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Summary

Unlike traditional networks, DTNs are characterized by intermittent connec-

tivity. Nodes may experience frequent disconnections and long communication

delay in DTNs. While there are existing works that focus on improving the

performance of DTN, they do not look into how it may benefit or improve the

applications running on the DTN. With the unique characteristic of DTN, we

believe that it is beneficial to the applications if the DTN protocols are designed

with application in mind.

In this dissertation, we design protocols to better manage resources in the

DTN. We show how routing can be improved when the routing protocol is

application-aware. In addition, we consider the resource management for a class

of applications in which nodes perform cooperative tasks apart from merely re-

laying messages. Finally, we look at the security implications that affect the

resource usage in the DTN.

In our first work, we look into application-aware routing in DTN. We show

that in the face of inherent intermittent connectivity, knowledge of application

semantics can be exploited in routing to improve application performance in the

network. We then propose a mechanism to capture application semantics based

on dependency relationships. The mechanism is general and can be used to model

a large class of applications. We show how to incorporate dependency relation-

ship into existing DTN routing algorithms to enhance application performance.

Specifically, our approach allows a relay node to prioritize the sending/buffering

v
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of messages with the goal of optimizing the completion of application tasks.

In our second work, we consider resource management in a class of applica-

tions in which nodes in the DTN participate in completing application-related

tasks in the system. We assume that tasks may appear dynamically in the sys-

tem without a priori knowledge. As a result, it is not possible to pre-plan the

task allocation to nodes in the system. We look at a possible real life taxi sce-

nario that falls into the described class of applications and proposed the Taxi

Advisory Dispatch System (TADS). TADS is a distributed taxi advisory system

in which taxis collaboratively monitor and advise some free taxis to move to

regions with higher ratio of clients. We perform evaluation of TADS based on

traces obtained from a large Singapore taxi company that operates more than

15,000 taxis. Our results show that TADS can reduce the number of clients with

wait times longer than 60 minutes by over 30%.

Finally, we look at the routing security issues that affect the resource us-

age in the DTN. In particular, we revisit the Haggle and DieselNet DTNs that

Burgess et al. [1] have previously reported that both DTNs (with no authentica-

tion mechanisms) are robust against even a large number of attackers. We show

how techniques that are employed by many routing protocols to improve resource

usage can be exploited by attackers. Specifically, we demonstrate how to exploit

routing metadata to improve the effectiveness of attacks and we identify scenar-

ios where DTNs are most vulnerable to such attacks. In addition, we show how

attackers can increase the effectiveness of their attacks in our application-aware

routing protocols via manipulation of dependency relationships. Finally, we give

a discussion on the level of authentication that is required to secure the attacks

that we presented.
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Chapter 1

Introduction

1.1 Overview

Recent advancement in technology created a trend in which many low power,

small portable devices are carried by humans as well as embedded in the envi-

ronment as smart devices. A typical example is cellphones, which are carried by

billions of users in the world for communication purposes. Unlike the early gen-

eration of cellphones, newer cellphones (such as smartphones) are often equipped

with some short range wireless communication capability such as Bluetooth and

WiFi.

While these devices may communicate over the cellular network, the use of

such short range communication over the ISM band does have its advantages.

First, communication over short range wireless network (eg. Bluetooth, ZigBee)

can reduce energy consumption by up to 90% over cellular wireless networks (e.g.

3G networks) [2]. This may be a major consideration for power constrained mo-

bile devices. Second, if the devices are in close communication range, these short

range communication links often provides higher bandwidth than cellular wire-

less networks. Third, the use of short range communication links over the ISM

band is much less costly to deploy as there is neither infrastructure nor subscrip-

tion cost. Finally, cellular network service may not be available, especially in

1



CHAPTER 1. INTRODUCTION 2

rural areas or underground tunnels etc.

With a large number of short range wireless equipped portable devices being

carried by humans or vehicles, these devices can potentially form a network for

communication and information sharing purposes. Use of short range radios,

coupled with mobility and energy saving mechanisms that turn off the network

interface opportunistically lead to intermittent connectivity and the formation

of a Delay/Disruption Tolerant Network (DTN). A DTN is characterized by

the lack of a contemporaneous path between the source and destination at any

given time. DTN connectivities are typically intermittent, and it may experience

frequent, long duration partitioning.

Due to intermittent connectivity and difficulty in establishing an ’instanta-

neous’ end-to-end route, traditional internet routing protocols and ad hoc routing

protocols such DSR [3] and AODV [4] do not work well in DTN. In DTN, rout-

ing is typically opportunistic. Nodes do not pre-establish a routing path before

data transfer. Rather, data are transferred in a store-and-forward manner from

node to node whenever the link between two nodes is up. In the DTN literature,

this is known as a contact. The amount of data that can be transferred during a

contact opportunity is known as the contact capacity. The frequency of contacts,

the contact capacity, and the buffer space (storage) available at each node are

important factors that affect the routing performance of the DTN.

Applications that run on a DTN are typically non-real-time and are tolerable

to various degrees of communication delays. Example of some possible famil-

iar applications include email, file sharing/transfer applications, twitter-like or

micro-blogging applications, social networking applications such as “who’s near

me”, rss feeds, and etc.

In addition, there are also more specialized applications in which the DTN

is formed mainly for the purpose of supporting the particular application. Such

applications may involve nodes given some tasks to perform in the system. For

example, consider a Search and Rescue operation. In this case, the agents (nodes)
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come together (forming a DTN) solely for the purpose of rescuing the victims.

Another possible example is distributed taxi booking system [5] [6]. In a

distributed taxi booking system, each taxi (node) is equipped with a short range

communication device such as WiFi. A client uses a WiFi device to communicate

with a taxi in wireless communication range. If the taxi is busy, it communicates

with other taxis in the DTN to locate a free taxi in vicinity. The free taxi will

then move to the client location to pick up the client.

Regardless of the kind of applications and their tolerance to delay, appli-

cations can generally still benefit from a better performance of the DTN. It is

hence important to manage the resources in the DTN effectively to improve the

application performance.

1.2 Application-Aware Protocols and Resource Man-

agement in DTNs

In this thesis, we focus on enhancing application performance through the better

management of resources in the DTN.

For DTN routing, the important resources include the contact capacity and

buffer size of the nodes in the network. We believe that if routing algorithms

take into consideration of the application semantics, then the resources can be

better utilized to improve the application performance.

For example, consider a file sharing application. All data blocks of a sin-

gle file must be received by the destination for the file transfer to be deemed

successful. However, due to intermittent connectivity in DTN, different data

blocks of the file might be split, drop, and transferred by different relay nodes

to the destination. When relay nodes are aware that all data blocks of the file

must be successfully transferred before it is considered successful, the missing

components of ongoing file transfers can be assigned with higher priorities to

increase the number of successful file transfer. For example, it is much better
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that 50% of file downloads completes successfully (ie. with 100% of the blocks

received in each file transfer), as compared to the case whereby 100% of file

downloads receive 50% of their individual data blocks - resulting in no successful

file downloads at all. Existing routing protocols are optimized to deliver as many

data blocks as possible, but do not take into consideration of the fact that a file

transfer application requires all data blocks of the file to be received before it is

considered successful.

The above consider the role of the nodes in the DTN as simply sending/relaying

messages. However, nodes can perform cooperative tasks apart from merely re-

laying messages. Consider a class of applications in which nodes in the DTN

participate in completing application-related tasks in the system. We assume

that the system consists of an unknown number of tasks and the tasks may ap-

pear dynamically in the system without a priori knowledge. As a result, it is

not possible to pre-plan the task allocation to nodes in the system. In addition,

we assume that each node can only process one task at any single point of time

and tasks can be allocated/distributed to other nodes in the form of request

messages. Nodes in the DTN collaboratively try to allocate the tasks in the

system with an objective in mind (such as minimizing average task completion

delay, minimizing the maximum task completion delay etc). However, due to

time constraints, nodes may only gather partial knowledge of the system before

a decision has to be made.

As an example, consider a distributed taxi booking system. A taxi (node)

would pick up a client and sends the client to his/her destination. Picking up

a client and sending the client to his/her destination is considered as a task in

the system. Taxis may choose to collaboratively pickup clients such that the

maximum waiting times of clients can be minimized. Key challenges of such a

system design will be: (i) how to quickly inform other taxis on the locations of

known clients, and (ii) how the taxis can collaboratively determine the client

that each taxi is supposed to pick up to avoid dispatching more than one taxi to
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the same client.

1.3 Research Goals and Contributions

The main objective of our research work is to enhance application performance

through better resource management in the DTN. In addition, we also look at

the security implications that affect the resource usage in DTN.

The contributions of this dissertation are as follows:

1. Application-Aware routing protocols for DTN.

In this work, we show that in the face of inherent intermittent connec-

tivity, knowledge of application semantics can be exploited in routing to

improve application performance in the network. To enable DTN routing

algorithms to take into consideration application semantics, we proposed

a mechanism to capture application semantics based on dependency rela-

tionships. The mechanism is general and can be used to model a large

class of applications.

We show that for many applications, data do inherently have some form of

dependency relationships. For example, web pages and related multime-

dia objects reference each other using hyperlinks. Media file formats such

as MPEG have the I-P-B frame structure for compression/decompression.

Even normal data files have dependencies in which all data blocks of a

file are required for a file transfer to be considered successful. Such data

dependency can be algorithmically be extracted and use in routing algo-

rithms.

With dependency relationships extracted, we show how dependency re-

lationships can be incorporated into existing DTN routing algorithms to

enhance application performance. Specifically, it allows a relay node to
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prioritize the sending/buffering of data blocks with the goal of optimizing

the completion of application tasks (eg. a file transfer).

We perform evaluation using simulation on two real life traces and the

simulation results show that when application semantics are exploited, we

can substantially improve application performance from 60% to 583% over

the baseline DTN routing algorithms.

2. Application Resource Management in DTN

In this work, we consider resource management in a class of applications

in which nodes in the DTN participate in completing application-related

tasks in the system. We assume that the system consists of an unknown

number of tasks and the tasks may appear dynamically in the system with-

out a priori knowledge. As a result, it is not possible to pre-plan the task

allocation to nodes in the system. In addition, we assume that each node

can only process a task at any single point of time and tasks can be allo-

cated/distributed to other nodes in the form of request messages. Nodes

in the DTN collaboratively try to allocate the tasks in the system with an

objective in mind (such as minimizing average task completion delay, min-

imizing the maximum task completion delay etc). Due to time constraints

and communication delay, nodes may only gather partial knowledge of the

system before a decision has to be made.

There are many possible applications that falls into the above considered

model (eg. search and rescue, distributed taxi booking system and etc).

In this work, we work on a realistic example of such an application that we

called the Taxi Advisory Dispatch System (TADS). TADS is a distributed

taxi advisory system in which advisory tokens are sent to advise free taxis

to move to regions that have a higher number of clients. Taxis would then

have a higher chance of picking up clients. A task in TADS involves a taxi
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picking up the client and sending the client to its intended destination.

The objective of TADS is to reduce the long waiting times of clients. Taxis

(nodes) in TADS are assumed to be equipped with a location-aware device

(eg. GPS) and a short range wireless communication device (eg. WiFi).

TADS runs on DTN and is particularly challenging to design because taxis

have limited communication opportunity. Due to limited communication

and delay, each taxi would only have partial knowledge (eg. number of free

taxis and clients in a region) about the system. In addition, information

received from other taxis may be outdated quickly as taxis may move and

change their status quickly. Clients may also be picked up by other taxis

and communication delay may hinder such information from being made

known to other taxis.

Our solution involves heuristics in which taxis collaboratively monitor to

determine the number of free taxis and clients in each region over a period

of time. At the end of each monitoring period, an elected leader taxi for

each region determines if it is necessary to request for more taxis to move

into its region. For regions that require more taxis, advisory tokens are

generated (by their respective region leader) and forwarded to taxis in

nearby regions. When a taxi receives the token, it moves to the requested

region if it locally determines that moving to the requested region will

improve the objective.

We perform evaluation of TADS based on traces obtained from a large

Singapore taxi company that operates more than 15,000 taxis. Our results

show that TADS can reduce the number of clients with wait times longer

than 60 minutes by over 30%.

3. Robustness of DTN against attacks.

Routing attacks misuse resources in the DTN and may cause severe per-
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formance degradation. In this work, we evaluate the robustness of DTN

against attacks.

Due to difficulty of key management in DTN, some authors have looked

into the possibility of forgoing authentication [1] [7]. Burgess et al. work [1]

has suggested that some DTNs coupled with replication-based routing pro-

tocols are intrinsically fault tolerant, and robust against a large number of

attackers even in the absence of authentication [1]. This poses the question

on the necessity of authentication or the level of authentication required

especially since authentication imposes overhead. Without authentication,

it may encourage more nodes to join the network (providing more resources

such as buffer storage) due to simplicity of joining.

First, we revisit the Haggle and DieselNet DTNs that Burgess et al. [1] have

previously reported that both the DTNs (with no authentication mecha-

nisms) are robust against even a large number of attackers.

We investigate two routing techniques that have been popularly used to

improve resources in DTN routing. One technique is the contact history

that is used in many DTN routing protocols [8] [9] [10]. These DTN routing

protcols often flood their contact history into the network so that relay

nodes can better allocate their resources to packets that are deemed to have

a higher chance of delivery. Another technique is the network-wide packet

delivery acknowledgement that is used to prevent copies of a delivered

message from further replication [9] [10].

Using techniques that exploit the contact histories, we devised an attack

called non-deliverable flooding attack. Non-deliverable flooding attack

floods non-deliverable packets into the network. It also falsified contact

history in an attempt to make the non-deliverable packets to be given

higher priority for replication and buffering in the network. This causes

severe resource contention in the network. In addition, we introduce an-
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other attack called identity impersonation that exploits the lack of identity

authentication and packet delivery acknowledgements. Identity imperson-

ation attack causes relay and source nodes to drop packets that have not

been delivered. We show the effectiveness of our attacks and we identify

scenarios where DTNs are most vulnerable to such attacks.

Finally, we study how attackers can attack our application-aware rout-

ing protocols. Our application-aware routing protocols flood dependency

graphs as routing metadata into the network so that relay nodes can de-

termine the packets which are more crucial to complete application tasks.

This however, may also give attackers the chance to exploit the dependency

graphs in their attacks. We show how attackers can increase the effective-

ness of attack through the manipulation of dependency relationships.

1.4 Organization

The rest of this dissertation is organized as follows: Chapter 2 discusses back-

ground and related work. It also discusses various security and possible attacks

on a DTN. In Chapter 3, we present our application-aware routing protocols.

Chapter 4 describes our proposed Taxi Advisory Dispatch System (TADS) and

chapter 5 describes our work on the robustness of DTN against routing attacks.

We conclude our work in Chapter 6 with directions for future research.



Chapter 2

Background

DTNs are a class of emerging networks that are characterized by intermittent

connectivity. Such networks are often assumed to experience frequent, long-

duration partitioning and may never have an end-to-end contemporaneous path.

In this chapter, we first give a short discussion on some possible applications

in DTN. We then describe some terminologies and popular performance metrics

that are frequently used in the context of DTN. Next, we provide a survey on

some general strategies to improve performance in DTN. In addition, we discuss

in more detail some popular routing algorithms. Finally, we look at routing

security issues related to DTN.

2.1 DTN Applications

Applications that run on a DTN are typically non real-time and are tolerable

to various degree of communication delays. Example of some possible famil-

iar applications include email, file sharing/transfer applications, twitter-like or

micro-blogging applications, social networking applications such as ”who’s near

me”, rss feeds, and etc.

In addition, there are also more specialized applications in which the DTN is

formed mainly for the purpose of supporting an application. Such applications

10
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typically involve nodes given some tasks to perform in the system. For example,

in Search and Rescue operations, humans and even robots [11] [12] may come

together with the purpose of searching and rescuing victims.

In participatory sensing applications, the applications involve using everyday

mobile devices, such as cellular phones, to form participatory sensor networks

to gather information [13] [14] [15] [16]. Each sensing devices are tasked to col-

lect information and the sensed data may be relayed through the DTN network.

For example, in GreenGPS [15], participatory sensing data collected by indi-

viduals from their vehicles are consolidated into a system that predicts the fuel

consumption of an arbitrary car on an arbitrary street. In ParkNet [16], vehi-

cles are tasked to collect parking space occupancy information while driving by.

The collected information in ParkNet can actually be similarly routed to nearby

vehicles using a DTN.

In a distributed taxi booking system [5] [6], clients use short range communi-

cation devices such as WiFi to communicate with taxis in communication range.

Due to mobility of the taxis, communication between nodes (clients and taxis) is

intermittent, forming a DTN. Client booking requests are forwarded to nearby

free taxis through the DTN. Taxi nodes in the booking system are tasked to

pickup and send their clients to their destination.

2.2 DTN Terminologies

Message. A message (or bundle) is a protocol data unit for data transfer in

DTN. In this dissertation, we shall use the term message, bundle, packet and

data block interchangeably.

Contact. When a link between two nodes is up, they exchange data with one

another. This connection opportunity is referred to as a contact in the DTN

literature [17].

Contact Duration. Contact duration is the time duration that the contact
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lasted. The time duration between two contacts of a pair of nodes is known as

the inter-contact duration.

Contact Capacity. Contact capacity depicts how much data can be exchanged

when two nodes are in contact. A contact duration that is longer will tend to

have a higher contact capacity (assuming other factors like interference being

equal). Knowing the contact schedule and contact capacity allows DTN routing

protocols to better schedule messages for transmission on certain paths.

Buffer Space (Storage). Due to unavailability of an end-to-end connectiv-

ity, DTN routing protocols adopt a store-and-forward approach. Messages are

stored at relay nodes and forwarded/replicated to the next hop when they are

in communication range. Messages may be buffered for a long period of time

since disconnection period may be long. In the event of buffer contention, buffer

management policy such as FIFO or other more complex strategies are used to

drop messages.

2.2.1 Routing performance metrics in DTNs

The popular routing performance metrics that are used in the DTN literature

are delivery ratio, latency, and transmission overhead.

Delivery ratio is defined as the fraction of generated messages that are deliv-

ered to the final destination within a given period of time.

Another frequently used metric is latency. It is the time a message is gen-

erated at the source to the time the message is delivered to the destination.

While DTNs can generally tolerate delay, many applications can still benefit

from shorter delivery latency.

Finally, transmission overhead is the amount of contact capacity consumed

by a protocol to deliver a message. Replication-based routing strategies typically

transmit more copies of the same message than forward-based routing strategies.

Transmission overhead can also be different because routing strategies make

different decisions about the next hop or routing path.



CHAPTER 2. BACKGROUND 13

2.3 General Performance Improvement Strategies

In the literature, a number of performance improvement strategies have been

used to improve the performance of DTN. They can be broadly classified into

the following categories.

2.3.1 Adding more nodes

The most straightforward approach is to introduce more nodes into the sparse

network. If additional nodes are introduced at different parts of the network,

they provide more contact opportunity, capacity and buffer space for the net-

work. In [18] [19], additional nodes in the form of throwboxes are added to the

DTN to enhance performance. Throwboxes are stationary wireless devices with

storage that acts as a relay, creating contact opportunity where none existed

before. Another way to have more nodes in the network is to encourage more

nodes to join the network by making it easier for them to join. Burgess et al.

have suggested to forgo authentication (hence no administrative difficulty and

overhead) to encourage more volunteer nodes into publicly deployed DTNs [1].

Using a number of possible attacks, the authors show that some DTNs cou-

pled with replication-based routing protocols are intrinsically fault tolerant and

robust against a large number of malicious nodes. In such DTNs, it may be

possible to forgo authentication to encourage more nodes into the network.

2.3.2 Replication

DTN routing protocols can be broadly classified into forward-based or replication-

based. In the forward-based approach, only a single copy of message is main-

tained in the network [20] [21] [22] [23] [24] while the replication-based approach

replicates a message at many different nodes [25] [8] [26] [9] [10]. Replication is

useful when nodes are unreliable, or when contact schedules are unpredictable.

In such cases, replicating messages increases the chance of delivery and also re-
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duces latency. The main idea of replication is to have many copies of the same

message in the network to increase the probability that one of them will find

its way to the destination. This also leads to a shorter delivery latency for the

message.

The downside of replication is however the higher cost incurred in terms of

transmission overhead and buffer space usage. Some routing protocols such as

Spray and Wait [26], Spray and Focus [27] etc sets a predefined limit on the

number of replications allowed per message to reduce cost. Others use various

knowledge such as delivery predictability, acknowledgements, to limit or prevent

further replication of messages [8] [28] [9] [10]. Some have explored the use of

erasure and network coding schemes [29] [30] in an attempt to keep the benefit

of replication while minimizing resource usage.

2.3.3 Knowledge

Embedding additional information and propagating them into the network has

been shown to be beneficial to the performance of the DTN. Such information is

often propagated as routing metadata. Although metadata takes up additional

bandwidth, it however allows nodes in the network to be better informed and

make better decision for forwarding and management of buffer space. The follow-

ing paragraphs describe three common types of information that are propagated

in the network to improve delivery performance.

The following describes 3 common types of information that are propagated

into the network to improve performance.

Contact History

Depending on the network scenario, different levels of information may be avail-

able to the nodes. An example is the contact information. On one extreme

end, all contact schedules are known beforehand; hence a routing protocol can

compute the lowest delivery latency path to the destination. If nodes are also
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reliable, such scenario negates the need to replicate messages as the most feasible

path can be pre-computed and messages can be sent along the path reliably. On

the other end is the scenario whereby there is no information about contacts in

advance. Many routing protocols have been developed to address this scenario.

The main strategy taken is to predict the future contacts based on past contact

history [20] [31] [32] [8] [9] [10] [33]. In MaxProp [9], previous contact history is

converted into meeting probabilities. These meeting probabilities are then used

to estimate the delivery cost of a message to certain destination. In Rapid [10],

each node keeps track of the average inter-contact duration and contact capacity

of another peer based on previous observations.

The knowledge of these information allows a node to determine how likely

it is able to deliver a message to its destination. Priority is usually given to

messages that a node has higher chances of delivering. In order to provide

estimation of delivering messages in multiple hops, such routing information is

usually propagated to all the nodes in the network.
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Recipient List

In [10], information about the nodes (source and relay nodes) having a copy

of a message is propagated to other nodes. This allows nodes in the network

to know who is holding a copy of the message and estimate the likelihood and

latency that a message is going to be delivered. The estimated values are used

for computing utility values which allow messages to be sorted for replication

decision during a contact or for dropping when buffer is full. [10] shows that

using recipient list can help to improve performance.

2.3.4 Buffer Management

Buffer management is important when using replication-based DTN routing pro-

tocols. Due to message replication, buffer tends to be filled quickly and dropping

policies have direct impacts on the delivery performance of the routing protocols.

Early DTN routing protocols manage finite buffer by using FIFO queues [25] or

Drop Least Encountered (DLE) approach [34] [32] [8] [35]. Later works use

delivery probability [9] or utility value [10] to decide on the messages to drop.

In general, routing algorithms in DTN favours messages that can be delivered

quickly.

2.3.5 Mobility

In [36] [37], the authors have shown that mobility can increase the capacity of

mobile ad hoc networks or DTNs. To further enhance performance, nodes may

actively move in response to communication needs [32] [38] [39] [40] [41] [42] [43]

[44] [45] [46] [47].

In [38], when a network is partitioned and a node is unable to send a message

to a destination, the node will compute a shortest time strategy (including nodes

mobility as part of the strategy) to deliver the message assuming that other nodes

location are known and is willing to move to relay message.
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In [39], message ferries are controlled to move in a Levy walk pattern to

maximize the opportunity of meeting the destinations. Levy walks are known to

show optimal searching efficiency for sparse and randomly distributed targets.

In [41], two message ferry schemes are proposed - Node Initiated Message

Ferry (NIMF) and Ferry Initiated Message Ferry (FIMF). In NIMF, ferries

move around the deployed area according to known routes. With knowledge

of ferry routes, nodes periodically move close to a ferry and communicate with

the ferry. In FIMF, ferries move proactively to meet nodes. When a node wants

to send/receive messages to/from other nodes, it generates a service request to

a chosen ferry using a long range radio. Upon reception of a service request,

the ferry will move to meet up with the node and exchange packets using short

range radio.

In [32], additional participants (autonomous agents) are introduced to aug-

ment the performance of DTN routing. Nodes in the network flood their status

(bandwidth, latency etc.) so that the autonomous agents know about the global

state of the network. Autonomous agents can then adapt their movements in

response to variations in network demand to optimize for one or more metrics

(eg. average delivery time).

2.4 Popular DTN routing protocols

In the forward-based routing protocols [20] [21] [22] [23] [24], message is passed

from one node to the other until it reaches the destination. Forward-based

routing protocols are more suitable in situations where nodes are reliable and

contact schedules are a priori or highly predictable. For DTNs without known

contact schedules, routing protocols typically use the replication-based approach.

In this dissertation, we look at the case whereby contact schedules are not

known a priori. We discuss some popular replication-based routing protocols as

follows.
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2.4.1 Epidemic

Epidemic routing protocol [48] replicates messages to all contactable nodes in the

network. The protocol uses significant resources (contact capacity and storage)

due to replication. However, as long as the load does not stress the available

resources, Epidemic gives the best performance in terms of delivery ratio and

latency.

2.4.2 Spray And Wait

Spray andWait [26] is a replication-based routing protocol that limits the number

of copies of each message in the network. It consists of two phases: Spray phase

and the Wait phase.

In the Spray phase, for each message originating from a source node, L

message copies are initially forwarded by the source and relay nodes. If the

destination is not found in the Spray phase, then at the Wait phase, nodes

carrying a message copy will only perform a direct transmission (ie. forward the

message only to its destination).

Multiple variants of spray phase are possible. In particular, the Binary Spray

and Wait scheme has been proven to have the minimum expected delay among

all variants of Spray and Wait routing protocols when nodes movement is IID.

In the Binary Spray and Wait scheme, the source node initially starts with L

copies of the message. When node i that has n > 1 message copies (source or

relay) encounter another node j (with no copies), it forwards to node j ⌊n/2⌋

and keeps ⌈n/2⌉ for itself. When a node is left with only one copy, it switches

to direct transmission.

2.4.3 Prophet

Prophet uses a probabilistic metric called delivery predictability for routing.

Initially, when node i meets node j, the delivery predictability pij is updated
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to be:

p′ij = pij + (1− pij)× p0

where p0 is an initialization constant.

When node i does not meet node j for some time, Prophet decreases the

delivery predictability using

p′ij = pij × γt

where γ ∈ [0, 1) is an aging constant, and t is the number of time units that

have elapsed since the last time the metric was aged.

In addition, when node i receives delivery predictabilities from node j, node

i may compute the transitive delivery predictability to node k using

p′ik = pik + (1− pik)× pij × pjk × β

where β is a scaling constant that decides how large the impact of transitivity

should have on delivery predictability.

In Prophet, a message is replicated to the other node if the delivery pre-

dictability of the destination of the message is higher at the other node.

2.4.4 MaxProp

MaxProp is a popular replication-based routing protocol that has been shown to

achieve better throughput than several other strategies such as Epidemic, Spray

and Wait and Prophet [9].

MaxProp uses additional knowledge of contact history and message delivery

status (acknowledgements) to better utilize resources. When two nodes meet,

MaxProp replicates messages in the following order:

1. Messages destined to the contacted node.

2. Routing metadata (estimations of the probability of meeting every other
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node)

3. Acknowledgements of delivered data

4. Messages in ascending order of hop count for hop count below a certain

threshold. This threshold is adaptive and is determined by using the av-

erage contact capacity measured from previous encounters.

5. Messages in descending order of delivery likelihood

When a node needs to make space for buffer, MaxProp removes messages

from its buffer in the following order:

1. Acknowledged messages

2. Messages in ascending order of delivery likelihood for messages with hop

count above a certain adaptive threshold

3. Messages in descending order of message hop count

In contrast to Prophet which replicates a message only if the other node has

higher delivery predictability to deliver the message to the destination, MaxProp

always replicates all messages (except for those that the other node already has)

as long as the contact capacity allows. To reduce resource usage, MaxProp

sends network-wide acknowledgements for messages that have been delivered so

that source and relay nodes can stop further replication and remove delivered

messages from their buffer.

2.4.5 Rapid

Rapid [10] is a utility driven routing protocol that assigns a utility value for each

message to determine the priority for replication and buffer management. When

node i encounter j, the following steps are performed:

1. Initialization: Receive metadata from Y
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2. Direct Delivery : Send messages destined to Y in decreasing order of utility

3. Replication: For each message that is not in node Y, compute the marginal

utility of replicating the message to Y. Replicate the messages in descend-

ing order of marginal utility normalized by message size.

Similar to MaxProp, Rapid always replicates all messages as long as the

contact capacity allows (except for those that the other node already has). It

also uses network-wide acknowledgements for messages that have been delivered.

In addition, Rapid keeps track of the nodes holding a copy of each message so

that it can better estimate the expected delivery delay of messages. The expected

delivery delay is used as part of the utility computation of Rapid.

Rapid has been shown to perform extremely well, outperforming both Spray

and Wait and MaxProp [10]. It uses more information in its utility computation

compared to MaxProp.

2.5 DTN Routing Security

2.5.1 Key setup in DTNs

Till date, approaches for securing routing in DTN largely depends on using public

key cryptography to limit participants to a set of authorized nodes and using

class of service for the allocation of buffering and link capacity [17] [49] [50] [51].

Public keys for verification can be pre-distributed before deployment, but

this approach is more difficult when incremental deployment of network nodes

is desirable. Alternatively, a public key infrastructure (PKI) may be used. The

use of traditional PKI however, is not suitable for disconnected environments

such as DTN, since access to online servers for fetching public keys and checking

Certificate Revocation Lists (CRL) cannot be assumed. As such, Identity Based

Cryptography (IBC) schemes have been proposed for use in DTN environments

[50] [51]. With IBC scheme, the recipient public key is simply a function of a
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public identification string of the recipient, hence the recipient identity implicitly

validate the recipient public key. As for CRL, Seth et al. propose to use a short

timeout period for signing keys (eg. a day) [50]. Signer is expected to get new

time-stamped private key from the PKG before the previous key timeout.

The use of cryptography to authenticate every single participants and mes-

sages in DTN can dramatically reduce the attack surface of the network. How-

ever, such schemes have high processing overhead and administrative or key

management difficulty in certain environments, and hence may not always be

possible to implement [1].

2.5.2 Routing Attacks

While routing security has been studied extensively in traditional ad hoc net-

works [52] [53] [54] [55] [56] [57], the work cannot be easily extended to DTNs

due to different routing style and network characteristics. For example, route in

ad hoc networks are typically established before any data transfer. Routing dis-

ruption attacks such as black hole [52] [53], flood rushing [57] and wormhole [54]

attack the route establishment process. It either causes route establishment to

fail, or establishing a route that data will not be delivered to its destination. In

DTNs, routing are opportunistic and they typically do not pre-establish a route

before sending data.

In this section, we survey possible routing attacks on DTNs.

Blackhole/DropAll Attack

In this attack, attacker simply drops all the messages that it receives [52] [53]. In

forward-based DTN routing protocols, attackers may advertise themselves as the

most suitable relay to the destination so that messages are routed to the attackers

and then dropped. Since forward-based DTN routing protocols do not replicate

messages, the message will be lost and not be delivered to the destination. Using

replication-based routing protocols is a natural defence against drop all attacks.
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Route Metadata Falsification

Even though routing in DTN may be opportunistic, studies have shown that

the use of routing metadata such as expected meeting time or probability can

improve routing performance. Each node’s routing metadata is propagated to

other nodes in the network so that every node will have a more global view of

the network. Unfortunately, an attacker may inject falsified routing metadata

into the network and cause performance degradation.

Routing metadata falsification attack has been studied extensively in ad-hoc

networks literature [52] [53] [54] [55] [56]. An example of routing attack in ad-

hoc networks includes creating a routing loop, so that packets traverse nodes in

a cycle without reaching their destination, thus consuming energy and available

bandwidth. Another example is the blackhole attack whereby nodes advertise

fake routing metadata to attract packets and then drop the packets.

For forward-based DTN routing protocols, attacks can advertise themselves

as the most suitable relays to the destinations so that packets can be forwarded

to them which they can launch blackhole attacks.

For replication-based DTN routing protocols, due to the availability of many

paths to destination, routing metadata falsification causes performance degrada-

tion in a different manner compared to ad hoc network or forward-based DTN

routing protocol.

Routing metadata falsification attack in replication-based routing protocols

works by causing messages to be replicated in the wrong order or even not

replicated at all. For example in Prophet [8], if the other node has a lower

delivery predictability than the destination, then current node will not replicate

the message to the other node. In addition, when there is buffer contention, it

causes messages to be dropped in the wrong order. Hence when contact capacity

is low or when buffer contention is high, routing metadata falsification can cause

severe performance degradation.
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Defence against routing metadata falsification in DTN includes getting every

node in the network to sign its routing metadata, and checking if metadata

claim is consistent. For example, if node A claims frequent meeting and message

exchanges with node B, but node B claims otherwise, further investigation might

be needed.

Acknowledgement Counterfeiting

For replication-based routing protocols in DTN, the use of network-wide ac-

knowledgements to inform all other nodes about the delivery of a message has

been shown to be very beneficial to the routing performance. Acknowledgements

in [9] [10] is simply the 128-bits cryptographic hash of the content, source and

destination of each message. Unfortunately, this does not prevent attackers who

have seen the message from flooding fake acknowledgments into the network.

Fake acknowledgements causes relay nodes holding a copy of the acknowledged

message to be dropped and can cause severe degradation of performance.

A solution to this will be for the destination of messages to sign every ac-

knowledgement that it created. Relay nodes can hence verify the authenticity

of acknowledgements. However, the signature size itself incurs a large overhead.

Alternatively, Burgess et al have proposed to ignore and delete an acknowledge-

ment if a node has not previously seen the message that the acknowledgement is

acknowledging [1]. This leverage on the fact that messages should normally prop-

agate from nodes closest to a message’s source to nodes closest to a message’s

destination. Consequently, message acknowledgements should propagate in the

reverse direction. Burgess et al. show that this defence reduces the effectiveness

of acknowledgement counterfeiting in the MaxProp protocol [1].

Recipient List Attack

In [10], Aruna et al. show that replicating messages together with the list of

nodes holding a copy of the message can help to improve performance as nodes
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can better estimate on how likely the message is to be delivered soon. Unfor-

tunately, similar to acknowledgement counterfeiting, attackers who know about

the message can easily fake the list of nodes holding a copy of the message. Note

that even if the list is to be signed by each individual node itself, compromised

insider nodes sharing their keys can still sign and make it look as though there

are already many nodes holding a copy of the message. This may cause the

message to be regarded as being sufficiently replicated and hence dropped in the

event of a buffer contention.

Resource Consumption Attack

Resources such as the contact capacity, buffer space, and battery of mobile nodes

are limited. Due to replication of messages and metadata, performing a resource

consumption attack is easier in replication-based routing protocols than in tra-

ditional ad hoc network routing protocols.

Contact capacity is an important resource in sparse DTNs as links may be up

only for a short time and down for a long period of time. A simple way to drain

contact capacity is to flood new messages into the network. Replication-based

routing protocols will replicate the messages, draining up contact capacity and

buffer space of nodes in the network. To counter this attack, admission control

should be performed to limit the amount of messages that each node can inject

into the network.
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Application-Aware Routing

In DTN, nodes typically do not pre-establish a routing path before data trans-

fer. Data are transferred in a store-and-forward manner from node to node

whenever the link between the two nodes is up. During a contact, data can

either be forwarded or replicated to the other node. In the forward-based ap-

proach, only a single copy of the message is maintained in the network [20]

[21] [22] [23]. Forward-based DTN routing algorithms usually assume a DTN

environment whereby nodes are reliable, and contact schedules are a priori or

highly predictable. When nodes are unreliable or contact schedules are not a

priori, replication-based routing algorithms are usually preferred. Replicating

messages in such cases increases the chance of delivery and also reduces la-

tency [25] [8] [26] [9] [10].

To further improve performance, existing routing algorithms exploit vari-

ous information such as contact history, acknowledgements, limiting number of

copies in the network, and even list of nodes having a copy of a message [8] [26]

[9] [10]. In [58] [59], exploitation of mobility patterns based on social network

context is applied. Nodes that are in the same communities or more popular are

identified so as to improve delivery probability.

While the above mentioned routing algorithms exploit various additional in-

formation to improve routing performance, none of these routing algorithms are

26
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designed to exploit application semantics to enhance routing. Existing literature

on routing in DTNs ( [10] [60] [9] [20] [21] [61] [62] [8] [26] ) assumes that data

packets are independent and uncorrelated with one another. In this work, we

assert that in the face of inherent intermittent connectivity, knowledge of appli-

cation semantics can be exploited to improve resource allocation and application

performance in the network. We support our claim with the following scenarios.

Scenario 1 In Twitter-like or micro-blogging applications where update mes-

sages are distributed over time, it is necessary that a subscriber receives these

updates in an ordered sequence. Messages that arrive out of order cannot be

displayed or used by the subscriber, and have to be either buffered or discarded

until earlier updates have all arrived. With knowledge of application semantics,

intermediate relaying nodes can assign higher priorities to earlier updates so that

they are scheduled to be sent or routed before later updates.

Scenario 2 In file sharing applications, all the data blocks (or components)

of a single file must be received by the destination for the file transfer to be

deemed successful. When relay nodes are aware of such dependencies between

blocks of data, the missing data blocks of an ongoing file transfer can be assigned

with higher priorities to increase the number of successful file transfers, which

can be especially significant in resource-constrained DTNs. For example, it is

much better that 50% of file downloads complete successfully (i.e. with 100% of

the blocks received in each file transfer), as compared to the case whereby 100%

of file downloads receive 50% of their individual data blocks - resulting in no

successful file downloads at all.

Scenario 3 In applications whereby data blocks in a stream of data have

varying importance, application semantic awareness enables the network to man-

age its resources in a more efficient manner, resulting in better application per-

formance. For example, video frames that are encoded in MPEG format can

be classified as I, P or B frames - in order of descending importance. In the

event of the loss of an I frame, all the corresponding P and B frames in the same
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data stream cannot be used. In contrast, the loss of a P frame affects only the

corresponding B frames in the same stream.

Based on the scenarios that we have illustrated, it is obvious that existing

DTN routing algorithms are inadequate and do not optimize application-level

performance as they: (i) ignore application semantics; and (ii) are evaluated

based on conventional networking metrics such as packet delivery ratio and la-

tency - which have little correlation with application-level performance metrics.

To enable DTN routing algorithms to take into consideration of application

semantics, we propose a mechanism to capture application semantics based on

dependency relationships. By translating dependency relationships into hints

that can be used by resource allocation schemes, the mechanism allows better

resource allocation to improve the application performance. In addition, the

mechanism is general and can be used to model a large class of applications.

Information about dependency relationship can be tagged along with little

overhead to control messages disseminated by existing DTN routing algorithms.

The DTN routing algorithms can potentially make use of the information to en-

hance performance. In this work, we show how a simple DTN routing algorithm

- Epidemic, and a complex Rapid-like [10] DTN routing algorithm can utilize

the dependency relationships for routing purposes.

3.1 Dependency Graph

3.1.1 Obtaining dependency information from Application

As mentioned earlier, there are many cases where awareness of application se-

mantics can be exploited to provide benefits to the network nodes for resource

allocation purpose. However, in order to exploit these dependencies, we need a

way to capture them in an organized manner so that they can be exploited al-

gorithmically. While this imposes requirements on the applications we support,

we show that such information is already available from many existing popular



CHAPTER 3. APPLICATION-AWARE ROUTING 29

applications as follows:

Web pages

Web pages and related multimedia objects reference each other using hyperlinks.

This information can be harnessed to build the dependency graph. Application

such as HTTrack (http://www.httrack.com) uses hyperlink information to ex-

tract the dependencies among different web pages.

Social network applications

Social network applications such as Facebook Graph API and Twitter API allow

access to data generated by the users. The data is available in a structured for-

mat. For instance, facebook wall data for a user is returned in JSON (JavaScript

Object Notation) format. Wall objects contain posts by the user, comments of

friends of a user and other information which can be represented as dependency

graphs.

Software update management tools

Software updates are often automated. Most software update management util-

ities are accompanied by tools to extract the dependencies of the updates. For

instance, apt-cache (http://linux.die.net/man/8/apt-cache), a package handling

utility, exports the dependencies of a package using DOT, a plain text graph de-

scription language. This information can be used to build a dependency graph.

A tool that performs a similar function for Microsoft Windows based platform

is dependency walker (http://www.dependencywalker.com).

Media files

Media file formats such as MPEG have the I-P-B frame structure which fa-

cilitates the building of dependency graph. The I-P-B frame structure is well

established and used extensively in media applications.
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Normal data files

Data files are the simplest case of dependencies where all data blocks are required

for the file to be useful.

3.1.2 Application Model

We assume that different application types can run on a DTN and many instances

of an application are possible. We define the terminologies used below.

• Block: A block of data is the unit of data transmitted or received over a

wireless link. We assume that there is a maximum block size similar to the

idea of a maximum transmission unit (MTU). Note that each data block

is sent in the form of a message in the DTN.

• Update: An update is a set of data blocks which forms an unit of data

input to/from the user application. An update may be fragmented in the

delivery process. Such fragmentation will lead to blocks from the same

update becoming reordered or being delivered over different paths due to

intermittent connectivity.

• Channel: A channel is defined as a sequence of updates. A user applica-

tion is a consumer of this channel and each channel is associated with an

application type. For instance, a channel that produces twitter feed will

be consumed by twitter clients. The updates belonging to a channel could

originate from any of the participating nodes in the DTN and be consumed

by any of the participating nodes.

The relationships among block, update and channel are shown in Figure 3.1.

Users express their interest to a channel, for example, a twitter feed, a par-

ticular file sharing session or a podcast feed by subscribing to that channel.

Updates can be periodic or aperiodic depending on the application. The size of
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Figure 3.1: Relationships among block, update and channel.

each update may also vary.

Due to intermittent connectivity, blocks of an update can follow different

paths to reach the subscriber nodes where they are re-assembled. Further, blocks

may arrive at the subscriber nodes out-of-order.

3.1.3 Dependency Model

The definition and structure of the dependency graph used in this work is pre-

sented below.

Definition: Dependency Graph A dependency graph Gd = (Vd, Ed)

where Vd is the set of vertices and Ed the set of edges, is a directed graph where

if there is a directed path from node A ∈ Vd to node B ∈ Vd, then node A

depends on node B.

Definition: Dependency set of node A Given a dependency graph Gd,

the dependency set of node A, Gd(A), is defined as the set of nodes reachable

from node A in Gd. Therefore, a node j ∈ Gd(A) if there is a directed path from

node A to j.

One way to think of the dependency set of node A is that all nodes in this set

must be received by the subscriber before node A can be used by the application.

Dependencies can be defined among blocks as well as updates. Hence, the nodes

in Gd can be either blocks or updates. Finding the dependency set of a node

involves a simple depth first search and is hence very efficient.

Definition: Task For each update u, there is an associated task. When
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all updates in Gd(u) are received by the subscriber, update u can be utilized by

the application and the task associated with u is completed.

Figure 3.2: Example of a dependency graph

Figure 3.2 shows a simple dependency graph. Following from the definition

for task, for each of the updates (A,B,C,D,E) in Figure 3.2, the tasks are given

below:

Gd(A) = {A,B,C,D,E}

Gd(B) = {B,C,D,E}

Gd(C) = {C,E}

Gd(D) = {D,E}

Gd(E) = {E}

From the application’s perspective, task completion and latency are more

useful than measures looking at only data block delivery statistics. We use the

following three applications to further illustrate the dependency graph concept.

1. streaming data/messaging, where delivery must be in order;

2. file download where delivery is completed only when all blocks are received

by the subscriber;

3. video file compressed in MPEG format with I, P and B frames.
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Update i-1 Update i+2Update i+1Update i
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Later update can be used only if all previous updates are present

Earlier Updates Later Updates

Figure 3.3: Dependency graph of messaging application.

Update i-1 Update i

Block Block

Block

Block Block

Block

All blocks within an update are related but the updates are independent

Figure 3.4: Dependency graph of file sharing application.

Figure 3.5: Dependency graph of IPB group of pictures
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These three applications represent a range of different dependency charac-

teristics. In Figure 3.3, each message update is assumed to be relative small and

can fit into a single data block. In this case, we only need to consider update

(as there is only one block per update). Since the dependency is strictly based

on message creation time, the dependency graph structure is a single linked list,

with each update pointing to the earlier update. Hence, if we consider an update

i created at time ti, all updates with creation times less than ti must be received

by the subscriber before update i can be delivered/processed. Therefore, for

update i, Gd(i) = {..., i− 1, i}.

Figure 3.4 shows the case for a file download/sharing application. In this

case, a single file is one update. If the file size is larger than a data block, the

file (a single update) will have multiple data blocks. In the figure shown, each

file has 3 data blocks.

First, consider the dependency on the block level, within an update. Since all

blocks must be received by the subscriber for the file download to be successful,

the dependency graph for all blocks within an update is a complete graph where

all blocks depends on each other. For a block b, Gd(b) is the set of all blocks of

the same update. Also, all blocks of the same update have the same dependency

set.

At the update level, we assume that the updates are independent. Therefore,

subscribers can receive and utilize these update files independently. For update

i, Gd(i) = i.

In Figure 3.5, we consider the case where the dependencies are more involved

than the previous two examples. The example is based on the types of pictures

or frames (the I-, P- and B- frames) used in MPEG video compression algorithm

that exploits temporal redundancy. An update can be either a I-, P- or B-

frame. An I-frame is intra-coded, which in effect is a fully specified picture, like

a conventional static image file. A P-frame may reference previous I- and P-

frames while a B-frame may reference both previous and next I- and P- frames
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for decoding.

Each frame is in turn made up of a single or multiple data blocks. The I-

frames and P-frames are usually bigger than the B-frames. Depending on the

video bit rate, one or more B-frames may be transmitted as a single data block

but the I-frames are likely to be fragmented into multiple data blocks. Within

a frame, as in the previous case, if there are multiple blocks, the dependency

graph for these blocks forms a complete graph.

Take the example of a B-frame. The task associated with this B-frame is only

completed when all frames/updates that this B-frame depends on are received

by the subscriber.

Once the dependency relationships among data blocks can be represented in

a structured way, it is possible to design algorithms that take into account these

dependencies. In section 3.2, we describe how a given DTN routing algorithm

can be enhanced to take advantage of this information.

3.2 Depedendency-Aware Routing

As highlighted earlier, all data blocks of a task must be received by the destina-

tion before these blocks can be consumed by the application. Due to intermittent

connectivity and limited buffer storage available at relay nodes, it is likely that

blocks belonging to the same task will be split into many smaller parts and re-

layed through different nodes before arriving at the destination. If any one of

these parts does not reach the destination, blocks from the same task that have

been delivered cannot be used for that task.

Our proposed dependency graph approach allows relay nodes to be aware

of the dependency relationships of the data blocks in a task. As a result, relay

nodes can make use of these dependency relationships to schedule important and

related blocks with higher priority.

Dependency-aware DTN routing algorithms need not be designed from scratched.
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Existing DTN routing algorithms can be enhanced with dependency awareness

to improve on its routing decision. We show in Section 3.2.1 how we can modify a

simple Epidemic routing algorithm into a dependency-aware routing algorithm.

Next, we show in Section 3.2.3 how we modify a more complex, utility based

RAPID-like routing algorithm into a dependency-aware routing algorithm.

3.2.1 Dependency-Aware Epidemic

In this section, we show how one can enhance the simple Epidemic algorithm to

be dependency-aware. We called this enhanced Epidemic algorithm D-Epidemic.

Conceptually, D-Epidemic improves on Epidemic by performing scheduling

in a FIFO manner based on tasks rather than on data blocks. Recall that each

task has one or more data blocks that are associated with it. For relay nodes to

identify the blocks that are associated with a task, the dependency relationships

are sent in the form of metadata to the relay nodes.

When a task is scheduled to be sent to a relay node, all data blocks in the

node’s buffer associated with the task will be sent together. However, note that

if a data block has already been sent due to its association with other scheduled

tasks, it will not be sent again.

In addition, D-Epidemic maintains two logical FIFO queues, a high priority

and a low priority queue. During a contact, a node always sends tasks from the

high priority queue first, follow by the low priority queue. In the event of buffer

contention, nodes always drop tasks (and their associated data blocks) from the

low priority queue first, unless the data blocks are also associated with other

tasks.

Mapping of a task to either the high or low priority queue depends on how

many of the task’s data blocks are present in the node’s buffer. If all of the data

blocks associated with a task is present in the node’s buffer, we call such task a

full task. Otherwise, a task is a partial task since only part of the task is stored

in the node’s buffer.
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Full tasks are always stored in the high priority queue. On the other hand,

a partial task is given a one time probability of being stored in the high priority

queue. This probability, α, is a system parameter. When α = 0, full tasks are

given strictly higher priority than partial task. In this case, full tasks may end

up being in buffer for extended period of time, starving newer partial tasks. In

our evaluation, we set α = 0.5, giving higher priority to full task, and yet do not

excessively starve partial tasks.

Note that while D-Epidemic only exploits dependency in the simplest form,

it is sufficient to demonstrate how dependency awareness can be used to enhance

a simple algorithm.

3.2.2 SAR

In this section, we describe a DTN routing algorithm we named Subscriber

Aware Routing or SAR. SAR is a utility based algorithm that has been specifi-

cally modified from RAPID [10] algorithm to suit a publish/subscribe environ-

ment. We believe that a publish/subscribe environment is more suitable for

supporting the DTN applications that we used in the evaluation. SAR is con-

sidered to be complex as it incorporates a number of well known techniques that

exploit contact history and keeps track of data availability on nodes in its utility

computation to enhance delivery ratio and latency. We will modify SAR to be

dependency-aware in section 3.2.3.

Overview of SAR

When two nodes using SAR are in contact, they first exchange metadata and

then compute a utility value for every data block in its buffer. Each node then

computes the utility gain value for each data block assuming that the data block

is replicated to the peer node. Data blocks are then replicated to the other peer

in descending order of utility gain value. In addition, each node computes a

utility loss value for each data block in buffer assuming that the data block is
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dropped. In the event of buffer contention, SAR drops data blocks in ascending

order of utility loss value.

We describe the operations of SAR in more detail below.

Metadata exchange

When two nodes using SAR are in contact, the following metadata is exchanged:

(a) Contact history (inter-contact time)

(b) List of channels subscribed by each known nodes

(c) Known data blocks and their list of nodes known to have a copy of it

In (a), a table of node contact history that contains the durations between

each successive contact for each node (inter-contact duration) is sent. Using

history of inter-contact duration, nodes can estimate the delivery latencies of

data blocks to their subscribers.

To allow relay nodes to know the subscribers of each data block, subscription

details of each known node is sent in (b). This allows relay nodes to make

informed decision on how to route the data blocks. The subscription details

contain the matching tags for matching published contents to the subscribers.

In (c), known data blocks and their list of nodes known to have a copy of it

is sent. This allows a node to compute and estimate the delivery latency of a

data block to its subscribers, and how many subscribers already received a copy

of the data block.

Estimating data block delivery latency

The contact (or meeting) times for nodes made up a large portion of delivery

latency. Nodes estimate the expected meeting time from the source to the des-

tination node as follows:

Node A estimates E(MAC), the expected time for node A to meet node C

using the contact history (inter-contact duration) that is exchanged as part of
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the metadata. E(MAC) is approximated using the expected time taken for A to

meet C in at most h hops. For example, if A meets C via an intermediary B,

the expected inter-contact time is computed as the expected time for A to meet

B and then B to meet C. We restrict h=3 in our implementation. RAPID and

several other DTN routing protocols [10] [9] [8] [32] have use similar techniques

to estimate meeting probability among peers. If two nodes never meet even via

three intermediate nodes, the expected inter-contact time is set to infinity.

Suppose data block i has been replicated at nodes R = {r1, ..., rk} and the

subscriber is C /∈ R. The expected time to deliver data block i to C is estimated

to be:

DR,C(i) = [
∑
r∈R

1

E(MrC)
]−1 (3.1)

Note that equation (3.1) assumes the meeting times to be exponentially dis-

tributed. The distribution of meeting times in the traces (eg. DieselNet) are

very difficult to model. Nodes may change their routes many times in the traces

and the inter-contact distribution is noisy. Approximating meeting times as ex-

ponentially distributed makes delay estimates easy to compute and has been

reported to perform well in practice, see for example, [10], [26].

The computation described above works only for a single (known) destina-

tion. In general, there can multiple destinations and this is shown in the utility

computation to be described in the next section.

Utility Computation

We define QR,S(i), the sum of the estimated latency that data block i will take

to be delivered to all subscribers as

QR,S(i) =
∑
s∈S

DR,s(i) (3.2)
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where R is the set of nodes having a copy of data block i, and S is the set of

subscribers which need data block i and has not received it. Note that QR,S(i)

is 0 when i has been delivered to all the subscribers.

QR,S(i) allows SAR to have a quantifiable delivery metric that can be used to

measure how much delivery latency is reduced if block i is replicated to another

node. As data blocks may be of different sizes, replicating each of them will use

different amount of resources. Hence the utility gain is normalized by the size of

the data block.

For example, if data block i is replicated to node rk, then the utility gain

normalized by the size of the data block is:

QR,S(i)−Q(R+rk),S(i)

sizei
, where rk /∈ R (3.3)

3.2.3 Dependency and Subscriber-Aware Routing (DSAR)

In this section, we show how to modify SAR into a dependency-aware routing

algorithm. We named the dependency-aware version of SAR to be Dependency

and Subscriber Aware Routing (DSAR).

We make two changes to SAR. Firstly, we need to send dependency rela-

tionship information to relay nodes. Dependency relationship information can

be sent in the form of metadata together with their associated data blocks.

Secondly, we need to modify the utility computation function to take into con-

sideration dependency relationship information.

Task Utility Computation

In SAR, data block delivery latency is the main component used for utility

computation. However, for DSAR, we need to take into consideration both data

block and task delivery for utility computation.

We defined task contribution for a task as the ratio of undelivered data blocks
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of the task in the node’s buffer over the total number of (estimated) undelivered

blocks of the task. As an illustration, consider a task with a total of 100 data

blocks and 20 data blocks of this task are known to have been delivered. If a node

has 60 undelivered data blocks out of the 80 remaining data blocks in its buffer,

the node can contribute 60
80 or 75% to the task. Note that task contribution has

to be computed for each subscriber separately since each subscriber may have

received different subset of a task.

The value of task contribution captures the utility of a set of data blocks for

task completion. It also requires fairly minimum information to compute. The

number of undelivered blocks in buffer is locally available and the number of

undelivered data can be estimated based on the acknowledgement messages.

We modify the SAR utility function by including the task contribution as a

parameter factor in the utility computation. Specifically, we define DSAR utility

function VR,S,T (i) as follows:

VR,S,T (i) =
∑
t∈T

∑
s∈St

[DR,s(i)× C(t, s)] (3.4)

where T is the set of tasks which depends on data block i, St is the set of

subscribers of task t that has not received data block i, and C(T, s) is the task

contribution for task t and subscriber s.

We define the utility gain function of DSAR as the increase in delivery metric

with respect to VR,S,T (i). Specifically, if node A has a data block i to replicate

to node B, node A computes the normalized utility gain of replicating data block

i to node B as follows:

GAB(i) =
V(A∈R,B/∈R),S,T (i)− V(A,B∈R),S,T (i)

sizei
(3.5)

Similarly, the utility loss function of DSAR is defined as the decrease in

delivery metric with respect to VR,S,T (i), normalized by the size of data block
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being dropped. During buffer contention, node A will drop the data block that

has the lowest utility loss value. It computes utility loss value for data block i

as follows:

LA(i) =
V(A/∈R),S,T (i)− V(A∈R),S,T (i)

sizei
(3.6)

When two nodes meet, DSAR nodes replicate data blocks in descending order

of utiltiy gain value. In the event of buffer contention, DSAR nodes drop data

blocks in ascending order of utility loss.

There are two overheads when we convert SAR to DSAR, namely sending the

dependency lists and utility computation. Dependency lists need to be stored

in the buffer as well as exchanged when two nodes communicate. However, the

dependency lists can be stored very efficiently using a bitmap. As each single

data block is in order of few KBs, the overhead is relatively small.

Utility computation of DSAR as compared to SAR involves an additional

multiplication for task contribution. Task contribution requires node to keep

track of the data blocks belonging to the task that has yet been delivered. As

existing routing schemes like SAR already incorporates block delivery acknowl-

edgements, computing task completion is straightforward.

3.2.4 Mixed Traffic

In the discussion so far, we assume that dependencies for all data blocks are

known. In practice, this may not be possible. A mixture of data blocks with

known and unknown dependencies can be handled in the following way.

For D-Epidemic, two logical queues are maintained, one for traffic with known

dependencies and one for those without. For the logical queue with known

dependenices, the same high and low priority queues are maintained as described

in Section 3.2.1. For the logical queue with unknown dependencies, data blocks

are maintained in a FIFO manner. Data blocks are sent in a round-robin manner

between the two logical queues of known and unknown dependencies. For the
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known dependencies traffic, all data blocks belonging to at least one task are

sent before switching to the queue with unknown dependencies traffic. Similar

amount of unknown dependencies traffic are then sent before switching back

to the known dependencies traffic to maintain service fairness. This algorithm

is clearly not optimized. While one could design a “smarter” algorithm that

performs better by taking into account more information, we believe that a

simple approach is better for demonstrating the effect of taking into account

task information in this case.

For DSAR, the approach is to generalize the computation of task utility

to traffic with unknown dependencies. The two parameters required are task

contribution and dependency list. For task contribution, we estimate this value

(for all unknown traffic) as the average task contribution value computed over all

the known dependencies traffic in the node’s buffer. For dependency, we simply

assume that each data block with unknown dependency belongs to only one task.

The performance with mixed traffic is evaluated in Section 3.3.

3.3 Simulation Evaluation

In the evaluation, we compare DSAR and D-Epidemic algorithm with SAR and

Epidemic algorithm respectively. Comparing SAR to DSAR and Epidemic to

D-Epidemic allow us to see the performance gain by utilizing dependency infor-

mation of data blocks in tasks.

The metrics used in the evaluation are Task Completion Ratio (TCR), Block

Delivery Ratio (BDR) and Task Latency. TCR is computed as

TCR =

∑
s∈S |Ts|∑
s∈S |Tps|

(3.7)

where S is the set of subscribers, Ts is the set of tasks received by subscriber s,

and Tps is the set of tasks being subscribed to by subscriber s. TCR captures
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the ability of the algorithm to complete the generated tasks.

BDR is similar to the delivery ratio metric used in unicast routing algo-

rithms. However, in our evaluation, BDR is extended to a Publish/Subscribe

environment. It is defined as:

BDR =

∑
s∈S |Bs|∑
s∈S |Bps|

(3.8)

where S is the set of subscribers, Bs is the set of data blocks received by sub-

scriber s, and Bps is the set of data blocks that are part of the tasks being

subscribed to by subscriber s.

Finally, task latency is defined as the time difference between subscriber

successfully received all blocks of the task and the time that the subscriber has

subscribed to the task.

Two application types are used in the simulation, namely: file and linux

package updates.

Linux package updates are modeled as downloads of the application TraceR-

oute along with their package dependencies. We obtain the package dependencies

of TraceRoute using apt-cache [63]. The dependencies characteristics of this ap-

plication can be described as having a total of 12 updates. 3 of the updates

depend on 7 other updates and 1 of the updates depends on all the other 11

updates. In addition, each of these updates consist of a set of blocks whose

dependency graph is a complete graph.

Traffic for the file application is generated as a set of blocks whose dependency

graph is a complete graph. In the case of a complete graph, the reception of all

data blocks in the graph is counted as one task completion.

Our evaluation are based on the mobility traces of taxi cabs in San Francisco

[64], and the Haggle Infocom 05 [65] trace.

The San Francisco taxi (SanCab) trace consist of the locations of approxi-

mately 500 taxis collected over 30 days in the Sans Francisco Bay Area. Using



CHAPTER 3. APPLICATION-AWARE ROUTING 45

the reported GPS locations, we assume a wireless range of 100m and create

connections for each pair of nodes if they are within a distance of 100m. We

(randomly) picked the first and the tenth day of the trace for simulation. The

trace for each day is further split into 2 segments, giving a total of 4 traces each

having 12 hours of trace data. The simulation results reported are the average

of the 4 traces.

The Haggle trace consists of a 3 day long trace that is based on a human

mobility experiment in Infocomm 2005. 41 volunteers joined the experiment and

was each given an iMote device that can communicate with one another using

Bluetooth. The trace includes connection events among these iMotes devices

(Class 1 devices) and also to other Bluetooth-capable devices (Class 2 devices).

We removed connection events from the Haggle trace that lasted less than one

second or involved the singular appearance of a node since meaningful data

transfer is likely to require setup time and nodes incapable of routing data may

be ignored. After the transformation, the traces left with only events involving

the 41 iMotes devices. We further split the Haggle trace into 3 segments, and

the results reported are the average of the 3 segments.

Table 3.1 gives the default configuration for the simulation scenarios discussed

later. Note that each data block is equivalent to one bundle and for each channel,

a node is randomly chosen to be the publisher. Unless otherwise stated, these

parameters will be used throughout the simulation.

3.3.1 Effect of varying buffer

We first study the effect of varying buffer size. Figure 3.6 shows the Task Com-

pletion Ratio (TCR) and Block Delivery Ratio (BDR) results. In terms of TCR,

DSAR and D-Epidemic performs substantially better than their respective coun-

terparts SAR and Epidemic, especially when buffer size is very limited. At 12MB,

DSAR is able to complete 74% and 17% more tasks than SAR in the SanCab

and Haggle trace respectively, while D-Epidemic is able to complete 583% and
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Table 3.1: Simulation Parameters

Parameter SanCab Haggle

Number of publishers 24 8

Number of subscribers 24 8

Channels subscribed per subscribers 8 8

Number of blocks (File application) 40-140 40-140

Avg injection rate in blocks (File application) 180/hr 180/hr

Number of blocks (Linux package) 10-180 10-180

Avg injection rate in blocks (Linux package) 150/hr 150/hr

Size of the data block 50KB 50KB

Transmission Rate 2Mbps 1Mbps

Buffer Size 50MB 50MB

Bundle Expiry Time 6 hours 6 hours

60% more tasks than Epidemic in the SanCab and Haggle trace respectively.

In terms of BDR, SAR outperforms DSAR for both SanCab and Haggle

traces. This is expected since SAR is optimized for BDR while DSAR is opti-

mized for TCR. In addition, DSAR has overhead of sending the dependency list.

Note however, TCR is the more relevant metric for application performance.

Hence, higher BDR is not as useful as higher TCR.

While DSAR is able to achieve higher TCR performance, it is clear that the

improvement is much larger in the SanCab trace than in the Haggle trace. This

can be explained by looking at how likely a task will be split through multi-

hop delivery. If the task is not split and is delivered to a subscriber in a single

contact, dependency awareness would not matter much since the entire task is

already being delivered as a single block.

From the simulation results, considering only tasks with at least one block

being delivered, we observe the following when SAR is used on the Haggle trace:

56.7% of the tasks are delivered in full using 1 contact, 16.3% are delivered in full

using multiple contacts and 27% are partially delivered. As a result, the possible

performance gain achievable by DSAR is limited since it can only improve on
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Figure 3.6: Effect of Buffer Size

the remaining 27% that are partially delivered. On the other hand, when SAR

is used on the SanCab trace, only 10.9% of the tasks are delivered in full using

1 contact, 40.8% are delivered in full using multiple contacts and 48.3% are

partially delivered. DSAR is thus able to improve on the remaining 48.3% that

are partially delivered. Therefore, it is clear that the characteristics of the traces

play a very important role in determining how effective task awareness can be.

Figure 3.7(a) shows the CDF graphs of contact duration of the SanCab and

Haggle traces. Clearly, the SanCab trace consists of many more short duration

contacts than the Haggle trace, causing much more connection breaks during
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Figure 3.7: Trace statistics

data transfer. For example, over 60% of the contacts in the SanCab trace are

shorter than 30 seconds, while only about 10% of the contacts in the Haggle

trace are shorter than 30 seconds. Similarly, Figure 3.7(b) shows the hop count

distribution of SAR when the data blocks are delivered. 95.7% of the packets

in the Haggle traces are delivered in 5 hops or less. On the other hand, in the

SanCab trace, 41.8% of the packets takes 6 or more hops to reach the subscriber.

The results from both figures show that tasks are much more likely to split

and be delivered over multiple paths in the SanCab trace. Without any depen-

dency relationship information, nodes in SAR (or Epidemic) may end up wasting

resources delivering many partially completed tasks to the subscribers.
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In summary, while our dependency-aware routing scheme is able to improve

performance in both traces, it perform much better when contacts are intermit-

tently short, and whereby delivery would occur over more hops and different

paths. Our approach thus works best in DTN environments with high mobility,

for example a urban vehicular DTN, as in the SanCab scenario.
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Figure 3.8: Effect of Transmission Rate

3.3.2 Effect of Varying Tranmission Rate

In this section, we study the effect of varying transmission rate. We vary trans-

mission rate from 0.5Mbps to 10Mbps. Figure 3.8(a) and 3.8(b) shows the TCR
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results of the simulation.

The results here are quite similar to varying buffer sizes. In all cases, the

dependency-aware routing algorithms DSAR and D-Epidemic outperform their

respective dependency ignorant counterparts, and the performance gain is much

larger in the SanCab trace than in the Haggle trace. For TCR, the improvement

of DSAR over SAR reaches up to 100% in the SanCab trace. For D-Epidemic,

the improvement over Epidemic reaches up to 197% in the SanCab trace.

3.3.3 Task Latency Distribution

We analyze the task latency distribution in this section. The default simulation

parameter is used (see table 3.1). Figures 3.8(c) and 3.8(d) show the task latency

distribution.

The dependency-aware DSAR and D-Epidemic is able to consistently deliver

more tasks in a shorter time. In terms of task completion latency, in the SanCab

trace, 58% of the tasks in DSAR completes within 3 hours. For SAR, the ratio

is 45% in 3 hours. The ratios for D-Epidemic and Epidemic are 26% and 5%

respectively for task completion within 3 hours.

3.3.4 Task Completion for Different Task Sizes

Results in the previous sections only consider aggregated TCR across all task

sizes. While dependency-aware routing algorithms significantly outperform non-

dependency-aware routing algorithms, it is also important to look at the task

completion ratio for different task sizes. If the gain in overall TCR is at the

expense of lowering TCR for large tasks (which takes up more resources to

complete) to benefit small tasks, the performance gain will not be as attractive.

Tables 3.2 and 3.3 show the breakdown in task delivery over different task

sizes for both traces. The results shown are measured using the default simu-

lation parameter shown in Table 3.1. There are improvements in task delivery

for DSAR for both SanCab and Haggle trace. The result for D-Epidemic is less
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impressive. For the larger task sizes (100 blocks or more), there is a decrease in

task delivery though a substantial number of the large tasks are still able to com-

plete and large tasks are not overly penalized. This trade-off can be attributed

to the fact that D-Epidemic has strong preference over complete task in buffer,

and hence indirectly favours smaller tasks as they are less likely to be split.

Table 3.2: Total Delivered Task Distribution (SanCab)

Task size Epidemic D-Epidemic SAR DSAR

(blocks) (α=0.5)

10 1877 5667 4923 6597

15 1731 4154 3491 4518

40 291 855 630 841

60 110 256 496 599

80 133 167 935 1291

100 66 63 535 622

120 99 64 1012 1423

140 15 14 383 447

180 13 7 255 345

All 96535 199100 505815 664240

Table 3.3: Total Delivered Task Distribution (Haggle)

Task size Epidemic D-Epidemic SAR DSAR

(blocks) (α=0.5)

10 129 211 255 302

15 106 129 218 293

40 18 27 78 80

60 51 52 84 88

80 59 84 115 137

100 38 50 47 54

120 54 54 106 107

140 40 49 57 53

180 9 5 19 21

All 28880 34205 52000 56295
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3.3.5 Mixed Traffic Type

In this section, we evaluate the performance when there are traffic with both

known and unknown dependencies. In the simulation, the default setting (see

Table 3.1) is used, except that 50% of the traffic does not provide dependency

data. The results are shown in Figure 3.9(a) and 3.9(b). DSAR-A and DSAR-

I show the TCR for known and unknown dependency traffic respectively for

DSAR. For DSAR, there is improvement for known dependencies traffic when

compared to their dependency ignorant counterparts. For unknown dependencies

traffic, DSAR provides rather similar performance compared to SAR.

3.4 Conclusion

We have shown that in the context of DTN where connectivities are intermittent,

it is very beneficial, if not crucial, for application semantics to be known to the

network nodes in order to improve performance. We proposed to use dependency

graph to capture the application semantics based on dependency relationships

and showed that dependency relationships can be added to existing DTN routing

algorithms. We illustrated our approach by showing how two routing algorithms

(Epidemic and SAR) can be enhanced to be dependency-aware. In addition,

the enhanced routing algorithms can be further modified to handle mixed traffic

type - mixture of data blocks with known and unknown dependencies.
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Figure 3.9: TCR for mixed traffic



Chapter 4

Application Resource

Management in DTN

The previous chapter consider the role of nodes in the DTN as simply send-

ing/relaying messages. However, nodes can perform cooperative tasks apart from

merely relaying messages. In this chapter, we consider resource management in

a class of applications in which nodes in the DTN participate in completing

application-related tasks in the system. Nodes typically come together (forming

a DTN) to support the application by completing application-related tasks. We

consider a simple model as follows.

We assume that the system consists of a number of nodes in the system with

similar task processing capability. Each node is able to process at most one

task at any point of time. When a node is processing a task, its status is busy,

otherwise its status is free.

The system consists of an unknown number of tasks that may appear in the

system at different times without a priori knowledge. Each task may be handled

by any free nodes in the system. We assume that all the nodes in the system

have similar processing capability, taking similar amount of time ti to complete

task i. However, there may be a cost Cx
i (t) associated with node x for accepting

54
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task i at time t. For example, if at time t, task i and node x are at different

locations, then node x would need to travel to task i location, incurring a cost

Cx
i (t).

Each node only has partial knowledge of the existence of all the tasks in the

system. If a node discover a new task and is busy, it may try to inform other

nodes in the DTN about the task. Nodes in the DTN collaboratively tries to

allocate the tasks in the system with an objective in mind (such as minimizing

average task completion delay, minimizing the maximum waiting time to start

processing a task etc). However, due to time constraints and communication

delay, nodes are likely to only able to gather partial knowledge of the system

before a decision has to be made.

Example of applications that falls into the above described model includes

Search and Rescue operations in which nodes actively search for victims in the

disaster location. Each task involves picking up the victim and sending the

victim to a safe location (such as hospital). If a victim is found by a busy

node, the busy node may sends out request to other nodes nearby to pickup the

discovered victim. Another possible example of applications that falls into the

above described model includes participatory sensing applications. In participa-

tory sensing applications, nodes may be tasked to perform sensing operations at

certain locations.

In this work, we look at a possible real life taxi scenario that falls into the

above described model. We consider the case of a DTN that is formed by taxis

and waiting clients. Both taxis and (some) clients are equipped with short range

wireless devices such as WiFi to allow them to communicate in the DTN. In

addition, taxis are equipped with location-aware devices such as a GPS device.

A task in this application would be a taxi picking up a client and sending the

client to its destination. Client demands at each region vary over time and is

not known to the taxis beforehand. The objective is to minimize the number of

clients that have waited for a long period of time (eg. waited for an hour).
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We propose Taxi Advisory Dispatch System (TADS), a distributed system

in which taxis collaboratively determine the regions with high client demands

and avoid having excessive free taxis moving into the same region. TADS runs

on DTN and is particularly challenging to design because taxis have limited

communication opportunity. Due to limited communication and delay, each taxi

only has partial knowledge (eg. number of free taxis and clients in a region)

about the system. In addition, information received from other taxis may be

outdated quickly as taxis may move and change their status quickly. Clients

may also be picked up by other taxis and communication delay may hinder such

information from being made known to other taxis.

Exising work on distributed taxi booking system [5] [6] cannot be applied to

TADS because they do not consider a DTN environment whereby disconnection

is frequent. Ideally, we should assign taxis to regions so that the overall time

taken by the taxis to travel to the requested region is minimal. This is related

to the Linear Assignment Problem (LAP). Even though decentralized solutions

for LAP have been proposed [66] [67], they are not suitable for our work due to

very fast changing and intermittent connectivity environment.

Our approach to the problem involves nodes collaboratively estimating the

supply/demand of each region. A node that supposedly has the most information

on the supply/demand of a region sends out advisories to guide or suggest some

free taxis to move into the region. Advisories are generated carefully to avoid

having excessive free taxis moving into the same region.

We perform evaluation of TADS based on traces obtained from a large Singa-

pore taxi company that operates more than 15,000 taxis. Our results show that

TADS can reduce the number of clients with wait times longer than 60 minutes

by over 30%.

In the following sections, we first give an introduction of the taxi transporta-

tion situation in Singapore. We then describe our system model and then give

a detail description of TADS.
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4.1 Introduction

Taxis form an important means of public transport for many countries. It pro-

vides a comfortable and convenient alternative to public transport such as buses

and rail. In Singapore, in particular, taxis are widely available and relatively

low-priced. As of November 2011, the number of taxis in Singapore is about

27,018 [68]. Compared to major cities like Hong Kong, London and New York,

Singapore has one of the highest number of taxis per million population [69].

However, even though Singapore has a high number of taxis, waiting time

for a taxi can still be long, depending on the location, time of day and weather

condition. For example, statistics [70] show that the average taxi waiting time

in the main shopping district can vary from 5 minutes to 38 minutes during the

same hourly interval among different locations that are only 1 to 2 kilometers

apart.

This large difference in waiting times among nearby locations suggests that

there exist significant imbalance in the supply and demand of taxis. If a number

of the free taxis were to be given advice to move to regions with higher demand,

long taxi waiting times can be reduced. In addition, it may also benefit the free

taxis since they were given advice to move to regions with higher chances of

getting clients.

Our proposed system, Taxi Advisory Dispatch System (TADS), addresses

the above problem by sending advisory tokens to request some nearby taxis to

move to regions with a higher demand.

Note that such advisories may (slightly) increase the waiting times for clients

in regions with lower demand for taxis, while substantially reducing the waiting

time of regions with high demand.

The main objective of TADS is to minimize long waiting times rather than

the average waiting time over all regions. In addition, unlike a taxi booking

system, TADS deals with “flag down” clients and does not handle taxi bookings.
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TADS complements and is compatible with the existing taxi booking systems.

TADS assumes that taxis are equipped with short/mid range communication

devices such as WiFi for communication. Communication can be among taxis

or between a taxi and a client’s smartphone. Use of WiFi keeps the running cost

of the system low compared to the use of cellular network.

In TADS, each taxi estimates the number of free taxis and clients in its vicin-

ity. Such information is used by a leader to determine the number of advisory

tokens to generate. A key challenge of TADS is to be able to perform state esti-

mation accurately in a distributed manner in a DTN environment. An important

aspect of TADS is to prevent excessive generation of advisory tokens as this may

lead to too many taxis moving into the same region which is undesirable.

4.2 System Model

Clients are classified into either simple clients or smart clients. A simple client

is someone who simply waits along the road and flags down a free taxi in sight.

A smart client is someone who uses a WiFi device (such as a smartphone) to

communicate with taxis to signal his/her intention to hire a taxi. Each smart

client has a unique client ID.

Taxis are equipped with GPS and WiFi. Each taxi is also given a unique ID

and time is synchronized through GPS. When two taxis are in wireless commu-

nication range, they exchange data. Other taxis who can overhear the communi-

cation can update their records as well. Taxis essentially come together forming

a peer-to-peer Delay Tolerant Network (DTN).

Taxi state is either FREE, POB (Passenger-On-Board) or BUSY. A taxi

state is in POB if it has a passenger on board. If the taxi is not available to

pickup clients due to other reasons (eg. taxi was booked, driver going for lunch

etc), then the taxi state will be BUSY. Note that both the POB and BUSY state

cannot pickup a client. However, it can be travelling on the road and can relay
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data or advisory tokens.

An advisory token is a message that request free taxi to move into a partic-

ular geographical region. Advisory tokens for a region are generated periodically

by a chosen leader taxi. For each region, during each monitoring period, taxis

floods taxi and clients records they have in possession to other taxis in vicinity.

The taxi that has the most number of records is chosen to be the leader for

the region. The leader taxi then generates a number of advisory tokens for the

region based on the information that it has.

A token includes an expiration time and can be exchanged wirelessly among

taxis. When a taxi receives a token, it may choose to accept or reject the advice.

If a taxi accepts the advice, the taxi changes its current path and move towards

the indicated region. The token is thus consumed.

It is important to note that an advisory token only advises a taxi to move

into a region. It does not assign a client to a taxi and hence no client information

is provided in the advisory. In addition, even after a taxi accepts an advice, it

is not necessary for the taxi to move into the targeted region. For example,

along its way to the region, the taxi may pick up a client. In which case, the

advisory is regenerated with the same expiration time as the initial advisory and

forwarded to other taxis. On the other hand, if the taxi rejects the advice, the

taxi continues to be the relay node of the advisory token until the token expires.

4.3 TADS in detail

TADS consists of 3 components: (1) state estimation (number of free taxis and

clients in each region), (2) generation of advisory tokens based on the estimated

states, and (3) distribution of advisory tokens. We assume that the entire region

of interest (e.g. the entire Singapore island) is divided into regions.

Table 4.1 lists the commonly used notations in the following sections. Through-

out this chapter, unless otherwise stated, operations are implicitly described with
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reference to the current monitoring period. For instance, Tr refers to the set of

taxis that have driven past or entered region r in the current monitoring period.

Table 4.1: Notations in TADS
Tr Set of taxis that have driven past or entered region r.

cntPOB
r Total number of POB taxi records for region r.

cntFREE
r Total number of FREE taxi records for region r.

totFREE
r Total number of free taxis that have driven past or

entered region r.

totsimple
r Total number of simple clients in region r.

totsmart
r Total number of smart clients in region r.

ldrj Node j’s replica copy of a leader record.

ldr.l The leader identity as indicated in the leader record.

ldr.r The region as indicated in the leader record.

ldr.score A score value as indicated in the leader record.

IDi Unique identity of node i.

Ms Start time of a monitoring period.

Mg Start time of a monitoring guard.

Me End time of a monitoring period (also the end time of
monitoring guard).

dist A system parameter that determines how far a record
is allowed to replicate.

4.3.1 State Estimation

State estimation is performed for each region periodically through monitoring

by taxis in vicinity. Figure 4.1 illustrates multiple monitoring cycles in TADS.

Monitoring Period 1Leaders generate advisories
t t+dmTime: Guard Duration

Monitoring Period nLeaders generate advisories
t+(n-1)dm t+ndmGuard DurationMs Mg Me Ms Mg Me

Figure 4.1: Monitoring cycles.
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Let Ms and Me be the start and end of a monitoring period respectively. In

addition, let Mg be the start of the guard duration. During [Ms,Mg), taxi i ∈ Tr

participates in monitoring region r. Specifically, taxis in Tr collaboratively try

to estimate the number of free taxis and clients in the region.

To estimate the number of free taxis moving into a region, whenever a free

taxi enters a region or when its status changes to free in the region, the free

taxi generates a unique FREE taxi record. This taxi record is then flooded

to all other taxis within a pre-defined distance or in pre-defined neighbouring

regions. Flooding allows data to spread faster and is a popular technique used

in DTNs [9] [10]. The taxi current location can be made known to the routing

layer, so that the routing layer can prevent further replication of a record that

is outside the area that it is supposed to be replicated.

Estimating the number of clients in a region is challenging since simple clients

are impossible to detect accurately without additional sensory inputs. TADS

obtains a conservative estimate on the number of simple clients in the region

through observing changes of taxi status from FREE to POB. When a free taxi

picks up a simple client, it generates a unique POB taxi record. The POB taxi

records are then flooded to other taxis in the region and its neighbouring regions.

For estimating the number of smart clients in a region, each smart client

generates a unique client record per monitoring period and forwards it to any

taxi that is within communication range. Note that smart clients do not need

to have their time synchronized through GPS. Their time can be synchronized

when they encounter a taxi. Taxis are time synchronized through GPS. Similar

to the POB taxi records, client records are flooded to other taxis in the region

and its neighbouring regions.

Note that no taxi or client record is generated during the guard duration

period [Mg,Me). The purpose of the guard duration is to allow some time for

generated records to “spread” to the leader taxi of the respective region before

the end of the monitoring period (see next section 4.3.2).



CHAPTER 4. APPLICATION RESOURCE MANAGEMENT IN DTN 62

In addition, note that for a smart client to be counted, it has to be able

to communicate to at least one taxi in the monitoring period. If there is no

taxi within communication range of the smart client, TADS will not know the

existence of the smart client.

To summarize, FREE taxi records are used for estimating the number of

available taxis. The total number of (simple and smart) clients is estimated by

adding the number of “flag down” pickups and number of smart clients records

seen in a monitoring period. TADS makes two assumptions. First, the size

of the data to be exchanged is small relative to the WiFi throughput available

even though contact times are not large. Second, while contacts among taxis

are intermittent due to their mobility, the density of taxis is sufficiently large so

that messages can reach neighbouring regions within minutes.

4.3.2 Generating Advisory Tokens

Advisory tokens are generated at the end of each monitoring period by elected

taxis (leaders). Throughout the monitoring period, taxis collaboratively elect a

leader for each region r. However, due to time constraint and long communi-

cation delay, TADS may not give a unique leader at the end of the monitoring

period. Hence, it includes heuristics to minimize the number of duplicate leaders

for a region.

TADS leader election scheme comprises of two components: (1) initial selec-

tion and (2) leader transfer/elimination.

For initial selection, suppose a taxi generates a taxi record (for monitoring)

or receives a client request directly from a client in the region. If the taxi does

not have any existing record for the region in the current monitoring period, it

volunteers itself to be a leader of the region. Hence, whenever there are any

events detected in a region, there will be at least one leader representative for

the region. If there are already existing records for the region in the current

monitoring period (which it receives from some other taxis), then it implies that
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there are already at least one leader in the region. To minimize the possibility

of duplicate leaders in the region, it shall not volunteer to be a leader.

Whenever a taxi encounters another taxi, they exchange records. Each taxi

will send their taxi, client and leader records to the other taxi. If leader records

for a region are different, the two taxis need to harmonize their leader records

for the region. The recorded leader with a larger leader record score (ie. larger

number of taxi and client records) is chosen and the taxi identifier is used as the

tie breaker.

Next, for each region that a taxi is currently a leader, leader election is per-

formed between the two connected taxis. Each taxi sends their current location

to the other taxi. TADS picks the taxi that is currently closer in distance to the

vantage point of the region that they are electing to be the leader. A vantage

point is a pre-chosen location in the region that is assumed to have a higher

chance of meeting other taxi nodes. A typical vantage point can be a road

intersection whereby most taxis would pass by.

EncounterNode() in figure 4.2 shows the pseudocode when two taxis en-

counter and ElectLeader() in figure 4.3 shows the pseudocode for leader election

based on vantage point.

Line 2 and 3 of EncounterNode() (figure 4.2) simply replicates eligible taxi,

client and leader records to the other node (as required for monitoring). A record

is considered eligible if the current node distance is within a pre-defined distance

dist from the record respective region’s vantage point. Both dist and regions’

vantage point are pre-defined system parameters that is known to all the taxis

in the system.

Having a large dist value allows taxis in vicinity to be more informed about

the situation in region r. However, it results in more resource usage since records

are now replicated to more taxis. Figure 4.4 shows an example in which the

square in the centre represents the region of interest. The dark grey circle rep-

resents a taxi and its associated arrow represents its current trajectory. The
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1: EncounterNodei(Node j) {
2: Send/Receive eligible taxi/client records.
3: Send/Receive eligible leader records.
4: For each leader records ldrj received,
5: if ((ldr.scorej > ldr.scorei) or (ldr.scorej = ldr.scorei and

ldr.lj > ldr.li))
6: ldri ← ldrj

7:

8: new Score ← compute node new Score()
9: For each leader records ldr in node i,

10: if (ldr.l = i)
11: ldr.x← new Score
12: new leader ← ElectLeader(ldr.r, i, j)
13: if new leader=j
14: Send new leader of ldr to j
15: if send successful
16: ldr.l← new leader
17: }

Figure 4.2: EncounterNode()

1: ElectLeader(r, i, j) {
2: disti ← getDistance(i, VantagePoint(r))
3: distj ← getDistance(j, VantagePoint(r))
4: if disti > distj

5: new leader ← j
6: else if disti < distj

7: new leader ← i
8: else
9: if IDi > IDj

10: new leader ← i
11: else
12: new leader ← j
13: return new leader
14: }

Figure 4.3: ElectLeader()



CHAPTER 4. APPLICATION RESOURCE MANAGEMENT IN DTN 65

dotted circle represents the taxi wireless communication range. Suppose taxi A

has some observation records for the region but it has now moved out of the

region. It encounters taxi C who is travelling in the reverse direction, moving

into the region soon. Assuming that their position is still within the distance

dist, taxi A replicates its records to taxi C. Taxi C eventually enters the region,

encounter taxi B, and replicates the records to taxi B. Noticed that in this case

if replication is not performed beyond the region of interest, then records in taxi

A would have been deleted and will not be replicated to taxi C.

A

B

C

Figure 4.4: Example of replication beyond region of interest.

For line 4 to 6, taxi updates existing leader records if the newly received

records show that the claimed leader has a higher ldr.score. ldr.score is defined

to be the number of received client and taxi records. For example, if the leader

record in taxi A for region r shows that taxi C is the leader, and the newly

received leader record for region r shows that taxi D is the leader with a higher

IQ score, then taxi A will update the leader records to indicate that taxi D is

the leader for region r.

A taxi that has more records supposedly has a better picture of the state of

the region compared to a taxi that has fewer records. Preferably, a leader taxi

should have a better ldr.score so that it can make better decision in generating
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tokens. Note that ldr.score is a monotonically increasing value.

For line 8-11, taxis update their ldr.score since they may have received new

records due to line 2. In addition (line 12-16), for each region that the taxi

is currently a leader, taxi calls the function ElectLeader(). ElectLeader() picks

the taxi that is currently closer in distance to the vantage point of the region

that they are electing to be the leader. The rationale for line 12-16 is to enable

a leader to “transfer” leadership to a taxi that is closer to the vantage point.

Since vantage point is a location chosen to have higher chances of meeting other

taxis, it gives the leader higher chances of meeting other leaders (for leader

elimination), and receiving new records (for better ldr.score).

Figure 4.5 shows the scenario of four regions in which taxi A is the elected

leader for region W, Z and taxi B and C are leaders for region X and Y respec-

tively. Taxi A has earlier driven through region Z and is at region W at the end

of the monitoring period. It participated in the leader election for both regions

and became the leader due to having a higher ldr.score for both regions. Even

though taxi D has the same path as taxi A in this monitoring period, it is not

chosen as the leader due to a lower ldr.score.

A

B

C

Region: W Region: X

Region: Y Region: Z

D

Figure 4.5: Example of leaders in regions.
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4.3.3 Determining Number of Advisory Tokens

At the end of a monitoring period, each leader will individually determine the

amount of advisory tokens to generate. As explained in section 4.3.1, the number

of client records is often fewer than the actual number of clients. If we simply

use the client record count without making any adjustment, we will miss out

many regions that require more free taxis.

Instead of using the number of taxi and client records directly, we take into

account the duration in which a taxi spends in either FREE or POB state in

the region, as well as the amount of time a client has been waiting for a taxi

(applicable only to smart client) to further improve the estimates. Intuitively,

if a taxi spends more time in FREE than POB in a region, supply of free taxis

may be higher in the region. Similarly, regions where clients have been waiting

for longer periods of time may have a higher demand for taxi.

TADS utilizes a score-based system to better reflect the supply and demand

for taxis. The score-based system also attempts to compensate for the fact that

some advisory tokens may be unable to find a free taxi.

GetNumberOfAdvisoriesToGenerate() presents the pseudocode for a leader

to determine the number of advisory tokens to generate for a region.

1: GetNumberOfAdvisoriesToGenerate(Region r)

2: Ssupply
r ← cntFREE

r

3: Ssmart
r ← cntsmart

r + incsmart
r

4: Ssimple
r ← cntPOB

r + incsimple
r

5: Sdemand
r ← Ssmart

r + Ssimple
r

6: n← (Sdemand
r − Ssupply

r )
7: if n > 0
8: return n
9: else

10: return 0

incsmart
r (line 3) adjusts for the number of smart clients. It is computed as

follows:
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incsmart
r =

∑
i∈rsmart

[k1(i) + k2(i)] (4.1)

where

• k1(i) = 2⌊
wi
dx

⌋ if 2⌊
wi
dx

⌋ <= y, otherwise k1(i) = y,

• k2(i) = 0 if 2⌊
wi
dx

⌋ <= y, otherwise k2(i) = ⌊wi
dx
⌋ − ⌊log2(y)⌋.

• y = 1
% smart in system − 1

wi is the amount of time that a smart client i has waited, and dx is a pre-defined

duration that is currently set to be the advisory token lifetime. y is the number

of simple clients per smart client in the system. The taxi company can provide

an estimated value of y based on the recent data that has been collected by

TADS. For example, taxis can upload their smart and POB records to the taxi

company and these records can be used to predict y on a monthly basis.

Intuitively, incsmart
r is assigned a higher value when smart clients in the

region have waited for a longer period of time. It is initially set to increase

exponentially, but slows down to increase linearly once it reaches some threshold

(y) so that the number of tokens generated will not be too excessive. The idea

is that if a smart client has waited for a long time, chances are that simple

clients in the region may also have waited for a long time. (Note that there is no

mechanism in TADS that can detect the waiting time for simple clients). Hence,

TADS initially increases Ssmart
r exponentially in the hope that it will also benefit

the simple clients in the same region.

Next, let

• dPOB
r (i) be the total duration that a taxi i ∈ TPOB

r was in status POB in

the region r after picking up a client in region r.

• dFREE
r (i) be the total duration that a taxi i ∈ TFREE

r was in status FREE

in the region r.
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Define cfr as

cfr =

∑
i d

POB
r (i)∑

i d
POB
r (i) +

∑
i d

FREE
r (i)

(4.2)

cfr has a range of [0,1] and is set based on how long free taxis take to find and

pickup clients in the region. We assume that the longer it takes, the fewer simple

clients there are and cfr is set to a smaller value.

incsimple
r = cntpobr × cfr (4.3)

incsimple
r (line 4 in GetNumberOfAdvisoriesToGenerate()) is a correction fac-

tor that tries to compensate for the number of simple clients that are not ac-

counted for.

4.3.4 Forwarding Advisories

When two taxis meet, they exchange advisory tokens such that each taxi will

keep half of the total number of advisory tokens per region. For example, if taxi

A initially has n > 0 copies of advisories, and it encounters another taxi B (with

no copies of advisories), taxi A will forward to taxi B ⌈n2 ⌉ copies of advisories

and keeps ⌊n2 ⌋ copies of advisories itself. This approach of spreading advisories

is similar to the Binary Spray and Wait approach in [26], which is shown to have

the minimum expected delay in routing for nodes with IID mobility.

4.4 Simulation Evaluation

4.4.1 Evaluation Methodology

We evaluated our proposed system using traces obtained from a large taxi oper-

ator that operates more than 15,000 taxis in Singapore. The taxi trace includes

the location and status (FREE, POB and etc) information but does not contain

any connectivity information. In the evaluation, we use data from a particular
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week in November 2010.

We assume that each taxi has a communication range of 50m, while client to

taxi communication range is 30m (smartphone WiFi radios have a lower trans-

mission range). A free taxi will move to pick up a client if it is within 30m from

the client. To simulate the effects of queueing in taxi stands, if there are multiple

clients at a single location, the taxi picks up the client with the longest waiting

time.

The number of clients served in an hour varies from a few thousand to about

twenty thousand, depending on the time of the day. In the results presented,

“Current” refers to the existing system without TADS. We compare how TADS

performs compared to “Current”. We divide the area of interest (Singapore

island) into fixed-size regions. Each region is a 400m× 400m grid in our simula-

tion. In the experiments, unless otherwise stated, the following parameters are

used:

• Percentage of smart clients: 50%

• Guard duration: 30 seconds

• Monitoring period: 3 minutes

• Flooding radius (dist): 2 km

• Vantage point: Center of each region

Generating Client Request

For each taxi status that changed from FREE to POB in the trace, we create a

client request record using the associated location and time. To avoid the same

taxi picking up the client immediately when the client appears in the simulation,

we defer the client arrival time by 10 minutes. Hence during simulation, this taxi

would have likely left the location and it will be up to another taxi to pickup

this client.
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In addition, we note that such a way of generating records loses the “bursti-

ness” of requests since client arrivals are constant offsets from the service times

(taxi pickups) rather than the actual arrival times of clients which are not avail-

able.

In order to compensate for the loss of burstiness (which leads to shorter

waiting time), we increase the number of client requests by 10% in the system.

These additional arrivals follow the same time and location distributions of client

arrivals obtained from the taxi traces.

Generating Taxi Paths

Taxis in TADS change their paths after they accept an advisory token or pickup

a client. Since the clients’ pickups are not the same as those in the original

traces, paths taken by the taxis are also different. In the simulation, based on

the traces, we create a database of taxi paths taken by a taxi.

Specifically, each taxi path extracted from the taxi trace consists of the fol-

lowing:

1. Taxi movement information (GPS coordinates and time)

2. previous status - previous status of taxi

3. current status - current status of taxi

Whenever a taxi reaches the last point in the path that it has been assigned,

it will select a new path with the path starting location being closest in distance

to the current taxi location. In addition, the path being picked must be time

and status compatible with the current taxi. A path is time compatible if the

path start time is within 90 minutes from the current time. A path is status

compatible if the previous status of the path matches the current status of the

taxi.

In addition, we prevent taxi from picking a path with status FREE to POB.
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For a taxi to change status from FREE to POB, it must physically pickup a

client in our simluation.

Our scheme for selecting a taxi path has the following advantages:

• ability to capture current road conditions (eg. traffic jam).

• ability to capture the drivers’ preferred routes at different times of the day

(such as drivers moving to areas which they believe clients can be picked

up easily).

Accepting/Rejecting Advisory Tokens

In the simulation, we use the following procedure to simulate acceptance/rejection

of advisory token. When an advice is presented to a taxi, it randomly picks a

time compatible path that allows the taxi to move from the current region to

the requested region. If no such path exists or the path chosen takes more than

the remaining lifetime of the token to reach the requested region, the taxi rejects

the advice. Lifetime of each advisory token is set to 6 minutes.

In addition, the taxi will also reject an advisory if a client pickup is eminent

(eg. taxi already saw a client nearby). If the taxi current path is able to pick

up a client within 15 seconds, then we assume a pickup is eminent and the taxi

will reject any advisories presented to it.

4.4.2 Varying Time of Day and Number of Smart Clients

In this section, we evaluate the performance of TADS with varying numbers of

smart clients. As expected, TADS performs best when there are only smart

clients (ie. 100% smart clients) in the system. In the busy hour of 9am to 10am,

there is a 25% reduction in the 95th-percentile waiting time and 34% reduction

in the number of clients with over 60 minutes wait.

With only simple clients in the system, in the 9am to 10am interval, there

is only 7% reduction in the 95th-percentile waiting time and 8% reduction in
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Figure 4.6: Varying Time of Day and Smart Clients

the number of clients with over 60 minutes wait. However, even with a modest

10% of smart clients in the system, the improvement is still noticeable, a 12%

reduction in the 95th-percentile waiting time and 15% reduction in the number

of clients with over 60 minutes wait.

In terms of average waiting time from 9am to 10am (not shown in the graph),

the reduction in client waiting time is only 9% and 12% for 50% and 100% of

smart clients in the system respectively. As we have highlighted previously, we

do not expect the average times to reduce as much since TADS basically moves

free taxi from “free” to “busy” regions and such load balancing occurs on the

order of minutes.
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4.4.3 Varying Load
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Figure 4.7: Varying Load at 9am

In figure 4.7, we vary the number of clients request at 9am. The load is

varied as a percentage of the original number of client request at 9am. In all

cases evaluated, TADS is able to reduce the client waiting time and the number

of clients that has waited for over 60 minutes. At 130% load, the number of

clients with over 60 minutes wait is 566 in TADS and 750 when TADS is not

used.
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4.4.4 Bursty Client Arrivals

In this section, we look at the effect of a sudden increase in client requests in a

region. This corresponds to the situation such as a major show/game ending,

resulting in a sudden influx of clients. We randomly select 1 region and increase

the number of clients in the region over a 15 minutes period, starting at 9pm.

Figure 4.8 shows the results for the selected regions.
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Figure 4.8: Increasing number of client request in a region

As expected, as the number of clients increase, the client waiting time also

increases. However, TADS is able to reduce the average waiting time, as well as

the number of clients who waited for more than 30 and 60 minutes significantly.
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When we increase the number of clients by 30, the number of clients with over

60 minutes wait for TADS is 4 and 7 when TADS is not used.

4.4.5 Accuracy in Generating Advisories

In this section, we look at the accuracy in determining the number of advisories

to generate. Due to nodes mobility and intermittent connectivity, a leader node

often has incomplete information about a region. In addition, duplicate leaders

for a region may also be possible. TADS mitigate the problem by performing

flooding and leader elimination/transfer in an attempt for leaders to gain more

knowledge and eliminate duplicate leaders for a region. We compare TADS

against a simpler scheme (LargeID) in this section. In the LargeID scheme,

nodes floods the known largest node ID in Tr. The node with the largest known

ID will be the leader for the region r.

Figure 4.9 shows the results comparing the accuracy in determining the num-

ber of advisories to generate. It shows the difference in the number of advisory

tokens generated when compared to an oracle. To avoid comparing regions where

there are no advisories generated, we only consider regions that generate at least

one advisory tokens in this experiment.
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Figure 4.9: Accuracy in generating advisory tokens
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As expected, TADS performs better than LargeID scheme for all the evalu-

ated cases. Unlike LargeID scheme, TADS perform leader election to “transfer”

leadership to a node closer to the vantage point of a region. This allows a leader

to be closer to the region, and hence have higher opportunities to meet other

“duplicate” leaders for the region. It also allows a leader in TADS to have higher

chances of receiving new taxi records.

With a transmission range of 200m, the difference in the average number of

tokens generated for TADS is 1.3 compared to Oracle. Note that the average

number of tokens generated by the Oracle is 6.7.

4.4.6 Different strategies for Generating Advisories

In this section, we evaluate 3 more different strategies for determining the number

of advisory tokens to generate and compare them to TADS.

For TADS(1) and TADS(16), incsmart
r in equation 4.1 is always set to 0. For

every advisory token to be generated, the leader always generates 1 and 16 copies

for TADS(1) and TADS(16) respectively. For TADS(exp), incsmart
r in equation

4.1 is allowed to increase exponentially (ie. y in equation 4.1 set to ∞). Note

that more copies of advisories lead to a higher chance of an advisory reaching

a free taxi in a shorter time. The downside is that it risks requesting excessive

taxis into the same region.

Figure 4.10 shows the result using the different schemes. TADS(1) performs

the worst in terms of clients with over 60 minutes waiting time. However, in

terms of average free taxi duration after a taxi accepts/rejects an advisory, it

is the most attractive from the taxi driver’s point of view. After accepting an

advisory, the average time that the taxi takes to pickup a client is much shorter

than if the taxi were to reject the advisory.

On the other hand, for TADS(16) and TADS(exp), too many tokens are

generated and a taxi is better off rejecting the advisory than to accept.

The result shows that the proposed TADS scheme that dynamically adjusts
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Figure 4.10: Comparing different TADS schemes

the number of tokens based on load and waiting time is able to both reduce client

waiting time as well as shorten taxi cruising time before picking up a client.

4.4.7 Related work

A number of research works have been proposed to improve taxi booking service.

In [71], several temporal and spatial related advance bookings are chained and

assigned to a single taxi. This reduces the cruising time between free to busy

state when a taxi accepts a taxi booking.

In [72], the authors proposed to group taxi bookings within some time window
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and then dispatch them to a group of taxis. This allows for better proximity

assignment of taxis to clients.

In [5] [6], a three way handshake protocol is used to book taxi in a distributed

taxi booking system. Their work however consider scenarios whereby multi-

hop connectivity is present. Our work consider also the more general scenarios

whereby disconnection may occur frequently due to mobility and the sparsity of

taxis in some regions. Such multihop connectivity cannot be assumed.

In addition, our work is different from the above taxi booking systems in

that we target the taxi service for “flag down” clients rather than clients served

through taxi booking. No taxi bookings are involved in our system.

Ideally, we should assign taxis to regions so that the overall time taken by the

taxis to travel to the requested regions is minimal. This is related to the Linear

Assignment Problem (LAP). Even though decentralized solutions for LAP have

been proposed [66] [67], they are not suitable for our work due to very fast

changing and intermittent connectivity environment.

Part of TADS algorithm involves electing a taxi leader for each region. In

the literature, there are a number of leader election algorithms that have been

proposed for mobile ad hoc networks. We can broadly classify them here based

on whether the algorithms use geographical information.

Leader election algorithms that do not use geographical information includes

[73] [74] [75] [76] [77] [78].

In [74], a leader-oriented directed acyclic graph (DAG) within each connected

component is maintained using link reversal techniques. This scheme is later ex-

tended by [75] to handle multiple topology changes. When the network stabilizes,

the algorithm always give a unique leader for each connected component.

In [73] [77] [78], the authors present “extrema-finding” leader-election algo-

rithms for mobile networks with the goal of electing as leader the node with the

highest priority according to some criterion (eg. battery life). Both proposed

algorithms are highly adaptive with ad hoc networks in the sense that it can tol-
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erate link failures, network partitions, nodes recovery, and merging of connected

network components associated with ad hoc networks.

The algorithms described above attempt to find a leader within a connected

component, and do not consider geographical information. Leader election algo-

rithms that include geographical information includes [79] [80] [81].

Hatzis et al. [80] presented a leader election algorithm for mobile ad hoc

networks. When two or more mobile nodes meet, they exchange identities and

the winner is the one with the higher identity. Similar to our work, this simple

scheme does not guarantee that a unique leader can be found. A probabilistic

analysis is then given assuming nodes perform random walks.

In [79], the entire geographical space is divided into regions and leader elec-

tion is performed for each region assuming a single hop network. The leaders

are elected for the purpose of forming a backbone for message propagation.

Chung et al. [81] presented a leader election algorithm for a region of interest.

Nodes are assumed to be mobile and may fail, enter or exit the region of interest

at any time. The work requires the existence of certain communication paths in

the network to give a bound on the time for propagation of information within

the region. With the assumption that such paths exist to bound communication

delay between nodes, they show the correctness of their algorithm in electing a

unique leader for the region. It is however, not clear how the mobile nodes can

collaborate to form such a path if it doesn’t already exist in the region.

Unlike most work presented above, our leader election involves electing a

leader for a region and nodes may be required to communicate using multihop

in the region. The closest work related to our leader election requirement is by

Chung et al. [81]. However, there are a number of differences:

1. We only require node i ∈ Nr to know whether it is a leader for region r.

If node i is not a leader for region r, it does not need to know who is the

leader for region r.



CHAPTER 4. APPLICATION RESOURCE MANAGEMENT IN DTN 81

2. Node is elected to be a leader based on the evaluation of information that it

has rather than some criteria such as node id. The information that a node

has may change over time (eg. when it sensed or receive new information),

this greatly differs from node id which is static.

3. Our leader election algorithm have to give an output at a fixed deadline

(at the end of each monitoring period). It is not possible to guarantee that

a algorithm will output a unique leader at the deadline. In [81], their work

is focus on giving a unique leader, with no regards to time frame or any

deadline.

4.4.8 Security Issues in TADS

In this section, we briefly discuss some security issues related to TADS. TADS

relies on advisory tokens to guide free taxis to regions with more demand. Since

every taxi can claim to be a leader taxi, this easily allows dishonest taxis to

generate advisory tokens to mislead other taxis. A dishonest taxi may want to

mislead other taxis to the wrong regions to increase its chances of picking up a

client.

A possible mitigation to this problem is to have a unique ID for each advisory

token generated by a taxi. The taxi is required to digitally sign the advisory

token. In addition, any records generated or received must also be digitally

signed. In the event of suspected dishonesty, the taxis can later come together

for verification. The taxi can be checked against under/over generation of advi-

sory tokens given the records that it has received. While this doesn’t solve the

problem online, the verification will serve as deterrence for dishonesty or mali-

cious behavior. Other possible solutions include reputation schemes [82] [83] to

mitigate the problem.

Note that it is out of the scope of this thesis to give a detailed solution for

the security issues of TADS.
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4.5 Conclusion

We have extended the role of nodes in the DTN to include completing application-

related task in the system. Using the taxi scenario as a real life specific example,

we provide a solution by proposing the Taxi Advisory Dispatch System (TADS).

Unlike a taxi booking system that improves the service for call booking clients,

TADS improves the service for “flag down” clients. Through simulation results,

we showed that TADS is particularly useful for reducing long waiting times of

clients. In addition, for regions with sudden influx of client request, TADS also

perform very well in reducing the client waiting times.



Chapter 5

Robustness of Routing in DTN

The sucessful and efficient operation of a DTN involves cooperation among nodes

in the network. Nodes in the network contribute but may also consume some

resources (such as buffer space) in the network. Unfortunately, like any other

network, malicious nodes may join and attack the network.

Early work on securing DTN largely depends on using public key cryptogra-

phy to limit participants to a set of authorized nodes and using class of service

for buffer space and link capacity allocation [17] [49] [50] [51]. In addition, pack-

ets injected into the network are authenticated at every intermediate hops. Such

approaches incur considerable overhead and have to deal with the difficulty of

key management in DTNs where communication delay may be long.

Due to difficulty of key management in DTN, some authors have looked into

the possibility of forgoing authentication [1] [7]. Burgess et al. [1] study the ro-

bustness of DTN routing in the absence of authentication. They evaluated both

forward-based and replication-based routing protocols using trace-based evalua-

tion. A set of actions that are fundamental to any attacks in their model were

investigated: dropping packets, route falsification, flooding packets and coun-

terfeiting delivery acknowledgements. Their trace-based study suggests that

some DTNs coupled with replication-based routing protocols are intrinsically

fault tolerant, and robust even against a large number of attackers. This poses

83
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the question on the necessity of authentication or the level of authentication

required especially since authentication imposes overhead. Without authenti-

cation, it may encourage more nodes to join the network due to simplicity of

joining. Having more nodes in the DTN provide more contact capacity and

buffer resources for the network.

While Burgess et al. work suggest that some DTNs coupled with replication-

based routing protocols are robust even against a large number of attackers, it

remains unclear on why the protocols are robust or the kind of scenarios whereby

the DTNs will be robust against the attackers. Nevertheless, Burgess’s work has

gained a number of citations in the research community. At the time of writing

this thesis, their paper [1] has been cited over 60 times according to Google

Scholar. We believe that having a better understanding on the robustness of

DTN routing is important. In addition, we are also interested to know the

security implications when application-aware routing protocols are employed in

the DTN.

We revisit the Haggle and DieselNet DTNs that Burgess et al. have previ-

ously reported to be both robust against even a large number of attackers in

the network. First, we note that while Burgess et al. have evaluated several

attacks on the two DTNs, other variants of attacks are still possible. In this

work, we devised a flooding attack called the Non-Deliverable Packet Flooding

attack. Our non-deliverable packet flooding attack exploits metadata such as

contact history to improve its flooding effectiveness. In addition, we present an-

other attack called Identity Impersonation attack that causes relay and source

nodes to drop packets that have not been delivered.

We observe that minimum hop count for packet delivery has a strong influ-

ence on the robustness of the DTN routing protocols. Generally, attacks become

increasingly effective when the minimum hop count required increases. An ob-

servation we make in this work is that the small number of hops needed to deliver

a packet in some DTNs (Haggle and DieselNet) is one of the reasons why they
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are robust against the evaluated routing attacks.

In addition, we note that the increased effectiveness of non-deliverable packet

flooding attack comes from the exploitation of routing metadata. Routing meta-

data such as the contact histories are flooded into the network so that relay

nodes can make better decision in replicating/buffering packets. Given that

our application-aware routing protocols also flood routing metadata (eg. depen-

dency graphs) into the network, attackers can similarly exploit them to increase

effectiveness in their attacks.

In the following sections, we first describe our system model followed by a

description and evaluation on attacks in DTN routing. Next, we extend the

attacks to exploit application-aware routing protocols. Specifically, we extend

MaxProp routing protocol to become application-aware and show how attackers

can exploit dependency graphs in their attack.

Our work suggests that for routing protocols which utilize routing metadata

to improve routing performance, it is important to validate the contents of their

control messages as attackers may be able to exploit such metadata to improve

the effectiveness of their attacks. In addition, due to the replicative nature of

replication-based routing protocols, it will be useful to employ rate limiting on

the number of tasks/packets that each node can inject into the network.

5.1 System Model

In this section, we describe the security assumptions, mobility models used and

properties of the routing protocol evaluated.

5.1.1 Security Assumptions

We assume that nodes do not perform authentication of relay nodes in the net-

work. Similarly, no authentication is performed on the authenticity of messages.

As a result, attackers can spoof their MAC layer addresses to appear to be
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any node, including destinations of packets. Routing metadata and packets can

also be spoofed and relay nodes have no means to verify their authenticity. We

do, however, assume that end-to-end communicating parties may have keying

materials that provide them with confidentiality, integrity and authenticity.

Finally, we also assume that attackers do not have global knowledge of

DTN topology and future transfer opportunities. Stronger attackers with global

knowledge and choice of location will be able to inflict much more damage than

our attacker model here. However, we show that even with a weaker attacker

model, attackers can still degrade the performance of the network considerably

such that we need to be wary about DTN without authentication.

5.1.2 Mobility Models

Our evaluation is based on real network traces, namely the DieselNet [9] and

Haggle project [84] traces which are similarly used in [1]. The Haggle trace

consists of a 3 days long trace that is based on a human mobility experiment in

Infocomm 2005. A total of 41 volunteers joined the experiment and each were

given an iMote device that can communicate with one another using Bluetooth.

The iMotes are also capable of connecting to other Bluetooth-capable devices in

the environment. Similar to the experiment in [1], we removed connection events

from the Haggle data that lasted less than one second or involved the singular

appearance of a node since meaningful data transfer is likely to require setup time

and nodes incapable of routing data may be ignored. After the transformation,

the traces are left with events involving 41 Class 1 devices (the iMotes devices)

and none of the Class 2 devices (other Bluetooth-capable devices). In order to

limit a single simulation interval to be 24 hours or less, we split the Haggle trace

into 3 segments, each lasting about 1 day.

The DieselNet trace comprises of roughly 30 buses (with specific number

varying according to the bus schedule). The median number of DieselNet buses

in each trace is 19. Buses are outfitted with wireless transmitters and receivers.
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Communications between the buses are done via the 802.11b protocol. DieselNet

trace consists of 60 days of traces (captured during January to May 2005).
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Figure 5.1: Unique Peers Connected Daily

Figure 5.1 shows the number of peers encountered per mobile node for the

two traces. Nodes in the Haggle traces have a broader distribution of the number

of peers encountered. The median number of peers contacted by each node in

the Haggle trace is 19, about 45% of the network. The median number of peers

contacted by each node in DieselNet is 7, about 39% of the median number of

buses in each trace.
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5.1.3 Routing Protocol

The routing protocol used in our evaluation is MaxProp [9], a replication-based

DTN routing protocol. MaxProp has been shown to provide robustness against

various attacks [1]. It offers better throughput than several other strategies such

as Epidemic [25], Prophet [8], Spray and Wait [26] and even Dijkstra algorithm

with an oracle of future transfer opportunities [20].

While we use MaxProp in our study, our study is applicable to other replication-

based routing protocols that use flooded routing metadata to guide replication

and buffer management.

In terms of packet scheduling/replication, MaxProp replicates packets in the

following order:

1. Packets destined to the contacted node

2. Routing metadata (estimations of the probability of meeting every other

node)

3. Acknowledgements of delivered data.

4. Packets in ascending order of hop count for hop count below a certain

threshold. This threshold is adaptive and is determined by using the av-

erage contact capacity measured from previous encounters.

5. Packets in descending order of delivery likelihood.

In terms of buffer management, MaxProp removes packets from its buffer in

the following order:

1. Acknowledged packets.

2. Packets in ascending order of delivery likelihood for packets with hop count

above a certain adaptive threshold.

3. Packets in descending order of packet hop count.
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MaxProp uses network-wide acknowledgements to remove delivered packets

from relay or source nodes, clearing up buffer and also prevent nodes from receiv-

ing packets that have already been delivered. An acknowledgement is created

whenever a packet first reaches its destination. The acknowledgement is then

flooded to all other nodes in the network.

As mentioned by Burgess et al. [1], to defend against acknowledgement coun-

terfeiting, a node should ignore an acknowledgement if it has not seen the packet

being acknowledged beforehand. In all our experiments, we implement this de-

fense against acknowledgement counterfeiting.

In MaxProp and many similar DTN routing protocols [8–10, 32], routing

metadata is kept and exchanged when two peers meet. Each node maintain a

copy of its own table that describes the node contacts that it has observed in the

past. Each contact history has an associated timestamp, indicating the time in

which the direct contact occurs. These contact information or routing metadata

will be replicated to other nodes during contact so that other nodes are aware

of each others’ contact history. When two nodes in the contact have different

versions of the routing metadata entry, the copy with the earlier timestamp will

be replaced. Figure 5.2 shows an example of MaxProp routing metadata that is

stored at node A.

Based on the routing metadata exchanged, the data maintained in each con-

tact table is used to estimate delivery likelihood. In the case of MaxProp,

this likelihood is computed in the form of path cost. The higher the deliv-

ery likelihood, the lower the path cost. The cost of the path i, i + 1, ..., d is

the sum of the probabilities that each connection on the path does not occur:

c (i, i+ 1, ..., d) =
∑d−1

x=i

[
1−

(
fx
x+1

)]
. In figure 5.2, the most likely path for de-

livering a packet from A to D is through node B, since the path cost ABD has

the minimum value. The cost is computed as ABD=0.3 ( (1 - 0.9) + (1 - 0.8) ).
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Figure 5.2: The organization of routing metadata in a node

5.2 Attack Model

In [1], four general attacks Drop All, Random flooding, Invert routing metadata,

and Acknowledgement counterfeiting were experimentally shown to be ineffec-

tive. We briefly describe some of the factors that may limit the effectiveness of

these attacks.

Drop All attack is not effective as there are still many possible paths to the

packet’s destination that does not involve the attackers.

In Random flooding attack, attackers randomly choose a known destination

and flood packets to the chosen destination. The priority to replicate or drop

the attackers’ packets is on the same level as the non-attackers’ packets. Hence

the effectiveness of Random Flooding attack is limited by how fast the attackers

can inject packets into the network to cause resource contention.

For Invert routing metadata attack, attackers invert the metadata of the

probability of meeting other nodes. The goal is to cause the list of packets to be

transmitted or dropped in the reverse order. Its effectiveness is limited by how

resource constrained the network is. For example, if two peers meet and they

have enough contact capacity to transmit all their buffer contents to the other

node, then even if the list of packets are transferred in the reverse order, there

is no performance degradation at all. Perhaps a more severe limitation of invert

routing metadata attack is that inverting the routing metadata even number of
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times will give the correct version of the routing metadata. For example, if an

attacker sees the same routing metadata the second time, inverting it the second

time gives correct version of the routing metadata.

In Acknowledgement counterfeiting, attackers send out falsified acknowledge-

ments of known and yet to be delivered packets in the network. To counterfeit

acknowledgement of a packet in the network, attackers must first know the ex-

istence of the packet in the network.

While the above attacks may be ineffective, many variations of these attacks

are still possible. Furthermore, these attacks can be combined to reinforce one

another.

5.2.1 Proposed Attack

Our proposed attack combines and uses a variation of the attacks in the previous

section in an attempt to overcome the described limitations. It consists of two

components. The first component, called non-deliverable packet flooding floods

data to non-existent nodes to cause resource contention. It also includes routing

metadata falsification that spoof routing metadata so that the flooded packets

gets higher priority in replication and lower priority in being dropped. The

second component, identity impersonation, impersonates different identities to

act as destinations for packets. In addition, upon knowing the existence of

a packet, attackers flood network-wide acknowledgements of the packet in an

attempt to purge the packet out of the network.

The primary purpose of the first component is to cause network congestion,

and to make relay nodes having a higher tendency to replicate attackers’ packets

and drop non-attackers’ packets from their buffer. The objective of the second

component is to purge packets from both the source and the relay nodes. We

explain in detail the two components in the following sections.
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Non-Deliverable Packet Flooding

In Non-Deliverable Packet Flooding attack, attacker floods new packets to some

non-existent destinations so that the flooded packets will not be delivered and

stay in the network until expiry. However, with MaxProp or other routing pro-

tocols that rely on contact histories to estimate delivery time or probability,

non-deliverable packets are actually given the lowest priority. Hence flooded

packets are replicated last and dropped first. This is undesirable from the at-

tacker’s point of view. To counter that, attackers can perform routing metadata

falsification by spoofing every node’s routing metadata and claim that the node

can reach the non-existent destination with high probability. More specifically

in our experiments, the attacker removes all entries in a routing metadata table

and creates an entry with meeting probability 1 to the non-existent destination.

Figure 5.3 shows node A’s routing metadata with and without routing meta-

data attack. Node E is a non-existent destination and attackers flood packets

to node E. With routing metadata attack, node A will give replication priority

for packets in the order B, E, D, C. Further, if there is contention for buffer,

packets destined to C will be dropped first. Without routing metadata attack,

node A will give replication priority for packets in the order B, D, C, E and if

there is contention for buffer, packets destined to E will be dropped first. This

illustrates that routing metadata attack can successfully raise the priority of the

attackers’ flooded packets.

Effectiveness of metadata falsification

Let NA be the number of attackers in the system. Consider an attack where

NA attackers keep injecting false routing information of a victim node, say node

D. Let’s call a node who is neither an attacker nor the victim a carrier node.

Whenever an attacker meets a carrier node, it will send a tainted table (see figure

5.3 for example) of node D, which contains false information and time-stamped

with the latest time. On the other hand, the victim also injects the correct table
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(a) Under Attack

(b) Without Attack

Figure 5.3: Comparison of node’s routing metadata with/without attack.

to the carrier nodes. Recall that whenever two nodes meet, they will exchange

and update their routing metadata to the one with the later timestamp. Note

that only the attackers and victim will set the timestamp, carrier nodes simply

help replicate the routing metadata without modifying the timestamp.

Now, under the above spreading process, we want to determine the fraction of

carrier nodes having the tainted table. We claim that the fraction is NA/(NA +

1) under reasonable assumptions. Let us consider this mobility model: The

time is divided into periods of unit length. During each period, two randomly

chosen nodes come into contact. The random nodes chosen in each period are

independent to choices made in other periods. Let Xt,i be the random variable

where Xt,i = 1 if the node i’s metadata is tainted at time t, and 0 otherwise.

For convenience1, let us assume that initially (i.e. at time 0), each node has the

1This assumption on the initial condition is not crucial. One may consider the initial con-
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probability of NA/(NA +1) being tainted (i.e. Prob(X0,i = 1) = NA/(NA +1)).

We can show that, for any i and t ≥ 0,

E(Xt,i) =
NA

NA + 1
. (5.1)

From (5.1) and linearity of expectations, the fraction of carrier nodes having

a tainted table over all carrier nodes is also NA/NA + 1. To show (5.1), let us

consider a carrier node whose routing metadata originates from a malicious node

or the victim, and trace back how the routing metadata spread from the source.

We say that there is a path from node p0 at time t0 to node p1 at time t1, if

there is a sequence

j1 = p0, s1 = t0, j2, s2, j3, . . . , jk−1, sk−1 = t1, jk = p1,

where node ji and ji+1 meet during time period si, and the subsequence s1, s2, . . .,

is strictly increasing. Let us take (t1 − t0) as the length of the path. Note that

if there is a path from node p0 to the victim, and it is shorter than every path

to a malicious node, then the metadata in p0 will not be tainted. Similarly, if

there is a path to a malicious node, and every path to the victim is longer, then

the metadata will be tainted. In other words, whether the metadata is tainted

or not depends on whether the nearest node is the victim or a malicious node.

Due to the independencies in choosing the two nodes in each time period, the

probability that the nearest node is malicious is NA/(NA + 1).

To know the effectiveness of routing metadata falsification in the Haggle and

DieselNet traces, we perform simulations on them to get the fraction of nodes

having a tainted routing metadata. Each simulation was run till the end of the

trace and the fraction of nodes having a tainted routing metadata is noted. The

result presented here is the average of the different runs of the simulation. The

dition where all metadata are untainted. In this case, the fraction approaches NA/(NA + 1),
instead of the equality we obtained in (1).
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description of these traces and simulations can be found in section 5.1.2. Figure

5.4 shows that the traces in our simulation exhibit similar fraction of tainted

nodes compared to our stochastic model here.
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Figure 5.4: Fraction of nodes with tainted routing metadata

The result in figure 5.4 suggests that it is possible for very few attackers

to launch an effective routing metadata falsification attack. This applies even

for large networks with hundreds or thousands of nodes. Hence, we expect our

non-deliverable packet flooding attack to benefit much from the use of routing

metadata falsification.

Identity Impersonation Attack

In the identity impersonation attack, attackers impersonate different identities

to act as destinations for packets so as to trick relay nodes or the packets’ source

node to believe that the packets have been delivered. Furthermore, upon knowing

the existence of a packet, attackers flood network-wide acknowledgements of the

packet into the network. Nodes that are tricked into believing that the packets

have been delivered will drop the packets from their buffer.

Such attack directly exploits the lack of node authentication. In a single con-

tact, an attacker can potentially take on the identities of many other nodes if the

contact duration is sufficiently long. In the extreme case, all packets in a node’s
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buffer can be falsely removed. This is possible since frequent disconnections are

the norms in DTN. This attack is most effective when the attacker encounters

the source early in the packet forwarding process when the number of replicas

of a packet in the network is low.

5.3 Evaluation

We evaluate the robustness of DTNs in the presence of attackers launching ran-

dom flooding attacks (rf ), non-deliverable packet flooding attacks (ndp), and

identity impersonation attack (imp). For identity impersonation attack, we limit

the switching of identity to at most once per second. All our evaluations were

performed using our simulator that was modified from the ONE simulator [85],

a simulator developed specifically for DTN simulations.

The traces used for simulation are the Haggle and DieselNet trace (see section

5.1.2 for description). In our simulation, we randomly assign nodes as honest and

attacker nodes. All honest nodes generate traffic destined for other randomly

chosen honest nodes. Each node have a 5MB buffer size and packets may be

deleted before delivery when the buffer is full. When a packet is to be dropped

due to buffer full, a node will always drop packets originating from other nodes

before considering dropping its own packets. In all simulations, packets are fixed

at size 10KB. Whenever load is too high, delivery rate is very low due to con-

tention. In order to isolate the effects of the attackers, we use a moderate packet

load of 10 packets/hr per honest node. Finally, in the identity impersonation

attack, we assume that a malicious node can take on a new identity only once

every second.

The transfer capacity of a single contact has an impact on the routing per-

formance. In the Haggle trace, only contact duration is provided. If we assume

the bluetooth device can transmit at 1Mbps, the median per-contact capacity

will be approximately 25MB. In all our evaluations, unless otherwise stated, we
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set the median per-contact capacity to be 25MB, including the DieselNet trace.

Figure 5.5 shows the CDF graph of the per-contact capacity for the Haggle and

DieselNet trace. In this setting, there is greater than 80% of the contact oppor-

tunities having enough capacity to transfer the full buffer contents of the two

meeting nodes. The main resource contention here is hence the buffer.
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Figure 5.5: CDF of contact capacity

5.3.1 Impact of Varying Number of Attackers

From figure 5.6-5.8, it can be seen that non-deliverable packet flooding is effective

even when there are only 1-2 attackers. In fact, the addition of more attackers

does not help to bring the delivery ratio much lower. The reason is that 1-2

attackers is enough to cause the relay nodes’ buffer to be filled with the attackers’

packets due to the replicative nature of MaxProp protocol and high per-contact

capacity. Further, since the packets are non-deliverable, they stay in the relay

nodes’ buffer for a long period of time, causing contention with other relay

packets. For random flooding, there is less buffer contention since flooded packets

may be delivered to the destination quickly, and these are removed from the relay

nodes’ buffer much faster. Furthermore, unlike non-deliverable packet flooding

attack, random flooding attack does not manipulate the routing metadata to

give the attackers’ packets higher priority to stay in the buffer or be selected for
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replication. Note that in the simulation, nodes always keep packets originating

from itself. Hence even though relay packets are dropped, the source node still

holds a copy of the packet and can still deliver the message through direct contact

with the destination. Non-deliverable packet flooding fails to attack such direct

contact delivery situation.
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Figure 5.6: Delivery Ratio under buffer contention

Figure 5.7 shows the hop count of messages at the time they were delivered

to their destinations with 10% attackers. It can be seen that without flooding

attacks, there are quite a number of packets delivered with 3-6 hop counts. On

the other hand, with flooding attacks, most packets tend to be delivered with

only 1 or 2 hop counts. The main reason is that flooding causes many packets
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Figure 5.7: Message hop count at delivery (10% attackers)

to be dropped at relay nodes due to buffer contention. Since in our simulation,

source always give higher priority in keeping its own packets, and due to mobility,

the source might later meet the destination of the packets and send the packets

to it directly. In other words, the capability of each node to eventually meet

many other nodes provides substantial robustness against flooding attacks that

causes packets to be dropped at relay nodes. Note however, the delivery latency

is affected by flooding attacks, causing much higher delivery latency as shown in

Figure 5.8.

Unlike non-deliverable packet flooding, impersonation attack is more effec-

tive when the number of attackers increases since launching the attacks require
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Figure 5.8: Delivery Latency (secs) under buffer contention

direct contact. The more attackers there are in the network, the more per-

formance degradation it causes. Flooding attack and impersonation attack are

complementary and can be launched together to cause more damage, as can be

seen from figure 5.6.

5.3.2 Communicating Pairs Evaluation

In this section, we evaluate the routing performance of peers who are communi-

cating across different distances (in terms of required hop counts). Our goal is

to understand how non-deliverable packet flooding and identity impersonation

attack affects communicating peers that communicates over different distances
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in terms of hop counts. We first use a synthetic trace to better understand the

effects of the attacks followed by further evaluation on the Haggle and DieselNet

traces.

The synthetic trace imposes some structure so that it is possible to evaluate

peers communicating with different number of minimum hop counts required.

It consists of 40 nodes in a 5 by 5km area. The 40 nodes are divided into 8

different groups (each group consist of 5 nodes), and each node in a group move

around an attraction point in the map with a standard deviation of 500m. The

position of attraction points are randomly generated with the constraint that

no two attraction points are within 1000m to each other. We generate 10 such

synthetic traces for our simulation and the results reported are the averaged of

the 10 traces.

In our evaluation of attacks, we place one attacker in one of the groups, call

it group A. We want to evaluate the delivery ratio when an honest node in a

group sends packets to another honest node in a certain group.

We divide the communicating pairs into the following category:

1. A-A: packets sent from a node in group A to another node in group A

2. A-B: packets sent from a node in group A to another node in group B.

Group B’s attraction point is at most 2000m from group A’s attraction

point.

3. A-C: packets sent from a node in group A to another node in group C.

Group C’s attraction point is at least 2000m away from group A’s attrac-

tion point.

4. X-Y: packets sent from a node in group X to another node in group Y where

there is no attacker in group X and Y. In addition, group X’s attraction

point is at least 2000m away from group Y’s attraction point.

Figure 5.9 shows the distribution of hops taken when packets are delivered in
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each category when there are no attackers. Majority of the packets in category

A-A are delivered within 1-2 hops. For category A-C, C-A, X-Y and Y-X, the

communication is further apart with majority of the packets delivered after going

through more than 3 hops.
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Figure 5.9: Distribution of hops taken

Figure 5.10 shows the delivery ratio of nodes communicating in different

groups (recall that 1 attacker is placed in group A). When the number of hops

required is low (eg. A-A), non-deliverable packet flooding do not have any effect,

since eventually the source node may directly meet the destination. However,

when the number of hops required is high (eg. A-C), communications between

the two peers rely on relay nodes. Non-deliverable packet flooding causes relay

nodes along the path to drop packets, and communications in category A-C are

severely affected. The delivery ratio drops from 0.77 (without attacker) to 0.09

(one attacker). This demonstrates that for peers that require a few hops in

order to communicate, non-deliverable packet flooding attack can have a serious

impact on them.

Identity impersonation attack is more effective when the attacker is closer

to the source of a packet, giving higher chance that the attacker eliminates

the packet before it is replicated to many other nodes. This is especially clear

when comparing category A-C and C-A under identity impersonation attack.
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Delivery ratio for category A-C is only 0.11 compared to 0.46 for group C-A

communication.

For group X-Y and Y-X communication, effectiveness of non-delivery packet

flooding depends on the location of the attacker. If attacker is far from the

communication path of X-Y and Y-X, then it may fail to effectively taint the relay

nodes routing metadata. In such cases, relay nodes will then drop the attacker’s

flooded packets when there is buffer contention. Identity impersonation attack

also does not work well in such cases since by the time the attacker learns about

the existence of a packet and try to flood counterfeit acknowledgements into the

network, the packet may have already been delivered or replicated many times

and is close to being delivered.
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Figure 5.10: Communicating pairs evaluation (1 attacker in Group A)

We now move on to study the impact of such attacks using the Haggle and

DieselNet traces. Figure 5.11 shows the delivery ratio based on the minimum

hop count required for a packet to be delivered to the destination. We did not

show the results for minimum hop count that is greater than 3 as the number of

these packets are too little. Similar to what we observed in the synthetic trace,

packets with high minimum hop count required for delivery are severely affected

by non-deliverable packet flooding attack. Packets with minimum hop count of

1 for delivery are not affected by non-deliverable packet flooding attack, but it
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is still susceptible to identity impersonation attack.
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Figure 5.11: Delivery Ratio with different minimum hop count for delivery (10%
attackers)

5.3.3 Study Impacts of Varying Buffer Sizes

We investigate whether increasing buffer size makes MaxProp more robust against

non-deliverable packet flooding attack. Figure 5.12 shows that increasing buffer

size does not help in making MaxProp more robust against non-deliverable

packet flooding attack. Even with additional buffer, the attackers’ packets

quickly filled up the buffer, causing similar level of resource contention.
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Figure 5.12: Delivery Ratio varying buffer size

5.4 Attacks on Application-Aware Routing

We have seen that the increased effectiveness of our attacks comes from the

exploitation of routing metadata. Routing metadata such as the contact his-

tory are flooded into the network so that relay nodes can make better decision

in replicating/buffering packets. Given that our application-aware routing pro-

tocols also flood routing metadata (eg. dependency graphs) into the network,

attackers can similarly exploit them to increase effectiveness in their attacks. In

the following sections, we first extend MaxProp into an application-aware proto-

col. Next we show how attackers can exploit the application-aware dependency
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graphs to increase effectiveness in their attacks.

5.4.1 Application-Aware MaxProp

Extending MaxProp to be application-aware requires us to change the cost com-

putation for MaxProp routing. Figure 5.3 shows an example of how MaxProp

computes cost to various destinations. This is done without regards to how likely

the packets can help to complete the application task.

Similar to DSAR, we define task contribution for a task as the ratio of un-

delivered data blocks of the task in the node’s buffer over the total number of

(estimated) undelivered blocks of the task. The value of task contribution cap-

tures the utility of a set of data blocks for task completion (see section 3.2.3).

The undelivered blocks of the task can be estimated easily due to the use of

network wide acknowledgements in MaxProp.

In the Application-Aware MaxProp (A-MaxProp), nodes give higher priority

to tasks (and their associated data blocks) that have higher chances of completion

and delivery. Let the task contribution value of a task t be TC(t). To deliver

the task however comes with a path cost c(t), which is the cost of the path

from current node in consideration to task t’s destination. (See section 5.1.3

on the computation of path cost in MaxProp). In A-MaxProp, we define the

define the utility value of a data block i to be the sum of all its associated task’s

contribution value per unit of path cost:

U(i) =
∑
t∈T

[
TC(t)

c(t)
] (5.2)

where T is the set of tasks that data block i is associated with.

U(i) is a utility function that takes into consideration on both the prospect

of completing a task, and the cost of delivering the packet. Replication are

performed first for data blocks having a larger utility value.
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5.4.2 Application-Aware Attack

In this section, we show how flooding and acknowledgement counterfeiting can

be extended to attack application-aware routing protocols.

Attackers can improve the effectiveness of flooding attack in application-

aware protocols by making each attacker’s flooding packet appear as if it con-

tributes a lot to the completion of a task. A simple way to increase the effec-

tiveness of flooding attack in A-MaxProp is to simply flood the network with

many tasks that consist of one data block. From the relay node’s point of view,

this data block will have a task contribution factor of 1 since delivering this data

block will be equivalent to completing a task in the network. This gives the

attackers’ flooding packets higher priority compared to others that may have a

smaller task contribution factor.

To extend identity impersonation to attack application-aware routing proto-

cols, an attacker can choose to counterfeit acknowledgements for only one data

block in each task. The idea is to prevent the task from completing, yet allow

other data blocks of the task to continue to consume resources in the network.

We will evaluate the effectiveness of these two variants of application-aware

attacks in the following sections.

5.5 Evaluating Application-Aware Attacks

We evaluate the application-aware attacks using application-aware random flood-

ing attacks (arf ), application-aware non-deliverable packet flooding attacks (andp),

and application-aware identity impersonation attack (aimp). These attacks are

compared to their respective non-application-aware counterparts in the evalua-

tion.

We use the same Haggle and DieselNet trace as in the previous sections.

Each node has a 5MB buffer size and packets may be deleted before delivery
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when the buffer is full. When a packet is to be dropped due to buffer full, a

node will always drop packets originating from other nodes before considering

dropping its own packets.

We use file transfer as the application in the evaluation (ie. all data blocks

of the file must be transferred for the task to be considered as complete). All

honest nodes generate a file every hour that is destined for other randomly chosen

honest nodes. The number of data blocks for each generated file is randomly

chosen to be in the range of [1,20] data blocks.

In arf and andp, attackers create many tasks with only one data block per

task and flood them into the network. In the non-application-aware flooding

(rf and ndp), attackers create many tasks with task size randomly chosen from

the range of [1,20]. In addition, note that for arf and rf, the packets’ destina-

tions are randomly chosen among the honest nodes while for andp and ndp, the

destinations are non-existent nodes.

In aimp, attackers counterfeit acknowledgements for the first data block of

each task. In the non-application-aware identity impersonation attack (imp),

attackers counterfeit acknowledgements for all data blocks of each task.

The metrics for evaluation are Task Completion Ratio (TCR) and Block

Delivery Ratio (BDR) (defined in section 3.3).

Figure 5.13 shows the results comparing the various flooding attacks on A-

MaxProp. It can be seen that application-aware flooding attacks improve the

effectiveness of both random and non-deliverable packet flooding attacks. The

reason is that relay nodes tend to give data blocks from small tasks higher

priority since delivering such data blocks is equivalent to completing tasks in the

network.

When there are two attackers in the Haggle network, the TCR is 0.66 for rf

and 0.53 for its application-aware counterpart (arf ). For ndp, TCR is 0.46 and

0.42 for its application-aware counterpart (ndp).

Figure 5.14 shows the result comparing the various identity impersonation
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Figure 5.13: Application-Aware Flooding

attacks on A-MaxProp. For application-aware identity impersonation attack

(aimp), attackers only counterfeit acknowledgement for 1 data block per task.

As a result, the BDR remains high compared to its non-application-aware coun-

terparts (imp). For instance, when there are 5 attackers in the DieselNet, the

BDR for aimp is 0.71 and the BDR for imp is only 0.40. This possibly makes

aimp a more stealthy attack compared to imp.

The goal of aimp is to reduce the TCR, which it is able to do so effectively as

shown in the figure 5.14. Note that aimp is however, still less effective compared

to the non-application-aware imp. When there are 5 attackers in the DieselNet,
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the TCR for aimp is 0.47 and 0.39 for imp. The reason is as long as there is one

honest node in aimp that is still holding the targeted data block, aimp can still

complete that task.
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Figure 5.14: Application-Aware Identity Impersonation

Finally, we combine the flooding and identity impersonation attacks and

evaluate their effectiveness.

Figure 5.15 shows the result comparing the various combinations of attacks

on A-MaxProp. The most effective combination of attacks is andp+imp. In

this attack, attackers can remove many honest nodes’ packets through identity

impersonation and floods many non-deliverable packets to the honest nodes. In
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Figure 5.15: Combining Application-Aware Attacks

andp+aimp, the flooding is not as successful since there are more honest nodes’

packets (due to aimp minimally counterfeiting acknowledgements) to contend

with the attackers’ flooding packets.

5.6 Discussion

Previous sections discussed the attacks without any routing authentication. What

if some form of authentication can be performed? We consider two levels of au-

thentication here:
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1. Authenticate the identity of the peer in an encounter

2. Authenticate the identity of the peer in an encounter, routing metadata

and acknowledgements

In (1), nodes in the network authenticate the peer when there is an encounter.

Nodes can easily authenticate each other based on public key in a certificate.

Overhead is low but in this case, it only prevent against identity impersonation

(partially). The attacker will not be able to impersonate as the destination of

packets, but it will still be able to flood fake acknowledgements. Note that non-

deliverable packet flooding attack is not affected by such authentication at all.

As such, authentication at this level is not effective against our attacks.

In (2), besides authenticating the identity of the peer, it also authenticates

the routing metadata and acknowledgements. For acknowledgements, they are

signed by the destination node. The overhead involved is much higher compared

to (1), but it can fully prevent identity impersonation. As for non-deliverable

packet flooding attack, flooding to non-existent destination is still possible. How-

ever, the metadata falsification component is thwarted. Hence, non-deliverable

packets will be correctly determined by relay nodes that it is unlikely to be de-

livered. In this case, the relays may choose to drop these packets in the event of

buffer contention. As a result, non-deliverable packet flooding will not be effec-

tive. It should be noted however, tailgating can be launch with non-deliverable

packet flooding attacks. The attacker can tailgate the target destination node

for a sufficient period of time. This allows non-deliverable packets to be seen

as more deliverable by relay nodes. The effectiveness of non-deliverable packet

flooding is hence improved. For solutions to attacks with tailgating, reader is

referred to the paper [86].

In addition, one should note that both levels of authentications alone can-

not prevent application-aware flooding attacks. The main problem with our

application-aware routing protocols is that it allows the node itself to use depen-
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dency graphs to specify the importance of its packets in completing a task. This

makes it impossible to know if the node is lying or cheating. A possible way to

prevent resource misuse here is to perform admission control to limit the rate of

task injection for each node in the network [87] [88] [89].

5.7 Conclusion

Routing metadata such as contact history, acknowledgements, dependency graphs

and etc. that are employed in DTN routing to improve resource management can

similarly be exploited by attackers to improve the effectiveness of attacks. We

have presented two attacks - non-deliverable flooding and identity impersonation

attacks that - that demonstrates how attackers can exploit routing metadata to

improve the effectiveness of attacks.

Using non-deliverable flooding and identity impersonation attack, we evalu-

ated MaxProp routing on Haggle and DieselNet which has earlier been thought

to be robust against even a large number of attackers. We observe that the

small number of hops needed to deliver a packet is one of the main reasons why

they are more robust against routing attacks. Nevertheless, our non-deliverable

flooding and identity impersonation attacks can still degrade the routing per-

formance of Haggle and DieselNet considerably. The increased effectiveness of

our attack mainly comes from the exploitation of routing metadata such as the

contact history used in MaxProp.

Due to the fact that our proposed application-aware routing protocols send

out dependency graphs as routing metadata, attackers can similarly exploit them

to enhance their attacks. To demonstrate the attack, we extended MaxProp

to application-aware (A-MaxProp), and show how attackers can modify non-

deliverable flooding and identity impersonation to attack A-MaxProp.

Our work demonstrates the importance of authenticating routing metadata

that may potentially be exploited by attackers to create highly effective attacks.
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Conclusion and Future Work

6.1 Conclusion

Unlike traditional networks, DTNs are characterized by intermittent connec-

tivity. Nodes may experience frequent disconnections and long communication

delay in DTNs. While there are existing works that focus on improving the

performance of DTN, they do not look into how it may benefit or improve the

applications running on the DTN. With the unique characteristic of DTN, we

believe that it is beneficial to the applications if the DTN are application-aware.

In our first work, we have shown that in the face of inherent intermittent con-

nectivity, knowledge of application semantics or requirements can be exploited

in routing to improve application performance in the network. We proposed a

mechanism to capture application semantics into dependency relationships. The

mechanism is general and can be used to model a large class of applications.

Finally, we showed how to incorporate dependency relationships into existing

DTNs routing algorithms to enhance application performance.

In our second work, we looked into a class of applications in which nodes in

the DTN participate in completing application-related tasks in the system. We

looked at a possible real life taxi scenario that falls into the described class of

applications and proposed the Taxi Advisory Dispatch System (TADS). TADS

114
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is a distributed system in which taxis collaboratively estimate the number of free

taxis and clients in each region. Due to communication uncertainty in DTNs,

instead of having all nearby taxis agreeing upon the region they should move to

next, we proposed to use a leader approach in which a taxi is chosen to be the

representative leader node for a region based on some criteria after some time of

monitoring. If a region requires more free taxi, then the leader for that region

sends out an appropriate number of advisory tokens to request for free taxis to

move into the region. We evaluated TADS using real-life taxi traces that consist

of over 15,000 taxis. Our evaluation results showed that TADS can reduce the

number of clients with wait times longer than 60 minutes by over 30%.

Lastly, we studied attacks that affect the resource usage in the DTN. We

revisited the Haggle and DieselNet DTNs that Burgess et al. [1] have previously

reported that both the DTNs (with no authentication mechanisms) are robust

against even a large number of attackers. We showed how techniques that are

employed by many routing protocols to improve resource usage can similarly be

exploited by attackers. Specifically, we showed how routing metadata such as

contact history and acknowledgements can be exploited to improve the effective-

ness of attacks and we identified the scenarios where DTNs are most vulnerable to

such attacks. In addition, we showed how attackers can increase the effectiveness

of attack in our application-aware routing protocols through the manipulation of

dependency graphs. Finally, we gave a discussion on the level of authentication

that is required to secure the attacks that we presented.

6.2 Future Work

In our current work, we have proposed a mechanism to capture application se-

mantics based on dependency relationships. Future work can improve on the

mechanism to capture more kinds of application semantics. For example, our

current dependency graph does not capture “exclusion” relationship. Consider
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an application such that the existence of some data blocks invalidates the use-

fulness of some other data blocks. In this case, relay nodes upon knowing the

existence of the data blocks can drop those data blocks that are now considered

as useless.

Another interesting area of research is on routing protocols with limited

copies of replication. We have worked on protocols that are epidemic in nature

(eg. MaxProp, SAR, DSAR), but there are other protocols that limit the num-

ber of replication allowed (such as Spray and Wait). We believe that for large

network with many nodes, protocols that are purely epidemic in nature may be

faced with severe resource constraints as each relay node may now be tasked to

buffer replicate copies of data from many nodes in the network. Hence, it makes

sense to limit the copies of replication for such large network. It is interesting

to design application-aware routing protocols with adaptive limit on the copies

of replication.

Limited copies of replication may require a smarter routing algorithm to

improve delivery. However, a smarter routing algorithm may also be easier to

be exploited by attackers. In addition, the robustness or fault tolerance of the

routing algorithm is lower with limited copies of replication. For example, if

every message can have only one replica, then dropping attack will be successful

if the attackers manage to drop both the message. Researching into this area

will be interesting.
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