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Summary

In this thesis, we present our studies on “Mining Trajectory Databases for Multi-

object Movement Patterns”. A multi-object movement pattern describes the char-

acteristics of a collective-movement performed by multiple objects. Knowledge of

these patterns has numerous applications in epidemiology, ecology, preservation of

wild-life, traffic monitoring and control, Location-Based Services, marketing, social-

studies, and even on-line game development.

We present the research we had conducted to find meeting patterns. Meeting

pattern, which is defined as a set of moving objects confined in a fixed spatial

area for a period of time, has many applications including traffic control and social

studies. However, current literature lacks a thorough study on the discovery of

meeting patterns in Trajectory Databases. We (a) introduce MEMO pattern, a new

definition of meeting pattern, (b) propose three new algorithms based on a novel

data-driven approach to extract closed MEMOs from moving object datasets and (c)

implement and evaluated them along with the polynomial-time algorithm previously

reported in [23], whose performance has never been evaluated. Experiments using

real-world datasets revealed that our filter-and-refinement algorithm outperforms

the others in many realistic settings.

We report the research we had performed on finding frequent routes by mining

Sub-trajectory cliques (Trajcliqs). We had studied techniques to find frequent

routes in Trajectory Databases without any prior knowledge of the underlying spa-

tial space. Since mining all Trajcliqs is an NP-Complete problem and exact

algorithms even from data-driven approach are not feasible, we proposed two ap-

proximate algorithms based on the Apriori algorithm. Empirical results showed

that our proposed algorithms can run faster than the existing polynomial time

approximation algorithm appeared in [12] and provide a tighter results. Our ex-

periments also showed that the frequent routes reported by our algorithms are

intuitive.

vi



We also had conducted research in finding convoy patterns. Traditionally, a

convoy is defined as a set of moving objects that are close to each other for a

period of time. Existing techniques, following this traditional definition, cannot find

evolving convoys with dynamic members and do not have any monitoring aspect in

their design. We propose new concepts of dynamic convoys and evolving convoys,

which reflect real-life scenarios, and develop algorithms to discover evolving convoys

in an incremental manner.
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Chapter 1

Introduction

A Global Positioning System (GPS) receiver, or a GPS client device, is a location-

sensing device that allows its users to access time-stamped locations of the device.

Advances in GPS technology enable the user of a GPS client to maintain a highly

accurate (up to a few metres) record of the locations he (or the tracked object —

such as a naval vessel, a vehicle, or a wild-life, which is tagged with the GPS device)

visited in high temporal resolutions and, hence, his detailed movement data.

Since the GPS service was open for civilian use, GPS receivers have been in-

stalled in naval vessels (ships) to assist in navigation. The Automatic Identification

System (AIS) transmits the time-stamped location data (movement data) obtained

from the vessels’ on-board GPS receivers to nearby vessels and maritime authori-

ties. The movement data received from the AIS is used to assist the vessels’ watch-

standing officers and the maritime authorities to track and monitor the movement

of the nearby vessels. The maritime authorities often archive the movement data

(trajectories) of the ships near their ports in trajectory databases for record-keeping

purposes and for further studies of the ships’ trajectories to optimize their ports’

operations. Figure 1.1 shows one such dataset captured from an AIS receiver in

Singapore on September 5, 2011 during 0800 - 0900 hrs.

Similarly, businesses in the public transportation industry (taxi and bus oper-

ators) and those in the logistics industry equip their fleets with GPS receivers for

management, control, and security purposes. These businesses record and archive

1



Figure 1.1: Some Movements of Ships Captured by an AIS Receiver in Singapore
on September 5, 2011, 08:00 – 09:00.

the movement data of their fleets in trajectory databases for analysis aiming to

improve the quality of their services.

Along with high mobile-penetration, the amount of civilians’ movement data

(trajectories) obtained from GPS devices is also growing larger. Almost all mobile

devices (phones and tablets) available on the market include a GPS receiver. On-

line GPS track sharing services like Endomondo1, My Fitness Pal2, Every Trail3,

and WikiLoc4 allow their users to record and publish their own trajectories. These

tracking data can be used for recommending travel routes for general public and/or

sightseeing routes for tourists by Location-Based Services (LBS).

Moreover, ecologists and marine biologists are looking forward to track the an-

imals they are studying by attaching GPS receivers (and data transmitters) to the

1http://www.endomondo.com/
2http://www.myfitnesspal.com/
3http://www.everytrail.com/
4http://www.wikiloc.com/
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animals in question [52]. In fact, tracking a small sets of land and sea animals

using GPS devices has been successfully demonstrated [2,50,51]. Along with more

advances in GPS technology and reduction in costs, we expect the scientific com-

munity to eventually collect and archive substantial amount of animal movement

data in trajectory databases in the near future.

In addition to the GPS data, multi-player on-line games, like Quake 2, are a

substantial source of movement data as they allow their users (players) to record

their in-game trajectories (as well as other status and action data) and publish the

data on the internet for analysis and behaviour studies. There has been some recent

efforts [15,44] in the Artificial Intelligence (A.I) research community to study the in-

game trajectory data to distinguish human players and computer-controlled (bot)

players. Moreover, following an incidence of a virtual outbreak, epidemiologists

noticed the similarity between players’ behaviour during the virtual outbreak and

humans’ behaviours during an actual epidemic outbreak. They went on to suggest

the feasibility of using on-line games as test-beds for studying human behaviours

— actions, communications, and movement data — to assess the effectiveness of

methods to control communicable diseases [9, 41].

In this thesis, we will study the problem of Mining Trajectory Databases for

Multi-object Movement Patterns (formally defined in Chapter 2). Knowledge of the

instances of Multi-object Movement Patterns, which are embedded in the Trajectory

Databases (TJDB), such as (a) multiple objects travelling to and meeting in a spe-

cific spatial area — a meeting, (b) multiple objects travelling in the same route at

different time — a frequent route, and (c) multiple objects forming and moving in

a group — a convoy — will be interesting for various applications in epidemiology,

ecology, preservation of wild-life, traffic monitoring and control, Location-Based

Services (LBS), marketing, social-studies, and even on-line game development.

However, there are many limitations in the existing data mining and knowledge

3



discovery techniques to discover instances of Multi-object Movement Patterns. Cur-

rent literature lacks an experimental studies on algorithms to discover the meeting

patterns. Moreover, for each meeting pattern formed, the associated meeting place

is not well defined yet. There are still challenges in discovering frequent routes

without prior knowledge of the underlying spacial region as spatial-space is con-

tinuous. Existing works on finding convoy patterns cannot handle real-life convoys

as, in reality, convoys members occasionally dispatches themselves from their par-

ent groups as well as new members join and/or existing members leave the convoy

in different stages of the convoys’ life-spans. In addition, a Trajectory Database

(TJDB) contains movement data of several thousands of objects over an extended

period of time. Therefore, efficient and effective mining of TJDBs for the instances

of the Multi-object Movement Patterns becomes a new and interesting challenge.

1.1 Motivation

In this section, we will briefly introduce the Multi-object Movement Patterns

(MOMO Patterns), which we will explore in details in the following chapters, and

motivate the study of extraction their instances (MOMO Instances) from Trajectory

Databases (TJDBs).

1.1.1 Meetings

Informally, a meeting is formed when a group of objects comes to a fixed (circu-

lar) area and stays in the area for a while. Discovery of the meeting and related

information — its member objects, place, time, and duration — from Trajectory

Databases can have many applications. For instance, tracking the meeting place

and group size of the tracked animals across time enables the ecologists to better

understand grouping behaviours (interactions) of the animals they are tracking for

4



their researches as well as know the animals’ habitats and grouping time.

For some applications, the information of the meeting places and time can be

more important than their member objects. For example, meetings of commuters

in a particular restaurant at lunch time show the restaurant is popular for lunch

among commuters. Location-based Services can use this information to recommend

popular restaurant to other users, who is looking for a good place to have lunch. In

this example, the place and time the meeting instances appeared are more important

than who participated in the meetings for the purpose of making recommendations.

However, the existing literature lacks a thorough experimental study on the

discovery of meeting patterns from Trajectory Databases (TJDBs). To accurately

report all meeting patterns from a TJDB, the only existing algorithm reported

in [23] requires O(n4τ 2) time (n is the number of objects and τ is the number

of time-stamps in the TJDB) in order to report all longest duration meetings. It

will not be scalable for TJDBs containing hundreds of objects that spans a long

time-span. Therefore, the need to develop practical algorithms for extracting the

information (members, place, time, etc) of the meetings in TJDBs is still open.

1.1.2 Frequent Routes

A frequent route is a path, which many of the tracked objects take frequently. The

knowledge of frequent routes and their characteristics (for example, time-of-day)

can be useful in many applications including traffic navigations and route sugges-

tions for sight-seeing or travelling. Current traffic navigation systems (marketed as

GPS devices with built-in navigations) use the shortest-paths in the road network

to navigate their users to reach their destinations. This approach has several lim-

itations since the shortest route is not necessarily the best route (in terms of time

taken to travel if there is usually some traffic jams on that route). Moreover, the

shortest path may not be suitable for the tourists (the recommended path may not

5



pass many sight-seeing locations) or even not safe to walk (the recommended path

passes the areas having high crime rates). Knowledge of how to select the best

route is often embedded in locals’ trajectory data as frequent routes since the locals

(cab drivers etc) learn which routes are the best routes from their experiences and

take them frequently.

Mining frequent routes from a Trajectory Database (TJDB) is not trivial for

many reasons. Firstly, in many applications, underlying road network (or semantic

and properties of spatial-regions) is not available. For instance, pedestrians are not

confined to road networks and will walk arbitrarily. Therefore, without a concrete

information of all the underlying routes, it is not possible to count the number of

time each route is used. Secondly, two vehicles travelling the same road or the same

vehicle travelling the same road twice will rarely have two identical sequences of

locations reported in the trajectory databases because the spatial space is contin-

uous. Even if the movement is made on the exact same path (by two vehicles or

same vehicle at different time), it is still not possible to directly match the sub-

trajectories as the movements made may be at different speeds and, in the case

of two vehicles, they may have different GPS sampling rates. Therefore, matching

two sub-trajectories if they are taking the same route is not trivial and needs a

complicate similarity metric. Lastly, a TJDB contains movement data of a large

number of tracked objects over a lengthy period of time, resulting in a huge number

of sub-trajectories to check. Given that the number of sub-trajectory routes in a

given TJDB tends to be exponential in nature, an efficient traversing of the TJDB

in order to discover frequent routes becomes an essential. Hence, efficient and ac-

curate discovery of frequent routes in Trajectory Databases become a research area

worth exploring.
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1.1.3 Evolving Convoys

The existing works [10, 23, 30, 32] model a convoy — i.e. a group of tracked ob-

jects, which travel together — as a fixed set of member objects, which are found

together throughout the life-span of the group. In reality, we notice that some

real-life convoys have some members, which move away from the other members

of the convoy (parent convoy) from time to time. For example, some animals may

temporarily move away from their herds. It is also possible that a commuter from

a convoy may leave behind due to the traffic congestion (due to the existence of

pedestrians on zebra crossing, traffic lights etc) or the need for petrol (driving away

from the convoy to a petrol station) and catch up the convoy shortly after. When

a car-pooling recommendation system makes suggestions for suitable car-pooling

groups using convoy information, it is not desirable for the recommendation system

to leave him out just because he was temporarily away (left behind) from other

commuters, who were travelling in the same route at the same time as he was. In

on-line games, some players belonging to a group may move away from their peers

to complete some tasks (quests). There is a need to model the real-life convoys

in a more natural and flexible way, which allows some members of the convoy to

temporarily move away from the convoy.

Moreover, in reality, some members may join (leave) the convoy later (earlier)

than the convoy’s starting (ending) time. For car-pooling recommendation systems,

it is more practical and desirable to include a commuter in the car-pooling group

suggested for the members of convoy that he had always joined although he was

never present when that convoy started to form. Results obtained from mining

Trajectory Databases using the current convoy models contain several convoys,

whose member objects and life-spans overlap, when there is a tracked object joining

(leaving) the convoy. From usability point-of-view, reporting all such overlapping
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convoys may be confusing and have limited applications. For monitoring wild-life, a

complete list of overlapping convoys is hard to comprehend for the human scientist

(and may be subjected to more processing in order to establish links between related

convoys). Selecting a single representative from a set of overlapping convoys is also

an application-dependent task. For example, some scientists may be interested in

longer-duration convoys (with fewer members) while others may be more interested

in larger convoys (with shorter life-spans). A more realistic approach that reports

each related set of overlapping convoys as a more comprehensible single evolving

entity is needed.

An interesting new application of near real-time convoy information is in the

development of Mass Multi-player On-line Games (MMOs). MMOs are on-line

games which allow players, whose characters are in close proximity of each other

in the game world, to interact with (communicate and help) each other. Since

this feature distinguish MMOs from traditional single-player computer games, the

application providers (game developers) allow and even encourage the players to

form groups.

Since the players reside in (and share) the same virtual world and kill the same

set of enemies (called “monsters”), the game needs to constantly replenish the vir-

tual world with new monsters for the players to kill. Replenishing the virtual world

with monsters is termed as “spawning”. Currently, the monsters are spawned based

on the region of the virtual world using a static script created by the developers.

Since monsters are spawned in a region regardless of the characteristics of the player

groups in it, for larger groups, the game will be easy while for smaller groups, the

same game will be difficult. The top two panels of the Fig. 1.2 shows a demonstra-

tion of the limitation of spawning monsters using a static script. The application

server (game server) created five hard monsters regardless of the size of the group

of players. For a group of three players (top-left panel), the game will be difficult
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but for a group of eight players (top-right panel), it will be easy.

Figure 1.2: How Convoy Information Improves Players’ Experience.

Ad hoc creation of monsters and puzzles based on the players’ statuses by an Ar-

tificial Intelligence agent has been explored for single-player games [36] and demon-

strated for a limited (up to 4 players) multi-player game [11]. To extend the ad hoc

monster creation into MMOs, the application server needs the near real-time con-

voy information (group size and skills of the members) of the players. With convoy

information of the players extracted from the movement data-streams of the play-

ers, the application server (game server) can uniquely spawn monsters and puzzles

for each user group. The bottom two panels of the Fig. 1.2 demonstrates how the

game server can create suitable monsters based on the grouping information of the

players. For fewer players, fewer monsters are spawned (bottom-left panel) while

more monsters are spawned for a larger set of players (bottom-right panel).
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1.2 Contributions

The contributions of this thesis can be divided into three parts. The first two parts

deal with reporting the Multi-object Movement Patterns (MOMO Patterns) from

off-line Trajectory Databases (TJDBs) while the last part deals with finding MOMO

Patterns in both off-line and streaming settings.

1.2.1 Meetings of Moving Objects

This thesis presents the problem of mining Trajectory Databases (TJDBs) for meet-

ing patterns along with a new definition of meetings, called Meeting of Moving

Objects (MEMO), which defines the information associated with each instance of

the meeting pattern such as the meeting place, duration, and members. We also

designed effective and efficient algorithms to find meeting patterns in a TJDB and

report the associated meeting places, durations, and members.

We implemented (a discrete version of) the existing algorithm proposed in [23]

to discover meetings and compared it with our solutions. According to the experi-

mental evaluations we conducted, our methods to find MEMOs are more accurate

and efficient than the existing solution.

1.2.2 Sub-trajectory Cliques and Frequent Routes

This thesis contains our studies on finding frequent routes from a Trajectory Database

(TJDB). Since a road network or semantic of the regions of the spatial space the

moving objects are traversing is often not available — for example, ecologists study-

ing some wild animals do not have a complete roadmap of the routes the animals are

using, we developed methods to discover frequent routes from a given TJDB with-

out the need of prior knowledge of the underlying spatial space. We explored the

option of grouping similar sub-trajectories together and extracting a frequent route
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from each group as this two-step method does not require to have the underlying

road networks that the moving entities in question take.

In order to group similar sub-trajectories, i.e. sub-trajectories taking the same

route, together in the same group regardless of the speed they travelled, minor

differences in sequence of locations they reported in the TJDB, and differences in

GPS sampling rate, we used Frèchet distance as the similarity measure in grouping

sub-trajectories.

However, since mining Sub-trajectory Cliques (Trajcliqs) using Fréchet dis-

tance — also known as sub-trajectory clustering — is a known NP-Complete prob-

lem [12], we designed novel data-driven approximation algorithms, which are able

to efficiently discover approximate Trajcliqs and frequent routes from real-life

datasets.

1.2.3 Dynamic Convoys and Evolving Convoys

As the final contribution, this thesis reports our exploration in the area of convoy

discovery. Since we realize the traditional notion of convoys cannot accurately

model the real-life convoys, which has dynamic members — or the members of a

convoy moving away from the convoy temporarily, we introduced a new concept

of convoys called Dynamic Convoys (DYCO). A DYCO allows dynamic members

under constraints imposed by user-defined parameters.

Since real-life convoys may also have new members joining the convoy and exist-

ing members leaving the convoy (they may not return at all), we continued to study

the new concept of convoy evolution by defining how DYCOs (of fixed duration)

evolves into one another. An Evolving Convoy (EVOCO) captures the relation-

ships between different stages of convoys such that a convoy in a stage has more

(fewer) members than its previous stage.

We explored new algorithms that can be used to incrementally discover evolving
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convoys. The proposed algorithms are designed to be incremental in nature so that

we can use them for Trajectory Databases, which are streaming into the mining

process in real-time.

1.3 Organization

This thesis is organized in the following manner. The current chapter introduces

the subject of the thesis. We will give an overview of the thesis and the related

works in the next two chapters, which will be followed by three more chapters,

each devoted to our contributions to the mining a specific Multi-object Movement

Pattern. Then, we will conclude the thesis.

In Chapter 2, we will formally introduces the concept of Mining Trajectory

Databases for Multi-object Movement Patterns and provide an overview of the spe-

cific mining problems we are going to present in this thesis. We will also introduce

the platform (data and computation settings) we used for the experiments we con-

ducted.

In Chapter 3, we will discuss the related works to this thesis. We will present and

discuss in details of the existing literature on general data-mining techniques and

finding different types of multi-object movement patterns in a Trajectory Database.

We devote Chapter 4, 5, and 6 for mining Multi-object Movement Patterns

from Trajectory Databases. We will describe our research on algorithms to find

instances of the Meeting of Moving Objects (MEMO) in Chapter 4. In Chapter

5, we will propose Sub-trajectory Cliques (Trajcliqs), from each of which we

will extract a Frequent Route. We will discuss approximation algorithms to mine

Trajcliqs in a Trajectory Database to find frequent routes. In Chapter 6, we will

present new concepts concerning convoys, namely the concept of dynamic convoy

(DYCO) and the concept of how a sequence of DYCOs evolving into one another
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to form an evolving convoy (EVOCO), and discuss algorithms to extract EVOCOs

incrementally from (both streaming and off-line) Trajectory Databases.

We will conclude this thesis in Chapter 7.

Some of the research works described in this thesis have been published. The

works in Chapter 4 and Chapter 6 are published as research papers [6, 7] in the

Proceedings of the 23rd and 22nd Scientific and Statistical Database Management

Conferences (SSDBM 2011 and SSDBM 2010) respectively. An abridged version of

this thesis [8] appeared in the ACM SIGSPATIAL Special, Volume 4. The work in

Chapter 5 is going to appear in the Proceedings of the International Symposium on

Spatial and Temporal Databases (SSTD 2013).
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Chapter 2

Overview

In this chapter, we will formally introduce the concept of mining Trajectory Databases

(TJDBs) for Multi-object Movement Patterns and give an overview of the pattern-

mining problems we are going to explore in the proposed thesis. We will also

discuss the platform, i.e. data and settings, we use in this thesis in order to assess

the performance of our proposed mining techniques.

2.1 Mining Trajectory Databases for Multi-object

Movement Patterns

Definition. 2.1. Trajectory Database — For a given set of objects O =

{o1, o2, ..., on}, time-stamps T = {t1, t2, ..., tτ}, and a spatial-space IRd, a Trajec-

tory Database R is a set of records of the form 〈o, t, loc〉 where o ∈ O, t ∈ T and

loc ∈ IRd.

In a Trajectory Database (TJDB), o and t form a composite key that uniquely

determines loc. However, a given TJDB can be incomplete – i.e. for all {o, t} ∈

O × T , there may not be < o, t, loc >∈ R — since, in reality, some objects may

be untraceable in certain time-stamps – i.e. the locations of some objects may

not be known for some time-stamps due to hardware limitations. Although time

is assumed as a discrete sequence with equal intervals between each consecutive

points, generality of Def. 2.1 is not undermined since any application can set an
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arbitrarily small interval.

We will define some preliminaries before we move on to define Multi-object

Movement Patterns and Mining Trajectory Databases for them.

Definition. 2.2. Collective Movement — A collective-movement X is a set of

movement records found in a Trajectory Database R, i.e. X ⊆ R.

Definition. 2.3. Member Objects of a Collective Movement — The set of

member objects O(X) of a collective-movement X is the set of all objects, whose

movement data is included in X, i.e.

O(X) = {o : 〈o, t, loc〉 ∈ X}.

Definition 2.2 defines a collective movement as a description of a set of move-

ments some objects made as found in a Trajectory Database (TJDB). Definition 2.3

defines the member objects, who perform a given collective-movement. For example,

in the Trajectory DatabaseR visualized in Fig. 2.1, X1 = {〈o, t, loc〉 : o ∈ {a, b, c}},

X2 = {〈o, t, loc〉 : o ∈ {d, e}}, and X3 = {〈o, t, loc〉 : o ∈ {f, g, h}} are some

collective-movements found in R, which describe the movements of their respective

sets of member objects, O(X1) = {a, b, c}, O(X2) = {d, e}, and O(X3) = {f, g, h}.

Definition. 2.4. Collective-movement Predicate — A collective-movement

predicate is a mapping q(X), which maps a collective-movement X ⊆ R to either

true or false, i.e.

q : P(R)→ {true, false}.

In Def. 2.4, a collective-movement predicate is defined as a boolean function

that determine the movements described in a given collective-movement meets the

criteria specified in the predicate. For instance, suppose some predicates are defined

as follow:
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Figure 2.1: An Example Trajectory Database Containing Movement Records of
Eight Objects for Four Time-stamps.

• q1 = true iff O(X) contains (exactly) three objects;

• q2 = true iff all loc of all member objects at t1 is outside Area ’A’;

• q3 = true iff all loc of all member objects at [t2, t3] is inside Area ’A’;

• q4 = true iff all loc of all member objects at t4 is outside Area ’A’;

For each predicate defined above, we can check whether a collective-movement

meets the predicate. Table 2.1 shows whether each of the collective-movements

X1, X2, and X3 (described above) meets the criteria defined in each predicate (true

means meeting the criteria). For example, the collective-movement X1 meets the

predicate q1 — q1(X1) = true — since it describes the movements of three objects

{a, b, c} while X2 does not meet q1 — q1(X2) = false — because X2 has only two

member objects. Likewise, we can see X2 meets predicate q3 because all its member

objects, d and e, stayed in the Area ’A’ during [t2, t3] while X3 does not meets q3

since one of its member objects, f , was not in the Area ’A’ at t2.
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Table 2.1: Example Predicates and Collective Movements.
Collective- Collective- Collective-
Movement Movement Movement
X1 X2 X3

Predicate q1 true false true
Predicate q2 true true true
Predicate q3 true true false
Predicate q4 true true false
Instance of Movement-Pattern Q yes no no

Definition. 2.5. Multi-object Movement Pattern – A Multi-object Movement

Pattern Q is a set of collective-movement predicates, i.e Q = {q1, q2, ..., qp}.

Definition 2.5 defines a Multi-object Movement Pattern (MOMO Pattern) as a

set of collective-movement predicates, which describes the characteristics (criteria)

of the MOMO Pattern. For example, a MOMO Pattern, “three commuters lunch

movement pattern” can be defined as “three commuters enter the restaurant (Area

’A’) at t2, have lunch and leave the restaurant at t4”. This movement pattern has

four criteria, (a) there must be three objects, (b) these objects must be outside Area

’A’ before t2, (c) these objects must be inside Area ’A’ during [t2, t3], and (d) these

objects must be outside Area ’A’ again at t4. This Movement Pattern, therefore,

will be defined as Q = {q1, q2, q3, q4}, where q1, q2, q3, and q4 as defined above.

Definition. 2.6. Instance of a Multi-object Movement Pattern – Given a

Trajectory Database R, a collective-movement X is an instance of the Multi-object

Movement Pattern Q, or simply “O(X) forms Q” (as evidence by X), if and only

if X meets all collective-movement predicates in Q, i.e.

X ∈ N(Q,R)⇐⇒
∧
q∈Q

q(X) = true,

where N(Q,R) = the set of all instances of Multi-object Movement Pattern Q found

in R.

Following Def. 2.6, the member objects of a collective-movement is said to
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form a Multi-object Movement Pattern if the collective-movement meets all the

criteria (the collective-movement predicates), which describe the characteristics of

the said Movement Pattern. For example, for the Trajectory Database depicted in

Fig. 2.1, the tracked objects {a, b, c} forms the three commuters’ lunch movement

pattern Q = {q1, q2, q3, q4} — or the collective-movement X1 is an instance of Q

— as X1 meets all four predicates in Q. In this report, we will propose a thesis

on finding instances of Multi-object Movement Patterns (MOMO Instances). The

knowledge of the instances of such movement patterns formed by the tracked objects

is embedded and hidden in the data archived in the Trajectory Databases.

Definition. 2.7. Mining Trajectory Databases for Multi-object Move-

ment Patterns – Mining Trajectory Databases for a given Multi-object Movement

Pattern Q is a process MQ(R) that takes a Trajectory Database R as its input and

outputs the information of all instances of Q found in R.

Following Def. 2.7, the process of Mining Trajectory Databases (TJDB) to look

for a pre-defined Multi-object Movement Pattern (MOMO Pattern) takes a TJDB

and reports all instances of the Multi-object Movement Pattern (MOMO Instances)

found in the TJDB. Figure 2.2 depicts the concept of mining Trajectory Databases

for a MOMO Pattern.

Figure 2.2: Mining Trajectory Databases for Multi-object Movement Patterns.
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2.2 Proposed Mining Problems

2.2.1 Finding Closed Meetings of Moving Objects

The proposed concept of mining a Trajectory Database (TJDB) for Meetings of

Moving Objects (MEMOs) is depicted in Fig. 2.3. The definition of MEMO (em-

bedded in the mining process) will allow users to customize the meeting pattern by

specifying minimum number of members, minimum meeting duration, and maxi-

mum spatial size of meeting place in order to make the process of mining TJDB for

MEMOs report instances of the customized meeting pattern. Given a TJDB and

MEMO parameters, the mining process will produce information of all instances of

closed MEMOs found in the given TJDB as output.

Figure 2.3: Mining Trajectory Databases for Closed Meetings of Moving Objects.

2.2.2 Mining Sub-trajectory Cliques to Extract Frequent

Routes

An overview of the process we are going to develop to find Frequent Routes in Tra-

jectory Database (TJDB) is demonstrated in Fig. 2.4. The process is a two-step pro-

cess involving (a) the first step that finds Sub-trajectory cliques (Trajcliqs) and

(b) the second step that infers a frequent route for each Trajcliq. The definition of

Trajcliqs is customizable by the users by supplying parameters for clique mining,
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namely minimum length (not time duration) of the sub-trajectories in a Trajcliq

must have, maximum distance between the sub-trajectories in a Trajcliq, and

the minimum number of sub-trajectories in a Trajcliq. The mining process will

extract the information of all the frequent routes from the Trajcliqs and report

their information.

Figure 2.4: Mining Trajectory Databases for Sub-trajectory Cliques to Extract
Frequent Routes.

2.2.3 Discovery of Evolving Convoys

The specifications of the algorithms that mine a Trajectory Database (TJDB) for

Evolving Convoys (EVOCO) are depicted in Fig. 2.5. The definition of EVOCO

pattern can be customized through its parameters, minimum number of members,

minimum duration, and dynamic-member/non-member threshold (this parameter

is to differentiate a dynamic-member from a noise object). The mining process

reports stages of all evolving convoy instances in a given TJDB.
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Figure 2.5: Mining Trajectory Databases for Evolving Convoys.

2.3 Platform to Assess the Proposed Algorithms

2.3.1 Datasets and Data Cleaning

We will use five human movement datasets and two taxi movement datasets to

assess our proposed algorithms designed to extract the instances of the Multi-object

Movement Patterns (defined above). Five human movement datasets are Statefair,

Orlando, New York, NCSU and KAIST obtained from [28]. New York consists of

traces of the volunteers commuting by subways, by buses and on foot, while NCSU

and KAIST consist of traces of students on campuses. Two taxi movement datasets

we will use are SF-Cab21 and SF-Cab22 consisting of taxi movement extracted

from [45]. SF-Cab21 (SF-Cab22) consists of taxi movement from 8AM to 4PM in

San Francisco Bay Area on 21-Apr-08 (22-Apr-08). We also derive subsets of the

taxi datasets, SF-Cab21rand100 and SF-Cab22rand100, which consists of movement

of 100 random taxis during the aforementioned time-frames.

In addition, we will also use Trucks [1] consisting of trajectories of 50 trucks mov-

ing in Athens and Ships consisting of trajectories of 458 ships. The Ships dataset

is obtained from AIS transmissions received from the ships moving in Singapore

waters during September 5, 2011 from 0800 - 1200 hrs. A summary of the datasets

is given in Table 2.2.
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Table 2.2: A Summary of the Datasets Used to Assess the Proposed Algorithms.
Name Object Count Covers No. of Records
Statefair 19 3.5 hour 5,861
NCSU 35 21.7 hour 42,829
New York 39 22.7 hour 118,584
Orlando 41 14.3 hour 133,076
KAIST 92 23.4 hour 404,981
SF-Cab21 482 8 hour 159,107
SF-Cab22 477 8 hour 182,911
Trucks 50 40 days 112,203
Ships 458 4 hour 149,660

The five human movement datasets are published after a process of location-

privacy preservation filtering, i.e. they use planar coordinate systems with arbi-

trary reference origins to prevent inferring the actual locations each tracked objects

visited. In contrast, other datasets use well known coordinate systems. Trucks

dataset uses a planar coordinate system called GGRS87/Greek Grid (EPSG:2100).

The spatial distance unit used for human movement datasets and Trucks dataset is

in metre. The two taxi movement datasets, SF-Cabs21 and SF-Cabs22, and Ships

movement dataset use spherical coordinate system called WGS84 (EPSG:4326) or

the longitude/latitude system. Therefore, we are able to infer the physical locations

the tracked objects visited in these datasets.

Since planar coordinate systems make it easier to compute spatial distance, we

project the datasets in spherical coordinate system, namely SF-Cab21, SF-Cab22,

and Ships datasets, to planar coordinate systems, which use metre as their dis-

tance unit. We project taxi datasets (SF-Cab21 and SF-Cab22) and Ships dataset

into NAD83(HARN)/California zone 3 (EPSG:2768) and SVY21/Singapore TM

(EPSG:3414) respectively. Now, the distance unit in all datasets is in metre.

The datasets, SF-Cab21, SF-Cab22, and Ships, consist of a few erroneous lo-

cation measurements, i.e. the reported locations for certain time-stamps are inac-

curate. For instance, some of the ships reported their location at 〈0, 0〉 in WGS84
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coordinate system, which is near the west coast of Africa, although they are in Sin-

gapore waters making short-range radio contact with AIS receiver system located in

the National University of Singapore (NUS). We remove such records by removing

the records with location reported outside the projected coordinate systems’ bound.

We also notice SF-Cab21, SF-Cab22, Ships, and Trucks contain missing chunks

in some trajectories, i.e. a portion of the trajectory is not reported in the dataset

at all, which is characterized by a huge distance between consecutive reports. We

learn the distribution of the distances between locations of two consecutive records

(of the same tracked object) in order to determine the ideal threshold value to

identify such gaps. Figure 2.6 shows such distribution of dataset, SF-Cab21. Using

the threshold values of 1.4km, 1km, and 0.5km for taxi datasets, Ship dataset, and

Trucks dataset respectively, we remove all missing portions in the trajectories in

these datasets and mark the records before and after the gap as the last point and

the first point of two separate trajectories. Figure 2.7 shows a comparison of some

portions of SFCab21rand100 before and after the cleaning process. We can clearly

see some (taxi) trajectories travelling through the water in the East are removed in

the cleaned dataset.

Figure 2.6: Distribution of the Distances between Two Locations Consecutively
Reported by the Same Tracked Object in SF-Cab21.
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(a) (b)

Figure 2.7: Comparison of a Portion of the Taxi Dataset, SF-Cab21rand100, (a)
before Cleaning and (b) after Cleaning Using a Threshold of 1.4km.

2.3.2 Computational Environment

All datasets are stored in 〈pkey, objid, trajid, ts, loc〉 format in a PostgreSQL 8.4

with pkey set as the primary key (int8), while objid, trajid, ts, and loc stands for

object-id (varchar), trajection-id (int8), time-stamp (int8), and location (PostGIS

2.0 Point). Some of the objid has multiple corresponding trajid due to our data

cleaning process, which divides a trajectory containing an anomalous gap into two

trajectories. The data is clustered together by objid. The time-stamp ts is stored

in Unix Epoch format while the granularity of the interval between two consecutive

time-stamps is 10 second for meeting and convoy experiments. We have a B-tree

index on 〈trajid, ts〉.

We will implement all the proposed algorithms and existing (base-line) algo-

rithms in Java. Performance studies for the meeting pattern mining algorithms

are to be conducted on a server equipped with Intel Xeon X5365 CPU running
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at 3.00GHz and 16GB of RAM, while the rest of the experiments (including the

trajectory clique pattern mining and evolving convoy pattern mining) are to be

conducted on a server equipped with Intel Xeon CPU E5607 running at 2.27GHz

and 32GB of RAM. During the experiments, we will have the amount of memory

available to the Java Virtual Machine capped at at 8GB and 16GB on the servers

respectively. Both of the servers are running a Linux Distro.

25



Chapter 3

Related Works

In this chapter, we will discuss the existing works, which is related to Mining Trajec-

tory Databases (TJDBs) for various Multi-object Movement Patterns (MOMO Pat-

terns). We will start with the general data-mining techniques including those tra-

verse power-sets to find association rules and those for clustering spatial data. Then

we will discuss more closely related works to find movement patterns in TJDBs.

3.1 General Data-mining Techniques

3.1.1 Traversing Power-sets

For a given set S, its power-set P(S) is defined as the set of all its subsets, i.e.

P(S) = {V |V ⊆ S}. A set S is said to have the apriori -properties with respective

to a predicate p if and only if the following statement is true: if V ⊆ S fulfils

p, then its subsets V ′ ⊆ V must fulfil p too. The Apriori algorithm, the first

data-driven algorithm to traverse the power set P(S) of a given set S having the

apriori -properties (with respective to whether the number of occurrence of a set is

at least the given support threshold) appears in [3]. It traverses the search space,

starting with all the interesting sets with exactly one member each, building up

interesting sets containing (k + 1) members from those containing k members.

Although the Apriori algorithm designed to perform association rule mining is

fast enough, it requires a large amount of memory. Therefore, Zaki [58] proposed
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Equivalence CLAss Transformation (ECLAT). In ECLAT-based data mining algo-

rithms, the power set P(S) of a given set S = {s1, s2, s3, ..., sn} is divided into n

equivalent classes C1, C2, C3, ..., Cn. Using an arbitrary order � on S, the kth equiv-

alent class Ck is defined as Ck = {V |sk ∈ V and if si ∈ V then sk � si}. Each

equivalent class C, which is a sub-lattice and whose elements follow the apriori -

properties, is recursively divided into sub-classes until each of the resulting classes

fits entirely into the memory for processing by the Apriori -algorithm. It limits the

memory requirement of frequent-itemset-mining at the expense of some redundant

processing. FP-growth, the depth-first-search approach to frequent item-set mining,

is proposed in [25].

3.1.2 Clustering of Data

Clustering of spatial-points is to be used as basic operations in mining Trajectory

Databases for some Multi-object Movement Patterns (such as convoy patterns).

Existing works on spatial clustering consist of hierarchical [24,34] and partitioning

[4] algorithms but they need domain-specific parameters (number of clusters or

inter-cluster distance) in advance. These parameters are hard to pre-determine

in the applications like mining convoy patterns, where grouping and movement

behaviour of the objects should not be assumed. Ng and Han [43] proposed an

efficient partition algorithm CLARANS and suggested running it multiple times to

determine the best number of targeted clusters. When clustering of points for each

time-stamp is required, this may be expensive.

Methods for clustering of point-objects in a spatial network are presented in [57].

Similar tasks dealing with moving objects (like vehicles on the road network) are

handled by CMON framework [14]. CMON framework is capable of clustering in

distance-based, density-based, and k-partition fashions.
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Figure 3.1: An Example of Density-based Clustering.

DBSCAN

Ester et al. [21] suggested density-based clustering, DBSCAN, which does not need

any domain-specific parameters and is scalable. DBSCAN distinguishes each ob-

ject in a density-connected clusters into two categories: core and border. A core

object has at least min pts objects within its ε-proximity and is used to expand

the clusters. An object, which has less than min pts objects within its ε-proximity

and has a core object as its ε-neighbors is a border objects. Other objects are

identified as noise objects, which do not belong to any cluster. For example, in

Fig. 3.1, (for min pts = 3) black circles like c are core objects while white circles

like b are border objects (plus signs are noise objects not belonging to any cluster).

In DBSCAN, only the maximal clusters are reported. DBSCAN is able to handle

clusters of arbitrary spatial-shape and is tolerance to noise.

Insertion and deletions of data points may void the current clustering results

in dynamic databases. Dynamic clustering, to cope with such insertions and dele-

tions, is done with incremental DBSCAN [20]. GDBSCAN [49] is generalization of

DBSCAN, which allows spatially extended objects (not points) to be clustered with

an arbitrary neighbourhood predicate and neighbourhood cardinality.
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3.2 Multi-object Movement Patterns

In this section, we will present the existing models (definitions) of Multi-object

Movement patterns (MOMO Patterns) and finding them in Trajectory Databases

(TJDB). In order to assist comparison between the models, we will name some

variables differently from the original articles they first appeared. A similar detailed

survey is also available in [31].

3.2.1 Meetings

One of the early works on extracting Multi-object Movement Patterns from a Tra-

jectory Database (TJDB) is the study of Meeting patterns found in [23]. A (fixed)

meeting is defined as a set M of m or more objects, which are within a fixed single

circle of radius r > 0 in w or more consecutive time-stamps, where r, m, and w are

given parameters.

Gudmundsson and Kreveld [23] reported that for a given TJDB containing move-

ment records of n objects and τ time-stamps, the complexity to compute longest-

duration meeting pattern(s) from the TJDB is O(n4τ 2log(n) + n2τ 2). Their algo-

rithm is designed to report the longest-duration meeting(s) and never reports any

meeting M , a subset of whose members form a longer duration meeting M ′. For

instance, the movement of five objects in Fig. 3.2, which depicts a scenario where

two friends d and e arrive late to and leave early from a lunch appointment, it is

clear that (for w = 2 and m = 2), there are two meetings – M ′ = {a, b, c} forms a

meeting during [t1, t4] and M = {a, b, c, d, e} forms a meeting during [t2, t3]. In this

scenario, their algorithms will not report the larger meeting M .

Their algorithm is based on the observation that the meeting place and life-span

of a meeting instance form the base and the height of a three-dimension (two space

and one time) cylinder, in which the trajectory segments representing the movement
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made by the meeting members during the meeting time-span. Since a cylinder can

be defined by three points, their algorithm involves rotating a cylinder around each

object trajectory across space and time, trying to fix two other points. Since such

rotation is performed for each tracked object in turn, it ends up detecting a single

meeting multiple times. Following their own definition, their algorithm focuses

only on the objects that meet but does not calculate the smallest enclosing circle

(meeting place) while it traverses the search-space, i.e. it requires a post-processing

step if the user wants to know the precise (tight circular) meeting place that the

tracked objects meet. They did not provide any experimental evaluations for their

algorithms.

Figure 3.2: An Instance of Two Overlapping Meetings.

Minimum covering circles

Given a Trajectory Database R, a distance r, a set of objects M containing at

least m objects, and a time-interval I spanning at least w time-stamps, whether M

forms a meeting during I for parameters m, w, and r can be verified by checking if

there is a circle loc, which covers the set of points P = {p|〈o, t, p〉 ∈ R, o ∈M , and

t ∈ I} and whose radius is smaller than r. The earliest algorithm to calculate the

smallest circle enclosing a finite set of points is found in the translated text [46].

It starts with an arbitrarily large circle and shrinks (and move) the circle until no

more shrinking is possible. Since it is difficult to implement on computers, Elzinga

and Hearn [19] proposed a new algorithm called Euclidean Messenger Boy algorithm
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(EMB) that monotonously increases the radius until all points are covered.

The radius r of the circle C covering a set of points P can be shown to be

bounded by the inequality r ≤ 1√
3
md(P ), where md(P ) = max(dist(p, q)) for all

p, q ∈ P [16, 46]. It is also known that the smallest enclosing circle C(P ) always

exists and is unique for a set of points P [16].

3.2.2 Flocks

A closely related Multi-object Movement Pattern to the meeting pattern is the

(fixed) Flock pattern, in which the circle covering the locations of member objects

is not fixed but free to move through the entire life-span of the flock pattern. In

other words, instead of a single fixed circle, the locations of all member objects,

which form a flock pattern, is covered by a different circle of radius r in each time-

stamp during the flock’s life-span. Figure 3.3 illustrates an instance of a meeting and

that of a flock. The instance of the flock has three circles, which cover its member

objects in three time-stamps, while that of a meeting has a single (stationary) circle

covering its members.

Figure 3.3: An Example Contrasting a Flock and a Meeting (k = 3 and m = 3).

Gudmundsson and Kreveld [23] reported that given a Trajectory Database

(TJDB) containing the movement records of a set of n objects for a time-span

of τ (consecutive) time-stamps, the complexity to compute and report the longest
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flock pattern(s) formed in the TJDB is NP-Hard and they gave complexities for

various approximations. Benkert et al. [10] described a method that transforms d

dimensional trajectories (containing τ points) into dτ dimensional points and per-

forms range-query to find flocks. Their work also provided three approximations

for their method. It is apparent that their methods cannot be extended when the

TJDB contains movement records of a long time-span.

Vieira et al. [53] reported polynomial-time algorithms to find flocks of fixed

durations dur = w. Their method is based on a theorem that says if a set of points

L can fit in a circular disk, they can also fit in another disk of the same size, on

whose boundary two of the points p, q ∈ L lie.

3.2.3 Moving Groups

Hwang et al. [26] described a definition of moving groups. In order to form a moving

group pattern, each member of a set of objects G must be within min dis away

from the others for min dur or more consecutive time-stamps. In other words,

throughout the group’s life-span, its members must form a clique in each time-

stamp. They proposed an algorithm based on the Apriori -algorithm, which uses

the apriori -properties, and VG-Growth algorithm, which is based on FP-growth

algorithm, to find all such groups of moving objects. These algorithms are extended

to find maximal groups in [54].

3.2.4 Convoys

In order to form a flock (or a moving group), the member objects must stay within

a circle not larger than the user-defined size (or be within a user-defined distance

to all other members). In other words, the size of the spatial region a flock or a

moving group can cover is limited by the user-defined parameter r (min dis). As

a consequence, the number of members each flock (group) can have is limited as a
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typical real-world object such as a human, a vehicle etc has a volume and more than

a certain number of objects cannot be fit into the circular area of a pre-defined size

(cannot maintain intra-group distance). In other words, flocks (and moving groups)

may not be able to model groups of moving objects for certain applications well

and the algorithms designed to find flocks (and moving groups) may not be able to

find groups of moving objects for such applications.

Jeung et al [30,32] termed the situation described above as lossy-flock problem

and defined a convoy as a group of at least m objects being density-connected with

each other throughout w consecutive time-points, where m, w, and DBSCAN pa-

rameter ε are provided by the user (m also doubles as DBSCAN parametermin pts).

Since a convoy can occupy a spatial region of arbitrary size and shape in its lifetime,

there is no limit to the maximum number of objects, which can form a convoy. They

proposed a filter-and-refinement scheme called CuTS and introduced a version of

GDBSCAN called TRAJ-DBSCAN for filtering.

In CuTS, TRAJ-DBSCAN (DBSCAN for trajectories) is used for filtering. By

using the closest distance between two trajectories as their distance, TRAJ-DBSCAN

clusters simplified trajectories of objects’ movement during a time-partition T =

[ta, tb] in order to produce a set of trajectory-clusters L such that for ta ≤ ti ≤ tb,

if a density-connected cluster Si is found at time ti, then there exists L ∈ L and

Si ⊆ L. In the filtering step, trajectory-clusters of consecutive time-partitions are

joined to form convoy candidates that probably exist for w time-stamps or more.

In verification phase, density-connection between the members of each convoy can-

didate are examined.

Although CuTS is better than the verification step alone, it cannot produce

a complete list of convoys since false negatives can be introduced as described as

follow. In Fig. 3.4, movement of nine objects across five λ-length time partitions

are shown. There are two convoys (shown in shaded area) — C1 = {a, b, c} and
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Figure 3.4: An Example Scenario, Where Algorithm CuTS Has False-negatives due
to Accidentally Linked Convoys.

C2 = {d, e, f} — for min pts = m = 2, w = λ. Since TRAJ DBSCAN uses the

shortest distance between two trajectories, the objects x, y, and z will density-

connect the trajectories of a, b, and c with those of x, y, and z in P2 resulting in

a single trajectory-cluster {a, b, c, d, e, f, x, y, z} for P2. After the filtering step has

joined it with the trajectory cluster {a, b, c} that existed in the previous partition P1

to obtain convoy-candidates, CuTS will only maintain the trajectory cluster {a, b, c}

from P1 to P2 as the only convoy-candidate. Therefore, in refinement phase, C2 will

not be checked whether it forms a convoy or not and will not be reported.

Table 3.1 summarizes the models of a group of tracked objects moving together,

which we have presented. All three models — fixed flocks, moving groups, and

convoys — do not allow new members to join the existing group or allow existing

members to leave (whether it returns or not) but enforce all members of a group to

stay together throughout the group’s life-span. The only difference between these

models is how they define togetherness of the group’s members. In this thesis, we

will refer these models (definitions) of moving groups as “traditional convoys”.

3.2.5 Moving Clusters

Kalnis et al. [33] proposed two exact algorithms and an approximation algorithm

to find Moving Clusters. Clusters found in consecutive time-slices are defined to be
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Table 3.1: A Comparison of the Traditional Convoy Models.
Character-
istics

Fixed Flocks Moving Groups Convoy

Togetherness
Criteria

Covered in a
circle of user-
defined fixed-size

Within a user-defined
fixed-distance from
each other

In the same
maximal density-
connected cluster

Continuity Set equivalence Set equivalence Set equivalence
Join No No No
Leave No No No
Leave and
Return

No No No

a moving cluster if their Jacquard similarity is higher than a user-defined threshold

(θ). Moving cluster model does not have an explicit notion of members and allows

member objects to leave or enter in the cluster in its lifetime. Therefore, moving

cluster permits clusters to be completely different (larger, smaller etc) in a short

time. It also report multiple moving clusters when cluster transitions (merge, split

etc) occurs.

3.2.6 Swarm

In more recent works [39,40], a Swarm is defined as a group of at least m′ objects,

which are found together for k (possibly non-consecutive) time-stamps. Therefore,

the definition of the Swarm pattern allows member objects to move away from each

other yet it enforces a discipline such that they must re-group frequently-enough

to form a Swarm pattern. ObjectGrowth algorithm, which is based on the apriori -

properties and FP-growth algorithm, is proposed in [39] and is later incorporated

into the MoveMine data-mining system [40].

Figure 3.5 compares all existing models (definitions) described above in a two-

dimensional plot. Traditional convoys neither allow dynamic members, which tem-

porarily move away from the parent convoy, nor present convoys in different evolving

stages. Moving Cluster is able to capture the different stages of a convoy but has
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Figure 3.5: Comparison of Existing Moving Group Models.

no explicit rule to enforce objects leaving the convoys to return. Swarm allows

members to move away from the group yet it cannot capture the evolving stages

of convoy in an intuitive manner. To the best of our knowledge, there is no con-

voy model that can both allow dynamic members and capture evolving stages of a

convoy. The dynamic convoy we are going to introduce in Chapter 6 is similar to

Swarm [31]. The new definition of convoy, namely “evolving convoy,” which we are

going to define as an evolution sequence of dynamic convoys and study in Chapter

6, allows dynamic members, captures evolving stages of a convoy, and, hence, will

fit in the upper right quadrant in Fig. 3.5.

3.2.7 Sub-trajectory Clusters

In order to discover frequent routes in a Trajectory Database (TJDB), the paths

on the spatial space that the moving objects frequently use to travel, the earlier

works [22, 42] suggested to divide the spatial region into regions (or a hierarchy of

regions), transform the object movements (trajectories) in the TJDB as sequences of

regions and perform sequence mining on the resulting sequences. This approach has
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two obvious drawbacks. First, they need a pre-processing step and a prior knowledge

of the underlying spatial region in order to divide the entire map (spatial space) into

regions. Secondly, the granularity of resulting frequent route is reduced depending

on the size of the regions. Therefore, they are not suitable in situations, where

a prior knowledge of the spatial region is not available and/or a high granularity

(higher resolution/more accurate) output frequent routes are required.

In the absence of underlying spatial information such as road network data, how-

ever, researchers suggested a two-step methods — (a) group similar sub-trajectories

together and (b) extract a representative route from each group [12, 37, 61]. Lee

et al [37] suggested to divide the trajectories into simplified trajectory-segments

(line-segments), perform clustering using an extension of GDBSCAN and calculate

representative trajectories. They proceeded to experiment their proposed solution

on hurricane trajectories. Their method, however, is not applicable to GPS traces

containing trajectories that cross each other often [35]. Zhu et al [61] proposed a

similar method, in which partition is performed by a grid of uniformly sized cells

and combining trajectory clusters found across cells.

Buchin et al [12] suggested that one can simply choose an arbitrary sub-trajectory

in a group as its representative route (reference trajectory) if the group contains

only sub-trajectories, which are strictly similar to each other. They proposed to

use Fréchet distance as the similarity measure to ensure each sub-trajectory group

contains strictly similar sub-trajectories. They define a sub-trajectory cluster as

a set of sub-trajectories such that (a) it contains m distinct sub-trajectories, (b)

the longest of them is not shorter than l (length, not duration), and (c) all its

sub-trajectories are within a distance r from each other, where m, l, and r are

user-defined parameters. They proved that, given a TJDB of size n and param-

eters, r, m, and l, finding longest sub-trajectory clusters is NP-Complete. They

also proposed approximation algorithms having an approximation factor of 2 for
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several variants of their problem. Their solution tries to traverse and report all

sub-trajectories having m− 1 other sub-trajectories within a Fréchet distance of r

as the approximations of the sub-trajectory clusters and does not have any pruning

mechanism to remove false-positives that the approximation introduces.

Fréchet Distance

Fréchet distance is regarded as a natural measure to quantify similarity of curves

[17]. Given two polygonal curves, a : [sa, ea]→ R2 and b : [sb, eb]→ R2, and the sets

of re-parametrizationsA = {α|α : [0, 1]→ [sa, ea]} and B = {β : β : [0, 1]→ [sb, eb]}

for them, the Fréchet distance distFr between a and b, is defined as the minimum

distmax overA and B, where distmax(α, β) is the maximum distance between a(α(x))

and b(β(x)) for all x ∈ [0, 1].

An early treatment on computing Fréchet distance for two polygonal curves is

given in [5]. It reports that for two curves defined by p and q points, computing

Fréchet distance between them needs O(pqlog(pq)) time, while deciding whether

the Fréchet distance between them is less than a given threshold r needs O(pq)

time. They defined a two-dimensional data structure called Free-space as a set of

points that visualize whether a pair of two points in the given two polygonal curves

are within a Euclidean distance of r and proved that the Frèchet distance between

two polygonal curves is not more than r if and only if there is a monotone curve

in the corresponding Free-space. Their results are extended for a set of polygonal

curves in [18] by reporting the computing and decision problems for a set of k curves

defined by ni points (for 1 ≤ i ≤ k) need O(n1.n2. · · · .nklog(n1.n2. · · · .nk)) and

O(n1.n2. · · · .nk) times respectively.

Based on the definition given in [55], we conclude that the discrete version of

Fréchet distance is essentially Dynamic Time Wrapping (DTW). In this regard, the

Fréchet distance can be considered as the generalization of (the continuous version
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of) DTW, where (periodic re-)sampling of points for long line segments are not

required to calculate the distance between two polygonal curves.

3.2.8 Other Movement Patterns

Co-location pattern mining to report co-occurrence of objects in different sets

(with different labels) satisfying a minimum occurrence threshold (across time)

and spatial-support threshold is found in [13]. Notation of micro-clustering intro-

duced by Han et al. [38] is capable of finding clusters of moving objects not only

by closeness of their location but also by similarity of their velocity (direction and

speed).

Various spatial-patterns (Spatial Object Association Patterns — SOAP) of the

moving objects are descibed in [56] along with definitions of the related distance

metrics (isClose) as well as orientation-specific (isAbove) predicates. In their work,

four different types of SOAPs — Star, Clique, Sequence, and minLink — and re-

spective algorithms based on ECLAT to mine those SOAPs in spatial-temporal

datasets are also described. When we limit a label to be assigned to exactly a

single object, clique SOAP and minLink SOAP are equivalent to Swarm patterns

with distance-based grouping criteria and Density-based cluster grouping criteria

respectively. Since spatial-relationships (SOAPs) evolves over-time, various tempo-

ral episodes — known as Formation (at least one of the SOAP type in question

appears), Dissipation (all instances of the SOAP type in question disappear), and

Continuation (at least one of the SOAP type in question exists in next time-stamp)

— and techniques to analyze and to make inference from them are also presented.

A similar work dealing with orientation of features is [59], where mining of com-

plex spatial-patterns are reduced to simpler sequence mining problem. They claim

that the decomposition algorithm they proposed is both efficient and scalable than

tradition Apriori and Enumeration based algorithms.
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Chapter 4

Finding Closed MEMOs

4.1 Introduction

In this chapter, we will present our model (definition) of meeting patterns, the

three algorithms we developed to extract meeting patterns from a given Trajectory

Database (TJDB), and the results of the experiments we conducted to assess the

performance of our proposed algorithms in finding meeting patterns.

Informally, a meeting is formed when a group of objects comes to and stays in

a fixed (circular) area for a while. Although the meeting area (meeting place) can

be any geometric shape, we choose to define it to be a circle because there is an

existing work [23] that studies meetings formed in circular regions. However, the

techniques we develop to find meetings in circular areas can also be used to report

meetings in other geometric shapes, say, rectangles.

The primary application of the meetings is to use the information of the member

objects, which form a meeting pattern, to light insights into the behaviours and

interactions of the objects under analysis. For example, from the information of the

commuters, who form meeting patterns during lunch time, advertising agencies can

discover their social interactions — and deduce purchasing decision influence among

social groups. Likewise, the existence of meeting patterns formed by navel vessels,

except at designated places like docks and ports, indicates suspicious activities such

as illegal transfer of goods and personnels.
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The secondary application of the meetings is to analyse the information of meet-

ings in order to discover knowledge on trends of meeting places (and times), in which

the meetings are formed. For instance, meetings of commuters show trends in pop-

ular restaurants and lunch-time services such as shopping centres and hair saloons

etc. Similarly, meeting places, times, and durations of wild-animals show changes

in their natural habitats. Such information can be used by market-researchers and

ecologists to plan advertisements and further researches.

A useful application scenario of the meeting place information is in planning

the deployment of mobile service centres. For example, in developing countries, the

concept of a mobile internet centres becomes very popular as it allows resources

(equipments, staffs etc) to be shared by patrons residing in different geographic

areas. In other words, the mobile internet centres are rotating among different

geographical regions (different villages). In order to maximize the utilization of a

mobile internet centre, it should be deployed in such a way that it is available (within

r meters) to a number of (say m) patrons. To maximize its utility and availability,

a mobile internet centre must be accessible for a sufficient amount of time (say w

hours) for each patron so that he can come to the internet centre at his convenience

(e.g during lunch hour, after work etc). On the other hand, if the mobile internet

centre is not accessible long enough (e.g. the patron can only glimpse it while he

is rushing to work), the patron may choose not to visit the mobile internet centre

in favour of following his tight schedule, reducing the utility of the mobile internet

centre. Knowledge of the past meetings (in circular areas of radius r) formed by

patrons can assist in efficient planning of the deployment of mobile internet centres

and other similar services like mobile libraries and mobile clinics (by indicating the

centres of past meeting places as the ideal places to locate the mobile services).

The above application scenario of meeting places is similar to finding ideal region

to start up a business described in [60]. However, the works in [60] finds an ideal
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region to start a permanent business based on a set of static locations of customers

objects with weights, each representing a building residing a number of potential

customers, while the application scenario meeting places has is to identify an ideal

place for temporary (mobile) service based on the historical patterns of the moving

potential customers’ movements (or the lack thereof). Moreover, the ideal region

provided by [60] aims to be the kth nearest neighbour of (or closer than the

kth nearest neighbour to) as many customers as possible, while the meeting place

indicates a spot, which is not more than a given distance r from any potential

customer. We noted that, in the cases, where the user needs to place a temporary

mobile service centre such that it is the kth nearest neighbour of as many mobile

customers as possible, the two techniques can be combined — in the first step, the

user can find meetings formed in smaller meeting places and, in the second step, use

the meeting places and number of members (and meeting duration) as the static

locations and their corresponding weights as input to find ideal region(s).

To discover meetings, one may opt to count objects using proximity sensors

(RFID readers) at the potential meeting places rather than mining Trajectory

Databases containing GPS traces. However, this approach has several drawbacks.

Firstly, proximity sensors have limited ranges, thus, it often requires to aggregate

data from multiple sensors to discover a single meeting. Since an object can be

detected by multiple sensors, resulting in duplicate readings, aggregation is not

a straight-forward task. Secondly, as the sensors need to be deployed at poten-

tial meeting places, meetings formed in unexpected places will not be discovered.

Moreover, tokens (RFID tags) must be attached to the objects in advance, which

is highly impractical. On the other hand, many people are accustomed to sharing

their GPS traces with friends and businesses (or sponsors of mobile internet centres)

through location-sharing services.

Similarly, clustering the sampled GPS points using a three-dimension (two space
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and one time) distance in order to find meetings is impractical because it cannot

guarantee that each object that visits the sampled location remains in the area

for a specific user-defined time. Moreover, in order to use k-mean clustering or its

variants, we need a prior knowledge of the number of meetings we are going to find

and the potential meeting places, which we do not have. Clustering techniques,

which do not need any prior knowledge of the number of meetings and meeting

locations such as density-based clusterings (like DBSCAN) also cannot find meetings

confined in a meeting place of user-defined size as points far apart may also be

density-connected enlarging the resulting meeting place.

Chapter Contributions

To the best of our knowledge, there has been only a limited amount of studies on

discovery of meeting patterns and no implementation (experimental evaluation) ex-

ists. Our contributions include (a) introducing a new definition of meeting patterns

that defines what meeting members, places, and times are, (b) developing three

new algorithms to discover meeting patterns from Trajectory Databases, and c)

experimenting them along with our adaptation of the algorithm proposed in [23].

4.2 Finding Closed MEMOs

Definition. 4.1. MEMO Pattern – For given parameters: m > 1, r > 0, and

w ≥ 1, a set of objects M forms a Meeting of Moving Objects, or a MEMO, during

the time-interval I(M) at the circular region loc(M) if (i) M has at least m objects,

(ii) I(M) spans for at least w consecutive time-stamps, (iii) loc(M) has a minimal

radius r(M) ≤ r, and (iv) all objects o ∈M reside in loc(M) in each t ∈ I(M).

Definition 4.1 defines a MEMO formed by m or more objects. In order to form

a MEMO, the participating objects must stay in a circle, whose radius is not larger
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than r, for at least w time-stamps. In Fig. 4.1(a), which shows movement of five

objects for three time-stamps and a circle (drawn in dotted lines) with radius r,

M = {o1, o2, o3, o4} forms a MEMO from t1 to t3 for parameters : m = 3 and w = 2.

The meeting place of M is the circular region loc(M), whose radius is r(M) ≤ r and

in which all objects in M stay. For the mobile service centre application discussed

in the previous section, Sect. 4.1, the planner can set m, r, and w as the minimum

number of patrons the service should be available to, the maximum distance of the

service centre to all patrons’ typical roaming locations, and the minimum interval

the service is available to the patrons to find places (and time-interval) in the past,

which are ideal for the service centre’s location (and operating hours). From the

past MEMO information, the planner can deduce an ideal place (and operating

hours) of the service centre.

(a) (b) (c)

Figure 4.1: Examples of (a) a MEMO, (b) an Accurate Meeting Place, and (c) Two
Overlapping Closed MEMOs.

Our definition of the meeting pattern, MEMO, is slightly different from the

one given in [23] as it explicitly defines the meeting place as the smallest possible

circle in contrast to implicitly defining it as a circle of fixed radius r. As a result,

algorithms, which are based on our definition, are able to report more accurate and

non-ambiguous meeting places. For example, for the meeting pattern formed by

three animals in Fig. 4.1(b), the most accurate place of their habitat (the shaded

circle), rather than a larger, less accurate circular regions of radius r (three shown

as dotted circles), can be reported.
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Definition. 4.2. Closed MEMO – A MEMO M is a closed MEMO if and only

if there is no other MEMO M ′ 6= M such that M ′ contains all members of M and

the life-span of M ′ completely covers that of M .

Definition 4.2 formally defines the concept of a closed MEMO of maximal in-

terval and maximal set of members. For example, in Fig. 4.1(a), for parameters :

m = 3 and w = 2, M ′
1 = {o1, o2, o3} from t1 to t3 and M ′

2 = {o1, o2, o3, o4} from t1

to t2 are non-closed MEMOs as there is a closed MEMO M = {o1, o2, o3, o4} from

t1 to t3 covering them.

Overlaps between closed MEMOs are possible and, in fact, necessary. Consider

two docks, dock F serving class-F ships and dock Y serving class-Y ships as shown

in Fig. 4.1(c). For parameters m = 3 and w = 30 minute, both M = {o1, o2, o3}

from 0 to 45 minute and another MEMO N = {o1, o2, o3, o4, o5} from 15 to 45

minute are closed MEMOs as one does not cover the other. This result intuitively

agrees with the observation that each meeting may be significant and informative

to different types of users.

Definition. 4.3. Finding Closed MEMOs – Given a Trajectory Database R

and parameters : m > 1, r > 0, and w ≥ 1, the task of Finding closed MEMOs

is to list the complete information of all closed MEMOs formed in R according to

m, r, and w.

4.3 Algorithms for Finding Closed MEMOs

We developed three new algorithms to discover closed meetings of moving objects

(closed MEMOs). The first algorithm uses the apriori -properties of MEMOs, while

the second employs ECLAT partitioning to divide the search space into partitions,

achieving practical efficiency. The last algorithm introduces a filtering step for the

first and second algorithms. We will present some preliminaries before a detailed
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discussion on our algorithms.

Definition. 4.4. k-object-set – A set of objects containing exactly k members

will be called a k-object-set.

Definition. 4.5. k-MEMO – For given parameters: r > 0 and w ≥ 1, a k-object-

set Ok forms a k-MEMO Mk during the time-interval I(Mk) at the circular region

loc(Mk) if (i) I(Mk) spans for at least w consecutive time-stamps, (ii) loc(Mk) has

a minimal radius r(Mk) ≤ r, and (iii) all objects o ∈ Ok resides in loc(Mk) in each

t ∈ I(Mk).

Definition. 4.6. k-closed MEMO – A k-object-set Ok forms a k-closed MEMO

Mk if and only if Ok does not form another k-MEMO M ′
k 6= Mk such that the

life-span of M ′
k covers that of Mk.

Definition. 4.7. MEMO-List (M-List) – For a given k-object-set Ok, the set of

all its k-closed MEMOs L(Ok) = {Mk1,Mk2,Mk3, ...,Mkj} is called the MEMO-List

(M-List) of Ok.

Definition 4.4 defines a k-object-set, which can form zero or more k-MEMOs

in a given dataset R. Definition 4.5 is a relaxed version of Def. 4.1. A k-MEMO

has exactly k participants (in contrast to the fact that a MEMO must have at

least m participants). For k ≥ m, a k-MEMO is a MEMO. Following Def. 4.6, a k-

closed MEMOs cannot be covered by another MEMO having k (or fewer) members.

Therefore, all closed MEMO having k participants are k-closed MEMO (the reverse

is not always true). Definition 4.7 defines a MEMO-List, which groups all k-closed

MEMO formed by a single k-object-set.

4.3.1 An Apriori-based Closed MEMO Miner

Lemma. 4.1. If a set of points P is covered by a minimum covering circle C, the

minimum covering circle C ′ of its subset P ′ is not larger than C.
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Proof. For a set of points P , the minimum covering circle C is defined as the smallest

possible circle that covers all points p ∈ P .

For any set of points P ′, its minimum covering circle C ′ always exists and C ′ is

unique for P ′ [16].

Therefore, any circle D, which covers all points in P ′, cannot be smaller than the

minimum covering circle C ′ of P ′, i.e. if D covers all points in P ′, then r(C ′) ≤ r(D),

where r(X) stands for the radius of circle X.

Since C covers P and P ′ ⊆ P , C also covers P ′.

Therefore, r(C ′) ≤ r(C).

Using Lemma 4.1, we can derive the apriori -properties of MEMOs as follow:

for a given time-interval I, if a set of objects M forms a MEMO, there is a circle

loc(M) having a radius r(M) ≤ r and enclosing the set of locations (points) L =

{loc|〈o, t, loc〉 ∈ R, o ∈ M , and t ∈ I}. The corresponding set of locations L′ =

{loc|〈o, t, loc〉 ∈ R, o ∈ M ′, and t ∈ I} of M ′ ⊆ M is, by Lemma 4.1, covered by

a circle loc(M ′) not larger than loc(M), i.e. r(M ′) ≤ r(M). Thus, r(M ′) ≤ r and

M ′ forms a MEMO during the interval I. Therefore, all subsets of a MEMO are

MEMOs. In other words, for any time-interval, M does not form a valid MEMO if

any of its subset does not.

The Apriori -based closed MEMO miner (A-miner), adapted from the Apriori -

algorithm in [3], exploits the apriori -properties of the MEMOs to systematically

discover the MEMOs formed by (k + 1)-object-sets only when those formed by

its subsets, k-object-sets, exist. An outline of the A-miner is given in Algorithm

4.1. The function Closed-MEMO(R, w, r, Ok) returns the sorted list (M-List) of

k-closed MEMOs formed by Ok.

The A-miner initializes the M-Lists of 1-object-sets, which are likely to form

larger MEMOs (lines 2-5). Starting with k = 1, the M-List of each k+ 1-object-set
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Algorithm 4.1 Apriori-based Closed MEMO Miner (A-Miner).

Input: R, r, m and w.
Output: A set of closed MEMO M.

1: The set of 1-object-sets C1 ← ∅, M← ∅ and k ← 1
2: for all o ∈ O do
3: Object set O1 ← {o} and M-List L(O1)←Closed-MEMO(R, w, r, O1)
4: if L(O1) is not empty then
5: C1 ← C1 ∪ {O1}
6: while the set of k-object-sets Ck 6= ∅ do
7: for all Ok ∈ Ck do
8: if k ≥ m then
9: M←M∪ L(Ok)

10: The set of (k + 1)-object-sets Ck+1 ← ∅
11: for all Ok, O

′
k ∈ Ck such that |Ok ∩O′k| = k − 1 do

12: Ok+1 ← Ok ∪O′k and L(Ok+1)← Closed-MEMO(R, w, r, Ok+1)
13: if L(Ok+1) is not empty then
14: Ck+1 ← Ck+1 ∪ {Ok+1}
15: k ← k + 1
16: M←M− {M |M is not a closed-MEMO}.

is built only if two of its subset k-object-sets have non-empty M-Lists (lines 6-15).

In doing so, if k ≥ m, the MEMOs in the M-Lists of the k-object-sets are potential

closed MEMOs, thus, they are put into the result setM (lines 7-9), which is finally

filtered (line 16).

Figure 4.2(a) shows an example of moving object dataset containing four objects.

For parameters: m = 2 and w = 3, the lattice, which represent the corresponding

search space is shown in Fig. 4.2(b), while Table 4.1 shows the corresponding

trace of execution of Algorithm 4.1. A-miner starts at the bottom of the lattice

with 1-object sets C1 = {{a}, {b}, {c}, {d}}, each of which are attached with its

corresponding M-List in the lattice. For example, since, during each of the intervals

[t1, t3] and [t4, t6], the locations of b is covered by a circle, {b} is attached with

two entries, 1-3 and 4-6. From 1-object-sets, 2-object-sets are extracted in the first

iteration k = 1. For example, from Fig. 4.2(a), we can see a and b are together in

t1, t2 and t3. Therefore, {a, b} is put into C2. However, a and d never met (never

were inside the same small circle with) each other, therefore, C2 does not contain
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{a, d}. In the next iteration k = 2, the 2-MEMOs in the M-Lists of each 2-object-set

in C2 are put into potential result setM. The 3-object-set {a, b, c} is put intoM in

the last iteration k = 3, in which no 4-object-set has non-empty M-List. A-miner

will finally remove {b, c} from M as the k-MEMO it forms is covered by the one

formed by {a, b, c} and, hence, is not a closed-MEMO.

(a) (b)

Figure 4.2: (a) Movements of Four Objects and (b) the Corresponding Lattice.

Table 4.1: A Trace of A-miner on the Movments Shown in Fig. 4.2.
k Ck M
1 {{a}, {b}, {c}, {d}} ∅
2 {{a, b}, {a, c}, {b, c}, {b, d}} {{a, b}, {a, c}, {b, c}, {b, d}}
3 {{a, b, c}} {{a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}}
4 ∅ {{a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}}

Definition. 4.8. k-Prefix – For a set of objects S ⊆ O containing at least k

objects and an order ≺ defined on O, the list Pk(S) containing the first k elements

of S sorted according to ≺ is called a k-prefix of S. 0-prefix is always an empty set.

In A-miner, finding pairs of k-object-sets sharing k − 1 objects to build the M-

Lists of (k + 1)-object-sets (line 11) is an expensive operation. Moreover, for each
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k + 1-object-set, Ok+1, there are k2 + k possible pairs of Ok, O
′
k ∈ Ck such that

|Ok ∩O′k| = k − 1, Ok ⊂ Ok+1 and O′k ⊂ Ok+1 leading to redundant calculations of

its M-List L(Ok+1). Therefore we use an order among the moving objects in order

to have a canonical form of each object set. If two k-object-sets, Ok and O′k, share

the same k − 1-prefix, then we build the M-List of Ok+1 = Ok ∪O′k, ignoring other

pairs of the subsets of Ok+1.

Building M-List of Ok+1

A frequent component in A-Miner is calculating the M-List of (k + 1)-object-set

(line 13 in Algorithm 4.1). A naive method to do so is to check if Ok+1 forms

a MEMO in each maximal time-interval I spanning w or more time-stamps as

outlined in Algorithm 4.2. For each potential start-time start and end-time ts− 1,

the minimum covering circle C of all locations of o ∈ Ok+1 from start to ts is

calculated (lines 5-6). The variables, start and ts, are adjusted whenever the circle

C is larger than that of radius r (lines 11 - 12). Otherwise, ts is increased until the

radius of C becomes larger than r (line 14). If the interval spans w or more time-

stamps, the algorithm finds a k-closed MEMO in the maximal interval spanning

from start to ts−1 at location C ′ and appends it to the result L(Ok+1) (lines 7-10).

We introduced two optimizations to Algorithm 4.2. In the first optimization,

we further exploited the apriori -properties of MEMOs. For a given interval I, if

Ok+1 forms a (k + 1)-closed MEMO, a k-object-set Ok ⊂ Ok+1 and Ok′ ⊂ Ok+1

such that |Ok′ − Ok| = 1 must form k-closed MEMO(s) and k′-closed MEMO(s)

covering I. Therefore, we utilized the M-Lists of Ok and O′k, which are readily

available in memory, to compute the M-List of Ok+1. Our implementation applies

Algorithm 4.2 only on the intervals covered by the k-closed MEMOs Mi ∈ L(Ok)

and M ′
j ∈ L(O′k). Since k-closed MEMOs cannot cover each other, each M-List

can be sorted in the temporal order, enabling us to utilize a simple sort-merge-join
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Algorithm 4.2 Sub-routine Closed-MEMO Used in the Apriori-based closed
MEMO Miner (A-Miner).

Input: R, w, r and Ok+1.
Output: A sorted list of (k + 1)-closed MEMO L(Ok+1).

1: start← min({t|〈o, t, loc〉 ∈ R and o ∈ Ok+1})
2: end← max({t|〈o, t, loc〉 ∈ R and o ∈ Ok+1})
3: ts← start, L(Ok+1)← ∅, C ′ ← null
4: while ts ≤ end do
5: P ← {loc|〈o, t, loc〉 ∈ R, o ∈ Ok+1 and tstart ≤ t ≤ ts}
6: C ′ ← C, C ← Min-Covering-Circle(P )
7: if radius(C) > r and ts− start ≥ w then
8: members(M)← Ok+1, loc(M)← C ′

9: tstart(M)← start, tend(M)← ts− 1
10: Append M to L(Ok+1)
11: if radius(C) > r then
12: start← start+ 1, ts← start
13: else
14: ts← ts+ 1
15: if end− start+ 1 ≥ w then
16: members(M)← Ok+1, loc(M)← C
17: tstart(M)← start, tend(M)← end
18: Append M to L(Ok+1)

algorithm to efficiently check such intervals. We only use the naive approach to

calculate the (sorted) M-List of 1-object-sets.

In Algorithm 4.2, calculating the minimum covering circle (line 6) from scratch

using the Euclidean Messenger Boy algorithm (EMB) described in [16] dominates

a substantial amount of runtime during our initial tests. Therefore, as the second

optimization, we developed an incremental version of EMB that can derive the new

circle C from C ′ (and P ′) to introduce further improvements to A-Miner.

Filtering the Result Set M

Lemma. 4.2. Consider a k-closed MEMO Mk. If there is no (k+1)-closed MEMO

Mk+1 such that Mk+1 contains all members of Mk and the life-span of Mk+1 com-

pletely covers that of Mk, then Mk is a closed MEMO.

Proof. For a MEMO M , we will denote its members and its life-span as O(M) and
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I(M), respectively.

Following Def. 4.6, Mk cannot have both its members, O(Mk), and its life-span,

I(Mk), be covered by those of another MEMO having k (or fewer) members.

Suppose there is no (k + 1)-closed MEMO such that it contains all members of

Mk and its life-span completely covers I(M) but Mk is not closed because there

is a (k + i)-closed MEMO Mk+i, where |O(Mk+i)| = k + i and i > 1, such that

O(Mk) ⊂ O(Mk+1) and I(Mk) ⊆ I(Mk+1).

Lemma 4.1 states that all subsets of Mk+i forms a MEMO during I(Mk+i), i.e.

there is a (k + 1)-closed MEMO Mk+1 such that Mk+1 contains all members of Mk

and the life-span of Mk+1 completely covers that of Mk.

The last step of Algorithm 4.1 is to filter out MEMOs in the result setM, which

are not closed MEMOs (line 16). Using Lemma 4.2, we perform this step earlier

during the main loop (before line 15) using the M-Lists of (k + 1)-closed MEMOs,

i.e. we use L(Ok+1) for all Ok+1 ∈ Ck+1 to determine the k-closed MEMOs in

L(Ok) for all Ok ∈ Ck are closed or not and immediately output the closed MEMOs

containing k participants. This helps us avoid maintaining a large result set until

the last filtering step (or writing to disk and reading it back).

Finding MEMOs Formed in Rectangular Places

A-Miner (and the subsequent algorithms we are going to describe next) can be ex-

tended to find MEMOs formed in rectangular meeting places. In order to achieve it,

instead of calculating minimum covering circle in line 6 of Algorithm 4.2, we calcu-

late minimum bounding rectangle (MBR). The maximum allowable size of meeting

place can be controlled by user-defined threshold(s) — maximum area or combi-

nation of maximum length and breadth of the MBR. For mining MEMOs formed

in rectangular places, the first optimization of the two optimizations we described
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above is still applicable. The rectangular equivalent of the second optimization is

also trivial — we just maintain the two opposite corners of the MBR.

4.3.2 An ECLAT-based Closed MEMO Miner

In the worst case scenario, the Apriori -based closed MEMO miner (A-miner) needs(
n
k

)
= n!

k!(n−k)! M-Lists of k-object-sets in memory in order to calculate those of

(k + 1)-object-sets. For datasets containing records of a large number of mov-

ing objects (large n values), the memory requirements of A-miner is tremendous

even for modern workstations equipped with several gigabytes of physical memory.

Therefore, Equivalent CLAss Transformation (ECLAT), proposed in [58], is used

to partition the search space in our ECLAT-based close MEMO Miner (E-miner).

Definition. 4.9. A k-equivalent-class, denoted as C(Qk, k) contains all object-sets,

each of which has at least k objects and has Qk as their k-prefix, i.e. C(Qk, k) =

{S|Pk(S) = Qk and |S| ≥ k}

Definition 4.9 defines the equivalent-class C(Qk, k), which contains all object-

sets (not necessarily of the same size) having the same k-prefix, Qk. For example, for

the moving objects shown in Fig. 4.2(a), {b}, {b, c}, {b, d} and {b, c, d} belong to the

1-equivalent-class C({b}, 1) as they all have the same 1-prefix, {b}. All object-sets

having more than k objects in C(Pk, k) can be divided into (k+1)-equivalent-classes,

each of which having one of the (k+ 1)-object-sets in C(Pk, k) as its (k+ 1)-prefix.

For example, C({b}, 1) has two 2-object-sets {b, c} and {b, d} and, thus, the object-

sets having more than 1 object, i.e. {b, c}, {b, d} and {b, c, d}, can be divided into

two 2-equivalent-classes, C({b, c}, 2) = {{b, c}, {b, c, d}} and C({b, d}, 2) = {{b, d}}.

Algorithm 4.3 shows an outline of E-miner, which, starting with 0-equivalent-class

(the whole search space), recursively divides the k-equivalent-class into (k + 1)-

equivalent-classes until each can fit in memory. E-miner maintains a stack of
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equivalent-classes that needs further partitioning.

Algorithm 4.3 ECLAT-based Closed MEMO Miner (E-Miner).

Input: R, r, m, w and an order ≺ on O
Output: A set of closed MEMO M.

1: M← ∅ and Push 0-equivalent-class C(∅, 0) to stack.
2: while Stack is not empty do
3: Pop k-equivalent-class C(Qk, k) from stack
4: M-List L(Qk)← Closed-MEMO(R, w, r,Qk)
5: if L(Qk) is not empty then
6: M←M∪ L(Qk)
7: if C(Qk, k) fits in memory then
8: Prefix Q← Qk, k ← k + 1 and Ck ← ∅
9: for all Ok ∈ {Q ∪ {oi}| if oj ∈ Q then oj ≺ oi or oj = oi} do

10: Ck ← Ck ∪ {Ok}
11: while Ck 6= ∅ do
12: for all Ok ∈ Ck do
13: if k ≥ m then
14: M←M∪ L(Ok)
15: The set of (k + 1)-object-sets Ck+1 ← ∅
16: for all Ok, O

′
k ∈ Ck s.t |Ok ∩O′k| = k − 1 do

17: Ok+1 ← Ok ∪O′k and L(Ok+1)← Closed-MEMO(R, w, r, Ok+1)
18: if L(Ok+1) is not empty then
19: Ck+1 ← Ck+1 ∪Ok+1

20: k ← k + 1
21: else
22: for all Qk+1 ∈ {Qk ∪ {oi}| if oj ∈ Qk then oj ≺ oi} do
23: Push C(Qk+1, k + 1) to stack
24: M←M− {M |M is not a closed-MEMO}.

E-miner starts by pushing the 0-equivalent-class, represented by C(∅, k), onto

the stack (line 1). For each top-most k-equivalent-class C(Qk, k) popped out from

stack, E-miner checks if its prefix Qk forms a k-MEMO first and maintains the

result list M accordingly (lines 3-6). Then, E-miner checks if the C(Qk, k) can fit

into the memory (line 7). If so, it is processed in the same fashion as in A-miner

(lines 8-20). Otherwise, the k-equivalent-class is divided into k+1-equivalent-classes

(lines 22-23).

Table 4.2 shows a partial trace of E-miner on the search space shown in Fig.

4.2(b) for the same set of parameters: m = 2 and w = 3. Let us assume the memory
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can only hold two object-sets (and their M-Lists). In step 1, it checks the whole

search space lattice, C(∅, 0), and, since it cannot fit into the memory (it contains 16

object-sets), pushes four 1-equivalent-classes, C({a}, 1), C({b}, 1), C({c}, 1) and

C({d}, 1) onto the stack. In steps 2 and 3, C({d}, 1) = {{d}} and C({c}, 1) =

{{c}, {c, d}} are popped and, since these equivalent-classes can fit into the memory,

their members are examined (but nothing is put into the result set, M since {c},

{d} and {c, d} does not form any MEMO for the given parameters). In step 4,

C({b}, 1) = {{b}, {b, c}, {b, d}, {b, c, d}} is popped from the stack. Since it has four

object-sets and cannot fit in the memory, it is divided into two 2-equivalent-classes

C({b, c}, 2) and C({b, d}, 2), which are pushed onto the stack for later processing.

In steps 5 and 6, C({b, d}, 2) = {{b, d}} and C({b, c}, 2) = {{b, c}, {b, c, d}} are

popped out, checked and {b, d} and {b, c} are inserted into the result set M. In

the next steps, the equivalent-class C({a}, 1) containing eight object-sets will be

divided and processed.

Table 4.2: A Partial Trace of E-miner on the Movements Shown in Fig. 4.2.
Step C(Qk, k) Stack M
1 C(∅, 0) {C({a}, 1), C({b}, 1), C({c}, 1), C({d}, 1)} ∅
2 C({d}, 1) {C({a}, 1), C({b}, 1), C({c}, 1)} ∅
3 C({c}, 1) {C({a}, 1), C({b}, 1)} ∅
4 C({b}, 1) {C({a}, 1), C({b, c}, 2), C({b, d}, 2)} ∅
5 C({b, d}, 2) {C({a}, 1), C({b, c}, 2)} {{b, d}}
6 C({b, c}, 2) {C({a}, 1)} {{b, d},

{b, c}}
... ... ...

In E-Miner, calculating M-List of the k-Prefix Qk popped out from the stack

(line 4) is a frequent component. Since it is costly to use the naive computation

described in Algorithm 4.2, in our implementation, their M-Lists are computed

before they are pushed onto the stack. We maintain the M-List of all 2-object-

sets and, for any Qk+1 about to be pushed onto the stack, its M-List L(Qk+1) is

computed from the M-List of Qk and any 2-object-set O′2 such that |O′2 −Qk| = 1.
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4.3.3 A Filter-And-Refinement Closed MEMO Miner

In A-miner and E-miner, the dataset is referred for the locations of moving objects

in calculating the minimum covering circles to verify if the objects actually form

a MEMO for the given parameters. Those queries (and computation of the circle)

are often wasted when the objects do not form a MEMO (when the radius of the

circle is larger than the given r). In Filter-And-Refinement-based Closed MEMO

Miner (FAR-miner), we introduced a filtering step, which needs less access to the

dataset, to avoid computation of minimum covering circles.

Lemma. 4.3. If a set of points P is covered by a minimum covering circle C,

whose radius r(C) ≤ r, then two points p, q ∈ P cannot be further apart than 2r.

Proof. No two points p, q ∈ P , which are either inside or on the edge of C, can

be further apart than the length of its diameter, i.e. distance(p, q) ≤ 2r(C), and

2r(C) ≤ 2r. Therefore, distance(p, q) ≤ 2r.

Lemma 4.3 claims that if the distance between two points p, q ∈ P is more than

2r, the minimum covering circle C of P must have a radius larger than r. In other

words, if the distance between location of object oi at tj and that of object o′i at t′j

is further than 2r, oi and o′i do not form a MEMO at interval I containing tj and

t′j.

Definition. 4.10. Potential MEMO – For given parameters : m, w and r,

a subset of the dataset R′ ⊆ R, which contains all movement records of a set of

objects O′ in an interval I(R′) is termed as a potential-MEMO if (i) O′ has at

least m objects, (ii) I(R′) spans for at least w consecutive time-stamps and (iii) all

locations the objects o ∈ O′ visited during I(R′) are not further than 2r from each

other.
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Definition 4.10 defines a potential-MEMO, which is likely to form a MEMO for

the given parameters. Closed potential-MEMO, k-potential-MEMO and k-closed

potential-MEMO can be defined in ways similar to Def. 4.2, 4.5 and 4.6, respec-

tively. It is also apparent that potential-MEMOs also have apriori -properties. FAR-

miner consists of two steps (i) the Filtering step, which finds the set of all closed

potential-MEMOs M′ = {R′|R′ is a closed potential-MEMO} and (ii) the Veri-

fication step, which, for each potential-MEMO R′ ∈ M′, verifies if the objects

actually form a MEMO.

To perform the filtering step, we use A-miner (or E-miner), using a slightly

modified version of Closed-MEMO as its subroutine, since potential-MEMOs also

have the apriori -properties. Therefore for the filtering step, instead of building

minimum covering circles and checking their radii (lines 6-7), the modified algorithm

would simply check the distance between all p, q ∈ P . It is easy to show that, if no

two points in each of the sets, A∪B, A∪C and B ∪C are further than 2r, no two

points in the set A∪B∪C are. Therefore, when Ok and O′k (such that Ok−O′k = {oi}

and O′k − Ok = {oj}) are known to form potential-MEMOs in interval I, whether

Ok+1 = Ok ∪ O′k forms a potential-MEMO in I can be easily derived by checking

if all the locations of oi and oj in I are within distance 2r of each other. In other

words, by maintaining all 2-closed potential-MEMOs in memory, when k ≥ 2, the

potential-MEMOs formed by Ok+1 object-sets can be derived without referring the

dataset for the actual locations of the objects. To perform the verification step, we

directly apply A-miner (or E-miner) discussed in Sect. 4.3.1 (4.3.2) on R′ with the

given parameters.

Since it is possible to perform the filtering and verification using either A-miner

or E-miner dialects, there are four possible flavors of FAR-miner. However, in Sect.

4.4, we report the performance of filtering and verification steps, both using A-miner

dialect, as all flavors show similar performance during our initial tests.
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As a hindsight, we noted that, due to the apriori -properties of the MEMOs,

intermediate mining results (k-MEMOs and potential k-MEMOs) obtained using

parameters : m, w and r can be easily reused for subsequent mining tasks on the

same dataset using different parameters : m′, w′ and r′, bounded by the criterion :

r′ ≤ r and w′ ≥ w (the value of m′ does not matter as M-Lists are built anyway and

can be saved). However, in practice, only the intermediate results obtained from

using a short w and large r should be saved as they are more likely to be reused

than those from using a longer w and/or a larger r. The intermediate results in

question can be further trimmed down to its subset based on the domain knowledge.

For example, in an application where meetings of 3 objects are very common and

useless (the user is not likely to give parameter m = 3), only k-MEMOs for k ≥ 4

are to be saved for reuse. In our experiments in Sect. 4.4, we do not reuse any

intermediate result.

4.4 Experimental Evaluations

4.4.1 Experiment Setup

We adapted the column-sweeping algorithm (CS-miner) proposed in [23] for refer-

ence because it is the only work in the literature, which, theoretically, can report all

MEMOs accurately. However, as CS-Miner was originally developed for finding the

longest duration meetings, it reports a single MEMO multiple times1. We devel-

oped a discrete version of CS-miner, which comprises of two steps (a) computing all

MEMOs by rotating the columns representing meeting candidates discreetly by a

user-defined angular step, θ, which is set to 1◦ in our experiments unless otherwise

stated, and (b) filtering out the MEMOs, which are not closed and/or reported

multiple times (duplicates). We implemented all the algorithms in Java. Although

1For more information of CS-Miner, refer to Sect. 3.2.1
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our algorithms (A-miner, E-miner and FAR-miner) can also work on disk-based

datasets, we conducted our experiments on an in-memory database because CS-

Miner’s run-time benefits from fast time-stamp × location queries. The in-memory

database is indexed by primary key 〈o, t〉 and a separate R-Tree for location queries

in each time-stamp. In order to further bias in favour of the discrete CS-Miner,

we also pre-processed the location of each tracked object in each time-stamp by

linear interpolation. Table 4.3 shows the number of records each dataset has after

preprocessing.

Table 4.3: The Size of the Datasets Used to Assess the Meeting Mining Algorithms
after Pre-processing.

Name No. of Records
Statefair 17,545
Orlando 133,076
New York 118,584
NCSU 128,417
KAIST 404,981
SF-Cab21 1,156,458
SF-Cab22 1,236,497

4.4.2 Results and Analysis

The outcome of the first set of experiments, comparing the performance of the

algorithms on human movement datasets, is shown in Fig. 4.3 (note that the y-axis

is in log-scale). We were looking for meetings of at least two people (m = 2) lasting

for at least 15 minute (w = 15 minute), which were reasonable choices of parameters

for the corresponding datasets. In NCSU and KAIST, we even discovered meetings

of up to 3 and 5 students. Our proposed data-driven algorithms, A-miner and

E-miner, run faster than CS-miner to find the closed MEMOs as they ignore the

fast-moving objects in building M-List of 1-object-sets while CS-miner attempts

to build MEMOs containing them in vain. FAR-miner outperforms A-miner and

E-miner by a large order of magnitude due to its cheap pruning mechanism.
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Figure 4.3: Comparison of the Performance of the Closed MEMO Mining Algo-
rithms on Human-movement Datasets Using Parameters m = 2, w = 15 Minutes
and r = 10 Metres.

We also collected the garbage collector footprints of A-miner and E-miner in this

experiment for New York and KAIST datasets in order to assess the memory usage

of the two algorithms. For New York dataset, both algorithm used a comparable

amount of memory (allocated 999.2MB at peak usage and freed up 1513.1M by both

A-miner and E-miner). However, for KAIST dataset, A-miner allocated 993.6MB

at peak usage and freed up a total of 5.6GB through the course of the experiment

while E-miner allocated 995.6MB and freed up a total of 6.1GB. Although their

peak memory usage are comparable because Java Virtual Machine prefers allocating

memory than garbage-collecting (reusing), we concluded that, since E-miner was

able to free up more memory than A-miner could, with a trivial programming effort

in manual garbage-collection languages like C/C++, E-miner may need less memory

than A-miner for the same dataset and parameter settings.

In the next set of experiments, whose outcome is plotted in Fig. 4.4(a) and

4.4(b), we assessed the scalability of the algorithms on different sizes of datasets. We

randomly picked 30, 60, and 90 moving objects from the largest human-movement

dataset, KAIST, and 150, 300, and 450 moving objects from SF-Cab21 for these
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experiments. We set the value of r to 30 metres in order to find MEMOs in smaller

subsets of KAIST. For executions on subsets of SF-Cab21, we chose parameters

(m = 5, w = 30 minute, and r = 25 metre) to reflect taxis waiting in taxi queues

and severe traffic jams. We noticed that the larger value of r we set, the smaller

value of θ we should use to maintain CS-miner reports all results since, when we set

its internal parameter θ = 1◦ in KAIST, it did not report all MEMOs. Therefore,

for experiments on SF-Cab21, we used a θ value of 0.5◦. Our algorithms (A-Miner,

E-Miner, and FAR-Miner) scale well on the increasing dataset size but CS-Miner

does not — exceeding eight hours to process data of 90 moving objects in KAIST

as there are a large number of MEMOs in this dataset forcing CS-miner to remove

more duplicates and the MEMOs, which are not closed. Among our proposed

algorithms, FAR-miner performs better than the others except in the largest subset

of KAIST, when the very large value of r = 30 metres increased the number of

potential MEMOs to nearly three thousand and A-miner outperforms FAR-miner.

(a) (b)

Figure 4.4: Impact of the Size of the Dataset on Performance of the Closed MEMO
Mining Algorithms (a) for Parameters m = 2, w = 15 Minutes and r = 30 Metres
on Subsets of KAIST and (b) for Parameters m = 5, w = 30 Minutes and r = 25
Metres on Subsets of SF-Cab21.

Analyzing the run-time statistics of FAR-miner in previous experiments given

in Table 4.4, we found that run-time is dominated by the verification step as the

filtering step took only a few seconds regardless of the dataset. The verification

time is not dependent on the size of the dataset but on the number of potential
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results (D′). To verify this claim, we conducted another experiment on SF-Cab22,

which is comparable in size to SF-Cab21, using the same set of parameters: m = 5,

w = 30 minutes and r = 25 metres. It turns out that there are fewer MEMOs for

the given parameters in SF-Cab22 as well as fewer potential results. Subsequently,

verification time (and total running time) of SF-Cab22 is smaller than that of SF-

Cab21. However, the difference between the verification time of SF-Cab22 and that

of SF-Cab21 (3110.3 second vs 1139.8 second) is not directly proportional to the

the difference in the numbers of potential MEMOs (1230 vs 129) as the amount of

processing the verification step needs also depends on the size of potential MEMOs

and the sizes of the potential MEMOs in SF-Cab22 are larger than those of SF-

Cab21. Since, in typical circumstances, the number of meetings formed in a dataset

are supposed to be few, we noted that FAR-miner will give reasonable performance

regardless of the size of input dataset. Even when there are many meetings formed

in a dataset, FAR-miner outperforms A-miner and E-miner as they take longer to

complete in SF-Cab21 for the same parameters (see Fig. 4.4(b)).

Table 4.4: Run-time Statistics of FAR-miner in the Experiments.
Dataset Filtering Verification Total No. of closed No. of

(seconds) (seconds) (seconds) MEMOs D′
Statefair 0.2 0.2 0.4 5 3
Orlando 1.2 0.6 1.8 15 18
New York 17.5 284.1 301.6 16 19
NCSU 6.2 452.1 458.3 48 64
KAIST 9.9 356.6 365.5 126 182
SF-Cab21 18.4 3110.3 3128.7 561 1230
SF-Cab22 19.8 1139.8 1159.6 10 129

In the subsequent sets of experiments, we studied the impact of parameter values

on the performance of the algorithm. Figure 4.5(a) and 4.5(b) show the impact of

value of r on the performance of the algorithms. Increasing r relaxes the conditions

by allowing MEMOs with larger meeting places and increases the number of closed

MEMO in a dataset. Thus, it, in turn, increases the run-time of all algorithms.
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However, performance of CS-miner degraded rapidly (especially in KAIST) as r

increases while our algorithms’ performance were stable. Most of the time, FAR-

miner significantly outperforms the rest except in KAIST at r = 30 metres. In

this peculiar instance, there was nearly three thousand potential MEMOs to verify

and, since verification time dominates the run-time and depends on the number of

potential MEMOs as we noted earlier, FAR-miner took a few minutes more than

A-miner to complete.

(a) (b)

Figure 4.5: Impact of the Parameter r on the Performance of the Closed MEMO
Mining Algorithms for m = 2 and w = 15 Minutes on (a) New York and (b) KAIST.

Figure 4.6 shows the impact of value of m on the performance of algorithms.

We used a lower value of θ = 0.5◦ to improve CS-miner’s accuracy (r = 30 me-

tre). Increasing m reduces the number of MEMOs found in a particular dataset.

Therefore, CS-miner needs less run-time as m increases while all our algorithms’

performance are stable regardless the value of m given. Although FAR-miner ran

slower than A-miner in this set of experiments (due to the large value of r leading

to a huge number of potential MEMOs), it still performs better than the others due

to its powerful filtering step.

Figure 4.7(a) and 4.7(b) shows the impact of value of w on the performance of

the algorithms. Increasing w puts more restriction by demanding participants to

stay still longer and decreases the number of closed MEMO in a dataset. Thus, it,

in turn, decreases the run-time of all algorithms. Our data-driven algorithms still
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Figure 4.6: Impact of the Parameter m on the Performance of the Closed MEMO
Mining Algorithms for w = 15 Minutes and r = 30 Metres on KAIST.

outperform CS-miner in all cases and, most of the time, FAR-miner significantly

performs better than the rest.

(a) (b)

Figure 4.7: Impact of the Parameter w on the Performance of the Closed MEMO
Mining Algorithms for m = 2 and r = 30 Metres on (a) New York and (b) KAIST.

As the last set of experiments, we compared density-clustering of GPS points

with our algorithms based on our definition to observe their differences in the out-

put. We were trying to find meetings of at least m = 2 objects, which form in a circle

of radius r = 20 metres and last for w = 15 minutes. We used DBSCAN [21] with

parameters min pts = 5 and ε = 20 metres using the following three-dimensional

(two spatial and one temporal) distance:

distance(〈t1, loc1〉, 〈t2, loc2〉 =∞ if |t2 − t1| > 1,
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distance(〈t1, loc1〉, 〈t2, loc2〉 = distanceeuclidean(loc1, loc2) if |t2 − t1| ≤ 1.

The distance measure ensures that two GPS sample points can belong to the

same cluster only when they are close not only in space but also in time. The choice

of min pts = 5 was due to the reasoning we made that in order to discover meetings

containing two members (like our algorithms do), there must be two points in each

time-stamp during the meeting duration. Hence, a GPS sample point may have a

neighbour in the current time-stamp, two in the next and previous time-stamps each

— totalling in five points. The meeting instances our algorithms produced contain

members, which stay in their corresponding meeting place for fifteen minutes but

many of those clusters reported by DBSCAN contain GPS sample points of objects

staying in the area only for a shorter period of time as DBSCAN has no way to

ensure each object stayed in the meeting place with others.

Figure 4.8 compares the meeting places our proposed algorithms produced with

the convex-hulls (bounding polygons) of the GPS sample point clusters of DBSCAN.

Although a closer look at the raw trajectory data suggested these places as offices

and/or service areas in NCSU campus, we were not able to map the meeting loca-

tions with actual physical location as the coordinate of the dataset was not known.

The meeting places our algorithms produced contain various sizes not larger than

a circular area of radius r = 20 metre. On the other hand, many of the bounding

polygons DBSCAN produced using parameter ε = 20 metres are far larger than a

circle of radius r = 20 metre — most notably the pale triangular shape in the north-

western corner of the map, which also appeared even when we use ε = 10 metres. It

is, we hypothesize, because DBSCAN connects the GPS sample points without any

control over the (spatial) size of the resulting cluster. We theorize that it is hard

to use clustering to find meeting patterns as it may need a careful calibration of

parameters to control the spatial size of meeting place as well as more mechanisms

to ensure each of the resulting clusters contains only those GPS sample points of
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the objects, which are persistently present in the meeting place for a duration not

shorter than the user-defined duration threshold.

From our experiments, we concluded that our proposed data-driven algorithms,

A-miner and E-miner, performed better than CS-miner in many realistic settings.

Although E-miner took slightly longer to complete than A-miner, it can limit its

memory needs and is suitable for larger datasets. In real-life scenarios, where few

MEMOs are expected, we recommend to use FAR-miner as its fast filtering step

would improve performance significantly.

4.5 Summary

In this chapter, we introduced a definition of meeting patterns called MEMO, tak-

ing account of the related information such as the meeting place and time. We

developed three novel algorithms to discover closed MEMOs. Experiments on real-

life datasets showed that our proposed algorithms perform better than the existing

one in finding closed MEMOs.
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(a)

(b)

Figure 4.8: A Comparison of (a) MEMOs Discovered by Closed MEMO Mining
Algorithms in NCSU Using m = 2, w = 15 Minutes and r = 30 Metres and
(b) Density-connected Clusters of Three-dimension GPS Points in NUCS Using
min pts = 5 and ε = 20 Metres.
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Chapter 5

Mining Sub-trajectory Cliques to

Find Frequent Routes

5.1 Introduction

In this chapter, we consider a Multi-object Movement Pattern, called “Sub-trajectory

Clique”, from an instance of which we extract information of a “Frequent Route”.

More precisely, we study the problem of extracting sub-trajectory cliques from a

Trajectory Database (TJDB) in order to obtain the knowledge of frequent routes

without using any prior knowledge of the underlying spatial region. We propose

two novel methods to extract knowledge of the routes, which are frequently used

by the moving entities in question, from a TJDB. Experiments on real-life datasets

reveal that our proposed methods are efficient.

Along with the widespread use of Global Positioning Systems (GPS) and archiv-

ing movement data for various purposes, the tracks taken by the entities in question

— including pedestrians’ paths, wild-animals’ tracks, navel vessels’ trajectories and

taxis’ routes — are available in the TJDB. The knowledge of the routes frequently

taken — or frequent routes — are embedded in the massive TJDBs. The fre-

quent route knowledge is useful in many applications: the tried and true paths of

local pedestrians can be used to suggest safe walking routes for tourists; tracks fre-

quently used by wild-animals can help scientists better understand their movement

behaviours; maritime authorities can use the frequent routes of vessels to optimize
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their port operations and taxi companies can identify the trips the passengers fre-

quently taken.

Informally, a frequent route is a path, along which the entities in question have

travelled frequently. We focus on finding frequent routes without the help of road

network data for several reasons. Firstly, for many applications, the tracked entities

are not confined to a road network. For example, pedestrians are not restricted to

walk along road segments and they often walk through buildings and open-spaces.

Secondly, the underlying road network that the entities travel may not be available

for use even if it exists. For instance, ecologists trying to understand wild-animals’

movement do not have a complete map of routes the animals may take. Even for

road-vehicles, which move on roads, it is legally not possible to use an arbitrary off-

the-shelf map as many map licences limit the set of applications the licensee may

use. Lastly, in addition to route recommendation, the knowledge of the instances of

frequent route patterns can be used to fine-tune the existing maps by highlighting

newly built roads, which the commuters take as a licensed map may not be up-to-

date. By mining frequent routes, it is even possible to discover innovative routes

such as using a car-park, which has two entry/exit gates and a long-enough grace

period, as a short-cut from one road segment to another.

Given a Trajectory Database (TJDB) without any information of the underlying

spatial space (like road networks), finding frequent routes is a challenging task

since the spatial space is continuous and there is an infinite number of potential

paths. Moreover, in many real-life situations, two objects using the same route

(probably in different time) do not have identical sequences of locations due to

differences in speed, acceleration and, more importantly, GPS sampling rates. In

response to these challenge, current researches focus on grouping similar paths

together and inferring a frequent route from each group. The existing solutions use

two schools of techniques to perform the first grouping step. The first school [22,42]
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converts the tracks logged in the TJDB into a finite sequences of regions (the set of

regions is also finite) and performs sequence mining on the converted tracks while

the second [37, 61] partitions the tracks into line-segments and clusters the line-

segments. Each approach has its limitations. In the former, a prior knowledge of

the spatial-space and/or a pre-processing step is required to divide the space into a

set of regions. In addition, the end results contain sequences of regions, which have

lost many subtle but important details of the frequent routes, instead of precise

routes. In the latter, long frequent routes are reported as multiple line-segment

clusters. In order to infer these long frequent routes, a post-processing step on the

line-segment clusters is required.

Chapter Contributions

We propose to find cliques (clusters) of sub-trajectories using Frèchet distance as

the similarity measure and deriving a corresponding frequent route from each sub-

trajectory clique. In order to extract frequent routes from a Trajectory Database,

our proposed solution does not require any prior knowledge of the road-network.

Moreover, by using Frèchet distance, our solution is speed-invariant and works

regardless of GPS sampling rate. It is also able to produce detailed frequent route

information, while it does not require any expensive post-processing step.

Finding cliques of sub-trajectories — or sub-trajectory clusters — using Fréchet

distance is a known NP-Complete problem with all its optimizations being NP-

Hard and there is no polynomial approximation for approximation factor less than

2 [12]. We approach the problem from data-driven perspective by proposing an

output-sensitive approximation algorithm based on the Apriori algorithm. In the

experiments using real-life data, our proposed algorithm performs faster and more

accurately than the known polynomial-time approximation algorithm proposed in

[12]. In addition, we propose a divide and conquer algorithm based on our proposed
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algorithm both to maintain the memory requirements under a manageable amount

and to achieve parallelism.

5.2 Sub-trajectory Cliques and Frequent Routes

Before we define the problem of Mining Trajectory Databases for Frequent Routes,

we will present some preliminaries.

Definition. 5.1. Trajectory of an Object — The Trajectory of a given object

o as evidenced in a trajectory database R is an ordered sequence:

traj(o,R) = 〈tstart(o), loc(o, tstart(o),R)〉, · · · , 〈tend(o), loc(o, tend(o),R)〉,

where tstart(o) = min({t : 〈o, t, loc〉 ∈ R}), tend(o) = max({t : 〈o, t, loc〉 ∈ R}),

and loc(o, t,R) = loc such that 〈o, t, loc〉 ∈ R.

Definition 5.1 defines a trajectory of an object found in a Trajectory Database

(TJDB). We will shorthand “loc(o, t,R)” as loco(t) and “traj(o,R)” as trajo, when

the context is clear. Figure 5.1 and Table. 5.1 shows the visualization and records

of a trajectory of a ship, s, respectively. The trajectory of object s, thus, is trajs =

〈t0, (x0, y0)〉, · · · , 〈t3, (x3, y3)〉. Without lost of generality, in this chapter, we will

assume the time is continuous and the TJDB in question has no missing record. In

other words, we will assume there is a method to derive the location of objects in

any real time-stamp t ∈ {ts ∈ R|tstart(o) ≤ ts ≤ tend(o)}.

Definition. 5.2. Sub-trajectory — Given the trajectory of an object trajo and

two time-stamps s and e such that tstart(o) ≤ s ≤ e ≤ tend(o), the sub-trajectory of

o between s and e is the ordered sequence, i.e. 〈s, loco(s)〉, · · · , 〈e, loco(e)〉.

In mathematical notation:

sub(s, e, trajo) = 〈s, loco(s)〉, · · · , 〈e, loco(e)〉.
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Figure 5.1: Trajectory of a Ship.

Table 5.1: Records for the Ship Trajectory in Fig. 5.1.
o t loc
s t0 (x0, y0)
...

...
...

s t1 (x1, y1)
...

...
...

s t2 (x2, y2)
...

...
...

s t3 (x3, y3)

Definition 5.2 defines a sub-trajectory of an object between two given time-

stamps. We will also use the same term “sub-trajectory” to refer to the corre-

sponding route of a sub-trajectory (without time-information), along which the ob-

ject travelled during two time-stamps defining the sub-trajectory. For instance, in

Fig. 5.1, sub-trajectory of ship s between time-stamp t1 and t2 is sub(t1, t2, trajs) =

〈t1, (x1, y1)〉, · · · , 〈t2, (x2, y2)〉 and its corresponding route is the poly-line: (x1, y1),

· · · , (x2, y2) (shown as a thicken section in the Fig. 5.1). Notice that a route is a

poly-line which can intersect itself.

Definition. 5.3. Fréchet Distance between Two Sub-trajectories — Let

sta = suba(sa, ea) and stb = subb(sb, eb) be two sub-trajectories. Also let A = {α|α :

[0, 1] → [sa, ea] and α is monotone.} and B = {β : β : [0, 1] → [sb, eb] and β is
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monotone } be two sets of re-parametrizations.

The Fréchet distance distFr between the two sub-trajectories, suba and subb, is

defined as the minimum distmax over A and B, where distmax(α, β) is the maximum

distance between loca(α(x)) and locb(β(x)) for all x ∈ [0, 1].

In mathematical notation,

distFr(sta, stb) = minα∈A,β∈B(distmax(α, β)), where

A = {α|α : [0, 1]→ [sa, ea] and α is monotone.},

B = {β|β : [0, 1]→ [sb, eb] and β is monotone.}, and

distmax(α, β) = maxx∈[0,1](f(α,β)(x)), where f(α,β)(x) = dist(loca(α(x)), locb(β(x))).

Definition 5.3 defines a distance measure between two sub-trajectories, known

as Fréchet distance in the literature. A more intuitive explanation of the Fréchet

distance traditionally given in the literature is that the Fréchet distance between

two given routes is the minimum length of leash required for a man and his dog,

each walking on a route. Each is (intelligently) trying to minimize the required

leash length under a constraint that they cannot walk backward (but they may

stop walking to wait for the other).

We are going to briefly discuss how the Fréchet distance of the two example

routes, a and b, in Fig. 5.2(a)1 is calculated. Let us first assume route a (b) is taken

by the man (his dog). Each re-parametrization α ∈ A (β ∈ B) corresponds to how

the man (his dog) chooses to walk. The Fréchet distance between the two given

routes is the minimum distmax(α, β) of all pairs of (α, β) ∈ A×B. Two such pairs,

(α1, β1) and (α2, β2), are given in Table. 5.2 and some of the location pairs given

1The time-stamps in this example are arbitrary, i.e. two time-stamps with the same numerals
do not necessarily equal — ta1 may not be equal to tb1 — and the time-interval between two
time-stamps with the same alphabet and consecutive numerals are not necessarily the same —
the interval between ta1 and ta2 may not be the same as that between ta2 and ta3
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by the two re-parametrization pairs are visualized (shown as thin dotted lines) in

Fig. 5.2(b) and Fig. 5.2(c).

(a) (b) (c)

Figure 5.2: (a) Two Polygonal Curves, (b) a Pair of Possible Re-parametrizations
and (c) Another Pair of Possible Re-parametrizations.

For each pair (α, β), the continuous function f(α,β) : [0, 1] → R is defined as

f(α,β)(x) is the Euclidean distance between loca(α(x)) and locb(β(x)). The leash

length required for each pair of movement is the maximum value of the image

of f . For instance, f(α1,β1)(0.25) = dist(loca(ta2), locb(tb2)) and f(α2,β2)(0.25) =

dist(loca(ta3), locb(tb1)). Thus, the required (maximum) leash length for the first

pair, distmax(α1, β1), is given by f(α1,β1)(1.00) = dist(loca(ta5), locb(tb5)) — de-

noted as “max” in Fig. 5.2(b) — while that of the second re-parametrization,

distmax(α2, β2), is by f(α2,β2)(0.2) = dist(loca(ta3), locb(tb1)) — denoted as “max” in

Fig. 5.2(c).

Hence, we can say that, in the first pair of re-parametrizations (see Fig. 5.2(b)),

the man and his dog walk in a more synchronized manner requiring shorter (max-

imum) leash length than the second pair (see Fig. 5.2(c)), in which the man has

walked (on route a) far before his dog begins to move (on route b). The Fréchet
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Table 5.2: Two Pairs of Re-parametrizations of the Two Sub-trajectories Shown in
Fig. 5.2(a).

Re-parametrization Re-parametrization
Pair 1 Pair 2

x α1(x) β1(x) x α2(x) β2(x)
0.00 ta1 tb1 0.00 ta1 tb1

...
...

...
...

...
...

0.01 ta1 tb1 0.01 ta2 tb1
...

...
...

...
...

...
0.02 ta1 tb1 0.02 ta3 tb1

...
...

...
...

...
...

0.25 ta2 tb2 0.25 ta3 tb1
...

...
...

...
...

...
0.26 ta2 tb2 0.26 ta3 tb2

...
...

...
...

...
...

0.50 ta3 tb3 0.50 ta3 tb3
...

...
...

...
...

...
0.51 ta3 tb3 0.51 ta4 tb3

...
...

...
...

...
...

0.75 ta4 tb4 0.75 ta4 tb4
...

...
...

...
...

...
0.76 ta4 tb4 0.76 ta4 tb5

...
...

...
...

...
...

1.00 ta5 tb5 1.00 ta5 tb5

distance is the shortest among the (maximum) leash lengths required for all man-

ners of progressing the man and his dog can make on their routes (including those

depicted in this example).

In essence, Fréchet distance considers only the direction (the man and his dog

are not allowed to walk back) and the shape of the curves (it chooses the minimum

among the leashes for all ways of progression they can make). Yet, it neither

considers the speed the objects move (each parametrization represent a different way

of walking) nor the number of sampled points (the re-parametrizations are defined

as functions to a continuous range), i.e. the Fréchet distance between two curves in

the above example is the same even if we remove the sample point at ta2 and put
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multiple sample points between tb1 and tb2 by linear interpolation. Therefore, we

choose the Fréchet distance to measure the similarity between sub-trajectories2.

Definition. 5.4. Sub-trajectory Clique — Consider a Trajectory Database R,

which contains the trajectories of a set of objects O. Given parameters m, l, and

r, a set of sub-trajectories J forms a sub-trajectory clique (Trajcliq) if (i) each

j ∈ J is within r Fréchet distance away from all sub-trajectories j′ ∈ J , (ii) the

lengths of all sub-trajectories j ∈ J are longer than l, and (iii) J contains at least

m non-identical sub-trajectories.

Definition 5.4 defines a sub-trajectory clique (Trajcliq) which includes m

unique sub-trajectories, which are at least l units in spatial length (not time dura-

tion). We choose the Fréchet distance, defined in Def. 5.3, to measure the similarity

between routes because Fréchet distance ensures sub-trajectories in the same clique

are spatially close, similar in shape, and similar in direction. Therefore, all nearby

sub-trajectories of similar shape and direction to a sub-trajectory will belong to the

same Trajcliq even though the corresponding movements were taken at different

speeds during different time-spans. In other words, a Trajcliq groups the sub-

trajectories, which are on the same route and, hence, a track-clique containing m

sub-trajectories corresponds to a frequent route taken at least m times.

Figure 5.3 illustrates a TJDB containing trajectories of four objects, a, b, c, and

d. For m = 3, the sub-trajectory of a from ta1 to ta4, another sub-trajectory of a

from ta7 to ta10, and the sub-trajectory of b from tb1 to tb4 form a Sub-trajectory

clique (Trajcliq) as the three sub-trajectories are within a Fréchet distance of r.

Note that two sub-trajectories of a single object, i.e. object a, can involve in the

same Trajcliq. However, the sub-trajectory of a from ta5 to ta6, that of c from tc1

to tc2 and that of d from td1 to td2 do not form a Trajcliq because, although the

2For more information of Fréchet distance, refer to the Section 3.2.7
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sub-trajectory of a is within a Fréchet distance r from those of c and d, the Fréchet

distance between the sub-trajectories of c and d is more than r.

Figure 5.3: A Visualization of a Trajectory Database Containing Four Trajectories.

Definition. 5.5. Frequent Route — A sub-trajectory clique is closed if and only

if there is no other sub-trajectory clique covering it. The longest sub-trajectory in a

closed sub-trajectory clique is defined as the corresponding Frequent Route (FreqRo)

of the closed sub-trajectory clique.

Definition 5.5 defines a Frequent Route as the longest sub-trajectory (spa-

tial length, not time duration) of a closed Trajcliq. A route, which is fre-

quently used, derived from a non-closed sub-trajectory is of little interest to the

users since its information is conveyed in the frequent route derived from a closed

Trajcliq. Continuing with our example in Fig. 5.2, the Trajcliq formed by

suba(ta2, ta3), suba(ta8, ta9), and subb(tb2, tb3) is covered by a larger Trajcliq formed

by suba(ta1, ta4), suba(ta7, ta10), and subb(tb1, tb4). Hence the corresponding route of

the former is covered by the frequent route derived from the latter Trajcliq.

Definition. 5.6. Mining Frequent Routes — Given a Trajectory Data-base

R and parameters, m > 1, r > 0, and l > 0, Mining Frequent Routes is to find

all closed sub-trajectory cliques and derive a Frequent Route for each sub-trajectory

clique found.
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Definition 5.6 defines the problem to discover Frequent Routes from a TJDB as a

two-step problem, finding sub-trajectory cliques, each of which including movement

records of the entities taking the same route for at least m times, and deriving

frequent routes from the cliques.

5.3 Methods to Mine Sub-trajectory Cliques to

Extract Frequent Routes

In this section, we will first prove that mining all closed sub-trajectory cliques

(Trajcliqs) is NP-Complete. Then, we will describe an exact algorithm to dis-

cover all closed Trajcliqs and extract a corresponding frequent route from each

Trajcliq. The exact algorithm is based on the apriori -properties of the Trajcliqs.

We will proceed to discuss why such an algorithm is not feasible in reality and

present two new algorithms to approximate Trajcliqs from a given Trajectory

Database (TJDB). The first approximation algorithm is also based on the apriori

algorithm and is able to quickly approximate TRAJCLIQs at an approximation

factor of 2. The second algorithm divides the TJDB into distinct subsets so that

an instance of the first algorithm can be applied to each subset, reducing memory

requirement and/or enabling parallel processing.

5.3.1 Hardness of Mining Sub-trajectory Cliques from a

Trajectory Database

A proof, which proves a problem similar to mining all closed Trajcliqs is NP-

Complete and from which we inspire our following proof, is given in [12].

Theorem. 5.1. Given a Trajectory Database R and parameters, m, l, and r,

answering if there exist a Trajcliq is NP-Complete, i.e. any of its solutions can

be verified in polynomial time but finding one cannot be unless P = NP.
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Proof. The first portion of the theorem is proved as follow: Verifying whether the

Fréchet distance between a given set of sub-trajectories in a dataset is within r

can be performed in O(n1.n2. · · · .nm) time, where ni (1 ≤ i ≤ m) is bounded by

the size of the Trajectory Database (TJDB) [18]. The number of sub-trajectories

and their lengths can also be verifiable in time polynomial in terms of the TJDB’s

size. Therefore, a solution to the query whether there exist a sub-trajectory cluster

(Trajcliq) in a given TJDB and parameters can be verifiable in polynomial time

in terms of the size of the TJDB.

The second portion of the theorem is proved by presenting a solution of the

problem of Maxclique, which uses finding Trajcliq as an atomic step. The

Maxclique problem is a known NP-Complete problem. In Maxclique, the input

is a graph G = (V,E) with n vertices v1, · · · , vn and E is a subset of the Cartesian

product set of V ×V . Given a parameter m, the output is to answer whether there

is a complete sub-graph (clique) C, i.e. C ⊆ V , |C| = m, and C × C ⊆ E.

We can transform an instance of Maxclique problem into that of a Trajcliq

using the following steps. Each vertex vi in V will be represented by a trajectory

traji, which is defined as a poly-line formed by connecting the following 3n + 1

points (in ascending order of the x coordinate) :

• (0, 0),

• for all 1 ≤ j < i,

– if (vi, vj) ∈ E, (3j − 2, 0) and (3j − 1, 0),

else (3j − 2,−1) and (3j − 1,−1),

– (3j, 0)

• (3i− 2,+1), (3i− 1,+1), and (3i, 0)

• for all i < j ≤ n,
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– if (vi, vj) ∈ E, (3j − 2, 0) and (3j − 1, 0),

else (3j − 2,−1) and (3j − 1,−1),

– (3j, 0)

In essence, if there is not an edge between the vertices vi and vj in G, the

corresponding trajectories traji and trajj separate themselves away from each other

in the region where their x coordinates are between 3i− 2 and 3i− 1. On the other

hand, the trajectories are within a distance of 1 if the vertices they represent have

an edge. In other words, the Fréchet distance between two sub-trajectories traji

and trajj will be 1 if and only if there exists an edge between vi and vj in G. In

Fig. 5.4, there are edges between v1 and v2, v1 and v3, and v1 and v4. Hence, the

trajectory representing v1 stays at y = 0, when x is in [4, 5], [7, 8] and [10, 11], which

are highlighted using grey regions. Notice that there is no edge between v1 and v5

in the graph and the trajectory of v1 moves lower in the y coordinate (away from

that of v5, which moves higher in the y coordinate) when x is in [13, 14].

Therefore, we can answer the query whether there is a clique of size m by

transforming the graph G into a TJDB as stated above and checking if there is a

Trajcliq for parameters m, l = 3n+ 1, and r = 1.

5.3.2 Apriori-based Frequent Route Miner

Since mining all closed Trajcliq is an NP-Complete problem, we are going to

analyze the feasibility of using an Apriori -based data-driven algorithm to discover

closed Trajcliqs as intermediate results and extract Frequent Routes from them.

First, we will present the apriori -properties of Trajcliqs.

Lemma. 5.1. Suppose a set of sub-trajectories J = {sub1, · · · , subp} and its subset
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Figure 5.4: Conversion of a Maxclique problem into Trajcliq problem.

J ′ = {sub′1, · · · , sub′q} (p ≥ q). If there is a re-parametrization αi for each sub-

trajectory subi ∈ J such that for any i, j ∈ {1, · · · , p}, distmax(αi, αj) ≤ r, then

there is a re-parametrization α′k for each sub-trajectory sub′k ∈ J ′ such that for any

i, j ∈ {1, · · · , q}, distmax(α
′
i, α
′
j) ≤ r.

Proof. For a pair of sub-trajectories sub′i, sub
′
j ∈ J ′, suppose there is no pair of

re-parametrizations α′i and α′j, which gives the distmax(α
′
i, α
′
j) ≤ r. By definition,

(although not necessarily unique) there is a pair of re-parametrizations that gives
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minimum d = distmax(α
′
i, α
′
j) — i.e. r < d.

However, since J ′ ⊆ J , sub′i ∈ J and sub′j ∈ J . Therefore, αi and αj for

sub-trajectories sub′i and sub′j gives distmax(αi, αj) ≤ r < d (it contradicts with

d = distmax(α
′
i, α
′
j) is minimum).

Using Lemma 5.1, we can derive the apriori -properties of Trajcliqs as fol-

low: if a set of sub-trajectories J = {sub1, · · · , subp} containing p sub-trajectories

forms a Trajcliq, there is a re-parametrization αi for each subi ∈ J , which gives

distmax(αi,αj) ≤ r for any subi, subj ∈ J . Following Lemma 5.1, there is also (at

least) a re-parametrization α′i for each subi ∈ J ′ ⊆ J , which gives distmax(α′
i,α

′
j)
≤ r

for any i, j ∈ J ′. Therefore, all J ′ ⊆ J also forms a Trajcliq. In other words, J

does not form a Trajcliq if any of its subset does not.

The Apriori -based Frequent Route Miner (A-0), adapted from the Apriori -

algorithm in [3], exploits the apriori -properties of the Trajcliqs to systematically

discover the Trajcliqs formed by (k+ 1) sub-trajectories only when those formed

by its subsets exist. An outline of the A-0 is given in Algorithm 5.1. The function

Closed-CLIQ(R, l, r, Ok) returns list of Trajcliqs, which may or may not be

closed, formed the k sub-trajectories of the objects in Ok.

The algorithm A-0 first initializes the Clique-list containing the Trajcliqs

formed by sub-trajectories of all possible pairs of objects (lines 2 - 5). Starting

with k = 2, the Clique-list of Trajcliqs formed by k + 1 sub-trajectories of a list

of objects (Ok+1) are built only when those of its sub-lists (Ok and O′k) sharing

the same k-prefix form Trajcliqs (lines 6 - 15). In doing so, if k ≥ m, then the

Trajcliqs in the Clique-list, which are formed by the k sub-trajectories of the

current Object-list (Ok), are potential closed Trajcliq. Thus, they are put into

the set of Trajcliqs U (lines 7 - 9), which is later filtered to remove non-closed
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Algorithm 5.1 Apriori-based Frequent Route Miner (A-0).

Input: R, r, m and l.
Output: A set of frequent routes F .

1: The set of object-lists C1 ← ∅, U ← ∅, F ← ∅, and k ← 2
2: for all (o, o′) ∈ O ×O do
3: Object-list O2 ← [o, o′] and Clique-list L(O2)←Closed-CLIQ(R, l, r, O2)
4: if L(O2) is not empty then
5: C2 ← C2 ∪ {O2}
6: while Ck 6= ∅ do
7: for all Ok ∈ Ck do
8: if k ≥ m then
9: U ← U ∪ L(Ok)

10: The set of Object-lists Ck+1 ← ∅
11: for all Ok, O

′
k ∈ Ck such that k-prefix(Ok = k-prefix(O′k) do

12: Ok+1 ← append(Ok, last(O
′
k)) and L(Ok+1)← Closed-CLIQ(R, l, r, Ok+1)

13: if L(Ok+1) is not empty then
14: Ck+1 ← Ck+1 ∪ {Ok+1}
15: k ← k + 1
16: U ← U − {U |U is not a closed-Trajcliq}.
17: for all Q ∈ U do
18: F ← F ∪ {Get-Frequent-Route(U)}

Trajcliqs (line 16). As the last step, the algorithm A-0 extracts a frequent route

from each closed Trajcliqin U (lines 17 - 18).

In order to allow a Trajcliqto contain two (different) sub-trajectories of the

same object, unlike other Apriori -based algorithms, A-0 uses a list notation for ob-

jects, which may contain an object multiple times. Figure 5.5 shows a portion of the

search space the algorithm A-0 traverses to find the Trajcliqs in the data in Fig.

5.3 for given parameters r, l, and m = 3. A-0 starts with finding Trajcliq formed

by two sub-trajectories, beginning with the Trajcliqs formed by sub-trajectories

of the Object-list [aa]. Since sub-trajectories suba(ta1, ta4) and suba(ta7, ta10) forms

a Trajcliq, it is stored in the Clique-list L([aa]). It continues to find Trajcliqs

formed by all the Object-lists containing two objects with prefix [a], i.e. [ab], [ac],

and [ad]. Then A-0 tries to find Trajcliqs formed by all Object-lists containing

two objects with prefixes [b], [c], and [d], which do not exist in the TJDB depicted in

Fig. 5.3. The first row (k = 2) of the Table 5.3 lists the state of the variables after
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this initialization step. In the next step (k = 3), A-0 tries to find the Trajcliqs

formed by sub-trajectories of [aaa], [aab], [aac] and [aad] since their subsets are in

C2. It only finds a Trajcliq formed by sub-trajectories of Object-list [aab] and put

[aab] into C3 (see the second row in Tab. 5.3). Since k ≥ m, L([aab]) is put into

the result set U . The algorithm exits the loop at k = 4 as C4 becomes empty and

output the frequent route extracted from L([aab]).

Figure 5.5: How Algorithm A-0 Finds Frequent Routes from the Trajectories De-
picted in Fig. 5.3.

Table 5.3: A Trace of A-0 Running on the Trajectory Database Shown in Fig. 5.3
k Ck L(Ok) U
2 [aa] 〈suba(ta1, ta4), suba(ta7, ta10)〉 —

[ab] 〈suba(ta1, ta4), subb(tb1, tb4)〉,
〈suba(ta7, ta10), subb(tb1, tb4)〉 —

[ac] 〈suba(ta5, ta6), subc(tc1, tc2)〉 —
[ad] 〈suba(ta5, ta6), subd(td1, td2)〉 —

3 [aab] 〈suba(ta1, ta4), suba(ta7, ta10), subb(tb1, tb4)〉 L([aab])
4 φ φ L([aab])

Finding Sub-trajectory Cliques of k Sub-trajectories.

In algorithm A-0, lines 3 and 12 call a sub-routine (Closed-CLIQ) in order to find all

sub-trajectory cliques composed of k sub-trajectories. Closed-CLIQ uses Free-space

(defined below) to extract the sub-trajectory cliques.
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Definition. 5.7. Free-space — Given a distance threshold r and two sub-trajecto-

ries subi and subj containing p and q segments respectively, their corresponding

Free-space is the set F (i, j) = {(x, y) ∈ [0, p]× [0, q] : dist(loci(x), locj(y)) ≤ r}.

Definition 5.7 defines a free-space as a two-dimensional map that maintain which

parts of the two sub-trajectories in questions are within distance r. Figure 5.6

illustrates a Free-space (cell) of two sub-trajectories i and j containing one segment

each and a distance r as the white region. The two points marked by black rectangles

in the Fig. 5.6 is closer than the distance r. Therefore the point in the Free-space

that represents these two points of the trajectories falls in the white region while

that of two points marked by black circles, in the grey region. For sub-trajectories

containing p and q segments, their Free-space for a given r is a two-dimensional

array of such Free-space cells.

Figure 5.6: Two Trajectory Segments and Their Corresponding Free-space Cell.

For two-dimensional GPS trajectories, the white region of a Free-space cell is

always an intersect of an eclipse and a rectangle [5]. The white region, therefore, is

defined by eight points called critical points (illustrated as black stars in Fig. 5.6).

Adjacent Free-space cells share the critical points between them. For example, the

critical points on the right boundary of the Free-space cell at (x− 1, y) is the same

as those on the left of Free-space cell at (x, y). Given a Free-space cell c at (x, y),

we will denote its two critical points on the left side as L0(x, y) and L1(x, y) while
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those on the down side as D0(x, y) and D1.

Alt and Godau [5] proved that the Frèchet distance between two sub-trajectories

is less than r if and only if there is a monotone path in their Free-space. We will

denote a path in the Free-space as 〈(xstart, ystart), (xend, yend)〉. For k = 2, the sub-

routine Closed-CLIQ (see Algorithm 5.2) finds all monotone paths in the Free-space

of the trajectories of two given objects in Ok. For simplicity, the outline describes

how to find monotone paths starting and ending at critical points.

Algorithm 5.2 Sub-routine Closed-CLIQ for k = 2 Used in the Apriori-based
Frequent Route Miner (A-0).

Input: traji, trajj, O2 = [oi, oj], r and l
Output: All Closed TRAJCLIQs L(O2).

1: Set p← len(traji) and q ← len(trajj).
2: for all (x, y) ∈ [0, p]× [0, q] do
3: Calculate L0(x, y), L1(x, y), D0(x, y), and D1(x, y) for traji and trajj
4: Set of Monotone Paths Left(x, y)← {〈L0(x, y), L0(x, y)〉}
5: Set of Monotone Paths Down(x, y)← {〈D0(x, y), D0(x, y)〉}
6: Set of Monotone Paths Mono← φ and Closed Trajcliqs L(O2)← φ
7: for all x = 0 to p− 1 do
8: for all y = 0 to q − 1 do
9: for all Path p ∈ Left(x, y) ∪Down(x, y) s.t. p ends at (xe, ye) do

10: if append(p, 〈(xe, ye), L1(x+ 1, y)〉) is monotone then
11: Mono←Mono ∪ {append(p, 〈(xe, ye), L1(x+ 1, y)〉)}
12: p← append(path, 〈(xe, ye), selectGrY (L0(x+ 1, y), (xe, ye))〉)
13: for all Path p ∈ Left(x, y) ∪Down(x, y) s.t. p ends at (xe, ye) do
14: if append(p, 〈(xe, ye), D1(x, y + 1)〉) is monotone then
15: Mono←Mono ∪ {append(p, 〈(xe, ye), D1(x, y + 1)〉)}
16: p← append(path, 〈(xe, ye), selectGrX(D0(x, y + 1), (xe, ye))〉)
17: for all M ∈Mono do
18: Trajcliq tc← Extract-Cliq(M)
19: if tc is closed and len(sub) ≥ l for all sub ∈ tc then
20: L(O2)← L(O2) ∪ {tc}

In Closed-CLIQ outlined in Algorithm 5.2, for each Free-space cell at (x, y),

Left(x, y) and Down(x, y) maintains the monotone paths started in cells at the

left or lower sides of (x, y) and reachable to its left and lower sides. The algorithm

Closed-CLIQ first calculates the critical points of the Free-space and the monotone

path sets, Left(x, y) and Down(x, y), with monotone paths of length zero (lines
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2 - 5). Starting with the lowest-leftmost cell located at (0, 0), it systematically

propagates the monotone paths in the cell at (x, y) to the cells above and right

while maintaining the resulting monotone paths in Mono (lines 7 - 16). For each

monotone path in Mono, a corresponding set of sub-trajectories tc having their

Fréchet distance within r is extracted and, if tc is close and all its sub-trajectories

are not shorter than l, it is returned (lines 17 - 20).

The algorithm described in Algorithm 5.2 can be easily extended for any k ≥ 2

by extracting all monotone curves (monotone in all coordinates) in a k dimensional-

space. However, for k ≥ 3, despite being polynomial, this process is not feasible for

real-life datasets containing hundreds of trajectories with thousands of segments.

Actually, the task of “answering the query whether the Fréchet distance between

any pair in a given set of k sub-trajectories is not more than r” is proven to be

O(n1.n2. · · · .nk) in [18]. In addition, the generalized process needs k(k− 1)/2 free-

spaces to be kept in the memory for all k ≥ 2. Therefore, we turn our focus to

approximation algorithms, which we present next.

5.3.3 Approximation of Sub-trajectory Cliques for Frequent

Route Mining

We observe that, by definition, if a set of sub-trajectories J = {sub1, sub2, · · · , subp}

forms a Trajcliq, the Fréchet distance between the first sub-trajectory, sub1, and

other sub-trajectories, sub2, · · · , subp is at most r (although the reverse is not always

true). We will use this observation to approximate Trajcliqs formed by k ≥ 3 sub-

trajectories. We will denote the first3 sub-trajectory in a set of sub-trajectories as

the “reference sub-trajectory” (or simply “reference trajectory” if context is clear)

of the Trajcliq it forms. The following Lemma proves that the approximation

factor of our proposed solution is 2.

3We can use an arbitrary order among the sub-trajectories to define the first.
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Lemma. 5.2. Suppose there are three sub-trajectories, suba, subb, and subc. If

both distFr(suba, subb) ≤ r and distFr(suba, subc) ≤ r hold, then it follows that

distFr(subb, subc) ≤ 2r.

Proof. The Fréchet distance complies triangle inequality [17], i.e.

distFr(subb, subb) ≤ distFr(suba, subb) + distFr(suba, subc).

Since distFr(suba, subb) + distFr(suba, subc) ≤ 2r, distFr(subb, subc) ≤ 2r.

The approximation algorithm we develop, namely Apriori -based Approximate

Frequent Route Miner (A-1), is essentially following the same steps of A-0 described

in Algorithm 5.1. The only difference between the exact algorithm (A-0) and the ap-

proximate one (A-1) is that A-1 uses an approximation sub-routine instead of the ex-

act Closed-CLIQ in line 13. For the trajectories in Fig. 5.3, A-1 finds the Trajcliqs

of Object-list containing two objects (the same as A-0) using the exact algorithm

given in Algorithm 5.2. Then, for k = 3, it tries to approximate Trajcliqs of

sub-trajectories in Object-lists, whose subsets are found in O2. A-1 finds two (ap-

proximate) Trajcliqs, J1 = {suba(ta1, ta4), suba(ta7, ta10), subb(tb1, tb4)} and J2 =

{suba(ta5, ta6), subc(tc1, tc2), subd(td1, td2)} using suba(ta1, ta4) and suba(ta5, ta6) as

their reference trajectories respectively. It does not find any Trajcliqs for k = 4.

Detailed states of the variables through the above steps are given in Table 5.4.

Table 5.4: A Trace of A-1 Running on the Trajectory Database Shown in Fig. 5.3
k Ck L(Ok) U
2 [aa] 〈suba(ta1, ta4), suba(ta7, ta10)〉 —

[ab] 〈suba(ta1, ta4), subb(tb1, tb4)〉,
〈suba(ta7, ta10), subb(tb1, tb4)〉 —

[ac] 〈suba(ta5, ta6), subc(tc1, tc2)〉 —
[ad] 〈suba(ta5, ta6), subd(td1, td2)〉 —

3 [aab] 〈suba(ta1, ta4), suba(ta7, ta10), subb(tb1, tb4)〉 L([aab])
[acd] 〈suba(ta5, ta6), subc(tc1, tc2), subd(td1, td2)〉 L([acd])

4 φ φ L([aab]), L([acd])
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Optimization to Approximation of Sub-trajectory Cliques.

In our implementation, we optimize the approximation step in algorithm A-1 using

the apriori -properties of Trajcliqs, which states that a set of sub-trajectories

does not form a Trajcliq if any of its subsets does not. Therefore, we use the

information of Trajcliqs found in Ok and O′k in building the Trajcliqs in Ok+1.

For example, in building Trajcliqs formed by Object-list [aab], we take clues

from L([aa]) and L([ab]) that suba(ta1, ta4), suba(ta7, ta10) and subb(tb1, tb4) formed

Trajcliqs of two sub-trajectories and build Trajcliqs formed by (portions of)

these sub-trajectories. We perform this by sorting the Trajcliqs in L(Ok) and

L(O′k) by the starting times of their reference trajectories and performing a modified

version of sort-merge-join over them.

Reducing the Number of False-Positives.

Since the Fréchet distance between the sub-trajectory subc(tc1, tc2) and the sub-

trajectory subd(td1, td2) is larger than r, the set of sub-trajectories J2 that our

algorithm A-1 approximates as a Trajcliq is a false positive the approxima-

tion introduces. We further exploit the apriori -properties of Trajcliqs to reduce

the number of false positives in the approximation results. When the approxima-

tion sub-routine builds the Trajcliqs formed by sub-trajectories {s1, s2, · · · , sk+1}

of Ok+1 = [o1, o2, o3, · · · ok+1], it also checks whether {o2, o3, · · · , ok+1} also forms

Trajcliqs. This simple check prunes false positives as illustrated in the following

example. Consider the sub-trajectories sa = suba(ta5, ta6), sb = subc(tc1, tc2), and

sd = subd(td1, td2) in Fig. 5.3. Since the Fréchet distance between sa and sc and that

between sa and sd are not more than r, they form Trajcliqs of two sub-trajectories

— L(O2) contains 〈suba(ta5, ta6), subc(tc1, tc2)〉 and 〈suba(ta5, ta6), subd(td1, td2)〉 (re-

fer to Tab. 5.4). However, the Fréchet distance between sc and sd is larger than r
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and 〈subc(tc1, tc2), subd(td1, td2)〉 /∈ L(O2). Therefore, before the approximation sub-

routine builds the sub-trajectory cluster 〈suba(ta5, ta6), subc(tc1, tc2), subd(td1, td2)〉,

it checks whether 〈subc(tc1, tc2), subd(td1, td2)〉 exists in L(O2) and, since it does not

exist, the approximation sub-routine simply prunes the Trajcliqs 〈suba(ta5, ta6),

subc(tc1, tc2), subd(td1, td2)〉.

This pruning mechanism may not be able to remove all false-positives the ap-

proximation of Trajcliqs introduces since A-1 is still approximating a Trajcliq

by checking only the Fréchet distances between the reference trajectory and the

other sub-trajectories in a candidate sub-trajectory clique. The approximation fac-

tor also remains at 2. However, we expect A-1 to have fewer false-positives in its

results compared to other approximation algorithms that has no pruning mechanism

at all.

5.3.4 A Divide and Conquer Scheme for Scalable Approxi-

mation of Sub-trajectory Cliques

Although the Apriori -based Approximate Frequent Route Miner (A-1) runs fast for

most real-life datasets and prunes many false positives, it still needs a large amount

of memory both for the Apriori process and the Free-space it needs to calculate

and store for each approximation call. For larger datasets and real-life computing

settings, in which the available main memory is limited, this memory requirement

may become a big challenge. Therefore, we devise a Divide and Conquer Scheme

to mitigate the memory requirement issue of A-1.

We observe that, given an arbitrary bounding box B, all sub-trajectories it

confines (sub-trajectories are completely within it) cannot have a Fréchet distance

less than or equal to r to those sub-trajectories not confined by the bounded box

B′, which is B extended by r on all sides. For instance, in Fig. 5.7, the whole

trajectory of a is in the shaded bounding box. Therefore, it cannot have its Fréchet
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distance with the sub-trajectories of x (such as subx(tx2, tx4) and subx(tx3, tx5)) that

goes beyond the extended bounding box (outer bounding box) shown by the think

borders. In other words, sub-trajectories of a cannot form a Trajcliq with sub-

trajectories of x containing portions out of the outer bounding box.

Figure 5.7: How Algorithm A-2 Divides a Trajectory Database for Scalable Ap-
proximation of Trajcliqs.

From this observation, we deduce that if we divide the spatial-space into multiple

zones with stripes of width r between them, the (class of) sub-trajectories, which

pass the stripes, cannot form a Trajcliq with the sub-trajectories confined in the

zone. In the above example depicted in Fig. 5.7, there are four zones and two

stripes — one horizontal and one vertical. The sub-trajectories passing either the

horizontal and vertical stripes cannot form Trajcliqs with any sub-trajectories

confined in the four zones, i.e. sub-trajectory subx(tx1, tx4) passes the vertical strip

and, hence, it cannot form a Trajcliq with any sub-trajectories of a, b, c and some

sub-trajectories of x, y, z, p, and q confined in one of the zones like subx(tx1, tx2),

suby(ty1, ty2), subz(tz3, tz4), subp(tp1, tp2) and subq(tq3, tq4).
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Algorithm 5.3 outlines the Divide and Conquer Scheme and it requires two

additional parameters, initial zone-size λ0 and zone-size multiplier θ, than A-0 and

A-1 do. MBR(R) returns the minimum bounding rectangular of all trajectories in

R; Divide(MBR(R), λ, r) returns the MBR(R) divided into λ×λ zones separated by

strips of width r; Extend(z, r) returns the rectangular area z extended by r on all its

sides and Max-Subs(R, z) returns all maximal sub-trajectories — sub-trajectories

of trajectories found in R — confined in the rectangular area z.

Algorithm 5.3 Divide-and-Conquer Frequent Route Miner (A-2).

Input: λ0, θ, R, r, m and l.
Output: A set of frequent routes F .

1: Set λ← λ0 and maxs ← max(MBR(R).length, MBR(R).breadth)
2: while λ ≤ maxs do
3: Set of zones Z ← Divide(MBR(R), λ, r)
4: for all Zone z ∈ Z such that there exists a trajectory confined in z do
5: z+ ← Extend(z, r), Rz ← Max-Subs(R, z+), and U ∪ A-1 (Rz, r,m, l)
6: Set R ← R− {traj : traj is totally confined in z}
7: Set λ← λ× θ
8: U ← U − {U |U is not a closed-Trajcliq}.
9: for all Q ∈ U do

10: F ← F ∪ {Get-Frequent-Route(U)}

Algorithm A-2 works as follow. The spatial-space is divided into zones with

stripes of width r between the zones of size λ×λ, starting with λ at the user-defined

zone-size λ0 (line 3). For each zone z, which has at least a trajectory wholly confined

in, the sub-trajectories in its extended zones z+ are processed using algorithm A-

1 and adding the results to U (lines 4 - 6). If the zone z does not confine any

whole trajectory, all sub-trajectories in it would be processed in the next pass of

the loop (with larger λ). After each extended zone z+ is processed, trajectories

wholly contained in z is removed from R as it cannot form any more Trajcliqs

with other sub-trajectories (passing the strips) in the next pass (line 6). After all

zones are processed, the zone-size is enlarged (line 7). When a single zone span the

entire spatial space, A-2 outputs a frequent route for each closed-Trajcliq.

92



We will illustrate how the algorithm A-2 works using the example trajectories4

in Fig. 5.7. Initially, it divides the spatial-space into four zones. For the top-left

zone, trajectories a and b, and the maximal sub-trajectories of x, y and z confined

in the outer bounded box (shown by thick borders), i.e. suba(ta1, ta3), subb(tb1, tb3),

subx(tx1, tx3), suby(ty1, ty3), and subz(tz1, tz3), are processed using A-1. Since sub-

trajectories suba(ta1, ta2) and subb(tb1, tb2) form a Trajcliq, it is added to U . Before

moving on to the next zone, A-2 removes trajectories of a and b from R. Then, A-2

continues to the top-right zone, in which no trajectory is confined. Therefore, A-2

moves on to bottom-left zone (finds no Trajcliq and removes trajectory c) and

bottom-right zone (finds the Trajcliq U ′p,q〈subp(tp1, tp3) and subq(tq1, tq3)〉, add it

to U , and removes trajectory d). After all four zones are processed, the algorithm

A-2 tries to find Trajcliqs formed by sub-trajectories that pass the stripes. In this

stage, two Trajcliqs, Trajcliq Ux,y = 〈subx(tx4, tx5), suby(ty4, ty5)〉 and Up,q =

〈subp(tp1, tp4), subq(tq1, tq4)〉 are reported. Since Up,q covers U ′p,q, U
′
p,q is removed

from U . Notice that the approximation processing for U ′p,q is wasted. Finally, the

algorithm reports the three frequent routes corresponding to the Trajcliqs in U .

By design, algorithm A-1 and A-2 has the same output and the same accuracy.

We speculate that for large Trajectory Databases containing thousands of ob-

jects with high-resolution trajectories (high sampling rates), A-2 would provide a

reasonable trade-off because it divides both the search space of Apriori processing

and the portions of Free-space needed in the memory to approximate Trajcliqs.

Even when the memory consumption is not a major issue, the divisions of the TJDBs

A-2 provides can be processed independently from each other using A-1 and, hence,

A-2 can be used to enable parallel processing for Mining Frequent Routes.

As a hindsight that the performance of A-2 depends on whether it can remove

as many (whole) trajectories as possible (in line 6, Algorithm. 5.3) in the earlier

4The time-stamps in this example are also arbitrary.
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stages (as evidenced by our experiments in Sect. 5.4) and, hence, depends on

initial zone-size λ0 and zone-size multiplier θ. We suggest it is possible to optimize

these two parameters in each loop before the zone division in order to improve the

performance of A-2.

5.4 Experimental Evaluations

5.4.1 Experiment Setup

We implemented algorithms A-1 and A-2 in Java along with the existing polynomial

time Sweep algorithm proposed in [12] and Traclus proposed in [37]. Sweep is a

2-distant approximation algorithm for mining sub-trajectory cliques, i.e. its approx-

imation factor is 2. We made minor changes in Sweep to ensures all sub-trajectories

in each reported approximated Trajcliqs have length l as well as introduced stan-

dard programming optimizations to it. Traclus is a three-step algorithm comprising:

partition-step, grouping step and representative trajectory calculation step.

For all algorithms benefit from line-segment view of the data, we stored the

point, locnext, which is defined as the loc an object o is going to visit in the imme-

diately next time-stamp recorded in the Trajectory Database, in each record. We

also had an R-Tree index for the line-segment 〈loc, locnext〉. All distance units are

in metre.

5.4.2 Results and Analysis

Table 5.5 shows the default parameters and run-time performance of each algo-

rithm for different datasets. Sweep uses the same set of parameters m, l, and r

as algorithms A-1 and A-2, while, for Traclus, we use all the parameter values as

suggested in [37]. The original proposed partition method for Traclus tends to
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eliminate shorter sub-trajectories in favour of the longer one in a dataset. There-

fore, we made changes to the partition step to ensure short sub-trajectories were

also maintained in our experiments. Sweep, A-1, and A-2 use Free-space, which

is pre-computed for each dataset (but the Free-space computation time is included

in their overall run-time we report here) and stored as a sparse graph. For A-2,

We used different initial zone sizes λ0 for different datasets (see the last column in

Tab. 5.5). We stopped Traclus for Ships dataset after it took several days running.

We decided not to run Traclus on land vehicle datasets, SF-Cabs21rand100 and

SF-Cabs22rand100 because its output for similar dataset, Taxi is not satisfactory

(details will be reported shortly). In all datasets, we observe that our proposed

algorithms, A-1 and A-2, finished faster than Sweep and Traclus. Traclus took the

most time because the distance measure it uses cannot make use of any spatial in-

dex, including the R-tree index we used. A-1 and A-2 performed faster than Sweep

because of their pruning mechanisms. A-1 took less time compared to A-2 for all

datasets except Trucks because the Free-space data structure fits in the main mem-

ory (favouring A-1) and performance of A-2 depends on the division of datasets

into zones, which can confine as many (whole) trajectories as possible — hence, on

λ0 and θ. We expect, less difference between the two algorithms when the compu-

tation environment has a low-memory settings, which prohibits the Free-space for

all trajectory pairs from being pre-computed and put in the memory, and when λ0

and θ are optimized based on the dataset at hand.

Figure 5.8 shows the frequent routes we extracted from Ships dataset using algo-

rithm A-1 in colour (all the trajectories in the dataset are shown in grey). Trajecto-

ries in black are frequent routes used at least five times in four hour period, which

we consider — combining with the fact that they are at least 1.5 kilometre long —

as significant giving that ships do tend to follow the exact same routes. Algorithm

Sweep also reported a very similar results, which contain more false-positives than
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Table 5.5: A Summary of the Default Parameters and Performance of the Frequent
Route Mining Algorithms for Each Dataset.

Dataset m r l Run-time (seconds) λ0
Sweep A-1 A-2 Traclus

Statefair 3 30 500 22 9 11 870 5,000
NCSU 3 30 500 129 63 65 6,722 5,000
New York 3 30 500 178 103 113 3,427 5,000
Orlando 3 30 500 196 96 101 18,088 5,000
KAIST 3 30 500 2,617 1,237 1,369 71,443 5,000
SF-Cabs21rand100 3 20 2,000 966 508 983 — 15,000
SF-Cabs22rand100 3 20 2,000 1,065 567 924 — 15,000
Trucks 3 20 2,000 5,709 3,323 1,416 88,123 5,000
Ships 3 100 1,500 500 262 610 — 10,000

A-1 and A-2 as, although all of Sweep, A-1, and A-2 have the same approximation

factor of 2, A-1 and A-2 exploits the apriori -properties of TRAJCLIQs to prune

some false-positives while Sweep does not have any pruning mechanism.

Figure 5.9 compares the significant portions of the results produced by Traclus

with the frequent routes, which were used more than five times, produced by A-1

for the same area. The results produced by Traclus, using its default parameters,

contain a few trajectory clusters, from which we need to extract representative

trajectories. The representative routes are often short and straight lines. Traclus

failed to find longer and more complicated routes like A-1 did — Traclus did not

find the route travelling east to west in the eastern side of the map. The results of

A-1 include frequent routes across junctions (involving turns), which Traclus failed

to find — notice the route in the middle of the map, which involves turns and crosses

junctions. Similarly, in Fig. 5.10, which shows a trajectory cluster and frequent

routes found in a different area of Athens than Fig 5.9, A-1 found a longer frequent

route, which crosses multiple junctions, while Traclus only found a portion of that

frequent route.

Figure 5.11 shows the visualization of the frequent routes (used more than five

times) discovered by A-1 in Trucks dataset (in black) against a background of all
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Figure 5.8: Frequent (Used at least three times and five times) Routes of the Ships
Discovered by Algorithm A-1 (in colors and in black) Superimposed on all Trajecto-
ries (in grey) in the Dataset.

trajectories in the dataset (in light pink). It clearly shows the major road sections

in Athens, which the trucks in the dataset used multiple times.

To summarize the comparison of the algorithms’ outputs, we learnt that our

proposed algorithms produced results, which agrees to human intuitions and which

contains fewer false positives than Sweep. On the other hand, Traclus, using sug-

gested parameters, failed to find some frequent routes, which our proposed algo-

rithms found. Since Traclus failed to deliver intuitive output and it took longer to

process for each dataset, we omitted Traclus from further sets of experiments.

Table 5.6 shows a summary of memory footprints we collected from the garbage

collector logs of algorithms A-1 and A-2 to assess the memory saving A-2 brought

for some datasets. We found that for most datasets (except NCSU), despite the

similar peak memory allocation, the garbage collector could free up (and reuse) more

memory when running algorithm A-2 than when running A-1. We hypothesized that
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(a)

(b)

Figure 5.9: (a) Trajectory Clusters of the Trucks Discovered by Traclus and (b)
Frequent (Used at least five times) Routes of the Trucks Discovered by Algorithm
A-1 in the Same Area.

in such instances, although it is possible to reuse the garbage collected memory,

Java Virtual Machine (JVM) decided to allocate more memory instead of waiting

for garbage collection making the peaked allocation of A-1 and A-2 similar. Should

the JVM decides not to allocate more memory and wait for the garbage collection,

the peaked allocation of A-2 would be much less than that of A-1. This claim is

supported by a closer inspection of memory footprints for NCSU, in which, although

A-2 seemingly allocated more memory (at peak) and freed up less than A-1 did, its

peak (actual) memory usage was only 0.5GB (it did not use a large portion of the

the allocated memory) compared to actual usage of A-1, over 1.0GB.

We conducted a set of experiments in order to assess the quality of false-positive

reduction mechanism employed in A-1 (and, by extension, also in A-2, which uses
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(a) (b)

Figure 5.10: (a) A Trajectory Cluster of the Trucks Discovered by Traclus and (b)
Frequent (Used at least five times) Routes of the Trucks Discovered by Algorithm
A-1 in the Same Area.

Table 5.6: Memory Footprint of Algorithms A-1 and A-2.
Dataset A-1 A-2

Peaked Total Peak Total
Allocated Freed Allocated Freed

NCSU 3.4GB 3.0GB 2.4GB 0.9GB
New York 2.4GB 3.0GB 3.4GB 6.0GB
KAIST 6.4GB 72.4GB 6.4GB 102.6GB
Ships 1.9GB 2.5GB 2.0GB 7.2GB

A-1 as a sub-routine). We developed A-1 (FP), which is essentially A-1 without

the mechanism to remove the false-positives and compared its results and run-time

with those of A-1. Table 5.7 shows detailed comparison of the results and run-time

of A-1 and A-1 (FP). In all but NCSU and New York datasets, A-1 (FP) reported

a significantly higher number of closed-Trajcliqs, all of which we confirmed as

false-positives. In NCSU and New York datasets, some false-positives A-1 (FP)

could not prune would connect two Trajcliqs A-1, reducing the total number of

closed-Trajcliqs A-1 (FP) reported. Nonetheless, even in such cases, we were

able to confirm that the total length of all sub-trajectories (without counting any

portion twice) in the Trajcliqs A-1 (FP) reported is longer than that of A-1.

Although A-1(FP) finished the smaller datasets (Statefair, NCSU, New York, and

Orlando) around at the same time as A-1 does, it took longer time for the larger
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Figure 5.11: All Frequent (Used at least five times) Routes of the Trucks Discovered
by Algorithm A-1 (in black) Superimposed on All Trajectories (in light pink) in the
Dataset.

dataset (KAIST) because A-1 (FP) had to processed the false-positives, which A-1

efficiently pruned off.

Table 5.7: Results and Performance of Algorithms A-1 and A-1 (FP).
Dataset A-1 A-1 (FP)

Run-time Number of Run-time Number of
(seconds) Frequent Routes (seconds) Frequent Routes

Statefair 9 22 12 21
NCSU 63 445 64 268
New York 103 212 102 111
Orlando 96 306 99 419
KAIST 1,237 3,953 1,4,37 16,216

In the subsequent sets of experiments, we will assess the impact of the parame-

ters on the algorithms in New York and KAIST datasets. The impact of parameters

are also similar to Orlando and NCSU datasets.

Figure 5.12(a) and Figure 5.12(b) shows the total running time of algorithms for

datasets, New York and KAIST, using default l and r while varying m. For both

New York and KAIST, A-1 and A-2 finished faster than Sweep, with A-1 being the

fastest. The changes in the value of m did not significantly affect the run-time of
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all algorithms although the run-times were slightly reduced when m = 4 as larger

m values result in fewer frequent routes required to be outputted.

(a) (b)

Figure 5.12: Impact of the Parameter m on the Performance of the Frequent Route
Mining Algorithms Using (a) New York and (b) KAIST with Parameters l = 500
Metre and r = 30 Metre.

Figure 5.13(a) and Fig. 5.13(b) show the total running time for datasets, New

York and KAIST, with default m and r while varying l. For both datasets, as

l increases, the total running time for both A-1 and A-2 decreases, which is more

pronounced for A-2 on KAIST. It is because as l increases, the number of Trajcliqs

and frequent routes decreases and A-1 and A-2 are output sensitive algorithms. We

observed A-1 always performed faster than the others and A-2 performed faster

than Sweep except in KAIST when l = 300m. A-2 took longer time in KAIST

for l = 300m because KAIST contains longer trajectories, which A-2 cannot prune

early, forming using a large set of shorter frequent routes A-2 has to wastefully

process multiple time.

Figure 5.14(a) and 5.14(b) compare the performance of the algorithms for New

York and KAIST using defaultm and l while using different values for r. We see that

the running times for all algorithms increase when r increases because increasing r

also increases the number of Trajcliqs and, hence, the number of frequent routes

in the results. A-1 and A-2 still outperformed Sweep and the run-time of Sweep

increases faster than A-1 and A-2 when r increases. Regardless of the value of r
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(a) (b)

Figure 5.13: Impact of the Parameter l on the Performance of the Frequent Route
Mining Algorithms Using (a) New York and (b) KAIST with Parameters m = 3
and r = 30 Metre.

given, A-1 finished faster than A-2.

(a) (b)

Figure 5.14: Impact of the Parameter r on the Performance of the Frequent Route
Mining Algorithms Using (a) New York and (b) KAIST with Parameters m = 3
and l = 500 Metre.

To summarize our experiment results, we conclude that, for real-life settings

(real-life datasets and intuitive parameter values), our proposed algorithms (A-1 and

A-2) provide more intuitive results and perform faster than Traclus using its default

parameters. They also perform faster than the polynomial time approximation algo-

rithm Sweep due to their pruning power based on apriori -properties of Trajcliqs.

Although A-1 performed faster than A-2 in our experiments, with larger Trajectory

Databases and limited amount of memory, A-2 would give a reasonable trade-off

between run-time and memory requirements in finding sub-trajectory cliques and

frequent routes.
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5.5 Summary

In this chapter, we studied techniques to find frequent routes in Trajectory Databases

without any prior knowledge of the underlying spatial space. We proposed to mine

sub-trajectory cliques (sub-trajectory clusters) called Trajcliqs using Fréchet dis-

tance as the similarity measure and extract frequent routes from the resulting

Trajcliqs. Since mining all Trajcliqs is an NP-Complete problem and exact

algorithms even from data-driven perspective are not feasible, we proposed two

approximate algorithms based on the Apriori algorithm. Empirical results show

that both of our proposed algorithms can run faster than the existing polynomial

time approximation algorithm and provide a tighter results, although the theoret-

ical approximation factor is still the same. The second algorithm we proposed is

a divide and conquer algorithm, which sub-divides the input Trajectory Database

into subsets so that each subset can be processed by instances of the first one. The

divide and conquer algorithm runs slower than the first one yet provides opportuni-

ties for parallelism and/or memory efficiency. Our experiment results showed that

the frequent routes reported by our algorithms are more intuitive (longer, contain

turns and crosses junctions) than those reported by existing clustering algorithm

like Traclus using its default parameters.
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Chapter 6

Discovery of Evolving Convoys

6.1 Introduction

From Trajectory Databases obtained from GPS data and other sensor data, many

new applications such as monitoring of convoys and the stages of their life-time

evolution thread — forming, gaining (losing) members and disbanding — become

a reality in addition to simple discovery of the existence of convoys. A traditional

convoy is routinely defined as a group of moving objects that are close to each

other for a period of time. Existing techniques, following this traditional model

(definition), cannot find evolving convoys with dynamic members and do not have

any monitoring aspect in their design. In this chapter, we will propose new concepts

called dynamic convoys and evolving convoys, which reflect real-life scenarios, and

develop algorithms to discover evolving convoys in an incremental manner.

Object identification and tracking technologies as well as triangulation tech-

niques enable monitoring and archiving movement data of objects. For example, in

an urban setting, pedestrian and vehicle movement can be recorded using a combi-

nation of GPS, cellular networks, Wi-Fi hotspots, and other radio frequency (RF)

sensor networks. Recent developments in such technologies make it possible to ob-

tain movement data at a high temporal resolution (high update-rate). These data

can be used to find interesting Multi-object Movement Patterns called convoys.

Discovering and monitoring convoys have many practical applications ranging
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from traffic planning to wild-life research and even on-line games. Traffic planners

can benefit from knowledge of trucks moving in convoys (moving in groups) between

factories, warehouses, and stores. Convoy discovery can be used to extract complex

herding behaviour of wild animals from GPS-collar data. In on-line games, where

players can form allies, monitoring them and providing a different difficulty level

for each group can lead to a more enjoyable game-play.

Definition. 6.1. Traditional Convoy — A traditional convoy can be defined as

a set of m or more objects, which are within proximity of each other for a duration

dur ≥ w or longer period of time, where m > 1 and w ≥ 1 are user defined

parameters.

Definition 6.1 serves as a template to describe how the existing works [10, 23,

26, 30, 32, 54] defined a group of tracked objects, which move together. The only

difference between the existing definitions of a convoy is the togetherness criteria

(i.e. how to determine the spatial proximity in question) — definition of a flock

[10,23] determines it as being covered by a circle of the given size, that of a moving

group [26,54] determines it as being within a given distance from each other (form

a clique) and that of a convoy [30, 32] determines it as being in the same density-

connected cluster. We will collectively term all the models, which fit Def. 6.1 as

“traditional convoys”.

The concept of dynamic convoys and evolving convoys we will discuss in this

chapter applies to traditional notion of convoys defined using any togetherness cri-

teria (spatial proximity). However, we focus our studies on convoys formed from

density-connected objects because defining spatial-proximity as density-connection

is more relevant for real-world objects. In reality, many moving objects, such as

trucks, pedestrians etc, occupy a spatial-space, which is not shared with other ob-

jects. Thus, a set of moving objects may not fit into a circle (form a clique) of
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given size (with given maximum distance between members) if it has a large num-

ber of members. In contrast, a convoy formed from density-connected objects can

occupy a spatial region of arbitrary size and shape in its lifetime rather than a fixed

geometric shapes such as a circle. We will use the following running example to

illustrate the novel concepts in this chapter.

Example 6.1. Figure 6.1 shows movement of five commuters. Alice (a), Bob (b),

and Cathy (c) were heading to works (work1 and work2), when Elvis (e) joined

them. Later, Bob took a de-tour to purchase some petrol for his car from a petrol

station (gas). David (d) followed a different route. Circles with time-stamps show

spatial proximity.

Figure 6.1: Trajectory Database Containing Five Commuters’ Movements.

Definition. 6.2. A convoy C is closed if and only if there is no convoy C ′ that

contains all members of C and has a life-span completely covering that of C, i.e.

C is a closed convoy if and only if @C ′ such that C ⊆ C ′, tstart(C
′) ≤ tstart(C) and

tend(C) ≤ tend(C ′).

Under Def. 6.1, a subset of a convoy is often a convoy. Since subsets can be

derived from the larger convoy that contains them, only closed convoys defined as

in Def. 6.2 are of interest in many applications. For example, in Fig. 6.2, which

illustrates the events of Example 6.1 between t6 and t14 in details, {a, b, c} forms
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a convoy during [t6, t13]. However, it is not a closed convoy in the sense that its

superset, {a, b, c, e} forms a convoy during the same time-frame, [t6, t13].

Figure 6.2: Detailed Movements of the Five Commuters from Fig. 6.1 during
[t6, t14].

Although Def. 6.1 is intuitive, the notion of convoys having only persistent mem-

bers does not reflect real-life scenarios and, hence, it cannot be directly applied. For

the movement scenario described in the example 6.1, when a car-pool administra-

tor, who wants to know whether car-pooling is possible for the commuters, tries to

find closed convoys of size m = 2 and duration w = 5, he will be overwhelmed by

a result containing seven closed convoys as listed in the first column of Tab. 6.1.

Table 6.1: Maximal Convoys Formed by Five Commuters Depicted in Fig. 6.1.

Convoys Life-span Note

C1 = {a, c} t1-t22 Not covered by C3 or C4 (life-span not fully covered)
C2 = {c, e} t6-t31 Not covered by C4 or C5 (life-span not fully covered)
C3 = {a, b, c} t1-t13 Not covered by C6 or C7 (life-span not fully covered)
C4 = {a, c, e} t6-t22 Not covered by C6 or C7 (life-span not fully covered)
C5 = {b, c, e} t15-t31 Not covered by C6 or C7 (life-span not fully covered)
C6 = {a, b, c, e} t6-t13 Different from C7; different life-span.
C7 = {a, b, c, e} t15-t22 Different from C6; different life-span.

From the above example, we made the following observations on nature of real-

life convoys that Def. 6.1 (and Def. 6.2) cannot cope with :

1. Some members of the convoy may temporarily leave the group. Actually a, b,

c, and e formed a convoy from t6 to t22 as they were literally moving together.

However, according to Def. 6.1, there were three convoys (C4, C6, and C7) for
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their movement in Tab. 6.1 because b was not detected together with the rest

(a, c, and e) at a single time-stamp t14 resulting in a short gap that eventually

creates three overlapping convoys. Hence, we observed that the definition of

convoy needs to be more flexible to allow some dynamic members to move

away occasionally. We refer to a convoy that allows dynamic members a

dynamic convoy.

2. Some members may join (leave) the convoy later (earlier) than the convoy’s

starting (ending) time — resulting in the convoys evolve into a larger (smaller)

convoy. In our example, the convoy {a, b, c} was joined by e and evolve into

a larger convoy {a, b, c, e} at t6, which, in turn, evolves into a smaller convoy

{b, c, e} at t23. While this is intuitively a single group of moving objects that

had a new member joining and an existing member leaving in different stages

of its life-span, there are seven maximal convoys in the result reported to the

administrator. Representing this single evolving convoy as seven overlapping

convoys is not intuitive and hard to comprehend for human users. It is also

difficult to order or establish relationship among the overlapping convoys.

Hence, we noted that the definition of convoy needs to take account of objects

joining (leaving) the existing convoy since it will be more useful if the moving

group is represented as three stages of a single evolving convoy.

Many existing works do not have a satisfactory mechanism to handle the con-

voys’ behavior we observed above. For the scenario in Fig. 6.1, the algorithms

proposed by an existing work [32] report only two convoys – {a, c} from t1 to t22

and {b, c, e} from t23 to t31. Start-time of {b, c, e} is wrongly reported as t23 in-

stead of actual t15. This error is introduced because c was in many convoys, whose

life-spans were overlapped, and the earlier C1 = {a, c} is favoured over the rest

(including C5 = {b, c, e} and C2 = {c, e}), pushing their start-times until it ended
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at t22. As a result, start-time of {b, c, e} is erroneously reported and the longest-

duration convoy, C2 = {c, e}, is not reported at all1. The technique in [54] (and [26])

reports all convoys (all seven closed convoys) without any information to establish

links between the results. Algorithms in another work [33] report different number

of cluster sequences for different values of similarity threshold, θ. For example, two

cluster sequences will be reported for similarity threshold θ = 0.70.

It is a difficult challenge to report all closed convoys from a given Trajectory

Database, i.e. for Fig. 6.1, listing all seven closed convoys. A brute force solution

would be to check each subset of O, which contains two or more members (in this

case there are 27 such subsets), throughout all possible time-partitions of five or

more consecutive time-stamps (in this case there are 378 such partitions). However,

this may also result in many convoys that are not closed and, hence, need another

expensive post-processing step.

Chapter Contributions

The contributions of this chapter are:

1. Introducing novel concepts of dynamic convoys and evolving con-

voys — in contrasts to traditional persistent-members-only definitions, the

new definition of Dynamic Convoy (DYCO) allows dynamic members un-

der constraints imposed by user-defined parameters. An Evolving Convoy

(EC) captures the relationship between different stages of convoys such that

a convoy in a stage has more (fewer) members than its previous stage.

2. Development of three algorithms that can be used to incrementally

discover evolving convoys — all proposed algorithms are incremental in

nature and can be used in both off-line and streaming data.

1Personal communications with the authors confirmed this claim.
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To the best of our knowledge, this is the first work that addresses the Dynamic

Convoys and Evolving Convoys2. Convoys with dynamic members are natural and

common in real-life. Information on membership is equally important to the mere

existence of convoys as many applications need to examine the members of a convoy

for further processing. In the above example, which commuters form convoys is a

natural question after discovering some convoys so that car-pooling suggestions can

be dispatched to appropriate persons.

6.2 Dynamic Convoys and Evolving Convoys

Definition. 6.3. Dynamic Convoy – For given parameters: m, k, and w (m >

1, 1 ≤ k ≤ w), a set of moving objects D forms a Dynamic Convoy (DYCO) from

tstart(D) to tend(D) if it :

• Contains at least m persistent members (denoted by PMD), all of which are in

the same density-connected cluster in each time-stamp t in [tstart(D), tend(D)],

i.e. PMD ⊆ D and for tstart(D) ≤ ti ≤ tend(D), |PMD| ≥ m, and PMD ⊆ Li,

where Li is a maximal density-connected cluster found in time-stamp ti and

• Contains zero or more dynamic members (denoted by DMD), each of which

must be in the same density-connected cluster with the persistent-members

at least k times for any w sliding window in [tstart(D), tend(D)], i.e. D =

PMD ∪ DMD and if PMD ⊆ Lj, which is a density-connected cluster found

at time-stamp tj, then, for any dynamic member o ∈ DMD, tstart(D) ≤ ti ≤

tend(D)− w + 1, and i ≤ j ≤ i+ w − 1, the number of times o ∈ Lj ≥ k.

Definition 6.3 introduces flexibility to Def. 6.1 by defining a discipline for some

members (dynamic members inDMD) concerning leaving and returning their parent

2For detailed comparison between different convoy models, refer to Sect. 3.2.2 through 3.2.6

110



convoy. The first condition ensures that, for any given w consecutive time-stamps

(called w period) in a convoy’s life-span, a fixed set of the persistent members

(PMD) form its main body. The second condition requires each dynamic member

(o ∈ DMD) to stay close with the set of persistent members frequently enough –

at least k times in any w sliding window in the convoy’s life-span. This constraint

filters out occasional by-passers from being reported as a (dynamic) member of a

dynamic convoy. For smaller k values, a dynamic-member can move away from

the convoy for a longer period while larger k values prohibit a dynamic-member

from being away for a long time (k = w means no dynamic-member is allowed and,

hence, the convoy becomes a traditional convoy.) For example, in Fig. 6.1, with

m = 2, w = 5, and k = 4, {a, b, c, e} forms a dynamic convoy from t6 to t22.

It is clear that for a dynamic convoy D, PMD forms a traditional convoy. There-

fore, for a given Trajectory Database, we can have as many dynamic convoy as we

have traditional convoys. Although dynamic convoys allow dynamic members to

move away (under discipline) from the parent convoys, they cannot handle the

case(s) of a new (existing) member entering (leaving) the convoy well. For in-

stance, for m = 2, k = 4, and w = 5, in the scenario described in Example 6.1,

D1 = {a, b, c} in [t1, t22], D2 = {b, c, e} in [t6, t31], D3 = {a, b, c, e} in [t6, t22] and

many of their subsets are all dynamic convoys. From usability point of view, re-

porting all (dynamic) convoys, whose members and life-spans are overlapped, may

be confusing. It is also difficult for a human user to establish relationship between

overlapping dynamic convoys. Selecting a representative from overlapping convoys

is, however, application-dependent. For example, some administrators may be in-

terested in longer-duration convoys (like D2) while others may be interested in

larger convoys (like D3). A more comprehensive approach is to report each set of

overlapping convoys as an evolving entity with stages.
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Figure 6.3: The Concept of Convoy Evolution.

Definition. 6.4. w-convoy – A dynamic convoy of duration dur = w is called a

w-convoy.

For given m, k, and w, a dynamic convoy D of duration dur ≥ w has dur −

w + 1 w-convoys D1, D2, ..., D(dur−w+1) of duration w, each of which has the same

persistent-members and dynamic-members as D. For example, the convoy D1 =

{a, b, c} (see above paragraph) that exists from t1 to t22 has 18 convoys of duration

w, each having the same set of members as D1.

Definition. 6.5. Evolution of w-convoy – A w-convoy D that exists from t to

t + w − 1 evolves into another w-convoy D′ that exists from t + 1 to t + w if they

have at least m common persistent-members, i.e |PMD ∩ PMD′| ≥ m.

Definition 6.5 defines how a w-convoy can evolve into the next w-convoy of

duration w. It ensures that a convoy evolves only into a related convoy (not to a

convoy with totally different members). It also prohibits a convoy from evolving to

an earlier convoy or back-ward evolving. The w-convoys formed by a, b, c, and e

in the scenario in Fig. 6.1, for parameters m = 2, k = 4, and w = 5, is shown in

Fig. 6.3. D1 = {a, b, c} that exists from t1 to t5 evolves into D2 = {a, b, c} that

exists from t2 to t6, which in turn evolves into D3, D4, and D5. Then, D5 = {a, b, c}

evolves into D6 = {a, b, c, e} as they share {a, b, c} as persistent members. Then,

the evolution continues until D18, which evolves into smaller D19 and so on.

Definition. 6.6. Closed Sequence of w-convoys – A sequence of w-convoy

D1, D2, ..., Dz such that each Di evolves into D(i+1) for 1 ≤ i < z is closed if there
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is no w-convoy D′, which evolves into D1 or into which Dz evolves into.

Following Def. 6.6, we can see that in Fig. 6.3, there is a single closed sequence

of 27 w-convoys, from D1 = {a, b, c} to D27 = {b, c, e}. Informally, for each closed

sequence of w-convoys in a Trajectory Database, there is a corresponding evolving

convoy (defined below) that covers all related convoys (even convoys, whose duration

are longer than w). For example, in Fig 6.3, the evolving convoy corresponding to

the closed sequence of w-convoys has three stages — stage S1 = {a, b, c}, stage

S2 = {a, b, c, e}, and stage S3 = {b, c, e}. In this way, information of convoys

become more comprehensive.

Definition. 6.7. Evolving Convoys – For given parameters m, k, w and a

closed sequence of w-convoys, D1, D2, ..., Dz such that each Di evolves into D(i+1)

for 1 ≤ i < z, the corresponding Evolving Convoy (EVOCO) V contains z′ ≤ z

stages. Each stage SV (j), for 1 ≤ j ≤ z′, is defined as a continuous sequence of

w-convoys [Ds, De] having the same set of members.

Definition 6.7 ensures a sequence of related dynamic convoys to be covered in

an evolving convoy with stages. The members at each stage covering w-convoys

[Ds, De] are the members of Ds. The start-time and end-time of a stage S[s,e]

that covers w-convoys [Ds, De] can be derived from the start-time and end-time of

participating w convoys. For example the period of the first stage S1 of the evolving

convoy V is from t1 to t5, while the period of the last stage S3 of V is from t22 to

t31. Each stage corresponds to at least a dynamic convoy and, from an evolving

convoy, the dynamic convoys it covers can be derived by a brute-force approach.

Evolving convoys have interesting properties. By Def. 6.7, an evolving convoy

can gain (lose) new (existing) members throughout its life, i.e. any non-member

object can become a member (and vice versa). Moreover, evolving convoys allow a

persistent member in the current stage to become a dynamic member in subsequent
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Figure 6.4: Transition between Membership in an Evolving Convoy.

stages (and vice versa) and impose no hard differentiation on a member’s role,

i.e. Any member can become a dynamic member (persistent member) and leave

(form) the main body of the convoy. Figure 6.4 depicts a state-transition diagram

outlining the memberships and transition between each pair of memberships in an

evolving convoy. A non-member can become a dynamic member by staying at

least k times together with the set of persistent members of the convoy during the

previous w period. A dynamic member, if it stays together with PM w times during

the previous w period, will become a persistent member. A persistent (dynamic)

member becomes a dynamic member (non-member) if it does not stay together w

(k) times with the persistent members during the previous w period.

The fact that a member in an evolving convoy changes his role (dynamic mem-

bership/persistent membership) agrees with real-life scenarios. Consider a group of

five soldiers each, in turn, taking a point-duty, i.e to walk ten meter ahead of the

group looking for anomalies, depicted in Fig. 6.5. Although this is a convoy moving

for 50 time-stamps, there is no fixed set of persistent-members defining the main

body from t1 to t50 for any m > 1. However, with parameters w = 20, k = 10, and

m = 2, we can detect this particular collective movements as an evolving convoy as

the soldiers returning from point-duty will take the role of persistent-member and

form the main body of the convoy. For example, b is a dynamic-member earlier and,

eventually, a persistent-member at t21 onwards. Thus, a and b together formed the

main body of the evolving convoy during [t41, t50].
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Figure 6.5: A Visualization of the Example of Five Soldiers’ Movements.

To summarize this section, following the traditional notions of convoys, there

are many overlapping convoys, the relationship among which is hard to establish,

in a Trajectory Database. Therefore, the new concept of evolving convoys, which

allow a convoy to evolve from a stage to the next, provides better picture of the

real-life groups of moving objects than the traditional definitions.

Definition. 6.8. Discovery of Evolving Convoys – Given a Trajectory Database

R, DBSCAN parameters ε and min pts, and constraints m, k, and w, Discovery

of Evolving Convoys (DEC) is defined as finding evolving convoys.

6.3 Algorithms to Discover of Evolving Convoys

We developed three algorithms to discover evolving convoys from a Trajectory

Database. The first algorithm is a straight-forward implementation while the next

two algorithms mitigate the performance bottlenecks of their predecessors.

6.3.1 Simple Slice-by-slice Algorithm

The Simple Slice-by-Slice algorithm (S3) is directly obtained from the problem def-

inition and is similar to MC2 in [33] and CMC in [32]. It obtains density-connected

clusters in each time-stamp in the Trajectory Database. Each cluster is treated as

a potential candidate and S3 tries to verify if it actually forms a convoy by checking

clusters in subsequent time-stamps.

Details of S3 is shown in Algorithm 6.1. If the Trajectory Database R has
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missing records, the function SNAP performs linear interpolation to fill the gaps

in R′ — it gives a snapshot of R at time-stamp t by reporting the location of

each tracked objects at t. EXTEND is a function that tracks count or the number

of times an object o ∈ O is found with the PMV for each convoy V and assigns

different role to each member o for a convoy, effectively implementing the state-

transition diagram in Fig. 6.4. In this way, it maintains a log of stages for each

convoys so that the stages of the evolving convoys can be returned. The internals

of the sub-routine EXTEND is shown in Algorithm 6.2.

Algorithm 6.1 Simple Slice-by-Slice Algorithm (S3) to Discover Evolving Convoys.

Input: R, ε, min pts, m, k and w.
Output: A set of Evolving Convoys V .

1: V ← φ and Vcur ← φ
2: for t = 1 to τ do
3: Snapshot R′ ← SNAP(R, t)
4: Set of Clusters L ← DBSCAN(R′, ε,min pts)
5: match(L)← false for all L ∈ L
6: for all V ∈ Vcur do
7: extended← false
8: for all L ∈ L such that |L ∩ PMV | ≥ m do
9: EXTEND(V , L), match(L)← true, and extended← true

10: if extended = false then
11: tend(V )← (t− 1) and Vcur ← Vcur − {V }
12: if tend(V )− tstart(V ) + 1 ≥ w then
13: V ← V ∪ {V }
14: for all L ∈ L such that match(L) = false and |L| ≥ m do
15: Create new convoy V with PMV ← L and tstart(V )← t
16: Vcur ← Vcur ∪ {V }
17: for all V ∈ Vcur such that τ − tstart(V ) + 1 ≥ w do
18: Set tend(V )← τ and V ← V ∪ {V }

For each time-stamp t, S3 obtains a complete snapshot R′ using SNAP (line 3)

and all the objects in R′ are clustered using DBSCAN (line 4). S3 tries to match

each of the current convoys maintained in Vcur with the clusters found in the current

timestamp (lines 6 - 9). If m or more persistent-members of a convoy V is found in a

cluster C, V is matched to C — we say V “extends” to C. For each evolving convoy

V matched to a cluster L, its member objects are tracked by EXTEND(V, L) (line
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Algorithm 6.2 Sub-routine EXTEND Used in Simple Slice-by-Slice Algorithm.

Input: V , L, m, k and w.
1: for all o ∈ O do
2: count← no. of times o is density-connected to

PMV in [t− w + 1, t]
3: if count = w then
4: PMV ← PMV ∪ {o} and DMV ← DMV − {o}
5: else
6: if count ≥ k then
7: PMV ← PMV − {o} and DMV ← DMV ∪ {o}
8: else
9: PMV ← PMV − {o} and DMV ← DMV − {o}

9). When a matching cluster cannot be found, the convoy is put in the results if

its life-span is at least w (lines 12-13). Those clusters L, into which no convoy has

extended, are made potential convoys and placed in Vcur(lines 14-16).

The S3 algorithm reports a split when it detects a convoy V extends to more

than one clusters. It can also detect merges using a test – conducted in each

time-stamp — which checks whether two convoys, V and V ′, have the same set of

persistent-members.

Figure 6.3.1 shows movement of eight objects in nine time-stamps. Formin pts =

2, m = 2, k = 3 and w = 4, this Trajectory Database contains two evolving con-

voys, shown in shaded areas, namely V1 and V2. A partial trace following convoy

V1 is listed in Tab. 6.2. At t = t1, S3 found a cluster C1,1 = {a, b, c, d}, which

is made as a potential convoy V 1 and put into Vcur. In subsequent time-stamp

t = t2, DBSCAN returns a cluster C2,1 = {a, b, c}, into which the potential convoy

V 1 extends to because C2,1 has 3 ≥ m objects common with PMV 1 and PMV 1

becomes {a, b, c}. For each object o, EXTEND tracks count for or the number of

times it appeared with PMV 1 in [t − w + 1, t], thus, for example, at t2, count for

a = 2 and count for d = 1. In this way, at t = t4, existence of convoy V 1 starting

from t1 is confirmed (d and e are not included as count for d = 1 < k and count for

e = 2 < k). In time-stamp t = t5, DBSCAN returns two clusters C5,1 = {a, c, e}
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and C5,2 = {d, f, g}. V 1 extends to cluster C5,1, and, since count for e = 3 ≥ k, e is

noted to be joining the convoy. Since no convoy extends to cluster C5,2, a potential

convoy V 2 = {d, f, g} is put into Vcur.

Figure 6.6: A Trajectory Database of Eight Objects’ Movements.

Table 6.2: A Partial Trace of the Simple Slice-by-Slice (S3) Algorithm Following
the Convoy V1 in Fig. 6.3.1.

t PMV 1 DMV 1 count of log(V 1)
a b c d e f

t1 {a, b, c, d} - 1 1 1 1 0 0
t2 {a, b, c} - 2 2 2 1 0 0
t3 {a, b, c} - 3 3 3 1 1 0
t4 {a, b, c} - 4 4 4 1 2 0 Stage S1 = {a, b, c}.
t5 {a, c} {b, e} 4 3 4 0 3 0 Stage S2 = {a, b, c, e}.

b became DM.
t6 {a, c, e} {b} 4 3 4 0 4 0 e became PM.
t7 {c, e} {a, b} 3 3 4 0 4 0 a became DM.
t8 {c, e} {b} 2 3 4 0 4 0 Stage S3 = {b, c, e}
t9 {b, c, e} - 1 4 4 0 4 0 b became PM.

6.3.2 Interleaved DEC Algorithms

In the Simple Slice-by-Slice algorithm (S3), all objects in each time-stamp are clus-

tered using DBSCAN, which is an expensive operation. Therefore, for better per-

formance, we need to minimize DBSCAN calls. TRAJ-DBSCAN (DBSCAN for

trajectories) proposed in [32] uses the closest distance between each trajectories as

their distance. It has a property that if objects o1 and o2 are density-connected

at t (t ≤ t ≤ t + λ − 1), their trajectories j1 and j2 for [t, t + λ − 1] are in the
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same trajectory-cluster returned by TRAJ-DBSCAN. Therefore, in order to prune

objects which may not form a cluster in a given time-stamp t (t ≤ t ≤ t + λ − 1),

we borrowed TRAJ-DBSCAN to check the trajectory-clusters for trajectories in

[t, t+ λ− 1].

For better performance, TRAJ-DBSCAN works on trajectories simplified by

DP-simplification [32]. DP-simplification uses a parameter δ to reduce the number

of points to represent a trajectory by allowing an error less than δ.

Our proposed Interleaved-DEC (ID) algorithms divide the Trajectory Database

into partitions, each containing λ consecutive time-stamps. For each partition,

Interleaved-DEC (ID) algorithms operates in two steps — the first is to get the

set of objects which likely to form convoys while the second is actual clustering of

objects and extending of the convoys. ID algorithms, therefore, interleave the two

steps (hence their names) as they progress. We will collectively call the ID algo-

rithms as “ID-Family” The length of each partition (λ) and trajectory simplification

parameter (δ) can be set independently.

The First Interleave DEC Algorithm (ID-1)

The first interleaving algorithm, ID-1, is a simple extension of S3. A sketch of ID-1 is

shown in Algorithm 6.3. The function PARTITION(R, p, λ) returns the pth λ-length

partition from Trajectory Database R. Selective SNAP – S SNAP(P , J, t) – returns

the data of the given set of objects J at t. For each partition P , the trajectories

are clustered using TRAJ-DBSCAN (lines 3-5). For each trajectory-cluster J found

in current partition, only its members are clustered in each-timestamp t (lines 6-8)

saving clustering efforts. Matching the clusters found in each time-stamp against

the set of current convoys and initiating un-matched clusters as potential convoys

are same as S3(lines 9-20).

ID-1 brings performance improvement over S3 by clustering a handful of objects
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Algorithm 6.3 The First Interleave DEC Algorithm (ID-1) to Discover Evolving
Convoys.

Input: R, ε, min pts, m, k and w.
Output: A set of Evolving Convoys V .

1: V ← φ and Vcur ← φ
2: for t = 1 to τ do
3: if mod(t− 1, λ) = 0 then
4: p← t/λ+ 1 and P ← PARTITION(R, p, λ)
5: Set of Trajectory Clusters J ← TRAJ-DBSCAN(P , ε,min ptsδ)
6: for J ∈ J do
7: Snapshot R′ ← S SNAP(P , J, t)
8: Set of Clusters L ← L∪ DBSCAN (R′, ε,min pts)
9: match(L)← false for all L ∈ L

10: for all V ∈ Vcur do
11: extended← false
12: for all L ∈ L such that |L ∩ PMV | ≥ m do
13: EXTEND(V , L), match(L)← true, and extended← true
14: if extended = false then
15: tend(V )← (t− 1) and Vcur ← Vcur − {V }
16: if tend(V )− tstart(V ) + 1 ≥ w then
17: V ← V ∪ {V }
18: for all L ∈ L such that match(L) = false and |L| ≥ m do
19: Create new convoy V with PMV ← L and tstart(V )← t
20: Vcur ← Vcur ∪ {V }
21: for V ∈ Vcur such that τ − tstart(V ) + 1 ≥ w do
22: tend(V )← τ and V ← V ∪ {V }

each time-stamp. For example, in Fig. 6.3.1, if we set λ = 2, in partition [t3, t4],

only trajectories of a, b, c and e will form trajectory-clusters while those of d, f , g

and h will not. Therefore, in time-stamps t3 and t4, ID-2 needs to cluster only four

objects in contrast to S3 clustering eight objects each time-stamp.

The Second Interleave DEC Algorithm (ID-2)

Although ID-1 is expected to have better performance than S3, it is still costly

because the pruning is not tight enough and have false positives, which must be

checked and removed by the slice-by-slice loop that follows. For instance, in the

scenario shown in Fig. 6.3.1, trajectories of objects f , g and h form a trajectory

cluster in partition [t1, t2] as the closest distance between h and f (g) was small as
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they meet in t1 (t2). ID-1 must, therefore, try to cluster them for 2 time-stamps (t1

and t2) without finding a single cluster (and convoy) they form. We also noted that

if a convoy is verified to exist from ti to ti+λ−1, its members can be excluded from

TRAJ-DBSCAN, i.e. clustering the trajectories of a, c and e in partition [t5, t6] is

a waste if their convoy is verified to exist up to t6.

We developed another interleaving algorithm ID-2 to have tighter pruning than

ID-1 and exploit the fact we noted to save trajectory-clustering efforts. The skeleton

of the second interleaving algorithm, ID-2, is given in Algorithm 6.4. For each

partition Pp, ID-2 first tries to extend the current convoys in Vcur and those which

failed to extend until end of Pp are put into results (line 4). Objects which are not

persistent-members of any current convoy (verified up to end of Pp) can form new

convoys. Therefore, new convoys are formed out of them and put into the list of

current evolving convoys Vcur (line 5).

Algorithm 6.4 The Second Interleave DEC Algorithm (ID-2) to Discover Evolving
Convoys.

Input: R, ε, min pts, m, k and w.
Output: A set of Evolving Convoys V .

1: V ← φ, Vcur ← φ and N ← w/λ
2: for p = 1 to τ/λ+ 1 do
3: Partition Pp ← PARTITION(R, p, λ)
4: V ← V ∪ S VERIFY(Pp, Vcur, ε, min pts, m, k, w)
5: Vcur ← Vcur ∪ NEW CONVOY(p, Vcur, ε, min pts, m, k, w)
6: for all V ∈ Vcur such that τ − tstart(V ) + 1 ≥ w do
7: Set tend(V )← τ and V ← V ∪ {V }

Since, a current convoy V can only extend to a cluster L containing at least

m of its persistent members (PMV ), S VERIFY, shown in Algorithm 6.5, uses the

persistent-members of the convoy PMV as a guide to build the clusters it can ex-

tend. In each time-stamp t in the given partition Pp, clusters containing persistent-

members of evolving convoy V ∈ Vcur are formed by S DBSCAN (lines 3 - 4). Then,

the convoys are extended to the clusters found (lines 6-9) and those convoys, which
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cannot extend anymore are returned.

Algorithm 6.5 Sub-routine S VERIFY Used in the Second Interleave DEC Algo-
rithm.

Input: Pp, Vcur, ε, min pts, m, k and w.
Output: A set of Evolving Convoys V .

1: for t = tstart(Pp) to tend(Pp) do
2: Lt ← φ
3: for all V ∈ Vcur do
4: Set of Clusters Lt ← Lt ∪ S DBSCAN(R, PMV , t, ε,min pts)
5: Set match(L)← false for all L ∈ Lt
6: for all V ∈ Vcur do
7: Set extended← false
8: for all L ∈ Lt such that |L ∩ PMV | ≥ m do
9: EXTEND(V , L) and match(L)← true and extended← true

10: if extended = false then
11: tend(V )← t− 1, Vcur ← Vcur − {V } and V ← V ∪ {V }

S DBSCAN is a modified version of DBSCAN that returns all the valid clusters

in R at t containing all objects o ∈ PMV according to DBSCAN parameters ε and

min pts. S DBSCAN is built around the fact that any object o can be either a core

point or a border point in a density cluster (or a noise). Since a density-cluster

can be built starting with any of its core points, the given object will be used as

the seed to recursively expand its cluster if it is a core point. On the other hand,

if it is a border point, one of its ε-neighbor must be a core point. Therefore, its

ε-neighbors are used as seeds to build the clusters containing them. For example,

if we ask S DBSCAN to find clusters containing {b, c}, in Fig. 3.1, it will return

L1 and L3 (but not L2). While c can be directly used as the seed to build L1, a, a

neighbor of b is used to construct L3 as b is not a core-point.

Since it is possible that new convoy formed from the clusters that S DBSCAN

leaves to build (for example L2 from Fig. 3.1), NEW CONVOY (see Algorithm 6.6)

uses a filter-refinement scheme to initiate new convoys. In order to avoid finding

convoys already existed, only trajectories, which are not persistent-members of any

existing convoys, are clustered (lines 1-2). Trajectory-clusters are verified if they
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can form a set of persistent members across N = w/λ partitions (or w time-stamps)

to get convoy-candidates (lines 3 - 9). The set of convoy candidates D is used as a

guide to find the set of convoys V ′cur, whose start-time is in partition P(p−N+1) (line

10). VERIFY is a similar to S VERIFY except it uses D to find cluster instead of

Vcur to find density-connected cluster (see line 3 of S VERIFY) and it initiates the

un-matched clusters as potential convoys (which S VERIFY does not). Convoys in

V ′cur are extended by S VERIFY until end of partition P(p)(lines 11 - 12).

Algorithm 6.6 Sub-routine NEW CONVOY Used in the Second Interleave DEC
Algorithm.

Input: p, Vcur ε, min pts, m, k and w.
Output: A set of Evolving Convoys V ′

1: Partition P ′p ← Pp − {〈o, t, loc〉| there is V ∈ Vcur such that o ∈ PMV }
2: Set of Trajectory Clusters Jp ← TRAJ-DBSCAN(P ′p, ε,min pts, δ)
3: D ← J(p−N+1)

4: for T = p−N + 1 to p do
5: D′ ← φ
6: for all D ∈ D do
7: for all J ∈ JT such that |J ∩D| ≥ m do
8: D′ ← D′ ∪ {J ∩D}
9: D ← D′

10: V ′cur ← φ and Call VERIFY(P(p−N+1), D, V ′cur, ε, min pts, m, k, w)
11: for T = p−N + 2 to p do
12: Call S VERIFY(PT , V ′cur, ε, min pts, m, k, w)

Here is an illustration of ID-2 on Trajectory Database in Fig. 6.3.1. For the

first two partitions [t1, t2] and [t3, t4], there is no existing convoys in Vcur. To find

new convoys of at least w = 4 period, trajectory-clusters from those partitions

are examined. In the first partition, there are two trajectory-clusters, {a, b, c} and

{f, g, h}. However, the second partition has only one trajectory cluster {a, b, c, e}.

Thus, slice-by-slice verification is done only for the convoy containing persistent-

members {a, b, c} and put it into the set of existing convoys. In the third partition

[t5, t6], the existing convoy {a, b, c} is extended until t6 (e became a persistent-

member, b became dynamic-member). Since the convoy containing {a, b, c, e} is

verified to exist up to t6, trajectories of its members are left in TRAJ-DBSCAN
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operation and a trajectory cluster containing d, f and g is formed. In the fourth

partition [t7, t8], existing convoy is extended up to t8 and a new convoy {d, f, g} is

formed.

tab

6.4 Experimental Evaluations

6.4.1 Preliminary Experiments

Before we present our experiments on convoy discovery algorithms, we will give

a summary of the preliminary investigation we conducted in order to assess the

performance of convoy discovery algorithms in the absence of high performance

spatial-temporal index. We have the preliminary experiment results published in [6]

and reproduce the full report in Appendix A.

In a streaming Trajectory Database setting, when only rudimentary spatial-

temporal index built in ad hoc manner is available and location update rate is

predictable/fast, S3 cannot scale well with the size of dataset compared to our

proposed ID-Family. ID-1 can be used when we want convoys of short-duration

or when few false positives are expected — a false positive means a trajectory

cluster forms for a time-partition but no density-connected cluster is found in any

time-stamp during the time-partition. ID-2 is suitable for many scenarios.

We also learnt good settings for parameters δ and λ as they have impact on

performance (but not correctness) of the ID-Family . Although δ can be set inde-

pendently, we recommend to set δ low (our experiences suggest lower than half of

ε) to have tighter bound since higher δ values will increase the false-positives and,

hence, running time. Yet, λ is not an independent variable as it determines how

often the user gets the reports as all information of convoys in a λ-partitions P are

reported in bulk only after P has been read in. Therefore, users would want to
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set λ as low as possible. We observed that the lower the value of λ, the better ID

algorithms perform. However, the running time rises when λ is set such that each

partition includes only 1-2 movement record for each object, putting more over-

heads in TRAJ-DBSCAN operations. Therefore, from our studies, we recommend

setting a low λ value as long as each object reports its location 3 or more times in

a given length of partition (λ).

6.4.2 Experiment Setup

We implemented our proposed algorithms in Java along with X-CuTS, a naive

extension of CuTS [32]. X-CuTS, like original CuTS3, essentially divides the Tra-

jectory Database into partitions (of λ time-stamps each), performs TRAJ-DBSCAN

to filter objects, which will not form convoys, and performs verification. However,

λ values for X-CuTS must be greater than w − k in order to prevent its pruning

mechanism from pruning dynamic members (by joining trajectory clusters across

partitions), which can be away from the convoy up to w − k time-stamps. We ran

X-CuTS with λ = w/2 when k = 0.60× w.

For all sets of experiments, the interval between each consecutive time-stamps

was set at 10 seconds but no pre-processing was done for missing records. The

parameters used for the experiments were selected intuitively. For example, the

distance between walking/commuting humans (ε) in the same convoy was 10/15

meter while that of moving taxis was 100 metre. Details of the parameters used for

each dataset is given in Tab. 6.3.

The main distinguishing feature of these sets of experiments is that they used

permanently-built indexes to support range queries (described immediately be-

low) while the preliminary experiments in Sect. 6.4.1 used only rudimentary low-

performance ad-hoc indexes.

3Refer to Sect. 3.2.4 for more information of CuTS
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Table 6.3: Parameters Used to Assess Convoy Discovery Algorithms.
Dataset m w k ε min pts λ δ
Statefair 2 90 60 10 2 12 3
NCSU 3 90 60 10 3 12 3
New York 3 90 60 15 3 12 3
Orlando 3 90 60 15 3 12 3
KAIST 3 90 60 10 3 12 3
SF-Cabs21 3 90 60 100 3 12 10
SF-Cabs21 3 90 60 100 3 12 10

Index Used to Support Range Queries

The range query operation heavily used in DBSCAN was supported by a 3D grid

index built in the following manner. First, we divided the spatial-space of the

Trajectory Database (R) into p × q equal-sized squares and, for each square, we

created a cube for each tgrid time-range, i.e. the spatial-temporal space of the R was

divided into p rows, q columns, and dτ/tgride cubes, where τ is the number of time-

stamps in R. Then, we associated each cube with a unique number (cid) in such a

way that cubes having same time-range have consecutive numbers. Finally, for each

line-segment 〈loc, locnext〉 and each of the cube it passes, an entry 〈pkey, cid〉 was

inserted into the index, where locnext is defined as the next loc an object o is going

to visit after a particular record in R and pkey is the primary key of the record in

R. In essence, the 3D grid index is similar to Bx-tree [27], which is proven to be

suitable for large Trajectory Databases.

We determined the ideal values for p, q, and tgrid by minimizing a linear com-

bination of the average number of cube per pkey (it is directly proportional to the

storage requirement of the index) and the average number of pkey per cube (it is

directly proportional to the number of data-access/computation-units each query

makes after accessing the index):

cost(p, q, tgrid) = α. 1
npkey

.
∑

pkey∈R
xpkey + (1− α) 1

ncube
.

∑
cube∈index

xcube,

where npkey is the number of records in the Trajectory Database, xpkey is the
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Table 6.4: Datasets and Index Settings Used by the Convoy Discovery Algorithms.

Dataset Map-size p q tgrid (in seconds)
Statefair 1.1 x 1.0 km2 384 343 120
NCSU 14.6 x 9.7 km2 384 255 120
New York 31.5 x 19.5 km2 384 239 120
Orlando 15.4 x 17.9 km2 331 384 120
KAIST 32.7 x 24.9 km2 384 292 120
SF-Cabs21 47.2 x 85.9 km2 141 256 150
SF-Cabs22 45.7 x 79.7 km2 147 256 150

number of cubes the pkey is associated, ncube is the number of (non-empty) cubes

in the index, xcube is the number of pkey in each (non-empty) cube, and 0 ≤ α ≤ 1.

For our experiments, we set α = 0.5. We sampled the values of cost(p, q, tgrid)

by varying p and tgrid, if the length (East-West length) of the map is longer than

its breadth (North-South length), and by varying q and tgrid otherwise. We used

sample values of cost(p, q, tgrid) taken from NCSU and New York to determine index

properties (max(p, q and tgrid) for all five human datasets and those taken from SF-

Cabs21rand100, for SF-Cabs21 and SF-Cabs22. The size of the spatial-map and

the properties of indexed used are outlined in Tab. 6.4.

6.4.3 Results and Analysis

Table 6.5 shows a comparison of running time (in seconds) of the algorithms to find

evolving convoys for each dataset. ID family (ID-1 and ID-2) always outperformed

S3 as ID algorithms prune many of the objects from clustering, which S3 must

inadvertently perform. Unlike the preliminary experiments, in which only rudi-

mentary spatial-temporal index was used and ID-2 was consistently better than

ID-1, in these sets of experiments, ID-2 was only slightly better than ID-1 since

the permanent index we built benefited ID-1 much dwarfing ID-2’s tighter pruning,

which saved clustering and verification efforts by filtering out objects coming near

the convoy for a short period of time (during the filtering step in NEW CONVOY
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sub-routine). X-CuTS performed worse than S3 in Statefair dataset. Although

X-CuTS performed better than S3 in other human-movement datasets, it did not

return a complete answer in these datasets due to the accidentally linked convoys

as described in Sect. 3.2.4. Therefore, we omitted it from experiments using taxi

datasets and further sets of experiments.

Table 6.5: Running Time and Results of Convoy Discovery Algorithms.
Dataset Run-time (seconds) No. of Convoys

S3 ID-1 ID-2 X-CuTS
Statefair 52 18 17 61 2
NCSU 258 158 144 218 13
New York 255 162 141 225 1
Orlando 229 135 127 226 1
KAIST 234 138 130 191 18
SF-Cabs21 101 50 46 – 36
SF-Cabs22 120 59 55 – 41

Figure 6.7 shows how the parameters w affected the performance of the algo-

rithms in New York and KAIST datasets. S3 took much longer to finish processing

compared to the ID-Family. ID-2 slightly outperformed ID-1. All algorithms S3,

ID-1, and ID-2 were not affected much by changing w value.

Figure 6.7: Impact of Parameter w on Performance of Convoy Discovery Algorithms
in (a) New York Using Parameters, min pts = m = 3, k = d0.06 ∗ we, and ε = 15
Metre, and (b) KAIST Using Parameters, min pts = m = 3, k = d0.06 ∗ we, and
ε = 10.

Figure 6.8 shows how the parameters k affected the performance of the algo-

rithms in New York and KAIST datasets. Consistent to previous sets of experi-

ments, S3 took longer processing time than the members of the ID-Family did. ID-2
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outperformed ID-1 although the difference is less prominent for KAIST dataset.

ID-Family, ID-1 and ID-2, was not affected much by changing k value but S3 took

slightly longer for k = 54 in New York dataset compared to the amount it took for

other k values in the same dataset. It was, we hypothesize, due to the random de-

lays in I/O (such as disk seek etc) as more state-transition (from dynamic member

to non-member and vice versa) happened for this k value — lower/higher k values

make convoys have more/less dynamic members but they both have less dynamic

member to non-member transitions and vice versa — prompting the algorithms to

write more results to the disk (each transition is a part of the output).

Figure 6.8: Impact of Parameter k on Performance of Convoy Discovery Algorithms
in (a) New York Using Parameters, min pts = m = 3, w = 15 minute (90 time-
stamps), and ε = 15 Metre, and (b) KAIST Using Parameters, min pts = m = 3,
w = 15 minute (90 time-stamps), and ε = 10 Metre.

In the subsequent sets of experiments, we assess how the DBSCAN parameters

min pts and ε affected the performance of the algorithms using New York and

KAIST datasets. Figure 6.9 shows the effect of the parameter min pts had on the

convoy discovery algorithms, where ID family consistently outperformed S3. ID-2

ran faster than ID-1 but the performance difference between ID-1 and ID-2 was not

huge. Increasing min pts means fewer and/or smaller clusters in each time-stamp

and, hence, brought shorter running time for algorithms in the ID-Family although

S3 was not much affected by changing min pts.

Figure 6.10 shows the effect of the parameter ε had on the convoy discovery
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Figure 6.9: Impact of Parameter min pts on Performance of Convoy Discovery
Algorithms in (a) New York Using Parameters, w = 15 minute (90 time-stamps),
k = 60, and ε = 15 Metre, and (b) KAIST Using Parameters, w = 15 minute (90
time-stamps), k = 60, and ε = 10 Metre.

algorithms. In these sets of experiments, ID family outperformed S3, with ID-2

being faster than ID-1. Increasing ε means more clusters and/or larger clusters

are found in each time-stamps. This, in New York dataset, increases pruning time

for ID-1, while decreases the overall running time of S3 slightly as the pruning

mechanism of ID-1 became less effective (could not reduce the clustering effort)

while S3 found fewer number of clusters in each time-stamp leading to less joining

time. However, for KAIST dataset, changing ε values slightly increased the running

time of all algorithms indicating that the number of convoys in the result changed

slightly compared to the size of the dataset (8 convoys are found for ε = 10 and 18

are found for ε = 10).

Figure 6.10: Impact of Parameter ε on Performance of Convoy Discovery Algorithms
in (a) New York and (b) KAIST Using Parameters, min pts = m = 3, w = 15
minute (90 time-stamps), and k = 60.

To summarize the experiment results, S3 cannot scale well with the size of
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dataset. In the absence of high-performance spatial-temporal index, i.e. for the

streaming Trajectory Databases, we learnt from the preliminary experiments that,

ID-1 can be used when we want convoys of short-duration or when fewer false posi-

tives are expected although ID-2 offers a greater performance gain regardless of the

duration of convoys and the number of false positive. In the presence of a high-

performance index, i.e. off-line Trajectory Database (a data warehouse), both ID-1

and ID-2 give reasonable increase in throughput compared to S3. Although ID-2’s

performance gain may not be as prominent in off-line setting as its performance

in streaming setting, it still performs better than ID-1. Moreover, since ID-2 has

three steps (verification step using S VERIFY, filtering step in NEW CONVOY,

and verification step in NEW CONVOY) while ID-1 onlys has two steps (filter-

ing step using TRAJ-DBSCAN and the immediate verification step that follows),

theoretically, running these steps in a pipe-line architecture, i.e. in parallel, would

increases the overall throughput of ID-2 significantly more than that of ID-1.

6.5 Summary

In this chapter, we presented and proposed new and practical convoy definitions and

proposed algorithms to find them. Dynamic convoys allow members to briefly move

away based on user-defined constraints. Evolving convoys present the sequences of

dynamic convoys evolving into one another in a more comprehensive result for

human users. All three proposed algorithms can report details of evolving convoys.

They work in an incremental manner suitable for both off-line discovery and on-line

convoy discovery.
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Chapter 7

Conclusion

Along with the advances in GPS technology, users are able to maintain a highly

accurate (up to a few meters) record of the locations the tracked objects visited in

high temporal resolutions. Deployment of GPS technologies in various fields includ-

ing shipping and port industries, public transport industries, sciences, and other

personal usages has lead to exploding number and sizes of Trajectory Databases

(TJDBs) available for mining instances of Multi-object Movement Patterns. Knowl-

edge of such patterns has numerous applications in epidemiology, ecology, preserva-

tion of wild-life, traffic monitoring and control, Location-Based Services, marketing,

social-studies, and even on-line game development.

We have noticed that there were many limitations in the existing data mining

and knowledge discovery techniques to discover instances of Multi-object Move-

ment Patterns. Experimental studies on the algorithms were scarce for finding

meeting patterns in a TJDB. There were still limited amount of works for discover-

ing frequent routes from Trajectory Databases without any prior knowledge of the

underlying spatial regions. Previous works existed when we started our studies for

this thesis on finding convoy patterns cannot handle real-life convoys, which have

members occasionally moving away from their parent groups (and coming back)

as well as new members joining and/or existing members leaving the convoy in

different stages of the convoys’ life-spans. In addition, a TJDB becomes larger as

GPS and storage technologies advance. Therefore, efficient and effective mining of
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TJDBs for the instances of the Multi-object Movement Patterns had been a new

and interesting challenge.

7.1 Contributions

We had conducted research on three groups of patterns – (a) meeting patterns (b)

sub-trajectory clique patterns to find frequent routes, and (c) dynamic convoy and

evolving convoy patterns. For the first and second patterns, namely meeting pat-

terns and sub-trajectory clique patterns, we studied how to extract their instances

in off-line Trajectory Databases. For the third group of patterns, namely the dy-

namic convoy and evolving convoy patterns, we proposed techniques to discover

them in an incremental manner — thus, our proposed techniques are applicable to

both off-line Trajectory Databases and on-line Trajectory Data-streams, which are

more widely available nowadays. A summary of the contribution our thesis made

is as follows.

7.1.1 Finding Closed MEMOs

We defined a new model of meeting pattern called MEMO pattern and developed

three algorithms to find its instances in Trajectory Database. We developed three

novel data-driven algorithms to discover closed MEMOs. We had conducted experi-

ments on real-life datasets, which showed that our proposed algorithms can perform

better than the existing one in finding instances of MEMO patterns.

7.1.2 Mining Sub-trajectory Cliques to Extract Frequent

Routes

We had proposed to find cliques of sub-trajectories and extract a frequent routes

from each sub-trajectory cliques. To measure similarity between sub-trajectories,

we used Fréchet distance, which follows the curvature of the trajectories, is invariant
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in speed, and is direction-aware. Our proposed method to extract a frequent route

through sub-trajectory cliques do not require any prior knowledge of the spatial

space or road network.

We designed two pragmatic approximation algorithms. In the experiments we

conducted using real-life datasets, both algorithms performed reasonably faster and

provided better accuracy compared to existing polynomial time algorithm. They

also provided more intuitive results than those provided by the existing partition

and group framework, Traclus. The second algorithm we proposed is a divide and

conquer algorithm, which sub-divides the input Trajectory Database into subsets

so that an instance of the first algorithm can process each subset independently.

It runs slower than the first one yet provides opportunities for parallelism and/or

memory efficiency.

7.1.3 Discovery of Evolving Convoys

We had observed real-life nature of convoys and proposed new and practical convoy

definitions called dynamic convoy pattern and evolving convoy. Dynamic convoys

allow dynamic members, which temporarily move away from their parent convoy,

while evolving convoys are able to capture different stages of a convoy’s evolution

using dynamic convoys (of fixed duration) as its building blocks. Therefore, evolv-

ing convoys present the convoys in a more comprehensive result for human users.

We presented three algorithms to extract instances of evolving convoys from a Tra-

jectory Database. All three proposed algorithms work in an incremental manner

suitable for both off-line discovery and on-line monitoring.
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7.2 Future Works

We conclude this thesis by identifying future research directions and a brief discus-

sion on them.

7.2.1 Unified Framework for MOMO Patterns

This thesis presented techniques to discover instances of some Multi-object Move-

ment Patterns from off-line and streaming Trajectory Databases. In addition, we

can still identify other types of interesting movement patterns and devise tech-

niques to find them. However, all the techniques developed (and will be developed

for newer types of patterns) can discover instances of a single type of pattern (al-

though parametrizable by users).

Along this reasoning, we question whether it is possible to develop a unified

framework that can find a multitude of patterns at the same time. We believe it

is a possible and pragmatic research direction as we had witnessed relationships

between certain types of patterns — all meetings are convoys1, which do not move;

all convoys correspond to sub-trajectory cliques; and most importantly, existence

of meeting instances slow down sub-trajectory clique mining.

Hence, we propose to continue identifying newer patterns and devise a unified

framework for finding MOMO Patterns. The ultimate goal of this direction is,

“given a Trajectory Database, the framework automatically discovers instances of

all types of patterns in the data and present it in a human understandable form (or

summarize the whole Trajectory Database in terms of pattern instances found) to

the users.”

1not necessarily defined using density-connection as proximity measure

135



7.2.2 Check-in and Social-network Data

During the recent years, we witnessed the advent of social networks and, more

recently, location-based social networks. These social networks produce location-

based data (check-in data), which users log as they visit interesting locations. These

data are essentially incomplete trajectory data (without detailed routes). The avail-

ability of the check-in data-streams are increasing rapidly.

We also propose to identify and discover interesting patterns in such incomplete

trajectory data — check-in data-streams. This direction of research has commer-

cial applications such as targeted advertising and improving the services of social-

networks. However, given the size and growth of the check-in data-streams and

other available social network data, the challenge is not a trivial one.
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Appendix A

Preliminary Experiments on

Convoy Discovery

A.1 Experiment Setup

We implemented the algorithms in C/C++ and tested on a Windows XP-Professional

workstation equipped with Intel Core 2 Duo E6500 processor and 4GB RAM. The

distance unit used in the experiments is metre. Two real-life datasets and a syn-

thetic dataset used to evaluate the performance of the algorithms are:

• Mob — contains human movement in five different sites [47, 48]. In order to

obtain more moving objects, we merge data from five sites by aligning their

reference points, i.e. the origins (0, 0) of the two dimensional spatial planes.

We further divide the dataset into five-hour-periods and merge them to obtain

559 trajectories. It is notable that the update rate of each trajectory is strictly

30 seconds.

• Bus — contains bus movements during peak hours (0800-1600 hours) in Settle

from 30-Oct-2001 to 05-Oct-2001 [29]. We merged the data into a single day,

i.e. we removed the date information, to obtain a large dataset of 4,471 bus

movement.

• Synth — is a synthetic dataset that is used to test the scalability of the

algorithms. We maintained a total of ten thousand moving objects at any
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Table A.1: Datasets and Experiment Settings Used to Assess Convoy Discovery
Algorithms in Preliminary Experiments.

Dataset Time-stamps Records Map m w/k ε min pts λ/δ

Mob 1,800 267,459 (40km)2 3 90/54 3 3 10/1
Bus 2,880 1,000,579 (100km)2 5 90/54 10 5 10/5
Synth 720 2,046,112 (10km)2 5 90/54 3 3 10/3

time by spawning a new object for each object going out of the map (number

of unique objects is 13,635). The initial positions of the objects and their

velocities are randomly determined. The mean location update rate of 30%

of the objects is 3 while that of the rest is 5. Moreover, there is 1% missing

records introduced randomly. Based on a random variable, new convoys of

randomly determined durations are artificially built out of existing objects.

For all sets of experiments, the interval between each consecutive time-stamps

is set at 10 seconds but no pre-processing is done for missing records. The param-

eters used for the experiments are selected intuitively. For example, the distance

between walking humans in the same convoy is 3 metre while that of moving buses

is 10 metre. The range query operation heavily used in DBSCAN is supported by

dividing the map into 100 equal-sized grids, i.e. 10 rows and 10 columns. This is

a fair assumption in real-time setting (like streaming data), where building a high-

performance spatial-index is out of the question. More information of the datasets

and experiment settings are summarized in Table A.1.

Since each evolving convoys starts with a dynamic convoy, for comparison, we

extend CuTS [32] into X-CuTS to find dynamic-convoys and include it in the first set

of experiments. However, to prevent its pruning mechanism from pruning dynamic

members λ values for X-CuTS must be greater than w − k. We run X-CuTS with

λ = w/2 when k = 0.60× w.
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A.2 Results and Analysis

Table A.2 shows a comparison of running time (in seconds) of the algorithms to find

evolving convoys for each dataset. ID family (ID-1 and ID-2) always outperforms

S3 and X-CuTS as ID algorithms prune many of the objects from clustering, which

S3 must inadvertently perform. In general, ID-2 is better than ID-1 since ID-2 has

a tighter pruning and saves clustering and verification efforts for objects, which

accidentally came close for a short period of time. X-CuTS performs worse than

S3 in Bus and Synth datasets. Although X-CuTS performs better than S3 in Mob

dataset, it does not return a complete answer in Bus and Synth datasets. Therefore,

we omitted its results in further discussions.

Table A.2: Running Time Comparison of Convoy Discovery Algorithms for Different
Datasets in Preliminary Experiments.

Dataset No. of Convoys S3 ID-1 ID-2 X-CuTS

Mob 10 174.39 137.41 113.00 156.959
Bus 153 1843.88 1765.95 1423.24 2470.83
Synth 6 1932.61 1852.75 1607.44 5127.87

Figure A.1 shows how the parameters w and k affect the performance of the

algorithms in Mob dataset. Algorithm S3 is not affected by changing w and k

values. ID family is not affected by chainging k value but ID-2 performs better for

larger w value since it can prune evolving convoys of short-duration while S3 and

ID-1 cannot.

Figure A.2 shows how the DBSCAN parameters ε and min pts affect the per-

formance of the algorithms in Mob dataset. All algorithms are affected by changing

ε and min pts values. Increasing ε means more clusters and/or larger clusters are

found in each time-stamps. This, in turn, increases pruning, clustering, and joining

time. However, ID family benefits from the pruning steps while S3 does not. In-

creasing min pts means fewer and/or smaller clusters and, hence, shorter running
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(a) k is fixed at 60% of w. (b) w is fixed at 90.

Figure A.1: Effect of Parameters w and k on Performance of Convoy Discovery
Algorithms in Mob Dataset during Preliminary Experiments.

time. ID family out-performs S3, with ID-2 being the best.

(a) min pts is fixed at 3. (b) ε is fixed at 3.0

Figure A.2: Effect of DBSCAN Parameters ε and min pts on Performance of Con-
voy Discovery Algorithms in Mob Dataset during Preliminary Experiments.

Parameters δ and λ do not affect the correctness of ID family but may have im-

pact on performance. Although δ can be set independently, our preliminary studies

showed that δ should be lower than half of ε to have tighter bound. Otherwise,

higher δ values will increase the running time.

However, λ is not an independent variable as it determines how often the user

get the reports as all information of convoys in a λ-partitions P are reported in

bulk only after P has been read in. Therefore, user would want to set λ as low

as possible. Figure A.3 shows the performance of the algorithms with different

λ values. We observed that the lower the value of λ, the better ID algorithms

perform. The running time rises when λ is set to 5 because the update rate for
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Mob dataset is 3 (30 seconds), thus each partition includes 1-2 movement record

for each object, putting more overheads in TRAJ-DBSCAN operations. Therefore,

from our studies, we recommend setting a low λ value as long as each object reports

its location 3 or more times in a given length of partition (λ).

Figure A.3: Effect of Parameter λ on Performance of Convoy Discovery Algorithms
in Mob Dataset during Preliminary Experiments.

In order to assess how the algorithms would perform when given more/less com-

plete data, more experiments were conducted. Objects in Synth dataset is modified

to have higher/lower update frequencies. Performance of S3, ID-1, and ID-2 are

plotted in Fig. A.4(a). In general, lower update rates introduce lower I/O costs.

However, this forces S3 to perform more linear interpolations to predict locations

of all the objects, reducing the saving in I/O. However, ID algorithms benefit as

trajectory clustering time is reduced and they can prune much interpolation and

clustering efforts.

More synthetic datasets (with 7,500 and 12,500 objects each) were generated

to assess how the algorithms scale on different size of data. Figure A.4(b) shows

the running time of each algorithm. ID algorithms outperform S3 when the dataset

contains more than 7,500 objects. ID-1 performs only slightly better than S3 as its
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(a) With varying update frequencies. (b) With varying number of objects.

Figure A.4: Effect of the Nature of the Dataset on the Convoy Discovery Algorithms
Assessed Using Synthetic Datasets during Preliminary Experiments.

pruning power is limited. It is found that ID-2 performs best and scales better than

S3 and ID-1.

Finally, we compared the moving clusters reported by MC2 [33] against the

convoys our algorithms reported. MC2 often finds a set of shorter moving clusters

instead of a single evolving convoy as the convoy’s members are often found in a

cluster not similar to the one they were in the previous time-stamp (for example, a

merge). In Mob and Bus data, 9 and 248 moving clusters (compared to 10 and 153

evolving convoys), which last for 90 time-stamps, are found respectively. Yet, they

do not cover all the evolving convoys with the same duration because some convoys

correspond to a set of disjoint moving clusters, some of whose duration are shorter

than 90 time-stamps.

To summarize the experiment results, S3 cannot scale well with the size of

dataset. ID-1 can be used when we want convoys of short-duration or when few

false positives are expected. ID-2 is suitable for many scenarios. By definition,

evolving convoys are more compact and more expressive than moving clusters.
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