
Controller Synthesis for Bisimulation Equivalence

Sun Yajuan

B.S., Beijing University of Aeronautics and Astronautics, China

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2013

i

Acknowledgments

I am grateful to many people for supporting me not only intellectually but also

mentally and socially in my work and life besides work. These acknowledgements

can only give a glimpse on how much I benefited and learned from all my mentors,

colleagues, friends and family. Thank you so much to all of you.

First of all, I wish to sincerely thank my supervisors Assist. Prof. Hai Lin and

Prof. Ben M. Chen, who supplied me with invaluable advice and guidance throughout

my time at the university concerning my research, writing, organization and life.

Their insights in symbolic control are always stimulating, and many chapters of this

thesis were shaped by the numerous discussions.

I am also highly appreciate Prof. Qing-Guo Wang and Prof. Kai-Yew Lum for

agreeing to be my comprehensive and oral qualifying exam committee; all lecturers

in ECE Department and former teachers who have built my academic background,

and all laboratory officers for their kindly supports. I would also like to express my

gratitude to my colleagues for their inspirational inputs and my friends for their true

friendship.

Last but not least, I am forever grateful to my loving parents, grandparents and

husband Geng. This thesis would not have been possible without their encouragement

and love.

ii

iii

Contents

Acknowledgments i

Summary vii

List of Figures x

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Supervisory Control of Discrete Event Systems 2

1.2.1 Supervisory Control . 4

1.2.2 Decentralized Supervisory Control 7

1.2.3 Distributed Supervisory Control 8

1.3 Abstraction of Continuous Systems 10

1.4 Organization of the Thesis . 11

Chapter 2 Supervisory Control for Bisimulation Equivalence 15

2.1 Bisimilarity Control for Nondeterministic Specifications 16

2.1.1 Existence Condition . 16

iv

2.1.2 Test for Existence Condition 19

2.1.3 Synthesis of Bisimilarity Enforcing Supervisors 23

2.1.4 Synthesis of Achievable Sub-specifications 24

2.2 Specialization to Deterministic Specifications 30

2.2.1 Existence Condition . 31

2.2.2 Test for Existence Condition 33

2.2.3 Synthesis of Bisimilarity Enforcing Supervisors 34

2.2.4 Synthesis of Supremal Achievable Sub-specifications 37

2.3 Conclusion . 43

Chapter 3 Decentralized Supervisory Control for Bisimulation Equiv-

alence 45

3.1 Automata-based Framework . 46

3.2 Conjunctive Architecture . 49

3.2.1 Existence Condition . 50

3.2.2 Synthesis of Decentralized Bisimilarity Supervisors 57

3.2.3 Synthesis of Achievable Sup-specifications 61

3.3 Disjunctive Architecture . 64

3.3.1 Existence Condition . 64

3.3.2 Synthesis of Decentralized Bisimilarity Supervisors 66

3.3.3 Synthesis of Achievable Sup-specifications 71

3.4 General Architecture . 72

3.4.1 Existence Condition . 73

v

3.4.2 Synthesis of Decentralized Bisimilarity Supervisors 75

3.4.3 Synthesis of Achievable Sup-specifications 77

3.5 Conclusion . 78

Chapter 4 Distributed Supervisory Control for Bisimulation Equiva-

lence 80

4.1 Existence Condition . 81

4.1.1 Comparison with Monolithic Bisimilarity Control 85

4.2 Synthesis of Distributed Bisimilarity Supervisors 87

4.3 Synthesis of Achievable Sub-specifications /Sup-specifications 92

4.3.1 Comparison with Monolithic Bisimilarity Control 100

4.4 Conclusion . 102

Chapter 5 Control of Multi-Affine Systems for Bisimulation Equiva-

lence 104

5.1 Rectangular Partition . 105

5.2 Control of Multi-Affine Systems on Rectangles 108

5.3 Bisimilarly Abstracted Discrete Event System 116

5.4 Controller Synthesis . 118

5.4.1 Linear Temporal Logic . 118

5.4.2 Supervisor Synthesis . 120

5.4.3 Implementation of Supervisor to Multi-Affine Systems 121

5.5 Conclusion . 124

vi

Chapter 6 Conclusions and Future Works 126

List of Publications 130

vii

Summary

This thesis investigates the controller synthesis for bisimulation equivalence from

both discrete and continuous aspects. From discrete perspective, supervisory control

is studied to enforce bisimilarity with respect to discrete event systems. Specifically,

three kinds of supervisory control problems are considered here: bisimilarity control,

decentralized bisimilarity control and distributed bisimilarity control.

First, we investigate bisimilarity supervisory control, which aims to design a su-

pervisor so that the supervised system is bisimilar to the specification. This thesis

considers the most general case which allows the plant, specification and supervisor

to be nondeterministic. The challenge is a lack of systematic way for the construction

of bisimilarity enforcing supervisors. For this issue, this thesis introduces the notion

of synchronous simulation-based state controllability as the existence condition for

bisimilarity control. It is shown that a bisimilarity enforcing supervisor can be ef-

ficiently built upon the specification when the existence condition holds. Another

important question that arises is how to find achievable sub-specifications when the

existence condition does not hold. To answer this question, the synthesis of syn-

chronously simulation-based state controllable sub-specifications is studied. Since

viii

the existence condition for the most general case is sufficient only, we specialize to

deterministic specifications. A necessary and sufficient condition is then provided

for bisimilarity control with respect to deterministic specifications. In addition, two

methods are presented to calculate maximal permissive sub-specifications.

Second, we study decentralized bisimilarity supervisory control, where a set of

local supervisors jointly control the given plant to achieve the specification. Unlike

language-based structure, a novel automata-based structure is proposed, where the

plant, specification and supervisor are all modeled as automata. In particular, three

architectures, a conjunctive architecture, a disjunctive architecture and a general ar-

chitecture, are developed with respect to different decision making rules. Under these

three architectures, necessary and sufficient conditions are respectively provided for

the existence of a deterministic decentralized bisimilarity control. Furthermore, the

synthesis of decentralized bisimilarity supervisors and achievable sup-specifications

are investigated.

Third, bisimilarity supervisory control is extended to deal with distributed dis-

crete event systems which consist of multiple interacting local modules. The objective

of distributed bisimilarity control is to impose bisimulation equivalence between the

globally supervised system (the parallel composition of locally supervised modules)

and the specification. The concept of separable and synchronous simulation-based

state controllability is introduced as the existence condition for distributed bisimilar-

ity control. When this condition is satisfied, a set of local supervisors can be con-

structed to enforce bisimulation equivalence. Otherwise, the computation of achiev-

able sub-specifications is explored to enable the existence of a distributed bisimilarity

ix

control. In addition, we focus on deterministic supervisors for distributed bisimilarity

control. The synthesis of deterministic supervisors and achievable sup-specifications

are investigated, accordingly. The comparisons of our results with the centralized

monolithic ones are further presented.

When it comes to continuous perspective, the control of multi-affine systems for

bisimulation equivalence is presented, with its application to meet temporal logic

specifications. The key is to guarantee the existence of a bisimilarly abstracted sys-

tem with finite state nature for the original continuous system. However, this problem

is generally undecidable. For this reason, we partition the state space into rectan-

gles, and then study the control of multi-affine system on rectangles. Resorting to

the proposed control method, a bisimilarly abstracted system is obtained. A fully

automated procedure is then developed to control multi-affine systems for temporal

logic specifications.

x

List of Figures

2.1 Plant G (Left) and Specification R (Right) 21

2.2 R||syncG . 22

2.3 Plant G (Left) and Specification R (Right) 23

2.4 Ruc (Left) and G||Ruc (Right) . 24

2.5 Fsyn(G) (Left) and FcG(Fsyn(G)||R) (Right) 29

2.6 Plant G (Left), Specification R (Middle) and R||syncG (Right) 34

2.7 Multi-robot system (Left), Plant AP2 (Middle) and Local Task Au-

tomaton P2(As) (Right) . 35

2.8 Supervisor AC2 (Left) and Supervised System AC2 ||AP2 (Right) 36

2.9 Fsyn(G) (Left) and det(G) (Right) . 42

2.10 (Fsyn(G)||R)uc||det(G) (Left) and FG′′(X ′′ − Z2) (Right) 43

3.1 Manufacturing System . 57

3.2 Plant G (Left) and Specification R (Right) 58

3.3 Automata S1 (Left) and S2 (Right) 59

3.4 det(R) (Left) and cl(S1,S2)/ψfc
G (Right) 60

3.5 G||det(R) . 63

xi

3.6 Plant G (Left) and Specification R (Right) 66

3.7 Automata S1 (Left) and S2 (Right) 67

3.8 det(R) (Left) and cl(S1,S2)/ψfd
G (Right) 68

3.9 Plant G (Left) and Specification R (Right) 69

3.10 Automata S1 (Left) and S2 (Right) 70

3.11 det(R) (Left) and cl(S1,S2)/ψfc
G (Right) 71

3.12 Plant G (Left) and Specification R (Right) 75

3.13 Automata S1 (Left) and S2(Right) 76

3.14 Supervised System cl(S1,S2)/ψfg
G 77

4.1 Multi-robot system (MRS) (Left), G1 (Middle) and G2(Right) 88

4.2 G1||G2 (Left) and R (Right) . 89

4.3 S1 (Left) and S2 (Right) . 89

4.4 ||i∈{1,2}Gi||Si . 90

4.5 Rs1 (Left) and Rs2 (Right) . 90

4.6 S ′
1 (Left) and S ′

2 (Right) . 91

4.7 G1||S ′
1 (Left) and G2||S ′

2 (Right) . 92

4.8 G1 (Left) and G2 (Right) . 94

4.9 R (Left) and R′ (Right) . 95

4.10 R1 (Left) and R2 (Right) . 95

4.11 R′
1 (Left) and R′

2 (Right) . 96

4.12 G1 (Left) and G2 (Right) . 97

4.13 R (Left) and R′ (Right) . 98

xii

4.14 R1 (Left) and R2 (Right) . 99

4.15 R′
1 (Left) and R′

2 (Right) . 99

5.1 Rectangularly Partitioned State Space (Left) and Abstracted Transi-

tion System SΣ,ξ (Right) . 122

5.2 Bφ (Left) and SΣ,ξ ×A Bφ (Right) . 123

5.3 Simulation Results . 124

1

Chapter 1

Introduction

1.1 Motivation

Nowadays, high-level and human-like specifications, such as sequencing tasks, system

synchronization and network adaptability, naturally emerge in many modern systems

like software control systems [1–3], automotive industries [4–6], multi-robot systems

[7–9] and biological systems [10–12], which falls beyond the traditional control tasks

like stabilization and output regulation. As an expressive mechanism to describe so-

phisticated specifications, temporal logic has been widely adopted to formally specify

the desired behavior [8, 13–15]. There are two main reasons for the usage of temporal

logic. Firstly, temporal logic makes it possible to form complicated specifications in

a succinct and unambiguous manner. Secondly, temporal logic is similar to natu-

ral languages and can be easily interpreted by human operators [16]. This shift in

specification perspective is accompanied by a change in control methods.

A current trend in control is to use formal methods, like model checking and su-

2

pervisory control, to generate a symbolic path on an abstracted quotient system to

satisfy more complicated temporal logic specifications [17–19]. The key is to guar-

antee the existence of a feasible continuous path corresponding to the synthesized

symbolic sequence that satisfies the temporal logic specification. For this purpose,

a bisimulation equivalence between the abstracted finite state quotient system and

the continuous dynamics needs to be obtained. Additionally, a supervisor designed

for the abstracted quotient system needs to enforce bisimilarity with respect to the

temporal logic specifications. These bring new challenges to control society. Firstly, it

is necessary to investigate the supervisor synthesis for bisimulation equivalence, since

most existing results on supervisor control of discrete event systems are based on

language enforcement. It is known that language equivalence cannot imply bismula-

tion. Secondly, abstraction is still an open problem. Only a small portion of systems

with simple continuous dynamics has bisimilarly abstracted finite state systems. This

thesis aims to investigate the controller synthesis for bisimulation from both discrete

and continuous aspects. It may provide a promising way to address above mentioned

challenges. Next, we will give a brief literature review of the existing methods for

supervisory control of discrete event systems and abstraction of continuous systems

in Section 1.2 and Section 1.3, respectively.

1.2 Supervisory Control of Discrete Event Systems

In this thesis, we are especially interested in two types of systems: continuous and

discrete event systems. While continuous systems are time-driven, represented by

3

differential equations and modeled by state space equations; discrete event systems are

event-driven, represented by the sequence of states/events and modeled by automata.

To unify continuous and discrete event systems, the notion of transition systems is

employed, which is shown as below.

Definition 1.1 A transition system is a tuple TS = (S,E, β, s0, Sm), where S is

a (possible infinite) set of states, E is a (possible infinite) set of events, β : S ×

E → S is a transition function, s0 is an initial state and Sm ⊆ S is a (possible

infinite) set of marked states. A transition system TS = (S,E, β, s0, Sm) is called to

be nondeterministic if the transition function is in the form of β :S × E→ 2S.

It can be seen that a transition system is a graph, possibly with an infinite number

of states or transitions. A special form of transition system is automaton which

possesses finite state and event sets. Take automaton G = (X,Σ, α, x0, Xm) as an

example, its state set X, event set Σ and marked state set Xm ⊆ X are finite. Let

Σ∗ be the set of all finite strings over Σ including the empty string ϵ. With an abuse

of notation, the transition function α of G can be extended from events to traces,

α :X ×Σ∗→ 2X , which is defined inductively as: for any x ∈ X, α(x, ϵ) = x; for any

s ∈ Σ∗ and σ ∈ Σ, α(x, sσ) = α(α(x, s), σ). The transition α can also be restricted to

a smaller domain X1×Σ, denoted by α|X1×Σ. The active event set at state x is defined

as EG(x) = {σ ∈ Σ | α(x, σ) is defined}. The behavior of a DES can be described

by languages. The language and the marked language generated by G are defined by

L(G) = {s ∈ Σ∗ | α(x0, s) is defined} and Lm(G) = {s ∈ Σ∗ | α(x0, s) ∩ Xm ̸= ∅}

respectively. The concept of parallel composition is presented to model the interaction

4

between DESs [20].

Definition 1.2 Given G1 = (X1,Σ1, α1, x01, Xm1) and G2 = (X2,Σ2, α2, x02, Xm2),

the parallel composition of G1 and G2 is an automaton

G1||G2 = (X1 ×X2,Σ1 ∪ Σ2, α1||2, (x01, x02), Xm1 ×Xm2),

where for any x1 ∈ X1, x2 ∈ X2 and σ ∈ Σ, the transition function is defined as:

α1||2((x1, x2), σ) =



α1(x1, σ)× α2(x2, σ) σ ∈ EG1(x1) ∩ EG2(x2);

α1(x1, σ)× {x2} σ ∈ EG1(x1) ∧ σ ∈ E1\ E2;

{x1} × α2(x2, σ) σ ∈ EG2(x2) ∧ σ ∈ E2\ E1;

∅ otherwise.

1.2.1 Supervisory Control

The supervisory control of DESs aims to design supervisors so that the supervised

system meets the specification. In particular, the event set Σ is partitioned into a

controllable event set Σc and an uncontrollable event set Σuc such that Σ = Σc ∪Σuc.

The supervisor disables certain controllable events to ensure the satisfaction of the

desired behavior. This form of control is captured by parallel composition with Σ1 =

Σ2.

The earliest work on supervisory control was traced back to [21], in which a su-

pervisor was developed such that the supervised system achieves the language speci-

fication. The initial work has been then extended to a variety of supervisory control

approaches including control under full observation [22] or partial observation [23–

26], nonblocking control [27–30], modular control [31–33], hierarchical control [34–36],

5

decentralized control [37, 38] and distributed control [39, 40]. We will review the last

two methods in Subsection 1.2.2 and Subsection 1.2.3 respectively. In fact, most of

the existing literature focused on langauge equivalence. However, language equiva-

lence is not adequate to capture the class of temporal logics which describe branching

behavior, such as CTL and CTL∗. This requires us to use bisimulation equivalence

instead. In particular, the notion of bisimulation is stated as below [41].

Definition 1.3 Consider transition systems TS1 = (S1, E, β1, s01, Sm1) and TS2 =

(S2, E, β2, s02, Sm2). The relation ϕ ⊆ S1 × S2 is a simulation relation if for any

(s1, s2) ∈ ϕ, the following property holds:

(1) (∀e ∈ E) s
′
1 ∈ β1(s1, e) ⇒ ∃s′2 ∈ β2(s2, e) such that (s

′
1, s

′
2) ∈ ϕ;

(2) s1 ∈ Sm1 ⇒ s2 ∈ Sm2.

If there is a simulation relation ϕ ⊆ S1 × S2 such that (s01, s02) ∈ ϕ, then TS1 is

said to be simulated by TS2, denoted as TS1 ≺ϕ TS2. A binary relation ϕ ⊆ (S1∪S2)
2

is called a bisimulation relation between TS1 and TS2, if TS1 ≺ϕ TS2, TS2 ≺ϕ TS1

and ϕ is symmetric. Further, TS1 is said to be bisimilar (bisimulation equivalent) to

TS2, denoted as TS1
∼=ϕ TS2, if there is a bisimulation relation ϕ ⊆ (S1 ∪ S2)

2 such

that (s01, s02) ∈ ϕ.

It is known that bisimulation equivalence implies language equivalence and marked

language equivalence, but the converse does not hold. We sometimes omit the sub-

script ϕ from ≺ϕ or ∼=ϕ when it is clear from the context.

Recent years have seen research attentions on bisimilarity enforcing supervisory

control. An early effort on supervisory control for bisimulation equivalence can be

6

found in [42], where events are treated as controllable and a supervisor was developed

such that the supervised system is bisimilar to the deterministic specification. [43]

studied bisimilarity supervisory control of open discrete event systems. It requires

that the indistinguishable events are either all enabled or all disabled at a state, which

is not reasonable in the framework of supervisory control. [44] solved the bisimilarity

controller synthesis problem for various systems including continuous systems, hybrid

systems and DESs, in which the bisimilarity controller is the morphism in the context

of category theory. Zhou and Kumar [45] investigated bisimilarity control of DESs,

where the plant, specification and supervisor are allowed to be nondeterministic.

They provided a small model theorem to show that a supervisor exists to enforce

bisimulation equivalence between the supervised system and the specification if and

only if a state controllable automaton exists over the Cartesian product of the system

and specification state spaces. The small model theorem was also extended for partial

observation [46]. In both [45] and [46], the complexity of checking the existence

condition of bisimilarity control is doubly exponential. To reduce the computational

complexity, [47] focused on deterministic bisimilarity control.

However, apart from promising progress in bisimilarity control, three main diffi-

culties remain to be addressed for practial applications. Firstly, for the most general

case, where all the plant, specification and supervisor are nondeterministic, there does

not exist a systematic way to construct the bisimilarity enforcing supervisor when it

exists [45, 46]. In Chapter 2, a formal supervisor design method is proposed to solve

this problem. Secondly, the computational complexity is high in the existing meth-

ods (double exponential complexity in state sizes of the plant and specification [45]

7

and single exponential complexity in state sizes of the plant and specification [48]).

To mitigate the complexity, a novel notion is introduced as the existence condition

for bisimilarity control in Chapter 2. It can be effectively verified with polynomial

complexity in the state sizes of the plant and specification. Thirdly, an important

issue missing in the literature is how to change the specification when there does not

exist such a bisimilarity supervisor for the original specification. For this issue, the

calculation of achievable sub-specifications is investigated in Chapter 2.

1.2.2 Decentralized Supervisory Control

The bisimilarity control proposed in Subsection 1.2.1 only relies on a single supervisor.

However, no monolithic supervisor is likely to provide a useful solution in many

engineering systems, such as an automated manufacturing systems which consists

of several workstations interconnected by conveyors or automated guided vehicles.

Therefore, a decentralized solution is needed. In decentralized supervisory control,

a set of local supervisors (more than one) should jointly control a given plant for

a global behavior. Each supervisor takes its actions based on its own observation.

The control actions of the local supervisors are fused into a global control decision to

control the given plant. Several architectures have been developed for decentralized

supervisory control according to different fusion rules.

Rudie and Wonham [37] proposed a conjunctive architecture, where the fusion

rule is based on the intersection of locally enabled events. Complementary with con-

junctive architecture, a disjunctive architecture was presented in [49], where the union

8

of locally enabled events is adopted in fusion. In that work, a general architecture

which combines the conjunctive architecture and the disjunctive architecture was fur-

ther developed. Namely, the local supervisors agree a priori on choosing “fusion by

intersection” for certain controllable events and “fusion by union” for certain con-

trollable events. In these works, supervisors make unconditional decisions: “enable”

or “disable”. Notable exceptions were reported in [50] and [51]. [50] considered the

conditional decisions of the form: “enable if nobody disables” and “disable if nobody

enables”. [51] provided a knowledge-based architecture to associate the supervisors’

decision to a grade or level of ambiguity. Based on these architectures, recent efforts

on decentralized supervisory control has devoted to hierarchical control [52], reliable

control [53], [54] and communicating control with communication delays [55] or with-

out communication delays [56], [57]. The existing literature all employed language

equivalence. It is known that bisimulation is necessary to deal with branching behav-

iors that arise in unmodeled dynamics, model abstraction and communication delays.

Moreover, bisimulation is a natural choice for temporal logic specifications. These

observations motivate us to study decentralized supervisory control for bisimulation

equivalence in Chapter 3.

1.2.3 Distributed Supervisory Control

A distributed DES (also called a concurrent DES) is composed of several local DESs

that cooperatively perform a task or computation. A multi-agent system [58–60] is

an example of distributed discrete event systems. The goal of distributed supervisory

9

control is to synthesize local supervisors for individual plants such that the resulting

supervised behavior is identical with the global specification. Each local supervisor

determines its control actions based on the locally observed behavior.

The current methods for distributed supervisor control typically involve convert-

ing the distributed DES to equivalent monolithic system [39, 61, 62]. Unfortunately,

in general a monolithic control design is computationally expensive. It was formally

shown in [33, 63] that the monolithic-based computation grows exponentially as the

number of components in plant increases. Modular control seems a solution for com-

plexity mitigation since the computation of local supervisor only relies on the local

DES rather than the global one. [64] proposed an existence condition for the modular

control of distributed DESs. The same problem was explored in [65] for a special class

of distributed DESs in which all local DESs exhibit isomorphic behavior. Different

from these works, [66–72] investigated the conditions under which a modular control

of distributed DESs is equivalent to a maximally permissive/ minimally restrictive

monolithic control. Specifically, [66] assumes that the event sets of local DESs are

mutually disjoint. [67] and [68] assume that the shared events are all controllable

for local DESs. [70], [71] and [72] assume that the shared events have the same con-

trol status and additionally the newly introduced property of mutual controllability

holds. This assumption has been generalized in [69] by only requiring the same sta-

tus for the shared events. Research efforts are all devoted into language enforcement.

As pointed out in the previous subsection, bisimulation equivalence is strongly re-

quired to tackle branching behaviors and temporal logic specifications. Therefore, we

consider distributed supervisory control for bisimulation equivalence in Chapter 4.

10

1.3 Abstraction of Continuous Systems

Abstraction is a process of extracting a discrete event model from the continuous

system. It is desired that the abstracted model can either be equivalent with the

original continuous system with respect to the satisfaction of the specification, or it

can provide approximately guarantee that the satisfaction of the specification for the

abstracted model is sufficient for the satisfaction of the specification by the original

system.

Equivalent abstraction relies on the notion of bisimulation. So far, only few classes

of systems can be bisimilarly abstracted. The first success is timed automata [73].

Subsequent extensions led to the results for multi-rate automata [74], rectangular

hybrid automata [75] and order-minimal automata [76]. Recent work for more com-

plex continuous dynamics-second order linear dynamics can be found in [77], where

a bisimilarly abstracted model can be obtained by a triangulation of polygonal state

space. Their work was refined in [17] through approaching arbitrary dimensional

discrete-time linear system. It was shown that an equivalent discrete transition sys-

tem exists for the controllable system with properly chosen observables. As opposed

to discrete-time linear systems in [17], continuous-time linear system over polytopes

was studied in [78]. Recent works of constructing sufficient abstractions focused on

systems with linear dynamics and polyhedral partitions [79], and systems with poly-

nomial dynamics and partitions given by semi-algebraic sets [80]. The construction

of sufficient or equivalent abstractions (if they exist) is computationally expensive. In

this thesis, we propose effective polyhedral operations to check the existence of equiv-

11

alent abstractions with respect to a class of nonlinear systems, multi-affine systems.

This novel methodology covers more classes of system than those are addressed in

[81, 82], with its successful application for temporal logic specifications.

1.4 Organization of the Thesis

This thesis investigates the controller synthesis for bisimulation equivalence from dis-

crete and continuous aspects. From discrete perspective, supervisory control is stud-

ied to enforce bisimilarity with respect to discrete event systems. Specifically, three

kinds of supervisory control problems are considered here: bisimilarity control, de-

centralized bisimilarity control and distributed bisimilarity control. The organization

of the thesis is described as follows.

Chapter 2 studies supervisory control of DESs for bisimulation equivalence. We

first focus on the most general case which allows the plant, specification and super-

visor to be nondeterministic. The difficulty is that there does not exist a systematic

way to construct the bisimilarity enforcing supervisor when it exists. For this issue,

we introduce the notion of synchronous simulation-based state controllability as the

existence condition for bisimilarity control. It is shown that a bisimilarity enforcing

supervisor can be efficiently built upon the specification. Another important question

is how to find achievable sub/sup-specifications when the existence condition does not

hold. To answer this question, the synthesis of synchronously simulation-based state

controllable sub-specifications is studied.

Since the existence condition for the most general case is sufficient only, we spe-

12

cialize to deterministic specifications. A necessary and sufficient condition is then

provided for bisimilarity control with respect to deterministic specifications. It can

be effectively verified with polynomial complexity in state sizes of the plant and speci-

fication (less than the complexity of the conditions with respect to deterministic speci-

fications [48]). When the existence condition holds, a bisimilarity enforcing supervisor

is established. Otherwise, the calculation of maximal permissive sub-specification is

investigated. It is a challenging problem because the supremum of an automaton

set is not closed under the upper bound (join) operator [48]. This problem is solved

by converting the automaton set into equivalently expressed language sets which are

closed under the corresponding upper bound (set union) operator [20].

Decentralized bisimilarity control is explored in Chapter 3, where a set of local su-

pervisors jointly control a given plant to reach a specification. Unlike language-based

structure, a novel automata-based structure is proposed, where the plant, specifica-

tion and supervisor are all modeled as automata. In particular, three architectures,

a conjunctive architecture, a disjunctive architecture and a general architecture, are

developed with respect to different decision making rules. Under these three architec-

tures, necessary and sufficient conditions are respectively provided for the existence

of a deterministic decentralized bisimilarity control. Furthermore, the synthesis of

decentralized bisimilarity supervisors and achievable sup-specifications are further

developed.

Chapter 4 studies bisimilarity supervisory control of distributed discrete event

systems which consist of multiple interacting modules. The objective of distributed

bisimilarity control is to impose bisimulation equivalence between the globally super-

13

vised system (the parallel composition of locally supervised modules) and the given

automaton specification. The concept of separable and synchronous simulation-based

state controllability is introduced as the existence condition for distributed bisimilar-

ity control. When this condition is satisfied, a set of local supervisors can be con-

structed to enforce bisimulation equivalence. Otherwise, the computation of achiev-

able sub-specifications is explored to enable the existence of a distributed bisimilarity

control. In addition, we focus on deterministic supervisors. The synthesis of de-

terministic distributed bisimilarity supervisors and achievable sup-specifications are

investigated accordingly. The comparisons of our results with the centralized mono-

lithic ones are further presented.

Chapter 5 investigates the control of multi-affine systems for bisimulation equiv-

alence, with its application to meet temporal logic specifications. The key is to

establish a bisimilarly abstracted system with finite state nature for the original con-

tinuous system. However, this problem is generally undecidable. For this reason,

we partition the state space into rectangles, and then study the control of multi-

affine system on rectangles. Resorting to the proposed control method, a bisimilarly

abstracted system is obtained. It is shown that the proposed method covers more

classes of systems than those are addressed in [81] and [82]. Moreover, the construc-

tion of bisimilarly abstracted system does not involve complex operators such as the

integration of vector fields [83], but rather polyhedral operators. A fully automated

procedure to control multi-affine systems for temporal logic specifications is developed

by using the proposed bisimilarity supervisory techniques to the abstracted system

and then by refining the resulting supervisor to the original multi-affine system.

14

The thesis is finally concluded in Chapter 6 with highlighting the contributions

and outlining the future works.

15

Chapter 2

Supervisory Control for

Bisimulation Equivalence

This chapter studies bisimilarity supervisory control of DESs. First, we focus on

the most general case which allows the plant, specification and supervisor to be

nondeterministic. In particular, the notion of synchronous simulation-based state

controllability is introduced as the sufficient condition for the existence of a bisimi-

larity enforcing supervisor, and a polynomial algorithm is developed to check such a

condition. When the existence condition holds, a bisimilarity enforcing supervisor is

constructed. Otherwise, the synthesis of achievable sub-specifications is further stud-

ied. Then, we specialize to deterministic specifications. A necessary and sufficient

condition is proposed for the existence of bisimilarity control. Accordingly, the syn-

thesis of bisimilarity enforcing supervisors and supremal achievable sub-specifications

are investigated as well.

16

2.1 Bisimilarity Control for Nondeterministic Spec-

ifications

This section explores bisimilarity supervisory control for the most general case. The

notion of bisimilarity enforcing supervisor is introduced as below.

Definition 2.1 Given a plant G = (X,Σ, α, x0, Xm) and a specification R = (Q,Σ, δ,

q0, Qm), a supervisor S = (Y,Σ, β, y0, Ym) is said to be a bisimilarity enforcing super-

visor for G and R if

(1) There is a bisimulation relation ϕ such that G||S ∼=ϕ R;

(2) (∀y ∈ Y and ∀σ ∈ Σuc) β(y, σ) ̸= ∅.

It is shown that a bisimilarity enforcing supervisor always enables all uncontrol-

lable events and achieves bisimulation equivalence. Unless otherwise stated we will

use G = (X,Σ, α, x0, Xm), R = (Q,Σ, δ, q0, Qm) and S = (Y,Σ, β, y0, Ym) to denote

the plant, specification and supervisor in this chapter.

2.1.1 Existence Condition

This subsection investigates the existence condition for bisimilarity control. For suffi-

ciency, a bisimilarity enforcing supervisor is needed. In the context language enforcing

control, it is known that a controllable specification itself can work as a supervisor.

This motivates us to construct a bisimilarity enforcing supervisor based on the speci-

fication. Since a bisimilarity enforcing supervisor is required to satisfy two conditions

(Definition 2.1), the following concept is introduced.

17

Definition 2.2 Given G1 = (X1,Σ, α1, x01, Xm1), the uncontrollable augmented au-

tomaton G1uc of G1 is an automaton

G1uc = (X1 ∪ {Dd},Σ, αuc, x01, Xm1),

where for any x ∈ X1 ∪ {Dd} and σ ∈ Σ, the transition function is defined as

αuc(x, σ) =


α1(x, σ) σ ∈ EG1(x);

{Dd} σ ∈ Σuc\EG1(x)∨(x = Dd∧σ ∈ Σuc);

∅ otherwise.

It can been seen that if we choose the uncontrollable augmented automaton Ruc

as the bisimilarity enforcing supervisor, it naturally satisfies the second condition of

Definition 2.1. Next, we investigate the properties that makes G||Ruc bisimilar to

R, i.e., the satisfaction of the first condition of Definition 2.1. Before presenting the

properties, we need the following notions.

Definition 2.3 Given G1 = (X1,Σ1, α1, , x01, Xm1) and G2 = (X2,Σ2, α2, , x02, Xm2),

the synchronized state map XsynG1G2: X1 → 2X2 from G1 to G2 is defined as

XsynG1G2(x1) = {x2 ∈ X2 | (∃s ∈ Σ∗) x1 ∈ α1(x01, s) ∧ x2 ∈ α2(x01, s)}.

The synchronized state map can be used to find the synchronized state pairs of

two automata [45]. Based on this property, the concept of synchronous simulation is

stated.

Definition 2.4 Given G1 = (X1,Σ, α1, x01, Xm1), G2 = (X2,Σ, α2, x02, Xm2) and a

simulation relation ϕ such that G1 ≺ϕ G2, ϕ is called to be a synchronous simulation

relation from G1 to G2 if (x1, x2) ∈ ϕ for any x1 ∈ X1 and x2 ∈ XsynG1G2(x1).

18

If there exists a synchronous simulation relation from G1 to G2, G1 is said to be

synchronously simulated by G2, denoted as G1 ≺synϕ G2.

We can see that when the specification R is synchronously simulated by the plant

G, every synchronized state pair of R and G belongs to the synchronous simulation

relation ϕ. Hence, G||R ∼= R. Furthermore, if for every state of R, its active event set

includes the uncontrollable events defined in the corresponding synchronized states

of G, then G||R = G||Ruc, implying G||Ruc
∼= R, i.e., Ruc is a bisimilarity enforcing

supervisor for G and R. Hence we formalize the notion of synchronous simulation-

based state controllability as a property of the specification for bisimilarity control.

Definition 2.5 Given G1 = (X1,Σ, α1, x01, Xm1) and G2 = (X2,Σ, α2, x02, Xm2), G1

is said to be synchronously simulation-based state controllable with respect to G2 and

Σuc if

(1) There is a synchronous simulation relation ϕ such that G1 ≺synϕ G2;

(2) (State Controllability) (∀s ∈ Σ∗ and ∀σ ∈ Σuc) sσ ∈ L(G2)∧x1 ∈ α1(x01, s) ⇒

α1(x1, σ) ̸= ∅.

Then, we present the existence condition for bisimilarity control.

Theorem 2.1 Given a plant G and a specification R, if R is synchronously simulation-

based state controllable with respect to G and Σuc, then there is a bisimilarity enforcing

supervisor for G and R.

Proof: LetG||R = (XGR,Σ, (x0, q0), αGR, XmGR), G||Ruc = (XGRuc ,Σ, (x0, q0), αGRucXmGRuc)

and Ruc = (Quc,Σ, q0, δuc , Qmuc). Consider Ruc to be a supervisor and a rela-

tion ϕ1 = {((x, q), q) ∈ XGRuc × Q | (x, q) ∈ XGRuc}. It is obvious that Ruc

19

satisfies the condition (2) of Definition 2.1. Next we show that ϕ1 is a bisimula-

tion relation from G||Ruc to R. For any ((x, q), q) ∈ ϕ1, if there is a σ−successor

(x′, q′) ∈ αGRuc((x, q), σ), where σ ∈ Σ, the definition of product implies q′ ∈ δuc(q, σ)

and q′ ∈ Qm if (x′, q′) ∈ XmGRuc . If σ /∈ Σuc, then q′ ∈ δ(q, σ) from the defini-

tion of the uncontrollable augmented automaton. If σ ∈ Σuc, because R is state

controllable w.r.t. G and Σuc, we have q′ ∈ δ(q, σ). Therefore, ((x′, q′), q′) ∈ ϕ1.

For any (q, (x, q)) ∈ ϕ−1
1 , if there is a σ−successor q′ ∈ δ(q, σ), where σ ∈ Σ, we

have ER(q) ⊆ EG(x) because synchronous simulation-based state controllability of R

indicates that there is a synchronous simulation relation ϕ from R to G such that

every synchronized state pair of R and G belongs to ϕ. Then, there is x′ ∈ α(x, σ)

s.t. (x′, q′) ∈ αGRuc((x, q), σ) with (q′, x′) ∈ ϕ, which implies (q′, (x′, q′)) ∈ ϕ−1
1 . In

addition, (q′, x′) ∈ ϕ implies x′ ∈ Xm if q′ ∈ Qm, that is, (x
′, q′) ∈ XmGRuc . Therefore,

G||Ruc
∼=ϕ1∪ϕ−1

1
R.

Theorem 2.1 indicates that synchronous simulation-based state controllability is

the sufficient condition for the existence of a bisimilarity enforcing supervisor.

2.1.2 Test for Existence Condition

This section proposes an algorithm to test whether a given specification R is syn-

chronously simulation-based state controllable with respect to G and Σuc. Before

presenting this algorithm, the notion of synchronously simulation-based controllable

product is introduced as below.

Definition 2.6 Given G1 = (X1,Σ, α1, x01, Xm1) and G2 = (X2,Σ, α2, x02, Xm2), the

20

synchronously simulation-based controllable product of G1 and G2 is an automaton

G1||syncG2 = ((X1 ×X2)∪ {qd, q′d},Σ, α12, (x01, x02), Xm1×Xm2),

where for any (x1, x2) ∈ X1 ×X2 and σ ∈ Σ, the transition function is defined as

α12((x1, x2), σ)=



α1(x1, σ)× α2(x2, σ) σ∈ EG1(x1)∩ EG2(x2);

qd σ∈ EG1(x1)\ EG2(x2);

q′d σ∈ (EG2(x2)\ EG1(x1)) ∩ Σuc;

∅ otherwise.

Then, we present the following algorithm to verify synchronous simulation-based

state controllability.

Algorithm 2.1 Given a plant G and a specification R, the algorithm for testing

synchronous simulation-based state controllability of R with respect to G and Σuc is

described as below.

Step 1: Obtain R||syncG = (Xsync,Σ, αsync, (q0, x0), Xmsync);

Step 2: R is synchronously simulated-based state controllable with respect to G

and Σuc if and only if qd and q′d are not reachable in R||syncG and x ∈ Xm for any

reachable state (q, x) in R||syncG with q ∈ Qm.

Theorem 2.2 Algorithm 2.1 is correct.

Proof: It can be seen that any (q, x) satisfying x ∈ XsynRG(q) is a state reachable

in R||syncG and any (q, x) ∈ Xsync \{qd, q′d} satisfies that x ∈ XsynRG(q) according

21

Figure 2.1: Plant G (Left) and Specification R (Right)

to the definition of synchronously simulation-based controllable product. For syn-

chronous simulation-based state controllability to hold, condition (1) and condition

(2) of Definition 2.5 should be satisfied. On the other hand, if condition (1) is violated,

there are two cases. Case 1: there exist (q, x) and σ ∈ Σ such that x ∈ XsynRG(q)

and σ ∈ ER(q)\ EG(x). So qd ∈ αsync((q, x), σ). Case 2: there is (q, x) such that

x ∈ XsynRG(q) and x /∈ Xm when q ∈ Qm. If condition (2) is violated, i.e. there

exist (q, x) and σ ∈ Σuc such that x ∈ XsynRG(q) and σ ∈ EG(x) \ ER(q). So

q′d ∈ αsync((q, x), σ). It follows that qd and q′d are reachable in R||syncG or x /∈ Xm

for any reachable state (q, x) in R||syncG with q ∈ Qm iff R is not synchronously

simulated-based state controllable w.r.t. G and Σuc.

Algorithm 2.1 can be terminated because the state sets and the event sets of G

and R are finite. Since G and R are nondeterministic, their numbers of transitions

are O(|X|2|Σ|) and O(|Q|2|Σ|) respectively. Then, the complexity of constructing

R||syncG is O(|X|2|Q|2|Σ|). In addition, the complexity of checking the reachability

of qd and q
′
d in R||syncG is O(log(|X||Q|)) [84]. So the complexity of Algorithm 2.1 is

22

O(|X|2|Q|2|Σ|).

The following example is presented to illustrate Algorithm 2.1.

Example 2.1. Consider a plant G and a specification R configured in Fig. 2.1,

where Σuc = {c}. It can be seen that R is not synchronously simulation-based state

controllable with respect to G and Σuc because the uncontrollable event c is defined

at x3 ∈ α(x0, a) but not q4 ∈ δ(q0, a), and d is defined at q4 but not x3 ∈ XsynRG(q4).

Figure 2.2: R||syncG

Next, we apply Algorithm 2.1 to test synchronous simulation-based state control-

lability of R. The synchronously simulation-based controllable product R||syncG is

obtained in Fig. 2.2 and it shows that qd and q
′
d are reachable in R||syncG. Therefore,

R is not synchronously simulation-based state controllable with respect to G and Σuc.

Remark 2.1 Theorem 2.1 indicates that under the condition that R is synchronously

simulation-based state controllable, Ruc is a bisimilarity enforcing supervisor, and it

can be effectively constructed with polynomial complexity in the state and event sizes

of the specification, i.e., O(|Q|2|Σ|).

23

2.1.3 Synthesis of Bisimilarity Enforcing Supervisors

This section studies the synthesis of a bisimilarity enforcing supervisor when it exists.

Followed by the previous results, it is natural that Ruc is a bisimilarity enforcing

supervisor, which is shown in the following theorem.

Theorem 2.3 Given a plant G and a deterministic specification R, if R is syn-

chronously simulation-based state controllable with respect to G and Σuc, then Ruc is

a bisimilarity enforcing supervisor for G and R.

Figure 2.3: Plant G (Left) and Specification R (Right)

Now, we provide an example to illustrate bisimilarity control of discrete event

systems.

Example 2.2. Consider a plant G and a specification R shown in Fig. 2.3.

Assume Σuc = {e}. In the following, we investigate the problem whether there is a

supervisor S such that the supervised system G||S is bisimilar to R.

It is obvious that R is synchronously simulation-based state controllable with re-

spect to G and Σuc. By Theorem 2.1, we can establish Ruc as the supervisor (Fig. 2.4

24

Figure 2.4: Ruc (Left) and G||Ruc (Right)

(Left)). Then, the supervised system G||Ruc is presented in Fig. 2.4 (Right). Let ϕ =

{((x0, q0), q0), ((x1, q1), q1), ((x2, q1), q1), ((x1, q2), q2), ((x2, q2), q2), ((x3, q3), q3), {(x5, q4),

(x7, q4), (x5, q6), (x7, q6)}×{q4, q6}, {(x4, q5), (x6, q5), (x9, q7), (x8, q8), (x10, q9), (x11, q9),

(x10, q10), (x11, q10)} × {q5, q7, q8, q9, q10}, ((x12, q11), q11)}. Thus, G||Ruc
∼=ϕ∪ϕ−1 R.

2.1.4 Synthesis of Achievable Sub-specifications

Example 2.1 indicates that a given specificationR is not always synchronously simulation-

based state controllable. To guarantee the existence of a bisimilarity enforcing super-

visor, this subsection aims to find synchronously simulation-based state controllable

sub-specifications. Because a sub-specification is possibly nondeterministic, here we

assume a sub-specification is an automaton simulated by the specification R. We

start by considering synchronous simulation relation, which is required in synchronous

simulation-based state controllability. Then, the following concept is introduced.

Definition 2.7 Given a plant G, the synchronous state merger operator on G, de-

25

noted by Fsyn(G), is an automaton

Fsyn(G) = (Xsyn,Σ, {x0}, αsyn, Xmsyn),

where Xsyn = 2X , Xmsyn = {Y1 | Y1 ⊆ Xm}, and for any A ∈ Xsyn and σ ∈ Σ,

the transition function is defined as

αsyn(A, σ) =


∪x∈Aα(x, σ) σ ∈ ∩x∈AEG(x);

undefined otherwise.

In the following lemma, we show that Fsyn(G) is synchronously simulated by G.

Lemma 2.1 Given a plant G, there is a synchronous simulation relation ϕ such that

Fsyn(G) ≺synϕ G.

Proof: Consider a relation ϕ′ = {(A, x) | x ∈ A}. Next we show that ϕ′ is a syn-

chronous simulation relation from Fsyn(G) to G. The definition of synchronous state

merger operator implies: (1) for any A ∈ Xsyn and x ∈ XsynFsyn(G)G(A), we have

(A, x) ∈ ϕ′; (2) if A ∈ Xmsyn, then x ∈ Xm for any x ∈ A; (3) for any (A, x) ∈ ϕ′,

if there is a σ−successor A′ ∈ αsyn(A, σ) in Fsyn(G), where σ ∈ Σ, then for any

x ∈ A, there exists x′ ∈ α(x, σ) such that x′ ∈ A′. It implies (A′, x′) ∈ ϕ′. Therefore,

Fsyn(G) ≺synϕ′ G.

Furthermore, we illustrate that any automaton G1 simulated by Fsyn(G) is syn-

chronously simulated by G.

Lemma 2.2 Given a plant G and an automaton G1 = (X1,Σ, α1, x01, Xm1), if there

is a simulation relation ϕ1 such that G1 ≺ϕ1 Fsyn(G), then there is a synchronous

simulation relation ϕ2 such that G1 ≺synϕ2 G.

26

Proof: Lemma 2.1 shows that there is a synchronous simulation relation ϕ such that

Fsyn(G) ≺synϕ G. Consider a relation ϕ′
2 = {(x1, x) ∈ X1 ×X | (∃A ∈ Xsyn)(x1, A) ∈

ϕ1∧ (A, x) ∈ ϕ}, where ϕ1 is a simulation relation from G1 to Fsyn(G). We next show

ϕ′
2 is a synchronous simulation relation from G1 to G. For any (x1, x) ∈ ϕ2, if there

is a σ−successor x′1 ∈ α1(x1, σ), where σ ∈ Σ, then we have A′ ∈ αsyn(A, σ) such

that (x′1, A
′) ∈ ϕ1. Thus there exists x′ ∈ α(x, σ) such that (A′, x′) ∈ ϕ. Further,

if x1 ∈ Xm1, then A ∈ Xmsyn, which implies x ∈ Xm. Therefore G1 ≺ϕ′2
G. Since

G1 ≺ϕ1 Fsyn(G), we have L(G1) ⊆ L(Fsyn(G)), moreover, Fsyn(G) is deterministic. It

follows that for any s ∈ L(G1) with x1 ∈ α(x01, s), there is A ∈ αsyn({x0}, s) such that

(x1, A) ∈ ϕ1. Thus (x1, A) ∈ ϕ1 for any x1 ∈ X1 and A ∈ XsynG1Fsyn(G)(x1). In addi-

tion, Fsyn(G) ≺synϕ G implies (A, x) ∈ ϕ for any A ∈ Xsyn and x ∈ XsynFsyn(G)G(A).

Hence (x1, x) ∈ ϕ′
2 for any x1 ∈ X1 and x ∈ XsynG1G(x1), implying G1 ≺synϕ′2

G.

The definition of parallel composition indicates Fsyn(G)||R ≺ Fsyn(G) and Fsyn(G)||R

≺ R. Then, Fsyn(G)||R is a sub-specification, moreover, Lemma 2.2 implies that

Fsyn(G)||R is synchronously simulated by the plant G. If Fsyn(G)||R is further state

controllable, then it is synchronously simulation-based state controllable. Next, we

introduce the state controllable operator to enforce state controllability with respect

to Fsyn(G)||R. Before presenting this operator, we need the following concepts.

Definition 2.8 Consider G1 = (X1,Σ, α1, x01, Xm1), G2 = (X2,Σ, α2, x02, Xm2) and

G1||syncG2 = (X||,Σ, α||, (x01, x02), Xm||). The uncontrollable set of G1||syncG2 is

defined as Xuc(G1||syncG2) = {(x1, s) ∈ X1 × Σ∗| there exist σ ∈ Σuc and x2 ∈

X2 s.t. q′d ∈ α||((x1, x2), σ) and (x1, x2) ∈ α||((x01, x02), s)}. The post uncontrol-

27

lable map PG1||syncG2 : X1 × Σ → 2X1 of G1||syncG2 is defined as PG1||syncG2(x, σ) =

{x1 | there exists (x1, s) ∈ Xuc(G1||syncG2) s.t. σ = s(|s|), x1 ∈ α1(x, σ) and

x ∈ α1(x01, s(1) · · · s(|s| − 1))}.

Intuitively, every element in Xuc(G1||syncG2) is of the form (x, s), where x is a

state of G1 that violates state controllability and s is a string through which x can be

reached by the initial state. Further, PG1||syncG2(x, σ) contains the states of G1 that

can transit to the states which fail to satisfy state controllability through the related

string s. Then, the state controllable operator is introduced.

Definition 2.9 Given G1 = (X1,Σ, α1, x01, Xm1), G2 = (X2,Σ, α2, x02, Xm2) and

G1||syncG2, the state controllable operator on G1 with respect to G2, denoted by FcG2(G1),

is an automaton

FcG2(G1) = (X1,Σ, αcG2 , x01, Xm1),

where for any x ∈ X1 and σ ∈ Σ, the transition function is defined as

αcG2(x, σ) =


α1(x, σ)\ PG1||syncG2(x, σ) PG1||syncG2(x, σ) ̸= ∅;

α1(x, σ) otherwise.

Then, by iteratively using the state controllable operator on G1, we can achieve

an automaton which is state controllable with respect to G2 and Σuc.

Lemma 2.3 Given G1 = (X1,Σ, α1, x01, Xm1), G2 = (X2,Σ, α2, x02, Xm2), if F
i+1
cG2

(G1) =

F i
cG2

(G1) ̸= ∅, then F i
cG2

(G1) is state controllable with respect to G2 and Σuc, where

i ∈ N+ and F i+1
cG2

(G1) = FcG2(F
i
cG2

(G1)).

28

Proof: Let F i
cG2

(G1) = (Xi,Σ, αi, x01, Xmi), F
i+1
cG2

(G1) = (Xi+1,Σ, αi+1, x01, Xmi+1)

and F i
cG2

(G1)||syncG2= (XF i
cG2

(G1)||syncG2
,Σ, (x01, x02), αF i

cG2
(G1)||syncG2

, XmF i
cG2

(G1)||syncG2
).

We assume the automaton F i
cG2

(G1) is not state controllable w.r.t. G2 and Σuc. That

is, for sσ ∈ L(G2), where σ ∈ Σuc, there is x1 ∈ X1 such that x1 ∈ αi(x01, s) and

σ /∈ EF i
cG2

(G1)(x1). Since sσ∈ L(G2), there exists x2∈ α2(x02, s) such that σ∈ EG2(x2).

Then, (x1, x2) ∈ αF i
cG2

(G1)||syncG2
((x01, x02), s) and q′d ∈ αF i

cG2
(G1)||syncG2

((x1, x2), σ),

moreover, there is x′1 ∈ αi(x01, s(1) · · · s(|s| − 1)) such that x1 ∈ αi(x
′
1, s(|s|)). It

follows that x1 ∈ PF i
cG2

(G1)||syncG2
(x′1, s(|s|)) ̸= ∅. Then x1 /∈ αi+1(x

′
1, s(|s|)), which

violates F i+1
cG2

(G1) = F i
cG2

(G1). Therefore, the assumption is wrong. As a result,

F i
cG2

(G1) is state controllable with respect to G2 and Σuc.

Moreover, the state controllable operator preserves synchronous simulation, which

can be seen from the following Lemma.

Lemma 2.4 Given G1 = (X1,Σ, α1, x01, Xm1) and G2 = (X2,Σ, α2, x02, Xm2), if

there is a synchronous simulation relation ϕ1 such that G1 ≺synϕ1 G2, then there is a

synchronous simulation relation ϕ2 such that FcG2(G1) ≺synϕ2 G2.

Proof: Let FcG2(G1) = (XFcG2
(G1),Σ, αFcG2

(G1), x01, XmFcG2
(G1)). Consider a rela-

tion ϕ′
2 = {(x1, x2) ∈ XFcG2

(G1) × X2 | (x1, x2) ∈ ϕ1}, where ϕ1 is a synchronous

simulation relation from G1 to G2. Next we show that ϕ′
2 is a synchronous simula-

tion relation from FcG2(G1) to G2. For any (x1, x2) ∈ ϕ′
2, if there is σ−successor

x′1 ∈ αFcG2(G1)
(x1, σ), where σ ∈ Σ, then we have x1 ∈ X1 and x′1 ∈ α1(x1, σ)

from the definition of state controllable operator. It implies that there exists x′2 ∈

α2(x2, σ) such that (x′1, x
′
2) ∈ ϕ1. Then (x1, x2) ∈ ϕ′

2 for any x1 ∈ XFcG2
(G1) and

29

x2 ∈ XsynFcG2
(G1)G2(x1). Therefore, FcG2(G1) ≺synϕ′2

G2.

With above results, we present a theorem to synthesize achievable sub-specifications.

Theorem 2.4 Given a plant G and a specification R, if F i+1
cG (Fsyn(G)||R)=F i

cG(Fsyn(G)||R)

̸= ∅, then F i
cG(Fsyn(G)||R) is synchronously simulation-based state controllable with

respect to G and Σuc, where i ∈ N+ and F i+1
cG2

(Fsyn(G)||R) = FcG2(F
i
cG2

(Fsyn(G)||R)).

Proof: Lemma 2.1 shows that there is a synchronous simulation relation ϕ1

such that Fsyn(G) ≺synϕ1 G. Moreover, Fsyn(G)||R ≺ Fsyn(G). Thus, there ex-

ists a synchronous simulation relation ϕ2 such that Fsyn(G)||R ≺synϕ2 G by Lemma

2.2. In addition, Lemma 2.4 indicates that there is a synchronous simulation rela-

tion ϕ3 such that F i
cG(Fsyn(G)||R) ≺synϕ3 G. Furthermore, Lemma 2.3 implies that

F i
cG(Fsyn(G)||R) is state controllable w.r.t. G and Σuc because F

i+1
cG (Fsyn(G)||R) =

F i
cG(Fsyn(G)||R) ̸= ∅. Hence, F i

cG(Fsyn(G)||R) is synchronously simulation-based

state controllable w.r.t G and Σuc.

Figure 2.5: Fsyn(G) (Left) and FcG(Fsyn(G)||R) (Right)

Remark 2.2 If R fails to satisfy synchronous simulation-based state controllabil-

ity and F i+1
cG (Fsyn(G)||R) = F i

cG(Fsyn(G)||R) ̸= ∅, we can replace R with its sub-

30

specification F i
cG(Fsyn(G)||R) to ensure the existence of a bisimilarity enforcing su-

pervisor.

We revisit Example 2.1 to demonstrate the synthesis of achievable sub-specifications.

Example 2.3. Consider a plant G and a specification R configured in Fig. 2.1,

where Σuc = {c}. From Example 2.1, it is known that R is not synchronously

simulation-based state controllable with respect to G and Σuc. We would like to

find achievable sub-specifications of R, which satisfy synchronous simulation-based

state controllability.

First, we establish Fsyn(G) as shown in Fig. 2.5. Then, we obtain (Fsyn(G)||R)||syncG,

which indicates that (({x2, x3}, q4), x2) and (({x2, x3}, q4), x3) can transit to q′d through

the uncontrollable event c. Therefore, P(Fsyn(G)||R)||syncG(({x0}, q0), a) = {({x2, x3}, q4)}

̸= ∅. Let FcG(Fsyn(G)||R) = (XFcG(Fsyn(G)||R),Σ, ({x0}, q0), αFcG(Fsyn(G)||R), XmFcG(Fsyn(G)||R)).

Then ({x2, x3}, q4) /∈ αFcG(Fsyn(G)||R)(({x0}, q0), a). Hence, FcG(Fsyn(G)||R) is achieved

in Fig. 2.5 (Right). Further, F 2
cG(Fsyn(G)||R) = FcG(Fsyn(G)||R). So FcG(Fsyn(G)||R)

is synchronously simulation-based state controllable with respect to G and Σuc by

Theorem 2.4.

2.2 Specialization to Deterministic Specifications

The existence condition proposed in the previous section is sufficient only. This mo-

tivates us to consider bisimilarity supervisory control for deterministic specifications.

In this section, a necessary and sufficient condition is provided for the existence of a

bisimilarity enforcing supervisor with respect to deterministic specifications. It can

31

be verified in polynomial complexity (less than the complexity of the conditions with

respect to deterministic specifications in [48]). When the existence condition holds,

a bisimilarity enforcing supervisor can be constructed. Furthermore, when the exis-

tence condition does not hold, two different methods are provided for synthesizing

maximal permissive sub-specifications.

2.2.1 Existence Condition

This subsection investigates the existence condition for bisimilarity enforcing supervi-

sors. Since bisimulation implies language equivalence, the necessary condition such as

language controllability for the existence of language enforcing supervisors still works

for the existence of bisimilarity enforcing supervisors. Thus, we introduce the notion

of langauge controllability as below.

Definition 2.10 Given languages K and M ∈ Σ∗ with K ⊆ M , K is said to be

language controllable with respect to M and Σuc if

KΣuc ∩M ⊆ K.

Denote det(G) as a minimal deterministic automaton such that L(det(G)) = L(G)

and Lm(det(G)) = Lm(G). The result of [48] indicated that G||det(R) ∼= R and lan-

guage controllability of L(R) are necessary and sufficient conditions for the existence

of a deterministic bisimilarity supervisor. In particular, G||det(R) ∼= R is reduced to

G||R ∼= R if R is deterministic. In these conditions, R gets entangled with G, which

fails to provide an insight about the character of R for bisimilarity control. Moreover,

32

the complexity of checking these condition is high. To address these problems, we

will introduce synchronous simulation-based controllability as a property for R.

Definition 2.11 Given G1 = (X1,Σ, α1, x01, Xm1) and G2 = (X2,Σ, α2, x02, Xm2),

G1 is said to be synchronously simulation-based controllable with respect to G2 and

Σuc if it satisfies

(1) There is a synchronous simulation relation ϕ such that G1 ≺synϕ G2;

(2) L(G1) is language controllable with respect to L(G2) and Σuc.

For a deterministic specification R, R is synchronously simulated by G implies

that G possesses the branches which are bisimilar to R and the branches which are

outside L(R). Hence, when R is deterministic, R is synchronously simulated by

G iff G||R ∼= R. Next, we show that synchronous simulation-based controllability

is a necessary and sufficient condition for the existence of a bisimilarity enforcing

supervisor with respect to deterministic specifications.

Theorem 2.5 Given a plant G and a deterministic specification R, there exists a

bisimilarity enforcing supervisor S for G and R if and only if R is synchronously

simulation-based controllable with respect to G and Σuc.

Moreover, synchronous simulation-based controllability offers computation advan-

tages compared to the conditions in [48]. An algorithm will be proposed in the next

subsection for testing synchronous simulation-based controllability.

33

2.2.2 Test for Existence Condition

This subsection proposes an algorithm to test synchronous simulation-based control-

lability for a deterministic R, i.e. the existence of a bisimilarity enforcing supervisor.

In fact, synchronous simulation-based controllability is equivalent to synchronous

simulation-based state controllability when R is deterministic. Thus, similar to Al-

gorithm 2.1, the following algorithm is proposed.

Algorithm 2.2 Given a plant G and a deterministic specification R, the algorithm

for testing synchronous simulation-based controllability of R with respect to G and

Σuc is described as below.

Step 1: Obtain R||syncG = (Xsync,Σ, αsync, (q0, x0), Xmsync);

Step 2: R is synchronously simulated-based controllable with respect to G and Σuc

if and only if qd and q′d are not reachable in R||syncG and x ∈ Xm for any reachable

state (q, x) in R||syncG with q ∈ Qm.

Theorem 2.6 Algorithm 2.2 is correct.

Proof: The proof is similar to Theorem 2.2.

Compared to the results in [48], we can see that when R is deterministic, syn-

chronously simulation-based controllability of R is equivalent to the conditions in [48]

(G||R ∼= R and language controllability of R). In addition, the complexity of verifying

synchronously simulation-based controllability and the conditions (G||R ∼= R and lan-

guage controllability ofR) areO(|X|2|Q|2|Σ|) (Algorithm 2.2) andO(|X|2|Q|2|Σ|3log(|X||Q|2))

(Remark 2 in [48]) respectively. Hence, we argue that the proposed method in this

thesis is more effective.

34

Next, we give an example to illustrate Algorithm 2.2.

Figure 2.6: Plant G (Left), Specification R (Middle) and R||syncG (Right)

Example 2.4. Consider a plant G and a specification R configured in Fig. 2.6.

Assure Σuc = {b, e}. We can see that R is not synchronously simulation-based con-

trollable with respect to G and Σuc because for f ∈ L(G) ∩ L(R) and e ∈ Σuc,

fe ∈ L(G) \ L(R), and e is defined at q7 but not x8 ∈ XsynRG(q7). Next, we

use Algorithm 2.2 to test synchronously simulation-based controllability of R. The

synchronously simulation-based controllable product R||syncG is shown in Fig. 2.6

(Right). It can be seen that qd and q′d are reachable in R||syncG. Hence, R is not

synchronously simulation-based controllable with respect to G and Σuc.

2.2.3 Synthesis of Bisimilarity Enforcing Supervisors

In this subsection, we investigate how to synthesize a bisimilarity enforcing supervisor

when R is synchronously simulation-based controllable. It is immediate to see that

Ruc can be chosen as a candidate of bisimilarity enforcing supervisors, which is shown

as below.

35

Theorem 2.7 Given a plant G and a deterministic specification R, if R is syn-

chronously simulation-based controllable with respect to G and Σuc, then Ruc is a

bisimilarity enforcing supervisor for G and R.

Proof: Since R is synchronously simulation-based controllable with respect to G and

Σuc, we obtain that: (1) G||Ruc = G||R; and (2) there exists a synchronous simulation

relation ϕ from R to G such that R ≺synϕ G. Moreover, R ≺synϕ G implies G||R ∼= R.

Therefore, G||Ruc = G||R ∼= R, i.e., Ruc is a bisimilarity enforcing supervisor for G

and R.

Figure 2.7: Multi-robot system (Left), Plant AP2 (Middle) and Local Task Automaton
P2(As) (Right)

Now, we give an example to illustrate the synthesis of bisimilarity enforcing su-

pervisors for deterministic specifications.

Example 2.5. Consider a cooperative multi-robot system (MRS) example, which

is adopted from [85]. In order to achieve a global task As, each robot Ri (with plant

APi
) should accomplish the local task Pi(As) obtained by decomposing As, where

i = 1, 2, 3 and ||i∈{1,2,3}Pi(As) ∼= As. According to Theorem 6 in [85], if we can

36

design a local supervisor ACi
such that ACi

||APi
∼= Pi(As), this multi-robot system

will achieve the global task, i.e., ||i∈{1,2,3}ACi
||APi

∼= As. Here, we take robot 2 as an

example. The plant AP2 and the local specification P2(As) of robot 2 are given in Fig.

2.7. In particular, the behavior of robot 2 is described as below: After R2 receives the

help request (event h2), it will go to Room 2 by moving towards the position on D2

(event R2to2). Once the robot 2 is in Room 2, it can nondeterministically goes along

pre-defined paths (event R2in2). In one path, the robot 2 can go to position on D1

(event R2to1) after Door 1 is opened (event D1open). Then, it is in Room 1 (event

R2in1) after that it can go to the initial state for the next implementation (event r).

In another path, the robot 2 behaves similarly. The difference is that it can take a

surveillance tour (event Tin2) in Room 2. All events except h2 are controllable in

this example.

Figure 2.8: Supervisor AC2 (Left) and Supervised System AC2 ||AP2 (Right)

We would like to design a bisimilarity enforcing supervisor AC2 (Fig. 2.8) for AP2

and P2(As). It can be seen that P2(As) is synchronously simulation-based control-

lable w.r.t. AP2 and Σuc = {h2}. By designing the supervisor AC2 to be P2(As)uc, we

can obtain the supervised system in Fig. 2.8 (Right). It can be seen that AC2 ||AP2
∼=ϕ

P2(As), where ϕ = {((q0, x0), q0), ((q1, x1), q1), ((q2, x2), q2), ((q3, x4), q3), ((q3, x3), q3), ((q4, x6)

37

, q4), ((q4, x5), q4), ((q5, x8), q5), ((q5, x7), q5), ((q6, x10), q6), ((q6, x9), q6), (q0, (q0, x0)), (q1,

(q1, x1)), (q2, (q2, x2)), (q3, (q3, x4)), (q3, (q3, x3)), (q4, (q4, x6)), (q4, (q4, x5)), (q5, (q5, x8)),

(q5, (q5, x7)), (q6, (q6, x10)), (q6, (q6, x9))}. Similarly, the bisimilarity enforcing super-

visors for robot 1 and robot 3 can also be obtained. This control scenario has been

implemented on a team of three robots (Fig. 2.7 (Left)).

2.2.4 Synthesis of Supremal Achievable Sub-specifications

When a given specification fails to satisfy synchronous simulation-based controllabil-

ity, a natural question that arises is how to find a maximal permissive specification

which guarantees the existence of a bisimilarity enforcing supervisor. To answer this

question, the synthesis of supremal synchronously simulation-based controllable sub-

specifications is studied in this subsection. We start by introducing the notion of

supremum [86].

Definition 2.12 Given a set A, a preorder over A, denoted ≤⊆ A×A, is a transitive

and reflexive relation, in which case the pair (A,≤) is called a preordered set. Given

A′ ⊆ A, x ∈ A is said to be a supremum of A′, denoted by supA′, if

(1) ∀y ∈ A′: y ≤ x;

(2) ∀z ∈ A : [∀y ∈ A′ : y ≤ z] ⇒ [x ≤ z].

When we define the supremum of A′, a set (A,≤) should be given with respect

to the elements of A′. If the elements of A′ are languages, the set (2Σ
∗
,⊆) should

be applied because 2Σ
∗
includes all languages over alphabet Σ and language inclu-

sion fully captures the comparison between two languages. However, if the elements

38

of A′ are automata, the set (B,≺) should be applied, where B is a full set of au-

tomata with alphabet Σ and ≺⊆ B × B is the simulation relation, since B includes

all automata over alphabet Σ and the simulation relation is adequate for automata

(possibly nondeterministic) comparison. Please note that the supremum defined on

(A,≤) is unique. However, such uniqueness does not hold with respect to (B,≺)

because A1 ≺ A2 and A2 ≺ A1 do not imply A1 = A2.

Consider the class of sub-specifications satisfying synchronous simulation-based

controllability as below.

C1 := {R′ | R′ is deterministic, R′ ≺ R and R′ is synchronous

simulation− based controllable w.r.t. G and Σuc}

It can be seen that the supremum of C1 with respect to (B,≺) is a supremal

synchronously simulation-based controllable sub-specification. However, it is difficult

to directly calculate the supremum of C1 because C1 is not closed under the upper

bound (join) operator with respect to (B,≺) [48]. To encounter this problem, we

would like to convert the automaton set C1 into equivalently expressed language sets

which are closed under the upper bound (set union) operator with respect to (2Σ
∗
,⊆)

[20]. Next, we do this conversion item by item. First, for two deterministic automata

R′ and R, the condition R′ ≺ R is equivalent to the language condition L(R′) ⊆

L(R) and Lm(R
′) ⊆ Lm(R). Second, language controllability required in synchronous

simulation-based controllability is naturally a language description. It remains to

convert synchronous simulation relation required in synchronous simulation-based

controllability to an equivalent language condition. By using Fsyn(G), a synchronous

39

simulation relation from a deterministic automaton G1 to a plant G is equivalent

to language conditions L(G1) ⊆ L(Fsyn(G)) and Lm(G1) ⊆ Lm(Fsyn(G)), which is

illustrated by the following proposition.

Proposition 2.1 Given a plant G and a deterministic automaton G1, there is a

synchronous simulation relation ϕ such that G1 ≺synϕ G iff L(G1) ⊆ L(Fsyn(G)) and

Lm(G1) ⊆ Lm(Fsyn(G)).

Proof: Let Fsyn(G) = (Xf ,Σ, {x0}, αf , Xmf), G1 = (X1,Σ, x01, α1, Xm1) and GL =

G1||G = (XL,Σ, (x01, x0), αL, XmL). For sufficiency, consider a relation ϕ = {(x1, x) ∈

X1×X | x ∈ XsynG1G(x1)}. We obtain that G1 ≺synϕ G. For necessity, we can use the

induction method to prove L(G1) ⊆ L(Fsyn(G)). In addition, for any s′ ∈ Lm(G1),

there is x4 ∈ α1(x01, s
′) such that x4 = Xm1. Because G1 ≺synϕ G implies (x4, x

′′′) ∈

ϕ for any x′′′ ∈ α(x0, s
′), we have x′′′ ∈ Xm. The definition of Fsyn(G) implies

s′ ∈ Lm(Fsyn(G)), i.e. Lm(G1) ⊆ Lm(Fsyn(G)).

Hence, the automaton set C1 can be converted into the language sets:

C2 := {L1 ⊆ L(R) ∩ L(Fsyn(G)) | L1 = L1 and L1 is language controllable

w.r.t. L(G) and Σuc};

C3 := {L1 ∩ Lm(R) ∩ Lm(Fsyn(G)) | L1 ∈ C2}.

The computation of supremal synchronously simulation-based controllable sub-

specification, i.e., supC1, with respect to (B,≺), can be achieved through the compu-

tation of the supremal languages of C2 and C3 with respect to (2Σ
∗
,⊆) as shown in the

following theorem. For two languages K1, K2 ∈ Σ∗ with K2 ⊆ K1 ̸= ∅, let G(K1,K2)

be a deterministic automaton such that L(G(K1,K2)) = K1 and Lm(G(K1,K2)) = K2.

40

Theorem 2.8 Given a plant G and a deterministic specification R, if supC2 ̸= ∅,

then G(supC2,supC3) ∈ supC1.

Proof : Let L1 = supC2 ̸= ∅ and L′
1 = supC2∩ Lm(R)∩ Lm(Fsyn(G)) = supC3. First

we show that G(L1,L′
1)
∈ C1. Since L1 = supC2, we have L1 ∈ C2, which implies

L1 is language controllable w.r.t. L(G) and Σuc and L1 ⊆ L(Fsyn(G)). Further,

L′
1⊆ Lm(Fsyn(G)). From Proposition 2.1, G(L1,L′

1)
is synchronously simulation-based

controllable w.r.t. G and Σuc. Since the determinism of R and G(L1,L′
1)

and L1∈ C2

implies L1⊆ L(R) and L′
1⊆ Lm(R), we have G(L1,L′

1)
≺ R. Therefore, G(L1,L′

1)
∈ C1.

Next we show that R1 ≺ G(L1,L′
1)

for any R1 ∈ C1. Suppose there is R1 ∈ C1 such

that R1 ⊀ G(L1,L′
1)
. Since R1 ∈ C1, it implies R1 ≺ R, moreover, R1 and R are

deterministic. It follows that L(R1) ⊆ L(R) and Lm(R1) ⊆ Lm(R). In addition,

R1 ∈ C1 implies synchronous simulation-based controllability of R1. Hence L(R1) is

language controllable w.r.t. L(G) and Σuc and R1 ≺synϕ G, which implies L(R1)⊆

L(Fsyn(G)) and Lm(R1) ⊆ Lm(Fsyn(G)) by Proposition 2.1. Hence L(R1) ∈ C2.

Moreover, Lm(R1)⊆ L(R1). We have L(R1)⊆ supC2 = L1 and Lm(R1)⊆ supC3 =

L′
1, further, R1 and G(L1,L′

1)
are deterministic. It follows that R1 ≺ G(L1,L′

1)
, which

introduces a contradiction. Hence, the assumption is not correct. That is, R1 ≺

G(L1,L′
1)
for any R1∈ C1. So G(L1,L′

1)
= G(supC2,supC3)∈ supC1.

Next, we present a recursive algorithm and a formula-based method for computing

the supremal synchronously simulation-based controllable sub-specification. For an

automaton G′ = (X ′,Σ, α′, x′0, X
′
m) and X1 ⊆ X ′, the subautomaton of G′ with

respect to X1, denoted by FG′(X1), is defined as FG′(X1) = (X1,Σ, α1, x0, Xm1),

41

where α1=α
′ |X1×Σ and Xm1 = X1∩X ′

m.

Algorithm 2.3 Given a plant G and a deterministic specification R, the algorithm

for computing the supremal synchronously simulation-based controllable sub-specification

with respect to G and Σuc is described as follows:

Step 1: Obtain det(G) = (Xdet,Σ, αdet, x0det, Xmdet), G
′ = (Fsyn(G)||R)uc =

(X ′,Σ, α′, x′0, X
′
m) and G

′′ = G′|| det(G) = (X ′′,Σ, α′′, x′′0, X
′′
m);

Step 2: Z0 := {(x′1, x2) ∈ X ′ ×Xdet | x′1 = Dd};

Step 3: ∀k ≥ 0, Zk+1 = Zk ∪ {z ∈ X ′′ − Zk | (∃σ ∈ Σuc) α
′′(z, σ) ∈ Zk};

Step 4: If Zk+1 = Zk ̸= Z, then the subautomaton FG′′(X ′′ − Zk) of G′′ is a

supremal synchronously simulation-based controllable sub-specification with respect to

G and Σuc.

The correctness of Algorithm 2.3 is obvious according to Theorem 2.8. Because

the state set X ′′ is finite and the state numbers of Fsyn(G) and det(G) are both

O(2|X|), Algorithm 2.3 can be terminated with complexity O(22|X||Q||Σ|).

In addition to the recursive algorithm, the supremal synchronously simulation-

based controllable sub-specification can also be calculated by formulas. Before pre-

senting the formula-based method, we need the following notations. Consider three

languages K,K1, K2 ⊆ Σ∗. The Kleene closure of K, denoted as K∗, is the language

K∗ = ∪n∈NKn, where K0 = {ϵ} and for any n ≥ 0, Kn+1 = KnK. The prefix closure

of K, denoted as K, is the language K = {s ∈ Σ∗ | (∃t ∈ Σ∗) st ∈ K}. The quotient

ofK1 with respect toK2, denoted asK1/K2, is the languageK1/K2 = {s ∈ Σ∗ | (∃t ∈

K2) st ∈ K1}.

42

Theorem 2.9 Given a plant G and a deterministic specification R, if M = L(R) ∩

L(Fsyn(G)) − [(L(G) − L(R) ∩ L(Fsyn(G)))/Σ∗
uc]Σ

∗ ̸= ∅, then G(M,M ′) is a supremal

synchronously simulation-based controllable sub-specification with respect to G and

Σuc, where M
′ =M ∩ Lm(R) ∩ Lm(Fsyn(G)).

Figure 2.9: Fsyn(G) (Left) and det(G) (Right)

Example 2.6: We revisit Example 2.4, which indicates that R is not syn-

chronously simulation-based controllable. Here, we would like to calculate the supre-

mal synchronously simulation-based controllable sub-specification w.r.t. G and Σuc.

(1) Recursive Method: From Algorithm 2.3, we establish Fsyn(G) and det(G),

shown in Fig. 2.9. Then G′′ = (X ′′,Σ, α′′, x′′0, X
′′
m) = (Fsyn(G)||R)uc||det(G) is

achieved in (Fig. 2.10 (Left)). We obtain Z0={(Dd, x
′
10)}, Z1= Z0∪{({x7, x8}, q7, x′7),

({x4}, q4, x′4)} and Z2 = Z1 ∪{({x2}, q2, x′2)} = Z3. Therefore, the supremal syn-

chronously simulation-based controllable sub-specification FG′′(X ′′−Z2) is obtained

in Fig. 2.10 (Right).

(2) Formula-based Method: First, we construct Fsyn(G), which can be seen in

Fig. 2.9 (Left). Hence L(R) ∩ L(Fsyn(G)) = (d(fm+ eg)n+ cfgn+ fgn)∗ab. Thus,

43

Figure 2.10: (Fsyn(G)||R)uc||det(G) (Left) and FG′′(X ′′ − Z2) (Right)

M = L(R)∩L(Fsyn(G))−[(L(G)−L(R)∩L(Fsyn(G)))/Σ∗
uc]Σ

∗=(d(fm+ eg)n+ cfgn

+fgn)∗ab-(d(fm + eg)n + cfgn + fgn)∗abΣ∗ -(d(fm + eg)n + cfgn + fgn)∗aΣ∗-

(d(fm+eg)n+cfgn+fgn)∗fΣ∗ =(d(fm+ eg)n+ cfgn)∗ ̸= ∅ andM ′ =M∩Lm(R)∩

Lm(Fsyn(G))=(d(fm+eg)n+cfgn)∗(d(fm+eg)+cfg). The supremal synchronously

simulation-based controllable sub-specification G(M,M ′) = FG′′(X ′′ − Z2) is achieved

in Fig. 2.10 (Right).

2.3 Conclusion

This chapter explored bisimilarity supervisor control of DESs under a centralized

framework. We firstly allowed the plant, specification and supervisor to be nonde-

terministic. The notion of synchronous simulation-based state controllability was

introduced as the sufficient condition for the existence of a bisimilarity enforcing

supervisor, which can be verified by a polynomial algorithm. When the existence

condition holds, a bisimilarity enforcing supervisor can be constructed. When the

existence condition does not hold, the synthesis of achievable sub-specifications was

further studied. Then, we put our efforts to deterministic specifications. The notion of

44

synchronous simulation-based controllability was presented as the necessary and suf-

ficient condition for bisimilarity control. Such a condition can also be checked polyno-

mially in both state sizes of the plant and specification. In addition, two constructive

methods were provided for synthesizing supremal achievable sub-specifications.

45

Chapter 3

Decentralized Supervisory Control

for Bisimulation Equivalence

This chapter extends bisimilarity supervisory control from centralized framework to

decentralized framework. Firstly, an automata-based control framework is formalized,

upon which we develop three architectures with respect to different decision making

rules for decentralized bisimilarity control, named a conjunctive architecture, a dis-

junctive architecture and a general architecture. Under these three architectures, nec-

essary and sufficient conditions for the existence of decentralized bisimilarity control

are derived respectively, which extend traditional results of decentralized supervisory

control from language equivalence to bisimulation equivalence. It is shown that these

conditions can be verified with exponential complexity. The synthesis of decentralized

bisimilarity supervisors is presented when the existence condition holds. When the

specification does not satisfy the existence condition, the computation of achievable

sup-specifications has been further investigated.

46

3.1 Automata-based Framework

We start by introducing an automata-based framework for decentralized bisimilarity

control. A system G is jointly controlled by n local supervisors S1, S2 · · · Sn so

that the supervised system is bisimilar to the given specification R. A priori infor-

mation available to each local supervisor includes the desired behavior R and the

decision fusion rule. Further, each local supervisor can observe the locally observable

information and make the local control decisions.

Denote Σci, Σuci, Σoi and Σuoi as locally controllable event set, locally uncontrol-

lable event set, locally observable event set and local unobservable event set respec-

tively, where i ∈ I := {1, 2, · · · , n}. Then, the set of globally controllable events

is defined as Σc = ∪i∈IΣci and the set of globally observable events is defined as

Σo = ∪i∈IΣoi. The globally uncontrollable event set is given by Σuc = Σ−Σc and the

globally uncontrollable event set is given by Σuo = Σ−Σo. When a string of events oc-

curs, the sequence of observed events is filtered by a projection PΣo : Σ
∗ → Σ∗

o, which

is defined inductively as follows: PΣo(ϵ) = ϵ, for σ ∈ Σ and s ∈ Σ∗, PΣo(sσ) = P (s)σ

if σ ∈ Σo, otherwise, PΣo(sσ) = P (s).

The local supervisor Si is a tuple

Si = (Si, ψi), (3.1)

where Si = (Yi,Σ, βi, y0i, Ymi) is an automaton with Ymi = Yi and ψi : Yi → Γ :=

{γ ∈ 2Σ : Σuc ⊆ γ} is a local decision map.

It can be seen that a local supervisor consists of an automaton Si and a local

decision map ψi, where Si dynamically tracks and synchronizes the behaviors of the

47

plant and ψi determines whether enables the events defined at the state of Si or

not. Since a local supervisor can not disable globally uncontrollable events, we have

Σuc ⊆ ψi(yi) for any yi ∈ Yi. A local supervisor is called to be nondeterministic

if Si is nondeterministic, otherwise, it is called to be deterministic. To reduce the

implementation complexity, this chapter focuses on deterministic local supervisors.

Because a local supervisor possesses limit control and observation capabilities, an

admissible local supervisor should satisfy the following properties.

Definition 3.1 Consider a supervisor Si = ((Yi,Σ, βi, y0i, Ymi), ψi). Then,

• Si is called Σuoi − compatible if ∀y ∈ Yi and ∀σ ∈ Σuoi, βi(y, σ) = y;

• Si is called Σuci − compatible if ∀y ∈ Yi and ∀σ ∈ Σuci, βi(y, σ) ̸= ∅;

• Si is called (Σuoi,Σuci) − compatible if it is Σuoi − compatible and Σuci −

compatible.

It is shown that a Σuoi − compatible supervisor does the same control actions for

the indistinguishable events, and a Σuci − compatible supervisor always enables all

locally uncontrollable events. Further, the decisions from local supervisors can be

synthesized through the decision fusion rule, which is stated as follows.

Definition 3.2 Given supervisors Si = (Si, ψi) with ||i∈ISi = (Y||,Σ, β||, y0||, Ym||),

where i ∈ I, the decision fusion rule ψf is defined as

ψf : Y|| → Γ := {γ ∈ 2Σ : Σuc ⊆ γ}. (3.2)

48

Then, the supervised system generated by decentralized bisimilarity supervisors

is introduced.

Definition 3.3 Consider a plant G = (X,Σ, α, x0, Xm), a specification R = (Q,Σ,

δ, q0, Qm), supervisors Si = (Si, ψi) with ||i∈ISi = (Y||,Σ, β||, y0||, Ym||) and a decision

fusion rule ψf , where i ∈ I. The supervised system cli∈I(Si, ψi)/ψf
G is defined as an

automaton

cli∈I(Si, ψi)/ψf
G = (X ′,Σ, α′, x′0, X

′
m), (3.3)

where X ′ ⊆ X × Y||, x
′
0 = (x0, y0||), X

′
m ⊆ Xm ∩ Ym|| and the transition function

α′ : X ′ × Σ∗ → 2X
′
is defined inductively

(1) (x, y) ∈ α′(x′0, σ) ⇔ x ∈ α(x0, σ) ∧ y ∈ β||(y0||, σ) ∧ σ ∈ ψf (y0||);

(2) If (x, y) ∈ α′(x′0, s), then (x′, y′) ∈ α′((x, y), σ) ⇔ x′ ∈ α(x, σ) ∧ y′ ∈ β||(y, σ) ∧

σ ∈ ψf (y).

This supervision framework can be easily implemented. When a certain event

occurs in the plant, the local supervisors will update to new states based on their

own observation. At these states, local decisions are made and then fuse a global

decision which will be delivered to the plant through a communication channel to

enforce a desired behavior.

Remark 3.1 The supervised system is traditionally defined based on strings, e.g.,

[37] and [49], with respect to language equivalence. However, we focus on bisimulation

equivalence rather than language equivalence, and allow the plant, specification and

49

supervisor to be nondeterministic. Thus, the string-based description is generalized to

the automata-based description.

Based on the proposed frameworks, this chapter aims to tackle the following de-

centralized bisimilarity control problem:

Given a plant G and a specification R with L(R) ⊆ L(G), does there exist (Σuoi,Σuci)−

compatible supervisors Si = (Si, ψi) such that cli∈I(Si, ψi)/ψf
G ∼= R, where i ∈ I? If

so, how to construct Si? If not, how to find an achievable sup-specification?

In the rest of this chapter, we will use G = (X,Σ, α, x0, Xm), R = (Q,Σ, δ, q0, Qm),

Si = (Si, ψi) = ((Yi,Σ, βi, y0i, Ymi), ψi) and ||i∈ISi = (Y||,Σ, β||, y0||, Ym||) to denote the

nondeterministic plant, nondeterministic specification, local supervisor and parallel

composition of Si respectively unless otherwise stated.

3.2 Conjunctive Architecture

In this section, a conjunctive architecture is presented for the decentralized bisimi-

larity control of DESs. For a conjunctive architecture, a local supervisor Si enables

Σc \ Σci by default, i.e., Σc \ Σci ⊆ ψi(y) for any y ∈ Yi. Then, we present the

conjunctive decision fusion rule.

Definition 3.4 Given local supervisors Si = (Si, ψi) with ||i∈ISi = (Y||,Σ, β||, y0||,

Ym||), where i ∈ I, the conjunctive decision fusion rule ψfc : Y|| → 2Σ is defined as

ψfc(y1, y2, · · · , yn) = ∩i∈Iψi(yi). (3.4)

50

3.2.1 Existence Condition

Next, we investigate the existence condition of decentralized bisimilarity control with

respect to the conjunctive architecture. For necessity, it is known that the marking

only depends on the plant because the decentralized bisimilarity supervisor plays no

role in the marking. Thus, we introduce the following concept.

Definition 3.5 Given a plant G = (X,Σ, α, x0, Xm) and a specification R = (Q,Σ,

δ, q0, Qm) with L(R) ⊆ L(G), R is marked language closed with respect to G if

(∀s ∈ L(R))s ∈ Lm(G) ⇒ s ∈ Lm(R) (3.5)

Moreover, bisimulation implies language equivalence, and the notion of C&P co-

observability is the necessary condition for the existence of a set of decentralized

language enforcing supervisors [37]. So we need the following notion for achieving

bisimulation equivalence.

Definition 3.6 Given languages K and M ∈ Σ∗ with K ⊆M , K is said to be C&P

co-observable with respect to M , Σoi and Σci, where i ∈ I, if ∀s ∈ K and ∀σ ∈ Σc

such that sσ ∈M \K,

(∃i ∈ I)[(P−1
Σoi
PΣoi

(s)σ ∩K = ∅) ∧ (σ ∈ Σci)]. (3.6)

For sufficiency, we present the notion of projected automaton to construct local

bisimilarity enforcing supervisors. Before presenting this notion, we need following

concepts. Given Σ1 ⊆ Σ, Σ1−reach of a state x is RΣ1(x) = {x′ | (∃s ∈ Σ∗
1) x

′ ∈

α(x, s)}. In the case of a set of states B ⊆ X, RΣ1(B) = ∪x∈BRΣ1(x).

51

Definition 3.7 Given G = (X,Σ, α, x0, Xm) and Σ1 ⊆ Σ, the projected automaton

of G with respect to Σ1, denoted by PA
Σ1
(G), is a tuple

PA
Σ1
(G) = (XA,ΣA, αA, x0A, XmA)

where XA = 2X , ΣA = Σ1, x0A = RΣ1(x0), XmA = XA and for any xA ∈ XA and

σ ∈ ΣA, the transition function is defined as

αA(xA, σ) =


xA σ ∈ Σ1;

RΣ1({x′1 ∈ X1 | (∃x1 ∈ xA) x
′
1 ∈ α(x1, σ)}) σ ∈ Σ \ Σ1.

We provide the necessary and sufficient condition for the existence of a set of

(Σuoi,Σuci)− compatible bisimilarity supervisors under the conjunctive architecture.

Theorem 3.1 Given a plant G = (X,Σ, α, x0, Xm) and a specification R = (Q,Σ,

δ, q0, Qm) with L(R) ⊆ L(G), there exist (Σuoi,Σuci) − compatible supervisors Si =

(Si, ψi) with the conjunctive decision fusion rule ψfc such that cli∈I(Si, ψi)/ψfc
G ∼= R,

where i ∈ I, if and only if the following conditions hold:

(1) There is a bisimulation relation ϕ such that G||det(R) ∼=ϕ R;

(2) L(R) is language controllable with respect to L(G) and Σuc;

(3) L(R) is C&P co-observable with respect to L(G), Σci and Σoi;

(4) R is marked language closed with respect to G.

Proof: Consider det(R) = (Z,Σ, δZ , {q0}, Zm), G||det(R) = (XXZ ,Σ, αXZ , (x0, {q0}),

XmXZ) and cli∈I(Si, ψi)/ψfc
G = (X ′,Σ, α′, x′0, X

′
m). (Necessity) Let Si = (Si, ψi)=((Yi,

Σ, βi, y0i, Ymi), ψi) and ||i∈ISi = (Y||,Σ, β||, y0||, Ym||), where i ∈ I. Because there is a

52

bisimulation relation ϕ′ such that cli∈I(Si, ψi)/ψfc
G ∼=ϕ′ R. We have L(cli∈I(Si, ψi)/ψfc

G) = L(R) and Lm(cli∈I(Si, ψi)/ψfc
G) = Lm(R).

We firstly prove that L(R) is language controllable with respect to L(G) and

Σuc. For any s ∈ L(R) and σ ∈ Σuc such that sσ ∈ L(G), there is x ∈ α(x0, s)

with x′ ∈ α(x, σ). Because s ∈ L(R) = L(cli∈I(Si, ψi)/ψfc
G) and ||i∈ISi is deter-

ministic, there exists (x, (y1, y2, · · · , yn)) ∈ α′(x′0, s). Because σ ∈ Σuc, we have

σ ∈ ψfc(y1, y2, · · · , yn) = ∩i∈Iψi(yi). Moreover, Si is Σuci − compatible, which im-

plies βi(yi, σ) ̸= ∅ for i ∈ I. Thus, there is (y′1, y
′
2, · · · , y′n) ∈ β||((y1, y2, · · · , yn), σ)

such that (x′, (y′1, y
′
2, · · · , y′n)) ∈ α′((x, (y1, y2, · · · , yn)), σ) according to Definition 3.3.

Therefore, sσ ∈ L(cli∈I(Si, ψi)/ψfc
G) = L(R).

Secondly, we check C&P co-observability of L(R) with respect to L(G), Σci and

Σoi, where i ∈ I. Assume there are s ∈ L(R) and σ ∈ Σc satisfying sσ ∈ L(G)\L(R),

moreover, either σ /∈ Σci or P
−1
i Pi(s)σ ∩ L(R) ̸= ∅ for any i ∈ I. For any j ∈ I

satisfies σ ∈ Σcj and P−1
j Pj(s)σ ∩ L(R) ̸= ∅, there exists s′ ∈ L(R) such that

Pj(s) = Pj(s
′) and s′σ ∈ L(R). Because L(R) = L(cli∈I(Si, ψi)/ψfc

G), we have

s′σ ∈ L(cli∈I(Si, ψi)/ψfc
G). Then, there exists (x, (y1, y2 · · · yn)) ∈ α′(x′0, s

′) such that

(x′, y′) ∈ α′((x, (y1, y2 · · · yn)), σ). By Definition 3.3 and (3.4), we have σ ∈ ∩i∈Iψi(yi).

Since s ∈ L(R), we have s ∈ L(cli∈I(Si, ψi)/ψfc
G). In addition, sσ ∈ L(G). Hence,

there is x′′ ∈ α(x0, s) such that (x′′, (y′′1 , y
′′
2 , · · · , y′′n)) ∈ α′(x′0, s) and x′′′ ∈ α(x′′, σ).

Because ||i∈ISi is deterministic and Si is Σuoi − compatible, if σ ∈ Σci, we have

Pi(s) = Pi(s
′) with βi(yoi, s) = βi(yoi, s

′), where i ∈ I and Pi : Σ∗ → Σ∗
oi is the

projection. Therefore, either σ /∈ Σci or yi = y′′i for i ∈ I. Hence, σ ∈ ∩i∈Iψi(y′′i).

Furthermore, Si is Σuci− compatible. Then, there is y′′′ ∈ β||((y
′′
1 , y

′′
2 , · · · , y′′n), σ) such

53

that (x′′′, y′′′) ∈ α′((x′′, (y′′1 , y
′′
2 , · · · , y′′n)), σ). It implies sσ ∈ L(cli∈I(Si, ψi)/ψfc

G) =

L(R), which contradicts that sσ /∈ L(R). Therefore, the assumption is not correct.

Hence, L(R) is C&P co-observable with respect to L(G), Σci and Σoi, where i ∈ I.

Thirdly, we verify that there is a bisimulation relation ϕ such that G||det(R) ∼=ϕ

R. From the definition of product, we have L(G||det(R)) = L(G) ∩ L(det(R)) =

L(R). Thus, L(cli∈I(Si, ψi)/ψfc
G) = L(R) = L(G||det(R)). Let ϕ1 = {((x, z), q) ∈

XXZ × Q | ∃s ∈ L(R) s.t. (x, z) ∈ αXZ((x0, {q0}), s), q ∈ δ(q0, s), y ∈ β||(y0||, s)

and ((x, y), q) ∈ ϕ′}. For any ((x, z), q) ∈ ϕ1, if there is a σ-successor (x′, z′) ∈

αXZ((x, z), σ), where σ ∈ Σ, we obtain sσ ∈ L(R) = L(cli∈I(Si, ψi)/ψfc
G) and x′ ∈

α(x, σ). Because of the determinism of ||i∈ISi, there is y ∈ β||(y0||, s) such that

y′ ∈ β||(y, σ). It implies (x′, y′) ∈ α′((x, y), σ). Then, there exists q′ ∈ δ(q, σ) such

that ((x′, y′), q′) ∈ ϕ′. Hence, ((x′, z′), q′) ∈ ϕ1. If (x, z) ∈ XmXZ , then x ∈ Xm,

which implies (x, y) ∈ X ′
m. Therefore, q ∈ Qm. For any (q, (x, z)) ∈ ϕ−1

1 , if there

is a σ-successor q′ ∈ δ(q, σ), where σ ∈ Σ, we have (x′, y′) ∈ α′((x, y), σ) such that

((x′, y′), q′) ∈ ϕ′ because ((x, y), q) ∈ ϕ′. Thus, x′ ∈ α(x, σ). Further, sσ ∈ L(R)

implies that there exists z′ ∈ δZ(z, σ) by the definition of det(R). Thus, (x′, z′) ∈

αXZ((x, z), σ). Hence, (q′, (x′, z′)) ∈ ϕ−1
1 . If q ∈ Qm, then z ∈ Zm and x ∈ Xm.

Therefore, (x, z) ∈ XmXZ . As a result, G||det(R) ∼=ϕ1∪ϕ−1
1
R.

Fourthly, we would like to prove that R is marked language closed with respect

to G. For any s ∈ L(R), we have s ∈ L(cli∈I(Si, ψi)ψfc
/G). If s ∈ Lm(G), there

is x ∈ Xm such that x ∈ α(x0, s). Since s ∈ L(cli∈I(Si, ψi)/ψfc
G), we obtain s ∈

Lm(cli∈I(Si, ψi)/ψfc
G), which implies s ∈ Lm(R).

54

(Sufficiency) Let Si = ((PA
Σuoi

(det(R)||det(G)))Σuci
, ψi) = ((Yi,Σ, βi, y0i, Ymi), ψi)

and det(R)||det(G) = (Xdet,Σ, αdet, x0det, Xmdet). The local decision map ψi(yi) is

ψi(yi) =


(Σc \ Σci) ∪ Σuc ∪ {σ ∈ Σci | σ ∈ ∪mi∈yiEdet(R)||det(G)(mi)} yi ̸= Dd;

(Σc \ Σci) ∪ Σuc yi = Dd.

(3.7)

Therefore, Si is (Σuoi,Σuci)− compatible and ψi satisfies the requirement for the

conjunctive architecture. Let ψfc (3.4) be the conjunctive decision fusion rule.

Firstly, we would like to prove that s ∈ L(R) for any s ∈ L(cli∈I(Si, ψi)/ψfc
G) by

the induction method. (1) |s| = 0, that is, s = ϵ. We have ϵ ∈ L(R). (2) Suppose

that s ∈ L(R) for any s ∈ L(cli∈I(Si, ψi)/ψfc
G) when |s| = n. (3) |s| = n + 1

with s = s1σ. Assume that s1σ /∈ L(R). Since s1σ ∈ L(cli∈I(Si, ψi)/ψfc
G), there is

(x, (y1, y2, · · · , yn)) ∈ α′(x′0, s1) such that (x′, (y′1, y
′
2, · · · , y′n)) ∈ α′((x, (y1, y2, · · · , yn)

), σ). Then, s1σ ∈ L(G) and σ ∈ ψfc(y1, y2, · · · , yn) = ∩i∈Iψi(yi). Because |s1| = n,

s1 ∈ L(R). We have the following cases. Case 1: σ ∈ Σuc. Then, s1σ ∈ L(R)

since L(R) is language controllable with respect to L(G) and Σuc. Thus, there is

a contradiction. Case 2: σ ∈ Σc. Since s1 ∈ L(R) and σ ∈ ∩i∈Iψi(yi), for any

i ∈ I satisfying σ ∈ Σci, there exists mi ∈ yi such that σ ∈ Edet(R)||det(G)(mi). From

the definition of projected automata, we have mi ∈ αdet(x0det, s
′
1) with PΣoi

(s1) =

PΣoi
(s′1). Thus, s

′
1σ ∈ L(R). It violates C&P co-observability of L(R).

Secondly, the induction method is also used to verify s ∈ L(cli∈I(Si, ψi)/ψfc
G)

for any s ∈ L(R). (1) |s| = 0, that is, s = ϵ. We have ϵ ∈ L(cli∈I(Si, ψi)/ψfc
G).

(2) Suppose that s ∈ L(cli∈I(Si, ψi)/ψfc
G) for any s ∈ L(R) when |s| = n. (3)

|s| = n + 1 with s = s1σ. Since s1σ ∈ L(R), we have s1σ ∈ L(G). Then,

55

there is x ∈ α(x0, s1) such that x′ ∈ α(x, σ). Moreover |s1| = n, we obtain s1 ∈

L(cli∈I(Si, ψi)/ψfc
G). Because ||i∈ISi is deterministic, there is (y1, y2, · · · , yn) ∈

β||(y0||, s1) such that (x, (y1, y2, · · · , yn)) ∈ α′(x′0, s1). For any i ∈ I and mi ∈ yi,

there is s′1 with PΣoi
(s1) = PΣoi

(s′1) such that mi ∈ αdet(x0det, s
′
1). Then, we ob-

tain the following cases. (1) σ ∈ Σuc. Because of Σuci − compatiblility of Si,

we have βi(yi, σ) ̸= ∅ for i ∈ I. Further, σ ∈ ψi(yi) for i ∈ I since σ ∈ Σuc.

Thus, there is (y′1, y
′
2, · · · , y′n) ∈ β||((y1, y2, · · · , yn), σ) such that (x′, (y′1, y

′
2, · · · , y′n)) ∈

α′((x, (y1, y2, · · · , yn)), σ). Hence, s1σ ∈ L(cli∈I(Si, ψi)/ψfc
G). (2) σ ∈ Σc. Be-

cause s1σ ∈ L(R) and Si = (PA
Σuoi

(det(R)||det(G)))uci is deterministic, there exist

y′i ∈ βi(yi, σ) and mi ∈ yi such that σ ∈ Edet(R)||det(G)(mi). Thus, we have σ ∈

∩i∈Iψi(yi) = ψfc(y1, y2, · · · , yn) and (y′1, y
′
2, · · · , y′n) ∈ β||((y1, y2, · · · , yn), σ). Then,

(x′, (y′1, y
′
2, · · · , y′n)) ∈ α′((x, (y1, y2, · · · , yn)), σ) which implies s1σ ∈ L(cli∈I(Si, ψi)/ψfc

G).

Thirdly, we would like to verify the existence of a bisimulation relation between

the supervised system and the specification. Because there is a bisimulation relation

such that G||det(R) ∼=ϕ R, we have L(G||det(R)) = L(R). In addition, we know

L(cli∈I(Si, ψi)/ψfc
G) = L(R). Thus, L(cli∈I(Si, ψi)/ψfc

G) = L(G||det(R)) = L(R).

Let ϕ1 = {((x, y), q) ∈ X ′ × Q | ∃s ∈ L(R) s.t. y ∈ β||(y0||, s), x ∈ α(x0, s),

q ∈ δ(q0, s), z ∈ δz({q0}, z) and ((x, z), q) ∈ ϕ}. For any ((x, y), q) ∈ ϕ1, if there is a σ-

successor (x′, y′) ∈ α′((x, y), σ), where σ ∈ Σ, we obtain sσ ∈ L(cli∈I(Si, ψi)/ψfc
G) =

L(R) and x′ ∈ α(x, σ). Thus, there exists z′ ∈ δz(z, σ) by the definition of det(R).

Then, (x′, z′) ∈ αXZ((x, z), σ). Because ((x, z), q) ∈ ϕ, there exists q′ ∈ δ(q, σ) such

that ((x′, z′), q′) ∈ ϕ. Therefore, ((x′, y′), q′) ∈ ϕ1. If (x, y) ∈ X ′
m, then x ∈ Xm. It

implies s ∈ Lm(G). Because R is marked language closed with respect to G, we have

56

s ∈ Lm(R). Then, z ∈ Zm. Hence, (x, z) ∈ XmXZ which implies q ∈ Qm. For any

(q, (x, y)) ∈ ϕ−1
1 , if there is a σ-successor q′ ∈ δ(q, σ), where σ ∈ Σ, we have (x′, z′) ∈

αXZ((x, z), σ) such that ((x′, z′), q′) ∈ ϕ because ((x, z), q) ∈ ϕ. Then, x′ ∈ α(x, σ).

Further, sσ ∈ L(R) = L(cli∈I(Si, ψi)/ψfc
G), there exists (x′, y′) ∈ α′((x, y), σ) because

of the determinism of ||i∈ISi. Hence, (q′, (x′, y′)) ∈ ϕ−1
1 . If q ∈ Qm, then x ∈ Xm.

Therefore, (x, y) ∈ X ′
m. As a result, cli∈I(Si, ψi)/ψfc

G ∼=ϕ1∪ϕ−1
1
R.

Intuitively, condition (1) depicts that the amount of nondeterminism of the plant

restricted by the deterministic controller equals to the amount of nondeterminism of

the specification. Moreover, condition (4) is required because bisimulation implies not

only language equivalence but also marked language equivalence, i.e., Lm(cli∈I(Si, ψi)/ψfc
G)

= Lm(R).

Remark 3.2 To verify the existence of a set of decentralized bisimilarity supervi-

sors for the conjunctive architecture, we examine the conditions of Theorem 3.1 item

by item. (1) G||det(R) ∼=ϕ R. Since both the plant and specification are nonde-

terministic, their numbers of transitions are O(|X|2|Σ|) and O(|Q|2|Σ|) respectively.

Moreover, det(R) is deterministic with O(2|Q||Σ|) transitions. According to the result

in [87], the complexity of checking G||det(R) ∼=ϕ R is O(|X|22|Q|2 |Σ|log(|X|2|Q|)). (2)

L(R) is language controllable with respect to L(G) and Σuc, which can be tested with

complexity O(|X|2|Q|2|Σ|) [20]. (3) L(R) is C&P co-observable with respect to L(G),

Σci and Σoi, where i ∈ I. It can be verified by polynomial complexity with respect to

|X| and |Q| [88]. (4) R is marked language closed with respect to G. By checking

the states of G||R, condition (4) can be tested with complexity O(|X||Q|). Therefore,

57

the computational complexity of verifying Theorem 3.1 is O(|X|22|Q|2 |Σ|log(|X|2|Q|)),

which is exponential with respect to |X| and |Q|.

3.2.2 Synthesis of Decentralized Bisimilarity Supervisors

According to the result of the previous subsection, the construction of decentralized

bisimilarity supervisors is naturally obtained.

Theorem 3.2 Given a plant G = (X,Σ, α, x0, Xm) and a specification R = (Q,Σ,

δ, q0, Qm) with L(R) ⊆ L(G), if the existence condition of Theorem 3.1 holds, then

{Si = ((PA
Σuoi

(det(R)||det(G)))Σuci
, ψfc)}, where i ∈ I and ψfc defined by (3.7), is a

set of decentralized bisimilarity supervisors under the conjunctive architecture.

Figure 3.1: Manufacturing System

Now, we provide an example to illustrate the proposed techniques.

Example 3.1. Consider the following manufacturing example adopted from [46].

A manufacturing system consists of a home location, a work location, three storage

stations and three robots, which is shown in Fig. 3.1. Robot T is available at its home

58

Figure 3.2: Plant G (Left) and Specification R (Right)

location to traverse on one of the two rails. Traversal on Rail i (i = 1, 2) is randomly

chosen and is denoted by event a. While Robot T is on Rail i, it can pick a part from

Storage i (event bi) or Storage (i+1) (event bi+1), and then it takes the part to work

location for processing (event c). When returning, Robot T can nondeterministically

choose a Rail-i and drop the part to either Storage i (event di) or Storage (i + 1)

(event di+1) and returns to its home location. Robot 1 and Robot 2 can monitor and

supervise the manufacturing process.

The control specification requires that a part should be returned to its original

pickup location except the parts picked up at Storage 1 (respectively Storage 3) can

also be returned to Storage 3 (respectively, Storage 1), as those parts are exchange-

able. The specification also requires that Robot T always be able to return to its

home location (which means that the state representing the home location is the only

59

marked state). Models G and R of the manufacturing system and its specification

are given in Fig. 3.2.

Figure 3.3: Automata S1 (Left) and S2 (Right)

Suppose Σo1 = {a, c, b1, b2, d1, d2}, Σo2 = {a, c, b3, d3}, Σc1 = {b1, b2, d1, d2, d3} and

Σc2 = {b3, d3}. Then, Σuc = {a, c}, Σuc1 = {a, c, b3} and Σuc2 = {a, c, b1, d1, b2, d2}.

For this example, we obtain that L(G) = (ab1cad1a+ ab1cad2a+ ab1cad3a+ ab2 + cad1a

+ab2cad2a+ ab2cad3a+ ab3cad1a+ ab3cad2a+ ab3cad3a)∗ and L(R) = (ab1cad1a+

ab1cad3a+ ab2cad2a+ ab3cad1a+ ab3cad3a)∗. It can be seen that L(R) is controllable

with respect to L(G) and Σuc and L(R) is C&P co-observable with respect to L(G),

Σci and Σoi, where i = 1, 2. In addition, we can obtain det(R), which implies there

is a bisimulation ϕ such that G||det(R) ∼=ϕ R. According to Theorem 3.1, there exist

decentralized bisimilarity supervisors for the conjunctive architecture.

60

Figure 3.4: det(R) (Left) and cl(S1,S2)/ψfc
G (Right)

Then, S1 and S2 can be constructed, where S1 and S2 are shown in Fig. 3.3, and

the local decision maps ψ1 and ψ2 are described as below.

ψ1(y) =



{a, c, b3} y = 0, 2, 3, 4, 5, 8, 9, zd1;

{a, c, b1, b2, b3} y = 1;

{a, c, b3, d1, d3} y = 6;

{a, c, b3, d2} y = 7.

ψ2(y) =


{a, c, b1, b2, d1, d2} y = 0′, 2′, 3′, 5′, zd2;

{a, c, b1, b2, b3, d1, d2} y = 1′;

{a, c, b1, b2, d1, d2, d3} y = 4′.

Then, the supervised system is shown in Fig. 3.4 (Right). It can be verified that

cl(S1,S2)/ψfc
G ∼=ϕ1∪ϕ−1

1
R, where ψfc is defined as (3.4).

61

If we consider det(R) (Fig. 3.4 (Left)) as the specification, it can be seen that

G||det(R) is not bisimilar to R. Therefore, we can not find a solution for the decen-

tralized bisimilarity control problem. However, we can achieve language equivalence

for the decentralized control problem since L(R) is C&P co-observable with respect

to L(G), Σoi and Σci for i = 1, 2. Hence, the decentralized control for language

equivalence is easier than the decentralized control for bisimulation equivalence.

3.2.3 Synthesis of Achievable Sup-specifications

A given specification does not always satisfy the conditions of Theorem 3.1, a natural

question arises is how to find a achievable specification which guarantees the existence

of a set of decentralized bisimilarity enforcing supervisors. To answer this question, we

introduce the following sets which describe the class of achievable sup-specifications

with respect to conjunctive architectures.

CO(R) := {R′ |R ≺ R′ , L(R) is language controllable, C&P co− observable

and marked language closed w.r.t. L(G)and G||det(R) ∼= R};

Additionally, the concept of infimum is stated [86].

Definition 3.8 Given a preordered set (A,≤), x ∈ A is said to be the infimum of

A′, denoted by infA′ and ⊓A′, if

(1) ∀y ∈ A′: x ≤ y;

(2) ∀z ∈ A : [∀y ∈ A′ : z ≤ y] ⇒ [z ≤ x].

Theorem 3.3 presents the computation of infimal achievable sup-specifications

62

under the conjunctive architecture. Before introducing them, the following results

are needed.

Lemma 3.1 Given languages K1, K2 and K3, if K1 and K2 are marked language

closed with respect to K3 and Σuc, then K1 ∩ K2 is marked language closed with

respect to K3 and Σuc.

Proposition 3.1 If Ai ∈ CO(R), then Ai||{det(Aj) | Aj ∈ CO(R) − {Ai}} ∈

CO(R).

Proof: Since Ai, Aj ∈ CO(R), then L(Ai) and L(Aj) are language controllable, C

& P co-observable and marked langauge closed with respect to L(G). Moreover,

L(Ai||{det(Aj) | Aj ∈ CO(R)−{Ai}}) = L(Ai)∩Aj∈CO(R)−{Ai}L(det(Aj)). The facts

that language controllability, C&P co-observability and mark language are closed

under intersection and Lemma 3.1 imply L(Ai||{det(Aj) | Aj ∈ CO(R) − {Ai}})

is langauge controllable, C & P co-observable and marked langauge closed with re-

spect to L(G). Next, we would like to prove that Ai||{det(Aj) | Aj ∈ CO(R) −

{Ai}} ∼= G||det(Ai||{det(Aj) | Aj ∈ CO(R) − {Ai}}). Since bisimilarity preserves

when ”det” operator commutes with parallel composition and G||det(Ai) ∼= Ai,

G||det(Ai||{det(Aj) | Aj ∈ CO(R)− {Ai}}) ∼= G||det(Ai)||{det(Aj) | Aj ∈ CO(R)−

{Ai}} ∼= Ai||{det(Aj) | Aj ∈ CO(R) − {Ai}}. Therefore, Ai||{det(Aj) | Aj ∈

CO(R)− {Ai}} ∈ CO(R).

Theorem 3.3 Given a plant G and a specification R, if R ≺ G and L(R) is language

controllable, C&P co-observable and marked language w.r.t. L(G), then G||det(R) ∈

infCO(R).

63

Proof: Since R ≺ G, we have L(R) ⊆ L(G). Thus, L(G||det(R)) = L(G) ∩

L(det(R)) = L(G)∩L(R) = L(R). Thus, L(G||det(R)) is language controllable, C &

P co-observable and marked language w.r.t. L(G). Further, since G||det(G) ∼= G

and bisimilarity preserves when ”det” operator commutes with parallel composi-

tion, G||det(G||det(R)) = G||(det(G)||det(R)) ∼= G||det(R). Next we show that

G||det(R) ≺ A for any A ∈ CO(R). Since A ∼= G||det(A), it suffices to show that

det(R) ≺ det(A). This obviously holds because R ≺ A.

Example 3.2. Example 3.1 indicates that there does not exist a set decentral-

ized bisimilarity enforcing supervisors with respect to the specification det(R) since

G||det(R) � det(R). Thus, an achievable sup-specification is in need to enable the

existence of a decentralized bisimilarity control.

Figure 3.5: G||det(R)

We know that L(R) is language controllable, C&P co-observable and marked

language w.r.t. L(G). From Theorem 3.3, we obtain that G||det(R) ∈ infCO(R),

i.e., G||det(R) (Fig. 3.5) is an infimal achievable sup-specification for decentralized

bisimilarity control with respect to the conjunctive architecture.

64

3.3 Disjunctive Architecture

This section introduces a disjunctive architecture for the decentralized bisimilarity

control of DESs. With respect to the disjunctive architecture, a local supervisor Si

disables Σc \ Σci by default, i.e., (Σc \ Σci) ∩ ψi(y) = ∅ for any y ∈ Yi. And the

disjunctive fusion rule is stated as below.

Definition 3.9 Given local supervisors Si = (Si, ψi) with ||i∈ISi = (Y||,Σ, β||, y0||,

Ym||), where i ∈ I, the disjunctive decision fusion rule ψfd : Y|| → 2Σ is defined as

ψfd(y1, y2, · · · , yn) = ∪i∈Iψi(yi). (3.8)

3.3.1 Existence Condition

This subsection studies the necessary and sufficient condition for the existence of a

decentralized bisimilarity control with respect to the disjunctive architecture. Before

that, we need the notion of D&A co-observability [49], which guarantees the existence

of a set of language enforcing supervisors for the disjunctive structure.

Definition 3.10 Given languages K andM ∈ Σ∗ with K ⊆M , K is said to be D&A

co-observable with respect to M , Σoi and Σci, where i ∈ I, if ∀s ∈ K and ∀σ ∈ Σc

such that sσ ∈ K,

(∃i ∈ I)[((P−1
Σoi
PΣoi

(s) ∩K)σ ∩M ⊆ K) ∧ (σ ∈ Σci)]. (3.9)

Theorem 3.4 Given a plant G = (X,Σ, α, x0, Xm) and a specification R = (Q,Σ,

δ, q0, Qm) with L(R) ⊆ L(G), there exist (Σuoi,Σuci) − compatible supervisors Si =

65

(Si, ψi) with the disjunctive decision fusion rule ψfd such that cli∈I(Si, ψi)/ψfd
G ∼= R

if and only if the following conditions hold:

(1) There is a bisimulation relation ϕ such that G||det(R) ∼=ϕ R;

(2) L(R) is language controllable with respect to L(G) and Σuc;

(3) L(R) is D&A co-observable with respect to L(G), Σci and Σoi, where i ∈ I.

(4) R is marked language closed with respect to G.

Proof: The necessary part is similar to Theorem 3.1. Let det(R) = (Z,Σ, δZ ,

{q0}, Zm), G||det(R) = (XXZ ,Σ, αXZ , (x0, {q0}), XmXZ) and cli∈I(Si, ψi)/ψfd
G =

(X ′,Σ, α′, x′0, X
′
m). For sufficiency, let Si = ((PA

Σuoi
(det(R)||det(G))Σuci

, ψi) = ((Yi,Σ, βi,

y0i, Ymi), ψi) and det(R)||det(G) = (Xdet,Σ, αdet, x0det, Xmdet). Further, the local de-

cision map ψi(yi) is defined as

ψi(yi) =


Σuc ∪ {σ ∈ Σci | σ ∈ ∩mi∈yiEdet(R)||det(G)(mi)} yi ̸= Dd;

Σuc yi = Dd.

(3.10)

It is obvious that cli∈I(Si, ψi)/ψfd
G ∼= R.

Remark 3.3 It is shown that D&A co-observability of L(R) can be verified by poly-

nomial complexity with respect to |X| and |Q| from [49]. By using Remark 3.2, the

computational complexity of verifying the existence of a set of decentralized bisimilar-

ity supervisors with respect to disjunctive architecture is O(|X|22|Q|2 |Σ|log(|X|2|Q|)).

66

3.3.2 Synthesis of Decentralized Bisimilarity Supervisors

This subsection presents the establish of a set of decentralized bisimilarity supervisors

for the disjunctive architecture.

Theorem 3.5 Given a plant G = (X,Σ, α, x0, Xm) and a specification R = (Q,Σ,

δ, q0, Qm) with L(R) ⊆ L(G), if the existence condition of Theorem 3.4 holds, then

{Si = ((PA
Σuoi

(det(R)||det(G)))Σuci
, ψfd)}, where i ∈ I and ψfc defined by (3.10), is a

set of decentralized bisimilarity supervisors under the disjunctive architecture.

Moreover, we provide examples to illustrate the proposed synthesis methods.

Example 3.3. Consider a plant G and a specification R configured in Fig. 3.6.

Let i = 1, 2, Σo1 = {a, c, d, e, f, g, h}, Σo2 = {b, c, d, e, f, g, h}, Σc1 = {c, e, f, g, h} and

Σc2 = {c, d, e, f, g, h}. The aim of control is to design decentralized supervisors S1

and S2 with a global decision fusion rule ψf such that cl(S1,S2)/ψf
G ∼= R.

Figure 3.6: Plant G (Left) and Specification R (Right)

For c ∈ Σc1∩Σc2, we have c /∈ L(R). On the other hand, there exist b ∈ P−1
1 P1(ϵ)

and a ∈ P−1
2 P2(ϵ) such that ac, bc ∈ L(R). Thus, L(R) is not C&P co-observable

67

with respect to L(G), Σoi and Σci, where i = 1, 2. However, L(R) is D&A co-

observable with respect to L(G), Σoi and Σci, where i = 1, 2. Moreover, L(R) is

language controllable with respect to L(G) and Σuc and G||det(R) ∼= R. It implies

that there is a set of decentralized supervisors for the disjunctive architecture to

achieve bisimulation equivalence between the supervised system and the specification.

Figure 3.7: Automata S1 (Left) and S2 (Right)

We design decentralized bisimilarity supervisors S1 = (S1, ψ1) and S2 = (S2, ψ2),

in which S1 and S2 are shown in Fig. 3.7 and ψ1 and ψ2 are presented as below.

ψ1(y) =



{a, b} y = 0, zd1;

{a, b, f} y = 1;

{a, b, c, d} y = 2;

{a, b, g} y = 4, 5;

{a, b, h} y = 3, 6.

68

ψ2(y) =



{a, b, d} y = 0′;

{a, b, c} y = 1′;

{a, b, g} y = 2′, 3′;

{a, b, f} y = 4′;

{a, b, h} y = 5′, 6′, 7′;

{a, b} y = zd2.

By using S1 and S2, the supervised system cl(S1,S2)/ψfd
G is obtained in Fig. 3.8

(Right), where ψfd is defined as (3.8). Let ϕ1 = {((x0, 0, 0′), q0), ((x1, 0, 1′), q1), ((x2, 2, 0′),

q2), ((x3, 2, 0
′), q3), ((x6, 1, 4

′), q4), ((x7, 4, 2
′), q5), ((x7, 4, 2

′), q6), ((x9, 5, 3
′), q5), ((x9, 5, 3

′), q6),

((x12, 3, 7
′), q7), ((x12, 6, 5

′), q7), ((x12, 6, 6
′), q7)}. Thus, cl(S1,S2)/ψfd

G ∼=ϕ1∪ϕ−1
1
R.

Figure 3.8: det(R) (Left) and cl(S1,S2)/ψfd
G (Right)

Example 3.4. Consider a plant G and a specification R, which are shown in

Fig. 3.9. Assume i = 1, 2, Σo1 = {c, d, e, f, g,m}, Σo2 = {b, d, e, f, g,m}, Σc1 =

{a, c, d, f, g,m} and Σc2 = {a, c, d, e, f, g,m}. We would like to design decentralized

supervisors S1 and S2 with a global decision rule ψf such that cl(S1,S2)/ψf
G ∼= R.

69

Figure 3.9: Plant G (Left) and Specification R (Right)

It can be seen that L(R) is controllable with respect to L(G) and Σuc and C&P

co-observable with respect to L(G), Σci and Σoi, where i = 1, 2. In addition, det(R) is

obtained (Fig. 3.11 (Left)), which shows that G||det(R) ∼= R. According to Theorem

3.1, there exist decentralized bisimilarity supervisors for the conjunctive architecture.

We establish S1 = (S1, ψ1) and S2 = (S2, ψ2), where S1 and S2 are shown in Fig.

3.10, and the local decision maps ψ1 and ψ2 are described as follows.

ψ1(y) =



{a, b, c, d, e} y = 0;

{b, e, f} y = 1, 2, 3;

{b, e, g} y = 4, 5;

{b, e,m} y = 6, 7;

{b, e} y = zd1.

70

ψ2(y) =



{a, b, c, e, f} y = 0′;

{b, f, g} y = 1′;

{b, g} y = 2′;

{b, d} y = 3′;

{b,m} y = 4′, 6′;

{b, f} y = 5′;

{b} y = zd2.

Figure 3.10: Automata S1 (Left) and S2 (Right)

The supervised system is presented in Fig. 3.11 (Right). It can be verified that

cl(S1,S2)/ψfc
G ∼=ϕ1∪ϕ−1

1
R, where ϕ1 = {((x0, 0, 0′), q0), ((x2, 0, 0′), q2), ((x3, 0, 3′), q3),

((x1, 1, 0
′), q1), ((x4, 1, 0

′), q4), ((x7, 2, 1
′), q6), ((x7, 2, 1

′), q7), ((x8, 3, 5
′), q6), ((x8, 3, 5

′), q7),

((x6, 4, 2
′), q5), ((x6, 4, 2

′), q8), ((x6, 4, 2
′), q9), ((x9, 5, 1

′), q5), ((x9, 5, 1
′), q8), ((x9, 5, 1

′), q9),

((x10, 4, 2
′), q5), ((x10, 4, 2

′), q8), ((x10, 4, 2
′), q9), ((x11, 6, 4

′), q10), ((x11, 7, 6
′), q10), ((x11, 8, 4

′),

q10)} and ψfc is defined as (3.4).

71

Figure 3.11: det(R) (Left) and cl(S1,S2)/ψfc
G (Right)

Next, we check whether there exist decentralized bisimilarity supervisors with

respect to the disjunctive architecture. For a ∈ L(R), we have ba ∈ [(P−1
1 P1(ϵ) ∩

L(R))a∩L(G)]\L(R) and ca ∈ [(P−1
2 P2(ϵ)∩L(R))a∩L(G)]\L(R) for a ∈ Σc1∩Σc2,

implying L(R) is not D&A co-observable with respect to L(G), Σoi and Σci, where

i = 1, 2. So we cannot find decentralized bisimilarity supervisors for the disjunctive

architecture. On the other hand, decentralized bisimilarity supervisors exist for the

conjunctive architecture. Therefore, the conjunctive architecture is complementary

with respect to the disjunctive architecture.

3.3.3 Synthesis of Achievable Sup-specifications

The class of achievable sup-specifications for disjunctive architecture is described as

below.

DO(R) := {R′ |R ≺ R′ , L(R) is language controllable,D&A co− observable

and marked language closed w.r.t. L(G)and G||det(R) ∼= R};

72

Subsequently, the calculation of achievable sup-specifications is presented.

Theorem 3.6 Given a plant G and a specification R, if R ≺ G and L(R) is language

controllable, D&A co-observable and marked language w.r.t. L(G), then G||det(R) ∈

DO(R).

Proof: Since R ≺ G implies L(R) ⊆ L(G), then L(G||det(R)) = L(G) ∩ L(det(R)) =

L(G) ∩ L(R) = L(R). Thus, L(G||det(R)) is language controllable, D & A co-

observable and marked language closed w.r.t. L(G). By using the facts thatG||det(G) ∼=

G and bisimilarity preserves when ”det” operator commutes with parallel composi-

tion, G||det(G||det(R)) = G||(det(G)||det(R)) ∼= G||det(R). Hence, Ai||{det(Aj) |Aj ∈

CO(R)− {Ai}} ∈ DO(R).

3.4 General Architecture

In this section, we present a general architecture for decentralized bisimilarity control.

The event set Σc is further partitioned into Σc = Σce ∪ Σcd, where Σce is the set of

controllable events enabled by default from the local decision aspect and Σcd is the

set of controllable events disabled by default from the local decision aspect. That

is, a local supervisor Si for the general architecture satisfies Σce \ Σci ⊆ ψi(y) and

(Σcd\Σci)∩ψi(y) = ∅ for any y ∈ Yi. Denote Σcei = Σci∩Σce and Σcdi = Σci∩Σcd. The

decision fusion rule of the general architecture is captured by the following definition.

Definition 3.11 Consider local supervisors Si = (Si, ψi) with ||i∈ISi = (Y||,Σ, β||,

73

y0||, Ym||), where i ∈ I. The general decision fusion rule ψfg : Y|| → 2Σ is defined as

ψfg(y1, y2, · · · , yn) = [Σce ∩ (∩i∈Iψi(yi))] ∪ [Σcd ∩ (∪i∈Iψi(yi))] ∪ Σuc. (3.11)

3.4.1 Existence Condition

Under the general structure, the following concept is employed as the existence con-

dition of a set of decentralized supervisors to achieve language equivalence between

the plant and the specification [49].

Definition 3.12 Given languages K and M ∈ Σ∗ with K ⊆ M , K is said to be

co-observable with respect to M , Σoi Σcei and Σcdi, where i ∈ I if

(1) K is C&P co-observable with respect to M , Σoi and Σcei;

(2) K is D&A co-observable with respect to M , Σoi and Σcdi.

The following theorem depicts the necessary and sufficient condition for the ex-

istence of a set of decentralized bisimilarity supervisors with respect to the general

architecture.

Theorem 3.7 Given a plant G = (X,Σ, α, x0, Xm) and a specification R = (Q,Σ,

δ, q0, Qm) with L(R) ⊆ L(G), there exist (Σuoi,Σuci) − compatible supervisors Si =

(Si, ψi) with the general decision fusion rule ψfg such that cli∈I(Si, ψi)/ψfg
G ∼= R,

where i ∈ I, if and only if the following conditions hold:

(1) There is a bisimulation relation ϕ such that G||det(R) ∼=ϕ R;

(2) L(R) is language controllable with respect to L(G) and Σuc;

74

(3) L(R) is co-observable with respect to L(G), Σoi, Σcei and Σcdi;

(4) R is marked language closed with respect to G.

Proof: Consider det(R) = (Z,Σ, δZ , {q0}, Zm), G||det(R) = (XXZ ,Σ, αXZ , (x0,

{q0}), XmXZ) and cli∈I(Si, ψi)/ψfg
G = (X ′,Σ, α′, x′0, X

′
m). For Necessity, the proof is

similar to Theorem 3.1 and Theorem 3.4. For sufficiency, let Si = ((PA
Σuoi

(det(R)||det(G))Σuci
,

ψi) = ((Yi,Σ, βi, y0i, Ymi), ψi) and det(R)||det(G) = (Xdet,Σ, αdet, x0det, Xmdet). The

local decision map ψi(yi) is

ψi(yi) =


Σuc ∪ Σce \ Σcei ∪ {σ ∈ Σcei | σ ∈ ∪mi∈yiEdet(R)||det(G)(mi)}

{σ ∈ Σcdi | σ ∈ ∩mi∈yiEdet(R)||det(G)(mi)} yi ̸= Dd;

Σuc ∪ Σce \ Σcei yi = Dd.

(3.12)

We can easily prove that cli∈I(Si, ψi)/ψfg
G ∼= R.

Since C&P co-observability and D&A co-observability are the special cases of

co-observability, the result (Theorem 3.7) for the general architecture is a generation

of Theorem 3.1 and Theorem 3.4 which consider the conjunctive architecture and

disjunctive architecture respectively.

Remark 3.4 Refer to Remark 3.2 and Remark 3.3, the computational complexity of

verifying the existence condition of a set of decentralized bisimilarity supervisors for

the general architecture is O(|X|22|Q|2 |Σ|log(|X|2|Q|)).

75

3.4.2 Synthesis of Decentralized Bisimilarity Supervisors

This subsection investigates the synthesis of decentralized bisimilarity supervisors

with respect to the general architecture.

Theorem 3.8 Given a plant G = (X,Σ, α, x0, Xm) and a specification R = (Q,Σ,

δ, q0, Qm) with L(R) ⊆ L(G), if the existence condition of Theorem 3.7 holds, then

{Si = ((PA
Σuoi

(det(R)||det(G)))Σuci
, ψfg)}, where i ∈ I and ψfg defined by (3.12), is a

set of decentralized bisimilarity supervisors under the general architecture.

This synthesis procedure is shown in the following example.

Example 3.5. Consider a plant G and a specification R shown in Fig. 3.12.

Let i = 1, 2, Σo1 = {a, b, d, e, f, g, h}, Σo2 = {a, c, d, f, g, h}, Σc1 = {a, e, f} and

Σc2 = {a, f}. The aim of control is to design decentralized supervisors S1 and S2

with a global decision fusion rule ψf such that cl(S1,S2)/ψf
G ∼= R.

Figure 3.12: Plant G (Left) and Specification R (Right)

We can see that c ∈ Σc1 ∩ Σc2 and c /∈ L(R). And there exist c ∈ P−1
1 P1(ϵ) and

a ∈ P−1
2 P2(ϵ) such that ca, ba ∈ L(R). Thus, L(R) is not C&P co-observable with

76

respect to L(G), Σoi and Σci, where i = 1, 2. Moreover, f ∈ Σc1 ∩ Σc2, f ∈ L(R),

cf ∈ [(P−1
1 P1(ϵ)∩L(R))f∩L(G)]\L(R) and bf ∈ [(P−1

2 P2(ϵ)∩L(R))f∩L(G)]\L(R).

Thus, L(R) is not D&A co-observable with respect to L(G), Σoi and Σci, where

i = 1, 2.

By Theorem 3.1 and Theorem 3.4, there does not exist a set of decentralized

bisimilarity supervisors for both the conjunctive and disjunctive architectures.

Figure 3.13: Automata S1 (Left) and S2(Right)

Let Σc = Σce ∪ Σcd, where Σce = {f, e} and Σcd = {a}. Then, Σce1 = Σce ∩ Σc1 =

{f, e}, Σce2 = Σce ∩ Σc2 = {f}, Σcd1 = Σcd ∩ Σc1 = {a} and Σcd2 = Σcd ∩ Σc2 = {a}.

It can be easily verified that L(R) is co-observable with respect to L(G), Σoi, Σcei

and Σcdi, where i = 1, 2. In addition, L(R) is language controllable with respect to

L(G) and Σuc and G||det(R) ∼= R. Therefore, we can find decentralized bisimilarity

enforcing supervisors S1 = (S1, ψ1) and S2 = (S2, ψ2) for the general architecture. In

particular, S1 and S2 are shown in Fig. 3.7 and ψ1 and ψ2 are presented as below.

77

ψ1(y) =


{b, c, d, g, h} y = 2, 3, 4, 5, 6, zd1;

{b, c, d, f, g, h} y = 0;

{a, b, c, d, e, g, h} y = 1.

ψ2(y) =


{b, c, d, e, g, h} y = 1′, 2′, 3′, 5′, 6′, zd2;

{b, c, d, e, f, g, h} y = 0′;

{a, b, c, d, e, g, h} y = 4′.

Figure 3.14: Supervised System cl(S1,S2)/ψfg
G

Therefore, cl(S1,S2)/ψfg
G ∼= R (Fig. 3.14), where ψfg is defined as (3.11).

3.4.3 Synthesis of Achievable Sup-specifications

We state the set of achievable sup-specifications enabling the existence of a decen-

tralized bisimilarity control for the general architecture.

GO(R) := {R′ |R ≺ R′ , L(R) is language controllable, co− observable and

marked language closed w.r.t. L(G), and G||det(R) ∼= R}.

78

The computation of achievable sup-specifications is stated as follows.

Theorem 3.9 Given a plant G and a specification R, if R ≺ G and L(R) is lan-

guage controllable, co-observable and marked language w.r.t. L(G), then G||det(R) ∈

GO(R).

Proof: It is known that R ≺ G implies L(R) ⊆ L(G). Therefore, L(G||det(R)) =

L(G) ∩ L(det(R)) = L(G) ∩ L(R) = L(R), which implies L(G||det(R)) is language

controllable, D & A co-observable and marked language w.r.t. L(G). Moreover,

G||det(G) ∼= G and bisimilarity preserves when ”det” operator commutes with parallel

composition, implying G||det(G||det(R)) = G||(det(G)||det(R)) ∼= G||det(R). As a

result, Ai||{det(Aj) | Aj ∈ CO(R)− {Ai}} ∈ GO(R).

3.5 Conclusion

The decentralized bisimilarity control of discrete event systems was studied in this

chapter, where the plant and specification are modeled as nondeterministic automata.

To formally capture the branching information, we propose an automata-based frame-

work, upon which a conjunctive architecture, a disjunctive architecture and a general

architecture were constructed for decentralized bisimilarity control with respect to

different decision making rules. Then, necessary and sufficient conditions for the ex-

istence of a set of Σuci − compatible and Σuoi − compatible deterministic bisimilarity

supervisors were presented under these three architectures, respectively. It was shown

that these conditions can be verified with exponential complexity. When the existence

79

condition holds, we have provided the synthesis of decentralized bisimilarity supervi-

sors accordingly. When the specification does not satisfy the existence condition, the

computation of achievable sup-specifications has been further investigated.

80

Chapter 4

Distributed Supervisory Control

for Bisimulation Equivalence

This chapter studies bisimilarity control of distributed discrete event systems which

consist of multiple interacting modules. The goal is to design local supervisors such

that the globally supervised system (the parallel composition of locally supervised

modules) is bisimilar to the given specification. Here, each local supervisor deter-

mines the control actions upon its observation on the local module to be controlled

and its neighbors. The notion of separably and synchronously simulation-based state

controllability is introduced as the existence condition for distributed bisimilarity con-

trol. When the given specification satisfies this condition, a set of local supervisors

can be constructed to enforce bisimulation equivalence. Otherwise, the calculation of

achievable sub-specifications is further investigated. In addition, we focus on deter-

ministic supervisors for distributed bisimilarity control. The synthesis of determin-

istic supervisors and achievable sup-specifications are investigated. The comparisons

81

of our results with the centralized monolithic ones are presented.

A distributed DES is composed of serval concurrent modules. Denote Gi =

(Xi,Σi, x0i, αi, Xmi) as the local module with i ∈ I := {1, 2, · · · , n}. The global

system G = (X,Σ, x0, α,Xm) is the parallel composition of local components, i.e.,

G = ||i∈IGi with Σ = ∪i∈IΣi. The local event set Σi is partitioned into Σi = Σci∪Σuci,

where Σci is the controllable event set of Gi and Σuci is the uncontrollable event set

of Gi. Then, the globally controllable and uncontrollable event sets are given by

Σc = ∪i∈IΣci and Σuc = Σ−Σc respectively. This chapter aims to solve the following

problems.

Problem 1: Given a distributed discrete event system G = ||i∈IGi and a specifica-

tion R, where i ∈ I, does there exist a set of Σuci−compatible supervisors Si such that

the globally supervised system ||i∈I(Si||Gi) is bisimilar to the desired specification R?

Problem 2: If so, how to design Σuci−compatible supervisors Si?

Problem 3: If not, how to find an achievable sub/sup-specification?

In the rest of this chapter, we will use G = ||i∈IGi, R = (Q,Σ, δ, q0, Qm) and Si =

(Yi,Σi, βi, y0i, Ymi) to denote the distributed plant, specification and local supervisor

(possibly nondeterministic) respectively unless otherwise stated.

4.1 Existence Condition

This section investigates Problem 1. Since the alphabet of the local plant is Σi ⊂ Σ,

it is natural to decompose the global specification R into local specifications Ri with

alphabet Σi. Then, the following concept is introduced to capture the decomposition.

82

Definition 4.1 Given a specification R and event sets {Σi} for i ∈ I, R is {Σi}−separable

if there exists a group of Ri with alphabet Σi such that R ∼= ||i∈IRi.

In [85], a method was provided to verify {Σi}−separability by using the projected

automata. The interested reader can refer to [85] for more details. Next, we present

the notion of {Σi, Gi,Σuci}−separable and synchronous simulation-based state con-

trollability which servers as the sufficient condition for the existence of distributed

bisimilarity control. It is indicated in Theorem 4.1.

Definition 4.2 Given a distributed plant G = ||i∈IGi and a specification R, where i ∈

I, R is {Σi, Gi,Σuci}−separably and synchronously simulation-based state controllable

if there exists a group of Ri with alphabet Σi such that

(1) R ∼= ||i∈IRi;

(2) Ri is synchronously simulation-based state controllable w.r.t. Gi and Σuci.

Before presenting Theorem 4.1, the following result is needed.

Proposition 4.1 Given Gi = (Xi,Σi, αi, x0i, Xmi), where i ∈ {1, 2, 3, 4}, if G1
∼= G2,

G3
∼= G4, Σ1 = Σ2 and Σ3 = Σ4, then G1||G3

∼= G2||G4.

Proof: Let Gi = (Xi,Σi, x0i, αi, Xmi) (i = 1, 2, 3, 4), G1||G3 = (X13,Σ13, (x01, x03),

α13, Xm13), G2||G4 = (X24,Σ24, (x02, x04), α24, Xm24), G1
∼=ϕ1 G2 and G3

∼=ϕ2 G4.

Consider ϕ = {((x1, x3), (x2, x4)) ∈ X13 × X24 | (x1, x2) ∈ ϕ1 ∧ (x3, x4) ∈ ϕ2}. For

any ((x1, x3), (x2, x4)) ∈ ϕ, if there is (x′1, x
′
3) ∈ α13((x1, x3), σ) for any σ ∈ Σ. We

have the following cases. (1) σ ∈ Σ1 \ Σ3. Then, x1 ∈ α1(x1, σ) and x′3 = x3.

83

Since (x1, x2) ∈ ϕ1, there exists x′2 ∈ α2(x2, σ) such that (x′1, x
′
2) ∈ ϕ1. It implies

(x′2, x4) ∈ α24((x2, x4), σ). Thus, ((x′1, x3), (x
′
2, x4)) ∈ ϕ. (2) σ ∈ Σ1 ∩ Σ2. Then,

x1 ∈ α1(x1, σ) and x
′
3 ∈ α3(x3, σ). Since (x1, x2) ∈ ϕ1 and (x3, x4) ∈ ϕ1, there exist

x′2 ∈ α2(x2, σ) and x
′
4 ∈ α4(x4, σ) such that (x′1, x

′
2) ∈ ϕ1 and (x′3, x

′
4) ∈ ϕ2, indicating

((x′1, x
′
3), (x

′
2, x

′
4)) ∈ ϕ. (3) σ ∈ Σ3 \ Σ1. The proof is similar to (1). In addition, if

(x1, x3) ∈ Xm13, then x1 ∈ Xm1 and x3 ∈ Xm3, which implies x2 ∈ Xm1 and x4 ∈ Xm4,

which in turn implies (x2, x4) ∈ Xm24. As a result, G1||G3
∼=ϕ∪ϕ−1 G2||G4.

Theorem 4.1 Given a distributed plant G = ||i∈IGi and a specification R = (Q,Σ,

q0, δ, Qm), there exist Σuci−compatible supervisors Si such that ||i∈I(Si||Gi) ∼= R if R

is {Σi, Gi,Σuci}−separably and synchronously simulation-based state controllable.

Proof: For i ∈ I, let Si = (Ri)uci. It is obvious that (Ri)uci is Σuci−compatible.

Moreover, since Ri is synchronously simulation-based state controllable with respect

to Gi and Σuci, we have Gi||Si = G||(Ri)uci ∼= Ri. From Proposition 4.1, we obtain

||i∈I(Gi||(Ri)uci) ∼= ||i∈IRi. Moreover, the fact that R is {Σi}−separable implies

||i∈IRi
∼= R. Therefore, ||i∈I(Gi||Si) = ||i∈I(Gi||(Ri)uci) ∼= ||i∈IRi

∼= R.

Since Theorem 4.1 is sufficient only, we focus on deterministic supervisors. Ac-

cordingly, the following notion is presented to characterize the class of specifications

that are achievable by deterministic distributed bisimilarity control.

Definition 4.3 Given a distributed plant G = ||i∈IGi and a specification R = (Q,Σ,

q0, δ, Qm), where i ∈ I, R is {Σi, Gi,Σuci}−separably controllable if there exists a

group of Ri with alphabet Σi such that

(1) R ∼= ||i∈IRi;

84

(2) L(Ri) is language controllable with respect to L(Gi) and Σuci;

(3) Gi||det(Ri) ∼= Ri.

If conditions (1) and (2) are satisfied, R is said to be {Σi, Gi,Σuci}−separably

language controllable. Then, we provide the necessary and sufficient condition for

the existence of deterministic distributed bisimilarity control as below.

Theorem 4.2 Given a distributed plant G = ||i∈IGi and a specification R = (Q,Σ,

q0, δ, Qm), where i ∈ I, there exist Σuci−compatible deterministic supervisors Si such

that ||i∈I(Si||Gi) ∼= R if and only if R is {Σi, Gi,Σuci}−separably controllable.

Proof: (Necessity) Suppose there exist Σui−compatible deterministic supervisors

Si such that ||i∈I(Si||Gi) ∼= R, where i ∈ I. Let Ri := Si||Gi. Then, R ∼= ||i∈IRi.

Because Si is Σui−compatible, we obtain that L(Ri) = L(Si||Gi) is langue control-

lable with respect to L(Gi) and Σuci. Furthermore, Gi||det(Ri) ∼= Gi||det(Gi||Si) ∼=

Gi||det(Gi)||det(Si) ∼= Gi||det(Si) ∼= Gi||Si ∼= Ri. Here we have use the facts (1)

bisimilarity is preserved when the det operator commutes with parallel composition.

(2) G||det(G) ∼= G. (3) Si is deterministic. Therefore, R is {Σi, Gi,Σuci}−separably

controllable.

(Sufficiency) Let Si = det(Ri)uci. Since Ri is langauge controllable with respect

to L(Gi) and Σuci, Si = (det(Ri))uci is Σuci−compatible. From Σi−separability of R

and Proposition 4.1, we have ||i∈I(Gi||Si) = ||i∈I(Gi||(det(Ri))uci ∼= ||i∈IRi
∼= R.

85

4.1.1 Comparison with Monolithic Bisimilarity Control

This subsection compares the proposed existence conditions for distributed bisimilar-

ity control with those for the centralized monolithic bisimilarity control. The following

proposition shows that {Σi, Gi,Σuci}−separable and synchronous simulation-based

state controllability is strictly stronger than the properties of {Σi}−separability and

{G,Σuc}−synchronous simulation-based state controllability combined.

Proposition 4.2 If R is {Σi, Gi,Σuci}−separably and synchronously simulation-based

state controllable, where i ∈ I, then R is {Σi}−separable and synchronously simulation-

based state controllable with respect to G and Σuc.

Proof: Let G = ||i∈IGi = (X,Σ, α, x0, Xm) and R ∼= ||i∈IRi = (Q||,Σ||, δ||, q0||, Qm||),

where Ri = (Qi,Σi, δi, q0i, Qmi) is synchronously simulation-based state controllable

with respect to Gi and Σuci. Then, there is a synchronous simulation relation ϕi

such that Ri ≺synϕi Gi. Consider ϕ = {((q1, q2, · · · , qn), (x1, x2, · · · , xn)) ∈ Q|| ×

X | (qi, xi) ∈ ϕi}. It is obvious that ϕ is a synchronous simulation relation such that

||i∈IRi ≺synϕ ||i∈IGi, i.e., R ≺synϕ G. On the other hand, for any (q1, q2, · · · , qn) ∈

δ||(q0||, s) and σ ∈ Σuc, if sσ ∈ L(G) = ∩i∈IP−1
Σi (L(Gi)), then PΣi

(s)σ ∈ L(Gi) with

σ ∈ Σuci ⊆ Σi and qi ∈ δi(q0i, PΣi
(s)). Since Ri is state controllable with respect to Gi

and Σuci, we have δi(qi, σ) ̸= ∅, which implies δ||((q1, q2, · · · , qn), σ) ̸= ∅. As a result,

R ∼= ||i∈IRi is {Σi}−separable and synchronously simulation-based state controllable

with respect to G and Σuc.

Moreover, {Σi, Gi,Σuci}−separable controllability is strictly stronger than the

properties of {Σi}−separability, {G,Σuc}−language controllability and G||det(R) ∼=

86

R combined, as it is indicated by Proposition 4.3.

Proposition 4.3 If R is {Σi, Gi, Σuci}−separably controllable, then G||det(R) ∼= R

and R is {Σi}−separable and language controllable with respect to G and Σuc, where

i ∈ I.

Proof: Let R ∼= ||i∈IRi, where Ri is language controllable with respect to Gi and Σuci

and Gi||det(Ri) ∼= Ri. Thus, L(R) = L(||i∈IRi) is langauge controllable with respect

to L(G) and Σuc. By using the fact that bisimilarity is preserved when the det opera-

tor commutes with parallel composition, we have G||det(R) ∼= (||i∈IGi)||det(||i∈IRi) ∼=

(||i∈IGi)||(||i∈Idet(Ri)) ∼= ||i∈I(Gi||det(Ri)) ∼= ||i∈IRi
∼= R.

It is known that {G,Σuc}−synchronous simulation-based state controllability ({G,Σuc}

-language controllability and G||det(R) ∼= R) guarantees the existence of a centralized

monolithic bisimilarity control (a deterministic centralized monolithic bisimilarity

control). Therefore, Proposition 4.2 (Proposition 4.3) implies whenever a specifica-

tion R can be achieved by distributed bisimilarity control (deterministic distributed

bisimilarity control), it can also be achieved by centralized monolithic bisimilarity

control (deterministic centralized monolithic control). However, the converse does

not hold in general.

87

4.2 Synthesis of Distributed Bisimilarity Supervi-

sors

This section investigates Problem 2. We first present the synthesis of distributed

bisimilarity supervisors based on the result of Theorem 4.1.

Theorem 4.3 Given a distributed plant G = ||i∈IGi and a specification R = (Q,Σ,

q0, δ, Qm), if R is {Σi, Gi,Σuci}−separably and synchronously simulation-based state

controllable such that R ∼= ||i∈IRi and Ri is {Gi,Σuci}−synchronously simulation-

based state controllable, then {Si = (Ri)uci} is a set of Σuci−compatible supervisors

such that ||i∈I(Si||Gi) ∼= R, where i ∈ I.

Second, the following theorem provides the synthesis of deterministic distributed

bisimilarity supervisors.

Theorem 4.4 Given a distributed plant G = ||i∈IGi and a specification R = (Q,Σ,

q0, δ, Qm), if R is {Σi, Gi,Σuci}−separably controllable such that R ∼= ||i∈IRi, Ri is

{Gi,Σuci}−language controllable and Gi||det(Ri) ∼= Ri, then {Si = (det(Ri))uci} is

a set of deterministic Σuci−compatible supervisors such that ||i∈I(Si||Gi) ∼= R, where

i ∈ I.

Next, we present an example to illustrate bisimilarity control of distributed dis-

crete event systems.

Example 4.1. Consider a cooperative multi-robot system (MRS) configured

in Fig. 4.1 (Left). The MRS consists of two robots R1 and R2. Both of them

88

Figure 4.1: Multi-robot system (MRS) (Left), G1 (Middle) and G2(Right)

have the same communication, position, pushing, scent-sensing and frequency-sensing

capabilities. Furthermore, R1 has color-sensing capabilities, while R2 has shape-

sensing capability. R1 and R2 can cooperatively search and clear a dangerous object

(the white cube) in the workspace. Initially, R1 and R2 are positioned outside the

workspace. Let i = 1, 2. When the work request announces (event wi), Ri is required

to enter the workspace. Due to actuator limitations, it nondeterministically goes

along one of two pre-defined paths (event g). In the first path, R1 activates color-

sensing (event c) or scent-sensing (event o) capabilities to detect the dangerous object;

whereas in the second path, R1 activates color-sensing, scent-sensing capabilities or

frequency-sensing (event f) capabilities for detection.

Similarly, R2 activates shape-sensing (event s), scent-sensing or frequency-sensing

capabilities in the first path, while in the second path it activates shape-sensing

or scent-sensing capabilities. After detecting the dangerous object, Ri pushes the

dangerous object outward the workspace (event p), and then returns to the initial

position (event r) for the next implementation.

89

Figure 4.2: G1||G2 (Left) and R (Right)

Figure 4.3: S1 (Left) and S2 (Right)

The automaton model Gi of Ri with alphabet Σi is shown in Fig. 4.1, where

Σ1 = {w1, g, c, o, f, p, r} and Σ2 = {w2, g, s, o, f, p, r}. Since Ri cannot disable the

broadcast from the host computer, the event wi is deemed uncontrollable, that is

wi ∈ Σuci. The rest of events are controllable. The cooperative behavior of R1 and

R2 can be represented by G1||G2 (Fig. 4.2(Left)), and the specification R (Fig. 4.2

(Right)) is given in order to restrict the cooperative behavior G1||G2.

According to the specification, after R1 and R2 receive the work command and

go to the workspace, two possible states are reached by the MRS. In the first state,

either the color sensor, the shape sensor or the scent sensors are adopted to confirm

90

Figure 4.4: ||i∈{1,2}Gi||Si

an objective is dangerous. However, to save the energy, in the second state only the

color sensor and the shape sensor can be adopted for dangerous object detection.

After the detection, the dangerous object is cleared from the workspace.

Figure 4.5: Rs1 (Left) and Rs2 (Right)

For such a MRS, if we use language equivalence as behavior equivalence, the con-

trol target is to design supervisors S1 and S2 such that L(∥i∈{1,2} Gi||Si) = L(R).

Consider Σ = Σ1 ∪ Σ2. According to the results in [67], this problem can be solved

by designing Si such that L(Gi||Si) = PΣi
(L(R)). Since PΣi

(L(R)) is language con-

trollable with respect to L(Gi) and Σuci, we can construct Si as shown in Fig. 4.3.

So the supervised system ||i∈{1,2}Gi||Si (Fig. 4.4) is language equivalent to L(R).

91

However, it can be seen that ||i∈{1,2}Gi||Si violates the energy saving requirement in

the specification.

Figure 4.6: S ′
1 (Left) and S ′

2 (Right)

Hence, langauge equivalence is not adequate for this case, which calls for the

use of bisimulation equivalence instead. That is, we need design supervisor S ′
i such

that ||i∈{1,2}Gi||S ′
i
∼= R. By using the proposed techniques in this chapter, we firstly

decompose the global specification R into sub-specifications Rsi with alphabet Σi for

Ri (Fig. 4.5) such that ||i∈{1,2}Rsi
∼= R. Secondly, if we can design S ′

i such that

Gi||S ′
i
∼= Rsi , then ||i∈{1,2}Gi||S ′

i
∼= R.

Since Rs1 is synchronously simulation-based state controllable with respect to

G2 and Σuc1 = {w1}, we design S ′
1 = (Rs1)uc (Fig. 4.6) according to Theorem

2.7. Then, G1||S ′
1
∼=ϕ∪ϕ−1 Rs1 , where ϕ = {(q0, (x0, y0)), (q1, (x1, y1)), (q2, (x2, y2)),

(q2, (x3, y2)), (q3, (x2, y3)), (q3, (x3, y3)), (q4, (x4, y4)), (q5, (x5, y5))}. On the other hand,

Rs2 is deterministic and synchronously simulation-based controllable with respect to

G2 and Σuc2 = {w2}. Theorem 2.5 indicates that we can construct S ′
2 = (Rs2)uc2

92

Figure 4.7: G1||S ′
1 (Left) and G2||S ′

2 (Right)

(Fig. 4.6). The supervised system G2||S ′
2 is shown in Fig. 4.7. It can be seen that

G2||S ′
2
∼=ϕ1∪ϕ−1

1
Rs2 , where ϕ1 = {(q′0, (x′0, y′0)), (q′1, (x′1, y′1)), (q′2, (x′2, y′2)), (q′2, (x′3, y′2)),

(q′3, (x
′
4, y

′
3)), (q

′
4, (x

′
5, y

′
4))}. As a result, ||i∈{1,2}Gi||S ′

i
∼= R.

4.3 Synthesis of Achievable Sub-specifications /Sup-

specifications

This section investigates the synthesis of achievable sub-specifications/sup-specifications

to enable the existence of a distributed bisimilarity control/a deterministic distributed

bisimilarity control in case of the given specification is not {Σi, Gi,Σuci}−separably

and synchronously simulation-based state controllable/{Σi, Gi,Σuci}−separably con-

trollable. We present the classes of achievable sub/sup-specifications for distributed

93

bisimilarity control as follows.

DC1(R) := {R′ | R′ ≺ R and R′ is {Σi, Gi,Σuci} − separably and synchronouly

simulation− based state controllable};

DC1(R) := {R′ | R ≺ R′ and R′ is {Σi, Gi,Σuci} − separably and synchronouly

simulation− based state controllable};

Some preliminary results are presented before we give the main results of this

section.

Lemma 4.1 Given Gi = (Xi,Σ, αi, x0i, Xmi), where i ∈ {1, 2, 3, 4}, if G1 ≺ G2 and

G3 ≺ G4, then G1||G3 ≺ G2||G4.

Proof: Let G1 ≺ϕ1 G2, G3 ≺ϕ2 G4, G1||G3 = (X13,Σ, α13, x013, Xm13) and G2||G4 =

(X24,Σ, α24, x024, Xm24). Consider a relation ϕ = {((x1, x3), (x2, x4)) | (x1, x2) ∈ ϕ1∧

(x3, x4) ∈ ϕ2}. Let ((x1, x3), (x2, x4)) ∈ ϕ. It is obvious that ((x01, x03), (x02, x04)) ∈

ϕ. If there exists (x′1, x
′
3) ∈ α13((x1, x3), σ) for any σ ∈ Σ, we have x′1 ∈ α1(x1, σ)

and x′3 ∈ α3(x3, σ). Since (x1, x2) ∈ ϕ1 and (x3, x4) ∈ ϕ2, there exist x′2 ∈ α2(x2, σ)

and x′4 ∈ α4(x4, σ) such that (x′1, x
′
2) ∈ ϕ1 and (x′3, x

′
4) ∈ ϕ2. Then, (x′2, x

′
4) ∈

α24((x2, x4), σ) and ((x′1, x3), (x2, x4)) ∈ ϕ. Thus, ϕ is a simulation relation from

G1||G3 to G2||G4.

The following lemma follows from Lemma 4.1.

Lemma 4.2 Given Gi = (Xi,Σ, αi, x0i, Xmi), where i ∈ 1, 2, 3, if G1 ≺ G2 and

G1 ≺ G3, then G1 ≺ G2||G3.

94

Proof: Let G1 ≺ϕ1 G2 and G1 ≺ϕ2 G3. It is obvious that ϕ = {(x1, (x2, x3))

| (x1, x2) ∈ ϕ1 ∧ (x1, x3) ∈ ϕ2} is a simulation relation from G1 to G2||G3.

Figure 4.8: G1 (Left) and G2 (Right)

Then, the synthesis of achievable sub-specifications is presented as below. Here

we define S(R) = {R′ ≺ R | R′ is {Σi}-separable} as the set of sub-specifications

satisfying the property of separability.

Theorem 4.5 Given a distributed plant G = ||i∈IGi and a specification R, if there ex-

ists R′ ∈ S(R) with R′ ∼= ||i∈IR′
i such that F j+1

cG (Fsyn(Gi)||R′
i) = F j

cG(Fsyn(Gi)||R′
i) ̸=

∅, then ||i∈IF j
cG(Fsyn(Gi)||R′

i) ∈ DC1(R), where i ∈ I and j ∈ N+.

Proof: Since F j+1
cG (Fsyn(Gi)||R′

i) = F j
cG(Fsyn(Gi)||R′

i) ̸= ∅, we obtain that F j
cG(Fsyn(Gi)||R′

i)

is synchronously simulation-based state controllable with respect to Gi and Σuci.

Moreover, according to Lemma 4.1 and Lemma 4.2 F j
cG(Fsyn(Gi)||R′

i) ≺ R′
i implies

||i∈IF j
cG(Fsyn(Gi)||R′

i) ≺ ||i∈IR′
i
∼= R′ ≺ R. We conclude that ||i∈IF j

cG(Fsyn(Gi)||R′
i) ∈

DC1(R).

We can see that if the condition of Theorem 4.5 holds, ||i∈IF j
cG(Fsyn(Gi)||R′

i) is

95

Figure 4.9: R (Left) and R′ (Right)

an achievable sub-specification for distributed bisimilarity control. This synthesis

method is illustrated by the following example.

Figure 4.10: R1 (Left) and R2 (Right)

Example 4.2. Consider a set of plants Gi = (Xi,Σi, αi, x0i, Xmi) (Fig. 4.8)

and a specification R (Fig. 4.9 (Left)), where i ∈ {1, 2}, Σ1 = {a, b, c, d, e,m, l},

Σ2 = {a, b, c, d, k,m, l}, Σuc1 = {c} and Σuc2 = {b, c}. It is obvious that R is

not {Σi, Gi,Σuci}−separably and synchronously simulation-based state controllable.

Thus, there does not exist a distributed bisimilarity control with respect to Gi

96

and R according to Theorem 4.1. To address this problem, we would like to find

a sub-specification of R, which satisfies {Σi, Gi,Σuci}−separable and synchronous

simulation-based state controllability.

Figure 4.11: R′
1 (Left) and R′

2 (Right)

First, we decompose the global specification R into local specifications R1 with

alphabet Σ1 and R2 with alphabet Σ2 such that R1||R2
∼= R, which are shown in Fig.

4.10. By using Theorem 4.5, we obtain that F 2
cG(Fsyn(G1)||R1) = FcG(Fsyn(G1)||R1) ∼=

R′
1 and FcG(Fsyn(G2)||R2) = R2

∼= R′
2, where R

′
1 and R′

2 are presented in Fig. 4.11.

Therefore, the achievable sub-specification R′ ∼= R′
1||R′

2 ∈ DC1(R) is obtained in Fig.

4.9 (Right).

Subsequently, we give the classes of achievable sup-specifications for deterministic

distributed bisimilarity control.

DC2(R) := {R′ | R′ ≺ R and R′ is {Σi, Gi,Σuci} − separable and controllable};

DC2(R) := {R′ | R ≺ R′ and R′ is {Σi, Gi,Σuci} − separable and controllable};

Then, the following theorem is presented to show the synthesis of infimal sup-

97

specifications for deterministic distributed bisimilarity control.

Theorem 4.6 Given a distributed plant G = ||i∈IGi and a specification R, if there

exists a set of {Ri} such that R ∼= ||i∈IRi, Ri ≺ Gi and L(Ri) is language controllable

with respect to L(Gi) and Σuci, then ||i∈I(Gi||det(Ri)) ∈ infDC2(R), where i ∈ I.

Figure 4.12: G1 (Left) and G2 (Right)

Proof: Because commuting the det operator with parallel composition preserves

bisimilarity, we have Gi||det(Gi||det(Ri)) ∼= Gi||det(Gi)||det(Ri) ∼= Gi||det(Ri) for i ∈

I. Moreover, L(Gi||det(Ri)) = L(Gi)∩L(det(Ri)) = L(Gi)∩L(Ri) = L(Ri) and L(Ri)

is {L(Gi),Σuci}−controllable. Thus, L(Gi||det(Ri)) is {L(Gi),Σuci}−controllable. In

addition, according to Lemma 4.2 Ri ≺ det(Ri) and Ri ≺ Gi implies Ri ≺ Gi||det(Ri),

which in turns implies ||i∈IRi ≺ ||i∈I(Gi||det(Ri)) by using Lemma 4.1. Since R ∼=

||i∈IRi, we obtain R ≺ ||i∈I(Gi||det(Ri)). Therefore, ||i∈I(Gi||det(Ri)) ∈ DC2(R).

Next, we would like to show ||i∈I(Gi||det(Ri)) ≺ R1 holds for any R1 ∈ DC2. Since

R1 is {Σi, Gi,Σuci}-separably controllable, there exists a set of {R1i} for i ∈ I such

that R1
∼= ||i∈IR1i and Gi||det(R1i) ∼= R1i. Thus, R1

∼= ||i∈I(Gi||det(R1i)). It suffices

98

to show that ||i∈Idet(Ri) ≺ ||i∈Idet(R1i). This holds because the following facts: (1)

||i∈Idet(Ri) and ||i∈Idet(R1i) are deterministic; (2) R ≺ R1 implies L(R) ⊆ L(R1),

i.e.,L(||iRi) ⊆ L(||iR1i), which in turn implies L(||i∈Idet(Ri)) ⊆ L(||i∈Idet(R1i)).

It follows that when the condition of Theorem 4.6 is satisfied, ||i∈I(Gi||det(Ri))

is an infimal achievable sup-specification that can be synthesized by deterministic

distributed bisimilarity control. Moreover, the result of Theorem 4.6 is demonstrated

by the following example.

Figure 4.13: R (Left) and R′ (Right)

Example 4.3. Consider plants Gi = (Xi,Σi, αi, x0i, Xmi) (Fig. 4.12) and a

specification R (Fig. 4.13 (Left)), where i ∈ {1, 2}, Σ1 = {a, b, c, d, e, h,m, l}, Σ2 =

{a, b, c, d, e, f,m, l}, Σuc1 = {e} and Σuc2 = {a}.

We can see that R is not {Σi, Gi,Σuci}−separably controllable. It results in the

nonexistence of deterministic distributed bisimilarity control from the result of Theo-

rem 4.2. For this issue, the calculation of sup-specifications satisfying {Σi, Gi,Σuci}−separable

controllability with respect to R is presented as follows.

The specification R is firstly decomposed into R1 and R2 (Fig. 4.14) such that

99

Figure 4.14: R1 (Left) and R2 (Right)

R1||R2
∼= R and L(Ri) is language controllable with respect to L(Gi) and Σuci. Then,

we have R′
1
∼= G1||det(R1) and R

′
2
∼= G2||det(R2). By using Theorem 4.6, we further

obtain that R′ ∼= R′
1||R′

2 ∈ infDC2(R), where R
′
1 and R′

2 are shown in Fig. 4.15.

That is, R′ (Fig. 4.13 (Right)) is an infimal achievable sup-specification of R for

deterministic distributed bisimilarity control.

Figure 4.15: R′
1 (Left) and R′

2 (Right)

100

4.3.1 Comparison with Monolithic Bisimilarity Control

This subsection compares the upper and lower bounds of the behavior achieved by dis-

tributed bisimilarity control/deterministic distributed bisimilarity control with those

are for monolithic bisimilarity control. Firstly, the classes of achievable sub/sup-

specifications for monolithic bisimilarity control are presented.

DC ′
1(R) := {R′ | R′ ≺ R and R′ is synchronouly simulation− based

state controllable w.r.t. G and Σuc};

DC ′
1(R) := {R′ | R ≺ R′ and R′ is synchronouly simulation− based

state controllable w.r.t. G and Σuc};

It is known that an element of supDC ′
1(R) (infDC

′
1(R)) provides an upper bound

(a lower bound) to achievable sub-specifications (sup-specifications) for monolithic

bisimilarity control. Denote maxDC1(R) and minDC1(R) as the set of maximal

elements of DC1(R) and the set of minimal elements of DC1(R). Then, necessary

and sufficient conditions are presented to show the relationships between supDC ′
1(R)

and maxDC1(R) (resp. infDC
′
1(R) and minDC1(R)).

Proposition 4.4 Consider a distributed plant G = ||i∈IG and a specification R,

where i ∈ I. For any A ∈ supDC ′
1(R), A ∈ maxDC1(R) if and only if A is

{Σi, Gi,Σuci}-separably and synchronously simulation-based state controllable.

Proof: (Necessity) Since A ∈ maxDC1(R), we have A ∈ DC1(R), which implies A is

{Σi, Gi,Σuci}-separably and synchronously simulation-based state controllable.

101

(Sufficiency) Because A is {Σi, Gi,Σuci}-separably and synchronously simulation-

based state controllable, we have A ∈ DC1(R). Suppose there exists A1 ∈ DC1(R)

such that A ≺ A1. Proposition 4.2 indicates that A1 is synchronously simulation-

based state controllable with respect to G and Σuc. Then, A1 ∈ DC ′
1(R). According

to the definition of supremum, we obtain A1 ≺ A, which introduces a contradiction.

Therefore, the assumption is not correct. As a result, A ∈ maxDC1(R).

Proposition 4.5 Consider a distributed plant G = ||i∈IGi and a specification R,

where i ∈ I. For any A ∈ infDC ′
1(R), A ∈ minDC1(R) if and only if A is

{Σi, Gi,Σuci}-separably and synchronously simulation-based state controllable.

Proof: The proof is similar to Proposition 4.4.

Proposition 4.4 and Proposition 4.5 indicate that under the condition of {Σi, Gi,Σuci}-

separable and synchronous simulation-based state controllability, an element in supDC ′
1(R)

(infDC ′
1(R)) is an upper bound (a lower bound) which can be achieved by restric-

tive distributed bisimilarity control (relaxer distributed bisimilarity control). Next,

we pay attention to deterministic control. The classes of achievable sup-specifications

for monolithic deterministic bisimilarity control are stated as below.

DC ′
2(R) := {R′ | R′ ≺ R,R′ is language controllable w.r.t. G and Σuc, and

G||det(R′) ∼= R};

DC ′
2(R) := {R′ | R ≺ R′, R′ is language controllable w.r.t. G and Σuc, and

G||det(R′) ∼= R};

Similar results can also be obtained with respect to deterministic distributed

bisimilarity control.

102

Proposition 4.6 Consider a distributed plant G = ||i∈IGi and a specification R,

where i ∈ I. For any A ∈ supDC ′
2(R), A ∈ maxDC2(R) if and only if A is

{Σi, Gi,Σuci}-separably controllable.

Proof: (Necessity) Since A ∈ maxDC2(R), we get A ∈ DC2(R), which implies A is

{Σi, Gi,Σuci}-separably controllable.

(Sufficiency) SinceA is {Σi, Gi,Σuci}-separable controllable, we obtain thatG||det(A)

∼= A and L(A) is language controllable with respect to L(G) and Σuc from Proposi-

tion 4.3. Thus, we have A ∈ DC2(R). Suppose there exists A1 ∈ DC2(R) such that

A ≺ A1. Proposition 4.3 implies G||det(A1) ∼= A1 and L(A1) is language controllable

with respect to L(G) and Σuc, which in turn implies A1 ∈ DC ′
2(R). Definition of

supremum indicates A1 ≺ A, introducing a contradiction. Then, the assumption is

not correct. It follows that A ∈ maxDC2(R).

Proposition 4.7 Consider a distributed plant G = ||i∈IGi and a specification R,

where i ∈ I. For any A ∈ infDC ′
2(R), A ∈ minDC2(R) if and only if A is

{Σi, Gi,Σuci}-separably controllable.

4.4 Conclusion

We investigated supervisory control of distributed discrete event systems for bisimula-

tion equivalence in this chapter. The notion of separable and synchronous simulation-

based state controllability, which combines separability with synchronous simulation-

based state controllability, was introduced for the existence of distributed bisimilarity

103

control. When the given specification satisfies this condition, a set of local supervisors

enforcing bisimilarity can be constructed. Otherwise, we further explored the calcu-

lation of achievable sub-specifications which enable the existence of a distributed

bisimilarity control. In particular, we focused on deterministic supervisors for dis-

tributed bisimilarity control. Accordingly, the notion of separable controllability was

introduced as the necessary and sufficient condition for the existence of a set of deter-

ministic local supervisors with respect to distributed bisimiarity control. In addition,

the synthesis of deterministic supervisors and achievable sup-specifications were in-

vestigated. The comparisons of our results with the centralized monolithic ones were

presented as well.

104

Chapter 5

Control of Multi-Affine Systems

for Bisimulation Equivalence

This chapter studies bisimilarity control of a particular class of nonlinear systems,

multi-affine systems. This kind of continuous dynamics is widely used in system

modelling. The celebrated Euler [89], Volterra [90] and Lotka-Volterra [91] equations,

the control systems for aircraft and underwater vehicles [92] and the models of genetic

regulatory networks [93] are examples of multi-affine systems. First, we partition the

state space into rectangles. Then, we investigate the control of multi-affine systems

on rectangles, including the control based on the exit sub-region to drive all trajecto-

ries starting from a rectangle to exit through a facet and the control to stabilize the

multi-affine system towards a desired point. With the proposed controllers, a finitely

abstracted transition system is constructed, and it is shown to be bisimilar to the

rectangular transition system of the multi-affine system. Since bisimulation preserves

temporal logic properties, the controller synthesis of the multi-affine system for tem-

105

poral logic specifications is achieved by designing a bisimilarity enforcing supervisor

for the abstracted transition system and by implementing the resulting supervisor to

the original multi-affine system. We start by reviewing the notions of multi-affine

function and multi-affine control system [81].

Definition 5.1 A function f = (f1, f2, ..., fm) : R
n → Rm (with n,m ∈ N) is said to

be multi-affine, if every fi(x) : R
n → R, where x = (x1, x2, · · · , xn) and i = 1, · · · ,m,

is a polynomial in the indeterminates x1, x2, · · · , xn, with the property that the degree

of fi in any of indeterminates x1, x2, · · · , xn is less or equal to 1. That is, f has the

form

f(x) = f(x1, x2, · · · , xn) =
∑

i1,··· ,in∈{0,1}

ci1i2···in(x1)
i1(x2)

i2 · · · (xn)in

where ci1i2···in ∈ Rm for all i1, i2, · · · , in ∈ {0, 1}.

For example, for n = 2 and arbitrary m, the multi-affine function is in terms of

f(x1, x2) = c00 + c10x1 + c01x2 + c11x1x2, where cij ∈ Rm for i, j ∈ {0, 1}.

Definition 5.2 A control system Σ : ẋ = f(x, u) = g(x) + Bu with B ∈ Rn×m is

said to be multi-affine if g : Rn → Rn is a multi-affine function.

For a multi-affine control system, we write χx0,u(t) to denote the point reached at

time t under the control input u from initial condition x0.

5.1 Rectangular Partition

In this chapter, the state space of the multi-affine system is assumed to be bounded

and rectangular, which holds in lots of engineering applications [81, 94]. Given such a

106

state space, we would like to rectangularly partition it with respect to the coordinates.

Then, the following concepts are provided.

An n-rectangle is described by E =
n∏
i=1

(ai, bi), where ai, bi ∈ R satisfy ai < bi for

i = 1, 2, · · · , n. The closure of E is defined as E=
n∏
i=1

[ai, bi]. A facet of E is the inter-

section of E with one of its supporting hyperplanes. The set of facets of E is denoted

by F (E). The set of vertices of E, denoted by V (E), is V (E)={(x1, x2, · · · , xn) |

xi ∈ {ai, bi}, i = 1, 2, · · · , n}. Given v ∈ V (E), we denote F (v) the set of all facets

containing v.

The state space can be partitioned into
n∏
i=1

ni rectangles as follows. Let xi ∈
ni∪
j=1

(aji , b
j
i), where a

j
i < bji and a

j+1
i = bji . Then, Rk1k2···kn =

n∏
i=1

(akii , b
ki
i) is a rectangle

in the partitioned state space, where 1 ≤ ki ≤ ni. The facet of Rk1k2···kn is described

by

F j,d
k1k2···kn =


Rk1k2···kn

∩{
x ∈ Rn | xj = b

kj
j

}
if d = +

Rk1k2···kn
∩{

x ∈ Rn | xj = a
kj
j

}
if d = −

where d ∈ {+,−} and j = 1, · · · , n.

The outer normal of F j,d
k1k2···kn is given by

nj,d =


e⊤j if d = +

−e⊤j if d = −

where d ∈ {+,−}, j = 1, · · · , n and ej is the Euclidian basis of Rn.

Given w = (w1, w2, · · · , wn) ∈ V (Rk1k2···kn), the vertex membership function S :

{w1, · · · , wn} → {0, 1} is defined as

S(wj) =


1 if wj = b

kj
j

0 if wj = a
kj
j

107

Denote ξ as the set of rectangles generated by rectangularly partitioning the state

space. The rectangular projection map πQ : Rn → ξ is defined as πQ(x) = {Rk1k2···kn ∈

ξ | x ∈ Rk1k2···kn}. Subsequently, the rectangular transition system is established, and

it can be understood as a transition system form of the multi-affine control system

over a rectangularly partitioned state space.

Definition 5.3 Given a multi-affine control system Σ : ẋ = g(x)+Bu, a rectangle set

ξ generated by rectangularly partitioning the state space and a rectangular projection

map πQ defined by ξ, the rectangular transition system of Σ associated with ξ, denoted

as SΣ,Q, is a tuple

SΣ,Q = (XQ, XQ0, UQ,→Q, XmQ)

• XQ = Rn = XmQ;

• XQ0 = {x | x is an initial state of the multi-affine control system};

• UQ = {URk1k2···kn
| URk1k2···kn

is an invariant controller w.r.t. Rk1k2···kn or an

exit controller w.r.t. F j,d
k1k2···kn, Rk1k2···kn ∈ ξ and F j,d

k1k2···kn};

• x
UπQ(x)

−−−−→Q x
′ if any of the following two conditions is satisfied:

(1) πQ(x) = πQ(x
′) holds and there exists τ ∈ R+ such that χx,k(x)(τ) = x′ and

πQ(χx,k(x)(t)) = πQ(x), where t ∈ [0,+∞).

(2) πQ(x) ̸= πQ(x
′) holds and there exist τ, ϵ ∈ R+ such that χx,k(x)(τ) = x′,

πQ(χx,k(x)(t1)) = πQ(x) and πQ(χx,k(x)(t2)) = πQ(x
′), where t1 ∈ [0, ϵ) and

t2 ∈ [ϵ, τ].

Next, we present the property of the multi-affine function on rectangles [81].

108

Lemma 5.1 Consider a multi-affine function f and a rectangle Rk1k2···kn. In every

point x ∈ Rk1k2···kn, the value f(x) is uniquely determined by the values of f at vertices

of Rk1k2···kn:

f(x) =
∑

w∈V (Rk1k2···kn)

λw(x)f(w) (5.1)

where for any w = (w1, · · · , wn) ∈ V (Rk1k2···kn) and x = (x1, x2, · · · , xn) ∈ Rk1k2···kn,

the coefficient λw(x) is defined as

λw(x) =
n∏
j=1

(
xj − a

kj
j

b
kj
j − a

kj
j

)S(wj)(
b
kj
j − xj

b
kj
j − a

kj
j

)(1−S(wj))

(5.2)

5.2 Control of Multi-Affine Systems on Rectangles

In the previous section, the state space has been rectangularly partitioned into several

rectangles. Now, we investigate the control of multi-affine systems on rectangles.

First, the notion of state-based switch multi-affine function is introduced.

Definition 5.4 Given multi-affine functions U : Rn → Rm and U ′ : Rn → Rm,

xf ∈ Rn and ε ∈ R+, a function U ⋄ U ′ : Rn → Rm is said to be a state-based switch

multi-affine function from U to U ′ with respect to xf and ε if

U ⋄ U ′(x) =


U(x) if x /∈ Bε(xf)

U ′(x) if x ∈ Bε(xf)

where Bε(xf) = {x | ||x− xf || ≤ ε} with || || denotes the Euclidean norm.

In this chapter, the control input for a multi-affine system ẋ = g(x) + Bu is in

terms of u = K(x), where K a multi-affine function or a state-based switch multi-

affine function. Therefore, the feedback law is automatically bounded on Rk1k2···kn .

109

Next, we review the results on the existence of a multi-affine feedback controller for

a multi-affine system to keep the system in a rectangular invariant (Lemma 5.2) and

to drive all initial states in a rectangle through a desired fact in finite time (Lemma

5.3) [81].

Lemma 5.2 Given a multi-affine control system Σ : ẋ = g(x) + Bu and a rectangle

Rk1k2···kn, there exists a multi-affine feedback controller K(x) such that u = K(x) and

all trajectories of the closed-loop system that start from Rk1k2···kn remain in Rk1k2···kn

for all times if and only if for any w ∈ V (Rk1k2···kn), the following set is nonempty:

UI(w) =
∩

F j,d
k1k2···kn

∈F (w)

{v ∈ Rm | nj,d(g(w) +Bv) ≤ 0}. (5.3)

In this chapter, the multi-affine function U which keeps the system in a rectangular

Rk1k2···kn invariant is called as an invariant controller with respect to Rk1k2···kn .

Lemma 5.3 Given a multi-affine control system Σ : ẋ = g(x) + Bu and a rectangle

Rk1k2···kn, there exists a multi-affine feedback controller K(x) such that u = K(x)

and all trajectories of the closed-loop system that start from Rk1k2···kn are driven

only through F j,d
k1k2···kn in finite time if for any w ∈ V (Rk1k2···kn), the following set

is nonempty:

UE(w)=
∩

F j′,d′
k1k2···kn

∈F (w),(j,d)̸=(j′,d′)

{v∈Rm |nj,d(g(w)+Bv)>0∧nj′,d′(g(w)+Bv)≤0}(5.4)

In the rest of this subsection, we propose a control method based on the exit

sub-region to drive all trajectories of the closed-loop system starting from Rk1k2···kn

to exit through a desired facet of Rk1k2···kn , where the exit sub-region is defined as

follows.

110

Definition 5.5 Let Σ : ẋ = g(x) + Bu be a multi-affine control system, K(x) be

a multi-affine feedback controller, Rk1k2···kn be a rectangle and F j,d
k1k2···kn be a facet of

Rk1k2···kn. A region [K]j,dk1k2···kn ⊆ Rk1k2···kn is called to be an exit sub-region with respect

to F j,d
k1k2···kn and K(x) if for any x0 ∈ [K]j,dk1k2···kn, there exists τ ∈ R+ such that

(1) χx0,K(x)(t1) ∈ Rk1k2···kn for t1 ∈ [0, τ);

(2) χx0,K(x)(t2) ∈ F j,d
k1k2···kn for t2 = τ ;

(3) χx0,K(x)(t3) /∈ Rk1k2···kn
∪
F j,d
k1k2···kn for t3 ∈ (τ, τ + ε) and ε ∈ R+.

We can see that all trajectories of the closed-loop system ẋ = g(x) + BK(x)

originating in the sub-region [K]j,dk1k2···kn will leave Rk1k2···kn only through F j,d
k1k2···kn . It

implies that if we can find a controller K ′(x) such that all trajectories of the closed-

loop system ẋ = g(x) +BK ′(x) starting from Rk1k2···kn can reach the exit sub-region

[K]j,dk1k2···kn in finite time, then the control of multi-affine systems with respect to the

exit facet F j,d
k1k2···kn can be realized by using K(x) together with K ′(x). That is, we

can first apply the controller K ′(x) to the multi-affine system and then update the

controller to K(x) once the trajectories arrive in [K]j,dk1k2···kn . To implement this idea,

the following problems should be addressed.

Problem 1: how to find a controller K(x) to guarantee the existence of an exit

sub-region [K]j,dk1k2···kn? If there exists an exit sub-region [K]j,dk1k2···kn , how to compute

it?

Problem 2: how to design a controller K ′(x) to drive all trajectories of the closed-

loop system starting from Rk1k2···kn towards [K]j,dk1k2···kn?

For Problem 1, we provide the following proposition.

111

Proposition 5.1 Given a multi-affine control system Σ : ẋ = g(x) + Bu, a multi-

affine feedback controller K(x), a rectangle Rk1k2···kn and a facet F j,d
k1k2···kn of Rk1k2···kn,

there exists an exit sub-region [K]j,dk1k2···kn with respect to F j,d
k1k2···kn and K(x) if

(1) ∃w ∈ V (F j,d
k1k2···kn):

nj,d[g(w) +BK(w)] > 0; (5.5)

(2) ∀v ∈ V (Rk1k2···kn)\V (F j,d
k1k2···kn), ∀F

j′,d′

k1k2···kn ∈ F (v):

nj
′,d′ [g(v) +BK(v)] ≤ 0; (5.6)

(3) ∀x ∈ Rk1k2···kn:

g(x) +BK(x) ̸= 0. (5.7)

Proof: We have nj,d[g(w) + BK(w)] > 0 at the vertex w ∈ V (F j,d
k1k2···kn). Because

the vector field is continuous, there exist some points at the neighborhood of w that

have strictly positive vector field outwards Rk1k2···kn through F j,d
k1k2···kn . Moreover,

(5.6) implies that the trajectories of the closed-loop system can not leave through the

facets whose vertices all satisfy the condition (5.6), and (5.7) implies there does not

exist an equilibrium point inside Rk1k2···kn . We conclude that some trajectories of the

closed-loop system starting from Rk1k2···kn will leave through F j,d
k1k2···kn . That is, there

is an exit sub-region [K]j,dk1k2···kn of Rk1k2···kn with respect to F j,d
k1k2···kn and K(x).

It intuitively states that there exists an exit sub-region [K]j,dk1k2···kn with respect

to F j,d
k1k2···kn and K(x) if the multi-affine feedback controller K(x) is such that: (1)

there exists a vertex w on the exit facet such that the velocity of the closed-loop

system g(w) +BK(w) at w has a strictly positive projection along the outer normal

112

of the exit facet; (2) for any vertex v which is not on the exit facet, the velocity of

the closed-loop system g(v) + BK(v) at v has a negative projection along the outer

normal of the facet containing v. (3) there does not exist an equilibrium point inside

Rk1k2···kn . Moreover, the exit sub-region can be computed by using the result of [94].

Thus, Problem 1 is solved. Then, we consider Problem 2. The following proposition

is introduced.

Proposition 5.2 (Control to a Fixed Point) Given a multi-affine control system

Σ : ẋ = g(x) + Bu, a rectangle Rk1k2···kn and a desired point xf ∈ Rk1k2···kn, there

exists a multi-affine feedback controller K ′(x) such that u = K ′(x) and all trajectories

of the closed-loop system starting from Rk1k2···kn remain in Rk1k2···kn for all times

and converge to xf if for any w ∈ V (Rk1k2···kn), UI(w) ̸= ∅ holds and there exists

u′(w) ∈ UI(w) such that xf is a unique point in Rk1k2···kn:

g(xf) +B
∑

w∈V (Rk1k2···kn)

λw(xf)u
′(w) = 0. (5.8)

Proof: Because UI(w) ̸= ∅ for any w ∈ V (Rk1k2···kn), there exists a multi-affine

feedback controller such that all trajectories of the closed-loop system starting from

Rk1k2···kn remain in Rk1k2···kn for all times by Lemma 5.2. Let u′(w) ∈ UI(w) be

the control input at w such that xf is a unique point in Rk1k2···kn satisfying (5.8).

Then, we design K ′(x) =
∑

w∈V (Rk1k2···kn)

λw(x)u
′(w). For all rectangle αRk1k2···kn , where

α ∈ [0, 1], the vertex set V (αRk1k2···kn) = {αw + (1 − α)xf}. It can be seen that

αRk1k2···kn is just a shrunken version of Rk1k2···kn by multiplying Rk1k2···kn from xf by

the factor α. Thus, the velocity vector of closed-loop system at the vertex of αRk1k2···kn

is just α-multiple the velocity vector at the corresponding vertex of Rk1k2···kn . Since

113

the vector field of the closed-loop system in all vertices of αRk1k2···kn is pointing inside

to αRk1k2···kn , there exist t0 > 0 and α′ ∈ [0, 1) such that χw,K′(x)(t0) ∈ α′Rk1k2···kn .

Then, χx0,K′(x)(t) ∈ α′Rk1k2···kn for all x0 ∈ Rk1k2···kn and t ≥ t0. Similarly, we obtain

χx0,K′(x)(t) ∈ (α′)nRk1k2···kn for t ≥ nt0. Therefore, lim
t→∞

χx0,K′(x)(t) = xf .

It indicates that if we can construct a controller of the form u = K ′(x) =∑
w∈V (Rk1k2···kn)

λw(x)u
′(w), where u′(w) ∈ UI(w) ̸= ∅, such that xf is a unique equi-

librium point inside Rk1k2···kn , then all trajectories of the closed-loop system starting

from Rk1k2···kn are driven towards xf . This kind of multi-affine function K ′ is called

a fixed point controller with respect to xf . By putting xf inside the exit sub-region

[K]j,dk1k2···kn , the fixed point controller yields a solution for Problem 2. Now, we are

ready to present the result on the control with respect to a desired exit facet.

Proposition 5.3 (Control to an Exit Facet) Given a multi-affine control system

Σ : ẋ = g(x) +Bu, a rectangle Rk1k2···kn and a facet F j,d
k1k2···kn of Rk1k2···kn, there exists

a feedback controller such that all trajectories of the closed-loop system starting from

Rk1k2···kn are driven only through F j,d
k1k2···kn in finite time if any of the following two

conditions is satisfied:

(1) UE(w) ̸= ∅ holds for any w ∈ V (Rk1k2···kn);

(2) UE(w) ̸= ∅ does not hold for any w ∈ V (Rk1k2···kn) and there exist xf ∈ Rk1k2···kn,

ε ∈ R+ and multi-affine functions U and U ′ such that Bε(xf) ⊆ [U]j,dk1k2···kn and

U ′(x) is a fixed point controller with respect to xf .

Proof: As for condition (1), it obviously guarantees the existence of a controller

with respect to an exit facet according to Lemma 5.3. As for condition (2), because U ′

114

is a fixed point controller with respect to xf , all trajectories of the closed-loop system

ẋ = g(x) +BU ′(x) starting from Rk1k2···kn will converge towards xf . Moreover, there

is ε ∈ R+ such that Bε(xf) ⊆ [U]j,dk1k2···kn , where [U]j,dk1k2···kn is an exit sub-region with

respect to F j,d
k1k2···kn and U(x). By using the state-based switch multi-affine feedback

controller U ′ ⋄U(x) (w.r.t. xf and ε), all trajectories of the corresponding closed-loop

system starting from Rk1k2···kn will exit only through F j,d
k1k2···kn in finite time.

Proposition 5.3 provides two different ways to drive the trajectories of the cor-

responding closed-loop system starting from Rk1k2···kn to exit only through a desired

facet. One (condition (1)) is based on the result of Lemma 5.3 and the other (con-

dition (2)) is based on the exit sub-region. Thus, the proposed control method for

an exit facet covers more classes of systems than those are addressed in [81, 82]. We

call the multi-affine function or the state-based switch multi-affine function U which

drives all trajectories of the closed-loop system starting from Rk1k2···kn to exit only

through F j,d
k1k2···kn as an exit controller with respect to F j,d

k1k2···kn . Such an exit controller

can be obtained by the following algorithm.

Proposition 5.4 Algorithm 1 is correct.

Proof: From the definition of U2
Rk1k2···kn

and Proposition 5.2, we have U2
Rk1k2···kn

is a

fixed point controller with respect to x′. In addition, there exist ε ∈ R+ and a unique

point x′ ∈ Rk1k2···kn s.t. g(x′)+BU3
Rk1k2···kn

(x′) = 0 and Bε(x
′) ⊆ [U2

Rk1k2···kn
]j,d. Then,

Proposition 5.3 implies that U3
Rk1k2···kn

⋄U2
Rk1k2···kn

w.r.t. x′ and ε is an exit controller

for F j,d
k1k2···kn . On the other hand, Proposition 5.3 further implies that U1

Rk1k2···kn
is an

exit controller w.r.t. F j,d
k1k2···kn . Therefore, Algorithm 1 is correct.

115

Algorithm 1: Synthesis of Exit Controllers

input : a multi-affine control system Σ : ẋ = g(x) +Bu, a rectangle Rk1k2···kn ,
a facet F j,d

k1k2···kn of Rk1k2···kn and |u| ≤ η.

output: an exit controller with respect to F j,d
k1k2···kn .

Let V (Rk1k2···kn) = {wj | j = 1, 2, · · · , 2n};1

if UE(wj) ̸= ∅ for any wj ∈ V (Rk1k2···kn) \ V (F j,d
k1k2···kn) then2

V1 := {j ∈ {1, 2, · · · , 2n} | UE(wj) = ∅, wj ∈ V (Rk1k2···kn)};3

if V1 = ∅ then4

U1 := {{U1
Rk1k2···kn

(wj) | j = 1, 2, · · · , 2n} | wj ∈ V (Rk1k2···kn)∧5

U1
Rk1k2···kn

(wj) ∈ UE(wj) ∧ |
∑

j=1,2,··· ,2n
λwj

(x)U1
Rk1k2···kn

(wj)| ≤ η,

x ∈ Rk1k2···kn};
if U1 ̸= ∅ then6

U1
Rk1k2···kn

(x) =
∑

j=1,2,··· ,2n
λwj

(x)U1
Rk1k2···kn

(wj), where {U1
Rk1k2···kn

(wj)|
7

j = 1, 2, · · · , 2n} ∈ U1;
The multi-affine function U1

Rk1k2···kn
is an exit controller w.r.t.8

F j,d
k1k2···kn ;

if V1 ⊂ {1, 2, · · · , 2n} then9

if UI(wj) ̸= ∅ for any wj ∈ V (Rk1k2···kn) then10

U3 := {{U3
Rk1k2···kn

(wj) | j = 1, 2, · · · , 2n} | wj ∈ V (Rk1k2···kn) ∧11

U3
Rk1k2···kn

(wj) ∈ UI(wj) ∧ |
∑

j=1,2,··· ,2n
λwj

(x)U3
Rk1k2···kn

(wj)| ≤ η,

x ∈ Rk1k2···kn };
if U3 ̸= ∅ then12

U2 := {{U2
Rk1k2···kn

(wj) | j = 1, 2, · · · , 2n} | nj,d[g(wm) + B×13

U2
Rk1k2···kn

(wm)] > 0 ∧ wj ∈ V (Rk1k2···kn) ∧ U2
Rk1k2···kn

(wl) ∈
UE(wl) ∧ |

∑
j=1,2,··· ,2n

λwj
(x) ×U2

Rk1k2···kn
(wj)| ≤ η,m ∈ V1,

l ∈ {1, 2, · · · , 2n} \ V1 and x ∈ Rk1k2···kn};
if U2 ̸= ∅ then14

for any {U2
Rk1k2···kn

(wj) | j = 1, 2, · · · , 2n} ∈ U2 do15

U2
Rk1k2···kn

(x) =
∑

j=1,2,··· ,2n
λwj

(x)U2
Rk1k2···kn

(wj);
16

Obtain the exit sub-region [U2
Rk1k2···kn

]j,d w.r.t. F j,d
k1k2···kn17

and U2
Rk1k2···kn

(x);

for any {U3
Rk1k2···kn

(wj) | j = 1, · · · , 2n} ∈ U3 do18

U3
Rk1k2···kn

(x) =
∑

j=1,2,··· ,2n
λwj

(x)U3
Rk1k2···kn

(wj);
19

if ∃ε ∈ R+ and a unique point x′ ∈ Rk1k2···kn s.t.20

g(x′) +BU3
Rk1k2···kn

(x′) = 0 and Bε(x
′) ⊆ [U2

Rk1k2···kn
]j,d

then
The state-based switch multi-affine function21

U3
Rk1k2···kn

⋄ U2
Rk1k2···kn

w.r.t. x′ and ε is an exit

controller for F j,d
k1k2···kn .

116

5.3 Bisimilarly Abstracted Discrete Event System

The control of multi-affine systems on rectangles enables the construction of a finitely

abstracted transition system for the multi-affine system. Here we assume that any

initial state of the multi-affine system is inside the rectangles and the duration that

the trajectories stay on the boundary of the rectangle is ignored. These assumptions

result in no loss of generality since they always hold in the implementations.

Definition 5.6 Given a multi-affine control system Σ : ẋ = g(x)+Bu and a rectangle

set ξ generated by rectangularly partitioning the state space, the abstracted transition

system of Σ associated with ξ, denoted as SΣ,ξ, is a tuple

SΣ,ξ = (Xξ, Uξ,→ξ, Xξ0, Xmξ)

• Xξ = ξ = Xmξ;

• Uξ = {URk1k2···kn
| URk1k2···kn

is a multi-affine function or a state-based switch

multi-affine function, Rk1k2···kn ∈ ξ};

• Rk1k2···kn

URk1k2···kn−−−−−−→ξ Rk′1k
′
2···k′n if any of the following two conditions is satisfied:

(1) Rk1k2···kn = Rk′1k
′
2···k′n holds and for any w ∈ V (Rk1k2···kn), UI(w) ̸= ∅ and

URk1k2···kn
(w) ∈ UI(w).

(2) Rk1k2···kn ̸= Rk′1k
′
2···k′n with Rk1k2···kn∩Rk′1k

′
2···k′n = F j,d

k1k2···kn holds and URk1k2···kn

is an exit controller with respect to F j,d
k1k2···kn.

• Xξ0 = {Rk1k2···kn ∈ ξ | Rk1k2···kn contains an initial state of the multi-affine

control system}.

117

An abstracted transition system is a finite state system, therefore it facilitates

controller synthesis for finite-state requirements while accommodating to infinite-state

dynamics. Next, we investigate the relationship between the abstracted transition

system and the regular transition system of the multi-affine control system.

Theorem 5.1 Given a multi-affine control system Σ : ẋ = g(x)+Bu, a rectangle set

ξ generated by rectangularly partitioning the state space and a rectangular projection

map πQ defined by ξ, there exists a bisimulation relation ϕ1 such that SΣ,ξ
∼=ϕ1 SΣ,Q.

Proof: Consider ϕ = {(Rk1k2···kn , x) | x ∈ Rk1k2···kn}. For any (Rk1k2···kn , x) ∈

ϕ if there is a transition Rk1k2···kn

URk1k2···kn−−−−−−→ξ Rk′1k
′
2···k′n, we have the following two

cases: (a) Rk1k2···kn ̸= Rk′1k
′
2···k′n with F j,d

k1k2···kn = Rk1k2···kn ∩ Rk′1k
′
2···k′n. According to

the construction of SΣ,ξ, there exists a controller URk1k2···kn
such that all trajectories

of the closed-loop system ẋ = g(x) +BURk1k2···kn
(x) starting from Rk1k2···kn are driven

only through F j,d
k1k2···kn. Then, for any x ∈ Rk1k2···kn, there is x′ ∈ Rk′1k

′
2···k′n such that

x
URk1k2···kn−−−−−−→Q x′ and (Rk′1k

′
2···k′n , x

′) ∈ ϕ. (b) Rk1k2···kn = Rk′1k
′
2···k′n. The controller

URk1k2···kn
satisfying URk1k2···kn

(w) ∈ UI(w) ̸= ∅ for any w ∈ V (Rk1k2···kn) drives all

trajectories of the closed-loop system ẋ = g(x)+BURk1k2···xn
(x) starting from Rk1k2···kn

to remain in Rk1k2···kn for all times [81]. Therefore, there exists x′ ∈ Rk1k2···kn such that

x
URk1k2···kn−−−−−−→Q x

′ and (Rk′1k
′
2···k′n , x

′) ∈ ϕ. Moreover, the definition of Xξ0 indicates that

for any Rk1k2···kn ∈ Xξ0, there exists x ∈ XQ0 such that (Rk1k2···kn , x) ∈ ϕ. Similarly,

we can prove that for any (x,Rk1k2···kn) ∈ ϕ−1, if there is a transition x
URk1k2···kn−−−−−−→Q x

′,

then we have Rk1k2···kn

URk1k2···kn−−−−−−→ξ Rk′1k
′
2···k′n such that (x′, Rk′1k

′
2···k′n) ∈ ϕ−1. As a result,

SΣ,ξ
∼=ϕ∪ϕ−1 SΣ,Q.

118

5.4 Controller Synthesis

This section provides a bisimulation-based approach for the controller synthesis of

the multi-affine system with respect to temporal logic specifications.

5.4.1 Linear Temporal Logic

The syntax and semantics of linear temporal logic (LTL) formulas over the words of

the transition system are introduced [95].

Definition 5.7 An LTL formula over Π is recursively defined as

• Every proposition π ∈ Π is a formula.

• If φ1 and φ2 are formulas, then φ1 ∧φ2, qφ1, ◦φ and φ1Uφ2 are also formulas.

Definition 5.8 The satisfaction of an LTL formula φ at position i = 1, 2, 3, · · · of

the word W , denoted by W (i) � φ, is recursively defined as

• W (i) � π, if π ∈ W (i);

• W (i) �qφ, if W (i) 2 φ, where 2 denotes the negation of �;

• W (i) � ◦φ if W (i+ 1) � φ;

• W (i) � φ1 ∧ φ2, if W (i) � φ1 and W (i) � φ2;

• W (i) � φ1Uφ2, if there exists j > i such that W (j) � φ2 and for all i ≤ k < j

we have W (k) � φ1.

119

If W (1) � φ, we say that the word W satisfies φ, written as W � φ. The symbols

∧ and q stand for conjunction and negation. The other Boolean connectors ∨ (dis-

junction), ⇒ (implication), and ⇔ (equivalence) are defined in the usual way. The

temporal operator ◦ is called the next operator. Formula ◦φ specifies that φ will be

true in the next step. The temporal operator U is called the until operator. Formula

φ1Uφ2 means that φ1 must hold until φ2 holds. Two additional operators, “eventu-

ally” and “always” are defined as ♢φ=trueUϕ and �φ=q♢qφ. Formula ♢φ means

that φ becomes eventually true whereas �φ indicates that φ is true at all positions of

W . This set of operators can be employed to express many interesting specifications

such as system synchronization [17] and obstacle avoidance (See Example 5.1).

It is well known that a linear temporal logic formula φ over a proposition set

Π can be effectively converted into a Büchi automaton which accepts every infinite

string over Π satisfying φ [96]. This kind of Büchi automaton is described as follows.

Definition 5.9 Given a linear temporal logic formula φ over a proposition set Π, the

Büchi automaton with respect to φ, denoted as Bφ, is a tuple

Bφ = (B,B0, 2
Π,→B, Bm)

• B, B0 ⊆ B and Bm ⊆ B are finite sets of states, initial states and marked states

respectively;

• 2Π is an input alphabet;

• →B⊆ B × 2Π × 2B is a transition relation.

120

5.4.2 Supervisor Synthesis

Since the abstracted transition system SΣ,ξ is bisimilar the rectangular transition

system SΣ,Q, if there exists a supervisor (discrete controller) Sc for SΣ,ξ enforcing

temporal logic specifications, then such a supervisor also works for SΣ,Q, i.e., the

implementation of Sc drives the multi-affine system to fulfill temporal logic speci-

fications. Thus, we focus on the synthesis of Sc. In particular, the supervisor Sc

can restrict the behaviors of SΣ,ξ which fail to satisfy the LTL specifications. This

observation motivates us to construct Sc by working with SΣ,ξ and Bφ. Hence, we

introduce the notion of product automaton. Given a proposition set Π, the label

function L : ξ → 2Π assigns each rectangle a set of atomic propositions satisfied by

this rectangle.

Definition 5.10 Given an abstracted transition system SΣ,ξ=(Xξ, Uξ,→ξ, Xξ0, Xmξ),

a Büchi automaton Bφ = (B,B0, 2
Π,→B, Bm) and a label function L : Yξ → 2Π, the

product automaton of SΣ,ξ and Bφ, denoted as SΣ,ξ ×A Bφ, is a transition system

SΣ,ξ ×A Bφ = (A,UA,→A, A0, Am)

• A = Xξ ×B;

• UA = Uξ;

• (xξ, b)
u−→A (x′ξ, b

′) iff xξ
u−→ξ x

′
ξ and b

L(x′ξ)−−−→B b
′;

• A0 = {(xξ, b) ∈ Xξ0 ×B | (∃b0 ∈ B0) b0
L(xξ)−−−→B b};

• Am = Xmξ ×Bm.

121

The result provided by [97] indicates that if we can design a supervisor Sc such

that the supervised system Sc||SΣ,Q is bisimilar to SΣ,ξ ×A Bφ, then Sc||SΣ,Q satisfies

the LTL formula φ. In fact, Sc is a bisimilarity enforcing supervisor for SΣ,Q and

SΣ,ξ ×A Bφ. The existence condition of Sc is stated as below.

Theorem 5.2 Given a rectangular transition system SΣ,Q and a product automaton

SΣ,ξ ×A Bφ, there exists a supervisor Sc for SΣ,Q such that Sc||SΣ,Q
∼= SΣ,ξ ×A Bφ if

SΣ,ξ ×A Bφ ̸= ∅.

Proof: Since SΣ,ξ ×A Bφ ̸= ∅ and any event in SΣ,ξ and SΣ,Q is controllable, let

Sc = SΣ,ξ ×A Bφ. It is known that SΣ,ξ ×A Bφ ≺ SΣ,ξ and SΣ,ξ is deterministic.

Then, Sc||SΣ,ξ = (SΣ,ξ ×A Bφ)||SΣ,ξ
∼= SΣ,ξ ×A Bφ. Moreover, Theorem 5.1 indicates

SΣ,ξ
∼= SΣ,Q. Thus, Sc||SΣ,Q

∼= Sc||SΣ,ξ
∼= SΣ,ξ ×A Bφ.

Remark 5.1 Theorem 5.2 is constructive since if SΣ,ξ ×A Bφ ̸= ∅, we can build

Sc = SΣ,ξ ×A Bφ as the supervisor to achieve the LTL formula φ.

5.4.3 Implementation of Supervisor to Multi-Affine Systems

Let Sc be a supervisor which enforces the satisfaction of temporal logic specifications

with respect to SΣ,Q. Then, we discuss the implementation of Sc to the multi-affine

system. Let Rk1k2···knRk′1k
′
2···k′n · · · be a string in L(Sc||SΣ,Q) and Rk1k2···knURk1k2···kn

Rk′1k
′
2···k′nURk′1k

′
2···k

′
n
· · · be the corresponding transitions. To realizeRk1k2···knRk′1k

′
2···k′n · · · ,

we can apply the controller URk1k2···kn
(x) to the multi-affine system as long as x ∈

Rk1k2···kn . When and if x /∈ Rk1k2···kn , the string is updated to Rk′1k
′
2···k′n , then the

122

process continues. Therefore, the implementation of Sc drives the multi-affine system

to satisfy temporal logic specifications.

Figure 5.1: Rectangularly Partitioned State Space (Left) and Abstracted Transition
System SΣ,ξ (Right)

Now, we present an example to illustrate the proposed methodology.

Example 5.1. Consider a path planning example, where a robot with detec-

tion and positioning capabilities moves inside a rectangular region [0, 3] × [1, 4]. In

particular, the robot system takes the form of the following differential equation

ẋ =

 ẋ1

ẋ2

 =

 −6x1 + x2 + x1x2

3x1 − 2x2 + x1x2

+

 1

4

u (5.9)

where x is the position of the robot and u is the control input. The rectangular

region is partitioned into 9 small rectangular sub-regions with respect to the coor-

dinates (Fig. 5.1 (Left)). Let R23 be a dangerous sub-region and R13 be a goal

sub-region. Thus, for each sub-region we define the label function L: L(R23) =

{Danger, qGoal}, L(R13) = {qDanger,Goal} and L(Ri) = {qDanger, qGoal} (i =

123

11, 12, 21, 22, 31, 32, 33), where Danger represents the dangerous sub-region and Goal

represents the goal sub-region. In this example, the specification is to eventually go to

the goal sub-region (♢Goal) while avoiding the dangerous sub-region (�qDanger).

Such an obstacle avoidance specification can be naturally expressed by the linear

temporal logic formula φ: �qDanger ∧ ♢Goal.

Figure 5.2: Bφ (Left) and SΣ,ξ ×A Bφ (Right)

To achieve the specification, we first explore the control of the robot on sub-

regions. Take R12 as an example. If we would like to control the robot to exit from R12

to R13 through the facet F 2,+
R12

, then UE(1, 3)={v | [0, 1][−6+3+3+v, 3−6+3+4v]⊤ >

0 ∧ [1, 0][−6 + 3 + 3 + v, 3 − 6 + 3 + 4v]⊤ ≤ 0}={v > 0 ∧ v ≤ 0}= ∅. Obviously,

such a controller does not exist according to Lemma 5.3 [81, 82]. However, by using

the proposed method in this chapter, we can obtain a controller for the exit problem.

Here we assume the accuracy limitation ε = 10−4 and the control limitation |u| ≤ 107.

By Algorithm 1, we can design a state-based switch multi-affine controller:

IR12 ⋄ UR12(x) =


−30x1 − 12x2 + 10x1x2 + 34 if x /∈ B0.01(0.767, 2.494)

−11x1 + x1x2 + 10 if x ∈ B0.01(0.767, 2.494)

to drive the robot to exit only through F 2,+
R12

. Similarly, for each sub-region

124

Rmn(m,n = 1, 2, 3) we can establish the controllers that steer the robot from Rmn

to its neighborhood sub-region (Algorithm 1) or to be invariant (Lemma 5.2) in Rmn

respectively. Thus, an abstracted transition system SΣ,ξ is constructed, as it is shown

in Fig. 5.1 (Right).

Figure 5.3: Simulation Results

On the other side, we convert the LTL formula φ to a Büchi automaton (Fig. 5.2

(Left)) and then establish the product automaton SΣ,ξ ×A Bφ (Fig. 5.2 (Right)). We

design SΣ,ξ×ABφ to be the supervisor for SΣ,ξ. After the implementation of SΣ,ξ×ABφ

to the robot system, the controlled system achieves the LTL formula φ. Moreover,

the simulation results of two feasible paths initializing from R31 and satisfying φ are

shown in Fig. 5.3.

5.5 Conclusion

This chapter provided a bisimulation-based approach to controlling the multi-affine

system for temporal logic specifications in a rectangularly partitioned state space.

125

Two novel methods were derived to control the multi-affine system on rectangles. One

is based on the exit sub-region to drive all trajectories starting from a rectangle to

exit only through a facet, which enlarges the classes of control systems in the context

of existing literature [81]. The other provides a solution for the convergence problem

by stabilizing the multi-affine system towards a desired point. With the proposed

control methods, a finitely abstracted transition system was constructed and it was

shown to be bisimilar to the rectangular transition system of the multi-affine system.

Therefore, the controller synthesis for the multi-affine system to enforce the temporal

logic specification can be achieved by designing a bisimilarity enforcing supervisor for

the abstracted transition system and then mapped into continuous control signals.

126

Chapter 6

Conclusions and Future Works

This thesis investigated the controller synthesis for bisimulation equivalence with re-

spect to both discrete event systems and continuous systems. For discrete event sys-

tems, bisimilarity supervisory control has been studied under centralized, decentral-

ized and distributed frameworks, respectively. For continuous systems, a bisimulation-

based approach has been proposed to control a class of nonlinear systems for temporal

logic specifications.

The main contributions of the thesis are described as follows.

• A systematic way was presented for bisimilarity supervisory control with respect

to the most general case which allows the plant, specification and supervisor

to be nondeterministic. Specifically, we proposed the notion of synchronous

simulation-based state controllability as the sufficient condition for the existence

of a bisimilarity enforcing supervisor. When the existence condition holds,

a bisimilarity enforcing supervisor can be effectively constructed. When the

127

existence condition does not hold, the synthesis of achievable sub-specifications

has been further explored.

• We investigated bisimilarity supervisory control for deterministic specifications.

The notion of synchronous simulation-based controllability was introduced as

the necessary and sufficient condition for the existence of bisimilarity control

with respect to deterministic specifications. This condition can be checked

with polynomial complexity. Moreover, the synthesis of supremal synchronously

simulation-based controllable sub-specifications has been studied.

• Bisimilarity supervisory control has been extended from centralized framework

to decentralized framework. A novel automata-based structure was proposed for

decentralized bisimilarity control, under which three architectures, a conjunctive

architecture a disjunctive architecture and a general architecture, were built

up according to different decision making rules. For these three architectures,

necessary and sufficient conditions are provided for the existence of deterministic

decentralized bisimilarity control, respectively. The synthesis of achievable sup-

specifications was further developed.

• We studied bisimilarity control of distributed discrete event systems which con-

sist of multiple interacting local modules. A sufficient condition was stated

for the existence of distributed bisimilarity control. When the given specifi-

cation satisfies this condition, a set of local supervisors enforcing bisimilarity

can be constructed. Otherwise, we explored the calculation of achievable sub-

specifications to enable the existence of distributed bisimilarity control. In

128

particular, we focused on deterministic supervisors. The notion of separable

controllability was introduced as the necessary and sufficient condition for the

existence of deterministic distributed bisimilarity control. In addition, the syn-

thesis of infimal sup-specifications was investigated. The comparisons of our

results with the centralized monolithic ones were presented as well.

• A unified and automatic control framework has been proposed to control of a

class of nonlinear systems for temporal logic specifications. It provides not only

a tighter connection between continuous dynamics and discrete dynamics but

also a practical complexity for implementation. A novel control method based

on exit sub-regions has been established for controlling the system on rectangles.

It enlarges the class of systems which possesses bisimilarly abstracted models.

Furthermore, the calculation of bisimilarly abstracted systems is not expensive,

involving polyhedral operator only.

This thesis may represent an interesting step towards the controller synthesis for

bisimulation equivalence and its application to achieve temporal logic specifications.

Here, the work on bisimilarity control of discrete event systems is limited to the class

of plants with all events are observable. Although it is true in lots of engineering

systems, in some applications, e.g. a lack of measurement, only some of the events

are observable. Therefore, bisimilarity enforcing supervisor should be developed in

such a way that bisimulation equivalence can always be achieved irrespective of par-

tial observation. Moreover, decentralized bisimilarity control proposed in this thesis

concerns with supervisors without communication. By establishing new communica-

129

tion architectures, it is possible to allow the interaction among supervisors to resolve

ambiguities and determine correct control actions. This would be important for the

applications with limited sensing and actuation of the events.

Furthermore, bisimilarity control could be extended to deal with more general

systems, such as polynomial dynamics [98] through a relaxed notion of bisimulation.

Another interesting direction is to incorporate the time information into the spec-

ification. In this case, based on Metric Temporal Logic (MTL) specifications [99],

the occurrence time of the events can be characterized, with its great application to

task optimization emerging in manufacturing systems, cloud computing, smart grids,

transportation, parallel computing, multi-processing, and distributed process control.

130

List of Publications

• Journal Papers:

1. Y. Sun, H. Lin and Ben M. Chen, “An Input-Output Simulation Approach

to Controlling Multi-Affine Systems for Linear Temporal Logic Specifica-

tions,” International Journal of Control, vol. 85, no. 10, October 2012,

pages 1464-1476.

2. Y. Sun, H. Lin and Ben M. Chen, “Bisimilarity Enforcing Supervisory

Control for Deterministic Specifications”, submitted for publication, 2012.

3. Y. Sun, H. Lin and Ben M. Chen, “Decentralized Supervisory Control

of Discrete Event Systems for Bisimulation Equivalence”, submitted for

publication, 2012.

4. Y. Sun, H. Lin and Ben M. Chen, “Supervisory Control of Distributed

Discrete Event Systems for Bisimulation Equivalence”, submitted for pub-

lication, 2012.

• Conference Papers:

1. Y. Sun and H. Lin, “Bisimilarity Enforcing Supervisory control of Nonde-

131

terministic Discrete Event Systems”, American Control Conference (ACC

2012), pages 6102-6107, 2012.

2. Y. Sun, H. Lin and Ben M. Chen, “Computation for Supremal Simulation-

based Controllable Subautomata”, IEEE International Conference on Con-

trol and Automation (ICCA 2010), pages 1450 - 1455, 2010.

3. Y. Sun, H. Lin and Ben M. Chen, “Decentralized Bisimilarity Super-

visory Control of Discrete Event Systems”, Chinese Control Conference

(CCC2012), accepted for publication, 2012.

4. Y. Sun, H. Lin and Ben M. Chen, “Computation for Supremal Simulation-

Based Controllable and Strong Observable Subautomata”, Chinese Control

Conference (CCC2012), accepted for publication, 2012.

132

Bibliography

[1] P. Dewan and J. Riedl, “Toward computer-supported concurrent software engi-

neering,” Computer, vol. 26, no. 1, pp. 17–27, 1993.

[2] A. Aarsten, D. Brugali, and G. Menga, “Designing concurrent and distributed

control systems,” Communications of the ACM, vol. 39, no. 10, pp. 50–58, 1996.

[3] J. Teutsch and E. Hoffman, “Aircraft in the future atm system-exploiting the 4d

aircraft trajectory,” in Proceeding of Digital Avionics Systems Conference, vol. 1.

IEEE, 2004, pp. 3–B.

[4] H. Hansson, L. Lawson, O. Bridal, C. Eriksson, S. Larsson, H. Lon, and

M. Stromberg, “Basement: an architecture and methodology for distributed au-

tomotive real-time systems,” IEEE Transactions on Computers, vol. 46, no. 9,

pp. 1016–1027, 1997.

[5] J. Cook, J. Sun, and J. Grizzle, “Opportunities in automotive powertrain control

applications,” in Proceedings of the International Conference on Control Appli-

cations, vol. 1. IEEE, 2002, pp. xlii–xlli.

[6] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and A. Sangiovanni-

133

Vincentelli, “Period optimization for hard real-time distributed automotive sys-

tems,” in Proceedings of the 44th annual Design Automation Conference. ACM,

2007, pp. 278–283.

[7] A. Winfield, J. Sa, M. Fernandez-Gago, C. Dixon, and M. Fisher, “On formal

specification of emergent behaviours in swarm robotic systems,” International

journal of advanced robotic systems, vol. 2, no. 4, pp. 363–370, 2005.

[8] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. Pappas,

“Symbolic planning and control of robot motion [grand challenges of robotics],”

Robotics & Automation Magazine, IEEE, vol. 14, no. 1, pp. 61–70, 2007.

[9] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Where’s waldo? sensor-based

temporal logic motion planning,” in Proceedings of the IEEE International Con-

ference on Robotics and Automation. IEEE, 2007, pp. 3116–3121.

[10] N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schächter, “Mod-

eling and querying biomolecular interaction networks,” Theoretical Computer

Science, vol. 325, no. 1, pp. 25–44, 2004.

[11] G. Bernot, J. Comet, A. Richard, and J. Guespin, “Application of formal meth-

ods to biological regulatory networks: extending Thomas’ asynchronous logical

approach with temporal logic,” Journal of Theoretical Biology, vol. 229, no. 3,

pp. 339–347, 2004.

[12] L. Calzone, F. Fages, and S. Soliman, “Biocham: an environment for model-

134

ing biological systems and formalizing experimental knowledge,” Bioinformatics,

vol. 22, no. 14, pp. 1805–1807, 2006.

[13] J. Thistle and W. Wonham, “Control problems in a temporal logic framework,”

International Journal of Control, vol. 44, no. 4, pp. 943–976, 1986.

[14] J. Knight and K. Passino, “Decidability for a temporal logic used in discrete-

event system analysis,” International Journal of Control, vol. 52, no. 6, pp.

1489–1506, 1990.

[15] A. Ulusoy, S. Smith, C. Xu, and C. Belta, “Robust multi-robot optimal path

planning with temporal logic constraints,” in Proceedings of IEEE International

Conference on Robotics and Automation, to appear, 2012.

[16] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and K. Sonmez,

“Pathway logic: Symbolic analysis of biological signaling,” in Proceedings of the

Pacific Symposium on Biocomputing, vol. 7, 2002, pp. 400–412.

[17] P. Tabuada and G. Pappas, “Linear time logic control of discrete-time linear

systems,” IEEE Transactions on Automatic Control, vol. 51, no. 12, pp. 1862–

1877, 2006.

[18] C. Belta, V. Isler, and G. Pappas, “Discrete abstractions for robot motion plan-

ning and control in polygonal environments,” IEEE Transactions on Robotics,

vol. 21, no. 5, pp. 864–874, 2005.

[19] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. Pappas,

135

“Symbolic planning and control of robot motion [grand challenges of robotics],”

Robotics and Automation Magazine, IEEE, vol. 14, no. 1, pp. 61–70, March 2007.

[20] C. Cassandras and S. Lafortune, Introduction to discrete event systems.

Springer, 2008.

[21] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete event

processes,” SIAM journal on control and optimization, vol. 25, pp. 206–230, 1987.

[22] ——, “The control of discrete event systems,” Proceedings of the IEEE, vol. 77,

no. 1, pp. 81 –98, Jan. 1989.

[23] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, “Supervisory control of

discrete-event processes with partial observations,” IEEE Transactions on Au-

tomatic Control, vol. 33, no. 3, pp. 249 –260, Mar. 1988.

[24] J. Prosser, M. Kam, and H. Kwatny, “Online supervisor synthesis for partially

observed discrete-event systems,” IEEE Transactions on Automatic Control,

vol. 43, no. 11, pp. 1630–1634, 1998.

[25] T. Yoo and S. Lafortune, “On the computational complexity of some problems

arising in partially-observed discrete-event systems,” in Proceedings of American

Control Conference, vol. 1. IEEE, 2001, pp. 307–312.

[26] R. Kumar, S. Jiang, C. Zhou, and W. Qiu, “Polynomial synthesis of supervi-

sor for partially observed discrete-event systems by allowing nondeterminism in

control,” IEEE Transactions on Automatic Control, vol. 50, no. 4, pp. 463–475,

2005.

136

[27] E. Chen and S. Lafortune, “Dealing with blocking in supervisory control of

discrete-event systems,” IEEE Transactions on Automatic Control, vol. 36, no. 6,

pp. 724–735, 1991.

[28] R. Kumar and M. Shayman, “Nonblocking supervisory control of nondetermin-

istic systems via prioritized synchronization,” IEEE Transactions on Automatic

Control, vol. 41, no. 8, pp. 1160–1175, 1996.

[29] C. Ma and W. Wonham, “Nonblocking supervisory control of state tree struc-

tures,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 782–793,

2006.

[30] R. Su, J. van Schuppen, and J. Rooda, “Model Abstraction of Nondeterministic

Finite-State Automata in Supervisor Synthesis,” IEEE Transactions on Auto-

matic Control, vol. 55, no. 99, pp. 2527–2541.

[31] W. Wonham and P. Ramadge, “Modular supervisory control of discrete-event

systems,” Mathematics of Control, Signals, and Systems (MCSS), vol. 1, no. 1,

pp. 13–30, 1988.

[32] Y. Chen, S. Lafortune, and F. Lin, “Modular supervisory control with priorities

for discrete event systems,” in Proceedings of IEEE Conference on Decision and

Control, 1995, pp. 409–415.

[33] K. Rohloff and S. Lafortune, “On the computational complexity of the verifica-

tion of modular discrete-event systems,” in Proceedings of IEEE Conference on

Decision and Control, vol. 1. IEEE, 2002, pp. 16–21.

137

[34] Y. Brave, “Control of discrete event systems modeled as hierarchical state ma-

chines,” IEEE Transactions on Automatic Control, vol. 38, no. 12, pp. 1803–1819,

1993.

[35] K. Wong and W. Wonham, “Hierarchical control of discrete-event systems,”

Discrete Event Dynamic Systems, vol. 6, no. 3, pp. 241–273, 1996.

[36] H. Zhong and W. Wonham, “On the consistency of hierarchical supervision

in discrete-event systems,” IEEE Transactions on Automatic Control, vol. 35,

no. 10, pp. 1125–1134, 1990.

[37] K. Rudie and W. Wonham, “Think globally, act locally: Decentralized super-

visory control,” IEEE Transactions on Automatic Control, vol. 37, no. 11, pp.

1692–1708, 1992.

[38] S. Tripakis, “Undecidable problems of decentralized observation and control on

regular languages,” Information Processing Letters, vol. 90, no. 1, pp. 21–28,

2004.

[39] Y. Li and W. Wonham, “On supervisory control of real-time discrete-event sys-

tems,” Information sciences, vol. 46, no. 3, pp. 159–183, 1988.

[40] K. Wong, J. Thistle, R. Malhame, and H. Hoang, “Supervisory control of dis-

tributed systems: Conflict resolution,” Discrete Event Dynamic Systems, vol. 10,

no. 1, pp. 131–186, 2000.

[41] R. Milner, Communication and concurrency, 1989.

138

[42] H. Qin and P. Lewis, “Factorization of finite state machines under observational

equivalence,” in Proceedings of International Conference on Concurrency Theory,

pp. 427–441, 1990.

[43] P. Madhusudan and P. Thiagarajan, “Branching time controllers for discrete

event systems,” Theoretical Computer Science, vol. 274, no. 1-2, pp. 117–149,

2002.

[44] P. Tabuada, “Controller synthesis for bisimulation equivalence,” Systems & Con-

trol Letters, vol. 57, no. 6, pp. 443–452, 2008.

[45] C. Zhou, R. Kumar, and S. Jiang, “Control of nondeterministic discrete-event

systems for bisimulation equivalence,” IEEE Transactions on Automatic Control,

vol. 51, no. 5, pp. 754–765, 2006.

[46] C. Zhou and R. Kumar, “A small model theorem for bisimilarity control under

partial observation,” IEEE Transactions on Automation Science and Engineer-

ing, vol. 4, no. 1, pp. 93–97, 2007.

[47] ——, “Bisimilarity enforcement for discrete event systems using deterministic

control,” IEEE Transactions on Automatic Control, (In Press).

[48] ——, “Bisimilarity enforcement for discrete event systems using deterministic

control,” IEEE Transactions on Automatic Control, vol. 56, no. 12, pp. 2986 –

2991, 2011.

[49] T. Yoo and S. Lafortune, “A general architecture for decentralized supervisory

139

control of discrete-event systems,” Discrete Event Dynamic Systems, vol. 12,

no. 3, pp. 335–377, 2002.

[50] ——, “Decentralized supervisory control with conditional decisions: Supervisor

existence,” IEEE Transactions on Automatic Control, vol. 49, no. 11, pp. 1886–

1904, 2004.

[51] S. Ricker and K. Rudie, “Know means no: Incorporating knowledge into discrete-

event control systems,” IEEE Transactions on Automatic Control, vol. 45, no. 9,

pp. 1656–1668, 2000.

[52] K. Schmidt, T. Moor, and S. Perk, “Nonblocking hierarchical control of de-

centralized discrete event systems,” IEEE Transactions on Automatic Control,

vol. 53, no. 10, pp. 2252–2265, 2008.

[53] S. Takai and T. Ushio, “Reliable decentralized supervisory control of discrete

event systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 30, no. 5, pp. 661–667, 2000.

[54] F. Liu and H. Lin, “Reliable supervisory control for general architecture of de-

centralized discrete event systems,” Automatica, vol. 46, no. 9, pp. 1510–1516,

2010.

[55] S. Park and K. Cho, “Technical communique: Decentralized supervisory control

of discrete event systems with communication delays based on conjunctive and

permissive decision structures,” Automatica , vol. 43, no. 4, pp. 738–743, 2007.

140

[56] G. Barrett and S. Lafortune, “Decentralized supervisory control with communi-

cating controllers,” IEEE Transactions on Automatic Control, vol. 45, no. 9, pp.

1620–1638, 2000.

[57] J. van Schuppen, “Decentralized control with communication between con-

trollers,” Unsolved problems in mathematical systems and control theory, p. 144,

2004.

[58] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence. England:

Oxford University Press: Oxford, 1999.

[59] E. Yang and D. Gu, “Multiagent reinforcement learning for multi-robot systems:

A survey,” Department of Computer Science, Univeristy of Essex, Tech. Rep,

2004.

[60] X. Li and Y. Xi, “Distributed connected coverage control for groups of mobile

agents,” International Journal of Control, vol. 83, no. 7, pp. 1347–1363, 2010.

[61] S. Takai and T. Ushio, “Supervisory control of a class of concurrent discrete event

systems under partial observation,” Discrete Event Dynamic Systems, vol. 15,

no. 1, pp. 7–32, 2005.

[62] R. Su, “Supervisory control of concurrent discrete-event systems,” in Proceedings

of the IEEE Conference on Decision and Control. IEEE, 2011, pp. 1811–1816.

[63] P. Gohari and W. Wonham, “On the complexity of supervisory control design

in the rw framework,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, vol. 30, no. 5, pp. 643–652, 2000.

141

[64] C. Zhou, R. Kumar, and R. Sreenivas, “Decentralized modular control of concur-

rent discrete event systems,” in Proceedings of the IEEE Conference on Decision

and Control. IEEE, 2007, pp. 5918–5923.

[65] K. Rohloff and S. Lafortune, “The verification and control of interacting similar

discrete-event systems,” SIAM Journal on Control and Optimization, vol. 45,

no. 2, pp. 634–667, 2006.

[66] M. De Queiroz and J. Cury, “Modular control of composed systems,” in Proceed-

ings of the American Control Conference, vol. 6. IEEE, 2000, pp. 4051–4055.

[67] Y. Willner and M. Heymann, “Supervisory control of concurrent discrete-event

systems,” International Journal of Control, vol. 54, no. 5, pp. 1143–1169, 1991.

[68] B. Gaudin and H. March, “Modular supervisory control of a class of concurrent

discrete event systems,” in Proceedings WODES’04, Workshop on Discrete-Event

Systems, 2004, pp. 181–186.

[69] S. Jiang and R. Kumar, “Decentralized control of discrete event systems with

specializations to local control and concurrent systems,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 30, no. 5, pp. 653 –660,

Oct. 2000.

[70] K. Wong and S. Lee, “Structual decentralized control of concurrent discrete-event

systems,” European Journal of Control, vol. 8, no. 1, pp. 477–491, 2002.

[71] J. Komenda and J. van Schuppen, “Supremal sublanguages of general specifica-

142

tion languages arising in modular control of discrete-event systems,” in Proceed-

ings of the IEEE Conference on Decision and Control, 2005, pp. 2775 – 2780.

[72] J. Komenda, J. van Schuppen, B. Gaudin, and H. Marchand, “Supervisory con-

trol of modular systems with global specification languages,” Automatica, vol. 44,

no. 4, pp. 1127–1134, 2008.

[73] R. Alur and D. Dill, “A theory of timed automata,” Theoretical computer science,

vol. 126, no. 2, pp. 183–235, 1994.

[74] R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho, “Hybrid automata: An

algorithmic approach to the specification and verification of hybrid systems,”

Hybrid systems, pp. 209–229, 1993.

[75] A. Puri and P. Varaiya, “Decidability of hybrid systems with rectangular differ-

ential inclusions,” in Computer Aided Verification. Springer, 1994, pp. 95–104.

[76] G. Lafferriere, G. Pappas, and S. Sastry, “O-minimal hybrid systems,” Mathe-

matics of Control, Signals, and Systems, vol. 13, no. 1, pp. 1–21, 2000.

[77] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Hybrid controllers for path plan-

ning: A temporal logic approach,” in Proceedings of the IEEE Conference on

Decision and Control and European Control Conference, 2005, pp. 4885–4890.

[78] L. Habets and J. van Schuppen, “A control problem for affine dynamical systems

on a full-dimensional polytope,” Automatica, vol. 40, no. 1, pp. 21–35, 2004.

[79] R. Alur, T. Dang, and F. Ivancic, “Predicate abstraction for reachability analysis

143

of hybrid systems,” ACM Transactions on Embedded Computing Systems, vol. 5,

no. 1, pp. 152–199, 2006.

[80] A. Tiwari and G. Khanna, “Series of abstractions for hybrid automata,” in Hybrid

Systems: Computation and Control. Springer, 2002, pp. 465–478.

[81] C. Belta and L. Habets, “Controlling a class of nonlinear systems on rectangles,”

IEEE Transactions on Automatic Control, vol. 51, no. 11, pp. 1749–1759, 2006.

[82] L. Habets, M. Kloetzer, and C. Belta, “Control of rectangular multi-affine hybrid

systems,” in Proceedings of the IEEE Conference on Decision and Control, 2006,

pp. 2619–2624.

[83] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas, “Discrete abstractions of

hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 971–984, 2002.

[84] N. Jones, “Space-bounded reducibility among combinatorial problems*,” Journal

of Computer and System Sciences, vol. 11, no. 1, pp. 68–85, 1975.

[85] M. Karimadini and H. Lin, “Guaranteed global performance through local coor-

dinations,” Automatica, vol. 47, no. 5, pp. 890–898, 2011.

[86] R. Kumar and V. Garg, “Modeling and control of logical discrete event sys-

tems(Book),” Boston, MA: Kluwer Academic Publishers, 1995., 1995.

[87] J. Fernandez, “An implementation of an efficient algorithm for bisimulation

equivalence,” Science of Computer Programming, vol. 13, no. 2-3, pp. 219–236,

1990.

144

[88] K. Rudie and J. Willems, “The computational complexity of decentralized

discrete-event control problems,” IEEE Transactions on Automatic Control,

vol. 40, no. 7, pp. 1313–1319, 1995.

[89] K. Ogawa, “Economic development and time preference schedule: The case of

japan and east asian nics,” Journal of Development Economics, vol. 42, no. 1,

pp. 175–195, 1993.

[90] V. Volterra, “Fluctuations in the abundance of a species considered mathemati-

cally,” Nature, vol. 118, no. 2972, pp. 558–560, 1926.

[91] A. Lotka, Elements of physical biology. Williams & Wilkins company, 1925.

[92] C. Belta, “On controlling aircraft and underwater vehicles,” in Proceedings of

the IEEE International Conference on Robotics and Automation, vol. 5, 2004,

pp. 4905–4910.

[93] S. Sastry, Nonlinear systems: analysis, stability, and control. Springer Verlag,

1999.

[94] S. Berman, Á. Halász, and V. Kumar, “MARCO: a reachability algorithm for

multi-affine systems with applications to biological systems,” Hybrid Systems:

Computation and Control, pp. 76–89, 2007.

[95] M. Kloetzer and C. Belta, “A fully automated framework for control of linear

systems from temporal logic specifications,” IEEE Transactions on Automatic

Control, vol. 53, no. 1, pp. 287–297, 2008.

145

[96] P. Wolper, M. Vardi, and A. Sistla, “Reasoning about infinite computation

paths,” in 24th Annual Symposium on Foundations of Computer Science, 1983,

pp. 185–194.

[97] G. De Giacomo and M. Vardi, “Automata-theoretic approach to planning for

temporally extended goals,” Recent Advances in AI Planning, pp. 226–238, 2000.

[98] R. Benedetto, “Examples of wandering domains in p-adic polynomial dynamics,”

Comptes Rendus Mathematique, vol. 335, no. 7, pp. 615–620, 2002.

[99] R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-

Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

