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Summary 

Parcel transportation services refer to the movement of small packages from or to 

customers.  Due to dynamically changing demands and complex routings of trips, it is 

difficult to accurately predict performance measures on parcel transportation services 

such as travelling cost and service level, which is the percentage of orders that can be met 

within a prescribed period.  There are few systematic methods published to evaluate and 

predict the performance of these services.  Effective management tools used to determine 

the service price, the quantity of facilities, the range of the services, and the acceptance 

rules of customer demands are limited.  This thesis proposes Markov models to estimate 

performance measures and applies optimization algorithms in order to make management 

decisions and improve performance of parcel transportation services.   

In this thesis, parcel transportation services are characterized as Markov models based on 

the assumption that the vehicle travel time between customers is approximated by a 

hypo-exponentially distributed random variable.  Two interrelated Markov processes are 

used to estimate transportation costs, service levels, and other performance measures.  

The Markov processes can be extended to resolve further related problems, such as the 

capacity issue, the multiple vehicles issue, the dynamic pickup or delivery issue, and 

services with different routing strategies.  Experimental results demonstrate that the 

proposed Markov models are effective mathematical tools that analyze parcel 

transportation services and the extended problems.  They are capable of providing fast 

and reliable estimations of various performance measures. 
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The proposed Markov models are able to benefit service providers in making 

management decisions in real-life situations.  This thesis analyzes a pricing problem in 

order to help determine the best price for parcel transportation services.  This thesis also 

examines an order acceptance problem in order to determine a rule for rejecting orders 

which are difficult to accomplish.  This thesis proposes a way of designing a 

transportation network for the distribution center, warehouses and customers by deciding 

the minimum number of warehouses required, their locations, and the assignment of 

customers to warehouses.  The proposed Markov models are able to provide reliable 

estimations in regards to the objective function values of these problems.  Based on these 

estimations, satisfactory solutions can be obtained by using optimization algorithms.  

Therefore, the proposed Markov models in this thesis can assist transportation service 

providers to optimize their management decisions. 
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1. Introduction 

1.1. Description of Parcel Transportation Services  
Transportation is an integral element in numerous manufacturing and service-oriented 

companies.  It allows businesses access to products and goods necessary to run operations.  

It is a critical component in collecting materials from suppliers at different locations, 

distributing products to customers and retailers, and transporting parts among loading 

docks, storage shelves and processing machines within a plant or a warehouse.  Some 

companies manage their own transportation channels, while others outsource them to 

external logistics companies.  Outsourcing allows companies to effectively schedule 

delivery vehicles and optimize transportation networks.  Due to globalization, optimizing 

transportation for logistics companies will become more attractive in the future.  Large 

quantities of freights and complicated transportation networks are challenging in 

managing logistics.   

Parcel transportation services refer to the collection or delivery of small packages from or 

to customers.  Traditionally, the transportation starts from a departure point and ends at a 

destination point.  For example, according to a customer’s request, a vehicle departs from 

a warehouse, travels to the customer’s locations, picks up or delivers the required goods 

and returns to the warehouse.  This kind of transportation is commonly named as spoke-

hub transportation structure (as shown in Fig 1.1(a)).  However, when small packages 

need to be transported, it is uneconomical to schedule a single trip only for one package 

at a time.  In this case, parcel transportation services are more suitable, since it allows the 

service providers to fully use the capacity of a vehicle and efficiently consolidate 

transportation tasks for several customers.  The pattern of the parcel transportation 
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services is illustrated in Fig 1.1(b).  A carrier loads parcels from the warehouse, delivers 

them to customers one after another in a single trip, and returns to the warehouse once all 

tasks scheduled for the trip are completed.   

 
Fig. 1.1. Parcel transportation and traditional transportation 

 
Parcel transportation services are commonly targeted at individuals, since the goods 

transported are relatively small.  The postal systems (e.g. United States Postal Service) 

and third party logistics express services (e.g. DHL and FedEx) are examples of parcel 

transportation services.  Furthermore, these services are extremely popular in our daily 

lives.  For example, supermarkets (e.g. Fair Price and Carrefour) and electronic product 

manufacturers (e.g. HP and Dell) offer home delivery for food, beverages, electronic 

products and daily commodities.  Cotton Care, a famous laundry services provider in 

Singapore, provides laundry pickup and delivery services to customers’ doorsteps.  

Garbageman.com provides trash removal and cleaning services on call in South Florida.  

All services mentioned above can be categorized as parcel transportation services.  

Business models across the world have changed drastically due to the development of the 

Internet, IT technologies, and electronic commerce (e-commerce).  E-commerce refers to 

the online process of developing, marketing, selling, delivering, servicing and paying for 
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products and services.  It has led to changes in the role of logistics management and 

parcel transportation services.  Logistics companies need to adopt suitable delivery 

practices in order to meet the growing demands and expectations of customers.  Rather 

than an ‘in-store service’, customers prefer ordering products online, and require them to 

be delivered at a specific time.  Therefore, e-commerce providers must effectively 

schedule the on-time delivery of their products.  Efficient delivery of goods within a 

reasonably compressed period is one of the most challenging tasks for an e-commerce 

business.  Henry Bruce, Optum’s (www.optum.com) vice president of corporate 

marketing, claimed that “most e-commerce companies are failing in the physical delivery 

of products -- they have not really thought out their fulfillment strategies” (Bruce 1999).  

E-commerce has three characteristics that differentiate it from traditional retailers.   

• Firstly, e-commerce has an additional cost in vehicle scheduling and travelling for 

on-time home deliveries.  This cost varies largely, and depends on patterns of 

transportation and methods of vehicle scheduling.   

• Secondly, each product ordered from the e-commerce store is relatively small.  

However, the total quantity of orders is huge.  For instance, Tesco.com regularly 

has 750,000 customers and 200,000 orders per week, but one order may only 

worth several dollars (Asdemir et al. 2009).   

• Thirdly, e-commerce orders are relatively dynamic.  Customers’ orders appear 

randomly, so it is difficult to predict the ordering time as well as the quantity of 

orders.  Moreover, the required response time and delivery time are relatively 

short.  Therefore, it is necessary to develop a vehicle-dispatching framework that 

handles dynamic demands of consumers in a short time frame.   
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Parcel transportation services have the potential to meet the requirements of e-commerce, 

which need to handle a cost effective shipping operation to a huge number of customers 

in a dynamic environment.  Parcel transportation services that are tactically managed are 

capable of providing a relatively efficient solution to transportation problems in the last 

mile1 of the supply chain.   

1.2. Motivation 
The competition is extremely high in parcel transportation services.  Companies make 

relentless efforts to reduce cost and improve service quality to beat their competitions.  In 

order to survive this fierce competition, service providers must improve their cost and 

revenue management technologies. 

Transportation service providers devote most of their efforts in reducing costs, since cost 

plays a critical role in transportation services.  In order to reduce costs, various 

technologies are applied to address how to collect and deliver parcels from and to various 

locations.  Numerous vehicle scheduling and route planning strategies have been 

proposed by researchers. 

Revenue management is the application of disciplined analytics that predict customer 

behavior and optimize product availability and price, to maximize revenue and profit.  

Minimal research has focused on developing models for the revenue management of 

parcel transportation services.  Applicable analytical models may be derived from prior 

research on product revenue and manufacturing operation managements.  These methods 

have to predict the demand and apply pricing approach, which is widely applied to 

increase product sales (Dong et al. 2009), and order acceptance rules, which is widely 

                                                           
1 Last mile is a term used in supply chain management and transportation planning to 
describe the movement of people and goods from a transport hub to a final destination. 
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utilized in job shop environment (Ebben et al. 2005).  However, research works in the 

literature do not fully take into consideration of a comprehensive measure including 

revenue, cost and future impact of the decision in revenue and cost management, since it 

is too difficult to analyze the vehicle routing and scheduling issue in the process of 

optimizing service price or order acceptance rules.  Therefore, estimating performance 

measures and the objective of revenue management tends to be incomplete and biased.   

In order to properly apply revenue management tools for parcel transportation services, it 

is necessary to decide a comprehensive objective including key performance measures, 

such as revenue reflecting the customer demands, cost of vehicle travelling and quality of 

service.  Various performance measures are required to be estimated using a systematic 

method based on different strategies of vehicle routing and scheduling in a dynamic 

environment.  There is little literature that specifically addresses a systematic method 

which is able to predict most of the performance measures for parcel transportation 

services in dynamic vehicle routing conditions.  In this thesis, the author will discuss the 

procedure for building a systematic method, which can accurately estimate various 

performance measures in a short time frame to different situations.  The thesis also 

elaborates the use of management decision tools that can be utilized by transportation 

service providers to manage their business effectively and thereby help them to survive in 

the global market. 

1.2.1. Performance Measures 
Performance measures reflect the state of the business, and are commonly used by 

companies to evaluate the success of their business towards certain goals.  Without the 

ability to properly measure performance, companies are in no position to analyze their 

business and improve their efficiencies.  In parcel transportation services, a variety of 
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performance measures are used.  Some commonly used performance measures in practice 

are highlighted as follows. 

a. Travel distance and transportation costs 

Travel distance and transportation costs are two important performance measures in 

parcel transportation services.  Transportation costs include the fuel expenses, which are 

proportional to the vehicle travel distance, the expenses on the usage of vehicles, and the 

labor costs of drivers.  In general, transportation costs account for a high proportion of 

the national expenditures in North American and European countries (Crainic and 

Laporte 1997, Larsen 2000).  For example, the road transportation costs were about 5% 

of the United States’ gross domestic product (GDP) in the past 10 years.  According to 

CSCMP’s 22nd annual state of logistics report (Rosalyn, 2011), transportation costs in the 

United States reached $768 billion USD, of which 78% were from road transport.  The 

Logistics and Supply Chain Management Key Performance Indicators Analysis of 

Canada (2006) showed that total transportation costs were about 2.5% ~ 10% of the 

product sales revenue in Canada.  Another survey shows that one third of customers 

agree that transportation costs significantly affect their purchase decisions (Reynolds, 

2001).  Therefore, transportation costs are huge and they significantly influence the 

product sales and global economy.   

Furthermore, liquid fossil fuels are the main energy sources for transportation.  

Transportation consumes more than 60% of the oil supply of the world.  The 

“Repowering Transport Project White Paper” (2011) predicted that the energy 

consumption by transportation will continue to grow and will be 40% higher than current 

levels by 2030.  Significant energy consumption and CO2 and other vehicles emissions 
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have attracted the government’s attention.  All of the aforementioned concerns related to 

transportation costs, energy consumption, and pollution have prompted us to develop 

more efficient methods to reduce the distances that vehicles travel.   

Researches on parcel transportation services studied optimization of total travel distance 

or total transportation costs (Bräysy and Dullaert, 2003; Polacek et al., 2004; Mester and 

Bräysy, 2005).  However, the optimization objectives of such studies may not be suitable 

for a dynamic situation, in which service providers receive new orders at any time and the 

service may be endless (Psaraftis, 1995).  Therefore, performance measures for such 

situations are better evaluated using average values, such as average travel distance for 

each customer and average transportation costs per unit time.   

b. Revenue 

Revenue is defined as funds received by a company from the sale of products or services, 

and it depends on customer demand.  Hence, forecasting customer demand is crucial.  

Since demand for parcel transportation services are stochastic and dynamic, it is difficult 

to predict in advance which customers will be willing to pay for services and how many 

tasks can be completed within a specified operating period.  Proper probability 

distributions or stochastic models can be helpful in forecasting customer demand.  

Average revenue is proportional to the average number of customers fulfilled per unit 

time, and indicates the customer demand rate and the company’s ability to handle 

customer requests. 

c. Vehicle utilization 

Vehicle utilization is defined as the percentage of time that a vehicle is engaged in 

providing transportation services.  Vehicles continue to travel between customers and the 
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warehouse if there are pending customer requests; otherwise, they are idle while waiting 

for new orders.  When demand is high, vehicle utilization increases accordingly.  To meet 

additional demand, managers may have to increase the number of vehicles in use.  In 

contrast, if vehicle utilization is low, the potential exists to serve additional customers.  In 

such a situation, managers may need to reduce the number of vehicles or increase 

demand.  

d. Average number of customers waiting for services 

The average number of customers waiting for services is similar to the average length of 

a queue.  A large number of customers waiting for services may indicate service 

inefficiency or lack of vehicles and other resources. 

e. Order-to-delivery time 

Order-to-delivery time represents the time elapsed between placement of an order by a 

customer and delivery of the product to the customer.  Order-to-delivery time reflects the 

response time from a transportation service provider’s point of view and waiting time 

from a customer’s point of view.  Long order-to-delivery time fails to meet customer 

expectations, and may result in lose customers.  All managers attempt to shorten this 

period by improving the efficiency of their transportation services. 

f. On-time fulfill rate and service levels 

In logistics services, on-time fulfill rate and service level are defined as the percentage of 

orders that can be met within a prescribed period.  Usually, transportation service 

providers enter into agreements with the customer stating that products will be delivered 

to their destinations within a specific period.  Delays result in customer dissatisfaction 

with the service provided.  Too many delayed deliveries will tarnish the reputations of 



 
 

9

logistics companies and affect future profits.  As a result, logistics companies need to 

compensate customers for unsatisfactory experiences.  However, it is difficult for 

transportation service providers to consistently achieve on-time delivery under dynamic 

demand and traffic conditions.  Therefore, they must endeavor to reduce the possibility of 

delays and provide high-quality transportation services.  

A successful transportation service must take into consideration service level, which 

represents the quality of services that customers receive.  A high service level indicates 

that most products are delivered on time as specified by customers.  A company 

providing good services has a competitive advantage over its competitors (Mentzer et al., 

2004).  The aim of logistics is turning from minimizing distribution costs towards 

increasing customer service quality (Lehmusvaara, 1998).  Therefore, an increasing 

number of companies are paying attention to efficient planning to provide quick 

responses to customer orders while at the same time maintaining a high service quality.   

g. Profit 

A comprehensive measure of performance is profit, and a key objective of all companies 

is to maximize both short-term and long-term profits.  In logistics services, short-term 

profit is equal to the difference between the revenue earned from the business and 

transportation costs, whereas long-term profit takes into consideration service level.  

Failure to satisfy customer requirements will result in customer complaints, a reduction in 

orders and a tarnished company reputation.  In this thesis, profit is selected as the overall 

performance measure for parcel transportation services, and is defined as the difference 

between the revenue and the cost associated with operating the business.  The cost 

includes transportation costs and penalties incurred by delivering low quality services. 
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1.2.2. Methods for Estimating the Performance Measures 
Efficient estimations of performance measures are needed, and may be obtained using 

evaluation tools (Fig. 1.2).  Simulation is one such widely used tool.  By providing 

information on customers, the logistics company, routing algorithms, and decision 

variable values, the simulation generates an estimation of performance measures.  

Different estimations of performance measures are obtained as the values of decision 

variables change.  In the end, the best value for the decision variables can be determined 

using optimization algorithms.  However, it may take time for the process using 

simulation to obtain accurate estimations and optimized decision values.   

 

Fig. 1.2.  Management decision-making structure involving estimations of 
performance measures using evaluation tools 
 

Another method for estimating performance measures is to mathematically construct a 

function which consists of all the decision variables.  This method obtains the best value 
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for the decision variables to minimize or maximize one of the performance measures by 

solving a number of differential equations.  One example in this category is the linear 

regression method (Confessore et al. 2008), which constructs a polynomial cost function 

to approximately fit historical data.  The function obtained from this method is fast in 

calculating costs but has lower accuracy. 

In the literature, mathematical methods based on queuing theory attempt to determine the 

lower bound of transportation costs, which is approximated using a function of demand 

rate.  The Queuing theory assumes that the arrival of customer requests in parcel 

transportation services is a random process, which is usually a generalization of Poisson 

process.  Customer locations are assumed to be uniformly distributed on a Euclidean 

plane.  It is also assumed that the travel time between two successive customers in a 

planned vehicle trip has a mean τ  and a variance 2σ  (Bertsimas and Ryzin, 1991).  One 

may approximate these predictable values through experience or by using historical data.  

Since the variable of travel time depends on routing strategies, the accurate evaluation of 

travel time is important but complex.  Based on this probability, parcel transportation 

behaves analogously to a queuing system with generally distributed service time.  

Typically, the cost function generated from the queuing theory provides an upper or a 

lower bound.  They also further extended their work on the calculation of the upper and 

lower bound for transportation costs and average customer waiting time in the cases of 

capacitated vehicles, non-uniform spatial distributions, and general renewal processes for 

arrivals (Bertsimas and Ryzin, 1993a; Bertsimas and Ryzin, 1993b).  However, it may be 

difficult to extend these methods to calculate other performance measures, such as the 

distribution of customer waiting time and service levels.  Furthermore, since these 
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methods only provide boundaries for transportation costs, it may not be possible to 

optimize the decision values based on the boundary estimations. 

This thesis constructs a Markov model for parcel transportation services.  The Markov 

model is an analytical model derived from the stochastic process of the queuing system 

with generally distributed service time.  Therefore, the model provides a systematic view 

of the problem.  If customer demand rate, routing algorithms and decision values are 

provided, this queuing-based stochastic model estimates performance measures using 

probabilities and transition matrices.  Results show that this method is more efficient, 

flexible, and accurate in estimating performance measures.  Based on these estimations, 

logistics companies may be in a better position to make management decisions. 

1.2.3. Application of Performance Measures Evaluation in Parcel Transportation 
Services  

Using estimations of performance measures, issues at the management level may be 

analyzed to obtain optimal solutions.  For example, when a logistics company starts 

services in a new urban area, the manager can use estimations of performance measures 

to define profitable service regions and provide parcel transportation services to these 

areas.  The manager may also use the estimations to set a suitable price for the service, 

operate the business with a minimum number of vehicles, warehouses, and resources.  In 

addition, the manager may utilize the order acceptance rule to insure the business is more 

profitable.  For logistics services that have been in operation for a long period, the 

manager must remain up-to-date on technology and market changes, and may evaluate 

again the services based on the performance in order to adjust service region, price, 

number and locations of warehouses, and operation rules accordingly.  In these cases, the 

manager’s decisions should optimize profit, and decision variables may involve service 
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price, number of vehicles, number of warehouses, and job acceptance rules.  Resolving 

such optimization issues is the main concern of this research. 

An example of decision-making is related to the pricing approaches for online purchase 

and home delivery services.  Nowadays, stores allow customers to order products from 

“virtual storefronts” through the Internet, and deliver ordered products to locations that 

customers specify for additional service charges.  Delivery services are provided by an 

external logistics company, which needs to make careful decisions on price, effectively 

reduce transportation cost and maintain high quality of services.  Published literature in 

this field seldom analyzes the pricing issue related to dynamic vehicle routing, which 

economically utilizes a single vehicle trip with multiple delivery stops.  The goal of this 

thesis is to provide a stochastic model to help service providers address management 

decision-making issues related to a dynamic vehicle routing based environment.  

1.3. Contribution of this Thesis 
In this thesis, a new stochastic approach based on a Markov model has been developed to 

properly and accurately estimate performance measures for parcel transportation services.  

Compared with simulation methods, the Markov model provides fast estimations of 

various performance measures including transportation costs and quality of services.  

Furthermore, the model is flexible and can adapt to extensions for various parcel 

transportation services.   

Based on the accurate evaluation of performance measures, parcel transportation services 

can be systematically investigated.  Service providers can effectively manage their 

business and make management decisions to improve service performance.  Three 

practical transportation problems faced by numerous logistics companies are analyzed in 
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this thesis: the service-pricing problem, the transportation network design problem and 

the order acceptance problem.  The new stochastic approach is able to provide fast and 

accurate estimations of the objective function values for these problems.  Based on the 

estimations, optimization algorithms can easily converge to the best solution that can be 

utilized for management decisions. 

1.4. Outline of the Thesis 
The rest of this thesis is organized as follows.  Section 2 provides a literature review on 

modeling parcel transportation services and evaluating performance measures.  Although 

some vehicle routing strategies are discussed, the new stochastic approach of modeling 

parcel transportation services in dynamic circumstances is the major focus of this 

research.  Section 3 estimates the performance measures for parcel transportation services 

utilizing a Markov model.  The model is then verified through comparisons between the 

proposed model and simulations in several numerical experiments.  In section 4, the 

modifications to the Markov model are presented for different scenarios in the parcel 

transportation services.  In section 5, the applications of the proposed Markov models in 

three practical problems are investigated.  Optimal solutions for these practical problems 

are obtained.  Finally, this thesis concludes with a summary of the key findings of this 

research and proposals for future research. 
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2. Modelling of Parcel Transportation Services: State of the 
Art 

2.1. The Problem of Vehicle Routing in Parcel Transportation 
Services 

The management of parcel transportation services involves solving a vehicle routing 

problem (VRP).  The VRP seeks an optimal routing schedule for a fleet of vehicles in 

order to efficiently serve customers scattered in a pre-defined region.  The VRP is one of 

the most prevalent topics studied in the field of operational research (Golden et al., 2008).  

The VRP is stated as determining optimal routes on an undirected complete graph 

( , )G =   .  0 1{ , , , }Nn n n=   denotes the vertex set of nodes, where 0n  is the 

warehouse and 1 Nn n  are N customers which must be visited exactly once.  

{( , ) : , , }i j i jn n n n i j= ∈ ≠   denotes arcs between nodes with non-negative weights 

representing travel distances and associated travel time.  The travel distances and times 

on arcs are usually described in a symmetrical matrix, which indicates that the distance 

from node i to node j is the same as that from node j to node i.   

Numerous routing algorithms are proposed to provide the best vehicle routing schedules 

for a group of customers whose demands are known before the start of the services.  

Exact algorithms, such as dynamic programming, Lagrange relaxation and column 

generation (see Laporte, 1992), may be used to solve problems that involve a small 

number of customers.  However, the VRP has been considered non-deterministic 

polynomial-time hard (NP-hard), in which the time spent on obtaining a solution 

increases exponentially when the total number of customers increases.  A vast effort has 



 
 

16 

been devoted to computing optimal solutions for NP-hard problems.  However, numerous 

approximation methods and heuristics are proposed to effectively speed up the search for 

a satisfactory solution instead of exhaustively searching for the optimal solution.  These 

methods are categorized into construction heuristics, improvement heuristics and 

metaheuristics (Ropke, 2005).   

• Construction heuristics gradually build a feasible solution with no improvement 

phase.  The Clarke and Wright saving algorithm (Clarke and Wright, 1964) and 

the sweep algorithm (Gillett and Miller, 1974) belong to this category.   

• Improvement heuristics implement changes of decision values from initial 

solutions, which may be obtained from constructive heuristics, to generate more 

effective solutions.  Local search algorithms (Bräysy and Dullaert, 2003; 

Chaovalitwongse et al., 2003; Mester and Bräysy, 2005) and neighborhood search 

algorithms (Bräysy, 2003; Polacek et al., 2004) belong to improvement heuristics 

only when they perform operations that lead to improved outcomes relative to the 

objective.   

• Metaheuristics implement changes of decision values that lead to both better 

solutions and worse solutions.  Metaheuristics is applied in order to prevent the 

process from adhering to the local optimum to find a more effective solution after 

further changes.  Tabu search algorithms (Lau et al., 2003; Ho and Haugland, 

2004), genetic algorithms (Wei, 2003), ant colony optimization algorithms (Kuo 

et al., 2004), and simulated annealing algorithms (Amberg et al., 2000) belong to 

this category.   

In order to address different aspects of the service requirements, researchers have 
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developed various extensions of the VRP in operation research.  Some extensions 

extensively studied in the literature are highlighted as follows.  The solutions of these 

problems can be derived from the routing strategies mentioned previously. 

• Capacitated vehicle routing problem (CVRP).  In the CVRP, a non-negative weight is 

attached to each customer and the sum of weights in any vehicle route must not 

exceed the vehicle capacity (Lysgaard et al., 2004).  In addition to the travel distance, 

this problem is required to minimize the number of vehicle trips.   

• Vehicle routing problem with time windows (VRPTW) adds a time window 

constraint to each customer’s request, indicating an opening and closing time within 

which services can be performed.  In this situation, the vehicle must visit customers 

within designated time windows in order to avoid service failure.  This time window 

constraint may cause difficulty in finding suitable solutions.  Taillard et al. (1997) 

suggested a soft time window constraint.  In this condition, the vehicle is permitted to 

arrive before the opening time of a specific service and wait until it is allowed to start 

the service.  However, if the vehicle arrives later than the closing time, a penalty will 

be applied to the transportation cost.   

• Vehicle Routing Problem with Length Constraint (VRPLC).  Since the maximum 

continuous working period of a driver is restricted in some countries, the length 

constraint restricts that the length of a planned vehicle route is not allowed to exceed 

a prescribed limit (Li et al., 1992; Nagarajan and Ravi, 2012). 

• Multi depot vehicle routing problem (MDVRP).  This problem is studied to manage 

vehicles from different warehouses while serving the same group of customers 

(Renaud et al., 1996; Lim and Wang, 2005).  The MDVRP can be extended to a 
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problem which seeks the best locations for the warehouses (Chan et al., 2001). 

• Vehicle routing problem with pickup and delivery (VRPPD).  Two different kinds of 

requests are studied in this case, namely pickup and delivery requests.  In delivery 

requests, products are required to be loaded on board and transported to specific 

locations.  The pickup requests allow the vehicle to utilize spare capacity to collect 

goods from customers, and to carry the goods back to the warehouse.  The VRPPD 

can be further classified into three categories.   

o Transportation services following a delivery-first-pickup-second rule are usually 

characterized as a vehicle routing problem with backhauling (VRPB) (Ganesh and 

Narendran, 2007; Tavakkoli-Moghaddam et al., 2006).  For the convenience of 

truck loading, the problem specifies the first-in-last-out (FILO) rule, which 

requires all delivery requests be satisfied before any pickup requests are 

considered.   

o Services with mixed pickup and delivery are characterized as a mixed vehicle 

routing problem with backhauling (MVRPB) (Wade and Salhi, 2002; Sural and 

Bookbinder, 2003; Zhong and Cole, 2005).  The MVRPB allows pickup and 

delivery services in any sequence on the route, due to the widespread use of side-

loaded trucks.  A practical example of MVRPB for a logistics company in Hong 

Kong is analyzed by Cheung and Hang (2003).   

o Vehicle routing problem with simultaneous pickup and delivery (VRPSPD) 

allows each customer to make a pickup request and a delivery request (Mitra, 

2005; Dell'Amico et al., 2006; Montane and Galvao, 2006; Bianchessi and 

Righini, 2007; Gribkovskaia et al., 2007).   
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2.2. The Problem of Dynamic Vehicle Routing in Parcel 
Transportation Services  

The dynamic vehicle routing problem (DVRP) addresses concerns regarding uncertain 

demand and dynamic traffic conditions in parcel transportation services.  Most real life 

transportation scenarios operate under dynamically changing information and 

unpredictable circumstances.  Customer demands are stochastic and dynamic, and it is 

impossible to predict when a customer will place an order and where goods will need to 

be picked up or delivered.  In addition, traffic conditions change over time.  The vehicles 

may occasionally have accidents or experience delays.  The uncertainty of the demand 

and the dynamism of traffic conditions make the problem much more complicated.   

In order to look into the transportation problems from a dynamic perspective, logistics 

providers resort to advanced communication and information technologies.  The 

Geographical Information System (GIS) and the Global Positioning System (GPS) 

provide location maps and exact vehicle positions, and therefore have become an integral 

component of vehicle routing operations (Ghiani et al. 2003).  In addition, radio 

frequency identification (RFID) technology enables the tracking of products and spaces 

in vehicles throughout the entire transportation process.  These technologies utilize real-

time data and enable dynamic transportation services within hours of a request being 

made.   

2.2.1. Comparison between VRP and DVRP 
Compared to the static VRP, the DVRP has several distinct features.   

• In the DVRP, the time dimension is essential, as circumstances in a dynamic 

problem change frequently over time.  Planning for services depends on the 

arrival of new orders and variations in external conditions.  The current plan may 
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not be valid a few minutes later. 

• In the DVRP, it is impossible to obtain the accurate information in advance.  

Probabilistic information may be summarized from the statistical analysis on 

previous data (Psaraftis, 1988).   

• In the DVRP, high-speed computations are required.   In static settings, the 

dispatcher may be able to afford the luxury of waiting for a few hours in order to 

get a high quality or optimal solution.  However, in a dynamic setting, the 

dispatcher requires a feasible solution to the current problem within a limited time 

frame (Psaraftis, 1995).   

• In most cases, a DVRP can be treated as a queuing problem, in which customers 

wait for services while vehicles work as servers.  If the rate of customer demand 

exceeds a threshold, the system will become congested (Larsen, 2000).   

• Last but not the least, the objective function may be different.  Traditional static 

objectives such as minimizing the total distance travelled may not be appropriate 

in a dynamic setting.  In dynamic circumstances, it is difficult to determine the 

number of requests accomplished in a specific period of time, and a logistics 

company will provide services for a long time.  Therefore, the objective function 

is better represented in average values, such as the average cost for each customer 

or the average profit per unit time.  Additionally, the service level should be an 

objective considered while solving the DVRP.  The service level reflects the 

quality of service received by customers, and affects customers’ options in the 

future.   
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2.2.2. Routing Strategies for Dynamic Vehicle Routing Problems 
The DVRP addresses the key concerns of parcel transportation service providers, which 

are to manage uncertain demands and dynamic traffic conditions by proper planning and 

scheduling of the transportation system.  In the Stochastic Vehicle Routing Problem 

(SVRP), it is assumed that customer demand follows certain probability distributions 

(Secomandi, 2001).  The problem is defined on a graph of N fixed nodes, which 

represents the locations of customers.  Each customer will require a visit only with a 

certain probability.  However, in a DVRP, not only is the demand uncertain, but the 

number and the locations of customers are also unknown.  Researchers usually assume 

that the customer demands appear according to a Poisson process and customers’ 

locations are independently and uniformly distributed in the service region. (Bertsimas 

and Ryzin, 1991).  

Numerous routing strategies are proposed, and most of them address the issue of dynamic 

customer demands.  Two steps are usually involved in these routing strategies (Tighe et 

al., 2004; Potvin et al., 2006).  The first step is to generate an initial plan for known 

requests.  In the first step, the problem is similar to a static one, and all the methods for 

the static VRP can be used to generate initial solutions for the DVRP (Psaraftis, 1988).  

More discussions focus on the second step of the online routing strategy for the DVRP, 

which provides a rule for the adjustment of the existing routing schedule when a new 

service request appears.  One simple and quick strategy is called First-Come-First-Serve 

(FCFS), which allows the new service request to be processed at the end of the existing 

routing schedule.  A number of researchers prefer insertion algorithms, which seek the 

best insertion place in the existing routing schedule for the new requests.  Zhu and Ong 

(2000) claimed that insertion algorithms generate better solutions and quicker responses 
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to new requests.  Other researchers resort to metaheuristics to refine the routing schedule 

after insertion.  For example, Pankratz (2005) generated a solution pool by randomly 

swapping and re-arranging the delivery sequence in order to find a better solution using a 

genetic algorithm.  The routing plans are rescheduled through complicated methods 

whenever a new request appears or the traffic condition changes.  Ferrucci et al. (2013) 

and Tirado et al. (2013) used Tabu search to refine and update the solutions.  They took 

the potential effect of future orders into consideration in the current routing plan.  These 

approaches require considerable computational efforts, and various routing strategies and 

dynamic vehicle schedules complicate the estimation of performance measures for parcel 

transportation services. 

2.2.3. Comparison Strategies for Dynamic Vehicle Routing Problems 
Numerous routing strategies were proposed in past research.  Since most strategies are 

developed based on randomly generated cases, determining the best routing strategy is 

difficult.  In order to compare different online routing strategies and evaluate 

performance, Sleator and Tarjan (1985) proposed a competitive analysis method, which 

has been widely used for scheduling and financial decision making (Manasse et al., 1990; 

El-Yaniv et al., 1992).  The competitive ratio is measured by the worst case ratio between 

the objective value gained from the online strategy for a sequence of randomly generated 

requests and the optimal value gained from an algorithm which knows the entire 

sequence in advance.  However, it is difficult to achieve the optimal solution in most 

cases.  An offline solution obtained from algorithms with all information known in 

advance is usually used as a benchmark to replace the optimal solution.  The purpose of 

the competitive analysis is to find out the largest gap between the online strategy and the 

benchmark.  Ausiello et al. (1994) first suggested competitive analysis for the DVRP.  
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The objective of this research is to minimize the completion time until a certain group of 

the requests are served.  Special cases have been used to prove that no online strategies 

are able to achieve a competitive ratio lower than two.  Other researchers improved the 

competitive ratio by revising the objective function of the problem or by restricting the 

powers of the offline routing algorithms in order to more closely resemble the online 

strategy.  For example, Ausiello et al. (1995, 2001) discussed the case where the 

objective was to minimize the time taken for a vehicle to serve a certain group of 

customers and return to the warehouse.  Blom et al. (2000) and Krumke et al. (2002) 

suggested applying a fair adversary to calculate the competitive benchmark.  The fair 

adversary, in this case, refers to imposing a restriction that the vehicle in the offline case 

can only move in the direction where pending requests are present.  The competitive 

analysis provides a way to compare the performance of various online strategies for the 

DVRP.  However, this method only provides a comparison of the worst-case scenarios 

instead of evaluating the general case scenarios of each routing strategy. 

Other research focuses on computation of an upper or lower bound.  Bertsimas and Ryzin 

(1991) revealed that parcel transportation services are similar to queuing systems.  In that 

research, five routing policies have been proposed for the problem, which are the 

stochastic queue median, partitioning, travelling salesman, space filling curve and nearest 

neighbor policies.  The results for queuing systems (see Kleinrock 1976) are used to 

calculate the upper and lower bounds of the expected customer waiting time in either 

heavy traffic (when the arrival rate of demands is high) or light traffic (when the arrival 

rate of demands is low) situation.  Bertsimas and Ryzin concluded that the stochastic 

queue median policy yielded the best result in a light traffic situation but was not stable in 
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a heavy traffic situation.  Papastavrou (1996) developed a new routing policy for the 

DVRP.  The lower bound was calculated, and numerical results showed that the policy 

performed well in both light traffic and heavy traffic situations.  Ghiani et al. (2007) 

calculated the lower bounds for two deferment policies and an insertion policy based on 

the formula proposed by Bertsimas and Ryzin, and concluded that the insertion policy 

outperformed the others.  Bertsimas and Ryzin (1993a,b) also calculated the bounds for 

transportation costs and average customer waiting time in the cases of non-uniform 

spatial demand distributions, and general renewal processes for customer arrivals.  Bullo 

et al. (2011) concluded that a uniform spatial density of demand leads to the worst 

possible performance of customer waiting time, and the deviation from uniformity in the 

demand distribution will strictly lower the optimal expected waiting time.  They also 

claimed that providing higher priority of service to certain demands would result in a 

reduction of optimal expected waiting time for non-uniform density demand 

distributions.  These studies involved a large amount of effort in order to approximate 

and calculate the lower and upper bounds.  However, the results only reflect the 

performance of routing algorithms in special cases.   

2.3. Evaluation of Performance Measures 
The study of parcel transportation in dynamic conditions is interesting and is not limited 

to the design of routing strategies.  An analysis of different routing algorithms reveals 

that the differences between results obtained by various algorithms are small.  This means 

that improving vehicle routes using different routing algorithms is trivial.  Moreover, 

different algorithms have specific advantages in different cases.  A simple routing 

algorithm may be more economical and efficient than other sophisticated algorithms in 
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some cases.  Spending effort to seek the best algorithm is not always cost-effective.  A 

quick and accurate estimation of the performance measures may be more meaningful than 

a detailed vehicle routing schedule in the management of transportation services (Bruns 

et al. 2000; Wasner and Zäpfel 2004).   

Simulation is one of the most popular methods used in estimating the performance 

measures.  Past research identifies several simulation structures (Du et al., 2005; Hanshar 

and Ombuki-Berman, 2007; Barbucha and Jedrzejowicz, 2008; Xiang et al., 2008), as 

summarized in Fig. 2.1.   

 
Fig. 2.1. The framework of simulating the Dynamic Vehicle Routing Problem 

 
• The customer module generates customer requests with arrival time, locations, 

and due time based on certain probability distributions.   

• The scheduling system processes customer requests and generates vehicle 

schedules.   

• The vehicles follow instructions from the scheduling system, and continuously 

update the scheduling system regarding their statuses.  For example, a status could 

include whether the vehicle is idle, whether the vehicle is experiencing a 
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breakdown on the road, and the location of the vehicle itself.  

• The road module indicates the route network between customer locations and the 

warehouse.  It calculates the distances or travel time, and updates the scheduling 

system about traffic conditions.   

Within the scheduling system, there are four components, which are the event 

collector, routing manager, vehicle schedule, and dispatcher.   

• The event collector gathers new requests, road information, the vehicle status with 

its current schedule, when customers make new service requests or the vehicle 

status changes.  It creates a static VRP with all the information and passes it to the 

routing manager.   

• The routing manager resolves this static VRP based on certain routing strategies 

and updates the vehicle schedule with the current optimal solution.  In past 

research, these routing strategies are usually described by pseudo-codes (de 

Oliveira et al. 2008; Jun et al. 2008; Angelelli et al. 2009) or program structure 

diagrams (Fleischmann et al. 2004; Ahmmed et al. 2008; Xiang et al. 2008).  

Within the resolution period, the scheduling system is locked, which means that 

new customer requests, updated traffic conditions or vehicle status changes will 

only be handled after the routing manager has resolved the current VRP and 

unlocked the scheduling system.   

• The dispatcher retrieves the solution from the vehicle schedule, and informs the 

customer whether a request is accepted or rejected, as well as an estimated time in 

which the service will be provided to the accepted request.  It also instructs 

drivers to follow the current schedule. 
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After a large number of requests are generated, estimations of performance measures are 

obtained based on data collected from simulations.  Simulation is easily implemented, 

and is flexible for various scenarios.  However, it may take a long time for the simulation 

to obtain a reliable estimation.   

Another method to evaluate performance measures is based on mathematical formulas.  

Mathematical programming is commonly used to formulate the VRP (see Laporte 1992).  

Using mathematical programming, the minimum distances or costs may be obtained.  

Based on the travel distance and cost provided by mathematical programming of a VRP, 

an algorithm can be used to determine the frequency of the vehicle travelling in an 

inventory management problem (Rajeshkumar and RameshBabu, 2006) and the location 

of depots in the network design of transportation services (Wasner and Zäpfel, 2004).  

However, it is complicated to represent the DVRP in a mathematical programming 

formula, since the situation changes over time.  Haghani and Jung (2005) tried to use a 

mathematical programming formula to analyze the upper and lower bounds of the travel 

distance in a DVRP.  They reported numeric results of only 10 demands in several 

discrete time intervals.  Therefore, this approach is not efficient to evaluate the 

performance measures of parcel transportation services. 

A few researchers have attempted to calculate performance measures based on a 

mathematical function of specific random variables.  No programming codes or graphs 

are used to represent routing strategies in this research stream.  The effects of the routing 

algorithms on the final performance measures are represented by parameters in 

mathematical functions.  For instance, Confessore et al. (2008) tried to construct a 

travelling cost function of the average span of customer time windows based on 
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experience and historical data.  This historical data is generated from certain routing 

strategies.  Linear regression is used to calculate the value of parameters in the cost 

function.  However, the cost function in this research is simple and lacking of 

mathematical deduction and proof.  Hence, performance measures estimated by this 

function are not sufficiently accurate. 

Continuous approximation models are popular estimation methods for determining 

vehicle travel distances.  The key feature of these models is that the total travel distance d 

is only estimated by a function of the area A of the service region R and the spatial 

density ( , )x yδ  of the customer locations ( , )x y  (Langevin and Mbaraga, 1996).  The 

average Euclidean distance between the warehouse and a customer within the region is 

calculated as follows. 

0 ( , ) ( , )

( , )
R

R

l x y x y dxdy
l

x y dxdy

δ

δ
= ∫∫

∫∫
        (2.1) 

0 ( , )l x y  is the distance from the warehouse to location ( , )x y .  If customers’ locations are 

uniformly distributed in the region, the average distance from the warehouse to any 

customer’s location is simplified as follows. 

1l Aα=           (2.2) 

1α  is a constant which depends on the shape of the region and the location of the 

warehouse.  Beardwood et al. (1959) proved the optimal total travel distance between N 

customers uniformly distributed in the service region as Equation (2.3). 

2d ANα=      N →∞        (2.3) 

In this equation, 2α  is a constant parameter which depends on the shape of the region.  A 
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number of researchers have tried to estimate the parameters 1α  and 2α  in differently 

shaped regions (refer to Langevin and Mbaraga, 1996). 

Continuous approximation models have wide applications in the study of transportation 

problems.  In warehouse location and relocation problems, Bruns et al (2000) divided the 

travel distance into several running distances and two stem distances.  A stem distance is 

the average distance from the warehouse to the first customer in a trip or from the last 

customer to the warehouse, which is obtained by Equation (2.2).  A running distance is 

the average distance between two consecutive customers, and is proportional to the 

square root of the area of the service region, which is derived from Equation (2.3).  

Newell and Daganzo (1986) tried to partition a region of delivery services into a number 

of sub-regions and decide the size of each sub-region.  In that research, the objective was 

to minimize the total travel distance which was estimated by continuous approximation 

models.  Daganzo and Newell (1985) studied the frequency of product deliveries by 

exploring the trade-off between the increasing inventory cost due to accumulation of 

products and the decreasing travelling cost due to longer and more efficient vehicle 

routes.  The travelling cost was also evaluated by continuous approximation models.  

Geunes et al. (2007) analyzed a pricing problem in delivery services and derived the cost 

function based on continuous approximation models proposed by Haimovich and 

Rinnooy Kan (1985). 

Bertsimas and Ryzin (1991), Papastavrou (1996) and Ghiani et al (2007) assumed that 

customer inter-arrival time followed an exponential distribution and customers were 

randomly dispatched over the map in a uniformly distributed pattern.  The travel time of 

the vehicle was a random variable with a certain probability distribution, where the mean 
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and variance can be estimated by continuous approximation models.  Bertsimas and 

Ryzin (1993a, 1993b) studied the VRP with multiple capacitated vehicles, non-uniform 

spatial distributions and general renewal processes for arrivals with these models.  These 

research extended results by Christofides and Eilon (1969) and the queuing theory in 

order to estimate the upper bound and lower bounds of average customer waiting time.  

However, the bound analysis of average waiting time was not enough to measure the 

overall satisfaction of customers.  Further extensions of continuous approximation 

methods to estimate other performance measures, such as service level, are quite difficult.   

In summary, simulation is a flexible method to evaluate performance measures through a 

statistical approach.  The disadvantage of the simulation method is that it is time 

consuming when compared to the application of a mathematical function.  The 

mathematical function is a fast and systematic method.  However, approaches proposed 

in past research are not sufficiently accurate, and they present difficulties in addressing 

various issues in parcel transportations services and estimating various performance 

measures.  A systematic model is required to estimate various performance measures 

efficiently.  The proposed stochastic model in this thesis is built to fill these gaps. 
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3. Analysis of Parcel Delivery Services using a Markov Model 

3.1. Overview 
The objective of this chapter is to evaluate business performance in terms of 

transportation costs and service levels.  The estimation model is formulized based on the 

following assumptions. 

• The customers’ demand appears as a Poisson process with constant rate λ, and 

customers’ locations are independently and uniformly distributed in the service 

region.  New customers are queued in a waiting list for delivery services. 

(Bertsimas and Ryzin, 1991) 

• There is a single vehicle with infinite capacity which operates parcel delivery 

services in a certain region.  Once free, the vehicle plans a delivery trip which 

originates from the warehouse, visits customers who are in the waiting list, and 

returns to the warehouse.     

• The loading and unloading time at the warehouse and customer locations can be 

ignored, since it is relatively short compared with the vehicle travel time.  

(Haghani and Jung, 2005) 

• To simplify the problem, the vehicle serves customers according to the first-

come-first-serve (FCFS) rule. (Du et al. 2005)  This assumption can be relaxed in 

a later chapter.   

• The vehicle is travelling at a constant speed of one unit distance per unit time. 

(Larsen 2000) 

In this chapter, the author investigates the process of dynamic delivery services in a 

Markov model.  Before constructing the Markov model, the vehicle travel time should be 
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estimated by the continuous approximation model mentioned in chapter 2.  In section 3.2, 

it is assumed that the vehicle travel time is approximated by a random variable with a 

certain distribution.  Based on this assumption, delivery services are modelled as a 

Markov chain.  In section 3.3, the transportation cost is estimated based on the steady 

state process of the Markov model, and the customer waiting time for the service and the 

service level are estimated based on a transient state process, in section 3.4.  In section 

3.5, a strategy to manage the vehicle departure time is investigated, and the Markov 

model is modified accordingly.  In section 3.6, numerical results for validating the 

proposed model are discussed. 

3.2. Approximation of Vehicle Travel Time 
A single delivery trip consists of several paths.  If the service sequence in the trip is 

( 1 2, , , jn n n ), the vehicle starts from the warehouse, visits 1n  followed by 2n , and so on.  

After the vehicle leaves jn , it heads back to the warehouse.  Let 0d  denote the period of 

time that the vehicle spends travelling between the warehouse and the customer 1n , 1d  be 

the period of time the vehicle travels between the customer 1n  and 2n , and so on.  There 

are 1j +  paths in this trip, and the total travel time of this trip is 
0

j

i
i

l d
=

= ∑ .  In the DVRP, 

id  can be considered a random variable, and the mean and variance of l can be estimated 

by the continuous approximation model.  The expected value of id  ( 1i ≥ ) is denoted as 

1τ , and its variance is 2
1σ .  The mean and variance of 0d  is 0τ  and 2

0σ , respectively.  

Christofides and Eilon (1969) estimated that the expected time of a trip which spans N 

customers is proportional to the square root of the area of the service region, provided 
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that the N customers are independently and uniformly scattered in the region.  If two 

independently and uniformly distributed points 1X  and 2X  in a region, and the centre 

point X ∗  of the region are provided, Equations (3.1), (3.2), (3.3) and (3.4) can be 

formulated.     

1 1 2 1=E X X c Aτ  −  =          (3.1) 

22 2
1 1 1 2 2+ =E X X c Aτ σ  − =          (3.2) 

*
0 1 3=E X X c Aτ  − =          (3.3) 

22 2 *
0 0 1 4+ =E X X c Aτ σ  − =           (3.4) 

Larson and Odoni (1981) estimated that 1 0.52c ≈ , 2 1/ 3c ≈ , 3 0.383c ≈ and 4 1/ 6c ≈  if 

the service region is square.  They also estimated these parameters in regions of varying 

shapes.  Based on this estimate, the vehicle travelling between customers can be 

considered a stochastic process with general distribution.  In dynamic delivery services, 

Equations (3.3) and (3.4) can be used to estimate the mean and variance of the travel time 

from the warehouse to the first customer, and Equations (3.1) and (3.2) can be used to 

estimate the travel time between any two successive customers. 

Dynamic parcel delivery services can be modelled as an M/G/1 queuing system.  In this 

system, the customer inter-arrival time is exponentially distributed, the service time 

follows a general distribution, and there is only one server (the vehicle) in the system.  In 

a Markov chain, a complete specification of a system is collectively named as the state.  

The system state is generally defined as the number of customers N currently in the 

system, which means that N customers’ orders have not yet been fulfilled.  N is a random 
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variable of time, it is thus denoted as tN .  Once a new customer’s demand appears, the 

system state increases by one ( 1t t tN Nδ+ = + ).  Once a customer demand is fulfilled, the 

system state decreases by one ( 1t t tN Nδ+ = − ).  At any given point in time, the system 

must be completely described as being in one of the discrete states.   

In dynamic delivery services, customers are queued in a waiting list.  Once the vehicle is 

idle at the warehouse, a schedule for the customers is determined accordingly and the 

vehicle initiates a trip in order to fulfil the demands.  Therefore, customers in the system 

have two different statuses.  One status is when the customer is ready to receive the 

delivery according to the schedule.  The other status is when the customer is queued in 

the waiting list with no set schedule.  Therefore, the system state is defined as (w, k), 

where w is the number of customers queued in the waiting list, and k is the number of 

customers left on the current scheduled trip.  N w k= + .  The Markov chain of the system 

is shown in Fig.3.1(a). 

 
a. Queuing process for dynamic parcel delivery services 

 

 
b. Approximate the vehicle travelling process by hypo-exponentially distributed process 

 
Fig. 3.1. Markov Model for parcel delivery services 

 
The Markov property states that the probability that the system will be in a particular 

state at the next moment of time depends only on the current state.  It requires that the 



 
 

35 

transition time from one state to the other follows an exponential distribution.  However, 

the vehicle travel time between customers follows a general distribution, which does not 

satisfy the Markov property requirement.  In order to model dynamic parcel delivery 

services as a continuous time Markov Chain, the generally distributed vehicle travel time 

is approximated by a combination of a series of exponential distributed travel time.  The 

total time spent on several sequential Poisson events with different rates is measured by a 

hypo-exponential distribution, which is used to approximate the general distribution of 

vehicle travel time.  In order to describe the series of Poisson events, a system state (w, k) 

is further divided into several sub-states (w, k, I), where I represents the index of sub-

states.  In particular, state (0,0,0) indicates that the vehicle has become idle due to no 

pending customer demand to be fulfilled.  If the length of the queue is limited at l 

customers and the number of sub-states is I0, the number of states in the system is 

I0*l*(l+1).  The approximation of the hypo-exponentially distributed process is illustrated 

in Fig.3.1(b).   

The hypo-exponential distribution consists of 0I  sub-state phases for the paths between 

the warehouse and the first customer or the path between the last customer and the 

warehouse, and 1I  sub-state phases for the paths in between.  Each sub-state phase is an 

exponential phase with a transition rate iµ .  Therefore, the mean of the hypo-exponential 

distribution for I0 sub-state phases is 
0

1

1I

i iµ=
∑ , and the variance is 

0

2
1

1I

i iµ=
∑ .  In order to 

approximate the vehicle travel time with mean τ  and variance 2σ , this hypo-exponential 

distribution must satisfy the two equations in Equation (3.5). 
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0

0

1

2
2

1

1

1

I

i i
I

i i

τ
µ

σ
µ

=

=


=



 =

∑

∑
          (3.5) 

Proposition 3.1: If there are positive real solutions for Equation (3.5), the following 

condition (3.6) must hold. 

0I

σ τ
τσ

<

 ≥


          (3.6) 

Proof:  This proposition assumes that Equation (3.5) has positive real solutions.  The 

following mathematical induction is used to prove that condition (3.6) must hold. 

(I) Let Iσ σ= , Iτ τ=  and 1i ir µ=  

0Iσ > , 0Iτ >  

(II)  If 0 2I = , the solution to Equation (3.5) is shown in Equation (3.7).  

2 22
1,2 2 2

1 1
2 2 4

r τ σ τ= ± −         (3.7) 

If 1r  and 2r  is the positive real solution, the following must hold. 

2 2

2
2 2

σ τ
τσ

<

 ≥

 

(III)  It is assumed that the proposition holds when 0 1I k= −  (where k is an integer 

and 3k ≥ ), which is described as follows. 

1

1
1

1
2 2

1
1

k

k i
i
k

k i
i

r

r

τ

σ

−

−
=

−

−
=


=


 =


∑

∑
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The equations have positive real solutions only in the case when  

1 1

1
1 1

k k

k
k k

σ τ
τσ

− −

−
−

<

 ≥ −

 

Let 1k k krτ τ −= +  and 2 2 2
1k k krσ σ −= + .

 1

1

1
2 2 2

1

k

k k i
i
k

k k i
i

r r

r r

τ

σ

−

=

−

=


− =


 − =


∑

∑
         (3.8) 

According to the assumption when 0 1I k= − , the following must hold. 

2 2

2 2 ( )
1

k k k k

k k
k k

r r
rr

k

σ τ
τσ

 − < −
 −− ≥ −

 

Rearranging the above inequations while maintaining 1 0k k krτ τ −− = > , 

2 2 2 2

2
2 2

2

1 1 1 1( )
2 4 4 4

1 1 1 0

k k k k k k k

k k k k

r r

k k r
k k k

σ τ τ τ τ

σ τ τ

 − < + − <


− −   − ≥ − ≥   

      (3.9) 

Therefore, the two following conditions hold. 

k k

k
k k

σ τ
τσ

<

 ≥

 

The proposition is proved in the situation of 0I k= , provided that the proposition holds 

when 0 1I k= − .  Since it has been proved that the proposition holds when 0 2I = , the 

proposition is confirmed in all conditions when 0 2I ≥ . 
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Since τ  and σ  are proportional to A , and all iµ  must satisfy Equation (3.5), iµ  is 

proportional to 1 A .  Therefore, it is not necessary to seek feasible solutions to 

Equation (3.5) again, when delivery services have the same region shape but different 

sizes.  The solution to Equation (3.5) is as follows. 

According to condition (3.9), the range of kr  can be calculated. 

Case I.  
1

k k
kk k

τ τσ> ≥
−

 

2 2 2 2( 1) ( 1)
1 1

k k k k k k
k

k k k k k k
r

k k
τ σ τ τ σ τ− + − + + −

≤ ≤
+ +

 

Case II.  
2
k k

k k
τ τσ> ≥  

2 2( 1)
0

1
k k k

k

k k k
r

k
τ σ τ+ + −

< ≤
+

 

Case III.  
2
k

k k
ττ σ> ≥  

2 22
0

2
k k k

kr
τ σ τ− −

< ≤   or 

2 2 2 22 ( 1)
2 1

k k k k k k
k

k k k
r

k
τ σ τ τ σ τ+ − + + −

≤ ≤
+

 

In order to find one group of feasible solutions for Equation (3.5), the following 

algorithm is proposed. 

Step I, check to see if τ σ≥ .  If so, there are feasible solutions.  Since the fewer 

states has the system, the faster result is obtained from the calculation, the 

value of I0 is determined by the minimum integer of 2 2
0 /I τ σ≥ . 
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Step II, let kσ σ= , kτ τ= and 1i ir µ= .  Decide the range of kr  based on Case I to 

Case III.  Assign a random value to kr  within the range. 

Step III, let 1k k krτ τ− = − , 2 2 2
1k k krσ σ− = −  and 1k k= − .  Repeat Step II and III until 

2k = . 

Step IV, use Equation (3.7) to find the value of 1r  and 2r . 

Step V, obtain iµ  from the inverse value of ir . 

For example, suppose there is a square region with area A, and there is a warehouse in 

the middle of the region.  The vehicle plans the travelling route based on the FCFS rule.  

The travel distance between customers and the warehouse can be estimated by the 

results proposed by Larson and Odoni (1981).  Let 1τ  denote the average travel time 

between two successive customers’ locations, 2
1σ  be the variance of these travel time, 

0τ  denote the average travel time between a customer location and the warehouse and 

2
0σ  be the variance. Therefore, 1 0.52 Aτ = , 2 2

1 13 0.0629A Aσ τ= − = , 0 0.383 Aτ =  

and 2
0 0.02Aσ = .  According to Equation (3.5), the following equations need to be 

solved. 

1

1

0

0

1

2
1

1

2
1

1 0.52

1 0.0629

1 0.383

1 0.02

I

i i
I

i i
I

i i
I

i i

A

A

A

A

µ

µ

µ

µ

=

=

=

=


=




=


 = ′

 = ′

∑

∑

∑

∑
  

where I0 and I1 are restricted by condition (3.6). 

2 2
1 1 1 4.3I τ σ≥ =  and 2 2

0 0 0 7.3I τ σ≥ =  



 
 

40 

Following the algorithms provided above, one group of solutions for iµ  and iµ′  is 

obtained. 

{32.6,10,9.1,8.3,6.3}i Aµ =  

{73.6,23,21,20.8,19.2,17.9,16.8,15.9}i Aµ′ =  

In this case, the number of states in the system is (8+14*5)*(15+1) = 1248, if the 

length of the queue is set at 15 customers. 

3.3. Transportation Cost Estimation 
This section presents methods for estimating transportation costs, which are assumed to 

be proportional to the average vehicle travel distance within a specific period.  Since the 

vehicle speed is constant and the status of the vehicle is either travelling or idle, the 

average travel distance is proportional to the percentage of time that the vehicle spends 

travelling, which is defined as the vehicle utilization.  The higher the vehicle utilization, 

the higher the transportation costs.  Vehicle utilization can be calculated based on a 

steady state process of the Markov Chain, which is introduced as follows. 

In general, the behavior of a Markov Chain is investigated when the system is in steady 

state.  In this situation, the probability that the system is in a certain state is independent 

of time and the starting state.  This probability is named steady state probability, 

{ }vπ π= , where vπ  is the steady state probability of state v.  The steady state probability 

is obtained by resolving balance equations, in which the average total flow into a certain 

state is equal to the average total flow out of the state.   

1) The vehicle is travelling between customers.  (State (w,k,I)) 

Fig. 3.2 illustrates the transition diagram when the vehicle is travelling between 

customers’ locations.  The system state currently is (w,k,I), and arrows show the 
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probability flows into and out of this state. 

 
Fig. 3.2. Transition diagram of the vehicle travelling between customers 

 
 

Based on the transition diagram in Fig. 3.2, the balance equation is formulated as 

Equation (3.10) 

( , , 1) ( 1, , ) 1 ( , , )( )I w k I w k I I w k Iµ π λπ µ λ π+ − −+ = +      (3.10) 

The left side of Equation (3.10) represents the total probability of transitioning 

into state (w,k,I) from other states.  The right side of the equation indicates the 

total probability of transitioning from state (w,k,I) to other states.  The transition 

occurs when the vehicle continues travelling or a new customer appears. 

2) Vehicle reaching and leaving a customer’s location.  (State (w,k,I1)) 

When the vehicle reaches a customer’s location, it starts heading to the next 

customer immediately, due to the assumption of zero unloading time at 

customer’s location.  Fig. 3.3 illustrates the transition diagram in this situation. 

   

Fig. 3.3. Transition diagram of the vehicle reaching and leaving 
customers’ locations 

 
Based on the transition diagram, the balance equation is formulated as follows. 

1 1 1 1( , 1,0) ( 1, , ) 1 ( , , )( )I w k w k I I w k Iµ π λπ µ λ π+ − −+ = +      (3.11) 
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3) The vehicle returns to the warehouse and starts the next trip (Redundant state 

(w,0,0)) 

Once the vehicle finishes the current trip, the system state is expected to reach 

(w,0,0) from (w,0,1).  The vehicle should begin travelling to the pending customer 

immediately, since the vehicle will spend no time loading and unloading products 

at the warehouse.  Therefore, the vehicle starts the next trip once it returns to the 

warehouse in this case, and the process transitions from state (w,0,1) directly to 

state (0,w,0).  

When the vehicle starts a new trip, the vehicle should move from the warehouse 

to the first customer, which is illustrated in Fig.3.4.(a).  In this process, the flow 

rate between two system states is iµ′ .  Fig.3.4.(b) illustrates the process that the 

vehicle travels from the w+1 customer to the w customer with a flow rate of iµ  

between system states.  However, these two processes share the same series of 

transitions from state (0,w,I) to state (0,w,0).  It is difficult to construct these two 

processes with different transition rates in the same Markov chain.   

 
a. Transportation from the warehouse to the first customer in a trip. 

 
b. Transportation from the w+1 customer to the w customer  

Fig. 3.4. The difference between the process from the warehouse to 
customer and the process from customer to customer. 
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In order to overcome this difficulty, the process of the vehicle travelling from the 

warehouse to the first customer and the process of the vehicle travelling from the 

last customer to the warehouse are combined, which are illustrated in Fig. 3.5.  

The transition rate from state (w,0,I) to state (w,0,I-1) becomes 1 2Iµ −′ , due to this 

combined process.  This combined process is at the end of each trip, and the 

vehicle starts the trip by travelling from the first customer to the second customer.  

Although this mechanism rearranges the physical vehicle travelling sequence, it 

will not affect the final results, since only vehicle utilization is examined in this 

section. 

 
a. Vehicle travelling on a physical trip 

 
b. Vehicle travelling process in the Markov model 

Fig. 3.5. Modeling the vehicle travelling process on a trip 
 

Based on the transition diagram in Fig. 3.6, the balance equation is formulated as 

Equation (3.12). 

 
Fig. 3.6. Transition diagram in the situation that the vehicle returns to the 
warehouse and starts the next trip 
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10 ( ,0,1) 0 (0, ,1) (0, ,0)2 ( )w w I wµ π µ π µ λ π′ + = +      (3.12) 

The left side of Equation (3.12) represents the transition of the vehicle travelling 

and returning to the warehouse.  The right side of Equation (3.12) indicates the 

transition out of the state (0,w,0), which happens when the vehicle starts the next 

trip or a new customer demand appears. 

4) The vehicle travels from the last customer to the warehouse on the current trip. 

(State (w,0,I)) 

 

Fig. 3.7. Transition diagram in the situation that the vehicle travels 
towards the warehouse 

 
As previously mentioned, the transition rate of the vehicle travelling in this case 

becomes 1 2Iµ −′ , due to the combined process.  Based on the transition diagram 

above, the balance equation is as follows. 

( ,0, 1) ( 1,0, ) 1 ( ,0, )2 ( 2 )I w I w I I w Iµ π λπ µ λ π+ − −′ ′+ = +      (3.13) 

5) The vehicle is idle on the warehouse. (State (0,0,0)) 

 
Fig. 3.8. Transition diagram of vehicle idle at the warehouse 

 
When there are no customers waiting for services, the vehicle is idle at the 

warehouse.  Fig. 3.8 illustrates the situation.  The balance equation for this 

situation is as follows. 

0 (0,0,1) (0,0,0)2µ π λπ′ =         (3.14) 



 
 

45 

The balance equations can be summarized as the following stationary equation. 

0Qπ =           (3.15) 

{ },u vQ q=  is defined as the intensity matrix, and ,u vq  specifies the transition rate from 

state u to v.  Each element in the intensity matrix is elaborated as follows. 

At any moment, the state may transition from (w,k,I) to (w,k,I-1) with a flow rate 1Iµ − , 

where the vehicle continues travelling between customers. 

( , , ),( , , 1) 1w k I w k I Iq µ− −= ,  10,1, ; 1,2, ; 1,2, ,w k I I= = =    

The flow rate is 1 2Iµ −′ , when the vehicle travels between a customer and the warehouse. 

( ,0, ),( ,0, 1) 1 2w I w I Iq µ− −′= ,  00,1, ; 2,3, ,w I I= =   

Due to the redundant state (w,0,0), the state may transition directly from (w,0,1) to (0,w,0) 

with the flow rate 0 2µ′ , when the vehicle returns to the warehouse and starts the next 

trip. 

( ,0,1),(0, ,0) 0 2w wq µ′= , 1, 2,w =   

The system stays in the (0,0,0) state, if there are no customers waiting for the service. 

(0,0,1),(0,0,0) 0 2q µ′=  

The system transitions from state (w,k,0) to (w,k-1,I1) with flow rate 
1I

µ , when the 

vehicle finishes the service for a customer and sets out for the next destination. 

1 1( , ,0),( , 1, )w k w k I Iq µ− = ,  0,1, ; 2,3,w k= =   

The system transitions from state (w,1,0) to (w,0,I0) with flow rate 
0Iµ′ , when the vehicle 

finishes the service for the last customer on current trip and starts heading back to the 

warehouse. 
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0 0( ,1,0),( ,0, ) 2w w I Iq µ′= ,  0,1,w =   

When a new customer appears, the number of customers in the system increases by one. 

( , , ),( 1, , )w k I w k Iq λ+ = ,  0,1, ; 0,1, ; 0,1,w k I= = =     , (except (0,0,0),(1,0,0)q ) 

If a new customer appears when the vehicle is sitting idle at the warehouse, the vehicle 

will immediately set out to the location of this new customer.  The state transitions from 

(0,0,0) to (0,1,0) and the flow rate λ  can be determined. 

(0,0,0),(0,1,0)q λ=  

Based on the definition of the intensity matrix, the flow rates out of a certain state should 

add up to 0.  Therefore, the diagonal elements of the intensity matrix can be calculated as 

follows. 

( , , ),( , , ) 1w k I w k I Iq λ µ −= − − ,  0,1, ; 1, 2, ; 1, 2,w k I= = =    

( ,0, ),( ,0, ) 1 2w I w I Iq λ µ −′= − − ,  0,1, ; 1, 2,w I= =   

1( , ,0),( , ,0)w k w k Iq λ µ= − − ,  0,1, ; 2,3,w k= =   

0( ,1,0),( ,1,0) 2w w Iq λ µ′= − − ,  0,1,w =   

(0,0,0),(0,0,0)q λ= −  

The steady state probability π  is obtained by the stationary equation together with the 

boundary condition 1π =∑ . 

0
1

Qπ
π
=

 =∑
          (3.16) 

The vehicle utilization U  is obtained from the following equation. 

(0,0,0)
(0,0,0)

1u
u

U π π
≠

= = −∑         (3.17) 
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(0,0,0)
u

u
π

≠
∑  is the steady state probability of the vehicle travelling and (0,0,0)π  is the steady 

state probability of the vehicle sitting idle at the warehouse. 

The transportation cost per unit time TC  is proportional to the vehicle utilization. 

1 1 (0,0,0)(1 )TC Uϕ ϕ π= = −         (3.18) 

where 1ϕ  is the petrol cost per unit time when vehicle is travelling. 

3.4. Service Level Estimation  
The customer waiting process discussed in this section is to estimate the waiting time for 

a customer.  This specific customer represents a customer living anywhere in the region 

and making an order at any time.  It is assumed that this process starts from a setting time 

0, when the system is stable and the specific customer appears.  It ends when the 

customer’s demand has been satisfied and the customer is no longer in the system.  

Therefore, the probability of each state continues changing with time, and the system will 

never become stable.  In other words, this process is a transient state process.  The 

purpose is to track the entire process of a customer from his arrival until the completion 

of the service for him/her, in order to calculate the span of time the customer stays in the 

system. 

There are two vehicle routing trips in this process.  The first trip is the current trip, when 

the specific customer appears.  After the first trip, the vehicle plans the next trip for the 

specific customer and the remaining customers in the waiting list.  The variance of state 

probabilities is investigated along the time axis.  Finally, the distribution of customer 

waiting time in the system is obtained.  With this distribution, service levels can be 

defined based on different criterions. 
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In this process, the Markov model needs to track the position of the specific customer in 

the queue once he or she appears.  The position of the specific customer is an important 

point of reference, which need to be added into the definition of the state.  The system 

state is now defined as (w,k,I,b), where the first three symbols have the same meaning as 

the previous steady state process, and b indicates the position of the specific customer in 

the queue.  However, in this four-dimension state, the state space will exceed ten 

thousand if each dimension has more than ten different values.  Solving a Markov model 

with a large state space will cost considerable computational efforts.  In order to 

efficiently estimate customer waiting time, reducing the state space is necessary. 

In this process, the service sequence for the next vehicle trip is fixed once the specific 

customer appears, due to the FCFS queue discipline.  The demand after this specific 

customer will not affect the final results.  It is not necessary to track the number of 

customers queued in the waiting list, after the service sequence of the specific customer 

on the next trip is determined.  The definition of the state in this process can be reduced 

to three dimensions (k,I,b).  b does not change until the vehicle finished the current trip 

and starts the next trip.  After that, b is set to 0, in order to indicate the process for the 

second trip.  In particular, The state (0,0,0) indicates that the demand of the specific 

customer has been fulfilled.  Let ,{ }t u tπ π′ ′=  be the transient state probability at time t, 

where ,u tπ ′  is the transient state probability of state u at time t. 

Initially, at time 0, the specific customer appears and joins the end of the queue in the 

waiting list.  The initial state probability ( , , ),0k I bπ ′  is determined by the steady state 

probability π  obtained from previous process, due to the assumption that the system is 

stable at time 0.  It can be proved that the system is in a certain state with the same 
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probability as the previous steady state probability, when the specific customer appears, 

due to the assumption that customers appear in a Poisson manner (see the book edited by 

Gross and Harris, 1998, page 221-222). 

( , , ),0 ( 1, , )k I b b k Iπ π −′ = ,  0,1, ; 0,1, ; 1, 2,k I b= = =   , (except (0,0,1),0π ′ )   (3.19)  

If the vehicle is initially idle, the specific customer will be served immediately.  The 

initial probabilities in other states are set to zero. 

(1,0,0),0 (0,0,0)π π′ =           (3.20) 

In the transient state process of the Markov Chain, the state probability changes due to 

the difference between rates flowing into the state and rates flowing out off the state. 

1) The vehicle travels between customers. (State (k,I,b)) 

 
Fig. 3.9. Transition diagram of vehicle travelling between customers 
 

Based on the transition diagram in Fig. 3.9, the transient state equation is 

formulated as Equation (3.21) 

( , , ),
( , 1, ), 1 ( , , ),

k I b t
I k I b t I k I b t

d
dt

π
µ π µ π+ −

′
′ ′= −       (3.21) 

The first element on the right side of Equation (3.21) represents the transition 

rates from other states into state (k,I,b).  The second element on the right side of 

the equation indicates the transition rates out off state (k,I,b).  

2) The vehicle reaches and leaves a customer’s location. (State (k,I1,b)) 

 
Fig. 3.10. Transition diagram of a vehicle reaching and leaving 
customers’ locations 

 



 
 

50 

1

1 1 1

( , , ),
( 1,0, ), 1 ( , , ),

k I b t
I k b t I k I b t

d
dt

π
µ π µ π+ −

′
′ ′= −       (3.22) 

3) The vehicle returns to the warehouse and starts the next trip.  (State (b,0,0)) 

As previously mentioned, the state (0,0,b) is redundant.  The vehicle starts the 

second trip once it returns to the warehouse and the process transitions from state 

(0,1,b) directly to state (b,0,0).  

Since this process ends when the vehicle reaches the specific customer’s location, 

the vehicle’s return trip can be ignored.  Therefore, the second trip is slightly 

different from the one shown in Fig. 3.5.  The transition rate from state (0,I,0) to 

state (0,I-1,0) is 1Iµ −′ .  The second trip can be reconstructed with the initial path 

from the first customer to the second and it ends with the path from the warehouse 

to the first customer.  Although this mechanism rearranges the physical vehicle 

travelling sequence, it will not affect the final results, since analyzing the 

customer waiting time is the only objective in this section. 

 
Fig. 3.11. Transition diagram in the situation that the vehicle returns to 
the warehouse and starts the next trip 

 
Based on the transition diagram in Fig. 3.11, the transient state equation is 

formulated as Equation (3.23). 

1

( ,0,0), 0
(0,1, ), 0 ( ,1,0), ( ,0,0 ),2

b t
b t b t I b t

d
dt

π µ π µ π µ π
′ ′

′ ′ ′= + −      (3.23) 

4) The vehicle travels to the warehouse.  (State (0,I,b)) 

As previously mentioned, the first trip in the customer waiting process is a 
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circular trip which starts and ends at the warehouse.  In the Markov model, the 

last leg of the first trip includes a combination of two journeys between the 

customer and the warehouse (Fig. 3.12 (a)).  This process takes an incomplete 

second trip into consideration, which only includes one journey from the 

warehouse to the first customer.  Therefore, the transition rate in the last step of 

the second trip is 1Iµ −′ , which is illustrated in Fig. 3.12 (b). 

 
a. The first trip 

 
b. The second trip 

Fig. 3.12. Transition diagram in the situation that the vehicle is travelling 
towards the warehouse 

Based on the transition diagram of Fig. 3.12, the transient state equations are 

Equation (3.24) for the first trip and Equation (3.25) for the second trip. 

(0, , ), 1
(0, 1, ), (0, , ),2 2

I b t I I
I b t I b t

d
dt

π µ µπ π−
+

′ ′ ′
′ ′= −       (3.24) 

(0, ,0),
(0, 1,0), 1 (0, ,0),

I t
I I t I I t

d
dt

π
µ π µ π+ −

′
′ ′ ′ ′= −       (3.25) 

5) The vehicle finishes the service for the specific customer.  (State (0,0,0)) 

 
Fig. 3.13. Transition diagram of service finished 

 
The transient state equation for this situation is as follows. 

(0,0,0),
0 (0,1,0),

t
t

d
dt

π
µ π

′
′ ′=         (3.26) 

The above differential equations can be summarized as the following forms. 



 
 

52 

't
t

d Q
dt
π π
′

′=    

Resolving this differential equation, the following solution is obtained. 

'
0

tQ
t eπ π′ ′=           (3.27) 

where ,' { ' }u vQ q=   is the intensity matrix for this process, and ,'u vq  is the transition rate 

from state u to v, which is illustrated as follows. 

The transition rate from (k,I,b) to (k,I-1,b) is 1Iµ − , when the vehicle is travelling between 

customers. 

( , , ),( , 1, ) 1k I b k I b Iq µ− −′ = ,  1, 2, ; 1,2, ; 0,1,k I b= = =    

On the first trip the transition rate is 1 2Iµ −′ , when the vehicle travels between the 

warehouse and customer. 

(0, , ),(0, 1, ) 1 2I b I b Iq µ− −′ ′= ,  2,3, ; 1, 2,I b= =   

Due to the redundant state (0,0,b), the state may transition directly from (0,1,b) to (b,0,0) 

with the flow rate 0 2µ′ , when the vehicle returns to the warehouse and starts the second 

trip. 

(0,1, ),( ,0,0) 0 2b bq µ′ ′= ,  1, 2,b =   

On the second trip the transition rate is 1Iµ −′ , when the vehicle is travelling between the 

warehouse and customer. 

(0, ,0),(0, 1,0) 1I I Iq µ− −′ ′= ,  1, 2,I =   

The system transitions from state (k,0,b) to (k-1,I1,b) with transition rate 
1I

µ , when the 

vehicle finishes the service for a customer and sets out for the next destination. 

1 1( ,0, ),( 1, , )k b k I b Iq µ−′ = ,  2,3, ; 0,1,k b= =   
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The system transitions from state (1,0,b) to (0,I0,b) with transition rate 
0

2Iµ′ , when the 

vehicle finishes the service for the last customer on first trip and starts heading to the 

warehouse. 

0 0(1,0, ),(0, , ) 2b I b Iq µ′ ′= ,  1, 2,b =   

The transition rate is 0Iµ′ , when the vehicle starts the last step of the second trip. 

0 0(1,0,0),(0, ,0)I Iq µ′ ′=  

When the vehicle finishes the delivery for the specific customer, the process terminates at 

state (0,0,0). 

(0,1,0),(0,0,0) 0q µ′ ′=  

The diagonal elements of the intensity matrix are calculated as follows. 

( , , ),( , , ) 1k I b k I b Iq µ −′ = − ,  1, 2, ; 1,2, ; 0,1,k I b= = =    

1( ,0, ),( ,0, )k b k b Iq µ′ = − ,  2,3, ; 0,1,k b= =   

0(1,0, ),(1,0, ) 2b b Iq µ′ ′= − ,  1, 2,b =   

0(1,0,0),(1,0,0) Iq µ′ ′= −  

(0, , ),(0, , ) 1 2I b I b Iq µ −′ ′= − ,  1, 2, ; 1, 2,I b= =   

(0, ,0),(0, ,0) 1I I Iq µ −′ ′= − ,  1, 2,I =   

(0,0,0),(0,0,0) 0q′ =  

The solution of (0,0,0),tπ ′  can be obtained at any time t based on Equation (3.27), subject to 

the initial conditions (3.19) and (3.20).  (0,0,0),tπ ′  is the cumulative distribution function of 

the waiting time of the specific customer.  Finally, setting the criterion of customer 

waiting time as T, the service level ST is 
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(0,0,0), 100%T TS π ′= ×          (3.28) 

A numerical technique is introduced to approximate the calculation for tπ′  as follows.  

Firstly, the solution for a corresponding discrete time Markov chain is investigated, in 

which { },u vM m′ ′=  denotes the transition matrix. 

M Q′ ′= Ω + Ι           (3.29) 

In Equation (3.29), I is the identity matrix, and Ω  is a relatively large integer.  One unit 

time is divided into Ω  small time periods, so that more than one independent event may 

occur with rare chance within this small time period.  In practice, Ω  is the nearest integer 

greater than ,,
max u vu v

q′ .  Therefore, the elements in the transition matrix are as follows. 

, ,

, ,

,
1 ,

u v u v

u u u u

m q u v
m q u

′ ′= Ω ∀ ≠
 ′ ′= + Ω ∀

 

Let iV ′  be the ith step transient state probability in the discrete time Markov chain.  Based 

on the discrete time Markov chain property, 1i iV V M+′ ′ ′= , and iV ′  can be calculated with 

the initial condition 0 0V π′ ′= . 

The solution for tπ′  can be obtained by the following equation. 

( )
0

0 0

( ) ( )
! !

i i
t i t

t i
i i

t tV e V M e
i i

π
∞ ∞

−Ω −Ω

= =

Ω Ω′ ′ ′ ′= =∑ ∑  

The computation problem remains that there is an infinite summation of above equation.  

The sum can be truncated at some value, for example r, and the solution can be obtained 

with an acceptable error rε  (Gross and Harris, 1998).  

( ) ( )
0 0

0 1

( ) ( )
! !

i ir
i t i t

t
i i r

t tV M e V M e
i i

π
∞

−Ω −Ω

= = +

Ω Ω′ ′ ′ ′ ′= +∑ ∑  
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( )
0

1 1

( ) ( )
! !

i i
i t t

i r i r

t tV M e e
i i

∞ ∞
−Ω −Ω

= + = +∞

Ω Ω′ ′ ≤∑ ∑  

The error of tπ′  can be bounded at the maximum value rε , by finding r such that  

1

( )
!

i
t

r
i r

t e
i

ε
∞

−Ω

= +

Ω
≤∑           

Based on the property of Chernoff bound (Kobayashi et al., 2012), inequation (3.30) can 

be used to find suitable r with desired bounded error.     

1

( ) ( )
!

i t r
t

rr
i r

t e e te
i r

ε
−Ω∞

−Ω

= +

Ω Ω
≤ ≤∑ , for r t> Ω       (3.30) 

In the proposed model, 100tΩ ≥ , since the criterions in the calculations of service levels 

in the following experiments are set to be greater than or equal to 100 units of time.  If r 

is set to be 1.25 tΩ , the solution of Equation (3.31) is acceptable with error less than 

0.056. 

1.25 1

1.25
1.25 1

( ) 0.055413
! 1.25

ti
t

i t

t ee
i

Ω−∞
−Ω

= Ω +

 Ω
≤ ≤ 
 

∑  

( )
0

0

( )( )
!

ir
i t

t
i

tQ e
i

π π −Ω

=

Ω′ ′ ′= Ω + Ι∑        (3.31) 

3.5. Issue on Vehicle Departure Strategy  
In the previous discussion, it is assumed that the vehicle will start a trip once there is a 

customer waiting for the service.  However, it may not be efficient to start the trip 

immediately with only a small number of customers in the waiting list.  The vehicle can 

wait at the warehouse until there are an appropriate number of customers that can be 

served together on one trip, in order to save travelling costs and adjust customer waiting 

time properly as well.  A possible vehicle departure strategy may dictate that the vehicle 
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only start a trip with at least ND ( 1DN ≥ ) customers waiting for delivery services.  Based 

on the calculation in sections 3.3 and 3.4, several formulas need to be modified to adapt 

this newly defined vehicle departure strategy. 

When Dw N≥ , Equation (3.12) is still valid.  However, when there are not enough 

customers waiting at the time the vehicle returns to the warehouse ( Dw N< ), the state 

(w,0,0) is valid, and the situation needs to be further analyzed. 

When 1Dw N< − , the vehicle can only wait for new demands until Dw N=  (Fig. 3.14). 

 
Fig. 3.14. Transition diagram of vehicle idle at the warehouse when 1Dw N< −  

 
Based on the transition diagram, the balance equation is formulated as follows. 

0 ( ,0,1) ( 1,0,0) ( ,0,0)2w w wµ π λπ λπ−′ + =        (3.32) 

When 1Dw N= − , the vehicle immediately commences a new trip once a new customer 

appears (Fig. 3.15). 

 
Fig. 3.15. Transition diagram of a new trip started when 1Dw N= −  

The balance equation for this situation is as Equation (3.33). 

1( 1,0,0) 0 (0, ,1) (0, ,0)( )
D D DN N I Nλπ µ π λ µ π− + = +       (3.33) 

Due to the modification of the balance equations, some elements in the intensity matrix 

Q  are modified as follows. 
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( ,0,1),( ,0,0) 0 2w wq µ′= , 0,1, , 1Dw N= −  

( ,0,1),(0, ,0) 0 2w wq µ′= , , 1,D Dw N N= +   

( , , ),( 1, , )w k I w k Iq λ+ = , 0,1, ; 0,1, ; 0,1,w k I= = =   , (except ( 1,0,0),( ,0,0)D DN Nq − ) 

( 1,0,0),(0, ,0)D DN Nq λ− =  

There are some elements mentioned in section 3.3 that are not included above.  The 

vehicle utilization U is obtained by resolving the stationary equation. 

1

( ,0,0)
0

1
DN

i
i

U π
−

=

= − ∑          (3.34) 

where 
1

( ,0,0)
0

DN

i
i

π
−

=
∑  is the steady state probability of vehicle idle at the warehouse. 

The transportation cost per unit time is formulated as Equation (3.35). 

1

1 ( ,0,0)
0

1
DN

T i
i

C ϕ π
−

=

 
= − 

 
∑         (3.35) 

In order to evaluate the service level, the transient state process has to be constructed.  In 

this process, although the service sequence for the next vehicle trip is fixed once the 

specific customer appears, it is still necessary to track the number of customers in the 

waiting list.  For example, when the specific customer appears and there are less than ND 

customers in the waiting list, the vehicle has to wait until enough demand in order to start 

any subsequent trip.  Therefore, the four dimension state (w,k,I,b) is still necessary to 

describe the process.  The value of w will not affect the second trip, but it is a variable to 

track whether the system meets the criterion of vehicle departure.  In order to reduce the 

state space, the structure of the Markov chain and the transitions between states has to be 
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designed carefully.  The initial states are grouped into four categories at time 0, when the 

specific customer appears.   

1) There are a minimum of ND customers (including the specific customer) in the 

waiting list and the vehicle is travelling between customers. 

In this situation, the demand after the specific customer will not affect the final 

result, since the number of customers in the waiting list is enough to trigger a 

second trip.  It is not necessary to track the number of customers in the waiting 

list.  Furthermore, the second trip is divided into two parts in the Markov Chain.  

One part can be defined as the process that the vehicle travels between a customer 

and the warehouse, which occurs after the first vehicle trip.  The other part can be 

defined as the process that the vehicle travels between customers on the second 

trip.  The second part is relocated and inserted into the first vehicle trip (an 

example is provided in Fig. 3.16).  The reconstruction of the Markov Chain will 

not affect the final results because there are no differences between the first and 

the second trip when the vehicle is travelling between customers’ locations. 

 
Fig. 3.16. Reconstruction of the vehicle trip in the transient state process in the 
situation where there are at least ND customers in the waiting list when the 
specific customer appears and the vehicle is travelling between customers 
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In this reconstructed process, the remaining process for all situations in this 

category is similar, and there are no different remaining processes for different 

values of w if the initial state probabilities are set up properly.  Therefore, the 

initial state for different values of w can be combined. 

Initially, the same Dw N=  and 1b =  are used for all situations in this category, 

where b is only a notation instead of the real position of the specific customer.  

The initial state probabilities are formulated as follows. 

1

( , , ,1),0 ( , , )
1

D
D

k

N k I i k i I
i N

π π
−

−
≥ −

′ = ∑ ,  , 1, ; 0,1,D Dk N N I= + =     (3.36)  

2) There are less than ND customers (including the specific customer) in the waiting 

list and the vehicle is travelling between customers. 

In this situation, the number of customers should be accumulated in the waiting 

list until it reaches ND in order to trigger the second trip.  The number of 

customers w in the waiting list will increase by one each time a new demand 

appears.  After w reaches ND, any new demand will not be taken into account, 

since it is at this point that the final results will no longer be affected.  

b records the position of the specific customer on the second trip, and is fixed.  

Initially, w is equal to b.  However, w will keep increasing if there are new 

demands added to the queue.  After there are enough customers in the waiting list, 

no further demands will be considered in the process.  The initial state 

probabilities are formulated as follows. 

( , , , ),0 ( 1, , )w k I b w k Iπ π −′ = ,  ; 1, 2, ; 0,1, ; 1, 2, , 1Dw b k I b N= = = = −         (3.37) 
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3) There are at least ND customers (including the specific customer) in the waiting 

list and the vehicle is travelling between a customer and the warehouse. 

In this situation, the vehicle is heading to the warehouse.  It reaches the 

warehouse and immediately starts the second trip, since there are enough 

customers in the waiting list.  No new demands will be taken into consideration in 

this case.  w will never change until the second trip, and b is equal to w.  The 

initial state probabilities are as follows. 

( ,0 , , ),0 ( 1,0 , )w I w w Iπ π −′ = ,  , 1, ; 0,1,D Dw N N I= + =      (3.38) 

4) There are less than ND customers (including the specific customer) in the waiting 

list and the vehicle is travelling between a customer and the warehouse. 

In this situation, b is the position of the specific customer on the second trip, and 

it is fixed.  Initially, w is equal to b, but w will keep increasing if there are new 

demands.  Once there are enough customers in the waiting list, no new demands 

will be considered in the process.  The initial state probabilities are formulated in 

Equation (3.39). 

( ,0 , , ),0 ( 1,0 , )w I b w Iπ π −′ = ,  ; 0,1, ; 1, 2, , 1Dw b I b N= = = −     (3.39) 

In the transient state process, the transition diagram and the differential equation are the 

same as section 3.4, when the number of customers in the waiting list is greater than or 

equal to ND.  In the following paragraphs, the situation where there are less than ND 

customers in the waiting list is investigated. 

Based on the transition diagram in Fig. 3.17, which shows the situation where the vehicle 

is travelling between customers on the first trip, the differential equation is formulated as 

Equation (3.40). 
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Fig. 3.17. Transition diagram of the vehicle travelling between customers 
on the first vehicle trip 

 

( , , , ),
( , , 1, ), ( 1, , , ), 1 ( , , , ),( )w k I b t

I w k I b t w k I b t I w k I b t

d
dt

π
µ π λπ µ λ π+ − −

′
′ ′ ′= + − +     (3.40) 

The situation of the vehicle leaving a customer’s location on the first trip is illustrated in 

Fig. 3.18.  The corresponding differential equation is formulated as Equation (3.41). 

 
Fig. 3.18. Transition diagram of vehicle leaving customers’ locations on 
the first vehicle trip 

 

1

1 1 1 1

( , , , ),
( , 1,0, ), ( 1, , , ), 1 ( , , , ),( )w k I b t

I w k b t w k I b t I w k I b t

d
dt

π
µ π λπ µ λ π+ − −

′
′ ′ ′= + − +    (3.41) 

The situation of the vehicle travelling between a customer and the warehouse on the first 

trip is illustrated in Fig. 3.19.  The differential equation is as Equation (3.42). 

( ,0, , ), 1
( ,0, 1, ), ( 1,0, , ), ( ,0, , ),2 2

w I b t I I
w I b t w I b t w I b t

d
dt

π µ µπ λπ λ π−
+ −

′ ′ ′ ′ ′ ′= + − + 
 

    (3.42) 

 
Fig. 3.19. Transition diagram indicating that the vehicle is travelling 
between a customer and the warehouse on the first trip. 
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When the vehicle returns to the warehouse and the number of customers in the waiting 

list is greater than or equal to ND, the vehicle starts the second trip.  The number of 

customers that need to be addressed on the second trip depends on the value of b. 

 
Fig. 3.20. Transition diagram in the situation that the vehicle returns to 
the warehouse and starts the second trip 

 
Based on the transition diagram in Fig. 3.20, the transient state differential equation is 

formulated as Equation (3.43). 

1

(0, ,0,0), 0
( ,0,1, ), 0 (0, ,1,0), (0, ,0,0),2

b t
w b t b t I b t

d
dt

π µ π µ π µ π
′ ′

′ ′ ′= + −      (3.43) 

When the vehicle returns to the warehouse and the number of customers in the waiting 

list is less than ND, the vehicle remains idle until there are enough customers in the 

waiting list.  Based on the transition diagram in Fig. 3.21 (a) and (b), the transient state 

differential equation is formulated as Equation (3.44) and Equation (3.45), respectively.
 

 
a. When w < ND -1, the vehicle is idle at the warehouse. 

 
b. When w = ND -1, the vehicle starts the second trip once 
there is new demand. 

Fig. 3.21. Transition diagram when the vehicle is idle 
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( ,0,0, ), 0
( ,0,1, ), ( 1,0,0 , ), ( ,0 ,0, ),2

w b t
w b t w b t w b t

d
dt

π µ π λπ λπ−

′ ′
′ ′ ′= + −      (3.44) 

( 1,0,0, ), 0
( 1,0,1, ), ( 2,0,0 , ), (0, ,0,0 ),2

D

D D

N b t
N b t N b t b t

d
dt

π µ π λπ λπ−
− −

′ ′
′ ′ ′= + −      (3.45) 

In the second trip, w and b are negligible and are both set to 0.  The transition in the 

second trip is similar to the process illustrated in section 3.4.  Based on previous design 

of the process, a few states becomes redundant, such as (w,k,I,b | b > w) and (w,k,I,b | k > 

0 and w > ND).  Therefore, the state space has been significantly reduced by excluding 

redundant states.  The construction of the intensity matrix ,' { ' }u vQ q=   is summarized in 

Appendix A.1. 

The solution of (0,0,0),tπ ′  can be obtained at any time t based on Equation (3.27), subject to 

the initial conditions of (3.36), (3.37), (3.38) and (3.39).  The service level ST can be 

obtained from Equation (3.28).  Please note that this model is also fit for the situation 

where there is no vehicle departure criterion when 1DN = . 

3.6. Model Validations  
In order to verify the accuracy of the proposed Markov model for the parcel delivery 

services, a large number of experiments are conducted to compare results from both 

simulations and this model.  The simulations are discrete-event simulations.  There are 

three events: New Demand Event, Vehicle Departure Event and Vehicle Arrival Event.  

The event flow charts are illustrated in Fig. 3.22.  An instance of a simulation is run for 

5x106 units of time.  After waiting for 105 units of time to warn up, vehicle idle time and 

customer waiting time are collected.  This data is collected in order to evaluate 

performance measure of vehicle utilization, average customer waiting time and the 

service levels in different situations.  The simulation results presented are the average 
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values of the results obtained from 10 instances at 95% confidence level or higher 

associated with each scenario.  Both the simulations and the calculations of the Markov 

model are implemented in MATLAB 7.0 on a PC with 2.33GHz CPU and 3.25GB of 

RAM.  Solving the Markov model is computationally more efficient as it only cost 

several seconds, whereas the simulation takes a longer time.  

 
Fig. 3.22. Simulation event flow chart 

 

3.6.1. Numerical Results for Various Demand Rates 
In this section, the Markov model proposed in section 3.3 and section 3.4 will be 

validated.  In the following experiments, the vehicle needs to serve customers who are 

uniformly distributed in a 100x100 square region.  The customer appears in a Poisson 

manner with an arrival rate λ.  There are four groups of simulations and Markov model 

calculations with 1/ 60,1/80,1/100,1/120λ = , respectively.  The vehicle starts the delivery 

trip from the warehouse located in the middle of the region, travels with a constant speed, 

and returns to the warehouse after the current trip to load products for the next trip.  The 

loading and unloading time at the warehouse or customers’ locations are not taken into 

consideration in both simulations and the proposed Markov model.  Table 3.1 shows the 
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average results from the simulations, results from the proposed Markov model, and their 

differences. 

Table 3.1. 
Result verification in a 100x100 square region 

 
Demand rate Utilization Ave 

Waiting 
Service Level CPU 

time 100 300 500 
Simulation 

1/60 
0.9669 417.1925 0.0981 0.4349 0.6876 19min 

Model 0.9646 368.6309 0.0983 0.4623 0.7394 15.44s 
Difference -0.2442 -11.6401 0.1489 6.3008 7.5252  
Simulation 

1/80 
0.8247 153.1940 0.3887 0.8932 0.9851 20min 

Model 0.8239 149.8711 0.4064 0.9065 0.9886 15.93s 
Difference -0.1000 -2.1690 4.5505 1.4895 0.3543  
Simulation 

1/100 
0.6956 105.8485 0.5643 0.9725 0.9989 21min 

Model 0.6963 104.3074 0.6055 0.9772 0.9990 15.02s 
Difference 0.1003 -1.4559 7.2940 0.4879 0.0141  
Simulation 

1/120 
0.5942 85.5437 0.6722 0.9911 0.9999 22min 

Model 0.5973 85.3439 0.7243 0.9923 0.9999 15.27s 
Difference 0.5212 -0.2334 7.7419 0.1243 0.0000  

“Utilization” represents the vehicle travelling cost; “Ave Waiting” represents the average 
customer waiting time for the services; “Service Level” has 3 criterions, in which the service 
provider promise to finish delivery within 100, 300, or 500 units of time, respectively.  
“Simulation” represents the results from simulation; “Model” represents the results from 
calculations using the proposed Markov model; “Difference” represents the differences between 
results of the two, calculated by 100*(Model-Simulation)/Simulation. 

 
Table 3.1 compares the simulation and the proposed Markov model in terms of the 

vehicle utilization, the average customer waiting time for services and the service levels.  

Thee criterions are used to calculate service levels: 100, 300, 500 units of time.  The 

service levels represent the percentage of customers’ demands satisfied within, for 

example, 100 units of time.  In the proposed Markov model, utilization is obtained from 

the steady state process mentioned in section 3.3, while the average customer waiting 

time and service levels are obtained from the customer waiting process mentioned in 

section 3.4.   

The last column of Table 3.1 shows the CPU time comparison between simulation and 

the proposed model.  The calculation based on the Markov model is much faster than a 
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simulation.  It is noted that the variance of the customer demand rates does not have any 

impact on the CPU time, since the number of states and the structure of the Markov 

model are the same for different customer demand rates.  In contrast, the simulation time 

slightly increases when demand rate decreases, since system tends to generate vehicle 

trips visiting fewer customers and more departure and arrival events at the depot in the 

case of low demand rate. 

The differences between results from Markov model and simulation are relatively small 

in terms of vehicle utilization and are all less than 0.6%.  This is due to the fact that the 

model for the steady state process is quite accurate.  Fig. 3.23 shows the steady state 

probability in the case of 1/100 customer demand.  This figure illustrates the probability 

that there are 0~10 new customers acquiring parcel delivery services in the waiting list.  

The probability curves from the Markov model and the simulation almost overlap with 

each other.  This evidence indicates that the Markov model approaches the vehicle 

utilization and transportation cost accurately.   

The difference for the customer waiting process is relatively larger, due to more 

assumptions and approximations involved.  Fig. 3.24 illustrates the cumulative 

distribution of the customer waiting time.  Although, the difference between Markov 

model and simulation are visible at the beginning and the middle of the curves, the two 

curves are still consistent with each other.  The transient state Markov Chain is able to 

accurately estimate the customer waiting time.  Table 3.1 shows that the average 

customer waiting time and service levels obtained from the proposed Markov model are 

close to those from simulations, except in the case of 1/60 demand rate.  Most of the 

differences are less than 4%, and the maximum difference is 7.74%, which is generated 
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when the service level is between 60%~70%. 

 
Fig. 3.23. Steady State probability of customers in waiting list (λ=1/100) 

 
Fig. 3.24. Cumulative distribution of Customer waiting time (λ=1/100) 
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Even in the heavy traffic case of 1/60 customer arrival rate, the errors from customer 

waiting process are less than 12%.  This 12% error may result from the non-sufficient 

state space involved in the Markov model for such high demand.  In order to reduce 

calculation time, the maximum queue length is set to 15, which means at most 15 

customers can wait for services and customers will leave when they appear and find 15 

persons in the queue.  The probability that the number of customers in the waiting list 

may exceed the queue length will increase when the customer arrival rate increases.  

Therefore, the average number of customers obtained from the proposed Markov model 

is lower than that from the simulation.  The service levels from the proposed Markov 

model are higher than those from the simulation, since the specific customer, which is 

tracked to calculate the customer waiting time in the Markov model, never waits for more 

than 15 persons in the queue.  The differences will increase when customer arrival rate 

increases.  Extending the queue length may improve the results from the proposed 

Markov model.  Fig. 3.25 illustrates the variance of calculation errors and CPU time by 

increasing the queue length.  When the queue length increases, the error decreases with a 

significant increase of the CPU time.  For example, when the queue length of the 

proposed Markov model is extended to 22, it takes 2.5 times of calculation effort to 

obtain 5% error in terms of the average customer waiting time and less than 5% errors in 

terms of service levels.  
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Fig. 3.25. The calculation errors and CPU time vary in the setting of queue length 

In Table 3.1, when the demand rate increases, the vehicle utilization increases, as more 

customers need service in the same period of time.  Meanwhile, the average customer 

waiting time increases, and service levels decrease as well.  Customer needs to wait for 

longer time, since the facilities will be slightly insufficient in heavy traffic situations.  It 

can also be seen that almost all of the differences which arise between results from the 

proposed Markov model and the simulation increases with the increase of demand rate.  

For example, the difference in terms of average customer waiting time in the case with 

1/80 demand rate is almost 2% higher than that in the case with 1/120 demand rate.  This 

evidence implicates that the proposed Markov model is more accurate in light traffic 

condition than heavy traffic condition, due to the setting of the queue length in the 

proposed Markov model. 

3.6.2. Numerical Results for Vehicle Departure Strategies 
In this section, the Markov model proposed in section 3.5 will be validated.  In the 

second set of experiments, every condition is the same as the previous experiments 

Time Error 

Queue 
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except that the customer arrival rate is fixed at 1 80λ =  and results are compared among 

different vehicle departure criterions, in which the vehicle is allowed to start a new trip 

when there are at least 1~6 customers in the waiting list, respectively.  The results are 

shown in Table 3.2.  

The calculation based on the Markov model is much faster than a simulation in the CPU 

time comparison.  It is noted that the increase of the departure criterion complicates the 

calculation in the customer waiting process, hence the CPU time of the proposed model 

increases.  In contrast, the simulation time decreases when the departure criterion 

increases, since system tends to generate vehicle trips visiting more customers and fewer 

departure and arrival events at the depot in the case of higher departure criterion. 

Again, Table 3.2 shows that the results obtained from the proposed Markov model are 

close to those from simulations.  Especially for the vehicle utilization, the differences are 

within 1%.  The maximum difference in results generated from the customer waiting 

process is 4.55%.  Most of the differences are less than 2.5%.  It can be noted that there 

are no results for service levels within 100 units of time from simulation in the cases 

when the vehicle departure criterion is from three to six.  Since there are few demands 

which can be fulfilled within 100 units of time, there is no enough evidence in a 

simulation to conclude the service levels.  Furthermore, the service levels in these cases 

are small, which are less than 0.05, and the calculation error indicated in inequation 

(3.30) would be significant.    

In Table 3.2, when the vehicle departure criterion increases, the vehicle utilization will 

slightly decrease, as the vehicle may stay at the warehouse for longer time to wait for 

enough demands to be generated.  Meanwhile, the average customers waiting time 
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increases significantly, and the differences decrease from 2.17% to 0.68%.  Furthermore, 

the service levels decrease rapidly when the vehicle departure criterion increases, since 

customers have to spend more time waiting for enough demands to warrant a delivery 

trip.  In the meantime, the differences between the Markov model and simulation 

increase. 

Table 3.2. 
Result verification with customer demand rate 1/80 

Departure 
Criterion Utilization Ave 

Waiting 
Service Level CPU time 100 300 500 

Simulation 
1 

0.8247 153.1940 0.3887 0.8932 0.9851 21min 
Model 0.8239 149.8711 0.4064 0.9065 0.9886 15.24s 
Difference -0.1000 -2.1690 4.5505 1.4895 0.3543  
Simulation 

2 
0.7649 188.2145 0.2113 0.8578 0.9823 15min 

Model 0.7700 185.6798 0.2121 0.8679 0.9841 15.17s 
Difference 0.6684 -1.3467 0.3769 1.1815 0.1832  
Simulation 

3 
0.7367 237.2031  0.7626 0.9690 13min 

Model 0.7392 234.6209 0.0489 0.7738 0.9719 17.38s 
Difference 0.3514 -1.0886  1.4597 0.2988  
Simulation 

4 
0.7187 291.6203  0.6024 0.9385 12min 

Model 0.7208 288.8803 0.0056 0.6124 0.9425 18.69s 
Difference 0.2883 -0.9396  1.6597 0.4223  
Simulation 

5 
0.7085 349.6218  0.4036 0.8778 12min 

Model 0.7085 347.2129 0.0005 0.4126 0.8844 20.75s 
Difference 0.0001 -0.6890  2.2158 0.7526  
Simulation 

6 
0.6985 409.4676  0.2234 0.7793 11min 

Model 0.6998 406.6914 0.00003 0.2242 0.7886 24.55s 
Difference 0.1911 -0.6780  0.3545 1.1990  

The symbols and abbreviations are the same as Table 3.1.  
 

In summary, the results generated from the Markov model are close to the results from 

simulations.  The Markov model is computationally more efficient than simulations.  

Therefore, the Markov model can replace the simulations in order to quickly and 

accurately estimate performance measures for parcel transportation services. 
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4. Extension and Modification of the Markov Model 

4.1. Overview 
In Chapter 3, parcel delivery services were analyzed in a Markov model.  However, 

several assumptions were made, such as only one vehicle serving the entire region, the 

unlimited capacity of the vehicle, and the FCFS vehicle routing strategy.  In this chapter, 

these assumptions will be relaxed, and the corresponding modifications of the Markov 

model will be applied in order to adapt these new constraints and features.  In section 4.2, 

services with limited vehicle capacity constraints are analyzed.  In section 4.3, services 

with more than one vehicle delivering products in the same region is examined.  The 

minimum number of vehicles needed will be decided after investigating parcel delivery 

services with multiple vehicles.  In section 4.4, the difference between delivery services 

and pickup services is discussed.  The Markov model constructed in chapter 3 is held 

valid for delivery services, and another Markov model is built for pickup services in this 

section.  In section 4.5, several vehicle routing strategies, such as insertion based 

algorithms and Branch-and-Bound based algorithms are investigated.  Numerical results 

demonstrate that the extended Markov models are capable of providing fast and reliable 

performance measures estimations in the various situations mentioned above. 

4.2. Issue of Vehicle Capacity 
In previous discussions, it has been assumed that the vehicle has infinite capacity, since 

the sizes of products ordered by customers are relatively small.  This is the case where 

the vehicle can visit as many customers as possible in one trip.  In the interest of 

efficiency, the vehicle carries all the products ordered by customers in the waiting list 

when it starts a new trip. 
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However, it may not be realistic to make the assumption of infinite capacity when larger 

sizes of parcels are taken into consideration.  In order to take the first step in studying the 

Markov model for the capacity issue, it is assumed that all parcels are the same size.  In 

this case, a parcel to be delivered to a customer occupies one unit space of the vehicle 

capacity, and the limit of vehicle capacity C can be considered as the maximum number 

of customers allowed in a trip.  Hence, the vehicle carries parcels for the first C 

customers in the waiting list based on the FCFS rule.  Any customers after the first C 

have to be queued in the waiting list until the following trip.  Based on the calculation in 

sections 3.3 and 3.4, several formulas need to be modified in order to adapt the vehicle 

capacity constraint. 

4.2.1. Model Modification for the Capacity Issue 
When w C≤ , Fig. 3.6 and Equation (3.12) are still valid.  However, when w C> , the 

vehicle starts the new trip with only C customers, and the rest remains in the waiting list.  

The state transition is shown in Fig. 4.1. 

 
Fig. 4.1. Transition diagram of w>C customers in the waiting list when 
the vehicle starts a new trip 

 
The balance equation for this transition diagram is as follows. 

1

0
( ,0 ,1) 0 ( , ,1) ( , ,0 )( )

2 w w C C I w C C
µ π µ π λ µ π− −

′
+ = +       (4.1) 

Since the balance equations have been modified, several elements in the intensity matrix 

Q  are modified as follows. 
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( ,0 ,1), ( , , 0 ) 0 2w w C Cq µ− ′= , 1, 2,w C C= + +   

In terms of the customer waiting process, the service for the specific customer may not be 

scheduled on the second vehicle trip if more than C customers are waiting.  However, the 

process can still be divided into two steps.  The first step is vehicle trips for customers 

before the specific one; the second step includes the service for the specific customer.  

The customer waiting process in section 3.5 can be modified as follows. 

1) The remainder of w-1 divided by C is greater or equal to ND-1 when the vehicle is 

travelling between customers’ locations. 

In this situation, demand after the specific customer will not affect the rest of the 

process, since the number of customers in the waiting list is enough to trigger the 

vehicle trip for the specific customer.  It is not necessary to track the number of 

customers in the waiting list.  Furthermore, the reconstructed process is similar to 

the one in section 3.5. 

Initially, Dw N=  and 1b =  for all situations in this category, where b is only a 

notation instead of a real position of the specific customer.  The initial state 

probabilities are formulated as follows. 

min( 1, 1)

( , , ,1),0 ( , , )
1

D
D

C k

N Cj k I i Cj k i I
i N

π π
− −

+ + −
≥ −

′ = ∑ ,  , 1, 2 ; , 0,1,D Dk N N C I j= + =   (4.2) 

2) The remainder of w-1 divided by C is less than ND-1 when the vehicle is 

travelling between customers. 

In this situation, the number of customers in the waiting list should be 

accumulated until ND+Cj ( 0,1, 2,j =  ) in order to trigger a vehicle trip for the 

specific customer.  The number of customers w in the waiting list will increase by 



 
 

75 

one when demand is generated.  Once w reaches nearest ND+Cj, new demand will 

not be considered, as it will not affect the following process.  

b records the position of the specific customer on the final trip, and b-1 is the 

remainder of w-1 divided by C.  b is fixed in the process before the last vehicle 

trip.  w keeps increasing if new demands appear until Dw N Cj= + .  The 

probabilities for the initial state are formulated as follows. 

( , , , ),0 ( 1, , )w k I b w k Iπ π −′ = ,  ; 1, 2, ; 1, 2, , 1; , 0,1,Dw b C j k b N I j= + = = − =     (4.3) 

3) The remainder of w-1 divided by C is greater or equal to ND-1 when the vehicle 

travels between a customer and the warehouse. 

In this situation, the vehicle is heading to the warehouse, and there are an 

adequate number of customers in the waiting list to trigger a final trip for the 

specific customer.  No new demand will be taken into consideration in the process.  

1b−  is the remainder of 1w−  divided by C.  The initial state probabilities are 

obtained as follows. 

( ,0, , ),0 ( 1,0, )w I b w Iπ π −′ = , ; , 1, 1; , 0,1,D Dw b C j b N N C I j= + = + − =    (4.4) 

4) The remainder of w-1 divided by C is less than ND-1, when the vehicle is 

travelling between a customer and the warehouse. 

Similar to situation 2), b is the position of the specific customer on the last vehicle 

trip, and b-1 is the remainder of w-1 divided by C.  w continues increasing if new 

demand appears.  Once there are enough customers in the waiting list, no new 

demands will be considered in the process.  The probabilities of the initial state 

are obtained as Equation (4.5). 

( ,0, , ),0 ( 1,0, )w I b w Iπ π −′ = ,  ; 1, 2, , 1; , 0,1,Dw b C j b N I j= + = − =    (4.5) 
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When the number of customers in the waiting list is less than C, the customer waiting 

processes are similar to those in section 3.4 and 3.5.  Even if the number of customers in 

the waiting list is greater than C, the vehicle travelling can still be described as previously 

mentioned model.  In the case when the remainder of w-1 divided by C is greater or equal 

to ND-1, the transition diagrams of the vehicle travelling are illustrated in Fig. 3.9, 3.10 

and 3.12.  The corresponding differential equations are formulated in Equations (3.21), 

(3.22) and (3.24).  In the case when the remainder of w-1divided by C is less than ND-1, 

the transition diagrams of vehicle travelling are illustrated in Fig. 3.17, 3.18 and 3.19.  

The corresponding differential equations can be seen in Equations (3.40), (3.41) and 

(3.42).  The differences in the process happen when the vehicle finishes a trip and return 

to the warehouse. 

When the vehicle returns to the warehouse and the number of customers in the waiting 

list is less than C, the process is similar to the cases illustrated in Fig. 3.11 and 3.21.  The 

corresponding differential equations can be seen in Equations (3.23), (3.44) and (3.45), 

respectively.  When the vehicle returns to the warehouse and the number of customers in 

the waiting list is greater than C, the vehicle starts its next trip, but the specific customer 

is still queued in the waiting list. 

Based on the transition diagram in Fig. 4.2, the transient state differential equation is 

formulated as Equations (4.6) and (4.7), respectively. 

1 1

( , ,0 , ), 0
( ,0,1, ), 0 ( , ,1, ), ( , 1, , ),2

w C C b t
w b t w C C b t I w C C I b t

d
dt

π µ π µ π µ π−
− − −

′ ′
′ ′ ′= + −     (4.6) 

1

( , ,0 , ), 0
( ,0,1, ), ( 1, ,0, ), ( , ,0, ),( )

2
w C C b t

w b t w C C b t I w C C b t

d
dt

π µ π λπ λ µ π−
− − −

′ ′
′ ′ ′= + − +    (4.7) 



 
 

77 

 
a. the remainder of w-1 divided by C is greater or equal to ND-1 

 
b. the remainder of w-1 divided by C is less than ND-1 

Fig. 4.2. Transition Diagram when the vehicle returns to the warehouse 
and starts the next trip 

 
w and b are negligible and are both set to zero, when the vehicle sets out on a trip to the 

specific customer.  The transition is similar to the process illustrated in section 3.4.  The 

construction of the intensity matrix ,' { ' }u vQ q=   is summarized in Appendix A.2. 

The solutions for (0,0,0),tπ′  can then be obtained based on Equation (3.27).  The vehicle 

utilization and transportation cost are also obtained by Equation (3.34) and Equation 

(3.35).  The service level ST can be calculated from Equation (3.28). 

4.2.2. Model Validations and Result Discussions 
The following experiments are carried out in order to verify the accuracy of the proposed 

Markov model for the capacity issue in parcel delivery services.  In the experiments, the 

vehicle delivers products to customers who are uniformly distributed within a 100x100 

square region.  Customers appear in a Poisson manner with an arrival rate λ = 1/80.  Four 

groups of simulations and Markov model calculations with vehicle capacity C equal to 3, 

5, 8 and 12 are investigated, respectively.  The vehicle starts the delivery trip from the 

warehouse located in the middle of the region once there is pending demand, and travels 
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with a constant speed.  On each trip, the vehicle can only visit at most 3, 5, 8, or 12 

customers, respectively.  The loading and unloading time at the warehouse or customers’ 

locations are not taken into consideration in both simulations and the proposed Markov 

model.  Table 4.1 shows the average results from simulations, results from the proposed 

Markov model, and their differences. 

Table 4.1. 
Result verification with customer demand rate 1/80 

Capacity Utilization Ave 
Waiting 

Service Level CPU 
time 100 300 500 

Simulation 
3 

0.8307 168.8295 0.3724 0.8544 0.9663 21min 
Model 0.8386 162.4710 0.3730 0.8712 0.9775 8.88s 
Difference 0.9534 -3.7662 0.1468 1.9663 1.1591  
Simulation 

5 
0.8255 154.1252 0.3869 0.8922 0.9826 21min 

Model 0.8319 152.2400 0.3881 0.8982 0.9846 8.12s 
Difference 0.7749 -1.2231 0.3132 0.6719 0.2060  
Simulation 

8 
0.8258 152.5175 0.3856 0.8956 0.9875 21min 

Model 0.8310 150.0725 0.3902 0.9037 0.9875 10.06s 
Difference 0.6265 -1.6031 1.1786 0.9053 0.0000  
Simulation 

12 
0.8261 151.5263 0.3858 0.8999 0.9878 22min 

Model 0.8309 149.8005 0.3903 0.9040 0.9880 10.77s 
Difference 0.5809 -1.1389 1.1644 0.4554 0.0186  

“Utilization” represents the vehicle travelling cost; “Ave Waiting” represents the average 
customer waiting time for the services; “Service Level” has 3 criterions, in which the service 
provider promise to finish delivery within 100, 300, or 500 units of time, respectively.  
“Simulation” represents the results from simulation; “Model” represents the results from 
calculations using the proposed Markov model; “Difference” represents the differences between 
the two, calculated by 100*(Model-Simulation)/Simulation. 
 
Table 4.1 compares the simulation and the proposed Markov model in terms of vehicle 

utilization, average customer waiting time and service levels.  When the vehicle capacity 

increases, the vehicle utilization will decrease as the vehicle effectively combines the 

services for more customers in a single trip.  As a result, both the travelling costs and the 

average customer waiting time are reduced and service levels increase.  Customer tends 

to wait for shorter period of time, since vehicle routing efficiencies are achieved.  It can 
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be noted that the results of the vehicle with capacity 12 are close to the results of vehicle 

with infinite capacity in Table 3.1, since there is rare chance that more than 12 customers 

will be queued in the waiting list when the demand rate is 1/80. 

In the comparison of the CPU time between simulation and the proposed model, the 

calculation based on the Markov model is much faster than a simulation.  When the 

capacity of the vehicle is small, the maximum number of stops in a vehicle trip is limited 

and the number of states is small.  However, the calculation in the customer waiting 

process is complicated, since the vehicle may start the trip including the service for the 

specific customer after several trips.  This may be the reason why the CPU time increases 

after the initial decrease.  In contrast, the variance of the vehicle capacity does not have 

significant impact on the CPU time of the simulation. 

The differences between results from the Markov model and the simulation are minor in 

terms of vehicle utilization and service levels.  Most of the differences are less than 2%, 

and the maximum is 3.77%.  It can be also noted that almost all of the differences 

decrease when vehicle capacity increases.  For example, in terms of vehicle utilization, 

the difference for a vehicle with capacity 3 is almost 0.4% higher than the case of 

capacity 12.  In summary, the Markov model is able to accurately estimate the 

performance of the delivery services using vehicles with different capacities.  

4.2.3. Case Study of Vehicle Selection 
In this set of experiments, the proposed model is used to decide which vehicle to utilize 

from a pool of different types of vehicles.  Larger vehicles have larger capacities but may 

consume more petrol per unit time.  The characteristics of vehicles are listed in Table 4.2.  

In the experiments, the vehicle delivers products to customers who are uniformly 

distributed in a 100x100 square region.  Customers appear in a Poisson manner with an 
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inter-arrival rate =1 80λ .  The service provider promises that customer demand will be 

fulfilled within 300 units of time; otherwise the customer will acquire $50 compensation 

for each overdue service.  It is assumed that the vehicle travels with a constant speed with 

a petrol cost 1ϕ  per unit time.  The estimated cost per unit time, which includes the cost of 

the vehicle travelling and the penalty of overdue services, is calculated by Equation (4.8), 

and the results are also shown in Table 4.2. 

( )1Cost 50 1 TU Sϕ λ= + −
        

(4.8) 

Table 4.2. 
Parameters of vehicles and total costs 

C 2 3 4 5 6 7 8 
1ϕ  0.22 0.23 0.24 0.25 0.26 0.27 0.28 

Cost 0.2957 0.2734 0.2694 0.2716 0.2774 0.2849 0.2928 
“C” is the capacity of the vehicle; “ 1ϕ ” is the petrol cost per unit time 
when the vehicle is travelling; “Cost” is calculated by Equation (4.8). 
 

Table 4.1 has concluded that as the vehicle capacity increases, the vehicle tends to 

generate more efficient schedules for services and service levels increase as well.  

However, the trade-off between a larger vehicle with higher efficiency and higher 

consumption of petrol per unit time must be taken into consideration.  Table 4.2 shows 

that the total transportation cost first decreases, then reaches a minimum value, and 

finally increases as the vehicle capacity increases.  If the appropriate vehicle is selected 

based on the minimum total cost estimated, the vehicle with capacity 4 will be choosen.  

It would expend $0.2694 on travelling per unit time. 

4.3. Issue of Multiple Vehicles and Vehicle Management  
Previously it was assumed that only one vehicle was running in a selected service region.  

In this section, this assumption can be relaxed.  It may not be practical that a fixed sub-
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region will be assigned to a certain vehicle.  The service regions assigned to different 

vehicles may overlap with each other.  That is the reason why most papers on routing 

strategies for the DVRP, in past research, take multiple vehicles into consideration. 

The research done in this thesis is the first time that the Markov model has been studied 

for multiple vehicles in parcel delivery services.  If NV vehicles are available to deliver 

products to customers within the same region, it is assumed that all vehicles are identical 

and have equal opportunities to serve customers.  For example, a new customer with a 

delivery request appears at a certain time.  If there is no vehicle idle at the warehouse, the 

new customer has to wait until a vehicle finishes its trip.  This new delivery request will 

be handled by the first vehicle that returns, if the departure criterion is met.  If there are 

VN  vehicles idle at the warehouse, each one has 1 VN  chance to start a new trip and to 

fulfil the new request. 

4.3.1. Model Modification for the Multiple Vehicles Issue 
As previously mentioned, the system state is represented by (w,k,I), where w is the status 

of the waiting list, k and I represent the status of the vehicle.  Now, there is more than one 

vehicle, and two additional variables are needed to represent the status of each vehicle.  

For example, if there are three vehicles in the same service region, the system state 

should be (w,k1,I1,k2,I2,k3,I3).  In this case, there are ten million (102×3+1) states if each 

parameter has 10 different values, and the intensity matrix is 107×107.  Hence, the state 

space is too large to obtain a solution for this problem.  Approximation methods have to 

be used to simplify the Markov process. 

Since all vehicles are identical and have equal chances to serve customers, it is 

unnecessary to differentiate them.  On average, the number of customers’ requests 
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fulfilled and the vehicle idle time will be the same no matter which vehicle is observed.  

Therefore, the problem can be analyzed by focusing on only one of the vehicles.  The 

system state is still defined as (w,k,I), where k and I are the status of the observed vehicle.  

Meanwhile, the state transitions due to the operation of other vehicles have to be 

specified as follows. 

It is assumed that each vehicle has to spend time tL to prepare for the next new trip.  tL is 

a random variable independent of number of customers visited on the following trip, and 

it follows an exponential distribution with λL=1.  Due to this assumption, the states of 

(w,0,0) are valid, since each vehicle has to spend some time at (w,0,0) to prepare for the 

following trip. 

Based on previous discussion, the observed vehicle travels on the road and visits 

customers one after another according to the schedule.  Once a new customer appears, the 

number of customers in the waiting list increases by one.  However, there is a chance that 

the number of customers in the waiting list will suddenly become zero, even though the 

observed vehicle has not yet returned to the warehouse.  This happens when another 

vehicle returns to the warehouse and plans a new trip for all customers in the waiting list.  

To clarify, the case with departure criterion of one is used to explain this process.  Fig. 

4.3 shows the transition diagram when the observed vehicle en route. 

(w,k,I)

(w,k,I+1) (w+1,k,I)μI

μI-1

(w,k,I-1)(w-1,k,I)

(0,k,I)

( , , )w k I Lp λ

 
a. w customers in the waiting list  
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(0,k,I)(0,k,I+1)
(1,k,I)μI μI-1

(0,k,I-1)

(w-1,k,I)

( 1, , )w k I Lp λ−

(w,k,I)

( , , )w k I Lp λ

(w+1,k,I)

( 1, , )w k I Lp λ+

......
 

b. no customer in waiting list 
Fig. 4.3. Transition diagram of the vehicle travelling 

 
The balance equations for these transition diagrams are formulated as Equation (4.9) and 

Equation (4.10), respectively. 

( , , 1) ( 1, , ) 1 ( , , ) ( , , )( )I w k I w k I I w k I L w k Ipµ π λπ µ λ λ π+ − −+ = + +      (4.9) 

( , , 1) ( , , ) ( , , ) 1 ( , , )
1

( )I w k I w k I L w k I I w k I
w

pµ π λ π µ λ π+ −
≥

+ = +∑      (4.10) 

In Equation (4.9) and Equation (4.10), ( , , )w k Ip  is the probability that another vehicle starts 

a new trip with w customers in the waiting list when the observed vehicle is not at the 

warehouse (on state (w,k,I)).  ( , , )w k Ip  is unknown, but can be calculated based on the 

steady state probability.   

( , , )

1

{at least one of other vehicles at warehouse | ( , , )}

1 {no other vehicles at warehouse | ( , , )}
1 (1 {the other vehicle at warehouse | ( , , )}) V

w k I

N

p P w k I
P w k I

P w k I −

=

= −

= − −

   (4.11) 

It is assumed that the probability of the other vehicle at the warehouse wp  depends only 

on the number of customers in the waiting list, and is independent of the status of the 

observed vehicle, which is denoted as follows. 

{the other vehicle at warehouse | }
{the other vehicle at warehouse | ( , , )}

wp P w
P w k I

=

=
  for ,k I∀  
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Based on the steady state probability, wp  can be calculated by the following equation. 

( ,0,0)

( , , )
,

w
w

wk I
k I

p
π
π

=
∑

          (4.12) 

Accordingly, Equation (4.11) can be revised to Equation (4.13) 

1
( , , ) 1 (1 ) VN
w k I wp p −= − − , for ( , , ) ( , 0, 0)w k I w∀ ≠      (4.13) 

When the observed vehicle returns to the warehouse and there are enough customers in 

the waiting list to trigger the next vehicle trip, all vehicles idle at the warehouse have an 

equal opportunity to commence the trip.  If this new trip is handled by other vehicles, the 

system state transitions from (w,0,0) to (0,0,0), and the observed vehicle is still idle at the 

warehouse.  If the observed vehicle starts the new trip, the system state transitions to 

(0,w,0), accordingly.  Fig. 4.4 illustrates the transition diagram when the observed vehicle 

is idle at the warehouse. 

( ,0,0)w Lp λ′

0 2µ′
( ,0,0)w Lp λ

 

Fig. 4.4. Transition diagram of vehicle idle at the warehouse (w>0) 
 
The balance equation of the transition diagram is as follows. 

0
( ,0,1) ( 1,0,0 ) ( ,0 ,0 ) ( ,0,0 ) ( ,0 ,0 )( )

2 w w w L w L wp pµ π λπ λ λ λ π−

′
′+ = + +     (4.14) 



 
 

85 

When the observed vehicle returns to the warehouse and there are not enough customers 

in the waiting list to trigger the next trip, all vehicles have to wait.  The transition 

diagram of this situation is illustrated in Fig. 4.5. 

( 1,0,0)w Lp λ+

0 2µ′

( ,0,0)w Lp λ

( 1,0,0)w Lp λ−

 

Fig. 4.5. Transition diagram of vehicle idle at the warehouse with no 
customers in the waiting list 

 
Based on the transition diagram in Fig. 4.5, the balance equation is shown as Equation 

(4.15). 

0
(0,0,1) ( ,0,0 ) ( ,0,0 ) (0,0,0)

12 w L w
w

pµ π λ π λπ
≥

′
+ =∑       (4.15) 

In Equation (4.14) and Equation (4.15), ( ,0,0)wp  is the probability that another vehicle 

starts a new trip when there are w customers in the waiting list with the observed vehicle 

at the warehouse, and ( ,0,0)wp′  is the probability that the observed vehicle start a new trip 

itself.  The values of these two variables are calculated as Equation (4.16) and Equation 

(4.17), respectively. 

1

( ,0,0)
1

1
1

1
1

{  of other vehicles at warehouse | ( , 0,0)}
1

(1 )
1

V

V
V

V

N

w
i

N
N ii i

N w w
i

ip P i w
i

i C p p
i

−

=

−
− −

−
=

=
+

= −
+

∑

∑
   (4.16) 
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( ,0,0) ( ,0,0)

1

0

1
1

1
0

1

1 {  of other vehicles at warehouse | ( , 0,0)}
1

1 (1 )
1

V

V
V

V

w w

N

i
N

N ii i
N w w

i

p p

P i w
i

C p p
i

−

=

−
− −

−
=

′ = −

=
+

= −
+

∑

∑

   (4.17) 

In Equation (4.16) and Equation (4.17), 1V

i
NC −  is the 1VN −  combination from i elements. 

1
( 1)!

!( 1 )!V

i V
N

V

NC
i N i−

−
=

− −
 

Due to modification of the balance equations, the elements in the intensity matrix Q  are 

modified as follows. 

( ,0,1),( ,0,0) 0 2w wq µ′= , 0,1,w =   

( ,0,0),( 1,0,0)w wq λ+ = , 0,1,w =   

( ) 1
( , , ),(0, , ) 1 1 VN
w k I k I L wq pλ − = − −  , 1, 2, ; ( , , ) ( ,0 ,0)w w k I w= ∀ ≠  

( )
1

1
( ,0,0),(0,0,0) 1

1

1
1

V
V

V

N
N ii i

w L N w w
i

iq C p p
i

λ
−

− −
−

=

 
= − + 

∑ , 1, 2,w =   

( )
1

1
( ,0,0),(0, ,0) 1

0

1 1
1

V
V

V

N
N ii i

w w L N w w
i

q C p p
i

λ
−

− −
−

=

 
= − + 

∑ , 1, 2,w =   

The diagonal elements of the intensity matrix are calculated as follows. 

( , , ),( , , ) ( , , ),
( , , )

w k I w k I w k I v
v w k I

q q
≠

= − ∑ ,  ( , , )w k I∀  

An iteration is applied to calculate wp   and the steady state probability π . 

1) Initialization. 0.1wp =  

2) Calculate ( , , )w k Ip , ( ,0,0)wp  and ( ,0,0)wp′  based on Equations (4.13), (4.16) and (4.17). 

3) Solve the model and obtain steady state probability π  by Equation (3.16) 
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4) If ( ,0,0)

( , , )
,

w
w p

w k I
k I

p
π

ε
π

− >
∑

 ( pε  is a small value which indicates the acceptable error), 

let ( ,0,0)

( , , )
,

w
w

wk I
k I

p
π
π

=
∑

 and repeat steps in 2), 3) and 4) until ( ,0,0)

( , , )
,

w
w p

w k I
k I

p
π

ε
π

− ≤
∑

. 

In the customer waiting process, the demand of the specific customer can be fulfilled by 

any vehicle.  Therefore, it is not necessary to keep track of a certain vehicle, since the trip 

for the specific customer may be completed before the observed vehicle is freed up.  As 

usual, the customer waiting process is divided into two steps.  The first step is the specific 

customer waiting for his/her delivery to be scheduled.  The second step consists of the 

vehicle trip including the specific customer.  (w,k,I) is used to represent the system state.  

In the first step, the number of customers in the waiting list w continues to grow as new 

demand increases.  k records the position of the specific customer in the waiting list, and 

the customer will be the kth person served in the following trip.  I is artificially set to 0.  

In the second step, one of the vehicles will take care of the delivery for the specific 

customer.  w becomes 0, since no new demand will be taken into account.  System 

transitions from state (0,k,0) to (0,0,0) after several transition steps as vehicle travelling 

on the road, which is the same as in section 3.4. 

Since the status of the observed vehicle is not utilized, the steady state probabilities for 

different vehicle statuses are summed up to generate initial state probabilities for the 

customer waiting process Equation (4.18).  Initially, the position of the specific customer 

in the waiting list is the same as the total number of customers in the waiting list, since 

the process starts at the time the specific customer appears. 
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( , ,0),0 ( 1, , )
,

w w w k I
k I

π π −′ = ∑ ,  1, 2,w =         (4.18) 

Since the probability that a vehicle will start a trip including the specific customer 

depends on the number of customers in the waiting list w, the system has to take new 

demand into consideration.  Fig. 4.6 shows the transition diagram of the specific 

customer in the waiting list, when the system state is (w,k,0). 

( , ,0)w k Lp λ′

 
Fig. 4.6. Transition diagram of the specific customer queued in the 
waiting list 

 
Based on the transition diagram, the transient state differential equation is formulated as 

Equation (4.19). 

( , ,0),
( 1, ,0), ( , ,0 ) ( , ,0),( )w k t
w k t w k L w k t

d
p

dt
π

λπ λ λ π−

′
′ ′ ′= − +       (4.19) 

In any of the states (w,k,0), there is a chance that one of the vehicles may return to the 

warehouse and start the following trip including the specific customer.  The situation is 

illustrated in Fig. 4.7 and Equation (4.20). 

(w,k,0) (w+1,k,0)(w-1,k,0)

(0,k,0)

( , ,0)w k Lp λ′

(0,k,1) (0,k-1,I1)
μ1

1I
µ

( 1, ,0)w k Lp λ+′( 1, ,0)w k Lp λ−′

......

 



 
 

89 

Fig. 4.7. Transition diagram of a vehicle starting a trip including the 
specific customer 

 

1

(0, ,0),
( , ,0) ( , ,0), 1 (0, ,1), (0, ,0),

k t
w k L w k t k t I k t

w

d
p

dt
π

λ π µ π µ π
′

′ ′ ′ ′= + −∑     (4.20) 

In Equation (4.18) and Equation (4.19), ( , ,0)w kp′  is the probability that one of the vehicles 

stays in the warehouse at the time when there are w customers in the waiting list.  The 

parameters can be calculated based on steady state probabilities. 

( , ,0) {at least one vehicle at warehouse | }

1 {no vehicle at warehouse | }
1 (1 {the vehicle at warehouse | }) V

w k

N

p P w
P w

P w

′ =

= −

= − −

 

Based on the definition of wp  in Equation (4.12), ( , ,0)w kp′  can be calculated as follows. 

( , ,0) 1 (1 ) VN
w k wp p′ = − − , for ,w k∀        (4.21) 

Since the differential equations are changed, the elements in the intensity matrix 

,' { ' }u vQ q=  can be modified as follows. 

( , ,0),( 1, ,0)w k w kq λ+′ = , 1, 2, ; 1, 2, ,w k w= =   

( )( , ,0),(0, ,0) 1 1 VN
w k k L wq pλ  ′ = − −  , 1, 2, ; 1, 2, ,w k w= =   

By resolving Equation (3.31) with Q′  in above values, the solution for (0,0,0),tπ′  can be 

obtained.  The vehicle utilization is obtained by Equation (3.17), and the transportation 

cost is the sum of the cost of each vehicle, which is shown in Equation (4.22).  The 

service level ST can be calculated from Equation (3.28). 

1 1 (0,0,0)(1 )T V VC UN Nϕ ϕ π= = −        (4.22) 
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4.3.2. Model Validations and Result Discussions 
The following experiments are intended to verify the accuracy of the proposed Markov 

model for multiple vehicles by comparing results with simulations.  In the experiments, 

the vehicle needs to serve customers who are uniformly distributed in a 100x100 square 

region.  Customers appear in a Poisson manner with an arrival rate λ = 1/16.  Three 

groups of simulations and Markov model calculations with the number of vehicles Nv 

equal to 4, 5, and 6 are implemented, respectively.  The vehicles which are idle at the 

warehouse located in the middle of the region have an equal probability to start the 

delivery trip, once there is pending demand.  The loading time at the warehouse is an 

exponentially distributed random variable with a rate λL = 1.  Table 4.3 shows the average 

results from the simulations, results from the proposed Markov model, and the 

differences between them. 

Table 4.3 compares the simulation and the proposed Markov model in terms of vehicle 

utilization, average customer waiting time, and service levels.  When the number of 

vehicle running in the service region increases, the vehicle utilization will decrease, since 

more vehicles share the services for same amount of customers, and each vehicle has less 

workload as a result.  It should be noted that the vehicle utilization in the case of six 

vehicles is more than 2/3 times of that of four vehicles, due to more efficient routing for 

longer trips in the case of four vehicles.  Meanwhile, the average customer waiting time 

decreases, while service levels increase.  Customers tend to wait for a shorter period, 

since alternative vehicles can deliver products to new customers when the other vehicles 

are being utilized.  Results in Table 4.3 indicates that when there are more vehicles 

servicing the same region, the customer waiting time is significantly reduced, however, 

the costs of transportation and vehicle rental are higher.  Service providers need to 
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consider the trade-offs between the quality of services and the cost in order to decide the 

optimal number of vehicles operating in any given region. 

Table 4.3. 
Result verification with customer demand rate 1/16 

No. of Vehicle Utilization Ave 
Waiting 

Service Level CPU 
time 100 300 500 

Simulation 
4 

0.9603 173.8992 0.3939 0.8416 0.9602 14min 
Model 0.9669 159.4443 0.4151 0.8732 0.9743 31.73s 
Difference 0.6881 -8.3122 5.3858 3.7460 1.4687  
Simulation 

5 
0.8589 81.8140 0.7497 0.9787 0.9986 14min 

Model 0.8855 70.5757 0.8100 0.9888 0.9996 39.57s 
Difference 3.0978 -13.7364 8.0373 1.0327 0.1022  
Simulation 

6 
0.7541 56.5732 0.8903 0.9953 0.9998 15min 

Model 0.7889 45.5324 0.9586 0.9994 0.9999 51.76s 
Difference 4.6079 -19.5159 7.6679 0.4174 0.0139  

The symbols and abbreviations are the same as Table 4.1.  
 
The results in the case of five vehicles in Table 4.3 can be compared with the results in 

the case of only one vehicle with demand rate 1/80 in Table 3.1.  The average customer 

waiting time in the case of five vehicles is nearly half of that in the later case, and the 

service levels in the case of five vehicles are much higher.  The reason is that a new 

customer tends to wait for shorter time until a vehicle is available to start a delivery trip 

for him/her in the case of five vehicles. 

The proposed model takes much less CPT time to achieve good estimation of various 

performance measures compared to simulations.  When the number of vehicle increases, 

the CPU time for simulations is relatively constant, while the CPU time for the proposed 

model increases significantly.  It may be due to the efficiency of the heuristic proposed in 

section 4.3.1 to find out a suitable pw.  In the case with large number of vehicles, a more 

efficient algorithm should be applied to speed up the calculation of the proposed model. 

The differences between results from the Markov model and the simulation are relatively 
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acceptable in terms of vehicle utilization, since they are less than 5%.  However, the 

differences in terms of average customer waiting time and service levels are significant.  

It can be noted that the difference significantly increases when the number of vehicles 

increases.  This may be due to the assumption that the probability of the other vehicle at 

the warehouse depends on the number of customers in the waiting list only, but is 

independent of the status of the observed vehicle.  This assumption ignores the 

relationship between vehicles.  Furthermore, the system does not track the observed 

vehicle any more in the customer waiting process, and the status of that vehicle is 

eliminated from the system, in order to reduce the state space.  The initial transient state 

probabilities are approximated by the sum of steady state probabilities for different 

statuses of that vehicle, which is shown in Equation (4.18).  The observed vehicle would 

suddenly become available in the transient state process due to the sum of the 

probabilities in Equation (4.18).  This contradicts with the fact that it is impossible for the 

observed vehicle to start a new trip immediately when it is in transit.  The customer 

waiting process provides a chance for the vehicle to finish services earlier, and the 

customer waiting time is estimated to be slightly shorter than the actual waiting time.   

In summary, the Markov model is able to approximate the performance of delivery 

services with multiple vehicles.  Service providers are then able to evaluate their business 

and decide the optimal number of vehicles in a region by using the proposed model.  

However, the accuracy of the proposed model needs to be improved.  More reasonable 

assumptions and modifications of the model can be further researched. 
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4.4. Dynamic Pickup and Dynamic Delivery Services 
In the real world, goods may need to be transported from customers back to the 

warehouse.  Dynamic pickup services refer to this kind of transportation.  Examples of 

such services include garbage collection, mail/package collection and reverse logistics 

services.  Travelling sales representatives and travelling technician services can also be 

categorized into dynamic pickup services, since they have similar characteristics. 

In a static situation, there is no difference between pickup and delivery services, since all 

information is known in advance.  A reverse trip of delivery services is the trip of pickup 

services.  However, if transportation services are considered in dynamic circumstances, 

there are a few points to consider.   

• Firstly, it is unnecessary to take the warehouse into consideration for pickup 

services if the vehicle has infinite capacity.  Once all pending pickups are 

completed, the vehicle will become idle at the last customer’s location.  When a 

new customer appears, the vehicle will move from the current location to the new 

customer’s location.  Therefore, there are vehicle routes made from one customer 

to another customer, but there are no routes between the warehouse and customers.     

• Secondly, the routing schedule is more dynamic in pickup services.  In delivery 

services, the routing schedule is fixed after the vehicle starts a trip, and the next 

routing schedule will be generated only after the vehicle returns.  However, in 

dynamic pickup services, the only fixed schedule is that of the customer site to 

which the vehicle is currently headed.  All subsequent schedules may vary based 

on the results generated by the routing algorithms.   
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Due to the differences between dynamic pickup and delivery services, the Markov model 

for dynamic delivery services needs to be modified to adapt the special features of 

dynamic pickup services. 

4.4.1. Markov Model for the Dynamic Pickup Problem 
The concept of a waiting list can be ignored in dynamic pickup services, since there are 

no trips between the warehouse and customers.  New demands will be added to the route 

immediately based on the assumption of the FCFS queue discipline.  Customers will be 

visited one after another according to the scheduled sequence as they appear.  The system 

states is defined as (k, I), where k is the total number of customers in the routing plan, and 

I is the index of sub-states, which has the same meaning as previously mentioned.  Once 

a new customer’s demand appears, k will increase by one.  When the vehicle travels 

towards a customer, I decreases until zero, which indicates that the vehicle has reached 

the customer location.  State (0,0) indicates the vehicle has become idle since there is no 

pending customer demand to be fulfilled.  The process is illustrated in Fig. 4.8.  Fig. 4.8 

(b) elaborates the transition from k to k-1 after several sub steps. 

 
a. Queuing process for dynamic pickup problems 

 

 
b. Approximate vehicle-travelling process by hypo-exponentially distributed process 

 
Fig. 4.8. Markov Model for the dynamic pickup problem 
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{ }( , )k Iπ π= denotes the steady state probability of the system.  Fig. 4.9 shows the 

transition diagram based on a certain system state (k, I). 

 

Fig. 4.9. Transition diagram for the dynamic pickup problem 
 

The balance equation for this transition diagram is shown in Equation (4.23). 

( , 1) ( 1, ) 1 ( , )( )I k I k I I k Iµ π λπ λ µ π+ − −+ = +        (4.23) 

The intensity matrix is
 { },u vQ q= .  The elements of the intensity matrix are elaborated as 

follows. 

( , ),( , 1) 1k I k I Iq µ− −= , 10,1, ; 1, 2, ,k I I= =   

1 1( ,0 ),( , )k k I Iq µ= , 0 ,1,k =   

( , ),( 1, )k I k Iq λ+ = , 10,1, ; 0,1, ,k I I= =   

The diagonal elements of the intensity matrix are calculated as follows. 

( , ),( , ) ( , ),
( , )

k I k I k I v
v k I

q q
≠

= − ∑ ,  ( , )k I∀  

The steady state probability π  is obtained by the stationary equation together with the 

boundary condition, which are illustrated in Equation (3.16).  The vehicle utilization U 

and transportation cost per unit time TC  are obtained from Equations (3.17) and (3.18). 

The customer waiting process starts from a setting time 0, when the specific customer 

appears.  Due to the FCFS service principle, the demand after this specific customer will 

not affect the waiting time of the specific customer in the system.  It is not necessary to 

consider new demands, and the customer waiting process is a pure death process.  The 
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system state is denoted as (k, I) in this process, where k is the position of the specific 

customer in vehicle route, and I is the index of sub-states.  Let ,{ }t u tπ π′ ′=  be the transient 

state probability at time t.  Initially, the specific customer appears and is scheduled at the 

end of the vehicle route.  The initial state probability ( , ),0k Iπ ′  is determined by the steady 

state probability π  as seen in Equation (4.24).   

( , ),0 ( 1, )k I k Iπ π −′ = , 11, 2, ; 0,1,k I I= =         (4.24) 

The vehicle visits customers one after another until the specific customer is served.  The 

process ends at state (0, 0), when the demand of the specific customer has been fulfilled.  

Fig. 4.10 illustrates transition diagram of the process. 

 
Fig. 4.10. Transition diagram of the transient process 

 
Based on the transition diagram of Fig. 4.10, the transient state equation is formulated as 

Equation (4.25) 

( , ),
( , 1), 1 ( , ),

k I t
I k I t I k I t

d
dt
π

µ π µ π+ −

′
′ ′= −        (4.25) 

The elements of the intensity matrix ,' { ' }u vQ q=   are summarized as follows. 

( , ),( , 1) 1k I k I Iq µ− −′ = , 10,1, ; 1, 2, ,k I I= =   

1 1( ,0 ),( , )k k I Iq µ′ = , 0,1,k =   

The diagonal elements of the intensity matrix are calculated as follows. 

( , ),( , ) ( , ),
( , )

k I k I k I v
v k I

q q
≠

′ ′= − ∑ ,  ( , )k I∀  

The solutions for (0,0),tπ ′  can be obtained from Equation (3.31).  The service level ST can 

be calculated by Equation (3.28). 
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4.4.2. Model Validations and Result Discussions 
The following experiments are carried out to verify the accuracy of the proposed Markov 

model for dynamic pickup services.  In the experiments, the vehicle has to fulfill 

demands uniformly distributed within a 100x100 square region.  Customers appear in a 

Poisson manner.  Four groups of simulations and Markov model calculations with 

customer arrival rate 1 60 ,1 80 ,1 100,1 120λ =  are investigated, respectively.  The 

vehicle is idle at the location of the last served customer, if there is no pending demand.  

Once a new demand appears, the vehicle travels with a constant speed towards it.  The 

loading and unloading time at customers’ locations are not taken into consideration in 

both simulations and the Markov model.  Table 4.4 shows the average results from 

simulations, results from the proposed Markov model, and the difference between results 

from these two. 

Table 4.4. 
Result verification in a 100x100 square region 

Demand Rate Utilization No. 
Customer 

Service Level 
100 300 600 

Simulation 
1/60 

0.8792 4.7918 0.2403 0.6380 0.8875 
Model 0.8642 4.3213 0.2581 0.6987 0.9337 
Difference -1.7061 -9.8189 7.4074 9.5141 5.2056 
Simulation 

1/80 
0.6579 1.4589 0.5571 0.9515 0.9983 

Model 0.6500 1.3938 0.5470 0.9584 0.9989 
Difference -1.2008 -4.4623 -1.8130 0.7252 0.0601 
Simulation 

1/100 
0.5263 0.8939 0.6888 0.9880 0.9998 

Model 0.5200 0.8672 0.6724 0.9894 1.0000 
Difference -1.1970 -2.9869 -2.3810 0.1417 0.0200 
Simulation 

1/120 
0.4393 0.6554 0.7581 0.9955 0.9999 

Model 0.4333 0.6376 0.7394 0.9961 1.0000 
Difference -1.3658 -2.7159 -2.4667 0.0602 0.0100 

“Utilization” represents the usage factor of the vehicle; “No. Customer” represents the average 
number of customers in the system; “Simulation” represents the results from simulation; “Model” 
represents the results from calculations using the Markov model; “Difference” represents the 
difference between the results using the proposed Markov model and the simulation, calculated 
by 100*(Model-Simulation)/Simulation. 
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Table 4.4 compares the simulation and the proposed Markov model in terms of vehicle 

utilization, average number of customers in the system and service levels.  Three 

criterions, 100, 300 and 600 units of time are artificially set to calculate the service levels.  

In the Markov model, the first two measurements, vehicle utilization and average number 

of customer, are obtained from the steady state process, while the service levels are 

obtained from the customer waiting process.   

It can be noted that in Table 4.4, when the customer arrival rate increases, the usage of 

the vehicle will increase, since more customers need service in the same period of time.  

Meanwhile, the number of customers waiting will sharply increase, and service levels 

will decrease as well.   

Furthermore, Table 4.4 shows that the results obtained from the Markov model are close 

to those from simulations with most of the differences less than 5%.  Even in the heavy 

traffic case with a 1/60 customer arrival rate, the differences are less than 10%.  The 

errors may result from the non-sufficient state space included in the Markov model.  In 

order to reduce the calculations, the queue length is set to 15, which means a maximum 

of 15 customers are allowed to wait for services and any subsequent customers will leave 

since 15 persons are already in the queue.  Therefore, the average number of customers 

obtained from the Markov model is lower than that from the simulation.  The service 

levels from the Markov model are higher than those from the simulation, since the 

specific customer, which is being tracked to calculate the customer waiting time, never 

waits until more than 15 persons are served.  Extending the queue length will improve the 

results from the Markov model.  When the queue length of the Markov model increases 

to 25, the difference of average number of customers decreases to 7.69% in the case of 
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1/60 customer arrival rate, and the differences of the service levels decrease to less than 

7%. 

The differences between dynamic delivery problems and dynamic pickup problems can 

be observed when comparing results in Table 4.4 with Table 3.1, which shows the results 

of dynamic parcel delivery services with similar parameters.  The petrol cost in dynamic 

pickup services is much lower and the service levels are much higher, since the vehicle 

does not visit the warehouse constantly.  It can also be noted that the difference between 

results from simulations and the proposed model is slightly larger in Table 4.4, which 

may indicate that the model of dynamic pickup services has less accuracy compared to 

the model of dynamic delivery services. 

4.5. Issue on Routing Strategies 

4.5.1. Introduction of Routing Strategies 
As previously mentioned, planning parcel transportation services followed the FCFS 

routing method.  This assumption will be discarded in this section.  In order to improve 

the vehicle routing efficiency and reduce transportation costs, service providers may 

apply some efficient optimization routing strategies in order to generate a better service 

schedule.  Exact algorithms and heuristics are two categories of routing strategies usually 

used in research.   

Heuristics can generate fast and satisfactory solutions.  The insertion-based heuristics are 

usually used to solve DVRP in the literature.  A best-insertion algorithm is introduced as 

follows. 

Step 1. Initially, denote { }0S v=  as the vehicle route, and { }1, , nS v v′ =   as 

customers to be inserted in the route. 
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Step 2. Choose one customer iv  from the set of S′ , which is nearest to one of 

customers or the warehouse in the set of S. 

Step 3. Try to insert iv  into the vehicle route S with the minimum increase of the 

total distance of the route.  Delete iv  from the set of S′ . 

Step 4. Repeat Step 2 to 3 until S′  becomes empty. 

Exact algorithms are usually based on a binary tree search or an integer linear 

programming.  The Branch-and-Bound based algorithms are famous exact algorithms 

based on the binary tree search.  A Branch-and-Bound algorithm with the lower bounds 

from assignment problems (Laporte, 1992) is described in this section.  If there are n 

nodes representing customer locations and one node representing the warehouse, the size 

of the distance matrix, which contains the distances between nodes, is ( 1) ( 1)n n+ × + .  

The same matrix can be used as a cost matrix in a task assignment problem.  The solution 

of the corresponding assignment problem may not be a suitable solution for the VRP, 

since it may include sub-trips, which do not include the warehouse.  However, the 

solution generates a good lower bound for the VRP.  The following is a Branch-and-

Bound algorithm with lower bound generated by the assignment problem. 

Step 1. The initial upper bound is provided by the solution from the best-insertion 

algorithm mentioned previously.  The initial lower bound is provided by the 

famous Hungarian algorithm (Kuhn, 1955) for the corresponding assignment 

problem with the distance matrix of 1n+  nodes. 

Step 2. Check whether the solution obtained from the assignment problem contains 

sub-trips.  If so, create two branches on the binary tree for a path between two 

nodes in a sub-trip, one branch with the path forced into the solution and the other 
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with it forced out.  The lower bound of each branch is equal to the cost provided 

by the corresponding assignment problem.  If not, a new solution for the VRP is 

obtained.  Each time the Branch-and-Bound algorithm finds a better solution, the 

solution will become the new upper bound. 

Step 3. A branched path, for example ( iv , 1iv + ), is denoted as 1 or 0.  1 means the 

path is included in the final solution.  The distances from iv  to the other nodes 

except 1iv +  and the distances from the other nodes except iv  to 1iv +  in the distance 

matrix are set to infinity.  0 means the path in excluded in the final solution.  The 

distances from iv  to 1iv +  in the distance matrix are set to infinite.   

Step 4. The Hungarian Algorithm is applied to generate the solution for the 

assignment problem with the modified distance matrix in Step 3. 

Step 5. Repeat Step 2 to 4.  If the lower bound of the branch is higher than or equal 

to the upper bound, this branch is forfeited.  If the lower bounds of all branches 

are higher than or equal to the upper bound, the optimal solution is achieved. 

Details of Branch-and-Bound algorithms and their applications in solving the VRP can be 

found in the literature (Laporte, 1992; Fisher, 1994).  It can be noted that the Branch-and-

Bound algorithm schedules all customers equally, and generates a solution regardless of 

the initial sequence of customers. 

These two routing algorithms will be applied in this section to generate vehicle schedules 

for dynamic parcel delivery services.  The following illustrates the Markov model for 

parcel delivery services with various routing strategies. 
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4.5.2. Estimation of Vehicle Travel Time 
The vehicle travel time between customers and customers, or the warehouse and 

customers, is definitely different among various routing strategies.  0τ , 2
0σ , 1τ  and 2

1σ  

need to be estimated in a similar fashion as in section 3.2, but the value of parameters c1, 

c2, c3 and c4 cannot be obtained from Larson and Odoni’s research (1981) or calculated 

by Equation (2.1).  The parameters should be estimated by experiments.  

In this experiment, randomly generated customers are spread out within a 100×100 

square region, where the warehouse is located at the center.  Vehicle trips including 1 to 

15 customers, respectively, are generated based on two different routing algorithms 

mentioned previously.  The data of vehicle travel time between customers as well as the 

warehouse is collected for each case with a different number of customers in the trips, 

respectively.  Means and variances of the vehicle travel time are calculated based on this 

data.  Table 4.5 and 4.6 elaborate the expected values and standard deviations of the 

vehicle travel time.  

Table 4.5 shows the means and standard deviations of vehicle travel time based on the 

Branch-and-Bound routing algorithm, and Table 4.6 shows those values based on the best 

insertion routing algorithm.  The means ,T Nτ  and standard deviations ,T Nσ  of the entire 

vehicle trip are applied in a steady state process, and 0,Nτ , 0,Nσ , 1,Nτ  and 1,Nσ
 
are applied 

in the customer waiting process in the Markov model.  It can be noted that the mean of 

the overall travel time of the vehicle trip is , 0, 1,2 ( 1)T N N NNτ τ τ= + − , since a vehicle trip is 

composed of several paths between customers and two paths between the warehouse and 

a customer.  However, the variance of the vehicle trip 2 2 2
, 0, 1,2 ( 1)T N N NNσ σ σ≠ + − , since 
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the travel time of two successive paths are correlated with each other in the case of 

certain routing strategies. 

Table 4.5. 
Travel time between nodes (Branch-and-Bound Algorithm) 

N 1,Nτ  
1, Nσ  

0 , Nτ  
0 , Nσ  

,T Nτ  
,T Nσ  

1   38.2729 14.2306 76.5458 28.4614 
2 52.0374 24.7892 38.2387 14.2667 128.5149 38.6993 
3 45.7662 23.1382 37.1109 14.6167 165.7542 41.1468 
4 41.0340 21.7570 35.6046 15.0392 194.3110 41.4461 
5 37.4035 20.5044 34.0502 15.3452 217.7143 40.8627 
6 34.5460 19.3456 32.1827 15.5112 237.0951 39.8304 
7 32.1959 18.3658 30.6250 15.5817 254.4255 38.8220 
8 30.2423 17.5150 28.9669 15.4643 269.6299 37.8719 
9 28.5832 16.7350 27.3582 15.2124 283.3822 37.0878 

10 27.1465 16.0267 26.0397 14.9415 296.3981 36.2448 
11 25.8700 15.3869 24.7159 14.6027 308.1315 35.3973 
12 24.7440 14.8051 23.5462 14.2137 319.2766 34.6986 
13 23.8023 14.2747 22.3683 13.6875 330.3646 33.9965 
14 22.8565 13.7973 21.4252 13.1585 339.9855 33.5508 
15 22.0742 13.3674 20.3956 12.6809 349.8305 32.8792 

“N” represents the number of customers visited in a vehicle trip.  “ 1,Nτ ” is the mean 
value of travel time between any two customers in a vehicle trip with N customers, 
and “

1, Nσ ” is the standard deviation.  “
0 , Nτ ” is the mean value of travel time 

between the warehouse and a customer in a vehicle trip, and “
0 , Nσ ” is the standard 

deviation.  “
,T Nτ ” represents the mean value of travel time of a entire vehicle trip, 

and “
,T Nσ ” represents the standard deviation. 

 
In section 3.2, the vehicle travel time was approximated by the hypo-exponential 

distribution, which was composed of a series of Poisson distributed travel time.  However, 

in Table 4.5 and 4.6, the means and variances of the vehicle travel time between 

customers are different among the vehicle trips with different number of customers 

included.  This was not observed in sections 3.2 and 3.3.  The previous model is not 

suitable, and the system state cannot be denoted as (w,k,I) any more.  One more 

dimension of the state h is needed, which will indicate the total number of customers 

included on the trip.  For each h, a specific hypo-exponential distribution needs to be 



 
 

104 

applied to approximate the vehicle travel time.  However, the four dimensions in the 

system state make the state space too large and overload the computation effort.  The 

structure of the Markov model needs to be modified to reduce the state space. 

Table 4.6. 
Travel time between nodes (Best-Insertion Algorithm) 

N 1,Nτ  
1, Nσ  

0 , Nτ  
0 , Nσ  

,T Nτ  
,T Nσ  

1   38.3139 14.2029 76.6279 28.4062 
2 52.2840 24.8181 38.2202 14.2659 128.7244 38.8034 
3 45.9503 23.3982 37.1846 14.5471 166.2697 41.6396 
4 40.7196 21.3548 36.5168 15.1092 195.1925 42.1416 
5 37.2945 19.9799 35.9634 15.4959 221.1047 42.1639 
6 34.5131 18.6072 34.9374 15.8471 242.4404 41.4148 
7 32.3021 17.6426 34.0425 16.1142 261.8976 41.2869 
8 30.5317 16.7984 32.9378 16.2224 279.5971 40.3026 
9 29.0151 16.0455 32.1238 16.3488 296.3683 40.0731 

10 27.7748 15.5176 31.0464 16.3684 312.0656 39.5143 
11 26.6806 14.9985 29.9033 16.1896 326.6127 39.0215 
12 25.7389 14.5499 28.9608 16.0305 341.0490 39.3075 
13 24.8358 14.1678 27.8961 15.7716 353.8212 39.1564 
14 24.0844 13.8273 27.0177 15.6562 367.1326 38.8015 
15 23.3948 13.5168 26.1311 15.3101 379.7890 38.5652 

The symbols and abbreviations are the same as Table 4.5.  
 

Firstly, a hyper-hypo-exponential distribution is introduced as follows.  The hyper-hypo-

exponential distribution is obtained by arranging several different hypo-exponential 

distributions in parallel.  Fig. 4.11 shows a general example of a hyper-hypo-exponential 

distribution.  In Fig. 4.11, n parallel levels are depicted and each level j contains a series 

of rj phases of exponentially distributed travel time.  Each level j is selected with 

probability pj, and the summation of pj is one. 

Fig. 4.12 (a) is another example, which shows a special structure of the hyper-hypo-

exponential distribution.  In this special case, there are j phases of exponentially 

distributed travel time in level j, and the j-1 phases are the same as those in level j-1.  The 

structure can be further simplified as Fig. 4.12 (b).  The structure of hyper-hypo-
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exponentially distributed travel time in Fig. 4.12 (b) is the basis for the Markov model to 

approximate real vehicle travel time in this section. 

 
Fig. 4.11. An example of hyper-hypo-exponentially distributed travel time 

 

 
a. An special case of hyper-hypo-exponentially distributed travel time 

 
b. The equivalent structure of (a) 

Fig. 4.12. The hyper-hypo-exponentially distributed travel time in the Markov model 
 

The aim of this exercise is to construct a universal process with one set of { }jµ  as shown 

in Fig. 4.12 (b), modelling the vehicle en route, and to generate different hyper-hypo-

exponentially distributed travel time with different sets of { }jp  in order to approximate 

the exact vehicle travel time of trips with different number of customers.  The system 
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state in the steady state process can be denoted as (w,I), where w represents the number of 

customers in the waiting list and I is the indicator of sub-states of a vehicle trip.  The trip 

is no longer divided into several paths between customers in the steady state process. 

The mean ,T Nτ  and variance 2
,T Nσ  of the hyper-hypo-exponentially distributed travel time 

in Fig. 4.12 (b) are formulated as Equation (4.26) and Equation (4.27), respectively. 

1

, ,
1 0

1jn

T N N j
j k k

pτ
µ

−

= =

=∑ ∑          (4.26) 

221 1 1
2

, , , ,2
1 0 1 0 1 0

1 1 1j j jn n n

T N N j N j N j
j k j k j kk k k

p p pσ
µ µ µ

− − −

= = = = = =

  
= + −   

   
∑ ∑ ∑ ∑ ∑ ∑     (4.27) 

,N jp  is the probability that level j is selected in the hyper-hypo-exponentially distributed 

travel time for the trip with N customers. 

Given a certain value of ,T Nτ  and a set of { }jµ , the maximum value of variance is 

obtained from the solution of Equation (4.28) with , 0N jp =  for all 2 1j n≤ ≤ − . (Fig. 

4.13) 
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Fig. 4.13. Vehicle travel time with maximum variance 

 
The maximum value of variance is 
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The maximum variance is obtained from the summation of four elements.  The first three 

elements are increasing functions of 
1

1

nµ −

, respectively.  If the mean value is fixed, the 

maximum variance is an increasing function of 
1

1

nµ −

. 

Similarly, the minimum variance is obtained from the solution of Equation (4.29) with 

, 0N jp =  for all 2j i≤ −  or 1j i≥ + , where i is obtained from 
2 1

,
0 0

1 1i i

T N
k kk k

τ
µ µ

− −

= =

< ≤∑ ∑ . (Fig. 

4.14.) 
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1 1i i
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= +∑ ∑        (4.29) 

 
Fig. 4.14. Vehicle travel time with minimum variance 

 
Proposition 4.1: Given fixed values of ,T Nτ , part of the set ( 0 1 2, , , iµ µ µ − ), and 
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< ≤∑ ∑ , the variance of travel time is able to achieve minimum value when 

2

,
01

1 1 1 1
2

i

T N
ki i k

τ
µ µ µ

−

=−

 
= = − 

 
∑         (4.30) 

Proof: 

The minimum variance with fixed ,T Nτ  and ( 0 1 2, , , iµ µ µ − , 1iµ −
, iµ ) is obtained based on 

Equation (4.29). 
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The solution for , 1N ip +  is as follows. 

2

, 1 ,
1

1 1 1i

N i T N
k k i i

p τ
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, 1N ip +  is substituted by , , 11N i N ip p += − , and , 0N jp =  for all , 1j i i≠ + into Equation (4.27).  

The corresponding variance is calculated as follows. 
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Equation (4.31) can be rewritten as follows. 
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,T Nσ  is an increasing function of 1

iµ
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( 0 1 2, , , iµ µ µ − , 1iµ −
) are fixed.  Therefore, 2

,T Nσ  achieves its minimum value when 

1
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iµ
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Therefore, 2
,T Nσ  achieves its minimum value when the following equation holds. 
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The proposition 4.1 is proved and the minimum 2
,T Nσ  is as follows. 
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The following is an algorithm to find a set of { }jµ  suitable for all vehicle trips, as well as 

a number of sets of ,{ }N jp . 

Step 1. Initialization.  Follow the algorithm in section 3.2 to find a solution of 

Equation (3.5) for ,1Tτ  and 2
,1Tσ , denoted as { }0 1 2, , , iµ µ µ − .  Let 1N = . 

Step 2. Let 1N N= + .  Find the minimum variance for trip travel time with N 

customers where the mean is equal to ,T Nτ .  Add two more elements, 1iµ −  and iµ , 

into the set of { }jµ .  The values of 1iµ −  and iµ  are obtained from Equation (4.30). 

Step 3. Check whether the minimum variance is suitable.  If 2
,2

0

1i

T N
k k

σ
µ=

>∑ , find the 

maximum element in the set of { }jµ , and break it into two elements with equal 

values.  Repeat Step 3 until 2
,2

0

1i

T N
k k

σ
µ=

≤∑ . 

Step 4. Repeat Step 2 and 3, until 15N = , if the queue length is set to 15.  

Step 5. Add an element nµ  with a large value to the end of the set of { }jµ , and make 

sure that the maximum variance for the trip with N customers is greater than 2
,T Nσ  

for all N from 1 to 15, when the mean is equal to ,T Nτ . 

Step 6. The set of { }jµ  is suitable for all vehicle trips, where N increases from 1 to 

15, since the minimum variances which can be generated from the set of { }jµ  are 

less than 2
,T Nσ , and the maximum variances are greater than 2

,T Nσ .  Suitable sets 

of ,{ }N jp  must be found by solving Equation (4.26) and Equation (4.27) for all N 

from 1 to 15. 
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4.5.3. Estimation of Transportation Costs in Steady State Process 
In this section, transportation costs are investigated in the steady state process.  The 

system state is denoted as (w, I), and the steady state probability is { }( , )w Iπ π= .  One set 

of { }jµ  and 15 sets of ,{ }N jp  are formulated into transition rates in balance equations 

and the intensity matrix { },u vQ q= . 

1) The vehicle returns to the warehouse and starts the next trip (State (w,1)) 

When the vehicle finishes its current trip, the vehicle starts its next trip to serve 

the waiting customer immediately.  As in the previous assumption, the vehicle 

spends no time at the warehouse loading and unloading products and thus the 

states ( , 0)w  are redundant states when 1w ≥ .  Since a hyper-hypo-exponentially 

distributed vehicle travel time is used to approximate the time the vehicle spend 

on a trip, the process transitions from state ( ,1)w  to state (0, )I  with probability 

0 ,w Ipµ , where 1, 2, ,I n=  .  

0 ,1wpµ

0 ,w Ipµ

0 ,w npµ

 
Fig. 4.15. Transition diagram in the situation that the vehicle returns to 
the warehouse and starts the next trip 

 
Based on the transition diagram in Fig. 4.15, the balance equation is formulated as 

Equation (4.33) 

1 ( ,2 ) ( 1,1 ) 0 ( ,1)( )w w wµ π λπ µ λ π−+ = +       (4.33) 
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The left side represents the total transition rate from other states to state (w,1), 

which represents the vehicle travelling and demand appearing.  The right side of 

Equation (4.33) indicates the total transition rate from state (w,1) to other states.  

The transition out of the state (w,1) happens when the vehicle starts the next trip 

or a new customer demand appears.  It can be noted that 
0 , 0

1

n

w I
I

pµ µ
=

=∑ , since 

,
1

1
n

w I
I

p
=

=∑ . 

2) The vehicle is travelling on the road.  (State (w,I)) 

As previously mentioned, there is a probability 0 ,w Ipµ  that the process transitions 

from state ( ,1)w  to state (0, )I  for all 0w > , which is illustrated in Fig 4.16 (a).  

In the case of more than one customers queued in the waiting list, the transition is 

similar to that in section 3.3 (Fig 4.16 (b)).   

0 1,Ipµ

0 ,w Ipµ

0 1,w Ipµ +

 
a. Transition diagram based on system state (0, )I  

 
b. Transition diagram of vehicle travelling with more 
than one customer in waiting list 

Fig. 4.16. Transition diagram of the vehicle travelling on the road 
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The balance equations for these two cases are as follows. 

15

0 , ( ,1) (0, 1) 1 (0 , )
1

( )w I w I I I I
w

pµ π µ π µ λ π+ −
=

+ = +∑      (4.34) 

( 1, ) ( , 1) 1 ( , )( )w I I w I I w Iλπ µ π µ λ π− + −+ = +       (4.35) 

3) The vehicle is idle at the warehouse. (State (0,0)) 

When there are no customers waiting for services, the vehicle is idle at the 

warehouse.  Once new demand appears, the process transitions from state (0,0)  

to state (0, )I  with probability ,w Ip , where 1, 2, ,I n=  .  The transition diagram 

for this situation is illustrated in Fig. 4.17.  The corresponding balance equation is 

shown as Equation (4.36).  It can be noted that 
1,

1

n

I
I

pλ λ
=

=∑ , since 
1,

1
1

n

I
I

p
=

=∑ . 

1,1pλ

1,Ipλ

1,npλ

 
Fig. 4.17. Transition diagram of vehicle idle at the warehouse 

 

0 (0,1) (0,0)µ π λπ=         (4.36) 

All the balance equations are summarized in the stationary equation 0Qπ = , and the 

elements in the intensity matrix { },u vQ q=  are listed in Appendix A.3.1. 

The steady state probability π  is obtained by solving the stationary equation together 

with the boundary condition 1π =∑ , similar to solutions in section 3.3.  The vehicle 

utilization U  is obtained in Equation (4.37). 
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(0,0)
(0,0)

1u
u

U π π
≠

= = −∑         (4.37) 

The transportation cost per unit time TC  is proportional to the vehicle utilization. 

1 1 ( 0 ,0 )(1 )TC Uϕ ϕ π= = −         (4.38) 

In Equation (4.38), 1ϕ  is the petrol cost per unit time when vehicle is in transit. 

4.5.4. Estimation of Service Levels in Transient Customer Waiting Process 
The customer waiting process is applied to estimate the waiting time of a specific 

customer.  This process starts from time 0, when the system is stable and this specific 

customer appears.  It ends when the service for this specific customer finishes and the 

customer leave the system.  The customer waiting process is divided into two steps.  The 

first step is when the vehicle is travelling on the current trip, and the specific customer is 

waiting for his/her delivery to be scheduled.  The transition in this step is similar to the 

one in steady state process, until the vehicle reaches the warehouse.  The other step is the 

new vehicle trip which includes the specific customer.  In the second step, the demand of 

the specific customer is fulfilled. 

Since the service does not follow FCFS queue discipline, the position of the specific 

customer in the routing schedule is not related to the sequence of the customers.  An 

example based on an insertion algorithm is illustrated as follows.  There are already j 

customers on the next trip when the specific customer appears.  Without any specific 

information, this customer could be allotted in any position in the schedule with equal 

probability.  Therefore, the probability that the specific customer is arranged in ith 

position is 1
1ip

j
=

+
.  At a later time t, another new customer will be inserted into the 

schedule.  The probability that the new customer is arranged before the specific customer 
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is 
2

i
j +

.  The specific customer is in ith position, only when the specific customer is in ith 

position before time t and the new customer is inserted after him/her, or the specific 

customer is in (i-1)th position before time t and the new customer is inserted before 

him/her.  Therefore, the probability that the specific customer is finally located in the ith 

position is 1 1 1 11
1 2 1 2 2i

i ip
j j j j j

  −
= − + = + + + + + 

.  In summary, it is fair to assume that 

the specific customer has an equal chance of being slotted in any position of the second 

trip, as long as the routing strategy does not favor specific customers.  This can be 

contrasted with the case where the FCFS strategy favors customers appearing early. 

In the steady state process, the vehicle trip is no longer divided into paths between each 

two customers, and only the travel time for an entire vehicle trip is considered.  However, 

in the customer waiting process, the position of the specific customer on the second 

vehicle trip is important.  Estimating travel time for the entire trip is not adequate to 

measure the waiting time of the specific customer.  Therefore, an extra dimension has to 

be added to the system state in order to indicate the position of the specific customer in 

the second vehicle trip.  The system state is defined as (w,k,I), where the first and third 

symbols have the same meaning with the previous steady state process, and k represents 

the position of the specific customer on the second vehicle trip.  Since k is only valid for 

the specific customer, it is set to -1 in order to indicate that the vehicle is still on the first 

trip.  In the first trip, the vehicle follows the schedule and any new demands will be 

cumulated in the waiting list.  After the vehicle reaches the warehouse, it starts the 

second trip with the specific customer included in the schedule.  This specific customer 

has an equal chance to be served in any order.   
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In the second step, the schedule for the specific customer is determined.  New demand 

will not affect the waiting time of the specific customer and will not be taken into 

consideration.  w becomes the indicator of the vehicle trip with w customers.  The 

structure of the model for the second trip is similar to that in section 3.4.  However, the 

travel time for the trip with varying number of customers is different.  1,Nτ  and 1,Nσ  are 

used to denote the mean and standard deviation of the travel time between two customers 

on the trip with N customers, which are listed in Table 4.5 and 4.6.  ,N iµ  denotes the 

transition rate from state (N,k,i+1) to (N,k,i), where 1k ≥ .  0,Nτ  and 0,Nσ  denote the mean 

and standard deviation of the travel time between the warehouse and a customer on the 

trip including N customers.  ,N iµ′  denotes the transition rate from state (N,0,i+1) to (N,0,i).  

Vehicle travel time is approximated by the hypo-exponentially distributed random 

variables, which satisfy the following equations.  A feasible solution of ,N iµ  and ,N iµ′  can 

be obtained from the algorithm in section 3.2. 
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Let ,{ }t u tπ π′ ′=  be the transient state probability at time t, where ,u tπ ′  is the transient state 

probability of state u at time t, and ,' { ' }u vQ q=  the intensity matrix, where ,'u vq  is the 

transition rate from state u to v in the customer waiting process. 
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Initially, at time 0, the specific customer appears and joins others in the waiting list.  The 

initial state probability ( , 1, ),0w Iπ −′  is determined by the steady state probability π  obtained 

from previous process, due to the assumption that the system is stable at time 0. 

( , 1, ),0 ( 1, )w I w Iπ π− −′ = ,  1, 2 , ; 1, 2 , ,w I n= =        (4.39) 

If the vehicle is initially idle at the warehouse, the specific customer will immediately be 

served. 

(1,1,0 ),0 (0 ,0 )π π′ =           (4.40) 

The following illustrates transition diagrams and corresponding differential equations for 

every situation.   

1) The vehicle is travelling on the road of the first trip. (State (w,-1,I)) 

 
Fig. 4.18. Transition diagram of vehicle travelling on the road of the first trip 

 
( , 1, ),

( , 1, 1), ( 1, 1, ), 1 ( , 1, ),( )w I t
I w I t w I t I w I t

d
dt

π
µ π λπ λ µ π−

− + − − − −

′
′ ′ ′= + − +  (4.41) 

2) The vehicle returns to the warehouse and starts the second trip.  (State (w,-1,1)) 

As previously mentioned, the state (w,-1,0) is redundant, since the vehicle starts 

the second trip once it returns to the warehouse.  The system transitions from state 

(w,-1,1) to (w,k,0) with equal chances of 1 w . 
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0 wµ

0 wµ

0 wµ
 

Fig. 4.19. Transition diagram of vehicle returning to the warehouse 
 

( , 1,1),
1 ( , 1,2 ), ( 1, 1,1), 0 ( , 1,1),( )w t

w t w t w t

d
dt

π
µ π λπ λ µ π−

− − − −

′
′ ′ ′= + − +    (4.42) 

3) The vehicle is travelling between customers on the second trip. (State (w,k,I)) 

 
Fig. 4.20. Transition diagram of vehicle travelling between customers on 
the second trip 

 
( , , ),

, ( , , 1), , 1 ( , , ),
w k I t

w I w k I t w I w k I t

d
dt

π
µ π µ π+ −

′
′ ′= −      (4.43) 

4) The vehicle reaching and leaving a customer on the second trip. (State (w,k,0)) 

The specific customer may have a chance to be served in the kth position of the 

second trip.  The transition rate from state (w,-1,1) to (w,k,0) is 0 wµ . 

1,, ww Iµ
0 wµ

 
Fig. 4.21. Transition diagram of vehicle leaving a customer on the 
second trip 
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1,

( , ,0 ), 0
,0 ( , ,1), ( , 1,1), , ( , ,0 ),w

w k t
w w k t w t w I w k t

d
dt w

π µµ π π µ π−

′
′ ′ ′= + −     (4.44) 

5) The vehicle is travelling to the warehouse on the second trip.  (State (w,0,I)) 

 
Fig. 4.22. Transition diagram of vehicle heading to the warehouse on the 
second trip 

 
The transition rate from state (w,0,I) to state (w,0,I-1) becomes , 1w Iµ −′ , when the 

trip includes w customers. 

( ,0, ),
, ( ,0, 1), , 1 ( ,0, ),

w I t
w I w I t w I w I t

d
dt

π
µ π µ π+ −

′
′ ′ ′ ′= −      (4.45) 

6) The vehicle finishes the service for the specific customer.  (State (0,0,0)) 

Once the vehicle trip for the specific customer is completed, the process 

terminates at state (0,0,0), which is illustrated in Fig. 4.23. 

 
Fig. 4.23. Transition diagram of the end of the process 

 

(0,0,0),
,0 ( ,0,1),

t
w w t

w

d
dt

π
µ π

′
′ ′=∑        (4.46) 

The solutions of the above differential equations can be obtained by Equation (3.31).  The 

elements in the intensity matrix are summarized in Appendix A.3.2. 
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The solution of (0,0,0),tπ ′  can be obtained at any time t based on Equation (3.31), subject to 

the initial conditions (4.39) and (4.40).  (0,0,0),tπ ′  is the cumulative distribution function of 

the waiting time of the specific customer.  Finally, the service level ST is obtained from 

Equation (3.28). 

4.5.5. Model Validations 
Firstly, the approximation of the hyper-hypo-exponentially distributed vehicle travel time 

is evaluated.  Fig. 4.24. shows the histograms and corresponding density curves of hyper-

hypo-exponentially distributed vehicle travel time for trips including 1, 3, 8 and 14 

customers, respectively.  The vehicle trips are generated by the Branch-and-Bound 

algorithm mentioned previously.  The data of the histograms is collected from 

simulations.  For example, in the case of eight customers, the simulation generates 50,000 

trips.  Each trip starts from the warehouse, passes eight randomly generated customers 

according to the sequence suggested by the Branch-and-Bound algorithm, and ends at the 

warehouse.  The vehicle travel time of trips is segregated into small intervals, and the 

numbers of instances in the intervals are illustrated in Fig. 4.24 (c) as histograms.  The 

mean and variance of the travel time from these 50,000 trips are applied to generate the 

density curves of hyper-hypo-exponential distribution, based on the algorithms 

mentioned in section 4.4.3.  This curve is also illustrated in Fig. 4.24 (c). 

In Fig. 4.24, the vehicle travel time of the trip with one or three customers is not fit for 

the hyper-hypo-exponential distribution.  When there are more customers included in a 

trip, the distribution of the travel time becomes close to the hyper-hypo distribution, but 

the approximation of the travel time is still not accurate.  The errors of the 
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approximations would contribute to the final errors in estimating the transportation costs 

and customer waiting time. 

 
Fig. 4.24. The distribution of the vehicle travel time of a trip via several customers 
(Branch-and-Bound Algorithm) 

 
The following experiments are intended to verify the accuracy of the proposed Markov 

model by comparing results with simulations.  The simulations are similar to those in 

section 3.6, but the routing strategies are no longer FCFS.  Two routing algorithms, the 

Branch-and-Bound algorithm and the best-insertion algorithm are investigated.  Solving 

the Markov model is more efficient since it only takes 40 seconds, while the simulation 

takes more than an hour.  
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The Branch-and-Bound algorithm is investigated in the first set of experiments.  The 

vehicle needs to serve customers who are uniformly distributed in a 100x100 square 

region.  Customers appear in a Poisson manner with an arrival rate λ.  Five groups of 

simulations and Markov model calculations with 1 30 ,1 40,1 50 ,1 60,1 80λ =  are 

implemented, respectively.  The vehicle starts the delivery trip from the warehouse 

located in the middle of the region, travels with a constant speed on the delivery route, 

and returns to the warehouse after the current trip to load products for next delivery trip.  

The routing plans are generated by the Branch-and-Bound algorithm.  The loading and 

unloading time at the warehouse or customers’ locations are not taken into consideration.  

Table 4.7 shows the average results from simulations, results from the proposed Markov 

model, and the difference between them. 

Table 4.7. 
Result validation for Branch-and-Bound Algorithm 

Demand Rate Utilization Ave. 
Waiting 

Service Level CPU 
time 100 300 500 

Simulation 
1/30 

0.9998 296.4064 0.0643 0.5279 0.9264 19min 
Model 0.9997 292.7695 0.0617 0.5412 0.9338 19.85s 
Difference -0.0168 -1.2270 -4.0750 2.5217 0.7925  
Simulation 

1/40 
0.9928 234.3832 0.1265 0.7223 0.9830 18min 

Model 0.9940 236.6592 0.1154 0.722 0.9802 19.55s 
Difference 0.1202 0.9711 -8.7597 -0.0412 -0.2781  
Simulation 

1/50 
0.9684 190.9717 0.2164 0.8409 0.9949 20min 

Model 0.9697 191.8245 0.2082 0.8457 0.9936 20.54s 
Difference 0.1359 0.4465 -3.7737 0.5688 -0.1284  
Simulation 

1/60 
0.9237 158.7747 0.3142 0.9099 0.9987 21min 

Model 0.9233 158.3083 0.3180 0.9142 0.9973 20.08s 
Difference -0.0452 -0.2938 1.1845 0.4680 -0.1358  
Simulation 

1/80 
0.7982 115.6197 0.5034 0.9712 0.9999 22min 

Model 0.8016 116.6580 0.5079 0.9688 0.9992 19.24s 
Difference 0.4197 0.8980 0.8944 -0.2413 -0.0696  

The symbols and abbreviations are the same as Table 4.1. 
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Table 4.7 compares the simulation and the proposed Markov model in terms of vehicle 

utilization, average customer waiting time and service levels.  In the Markov model, the 

first measurement, utilization, is obtained from the steady state process mentioned in 

section 4.4.3, while the average customer waiting time and service levels are obtained 

from the customer waiting process mentioned in section 4.4.4.   

In terms of CPU time, the proposed model is much faster than simulations to make 

estimation of various performance measures.  When the demand rates decreases, the CPU 

time of the model is relatively constant, while the simulation time slightly increases, 

since system tends to generate vehicle trips visiting fewer customers and more departure 

and arrival events at the depot in the case of low demand rate.  The differences between 

results from the Markov model and the simulation are relatively small in terms of vehicle 

utilization.  They are less than 0.5%, since the model for steady state process is accurate.  

Fig. 4.25 shows the steady state probability in the case of customer demand 1/40.  It 

illustrates the probability that there are 0~15 new customers in line for parcel delivery 

services in the waiting list.  The curves of probability from the Markov model and the 

simulation almost overlap with each other, which indicates that the Markov model can 

approach the vehicle utilization and transportation costs accurately in the steady state 

process. 

Estimating performance measures from the customer waiting process is also accurate in 

the case of λ=1/40.  Fig. 4.26 illustrates the cumulative distribution of the customer 

waiting time.  Although, the difference between the Markov model and the simulation are 

visible at the beginning of the curves, the two curves are still consistent with each other.  

The transient state Markov process is able to accurately estimate the customer waiting 
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time.  Table 4.7 shows that the average customer waiting time and service levels obtained 

from the Markov model are close to those from simulations.  Most of the differences are 

less than 4%, and the maximum difference is 8.76%.  Large differences occur when the 

required service time is less than 100 units of time, which is difficult to achieve by 

service providers. 

 
Fig. 4.25. Steady State probability of customers in waiting list (λ=1/40) 

 



 
 

124 

 
Fig. 4.26. Cumulative distribution of Customer waiting time (λ=1/40) 

 
Errors may result from the approximation of the vehicle travel time.  As previously 

mentioned, the vehicle travel time is not accurately fit for the hyper-hypo-exponential 

distribution.  Especially in the cases where there are a small amount of customers on a 

vehicle trip, the errors are distinctly large.  That is the reason why the final errors are 

relatively large in the cases with small demand rates, since the system in this case tends 

to generate vehicle trips with a small amount of customers.  However, it is unexpected 

that the errors in the final results in terms of transportation costs and customer waiting 

time are relatively small.  It indicates that the results generated by the Markov model do 

not significantly rely on the accuracy of the estimation of the vehicle travel time.  A good 

estimation of the transportation costs and customer waiting time can be achieved by 

providing the mean and variance of the travel time. 
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The errors may also come from the non-sufficient state space involving in the Markov 

model in large demand cases.  In order to reduce computation effort, the queue length has 

been set to 15.  It is more likely that the number of customers in the waiting list may 

exceed the queue length in the cases with large demand rates.  Therefore, the average 

number of customers obtained from the Markov model may be lower and the service 

levels may be higher than those from the simulation.  Extending the queue length may 

improve the result from the Markov model.  However, extending the queue length will 

significantly increase the state space, since one of the dimensions I in the system state 

must satisfy 
2

,
2

,

T N

T N

I
τ
σ

≥ , and 
2

,
2

,

lim
0

T N

N
T N

Aτ β
σ→∞

= →∞ (see, Beardwood et al., 1959; Steele, 1981; 

and Lawler et al., 1985).  This indicates that there are limitations of the Markov model 

when the demand is large. 

In the second set of experiments, every condition is the same as the previous experiments 

except that the schedules of the vehicle trips are generated by a best-insertion algorithm.  

The results are shown in Table 4.8, which are similar to those in Table 4.7.  However, the 

differences between the results from the proposed Markov model and the simulation are 

relatively larger.  The Markov model estimates the performance measure better for the 

Branch-and-Bound algorithm than the best-insertion algorithm.    

In terms of CPU time, the conclusion is similar to that in the experiments of Branch-and-

bound algorithms.  The proposed model is much faster than simulations.  When the 

demand rates decreases, the CPU time of the model is relatively constant, while the 

simulation time slightly increases.  Compared to the Branch-and-bound algorithms, the 

simulation time is shorter, since the best-insertion algorithm generates vehicle routes 

faster.  In the calculation of the proposed model, the CPU time for the insertion algorithm 
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is larger than that of Branch-and-bound algorithms, since the customer waiting process of 

the insertion algorithm has larger number of states based on the parameters in tables 4.5 

and 4.6. 

Table 4.8. 
Result validation for Best-Insertion Algorithm 

Demand Rate Utilization Ave. 
Waiting 

Service Level CPU 
time 100 300 600 

Simulation 
1/30 

0.9998 335.6659 0.0401 0.4299 0.8600 15min 
Model 0.9998 319.6652 0.0489 0.4670 0.8881 22.82s 
Difference -0.0053 -4.7669 21.8492 8.6363 3.2638  
Simulation 

1/40 
0.9944 256.4294 0.0902 0.6619 0.9652 17min 

Model 0.9947 250.5525 0.1023 0.6783 0.9671 22.66s 
Difference 0.0282 -2.2918 13.5001 2.4824 0.1938  
Simulation 

1/50 
0.9699 203.8252 0.1763 0.8139 0.9912 19min 

Model 0.9712 198.2840 0.1979 0.8263 0.9903 22.57s 
Difference 0.1250 -2.7186 12.2644 1.5180 -0.0884  
Simulation 

1/60 
0.9245 166.6762 0.2851 0.8967 0.9974 20min 

Model 0.9249 161.4838 0.3106 0.9058 0.9963 22.31s 
Difference 0.0426 -3.1153 8.9463 1.0091 -0.1135  
Simulation 

1/80 
0.7956 118.9122 0.4823 0.9689 0.9999 22min 

Model 0.8029 117.6698 0.5040 0.9669 0.9989 22.49s 
Difference 0.9153 -1.0448 4.4878 -0.2148 -0.1031  

The symbols and abbreviations are the same as Table 4.1. 
 
Table 4.8 shows that the results obtained from the Markov model are close to those from 

simulations.  Especially for vehicle utilization, the differences are within 1%.  Most of 

the differences in results generated from customer waiting process are less than 5%.  

Large errors happen when the required service time is less than 100 units of time, which 

is difficult to achieve by service providers.  It is obvious that the demand in the case of 

demand rate 1/30 may exceed the limit of the queue length, since the vehicle utilization is 

close to 100% and customers are waiting for a long time.  That is why the errors are large 

in this case.  Extending the queue length may improve the results.  
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Comparing Table 4.7 and 4.8 with Table 3.1, the routing strategies based on the Branch-

and-Bound algorithm and the best-insertion algorithm generate more efficient vehicle 

routes for parcel delivery services.  The transportation costs are thus reduced.  Especially, 

the customer waiting time has been significantly reduced and the service levels have been 

improved as well.  Furthermore, results generates from the Branch-and-Bound algorithm 

are slightly better than those from the best-insertion algorithm. 

In summary, results generated from the Markov model are close to those from simulation.  

The Markov model provides results much faster than simulations.  The computation time 

are spent on finding solutions for Equations (3.16) and (3.31).  A deliberate design and 

improvement of the intensity matrices would further increase the efficiency of the 

proposed model.  Therefore, the Markov model can replace the simulations to quickly 

and accurately estimate performance measures for parcel transportation services with 

various routing strategies. 
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5. Model Applications in Management Decisions 

5.1. Overview 
In chapter 3 and 4, the proposed Markov models were established to estimate 

performance measures for parcel transportation services.  Based on the estimations, 

service providers are able to systematically evaluate their business, and make 

management decisions in order to improve performance.  In this chapter, three 

management decision-making examples are discussed.  In section 5.2, service price is 

determined in order to maximize profit on delivery services.  In section 5.3, the network 

design for parcel transportation services is analyzed.  The size of the service region and 

the minimum number of warehouses as well as their locations are decided using 

optimization algorithms.  In section 5.4, an order acceptance problem is analyzed.  In this 

kind of problem, an estimated delivery time is provided to potential customers before 

they make orders.  That delivery time will affect the customers’ decisions.  A suitable 

approach to decide the estimated delivery time is discussed in the section. 

5.2. Pricing Problems for Parcel Delivery Services 

5.2.1. Description of Pricing Problems 
In the past ten years, a number of supermarkets and fast food retailers, including 

Amazon.com, Carrefour and McDonalds, have launched online ordering systems.  This 

has allowed customers to order products from “virtual” storefronts via the Internet or 

over the telephone and get them delivered with additional charges.  In some cases, the 

retailers’ logistics departments provide delivery services, but most of these services are 

outsourced to third party logistics companies.  Outsourcing the logistics function allows 

retailers to handle complicated logistics issues in a more effective manner.  However, this 
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also creates a “service pricing problem” in which these outsourcing companies or internal 

logistics departments need to choose prices carefully and reduce transportation costs 

effectively while maintaining excellent service quality.  The goal of this section is to 

provide an efficient method to help outsourcing companies or internal logistics 

departments address the service-pricing problem in a dynamic vehicle routing based 

environment.  In this type of environment, a single trip with multiple delivery stops 

provides economics of scale. 

Nowadays, the competition for delivery services is fierce, especially concerning the issue 

of price (Potvin et al., 2006).  By examining pricing strategy carefully, a company is able 

to adjust its realized demand and operating costs to achieve maximum profit.  The 

logistics company has to carefully decide the price that is acceptable to most customers, 

yet also make delivery services profitable. 

In the literature, optimizing the price for products and services has received wide 

attention, including published works by Chen et al. (2001), Abad and Jaggi (2003), Shinn 

and Hwang (2003), and Viswanathan and Wang (2003).  Various pricing policies are 

discussed in a supplier-buyer channel, based on the assumption that demand is a 

decreasing function of the product price.  The relationship between price and demand can 

be linear (You, 2006; Zhou and Lee, 2009), convex functional, such as 2xλ α=  (Lei et 

al. 2006), or even more general, like bxλ α −=  (Monahan et al. 2004), where the demand 

rate λ  is a commonly used convex function of the price x  and α  is a random variable 

with a known distribution function.  Dong et al. (2009), Li et al. (2009) and Asdemir et 

al. (2009) used the multinomial logit (MNL) model to analyze the relationship between 

demand and price.  The MNL model, which is based on discrete choice theory, provides a 
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reasonable way to describe a customer’s choice behavior among several alternatives.  The 

incorporation of the MNL model in a stochastic demand process can well explain how 

price affects demand.   

Papers on pricing problems are seldom based on transportation services.  Zhou and Lee 

(2009) analyzed the problem of empty equipment repositioning between two fixed places.  

Li and Liu (2008) agreed with Hill et al. (2002) that other than the service price, the 

service quality is another important factor that affects customer decisions.  Li and Liu 

assumed that the demand rate presents a linear increase along with a drop of price and 

response time, which includes manufacturing and transportation time.  All these papers 

tried to solve the differential equations of demand and find the best price such that 

demand or revenue is maximized.  However, for logistics companies, setting the price in 

order to maximize sales or revenue only, and ignoring operating costs and service level, 

can result in great losses.  Operating costs and service levels, two significant factors 

contributing to profit, should be taken into consideration when managers make decisions.   

Geunes et al. (2007) published the first paper about the pricing problem in a dynamic 

vehicle routing based environment.  They used continuous approximation methods to 

obtain vehicle travelling costs and constructed the profit function of the delivery service 

as the difference between revenue and travelling costs.  This paper tried to discuss the 

relationship between the price and the final profit.  Without any numerical results, it is 

difficult to evaluate the accuracy and efficiency of their methods.  Furthermore, their 

method is difficult to extend to deal with customer waiting time and service levels.  

Effective evaluation models to predict cost and service level are still needed, as they are 

the challenging parts to resolve in the pricing problem for parcel delivery services. 
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This research effectively satisfies the requirement of the pricing problem in parcel 

delivery services.  In the proposed method, customer information, parcel delivery service 

conditions and routing strategies must be provided.  A discrete choice model has been 

chosen to describe the relationship between the demand and the service price.  The 

proposed Markov models are used to estimate the travelling costs and service levels.  A 

simple yet efficient optimization algorithm has been applied to find the optimal service 

price in order to maximize profit.       

5.2.2. Discrete Choice Model 
A discrete choice model is used to describe the choices that people make among a finite 

set of alternatives.  It statistically relates the choices of each person to the attributes of 

that person and the attributes of the alternatives available to that person.  Manski and 

McFandden (1981) developed the discrete choice model and won the Nobel Prize in 

2000.  The application of this model is elaborated as follows to estimate the actual 

demands for parcel delivery services.  The price of the service, the reputation of the 

service provider, the income of the customer and other factors will affect a customer’s 

choice.  A customer’s choice can be measured using a function with all the effects of 

these factors.  Since this research is restricted to the effect of the price for delivery 

services, it is assumed that the effects other than the price x is a random variable ε that 

follows a Logistic distribution.  Thus, the measure of a customer’s choice can be 

expressed as xβ ε− + , where xβ−  is the effect of the service price x, β is the coefficient 

of the price and ε is the effect of other factors.  It is assumed that a customer will make an 

order when the measure is greater than a constant 0U .  The probability that a customer 

will make an order for delivery services is as follows. 
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00 0
1Prob{ } Prob{ }

1 U xx U U x
e ββ ε ε β +− + > = > + =

+     
(5.1) 

With this probability, the relationship between the service price and demand can be 

developed.  It is assumed that customer arrivals follow a Poisson process with an arrival 

rate Λ.  Only a portion of potential customers seeking delivery services may accept the 

price.  Those customers making orders are the demand λ, which is a function of the 

service price.   

00= Prob{ }
1 U xx U

e βλ β ε +

Λ
Λ ⋅ − + > =

+       
(5.2) 

5.2.3. Optimization of the Pricing Problem 
Profit consists of the difference between revenue and the sum of travelling cost and 

penalty for overdue service.  Based on the results from the previous sections, the revenue, 

the travelling cost and the penalty can be calculated as Equations (5.3), (5.4) and (5.5), 

respectively.  All of them are functions of the service price x.  Therefore, the profit is a 

function of the price x.  They are determined as follows. 

0 1Revenue = ( )
1 U x

xx f x
e βλ +

Λ
= =

+        
(5.3) 

1 2T ravelling C ost ( )U f xϕ= =        (5.4) 

2 3Penalty (1 ) ( )TS x f xϕ λ= − =        (5.5) 

1 2 3Profit R evenue T ravelling C ost Penalty ( ) ( ) ( ) ( )f x f x f x f x= − − = − − =   

Based on the results from the discrete choice model and the Markov models, the profit 

function can be formulated as follows. 

( )
0 01 2( ) 1

1 1TU x U x
x xf x U S

e eβ βϕ ϕ+ +

Λ Λ
= − − −

+ +
      (5.6) 
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In Equation (5.6), 1ϕ  is the petrol cost per unit time when the vehicle travels on the road 

and 2ϕ  is the penalty for an overdue service as a percentage of the service price. 

A golden section search algorithm is used to find the optimal service price, with which 

the profit of this service is maximized.  The golden section search is a classic and fast 

one-dimension search algorithm in textbooks (Press et al. 2007), and it still has broad 

applications in recent research (Zuo et al. 2011; Patron et al. 2012; Du et al. 2012). The 

algorithm for this pricing problem is illustrated as follows. 

Step 1. Choose an initial price.  The revenue function is increasing initially and 

then is decreasing, while the cost and the penalty functions are monotonically 

decreasing.  This means that the optimal price must be greater than the price at 

which revenue is maximized.  Therefore, the initial price is chosen at the point 

that revenue is maximized, which is a Lambert’s W function 

01
1 [ ( ) 1]Ux W e β− −= + . 

Step 2. Choose a one-step search length L, and let 2 1x x L= + , 3 1 (1 )x x L ξ= + + , 

where ξ is called the golden ratio ( 1.618ξ ≈ ).  Find the profit for the three 

prices, 1( )f x , 2( )f x  and 3( )f x .  If 1 3 2( ) ( ) ( )f x f x f x> > , let (1 )L L ξ= + .  

If 1 3 2( ) ( ) ( )f x f x f x< < , let (1 )L Lξ= + .  Repeat step 2 until 

3 1 2( ) ( ), ( )f x f x f x> . 

Step 3. Search within the region [ ]1 1,x x Lℜ= + .  Let 3 1 (1 )x x L ξ= + +  and 

4 1 (1 )x x Lξ ξ= + + .  Find the profit for the two prices, 3( )f x  and 4( )f x .  If 

3 4( ) ( )f x f x> , let (1 )L Lξ ξ= + .  If 3 4( ) ( )f x f x< , let (1 )L Lξ ξ= +  and 

1 3x x= .  Repeat step 3 until L ε< , where ε  is a relatively small real number. 
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Step 4. Finally, the optimal price is 3x  if 3( )f x  is greater, or 4x  if 4( )f x  is 

greater. 

It is noted that golden section search is a one-dimension search technique for finding the 

extremum of a strictly unimodal function, which has only one peak without any other 

local maxima or minima.  Therefore, the application of golden section search algorithm 

for the pricing problem implies that the profit is a unimodal function of the price, and 

experiments shows that the objective function has only one peak.  It is aim to illustrate 

the applications of the proposed Markov model in the pricing problems.  A better 

optimization algorithm is open for future research of pricing problems for dynamic parcel 

delivery services. 

5.2.4. Results and Discussions 
Experiments are carried out to verify the accuracy of the proposed pricing model for 

parcel delivery services.  The results from the proposed approach are compared with the 

results from simulations.  The performance measures of revenue, vehicle utilization, 

service level and profit are evaluated.  Both simulation and the calculation of the 

proposed pricing model are implemented in MATLAB 7.0 on a PC with 2.33GHz CPU 

and 3.25GB of RAM.  Solving the Markov model only cost several seconds, while the 

simulation takes a few minutes.  The proposed Markov model is much faster than the 

simulation. In the first experiment, the vehicle delivers products to customers who are 

uniformly distributed in a 100x100 square region.  Customers appear in a Poisson manner 

with an inter-arrival rate Λ=1/40.  The delivery charge is $30.00 per customer.  The 

percentage of customers who are willing to pay this amount for the delivery service is 

calculated based on the discrete choice model.  The service provider promises that 
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customer demands will be fulfilled within 300 units of time; otherwise, the customer will 

acquire compensation equal to 1/3 of the service price for each overdue service.  It is 

assumed that the vehicle starts a delivery trip from the warehouse located in the middle of 

the region, travels at a constant speed with a petrol cost of $0.30 per unit time and returns 

to the warehouse after the current trip to load products for the next trip.  Table 5.1 shows 

the results of the vehicle starting a delivery trip with at least one to six pending demands. 

Table 5.1 compares the simulation and the Markov model in terms of revenue, vehicle 

utilization, service level and profit.  The simulation results are the average values from 

ten instances of experiments, and the percentage below the number is the 95% confidence 

interval for those results.  In the proposed approach, the first measurement, the expected 

revenue is obtained from the Poisson customer arrival rate and the discrete choice model.  

It is the same value in all six cases, since the customer arrival rate and service price are 

fixed.  However, revenue is varied in simulation due to random errors.   

The vehicle utilization is obtained from the steady state process mentioned in section 3.3.  

It reflects the vehicle travelling cost per unit time.  The difference between the results 

from the Markov model and the simulation is less than 1%, since the Markov model for 

this process is more accurate.   

The service level is obtained from the customer waiting process mentioned in section 3.4.  

This process is based on the results from the steady state process, and it has more 

assumptions and approximations.  Therefore, the differences for service levels are higher, 

as much as 6%, but still acceptable.  The profit is calculated based on Equation (5.6), 

which is the combination of the values from the previous three measurements.  The 

differences for profit are at the same level as service levels.  
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Table 5.1. 
Results when the service price is $30.00 

 Departure 
Criterion Revenue Utilization Service 

Level Profit CPU 
Time 

Simulation 

1  

0.37529 
±0.066% 

0.830121 
± 0.050% 

0.886234 
± 0.084% 

0.112024 
± 0.186% 21min 

Model 0.37500 0.830984 0.905082 0.113983 7.60s 

Difference -0.0779% 0.1039% 2.1268% 1.7481%  

Simulation 

2  

0.37513 
±0.105% 

0.772775 
± 0.084% 

0.847886 
± 0.127% 

0.124281 
± 0.197% 15min 

Model 0.37500 0.770034 0.867943 0.127681 10.73s 

Difference -0.0347% -0.3547% 2.3655% 2.7361%  

Simulation 

3  

0.374980 
±0.107% 

0.743014 
± 0.113% 

0.750908 
± 0.216% 

0.120941 
± 0.201% 12min 

Model 0.37500 0.739250 0.773777 0.125221 12.22s 

Difference 0.0512% -0.5066% 3.0456% 3.5387%  

Simulation 

4  

0.37499 
±0.063% 

0.725813 
± 0.085% 

0.586396 
± 0.146% 

0.105548 
± 0.142% 11min 

Model 0.37500 0.720795 0.612392 0.110539 15.75s 

Difference 0.0027% -0.6914% 4.4332% 4.7284%  

Simulation 

5  

0.37519 
±0.097% 

0.714623 
± 0.113% 

0.391133 
± 0.288% 

0.084654 
± 0.175% 10min 

Model 0.37500 0.708535 0.412592 0.089065 19.13s 

Difference -0.0506% -0.8519% 5.4864% 5.2103%  

Simulation 

6  

0.37522 
±0.066% 

0.705984 
±0.087% 

0.215001 
±0.562% 

0.065241 
±0.298% 9min 

Model 0.37500 0.699806 0.224179 0.067888 22.85s 

Difference -0.0584% -0.8750% 4.2689% 4.0563%  

“Departure criterion” represents the minimum number of customers visited in a vehicle trip; 
“Revenue” represents the income of the service per unit time; “Utilization” represents the vehicle 
travelling cost; “Service Level” represents the percentage of delivery tasks completed within 300 
units of time.  “Simulation” represents the results from simulation; “Model” represents the results 
from calculations using the Markov model; “Difference” represents the difference between the 
results using the Markov model and the simulation, calculated by 100*(Model-
Simulation)/Simulation. 
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In Table 5.1, as the vehicle departure criterion increases, the vehicle utilization will 

increase and the service level will decrease, since the vehicle is idle for a longer period at 

the warehouse, waiting for enough demands to start the next trip.  With more customers 

on a trip, the vehicle is able to save transportation costs.  Therefore, the profit may 

increase initially as the vehicle departure criterion increases.  In addition, the confidence 

intervals become larger as the vehicle departure criterion increases.  Using service level 

as an example, the confidence interval is almost 1% narrower in the case of a departure 

criterion of one versus a departure criterion of six.  The differences between the results 

from the Markov model and the simulations also become larger, in general.  For example, 

the difference in profit is 3.5% lower in the case of a departure criterion of one versus a 

departure criterion of five.   

In summary, the Markov model generates results much faster than simulations.  

Therefore, the Markov model is able to quickly and accurately estimate performance 

measures for parcel transportation services.  Based on these estimations, pricing 

algorithms can be used to decide a suitable price for the service. 

In the following experiment, the best price to maximize total profit for parcel delivery 

services is found.  All of the parameters are the same as the previous experiment except 

that the service price is a random variable.  The golden section search algorithm 

mentioned in section 5.2.3 will be applied to decide the best price for the service.  Table 

5.2 shows the optimal results for each departure criterion. 

The golden section search finds the optimal solution for each departure criterion, and the 

best price obtained is different in each case.  For a departure criterion of one to three, the 

best price is decreasing, but it is increasing as the departure criterion increases from three.  
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From Table 5.2, the maximum profit is achieved when the vehicle is allowed to start a 

new delivery trip with at least two pending demands, and the service price is set at 

$34.79.  As long as the departure criterion increases, the vehicle utilization decreases, 

which indicates transportation costs are decreasing, and the service level decreases, 

which indicates penalties for overdue services are increasing.  The overdue penalty is 

relatively small at the beginning and has minimal effect on profit.  Transportation costs 

are reduced as the departure criterion increases, and total profit increases accordingly.  If 

vehicle departure criterion is more than three, the service level dramatically decreases.  

The overdue penalty is the main factor that reduces total profit.   

Table 5.2. 
Optimal results for the pricing problem 

Departure 
Criterion Price Revenue Utilization Service 

Level Profit CPU 
Time 

1 34.95 0.330872 0.672785 0.983101 0.127240 183.16s 

2 34.79 0.332690 0.605224 0.935651 0.144130 219.44s 

3 34.38 0.337091 0.587543 0.818649 0.140690 285.41s 

4 34.43 0.336538 0.568048 0.634815 0.125379 369.05s 

5 35.16 0.328599 0.532748 0.417083 0.105052 468.06s 

6 36.38 0.314437 0.485935 0.214158 0.086200 545.28s 

The symbols and abbreviations are the same as Table 5.1. 
 
The computational time to obtain a satisfactory solution is less than ten minutes, which is 

acceptable.  The CPU time increases as the departure criterion increases, since more 

effort is needed to estimate performance measures, which is shown in Table 5.1. 

The maximum profit obtained from the golden section search algorithm is illustrated in 

Fig. 5.1.  They are compared with the results in the case of a fixed service price of 

$25.57.  The $25.57 price is obtained from maximizing revenue only, since most of the 
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pricing researches have focused on maximizing sales and revenue. 

 
Fig. 5.1. Profit comparison between the optimal price and a fixed price of $25.57 

 
It is obvious that applying the best price obtained from the proposed pricing process will 

significantly improve the profit for parcel delivery services.  For example, the optimal 

profit in the case with a departure criterion of one is more than $0.12.  Compared to 

$0.06, which is obtained from maximizing revenue only, the profit is doubled. 

In summary, the proposed Markov model is a fast and accurate method to estimate 

performance measures for parcel delivery services.  It provides quick and suitable 

evaluations for each potential condition in the pricing problem.  The golden section 

search algorithm properly analyzes the conditions and evaluations, and guides the search 

to the optimal solution.  Based on the method proposed for the pricing problem, the 

parcel delivery services provider can easily decide the service price and improve profit. 
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5.2.5. Dynamic Pricing 
The price mentioned in the previous discussion is fixed for all situations, regardless of the 

vehicle status and the number of customers waiting for the service.  However, in practice, 

it is possible to quote different prices to customers in different situations.  It will be 

interesting to find a pricing strategy that can quote different prices based on the vehicle 

status and the number of customers in the system in order to maximize overall profit. 

It is assumed that the quoted price ,w kx  depends on the number of customers in the 

waiting list w and the number of delivery jobs left in the current vehicle trip k.  According 

to the discrete choice model, the demand rate is as follows. 

0 ,, 1 w kw k U xe βλ +

Λ
=

+
         (5.7) 

According to Equation (5.7), the demand rate varies in different situations.  Providing the 

demand rate for every combination of w and k, the transportation costs and service levels 

can be obtained from the Markov model.  The overall profit for parcel delivery services is 

calculated as Equation (5.8) based on a provided group of prices { },w kx x= . 

( ), , ( , , ) 1 2 , ,
, ,

( ) 1w k w k w k I T w k w k
w k I w k

f x x U S xλ π ϕ ϕ λ= − − −∑ ∑ ∑     (5.8) 

The golden section search is able to explore the solution space in only one dimension.  

However, the solution for ,w kx  has w k×  dimensions.  A conjugate gradient search is 

used to decide the suitable search direction for the golden section search.  In each 

iteration, a direction nr  is calculated based on the direction 1nr −  from the previous iteration.  

Initially, 0 0r = .   

2

12
1

n
n n n

n

d
r d r

d −

−

= +  
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nd  is the gradient descent direction, obtained from the following equation. 

( ) ( )
n

f x x f xd
x

+ ∆ −
=

∆
 

The best profit in direction nr  can be achieved at 1n n n nx x rγ−= + , where nγ  is a probe 

length in one dimension obtained from the golden section search. 

A set of experiments is carried out in order to find the dynamic pricing setting in a case 

with the parameters listed in Table 5.3. 

Table 5.3. 
Parameters of the dynamic pricing experiment 

Size of region Λ  T 1ϕ  2ϕ  
100x100 1/40 300 0.3 1 

“Λ ” is the arrival rate of potential customers; “T” is the due time 
criterion; “ 1ϕ ” is the petrol cost per unit time when the vehicle travels 
on the road; “ 2ϕ ” is the penalty ratio compared to the price. 
 

Table 5.4 shows the optimal results for each departure criterion.  The optimal prices are 

not listed in the table, since they are a group of prices based on different situations.  The 

prices in the case that the departure criterion is one are illustrated in Fig. 5.2.  It shows 

that the prices are increasing with an increase of w or k.  More customers tend to be 

attracted to make orders when fewer customers are in the system.  On the contrary, 

customers tend to be pushed away when the vehicle is over-burdened.  In the case of a 

1/40 customer arrival rate, the system tends to stay in a state with small w and k, and has 

small probability in a state with w and k greater than five.  Therefore, prices are more 

sensitive in the states with small w and k, and the surface of the graph is relatively flat in 

the state with large w and k. 
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Table 5.4. 
Optimal solution for the dynamic pricing problem 

Departure 
Criterion Revenue Utilization Service  

Level Profit CPU Time 

1 0.33082 0.667465 0.980963 0.129048 7843.54 

2 0.33317 0.609092 0.944925 0.14578 7766.27 

3 0.33466 0.586016 0.844370 0.14516 8662.77 

4 0.32873 0.553190 0.664622 0.133984 14310.50 

5 0.31464 0.501873 0.434248 0.117962 33921.19 

6 0.29473 0.439273 0.211922 0.102888 31892.55 

“Departure criterion” represents the minimum number of customers visited in a vehicle 
trip; “Revenue” represents the income of the service per unit time; “Utilization” represents 
the vehicle travelling cost; “Service Level” represents the percentage of delivery tasks 
completed within 300 units of time.   
 

 

 
Fig. 5.2. Price setting based on k and w 

 
The CPU time in Table 5.4 shows that the search algorithm for the dynamic pricing 

problem is not efficient.  The solution from the combined algorithms of conjugate 
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gradient search and golden section search may converge into a local optimum, and the 

final result may not be even close to the global optimal solution.  Other optimization 

algorithms may efficiently generate better solutions for the pricing problem in parcel 

delivery services. 

5.3. Network Design Problems for Parcel Delivery Services 

5.3.1. Description of Network Design Problems 
In the literature, there is a stream of research on the network design of transportation 

services.  The network design problems are typical in the strategic planning of 

transportation systems, which is responsible for making long-term decisions on the 

physical structure concerning resources, locations and infrastructure (Wieberneit, 2008).  

The key issues in the network design of parcel transportation services include the location 

of warehouses, the assignment of service regions, and the scheduling and routing of 

vehicles. 

Service providers are concerned with making strategic decisions of the following 

problems by a scientific investigation. 

• If a completely new transportation system is designed, the number and locations 

of warehouses, and the service areas for the warehouses must be decided. 

• It must be decided whether it is possible to close a warehouse in an existing 

network system to save operating costs and maintain the same service quality. In 

practice, this may occur if a parcel transportation company experiences a fall in 

demand in a particular region, or if advanced technology allows a neighboring 

warehouse to operate more economically in a larger area. 
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• It must be decided whether a new warehouse needs to be established in an 

existing parcel transportation system, and where the ideal location would be, if 

demand for the service increases dramatically or if the company wants to expand 

the business to a larger area. 

• It must be decided whether cost savings can be achieved by changing warehouse 

locations or shifting service area boundaries of warehouses. 

Researchers have proposed a number of models to address those concerns from parcel 

transportation service providers.  Hwang (2002) divided the service region into sub-

regions.  A vehicle took care of the delivery to customers in each sub-region and the 

quality of service should be kept higher than a critical service level.  The way to separate 

the service region and to decide the location of the distribution center was the main focus 

of Hwang’s work.  However, in this paper, the customers were fixed and known 

beforehand, and the final locations of warehouses were chosen from a discrete set of 

location sites.  Bruns et al. (2000) designed the distribution system for Swiss Post.  Swiss 

Post would like to choose the locations of delivery bases from a number of potential sites, 

from which parcels will be delivered.  The area of Switzerland was divided into postal 

zones with each zone assigned to a delivery base.  The delivery distance for a postal zone 

consisted of the stem distance and the running distance. The stem distance was 

proportional to the mean distance from the delivery bases to each customer in the postal 

zone.  The running distance was calculated by the continuous approximation model 

(Langevin and Mbaraga, 1996).  Wasner and Zapfel (2004) studied the Austrian parcel 

transportation networks.  More than 2000 postal zones had to be assigned to depots and a 

hub.  They considered adjusting service boundaries for existing depots, closing existing 



 
 

145 

depots and setting up new depots.  These papers discussed the warehouse locations and 

postal zone assignment in a vehicle routing circumstance.  However, only transportation 

costs were taken as the optimization objectives in these papers, and the quality of service 

is ignored. 

Pavone et al. (2011) suggested distributed algorithms for the partitioning problem based 

on the approximation of equitable power diagrams and equitable and median Voronoi 

diagrams.  Their algorithms are applicable to resolve DVRP with multi vehicles based on 

the π-partitioning policy, in which the entire region is partitioned into m sub-regions and 

each vehicle is assigned to a sub-region executing the single-vehicle routing policy π to 

service demands that fall within the sub-region.  They have claimed that their partitioning 

algorithms generate optimal solutions in heavy traffic situations and almost optimal 

solutions in light traffic situations.  The key idea of their algorithms is to construct a 

suitable objective function, which reflects the weights of the generators in the Voronoi 

diagrams and the impact of the routing strategies.  The setting of the objective function in 

general traffic situations is still worth for discussions.  The Markov models proposed in 

this paper are effective methods to evaluate the impact of routing strategies on vehicle 

travel distances in a region and service levels.  Based on the objective of reducing 

transportation cost and increasing service levels and profits, an optimization algorithm 

can be used to find a satisfactory design of the network in the service region. 

5.3.2. Optimizing the Size of a Service Region 
Before considering the complicated network design, deciding on a suitable size for a 

service region is discussed first.  A business of parcel delivery services will be set up in a 

new city with one vehicle assigned to the service region.  A customer is charged $30.00 

for a delivery.  It is assumed that customers who require parcel delivery services at this 
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price are uniformly distributed in the city with a density of 61 /10  per unit area.  This 

means that customers appear with a Poisson distributed arrival rate 61/10  within each 

unit of area in the region.  The service provider promises that customer demands will be 

fulfilled within 300 units of time; otherwise, there will be 100% compensation for each 

overdue service.  It is assumed that the vehicle travels at a constant speed and the petrol 

costs $0.30 per unit time.  The service provider has to decide the optimal size of each 

service region so that total profit is maximized. 

In this case, the total demand rate is proportional to the area A of the service region, 

which is denoted as follows. 

610Aλ =  

The proposed Markov model is used to estimate the transportation cost and the overdue 

penalty for each value of A, based on the results from chapter 3.  The profit can be 

calculated as follows. 

( )6 6

30( ) 0.3 30 1
10 10T

A Af A U S= − − −        (5.9) 

The profit curve in terms of the size of the service region is illustrated in Fig. 5.3.  The 

revenue, the travelling cost and the overdue penalty are monotonically increasing 

functions.  Therefore, the profit function only has one peak above zero.   
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Fig. 5.3. Profit function in terms of the size of the service region 

 
The golden section search mentioned in section 5.2.3 is applied to find the best region 

size.  The decision variable must be replaced with the area of the service region.  

Furthermore, the search must be limited to 1 (0.6 )Aλ < , which means that 14057A< ; 

otherwise, the demand will be far beyond the affordability of one vehicle.  The golden 

section search is initiated with 410A = .  The golden section search algorithm for the size 

optimization of a service region is as follows.  

Step 1. Choose the initial area for the region.  The decision variable is initiated 

with 4
1 1 0A = .  The one-step search length is L.  Let 2 1A A L= + , 

3 1 (1 )A A L ξ= + + .  Calculate the profit 1( )f A , 2( )f A  and 3( )f A  for the three 

cases.   
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Step 2. Decide the range of the search.  If 1 3 2( ) ( ) ( )f A f A f A> > , let L Lξ= , 

2 3A A= , 3 1A A=  and 1 2A A L= − .  If 1 3 2( ) ( ) ( )f A f A f A< < , let L Lξ= , 

1 3A A= , 3 2A A=  and 2 1A A L= + .  Repeat step 2 until 3 2 1( ) ( ), ( )f A f A f A≥ . 

Step 3. Search within the range 1 2[ , ]A Aℜ = .  Let 3 1 (1 )A A L ξ= + +  and 

4 1 (1 )A A Lξ ξ= + + .  If 3 4( ) ( )f A f A> , let (1 )L Lξ ξ= + .  If 3 4( ) ( )f A f A< , let 

(1 )L Lξ ξ= +  and 1 3A A= .  Repeat step 3 until L ε< , where ε  is a relatively 

small number. 

Step 4. Finally, the optimal area is 3A  if 3( )f A  is greater, or 4A  if 4( )f A  is greater. 

Based on the assumption that the service region is always a square in shape, the optimal 

solutions provided by the golden section search algorithm are shown in Table 5.5.  It 

takes several minutes to achieve the optimality. 

Table 5.5. 
Optimal size of the service region 

Departure 
Criterion Area Revenue Utilization Service 

Level Profit CPU 
Time 

1 9277.38 0.278321 0.641373 0.990199 0.083181 240.46s 

2 9331.10 0.279933 0.572584 0.943812 0.092429 296.40s 

3 9141.87 0.274256 0.525600 0.828657 0.069584 373.98s 

4 8193.63 0.245809 0.432591 0.644731 0.028703 445.78s 

The symbols and abbreviations are the same as Table 5.1. 
 
An optimization is carried out for each departure criterion.  Thus, an optimal area for the 

service region is obtained for each one.  For example, from the results in Table 5.5, the 

first row shows that it is better to operate parcel delivery services in a region with an area 

of 9277.38, when the vehicle always plans a trip with at least one customer.  Actually, the 

service region is a 96.32x96.32 square.  In this case, the maximum profit is $0.083181 
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per unit time.  In addition, it can be noted that the optimal area decreases as the departure 

criterion increases, when the departure criterion is greater than two.  Due to the 

decreasing size of the service region, the demand within the entire service region 

decreases as well, which causes a reduction in revenue.  The vehicle utilization also 

decreases, as the vehicle travels in a smaller area.  Although demand decreases, the 

service level is still decreasing, since the vehicle spends more time waiting for customers 

at the warehouse due to an increase of the departure criterion.  When the departure 

criterion is two, the profit is maximized in all cases.  The profit starts decreasing when 

the departure criterion is greater than two, and it almost reach zero when the departure 

criterion is four.  When the departure criterion exceeds four, the business starts losing 

money. 

5.3.3. Region Partitioning 
In this section, a similar optimizing problem with different decision variables is 

discussed.  In this problem, a parcel delivery business is started in a new city.  The size of 

the city is 104x104, which is too large to be served by one vehicle.  The entire service 

region will be divided into a number of sub-regions.  Each sub-region has a vehicle 

operating services and a warehouse located in the middle of the sub-region.  Maintaining 

a warehouse will cost $0.04 per unit time.  The other conditions are the same as in section 

5.3.2.  A customer is charged $30.00 for a delivery.  The vehicle travelling cost is $0.30 

per unit time.  The customer demand rate is 61 /10  per unit area.  If the customer demand 

is not fulfilled within 300 units of time, 100% compensation will be provided.  The 

objective is to find the optimal number of sub-regions that will maximize total profit.   

To simplify the problem, it is assumed that each sub-region must be an identical square in 

shape.  In this case, the demand rate within the sub-region is proportional to the area, 
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which is denoted as 2 6 210 100A N Nλ = = , assuming that the entire region is divided 

into N2 sub-regions. 

Table 5.6. 
Optimal number of sub-regions 

DN  N2 Revenue Utilization Service 
Level 

Profit / 
sub region 

Total 
Profit 

CPU 
Time 

1 137x137 0.159838 0.298303 0.999963 0.070341 569.47406 126.41s 

2 112x112 0.239158 0.456708 0.939842 0.087758 599.08278 164.56s 

3 108x108 0.257202 0.478315 0.824152 0.068479 332.17565 211.92s 

4 109x109 0.252504 0.450234 0.648088 0.028575 -135.7440 256.00s 

“ DN ” represents the minimum number of customers included in a vehicle trip.  “N 2” represents 
the number of sub-regions.  “Revenue” is the revenue gained in each sub-region.  “Profit / sub 
region” represents the profit gained in each sub-region (excluding warehouse maintaining cost).  
“Total profit” is the overall profit gained from performing parcel delivery services in the city. 
 
The optimal solutions are shown in Table 5.6 for different departure criterions (first 

column).  The second column shows the optimal number of sub-regions.  For example, 

with a departure criterion of one, the optimal number of sub-regions is 18769, which is 

denoted as 137x137 in the table.  In each sub-region, the expected revenue is $0.159838 

per unit time.  The utilization of each vehicle is estimated to be less than 30% and the 

service level is nearly 100%.  With the optimal partitioning, the total profit is $569.47406 

per unit time for the entire service region. 

The overall optimal profit, being $599.08278 per unit time, is achieved with a departure 

criterion of two, when the entire service region is divided into 112x112 sub-regions.  As 

the departure criterion increases, the optimal number of sub-regions decreases, which 

causes an increase of customer demand within each sub-region.  Vehicle utilization is 

increasing, which indicates the vehicle is spending less time idle at the warehouse, even 

though the departure criterion is increasing, due to an increase of customer demands and 
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an increase of the area covered by each vehicle.  The service level sharply drops as 

expected, due to an increase of demand, service area and departure criterion.  The profit 

dramatically decreases also, when the departure criterion is more than two, since the 

penalty for overdue services becomes the main factor in reducing profit.  When the 

departure criterion is greater than four, the total profit is negative, since the profit earned 

in each sub-region is insufficient to pay for the fixed warehouse costs. 

5.3.4. Network Design for Parcel Delivery Services 
In this section, a transportation network is designed for a parcel delivery service.  A 

parcel delivery business is started in a new city.  The size of the city is 400x400, and the 

city is divided into 1600 square postal zones, each with an identical size of 10x10.  Each 

postal zone has to be assigned to a nearby warehouse.  Parcel delivery will be carried out 

by a vehicle belonging to the warehouse.  The rental of each warehouse costs $0.01 per 

unit time.  The vehicle travelling cost is $0.30 per unit time.  The customer demands are 

uniformly distributed in the city with a density of 61/10  per unit area, if a customer is 

charged $30.00 for a delivery.  If the customer demand is not fulfilled within 300 units of 

time, 100% compensation will be provided.  A distribution center is located in the middle 

of the city.  At the end of a service cycle consisting of 1000 units of time, a truck reaches 

a warehouse from the distribution center for replenishment.  The travel time of the truck 

is proportional to the distance between the distribution center and the warehouse.  The 

transportation costs of the truck are $0.20 per unit time.  It is assumed that no customer 

order will be rejected and products will never be out of stock due to the replenishment 

scheme.  The objective is to find the suitable number of warehouses and the assignment 

of postal zones that will maximize total profit.  To simplify the problem, it is assumed 

that the warehouse is always located at the geometric center of the sub-region. 
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All possible assignments of postal zones to warehouses comprise the solution space.  A 

genetic algorithm (GA) is used to search the solution space to find satisfactory solutions 

for the network design problem.  Postal zones are numbered from 1 to 1600 and 

warehouses are numbered from 1 to 100, as the company restricts the number of 

warehouses in the city to a maximum of 100. 

The chromosome includes 1600 genes.  The gene jg i=  in the jth position of the 

chromosome indicates that the postal zone j is assigned to the warehouse i.  Some 

warehouses, not indicated in the chromosome, are not in charge of any postal zones and 

will be removed from the solution.  Solutions will be evaluated by fitness values, which 

are the total profit f  obtained within a service cycle (1000 units of time).   

,3
1 1

30 300 0.4 10
10

v vN N
i

i T i i i
i i

Af f S U D
= =

 = = − − −  
∑ ∑      (5.10) 

In Equation (5.10), vN  is the total number of warehouses operating delivery services.  

The total profit is obtained from the sum of the profit from every sub-region covered by a 

warehouse.  if  denotes as the profit from the sub-region of warehouse i.   

,3

30 300 0.4 10
10

i
i T i i i

Af S U D= − − −        (5.11) 

The sub-region profit has four elements.  The first element is the revenue generated from 

the successful fulfilled demand.  iA  is the sum of postal zones areas covered by the ith 

warehouse.  Thus, the expected quantity of demand within a service cycle in the sub-

region is 310iA .  ,T iS  is the service level representing the percentage of demands that 

are fulfilled within 300 units of time.  The second element indicates the transportation 

costs of vehicle trips within the sub-region.  iU  is the vehicle utilization representing the 
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percentage of time the vehicle travels on the road.  The third element is the transportation 

costs of the truck travelling between the warehouse and the distribution center.  iD  is the 

travel time between the distribution center and the ith warehouse.  The rental cost of a 

warehouse within a service cycle is ten.  iU  and ,T iS  are estimated by the proposed 

Markov model for every region.  
1

400 400
vN

i
i

A
=

= ×∑ , since every postal zone has to be 

assigned to a warehouse. 

The following steps show the scheme of the GA. 

Step 1. INITALIZATION.  Initialize a population P of size 20.  

Step 2. SELECTION.  Select a pair of individuals y , z  from P as parents with regard 

to their fitness value. 

Step 3. CROSSOVER.  Generate a child z′  applying the CROSSOVER operator to 

y and z . 

Step 4. MUTATION1.  Generate a modified child y′  applying the MUTATION1 

operator to y   

Step 5. MUTATION2.  Generate modified children y′′  and z′′  applying the 

MUTATION2 operator to y′  and z′ , respectively, with a 50% chance. 

Step 6. Insert y′′  and z′′  into P and in turn remove the two individuals with the worst 

fitness from P. 

Step 7. Repeat Step 2 to 6 until the TERMINATION criterion is met. 

Step 8.  The satisfactory solution is the solution in the population P with the best 

fitness value. 
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In the INITIALIZATION step, the initial population of P is arbitrarily set.  Postal zones 

belonging to the same warehouse must be clustered with each other by their locations in 

each individual of the initial population.  For example, one of the individuals is composed 

of 25 warehouses equally scattered in the city (Fig. 5.4).  Each warehouse is in charge of 

a sub-region with 8x8 postal zones.  In Fig. 5.4, the number i on the sub-region indicates 

that the ith warehouse is in charge of the postal zones within the sub-region. 
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Fig. 5.4. An example of postal zone clustering 

 
In the SELECTION step, y  is randomly chosen from the population P.  Each individual 

has a fitness value equal to the total profit from (5.10).  The probability that one 

individual is chosen as y  is proportional to its fitness value.  However, z  is chosen from 

the rest of the population with an equal chance. 

The CROSSOVER operator is not easy to realize in this problem, since after 

CROSSOVER, it is usual to generate solutions with postal zones far away from each 

other that belong to the same sub-region.  These assignments of postal zones are 

definitely unsatisfactory solutions and they cause difficulty in estimating the 

transportation costs and service level using the proposed Markov model.  The GA selects 

five warehouses from individual z  together with their postal zones, and replaces these 
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warehouses and postal zones in individual y  as new warehouses and sub-regions.  Fig. 

5.5 shows an example of the CROSSOVER.  Postal zones belonging to the 6th warehouse 

in individual z  is selected to replace the postal zones in y .  In their child z′ , a new 

warehouse 26 is located where the 6th warehouse is located in z , and a new region is 

assigned to warehouse 26 with postal zones belonging to the 6th warehouse in z . 

 
Fig. 5.5. An example of CROSSOVER 

 
The MUTATION1 operator tries to extend the area of a sub-region covered by a selected 

warehouse.  First, a warehouse is randomly selected.  The warehouse with a lower sub-

region profit if  has a higher chance to be selected.  The selected sub-region can be 

extended in a direction: (north, south, west, east, northwest, northeast, southwest or 

southeast), chosen at random with an equal chance.  However, the region at the northwest 
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corner of the city cannot be extended north, west, northwest, northeast or southwest.  The 

postal zones adjacent to the selected sub-region in the selected direction are assigned to 

the selected warehouse.  Fig. 5.6. shows an example of the MUTATION1 operator to 

warehouse 3.  The region belonging to warehouse 3 is extended northeast. 

 
Fig. 5.6. An example of MUTATION1 

 
The MUTATION2 operator tries to reassign a postal zone to another warehouse nearby.  

The selected postal zone must be located at the edge of a sub-region, which means that at 

least one of the postal zones nearby belongs to another warehouse.  Fig. 5.7 is an example 

of MUTATION2.  The number located at the lower right corner of a postal zone indicates 

the number of the postal zone.  Postal zone 93 belonging to warehouse 3 in individual y′  

is chosen for MUTATION2.  There are two postal zones nearby belonging to warehouse 

1 and 2.  Postal zone 93 has an equal chance to be assigned to warehouse 1 or 2 after 

MUTATION2. 

 
Fig. 5.7. An example of MUTATION2 
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Finally, the TERMINATION criterion is defined.  The search terminates after 50 

iterations without an improvement of the population P.  The fitness values of children y′′  

and z′′  are estimated.  If all of them are worse than the value of the third from the bottom 

in P for 50 times in a row, the GA is terminated.  

Initially, the total profit for the postal zone assignment in Fig.5.4 is $188.33.  Actually, 

the initial solution in Fig. 5.4 is a good solution, close to the best solution that is 

eventually found.  After optimization using the GA, the city is still divided into 25 

regions.  The total profit for the best found solution is $233.38.  The region’s profit 

ranges from $-14.46 to $48.59.  The regions with the least profit are located at the four 

corners of the city, while the regions with the most profit are located at the centre of the 

city.  In summary, the GA significantly improves the transportation network of delivery 

services, since the proposed Markov model provides a fast and accurate estimation of 

transportation costs and service levels.   

The solution obtained using GA can be further improved by applying better MUTATION 

and CROSSOVER operators.  Furthermore, the location of the warehouses can be 

optimized further.  They do not necessarily have to be located at the geometric centres of 

the sub-region.  There may be more suitable locations between the geometric centres of 

the sub-region and the distribution centre. 

5.4. Order Acceptance Problem 

5.4.1. Description of the Order Acceptance Problem 
Order acceptance is a tactical managerial activity that deals with accepting and rejecting 

customer orders.  It may also deal with related decisions, such as due time quotations.  

From the perspective of a professional practice, a firm may choose to reject potential 
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orders for market focus, competitive advantage or capacity limitation reasons.  When an 

overabundance of orders is encountered by manufacturing or service companies, such 

that demand exceeds capacity, some difficult choices are brought upon the companies.  

There is an important trade-off between the profit associated with an order and the cost of 

capacity that may be diverted from others.  In addition, late deliveries may result in 

penalties of long-term loss of goodwill and market share.  In a competitive market, the 

importance of on-time delivery may make it cost- and profit-effective to reject some 

orders. 

In the literature, an order in the manufacturing or service industry is usually modelled 

together with revenue and the time that workers need to spend on it.  A decision needs to 

be made on which orders to accept in order to earn the most profit, while the total time 

spent on the accepted orders are within a limit.  In most cases, the revenue and time 

associated with an order are independent of other orders.  However, for transportation 

services, the cost and time spent on each order tightly depend on other orders.  This 

makes the problem even more difficult to analyze.  In the dynamic vehicle routing 

problem with time windows, a time window associated with each customer specifies 

when the transportation service has to be completed by.  The routing strategies try to add 

new demands into the existing schedule (Bent and Van Hentenryck 2004; Coslovich et al. 

2006).  If the service for a new demand exceeds the time window, or adding the new 

demand into the existing schedule will cause other demands to violate their time windows, 

the new demand will be rejected.  This is the usual application of the order acceptance in 

the DVRP.  All papers in this research area focus on the routing strategies instead of 

order acceptance itself. 
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In this section, the order acceptance problem in parcel delivery services will be analyzed 

in another way.  Sometimes, logistics companies or supermarkets guarantee delivery 

within a certain number of days or hours.  For example, DHL charges different delivery 

fees for same day, next day or a week later deliveries.  Carrefour offers same day delivery 

between 4:00pm and 7:00pm if orders are made before 12:00pm, and same day delivery 

between 7:00pm and 9:00pm if orders are made between 12:00pm and 4:00pm.  Pizza 

Hut can estimate the delivery time according to its workload.  Customers usually have 

expectations on the waiting time.  If the estimated delivery time is much longer than their 

expectations, they will refuse to make orders.  Therefore, deciding on a guaranteed 

delivery time is a challenging task for service providers.  A large estimated delivery time 

may cause the company to lose customers, while a short delivery time may increase the 

burden on the delivery service and harm to the service level.  By determining a suitable 

delivery time, service providers can focus on the group of customers who may be 

satisfied with the service and are willing to pay for it.  

The problem discussed in this section is about a new parcel delivery business in a city.  

The service provider plans to assign a vehicle to deliver products within a 100x100 

square region and is going to charge $30.00 for each delivery.  The provider also 

announces that the service can be completed within an estimated delivery time DT .  The 

vehicle travelling cost is $0.30 per unit time.  The customer arrival rate to check for the 

information on the delivery service is Λ , and the acceptable waiting time for each 

customer is assumed to follow a uniform distribution (100,600)U  with a minimum value 

of 100 units of time and a maximum value of 600 units of time.  Customers with an 

acceptable waiting time longer than DT  are willing to make a delivery order.  If the order 
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is not fulfilled within the estimated delivery time, $30.00 in compensation will be 

provided.  The service provider cannot reject any order made by a customer.  The only 

thing they can do is to adjust the estimated delivery time, and let customers make their 

choices.  Therefore, the objective is to find the estimated delivery time DT  that will 

maximize total profit.   

Since the acceptable waiting time follows a uniform distribution (100,600)U , the 

percentage of customers who will accept the estimated delivery time is (600 ) 500DT− , and 

the actual demand rate for the delivery service is as follows. 

(600 )
500

DTλ − Λ
=  

The proposed Markov model in chapter 3 is used to estimate the transportation costs and 

the service level for each value of DT .  The profit can be calculated as follows. 

( )30(600 ) (600 )( ) 0.3 30 1
500 500

D D
D T

T Tf T U S− Λ − Λ
= − − −     (5.12) 

In the case of 1/ 40Λ = , the profit curve in terms of the estimated delivery time is 

illustrated in Fig. 5.8.  The revenue, travelling cost and the overdue penalty functions are 

monotonically decreasing.  The profit function has only one peak above zero, when DT  is 

near 355 units of time.  The golden section search mentioned in section 5.2.3 can be 

applied to find the best-estimated delivery time.  The decision variable must be replaced 

with the estimated delivery time DT .  Furthermore, the search is limited to 200DT ≥ ; 

otherwise, the demand will exceed what one vehicle can handle.  The golden section 

search is initiated with 300DT = . 
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Fig. 5.8. Profit function in terms of the estimated delivery time ( 1 / 40Λ = ) 

5.4.2. Optimization Results and Discussions 
In the first set of optimization experiments, the golden section search is applied to find 

the best solution for problems with different customer arrival rates 

{ }1 20,1 40,1 60,1 80Λ = .  The results are shown in Table 5.7.  

The first column in Table 5.7 indicates the arrival rates of potential customers looking for 

delivery services.  The second column lists the optimal solutions for the estimated 

delivery time, which can be provided as a quotation to potential customers.  For example, 

the optimal estimated delivery time for the case of a 1/20 customer arrival rate is 462.023 

units of time.  After reviewing a quotation of the estimated delivery time, a number of 

potential customers decide to make orders.  Fulfilling these orders provides revenue of 

$0.41393 per unit time.  By setting the estimated delivery time at 462.023, the service 
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provider can focus on a group of potential customers and achieve a service level above 

95% with vehicle utilization above 88.5%.  Finally, the service provider can earn a 

maximum profit of $0.127914 per unit time.   

Table 5.7. 
Optimal solution of estimated delivery time ( 1DN = ) 

Λ  DT  Revenue Utilization Service 
Level Profit CPU 

Time 

1/20 462.023 0.413930 0.885053 0.950348 0.127914 454.78s 

1/40 354.587 0.368119 0.820454 0.952110 0.104416 288.22s 

1/60 284.112 0.315888 0.732784 0.958885 0.083105 178.95s 

1/80 242.562 0.268079 0.641131 0.966505 0.066784 125.70s 

“Λ ” represents the customer arrival rate to check for information on the delivery service.  
“ DT ” represents the estimated delivery time provided by the service provider. 
 

As the customer arrival rate decreases, less potential customers require delivery services.  

Thus, the estimated delivery time is set to a lower value to attract more customers.  The 

revenue is still decreasing, the vehicle is idle longer at the warehouse, the service level is 

improving, and the final profit is decreasing.  It can be noted that the vehicle is capable of 

managing all delivery requests from potential customers in the case of 1/60 and 1/80 

customer arrival rates.  However, the optimal solution shows that some customers with 

high expectations still need to be removed from the scope of the services.  The customers 

with high expectations could be served by special express delivery services with 

additional charges. 

In the second set of optimization experiments, the best solutions are found for problems 

with various vehicle departure criterions.  The potential customer arrival rate is set at 

1/40 in the experiments.  The vehicle can start a new trip with at least one to six pending 

customer demands.  The results are shown in Table 5.8. 
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Table 5.8. 
Optimal solution of estimated delivery time ( 1/ 40Λ = ) 

DN  DT  Revenue Utilization Service 
Level Profit CPU 

Time 

1 354.587 0.368119 0.820454 0.952110 0.104416 288.22s 

2 362.742 0.355887 0.736018 0.947658 0.116511 305.36s 

3 371.278 0.343084 0.680561 0.909460 0.107900 337.66s 

4 383.180 0.325230 0.628573 0.825428 0.079925 389.69s 

5 400.479 0.299282 0.568210 0.695868 0.037829 429.09s 

6 427.944 0.258084 0.483638 0.539205 -0.005908 474.16s 

“ DN ” represents the minimum number of customers included in a vehicle trip.  “ DT ” 

represents the estimated delivery time provided by the service provider. 
 

Different departure criterion is listed in the first column in Table 5.8.  The second column 

shows the optimal solutions for the estimated delivery time.  For example, the optimal 

estimated delivery time for the case with a departure criterion of three is 371.278 units of 

time.  With this quotation for the delivery time, the corresponding expected revenue is 

$0.343084 per unit time, and the final profit is $0.1079 per unit time with vehicle 

utilization over 68% and a service level over 90%.  

The overall optimal profit, which is $0.116511 per unit time, is achieved in the case with 

a departure criterion of two, when the estimated delivery time is set to 362.742 units of 

time.  As the departure criterion increases, the optimal estimated delivery time increases, 

which removes more customers from the scope of the services.  Thus, the revenue 

decreases further.  The vehicle utilization also decreases, since there are fewer orders for 

the delivery service and the vehicle trip becomes less efficient with fewer customers.  

The service level sharply decreases, as expected, since the vehicle spends more time idle 

at the warehouse waiting for enough customers to start a delivery trip.  The profit 

increases at first, as there is efficiency in the vehicle trip is achieved.  It decreases when 
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the departure criterion is more than two, because the penalty for overdue services 

becomes the main factor in reducing profit.  When the departure criterion is greater than 

six, the total profit becomes negative, since it is difficult to keep a high service level and 

keep customer satisfied in this situation. 

In summary, the proposed Markov model provides quick and accurate evaluations for 

each condition proposed by the order acceptance problem.  The golden section search 

algorithm properly analyzes the conditions and evaluations, and provides the optimal 

solution.  Based on the method proposed for the order acceptance problem, the provider 

of parcel delivery services can easily determine the estimated delivery time and improve 

profit. 
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6. Conclusions and Future Research 

6.1. Conclusions 
In this thesis, parcel transportation services were investigated.  In such services, small 

packages are transported from or to customers.  The service providers are required to 

coordinate the transportation effectively and efficiently in order to meet the transportation 

needs of customers Especially in the e-commerce business, quality and reliability of 

parcel transportation services is of utmost importance as the product has to be delivered 

on time and in perfect shape at the customer location. A reliable parcel transportation 

service is, in fact, the backbone of an Ecommerce business. However, due to the 

complicity of the routes and schedules of vehicles in parcel transportation services, it is 

difficult to evaluate the cost, the service level and other performance measurements. 

In the literature, a few routing strategies have been published to find out better schedules 

for specific parcel delivery cases.  However, seldom researchers devoted to the evaluation 

of the performance of the service.  An efficient and systematical method to estimate 

various performance measures, such as transportation cost and service levels, for the 

service is still lacking.   

This thesis provides a systematical method to evaluate the parcel delivery service.  The 

stochastic model derived is an efficient tool to estimate transportation cost and service 

levels for the service in various situations.  Firstly, although this model cannot provide a 

detail schedule of vehicle traveling around customers for a specific case, it can evaluate 

the impact to cost and service levels when different routing strategies are applied.  

Secondly, this model can be used to evaluate whether a logistics system is optimized.  

Potential improvements for the logistics system could be found based on the evaluation.  
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Corresponding management decision about improvements can then be made.  Thirdly, 

the model may help to answer the following questions which may be interesting to 

logistics managers.  Although literature few other groups have tried to answer these 

questions in different scenarios, seldom of them is solving the problems under the e-

business and dynamic parcel delivery circumstance, which involves dynamic demand and 

vehicle routing.  

1. What kind of promise about the delivery time can be made to customers based 

on a demand distribution, which may not decrease the intension of buying the 

service and make a profit? 

2. What kind of pricing rule can be used to maximize the profit? 

3. How to choose a suitable location for depots and how to assign customers to 

depots to minimize delivery cost and maximize service level? 

4. Selection of vehicle types, the number of vehicles rent for the service, 

evaluation of the performance of the third party carrier in the last mile 

delivery, and differentiation of demands for prime services.    

The detail contribution in each chapter is elaborated as follows.  In chapter 3, a novel 

Markov model was proposed to estimate transportation costs and service levels.  Based 

on the estimation of means and variances of vehicle travel time proposed by Christofides 

and Eilon (1969) and Larson and Odoni (1981), a hypo-exponentially distributed vehicle 

travel time was applied to the Markov model.  The number of customers in the system 

and the status of the vehicle were defined as the system state.  The steady state process of 

the Markov model could be applied to analyze vehicle utilization, which could then be 

used to calculate transportation costs.  A customer waiting process of the Markov model 
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tracking the entire process of a specific customer in the system was used to measure the 

customer waiting time and to calculate the service levels for parcel transportation 

services.  Experiments have demonstrated that the proposed Markov model was able to 

provide accurate estimations of various performance measures for parcel transportation 

services with less than 10% errors compared to results from discrete event simulation, 

and it is 100 times faster.  Especially in the cases that vehicle utilization is between 50% 

and 90%, the errors are only about 5%. 

The derived model is flexible and is capable to solve variety of extension of the parcel 

transportation service.  Four additional constraints and issues that could be encountered 

in parcel transportation services were discussed in chapter 4.   

• The capacity constraint of the vehicle was analyzed.  A package ordered by a 

customer was assumed to only occupy one unit of capacity in the vehicle.  Thus, 

the capacity constraint was converted to the limit of customers visited by the 

vehicle on a single trip.  A modified version of the Markov model was used to 

incorporate the characteristics of this specific constraint.  The modified Markov 

model was able to provide reliable estimations of the performance measures for 

parcel delivery services with capacity constraints and its outputs were consistent 

with the experimental results with differences less than 5%.  Furthermore, the 

versatility of the proposed approach had been demonstrated in the selection of 

vehicles with various capacities and petrol consumptions. 

• A multiple vehicle issue was also analyzed.  To simplify the problem, the vehicles 

were assumed to be identical.  The number of customers in the system and the 

status of one of the vehicles were defined as the system state.  It was further 
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assumed that the status of the observed vehicle was independent of the status of 

the other vehicles.  The modified Markov model in this section is capable to 

estimate performance measures with acceptable accuracy.  The errors of average 

customer waiting time are less than 20%.  These errors may mainly come from 

the assumptions which ignore the dependency between states of vehicles.  

Furthermore, the model could be applied in the decision-making of the number of 

vehicles operating in a service region. 

• Dynamic delivery services and dynamic pickup services were compared against 

each other.  In dynamic delivery services, the vehicle trip starts off from a 

warehouse, travels to a number of customers and ends up at some warehouse.  On 

the other hand, the warehouse is ignored in dynamic pickup services, and the 

vehicle is always travelling from one customer to another.  This is the main 

difference between the two kinds of transportation services.  Different Markov 

models were developed for these two kinds of services, respectively.  

Experiments have demonstrated that the Markov model for dynamic pickup 

services has less than 10% errors compared to the discrete event simulations, 

which is less accurate than the model for dynamic delivery services.  

• The routing strategies in parcel transportation services were also discussed.  Exact 

algorithms and heuristics tend to generate more efficient vehicle routing 

schedules.  Two routing algorithms were investigated: a Branch-and-Bound 

algorithm and a best-insertion algorithm.  A hyper-hypo-exponential distribution 

was used to approximate the vehicle travel time on the route generated by the two 

algorithms.  A modified Markov model was applied to estimate the performance 



 
 

169 

measures.  Experiment show that the hyper-hypo-exponential distribution actually 

does not well approximate the distribution of vehicle travel time.  However, the 

results generated by the Markov model do not significantly rely on the accuracy 

of the estimation of the vehicle travel time.  The final results of transportation cost 

and customer waiting time have less than 10% errors compared to that from 

discrete event simulations, which demonstrated that the modified Markov model 

was able to generate fast and accurate estimations for parcel transportation 

services with various routing strategies.  Furthermore, the modified model derived 

in this section can be used to evaluate whether a routing strategy is better than the 

other, and whether a strategy is better in reducing cost or improving service 

levels. 

In the real-life application, managers are able to evaluate the performance of their 

business efficiently with the proposed Markov model, and find out potential 

improvements to increase the profit based on the estimation of performance measures.  

Three management decisions which can be made with the assistance of the proposed 

Markov model were discussed in chapter 5.  

• A pricing problem.  The relationship between the service price and customer 

demands was assumed to satisfy the discrete choice model.  If a certain price was 

provided, the proposed Markov model was able to provide estimations of 

transportation costs, service levels and profit.  A golden section search algorithm 

and a conjugate gradient search were applied to find the best price in order to 

maximize total profit.  Experiments have demonstrated that the proposed model 

for this pricing problem has less than 5% errors compared to discrete event 
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simulations, and it is 20 times faster.  Based on the proposed model, it is able to 

find optimal solutions in minutes for the fixed pricing problem, and to find 

satisfactory solutions in hours for the dynamic pricing problem.  The best price 

decided by the proposed model may double the profits compared to that from an 

algorithm in order to optimize sales.  A group of optimized results showed that 

the Markov model was able to assist service providers in deciding the best price 

for parcel delivery services and in improving their business. 

• The network design problem.  The objective was to design a distribution network 

within a city.  The service provider had to decide the number of warehouses and 

the warehouse locations.  In addition, every postal zone in the city had to be 

assigned to a warehouse.  A golden section search was applied to determine the 

best size for a service region and the best way to partition the entire city in 

minutes.  A genetic algorithm was used to find a satisfactory assignment of postal 

zones to warehouses.  The proposed method successfully generated good 

solutions that significantly improved profit. 

An order acceptance problem.  In this scenario, an estimated delivery time is provided to 

potential customers before they book parcel transportation services.  If the estimated 

delivery time is beyond the acceptable customer waiting time, the service provider will 

lose the potential order.  A golden section search based on the performance measures 

estimated by the Markov model takes several minutes to provide optimal solutions of the 

estimated delivery time in order to maximize profit. 

In summary, the proposed Markov model was able to analyze parcel transportation 

services in a systematic manner and was able to generate fast and accurate estimations of 
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performance measures.  It is a flexible model and can be modified to adapt to new 

constraints and circumstances.  Furthermore, it is a particularly useful tool that can assist 

service providers in making decisions on various real-life situations. 

6.2. Future Research Perspectives 
In this thesis, the Markov model was applied to address dynamic parcel transportation 

services to potentially improve the efficiency in several decision-making issues.  The 

proposed Markov models provided the mathematical tools to estimate performance 

measures and resolved realistic problems.  In section 6.2.1, further improvement on the 

accuracy of the Markov models is suggested using several potential methodologies.  In 

addition, other research problems relevant to parcel transportation services remain 

unexplored.  From sections 6.2.2 to 6.2.4, several promising problems are highlighted for 

further research. 

6.2.1. Further Improvement of the Markov Models 
• When the demand rate is relatively large in heavy traffic conditions, the accuracy 

of the estimation of vehicle utilization and customer waiting time by the proposed 

Markov model is slightly lower.  This is because the number of customers queued 

for services tends to be larger in heavy traffic conditions, and there is a higher 

chance the default queue length in the Markov model could be exceeded.  

Extending the queue length will definitely improve the results.  However, it will 

significantly expand the state space and lead to a heavy computational burden.  

Other methods or models need to be considered to reduce the state space and 

increase the efficiency of the solution.  It might be worth trying the continuous 

state Markov process and the diffusion approximation model, which were applied 

in the analysis of the G/G/m queuing system (Newell, 1973; Kleinrock, 1976; 
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Halachmi and Franta, 1978; Sunaga et al. 1978; and Kimura, 1983). 

• In section 5.4, an order acceptance problem was analyzed for parcel delivery 

services.  An estimation of delivery time is provided to potential customers.  They 

evaluate whether the estimated delivery time is within their expectation and 

decide whether to make orders.  This estimated delivery time in section 5.4 was 

applied to all situations, regardless of the vehicle status and the number of 

customers in the system.  However, it would be wise to provide a different 

estimated delivery time based on the status of the vehicle and the queue in order 

to maximize overall profit.  For example, when there are fewer customers in the 

system, the estimated delivery time could be shortened to attract more customers. 

It is assumed that the estimated delivery time , ,D w kT  depends on the number of 

customers in the waiting list w and the number of delivery tasks left in the current 

vehicle trip k.  If it is assumed that the acceptable customer waiting time follows 

a uniform distribution (100,600)U , the demand rate is as follows. 

, ,
,

(600 )
500

D w k
w k

T
λ

− Λ
=         (6.1) 

According to Equation (6.1), the demand rate varies in different situations.  

Providing the demand rate for every situation, the transportation cost, service 

level and total profit can be calculated by the Markov model.  An optimization 

algorithm can be applied to search for the optimal solution in the order 

acceptance problem. 
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6.2.2. Parcel Delivery Services with Finite Products Stored in the Warehouse 
In this thesis, the products stored in the warehouse were assumed to be infinite.  

However, this assumption may not always be satisfied in practice.  Since supply delay 

and shortage of products may significantly increase the delivery time and decrease the 

service level, the proposed Markov model in this thesis will need to be modified. 

If it can be assumed that products become out of stock with equal probability at any time, 

the model can be simply modified by reducing the transition rate out of the state in which 

the vehicle is idle at the warehouse.  However, the inventory in the warehouse is usually 

monitored using the (s,Q) policy in practice.  Under this policy, if the inventory is equal 

to or less than a replenishment point s, the supplier will subsequently deliver a quantity of 

Q products to the warehouse.  The integration of the product supply to the warehouse and 

delivery to customers can be modeled as a queuing network.  The decomposition method 

proposed by Chen (2010) incorporated with the proposed Markov model in this thesis 

may provide estimations of performance measures.  Based on the performance measures, 

optimization algorithms may be used to determine an appropriate replenishment point 

and quantity. 

6.2.3. Dynamic Traffic Conditions 
In this thesis, dynamic customer demands were the main consideration in the study of 

parcel transportation services, and the analysis of dynamic traffic conditions was lacking.  

However, travel time in urban areas fluctuates due to a variety of factors, such as 

accidents, traffic conditions and weather conditions (Haghani and Jung, 2005).  Ignoring 

these travel time variations can result in inaccurate estimations of transportation costs, 

customer waiting times and service levels.  Due to dynamic traffic conditions, the time 

that the vehicle spends on the road becomes more unpredictable.  Furthermore, the 
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vehicle may occasionally break down, and the rest of the transportation tasks have to be 

postponed until the vehicle is fixed.  In these circumstances, it is more difficult to 

estimate performance measures for parcel transportation services. 

In this thesis, the travel distances between customers and the warehouse have been 

modelled as a random variable, due to uncertainty regarding customers’ locations.  In 

dynamic traffic conditions, the velocity of the vehicle can be modelled as another random 

variable.  The vehicle travel time is calculated as the ratio between the travel distance and 

the vehicle speed.  The mean and variance of the vehicle travel time can be calculated 

accordingly based on the distributions of the travel distance and the vehicle speed.  Based 

on the means and variances of travel time, the proposed Markov model can be used to 

estimate performance measures in dynamic traffic conditions. 

When the occasional event of a vehicle breaking down is considered, it has to be assumed 

that the vehicle breaks down according to a Poisson process and the repair time follows 

an exponential distribution.  By adding a Poisson process for the vehicle breaking down 

and an exponential distribution for the repair time, the situation of vehicle breaking down 

can be monitored.  The system state needs one more variable to indicate whether the 

vehicle is “working” or “broken”.  The transition rate between a “working” state and a 

“broken” state is the vehicle breakdown rate and repair rate.  Further modified Markov 

models can be built to estimate performance measures in this case. 

6.2.4. Dynamic Dial-A-Ride Systems 
In dial-a-ride transportation systems, goods must be transported from an origin to a 

destination.  In this problem, the vehicle has to visit two locations for a request.  Taxi and 

home moving services are two typical examples of dial-a-ride transportation systems.  A 

number of North American and European countries also provide public dial-a-ride 
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transportation services for elderly and handicapped persons.  Customers normally call in 

to book for services, and vehicle scheduling and routing must be generated to fulfil 

demands.  As shown in Fig. 6.1, after receiving an assigned task, the vehicle follows the 

routing instruction to pick up the required goods from the origin and bring them to the 

destination.  After that, the vehicle will relocate its position, preparing for the next 

request if it does not have any further assignments.   

 

Fig. 6.1. A vehicle performing dial-a-ride transportation services 
 

A number of vehicle routing and demand assignment strategies have been proposed in the 

literature to minimize transportation costs (Attanasio et al. 2004) and travel distance 

when vehicles are empty (Teodorovic and Radivojevic, 2000).  However, no 

mathematical model has been proposed to estimate various performance measures for 

dial-a-ride services.   
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The proposed Markov model in this thesis can be modified to evaluate dial-a-ride 

transportation systems.  One more variable can be used to indicate whether the vehicle is 

heading to an origin or a destination.  In order to fulfil each dial-a-ride service request, 

the vehicle has to travel through two paths.  One path is towards the origin followed by 

the other path towards the destination.  Performance measures can be estimated using the 

similar Markov process mentioned in Chapter 3.  Based on the estimation of various 

performance measures, the model can be used to analyze the issue of vehicle relocation 

after fulfilling a customer’s demand and to assist service providers in making some 

management decisions, such as the service price and the number of vehicles in a service 

region.   
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Appendix A. Construction of the Intensity Matrix 

The balance equations can be summarized as the stationary Equation (3.15).  In the 

stationary equation, the intensity matrix indicates the transition rate between all system 

states.  The elements in the intensity matrix are listed in the following sections for 

different cases discussed in chapters 3 and 4.   

A.1. Intensity Matrix in the Analysis of the Vehicle Departure Issue 
The construction of the intensity matrix for the customer waiting process in the analysis 

of the vehicle departure issue is summarized as follows. 

The transition rate from (w,k,I,b) to (w,k,I-1,b) is 1Iµ − , when the vehicle is travelling 

between customers.     

1st trip:  ( , , , ),( , , 1, ) 1w k I b w k I b Iq µ− −′ = ,  1, 2, , ; 1, 2, ; 1, 2, ; 1, 2, ,D Dw N k I b N= = = =     

2nd trip:  (0, , ,0),(0, , 1,0) 1k I k I Iq µ− −′ = ,  1, 2, ; 1, 2,k I= =   

When the vehicle is travelling between the warehouse and a customer on the first trip, the 

transition rate is 
1 2Iµ −′ .  It is 

1Iµ −′  for the second trip.   

( ,0, , ),( ,0, 1, ) 1 2w I b w I b Iq µ− −′ ′= ,  1, 2, ; 2, 3, ; 1, 2 , ,w I b w= = =    

(0,0, ,0),(0,0, 1,0) 1I I Iq µ− −′ ′= ,  1, 2,I =   

When there are at least ND customers in the waiting list, the vehicle can start the second 

trip.  The transition rate is 
0 2µ′ . 

( ,0,1, ),(0, ,0,0) 0 2
DN b bq µ′ ′= ,  1, 2, , Db N=   

( ,0,1, ),(0, ,0,0) 0 2w w wq µ′ ′= ,  1, 2,D Dw N N= + +   
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If there are not enough customers in the waiting list to trigger the next trip, the vehicle 

has to stay at the warehouse. 

( ,0,1, ),( ,0,0, ) 0 2w b w bq µ′ ′= ,  1, 2, , 1; 1, 2, ,Dw N b w= − =   

The system transitions from state (w,k,0,b) to (w,k-1,I1,b) with a transition rate 
1I

µ , when 

the vehicle finishes the service for a customer and sets out to the next destination. 

1 1( , ,0, ),( , 1, , )w k b w k I b Iq µ−′ = ,  0,1, , ; 2, 3, ; 0,1, ,Dw N k b w= = =    

The system transitions from state (w,1,0,b) to (w,0,I0,b) with a transition rate 
0

2Iµ′ , 

when the vehicle finishes the service for the last customer on the first trip and starts 

heading to the warehouse. 

0 0( ,1,0, ),( ,0, , ) 2w b w I b Iq µ′ ′= ,  1, 2, , ; 1, 2, ,Dw N b w= =   

The transition rate is 
0Iµ′ , when the vehicle starts the last leg of the second trip. 

0 0(0,1,0,0),(0,0, ,0)I Iq µ′ ′=  

When the vehicle finishes the service for the specific customer, the process terminates at 

state (0,0,0). 

(0,0,1,0),(0,0,0,0) 0q µ′ ′=  

If 0 Dw N< < , the system still counts for new demands until Dw N= . 

( , , , ),( 1, , , )w k I b w k I bq λ+′ = ,  1, 2, , 1; 0,1, ; 0,1, ; 1, 2, ,Dw N k I b w= − = = =     

The diagonal elements of the intensity matrix are calculated as follows. 

( , , , ),( , , , ) 1w k I b w k I b Iq µ λ−′ = − − ,  1, 2, 1; 1, 2, ; 1, 2, ; 1, 2, 1D Dw N k I b N= − = = = −     

( , , , ),( , , , ) 1D DN k I b N k I b Iq µ −′ = − ,  1, 2, ; 1, 2 , ; 1, 2 , 1Dk I b N= = = −    

(0, , ,0),(0, , ,0) 1k I k I Iq µ −′ = − ,  1, 2, ; 1, 2,k I= =   
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1( , ,0, ),( , ,0, )w k b w k b Iq µ λ′ = − − ,  1, 2, 1; 2, 3, ; 1, 2, 1D Dw N k b N= − = = −    

1( , ,0, ),( , ,0, )D DN k b N k b Iq µ′ = − ,  2, 3, ; 1, 2, 1Dk b N= = −   

0( ,1,0, ),( ,1,0, ) 2w b w b Iq λ µ′ ′= − − ,  1, 2, 1; 1, 2, 1D Dw N b N= − = −   

0( ,1,0, ),( ,1,0, ) 2
D DN b N b Iq µ′ ′= − ,  1, 2, 1Db N= −  

1(0, ,0,0),(0, ,0,0)k k Iq µ′ = − ,  2, 3,k =   

0(0,1,0,0),(0,1,0,0) Iq µ′ ′= −  

( ,0, , ),( ,0, , ) 1 2w I b w I b Iq λ µ −′ ′= − − ,  1, 2, 1; 1, 2, ; 1, 2, ,Dw N I b w= − = =    

( ,0, , ),( ,0, , ) 1 2
D DN I b N I b Iq µ −′ ′= − ,  1, 2, ; 1, 2, , DI b N= =   

( ,0, , ),( ,0, , ) 1 2w I w w I w Iq µ −′ ′= − ,  1, 2, ; 1, 2,D Dw N N I= + + =   

(0,0, ,0),(0,0, ,0) 1I I Iq µ −′ ′= − ,  1, 2 ,I =   

(0,0,0,0),(0,0,0,0) 0q′ =  

A.2. Intensity Matrix in the Analysis of the Vehicle Capacity Issue 
In the analysis of the vehicle capacity issue, the construction of the intensity matrix for 

the customer waiting process is summarized as follows. 

The transition rate from (w,k,I,b) to (w,k,I-1,b) is 1Iµ − , when the vehicle is travelling 

between customers.     

( , , , ),( , , 1, ) 1w k I b w k I b Iq µ− −′ = ,  1, 2, ; 1, 2, ; 1, 2, ; 1, 2, ,w k I b C= = = =     

(0, , ,0),(0, , 1,0) 1k I k I Iq µ− −′ = ,  1, 2, ; 1, 2,k I= =   

When the vehicle is travelling between the warehouse and a customer on the trip for the 

specific customer, the flow rate is 
1Iµ −′ .  However, it is 

1 2Iµ −′  for previous trips.   
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(0,0, ,0),(0,0, 1,0) 1I I Iq µ− −′ ′= ,  1, 2,I =   

( ,0, , ),( ,0, 1, ) 1 2w I b w I b Iq µ− −′ ′= ,  1, 2, ; 2,3, ; 1, 2, ,w I b C= = =    

When there are more than C customers in the waiting list at the time the vehicle starts a 

new trip, the trip for the specific customer has not been scheduled yet. 

( ,0,1, ),( , ,0, ) 0 2w b w C C bq µ−′ ′= ,  1, 2, ; 1, 2, ,w C C b C= + + =   

When there are DN w C≤ ≤  customers in the waiting list, the vehicle starts a trip for the 

specific customer.  The flow rate is 0 2µ′ . 

( ,0,1, ),(0, ,0,0) 0 2
DN b bq µ′ ′= ,  1, 2, , Db N=   

( ,0,1, ),(0, ,0,0) 0 2w w wq µ′ ′= ,  1, 2, ,D Dw N N C= + +   

If there are not enough customers in the waiting list to trigger the trip for the specific 

customer, the vehicle has to stay at the warehouse. 

( ,0,1, ),( ,0,0, ) 0 2w b w bq µ′ ′= ,  1, 2, , 1; 1, 2, ,Dw N b C= − =   

The system transitions from state (w,k,0,b) to (w,k-1,I1,b) with a flow rate 
1I

µ , when the 

vehicle finishes the service for a customer and sets out to the next destination. 

1 1( , ,0, ),( , 1, , )w k b w k I b Iq µ−′ = ,  0,1, , ; 2, 3, ; 0,1, ,Dw N k b C= = =    

The system transitions from state (w,1,0,b) to (w,0,I0,b) with a flow rate 
0

2Iµ′ , when the 

vehicle leaves the last customer on the current trip and starts heading to the warehouse. 

0 0( ,1,0, ),( ,0, , ) 2w b w I b Iq µ′ ′= ,  1, 2, , ; 1, 2, ,Dw N b C= =   

The flow rate is 
0Iµ′ , when the vehicle is on the last leg of the trip between the warehouse 

and a customer. 

0 0(0,1,0,0),(0,0, ,0)I Iq µ′ ′=  
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When the vehicle finishes the service on the last trip, the process terminates at state 

(0,0,0). 

(0,0,1,0),(0,0,0,0) 0q µ′ ′=  

If the remainder of w-1 divided by C is less than ND-1, the system will continue counting 

new demands until w reaches the nearest ND+Cj. 

( , , , ),( 1, , , )w k I b w k I bq λ+′ = ,  1, 2, , 1; 1, 2, , 1; , , 0,1,D Dw C j C j C j N b N k I j= + + + − = − =    

The diagonal elements of the intensity matrix are calculated as follows. 

( , , , ),( , , , ) ( , , , ),
( , , , )

w k I b w k I b w k I b v
v w k I b

q q
≠

′ ′= − ∑ , ( , , , )w k I b∀  

A.3. Intensity Matrix in the Analysis of Routing Strategies 
A.3.1. Intensity Matrix for the Steady State Process 

At any moment, the state may transition from (w,I) to (w,I-1) with a flow rate 1Iµ − , when 

the vehicle travels along the road. 

( , ), ( , 1 ) 1w I w I Iq µ− −= ,  0 ,1, ; 1, 2, ,w I n= =   

Due to the redundant state (w,0), the state may transition directly from (w,1) to (0,I) with 

a flow rate 0 ,w Ipµ , when the vehicle returns to the warehouse and starts the next trip. 

( ,1), ( 0 , ) 0 ,w I w Iq pµ= ,  1, 2,w =   

The system stays in the state (0,0), if there is no customer waiting for the service. 

( 0 ,1 ), ( 0 ,0 ) 0q µ=  

When a new customer appears, the number of customers in the system increases by one. 

( , ),( 1, )w I w Iq λ+ = ,  0,1, ; 0,1,w I= =   except 0w I= =  

If a new customer appears when the vehicle is idle, the vehicle will immediately set out 

to the location of this new customer.  The state transitions from (0,0) to (0,I) with a flow 
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rate 1,Ipλ . 

( 0 ,0 ), ( 0 , ) 1,I Iq pλ= ,  1, 2, ,I n=   

The diagonal elements of the intensity matrix are calculated as follows. 

( , ),( , ) ( , ),
( , )

w I w I w I v
v w I

q q
≠

= − ∑ ,  ( , )w I∀  

A.3.2. Intensity Matrix for the Customer Waiting Process 

The transition rate for the vehicle travelling along the road is Iµ  on the first trip, ,w Iµ  on 

the second trip between customers, and ,w Iµ′  on the second trip between the warehouse 

and customers. 

( , 1, 1), ( , 1, )w I w I Iq µ− + −′ = ,  1, 2, ; 1, 2, ,w I n= =   

( , , 1),( , , ) ,w k I w k I w Iq µ+′ = ,  
1,1, 2 , ; 1, 2 , , ; 0 ,1, , 1ww k w I I= = = −    

( ,0 , 1), ( ,0 , ) ,w I w I w Iq µ+′ ′= ,  
0 ,1, 2 , ; 1, 2 , 1ww I I= = −   

The specific customer can be scheduled on any leg of the second trip with an equal 

chance. 

( , 1, 1), ( , ,0 ) 0w w kq wµ−′ = ,  1, 2, ; 1, 2 , ,w k w= =   

On the second trip, the system transitions from state (w,k,0) to (w,k-1,I1,w) with a flow 

rate 
1,, ww Iµ , when the vehicle finishes the service of the current customer and sets out to 

the next destination. 

1, 1,( , ,0),( , 1, ) ,w ww k w k I w Iq µ−′ = ,  1, 2, ; 2, 3, ,w k w= =   

The system transitions from state (w,1,0) to (w,0,I0,w) with a flow rate 
0,, ww Iµ′  

0, 0,( ,1,0),( ,0, ) ,w ww w I w Iq µ′ ′= ,  1, 2,w =   
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When the vehicle finishes the service for the specific customer, the process terminates at 

state (0,0,0). 

( ,0 ,1),( 0 ,0 ,0 ) ,0w wq µ′ ′= ,  1, 2,w =   

The diagonal elements of the intensity matrix are calculated as follows. 

( , , ),( , , ) ( , , ),
( , , )

w k I w k I w k I v
v w k I

q q
≠

′ = − ∑ ,  ( , , )w k I∀  

 


