and inflammation. T cells 

from transgenic mice that lack NF-κB/Rel signaling pathway exhibit a delayed Th 1 

activation and response. Known as one of the most important regulators in pro-

inflammatory gene expression, it induces the synthesis of pleiotropic pro-inflammatory 
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cytokines such as TNF-α, IL-1, IL-6, IL-8, IL-12, pro-inflammatory mediating enzyme 

prostaglandin-endoperoxide synthase 2 (COX-2), adhesion molecules and inducible nitric 

oxide (iNOS). NF-κB is able to act in concert with other pro-inflammatory transcription 

factors such as AP-1, which is capable of phosphorylating MAPK/JNK pathways. It is 

also known that some of the corticosteroid action used in the treatment of inflammatory 

diseases, are mediated through the inhibition of NF-κB activation (Tak and Firestein, 

2001).  

1.3.4. IRF-3 

Interferon regulatory transcription factor 3 (IRF-3) belongs to the IRF family of 

proteins, which all share significant homology in their DNA binding domains. To date, 

there are 9 members in the IRF family (IRF-1 to IRF-9), and all play a role as 

transcription mediators of virus, bacteria and other interferon-inducible activation (Zhao 

et al., 2007). It therefore plays a critical role in antiviral defence and immune response. 

IRF-3 is activated by infected cells upon recognition of double stranded RNA, either by 

surface TLR3 receptors or internalized cytoplasmic receptors (RNA helicase RIG-I and 

MDA-5). Both receptors eventually activate a signaling cascade leading to the 

phosphorylation of IRF-3 at serine residue position 386 (Ser 386) by two non-canonical 

IκB kinases, TBK-1 and IKKε. The activated IRF-3 homodimerizes or heterodimerizes 

with IRF-7 and translocates to the nucleus, where it stimulates activation of IFN-β (Paun 

et al., 2007). Mice with homozygous deletion of IRF-3 exhibit impairment in mounting a 

type 1 interferon anti-viral response against viral infection.  
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1.3.5. STAT-1  

STAT-1, or Signal Transducer and Activator of Transcription 1, is a 91 kDa 

protein belonging to the JAK-STAT signaling family and plays a key role in facilitating 

gene transcription upon activation of type I and type II interferon receptors. 

Phosphorylation of STAT-1 by receptor associated kinases activates STAT-1, which 

forms homodimers that translocates to the nucleus to act as transcription activators. 

STAT-1 deficient mice are resistant to cecal ligation and puncture (CLP) induced septic 

shock resulting in a survival rate of 80% in STAT-1 deficient mice versus 10% for wild-

type mice (Herzig et al., 2012). 

1.3.6. PPAR-γ 

Peroxisome Proliferator- Activated Receptor gamma (PPAR-γ), is a nuclear 

receptor and transcription factor from the steroid family. Its natural ligand is 15-deoxy-

δ(12-14)-prostaglandin J2 (PGJ2). Artificial ligands for PPAR-γ are thiazolidinediones 

widely used to treat diabetes. Upon activation of PPAR-γ by its ligand, PPAR-γ 

heterodimerizes with retinoid-X receptor α and binds to PPAR specific DNA response 

elements, or PPRE. It is widely known for its capacity to regulate fatty acid storage and 

modulate glucose metabolism in cells, as PPAR- γ knockout mice are unable to generate 

adipose tissues even when fed with a high-fat diet (Jones et al., 2005). More importantly, 

it is found to increase sensitivity to insulin by upregulating glucose transporter 4 (Wu et 

al., 1998). It therefore plays an important role in adipogenesis and diabetes. 

Its involvement in inflammation regulation was revealed only in the past decade. 

A variety of immune cells such as macrophages, dendritic cells, neutrophils and other 
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lymphocytes express PPAR-γ. In many experimental studies, PPAR-γ is capable of 

inducing anti-inflammatory activity, and is found to have therapeutic potential in 

regulating the immune system (Ohshima et al., 2012). PPAR-γ has many inflammation 

associated ligands: unsaturated fatty acids, oxidized and nitrated fatty acids, arachidonic 

metabolies, 15-deoxy-∆
12

,
14

-PGJ2 (15d-PGJ2), thiazolidinediones (TZDs) , phospholipid 

cyclic phosphatidic acid, lysophosphatidic acid and oxidized low-density lipoprotein 

components are all ligands to PPAR-γ. PPAR-γ is expressed in various immune cells, 

such as primary peritoneal macrophages, dendritic cells, and T cells. The major role of 

PPAR-γ is to negatively regulate Th 1 specific genes and PAMPs that signal through 

pattern recognition receptors. (Welch et al., 2003). PPAR-γ is able to suppress monocyte 

dependent inflammatory cytokine production at doses similar to those used for 

adipogenesis. Both natural ligand PGJ2 and TZDs are capable of inhibiting macrophage 

activation (Jiang et al., 1998). PPAR-γ inhibits transcriptional activity of NF-κB activity 

through inhibition of the p65/RelA subunit in macrophages (Chinetti et al., 1998), and 

upon activation of PPAR-γ, IFN-β production is inhibited through prevention of IRF-3 

binding to the IFN-β promoter (Zhao et al., 2011).  In dendritic cells, 15d-PGJ2 activates 

PPAR-γ, causing reduced stimulation of DCs via TLR ligands 2, 3, 4 and 7 while 

inhibiting MAP kinases and NF-κB pathways but not PI3 kinase/Akt signaling pathway. 

Interestingly, PPAR-γ -/- embryonic stem cells were found to have suppressed expression 

of inflammatory genes such as iNOS and COX2 (Chawla et al., 2001). PPAR-γ therefore 

plays a role in modulating both innate and adaptive immune responses.   

There are many artificial PPAR-γ activators available today due to the importance 

of PPAR-γ in insulin and adipocyte associated diseases, such as ciglitazone, rosiglitazone, 
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troglitazone. These are widely-used drugs in the treatment of diabetes (Sasaki et al., 

2005). TZDs are found to possess the same anti-inflammatory properties of PPAR-γ 

activating ligands which are known for its anti-inflammatory effects, such as PGJ2. 

Ciglitazone reduces systemic inflammation in microbial sepsis by modulation of NF-κB 

and AP-1 pathways (Zingarelli et al., 2003) Rosiglitazone is another PPAR-γ activating 

ligand which also possesses anti-inflammatory properties. Rosiglitazone plays a role in in 

reducing pancreatic inflammation in obese mice (Pini et al., 2012). Troglitazone is found 

to be capable of preventing lymphocyte adhesion to endothelial cells, which is considered 

as a hallmark anti-inflammatory effect (Sasaki et al., 2005). Based on the activity of 

PPAR-γ specific antagonist, it is evident that PPAR-γ is an important suppressor of pro-

inflammatory response in both immune and non-immune cells.  

1.4. Chemokines and cytokines involved in inflammation 

 There are myriad of paradigms available for displaying a pro-inflammatory 

phenotype by choosing cytokines and chemokines that would aid in explaining the 

inflammatory process. In this experiment, we have chosen the cytokine / chemokine IL-6, 

IL-12, IP-10 (CXCL-10), and TNF-α.  We shall review through the cytokines and 

chemokines relevant to this study and understand their significance during inflammation.  

1.4.1. IL-6 

First discovered as a hepatocyte stimulating factor (Gauldie et al., 1987), IL-6 was 

also found later to function as a plasmacytoma growth factor (Suematsu et al., 1992). IL-

6 is a multifunctional acute phase response cytokine, playing an important role in 
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signaling pathogen invasion in host during sepsis and endotoxemia (Meyer et al., 1995). 

IL-6 deficient mice are highly susceptible to sepsis by common microbial pathogen such 

as Streptococcus pnenumoniae (van der Poll et al., 1997).  

IL-6 is secreted by T cells and monocytes such as dendritic cells and macrophages, 

and is involved in immunoglobin secretion by mature B cells, activation of cytotoxic T-

cells and other inflammatory responses (Kestler et al., 1995). Its receptors are IL-6 

receptor and gp130 (Ciapponi et al., 1995). IL-6 is capable of being suppressed by 

glucocorticoid action (Fried et al., 1998).  

IL-6 has been implicated in the generation and propagation of both acute and 

chronic inflammation. IL-6 trans signaling promotes acute inflammation by increasing 

expression of endothelial leukocyte adhesion molecules (VCAM-1, ICAM-1) which 

increases leukocyte accumulation (Kaplanski et al., 2003). It therefore facilitates the 

transition from neutrophils to mononuclear-cell infiltrate, which is a hallmark of acute 

inflammation. IL-6 is also responsible for chronic inflammation, as it rescues T cells 

from apoptosis, thus postponing the clearance of mononuclear inflammatory cell infiltrate 

(Curnow et al., 2004). IL-6 is therefore important in driving local inflammation. 

1.4.2. IL-12 

IL-12 is a heterodimeric cytokine produced by phagocytic cells, B lymphocytes 

and other myelomonocytic cells (D’Ambrosio et al., 1998). It was formerly known as 

"cytotoxic lymphocyte maturation factor" and "natural killer cell stimulatory factor". The 

bioactive form of IL-12 comprises a heterodimeric molecule made up of 40 kDa (p40) 

and 35 kDa (p35) subunits, and undergoes substantial post-translational modification 
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which accounts for 10 to 20% of carbohydrate by mass and a disulphide bridge that 

allows heterodimer formation for it to become bioactive (Podlaski et al., 1992). The p35 

subunit is more ubiquitously expressed even in lymphocytes not associated with IL-12, 

while the p40 subunit is produced only by lymphocytes that are known to produce IL-12. 

The NF-κB/Rel protein binding site within the IL-12 p40 promoter is responsible for p40 

subunit specific production during NF-κB activation (Sanjabi et al., 2000).  

In response to pathogens, PRRs such as TLRs are activated and IL-12 is produced 

by phagocytes (monocytes/macrophages and neutrophils) and dendritic cells. Specifically, 

IL-12 p40 subunit is produced from TLR activation by TLR ligands or agonists such as 

LPS. When both LPS and IFNg are present to stimulate activation, IL-12 p70 

heterodimer is produced. IL-12 is a critical factor for development of Th 1 immunity and 

cell mediated responses against diverse pathogenic insults (Trinchieri, 1995). IL-12 

stimulates increased proliferation and colony formation of haematopoietic progenitors 

(NK cells, NKT cells and T cells) and their production of cytokines, in particular 

interferons (e.g. IFN-γ). As IFN-γ can also induce transcription of IL-12, it presents a 

positive feedback loop for IL-12 production during inflammatory response. As a cytokine 

it is unique in its capacity to direct Th 1 cell development and cellular immunity, it is 

important to detect its levels during inflammatory and autoimmune disease research 

(Adorini et al., 1997).  

Products from microorganisms such as bacteria (LPS), bacterial DNA and CpG-

containing oligonucleotides are strong inducers of IL-12 production by macrophages and 

other monocytes, neutrophils and dendritic cells (DCs). Intrinsic defects in macrophage 

IL-12 production are associated with immune dysfunction. For example, patients with 
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lower IL-12 production are highly susceptible to mycobacterial infection (Uzzaman and 

Fuleihan, 2012) leshmaniasis (Alleva et al., 1998) and candidiasis (van de Veerdonk et 

al., 2011). IL-12 deficiency in humans is associated with recurrent pneumonia, sepsis and 

other infections in the absence of fevers from a very young age (Haraguchi et al., 1998). 

1.4.3. IP-10 (CXCL-10) 

Interferon-inducible protein-10 (IP-10) or C-X-C motif chemokine 10 (CXCL10) 

is a 10 kD secreted protein identified from abundant RNA induced by interferon gamma 

and LPS. It is a member of –C-X-C- motif chemokine family of secreted proteins. 

Secretion of IP-10 by leukocytes, neutrophils, eosinophils, monocytes, epithelia, 

endothelial and stromal cells is associated with inflammation (Luster and Ravetch, 1987).  

IP-10 activates the CXCR3 receptor predominantly expressed on activated T cells, 

B cells, NK cells, DCs and macrophage cells, and acts as “homing” beacon to attract 

CXCR3-positive cells. Th1 cells produce IFN-γ, which induces IP-10 production, and 

provides a positive feedback loop to attract and recruit more Th1 cells (Campbell et al., 

2004). IP-10 is also produced upon induction by IFN-β produced through TLR3-TRIF-

IRF3 dependent pathway activation (Petry et al., 2006). 

Recent studies have elucidated the mechanism of IP-10 intracellular signaling 

pathways. Interaction of IP-10 with its receptor CXCR3 results in p38/MAPK and PI3K 

signaling pathway activation (Shen et al., 2006; Shahabuddin et al., 2006). IP-10 can also 

activate cAMP-dependent protein kinases A (PKA) singaling pathways (Jinquan et al., 

2000), and affect cell migration and proliferation through activation of Ras/ERK, Src and 

PI3K/Akt pathways (Bonacchi et al., 2001). In murine macrophages, JAK1, 
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JAK2/STAT1 activation plays an important role in upregulating IP-10 production (Han et 

al., 2010). It can modulate adhesion molecule expression and stimulate monocytes, NK-

cells and T-cell migration. (Kim et al., 2012a). IP-10 is induced in a variety of conditions 

such as psoriasis, fixed drug eruptions, hypersensitivity reactions and encephalomyelitis 

(Luster et al., 1995).  

1.4.4. TNF-α 

TNF-α or tumour necrosis factor-alpha, is an acute phase, pleiotropic cytokine 

involved in systemic inflammation produced mostly by activated macrophages, CD4
+
 T-

cells and NK-cells. Large quantities of TNF- α are produced in response to LPS and other 

bacterial products (Walsh et al., 1991).  TNF- α binds TNF receptors and trimerizes the 

receptors to dissociate inhibitory protein Silencer of Death Domains (SODD) from the 

intraceullar death domain. When the death domain is exposed, adaptor protein TNF-α 

Receptor Death Domain (TRADD) binds to it and initiates downstream pathways such as 

NF-κB pathway, MAPK pathway and caspase 8- dependent death signaling (Chen and 

Goeddel, 2002).  

1.4.5. Interferons 

Interferons (IFN) are proteins with potent anti-viral activity which plays a crucial 

role during early viral response to infections. Type 1 interferons (IFN-α, -β, and -ω) bind 

to the interferon receptors IFN-α R1 and IFN-α R2. Type 2 interferon IFN-γ interacts 

with IFN-γR1 and IFN-γR2. The expression of type 1 intereferon is strictly regulated by 

activation of transcription factors IRF-3, NF-κB and Activating transcription factor 2 
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homerdimerized with c-Jun (ATF-2-cJun) (Yoneyama et al., 2004). IRF-3 deficient cells 

exhibit greatly attenuated type 1 interferon production. IFNs are able to regulate cells of 

both innate and adaptive immunity. Of importance is IFN-γ which activates an extensive 

array of antimicrobial functions of phagocytes and plays an important role in the immune 

response against bacteria, fungi and other common intracellular pathogens. (Trinchieri, 

2003). 

1.5. Macrophage polarization 

Macrophage polarization encompasses the diverse phenotypes of macrophage 

ranging from classical activation categorized at one polar end termed M1 polarization, 

and alternative type of macrophages that appear to be actively producing anti-

inflammatory cytokines termed M2 polarization which is placed at the other end of the 

spectrum. All other intermediary phenotypes based on their cytokine / chemokine profile 

are placed in between. The two diametrically opposite properties of macrophages were 

well documented (Mantovani et al., 2005) but lacked a framework to encompass the 

diverse properties of macrophages depending on its polarization status.  

Classical response by macrophage is termed M1 polarization. M1 macrophages 

produce pro-inflammatory cytokines such as TNF-α, IL-6, IL-12 and IL-1β. There are 

M1 polarization specific surface markers such as CD80 and CD86 (ibid.). The 

importance of M1 polarized macrophages during bacterial infection is evident from mice 

deficient for components of either the interferon gamma or the IL-12 pathway. The mice 

became highly susceptible to Mycobacteria and Salmonella (Jouanguy et al., 1999).   
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While M1 macrophages are capable of recruiting Th1 response with potent 

microbial properties, M2 macrophages support Th2- associated responses, and are 

considered incompetent to eliminate pathogens. M1 polarization is characterized by high 

IL-12 and low IL-10 production while M2 polarization is categorized by low IL-12 and 

high IL-10 production. M1 and M2 macrophages are also segregated by the expression of 

alternative activation markers. There are M2 markers such as arginase-1 which is only 

expressed in M2 macrophages (Mills et al., 2000). 

M2 macrophages are further divided into M2a, M2b, M2c and M2d cells, based 

on the different stimuli it is elicited from (Figure 1.3). M2a and M2b are macrophages 

that exert their immune functions to drive Th2 responses. M2c macrophages play a role 

in immune suppression, and M2d macrophages or tumour associated macrophages (TAM) 

which accumulates at the tumour site due to tumour-derived signals such as macrophage 

colony stimulating factor (M-CSF) and monocyte chemoattractant protein (MCP-1) 

(Martinez et al., 2008).  

While the concept of macrophage polarization is new, it is capable of presenting a 

clear-cut explanation on certain macrophage phenotypes under complex stimuli such as 

live pathogens. For example, some pathogens such as Yersinia enterocolitica are capable 

of programming macrophages into M2 polarization. The pathogen-induced 

reprogrammed macrophages express M2 markers such as arginase-1, and produce M2 

cytokines such as TGFβ and IL-4 in BALB/c mice (Benoit et al., 2008). Other pathogens 

such as chronic Q fever inducing Coxiella burnetii induces macrophages to produce IL-

10, TGFβ and CCL18, thus reprogramming the macrophage into M2 polarization status 

after successful and chronic infection. Moreover, the macrophages do not express M1-
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associated cytokines such as TNF-α, IL-12 and surface expression marker CD80 and 

CCR7, and do not produce nitric oxide (Benoit et al., 2008).  

 

 

 

 

 

 

 

 

Figure 1.3:  M1 and M2 polarization in macrophages. M1 macrophages, or 

macrophages with classical activation response are induced through LPS or 

other microbial products, and induces inflammation through the production 

of pro-inflammatory cytokines and chemokines such as IL-6, IL-12, TNF-α 

and CCL5. Release of reactive oxygen species and nitrogen intermediates 

(ROI and RNI) are also hallmarks of M1 polarization in macrophages. 

Alternatively activated macrophages (M2) are classified into M2a induced 

by IL-4/IL-13, M2b induced by immune complexes and TLR agonists, and 

M2c induced by IL-10 and glucocorticoid hormones, and M2d induced by 

tumour microenvironment (not shown in diagram) (Diagram from Benoit et 

al., 2008) 
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1.6. ANXA1: A calcium and phospholipid binding molecule 

ANXA1 belongs to the annexin superfamily of proteins. Under electron 

microscopy, ANXA1 is seen to form highly organized and symmetric scaffolds that 

consolidate membrane domain complexes. The annexin family is one of the three major 

membranous calcium binding proteins. The other two families binding to calcium are EF-

hand proteins, and the C2-domain proteins (Lim and Pervaiz, 2007). 

 Annexins bind calcium through its signature core domain repeats, and its calcium 

binding face docks onto the membrane when bound to calcium (Figure 1.4). Some 

annexin families (e.g. Annexin-A5) even anchor directly to the hydrocarbon lipid chain 

of the plasma membrane. All members of the annexin family possess homologous repeats 

of 70-80 amino acids which form the core of the protein length that is usually repeated 4 

or 8 times, and represents  more than 80% of the protein (Hunter, 1988).  

ANXA1 in particular exhibits the most pronounced conformational change, i.e. 

the N-terminal domain is usually buried deep inside the core repeats and remains 

inaccessible to any external interaction. Upon binding to calcium ions, the N-terminus is 

pushed out and exposed to the surface for presentation and binding with proteins, such as 

S100A, an EF-hand family of proteins.  ANXA1 and Annexin-2 (ANXA2) are usually 

bound to bilayers of phosphatidylserine (PS)/ phosphatidylcholine (PC) mixtures as 

protein clusters, and also found on endosomal compartments (Gerke and Moss, 2002).  

ANXA1 KO studies have demonstrated that multivesicular endosomes can form 

without ANXA1 but they possess fewer internal vesicles than their wildtype counterparts 

(Gerke et al., 2005).  
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Figure 1.4. Structure of ANXA1. Black spheres denote calcium ions. Upon 

binding calcium, calcium binding face of ANXA1 adheres to the plasma 

membrane (modified from “annexin-1”, from Protein Data Bank, 

www.pdb.org). 

  

The N-terminus determines the uniqueness of the annexins within the annexin 

family. For ANXA1, the N-terminus spans exactly 33 amino acids (Flower et al., 1994), 

and has extensive association with the membrane region of cells, in particular 

phospholipid vesicles (Hoekstra et al., 1993; Wang and Creutz., 1994). Cleavage of 

ANXA1 at N-terminus occurs endogenously through the help of membrane bound 

proteinase 3 (PR3) (Pederzoli-Ribeil  et al., 2010). N-terminus of ANXA1 presented 

 

Calcium ions (Ca
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) 
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exciting avenues of anti-inflammatory research as the N-terminus was sufficient to elicit 

anti-inflammatory properties of its parent protein. A peptidomimetic molecule of the first 

26 amino acids of ANXA1 (Ac2-26) was made to further investigate its anti-

inflammatory effects, and was proven to be anti-inflammatory in an in vivo mouse model 

(Cirino et al., 1993). The N-terminus of ANXA1 is a natural ligand for the activation of 

different receptors in the FPR family (Ernst et al., 2004).  

Intracellular calcium has evolved into a messenger for a diverse range of signals. 

Sensitivity of ANXA1 to Ca
2+

 signals is dependent on the truncation of the N-terminus of 

ANXA1 (Monastyrskaya et al., 2007). The truncated C-terminal end with the core 

annexin repeats on the other hand, upon binding to Ca
2+

 undergoes conformational 

change to aggregate onto the plasma membrane (Rosengarth and Luecke, 2003).  

1.6.1. ANXA1 is a glucocorticoid inducible protein  

ANXA1 was first discovered in the 1970s as the protein responsible for anti-

inflammatory activity of glucocorticoid (GC) treatment through inhibition of 

phospholipase A2 (PLA2) activity, and was named “lipocortin-1” based on its function 

and the source of induction. Later on, the protein was discovered to “annex” (i.e. to bind) 

to cellular membrane in a Ca
2+

 dependent manner, and was renamed “annexin-1” (Lim et 

al., 2007). GCs are anti-inflammatory and immunosuppressive agents used in immune 

associated diseases. In U937 cells, GC drugs such as dexamethasone (DEX) cause 

induction of ANXA1 and a biphasic translocation of ANXA1 from cytosolic onto cell 

membrane regions (Solito et al., 1994), and this observation is also consistently observed 

in periphery and central tissues in vivo (Philips et al., 1997). The stimulation of 
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glucocorticoid receptor causes induction of ANXA1 and its phosphorylation at serine 

residue position 27, and translocates to the membrane with the help of protein kinase C 

(PKC), phosphatidylinositol-3-kinase (PI3K) and MAP kinase activity (Solito et al., 

2003a). It was not known at that time which protein was responsible for the 

phosphorylation of ANXA1 that caused this translocation. It is now known that serine 

residue position 27, 34 and 45 are recognition sites for the kinase PKC, and that 

phosphorylation at position 27 and 45 is essential for the translocation of ANXA1 to the 

membrane and its activity to modulate adrenocorticortrophic hormone (ACTH) 

(McArthur et al., 2009). There is little doubt on how important ANXA1 is as a GC-

induced corticosteroid hormone modulator, as its capacity to control ACTH activity been 

proven in vitro (Taylor et al., 1993) and in vivo (Loxley et al., 1993). The capacity of 

ANXA1 to mediate anti-inflammatory action from GC-based drugs became evident when 

monoclonal antibodies targeting ANXA1 could inhibit inflammation drivers 

prostaglandin E2 (PGE2) and Leukotriene B4 (LTB4) production from peripheral blood 

mononuclear leukocyte (PBML). The inhibitory results were similar to GC drug induced 

such as dexamethasone (DEX) and prednisolone (PRED) inhibition of PBML (Almawi et 

al., 1996). 

1.6.2. ANXA1 as an inhibitor of PLA2 

ANXA1 is well-studied for its capacity to induce corticosteroid dependent 

inhibition of PLA2 activity, thereby preventing generation of arachidonic acid to create 

pro-inflammatory mediator prostaglandin from its precursors diacylglycerols and 

phospholipids (Flower and Blackwell, 1979; Peers and Flower; 1990). It therefore also 

limits substrate availability of arachidonic acid for COX-2 to generate pro-inflammatory 
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prostaglandins such as prostaglandin E2. Hence it is also believed to play a role as 

cyclooxygenase-2 (COX-2) inhibitor. When endogenous levels of ANXA1 is depleted 

through RNA interference, PLA2 activity increases substantially (Solito et al., 1998). The 

route of inhibition which ANXA1 acts upon PLA2 has also been found. ANXA1 forms a 

complex with S100A1 that bind to and inhibits cytosolic PLA2 activity (Sakaguchi and 

Huh et al., 2011). Recently, it was demonstrated that phosphorylation of ANXA1 by 

transient receptor potential cation channel, subfamily M, member 7 (TRPM7) kinase at 

serine residue position 5 (Ser 5) causes S100A1 to dissociate from ANXA1, 

demonstrating the complete regulatory process for ANXA1 in relation to its PLA2 

inhibition activity (Dorovkov et al., 2004; Dorovkov et al., 2011). 

1.6.3. ANXA1 in the inflammatory response  

As ANXA1 is a glucocorticoid inducible anti-inflammatory protein, its anti-

inflammatory role has been extensively studied, but its mechanism of action in other cell 

functions is not well understood. ANXA1 KO mice exhibit lethality to LPS stimulation 

(10mg/kg) within 48 hours while wild-type mice do not (Damazo et al., 2005). ANXA1 

KO mice exhibited an increased expression of pro-inflammatory proteins, including 

COX-2 and cytosolic PLA2 (Roviezzo et al., 2002). In a peritonitis model, ANXA1 KO 

mice exhibit an exaggerated response, i.e. increased granulocyte migration and cytokine 

production (Damazo et al., 2006). Moreover, the absence of ANXA1 in a lung fibrosis 

mouse model demonstrated pathophysiological relevance for endogenous ANXA1 in 

lung inflammation (Damazo et al., 2011), but the mechanism behind the inflammatory 

activation is unclear.  
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In a recent study, regulation of complement factor was demonstrated by ANXA1. 

Peritoneal lavage of ANXA1 KO mice exhibited more than fifteen-fold increase in C5a 

production, than its wild-type counterparts after treatment with zymosan (Dalli et al., 

2010). 

ANXA1 is found in bronchoalveolar lavage fluid from asthmatics. ANXA1 

deficient mice exhibit airway hyperresponsiveness in an asthma model. Hence it is 

believed to be an important regulator in the development of allergic disease (Ng et al., 

2011). 

In cystic fibrosis knockout mice (cftr -/-), ANXA1 was not detected in lungs and 

pancreas. Interestingly, cystic fibrosis patients also exhibit down-regulated ANXA1 

levels, and is believed to contribute to worsening of clinical diagnosis during cystic 

fibrosis (Bensalem et al., 2005). A recent study has found that reduced levels of ANXA1 

is partially responsible for cystic fibrosis (Dalli et al., 2010),but no mechanistic study 

was carried out to understand the relationship between cystic fibrosis and ANXA1 in 

detail. 

1.6.4. ANXA1 in signaling 

ANXA1 is also believed to be involved in ubiquitination, as it was found to be a 

substrate for E6AP-mediated ubiquitination, which is known to mediate ubiquitylation 

and degradation of p53. Domain III of ANXA1 can interact with E6AP and induce its 

ubqiuitylation in a calcium-dependent manner (Shimoji et al., 2009) 
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In RAW macrophages, ANXA1 can specifically modulate ERK signaling, i.e. 

overexpression of ANXA1 causes constitutive activation of ERK 1/2 kinase (Alldridge et 

al., 1999).  

1.6.5. ANXA1 regulates cell migration 

Neutrophils bind to endothelium and exhibit reduced migration when exposed to 

zymosan, a glucan with repeating glucose units connected by β-1,3-glycosidic linkages 

prepared from yeast cell wall. ANXA1 N-terminal peptide (Ac2-26) and recombinant 

human ANXA1 protein induced detachment and migration of neutrophils that were 

exposed to zymosan (Lim et al., 1998).   

ANXA1 is also capable of directly affecting cell migration. In epithelial cells, the 

phosphorylation of ANXA1 is directed by LIM kinases upon induction by VEGF, 

causing enhanced cell migration (Côté et al., 2010) 

Another study proposes a more specific mechanism involving ANXA1. 

Overexpression of ANXA1 alone can abrogate the decrease in cell migration when 

microRNA miR-196a expression is increased. Moreover, the study suggests that ANXA1 

regulates cell migration by establishing the formation of lamellipodia at the leading edge 

of the cell (Pin et al., 2012).  

1.6.6. Other interactions with ANXA1  

Despite extensive research on the molecular functions of ANXA1, there are still 

several associations which are highlighted by recent research but no further investigations 
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were done to date. While the interactions may have been left behind as it may not be 

feasible to research at this stage of scientific discovery, there remains an important trace 

for future discoveries and understanding of ANXA1 as a regulator of homeostasis.  

Another unknown property of ANXA1 is its nuclear localization in cancer cells. 

In oral squamous cell carcinoma, ANXA1 is found to be predominantly translocated into 

the nucleus, upon exposure to human growth factor (HGF). Pre-treatment with 

LY294002 PI3K inhibitor can inhibit nuclear translocation of ANXA1 substantially (88.3% 

inhibition) (Lin et al., 2008). 

ANXA1 is also found to interact and bind to EGF receptors that are internalized 

(Radke et al., 2004), but no examination relating ANXA1 to EGF-dependent pathways 

were done.   

ANXA1 is also associated with pain function. It was highly upregulated (12-fold) 

during tissue injury and acute pain (Wang et al., 2009). But no further study detailing this 

observation was carried out.  

Another study has identified ANXA1 to be important in cerebral ischemia, where 

ANXA1 levels were upregulated in polymorphonuclear cells after stroke, and is believed 

to be a key indicator in the severity of cerebral ischemia (Joseph et al., 2012). It was 

observed in this study that prolonged gaseous hypothermia downregulates ANXA1. 

There are other lesser-known interacting partners of ANXA1 which are available 

in protein databases that documents large-scale protein-protein interaction studies. The 

interacting partners from the interaction studies have been compiled into a table with the 

help of major protein databases in the world (IntAct, GRID, UniProt). Proteins with no 
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known function were not included into the table for a concise consolidation of 

information. Reliable molecular interaction techniques such as anti-bait 

immunoprecipitation (Ewing et al., 2007), Tandem Affinity Purification (Bouwmeester et 

al., 2004) or molecular sieving method (Bernhard et al., 2004) are used to establish 

interactions, and is processed downstream with the latest mass-spectrometry technique 

(LC-ESI-MS/MS). Hence they are not putative interacting partners; they are 

experimentally established ANXA1 interacting partners ready for direct research efforts. 

Some of the interactions are already definitive interacting partners for ANXA1, such as 

S100A11. This information will provide ready-access to a rich source of interaction 

studies ready for future experiments on ANXA1 (Appendix A).  

1.6.7. Implication of ANXA1 in disease 

ANXA1 is involved in diseases from diverse backgrounds, cancer in particular. 

ANXA1 is upregulated in breast cancer (Cao et al., 2008), oral squamous cell carcinoma 

(Faria et al., 2010), urinary bladder urothelial carcinoma (Li et al., 2010) and down 

regulated in laryngeal squamous cell carcinoma (Silistino-Souza et al., 2007), cervical 

cancer (Wang et al., 2008), gastric cancer (Yu et al., 2008), and prostate cancer 

(D’Acunto et al., 2010). ANXA1 is also implicated in lung squamous cell carcinoma 

(Nan et al., 2009), and treatment of leukaemia (Falini et al., 2004).  

ANXA1 is also involved in autoimmune diseases. Auto-antibodies for ANXA1 

was detected in patients with systemic lupus erythematosus (Hiraata et al., 1981) 

Parkinson’s disease (Knott et al., 2000) and Crohn’s disease (Beattie et al., 1995). 

ANXA1 is highly expressed in T cells from rheumatoid arthritis patients (D’Acquisto et 
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al., 2008) and was identified in lesions of multiple sclerosis plaque and correlated with 

the degree of disease (Probst-Cousin et al., 2002). 

1.6.8. ANXA1 and neutrophils 

Neutrophils (or PMN) are the most abundant circulating leukocytes in the human 

body.  They are considered the first line of response and defence during pathological 

insult by bacteria and fungus. Reduced count of neutrophil during bacterial and fungal 

infection is known as neutropenia, and is considered a good indication of whether 

bacterial or fungal pathogenesis has already overwhelmed the host immune response. 

Neutrophils are armed with a myriad of antimicrobial agents such as reactive oxygen 

species (ROS) producing Neutrophil. The accumulation of neutrophils is one of the main 

pathological markers during lung injury or disease, chelators of vitamins and minerals, 

and also welds enzymes capable of degrading microbial proteins and cell wall 

components, but is detrimental to the neutrophil producing host tissues.  

Immune-mediated damage is caused by uncontrolled or over-activated neutrophil 

activity, especially pronounced in autoimmune diseases (Németh and Mocsai, 2012).  

Neutrophils are major players during inflammation in lung injuries and insults (Opal, 

2010; Da Cunha et al., 2012). ANXA1 and neutrophil activity is closely related in many 

ways, and is most extensively studied among leukocytes. This is likely because ANXA1 

constitutes close to 2-4% of protein found within the gelatinase granules in the 

cytoplasmic portion within neutrophils, and its expression is found to be lower in 

extravesated neutrophils (Perretti and Flower, 2004) They are also known to release 

ANXA1 along with gelatinase granules as exogenous ANXA1.   
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Ac2-26 plays a role in potent inhibition of PMN accumulation and degranulation 

process, and the release of free arachidonic acid, a biomarker of PMN activation (Perretti 

et al., 1995). Treatment of GC DEX in vivo inhibits PMN accumulation at inflammatory 

sites via IL-1 signaling, but this anti-inflammatory effect can be abrogated completely by 

immunization of mice with specific antibodies against ANXA1. While the full length 

protein or the anti-inflammatory Ac2-26 mimetic peptide does not activate Erk, calpain-1 

dependent, self-secreted form of ANXA1 induces ERK 1/2 activation in neutrophils 

(Williams et al., 2010). Therefore the role of ANXA1 in neutrophils during inflammation 

may be dependent on the site of cleavage.  ANXA1 can also act as a ligand to regulate 

neutrophil extravasation through binding with Formyl peptide receptors (FPR), which are 

widely known to be involved in binding and detecting bacterial N-formyl peptides 

(Walther et al., 2000). ANXA1 was also demonstrated to bind strongly to lipoxin A(4) 

receptor of the FPR family, and can halt polymorphonuclear neutrophil (PMN) 

diapedesis (Peretti et al., 2002). Monocytes express the receptors of all three FPR 

families which ANXA1 is capable of binding as an N-terminal peptide, which reduces 

the sensitivity of  monocyte response to bacterial peptides (Ernst et al., 2004). ANXA1 

also appears to play a critical role in PMNs to modulate responses towards hormones. 

Premenopausal women exhibit higher expression of ANXA1 on the surface of PMNs 

than males. It was found that ANXA1 dependent mechanism was responsible for the 

effect of estrogen on PMNs (Nadkarni et al., 2011).  

Neutrophils are capable of developing membrane tubulovesicular extensions 

(TVE) which attaches to other cells and invading bacteria. The physiological significance 

of TVE has been recently understood to be bactericidal secretory in function. 
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Interestingly, disruption of TVE releases ANXA1. It is not known whether ANXA1 is 

part of the bactericidal mixture or is required for the formation of extensions such as 

TVEs (Galkina et al., 2012).  

1.6.9. ANXA1 in T-cells and dendritic cells  

Dendritic cells (DC) and T-cells are the other key mediators of inflammation, 

which transfers innate immune response to the adaptive immune response. DCs are 

capable of priming a T-cell response, and T-cells are involved in producing a Th-1 or Th-

2 response. Generally, a Th-1 response produces pro-inflammatory interferon-gamma 

while a Th-2 response produces IL-4, IL-5, IL-10 and IL-13, which results in an anti-

inflammatory effect. Whether the immune response skews towards a pro- or anti- 

inflammatory response greatly depends on the signal of the immune cells. When T cells 

were exposed to exogenous ANXA1 peptide, it was found that ANXA1 is a novel 

regulator of T-cell receptor (TCR) signaling via FPRL-1, as it activates both ERK/MAPK 

and Akt/PKB pathways, causing an increase in  T-cell proliferation, differentiation 

(CD25 and CD69 expression) and IL-2 production (D’Acquisto et al., 2007).  

ANXA1 KO bone marrow derived dendritic cells exhibit an increased number of 

CD11c
+
 cells with high levels of maturation markers such as CD40, CD54 and CD80. 

The dendritic cells derived from ANXA1 KO mice also lost some of its antigen uptake 

capacity compared to the wild-type derived dendritic cells (Huggins et al., 2009). 

ANXA1 KO derived dendritic cells exhibit a downregulation of maturation markers, 

decreased migratory activity in vivo, and decreased pro-inflammatory cytokines such as 

IL-1 β, TNF-α and IL-12 production when compared to wild-type derived dendritic cells 
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upon treatment with LPS. Furthermore, ANXA1 KO derived dendritic cells also exhibit 

impaired NF-κB/DNA binding activity, and substantially decreased ERK 1/2 and Akt 

pathway activation after treatment with LPS compared to wild-type derived dendritic 

cells. These results point to the importance of ANXA1 expression in the function of 

dendritic cells, and may indicate the relevance of ANXA1 in the modulation of adaptive 

immune response during pathogen-induced T-cell-driven immune diseases.  

1.6.10. ANXA1 and macrophages 

ANXA1 is expressed by different types of tissue-specific macrophages such as 

alveolar macrophages (Ambrose et al., 1992), peritoneal macrophages (Peers et al., 1993), 

synovial macrophages (Yang et al., 1998) and microglial cells (Minghetti et al., 1999). 

Macrophages express ANXA1 regardless of the tissue-specific nature of macrophages 

suggesting that ANXA1 plays a general role in macrophages and its expression is not a 

tissue-type specific phenotype (Kamal et al., 2005).  

Exogenous application of ANXA1 inhibits proliferation in RAW macrophage 

cells (Alldridge et al., 1999).  Clones with increased ANXA1 levels exhibit constitutive 

activation of MAPK/ERK pathway (Mansour et al., 1994). p38 and JNK activities 

remained unchanged. ANXA1 may initiate such control through association with 

upstream adaptor protein Grb 2. When a membrane-permeable, plasmid-based expression 

of ANXA1 named Tat-ANX1 is expressed in Raw 264.7 cells, inflammatory cytokine 

and enzyme production are inhibited, and was found to be blocking both NF-κB and 

MAPK pathways (Lee et al., 2011). When ANXA1 expression is upregulated in RAW 

264.7 macrophages and treated with LPS, upregulation of iNOS protein and activity was 
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observed (Smyth et al., 2006). This indicates that ANXA1 can modulate NO levels 

during LPS treatment. Nitric oxide generation by macrophages is part of the innate 

immune system, and is triggered by TLR agonists such as LPS. Over-expression of 

inducible nitric oxide gene (iNOS) occurs early in sepsis (Lange et al., 2010; Yin et al., 

2007). When ANXA1 is applied exogenously to J774 murine macrophages, nitric oxide 

generation by macrophages was inhibited, indicating that ANXA1 may play a role in 

nitric oxide synthesis (Ferlazzo et al., 2003). Moroever, exogenous application of 

ANXA1 can also increase IL-10 mRNA levels while IL-12 mRNA levels decrease. 

ANXA1 and its peptide derivatives can also affect macrophage phagocytosis of 

apoptotic cells (Scannell et al., 2007), such as that of apoptotic neutrophils. Specifically, 

in ANXA1 KO macrophages, phagocytosis of zymosan, Neisseria meningitides or sheep 

red blood cells is significantly impaired when compared to wild-type macrophages with a 

concordant increase in IL-6 and TNF-α production (Yona et al., 2006). 

In response to LPS administration, ANXA1 KO bone marrow derived 

macrophages exhibit greater IL-6 and TNF-α production (Yang et al., 2009).  This 

presents a direct association between macrophage cytokine production and  ANXA1 

levels. ANXA1 KO macrophages produce more pro-inflammatory cytokines. Consistent 

with this result, an in vivo study which examined peritoneal, mesenteric and alveolar 

macrophages using experimental endotoxemia in ANXA1 KO mice also exhibited 

increased IL-6 and TNF-α production in blood serum after 24 hours when compared to 

wild-type mice (Damazo et al., 2005).   

The increased production of pro-inflammatory cytokines (IL-6, TNF-α and ERK 

activation) in ANXA1 KO macrophages is in direct contrast to decreased pro-



37 
 

inflammatory cytokines (IL-6, TNF-α and ERK activation) in ANXA1 KO dendritic cells. 

Moreover, several studies mentioned earlier have demonstrated that decreased ANXA1 

levels cause impaired phagocytic activity. It is unclear how ANXA1 modulates pro-

inflammatory activity when exposed to TLR agonists.  

Therefore the aims of this PhD thesis are: 

1.   To determine the TLR signaling mechanism which ANXA1 modulates when 

exposed to TLR agonists using peritoneal macrophages derived from mice 

2.    To characterise immune response of ANXA1 KO mice and monocyte derived 

macrophages after TLR agonist activation. 

3.    To identify the key components in TLR signaling mechanism which ANXA1 

regulates directly, and propose an overarching theme that characterises macrophages in 

ANXA1 KO mice. 
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2.1       Materials 

2.1.1.  Animals 

All experimental procedures were approved by the Animal Ethics 

Committee of National University of Singapore and carried out in accordance 

with established International Guiding Principles for Animal Research and 

with the guidelines of the National Advisory Committee for Laboratory 

Animal Research (NACLAR), Singapore.Male and female BALB/c mice (8 to 

12 weeks-old) were fed with standard laboratory chow and water ad libitum. 

The protocol (Protocol number 011/08) was approved by the Institutional 

Animal Care and Use Committee (IACUC) of the National University of 

Singapore. 

2.1.2.     Media and buffers 

2.1.2.1.     PBS  

PBS buffer was commercially obtained from 1st base (Singapore) as a 

10X stock, ultrapure grade. The 10X stock consists of 137mM NaCl, 2.7mM 

KCl and 10mM phosphate buffer. The stock was diluted 9 parts with sterile 

water to give 1X PBS. pH of the buffer was 7.4. 

2.1.2.2.     FACS buffer 

FACS buffer consists of 1X PBS supplemented with 1% FBS and 

5mM EDTA. 0.05% sodium azide was added as a preservative to permit use 
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and storage under nonsterile conditions. The pH of the buffer was adjusted to 

7.4. 

2.1.2.3.     Red Blood Cell (RBC) Lysis Buffer  

The following components were added to make a 10X RBC lysis stock 

solution 

a) Ammonium Chloride 8.3g 

b) Sodium Bicarbonate 0.84g 

c) EDTA 0.03g 

The components were dissolved in water, the pH adjusted to 7.4, filter 

sterilised and made up to 100ml. For use as a 1X solution, the 10X stock 

solution was diluted with water. 

2.1.2.4.    Wash buffer for Western Blotting (TBST) 

Wash buffer for Western Blotting was 1X Tris-Buffered Saline (TBS) 

with 0.5% v/v Tween-20, pH adjusted to 7.2 to 7.4.  

2.1.2.5.    Buffer for ELISA 

Wash buffer for ELISA was 1X PBS with 0.5% v/v Tween-20, pH 

adjusted to 7.2 to 7.4. Blocking buffer was 1X PBS with 1% w/v BSA, unless 

or otherwise stated by the ELISA kit. 
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2.1.2.6.      Complete DMEM for cell culture 

Complete DMEM was prepared using Dulbecco’s Modified Eagle 

Medium with L-Glutamine supplemented with 10% v/v FBS, heat inactivated 

for 30 mins at 55
o
C. 

2.1.2.7.    Complete DMEM for Bone Marrow Macrophages 

Complete DMEM was prepared using Dulbecco’s Modified Eagle 

Medium supplemented with 10% v/v FBS, heat inactivated for 30 mins at 

55
o
C, 20% v/v L929 conditioned media, and 50μM of β-Mercaptotethanol 

with L-Glutamine 

2.1.2.8.     L929 Conditioned Media 

L929 cells are maintained in T-75 filter cap flasks in DMEM + 1% 

penstrep + 10% FBS at 7.5% CO2 incubator. The FBS used was the same as 

the one used to cultivate bone marrow derived macrophages.  

Cells were split from 1 T-75 flask into 5 T-75 flasks when it was more 

than 90% confluent, using trypsin. The culture was incubated in CO2 incubator 

overnight, until suitable confluency was reached. When the 5 T-75 flasks were 

more than 90% confluent, the cells trypsinised, and seeded equally into 13 T-

175 flasks, each with 50 ml of DMEM media with 10% FBS.  When these 13 

T-175 flasks were also confluent the cells were incubated for an additional two 

days to condition the media. The supernatant of all 13 T-175 flaskswere 

filtered to remove all trace of cells from the supernatant. The filtered 

supernatant was then aliquoted into 50 ml Falcon tubes and stored in -20 
o
C 

freezer until use. 
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2.1.3.    Reagents 

The following reagents were used in this study: 

 

Reagent Company  Reagent Type 

Phosphate buffer saline 

(PBS) 

1st Base (Singapore) Buffer 

Tris-buffered saline (TBS) 1st Base (Singapore) Buffer 

Fetal bovine serum (FBS) Hyclone (Logan, UT, 

USA) 

Cell culture additive 

L- glutamine Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Cell culture additive 

Penicillin-streptomycin 

(Pen-strep) 

Gibco®-Invitrogen 

(Carksbad, CA, 

U.S.A.) 

Cell culture additive 

Sodium pyruvate  Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Cell culture additive 

Dulbecco's Modified 

Eagle's Medium (DMEM) 

Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Cell culture media 

Trypsin Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Cell detachment  

Ethylenediaminetetraacetic 

acid (EDTA) 

Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Chelating agent 

Bovine serum albumin 

(BSA) 

Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Confocal blocking 

buffer 

Triton-X  Detergent 

Tween-20  Detergent 

Thioglycollate broth, 4% Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Elicitation of 

macrophages for 

peritoneal lavage 

Formalin solution, neutral 

buffered, 10% 

Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Fixative 

4',6-diamidino-2-

phenylindole (DAPI) 

Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Florescent probe 

1M Nitrile Standard (0.1M 

sodium nitrite in water) 

Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Griess reagent 

NED Solution (0.1% N-1-

napthylethylenediamine 

dihydrochloride in water) 

Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Griess reagent 

Sulfanilamide Solution 

(1% sulfanilamide in 5% 

phosphoric 

acid) 

Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Griess reagent 

BAY-11 (BAY-11-7082)  Cayman Chemicals  Inhibitor drug 
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(Ann Arbor, MI, 

U.S.A.) 

ProLong® Gold Antifade 

Reagent 

Invitrogen (Carksbad, 

CA, U.S.A.) 

Mounting media for 

confocal microscopy 

Prolong Gold Antifade 

Reagent 

Molecular Probes, 

Invitrogen (Carksbad, 

CA, U.S.A.) 

Mounting media for 

microscopy 

100 bp DNA ladder Promega (Fitchburg, 

WI, U.S.A) 

PCR product 

quantification reagent 

25 mM MgCl2  Promega (Fitchburg, 

WI, U.S.A) 

PCR product 

quantification reagent 

GoTaq® Flexi DNA 

Polymerase 

Promega (Fitchburg, 

WI, U.S.A) 

PCR product 

quantification reagent 

GoTaq® Flexi DNA 

Polymerase  Buffer 

Promega (Fitchburg, 

WI, U.S.A) 

PCR product 

quantification reagent 

15-deoxy-∆12,14-

Prostaglandin J2 (PGJ2) 

Cayman Chemicals 

(Ann Arbor, MI, 

U.S.A.) 

PPAR-γ agonist 

Troglitazone Selleck Chemicals 

(Houston, TX, U.S.A.) 

PPAR-γ agonist 

GW9662 Cayman Chemicals 

(Ann Arbor, MI, 

U.S.A.) 

PPAR-γ antagonist 

PCR Primers (Real-time 

and RT-PCR) 

1st Base (Singapore) Primer DNA 

Bradford protein assay dye 

reagent 

Bio-Rad (Hercules, 

CA, U.S.A.) 

Protein sample 

quantification 

BSA Standards Thermo-Scientific 

(Hudson, NH, U.S.A.) 

Protein sample 

quantification 

SYBR Green Master Mix Applied Biosystems 

(Foster City, CA, 

U.S.A.) 

Real-time PCR 

reagent 

β-Mercaptotethanol Merck (Whitehouse 

Station, NJ, U.S.A.) 

Reducing agent 

10mM dNTP mix Promega (Fitchburg, 

WI, U.S.A) 

Reverse transcription 

reagent 

5X M-MLV reverse 

transcriptase buffer 

Promega (Fitchburg, 

WI, U.S.A) 

Reverse transcription 

reagent 

M-MLV reverse 

transcriptase enzyme  

Promega (Fitchburg, 

WI, U.S.A) 

Reverse transcription 

reagent 

Oligo dT Promega (Fitchburg, 

WI, U.S.A) 

Reverse transcription 

reagent 

RNasin Plus RNase 

inhibitor  

Promega (Fitchburg, 

WI, U.S.A) 

Reverse transcription 

reagent 

Chloroform Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

RNA extraction 

Ethanol Merck (Whitehouse 

Station, NJ) 

RNA extraction 
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Isopropanol QRёc (New Zealand) RNA extraction 

TRIZOL® Invitrogen (Carksbad, 

CA, U.S.A.) 

RNA extraction 

Ammonium Chloride Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Salt 

Sodium Bicarbonate Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Salt 

Methanol Merck (Whitehouse 

Station, NJ) 

Solvent 

CpG 1826 

oligodeoxynucleotide 

InvivoGen (San Diego, 

CA, U.S.A.) 

TLR agonist 

Lipopolysaccharide (LPS) Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

TLR agonist 

Poly (I:C) InvivoGen  (San 

Diego, CA, U.S.A.) 

TLR agonist 

Zymosan Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

TLR agonist 

Zymosan A 

Saccharomyces cerevisiae 

Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

TLR agonist 

Nitrocellulose membranes Bio-Rad (Hercules, 

CA, U.S.A.) 

Western blotting 

SuperSignal West 

Pico Chemiluminescent 

Substrate 

Thermo-Scientific 

(Hudson, NH, U.S.A.) 

Western blotting 

CL-XPosure Film  Thermo-Scientific 

(Hudson, NH, U.S.A.) 

X-ray film for 

Western Blotting 

Table 1: List of reagents used in this study. 

  

Note: 15-deoxy-∆12,14-Prostaglandin J2 (PGJ2) and Troglitazone were kindly 

provided by Dr Alan Premkumar’s lab. 

 

 

2.1.4.    Antibodies 

The following antibodies were used in this study: 

Name of antibody Used for Company 

Rabbit anti- IRF-3 Immunofluorescence 

staining for confocal 

studies 

Santa Cruz 

Biotechnology Inc.  

(Santa Cruz, CA, 

U.S.A.) 

Rabbit anti- NF-κB Immunofluorescence Cell Signaling 
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staining for confocal 

studies 

Techonlogy Inc 

(Danvers, MA, U.S.A) 

Rabbit anti- STAT-1 Western Blotting Cell Signaling 

Techonlogy Inc 

(Danvers, MA, U.S.A) 

Rabbit anti- phospho 

STAT-1 (Tyr701) 

Western Blotting Cell Signaling 

Techonlogy Inc 

(Danvers, MA, U.S.A) 

Rabbit anti-RIG-I Immunofluorescence 

staining for Duolink® 

Santa Cruz 

Biotechnology Inc.  

(Santa Cruz, CA, 

U.S.A.) 

Anti-Rabbit IgG (whole 

molecule)–Peroxidase 

antibody produced in 

goat 

Western Blotting Sigma-Aldrich Co (St. 

Louis, MO, U.S.A.) 

Alexaflor 488 anti- rabbit 

IgG 

Immunofluorescence 

staining for confocal 

studies 

Invitrogen 

(Carksbad, CA, U.S.A.) 

Alexaflor 633 anti- rabbit 

IgG 

Immunofluorescence 

staining for confocal 

studies 

Invitrogen 

(Carksbad, CA, U.S.A.) 

Table 2: List of antibodies used in this study. 

2.1.5.    ELISA kits 

The following ELISA kits were used in this study: 

Name of ELISA kit Cross-reactivity  Company 

Murine IL-12 Standard 

ELISA Development Kit 

Mouse IL-12 p40, 

IL-23 p40, IL-12 p70 

Peprotech Inc. 

(Rocky Hill, NJ, U.S.A) 

Mouse TNF-α ELISA 

Ready-Set-Go!®  

No significant cross-

reactivity, including 

species cross-

reactivity 

Ebioscience Inc. 

(San Diego, CA, U.S.A) 

Mouse IFN-α ELISA 

Ready-Set-Go!® 

No significant cross-

reactivity, including 

species cross-

reactivity 

Ebioscience Inc. 

(San Diego, CA, U.S.A) 

Mouse IFN-β ELISA 

Ready-Set-Go!® 

No significant cross-

reactivity, including 

species cross-

reactivity 

Ebioscience Inc. 

(San Diego, CA, U.S.A) 

Mouse IFN-γ ELISA 

Ready-Set-Go!® 

No significant cross-

reactivity, including 

species cross-

Ebioscience Inc. 

(San Diego, CA, U.S.A) 
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reactivity 

Mouse IL-6 ELISA 

MAX™ Standard 

Rat IL-6 BioLegend, Inc.  

(San Diego, CA, U.S.A) 

Quantikine ® ELISA 

Mouse CXCL10/IP-10 

Immunoassay 

No significant cross-

reactivity, including 

species cross-

reactivity 

R&D Systems 

(Minneapolis, MN, 

U.S.A) 

Table 3: List of ELISA kits used for this study 

2.1.6.    Primers 

The following primers were used in this study: 

Primer Name Sequence  Company 

Mouse IL-6 

(Forward) 

5’-GGG ACT GAT GCT GGT GAC 

AA-3’ 

1
st
 Base 

(Singapore) 

Mouse IL-6 

(Reverse) 

5’-TCC ACG ATT TCC CAG AGA 

ACA-3’ 

1
st
 Base 

(Singapore) 

 Mouse IL-12 

p40 

(Forward) 

5’-GGA AGC ACG GCA GCA GAA 

TA-3’ 

1
st
 Base 

(Singapore) 

Mouse IL-12 

p40 

(Reverse) 

5’-AAC TTG AGG GAG AAG TAG 

GAA TGG-3’ 

1
st
 Base 

(Singapore) 

Mouse β-

actin 

(Forward) 

5’-CTT AGG AA TGC CTC TGG GAG 

GTC C-3’ 

1
st
 Base 

(Singapore) 

Mouse β-

actin 

(Reverse) 

5’-GCA GAC GCG AGG AAG GAG-3’ 1
st
 Base 

(Singapore) 

Mouse 

FIZZ1 

(Forward) 

5’-GGC CCA TCT GTT CAT AGT CT-

3’ 

1
st
 Base 

(Singapore) 

Mouse 

FIZZ1 

(Reverse) 

5’-CCC AGG ATG CCA ACT TTG 

AA-3’ 

1
st
 Base 

(Singapore) 

Mouse 

Arginase-1 

(Forward) 

5’-GCT GTC TTC CCA AGA GTT 

GGG-3’ 

1
st
 Base 

(Singapore) 

Mouse 

Arginase-1 

(Reverse) 

5’-ATG GAA GAG ACC TTC AGC 

TAC-3’ 

1
st
 Base 

(Singapore) 

Mouse TNF-

α (Forward) 

5’-GGC AAG GAT GAG CCT TTT 

AGG-3’ 

1
st
 Base 

(Singapore) 

Mouse TNF- 5’-TTG GTT TGG GAG GAA AGG G- 1
st
 Base 
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α (Reverse) 3’ (Singapore) 

Mouse IP-10 

(Forward) 

5’-GGA CGG TCC GCT GCA A-3’ 1
st
 Base 

(Singapore) 

Mouse IP-10 

(Reverse) 

5’-GCT TCC CTA TGG CCC TCA TT-

3’ 

1
st
 Base 

(Singapore) 

Table 4: List of primers used in this study 

2.2.       Methods 

2.2.1.     Animal Derived Cell Techniques 

2.2.1.1   Macrophage Recruitment using Thioglycollate  

Mice were injected with 3 ml of 4% thioglycollate broth directly into 

the intraperitoneal cavity using a 27 gauge needle. The mice were harvested 

after three days for macrophages in peritoneal cavity by peritoneal lavage. 

2.2.1.2.   Peritoneal lavage 

Peritoneal lavage was done on mice with the intent of flushing out peritoneal 

fluid from the mice. Euthanized mice were first sterilized in a beaker with 70% 

ethanol, then placed in the tissue culture hood immediately. Small incision was 

made to expose intraperitoneal cavity. Ice cold 1X PBS (5 ml) was injected 

into the mouse peritoneal cavity in the lower abdominal area to wash (lavage) 

the intraperitoneal cavity with PBS. Scissor was used to create a small opening 

in the peritoneal cavity for the extraction of peritoneal fluid using sterile 

pasteur pipettes. The cell suspension collected was then pooled with three 

other mice with the same genotype and experimental conditions before cell 

count was done. For peritoneal macrophages cell count, cells were first plated 
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for at least 4 h and only adherent cells were considered peritoneal 

macrophages.  

2.2.1.3.      Splenic B Cell isolation  

Splenic cells were obtained by mashing the spleens over 70uM mesh 

filters . The single cell suspension obtained spun at 3,000 rpm for 5 min and 

the cell pellet was resuspended at a concentration of 1 x 10
8
 cells/ml. EasySep 

Mouse B Cell Enrichment Kit (Stemcell Technologies, Vancouver, B.C.) was 

used thereafter, according to manufacturer’s protocol.  

2.2.1.4      Bone Marrow Derived Macrophages 

8-12 week old mice are euthanized and hind limbs (femur and tibia) 

were removed and placed into a small petri dish with sterile tweezers. Muscles 

attached to bones were removed using a guaze and the bones were  transferred 

to a second petri dish containing 70% ethanol for one minute and then 

transferred to a third petri dish containing DMEM media. The two ends of 

each bones were cut just off at the joint to expose the bone marrow while 

minimizing loss. The bone marrow was flushed out into a 50 ml Falcon tube 

by inserting a 26-gauge needle attached to a 5 ml syringe filled with DMEM 

media at the ends of the cut bone. Flushing was done until the bone turns from 

red to white, indicating that all the marrow has been expelled. The collected 

bone marrow suspended in DMEM media was then passed through a 70 um 

cell strainer (BD, Franklin Lakes, NJ, U.S.A.), and then 300g for 10mins at 

4degrees  Cell pellet collected was then resuspended in 1 ml of red blood cell 

lysis buffer and incubated on  ice for 5 min, and then diluted with 
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approximately 6 ml of DMEM media before centrifuging at 2,000 rpm for 10 

min. The collected cell pellet was white as there werr no red blood cells 

present in the cell pellet. The cells are then counted and seeded onto either 24-

well plate or 10 cm plate with L929 conditioned media (L cell media), and 

incubated for seven days. In between the seven days, on the third day, an 

additional and equivolume of L929 conditioned media was added to the tissue 

culture plate. On the seventh day of incubation, the cells are ready for 

experiment after 1X wash with plain DMEM media. 70% of the Cells derived 

from this technique have been shown to be F4/80
+
 ,which is a macrophage 

specific surface marker as evaluated  by flow cytometry, on the seventh day. 

2.2.3.        Cell culture techniques 

2.2.3.1.     Cell culture 

All cell cultures were done in 37 
o
C incubator with CO2 injection 

maintained at 5% in a CO2 cell culture incubator (Thermo Scientific Steri-

Cycle® CO2 incubator Model 381). Cells were observed for changes in 

morphology, adhesion to cell culture surface and confluency every day. 

2.2.3.2.     Trypsinization 

Flask or 10 cm plates with strongly adherent cells are ideal for 

trypsinization. First, supernatant was aspirated and the surface (flask or 10 cm 

plate) was washed once with 1X PBS. Thereafter, 1~3ml of 1X trypsin was 

added to the surface of adherent cells. The surface (flask or 10 cm plate) was 

then placed in 37 
o
C incubator for one min, and then tapped lightly on the side 

of the surface to dislodge the cells from surface. Full media (e.g. DMEM with 
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10% FBS added) was added at 1:1 volume of trypsin to neutralize 

trypsinization. Cells are then spun down at 3000 rpm for 5 mins and 

supernatant was removed before suspending the pellet with the appropriate 

media for the next batch of cell culture. 

2.2.4.         Bacterial co-culture studies 

Cells were co-cultured with log-phase culture of E. coli at the required 

bacteria-to-cell ratio in antibiotics-free medium using optical densitometry. 

Mid-log phase bacteria were prepared by inoculating 250 µl overnight culture 

into 5 ml Luria-Bertani (LB) broth and allowed to grow for 2 h with constant 

agitation. Bacteria and cells were both incubated for 24 hours and supernatant 

was recovered by filtering through 0.25 um sterile filters. 

2.2.5.         Cell stimulation 

TLR agonists used in the experiments and their concentrations, unless 

stated otherwise are: LPS (1 µg/ml), CpG 1826 (1 uM), poly I:C (50 ug/ml). 

Treatment condition for macrophage polarization to M1 (20 ng/ml of IL-4 

with 100 ng/ml of LPS), were based on macrophage polarization studies done 

by Mantovani et al., 2004. Macrophages were polarized for at least 18 hours 

before treatment with LPS or IFN-γ. 
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2.2.6.        Microscopy 

2.2.6.1.      Confocal microscopy 

Cells for confocal study were seeded on round coverslips placed within 

wells of a 24-well plate. After completion of experimental treatment, wells 

containing cells adherent on round coverslips were washed twice with 1X PBS 

and suspended in 200 ul of 10% neutral buffered formalin at 4
o
C  for 30 min. 

Staining of samples for confocal were done in the following manner: 

On a new 24 well tissue culture plate, 500 ul of 1X PBS was added 

onto the same number of wells as the number of coverslips to stain for 

confocal, and one coverslip was placed into one well with 500 ul 1X PBS. The 

1X PBS was aspirated using a glass micropipette attached to a vacuum pump 

and 50 mM of ammonium chloride solution made with 1X PBS was added 

onto each well, and shaken in belly shaker for 2 min at 90 rpm. Thereafter the 

well was washed with 1X PBS twice for 2 min to remove any trace of 

ammonium chloride. Next, the sample was placed in 1X PBS solution with 0.5% 

Triton-X, and shaken in belly shaker for 30 min at 90 rpm.  

The solution was then aspirated and replaced with 500 ul of blocking 

buffer (2% BSA, 2% FBS in 1X PBS, passed through 20µm sterile filter) and 

placed on belly shaker for 30 min at 90 rpm. The blocking buffer was 

aspirated and primary antibody (1:200 dilution in blocking buffer) was added 

on the coverslip by taking out the coverslip and invert it over the cover of 24 

well plate dropped with 40 ul of primary antibody. The 24 well plate cover 

was wrapped in aluminium foil and placed into a 37
o
C incubator for 45 min. 

Next, the coverslips are inverted and placed back into the 24-well plate well as 
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before, into 500 ul of 1X PBS with 0.2% Trion-X, and placed on a belly 

shaker for 2 min at 90 rpm to wash. The wash was repeated twice. The 

coverslips are again taken out, inverted onto a 40 ul drop of secondary 

antibody (1:1000 dilution in blocking buffer) on a clean spot of 24 well plate 

cover. It was then wrapped in aluminium foil and incubated at room 

temperature on a belly shaker for 45 min at 90 rpm.  

The coverslips are again inverted and placed back into the 24-well 

plate well as before, into 500ul of 1X PBS with 0.2% Trion-X, and placed on a 

belly shaker for 2 min at 90 rpm to wash. Lastly, 500ul of DAPI dissolved in 

100% methanol to a final concentration of 0.5ug/ml was added for 1 min, then 

washed with 1X PBS twice for 2 min on belly shaker at 90 rpm to remove any 

trace of excess DAPI and methanol. The coverslips are then removed, 

mounted onto glass slides using Prolong Gold Antifade Reagent (Molecular 

Probes, Invitrogen, USA) and viewed using using Leica TCS SP5 confocal 

microscope (Leica Microsystems GmbH, Germany). Images were processed 

using Leica confocal LAS AF software (Leica Microsystems GmbH, 

Germany).   

2.2.6.2.  Fluorescence microscopy 

All slides were mounted in Prolong Gold Antifade Reagent (Molecular 

Probes, Invitrogen, USA) and viewed using Carl Zeiss Axio imager.Z1 

fluorescent microscope (Axiocam HRM camera; Carl Zeiss Micro Imaging, 

Germany). Images were processed using Axiovision Rel 4.8 software (Carl 

Zeiss Micro Imaging, Germany). 
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2.2.7.            Protein and Molecular Biology Techniques 

2.2.7.1.  Bradford assay 

5 µl of protein albumin standards with known protein concentrations or 

1 µl of protein sample was added to 150 µl 1X Bradford Assay Solution. 

Absorbance was measured at a wavelength of 595 nm and the absorbance 

values of the protein standards were plotted to obtain a standard curve. 

Absorbance of protein samples were then read from the standard curve to 

determine the amount of protein within the sample. 

2.2.7.2.  Western Blotting 

Treated cells were harvested at indicated times, washed once in ice-

cold PBS and scraped off the culture plates in a lysis buffer containing 75mM 

NaCl, 10mM Tris (HCl), 1mM EDTA, 0.5% NP40 and protease inhibitor 

cocktail (Pierce Biotechnology). Cells were then incubated on ice for 15 

minutes before being centrifuged at 14000 rpm for 15 minutes at 4°C. The 

supernatant was collected and protein concentration was determined by  

Bradford Assay. 50 µg of protein per sample was loaded onto 15% SDS-

PAGE gel placed at a phased voltage of 75V for 15 min and 125 V for 60 min 

using a gel electrophoresis cell (Mini-PROTEAN® Tetra Cell, Bio-Rad, 

Hercules, CA, U.S.A.). The proteins were then transferred onto nitrocellulose 

membranes using a wet transfer apparatus (Criterion Blotter, Bio-Rad, 

Hercules, CA, U.S.A.).  

Following transfer, the membranes were washed with distilled water to 

remove traces of transfer buffer and then air-dried for several hours to allow 
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for firm binding of proteins to membranes. The membranes were rewetted 

with 1X TBS and blocked with 5% w/v milk proteins in 1X wash buffer for 

western blot (TBST) for 1 hr. Membranes were then washed for 15 min with 

1X TBST before incubation with the appropriate primary antibody (see table 

below) at either 37
o
C for 1 h or 4

o
C overnight. Membranes were next washed 

thrice with 1X TBST for a total of 30 min before incubation with secondary 

antibodies (see table below) conjugated to horseradish peroxidase for 1 hr 

(1:5000 dilution). Three washes lasting 10 minutes each were carried out prior 

to the addition of the SuperSignal West Pico Chemiluminescent Substrate. 

Blots were then exposed to CL-XPosure X-ray films until bands were clearly 

seen after film development.  

To detect phosphorylated proteins, the same blots were probed with 

phospho-specific antibodies, stripped and reprobed with antibodies against 

total proteins. All blots were incubated with mouse antibodies against β-actin 

to confirm equal protein loading. 

2.2.7.3.  RNA extraction  

For RT-PCR analysis of tissue chemokine mRNA expression, total 

RNA was extracted from the pancreas and lungs using the TRIzol reagent 

following the manufacturer’s instructions with some modifications. Briefly, 

pancreas and lung tissues were quickly harvested and homogenized in TRIzol 

reagent. Chloroform (200ul/ml of TRIzol) was then added to the homogenates, 

and samples were shaken, incubated for 5 min at 4 °C and centrifuged for 15 

min at 12,000 g at 4°C. The aqueous phase was separated and RNA was 

precipitated by adding isopropyl alcohol. After RNA was pelleted by 



 

55 

 

centrifugation (12,000 g for 10 min at 4°C), the pellet was washed twice in 70% 

ethanol, air-dried and dissolved in RNase-free water. RNA was quantitated 

spectrophotometrically by measuring absorbance at 260 nm (A260). The 

purity of RNA was assessed by an A260/A280 ratio between 1.6 and 2.0.  

2.2.7.4.  RT-PCR 

Total RNA (1 µg) was used for cDNA synthesis through reverse 

transcription. Primer-cDNA mix (see table below) was incubated at 70 
o
C for 

5 min and then on ice for 1 min. Master mix made with the following, for each 

reaction: 2 µl of 5x M-MLV reverse transcriptase buffer, 4 µl of 25mM MgCl2, 

0.125 µl of RNasin Plus RNase inhibitor and 1 µl of M-MLV reverse 

transcriptase enzyme (200 reaction units). Add the reaction mixture to the 

RNA/primer mixture, mix briefly, and then place at room temperature for 2 

min. The tubes are then incubated at 42 
o
C for 50 min and then heat inactivate 

the reverse transcriptase at 70 
o
C for 10 min, and then chill on ice. The final 

product (1st strand cDNA) was used immediately or stored at -20 
o
C for 15 

min. For the subsequent PCR amplifcation, the PCR amplification mix 

containing the following reagents are added: 

Component     Amount (µl) 

First strand cDNA reaction    1 

 10 mM dNTP mix     1 

 25 mM MgCl2      2 

5X GoTaq® Flexi DNA Polymerase  Buffer  5 

 GoTaq® Flexi DNA Polymerase   11 
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Forward Primer     1 

Reverse Primer     1 

DEPC Water       28 

Total       50  

     

2.2.7.5.  Realtime PCR 

Real time PCR was performed on an ABI7500 Real-time PCR system 

using SYBR Green (Applied Biosystems, USA). The relative quantities of 

target gene expression were quantified by comparative CT method and 

normalised to GAPDH. 

2.2.8.          Analysis techniques 

2.2.8.1.  Flow cytometry 

Cells for FACS staining were transferred into FACS tube and pelleted 

by centrifugation at 400 g for 5 mins. Tubes were inverted to discard the 

supernatant and were further blotted on tissue paper to remove the excess 

supernatant that collected near the edge of the tube after inversion. The cell 

pellet was then disrupted by raking on tube racks. Fc Block (2.4G2) was added 

at 0.2 µg per million cells and incubated for 5 mins at 4
o
C to prevent non-

specific binding of antibodies to Fc receptors. Antibodies directly conjugated 

to fluorophores were added to the cells at 0.02 µg per million cells and 

incubated in the dark at 4
o
C for 30 mins. After incubation, cells were washed 

twice with at least 1 ml of FACS buffer to remove unbound antibodies. Cells 
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were resuspended in 350 µl of FACS buffer if analysis was performed within 

several hours or fixed with 1% PFA if analysed on a separate occasion. To fix 

with 1% PFA, the cells were pelleted and the FACS buffer supernatant 

discarded. To prevent the formation of cell clumps during fixation, the cell 

pellet was well disrupted by raking several times on tube racks and vortexed at 

3000rpm while simultaneously adding 1% PFA. 

2.2.8.2.     Nitric oxide (NO) assay (Griess assay) 

Nitric oxide formation can be measured using the diazotization reaction 

originally described by Griess in 1879 (Griess, 1879).  

1 ml of 100 uM nitrile solution was made from 1 M Nitrile Standard 

stock solution by 1:10,000 dilution in DMEM. Three columns in a 96-well 

plate were reserved for nitrile standard reference curve. These wells were 

filled with 50 ul of DMEM. On the topmost rows of these three columns, 100 

µl of 100 µM nitrile solution was added. Immediately thereafter, 6 serial, 

twofold dilutions (50 ul/well) in triplicate down the plate was made to 

generate the nitrile standard reference curve (100, 50, 25, 12.5, 6.25, 3.13, 

1.56 uM). The last set of wells are left as blanks (0 uM). Next, the 

Sulfanilamide solution and NED solution was left to equilibrate to room 

temperature for about fifteen minutes. Thereafter 50 ul of each experimental 

sample was added to wells in triplicates. Using a multichannel pipettor, 50 ul 

of sulphanilamide solution was dispensed to all experimental samples and 

wells containing the nitrile standard reference curve. The mixture was 

incubated at room temperature away from light for 5-10 minutes. Using a 

multichannel pipettor, 50 ul of NED solution was added to all wells, and 
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incubated for another 5-10 mins away from light source. A purple/ magenta 

colour is formed immediately, and the resultant coloured azo compound has an 

absorbance which is measured at 550 nm using a microplate reader (Perkin 

Elmer Victor 3 Model 1420-012).  

2.3.  Statistical analysis  

Each experiment was performed at least 3 times. Individual groups 

were compared using the Student’s t test with a two-tailed p-value. A value of 

P <0.05 was taken as significant. If a parameter is known to decrease or 

increase under certain stimuli, one tailed student’s t test was used. 
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The pathogen associated molecular pattern (PAMP) response is based 

primarily on toll-like receptor (TLR) stimulation by pathogen associated 

molecules. ANXA1 deficient (KO) mice are physiologically indistinguishable 

from its wild-type (WT) counterparts, yet its immune system exhibits an 

inclination towards Th2 differentiation even without exposure to stimuli 

(D’Aquisto et al., 2007) and is also particularly sensitive to immune stimuli 

such as LPS, whose exposure can cause death in mice within 48 hours 

(Damazo et al., 2005). In recent studies from our group and others, NF-κB 

was found to be regulated by ANXA1- either directly by binding to the p65 

subunit of NF-κB (Zhang et al., 2010) or indirectly through the regulation of 

NEMO (Bist et al., 2011). Furthermore, ANXA1 KO thymocytes and T cells 

exhibit impaired activation of NF-κB (Paschalidis et al., 2010, D’Acquisto et 

al., 2008).  

This led us to believe that ANXA1 may control inflammatory cytokine 

production through NF-κB. Huggins and colleagues (2009) reported that bone-

marrow derived dendritic cells from ANXA1 KO mice exhibit a matured 

phenotype but lower production of pro-inflammatory cytokines such as IL-1, 

TNF-α and IL-12 after LPS treatment. However, Yang and colleagues (2009) 

reported that ANXA1 KO macrophages produce higher levels of pro-

inflammatory cytokines (IL-6, TNF-α and ERK activation) compared to WT 

mice after LPS treatment. Taken together, it became unclear whether ANXA1 

affects TLR-dependent cytokine production, and no underlying mechanism 

has been proposed for the discrepancy in cytokine production with respect to 

WT. Moreover, there are no studies that specifically characterize the role of 

ANXA1 in MyD88 dependent or independent activation of the TLR pathway.  
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There are two distinct and mechanistically segregated signaling 

pathways in TLR dependent activation (Yamamoto et al., 2003). This study 

investigated TLR agonists that either stimulate both NF-κB dependent and 

TRIF dependent TLR pathways (i.e. LPS to stimulate TLR4 and CpG DNA to 

stimulate TLR9) or specifically stimulate the TRIF dependent pathway only 

(poly (I:C) to  stimulate TLR3). In order to dissect the signaling mechanism 

responsible for the differential immune response in ANXA1 KO macrophages, 

we investigated whether ANXA1 is involved in modulating MyD88/NFκB 

dependent or MyD88-independent/TRIF activation.  

 

3.1 Role of ANXA1 in inflammatory cytokine production in 

response to TLR9 and TLR4 agonists 

Our study focused on cytokine production in macrophages, as 

macrophages are major cytokine producing lymphocytes in the initial stages of 

pathogenic insult. In order to determine the cytokine response of peritoneal 

macrophages (PM) after exposure to the most common pathogens such as 

viruses, bacteria and fungi, we used specific agonists to stimulate TLRs.  

To validate our experimental set-up, WT PM which were elicited by 

thioglycollate were first harvested, pooled (n=4 mice per experiment), 

quantified, and then seeded in equal quantities (1 million cells / ml) in a 24-

well plate. Thereafter, various TLR agonists were added to the PM, and 

cytokine/chemokine production was quantified by ELISA after 24h.  
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Significant IL-6 production was observed after treatment with CpG 

1826 or LPS. Poly (I:C) did not cause noticeable IL-6 production. A 

significant production of IL-12 was observed after exposure to LPS, poly (I:C) 

or CpG DNA (CpG 1826) (Figure 3.1a).  Based on these results, we 

demonstrate that the TLR agonists CpG 1826, LPS and poly (I:C) induce 

significant IL-12 production in our model. 

 

Figure 3.1. a) IL-12, b) IL-6 production in WT PM after treatment 

with TLR agonists (1 million cells/ml). * denotes p<0.05, ** denotes 

p<0.01 and n.s. denotes “no significant difference”, i.e. p>0.05, 

compared to WT, thioglycollate elicited PM. Results are based on five 

biological repeats (mean ± S.E.M. of n=5).  
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3.1.1 IL-12 and IL-6 production in response to TLR9 agonist  

(CpG 1826)  

In this experiment, the role of ANXA1 in PM activation by the TLR9 

agonist CpG 1826 was investigated as CpG DNA stimulates the MyD88 

dependent pathway.  IL-12 and IL-6 production was compared between WT 

and ANXA1 KO PM before and after CPG 1826 stimulation (Figure 3.2).  

After treatment with CpG 1826, IL-12 was produced in both WT and 

ANXA1 KO PM but no significance difference in their levels was observed.  

Similarly, when treated with CpG 1826, IL-6 was produced in both WT and 

ANXA1 KO PM with no significant difference between them (p=0.4604).   

Based on this data, ANXA1 does not regulate IL-6 or IL-12 production 

after the activation of the MyD88-specific, TLR9 pathway. 

 

 

 

 

 

 

 

 

 



63 

 

 

 

 

 

Figure 3.2. a) IL-6 and b) IL-12 production in WT and ANXA1 

KO PM after treatment with TLR agonist CpG1826 (1 million 

cells/ml). ** denotes p<0.01 and n.s. denotes “no significant 

difference”, i.e. p>0.05, compared to WT, thioglycollate elicited 

PM. Results are based on five biological repeats (mean ± S.E.M. 

of n=5). 
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3.1.2 IL-12 and IL-6 production in response to TLR4 agonist  

(LPS)  

LPS—a TLR2 and TLR4 agonist that triggers both MyD88-dependent 

and independent signaling—was next used to investigate the role of ANXA1 

in TLR signaling (Figure 3.3).   

Consistent with WT PM, ANXA1 KO PM displayed significantly 

increased IL-12 production after LPS treatment when compared to untreated 

ANXA1 KO PM. However, ANXA1 KO PM produced less IL-12 than WT 

PM after LPS stimulation (p=0.0014). Following LPS exposure, a significant 

increase in IL-6 production was observed in both WT and ANXA1 KO PM 

treated with LPS; however, the difference in IL-6 production between WT and 

ANXA1 KO PM after treatment with LPS is not significant (p=0.4729). This 

suggests that ANXA1 does not directly affect the production of IL-6 through 

the activation of the TLR-3 and TLR-4 pathways.  

Based on this result, the production of IL-12 but not IL-6 is impaired in 

the absence of ANXA1 in response to LPS. 
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Figure 3.3. a) IL-6 and b) IL-12 production in WT and ANXA1 

KO PM after treatment with TLR agonist LPS (1 million 

cells/ml). * denotes p<0.05, ** denotes p<0.01, *** denotes 

p<0.001 and n.s. denotes “no significant difference”, i.e. p>0.05, 

compared to WT, thioglycollate elicited PM. Results are based 

on five biological repeats (mean ± S.E.M. of n=5). 
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3.1.3 IL-12 and IL-6 production in response to TLR3 agonist  

(poly (I:C) 

ANXA1 did not regulate IL-6 and IL-12 production after CpG1826 

activation, yet IL-12 production was affected after LPS stimulation in ANXA1 

KO macrophages.  CpG1826 induces TLR9 stimulation which is MyD88-

dependent, while LPS stimulates both TLR3 and TLR4, which are specifically 

segregated into MyD88-independent and dependent pathways, respectively.   

Therefore, we wished to investigate if ANXA1 could regulate the 

MyD88-independent cytokine production using a TLR3 specific agonist, poly 

(I:C).  Exposure to poly (I:C) induced significant IL-6 and IL-12 production 

(Figure 3.4). IL-6 was produced after poly (I:C) treatment in both WT and 

ANXA1 KO PM, but no significant difference was observed between the 

treated samples. Similar to the results with LPS stimulation, poly (I:C) treated 

ANXA1 KO PM exhibit significantly lower IL-12 production than WT PM.   

Based on these observations, ANXA1 may play a role in TLR3 

associated pro-inflammatory cytokine production, which is linked to an 

MyD88-independent pathway. 
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Figure 3.4. a) IL-6 and b) IL-12 production in WT and ANXA1 

KO PM after treatment with TLR agonist poly (I:C) (1 million 

cells/ml). * denotes p<0.05, *** denotes p<0.001 and n.s. 

denotes “no significant difference”, i.e. p>0.05, compared to 

WT, thioglycollate elicited PM. Results are based on five 

biological repeats (mean ± S.E.M. of n=5).  
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3.2 ANXA1 regulates TRIF dependent cytokine production 

 

Stimulation of TLR3 results in the activation of the endosomal adaptor 

protein TRIF, resulting in the phosphorylation of IRF-3 by TBK1 and the 

translocation of the activated IRF-3 in the form of an IRF-3 dimer into the 

nucleus. There, the IRF-3 dimer acts as a transcription initiation factor for the 

type I interferon response, inducing the transcription of cytokines such as IFN-

β. IFN-β acts on its receptor IFNR1 to induce the production of IFN-β 

inducible chemokines such as IP-10. We next examined whether ANXA1 

directly regulates production of MyD88-independent or TRIF dependent 

pathway by investigating the levels of IP-10 production.  

The mRNA level of IP-10 after a 4-hour treatment with LPS was 

significantly attenuated in ANXA1 KO when compared to WT (Figure 3.5a). 

In addition, LPS treatment induced significant IP-10 production in WT but not 

in ANXA1 KO PM (p=0.0419, Figure 3.5b). Similarly, IP-10 was produced in 

WT but not in ANXA1 KO PM after poly (I:C) treatment (p<0.001, Figure 

3.5c).   To verify that a selective MyD88-dependent activator does not induce 

IP-10 production, IP-10 levels were investigated after stimulation with 

CpG1826.  As expected, CpG1826 stimulation did not produce IP-10 

production (Figure 3.5d). 

Therefore, we show that the absence of ANXA1 directly impairs IP-10 

production in ANXA1 KO PM after treatment with TRIF- pathway activators.   
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Figure 3.5. IP-10 mRNA expression and production from WT 

and ANXA1 KO PM. a) mRNA profile of IP-10 over time.  IP-

10 production after treatment with b) LPS, c) Poly (I:C) or d) 

CpG 1826 (ODN 1826). * denotes p<0.05 ** denotes p<0.01 

and *** denotes p<0.001. n.s. denotes “no significant 

difference”.  Results are based on 3-5 biological repeats (mean ± 

S.E.M. of n=3-5).  
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3.3 Cytokine response against live E coli. co-culture 

 

LPS, a bacterial endotoxin, and CpG DNA are capable of inducing cytokine 

production.  However our data thus far does not provide concrete proof that 

ANXA1 is clinically relevant in modulating cytokine response during 

exposure to gram negative bacteria. To establish ANXA1 as a novel regulator 

during TLR associated pathogenesis, a co-culture system of pathogen and 

macrophages was used. To mimic bacterial pathogenesis, live bacteria (E. coli 

DH5α strain) was co-cultured with macrophages. 

Once again, IL-6 and IL-12, as well as TRIF-specific chemokines IP-

10 were assessed using ELISA. Co-culture with bacteria DH5α caused 

significant IL-6 production for WT and ANXA1 KO PM, with both exhibiting 

similar levels of IL-6 production (Figure 3.6a). Statistical difference is 

observed between IL-12 production in WT and in ANXA1 KO PM co-

cultured with DH5α. ANXA1 KO PM displayed significantly less production 

of IL-12 compared to its WT counterparts (Figure 3.6b).  In both WT and 

ANXA1 KO PM, IP-10 is produced substantially upon co-culture with DH5α. 

However higher IP-10 production is observed in WT than in ANXA1 KO PM, 

similar to that of LPS stimulation (Figure 3.6c). Taken together, these results 

highlight the importance of ANXA1 in regulating IL-12 and IP-10 production 

in a clinically relevant setting.  
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Figure 3.6. Co-culture of PM with DH5α. Results are observed 

for a) IL-6 and b) IL-12 c) IP-10 production after the co-culture 

experiment. 10 million bacteria were added to 1 million PM for 

co-culture duration of 24 hours. “n.s.” denotes “no significant 

difference”, i.e. p>0.05, Results are based on at least three 

biological repeats (n=3). 
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3.4 Cellular activation of PM and B cells after TLR agonist 

treatment  

 

Next, we investigated if antigen presenting cells harvested from 

ANXA1 KO mice undergo similar dynamics of innate-to-adaptive immune 

responses as WT equivalents through activation and up-regulation of cell 

surface markers that can trigger adaptive immune response such as T cell 

activation. Macrophages are major players in this aspect and indicators of 

activation through initial stimulation by TLR agonist can be observed through 

co-stimulatory molecules and MHC on the cell surface. While there are studies 

which focused predominantly on dendritic cell activation for ANXA1 KO 

mice (Huggins et al., 2009), we  intend to place emphasis on macrophages and 

splenic B cells by investigating their activation level and antigen presentation 

capacity, in order to dissect what happens upstream (macrophages as first line 

of defence) and downstream (B cell activation and response). Hence, increase 

in activation markers such as CD86
+
 in PM and CD 69

+
 in splenic B cells, and 

changes in MHC II surface expression levels in both macrophages and B cells 

were chosen for analysis by comparing surface expression level between 

immune cells of wild type and ANXA1 KO mice.  

3.4.1 MHC II surface expression after TLR agonist treatment 

 

In this experiment, we studied MHC class II surface expression in PM 

and splenic B cells of ANXA1 KO mice. In WT PM (Figure 3.7 a) the 

expression of MHC II increased after treatment with Poly (I:C) (79.7%) or 

LPS (82.9%) when compared with untreated control (47.7%).  Likewise, the 

basal levels of MFI values (28.1) increases after treatment with Poly (I:C) 
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treatment (51.4) or LPS treatment (72.6). In ANXA1 KO PM, an increase in 

MHC II surface expression upon treatment with poly (I:C) or LPS was 

observed, but it was not as pronounced as the response observed for WT PM. 

Both poly (I:C) and LPS elicited only a marginal increase  (less than 10% of 

the population) in MHC II level versus ANXA1 KO control and MFI values 

are similar between untreated and poly (I:C) or LPS treated PM. Based on 

these results, ANXA1 KO PM are incapable of up regulating MHC II surface 

expression even after treatment with TLR agonists poly (I:C) or LPS, 

compared to WT PM.  

Such correlation is also noted in splenic B cells (Figure 3.7 b). In WT 

control B cells, MHC II positive population constitutes slightly more than half 

of the population (54.6%) and this population increased to 70.5% after poly 

(I:C) exposure and 87.9% after LPS exposure. Likewise for MFI values, from 

a baseline value of 740, treatment with poly (I:C) and LPS increased the MFI 

values nearly two fold, to 1204 in poly (I:C) and 1493 in LPS, indicating an 

increase in MHCII expression level in cell populations after treatment with 

TLR agonists. ANXA1 KO B cells exhibited a reduced MHCII upregulation 

after stimulation with poly (I:C) when compared with WT B cells. ANXA1 

KO B cells after stimulation with poly (I:C) exhibited a reduced population of   

B cells with MHCII positivity (61.5%) compared to WT B cells (70.5%).   

Based on these data, PM of ANXA1 KO mice have reduced 

phagocytic activity after stimulation with poly (I:C) and LPS, while B cells of 

ANXA1 KO mice have reduced phagocytic activity after stimulation with poly 

(I:C). 
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Figure 3.7. Flow cytometry analysis of MHC II expression 

levels on PM and B cells. a) PM, identified through prior gating 

for F4/80
+
 cells, after FSC/SSC gating for macrophage sized 

cells. b) Splenic B cells, identified through prior gating for 

CD19
+
 cells, after FSC/SSC gating for splenic B cell sized cells. 

Cell count: 1 million cells / sample. Result is a representative 

data based on pooled samples from four mice (n=4) with two 

independent biological replicates done on a different day. 
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3.4.2 CD86 and CD69 expression after TLR agonist treatment 

 

Next, the level of activation markers on macrophages and B cells was 

investigated. We examined CD86
+
 as an activation marker for PM and CD69

+
 

as an activation marker for splenic B cells. 

 For PM, as seen in Figure 3.8 a), a small population of PM was 

activated (19.9%) in WT controls and this marks a basal level of activation. In 

contrast, more than half (60.7%) of the population was activated upon 

treatment with poly (I:C) and likewise a slighter larger proportion of activation 

for LPS treatment (70.2%). This also places a fundamental doubt raised earlier 

to rest: that thioglycollate based-elicitation of PM may activate the PM. Based 

on this result, it is clear that the macrophages are not activated as a whole 

population.  

In ANXA1 KO PM, close to a third of the untreated control population 

already possesses activation markers (27.6%). While an increase in activation 

upon treatment with poly (I:C) (47.2%) or LPS (57.3%) is observed, it is much 

lower than what is observed in WT PM for both poly (I:C) and LPS. 

Specifically, the presence of a double peak only in the ANXA1 KO 

macrophage population appears to hint on a substantial population that is not 

capable of responding at all. ANXA1 KO PM also exhibited an increase in 

activated macrophage population upon treatment with TLR agonists, but this 

increase is not as substantial as its WT counterpart PM. Hence, based on these 

results, ANXA1 KO PM seem to have a specific population that is not 

activated after TLR agonist treatment. 
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Splenic B cells derived from WT and ANXA1 KO mice were also 

investigated. In WT B cells, only a small fraction (10.2%) is CD69
+
 and this 

increased marginally upon treatment with poly (I:C) (22.3%). However, a 

drastic increase in CD69
+
 population was found upon exposure to LPS 

(55.9%), indicating that the activation of B cell is more pronounced in LPS 

than poly (I:C). In ANXA1 KO splenic B cells, control cells are not activated 

(12.5% positive) while exposure to poly (I:C) increases CD69
+
 expression 

only slightly. While LPS treatment of ANXA1 KO B cells markedly increased 

the positive population, it is visibly lower than its WT counterparts. 

Consequently, this outlines the role ANXA1 plays in B cell activation, that 

ANXA1 is also important in the B cell dependent inflammatory response 

towards TLR agonist stimulation.  

In conclusion, these results indicate a potential role ANXA1 may play 

in the activation of PM and B cells, thereby regulating the interface between 

innate and adaptive immunity. 
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Figure 3.8. Flow cytometry analysis of activation markers for 

PM and B cells. a) Macrophages, identified through prior gating 

for F4/80
+
 cells, after FSC/SSC gating for macrophage sized 

cells. b) Splenic B cells, identified through prior gating for 

CD19
+
 cells, after FSC/SSC gating for splenic B cell sized cells. 

Cell count: 1 million cells / sample. Result is a representative 

data based on pooled samples from four mice (n=4) with two 

independent biological replicates done separately. 
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3.5 Role of ANXA1 in cellular activation and cytokine 

production after poly(I:C) administration in vivo  

 

We next investigated whether the results observed in vitro can also be 

observed in vivo as well. In our earlier experiments, we demonstrated that 

immune cells from ANXA1 KO mice show impaired TRIF dependent 

activation during inflammatory response induced by TLR agonists LPS and 

poly (I:C). To confirm that ANXA1 plays an important role in triggering TRIF 

dependent activation and inflammation response in vivo, TLR agonist poly 

(I:C) (1mg/ml) was injected into mice peritoneal cavity of WT and ANXA1 

KO mice. As an indicator of inflammation response in vivo, serum levels were 

measured for TNF-α, IL-6, IFN-γ, IFN-α, IFN-β and IP-10 (CXCL 10) using 

ELISA. 

Upon treatment with poly (I:C) for 6 h and 24 h, WT and ANXA1 KO 

mice showed comparable levels of pro-inflammatory cytokine production in 

TNF-α and IL-6 (Figure 3.9 a and b). However, the production of TRIF 

dependent chemokines IFN-β and IP-10 at 6 h was significantly inhibited in 

ANXA1 KO mice when compared to WT mice (Figure 3.9 d and f). To 

determine whether the inhibition affects other interferons induced during 

antiviral and inflammation process, IFN-α and IFN-γ production level was 

also investigated. Serum levels of IFN-α and IFN-γ were similar between WT 

and ANXA1 KO mice for both 6 h and 24h (Figure 3.9 c and e). IFN-β is 

unique among the three interferons as its activation is IRF-3 dependent. This 

highlights the possibility of a TRIF/IRF-3 dependent pathway inhibition 

existing in ANXA1 KO mice. ANXA1 is important for activation of TRIF 
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pathway for the production of IFN-β and IP-10 chemokine production in vivo 

in a TLR 3 dependent manner. 

 

 

 

Figure 3.9 Poly (I:C) stimulation induces lower serum levels of TRIF 

dependent chemokines IFN-β and IP-10 (CXCL 10) in ANXA1 KO 

PM. Black diamonds indicate WT and white square indicate ANXA1 

KO mice serum cytokine levels. * denotes p<0.05. Results are based 

on two separate experiments on eight mice (n=8). 
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3.6 Mechanism of action of ANXA1-dependent regulation of 

cytokine production  

 

Toll-like receptors have many pathways of action. TLR receptor 

adaptor proteins (with TIR domains) regulate downstream response of many 

cytokine producing immune cells, particularly macrophages (Kawai and Akira, 

2006). There are five known TLR adaptor proteins, namely MyD88, TRIF, 

Mal, TRAM and SARM (Kenney and O’Neil, 2008). MyD88 and TRIF are 

essential for LPS induced TLR3 and TLR 4 activation while TRIF is essential 

for poly (I:C) induced TLR3 activation.  

This study has demonstrated that ANXA1 KO exhibited impaired IL-

12 and IP-10 production in ANXA1 KO PM after stimulation with LPS and 

poly (I:C), and also impaired PM and B cell activation after stimulation with 

LPS. As cytokine production and upregulation of activation markers are both 

dependent on activation of transcription factors, we next examined whether 

ANXA1 is important for the activation of transcription factors.  

The first imperative was to identify whether the signaling cascade 

upstream of cytokine production was intact in ANXA1 KO PM. There are 

“master switches” to examine signaling cascade vitality, such as IRF-3 and 

NF-κB p65 nuclear translocation. IRF-3 and NF-κB p65 activity were studied 

using confocal microscopy to determine if nuclear translocation of these 

proteins was affected in the ANXA1 KO PM, after exposure to Poly I:C and 

LPS.  
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3.6.1 Nuclear localization IRF-3 after LPS treatment  

 

To investigate whether nuclear localization of transcription factors in 

ANXA1 KO PM is similar to the WT, we used LPS, the MyD88-dependent 

and independent stimulator, to test IRF-3 nuclear translocation. In this 

experiment, PM were exposed to LPS for 1 h prior to fixation. The samples 

were then incubated with anti-IRF-3 primary antibodies followed by that with 

Alexafluor 488-labeled secondary antibodies. DAPI, a common stain used to 

bind A-T rich regions of DNA during flourescent microscopy, was used to 

visualize the nucleus. 

Under unstimulated conditions, both WT PM and ANXA1 KO PM did 

not show any localization of IRF-3 in the nucleus, which is delineated by 

DAPI (Figure 3.10). However, upon treatment with LPS, IRF-3 is seen to 

translocate substantially to the nucleus. However, such nuclear translocation 

of IRF-3 was not seen in ANXA1 KO PM after 1 h of exposure to LPS.  This 

observation is similar to the result for poly (I:C) treatment, indicating ANXA1 

plays an extensive role in TRIF dependent IRF-3 activation. 

Therefore, ANXA1 is important for the translocation of IRF-3 to the 

nucleus after LPS exposure. 
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Figure 3.10. Impaired nuclear translocation of IRF-3 in ANXA1 

KO PM under LPS treatment. PM were used in this confocal 

imaging. Stains used are DAPI for nuclear staining and rabbit 

anti- IRF-3 antibody for detecting localization of IRF-3 in the 

nucleus. WT: wild-type PM. WT LPS 60 min: wild-type PM 

exposed to LPS (1ug/ml) for 60 minutes. KO: PM derived from 

ANXA1 KO mice. KO LPS 60 min: PM derived from ANXA1 

KO mice exposed to LPS (1 ug/ml) for 60 minutes.   

 

 

 

DAPI DAPI 
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3.6.2 Nuclear localization of IRF-3 after poly (I:C) treatment  

 

In this experiment, PM were exposed to poly (I:C) for 1 h.  In untreated, non-

stimulated control WT and ANXA1 KO PM, IRF-3 was found mainly in the 

cytosolic region with visibly less localization within the nucleus, a region 

highlighted distinctly by DAPI stain (Figure 3.11). When these PM were 

exposed to the TLR3 agonist poly (I:C), IRF-3 translocated to the nucleus in 

WT but not in ANXA1 KO PM. Indeed, PM derived from WT mice exhibited 

prominent florescence in the nuclear region, which was brighter than that of 

the cytosolic regions. All the WT PM cells observed exhibited such nuclear 

localization. However, this was not observed in PM derived from ANXA1 KO 

PM after sixty minutes of poly (I:C) exposure. Instead, very little IRF-3 

translocation to the nucleus was seen in these PM.  

Based on these results, IRF-3 nuclear translocation is impaired in 

ANXA1 KO PM. 
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Figure 3.11. Impaired nuclear translocation of IRF-3 in ANXA1 

KO PM under poly (I:C) treatment. PM were used in this 

confocal imaging. Stains used are DAPI for nuclear staining and 

rabbit anti- IRF-3 antibody for detecting localization of IRF-3 in 

the nucleus. WT: WT PM. WT PIC 60 min: WT PM exposed to 

poly (I:C) for 60 minutes. KO: PM derived from ANXA1 KO 

mice. KO PIC 60 min: PM derived from ANXA1 KO mice 

exposed to poly (I:C) for 60 minutes.   

 

DAPI DAPI 
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3.6.3 Nuclear localization of NF-κB p65 after LPS treatment  

 

We next examined an active unit of NF-κB—the p65 subunit. Upon 

activation and release from IκB lockdown, the p65 subunit translocates to the 

nucleus to transcribe various pro-inflammatory genes; e.g. IL-12 in 

macrophages. As our laboratory has discovered that NF-κB promoter activity 

in PM from ANXA1 KO mice is impaired (unpublished data), it is important 

to determine independently whether translocation of NF-κB p65 subunit is 

also impaired. To clarify the exact involvement of ANXA1 in NF-κB 

signaling, we examined whether nuclear translocation of NF-κB after exposure 

to LPS is regulated by ANXA1. 

Results for confocal on WT and ANXA1 KO PM which have 

undergone LPS-induced activation are shown in Figure 3.12. Both WT and 

ANXA1 KO PM showed distinctly low concentration of NF-κB in nucleus 

compared to cytosol at basal conditions. Upon treatment with LPS for one 

hour, WT PM showed clear and distinctive nuclear translocation of NF-κB, as 

the nuclear region stained by DAPI fluoresced brightly with the signal from 

NF-κB binding antibodies. ANXA1 KO PM also exhibits nuclear localization 

of NF-κB.  

Hence ANXA1 does not appear to affect NF-κB nuclear translocation 

in PM significantly when stimulated with LPS.   
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Figure 3.12. Impaired nuclear translocation of NF-κB in 

ANXA1 KO PM under LPS treatment. PM were used in this 

confocal imaging. Stains used are DAPI for nuclear staining and 

rabbit anti- NF-κB antibody for detecting localization of NF-κB 

in the nucleus. WT: wild-type PM. WT LPS 60 min: wild-type 

PM exposed to LPS (1 ug/ml) for 60 minutes. KO: PM derived 

from ANXA1 KO mice. KO LPS 60 min: PM derived from 

ANXA1 KO mice exposed to LPS (1 ug/ml) for 60 minutes.   

  

DAPI DAPI   p65 
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3.6.4 Nuclear localization of NF-κB p65 after poly (I:C) 

treatment  

 

Figure 3.13 shows the result of confocal imaging of PM derived from 

both WT and ANXA1 KO mice. In both types of PM, no translocation of the 

NF-κB p65 subunit into the nucleus was observed in untreated control PM. 

However, upon treatment of poly (I:C) for 60 min, only WT PM exhibited 

prominent translocation of NF-κB p65 subunit to the nucleus. However, this 

was not observed in ANXA1 KO PM after stimulation with poly (I:C). It 

therefore clearly implicates ANXA1 in relaying the late phase NF-κB signal 

through the activation of TRIF dependent pathway. 
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Figure 3.13. Impaired nuclear translocation of NF-κB in 

ANXA1 KO PM under poly (I:C) treatment. PM were used in 

this confocal imaging. Stains used are DAPI for nuclear staining 

and rabbit anti- NF-κB antibody for detecting localization of 

NF-κB in the nucleus. WT: wild-type PM. WT PIC 60 min: 

wild-type PM exposed to poly (I:C) for 60 minutes. KO: PM 

derived from ANXA1 KO mice. KO PIC 60 min: PM derived 

from ANXA1 KO mice exposed to poly (I:C) for 60 minutes.   

DAPI DAPI 



 

 

 

 

 

CHAPTER IV:  

MACROPHAGE POLARIZATION 

AND ANXA1 

  



91 
 

4. MACROPHAGE POLARIZATION AND ANXA1  

In the previous chapter, we studied the role ANXA1 plays in cytokine / 

chemokine production and investigated possible mechanisms examined for 

mechanisms which may explain its functional properties in macrophages. 

However, there is no clear framework which can provide an explanation why 

ANXA1 KO macrophages are spectrally distant from wild-type macrophages 

in terms of both immune response and activation. As ANXA1 is also a 

candidate marker for aggressive cancer phenotypes (Lim and Pervaiz, 2007) 

and macrophages are closely associated with cancer phenotype modulation, 

we sought the literature for an overarching theme which could amalgamate all 

these observations into a tangible structure for ANXA1 to align itself in a 

concordant manner.  

Macrophage polarization is a term coined to consolidate the gamut of 

macrophage phenotypes into an operationally comprehensible concept that 

assents both the plasticity of macrophages in microenvironments and the 

existence of an alternative morphologic macrophage that participates in non-

immune response (Alberto et al., 2005). When the term “macrophage 

polarization” was popularized actively in literature, there were key features 

which distinguished two diametric opposites of macrophages, termed M1 and 

M2 macrophages. M1 macrophages are macrophages that respond and behave 

in a classical manner, i.e. M1 macrophages are immune response cells that 

highly express IL-12, IL-23 and less IL-10, while M2 macrophages express 

low IL-12, IL-23 and high IL-10.   
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The lack of mechanistic elaboration and macrophage polarization 

specific markers, especially for M2 polarization, has plagued its well-

conceptualized idea until M2 macrophage polarization specific markers such 

as Arginase-1 and YM-1 were established (ibid). As more research converge 

to include macrophage polarization as a compendious exposition for data 

analysis involving macrophages, pathways and mechanisms behind 

macrophage polarization are better understood now. M1 polarizing pathways 

within M1 macrophages have been found to be dependent on the activation of 

three major inflammation-associated transcription factors: NF-κB, IRF-3 and 

STAT-1 (Sica and Bronte, 2007). These transcription factors are activated to 

induce M1 polarization, and also provide reciprocal modulation which also 

provide reciprocal modulation, preventing M2 polarization markers such as 

Arginase-1 from being expressed. This allows pathway-driven investigation to 

establish whether ANXA1 directly affects macrophage polarization.  

In this chapter, we examined M2 polarization specific markers to 

ascertain whether ANXA1 directly affects macrophage polarization. We also 

focused on three major transcription factors involved in M1 polarization, 

namely NF-κB, IRF-3 and STAT-1, and a transcription factor involved in M2 

polarization, PPAR-γ. Figure 4.1 summarizes these investigations. 
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Figure 4.1. The regulation of M1 and M2 macrophage 

polarization by ANXA1 may be from several pathways. This 

diagram gives the general picture of critical components of in 

M1 and M2 polarization which are relevant to this study. The 

involvement of ANXA1 in macrophage polarization is not 

known. ANXA1 may be important for activating transcription 

factors NF-κB and IRF-3 or STAT-1. ANXA1 may also 

regulate M2 polarization, which can be identified by changes in 

expression of M2 markers such as Arginase-1 and YM-1 

(Diagram by Shu Shin La). 
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4.1. Using Bone Marrow Derived Macrophages (BMDM) as 

a Model for Further Investigation 

The use of PM is invaluable as an archetypal example of in vivo 

response which signals a response through TLR pathways in activated 

macrophages. Compared to other common methods of deriving macrophages 

such as bone marrow derived macrophages (BMDM), which mimics the 

development of macrophages and its cytokine environment but does not factor 

in the subtlety of other cellular interactions during its maturation, the use of 

PM have an added advantage of providing a global picture of macrophage 

response in a homeostatic state of differentiation and antigenic differences. 

However, to study macrophage polarization, the use of naïve macrophages 

BMDM was required, as mature macrophages such as PM may skew the 

polarization of macrophages.    

In order to use BMDM for detailed mechanism studies, ANXA1 KO 

BMDM cells were examined and compared to ANXA1 KO PM. This allows 

BMDM cells to be used as a model for in vivo response of PM. As mentioned 

previously, ANXA1 KO PM exhibited impairment of both MyD88 and TRIF 

dependent pathways, particularly after LPS treatment, and it is important to 

determine if BMDM also share such impaired phenotype.   

To investigate whether BMDM of ANXA1 KO also possess the same 

impaired phenotype for inflammatory cytokine production, MyD88 dependent 

cytokines (IL-6 and IL-12) and TRIF dependent chemokine (IP-10) production 

levels were examined.    
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IL-6, IL-12 and IP-10 production of WT and ANXA1 KO BMDM in 

untreated controls was observed to be at basal level and similar to each other 

(Figure 4.2). After LPS treatment, we observed a lower production of IL-6 

(although insignificant), IL-12 (p<0.05) and IP-10 (p<0.001).  IP-10 levels of 

WT and ANXA1 KO BMDM in untreated controls were was at basal level 

and not significantly different (Figure 4.2 c), although compared to WT PM, 

WT BMDM produced  more than twice the levels of IP-10.   

Based on these results, we postulated that ANXA1 is required for 

cytokine production in response to LPS in BMDM, and is required for TRIF-

dependent activation.  
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Figure 4.2. MyD88 and MyD88-independent, TRIF dependent 

cytokine / chemokine production in WT and ANXA1 KO 

BMDM after treatment with TLR agonists (1 million cells/ml). * 

denotes p<0.05, *** denotes p<0.001 and n.s. denotes “no 

significant difference”, i.e. p>0.05. Results are based on three 

biological repeats (n=3). 
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4.2. ANXA1 is involved in supressing M2 polarization 

Despite comprehensive evidence suggesting that ANXA1 affects 

diverse pathways involved in macrophage polarization, an association of 

ANXA1 to M2 polarization has not been described thus far. Macrophage 

polarization is a term born out of macrophages that do not respond in classical 

manner (M1 polarization), but there are very few methods to determine 

whether certain macrophages are M2 polarized, as macrophages with 

impairment of pro-inflammatory cytokines is the key evidence that an 

alternative macrophage state exists (Alberto et al., 2005). However, there exist 

markers that can conclusively identify M2 polarization.  

Arginase-1, an enzyme that converts arginine into ornithine or urea, is 

expressed in macrophages which actively drive an anti-inflammatory, type-2 

innate response (Pesce et al., 2009). Another M2 specific, anti-inflammatory 

macrophage associated marker is YM-1 (Raes et al., 2002). The next 

experiment focuses on these M2 markers.  

4.2.1. ANXA1 suppresses Arginase-1 and YM1 expression 

To examine the mRNA expression level of M2 markers in WT and 

ANXA1 KO BMDM, RT-PCR was used to quantify mRNA levels in BMDM 

of WT and ANXA1 KO mice at basal levels without stimulation. YM-1 

mRNA level is higher in ANXA1 KO macrophages compared to WT BMDM 

(Figure 4.3). Likewise for arginase-1, ANXA1 KO macrophages have higher 

mRNA expression level compared to WT BMDM. We also examined a M1 

macrophage polarization marker, IL-6, which is expressed at basal level in 

macrophages (Mantovani et al., 2005). Interestingly, ANXA1 KO BMDM has 
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diminished IL-6 mRNA expression compared to WT BMDM. This is in 

contrast to the M2 polarization markers that were up regulated in ANXA1 KO 

BMDM. 

Therefore, ANXA1 KO BMDM exhibits a M2 polarization phenotype. 

These results demonstrate that ANXA1 may inhibit M2 and promote M1 

polarization. In addition, IP-10 and IL-12 are M1 cytokines, and is observed in 

the previous chapter to be decreased in ANXA1 KO PM, thus further 

confirming that ANXA1 promotes M1 polarization.  

 

 

 

 

 

 

 

 

Figure 4.3. ANXA1 suppresses M2 polarization markers. a) 

mRNA quantification using RT-PCR to examine mRNA levels 

in WT and ANXA1 KO BMDM, without any prior treatment. 

Result shown is a representative among two biological repeats 

(n=2). 
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4.2.2. ANXA1 KO BMDM is unresponsive to NF-κB inhibitor 

NF-κB is a transcription factor important in M1 polarization.  To 

investigate whether NF-κB is directly responsible for IL-12 production during 

LPS exposure, and if ANXA1 KO cells are M2 polarized due to an inhibition 

in NF-κB, we inhibited NF-kB using a chemical inhibitor BAY-11-7082 

(hereafter called BAY-11). BAY-11 is capable of blocking NF-κB activation 

by irreversibly inhibiting phosphorylation of IκB-α which clamps NF-κB into 

an inactive state unless phosphorylated. We hypothesized that should NF-κB 

be responsible for the difference in IL-12 production observed in ANXA1 KO 

macrophages, inhibiting NF-κB would not affect ANXA1 KO macrophages.  

Figure 4.4 shows the result for wild-type and ANXA1 KO 

macrophages pre-treated with BAY-11 for 1 hour before exposure to LPS. 

Both wild-type and ANXA1 KO macrophages produce IL-12 upon exposure 

to BAY-11 alone. After exposure to LPS, when cells are pre-treated with 

BAY11, a significant decrease in IL-12 production is observed in WT BMDM. 

However, in ANXA1 KO BMDM, BAY11 does not inhibit IL-12. Therefore, 

BAY-11 only affects NF-κB-dependent IL-12 production in WT BMDM, but 

not ANXA1 KO BMDM after stimulation with LPS. 
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Figure 4.4. BAY-11 inhibits only wild-type BMDM for IL-12 

production treated with BAY-11 prior to LPS treatment. BAY-

11 (100ng/ml) was given as a pre-treatment one hour prior to 

addition of LPS (1 ug/ml) to samples. *** denotes p<0.001 and 

“n.s.” denotes “no significant difference”, i.e. p>0.05, Results 

shown is a representative among three biological repeats (n=3). 

 

 

4.2.3. ANXA1 directly affects NO production in macrophages 

We next examined the capacity of ANXA1 to regulate other factors 

that characterize M1 polarization. Macrophages are active producers of nitric 

oxide (NO) during inflammation, and NO production is a distinguishing 

characteristic of M1 polarization from M2 polarization, as NO production is 

greatly reduced during M2 polarization (Ho and Sly, 2009). Although NO 

production is independent of cytokine production trigger, it is nevertheless 

partly affected by NF-κB activation, as the transcription factor affects iNOS 
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expression level, which is one of the major inflammation-inducible genes 

responsible for increases in NO production (DeFronzo, 2009).  

In untreated controls, both wild-type and ANXA1 KO macrophages 

produced small but detectable amounts of NO (Figure 4.5). In contrast, wild-

type macrophages when exposed to LPS produced approximately13 µM of 

NO, and a smaller amount of approximately 6 µM of NO upon exposure to 

poly (I:C). This is significantly higher than the amount produced in ANXA1 

KO macrophages when exposed to LPS or poly (I:C). Based on this result, we 

demonstrated that NO production is significantly inhibited in ANXA1 KO 

macrophages after stimulation with LPS, and poly (I:C), indicating a 

phenotype closer to M2 polarization.  
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Figure 4.5. ANXA1 KO macrophages exhibited diminished NO 

production levels. NO levels compared to wild-type BMDM, 

after treatment with TLR agonists LPS (1ug/ml) and poly (I:C) 

(10ug/ml), based on Greiss assay. *** denotes p<0.001. Results 

shown is an average from three biological repeats (n=3). 
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4.2.4. ANXA1 and STAT- 1 signaling 

Another major transcription activator which is directly involved in M1 

polarization is STAT-1. Activation of STAT-1 through phosphorylation of 

tyrosine residue 701 (Y701) is important for both bacterial and viral immunity 

(Burbin et al., 1996; Kristensen et al., 2011). STAT-1 is mainly involved in 

triggering type I interferon response which is induced by external signal 

transduction via interferon-gamma (IFN-γ) stimulation. Thus, we examined if 

STAT-1 could also be responsible for ANXA1-dependent functions or vice 

versa. 

 

4.2.5. ANXA1 does not regulate IFN-γ stimulated cytokine / 

chemokine production.  

Throughout our experimental results, a decrease in both IL-12 and IP-

10 production in ANXA1 KO macrophages was observed compared to wild-

type macrophages when treated with poly (I:C) or LPS. To activate STAT-1 

specific activity, and to examine whether STAT-1 activation is affected by 

ANXA1, we stimulated the macrophages with STAT-1 activating IFN-γ (100 

U/ml). We also used a known M1 polarizing treatment, i.e.  IFN-γ (100 U/ml) 

with LPS (100 ng/ml), to examine whether the inhibition in cytokine 

production could be STAT-1 dependent.  

Upon treatment with IFN-γ alone, an increase in IP-10 production was 

observed in both wild-type and ANXA1 KO BMDM. Interestingly, ANXA1 

KO BMDM produce similar amounts of IP-10 compared to WT. This gave us 
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a good indication that IP-10 production impairment observed in ANXA1 KO 

macrophages during TLR agonist treatment is TLR pathway specific, and 

based on this data, suggests the impairment is TRIF specific, since IP-10 is 

produced through TRIF- dependent pathway.   

Next, M1 polarizing stimulation given by exposure to both IFN-γ and 

LPS was examined. Similar to results for IFN-γ treatment alone, both wild-

type and ANXA1 KO macrophages produce statistically identical amount of 

IP-10, indicating that STAT-1 activation and downstream transcription 

pathway is intact in ANXA1 KO macrophages. This also demonstrated that 

when ANXA1 is not involved in regulating STAT-1 dependent activation. To 

ascertain whether the production of IP-10 after M1 polarization affects STAT-

1 activation compared to activating STAT-1 only through IFN-γ, we added 

IFN-γ 18 hours after M1 polarization to ascertain if secondary exposure to 

IFN-γ affects IP-10 production. WT and ANXA1 KO macrophages produce 

similar levels of IP-10, indicating that ANXA1 does not affect STAT-1 

signaling (Figure 4.6 a). 

IL-12 production was also examined. STAT-1 activation through IFN-

γ alone does not trigger the production of IL-12 in both wild-type and ANXA1 

KO macrophages. Interestingly, when M1 polarizing stimulation was 

administered (IFN-γ and LPS), both wild-type and ANXA1 KO macrophages 

produced substantial and statistically similar levels of IL-12, indicating the 

capacity of STAT-1 driven pathway is not affected in ANXA1 KO 

macrophages (Figure 4.6 b). Again, this gives a good indication that IL-12 

impairment observed in ANXA1 KO macrophages is a highly specific 

mechanism which likely involves a complex that does not associate with 
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STAT-1 pathway. When a secondary dose was administered 18 hours after 

initial stimuli, IL-12 production in both wild-type and ANXA1 KO 

macrophages remained unchanged. This indicates a sustained M1 polarizing 

capability and its capacity to retain IL-12 production. As a whole, this data 

therefore shows that ANXA1 is not involved in STAT-1 activation.  

 

Figure 4.6. STAT-1 dependent cytokine / chemokine production 

is not affected by absence of ANXA1. a) IP-10 production and b) 

IL-12 production of wild-type and ANXA1 KO BMDM treated 

with IFN-γ (100U/ml) and or M1 polarizing stimulant (100 

ng/ml of LPS with 100U/ml of IFN-γ). “n.s.” denotes “no 

significant difference”, i.e. p>0.05, Results shown is an average 

between three biological repeats (n=3). 
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4.2.6. STAT-1 phosphorylation is not affected by absence of 

ANXA1 

We determined whether activation of STAT-1 is affected in ANXA1 

KO PM. STAT-1 activation levels were next examined through the use of 

western blotting. 

Figure 4.7 shows the results for western blot on wild-type and ANXA1 

KO PM, after treatment with LPS. Without any treatment, similar levels of 

STAT-1 protein expression were observed in both wild-type and ANXA1 KO 

PM. No change in STAT-1 levels was observed in both WT and ANXA1 KO 

PM after LPS treatment. No phosphorylation of STAT-1 for both wild-type 

and ANXA1 KO macrophages was observed at 2 h of LPS. At 4 h and 24 h 

post LPS treatment, STAT-1 phosphorylation is observed to be at equal levels 

for both wild-type and ANXA1 KO macrophages.   

These results demonstrated that ANXA1 is not involved in influencing 

STAT-1 phosphorylation and activation after LPS. 
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Figure 4.7. STAT-1 phosphorylation and basal expression level 

is unchanged by absence of ANXA1. Wild-type (WT) and 

ANXA1 KO (KO) PM macrophages were given LPS treatment 

for 2h , 4h and 24h respectively. 1 ug/ml of LPS was given as 

experimental treatment. Western blotting was done with a 

protein lysate concentration of 100 ug / ml. Results shown is a 

representative among two biological repeats (n=2). “α-p STAT-

1” denotes antibody probe for phosphorylated STAT-1 at 

tyrosine residue 701. “α- STAT-1” denotes antibody probe for 

STAT-1. “α-Actin” denotes antibody probe for actin, as loading 

control. 
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4.3. ANXA1 and PPAR-γ signaling 

There are known natural NF-κB inhibitors that would inhibit 

production of IL-12 and IP-10 upon LPS exposure in phagocytes.  Although 

ANXA1 was shown to bind and inhibit NF-κB signaling in cancer cells 

(Zhang et al., 2010), it remains unclear whether ANXA1 regulates NF-κB in 

healthy phagocytes but findings were limited to in vitro experiments using 

exogenous application of ANXA1 peptide on murine macrophage cell lines 

(Alldridge et al, 1999; Xu et al., 2009). This led to a question whether a 

natural inhibitor of NF-κB signaling exists which ANXA1 may regulate 

directly in healthy phagocytes.   

One such natural inhibitor of NF-κB is PPAR-γ, a natural NF-κB 

inhibitor. In addition, PPAR-γ has been shown to be a M2 polarizing stimuli. 

We hypothesized that PPAR- γ signaling may be dysregulated in ANXA1 KO 

macrophages, thus causing the impaired cytokine response, and skewing the 

polarization to the M2 phenotype. PPAR-γ function is involved with ANXA1 

based on previous studies in our lab that has linked ANXA1 as a potential 

PPAR-γ regulator in cancer cells (unpublished data). As PPAR-γ is a known 

natural NF-κB inhibitor acting through NFkB p65/RelA subunit (Giulia et al., 

1998; Vanden Berghe et al., 2003), and since ANXA1 was shown to interact 

tightly and regulate upstream elements of NF-κB signaling pathway (Bist et 

al., 2011), the study focused on whether downregulation of both My-D88 

dependent and TRIF-dependent cytokines continues to be observed when 

ANXA1 KO macrophages were exposed to PPAR-γ agonists. This would 
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determine if PPAR-γ is responsible for the attenuation in cytokine production 

found in ANXA1 KO macrophages. 

4.3.1. Investigating PGJ2 as a PPAR-γ specific agonist in wild-

type macrophages 

We first investigated a well-known, endogenously and readily bio-

available PPAR-γ specific agonist 15-deoxy-∆12,14-prostaglandin J2, or PGJ2  

in wild-type BMDM, in a dose-dependent manner. PGJ2 is capable of inducing 

small amounts of IL-12 even at low doses (Figure 4.8 a). When macrophages 

are treated with LPS, IL-12 production is substantially increased, and upon 

pre-treatment for 1 hour with PGJ2 , IL-12 production decreased in a dose-

dependent manner (Figure 4.8 b). This result is consistent with literature 

which studied IL-12 released by macrophages induced with LPS and PGJ2 

showing a dose-dependent inhibition of IL-12 production (Alleva et al., 2002), 

thereby providing a robust model for downstream observation and analysis of 

results.  
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Figure 4.8. Wild-type macrophage response to PGJ2 treatment. 

PGJ2 was given as a pre-treatment 1 hour prior to addition of 

LPS to samples. *** denotes p<0.001, ** denotes p<0.01, * 

denotes p<0.05, “n.s.” denotes “no significant difference”, i.e. 

p>0.05 when compared to DMSO only (for PGJ2 treatment 

alone) or LPS only (for PGJ2 + LPS treatment). Results shown is 

a representative among three biological repeats (n=3). 
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4.3.2. Stimulating PPAR-γ  with PGJ2 inhibited IL-12 

production  

We next investigated the effect of PGJ2 on ANXA1 KO BMDM. These 

graphs are depicted in Figure 4.9 and 4.10, showing control and PGJ2 treated 

cells side by side.  When cells were treated with PGJ2 alone, IL-12 was 

produced significantly lesser in ANXA1 KO macrophages. After treatment 

with LPS, 1µM PGJ2 inhibits IL-12 production in WT, but not in ANXA1 KO 

macrophages. Since PGJ2 is a PPAR-γ agonist, this result suggests that 

ANXA1 may be required for the inhibitory effect induced by PGJ2 (Figure 4.9 

b).   
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Figure 4.9. ANXA1 KO BMDM response to low dose of PGJ2 

treatment (1 せM). PGJ2 was given as a pre-treatment 1 h prior to 

addition of LPS to samples. *** denotes p<0.001, ** denotes 

p<0.01, and “n.s.” denotes “no significant difference”, i.e. 

p>0.05. Results shown is a representative among three 

biological repeats (n=3).  
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As PGJ2 is an inhibitor of IL-12 production and ANXA1 KO also 

exhibited inhibited IL-12 production, further analysis of our results was 

required to determine if the inhibition by PPAR-γ is abrogated in ANXA1 KO 

PM. To do so, analysis for percentage of inhibition of IL-12 for PGJ2 treatment 

was performed by normalizing the production of IL-12 produced by BMDM 

pre-treated with PGJ2 prior to LPS treatment by dividing it with the production 

of IL-12 with LPS treatment alone. This was done for both WT and ANXA1 

KO BMDM for pre-treatment with 1 µM PGJ2. IL-12 inhibition is not 

observed at 1 µM PGJ2 upon treatment with LPS (Figure 4.10). Therefore 

ANXA1 might regulated PPAR-γ –dependent production of IL-12 in BMDMs.  

 

 

 

 

 

 

 

 

Figure 4.10. Percentage inhibition of IL-12 production after LPS 

stimulation with 1 µM PGJ2 pre-treatment. *** denotes p<0.05 

compared to WT. Results shown is a representative among three 

biological repeats (n=3).  
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γ through the use of PPAR-γ specific inhibitor.  We hypothesized that 

treatment with GW9662 would abrogate the endogenous link between PPAR-γ 

to ANXA1, i.e. GW9662 would reverse the IL-12 inhibition in ANXA1 KO 

BMDM upon exposure to LPS if endogenous PPAR-γ was involved.  Prior to 

our investigation, we first examined WT BMDM responses to PPAR-γ 

inhibitor GW9662 at 1µM, 3µM and 10µM levels as a pre-treatment prior to 

LPS exposure. 

GW9662 alone inhibited the production of IL-12 in WT BMDM 

(Figure 4.11 a), indicating that PPAR-γ may be involved in basal IL-12 

production. When used as a pre-treatment to LPS, all doses of GW9662 

reduces IL-12 production levels significantly (Figure 4.11 b). Although 

GW9662 is an inhibitor of PPAR-γ, and despite being a PPAR-γ specific 

antagonist, some action of its chemistry as molecular inhibitor may yet be 

unknown. Moreover, this decrease in IL-12 level upon pre-treatment with 

GW9662 prior to exposure to LPS is consistent with findings in other 

laboratories (Zhang et al., 2004).  
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Figure 4.11. WT BMDM response to GW9662 treatment. 

GW9662 (GW) was given as a pre-treatment 1 h prior to 

addition of LPS to samples. ** denotes p<0.01, *** denotes 

p<0.001 when compared to DMSO only (for PGJ2 treatment 

alone) or LPS only (for PGJ2 + LPS treatment). “n.d.” denotes 

“not detected”, i.e. below detection limit of IL-12 ELISA kit. 

Results shown is a representative among three biological repeats 

(n=3). 
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4.3.4. Inhibiting PPAR-γ reverses ANXA1-KO IL-12 

inhibition 

We next examined ANXA1 KO BMDM and its response after pre-

treatment with GW9662 prior to LPS exposure. Similar to wild-type 

macrophages, ANXA1 KO BMDM did not produce any IL-12 upon treatment 

with GW9662 alone, at all concentrations investigated.  

Upon treatment with 1 µM of GW9662 prior to LPS exposure, 

ANXA1 KO BMDM exhibited a significant increase in IL-12 production 

compared to ANXA1 KO BMDM exposed only to LPS, albeit being lower in 

production compared to its wild-type counterparts in  both LPS treatment 

alone samples and 1 µM GW9662 + LPS. This was also observed for 3 µM 

GW9662 treatment before LPS exposure, but the difference of IL-12 

production between LPS treated and 1 µM GW9662 with LPS treated ANXA1 

KO BMDM was not as marked, but remained significantly different (p<0.05). 

Pre-treatment with 1µM GW9662 before LPS increased IL-12 production 

level in ANXA1 KO BMDM compared to LPS treatment alone (Figure  4.12).  
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Figure 4.12. ANXA1 KO BMDM response to low dose of 

GW9662 treatment (1 せM). GW9662 was given as a pre-

treatment 1 hour prior to addition of LPS to samples. ** denotes 

p<0.01 compared to WT. Results shown is a representative 

among three biological repeats (n=3). 
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As GW9662 is an inhibitor of PPAR-γ and PPAR-γ is an inhibitor of 

NF-κB, further analysis was required to visualize the effect of GW9662 on 

ANXA1 KO BMDM. To do so, the same method of analysis for percentage of 

inhibition of IL-12 done in PGJ2 was employed. IL-12 production is enhanced 

at 1 µM GW9662 upon treatment with LPS (Figure 4.13). The result is 

consistent with the hypothesis that PPAR-γ is regulated by ANXA1, since 

inhibition of PPAR-γ in ANXA1 KO BMDM causes enhancement of IL-12 

production. This result demonstrates that PPAR-γ regulates IL-12 production 

after stimulation with LPS, and ANXA1 regulates PPAR- γ.  

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Percentage inhibition of IL-12 production after LPS 

stimulation with 1 µM GW9662 pre-treatment. *** denotes 

p<0.05 compared to WT. Results shown is a representative 

among three biological repeats (n=3). 
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4.3.5. Investigating a clinically relevant synthetic PPAR-γ 

ligand  

Despite PGJ2 showing a promising side in the likely involvement of 

PPAR-γ in deficiency of cytokine / chemokine production in ANXA1 KO 

macrophages at small doses of PGJ2 (1 µM), it remains in question whether 

such observation is unique to the ligand PGJ2. We investigated if other 

synthetically derived ligands used clinically may also be capable of showing 

that ANXA1 inhibit PPAR-γ activity during IL-12 production upon exposure 

to LPS. Troglitazone (commercially known as Rezulin) was once a popular 

PPAR- γ agonist in the anti-diabetes market until its sale was prohibited for 

liver toxicity (Penumetcha and Santanam, 2012).  

Troglitazone by itself did not induce noticeable IL-12 production in 

both wild-type and ANXA1 KO macrophages (Figure 4.14). Clinically 

relevant doses of 10 µM troglitazone show significant inhibition of IL-12 

production in wild-type but not ANXA1 KO BMDM when compared to 

production levels during LPS treatment alone. This result was consistent with 

observation made on PGJ2 in this study. Therefore this result also supports the 

hypothesis that ANXA1 controls IL-12 production through the regulation of 

PPAR-γ. 
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Figure 4.14. Wild-type and ANXA1 KO macrophage response 

to PPAR-γ troglitazone as a pre-treatment 1 hour prior to 

addition of LPS. * denotes p<0.05, ** denotes p<0.01 and “n.s.” 

denotes “no significant difference”, i.e. p>0.05. Results shown 

is a representative among three biological repeats (n=3). 

 

 

4.4. Chapter 4 conclusion 

Macrophage polarization is a good prognosticating tool in the study of 
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chemokine production pathways. This has been particularly useful to identify 

ANXA1 as a novel regulator of macrophage polarization.  

This chapter demonstrated several key influences ANXA1 has on 

macrophage polarization. ANXA1 is a regulator of both NF-κB and IRF-3 

transcription factors, which are important regulators of M1 polarization. Also, 

ANXA1 does not partake in IFN-γ activated STAT-1 pathway. Moreover, 
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we showed that PPAR-γ is involved in the inhibition of IL-12 in ANXA1 KO 

macrophages. These results are summarized in Figure  4.15.   

 

 

 

Figure 4.15. ANXA1 influences both M1 and M2 polarization. This 

diagram summarizes the overall picture of the involvement of ANXA1 

in macrophage polarization. ANXA1 is important for activating 

transcription factors NF-κB and IRF-3, but is not associated with 

STAT-1 activation. Moreover, ANXA1 also influences M2 polarization, 

as absence of ANXA1 causes upregulation of expresion in M2 markers 

Arginase-1 and YM-1 (Infographic by Shu Shin La).  
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Sepsis is one of the most challenging bacteria-related conditions 

worldwide, and is the leading cause of death in patients with multi-organ 

failure                                                                                                               

(Rittirsch et al., 2012).  It is also the major cause of death in neonates younger 

than six months: an estimated one million neonates worldwide die in a year 

from sepsis (Wynn and Wong, 2010). In U.K., ~30% of adults admitted to 

intensive care unit meet the severe sepsis criteria (Padkin et al., 2003). In U.S. 

alone, more than 10 million patients were affected by sepsis between 1979 

through 2000 (Martin et al., 2003) and annual total cost for the treatment of 

sepsis exceeds $16 billion annually (Angus et al., 2001).  

Sepsis is a continuum beginning with a host-pathogen interaction that 

triggers and interplay between pro-inflammatory and anti-inflammatory 

mediators, and ending with an overly activated inflammatory response which 

then overwhelms the host (Rackow et al., 1991). TLR activation by microbial 

infection such as bacteria, viruses and fungi is a key component in the 

outcome of sepsis (Tsujimoto et al., 2008; Weighardt and Holzmann, 2007). 

Mice lacking key signaling adaptor proteins for TLR activation such as 

MyD88 -/- and TRIF -/- mice do not die of septic shock, purportedly due to 

reduced inflammatory burden and cytokine production during microbial 

invasion (Reim et al., 2011; Feng et al., 2011).  

There are certain subsets of immune cells linked to sepsis: notably 

macrophages, a dominant sentinel found at initial sites of infection, a major 

source of many cytokines involved in immune response (Cavaillon, 1994; 

Holgate, 2000; Hume, 2000; Scull et al., 2010).  
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The innate immune system is evolutionarily conserved to provide first 

line of defense and host protection against invading microbial pathogens. 

Initially identified through Toll, a unique protein from fruit fly Drosophila 

melanogaster which showed participation in innate immune responses, 

homologues of Toll, termed Toll-like receptors (TLRs) found in mammals 

were also demonstrated to recognize PAMPs and elicit innate immune 

responses through induction of inflammatory cytokines (Akira et al., 2001). 

Since the discovery of TLRs, many studies have joined or segregated the 

intracellular signaling pathway of TLRs to the activation of NF-κB, a 

transcription factor extensively involved in the regulation of innate immunity 

and inflammation (Hoffmann, 2003; Medzhitov et al., 1997).  

The most frequently activated form of NF-κB in TLR signalling is a 

heterodimer composed on RelA (p65) and p50 (Poltorak et al., 1998). This 

heterodimer is kept in its latent state through the interaction with the 

inhibitor,s IκB. Stimulation of TLR triggers the phosphorylation of Inhibitor 

of κB (IκB) by IκB kinase (IKK) complex signaling the degredation of IκB by 

poly-ubiquitination. NF-κB is released from inhibition by IκB, allowing for 

RelA and p50 heterodimer to begin transcription by translocating into the 

nucleus. The IKK complex therefore indirectly regulates NF-κB. The IKK 

complex is made of IKK-α and IKK-β which is important for the activation of 

NF-κB signaling, and a NF-κB essential modifier (NEMO or IKK-γ) which 

acts as a regulatory component of IKK complex (Medzhitov et al., 1997). We 

have recently shown that ANXA1 can interact with members of the NF-κB 

family, such as NF-kappa-B essential modulator (NEMO) or IKK-γ as well as 
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Receptor interacting protein 1 (RIP1), a signaling molecule important in the 

activation of NF-κB (Bist et al, 2011).  Therefore, in this project, we placed 

emphasis on deciphering the roles of ANXA1 in innate immunity.  

Activation of innate immunity is an important step towards antigen-

specific acquired immunity development. Among pattern recognition receptors, 

TLRs are tasked to perform this specific role of activating innate immune 

response. Recognition of microbial pattern products by TLRs triggers TLR 

signaling pathways regulated by intracellular adaptors.  

TLRs trigger downstream signaling cascade by recruiting specific 

combination of TIR domain-containing adaptors such as MyD88, MyD88 

adaptor-like (MAL), TRIF and TRIF-related adaptor molecule (TRAM) 

(Takeda and Akira, 2005; Takeuchi et al., 1999). Among these adaptor 

proteins, MyD88 is the sole adaptor used by TLR5, TLR7 and TLR9. TLR2 

and TLR4 also uses adaptor protein MyD88, although not as much as other 

adaptor proteins like Toll/Interleukin-1 receptor  adaptor protein (TIRAP), 

TRIF and TRAM . (Takeuchi et al., 200; Ozinsky et al., 2000; Alexopoulou et 

al., 2001; Hayashi et al., 2001; Zhang et al., 2004; Yarovinsky et al., 2005; 

Hemmi et al., 2002). Only TLR3 specifically uses TRIF for signaling, and is 

independent of MyD88 signaling (Hayashi et al., 2001; Alexopoulou et al., 

2001). Therefore activation of MyD88 is synonymous with TLR activation in 

all TLR except for TLR3, for activation of NF-κB, leading to the induction of 

inflammatory cytokine genes (Kawai and Akira, 2005). This leads to the 

notion of TLR signaling being largely segregated into two discrete pathways: 

the MyD88-dependent and the TRIF-dependent pathways. In this study, we 

focused on TLR agonists CpG DNA (CpG1826), poly (I:C) and LPS that 
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initiates TLR signal transduction through MyD88, TRIF- and both MyD88 

and TRIF respectively. CpG 1826 activates TLR9 transduction of downstream 

signal solely through MyD88 adaptor protein. On the other hand, poly (I:C) ,a 

TLR3 agonist activates downstream pathway through TRIF adaptor protein. 

LPS is capable to sending downstream signals through both TLR 3 and 4, thus 

utilizing both MyD88 and TRIF adaptor proteins to relay downstream signals 

for activation of immune cell response.  

The MyD88 adaptor protein is composed of a Toll/Interleukin-1 

receptor (TIR) domain and a death domain. The death domain is used for 

interaction with Interleukin-1 receptor-associated kinase 1 (IRAK) family of 

protein kinases, namely IRAK1, IRAK2, IRAK4 and IRAK-M (Takeda and 

Akira, 2005). Function of IRAK2 remains unclear (Kawai and Akira, 2007). 

IRAK4 is initially activated by MyD88, which in turn phosphorylates IRAK1, 

forming a temporal complex between IRAK1, IRAK 4 and MyD88. IRAK-M 

is believed to inhibit release of IRAK1 and IRAK4 from MyD88, thus 

inhibiting signal transuction (Diebold et al., 2004). Alterantively , IRAK1 and 

IRAK4 are released from MyD88 upon their phosphorylation and interact with 

NEMO through another adaptor protein, TRAF6. This occurs by 

ubiquitination of NEMO at lysine 63 residue by TRAF6 (Heil et al., 2004, 

Heil et al., 2003), causing the recruitment of TAK1 and TAB (Heil et al., 

2004), which then activates two downstream pathways, the NF-κB pathway  

and the MAPK pathway (Kawai and Akira, 2007).  Our lab has previously 

published a report detailing the interaction of ANXA1 with IKK complex 

through NEMO, and that ANXA1 is important to the recruitment of RIP-1 to 
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the IKK complex, which is critical for activation of NF-κB (Meylan et al., 

2004; Bist et al., 2011  

NF-κB plays an important role in the regulation of variety of genes involved in 

inflammatory immune response (Ghosh et al., 1998). The active form of NF-

κB is composed of NF-κB/Rel family members in homo- and hetero- dimers. 

In the cytoplasm, NF-κB exists as an inactive form that is bound to a family of 

inhibiting molecules I-kappa-B (IκB), consisting of three subunits, namely 

IκB-α, IκB-β and IκB-ε (Fumiko et al., 2000). Activation of NF-κB requires 

the phosphorylation of IκB, which is followed by the polyubiquitination 

degradation of IκB by 26S proteasome. The dissociation of IκB from NF-κB 

due to  the phosphorylation of IκB allow NF-κB complex to be released and 

translocated into the nucleus, which cuases upregulation of myriad genes 

involved in pro-inflammatory cytokine response (Baeuerle and Henkel, 1994; 

Verma et al., 1995; Baeuerle and Baltimore, 1996).  Due to the nature of 

inhibitory mechanism by IκB family which controls the activation of NF-κB, 

the activator of IκB complex, kinases responsible for IκB phosphorylation is 

an upstream epicentre for control of NF-κB activity, i.e. the IκB kinases or 

IKK complex. Our lab has shown that ANXA1 can positively regulate NF-κB 

activity in breast cancer cells.  Therefore, we hypothesized that ANXA1 could 

also positively regulate NF-κB activity in macrophages stimulated with TLR 

agonists. However, through our initial studies, we determined that ANXA1 

could regulate LPS but not CpG DNA-stimulated cytokine production, 

demonstrating that the MyD88-dependent pathway was not regulated by 

ANXA1. Therefore, as LPS also triggers the MyD88-independent pathway, or 

the TRIF-dependent pathway, we determined if ANXA1 could activate TRIF 
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signaling to regulate NF-κB activation. IRF-3 is also dependent on NEMO 

(IKK-γ) for TLR3 mediated immunity (Audry et al., 2011), and we 

hypothesized that ANXA1 may regulate NF-κB through TRIF.  Indeed, 

ANXA1 regulated NF-κB p65 nuclear translocation in response to poly(I:C) 

but not LPS, indicating that TRIF-dependent NF-κB activation, and not 

MYD88-dependent NF-κB activation is regulated by ANXA1.  

The adaptor protein TRIF links TLR3 and TLR4 to IRF-3, an anti-viral 

transcription factor, through TBK-1 recruitment and phosphorylation of IRF-3 

by TBK1. This induces IRF-3 to dimerize and translocate into the nucleus, 

triggering transcription of type 1 interferons (IFN-α and IFN-β) (Sugimoto et 

al., 2004). Another adaptor protein that links TRIF and TBK1 is TRAF3. 

TRAF3 deficient mice fail to induce IFN-β response when stimulated with 

TLR3 and TLR4 ligands (Kawai et al., 1999; Theofilopoulos et al., 2005). 

Therefore TLR3 and TLR4 use the TRIF pathway to induce INF-β to develop 

an antiviral state. This activation of TRIF dependent pathway is independent 

of MyD88 pathway, as evidenced by the impairment of TLR3 and TLR4 

ligand induced activation only observed in TRIF deficient mice but not in 

MyD88 deficient mice (Alexopoulou et al., 2001; Yarovinsky et al., 2003). 

We demonstrate that ANXA1 is required for IRF-3 to translocate into the 

nucleus to initiate macrophage activation after stimulation with LPS or poly 

(I:C), and other data from our lab also show that ANXA1 can control IRF-3 

phosphorylation, in ANXA1 deficient macrophages which exhibit impaired 

phosphorylation and dimerization of IRF-3.  In addition, surface activation 

markers MHCII and CD86 on macrophages from ANXA1 KO mice show an 

attenuated activation profile after LPS or poly (I:C) treatment . This data 
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implies that ANXA1 can activate IRF-3 in the MyD88-independent or TRIF-

dependent pathway, which is  possibly responsible for the impairment of IL-12 

and IP-10 production in ANXA1 KO macrophages.  

The TRIF adaptor protein can also activate NF-κB, but as a late phase 

response. TRIF directly binds to TRAF6, purportedly linking MyD88 and 

TRIF in early response (Lund et al., 2003; Coban et al., 2005), but a detailed 

study that followed TRAF6 activity concluded that TRAF6 is dispensible for 

TRIF-dependent NF-κB activation (Gohda et al., 2004). Therefore the 

activation of NF-κB by TRIF is more likely through an auto-feedback loop 

derived from the production of type-I antiviral response (Du et al., 2007; 

Pfeffer, 2011). It may be possible that ANXA1 plays a role in the cross-talk 

between the MyD88 and TRIF pathways, but this needs to be investigated 

further. 

Therefore, the TLR agonists chosen in this study stimulate two distinct 

signaling mechanisms: MyD88 dependent and TRIF dependent pathways. 

This draws a clear division for the role of ANXA1 in TLR agonist-induced 

cytokine production. IL-12 / IP-10 production was only significantly inhibited 

in the ANXA1 KO when LPS and poly (I:C) treatment was given, but not after 

exposure to CpG 1826. This highlights the importance of ANXA1 in TRIF-

dependent pathway, but not TLR2 activated MYD88-dependent pathway. The 

impairment of TLR 3 and 4 dependent IL-12 / IP-10 production is not a unique 

phenotype to ANXA1 KO macrophages- it was previously reported that 

macrophages from MyD88 deficient mice are incapable of producing 

cytokines in response to TLR3 and TLR4 agonists.(Yamamoto et al., 2003). 

IL-12 production is completely abrogated in MyD88-deficient mice 
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administered with LPS, and they do not undergo endotoxin shock (Kawai et 

al., 1999). This highlights the importance of MyD88 as an adaptor protein in 

cytokine production, in particular IL-12. On the other hand, IP-10 levels are 

shown to be impaired in TRIF-deficient mice compared to wild-type mice, 

indicating the relevance of TRIF adaptor protein in IP-10 production during 

TLR dependent activation (Yamamoto et al., 2002).  As both IL-12 and IP-10 

levels are impaired, the result implicates ANXA1 in both MyD88 dependent 

and TRIF dependent pathways. It is however, more akin to what was observed 

in TRIF knockout mice, where both TLR3 and TLR4 mediated responses were 

impaired, once again suggesting that ANXA1 is important for TRIF- 

dependent IL-12 and IP-10 production. 

This study has demonstrated that although IL-12 production was 

impaired in ANXA1 KO PM when compared to WT after treatment with LPS, 

there was no significant difference in IL-6 production between WT PM and 

ANXA1 KO PM after treatment with LPS. This may be due to the specificity 

of IL-6 to the MyD88 pathway, i.e. MyD88 deficient mice is unresponsive to 

LPS and does not produce IL-6 (Kawai et al., 1999). In contrast, IL-12 is a 

cytokine produce in synergy with both MyD88 and TRIF pathway, i.e. TRIF 

pathway can also trigger IL-12 production (Krummen et al., 2010). As this 

study proposes that ANXA1 KO PM exhibit impaired TRIF dependent 

response, therefore the impairment of IL-12 production is a TRIF specific 

pathway impairment, compared to IL-6 that is solely MyD88 dependent in 

production. 

Yang et al., (2009) and Yona et al., (2006) investigated IL-6 and TNF-

α levels in ANXA1 KO macrophages after LPS stimulation, and both 
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cytokines were shown to be increased compared to wild-type macrophages. 

However, in this study the TNF-α mRNA expression was observed to be 

higher in ANXA1 KO than wild-type macrophages, yet no difference was 

observed for IL-6 level between wild-type and ANXA1 KO macrophages. The 

result suggests that MyD88 pathway may be intact and that IL-12 impairment 

may be due to impairment of pathways independent of MyD88, since IL-6 is a 

MyD88 dependent cytokine (Kawai et al., 1999). Significant IL-6 production 

was observed after treatment with poly (I:C) or LPS. The result is similar with 

findings from other reports (Meng and Lowell, 1997; Bae et al., 2010). 

Interestingly CpG 1826 did not cause noticeable IL-6 production, consistent 

with other studies based on CpG 1826 (Yasuda et al., 2004).  

The importance of finding that ANXA1 regulates TRIF pathway is 

particularly evident when it is juxtaposed with the results of a study that 

revealed TRIF pathway activation to be responsible for 74.4% of the LPS-

induced transcriptome in murine macrophages (Björkbacka et al., 2004). 

Moreover, steady state neutrophil homeostasis is found to be dependent on 

TLR4 and TRIF signaling pathway (Bugl et al., 2012), hinting on the potential 

interaction that remains to be discovered between ANXA1 and TRIF in 

neutrophils, since ANXA1 is found to be highly expressed in neutrophils and 

is dependent on ANXA1 for neutrophil extravasation (Lim et al., 1998). 

Further, TRIF pathway activation was also identified to be essential for 

differentiation of dendritic cells and mobilization to the lymph nodes during 

bacterial infection studies in mice (Cheng et al., 2010). More importantly, 

identifying new regulators of TRIF pathway can directly impact sepsis 

research, as patients who are suffering from gram-negative bacterial sepsis 
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were found have upregulated in the expression of TRIF-dependent genes such 

as IFN-β, CCL5 and IP-10 (Shalova et al., 2012).  

IRF-3 requires phosphorylation by IKK-ε of the IKK complex and 

TBK1 (Fitzgerald et al., 2003; Nomura et al., 2000) in order to translocate into 

the nucleus. In human macrophages, TBK1 and IKK-ε are involved in 

directing LPS induced IFN-β transcription and activation (Solis et al., 2007). 

Our lab has unpublished data that ANXA1 KO macrophages show delayed 

kinetics in TBK1 phosphorylation and activation when compared to WT 

(unpublished data). TBK1 may be responsible for the impaired IRF-3 nuclear 

localization in ANXA1 KO PM. TBK1 is important in NF-κB signaling as 

macrophages from TBK1 -/- mice exhibit reduced NF-κB directed 

transcription caused by ablation of IFN-β production. Interestingly, ANXA1 

KO mice exhibit similar phenotype as TBK1 KO mice in terms of LPS 

induced lethality (Marchilk et al., 2010). It therefore suggests a direct role of 

TBK1 in the regulation of TRIF dependent pathway through ANXA1.  

After confirming that ANXA1 is required for cytokine production in 

response to LPS and poly (I:C), it was important to determine surface 

activation markers of macrophages after TLR agonist stimulation to determine 

the capacity of ANXA1 KO macrophages to activate adaptive immune 

response. MHCII and CD86 were chosen as activation markers for 

macrophages. MHCII interacts with the T-cell receptor (TCR) of the CD4+ T-

helper cells while CD86 binds and prime the  T cells against presented 

antigens (Blander, 2008). The role of ANXA1 as a regulator of T cell 

activation was established previously (D’Acquisto, 2007). Our study showed 

that a substantial proportion of ANXA1 KO macrophages are not activated 
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after stimulation when compared to WT macrophages, demonstrating that 

ANXA1 is required for proper macrophage activation in response to TLR 

stimulation.  

Furthermore, macrophages secrete cytokines which affect B cell 

activation. Although B cells do possess TLRs and are capable of being 

activated directly by TLR agonists such as LPS and CpG (Kim et al., 2012),  

B cells are, in most cases, downstream of macrophage activation during initial 

stages of pathogen invasion (Cerutti et al., 2012). Upon analysis of B cell 

activation by TLR agonists, our data showed that a subset population in 

ANXA1 KO B cells are either not capable of being activated or is not 

activated enough to express surface markers such as CD69. This is interesting 

as B cells from MyD88-deficient mice also exhibited similar unresponsiveness 

to LPS response (Kawai et al., 1999). The only other study that investigated 

B-cells in relation to ANXA1 was a study for non-Hodgkin’s lymphomas, and 

it was shown that ANXA1 expression is completely abrogated in these 

lymphomas, when ANXA1 is expressed in healthy B cells (Vishwanatha et al., 

2004).  

Exposure to live pathogens provide a better understanding to whether 

our results are agonist-specific observations or if defects are also persistent in 

live sepsis.  Live Escherichia coli (E. coli) DH5α bacteria were cultured with 

macrophages overnight. While MyD88-dependent cytokines IL-12 and IL-6 

production were not observed to be different between ANXA1 KO and wild-

type macrophages, the TRIF dependent chemokines IP-10 is regulated by 

ANXA1.  This once again highlights impairment in the TRIF-dependent 

pathway which is activated by TLR4. These results provide more clinical 
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relevance to the results obtained, associating ANXA1 with clinical sepsis.  

Damazo et al., previously demonstrated that ANXA1 is negatively involved in 

sepsis, where ANXA1 KO mice exhibit greater lethality to LPS (Damazo et al., 

2005), and TNF levels were found to be enhanced. However, it was previously 

not known if the TRIF-dependent cytokines were affected by LPS.  Our results 

here extend the studies above, demonstrating that ANXA1 can positively 

regulate TRIF-dependent cytokine production such as IP-10, in response to 

LPS.  

To examine the relevance of ANXA1 in TRIF dependent activity in 

vivo, TRIF dependent cytokine and chemokine response was investigated after 

intraperitoneal injection of poly (I:C) in mice. Not surprisingly, there is a 

drastic down regulation of TRIF dependent genes such as IFN-β and IP-10, 

and this phenotype is consistent with TRIF knockout mice (Yamamoto et al., 

2003). IFN-β regulation is directly dependent on IRF-3 activation, and when 

taken into discussion together with the evidence that ANXA1 KO has 

impaired nuclear localization of IRF-3, further supports the notion that 

ANXA1 is directly involved in regulating the TRIF pathway through 

activation and translocation of IRF-3.  Therefore, our in vivo study also 

supports the conclusion that ANXA1 regulates TRIF dependent pathway.  

The study has demonstrated that the serum levels of IFN-β in ANXA1 

KO mice after intraperitoneal injection of poly (I:C) is significantly inhibited 

at 4 h when compared WT mice, but not IFN-α. IRF-3 activates the 

transcription of IFN-β but not IFN-α, while regulation of IFN- α is mainly 

through IRF-7 (Conzelmann, 2005). This result further establishes the role of 

ANXA1 as a regulator specifically for the TRIF/IRF-3 pathway.  
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TRIF dependent pathway is activated through the recognition of viral 

RNA by TLR3. Since increased IP-10 production is a marker for better 

therapeutic outcome during viral infection (Lagging et al., 2006), in vivo 

studies in ANXA1 KO mice should likely give a better survival outcome 

during viral burden compared to wild-type mice. There is currently no 

literature on ANXA1 KO macrophages or plasmacytoid dendritic cells co-

cultured with virus. As ANXA1 KO macrophages show impaired TRIF 

response, the data strongly suggests that ANXA1 is an important regulator of 

anti-viral response mediated through TRIF pathway. It may also be possible 

that ANXA1 plays a regulatory role in suppressing anti-viral response through 

another anti-viral pathway, independent of TRIF adaptor protein activity, such 

as RIG-I.  

Nuclear localization of NF-κB is considered a hallmark of NF-κB 

activation. In WT PM, nuclear localization of NF-κB is observed after 1h of 

stimulation with LPS (Figure 5.1 a). LPS induces signal transduction to 

activate NF-κB through the activation of TLR4 and the subsequent 

downstream signalling pathway induced by the adaptor protein MyD88. 

However, in ANXA1 KO PM, nuclear localization of NF-κB is impaired after 

stimulation with LPS for 1 h.  This is consistent with the previous report from 

our lab that demonstrated the binding of ANXA1 to IKK-g (NEMO) and 

requirement of ANXA1 for activation of the phosphorylation of IkB by IKK 

complex (Bist et al., 2011). Therefore ANXA1 KO PM exhibits an impairment 

of NF-κB activation and nuclear localization due to the absence of ANXA1 to 

bind and activate IKK-g to drive downstream activation of NF-κB (Figure 5.1 

b).  
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This study has also dissected the TLR pathway by investigating TRIF 

specific TLR3 agonist poly (I:C). In WT PM, stimulation of endosomal TLR3 

with poly (I:C) triggers TRIF dependent cascade that activates IRF-3 nuclear 

localization, an important step in the activation of transcription factor IRF-3 

(Figure 5.1 c). LPS is also capable of activating TRIF dependent IRF-3 

nuclear translocation and activation, through the TRIF adaptor protein that can 

bind and be activated directly by TLR4.  

In ANXA1 KO PM, the nuclear translocation of IRF-3 is impaired 

after treatment with poly (I:C). This is consistent with the our lab data that 

ANXA1 KO PM has inhibited TBK1 phosphorylation, which is required for 

the phosphorylation and dimerization of IRF-3 and its nuclear translocation 

(unpublished data). NF-κB nuclear translocation is unaffected, likely through 

the signalling adaptor protein TRAF6. TRAF6 -/- mouse embryonic 

fibroblasts (MEFs) exhibit completely abolished poly (I:C) induced NF-κB 

activation (Jiang et al., 2004). Therefore, this study suggests that signal 

transduction from TRIF is impaired but not MyD88 or TRAF6 (Figure 5.1 d). 



 

136 
 

 

 

 

 

 

 

 

 

 

 

a) 

b) 



 

137 
 

 

 

 

 

 

 

 

 

 

 

c) 

d) 



 

138 
 

Figure 5.1. Proposed mechanism behind ANXA1 regulating 
nuclear translocation of NF-κB and IRF-3, after stimulation with 
LPS or poly (I:C). a) Proposed mechanism for transcription of 
NF-κB and IRF-3 in WT PM after LPS stimulation. b) Proposed 
mechanism for transcription of NF-κB and IRF-3 in ANXA1 
KO PM after LPS stimulation. c) Proposed mechanism for 
transcription of NF-κB and IRF-3 in WT PM after poly (I:C) 
stimulation. d) Proposed mechanism for transcription of NF-κB 
and IRF-3 in ANXA1 KO PM after poly (I:C) stimulation. 

 

Macrophage polarization studies require a naïve subset of macrophages 

that are not specifically skewed towards any particular phenotype. PM were 

generated using elicitation of macrophages to peritoneal cavity with 

thioglycollate injection, and this may affect macrophage polarization study, 

even if they are not activated macrophages. The use of BMDM resolves this 

issue as macrophages are grown directly on tissue culture dish from its 

progenitor monocytes and therefore does not undergo any form of stimulation 

that may skew the macrophages permanently towards a particular phenotype.  

Interestingly, our data shows that ANXA1 KO bone marrow derived 

macrophages show similar defects in cytokine production after LPS exposure. 

This indicates that the impairment of TLR- dependent pro-inflammatory 

response in macrophages in absence of ANXA1 is not simply an observation 

specific to activated or thioglycollate elicited peritoneal macrophages, but a 

defect which impairs macrophage potential at pre-monocytic lineage level.  In 

addition, this data suggest that the regulation of cytokine production by 

ANXA1 is not due to other immune cell such as T-cells or B-cells which is 

known to modulate macrophage response by altering its activation after 

thioglycollate elicitation.   
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 Macrophage polarization is the classification of diverse macrophage 

phenotypes into two distinct dipolar states mirroring the T helper Type I 

(Th1)-T helper type 2 (Th2) polarization. Classically activated macrophages 

are classified as M1 on one end of the spectrum, while alternatively activated 

macrophages are classified as M2, representing the other end of spectrum of 

macrophage gene expression profile (Mantovani et al., 2002; Mantovani et al., 

2008; Mosser et al., 2008). M1 macrophages are generally considered potent 

effector cells that produce copious amounts of pro-inflammatory cytokines. In 

contrast, M2 macrophages are able to tune inflammatory responses, adaptive 

Th2 immunity and promote tissue repair (Mantovani et al., 2002) 

 TLR engagement leads to activation of NF-κB and inflammatory 

mediators associated with M1 macrophages (Bonizzi et al., 2004). 

Alternatively activated (M2) macrophages show defective NF-κB activation in 

response to different pro-inflammatory signals (Sica et al., 2000; Sica et al., 

2006; Saccani et al., 2006). The defective NF-κB activation in M2 

macrophages correlates with impaired expression of NF-κB dependent 

inflammatory function such as TNF-α and IL-12 (Mantovani et al., 2002).  

Indeed, it may be possible that ANXA1 deficient macrophages are more 

skewed towards an M2 phenotype which release less pro-inflammatory 

cytokines. 

Our study has examined the effect of ANXA1 on three major 

transcription activation pathways (MyD88/NF-κB, TRIF/IRF-3, IFN-γ/STAT-

1), through the use of ANXA1 KO macrophages. The NF-κB inhibitor BAY-

11 (which acts through inhibition of IκB kinase) was shown to affect IL-12 

production only in wild-type macrophages, but not ANXA1 KO macrophages. 
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This gave an indication that ANXA1 KO macrophages were either resistant to 

NF-κB inhibition, or that ANXA1-regulated IL-12 production is NF-κB 

dependent. This may seem to be contradicting several articles that suggest 

ANXA1 is an inhibitor of NF-κB activity (Wang et al., 2011; Zhang et al., 

2010), as these studies correlated an increase in ANXA1 with the anti-

inflammatory activity of ANXA1. However, there are new studies that suggest 

ANXA1 may not be a completely anti-inflammatory molecule.  In a recent 

study, cleaved N-terminus of ANXA1 was demonstrated to play an anti-

inflammatory role while C-terminus end of truncated ANXA1 played a pro-

inflammatory role which activated ERK activity and up regulated ICAM-1 

clustering around adherent neutrophils and anchor them to the endothelium, 

thus promoting transmigration (Williams et al., 2010). Our result therefore 

supports a more homeostatic role ANXA1 plays at endogenous level than 

what was previously perceived of ANXA1, and that it is not an “anti-

inflammatory bullet”. In other words, a high concentration of ANXA1 induced 

by anti-inflammatory drugs may inhibit NF-κB, while a low homeostatic 

concentration of ANXA1 may regulate proper cytokine production during 

inflammation.   

We also investigated the nitric oxide production level of macrophages, 

as they are a major source of inflammatory nitric oxide producer during 

inflammatory processes. We demonstrated that nitric oxide levels in ANXA1 

KO macrophages are significantly attenuated in both poly (I:C) and LPS 

stimulation, indicating that ANXA1 regulates NO production. As M1 

polarization also involves the extent of NO production, this shows that 

ANXA1 may affect M1 polarization in more ways than one, and it also 



 

141 
 

presents novel data on nitric oxide regulation in ANXA1 KO macrophages, 

which is consistent with the other studies which overexpressed ANXA1 and 

showed a concomitant increase in iNOS expression level (Roviezzo et al., 

2002; Smyth et al., 2006). 

 STAT-1 is an important element in IRF-3 signaling. Canonical IRF-

3/STAT-1 signaling pathway is critical for skewing macrophage polarization 

to M1 (Sica et al., 2007), and  STAT-1 plays a role in IRF-3 mediated IP-10 

production (Kopydlowski et al., 1999; Toschchakov et al., 2002). Our study 

investigated whether STAT-1 activation status in ANXA1 KO and WT 

macrophages by measuring the phosphorylation of STAT-1. It was observed 

that the phosphorylation of STAT-1 is identical in both WT and ANXA1 KO 

macrophages, suggesting that STAT-1 is not regulated by ANXA1. To further 

establish that ANXA1 regulates TLR activation independently from STAT-1 

dependent pathway, we examined the effect of IFN-γ stimulation, as it is an 

important ligand for M1 polarization through STAT-1 activation. Upon 

stimulation with IFN-γ, no difference in IL-12 production was observed 

between WT and ANXA1 KO macrophages. Hence, IFN-γ dependent STAT-1 

activation is not regulated by ANXA1. This result presents strong evidence 

that the specificity of action by ANXA1 is TLR dependent, and not IFN-γ or 

STAT-1 dependent.  This however, does not mean ANXA1 is not related with 

the STAT family. N-terminal cleaved peptide of ANXA1 (Ac2-26) released 

by apoptotic cells has been shown to activate STAT-3 through formyl peptide 

receptor (Pupjalis et al., 2011). 

 We also investigated if ANXA1 can affect M2 polarization. The 

determination of M2 polarization is complicated as there are not many M2 



 

142 
 

specific markers available to confirm the existence of M2 macrophages. YM1, 

FIZZ1 and arginase-1 (Arg1) were chosen as they are key markers for M2 

polarization (Kurowska-stolarska et al., 2009; Arranz et al., 2012). In this 

study, ANXA1 KO macrophages were shown to be more M2 polarized as they 

expressed markedly higher levels of Arg1 and FIZZ-1 mRNA expression 

levels, indicating that ANXA1 either enhanced M1 polarization or inhibited 

M2 polarization.  The Arg1 PCR data complement the results with NO 

production, where ANXA1 KO macrophages exhibit lower NO production 

during LPS treatment. A similar observation was reported in M2 polarized 

macrophages of Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 

(SHIP) deficient mice (ship -/-), where the ship-/- macrophages exhibited 

lower NO production and enhanced Arg1 expression (Rauh et al., 2005). 

IL12low, IL10high expressing macrophages are hallmarks of M2 polarized 

macrophages (Gordon et al., 2003; Mantovani et al., 2003; Mantovani et al., 

2005; Mosser et al., 2003). Our data show that ANXA1 KO macrophages 

indeed exhibit low levels of IL-12 production suggesting that ANXA1 may be 

a modulator of macrophage polarization. It is possible that ANXA1 regulates 

M2 polarization which is capable of inhibiting M1 polarization (Briken and 

Mosser, 2011). Further study can be done to elucidate the exact role of 

ANXA1 in M2 polarization.  

The significance of ANXA1 affecting macrophage polarization is far-

reaching as macrophages mediate a diverse spectrum of physiological and 

pathological disease outcome. Physiologically, M1 polarized macrophages can 

mediate tissue damage and inflammatory responses (Gordon and Martinez, 

2010; Biswas and Mantovani, 2010). On the other hand, M2 phenotype 



 

143 
 

macrophages are important for tissue damage recovery, as patients with severe 

burns have up regulated M2 polarized macrophages, and absence of M2 

macrophages causes substantially increased formation of scar tissues in 

wounds (Lucas et al., 2010; Cairo et al., 2011). Pathologically, M1 

macrophages are generally considered the key element responsible for 

resisting intracellular pathogens, such as Listeria monocytogenes 

(Shanghnessy et al., 2010), Salmonella typhi, Salmonella typhimurium 

(Jouanguy et al., 1999). Moreover, M1 macrophages are also important in 

resisting early phases of infection with Mycobacterium tuberculosis (Chaon-

Salinas et al., 2005), Mycobacterium ulcerans and Mycobacterium avium 

(Kiszewski et al., 2006; Murphy et al., 2006). With respect to M2 

macrophages, there are parasites that favour M2 polarized macrophages. In 

experimental and human parasite infections, macrophages generally undergo 

M2 polarization switching (Noel et al., 2004; Babu et al., 2005). For example, 

late phases of Taenia crassiceps infection switches macrophages to M2 state 

(Murray and Wyunn, 2011; Brys et al., 2005) and similar observations are also 

reported in other parasitic infections such as Schistosoma mansoni and 

Trypanoma conglense infections (Pearce and MacDonald, 2002). M2 

polarization affects disease outcome in viral infections and is important for 

reducing inflammation and epithelial damage in lungs (Shirey et al., 2010). 

The clinical relevance of ANXA1 being a regulator of macrophage 

polarization should be investigated. While still in its infancy, therapeutic 

macrophage targeting exists. Macrophage control in therapeutic settings are 

done through the use of PPAR-γ agonists, as several studies have established 

PPAR-γ to be an important regulator of M2 polarization (Lu et al., 2011; 



 

144 
 

Stienstra et al., 2008; Charo, 2007). Since this study has evidence to suggest 

ANXA1 as a regulator of M2 macrophage polarization, we hypothesized that 

ANXA1 could regulate PPAR-γ induced cytokine production and that PPAR-γ 

is involved in controlling the macrophage polarization phenotype observed in 

ANXA1 KO. 

PPAR-γ plays an important role in the differentiation, activation and 

regulation of inflammatory activities of macrophages (Yessoufou et al., 2010; 

Nagy et al., 1998; Ricote et al., 1998; Ricote et al., 1999; Tontouoz et al., 

1998; Jiang et al., 1998). The role of PPAR-γ in clinical disease is diverse. 

Patients with mutations in PPAR-γ gene in the ligand binding domains 

manifested clinical syndromes such as severe insulin resistance, diabetes and 

hypertension (Barroso et al., 1999). Interestingly, macrophage foam cells 

express PPAR- γ in atherosclerotic plaques (Marx et al., 1998; Ricote et al., 

1998). Thiazolidineones, a class of anti-diabetic drugs have high affinity for 

PPAR-γ, and were developed for the treatment of type-2 diabetes as they were 

capable of lowering blood glucose levels (Lehman et al., 1995), significantly 

reducing vascular inflammation in non-diabetic patients (Meisner et al., 2006), 

and are frequently prescribed to patients with type 2 diabetes (Gerstein et al., 

2006; Kahn et al., 2006). However, a few of these drugs were taken off the 

market due to cardiovascular side-effects and complications (Penumetcha and 

Santanam, 2012).  PPAR-γ is also implicated in chronic autoimmune diseases. 

For example, PPAR-γ is up-regulated in patients with rheumatoid arthritis 

(Palma et al., 2012). It is also clinically relevant in other chronic diseases, in 

particular Alzheimer’s disease (AD), where PPAR-γ activation reduces AD 
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risk by as much as 80% (Heneka et al., 2001; Kielian and Drew, 2003; 

Laridreth and Heneka, 2001; Mandreka-lolucci et al., 2012).  

The endogenous and natural ligand of PPAR-γ is PGJ2, a downstream 

metabolite of the arachadonic acid pathway of inflammation and is known for 

its regulatory role of IL-12 inhibition (Azuma et al., 2001). PGJ2 is a 

prostaglandin produced through the enzymatic cleavage of membrane 

phospholipids by phospholipase A2 (PLA2) at the second carbon group of 

glycerol to produce arachidonic acid, which is further processed endogenously 

to form prostaglandins.  

Our data show that PGJ2 induces small amounts of IL-12 at low doses, 

but inhibits IL-12 production after treatment with LPS in WT macrophages, 

similar to other studies (Drew and Chavis, 2001). 

Endogenous level of prostaglandins such as PGJ2 is dictated by PLA2 

activity. ANXA1 inhibits PLA2 and subsequently inhibits prostaglandin 

production (Flower and Blackwell, 1979). As ANXA1 inhibits the production 

of prostaglandins, PPAR-γ activity in the cell during homeostasis is low and 

therefore PPAR-γ does not inhibit NF-κB activity and IL-12 production in a 

WT BMDM (figure 5.2 a).  

In our experiments, WT BMDM is capable of producing high levels of 

IL-12 after stimulation with LPS. However in ANXA1 KO BMDM, IL-12 

production is impaired after stimulation with LPS when compared to WT 

BMDM.  
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In ANXA1 KO cells,  PLA2 activity is uninhibited, thereby causing the 

endogenous levels of prostaglandins such as PGJ2 to be high. It is proposed 

that these endogenous PGJ2 act as a ligand to activate PPAR-γ, thus increasing 

PPAR-γ activity in the cell, leading to the inhibition of NF-κB activity and IL-

12 production (Figure 5.2 a). It was observed in this study that exogenous pre-

treatment of PGJ2 prior to LPS treatment does not show inhibit IL-12 

production in ANXA1 KO. It is proposed that exogenous addition of PGJ2 

does not alter the level of PPAR-γ as endogenous PGJ2 level is already high 

(Figure 5.2 b).   

To support these claims, GW9662, a PPAR-g specific inhibitor was 

used to examine whether ANXA1 KO BMDM exhibit inhibited IL-12 

production due to increased endogenous PPAR-γ activity. In line with our 

hypothesis, pre-treatment with GW9662 before LPS stimulation substantially 

reversed the inhibition of IL-12 production observed in ANXA1 KO BMDM 

when compared to WT BMDM. This observation is due to the inhibition of 

PGJ2 activity which is high in ANXA1 KO, causing NF-κB activity to be 

enhanced, leading to a reversal of inhibition and therefore increased 

production of IL-12 compared to WT BMDM (Figure 5.2 c). Taken together, 

ANXA1 may regulate endogenous PPAR-γ activity, but further experiments to 

quantify PPAR-γ activity level in ANXA1 KO BMDM is required to validate 

the hypothesis. A possible experiment would be to measure the PPAR-γ 

promoter activity level in ANXA1 KO BMDM after treatment with LPS and 

compare with WT BMDM, by using a luciferase reporter assay.  

Further study needs to examine whether ANXA1 affects both PPAR-g 

dependent and PPAR-g independent activity of PGJ2 (Hortelano et al., 2000; 
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Tsubouchi et al., 2001; Petrovaet et al., 1999; Vaidya et al., 1999). This is 

because a study has shown that PGJ2 has a unique ability to inhibit IL-12 

production through the inhibition and modification of IKK2 subunit of the 

IKK complex, preventing the phosphorylation of the inhibitory IκB proteins 

(Rossi et al., 2000).  

 In conclusion, this thesis has shown that ANXA1 is able to regulate IL-

12/IP-10 production through TRIF dependent pathways by controlling NF-κB 

and IRF-3 translocation to the nucleus upon activation. ANXA1 is required for 

proper M1 polarization and suppression of M2 polarization, and PPAR-γ 

activity in the production of IL-12 after LPS stimulation is  regulated by 

ANXA1. 
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a) 

b) 
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Figure 5.2. Proposed mechanism for the regulation of ANXA1 
by PPAR-γ with and without pre-treatment with PPAR-γ agonist 
PGJ2 and PPAR-γ inhibitor GW9662. a) Proposed mechanism 
for endogenous control of PPAR-γ by ANXA1 after LPS 
stimulation. b) Proposed mechanism during exogenous pre-
treatment of PGJ2 before LPS stimulation. c) Proposed 
mechanism during pre-treatment of GW9662 before LPS 
stimulation. Infographic by Shu Shin La. 
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7. APPENDICES 

 

ANXA1 interacting proteins 

Interacting 

Partner 

Description of its 

known functional 

role (summarized 

from UniProt) 

Species of 

the two 

interacting 

molecules 

Interaction 

Detection 

Method 

Protein 

Databas

e 

Source 

References 

ACTB 

(Cytoplasm

ic beta-

Actin) 

Key molecule in 

cell motility that 

is ubiquitously 

expressed in all 

eukaryotic cells. 

Often used as a 

loading control in 

protein assays 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

Alpha-

enolase 

Multifunctional 

enzyme involved 

in glycolysis, 

plays a part in 

growth control, 

hypoxia tolerance 

and allergic 

response 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

ATP5A1 

(ATP 

synthase 

subunit 

alpha, 

mitochond

rial) 

Part of 

mitochondrial 

membrane ATP 

synthase complex 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

CD4 (T-cell 

surface 

glycoprotei

n CD4) 

Accessory protein 

for MHC class II 

antigen/ T-cell 

receptor 

interaction 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

DDX3X 

(ATP-

dependent 

RNA 

helicase) 

RNA helicase Human - 

Human 

Molecular 

Sieving 

IntAct Ewing et 

al., 2007 

DHRS2 

(Dehydrog

enase/redu

ctase SDR 

family 

member 2) 

An NADPH-

dependent 

dicarbonyl 

reductase 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 
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DLG3 

(Disks large 

homolog 3) 

Defects in DLG3 

are the cause of 

mental 

retardation X-

linked type 90. 

Human - 

Human 

Anti-bait 

immunop

recipitatio

n 

IntAct, 

GRID 

Ewing et 

al., 2007 

EEF1B2 

(Elongation 

Factor1-

beta) 

Responsible for 

delivery of tRNAs 

to ribosome 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

EGFR 

(Epidermal 

growth 

factor 

receptor) 

Recruits adapter 

proteins like 

GRB2 and 

activate RAS-RAF 

pathway, PI3 

kinase-AKT 

pathway, PLC 

gamma-PKC 

pathway, and 

STAT modules 

Human - 

Human 

Colocaliza

tion by 

Immunost

aining 

MINT, 

HPRD 

Radke et 

al., 2004 

EIF3E 

(Eukaryotic 

initiation 

factor 3 

subunit E) 

Part of eIF-3 

complex that 

stimulates mRNA 

recruitment into 

ribosome subunit 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

EIF4A2 

(Eukaryotic 

initiation 

factor 4A-

II) 

RNA helicase 

required for 

mRNA binding to 

ribosome 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

FARSB 

(Phenylala

nine-tRNA 

ligase beta 

subunit) 

tRNA carrier for 

the amino acid 

phenylalanine 

during translation 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

GAPDH 

(Glyceride-

3-

phosphatas

e 

dehydroge

nase) 

glyceraldehyde-3-

phosphate 

dehydrogenase 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

GNAI2 

(Guanine 

nucleotide-

binding 

protein G 

subunit 

alpha-2) 

Transmembrane 

signaling system 

involved in the 

regulation of 

adenylate cyclase 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 
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HNRPH1 

(Heterogen

eous 

nuclear 

ribonucleo

protein H) 

A component of 

hnRNP complex 

which provides 

substrate for pre-

mRNA processing 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

HSPA8 

(Heat 

shock 

cognate 71 

kDa 

protein) 

Repressor of 

transcriptional 

activation. 

Inhibits Smad-

mediated 

transcription. 

Also acts as a 

chaperone 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

KPNB1 

(Importain 

subunit 

beta-1) 

Functions in 

nuclear protein 

import. Servces 

itself as an NLS 

receptor 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

LCK 

(Tyrosine-

protein 

kinase) 

Selection and 

maturation of 

developing T-cells 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

LRPPRC 

(Leucine-

rich PPR 

motif-

containing 

protein, 

mitrochon

drial) 

Binds to poly (A) 

mRNA in 

mitochondria 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

MME 

(Neprilysin) 

Destruction of 

opiod peptides 

and degradation 

of atrial 

natriuretic factor. 

Also possess 

elastase activity 

under UV-

induction 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

MYL12A 

(Myosin 

regulatory 

light chain 

12A) 

Myosin 

regulatory 

subunit 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

NCL 

(Nucleolin) 

Induces 

chromatin 

condensation by 

binding to 

histone H1 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 
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NFKBIA 

(NF-κB 

inhibitor 

alpha) 

Inhibits activity of 

dimeric NF-

kappa-B/REL 

complexes by 

masking nuclear 

localization 

signals 

Human - 

Human 

Tandem 

Affiinity 

Purificatio

n 

IntAct Bouwmee

ster et al., 

2004 

PHB 

(Prohibitin) 

Inhibits DNA 

synthesis; plays a 

role in regulating 

proliferation 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

PPM1B 

(Protein 

phosphota

se 1B) 

Dephosphorylate

s CDK2 and CDK6 

in vitro 

Human - 

Human 

Anti-bait 

immunop

recipitatio

n 

IntAct, 

GRID 

Ewing et 

al., 2007 

RARA 

(Retinoic 

acid 

receptor 

alpha) 

Receptor for 

retinoid acid 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

RPL7 (60S 

ribosomal 

protein L7) 

Binds to G-rich 

structures in 28S 

rRNA and in 

mRNAs; Plays a 

regulatory role in 

translation and 

inhibits cell-free 

translation of 

mRNAs 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

RPL7A (60S 

ribosomal 

protein L7- 

premature 

form) 

Binds to G-rich 

structures in 28S 

rRNA and in 

mRNAs; Plays a 

regulatory role in 

translation and 

inhibits cell-free 

translation of 

mRNAs 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

RPS18 (40S 

ribosomal 

protein 

S18) 

Forms the head 

of the 40S 

ribosomal protein 

complex 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

RPS19 (40S 

ribosomal 

protein 

S19) 

Required for pre-

rRNA processing 

and maturation 

of 40S ribosomal 

subunits 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

S100A11 

(Protein 

S100-A11) 

Differentiation 

and cornification 

of kertinocytes 

Human - 

Human 

two-

hybrid 

HPRD Bianchi et 

al., 2003 
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SSRP1 

(FACT 

complex 

subunit 1) 

Component of 

the FACT 

complex, a 

nucleosome 

reorganizer 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

TNPO1 

(Transporti

n-1 / 

Importin 

beta-2) 

Nuclear transport 

receptor 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

TRPM7 

(Transient 

receptor 

potential 

cation 

channel 

subfamily 

M member 

7) 

Essential ion 

channel and 

serine/threonine-

protein kinase. 

Permeable to 

calcium and 

magnesium. 

Phosphorylates 

ANXA1 at serine 

residue position 

5. 

Human - 

Human 

two-

hybrid 

HPRD Dorokov 

et al., 

2004 

TUBB 

(Tubulin) 

Major 

constituent of 

microtubles 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

VDAC3 

(Voltage-

dependent 

anion-

selective 

channel 

protein 1) 

Forms a channel 

through the 

mitochondrial 

outer membrane 

that allows 

diffusion of small 

hyrophillic 

molecules 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

VDAC3 

(Voltage-

dependent 

anion-

selective 

channel 

protein 2) 

Forms a channel 

through the 

mitochondrial 

outer membrane 

that allows 

diffusion of small 

hyrophillic 

molecules 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

VDAC3 

(Voltage-

dependent 

anion-

selective 

channel 

protein 3) 

Forms a channel 

through the 

mitochondrial 

outer membrane 

that allows 

diffusion of small 

hyrophillic 

molecules 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 

VIM 

(Vimentin) 

Intermediate 

filaments found 

in various non-

epithelial cells 

Human - 

Human 

Molecular 

Sieving 

IntAct Bernhard 

et al., 

2004 
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YWHAZ 

(14-3-3 

protein 

zeta/delta) 

Adapter protein 

affecting BAX, 

p53 and AKT1 

pathways 

Human - 

Human 

GST pull-

down 

MINT Meek et 

al., 2004 

 

Appendix A. Consolidated results for ANXA1 interacting 

proteins from databanks. The table includes interactions chosen 

using protein database browsing service by Proteomics 

Standards Initiative (www.ebi.ac.uk). Proteins with no known 

function are not included. All interactions tabulated herein are 

based on “Evidence at protein level” type of evidence, which 

rates among the highest in UniprotKB database classification of 

bioinformatics data, i.e. according to UniprotKb definition: 

“…(the) evidences are clear experimental evidences for the 

existence of protein (interaction)” (Source: UniprotKB). 
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Appendix B. TLR3 and TLR4 mRNA expression in WT and 

ANXA1 KO PM. No difference in TLR3 and TLR4 expression 

is observed between WT and ANXA1 KO PM. 


