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Abstract 

 

In this thesis, Brillouin light scattering, a powerful technique for probing the elastic 

properties and phonon propagation in nanostructured materials at hypersonic 

frequencies, has been employed to investigate the confined acoustic phonons in 

single-crystal gold nano-octahedra and the surface phonon dispersions in one- and 

two-dimensional hypersonic phononic crystals. Theoretical investigations, based 

on finite element analysis, of the acoustic vibrational modes of gold nano-

octahedra and the phonon dispersions of the phononic crystals have also been 

undertaken.  

 

The size-dependence of the vibrational mode frequencies of octahedron-

shaped gold nanocrystals has been measured by micro-Brillouin spectroscopy. Our 

analysis reveals that the nine well-resolved peaks observed are due to confined 

acoustic modes, with each peak arising from more than one mode. The elastic 

constants of the nanocrystals are found to be comparable to those of bulk gold 

crystals. Our findings suggest that the eigenfrequencies of any free regular-shaped 

homogeneous object always scale with its inverse linear dimension. Additionally, 

this universal relationship is valid for such objects of any size in the classical 

regime, and is independent of elastic properties. 

 

The surface acoustic dispersions of a one-dimensional (1D) periodic array 

of alternating Fe (or Ni, Cu) and Ni80Fe20 (Py) nanostripes on a SiO2/Si substrate 

have been investigated. The measured phononic band structures of surface elastic 
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waves reveal Bragg and hybridization bandgaps for all three samples studied. 

These hybridization bandgaps arise from the avoided crossing of the Rayleigh 

waves and the zone-folded Sezawa waves. Two other 1D phononic crystals 

measured are in the form of periodic arrays of alternating Py and BARC (bottom 

anti-reflective coating) nanostripes on a Si(001) substrate, with respective 350 nm 

and 400 nm lattice constants. The observed phononic gaps of these two samples 

are considerably larger than those of laterally patterned multi-component crystals 

previously studied. Additionally, the phonon hybridization bandgap is found to 

have an unusual origin in the hybridization and avoided crossing of the zone-

folded Rayleigh and pseudo-Sezawa waves. The surface phonon dispersion and 

gap widths can be tunable by varying the lattice constants.  

 

Also studied in this thesis is a two-dimensional bi-component 

nanostructured crystal, in the form of a periodic chessboard array of alternating Py 

and cobalt square dots on a SiO2/Si substrate, which has been fabricated using 

high-resolution electron-beam lithographic, sputtering, etching, and lift-off 

techniques. The dispersion relations of surface acoustic- and optical-like waves 

along the Γ-M and Γ-X symmetry directions have been mapped. The measured 

phononic band structures exhibit diverse features, such as partial hybridization 

bandgap and unusual surface optical-like phonon branches, where there are out-of-

phase vibrational characteristics between neighboring dots. Numerical simulations 

generally reproduced the experimental dispersion relations. 
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Chapter 1      Introduction  

 

Nowadays, there is increasing interest in nanoscale structures in view of 

their intriguing properties and applications in diverse areas such as catalysis, 

biosensing, drug delivery, optoelectronics, and nonlinear optics [1-8]. These 

properties differ from those of the corresponding bulk materials because of surface 

and quantum effects. For instance, the surface to volume ratio of a nanoparticle is 

larger compared to that of the bulk material, making some chemical reactions more 

likely to take place [3,4], which is important for both basic research and 

applications such as crystal growth, catalysis, chemical and biochemical sensing. 

Also, energy quantization due to low dimensionality would affect the magnetic, 

electrical, optical, acoustic and mechanical properties of nanostructures [5-8].  

 

An understanding of the acoustic and mechanical properties of 

nanostructures is of great importance to both fundamental physics and their 

applications. In nanoscale materials, the acoustic phonon spectrum undergoes 

modification due to spatial confinement resulting in quantized phonon modes [8]. 

Thus the acoustic dynamics of nanostructures depend on their size and shape, as 

well as their constituent materials. For example, for spherical particles, their 

acoustic modes are found to have distinct frequencies which are inversely 

proportional to their diameters [9-11]. These confined acoustic vibrational modes 

in single nanoparticles are called eigenvibrations or eigenmodes of these 

nanoparticles. By studying the eigenvibrations of these nanoparticles, their 

mechanical and thermal properties for instance can be extracted, which would 
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contribute to their applications as structural and functional elements in, e.g., 

biological sensing devices. Among the types of materials studied, noble metal 

nanoparticles have been the focus of extensive studies due to their remarkable 

optical properties and numerous applications, such as surface plasmonics, chemical 

sensing, and photothermal therapy [3,12,13]. One of the main objectives of this 

thesis is the elucidation of the acoustic dynamics of gold nano-octahedra.         

                                

Besides the confined eigenmodes of single nanoparticles, another 

interesting research area is the propagation of elastic waves in phononic crystals. 

Nanostructured phononic crystals, the elastic analogue of photonic crystals, are 

novel metamaterials that have the potential to control and manipulate the 

propagation of phonons. These materials possess periodic variations of density and 

elastic properties, resulting in the formation of phononic bandgaps which prevent 

acoustic waves with certain frequencies from propagating through them. As such, 

phononic crystals, besides being of great fundamental scientific interest, are 

expected to show enormous promise in a wide variety of applications like acoustic 

lasers, heat management devices, and acoustic superlenses [14,15].  

 

With the advancement in nanofabrication techniques, phononic crystals in 

the hypersonic range have been realized and actively investigated over the past few 

years. Hypersonic phononic crystals are expected to have applications in the area 

of heat conductivity because of their ability to control the flow of thermal phonons 

in them. Recently, Hopkins et al. (2010) has succeeded in observing the reduction 

in the thermal conductivity of single crystalline silicon by phononic crystal 
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patterning [16]. In addition, the lattice spacing of hypersonic phononic crystals is 

of the order of optical light wavelength, thus they can exhibit dual phononic and 

photonic bandgaps and enhance photon-phonon interactions [17]. These photonic-

phononic materials, also called phoxonic crystals [18-22], are attracting great 

interest as they are expected to possess both the attributes and functionalities 

arising from the bandgap structures of their component excitations which permit 

their potential application; for example, in the design of acousto-optical devices. 

Another class of materials with dual-excitation bandgaps is the magnonic-phononic 

crystals [23-25]. These novel metamaterials, which we term magphonic crystals 

(MPCs), possess simultaneous magnonic and phononic bandgaps. As magnons 

(spin waves) are outside the scope of this thesis, only the phononic properties of 

magphonic crystals studied will be considered.  

 

Most experiments on hypersonic dispersions of phononic crystals focused 

on bulk acoustic waves. Recent works however have stimulated interest in surface 

acoustic waves (SAWs) propagating in such structures, and these studies would 

result in wide applications, particularly in the area of SAW-based devices [26]. An 

elucidation of the surface phonon dispersions in one-dimensional (1D) and two-

dimensional (2D) phononic crystals, by experimental and theoretical means, is the 

other key objective of this thesis.  

 

1.1 Review of studies of confined acoustic vibrations 

A milestone in the understanding of confined acoustic vibrations of an 

object is the analytical calculations of the eigenvibrations of an isotropic free 
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elastic sphere by Lamb in 1882 [9]. In Lamb’s theory, the eigenmodes of a free 

sphere can be classified into two categories: spheroidal and torsional. In the former, 

the motion has both radial and transverse components. In the latter, the motion has 

only a transverse component, and as the radial component is absent, the volume of 

the sphere remains unchanged. The modes are labeled by the angular momentum 

quantum number l = 0, 1, 2. . ., and the sequence of modes, in increasing order of 

energy, by n = 1, 2, 3, . . .. The frequencies of these modes, according to Lamb, are 

inversely proportional to the sphere diameter.  Illustrative schematics of the (n = 1, 

l = 0) spheroidal and (n =1, l = 2) torsional modes are displayed in Fig. 1.1. 

 

 

Fig. 1.1 Schematics of (a) the (n = 1, l = 0) spheroidal mode and (b) the (n = 1, l = 

2) torsional mode of a sphere. 

 

Since the establishment of the Lamb theory, many experimental studies of 

the eigenvibrations of spherical objects were undertaken. The first observation was 

reported in 1986 by Duval et al., and was for Raman scattering from spinel 

microcrystallites [10]. They observed only one broad Raman peak whose 

(a) (b) 
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frequency was found to vary with particle size. Based on the assumption that the 

microcrystallites are spherical, they attributed the observed Raman peak to a 

spheroidal mode of the microcrystallites. Their observations also suggested that the 

frequency of the spheroidal mode is proportional to the inverse diameters of these 

microcrystallites, in agreement with Lamb’s prediction. Following this work, 

eigenmodes were extensively studied in various nano-objects, such as nanowires, 

nanotubes, nanorods and nanoparticles, using techniques like time-resolved 

spectroscopy, Raman scattering and Brillouin light scattering (BLS) [27-37]. Time-

resolved spectroscopy is a time domain technique and usually only one or two 

modes can be observed, while Raman spectroscopy is technically limited to the 

detection of vibrations, with frequencies in the THz range, of very tiny particles 

(tens of nanometers). Brillouin light scattering is able to generally detect more 

vibrational modes with frequencies in the GHz range of larger nanoparticles. 

 

The first comprehensive experimental verification of the Lamb’s theory 

was reported by Kuok et al. in 2003 using BLS [11]. Up to six well-resolved 

Brillouin peaks were observed by them in 3D ordered arrays of unembedded SiO2 

nanospheres for four different sphere sizes. Clear evidence, of the mode 

quantization and of the linear relationship between the mode frequencies and the 

inverse sphere diameter, was shown in this study. Following this study, BLS was 

used to study the confined acoustic modes of loose silica spheres by Lim et al. 

(2004) [38]. They found that bulk acoustic waves can also be observed in larger 

microspheres. Cheng et al. (2005) measured the eigenvibrations in polystyrene 

opals and observed up to 21 acoustic modes [39]. Later, Li et al. (2006) developed 
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a micro-Brillouin system which is able to measure the BLS signal from a single 

isolated SiO2 sphere of about 260 nm in diameter [40], which interestingly is only 

about half the excitation wavelength used. The feasibility of recording Brillouin 

spectra from a single particle as tiny as this further enhances the capabilities of 

BLS as a powerful experimental tool for studying the acoustic dynamics of 

nanostructures. Brillouin spectra of single isolated polymer nanospheres were also 

measured by the same group [41].  

 

In recent years, Brillouin studies were extended to more complicated 

particles, like hollow nanospheres [42], non-spherical particles [43], nanotubes 

[30], nanowires [44], and core-shell nanospheres [45,46]. Non-spherical particles 

studied include GeO2 [43] and silver nanocubes [47].  

 

As reviewed above, much experimental work has been carried out on the 

acoustic dynamics of free isotropic spherical nanoparticles. In contrast, very few 

experiments on the eigenvibrations of non-spherical crystalline nanoparticles have 

been reported. This is due to the difficulties in synthesizing high-quality 

monodisperse samples of such non-spherical nanoparticles and elucidating the 

nature of their eigenmodes.  

 

Recently, noble metal nanocrystals have been the focus of extensive studies 

due to their unique chemical and physical properties which are strongly dependent 

on their size and shape [12,13,48-51]. With the rapid development of synthetic 

techniques, non-spherical metal nanocrystals of various symmetries such as cubes, 



Chapter 1                                                                                                                            Introduction 

7 

 

octahedra, and other shapes were fabricated [52-55]. It is of great interest to study 

the acoustic dynamics of these novel noble metal nanocrystals. BLS is particularly 

suitable to investigate the acoustic modes of these nanocrystals because of its 

capability of measuring anisotropic nanoparticles of any shape.  

 

According to Lamb’s theory, the eigenvibrations of a sphere contains 

spheroidal and torsional modes. It is known that not all these confined modes of a 

sphere are experimentally observable.  Selection rules from eigenvibrations of a 

sphere proposed by Li et al. (2008) showed that only spheroidal modes with even l 

number were Brillouin active [56]. Montagna (2008) developed a method for 

calculating the intensity of inelastic light scattering spectra of the acoustic 

vibrations of nanospheres [57]. This method was used by Still et al. (2010) to 

calculate the BLS spectra for polystyrene spheres with diameter of 360 nm as well 

as silica spheres with diameter of 354 nm [58], giving good agreement between the 

experiment and theory. In this thesis, this method is applied to estimate the mode 

intensities of the eigenvibrations of crystalline non-spherical nanoparticles.  

 

1.2 Surface acoustic waves on hypersonic phononic crystals 

Acoustic waves travelling in phononic crystals are modified by their 

periodic variations of densities and elastic constants, giving rise to the formation of 

phononic bandgaps, within which the propagation of acoustic waves with certain 

frequencies is forbidden. Phononic crystals in the sonic, ultrasonic and hypersonic 

ranges have been widely studied during the past 20 years [14,15,59-65]. For 

example, sonic phononic gaps were first experimentally observed in 2D periodic 
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arrays of stainless cylinders in air by Sánchez-Pérez et al. (1998) [59], and by 

Robertson and Rudy (1998) [60]. A complete ultrasonic bandgap in a 2D periodic 

square array of mercury cylinders in an aluminium alloy plate for the longitudinal 

mode has been realized [61]. A number of experiments on the mapping of the 

dispersion relations of hypersonic phononic crystals have been carried out [14,15, 

62-65]. In this section, we first review some of the important recent BLS studies of 

the dispersion of bulk acoustic waves in hypersonic crystals. This will be followed 

by a review on similar studies of SAWs. 

 

1.2.1 Hypersonic dispersion of bulk acoustic waves 

In 2006, hypersonic phononic bandgap for bulk acoustic waves was first 

observed by Cheng et al. for a 3D assembly of polystyrene (PS) nanospheres 

infiltrated with refractive index matching fluid [15]. In this work, a gap at the first 

Brillouin zone boundary which is known as Bragg gap was observed. In addition, 

the width (and the center) of the gap was tuned by changing the elastic and density 

contrast of the component materials (and particle size).  

 

Before this study, an experimental attempt to map the hypersonic phononic 

bandgap for bulk acoustic waves was carried out by Gorishnyy et al. (2005) using 

BLS to examine a 2D system comprising periodic triangular arrays of cylindrical 

holes in an epoxy matrix [14]. However, no phononic bandgap was observed 

because, due to the large lattice constant (1.36 μm) of the crystal, the gap was at 

frequencies below the BLS detection limit. Not surprisingly, their next study dealt 

with a 2D square lattice of cylindrical holes having a shorter lattice constant of 750 
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nm in epoxy [62]. The holes were infiltrated with phenylmethyl silicone which 

served as refractive index matching fluid. A Bragg gap between 1.21 and 1.57 GHz 

was observed. Despite using air instead of phenylmethyl silicone in their 

simulations of the dispersion relations, there is qualitative agreement between 

simulations and experiment.  

 

In 2008, Still et al. reported two hypersonic phononic bandgaps of different 

nature coexisting in 3D colloidal films of PS and polymethyl methacrylate (PMMA) 

nanospheres [63]. One is a Bragg gap occurring at the first Brillouin zone 

boundary and the other is a hybridization gap arising from the hybridization of the 

eigenmodes of a nanosphere and a traveling mode in the phononic crystal.  

 

The sizes of the above-mentioned hypersonic gaps observed, which are of 

the order of 0.5 GHz, are relatively small. Recently, a BLS study by Gommopoulos 

et al. (2010) of a 1D hypersonic phononic crystal in the form of a periodic 

multilayered system (SiO2/PMMA) with a period of 100 nm found that it possesses 

a broad bandgap of 4.5 GHz [64]. BLS measurements of 1D superlattice structures 

of 100 and 117 nm lattice constants by Schneider et al. (2012) also revealed large 

bandgaps of several GHz [65], and that the gap position and width can be tuned by 

a rotation of the sample about the axis normal to the sagittal plane of the film. 

 

In the reviewed experimental studies of the 1D, 2D and 3D systems, the 

observation of Bragg gaps is limited to the first Brillouin zone boundary. For a 

better understanding of bulk phonon propagation in hypersonic crystals, 
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information on the band structures in higher-order Brillouin zones is needed. 

Therefore, to get a dispersion relation in more Brillouin zones should be of great 

interest and importance to fundamental research.  

 

1.2.2 Introduction to surface acoustic waves 

One of the aims of this thesis is to study dispersion of SAWs on phononic 

crystals. A brief introduction to SAWs is presented below. Surface Brillouin 

scattering has been widely used as a tool for studying the propagation of SAWs on 

solid materials [66].  

 

SAWs can exist in a stress-free surface of a semi-infinite medium, as well 

as in a layered medium which is a film-substrate system. A semi-infinite medium 

is one in which its thickness is much larger than the penetration depth of the SAW 

displacement field. The penetration depth is normally of the order of the SAW 

wavelength. In a semi-infinite medium, there are three typical types of SAWs, 

namely, the surface Rayleigh wave (RW), the pseudo-surface acoustic wave 

(PSAW) and the high-frequency pseudo-surface wave (HFPSW) [67-69]. The RW 

is the only true surface wave as its acoustic Poynting vector is parallel to the 

surface, and its displacement field decays exponentially into the medium. In 

contrast, the Poynting vector of a PSAW has a perpendicular component that 

radiates energy into the bulk of the medium and is thus not parallel to the surface. 

The bulk acoustic waves at the surface of a semi-infinite medium give rise to a 

continuum of states lying at frequencies higher than the transverse bulk wave 

threshold. The continuous spectrum consists of acoustic waves composed of 



Chapter 1                                                                                                                            Introduction 

11 

 

propagating bulk transverse waves and evanescent longitudinal waves. PSAWs, 

which exist as resonances in the continuum of bulk waves, are leaky waves which 

suffer attenuation as they propagate [67,68]. The HFPSW, also called longitudinal 

resonance (LR), has a phase velocity very close to that of the longitudinal bulk 

wave travelling parallel to the surface (longitudinal bulk wave threshold) [69]. 

 

Using surface Brillouin scattering, the RW and the continuum of waves 

above the transverse threshold, which are referred to as the Lamb shoulder, have 

been observed in semi-infinite media of semiconductors and metals [70,71]. Sharp 

resonances within the continuum of modes have also been observed in BLS spectra 

[66-68] and were assigned to PSAWs and HFPSWs. For example, Carlotti et al. 

(1992) [71] observed the coexistence of RW, PSAW, and HFPSW in GaAs       

for propagation directions in the range of [110] to [121].  

 

A common film-substrate system comprises a ‘slow’ film on a ‘fast’ 

substrate which means the transverse and longitudinal bulk wave velocities of the 

film are lower than the corresponding velocities of the substrate. In addition to 

RWs, higher-order Rayleigh modes known as Sezawa waves also exist in this 

system [72]. Sezawa waves consist of shear vertically and longitudinally polarized 

partial waves, whose field components propagate parallel to the surface and decay 

exponentially with distance into the substrate, thus confining the mode energy to 

the immediate vicinity of the film. Sezawa waves exist below the transverse 

threshold, and only over a restricted range of qh, where q is the wave number of 
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the Sezawa wave and h is the film thickness. Sezawa modes have a low-frequency 

cutoff at which the phase velocity is equal to the substrate shear velocity.  

 

Attenuated SAWs, called pseudo-Sezawa waves, which exist as resonances 

with the substrate continuum of modes have also been observed in film-substrate 

systems by surface BLS [66,73-76]. These pseudo-Sezawa waves lie within the 

Lamb shoulder near the transverse threshold and arise from shear vertical 

vibrations of the substrate which reach the film surface amplified, retaining the 

vertical transverse polarization [73]. As qh increases, these waves, would move 

closer to the transverse threshold of the Lamb shoulder, until a critical value of qh 

is reached, at which stage, a pure Sezawa wave separates from the Lamb shoulder 

and moves into the non-radiative region below the transverse threshold [76].  

 

Other types of SAWs also exist in film-substrate systems. They include the 

Stoneley wave at the film-substrate interface, the generalized Love waves, and the 

longitudinal guided modes (LGMs) [72,77]. An LGM has a velocity in between the 

longitudinal velocity of the substrate and that of the film, but much larger than the 

transverse velocity of the substrate [77]. Thus, an LGM is a pseudo-surface mode 

that radiates energy into the substrate. Generalized Love waves are shear 

horizontal modes localized in the film which can be observed in p-s polarization 

spectra (p means E component of incident light is in the scattering plane, 

while s means E component of the scattered light is perpendicular to the scattering 

plane) of surface BLS [72].  
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1.2.3 Surface acoustic waves on phononic crystals 

Mapping of the surface wave dispersions in hypersonic crystals was first 

performed in 1992 by Dutcher et al. using BLS, they successfully observed two 

types of phononic gaps in surface gratings on silicon of 250 nm period [78]. One 

type, called Bragg gaps appear at Brillouin zone boundaries, and are caused by the 

zone folding of the surface Rayleigh wave. The size of the Bragg gap was found to 

increase with zone number. The other type is the hybridization gap due to 

hybridization between the Rayleigh wave and the folded branch of the longitudinal 

resonance. A few months later, Giovannini et al. (1992) came up with an elasticity 

theory for the discrete and continuous spectra of phonon normal modes on a 

shallow grating [79]. This theory was able to provide a quantitative explanation of 

the experimental data on Si surface gratings of Dutcher et al. (1992). In the 

following years, Lee et al. (1994) extended Dutcher’s work to higher-order 

Brillouin zones with Si gratings of a larger period of 350 nm [80]. In addition to 

the Bragg gaps at the Brillouin zone boundaries, two hybridization gaps within the 

second and the third Brillouin zone were observed.  

 

In 2000, SAW dispersions in glass gratings, with a period of several 

micrometers were mapped by Dhar and Roger using the picosecond transient 

grating method [81]. In this work, two samples with respective groove depths of 

300 nm and 1.15 µm produced rather different dispersion behaviors. The two 

measured branches of the dispersion relations, of the latter sample bend 

downwards beyond the first Brillouin zone boundary, while those of the other 

sample continue rising beyond the first zone boundary. This could be due to the 
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fact that the periodic depth modulation of the sample with groove depth of 1.15 µm 

is more pronounced.  

 

Phononic structures with periodicity created by fabricating a patterned thin 

film on a substrate are also gaining increasing interest [82-85]. Maznev (2008) 

studied the SAW dispersions of a periodic array of alternating copper and SiO2 

stripes, with a 3µm-lattice constant, on a silicon substrate using the laser-induced 

transient grating technique [84]. The dispersion reveals a Bragg gap at the 

Brillouin zone boundary formed from the folding and avoided crossing of RWs, 

and a gap within the Brillouin zone. The latter gap was attributed to the 

hybridization and avoided crossing of the Rayleigh and Sezawa modes. A year 

later, the SAW dispersion of periodic arrays of alternating SiO2 and tungsten 

stripes on a silicon substrate with a period of 2 µm was measured by Maznev and 

Wright (2009) [85]. 

 

Having reviewed works on SAW dispersion in various 1D phononic 

structures, we now turn our attention to SAW propagation in 2D phononic systems. 

These systems may possess complete SAW bandgaps, i.e., bandgaps independent 

of the direction of propagation of the SAWs. Although much theoretical research 

has been undertaken on the propagation of SAWs in 2D phononic crystals [86-89], 

there are few reports of experimentally observed SAW bandgaps [90,91]. They 

include a complete surface wave bandgap observed by Benchabane et al. (2006) in 

a square-lattice phononic crystal composed of void inclusions etched in a lithium 

niobate matrix [90]. Even fewer are studies involving the mapping of the SAW 
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dispersion in 2D nanoscale phononic crystals. Very recently, Graczykowski et al. 

(2012) reported the observation of a hypersonic phononic bandgap for thermally 

excited SAWs in 2D phononic crystals comprising a square lattice of 100nm- or 

150nm-high aluminum pillars with a spacing of 500 nm on a Si(001) substrate. The 

dispersion curves were mapped by BLS [92].  

 

Most experiments on hypersonic phonon dispersions are confined to bulk 

acoustic waves. Relatively fewer experimental works on SAWs in hypersonic 

phononic crystals have been reported. Apart from studies of Si gratings, all the 

other works on mapping SAW dispersions in 1D systems deal with microstructures. 

It is of interest to extend the studies of periodic patterned structures on a substrate 

to nanostructured materials. It is also of interest to investigate higher-dimensional 

periodic structures whose surface phononic dispersions are more complex and 

richer in features than those of the 1D phononic crystals. Findings on the 

dispersion of SAWs in such structures may open further prospects for designing a 

new generation of phononic-crystal-based devices in application areas like acoustic 

signal processing. 

 

1.3 Objectives 

1.3.1 Confined acoustic vibrations in nanoparticles 

The literature review in section 1.1 reveals that very few experimental 

works have been done on the confined acoustic modes of free crystalline non-

spherical nanoparticles. Rarer still are experiments on the dependence of confined 

phonon mode frequencies of nanoparticles on their size. Such size-dependence 
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measurements entail the fabrication of a series of batches of particles having a 

range of sizes, with each batch being monodisperse in both size and shape. This 

stringent requirement is difficult to meet. Very often syntheses would yield 

products with not only a wide size distribution, but also of various geometric 

shapes, thus rendering them unsuitable for size-dependence experiments. Moreover, 

no analytical analysis of the eigenmodes of these nanoparticles has been reported.  

For a comprehensive understanding of how the size of a non-spherical body would 

affect its acoustic dynamics, both experimental and theoretical work is required. 

Thus, one objective of the present study is to investigate the size-dependence of 

hypersonic confined eigenvibrations of non-spherical nanocrystals.  

 

1.3.2 Surface acoustic waves on nanostructured phononic crystals 

Pervious experimental investigations into the dispersions of SAWs on 1D 

hypersonic phononic crystals are confined to surface gratings on Si. There are only 

a few publications on the experimental mapping of SAW dispersions of periodic 

arrays of alternating metal and SiO2 micron-sized wires on a Si substrate. 

Structures composed of metal wires are of particular practical importance due to 

their ubiquitous role in microelectronics. Thus, in this thesis, we extend the 

investigations on surface phononic dispersions to 1D periodic arrays of bi-

component nanostripes, as well as 2D periodic arrays of bi-component nanosquares. 

Findings obtained would be of use not only to fundamental science but also to the 

development of devices for potential applications in areas like acoustic signal 

processing.  
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1.4 Outline of the thesis 

In Chapter 2, a brief introduction will be given on the experimental 

technique used in this thesis, Brillouin light scattering, and its kinematics, as well 

as the scattering mechanism, followed by the experimental instrumentation and 

setup. Chapter 3 introduces the fundamental concepts of the theory of elasticity and 

the Brillouin spectrum intensity calculation method of the eigenmodes of 

nanoparticles. The experimental and theoretical studies undertaken in this thesis 

start from Chapter 4. 

 

Chapter 4 presents the study of the size-dependence of the confined 

vibrational mode frequencies of octahedron-shaped gold nanocrystals. Chapters 5 

and 6 investigate the surface acoustic wave dispersions in 1D phononic structures. 

The samples studied in Chapter 5 are periodic arrays of alternating Ni80Fe20 and Fe 

(or Ni, Cu) nanostripes on a SiO2/Si substrate, while those in Chapter 6 are 

periodic arrays of alternating Ni80Fe20 and BARC (bottom anti-reflective coating) 

nanostripes on a Si(001) substrate.  Chapter 7 presents the work done on the band 

structures of the surface acoustic and surface optical waves on a 2D chessboard-

patterned phononic crystal, composed of a periodic array of alternating Ni80Fe20 

and cobalt square nanodots on a SiO2/Si substrate. Finally, Chapter 8 provides an 

overall conclusion of all experimental and theoretical research undertaken in this 

thesis.  

 

References: 

1. P. Moriarty, Nanostructured materials, Rep. Prog. Phys. 64, 297 (2001). 



Chapter 1                                                                                                                            Introduction 

18 

 

2. V. C. Yang and T. T. Ngo, Biosensors and Their Applications, (Springer, 2000). 

3. G. Merga, N. Saucedo, L. C. Cass, J. Puthussery, and D. Meisel, J. Phys. Chem. 

C 114, 14811 (2010). 

4. B. R. Cuenya, Thin Solid Films 518, 3127 (2010). 

5. F. J. Himpsel, J. E. Ortega, G. J. Mankey, and R. F. Willis, Adv. Phys. 47, 511 

(1998). 

6. J. H. Davis, The physics of low-dimensional semiconductors: an introduction, 

(Cambridge University Press, New York, 1997). 

7. A. B. Djurišić and Y. H. Leung, Small 2, 944 (2006). 

8. A. K. Arora, M. Rajalakshmi, and T. R. Ravindran, Encyclopedia of 

Nanoscience and Nanotechnology, (American Scientific Publishers, 2003). 

9. H. Lamb, Proc. London Math. Soc. 13, 189 (1882). 

10. E. Duval, A. Boukenter, and B. Champagnon, Phys. Rev. Lett. 56, 2052 (1986). 

11. M. H. Kuok, H. S. Lim, S. C. Ng, N. N. Liu, and Z. K. Wang, Phys. Rev. Lett. 

90, 255502 (2003). 

12. C. C. Li, K. L. Shuford, M. H. Chen, E. J. Lee, and S. O. Cho, ACS Nano 2, 

1760 (2008). 

13. D. H. Kim, J. W. Heo, M. J. Kim, Y. W. Lee, and S. W. Han, Chem. Phys. Lett. 

468, 245 (2009). 

14. T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, Phys. 

Rev. Lett. 94, 115501 (2005). 

15. W. Cheng, J. J. Wang, U. Jonas, G. Fytas, and N. Stefanou, Nat. Mater. 5, 830 

(2006). 



Chapter 1                                                                                                                            Introduction 

19 

 

16. P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. 

Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, Nano Lett. 11, 107 (2010). 

17. M. S. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, Nat. Phys. 5, 276 

(2009). 

18. V. Laude, J.-C. Beugnot, S. Benchabane, Y. Pennec, B. Djafari-Rouhani, N. 

Papanikolaou, J. M. Escalante, and A. Martinez, Opt. Express 19, 9690 (2011). 

19. Y. El Hassouani, C. Li, Y. Pennec, E. H. El Boudouti, H. Larabi, A. Akjouj, O. 

Bou Matar, V. Laude, N. Papanikolaou, A. Martinez, and B. Djafari Rouhani, Phys. 

Rev. B 82, 155405 (2010). 

20. N. Papanikolaou, I. E. Psarobas, and N. Stefanou, Appl. Phys. Lett. 96, 231917 

(2010). 

21. Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. 

Kastelik, G. Leveque, and B. Djafari-Rouhani, Appl. Phys. Lett. 101, 061109 

(2012). 

22. A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. 

Tamura, D. R. Yakovlev, and M. Bayer, Phys. Rev. Lett. 101, 033902 (2008). 

23. S. Nikitov, Y. Gulyaev, V. Grigorevsky, A. Grigorevsky, I. Lisenkov, and R. 

Popov, J. Acoust. Soc. Am. 123, 3040 (2008). 

24. V. L. Zhang, F. S. Ma, H. H. Pan, C. S. Lin, H. S. Lim, S. C. Ng, M. H. Kuok, 

S. Jain, and A. O. Adeyeye, Appl. Phys. Lett. 100, 163118 (2012). 

25. V. L. Zhang, C. G. Hou, H. H. Pan, F. S. Ma, M. H. Kuok, H. S. Lim, S. C. Ng, 

M. G. Cottam, M. Jamali, and H. Yang, Appl. Phys. Lett. 101, 053102 (2012). 

26. S. Datta, Surface Acoustic Wave Devices, (Englewood Cliffs, NJ: Prentice-Hall, 

1986)  



Chapter 1                                                                                                                            Introduction 

20 

 

27. S. Bhattacharyya and S. Samui, Appl. Phys. Lett. 84, 1564 (2004). 

28. X. Wang, A. Shakouri, B. Yu, X. H. Sun, and M. Meyyappan, J. Appl. Phys. 

102, 6 (2007). 

29. C. E. Bottani, A. L. Bassi, M. G. Beghi, A. Podestà, P. Milani, A. Zakhidov, R. 

Baughman, D. A. Walters, and R. E. Smalley, Phys. Rev. B 67, 155407 (2003). 

30. A. M. Polomska, C. K. Young, G. T. Andrews, M. J. Clouter, A. Yin, and J. M. 

Xu, Appl. Phys. Lett. 90, 201918 (2007). 

31. M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, J. 

Am. Chem. Soc. 125, 14925 (2003). 

32. P. Zijlstra, A. L. Tchebotareva, J. W. M. Chon, M. Gu, and M. Orrit, Nano Lett. 

8, 3493 (2008). 

33. J.H. Hodak, A. Henglein, G.V. Hartland, J. Chem. Phys. 111, 8613 (1999). 

34. M.A. van Dijk, M. Lippitz, and M. Orrit, Phys. Rev. Lett. 95, 267406 (2005). 

35. G.V. Hartland, Annu. Rev. Phys. Chem. 57, 403 (2006). 

36. A. Courty, A. Mermet, P.A. Albouy, E. Duval, and M.P. Pileni, Nat. Mater. 4, 

395 (2005). 

37. R.S. Cataliotti, G. Compagnini, A. Morresi, M. Ombellia and P. Sassia, Phys. 

Chem. Chem. Phys. 4, 2774 (2002). 

38. H. S. Lim, M. H. Kuok, S. C. Ng, Z. K. Wang, Appl. Phys. Lett. 84, 4182 

(2004). 

39. W. Cheng, J. J. Wang, U. Jonas, W. Steffen, G. Fytas, R. S. Penciu, and E. N. 

Economou, J. Chem. Phys. 123, 121104 (2005). 

40. Y. Li, H. S. Lim, S. C. Ng, Z. K. Wang, M. H. Kuok, E. Vekris, V. Kitaev, F. 

C. Peiris, and G. A. Ozin, Appl. Phys. Lett. 88, 023112 (2006). 



Chapter 1                                                                                                                            Introduction 

21 

 

41. Y. Li, H. S. Lim, Z. K. Wang, S. C. Ng, and M. H. Kuok, J. Nanosci. 

Nanotechnol. 8, 5869 (2008). 

42. Y. Li, S. Lim, S. C. Ng, M. H. Kuok, F. Su, and X. S. Zhao, Appl. Phys. Lett. 

90, 261916 (2007). 

43. Y. Li, H. S. Lim, S. C. Ng, M. H. Kuok, M. Y. Ge, and J. Z. Jiang, Appl. Phys. 

Lett. 91, 093116 (2007). 

44. W. L. Johnson, S. A. Kim, R. Geiss, C. M. Flannery, K. A. Bertness, and P. R. 

Heyliger, Nanotech. 23, 495709 (2012). 

45. T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, and G. 

Fytas, Nano Lett. 8, 3194 (2008). 

46. J. Y. Sun, Z. K. Wang, H. S. Lim, S. C. Ng, M. H. Kuok, T. T. Tran, and X. Lu, 

ACS Nano 4, 7692 (2010). 

47. J. Y. Sun, Z. K. Wang, H. S. Lim, V. L. Zhang, S. C. Ng, M. H. Kuok, W. 

Zhang, S. Firdoz, and X. M. Lu, Solid State Commun. 152, 501 (2012). 

48. H. Portales, N. Goubet, L. Saviot, P. Yang, S. Sirotkin, E. Duval, A. Mermet, 

and M. P. Pileni, ACS Nano 4, 3489 (2010). 

49. M. Pelton, J. E. Sader, J. Burgin, M. Z. Liu, P. Guyot-Sionnest, and D. 

Gosztola, Nat. Nanotechnol. 4, 492 (2009). 

50. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, J. Phys. Chem. B 

110, 7238 (2006). 

51. E. Hutter, S. Boridy, S. Labrecque, M. Lalancette-Hebert, J. Kriz, F. M. 

Winnik, and D. Maysinger, ACS Nano 4, 2595 (2010). 

52. Y. Sun, Y. Xia, Science 298, 2176 (2002).  



Chapter 1                                                                                                                            Introduction 

22 

 

53. H. Petrova, C.-H. Lin, S. de Liejer, M. Hu, J.M. McLellan, A.R. Siekkinen, B.J. 

Wiley, M. Marquez, Y. Xia, J.E. Sader, G.V. Hartland, J. Chem. Phys. 126, 

094709 (2007).  

54. X. Lu, M. Rycenga, S.E. Skrabalak, B. Wiley, Y. Xia, Annu. Rev. Phys. Chem. 

60, 167 (2009). 

55. C. L. Nehl, H. Liao, J. H. Hafner, Nano Lett. 6, 683 (2006). 

56. Y. Li, H. S. Lim, S. C. Ng, Z. K. Wang, and M. H. Kuok, Chem. Phys. Lett. 

461, 111 (2008). 

57. M. Montagna, Phys. Rev. B 77, 045418 (2008). 

58. T. Still, M. Mattarelli, D. Kiefer, G. Fytas, and M. Montagna, J. Phys. Chem. 

Lett. 1, 2440 (2010). 

59. J. V. Sánchez-Pérez, D. Caballero, R. Mártinez-Sala, C. Rubio, J. Sánchez-

Dehesa, F. Meseguer, J. Llinares, and F. Gálvez, Phys. Rev. Lett. 80, 5325 (1998). 

60. W. M. Robertson and J. F. Rudy, J. Acoust. Soc. Am. 104, 694 (1998).  

61. F. R. M. de Espinosa, E. Jiménez, and M. Torres, Phys. Rev. Lett. 80, 1208 

(1998). 

62. T. Gorishnyy, J. H. Jang, C. Koh, and E. L. Thomas, Appl. Phys. Lett. 91, 

121915 (2007).  

63. T. Still, W. Cheng, M. Retsch, R. Sainidou, J. Wang, U. Jonas, N. Stefanou, 

and G. Fytas, Phys. Rev. Lett. 100, 194301 (2008). 

64. N. Gomopoulos, D. Maschke, C. Y. Koh, E. L. Thomas, W. Tremel, H.-J. Butt, 

and G. Fytas, Nano Lett. 10, 980 (2010). 

65. D. Schneider, F. Liaqat, E. H. El Boudouti, Y. El Hassouani, B. Djafari-

Rouhani, W. Tremel, H. J. Butt, and G. Fytas, Nano Lett. 12, 3101 (2012). 



Chapter 1                                                                                                                            Introduction 

23 

 

66. P. Mutti, C. E. Bottani, G. Ghislotti, M. Beghi, G. A. D. Briggs, and J. R. 

Sandercock, in Advances in Acoustic Microscopy, edited by A. Briggs (Plenum, 

New York, 1995), Vol. 1, p. 249. 

67. B. A. Auld, Acoustic Fields and Waves in Solids, Vol. 1 & 2 (Wiley, New York, 

1973). 

68. G. W. Farnell, in Physical Acoustics, edited by W. P. Mason and R. W. 

Thurston (Academic, New York, 1970), Vol. 6, p. 109. 

69. R. E. Camley and F. Nizzoli, J. Phys. C 18, 4795 (1985). 

70. R. Loudon and J. R. Sandercock, J. Phys. C 13, 2609 (1980). 

71. G. Carlotti, D. Fioretto, L. Giovannini, F. Nizzoli, G. Socino, and L. Verdini, J. 

Phys. C 4, 257 (1992). 

72. G. W. Farnell and E. L. Adler, in Physical Acoustics, edited by W. P. Mason 

and R. N. Thurston (Academic, New York, 1972), Vol. 9, p. 35. 

73. V. Bortolani, F. Nizzoli, G. Santoro, A. Marvin, and J. R. Sandercock, Phys. 

Rev. Lett. 43, 224 (1979). 

74. V. Bortolani, F. Nizzoli, G. Santoro, and J. R. Sandercock, Phys. Rev. B 25, 

3442 (1982). 

75. R. C. Birtcher, M. H. Grimsditch, and L. E. McNeil, Phys. Rev. B 50, 8990 

(1994). 

76. X. Zhang, J. D. Comins, A. G. Every, P. R. Stoddart, W. Pang, and T. E. Derry, 

Phys. Rev. B 58, 13677 (1998). 

77. B. Hillebrands, S. Lee, G. I. Stegeman, H. Cheng, J. E. Potts, and F. Nizzoli, 

Phys. Rev. Lett. 60, 832 (1988). 



Chapter 1                                                                                                                            Introduction 

24 

 

78. J. R. Dutcher, S. Lee, B. Hillebrands, G. J. McLaughlin, B. G. Nickel, and G. I. 

Stegeman, Phys. Rev. Lett. 68, 2464 (1992). 

79. L. Giovannini, F. Nizzoli, and A. M. Marvin, Phys. Rev. Lett. 69, 1572 (1992). 

80. S. Lee, L. Giovannini, J. R. Dutcher, F. Nizzoli, G. I. Stegeman, A. M. Marvin, 

z. Wang, J. D. Ross, A. Amoddeo, and L. S. Caputi, Phys. Rev. B 49, 2273 (1994) 

81. L. Dhar and J. A. Rogers, Appl. Phys. Lett. 77, 1402 (2000). 

82. G. A. Antonelli, H. J. Maris, S. G. Malhotra, and J. M. E. Harper, J. Appl. Phys. 

91, 3261 (2002). 

83. D. M. Profunser, O. B. Wright, and O. Matsuda, Phys. Rev. Lett. 97, 055502 

(2006). 

84. A. A. Maznev, Phys. Rev. B 78, 155323 (2008). 

85. A. A. Maznev and O. B. Wright, J. Appl. Phys. 105, 123530 (2009). 

86. M. B. Assouar and M. Oudich, Appl. Phys. Lett. 99, 123505 (2011). 

87. Y. Yao, F. Wu, X. Zhang, and Z. Hou, J. Appl. Phys. 110, 123503 (2011). 

88. D. Yudistira, Y. Pennec, B. D. Rouhani, S. Dupont, and V. Laude, Appl. Phys. 

Lett. 100, 061912 (2012).  

89. M. Oudich and M. B. Assouar, J. Appl. Phys. 111, 014504 (2012). 

90. S. Benchabane, A. Khelif, J. Y. Rauch, L. Robert, and V. Laude, Phys. Rev. E 

73, 065601 (2006). 

91. S. Benchabane, O. Gaiffe, G. Ulliac, R. Salut, Y. Achaoui, and V. Laude, Appl. 

Phys. Lett. 98, 171908 (2011). 

92. B. Graczykowski, S. Mielcarek, A. Trzaskowska, J. Sarkar, P. Hakonen, and B. 

Mroz, Phys. Rev. B 86, 085426 (2012). 

  



Chapter 2                                                                                                       Brillouin Light Scattering 

25 

 

Chapter 2      Brillouin Light Scattering 

 

Brillouin light scattering (BLS), a non-contact and non-destructive 

technique which is ideal for studying acoustic phonons in nanostructures, is 

employed as an experimental tool for investigating the acoustic dynamics of 

nanoparticles and nanostructured phononic crystals. In this chapter, we will start 

with a brief introduction to the theory and experimental methodology of BLS. 

         

Brillouin light scattering generally refers to the inelastic scattering of 

monochromatic laser light by thermally excited acoustic phonons or magnons in 

the gigahertz (GHz) frequency range. This inelastic scattering of thermal phonons 

was predicted by Brillouin [1] and independently by Mandelshtam [2] in the 1920s. 

The first observation of this phenomenon was made by Gross [3] in 1930 who 

measured BLS from liquids such as toluene and benzene using a low-pressure 

mercury arc as the light source. 

 

2.1 Kinetics of Brillouin light scattering 

In the particle description, the inelastic light scattering process is described 

in terms of the creation and annihilation of a phonon with wavevector q and 

angular frequency Ω. This process follows the laws of conservation of total 

momentum ( p k ) and energy ( E  ) schematically illustrated in Fig. 2.1. 

                                                         s i k k q ,                                                  (2.1) 

 s i   ,                (2.2) 
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where ki and ks are the respective wavevectors of the incident and scattered 

photons, while ωi and ωs are their respective angular frequencies. The “+” sign 

refers to the anti-Stokes event wherein a phonon is annihilated, with the scattered 

photon having an energy higher than that of the incident one, while the “–” sign 

corresponds to the Stokes event wherein a phonon is created, with the scattered 

photon having an energy lower than that of the incident one.  

 

Fig. 2.1 Kinematics of (a) Stokes and (b) anti-Stokes scattering events in Brillouin 

light scattering. 

 

The thermal phonon wavevector q = ks – ki, and since its energy is much 

smaller than that of a visible photon, ωi  ωs = ω = 2πc/λ0 and ki  ks = k = nω/c, 

where n is the refractive index of the scattering medium for a given frequency of 

the light, c is velocity of light and λ0 the incident laser light wavelength. The 

magnitude of phonon wavevector is 

  2 2q ksin  , (2.3) 

where 𝜙 is the scattering angle between the incident and scattered light (Fig. 2.2).  

As the photon wavevector k is of the order of 10
4
 cm

-1
 for light in the visible and 

ultraviolet region, q is far below the distinguishing value of the Brillouin zone 
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wavevectors (10
8
 cm

-1
). This indicates that Brillouin scattering probes the 

dispersion curves of acoustic modes with very small wavevectors near the 

Brillouin zone center. In this region, the dispersion relation is linear for acoustic 

phonons, that is Ω = vq, where v is the phase velocity of the phonon (in solids, v  

10
3
 – 10

4
 m/s). The angular frequency of the phonon is 

 
0

2 4
2 sin sin sin

2 2 2

v n
vk n v

c

   
 



     
       

     
. (2.4) 

             The maximum frequency shift corresponds to the backscattering geometry 

for which 𝜙 = 180
o
. The magnitude of Ω is of the order of 1 cm

-1
 (~ 30 GHz), 

which is too small to be recognized by grating spectrometers, which are mainly 

used in Raman scattering spectroscopy. Therefore, multi-pass tandem Fabry-Pérot 

(FP) interferometer is used to meet the required high resolution. It is noteworthy 

that Brillouin spectrum obtained from eigenmodes of nanoparticles is q-

independent. 

 

             For metals, semiconductors and opaque film-substrate materials, BLS 

takes place near the sample surface and provides information on SAWs. The 

scattering geometry for an incident angle of θi and the scattered angle θs to the 

surface normal is shown in Fig. 2.2. The scattering plane contains the wavevector 

of the scattered light and the surface normal to the sample. 
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Fig. 2.2 Scattering geometry. ki and ks are the respective incident and scattered 

light wavevectors, qS and qB the surface and bulk phonon wavevectors, and θi and 

θs the respective incident and scattered angles.  

 

             Unlike the wavevector of bulk phonon qB, the surface phonon wavevector 

qS is parallel to the sample surface, and thus 

  sin sini s sk q    . (2.5) 

In practice, the experiment is performed in the 180
o
-backscattering geometry for 

which θi = θs = θ and thus  

 
0

4
2 sin sinsq k


 


    . (2.6) 

Here the magnitude of the surface wavevector is independent of the refractive 

index of the medium and only depends on the incident angle θ and the wavelength 

of the laser light λ0. The frequency of the scattered phonon can be obtained from a 

recorded Brillouin spectrum, and the dispersion relation of SAWs can be mapped 

by changing the laser incident angle θ. 

𝜙 
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2.2 Scattering mechanism 

Brillouin scattering is mediated by two principal mechanisms, viz. the 

surface ripple and the elasto-optic effects, depending on the opacity of and the 

probed volume in the scattering materials [4-6]. 

 

Surface ripple mechanism 

In this mechanism, the light is scattered by dynamic corrugations in the 

surface profile. The phonon vibrations cause the surface to appear as a grating, i.e. 

ripple, traveling in the reverse or forward direction at velocity vs. The ripple is 

capable of producing diffraction and changing the frequency of incoming light 

through Doppler effect, without invoking modulation of dielectric constant in the 

interior of the medium. Thus, the scattering cross section by ripple effect does not 

depend on the scattering volume or elasto-optic constants. This is the dominant 

scattering mechanism for surface acoustic waves in opaque solids, such as 

Rayleigh wave in metals. The inelastic component of the Brillouin spectrum 

displays prominent Stokes and anti-Stokes peaks with frequencies of Ω = ±vsqs. In 

addition to the Rayleigh wave, bulk acoustic waves incident on the surface can also 

cause dynamic surface corrugations, and these will be detected if the component of 

their wavevector parallel to the surface is equal to qs. These are bulk waves with a 

surface character. 

 

Elasto-optic mechanism 

In the case where the material is not totally opaque, the incident light is 

able to penetrate some distance into the material to probe dynamic fluctuations in 
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the strain field. The strain field of a thermally excited acoustic wave induces, 

through the elasto-optic effect, a periodic modulation of the dielectric constant or 

fluctuation in the refractive index. This fluctuation is analogous to a diffraction 

grating traveling at velocity vB. An electromagnetic wave can interact with this 

grating when their wavelengths are properly matched. Inelastic scattering thus 

occurs. The strength of the scattering depends on the elasto-optic constants, and it 

is proportional to the scattering volume. In transparent materials, elasto-optic 

mechanism provides the main contribution to scattering cross section. Both bulk 

acoustic waves and some types of surface acoustic waves traveling within thin 

films can scatter the incident light via this mechanism. The line shape for bulk 

phonons is a Lorentzian profile whose width is proportional to the phonon lifetime. 

 

In materials that are partially opaque, such as semiconductors, both ripple 

and elasto-optic effects are present, and the total Brillouin cross section is given by 

the combination of both contributions. In the case of a transparent film supported 

by opaque substrate, ripple effect at the local surface of the substrate and the 

interference between the two mechanisms, contribute to scattering by modes 

localized within the film and at the interface. However, when the film is thick 

enough compared to the phonon wavelength, this effect is negligible.  

 

2.3 Experiment instrumentation and setup of BLS 

             The major components of a Brillouin system are an argon-ion laser, and a 

six-pass tandem Fabry-Pérot interferometer which is equipped with a silicon 

avalanche diode detector. A schematic of a typical BLS experimental setup is 
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displayed in Fig. 2.3. The whole optical system and the interferometer are 

supported by an optical bench system which rests on a steel plate. 

 

Fig. 2.3 A schematic of BLS set-up in the 180°-backscattering geometry.  

 

        A Spectra-Physics BeamLok 2060-6RS argon-ion laser, equipped with 

microprocessor-based Model 587 Z-Lok accessory package, and operating in 

single mode of wavelength of 514.5 nm, was employed. As shown in Fig. 2.3, the 

vertically-polarized laser beam is split into two perpendicular beams. One beam, 

which serves as the reference beam, strikes a diffuser (D) and then is reflected into 

the Fabry-Pérot interferometer through pinhole P2. The other split beam is directed 

at the sample through a stepped filter which is used to attenuate the laser incident 

power. The beam is reflected by a small mirror (M) with diameter of 6 mm and 

then focused by lens L1 onto the sample as the excitation source. A stream of pure 

argon gas was directed onto the sample surface to cool it and to keep air away from 

it. Lens L1 also functions as a collection lens for the scattered light. The collected 



Chapter 2                                                                                                       Brillouin Light Scattering 

32 

 

light is then refocused by lens L2 into pinhole P1 of the interferometer. In this 

thesis, all Brillouin measurements were performed at room temperature.  

 

Multi-pass tandem Fabry-Pérot interferometer 

             The (3+3)-pass tandem Fabry-Pérot interferometer was obtained from JRS 

Scientific Instruments [7, 8]. A typical FP interferometer consists of two plane 

mirrors mounted parallel to one another, with an optical spacing L between them. 

The light with wavelength λ is transmitted only if L = nλ/2, with n being an integer, 

as shown in Fig. 2.4. The spacing Δλ between two neighboring transmission 

maxima is called free spectral range (FSR) and can be expressed in terms of 

frequency: 

 fFSR = c/2L = [150/L (mm)] GHz, (2.7) 

where c is the velocity of light in vacuum. The finesse (F) of the FP interferometer 

is related to the line width of a given transmission peak by: 

 F





 . (2.8) 

The transmitted intensity is given by the Airy function T: 

 0

2
2

2

( )
2

1 4 sin ( )

TL
T

F L

 





, (2.9) 

where T0 (< 1) is the maximum transmission determined by the system. 
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Fig. 2.4 Illustration of the transmission versus wavelength of FP interferometer.       

 

             An explicit and clear interpretation of the frequency spectrum is not 

possible because high transmission orders exist in the transmission spectra of a 

single FP interferometer which would cause the spectra overlapping. A tandem FP 

interferometer which has two interferometers in series can solve the problem of 

spectra overlapping. A diagram of the tandem FP interferometer system is shown 

in Fig. 2.5. The FP interferometer 1 (FP1) lies in the direction of the translation 

stage movement, with one mirror on the translation stage and the other on a 

separate angular orientation device. The FP interferometer 2 (FP2) lies with its axis 

at an angle θ to the movement direction, with one mirror on the translation stage in 

proximity to the mirror of FP1, and the other mirror on an angular orientation 

device. The spacing of two mirrors is L1 for FP1 and L2 for FP2. The changes in 

FP1 δL1 and in FP2 δL2 satisfy the synchronization condition: 

 δL1/ δL2 = L1/ L2 (2.10) 

λn λn+1 
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Fig. 2.5 Translation stage allowing automatic synchronization scans of the Fabry-

Pérot tandem interferometer. 

 

             The two interferometers are arranged in a parallelogram construction 

which can achieve both statically and dynamically stable synchronization. The 

optical arrangement in the tandem mode is schematically shown in Fig. 2.6. It can 

be seen that the scattered light enters the system through the adjustable pinhole P1, 

and then passes both FP1 and FP2 three times, and finally reaches the output 

pinhole P3. The advantages of the six-pass tandem FP interferometer are numerous 

and they include tilt-free scan, high linear scan, continuous change and 

measurement of mirror spacing, ability to change the mirror spacing moderately 

without losing alignment, higher contrast and larger effective FSR (10 to 300 GHz). 

FP2 

FP1 

Direction of Movement 

Translation Stage 

θ 

L1 

L2 = L1 cos θ 
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Fig. 2.6 A schematic of the optical arrangement in tandem mode. 

 

Photon detector 

             The FP interferometer is connected to a highly sensitive single photon 

counting module, Model SPCM-AQR-16 from EG&G, by which the photons 

pulses are collected and displayed as spectra on a monitor. This detector is very 

sensitive to photons of wavelength ranging from 400 to 1600 nm, and its quantum 

efficiency is slightly over 60% around 500 nm. In addition, the detector utilizes a 

silicon avalanche photodiode which is both thermoelectrically cooled and 

temperature controlled, ensuring a stable performance despite changes in the 

ambient temperature. 

 

2.4 Micro-Brillouin setup 

             A micro-Brillouin system was used in the study of eigenvibrations of 

nanoparticles. Fig. 2.7 shows a photo of the micro-Brillouin system. A DM/LM 
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Leica microscope is modified for the observation of the tiny samples. The 

constructions of the modified microscope are displayed in Fig. 2.8. The optical 

arrangement of the micro-Brillouin system is schematically illustrated in Fig. 2.9. 

In this figure, the incident laser light (red lines) is reflected by a tiny mirror (2 mm 

× 3 mm) and then focused onto the sample. The objective lens functions as both 

the focusing and collection lens. The scattered light collected (blue lines) is sent 

via a periscope to a focusing lens which focuses the scattered light into pinhole P1 

of the FP interferometer. A CCD camera connected to the microscope displays the 

real-time image of the samples on a monitor.  

 

 

Fig. 2.7 Photo of micro-Brillouin light scattering setup.  
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1. CCD Camera 

2. Eyepiece 

3. Turrets for rotating 4 and 5 

4. Mirror for reflecting the scattered 

light 

5. Brass housing & tiny mirror  

6. Objective lenses (Magnification: 

10X, 20X, 50X and 100X) 

7. Sample holder 

8. Translation stage 

9. X-Y stage adjustment knob 

10. Base 

11. Fine focusing knob 

12. Coarse focusing knob 

13. Entrance for incident light 

14. Outlet for scattered light 

15. Halogen lamp housing  

Fig. 2.8 Modified microscope for Brillouin light scattering from nanoparticles.  
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Fig. 2.9 A schematic diagram of the optical components.  

 

             This micro-Brillouin system is particularly useful for the study of confined 

phonons in single nanoparticle. Li et al. (2006) has succeeded in recording the 

Brillouin spectrum of a single SiO2 sphere with diameter of only 260 nm [9]. It is 

noteworthy that 260 nm is only half of the laser wavelength. The feasibility of 

recording Brillouin spectra from a single particle as tiny as this further enhances 

the capabilities of BLS as a powerful experimental tool.  
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Chapter 3      Elasticity Theory in Condensed Matter 

 

In this chapter, some basic theoretical concepts and calculation methods 

will be introduced. These concepts and methods lay the foundation for the 

interpretation of the experimental results and are used for the simulations in this 

thesis. There are three sections in this chapter. In the first section, some 

fundamental concepts of the theory of elasticity are briefly introduced. This is 

followed by the derivation of the general equation of motion. Finally, the Brillouin 

intensity calculation of the eigenmodes of nanoparticles is introduced in the last 

section.  

  

3.1 Basic concepts in elasticity 

Essential concepts in elasticity pertain to the strain and stress tensors and 

their relationship.  

 

3.1.1 Strain and stress 

Consider a solid body undergoing an elastic distortion starting from an 

initial undistorted equilibrium state. The displacement u of each point in this body, 

with its original position x = (x1, x2, x3) with respect to a Cartesian coordinate 

system and its new location x’, can be written as 

                                                u = x’ – x.                                                 (3.1) 

The original distance between two infinitesimally adjacent points dl is given by  

                                       2 2 2 2

1 2 3dl dx dx dx   ,                                        (3.2) 
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using the Einstein summation convention, Eq. (3.2) becomes 

                                                2 ; 1,2,3k kdl dx dx k  .                                       (3.3) 

The separation of the points after a deformation 

                                           
' '

'2 ' ' k k
k k i j

i j

x x
dl dx dx dx dx

x x

 
 

 
.                                 (3.4) 

In the last step, Taylor expansion is used for x’. Then we get 

                                                
'2 2 2 ij i jdl dl dx dx  ,                                          (3.5) 

where 

                                                  
' '

1

2

k k
ij ij

i j

x x

x x
 

  
  

   

,                                      (3.6) 

is called the Lagrangian strain, and 
ij  is the Kronecker delta. We can express the 

strain in terms of the displacement field gradients 

                                             
1

2

j i k k
ij

i j i j

u u u u

x x x x


    
   

     

.                               (3.7) 

 

As we are dealing with infinitesimal displacements, the second order terms 

can be neglected. We get the infinitesimal strain 

                               
1

; , 1,2,3.
2

ji
ij

j i

uu
i j

x x


 
   

   

                           (3.8) 

It is evident that 
ij ji  , and this symmetry with respect to interchange of indices 

indicates that there are only six independent components of strain. 
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Consider an infinitesimal cube centered on the point x in a medium, the 

state of stress at point x is characterized by the forces per unit area acting across 

the faces of the cube. The nine components of the Cauchy stress tensor {
ij } are  

                                
0

lim ; , 1,2,3,
j

i
ij

dA

dF
i j

dA



                                     (3.9) 

where j

idF is the i’th component of the force acting across the surface facing 

outwards along the xj direction and dA is the area of that face. 

 

3.1.2 Elastic constants of solids 

For an ideal elastic body subjected to infinitesimal stresses and undergoing 

infinitesimal strains, the components of the stress tensor (σij) and strain tensor (εkl) 

are linear functions of each other.  

                                                        σij = cijkl εkl .                                                (3.10) 

The elastic behaviour of the material is characterized by the components of the 

elastic stiffness tensor (cijkl), which represents a measure of the resistance of the 

material to elastic deformation, or equivalently those of the compliance tensor (sijkl), 

which represents a measure of the ease of elastic deformation of the material.  

 

As both the strain and stress tensors have six independent strain and stress 

components, the stiffness tensor has thirty-six independent components. This 

simplification [1] is exploited by replacing each pair of indices i j with a single 

index 1, 2, 3, … 6 as follows: 

11 → 1, 22 → 2, 33 → 3, 23 ≡ 32 → 4, 31 ≡ 13 → 5, 12 ≡ 21 → 6. 

In a matrix form, the stiffness tensor can be expressed as 
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11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C

     

     

     

     

     

    64 65 66C C C

 
 
 
 
 
 
 
 
    

.

                              

(3.11) 

 

As the stiffness matrices are symmetric, only twenty-one stiffness 

components are actually independent in Hooke’s law. The number of independent 

elastic constants is reduced further by the crystal symmetry. For example, by 

assuming homogeneity and isotropy, the number of independent elastic constants is 

reduced further from twenty-one to two  

                           

11 12 12

12 11 12

12 12 11

0 0

0 0

0 0 0

0 0 0

C C C

C C C

C C C

     

     

     

    11 12

11 12

11 12

( ) 0 0

0 0 0 0 ( ) 0

0 0 0 0 0 ( )

C C

C C

C C










 
 
 
 
 

    
       
 
        

,                   (3.12) 

and the elastic constants matrix of a solid with cubic crystal symmetry can be 

shown as: 

                                         

11 12 12

12 11 12

12 12 11

44

44

0 0

0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

     

     

     

     

     

 440 0 0 0 0 C

 
 
 
 
 
 
 
 
      

.                             (3.13) 

 

In the case of an isotropic solid, as its mechanical properties are the same in 

all orientations, engineering constants such as Young’s modulus (Y), shear 
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modulus (G), bulk modulus (K), and Poisson’s ratio (ν) are favoured. The Young’s 

modulus and Poisson’s ratio are related to the elastic constants as follows: 

 
  

 
11 12 11 12

11 12

2C C C C
Y

C C

 



, (3.14) 

                                                     12

11 12

.
C

C C
 


                                  (3.15) 

 

3.2 Dynamic motions of an elastic solid 

In a uniform stress field and in the absence of body forces and torques, the 

particles in a solid experience no resultant forces, and hence no accelerations. 

Accelerated motion is brought about by nonuniformity in the stress field or stress 

gradient. Consider the two forces in the 1x  direction acting on a small cube of side 

x  depicted in Figure 3.1. These forces acting across the two faces normal to the 

1x  direction are not exactly equal and opposite, since they depend on the stress 11  

evaluated at slightly different positions 1
2

x
x


  . They are thus given by 

                       11
11 1 11

1

( ) (0) .
2

x
x x

x

 
  


   


                                   (3.16) 

The resultant of these two forces, taking into account the areas 2x  of the two 

faces, is 
311

1

x
x







. Considering the pairs of faces normal to the 2x

 
and 3x  directions, 

forces 
312

2

x
x







 and 

313

3

x
x







can be obtained. Therefore, the resultant force in the 



Chapter 3                                                                                  Elasticity Theory in Condensed Matter 

46 

 

1x  direction is 
1 3

1

j

j

F x
x








, summed over j according to the Einstein summation 

convention [2]. 

 

Fig. 3.1 Forces exerted on an infinitesimal cube by the surrounding material in the 

presence of a stress gradient. 

 

The same argument can be applied to the 2x  and 3x  components of force, 

and the i’th component of the resultant force is therefore 

                                                      3.
ij

i

j

F x
x


 





                                            (3.17) 

This force causes acceleration, according to Newton’s second law, which is given 

by  

                                              

2 2
3

2 2
,i i

i

u u
F m x

t t
 

 
 

 
                                  (3.18) 
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where 3m x  is the mass of the cube, ρ is the density. From equations (3.17) 

and (3.18), it follows that [3,4] 

                                                    
2

2
.

iji

j

u

t x







 
                                               (3.19) 

Expressing the stress in terms of stress-strain relations (see Eq. (3.1)) and the strain 

in terms of the displacement field, and making use of the symmetry of the elastic 

stiffness tensor with respect to interchange of indices, the wave equation can be 

expressed as 

                                  
2

2
( ).i k

ijkl

j l

u u
c

t x x

 


  

                                        (3.20) 

This is the wave equation for a general, even for a heterogeneous solid, in the limit 

of small displacements. This equation will be used to simulate the eigenmode 

frequencies of octahedron-shaped gold nanocrystals studied in this thesis. 

 

If the propagation of elastic waves in homogeneous media is considered, 

Eq. (3.20) can be written as 

                                                    
2 2

2
.i k

ijkl

j l

u u
c

t x x

 


  

                                       (3.21) 

The simplest solutions of the above wave equation are plane waves given by the 

real part of: 

                                                exp[ ( )]i iu U i t  q x ,                                    (3.22) 

where U is the polarization vector, q the wavevector ( 2 / q , λ is the 

wavelength), and ω the angular frequency.  On substituting into Eq. (3.21), a set of 

three linear equations relating these quantities results: 
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2( ) 0ijkl j l ik kc q q U   .                                    (3.23) 

 

In the case of an isotropic solid, it can be, without loss of generality, 

assumed that the propagation direction is along the x1 axis, i.e., the only nonzero 

component of q is q1 = q. Introducing the Lamé coefficients λ and μ: 

                                       λ = C12, μ = C44, and C11 = λ + 2μ.                              (3.24) 

Eq. (3.22) becomes: 

                                                 

2 2

1 1

2 2

2 2

2 2

3 3

( 2 ) ,

,

.

U q U

U q U

U q U

 

 

 

  





                                    (3.25) 

 

Here, the displacements in three orthogonal directions are completely 

uncoupled. Nontrivial solutions take the form of either U1, U2 or U3 being nonzero, 

and the other two being zero. The mode with U1 nonzero has its polarization vector 

parallel to its wavevector and is called the longitudinal mode. The phase velocity 

of this wave (longitudinal velocity) is 

                                         
L 11 /V C

q


  .                                        (3.26) 

 

The other two modes have their polarization vectors perpendicular to their 

wavevector, and are known as transverse modes. They both have the same phase 

velocity (transverse velocity) 

                                       
T 44 /V C

q


  .                                         (3.27) 
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Fig. 3.2 Coordinate system for the surface wave problem. 

 

The solution for Rayleigh waves to Eq. (3.21) is a linear combination of the 

partial waves of the form  

                            3 1exp( )exp[ ( )]i iu iqx iq x Vt  .                             (3.28) 

The phase velocity of the Rayleigh wave, V, is measured along the propagation 

wavevector q (x1 direction in Fig. 3.2). Conceptually, the x3-dependence is 

regarded as part of the "amplitude" of the term and the wave like properties are 

taken to be contained in the common propagation part of the terms, 

1exp[ ( )]iq x Vt . Thus, the propagation vector is always assumed to be parallel to 

the surface. 

  

To solve the wave equation after substituting Eq. (3.28) to Eq. (3.21), one 

must consider the boundary conditions [5]: zero-valued stresses at the free surface 

plane and vanishing of displacement at large depths. In the case of homogeneous 

isotropic media, the above procedure results in an implicit equation for the velocity 

of Rayleigh wave [6] 

x1, q 

x2 

x3 
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          
             
               

,                   (3.29) 

where VL and VT are the respective velocities of the longitudinal and transverse 

bulk wave in the same medium.  

 

3.3 Intensity calculation 

Using the finite element analysis, the frequencies of the confined acoustic 

modes can be calculated for nanoparticles with an arbitrary shape. However, not all 

the simulated modes are observable in Brillouin light scattering experiments. 

Identification of the observed modes can be aided by information on their Brillouin 

scattering intensities. For this reason, the scattering cross-sections of the modes of 

a gold nano-octahedron have been computed to identify those observed modes with 

significant Brillouin scattering intensities. 

 

The general equation of the scattering intensity for contribution of the pth 

mode, with frequency 𝜔p
, to the Stokes part of the spectrum for a one-phonon light 

scattering [7] can be expressed as 

         
2( ) 1

( ) ( , )
i

p
p i i i

p i

n
I e i i p Q  






 
      q x

q q e ,                 (3.30) 

where α and β are the respective directions of polarization of the incident and 

scattered photon, 1( , ) [exp( / ) 1]n T h kT     the Bose-Einstein factor, and 

–s iq k k  the exchanged wavevector.  

 



Chapter 3                                                                                  Elasticity Theory in Condensed Matter 

51 

 

The first term, ( , )
ii i

i
e i i p       q x q e , is referred to as the Brillouin 

term. It describes the polarization fluctuations due to the displacement of the units 

from their equilibrium position: the density of the microscopic polarization units is 

modulated by the acoustic vibrations. The second term, 
ii i

i
e Q

  q x
 is referred to 

as the Raman term. It is due to two kinds of induced effects. One is the local field 

changes due to the motion of the surrounding dipoles. The other one is the 

electronic polarizability changes with the change of the atomic distances. 

 

In a continuum approximation, the equilibrium macroscopic polarizability 

density tensor ( )xP  can be used instead of the microscopic polarizability 
i

  

and the sum in Eq. (3.30) is transformed into a space integral. Furthermore, if the 

material is homogeneous and isotropic, ( )xP  
can be expressed as 

( )xP P  .                                                  (3.31) 

Neglecting the Raman term, the Brillouin intensity [8] of the pth mode of angular 

frequency p becomes 

                                               
2

2

1
,i

p p

p

I e dV


 
 

q r
q e                                     (3.32)

 

where ep is the normalized eigenvector, and q the exchanged wavevector. Ip is 

averaged over various q’s ranging from 0 to 0.05 nm
-1

 (= 4n/, where n is the 

refractive index, and  is the laser wavelength).  

 

As an illustration, we calculated the Brillouin spectrum of silica spheres 

with diameter of 360 nm using Eq. (3.32). The parameters used are VL = 3954 m/s, 
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VT = 2391 m/s and ρ = 1960 kg/m
3
 [9]. The resultant spectrum is shown in Fig. 3.3 

together with the BLS data. It can be seen that the agreement between the 

calculated and experimental spectra is reasonably good.  

 

Equation (3.32) will be used in the next chapter to estimate the Brillouin 

scattering intensity of eigenmodes of non-spherical gold nanocrystals. The 

computed size-dependence of frequencies of modes with significant intensities 

based on this estimation is compared with experimental data, which reveals that 

experiment accords well with calculations (see Chapter 4). 

 

Fig. 3.3 Brillouin spectrum of silica nanospheres of diameter of 360 nm. 

Experimental data are denoted by dots. Calculated spectrum of 360nm-diameter 

silica nanospheres using Eq. (3.32) is represented by the solid curve which is the 

summation of all calculated mode intensities.  
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Chapter 4      Hypersonic Confined Eigenvibrations of 

Gold Nano-octahedra 

 

4.1 Introduction 

The acoustic phonon spectrum of nanoparticles, arising from confined 

phonons, in the gigahertz range, differs from acoustic waves propagating in their 

corresponding bulk structures because of their low dimensionality. For instance, 

experiments carried out on nano-sized isotropic spheres reveal that their confined 

vibrational modes possess distinct frequencies that are inversely proportional to 

their diameter [1-4].
 
Such a relationship was predicted by Lamb who analytically 

established that the modes of an isotropic sphere are classified into two categories, 

viz., spheroidal and torsional modes [5].
 
It is important to study the confined 

acoustic phonon modes of nanoparticles for an understanding of the thermal and 

mechanical properties of these nano-objects. For example, knowledge of the 

confined vibrational modes of nanoparticles permits the calculation of their 

properties such as the specific heat due to phonons [6].  

 

Extensive experimental work has been carried out on the acoustic dynamics 

of free isotropic spherical nanoparticles [1-4,7,8]. In contrast, very few 

experimental studies of the vibrations of free crystalline non-spherical 

nanoparticles have been reported [9-12]. Among them are the studies of cube-

shaped GeO2 nanoparticles of hexagonal crystal symmetry by Li et al. (2007), and 

crystalline gold nanorods by Hu et al. (2003) [9,10]. Rarer still are experimental 
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works on the dependence of confined phonon mode frequencies of nanoparticles 

on their size. Such size-dependence measurements entail the fabrication of a series 

of batches of particles having a range of sizes, with each batch being monodisperse 

in both size and shape. This stringent requirement is difficult to meet. Very often 

syntheses would yield products with not only a wide size distribution, but also of 

various geometric shapes, thus rendering them unsuitable for size-dependence 

experiments.  

 

Among the types of materials studied, nanoparticles composed of noble 

metals have been the focus of extensive studies due to their unique properties and 

numerous applications such as catalysis, surface plasmonics, chemical sensing, 

bioimaging, and photothermal therapy [12-17]. In this chapter, we study the 

confined acoustic phonons in single-crystal gold octahedron-shaped nanoparticles 

having face-centered cubic structure. The fabrication of batches of monodisperse 

gold octahedra in various sizes ranging from 42 to 120 nm allowed the 

experimental determination of the dependence of the frequencies of the phonon 

modes of octahedron-shaped objects on their size. The nondestructive and 

noncontact technique of Brillouin light scattering (BLS) was employed, as it is an 

excellent tool for detecting vibrational modes of nanostructures in the gigahertz 

frequency range [1-4,7-9,18-20]. The frequencies and displacement profiles of 

these modes were also evaluated using numerical simulations based on the finite 

element approach. To aid in the identification of the observed Brillouin peaks, the 

scattering cross-sections of the modes were also estimated. 
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4.2 Sample fabrication and BLS measurements 

A series of aggregates of high-quality gold octahedra with respective mean 

edge lengths l = 42, 55, 78, 81, 84, 90, 99 and 120 nm was synthesized following 

the procedure detailed in Ref. 14. These samples were designed by us and 

fabricated by Assistant Professor Lu Xianmao of the Department of Chemical and 

Biomolecular Engineering, National University of Singapore. The fabrication 

procedure is described below. 

 

Materials used for fabrication 

Ethylene glycol (EG, Sigma-Aldrich), chloroauric acid trihydrate 

(HAuCl43H2O, Alfa Aesa), poly(diallyldimethylammonium chloride) solution 

(PDDA, 20 wt% in H2O, MW = 200 000-350 000, Aldrich) and hydrochloric acid 

(HCl, 37%, Merck) were used as received without any further purification. The 

water used throughout this work was 18.2 MΩ ultrapure deionized water. 

 

Synthesis of Au octahedra 

Gold octahedra were prepared using a PDDA-mediated polyol process as 

follows: 

In a typical reaction, 0.2 mL of 20% PDDA solution and 10 mL of EG were 

well mixed in a glass vial. To this mixture, 10 μL of HAuCl4 aqueous solution (0.5 

M) and a given volume of 0.5 M HCl were then added before the vial was capped 

and placed in an oil bath.  The volumes of HCl solution were 200, 50, 25, 10 and 5 

μL for the syntheses of 120, 99, 90, 84 and 80 nm Au octahedra, respectively. The 

reaction was allowed to continue for 30 min at 195 °C under vigorous stirring. 
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Afterwards, the Au particles were precipitated from EG using 10 ml of acetone 

with centrifugation at 10000 rpm for 10 min, followed by washing with water for 

five times (9000 rpm, 10 min). For 78, 55 and 42 nm Au octahedra, the reactions 

were carried out without adding HCl for 30, 15 and 10 min, respectively. The 

concentrations of the reactants and reaction times are also listed in Table 4.1.  

 

Table 4.1 Synthesis data of Au nano-octahedra. 

Octahedra edge 

length (nm) 
HAuCl4 (M) HCl (M) 

Additional 

HCl (μL) 

Reaction 

time (min) 

120 0.5 0.5 200 30 

99 0.5 0.5 50 30 

90 0.5 0.5 25 30 

84 0.5 0.5 10 30 

80 0.5 0.5 5 30 

78 0.5 0.5 0 30 

55 0.5 0.5 0 15 

42 0.5 0.5 0 10 

 

 

Size determination and characterizations of Au nano-octahedra 

The particle sizes were determined by field-emission scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM). The size 

polydispersity for each batch is only ~ 4%. A typical SEM image of the 78 nm 

octahedra and a TEM image of 120 nm octahedra, shown in Fig. 4.1 and 4.2 

respectively, reveal that the resulting particles are monodisperse and have a well-

defined octahedral crystal habit. Selected area electron diffraction (SAED) patterns 
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taken of single gold particles, such as the one shown in Fig. 4.3 from the [111] 

zone axis, indicate that the particles are single-crystals.  

 

 

Fig. 4.1 SEM image of gold octahedral nanoparticles with mean edge length l = 78 

nm. 

 

Fig. 4.2 TEM image of gold octahedral nanoparticles with mean edge length l = 

120 nm. 
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Preparation of samples for Brillouin study 

The gold octahedral nanoparticles came in water suspensions. Prior to the 

Brillouin measurements, various aggregates of loose gold nano-octahedra were 

prepared by eye dropping colloidal solutions of the nanoparticles onto respective 

clean pieces of silicon wafers. This is followed by vacuum drying for several hours 

at room temperature. 

 

Fig. 4.3 SAED pattern of an l = 120 nm gold octahedron. The inset shows its TEM 

image, with the scale bar representing 50 nm. 

 

Brillouin measurements 

The phonon spectra of the gold nanoparticles were recorded by a micro-

Brillouin system whose major components were an argon-ion laser, and a six-pass 

tandem Fabry-Pérot interferometer which was equipped with a silicon avalanche 

diode detector, and optically interfaced to a modified DM/LM Leica microscope 

(see Chapter 2). The 180
o
-backscattering geometry was employed, with a 

microscope 10 objective lens serving as both the focusing and collection lens. A 

CCD camera, attached to the microscope, allowed the viewing of the samples 
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under study. Spectra were excited with the 514.5 nm radiation, with the laser 

power incident on the samples limited to just a few milliwatts to prevent damage 

due to overheating. The free spectral range was chosen to be 60 GHz for the 

particle sizes ranging from 42 to 80 nm, 40 GHz for 84 to 99 nm, and 30 GHz for 

120 nm. The measured Brillouin spectrum of these eigenmodes of nanoparticles is 

independent of the laser incident angle. As the inelastic scattering from the samples 

was weak, each spectral scan typically lasted 20 hours.  

 

Fig. 4.4 An optical microscope image (10 magnification) displayed on a monitor, 

of an aggregate of octahedral particles, with a mean edge length of l = 78 nm, 

illuminated by white light. The microscope is optically interfaced with the BLS 

system. The gold particles appear as yellow regions, while the other regions 

represent the exposed silicon wafer which served as the sample holder. 

 

A typical optical microscope image of the sample of 78 nm octahedra is 

shown in Fig. 4.4. The red circle indicates the spot where the laser light irradiated 

on the sample. The exact location of the laser spot on the sample was noted so that 
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the same spot can be imaged using SEM. SEM images of the gold particles, of 

mean edge lengths larger than 70 nm, recorded after the Brillouin measurements 

confirmed the absence of geometric shape deformation due to laser heating. In 

contrast, the SEM images taken from 42 and 55 nm Au nanoparticles reveal that 

they have melted and their shape deformation, due to laser heating at laser powers 

as low as 1 mW, is quite obvious. Because of their severe shape deformation, it is 

not possible to obtain proper BLS spectra of the confined vibrational modes. 

Figure 4.5 shows the SEM images of the 42 nm gold octahedra exposed under 

different laser powers for 10 min.  

 

Fig. 4.5 SEM images of l = 42 nm gold octahedra recorded after 10 min laser 

exposure under laser powers of (a) 4 mW and (b) 1 mW. 

 

4.3 Results and discussions 

Experimental results 

Figure 4.6 shows respective Brillouin spectra of gold octahedra of mean 

edge lengths 78 – 120 nm. All spectra recorded were fitted with Lorentzian 

functions (dashed curves).  

(a) 4 mW  (b) 1 mW  
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Fig. 4.6 Brillouin spectra of six batches of gold octahedra of sizes l = 78 – 120 nm. 

Experimental data are denoted by dots. The spectrum is fitted with Lorentzian 

functions (dashed curves) and a background (dotted curves), while the resultant 

fitted spectrum is shown as a solid curve. 
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Each spectrum features up to nine well-resolved peaks lying below 35 GHz 

whose intensities, in general, progressively decrease with frequency, characteristic 

of the confined acoustic modes of a nano-object [1-4,9]. The measured peak 

frequencies were plotted as a function of inverse octahedron diagonal ( 2l , 

where l is the octahedron edge length) in Fig. 4.7, which reveals that the peak 

frequencies are blue shifted with decreasing particle size.  

 

 

Fig. 4.7 Dependence of measured and calculated vibrational mode frequencies of 

single-crystal gold nano-octahedra on inverse octahedron diagonal. Experimental 

data are denoted by dots, while calculated data are represented by solid lines.  

 

Calculation of eigenmode frequencies  

The vibrational eigenmodes of an object can be numerically calculated 

from the following equation:  
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                                             ,             (4.1) 

where u(x, t) is the displacement field of an elastic medium, Cikjl the elastic tensor, 

and ρ the mass density. The values of the three independent elastic constants and 

density used in the calculations, for the gold nanocrystals of cubic crystal 

symmetry, are taken from Ref. 21 for bulk gold crystals, viz., C11 = 191 GPa, C12 = 

162 GPa, C44 = 42.4 GPa, and ρ = 19.283 g/cm
3
. A finite element analysis was 

performed to solve Eq. (1), with the imposition of stress-free boundary condition at 

the particle surface, to yield the vibrational modes of a gold octahedron.  

 

             The size-dependence of frequencies of the calculated modes is also shown 

in Fig. 4.7. It is noteworthy that the mode frequencies of experimental Brillouin 

data scale with inverse octahedron diagonal. The observed Brillouin peaks are thus 

attributed to eigenvibrations of individual gold nano-octahedra arising from spatial 

confinement. However, there are more theoretical modes than the measured ones, 

implying that not all the calculated vibrational modes contribute to the Brillouin 

spectra.  

 

Brillouin intensity estimation  

             The scattering cross-sections of the modes were also calculated to identify 

those modes with significant Brillouin scattering intensities. For this purpose, a 

simple model based on the following equation [8,22], was used to estimate the 

intensity of the pth mode of angular frequency p, 
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where ep is the normalized eigenvector, and q the exchanged wavevector. The 

integration was taken over the skin depth of the metallic octahedron rather than 

over its entire volume, and Ip was averaged over various q’s ranging from 0 to 0.05 

nm
-1

 (= 4n/, where n is the refractive index, and  the laser wavelength).  

 

             While Eq. 4.2 is appropriate for isotropic nanospheres, we shall, 

nevertheless, use it to estimate the scattering intensity of crystalline gold octahedra. 

As shown in Table 4.2, the lowest and second lowest observed Brillouin peaks, of 

the 78 nm gold octahedron, with respective frequencies of 9.2 and 13.0 GHz, agree 

well with the calculated larger intensity modes.  

 

Table 4.2 Calculated mode frequencies and intensities of the ten lowest-energy 

modes of the 78 nm gold octahedron. 

Brillouin peak  

frequency (GHz) 

Calculated mode 

Frequency (GHz) Scattering intensity (a. u.) 

9.2 

8.2 0.2 

9.3 23.9 

9.7 21.2 

 

10.1 0.0 

11.5 0.0 

12.1 0.0 

13.0 
12.8 18.7 

13.2 25.6 

 
14.1 0.0 

14.7 0.0 

     



Chapter 4                                            Hypersonic Confined Eigenvibrations of Gold Nano-octahedra 

67 

 

The size-dependence of selected modes with significant intensities is 

compared with experimental Brillouin data in Fig. 4.8, which reveals that 

experiment accords well with simulations. The good agreement between 

measurements and theory suggests that the elastic constant values of the nanosized 

gold octahedra studied are comparable to those of bulk crystalline gold structures. 

 

Fig. 4.8 Dependence of measured and calculated vibrational mode frequencies with 

large scattering intensities of single-crystal gold nano-octahedra on inverse 

octahedron diagonal.  

 

Discussions 

The calculated frequencies of the three lowest-energy modes, which are 

also among those with larger intensity as shown in Table 4.2, of the 78 nm 

octahedron are 8.2, 9.3 and 9.7 GHz. Now, its lowest-energy Brillouin peak 

measured, which has a full width at half maximum (FWHM) of 1.6 GHz, is 
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centered at about 9.1 GHz. This peak is thus a multi-mode one arising from the 

three aforementioned modes. Similarly, it can be seen from Fig. 4.8, that each 

measured peak is due to contributions from more than one eigenmode. The 

proximity of the modes contributing to each peak and the linewidth broadening due 

to the size polydispersity of the samples preclude the resolution of these separate 

modes [4].  

 

Multi-mode spectral peaks were also observed by Still et al. in their study 

of isotropic polystyrene and silica nanospheres [8]. Numerical simulations were 

also performed to determine the displacement profiles of the three modes that 

contribute to the lowest-energy peak. Simulated profiles of the two maximal 

displacements for each of these modes, within a cycle of oscillations, are illustrated 

in Fig. 4.9.  
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Fig. 4.9 Simulated displacement profiles of (a) the lowest-energy mode, (b) the 

second lowest-energy mode and (c) the third lowest-energy mode of a gold nano-

octahedron of cubic crystal symmetry. For each mode, profiles of its two maximal 

displacements, within a cycle of oscillations, are presented. The displacement 

magnitudes are color-coded, with red denoting the maximal value. The outlines of 

the undeformed octahedra are represented by solid lines.  

 

(a) 

(b) 

(c) 
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Aside from the highly symmetrical sphere, no analytical analysis of the 

confined acoustic vibrations of objects of other geometric shapes has been reported. 

It is not clear how the size and shape of a non-spherical body would affect its 

acoustic dynamics. Our results on the size-dependence, together with similar ones 

reported for spheres and cubes [1-4,9,20],
 
imply that the frequencies of the 

confined acoustic modes of any free regular-shaped homogeneous object always 

scale with its inverse linear dimension. Additionally, they suggest that this 

universal relationship is valid for objects of any size in the classical regime, and is 

not dependent on other factors such as their elastic properties. These findings 

would provide guidance to theorists studying the confined acoustic vibrations of 

such objects. A deviation from linearity was recently reported by Sun et al. in their 

study of cubic Ag core-silica shell nanospheres [19]. However, as these are 

heterostructures and hence non-homogeneous objects, they are not governed by the 

above-mentioned universal relationship. 

 

The vibrational modes of our gold octahedra are more complicated than 

those of isotropic spheres which are either spheroidal or torsional modes.  These 

modes, of a homogeneous free sphere, are classified by their angular momentum l 

( 0l  ) and its z component m ( l m l   ) which indicates the degree of 

degeneracy. The number of m values is 2l + 1, which means these modes are 

( 2 1l  )-fold degenerate. These eigenmodes, in increasing order of frequency, are 

also indexed by n [ 1n  , n = 1 corresponds to the first harmonic (fundamental 

mode), n = 2 to the second harmonic and so on]. 
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The lowering of spherical symmetry, either by changing the particle shape 

or its crystallinity (crystal symmetry), would result in the lifting of mode 

degeneracy, and thus the mode with angular momentum l would split into a 

maximum of 2l + 1 components. The eigenvibrations of gold octahedra with cubic 

crystal symmetry studied in this work generally contain more modes than those of 

isotropic spheres. However, the gold nanocrystals still exhibit sufficiently high 

symmetry such that some modes are degenerate. For instance, we found that, from 

the results of the simulations, the lowest-energy mode of the 78 nm octahedron, 

with frequency of 8.2 GHz, is two-fold degenerate.  

 

It is of interest to ascertain the trend of mode splitting arising from the 

lowering of the crystal symmetry [23]. It is possible to track the frequencies of the 

different modes as the elastic constants progressively vary from those of an 

isotropic material (x = 0) to those for an anisotropic material (x = 1): 

                           ( ) (1 ) iso aniC x x C xC   ; 0 ≤ x ≤ 1,                            (4.3) 

where C
iso

 and C
ani

 are the elastic constants for the isotropic and anisotropic 

materials. In particular, we calculated the evolution of mode frequencies of a gold 

sphere of 68 nm in diameter and an octahedron with 78 nm edge length as each of 

them progressively transforms from an isotopic symmetry to a cubic crystal 

symmetry.  

 

The elastic constants used for the isotropic gold, viz., C11 = 200.7 GPa and 

C12 = 149.7 GPa, is taken from the experimentally fitted ones for polycrystalline 

gold nano-objects [24]. We refer to the curve representing the variation of a mode 
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frequency as a ‘branch’. It should be noted that such branches are made of 

fictitious materials except for x = 1 and x = 0, where the real elastic parameters of 

the bulk material and experimentally fitted values of polycrystalline gold are used.  

 

The branches of the calculated vibrational modes of the gold sphere 

corresponding to the lowering of the symmetry in going from the isotropic to the 

anisotropic case are plotted in Fig. 4.10a, while those of the gold octahedron are 

plotted in Fig. 4.10b. The figures present the trend of mode splitting due to the 

lowering of the crystal symmetry. It can also be seen from these figures that the 

eigenmodes of an octahedron of cubic crystal symmetry are complicated, making 

the classification of these modes difficult. Further theoretical work should be 

performed to identify and classify the vibrational modes of non-spherical 

crystalline particles using group theory, which will make it possible to ascertain the 

nature of experimentally observed modes. 

 

 

Fig. 4.10 The evolution of the mode frequencies of (a) a gold sphere of diameter of 

68 nm and (b) a 78 nm gold octahedron with varying elastic anisotropy.  
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4.4 Conclusions 

In summary, the micro-Brillouin light scattering from a series of high-

quality octahedron-shaped gold nanocrystals has been measured. A finite element 

analysis reveals that the nine peaks observed are due to eigenvibrations of 

individual nano-octahedra resulting from spatial confinement, with each peak 

arising from more than one vibrational mode. It is established that the mode 

frequencies of the gold nanocrystals are inversely proportional to the octahedron 

diagonal, and that their elastic constants are comparable to those of bulk gold 

crystals. The findings, together with similar ones reported for spheres and cubes 

[1-4,9,20],
 
suggest that the frequencies of the confined eigenvibrations of any free 

regular-shaped homogeneous object always scale with its inverse linear dimension. 

Additionally, they imply that this universal relationship is valid for such objects of 

any size in the classical regime, and is not dependent on their elastic properties. 

These findings would provide guidance to theoretical investigations into the 

confined acoustic eigenmodes of such objects. Knowledge of confined acoustic 

modes can be employed in areas such as potential detection of gravitational waves 

by resonant-mass detectors [25]. 
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Chapter 5      Surface Phononic Dispersions in One-

dimensional Bi-component Nanostructured Crystals 

 

5.1 Introduction 

The propagation of surface acoustic waves is of great importance to both 

fundamental physics and technology. Although the early research into SAWs is 

mainly confined to seismological applications, these days it extends to applications 

such as electro-acoustic devices. As was reviewed in Chapter 1, SAW propagation 

in periodic patterned films on a substrate has been the subject of increasing interest 

for their potential applications in microelectronics and SAW phononic-crystal-

based devices [1-3].  As stated above, one of the objectives of this project is the 

study, by Brillouin light scattering, of the surface phononic dispersions of 1D 

periodic arrays of bi-component nanostripes and 2D arrays of bi-component 

nanosquares.  

 

The SAW dispersion relation of a film-substrate structure depends on the 

elastic properties of the film material, the film thickness and the elastic properties 

of the substrate material. Therefore, for a 1D bi-component phononic structure in 

the form of a periodic array of alternating nanostripes on a substrate, the SAW 

dispersion is dependent on the elastic properties of the component materials of the 

film, the lattice parameters, the filling fraction, the thickness of the film as well as 

the elastic properties of the substrate. Thus, the frequency bandgap can be tunable 

by changing any of these parameters. 



Chapter 5                      Surface Phononic Dispersions in 1D Bi-component Nanostructured Crystals 

78 

 

Two groups of 1D phononic crystals were studied. In this chapter, we will 

focus on the SAW dispersions of 1D phononic crystals comprised of linear 

periodic arrays of alternating Ni80Fe20 (Permalloy, Py) and Fe (or Ni, Cu) 

nanostripes on a SiO2/Si substrate. For brevity, they will be referred to as the Py/Fe, 

Py/Ni and Py/Cu phononic crystals. The next chapter will discuss the SAW 

dispersions of 1D periodic arrays of Py and BARC nanostripes on a Si substrate. 

 

5.2 Sample fabrication and BLS measurements 

Three nanostructured crystals with the same structure and dimensions were 

studied. These crystals were designed by us and fabricated by our collaborator 

Professor Adekunle Olusola Adeyeye of the Department of Electrical and 

Computer Engineering, National University of Singapore. The fabrication process 

is described below. 

 

 

Fig. 5.1 Schematics of fabrication process for 1D nanostructured phononic crystals. 
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The 30nm-thick 1D periodic array of alternating 250nm-wide Py and Fe (or 

Ni, Cu) stripes, of lattice constant a = 500 nm were fabricated using high-

resolution multilevel electron beam lithography (EBL), deposition, and lift-off 

processes, as depicted in Fig. 5.1 [4]. First, a 120 nm-thick polymethyl 

methacrylate (PMMA) EBL resist was spin-coated on a SiO2/Si(001) wafer 

substrate. The substrate was baked at 180 
o
C for 90 s on a hot plate. A 75 kV 

lithography system (Elionix ELS 7700) with a resist dose of 768 µC/cm
2
 was used 

to pattern the first layer of stripes. Appropriate alignment marks were also 

patterned for the second stage of lithography process at this stage. After the 

exposure, a 1:3 solution of methyl isobutyle ketone (MIBK) and isopropyl alcohol 

(IPA) was used to develop the patterned structure. A 30 nm-thick Py film was then 

deposited at a rate of 0.12 Å/s on the patterned substrate in an electron beam 

deposition chamber with a base pressure of 310
-7

 torr. After the lift-off process in 

acetone, the fabricated Py stripes were finished and examined under a JEOL JSM-

6700F field emission SEM. The alignment marks fabricated in the first EBL stage 

were used in exposing the second set of stripes in the gaps between neighboring Py 

stripes. The fabrication process was then repeated for the deposition of 30 nm-thick 

iron (or nickel, copper) stripes, followed by a liftoff process. The SEM image of 

the resulting structures which has a laterally patterned area of 100μm × 100μm is 

shown in Fig. 5.2.  
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Fig. 5.2 SEM image of the 1D periodic array of alternating Py and Ni nanostripes, 

each of width 250 nm. 

 

The BLS measurements were performed in the 180°-backscattering 

geometry, with the scattering plane normal to the sample surface and phonon 

wavevector q along the periodicity direction of the phononic crystals (x direction in 

Figs. 5.2 and 5.3). Brillouin spectra of acoustic excitations were recorded in p-p 

polarization employing the scattering geometry schematically shown in Fig. 5.3. 

The dispersion relations were mapped by varying the laser light incidence angle θ 

to obtain phonon wavevectors q (= 4πsinθ/λ, λ = 514.5 nm) up to the third Brillouin 

zone (BZ). 

 

y 

x 
z 
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Fig. 5.3 Schematics of Brillouin light scattering geometry showing the light 

incident angle θ, incident and scattered photon wavevectors ki and ks, phonon 

wavevector q. 

 

5.3 Experimental results of Py/Fe sample 

We will first discuss the experimental results obtained for the Py/Fe sample. 

Figure 5.4 displays typical p-p polarization Brillouin spectra recorded at six 

different q values. We can see that at q = /a and 2π/a (corresponding to the BZ 

boundaries), the spectra contain two peaks. For q = 1.45/a and 2.65π/a 

(corresponding to the respective second and third BZ), two Brillouin peaks were 

also observed. Phonon mode frequencies obtained from spectral fits using 

Lorentzian functions were plotted against wavevector to yield dispersion relations 

shown in Fig. 5.5. The dispersion relation reveals four phononic forbidden bands 

(first, second, third and fourth bandgaps with respective widths of 0.4, 0.6, 0.6 and 

0.5 GHz).  

 

The dispersion of the unpatterned Py reference film on the same SiO2/Si 

substrate was also measured by BLS. Only one peak which corresponds to the 

  Fe      Py   

a q, x 

ks ki 

θ 
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surface Rayleigh wave was observed, and the resultant data were plotted in Fig. 5.5 

as red open squares.   

 

Fig. 5.4 Brillouin p-p polarization spectra of the Py/Fe phononic crystal measured 

at various q. Spectra were fitted with Lorentzian functions (dashed curves), and the 

resultant fitted spectra are shown as solid curves. 

 

5.4 Py/Fe sample: simulation results and discussions 

Dispersion relations and mode displacement profiles of SAWs propagating 

in the Py/Fe phononic crystal and the unpatterned reference samples (Py/SiO2/Si 

and Fe/SiO2/Si) were computed within the framework of the finite element 

approach in COMSOL Multiphysics [5]. To reduce the computational effort, 

plane-strain approximation is used for the simulation. This approximation assumes 
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that the structure is infinite along one direction (y direction), and the loads are in 

the x-z plane and are independent of y (i.e. 0
y





) which implies that there is no 

gradient in the displacement along the y direction. We apply periodic boundary 

conditions as required by the Bloch-Floquet theorem along the x direction,  

 u(x + a) = u(x)e
iqa 

(5.1) 

where u is the displacement vector. 

 

Fig. 5.5 Phonon dispersion relations. Experimental data of Py/Fe phononic crystal 

are represented by dots. Squares denote the measured Rayleigh mode dispersion on 

the unpatterned Py/SiO2/Si reference sample. Blue and red solid lines represent the 

simulated Rayleigh and Sezawa wave dispersions for the reference sample, while 

blue and red dashed lines their corresponding folded dispersions. Measured Bragg 

and hybridization bandgaps are represented by green and pink bands respectively, 

and BZ boundaries by dotted-dashed lines. 
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We will first discuss the calculated SAW dispersions of the unpatterned 

reference samples. The computational unit cell shown in Fig. 5.6a comprises a 1D 

30nm-thick Py or Fe film in contact with an 800nm-thick silica sub-layer atop a Si 

substrate with its bottom boundary fixed. The thickness of the Si substrate was set 

to be five times the wavelength of the surface phonon, as convergence has already 

been achieved for this value of thickness. For example, the Rayleigh modes 

frequencies at q = 6.28 µm
-1

 (the wavelength of the phonon is 1 µm) for a 

Py/SiO2/Si film with a 5µm-thick Si substrate and a 10µm-thick Si substrate, are 

3.172388 and 3.172395 GHz respectively.  

 

Parameters used in the numerical calculations for Fe, Py, SiO2 and the [110] 

direction of Si(001) surface are Young’s moduli = 211, 180, 73, and 169 GPa, 

Poisson ratios = 0.29, 0.3, 0.17, and 0.064, mass densities = 7870, 8600, 2200 and 

2330 kg/m
3
 respectively [6-9]. As the simulated dispersions for both Py/SiO2/Si 

and Fe/SiO2/Si samples are very similar, only the results of Py/SiO2/Si sample are 

presented in Fig. 5.5. The blue and red solid lines represent the respective 

calculated dispersions of the Rayleigh and Sezawa modes of the reference sample, 

while the blue and red dashed lines, those of their corresponding folded modes. It 

is to be noted that the measured dispersion of the Rayleigh modes, denoted by 

squares, agrees well with simulations. 

 

The simulated displacement profiles of the Rayleigh and Sezawa waves are 

shown in Fig. 5.6b [10]. The mode profiles of the Rayleigh and Sezawa waves 

clearly show that most of their energy is confined within the Py/SiO2 film. For 
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these waves, the Py/SiO2 film therefore behaves as an effective film on a Si 

substrate. 

  

Fig. 5.6 (a) Computational unit cell of the Py reference sample. (b) Displacement 

profiles of Rayleigh and Sezawa modes of the reference sample. The profiles are 

color-coded, with red denoting maximal dynamic displacement. 

 

The experimental dispersion relation for the Py/Fe array, represented by 

dots in Fig. 5.5, generally follows the calculated Rayleigh wave dispersion of the 

unpatterned reference film. A notable difference is the two gaps at the first and 

second BZ boundaries and the two gaps within the second and third BZs. The 

former two gaps at BZ boundaries are Bragg gaps (shown as green bands), whose 

widths increase with BZ number. They arise from the zone folding of the RW 

dispersions and avoided crossing at the BZ boundaries [11-13]. These RW modes 

are standing Bloch waves satisfying the Bragg scattering condition and thus exhibit 

a non-propagating character.  
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Interestingly, two additional bandgaps viz. hybridization bandgaps (shown 

as a red band), open up within the second and third BZs at q  1.3/a and 2.7π/a 

respectively. As shown in Fig. 5.5, close to these gaps, the Rayleigh wave crosses 

the zone-folded Sezawa waves. Thus we attribute the origin of these gaps to the 

hybridization and avoided crossing of the Rayleigh and zone-folded Sezawa modes 

[12-14]. 

 

As for the simulations of the Py/Fe phononic structure, we considered a 1D 

30nm-thick periodic array of alternating Fe and Py stripes in contact with an 

800nm-thick silica sub-layer atop a 4m-thick Si substrate (Fig. 5.9a) with its 

bottom boundary fixed. The top layer of the 500nm-wide cell, as depicted in Fig. 

5.7, comprises a 124.5nm-wide Fe stripe, a 249.5nm-wide Py stripe, a 1nm-wide 

gap, and a 125nm-wide Fe stripe. A gap of width of the order of 1 nm was 

introduced in the simulations, as misalignment during the two-step lithographic 

process would result in such a gap at alternate Py/Fe interfaces. Modes with 

predominant surface displacements were chosen. The simulated phononic 

dispersion relation, presented in Fig. 5.8, captures the features of the Brillouin 

measured one.  

 

 

Fig. 5.7 Schematics of the top layer of the computational unit cell. 
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Fig. 5.8 Dispersion relations of surface phonons in the Py/Fe sample. Experimental 

and theoretical data are denoted by symbols and continuous curves respectively. 

Measured bandgaps are indicated by shaded bands, and Brillouin zone boundaries 

by vertical dashed lines. P1 and P2 correspond to the Brillouin peaks measured 

at q = π/a, P3 and P4 to the Brillouin peaks measured at q = 1.3π/a, while P5 and 

P6 to the Brillouin peaks measured at q = 2π/a (see Fig. 5.4). 

 

Mode displacement profiles (vertical displacement, z-component) for q = 

/a, 1.3/a and 2/a are displayed in Fig. 5.9b. The profiles at two BZ boundaries 

(q = /a and 2/a) exhibit characteristics of standing Rayleigh waves. At q = 

1.3/a, the mode profiles reveal displacement within the Si substrate, thus exhibit 

bulk wave characteristics indicating that the modes are leaking energy into the 

substrate due to the mode hybridization.  

P6 
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Fig. 5.9 (a) Computational unit cell of the Py/Fe sample, (b) z-components of the 

mode displacement profiles of the observed phonon modes for wavevectors q = π/a, 

1.3π/a and 2π/a. The profiles are color-coded, with red denoting maximal 

displacement. 

 

A Rayleigh wave propagating on the surface of a homogeneous film-

substrate sample is a pure surface wave, i.e. it does not radiate energy into the 

substrate. By introducing periodicity on film, the zone-folded Rayleigh dispersion 

curve which crosses the transverse bulk velocity threshold will leak energy into the 

substrate [13]. The region above the transverse bulk wave threshold is called the 

leaky or radiative region [15-16].  

q = π/a q = 1.3π/a q = 2π/a 

P1     P2      P3     P4      P5     P6 

(a)               (b) 
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5.5 Results of Py/Ni and Py/Cu samples  

Typical Brillouin spectra for Py/Ni and Py/Cu samples are shown in Fig. 

5.10. Experimental and theoretical dispersion curves for both samples are plotted 

in Fig. 5.11. The simulations were performed with the same unit cell as that used 

for the Py/Fe sample. Values of the Young’s modulus, Poisson ratio and density of 

Ni used in the calculations are 186 GPa, 0.29, and 8900 kg/m
3
 respectively [18], 

and those of Cu are 130 GPa, 0.34, and 8960 kg/m
3
 respectively [19].   

 

 

Fig. 5.10 Brillouin p-p polarization spectra of the Py/Ni (left) and Py/Cu (right) 

phononic crystals measured at various q.  
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Fig. 5.11 Experimental and theoretical surface phonon dispersion relations in (a) 

Py/Ni and (b) Py/Cu samples. Experimental and theoretical data are denoted by 

symbols and continuous curves respectively. Measured bandgaps are indicated by 

shaded bands, and Brillouin zone boundaries by vertical dashed lines. 

 

(a) 

(b) 
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The surface phonon band structures of these three phononic crystals are 

almost identical, a consequence of the similar densities and elastic parameters of 

their constituent materials. The dispersion of Py/Ni array shown in Fig. 5.11a 

features two Bragg bandgaps at the first and second BZ boundaries with respective 

widths of 0.4 and 0.6 GHz, as well as two hybridizations gaps within the second 

and third BZs with both widths of about 0.5 GHz. The band structure of Py/Cu in 

Fig. 5.11b also reveals four gaps with respective widths of 0.4, 0.3, 0.6 and 0.4 

GHz. The slight differences in bandgap widths could be due to the slight 

differences of the densities and elastic constants.  

 

There are also some differences in the hybridization gaps of the various 

phononic crystals examined. These gaps observed in Py/Cu are not as broad as 

those in Py/Fe and Py/Ni. Three Brillouin peaks were observed at q = 2.8π/a, 

where the second hybridization gap occurs, in Py/Ni, while only one peak for 

Py/Cu. The modes at q = 2.8π/a are leaky SAWs, resulting in their observed peaks 

being broad [20]. In fact the two peaks observed in Py/Fe and the three peaks 

observed in Py/Ni are all quite sharp, indicating very weak radiative coupling in 

the substrate, which permits accurate detection of the modes.  

 

It can be seen from Fig. 5.11a that there are three branches at the second 

hybridization gap. One additional higher frequency calculated branch (the highest 

branch at the 2
nd

 hybrid gap) is shown in Py/Ni in agreement with experimental 

observed branch. This branch of Py/Cu is also shown in Fig. 5.11b, but it is not 

clear why this branch was not observed in the Py/Fe and Py/Cu samples. This 
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could be due to the low BLS intensity of the highest branch in Py/Fe and Py/Cu. 

Another possible reason for this difference in the observed SAW dispersions could 

be due to the slight differences in the sample quality. Further work like calculating 

the BLS spectrum intensity to find out which modes are detectable, could be 

performed to account for the differences in the observed dispersions for these three 

samples.  

 

5.6 Summary 

The phononic dispersions of a 1D periodic array of Fe (or Ni, Cu) and Py 

nanostripes on a SiO2/Si substrate were investigated by Brillouin spectroscopy. 

The measured phononic band structures of surface elastic waves reveal Bragg and 

hybridization bandgaps for all three samples. Numerical simulations generally 

reproduced the experimental dispersion data. Our samples are also 1D magphonic 

crystals (MPCs), i.e., one possessing dual phononic and magnonic bandgaps [21]. 

The magnonic dispersions of these samples have been investigated by my fellow 

student Ma Fusheng (F. S. Ma).   

 

For these MPCs studied, the band structure of magnons is dependent only 

on the magnetic properties of the constituent materials of the top periodic layer. In 

contrast, the band structure of SAWs also depends on the elastic properties of the 

SiO2/Si substrate. Thus MPCs, exhibiting the same magnonic band structure but 

different phononic ones, can be engineered by selecting the same pair of 

constituent magnetic materials, but different underlying substrate materials for 

fabrication. Conversely, if MPCs possessing the same phononic band structure, but 
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different magnonic ones are desired, then different pairs of constituent magnetic 

materials atop the same support substrate are to be selected. 

 

It is noteworthy that, for all three samples studied, while application of a 

magnetic field radically modifies their magnon dispersion spectra, their 

corresponding phonon ones are found to be independent of magnetic field, 

suggesting the absence of magnonic-phononic interactions. This has important 

implications for potential applications. For instance, information carried by 

magnons and phonons could be separately and simultaneously processed in devices 

based on such magphonic crystals, with no undesirable cross-talk between the two 

excitations. Additionally the magnonic bandgaps in such devices can be tuned by 

the application of a magnetic field, independently of the phononic bandgaps. It is 

hoped that our studies will spur further interest in these metamaterials which are 

also of great fundamental scientific interest. 
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Chapter 6      Phononic Dispersions of Surface Waves on 

Permalloy/BARC Nanostructured Arrays 

 

6.1 Introduction 

The previous chapter presented our findings on the surface wave dispersion 

relations of 1D phononic crystals composed of linear periodic arrays of alternating 

Permalloy and Fe (or Ni, Cu) nanostripes on a SiO2/Si substrate (henceforth 

referred to as Py/Fe(Ni, Cu)). As the materials of the elements of these bi-

component arrays are both metals, namely either Py/Fe, Py/Ni or Py/Cu, the elastic 

and density contrast between adjacent elements is low. The phononic bandgaps 

observed in these structures are small, being of the order of 0.5 GHz.  

 

In general, the phononic bandgap width increases with elastic and density 

contrast [1,2]. It would be of interest to study the SAW dispersion relations in 

phononic crystals with large elastic and density contrast. In this chapter, two 

phononic crystals of 1D linear periodic arrays of alternating Py and BARC (bottom 

anti-reflective coating) nanostripes on a Si(001) substrate, with 350 nm and 400 

nm lattice constants respectively, were investigated. The widths of Py stripes for 

both samples are 250 nm, and the widths of BARC are 100 and 150 nm 

respectively; the samples are referred to as Py250/BARC100 and Py250/BARC150. 

BARC is a polymer with elastic properties similar to those of PMMA and PS. 

These two materials, Py and BARC, were selected for the high elastic and density 

contrast between them. Hence, the phonon dispersions are expected to be 
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significantly different from those of Py/Fe(Ni, Cu). The dispersions are also 

expected to change for Py250/BARC100 and Py250/BARC150. 

 

The band structures of surface acoustic waves for both samples were 

measured by Brillouin light scattering (BLS) which is a powerful probe of such 

excitations in nanostructured materials [3-5]. Each of the measured phononic 

dispersion spectrum features a Bragg gap opening at the Brillouin zone (BZ) 

boundary, and a large hybridization bandgap, whose origin is different from those 

reported for other 1D periodic phononic crystals [4-8]. The slow phonons, the third 

branch of the dispersion relation, reveal near-localization characteristics. In 

addition, the gaps were tuned by changing the periodicity of the phononic structure. 

Numerical simulations, carried out within the finite element framework, of the 

phononic dispersions yielded good agreement with experiments.  

 

6.2 Fabrication of Py/BARC samples and BLS measurements 

Both the samples studied in this work were designed by us and fabricated 

by Professor Adekunle Olusola Adeyeye [9]. We will first discuss our work on 

Py250/BARC100 with lattice constant a = 350 nm. A 4  4 mm
2
 patterned area of 

63nm-thick 1D periodic array of alternating 250nm-wide Py and 100nm-wide 

BARC nanostripes was fabricated on a Si(001) substrate using deep ultraviolet 

(DUV) lithography at 248 nm exposing wavelength. The substrate was first coated 

with a 63nm-thick bottom BARC layer, followed by a 480nm-thick positive DUV 

photoresist. A Nikon lithographic scanner with a KrF excimer laser radiation was 

then used for exposing the resist. To convert the resist patterns into nanostripes, 
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63nm-thick Py was deposited using electron beam evaporation technique followed 

by the lift-off in OK73 and isopropyl alcohol. An ultrasonic bath was used to 

create agitation for easy lift-off of the Py layer. Completion of the lift-off process 

was determined by the color contrast of the patterned Py regions and confirmed by 

inspection under a scanning electron microscope (SEM). Figure 6.1 shows an SEM 

image of the resulting structure.   

 

The 180°-backscattering geometry was used in the BLS experiments, with 

the scattering plane normal to the sample surface and the phonon wavevector q 

along the periodicity direction (x direction in Fig. 6.1) which coincides with the 

[110] direction of the Si substrate. Spectra of the acoustic waves were measured in 

p-p polarization and the SAW dispersion relation mapped by varying the laser light 

incidence angle. 

 

 

Fig. 6.1 SEM image of the Py250/BARC100 phononic crystal. Orientation of 

Cartesian coordinate system with respect to nanostripes and phonon wavevector q. 
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6.3 Results of Py250/BARC100 sample  

Figures 6.2 shows typical Brillouin p-p spectra recorded. For each spectrum, 

three peaks were observed. Their mode frequencies obtained from spectral fits 

using Lorentzian functions were plotted against wavevector to yield dispersion 

relations shown in Fig. 6.3. The measured phononic dispersion spectrum features a 

1.0 GHz gap opening centered at 4.8 GHz at the BZ boundary, and a 2.2 GHz 

bandgap centered at 6.5 GHz. 

 

 

Fig. 6.2 Polarization Brillouin spectra of phonons. 
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Fig. 6.3 Phonon dispersion relations of the Py250/BARC100 array. Experimental 

and theoretical data are denoted by dots and solid lines respectively. The transverse 

(T) and longitudinal (L) bulk wave thresholds are represented by respective green 

dot-dashed lines and blue short dot-dashed lines. Measured Bragg gap opening and 

the hybridization bandgap are indicated by a pink rectangle and a yellow band 

respectively.  

 

Dispersion relations and mode displacement profiles of surface acoustic 

waves (SAWs) were computed using the finite element approach in COMSOL 

Multiphysics [10] and the Bloch-Floquet theorem as the periodic boundary 

condition. The 350nm-wide computational cell used comprises a 63nm-thick layer 

of a 100nm-wide BARC stripe sandwiched between two 125nm-wide Py stripes, 

atop a 2µm-thick Si substrate, with its bottom boundary fixed. It is to be noted that 

unlike the case of the 1D Py/Fe nanostripe array studied in the Chapter 5, no 

interfacial air gaps were considered in the calculations, as the fabrication process 

employed here precludes their formation. Elastic parameters used in the 
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simulations for Py, BARC and Si are Young’s moduli = 180, 6.26, and 169 GPa, 

Poisson ratios = 0.31, 0.34, and 0.064, mass densities = 8600, 1190 and 2330 

kg/m
3
 respectively [11-13]. The simulated dispersion relations for the lowest three 

SAW branches, below the longitudinal bulk wave threshold [14,15], presented in 

Fig. 6.3, accord well with the Brillouin measurements. Also shown in the figure are 

the dispersion relations of the vertically polarized transverse (T) and longitudinal 

(L) bulk waves, in the [110] direction, of the Si substrate.  

 

Fig. 6.4 z-components of the displacements of observed phonon modes at (a) q = 

π/a and (b) q = 1.4π/a. The profiles are color-coded, with red denoting maximal 

displacement. 

 

Simulated mode profiles for q = π/a, shown in Fig. 6.4a, of the lowest two 

modes exhibit characteristics of the surface Rayleigh wave (RW). These RWs are 

standing Bloch waves satisfying the Bragg scattering condition. The mode profile 

of the third branch at the BZ boundary reveals that it is also a standing wave with 

most of its energy confined in the BARC stripes. Mode profiles for q = 1.4π/a, 

(a) q = π/a                        (b) q = 1.4 π/a 
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displayed in Fig. 6.4b, indicate that at this wavevector, the first branch has the 

characteristics of the RW. In contrast, the higher two SAWs leak energy into the Si 

substrate as their dispersion curves extend beyond the transverse bulk wave 

threshold [7,14-16].  

 

The vertical surface displacement uz of an acoustic eigenmode 

characterized by frequency ω and reduced wavevector q, in a 1D periodic structure 

can be represented by a superposition of Bloch harmonics,  

 
2

expz n

n

n
u A i q x i t

a








  
    

  
 , (6.1) 

At the BZ boundary q = π/a,  

  exp 1 2z n
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a








 
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 
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We set x = 0 at the center of a BARC stripe. Due to the symmetry of the structure, 

an eigenmode should be either symmetric or anti-symmetric [17]: 
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At the first BZ boundary when n = 0, these eigenmodes are standing waves 

with symmetric mode having nodes at the centers of Py stripes (x = a/2 + ma, m = 

0, 1, 2…), and antisymmetric mode at the centers of BARC stripes (x = ma). The 

term “nodes” is applied here only to the z-component of the displacement. This 

analysis agrees with the mode displacement profiles in Fig. 6.4. It should be noted 
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that the description of symmetric and antisymmetric modes depends on our choice 

of the symmetry plane at x = 0.  

 

The dispersion relations of RW and Sezawa wave (SW) were modeled by 

treating the Py/BARC array as a homogeneous effective medium [17] on a Si 

substrate. The equations used to calculate the effective elastic constants of the film 

correspond to a parallel-spring association, 

   1 eff Py BARCC fC f C   , (6.5) 

where Ceff, CPy and CBARC are the respective elastic constants of the effective 

medium, pure Py and pure BARC, and f the volume fraction of Py in the periodic 

structure. The calculated density, Young’s modulus and Poisson ratio of the 

effective film are 6483 kg/m
3
, 130 GPa and 0.31 respectively. Simulated phonon 

dispersions based on these parameters are presented in Fig. 6.5. It can be seen that 

the gap opening arises from the zone folding of the RW dispersions and avoided 

crossings at the BZ boundary.  
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Fig. 6.5 Phonon dispersion relations. Red dashed lines and magenta dotted lines 

represent the simulated Rayleigh wave (RW) and Sezawa wave (SW) dispersions 

for the effective medium film on Si(001) substrate. Experimental data of 

Py250/BARC100 are shown as dots. 

 

A prominent feature of the phonon dispersion spectrum is the large 

hybridization bandgap. For a structure, such as ours, comprising a “slow” film on a 

“fast” substrate, Sezawa waves will exist only below the transverse bulk wave 

threshold, and over a restricted range of qh, where h is the film thickness [6,18]. As 

shown in Fig. 6.5, within the first BZ, the SW and zone-folded RW do not cross, 

indicating that the measured bandgap does not originate from the hybridization of 

these waves. Instead, within the bandgap, the zone-folded RW crosses the 

transverse bulk wave threshold. The most likely reason for this hybridization gap 

should be the avoided crossing of the zone-folded RW and a pseudo-SAW whose 

velocity is close to that of the shear vertical bulk wave of the substrate. 

Additionally, attenuated SAWs, called pseudo-Sezawa waves, having a velocity 
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larger than that of the shear vertical bulk wave of the substrate have been observed 

in film-substrate systems [15,18,19].  These pseudo-Sezawa waves lie within the 

Lamb shoulder near the transverse bulk wave threshold and exist as resonances 

with the substrate continuum of modes. We thus attribute the origin of the bandgap 

to the hybridization and avoided crossing of the zone-folded RW and pseudo-

Sezawa waves. The modes of the second branch above this threshold should have 

the characteristics of pseudo-Sezawa waves (see Fig. 6.4b). 

 

The origin of this hybridization bandgap is to be contrasted with those 

reported for other 1D phononic crystals. For instance, Zhang et al. [4] and Maznev 

[15,16] attributed the origin of the bandgaps they observed in film-substrate 

samples to the avoided crossings of the RW and zone-folded Sezawa modes. 

Additionally, hybridization bandgaps in Si and SiO2 gratings [5,8] have been 

ascribed to the mixing of the RW and the longitudinal resonance, also referred to 

as the high-frequency pseudo-surface wave.  The unique origin of the gap is of 

interest to future research on SAW dispersions in phononic crystals. 

 

Another noticeable feature is that the third branch of the band structure has 

an almost flat dispersion. Total displacement mode profiles of this branch at 

various wavevector values are shown in Fig. 6.6. We chose to show the total 

displacement because it is easier to see the total energy localization. The profiles 

reveal near-localized characteristics of the modes, with most of their energy 

localized in the BARC stripes. However, these modes are modified by the 

surrounding Py stripes and Si substrate. These near-localized modes also leak 
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energy via bulk waves above the transverse bulk wave threshold.  The band 

structures of the Py/Fe(Ni, Cu) samples reported in the last chapter, do not contain 

such flat branches corresponding to mode localization in one material of the stripes. 

This suggests that such near dispersionless branch may exist only when the density 

and elastic contrast of the component materials is very high.  

 

q = π/a q = 1.1 π/a q = 1.2 π/a q = 1.3 π/a q = 1.4 π/a q = 1.5 π/a 

      

Fig. 6.6 Total displacement mode profiles of the third branch of Py250/BARC100 

at various wavevectors. The profiles are color-coded, with red denoting maximal 

displacement. 

 

6.4 Results of Py250/BARC150 sample 

The Py250/BARC150 sample comprises a 63nm-thick 1D periodic array of 

alternating 250nm-wide Py and 150nm-wide BARC nanostripes on a Si(001) 

substrate. The spectra recorded at q < 1.5 π/a reveal three peaks just like the 

Py250/BARC100 sample. The spectra at q > 1.5 π/a contain an additional weak 

broad peak at high frequencies which is not observed for Py250/BARC100. The 
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spectra were fitted using Lorentzian functions and the resultant phonon frequencies 

were plotted against wavevector to yield dispersion relations shown in Fig. 6.7. 

 

Fig. 6.7 Phonon dispersion relations of Py250/BARC150. Experimental and 

theoretical data are denoted by dots and solid lines respectively. The transverse (T) 

and longitudinal (L) bulk wave thresholds are represented by respective green dot-

dashed lines and red short dot-dashed lines. The measured Bragg gap opening and 

hybridization bandgap are shown as a pink rectangle and a yellow band 

respectively. Black dashed lines represent simulated Rayleigh wave (RW) 

dispersions for the Py reference film on Si(001) substrate.  

 

The measured surface phonon dispersion spectrum plotted in Fig. 6.7 

features a 0.7 GHz gap opening centered at 4.3 GHz at the BZ boundary, and a 1.9 

GHz hybridization bandgap centered at 6.2 GHz. It is known that the SAW 

dispersions and the gaps can be tuned by changing the lattice constant of the 

phononic structure. Compared to the gaps observed in Py250/BARC100, the sizes 
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of those in Py250/BARC150 are smaller and the gap centers are lower, a 

consequence of the larger lattice constant of this sample.  

 

The lowest three branches of the simulated SAW dispersions of the 

phononic structure under the longitudinal bulk wave threshold were also plotted in 

Fig. 6.7. Except for the third branch at q > 1.5 π/a, the agreement between the 

measured data and simulated ones is good. We calculated the SAW dispersions of 

a 63nm-thick Py reference film on Si substrate and plotted the Rayleigh wave 

dispersion in Fig. 6.7. It can be seen that the third branch of the observed modes at 

q > 1.5 π/a generally follows the RW of Py film, which implies that these modes 

have the characteristics of the RWs.  

 

Although the SAW dispersions of the two samples studied are similar, the 

third branch of Py250/BARC150 looks more dispersive than that of 

Py250/BARC100 even for q < 1.5 π/a. As the width of the BARC stripes is 150 nm 

in the former sample, the localization of the modes is not as strong as that of the 

100nm-wide BARC stripes of the latter. In addition, the modes should also have 

some pseudo-Sezawa characteristics. 

 

6.5 Discussions  

For a 1D bi-component phononic structure comprised of a periodic array of 

alternating nanostripes on a substrate, the SAW dispersion is influenced by the 

elastic properties of the component materials of the film, the lattice parameters, the 

filling fraction, the thickness of the film as well as the elastic properties of the 
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substrate. Thus, the frequency bandgap can be tuned by changing any of the above 

factors. 

 

It is noteworthy that the phonon dispersion spectra of Py/BARC phononic 

crystals differ substantially from those of the 1D Py/Fe(Ni, Cu) arrays presented in 

the last chapter. For instance, the main features of the dispersions of these two 

groups of samples are quite different. In addition, the measured gap openings of 

1.0 GHz and 0.7 GHz at the BZ boundary of the former, are wider than the first 

bandgap of 0.4 GHz observed for the latter.  The centers of these two gap openings 

at 4.8 and 4.3 GHz are also higher than those ( 3.4 GHz) of Py/Fe(Ni, Cu). 

Another notable difference is that the widths of the hybridization bandgaps (about 

2 GHz) are considerably larger than those of the Py/Fe(Ni, Cu) arrays, whose 

maximum gap is only 0.6 GHz. 

 

1. Elastic and density contrast 

The differences could be due to various reasons. First, the elastic and 

density contrast between two metals (Fe, Ni or Cu and Py) is much lower than that 

between the polymer BARC and the metal Py. In general, the higher the elastic 

contrast, the larger would be the gap. Simulations were performed with the exact 

same structure of Py250/BARC100 sample to investigate the changes to the gap 

parameters by changing only the elastic and density contrast. We simulated the 

SAW dispersions of a 63nm-thick 1D periodic array of alternating 250nm-wide Py 

and 100nm-wide Fe (or Cu) nanostripes on Si substrate. Elastic parameters used in 

the simulations for Fe and Cu are Young’s moduli = 211 and 130 GPa, Poisson 
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ratios = 0.29 and 0.34, mass densities = 7870 and 8960 kg/m
3
 respectively [20,21]. 

The lowest three branches of each calculated structure in the reduced BZ below the 

longitudinal bulk wave threshold are shown in Fig. 6.8. The calculated dispersion 

of Py/BARC is quite different from those of Py/Cu and Py/Fe for the same film 

thickness. The widest gap opening at the BZ boundary is that of Py/BARC sample 

which has the largest density and elastic contrast. It is also shown in Fig 6.8 that 

the widths of the hybridization gaps are also strongly dependent on the density and 

elastic contrast. 

 

 

Fig. 6.8 Calculated phonon dispersions of Py/BARC, Py/Cu and Py/Fe phononic 

crystals with lattice constants of 350 nm. The calculated dispersions are denoted by 

blue solid curves, and the longitudinal and transverse thresholds of the Si(001) 

substrate by red and black dashed lines respectively.  
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2. Thickness of the patterned film 

Second, the 63nm-thickness of Py/BARC film arrays is larger than the 30 

nm one of the arrays Py/Fe(Ni, Cu). The thickness of the film plays an important 

role in SAW dispersions. The phonon dispersions in Py250/BARC100 array of the 

same structure but different array film thicknesses were numerically simulated. 

Figure 6.9 shows the calculated phonon dispersions of the lowest three branches 

below the longitudinal threshold in the reduced BZ of respective film thickness of 

20, 40 and 63 nm. The dispersions clearly reveal that the centers of the gap 

opening at BZ boundary as well as the hybridization gap shift down with the 

increase of the film thickness, while the widths increase accordingly.   

 

Fig. 6.9 Calculated phonon dispersions of Py/BARC film arrays with respective 

thicknesses of (a) 20, (b) 40 and (c) 63 nm. The calculated dispersions are denoted 

by solid curves, while those of the longitudinal bulk wave threshold (L) of the Si 

substrate by dashed lines.  
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Dhar and Roger have investigated the SAW dispersions in aluminum-

coated glass gratings of different grating depths using the picosecond transient 

grating method [8]. Their findings generally support our conclusions although their 

samples were gratings. It should be mentioned the above conclusions will not be 

valid for all film array thicknesses. Further theoretical work need to be done to 

give a more comprehensive conclusion of the SAW dispersion dependence on the 

film thickness.  

 

3. The substrate and sub-layer materials 

The third reason is that our Py/BARC is directly patterned on a Si substrate, 

while the Py/Fe(Ni, Cu) samples contain an 800nm-thick SiO2 sub-layer between 

the patterned arrays and the Si substrate which has the effect of red shifting the 

SAW frequencies. We calculated the band structure of a 63-nm thick Py/BARC 

film on an 800nm-thick SiO2 sub-layer atop a Si substrate. The three lowest SAW 

branches of the calculated dispersion below the longitudinal threshold of the Si 

substrate are shown in Fig. 6.10. While the main features of the SAW dispersion 

remain almost the same, the entire band structure shifts lower in frequency when 

the 800nm-thick SiO2 sub-layer is taken into account.  
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Fig. 6.10 Calculated phonon dispersions of Py/BARC arrays on (a) Si substrate and 

(b) 800nm-thick SiO2 sub-layer atop a Si substrate. The calculated dispersions are 

denoted by solid curves, and the longitudinal bulk wave threshold (L) of the Si 

substrate by dashed lines.  

 

4. Lattice parameter 

Fourth, the periods of our Py/BARC are shorter than the 500 nm one of 

Py/Fe(Ni, Cu). We also simulated the SAW dispersion of a 63nm-thick periodic 

array of alternating 250nm-wide Py and 250nm-wide BARC nanostripes on Si 

substrate as shown in Fig. 6.11c. Our experimental results for two Py/BARC 

samples studied, as well as the simulated results show that increasing of the lattice 

constant shifts the centers of the gaps lower and narrows the gaps.  
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Fig. 6.11 Calculated phonon dispersions of Py/BARC arrays of lattice constant (a) 

350, (b) 400 and (c) 500 nm on Si substrate. The calculated dispersions are denoted 

by solid curves, and the longitudinal bulk wave threshold of Si substrate by dashed 

lines.  

 

From the above analyses, we deduce that the difference between the SAW 

dispersions of the Py/BARC and Py/Fe(Ni, Cu) samples mainly arises from the 

difference in the elastic and density contrast of their respective component 

materials. The thickness of the patterned film is also found to strongly influence 

the SAW dispersions. However, the gaps for small elastic and density contrast 

would not be very big, even for large thicknesses as shown in Fig 6.8. A 

sufficiently high elastic and density contrast is necessary for the formation of a 

large bandgap. Moreover, the SAW dispersions are dependent on the lattice 

parameters and the materials of the sub-layer and/or the substrate.  



Chapter 6                    Phononic Dispersions of Surface Waves on Py/BARC Nanostructured Arrays 

116 

 

6.6 Conclusions 

In summary, we have measured the SAW dispersions of two Py/BARC 

phononic crystals with different lattice constants by Brillouin light scattering. The 

measured phononic Bragg gap openings and hybridization bandgaps are much 

wider than those previously observed in laterally patterned multi-component 

phononic crystals. The hybridization bandgap has a unique origin in the 

hybridization and avoided crossing of the zone-folded Rayleigh and pseudo-

Sezawa waves. The third branches of the dispersion relations of both samples 

exhibit near-localization character. In addition, the gaps can be tunable by varying 

the lattice constants. Finite element simulations generally reproduced the 

experimental phonon dispersion relations. Our findings could find applications in 

areas such as acoustic signal processing. 
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Chapter 7      Phononic Dispersion of a Two-dimensional 

Chessboard-patterned Bi-component Array 

 

7.1 Introduction 

Hypersonic phononic crystals, which are periodic nanostructured 

composites composed of two or more materials of different elastic properties and 

densities, have attracted great attention lately [1-10]. The acoustic counterpart of 

photonic crystals, phononic crystals are in principle able to control and manipulate 

the propagation of information-carrying acoustic waves (phonons), a functionality 

arising from their phononic band structure. As phonons have wavelengths that are 

several orders of magnitude shorter than those of photons of the same frequency, 

phononic crystals allow for easier miniaturization than photonic ones. Hypersonic 

phononic crystals have enormous potential applications in areas ranging from the 

control of thermal conductivity to heat management and acousto-optical devices 

[8-10]. 

 

As was reviewed in Chapter 1, most experiments on hypersonic phonon 

dispersions are confined to the study of bulk acoustic waves in phononic samples 

[4-7]. The few experimental studies that measured surface acoustic waves (SAWs) 

dispersion curves were based on one-dimensional (1D) structures [3,11-13]. 

Among them are the determination of the SAW dispersion for a grating etched on a 

Si(001) wafer by Dutcher et al. (1992) [11], and the measurement of the phononic 

dispersions of 1D periodic arrays of stripes of two alternating materials by Zhang 



Chapter 7                            Phononic Dispersion of a 2D Chessboard-patterned Bi-component Array 

120 

 

et al. (2012) [3]. It is of interest to investigate higher-dimensional periodic 

structures whose surface phononic dispersions are more complex and richer in 

features than those of the 1D phononic crystals. Recently, Brillouin light scattering 

study on SAW dispersion relations in 2D phononic crystals comprising a square 

lattice of 100nm- or 150nm-high aluminum pillars with a spacing of 500 nm on a 

Si (001) substrate was reported by Graczykowski et al. (2012) [14]. The phononic 

dispersion of SAWs in 2D bi-component arrayed phononic crystals is expected to 

be more complicated and hence, the study of it is more interesting and challenging.  

 

In this work, the band structures of the surface acoustic and surface optical 

waves on a 2D chessboard-patterned phononic crystal were investigated both 

experimentally and theoretically. The sample studied comprises a periodic array of 

alternating Permalloy and cobalt square nanodots on a SiO2/Si substrate. We 

experimentally observed quasi-Rayleigh and quasi-Sezawa waves, and measured 

the comprehensive phononic dispersion relations over a full Brillouin zone. We 

were able to obtain measured dispersion spectra, including the folded branches 

(over two Brillouin zones). The measured band structures feature a hybridization 

bandgap in the Γ-X direction, and gap openings due to Bragg reflection at the X 

point. Of particular interest is the observation of an unusual class of surface elastic 

waves, arising from the chessboard-like structural nature of the bi-component array 

studied. We refer to them as “optical-like”, as the vibrations of neighboring 

nanodots possess out-of-phase characteristics, a motion broadly analogous to the 

atomic vibrations of the optical mode of a crystal with two different atoms per unit 

cell.  
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7.2 Sample fabrication and BLS measurements 

The 2D 100µm × 100µm structure used in this study is a periodic array of 

alternating cobalt and Py square dots, each of side length l = 250 nm, arranged in a 

chessboard configuration. The sample was designed by us and fabricated by our 

collaborator Professor Hyunsoo Yang from the Department of Electrical and 

Computer Engineering, National University of Singapore.  

 

 

Fig. 7.1 Fabrication process of chessboard patterned structure. 

 

The fabrication process is depicted in Fig. 7.1. First, a 50 nm-thick Py film 

was deposited on a (300 nm) SiO2/Si wafer using dc magnetron sputtering. This 

was followed by the patterning, using high-resolution electron beam lithography, 

of the chessboard structure on a positive tone polymethyl methacrylate (PMMA) 

electron beam resist. By argon-ion etching, the developed patterns of the periodic 
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square dots on the PMMA resist were transferred onto the Py film. Finally, a 50 

nm-thick cobalt film was deposited by dc magnetron sputtering to fill the square-

shaped holes, followed by the lift-off of the PMMA resist. A scanning electron 

micrograph (SEM) image of the resulting structure shown in Fig. 7.2 clearly 

reveals its chessboard pattern.  

 

Fig. 7.2 SEM image of the Co/Py chessboard sample, with the Co dots appearing 

as darker squares. 

 

Measurement of the frequency band structure of the acoustic waves was 

performed using Brillouin light scattering, a powerful tool for probing these waves 

in nanostructured materials [3-7,11,12,15]. Brillouin spectra were recorded in both 

p-p and p-s polarizations of the 180°-backscattering geometry, as shown in Fig. 7.3, 

with the scattering plane normal to the sample’s metal surface and with the phonon 

wavevector q along either the Γ-M or Γ-X directions. The dispersion relations were 
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mapped by varying the laser light incidence angle θ to achieve phonon 

wavevectors up to the second Brillouin zone. 

 

  

Fig. 7.3 Schematics of Brillouin light scattering geometry showing the light 

incident angle θ, incident and scattered photon wavevectors ki and ks, phonon 

wavevector q along either Γ-M or Γ-X directions. 

 

7.3 Experimental results and theoretical calculations 

Typical Brillouin spectra recorded for Γ-X and Γ-M are presented in Figs. 

7.4a and 7.4b respectively. The frequencies of the phonon peaks, obtained from a 

fit with Lorentzian functions, were plotted as a function of wavevector and 

displayed in Fig. 7.5. The resulting experimental band structures indicate that the 

observed modes are generally strongly dispersive. Among the notable features of 

the dispersion spectrum in the Γ-X direction are two gap openings, arising from 

Bragg reflection, of widths 0.2 and 0.5 GHz at the X point, and a 0.5 GHz-wide 

hybridization bandgap (see discussion below).   

Γ M 

X 
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Fig. 7.4 (a) Brillouin p-p polarization spectrum for wavevector q = 0.8/a along Γ-

X. (b) Brillouin p-p and p-s polarization spectra for q = 0.8/a along Γ-M.  

(a) 

(b) 
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Fig. 7.5 Experimental and calculated phononic dispersion relations of the Co/Py 

chessboard sample. Measured p-p and p-s polarization data are denoted by 

respective red and green dots, and calculated data by pink (shear-vertical-

dominated modes) and green (longitudinal-dominated modes) curves. Quasi-

Rayleigh and quasi-Sezawa wave branches are denoted by RW and SW 

respectively, while surface optical-like wave branch by Greek letters. Measured 

gaps are indicated by green regions. 

 

The dispersion relations and mode displacement profiles were calculated 

for surface elastic waves propagating along the Γ-M and Γ-X directions, within the 

framework of the finite element approach in COMSOL Multiphysics, with the 

Bloch-Floquet theorem applied along the periodicity directions. The simulations 

proper were performed by Hou Chenguang (H. H. Pan’s fellow PhD student). We 
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considered a 2D 50 nm-thick periodic array of alternating cobalt and Py square 

dots arranged in a chessboard configuration in contact with a 300 nm-thick silica 

sub-layer atop a 10 m-thick Si substrate, with its bottom boundary fixed. The 

computational unit cell used, with a square cross section of side a = 250 2 nm, is 

illustrated in Fig. 7.6.  

 

Fig. 7.6 Computational unit cell. 

 

Parameters used in the numerical calculations for Co, Py and SiO2 are 

Young’s moduli = 209, 113 and 73 GPa, Poisson ratios = 0.31, 0.3 and 0.17 and 

densities = 8900, 8600 and 2200 kg/m
3
 respectively [16-18]. For Si, elastic 

modulus values of C11 = 166, C12 = 64, and C44 = 80 GPa and density = 2331 kg/m
3
 

were used [19]. Surface elastic waves were obtained by setting the strain-energy-

weighted average depths of energy (DOE) above the SiO2/Si interface.  

  E E
DOE d dz V V     (7.1) 
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where z is the depth measured from the top metal surface, ρE the strain energy 

density and dV the volume element [20].  

 

7.4 Results and discussions 

Figure 7.7 displays the top view of the u-, v- and w-displacements of the q 

= 0.8/a surface waves, corresponding to the observed Brillouin peaks in Γ-X and 

Γ-M directions, which reveal that the simulated profiles have dominant sagittal 

polarization. Here u, v and w refer to the longitudinal, shear horizontal and shear 

vertical displacement components, respectively. The mode profiles show that there 

are broadly two types of surface waves propagating on the sample, namely surface 

acoustic-like (SAWs) and surface optical-like (SOWs) waves. The chessboard-like 

structural nature of the bi-component array studied gives rise to an unusual class of 

surface waves, which we refer to as SOWs as in these excitations. The vibrations 

of neighboring nanodots have out-of-phase aspects, as mentioned earlier. Based on 

the simulated displacement profiles for Γ-X, the Brillouin peaks p1 - p3 are 

assigned to SAWs and p4 to a SOW (Fig. 7.7a). Corresponding profiles for Γ-M 

indicate that peaks p1’ and p2’ are due to SAWs and p3’ - p6’ to SOWs (Fig. 7.7b).  
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Fig. 7.7 Simulated top-view displacement profiles of observed modes. u, v and w 

refer to longitudinal, shear horizontal and shear vertical displacement components, 

respectively. 
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The calculated dispersion relations of surface waves along X-Γ-M are 

illustrated in Fig. 7.8, which shows the shear-vertical-dominated and longitudinal-

dominated branches represented by pink and green curves respectively. Also 

presented are the w-displacement (shear-vertical) profiles, at the M and X points, 

of some modes. From an examination of their profiles, modes a, b, k are identified 

as quasi-Rayleigh waves (RWs), while c, d, p, as quasi-Sezawa waves (SWs). 

Additionally, the e-h, g-i, f-j, h-l, i-o and h-r branches have SOW character. Hence, 

Brillouin peaks p1 and p2 are assigned to RWs (propagating in opposite directions) 

and p3 to SWs (Fig. 7.7a). Also, peaks p1’ and p2’ are due to a RW and a SW 

respectively (Fig. 7.7b). It is noteworthy that optical and acoustic phonons can mix, 

resulting in a hybrid mode nature, as is the case for p2’ (SW) and p4’ (SOW) 

which have very close frequencies. As a consequence, the SW acquires some 

optical character, while the SOW some acoustic character (Fig. 7.7b).  
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Fig. 7.8 (a) Calculated phononic band structures of the Co/Py chessboard sample. 

Shear-vertical-dominated and longitudinal-dominated modes are represented by 

pink and green curves respectively. (b) The w-displacements (shear vertical), 

color-coded according to the scale bar of Fig. 7.7, of selected modes for the M and 

X points. 

 

The calculated data are also shown as separate Γ-M and Γ-X dispersion 

spectra in Fig. 7.5, revealing that the calculations generally reproduced the 

experimental dispersion relations. In particular, good agreement was obtained for 

the RW and SW branches, as well as the  SOW branches labeled as , , and . 

The Γ-X dispersion spectrum features a 0.12 GHz-wide hybridization bandgap 

(measured width = 0.5 GHz), which opens up at q  0.7/a and 1.3/a. This 

feature arises from the respective hybridization and avoided crossings of the zone-

folded RW and SW, and those of the RW and zone-folded SW [21]. Also 
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presented are the two gap openings, at the X point, with respective calculated 

widths of 0.04 and 0.35 GHz, in fair agreement with the experiment. The first gap 

is a consequence of the zone folding of the RW dispersions and avoided crossings 

at the BZ boundaries, while the second gap is due to the zone folding of the SW 

dispersions and avoided crossings [11]. It should be noted that the elastic 

parameters used in the simulations were not obtained from a fitting to the measured 

band structures, but rather from the literature. 

 

7.5 Conclusions 

In conclusion, employing Brillouin spectroscopy, we have mapped the Γ-M 

and Γ-X phononic dispersions of a 2D chessboard-patterned bi-component 

structure on a SiO2/Si substrate. The measured phononic band structures of surface 

elastic waves are rich in features like the partial hybridization bandgap in the -X 

direction, and gap openings, arising from Bragg reflection, at the X-point. Of note 

are the unusual surface optical-like modes arising from the out-of-phase vibrations 

of neighboring square dots, broadly akin to the atomic vibrations of the optical 

mode of a crystal with two different atoms per unit cell. Numerical simulations, 

based on the finite element analysis, generally reproduced the experimental 

dispersion relations. A recent observation has been made of the magnonic 

dispersion of a similar array of Co and Py square dots made synthesized a different 

fabrication procedure [22]. Our sample will also exhibit magnonic dispersion and 

hence is a 2D magphonic crystal, i.e., one possessing dual phononic and magnonic 

bandgaps [3]. Our findings open prospects for the further understanding and 

development of phononic-crystal-based devices. Potential devices based on the 
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present quasi-planar structure studied could be suitable for integration in electronic 

integrated circuits, e.g., for acoustical signal processing, using planar technology.  
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Chapter 8      Conclusions 

 

Nanostructured materials, the foundation of nanoscience and 

nanotechnology, are attracting increasing interest due to their unique properties and 

numerous technological applications in a vast variety of areas such as catalysis, 

nonlinear optics, electronics, and sensing devices [1-3]. Many complex shaped 

nanoparticles and patterned periodic structures have been fabricated. The former 

can have confined acoustic modes, while the latter, which could serve as phononic 

crystals, are able to modify the propagation of sound waves passing through them. 

An understanding of their acoustic and mechanical properties is of great 

importance to both fundamental physics and their applications.   

 

In this thesis, Brillouin light scattering (BLS), a powerful technique for 

probing the elastic properties and phonon propagation in nanostructured materials 

at hypersonic frequencies [4-9], was employed to investigate the confined acoustic 

phonons in single-crystal gold nano-octahedra and the surface phonon dispersions 

in one- and two-dimensional hypersonic phononic crystals. Theoretical 

investigations, based on finite element analysis, of the acoustic vibrational modes 

of gold nano-octahedra and the phonon dispersions of the phononic crystals were 

also undertaken.  

 

A series of high-quality octahedron-shaped gold nanocrystals with face-

centered cubic crystal symmetry of different sizes has been examined by BLS to 

ascertain the size-dependence of their acoustic vibrational modes as detailed in 
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Chapter 4. Up to nine well-resolved Brillouin peaks were observed for octahedra 

with edge lengths larger than 70 nm. The intensities of the peaks progressively 

decrease with frequency, which is a characteristic of the confined acoustic modes 

of a nano-object [4-8]. A finite element analysis was also performed to calculate 

the vibrational modes of a gold octahedron. In order to identify modes with large 

Brillouin scattering intensities [8,10], the scattering cross-sections of the modes 

were also calculated. The agreement between calculated spectra and the observed 

ones is fairly reasonable considering that certain approximations and assumptions 

have been made. The calculation of the intensities of the modes is non-trivial for 

non-spherical (e.g. octahedron-shaped) metallic anisotropic nanoparticles, and thus 

the mode intensities were only estimated.  

 

Our analysis reveals that the observed peaks are due to eigenvibrations of 

individual nano-octahedra resulting from spatial confinement with each peak 

arising from more than one vibrational mode. This finding of multimode spectral 

peaks is consistent with an earlier BLS study of isotropic polystyrene and silica 

nanospheres by Still et al. [8]. It was also established that the mode frequencies of 

the gold nanocrystals are inversely proportional to the octahedron diagonal and that 

their elastic constants are comparable to those of bulk gold crystals. The findings, 

together with similar ones reported for spheres and cubes [4–8], suggest that the 

frequencies of the confined eigenvibrations of any free regular-shaped 

homogeneous object always scale with its inverse linear dimension. Additionally, 

they imply that this universal relationship is valid for such objects of any size in 

the classical regime and is not dependent on their elastic properties. These findings 
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would provide guidance to theoretical investigations into the confined acoustic 

eigenmodes of such objects.  

 

Further calculations of the Brillouin scattering intensities of the vibrational 

modes of these non-spherical crystalline particles have to be performed to provide 

a quantitatively accurate Brillouin spectrum. For a comprehensive assignment of 

the experimentally observed modes, theoretical work on the mode classification 

has also to be carried out based on group theoretical methods.  

 

As documented in Chapter 5, the surface acoustic wave (SAW) dispersion 

relations of periodic arrays of alternating Ni80Fe20 (Py) and Fe (or Ni, Cu) 

nanostripes on a SiO2/Si substrate have been mapped by Brillouin spectroscopy. 

For each sample, four gaps were observed. Two of them are assigned to Bragg 

gaps at the Brillouin zone boundaries, which have their origin in the folding of 

surface Rayleigh wave dispersion in periodic structures. Moreover, it was found 

that these gaps increase in size with zone numbers, which agrees with the previous 

theoretical predictions [11]. Another two gaps observed within the second and 

third Brillouin zones are assigned to hybridization gaps arising from the avoided 

crossing of the Rayleigh waves and the zone-folded Sezawa waves, also known as 

high-order Rayleigh waves. Hybridization gaps were also observed by Maznev in 

his study of copper lines embedded in SiO2 film on a Si(001) wafer [12].  

 

Besides experimental work, theoretical surface phonon band structures and 

mode displacement profiles were calculated within the framework of the finite 
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element approach using the COMSOL Multiphysics software with the Bloch 

theorem applied along the periodicity direction. The calculated dispersions 

captures the features of the Brillouin measured ones. The measured dispersion 

relations of the three samples studied were found to be similar, a consequence of 

the similar densities and elastic parameters of their constituent materials. 

 

In general, the phononic bandgap width increases with elastic and density 

contrast [9]. Indeed the phononic gaps of the above-mentioned 1D phononic 

structures are small, being of the order of 0.5 GHz. In order to achieve high 

contrast, Py and BARC (bottom anti-reflective coating) were chosen to be the 

constituent materials. In Chapter 6, two phononic crystals in the form of 1D linear 

periodic arrays of alternating Py and BARC nanostripes on a Si(001) substrate, 

with respective 350 nm and 400 nm lattice constants, were investigated by BLS. 

The measured phononic dispersion spectrum of each sample features a Bragg gap 

opening at the Brillouin zone boundary, and a large hybridization bandgap. This 

hybridization bandgap has a unique origin, which is different from those reported 

for other 1D periodic phononic crystals [12-16], in the hybridization and avoided 

crossing of the zone-folded Rayleigh and pseudo-Sezawa waves. In addition, the 

measured phononic Bragg gap openings and hybridization bandgaps are found to 

be much wider than those previously observed in laterally patterned multi-

component phononic crystals. It was observed that the SAW dispersion and gap 

widths could be experimentally tuned by changing the periodicity of the phononic 

structure. Our findings could be of use in designing phononic-crystal-based devices 

for applications in e.g. acoustical signal processing. Modes of the third lowest-
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energy branch of the dispersion relation of each sample, reveal near-localization 

characteristics. Such near-dispersionless branches were also observed by Maznev 

[12], but no explanation was put forward for their existence. Numerical simulations, 

carried out within the finite element framework, of the phononic dispersions 

yielded good agreement with experiments. 

 

Most experimental studies that measured SAW dispersion curves in 

phononic crystals are confined to 1D structures [12-16]. It is thus of interest to 

investigate higher-dimensional periodic structures whose surface phononic 

dispersions are more complex and richer in features than those of the 1D phononic 

crystals. Chapter 7 reports the theoretical and experimental band structures of the 

surface acoustic and surface optical waves on a 2D chessboard-patterned phononic 

crystal. The sample studied comprised a periodic array of alternating Permalloy 

and cobalt square nanodots on a SiO2/Si substrate. Employing Brillouin 

spectroscopy, we experimentally observed quasi-Rayleigh and quasi-Sezawa 

waves, and measured the comprehensive phononic dispersion relations over a full 

Brillouin zone. We were able to obtain measured dispersion spectra along the Γ-M 

and Γ-X directions, including the folded branches (over two Brillouin zones). The 

measured phononic band structures of SAWs are rich in features like the partial 

hybridization bandgap in the -X direction, and gap openings, arising from Bragg 

reflection, at the X-point.  

 

Of particular interest is the observation of an unusual class of surface 

elastic waves, arising from the chessboard-like structural nature of the bi-
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component array studied. We refer to them as “optical-like”, as the vibrations of 

neighboring nanodots possess out-of-phase characteristics, a motion broadly 

analogous to the atomic vibrations of the optical mode of a crystal with two 

different atoms per unit cell. Numerical simulations, based on the finite element 

analysis, generally reproduced the experimental dispersion relations. Recently, 

another BLS study on SAW dispersion relations in 2D phononic crystals 

comprising a square lattice of aluminum pillars on a Si(001) substrate was reported 

by Graczykowski et al. [17]. The phonon dispersion spectra of our 2D chessboard-

patterned bi-component phononic structure exhibit features that are much richer 

and more interesting than those of their samples.  

 

It should be noted that all the phononic samples studied contain a magnetic 

component. These samples also exhibit magnonic dispersions and hence are 

magphonic crystals, i.e., one possessing dual phononic and magnonic bandgaps 

[16,18]. Because of the possibility of simultaneously controlling and manipulating 

magnon and phonon propagation in them, magphonic crystals could find 

applications in areas such as acoustic and spin-wave signal processing. For the 

magphonic samples studied here, while application of a magnetic field radically 

modifies their magnon dispersion spectra, their corresponding phonon ones are 

found to be independent of magnetic field, suggesting the absence of magnon-

phonon interactions. This has important implications for potential applications. For 

instance, information carried by magnons and phonons could be separately and 

simultaneously processed in devices based on such magphonic crystals, with no 

undesirable cross-talk between the two excitations. Additionally the magnonic 
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bandgaps in such devices can be tuned by the application of a magnetic field, 

independently of the phononic bandgaps. Further research into these interesting 

properties of magphonic crystals, a novel class of metamaterials, should prove to 

be rewarding in terms of fundamental science and technological applications.  
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