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SUMMARY 

 Warfarin pharmacogenomic research has burgeoned considerably over the last 

one and a half decades. Hope (and hype) was initially high for warfarin 

pharmacogenomics to fulfill the promise of personalized medicine. Even though 

genetic association studies in various populations have firmly established the effects 

CYP2C9 and VKORC1 on warfarin dose variability, the medical community is still 

tentative on the adoption of warfarin pharmacogenetic testing (WPGT) in clinical 

practice due to its unclear clinical utility. While the results from ongoing clinical trials 

are being eagerly awaited, research in other aspects continues to pave the way. In this 

thesis, various aspects along the road from marker discovery to clinical 

implementation of warfarin pharmacogenomics, from scientific to economic, were 

explored in the Singaporean context. Firstly, selected genetic variants in CYP4F2, 

GGCX and EPHX1 were investigated in the hope of finding markers that may further 

explain warfarin dose variability in our multiethnic Singaporean population. Of these, 

only CYP4F2 rs2108622 (V433M) was significantly associated with warfarin 

maintenance dose (WMD), explaining an additional 2.8% of warfarin dose variability. 

Next, the value of genetic factors was evaluated from different angles to ascertain the 

potential of WPGT. The analysis showed that the currently known genetic factors, 

despite being highly correlated with ethnicity, provided additional predictive 

information towards WMD, demonstrating that ethnicity is not a sufficient surrogate 

for genetic information. Assessment of the population impact of WPGT using the 

population attributable fraction also found that Whites are likely to benefit from 

genotyping while Blacks, Japanese and Chinese may not. These findings highlight the 

need to study the benefits of WPGT in different races more carefully. Lastly, 

Singaporean Chinese were surveyed for their attitudes, preferences and willingness-
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to-pay (WTP) for WPGT, which would be relevant in the implementation phase. The 

findings suggest that patient acceptance is not likely to be a major barrier, but possible 

social, ethical and legal issues should be addressed. With a WTP between S$160 and 

S$730, WPGT is also likely to be economically sustainable. Together, the findings 

herein help address some of the issues in the translation of warfarin 

pharmacogenomics, with particular relevance to the Singaporean population. 
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CHAPTER 1: INTRODUCTION 

1.1 Warfarin and Warfarin Pharmacogenetics 

 Warfarin has remained the mainstay of oral anticoagulant therapy for the 

treatment and prophylaxis of thromboembolism since the 1950s. An estimated 1 – 2% 

of the populations in developed countries are taking warfarin [1]. Though its efficacy 

has been well established, warfarin is challenging to use because of its narrow 

therapeutic index and wide variability in dose response, even within a population. 

Multiple factors including age, sex, weight, liver function, concomitant drugs, certain 

disease states, diet and genes, affect its dose response [2]. The goal of warfarin 

therapy is to prevent thrombosis while avoiding complications, especially bleeding. It 

is thus imperative that patients on warfarin be monitored regularly using the 

International Normalized Ratio (INR), a standardized measure of a patient’s 

prothrombin time obtained by comparing with that of a healthy control. Currently, 

empirical starting doses of 5 to 10mg/day (2 to 5mg/day in Asians) are given and then 

adjusted to ensure that the patient’s INR reaches and stays within the usual target 

range of 2 to 3 [3,4]. The initiation period is when the INR is most likely to be out of 

range and when risk of adverse events is the highest [2,3]. Even when managed under 

anticoagulation clinics (ACCs), patients are within their therapeutic INR range only 

about two-thirds of the time [3,5-7].  

 Clinical factors explain only about 20% of warfarin dose variability [8]. In 

addition, it has been observed that Asians required less warfarin to achieve the same 

level of anticoagulation compared to Caucasians, and the difference could not be fully 

explained by non-genetic factors [9,10]. This suggests that warfarin response may be 

partly genetic [9,11]. Facilitated by the completion of the Human Genome Project, 

warfarin pharmacogenetic research in the past decade has contributed much to our 
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understanding of the genetic determinants of warfarin response variability and how to 

better predict its response. There is now substantial evidence that genetic variations in 

cytochrome P450 2C9 (CYP2C9)(*2 and *3), the gene coding for the main 

metabolizing enzyme of the more active S-isomer of warfarin, and vitamin K 2, 3-

epoxide reductase subunit 1 (VKORC1), the gene coding for the target enzyme for 

warfarin, affects warfarin dose requirements [12-20]. In view of the potential 

significance of these genetic findings, the Food and Drug Administration (FDA) 

updated the warfarin label in 2007 with pharmacogenetic information, and again in 

2010 with dosage recommendations based on CYP2C9 and VKORC1 genotypes [21]. 

Despite these developments, the translation of warfarin pharmacogenomics into 

clinical practice has been slow. 

 

1.2 Research Gaps  

 Dosing algorithms containing CYP2C9, VKORC1 and non-genetic factors 

explain at most 50-60% of warfarin dose variability [16,22-27]. There are about 30 

genes in the warfarin interactive pathway and it is possible that some of these, other 

than CYP2C9 and VKORC1, may also affect warfarin dose requirements. They have 

been investigated accordingly, in particular gamma-glutamyl carboxylase (GGCX), 

microsomal epoxide hydrolase (EPHX1) and cytochrome P450 4F2 (CYP4F2), but 

results have generally been inconclusive. Replication of association findings across 

different populations is necessary to ascertain their authenticity. In addition, allele 

frequency differences between populations would also alter the relative contributions 

of genetic variants in different populations. For example, CYP2C9*2 and CYP2C9*3 

are the 2 main CYP2C9 variants contributing to warfarin dose variability in 

Caucasians, but only CYP2C9*3 is of some importance in the Southeast Asian 
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population due to the rarity of CYP2C9*2 [28]. In the local context, additional genetic 

markers may improve an existing dosing algorithm derived in the Singaporean 

multiethnic population [16].  

 The ultimate goal of discovering genetic markers of warfarin dose 

requirements is to improve clinical outcomes such as reducing bleeding risk and 

reducing thromboembolic events (as a result of underanticoagulation) via genetic 

testing for these markers. However, there are numerous steps and various issues to be 

addressed from marker discovery to clinical implementation. Recognizing that a 

systematic approach is needed to evaluate genetic tests, the Evaluation of Genomic 

Applications in Practice and Prevention (EGAPP) initiative was established by the 

Office of Public Health Genomics at the Centers for Disease Control and Prevention 

(CDC) [29]. EGAPP largely adopts the ACCE framework, which covers Analytical 

validity (how accurately and reliably the test measures the genotype of interest), 

Clinical validity (how consistently and accurately the test detects or predicts the 

intermediate or final outcomes of interest), Clinical utility (how likely the test is to 

significantly improve patient outcomes) and Ethical, social and legal implications, to 

review the evidence and make recommendations for genetic tests (Figure 1) [30].  
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Figure 1. Components of the ACCE Model Process for Evaluating Genetic Tests 

[Figure reproduced with credits to CDC]  

 
 

 With much of this information lacking or inconclusive [31], there has been 

debate on whether warfarin pharmacogenetic testing (WPGT) is ready to be 

implemented in clinical practice [32,33]. From a regulatory standpoint, it has been 

argued that it may be inappropriate to demand evidence of clinical utility before 

advocating pharmacogenetic testing (PGT), due to the long lag time and uncertainty 

of obtaining such evidence [34]. It has even been argued that non-inferiority is 

sufficient for PGT [35]. Nevertheless, many clinicians remain uncomfortable with the 

uncertain clinical utility of WPGT. Several WPGT clinical trials are currently ongoing 

but clinical validity data, which can be obtained more readily, can contribute to the 

implementation debate in the meantime.  

 In addition, a policymaker would also want to know the population impact of 

WPGT to decide if it is justifiable. In public health, researchers are often interested in 
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estimating the impact of eliminating a known risk factor on the burden of disease by 

estimating the population attributable fraction (PAF) [36]. This measure can be 

adapted for WPGT to estimate its impact on the population level. 

 Part of the decision on advocating PGT would depend on its impact on 

healthcare delivery and costs [37]. Cost-effectiveness of WPGT is still inconclusive 

[38], but patients’ willingness-to-pay (WTP) quantifies the health benefits in monetary 

terms and can facilitate a cost benefit analysis (CBA), an alternative method of 

economic analysis which may help answer questions on its economic sustainability. 

More studies on patients’ preferences and WTP for PGT have also been proposed 

[37]. In addition, there may also be ethical, social and legal issues that need to be 

attended to [39,40]. Such data is certainly lacking in our Singapore population.  

 

1.3 Research Objectives and Significance 

 To address the translational issues of WPGT especially in the local context, 

the research objectives in this thesis were: 

i) To determine if the following genetic variants affect warfarin maintenance dose 

(WMD) in the Singapore multiethnic population 

� GGCX rs699664 (R325Q) 

� GGCX rs12714145 (intron 2) 

� GGCX CAA microsatellite (rs10654848) 

� CYP4F2 rs2108622 (V433M) 

� EPHX1 single nucleotide polymorphisms (SNPs) (especially coding SNPs) 

ii) To assess the utility of genetic markers in warfarin pharmacogenomics  

iii) To estimate the population impact of WPGT using PAF and identify populations 

that may or may not benefit from WPGT 
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iv) To determine the attitudes, WTP and preferences for WPGT in Chinese warfarin 

patients and general public 

 

1.4 Thesis Organization 

 The thesis will be organized as follows: chapter 2 will review the literature on 

warfarin, warfarin pharmacogenetics and the foundations of the 4 studies. Chapters 3 

to 6 will detail the introductions, methods, results and discussions of each of the 4 

studies addressing each of the research objectives stated above. Finally, an overall 

conclusion of the major findings, limitations and proposed future work will be 

presented in chapter 7.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 The Warfarin Interactive Pathway 

 The proteins and molecules that interact with warfarin in the body can be 

generally classified under 3 main groups: those involved in warfarin 

pharmacokinetics, the vitamin K cycle and those involved in the absorption and 

distribution of vitamin K.  

 

2.1.1 Warfarin Pharmacokinetics  

 Warfarin is rapidly and completely absorbed from the gastrointestinal tract 

[41] and is >99% bound to plasma proteins, mainly albumin [42,43] and alpha-1-acid 

glycoproteins, encoded by the orosomucoid 1 (ORM1) and orosomucoid 2 (ORM2) 

genes [44,45]. There is limited evidence that P-glycoprotein, encoded by ATP-binding 

cassette transporter B1 (ABCB1), may be involved in the transport of warfarin across 

cell membranes [46].  

 Warfarin is extensively metabolized in the liver, mostly into hydroxylated 

metabolites before renal excretion [47]. The drug in clinical use is a racemic mixture 

of R and S enantiomers, and S-warfarin is about 3 to 5 times more potent than R-

warfarin [48,49]. Phase I hydroxylation reactions are catalyzed by the Cytochrome 

P450 (CYP) enzymes. S-warfarin is primarily metabolized by CYP2C9 to 7-

hydroxywarfarin, with cytochrome P450 2C8 (CYP2C8), cytochrome P450 2C18 

(CYP2C18) and cytochrome P450 2C19 (CYP2C19) serving as minor pathways, 

while R-warfarin is mainly metabolized by cytochrome P450 1A2 (CYP1A2) (to 6- 

and 8-hydroxywarfarin) and cytochrome P450 3A4 (CYP3A4) (to 10-

hydroxywarfarin), with cytochrome P450 1A1 (CYP1A1), CYP2C8, CYP2C9, 

CYP2C18, CYP2C19 and cytochrome P450 3A5 (CYP3A5) serving as minor 



 

8 

 

pathways [50-52]. There appears to be insignificant Phase II metabolism in humans 

[47]. Many of the CYP isoforms are inducible, and induction is mediated by the 

nuclear hormone receptors pregnane X receptor (encoded by NR1I2) and constitutive 

androstane receptor (encoded by NR1I3) [53-56]. 

 

2.1.2 The Vitamin K Cycle 

 The centre of the warfarin interactive pathway is the vitamin K cycle, 

comprising the vitamin K epoxide reductase (VKOR) which reduces vitamin K 

epoxide (KO), and GGCX which then uses the reduced vitamin K (vitamin K 

hydroquinone, KH2) as a co-substrate to carboxylate the vitamin K dependent 

proteins, primarily factors II, VII, IX and X, protein C, protein S and protein Z. 

Warfarin, and other coumarin derivatives, inhibits VKOR, thereby interfering with the 

cyclic inter-conversion of KH2 and KO. This in turn interferes with the post-

translational gamma-carboxylation of glutamate residues by GGCX, which require 

KH2 to function. [57]. 

The primary function of VKOR is to reduce KO to vitamin K, which then has 

to be further reduced to KH2 [58]. There are 2 pathways in the vitamin K to KH2 

conversion: pathway I is catalysed by the warfarin-sensitive VKOR, which reduces 

both the epoxide and quinone form of vitamin K, and pathway II is thought to be 

catalysed by nicotine adenine dinucleotide phosphate (NAD(P)H) dehydrogenase 

(encoded by NAD(P)H dehydrogenase, quinone 1 (NQO1)), which reduces only the 

quinine form [59,60]. However, recent work suggested that an unknown warfarin-

sensitive enzyme, instead of NAD(P)H, reduces vitamin K to KH2 [58]. Pathway I is 

the most physiologically important one while pathway II only comes in when there is 

a high concentration of vitamin K, as would occur in the case of vitamin K 
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administration for coumarin overdose [60]. The vitamin K cycle is represented in 

Figure 2 below: 

 

 

Figure 2. Vitamin K Cycle  

[Republished with permission of AMERICAN SOCIETY OF HEMATOLOGY 
(ASH), from Blood, Tie et al, 117(10), 2011; permission conveyed through Copyright 
Clearance Center, Inc.] 
 
 

It was thought that VKOR is a multi-component system comsisting of 

microsomal epoxide hydrolase (mEH; encoded by EPHX1) and glutathione-S-

transferase (GST; encoded by glutathione S-transferase alpha 1 (GSTA1)) [61,62], and 

that mEH may harbor a binding site for vitamin K 2,3 epoxide [60]. On the contrary, a 

mice mEH knockout study seemed to indicate that mEH did not play a critical 

physiologic role (the mice had no bleeding diathesis) [63]. Through linkage with 

combined deficiency of vitamin K dependent clotting factors type 2 and warfarin 

resistance, the gene for VKOR was later identified and named VKORC1 (vitamin K 
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epoxide reductase complex subunit 1), in view of other possible unknown components 

[64]. Shortly after, VKOR was successfully purified as a single peptide, which seemed 

to be sufficient alone for VKOR activity [65]. On the other hand, the most recent 

attempt at characterizing VKOR again suggested that it may be a complex of 

VKORC1 and protein disulfide isomerase [66], which is a possible candidate for a 

thioredoxin-like domain that was found naturally fused with VKOR in a crystal 

structure of a bacterial homologue of VKOR [67]. Therefore, it is still unclear if 

VKOR is indeed a multi-component complex.  

 Another component of the vitamin K cycle is calumenin (encoded by CALU), 

an endoplasmic recticulum chaperone protein, which appears to inhibit the gamma-

carboxylase system by associating with VKOR and GGCX in rat studies [68,69]. 

However, the effect of calumenin on warfarin response is uncertain as calumenin is 

expressed at low levels in humans [70].  

 

2.1.3 Absorption and Distribution of Vitamin K 

 Vitamin K comprises of a group of compounds with similar biochemical 

properties, including phylloquinone (vitamin K1) and menaquinones (vitamin K2). 

Vitamin K1, a plant derived form, is the most important dietary vitamin K source in 

humans [71]. Vitamin K is a fat soluble vitamin, thus is absorbed from the intestines 

in the presence of fat [72]. In the blood it is transported by chylomicrons, which are 

subsequently broken down by lipases and the remnants cleared by the liver via an 

apolipoprotein E (apoE, encoded by APOE) receptor specific uptake [73-75]. This is 

also the probable mechanism by which it is transported to the liver for its participation 

in the vitamin K cycle, although low density lipoprotein and high density lipoprotein 

may also carry some of the vitamin K1 [76]. CYP4F2 has recently been characterized 
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as a vitamin K1 oxidase [77] after a SNP rs2108622 (V433M) in CYP4F2 was found 

to be associated with warfarin dose response in a screen of metabolizing and 

transporter genes [78]. A diagram representing the genes involved in the warfarin 

interactive pathway is shown in Figure 3.  

 

Figure 3. Genes Involved in the Warfarin Interactive Pathway  

[Adapted by permission from Macmillan Publishers Ltd: Pharmacogenomics J, 7(2): 
99-111, copyright 2007] 
 
 
 
2.2 Non-genetic Factors of Warfarin Response 

 Warfarin dose requirements are inversely correlated with age, weight and 

female gender [79-83]. The mechanism of age on lower warfarin dose requirements is 

unclear but may include factors such as hypoalbuminemia, decreased absorption 

and/or intake of vitamin K and polypharmacy. There may be some confounding 

Hydroxyvitamin K1 

CYP4F2 
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between gender and weight, since women are generally lighter than men, but intrinsic 

differences between men and women are also possible [83]. Weight is one measure of 

body size, which can affect warfarin dose requirements by affecting its volume of 

distribution or through its correlation with liver size, which is correlated with warfarin 

dose [82]. In some cases, body surface area or height have been found to be a better 

predictor of warfarin dose [8,84-88].  

 Chronic liver disease may increase sensitivity to warfarin due to impaired 

production of vitamin K dependent clotting factors [89], and patients in chronic renal 

impairment may need a lower warfarin dose due to alterations in protein binding, 

bioavailability and disposition [90-92].  

 Numerous drugs and herbal medicines have been documented to interact with 

warfarin [93]. They may affect warfarin pharmacokinetics by affecting its absorption 

or altering its metabolism. Some drugs may also influence its anticoagulation effect at 

the pharmacodynamic level by inhibiting vitamin K dependent clotting factors, 

interfering with other pathways of hemostasis or other unknown mechanisms [94]. 

Variation in diet composition resulting in large deviations from usual intake of 

vitamin K may also give rise to over- or under-coagulation [95]. Dietary vitamin K 

intake is also associated with warfarin sensitivity at initiation and warfarin dose 

requirements [96]. Interestingly, low vitamin K intake is associated with unstable 

warfarin response, which can be improved by vitamin K supplementation [97,98].  

 Long term alcohol consumption can induce hepatic enzymes and therefore 

increase warfarin clearance [94] but its clinical effect seem to be mixed [99,100]. 

Generally, consumption of a small amount of alcohol is unlikely to interact with 

warfarin [101]. A systematic overview of the drug and food interactions of warfarin 

has been undertaken by Holbrook et al. [93].  
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 Smoking has been reported to increase warfarin metabolism and clearance 

[102,103]. Correspondingly, patients’ INR have been found to increase upon smoking 

cessation, due to a resultant drop in warfarin clearance [104-106]. Higher warfarin 

doses were also required in smokers [107,108]. 

 

2.3 Genetic Factors of Warfarin Response 

2.3.1 CYP2C9 

 CYP2C9 is the main metabolizing enzyme of the more active S isomer of 

warfarin. It is now well established that CYP2C9*2 and *3 are associated with lower 

warfarin dose requirements, and a meta-analysis estimated that the dose reduction as 

compared to the wild type homozygote (*1/*1) for genotypes *1/*2, *1/*3, *2/*2, 

*2/*3 and *3/*3 were 19.6%, 33.7%, 36%, 56.7% and 78.1% respectively [109]. 

Furthermore, these CYP2C9 variants have been found to be associated with an 

increased risk of major bleeding [110-119], and this risk persists even after dose 

stabilization [114]. CYP2C9 variants are also a risk factor for unstable response [120], 

increased risk of above-range INRs and a longer time to achieve stable dosing 

[112,116,118,121-123].  

 In vitro, the products of CYP2C9*2 and *3 were found to have only 12% and 

5% metabolizing capacity of the wild type enzyme respectively [124,125]. In vivo, the 

unbound clearance of S-warfarin is decreased by 60% and 90% in heterozygous and 

homozygous CYP2C9*3 carriers respectively [126-128]. Interestingly, further ethnic 

differences in S-warfarin clearance were found even after matching for CYP2C9 

genotypes, with Japanese and Chinese patients demonstrating higher clearance than 

Caucasians [129,130], suggesting a possible difference in activities of other enzymes 

involved in S-warfarin clearance. 
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 The minor allele frequency (MAF) of CYP2C9*2 and *3 vary in different 

ethnic groups. The MAF of CYP2C9*2 is about 15%, 3% and 3% in Caucasians, 

Asians and African Americans respectively, while the MAF of CYP2C9*3 is about 

6%, 4% and 2% in Caucasians, Asians and African Americans respectively [131]. 

Among Asians, there also appear to be some interethnic differences. In our 

multiethnic Singaporean population, CYP2C9*2 was present in 0%, 1% and 4% in 

Chinese, Malays and Indians respectively while CYP2C9*3 was present in 7%, 9% 

and 18% in Chinese, Malays and Indians respectively [132].  

 Apart from CYP2C9*2 and *3, several rare CYP2C9 variants such as *5, *6, 

*8, *9, *11, *12 and *18 have also been associated with warfarin dose requirements 

[20,133-135], and these are likely to be more important in Black populations in which 

these variants are more common [131,136]. Other rare and novel CYP2C9 variants 

have also been identified in Asian populations but their clinical significance is unclear 

[28,137,138]. 

 

2.3.2 VKORC1 

 Soon after VKORC1 was identified, reports of common VKORC1 variants 

being associated with warfarin dose requirements quickly followed. D’Andrea et al. 

first identified 2 common SNPs (1173C>T (rs9934438) and 3730A>G (rs7294)), and 

1173 C>T was associated with lower warfarin doses [139]. Shortly after, a novel 

promoter SNP -1639G>A (rs9923231), which is in high linkage disequilibrium (LD) 

with 1173C>T, was reported to be associated with warfarin dose in Chinese and 

Caucasians in 2 separate studies [88,140].  Rieder et al. sequenced a 11kb region 

around VKORC1 in Caucasians and inferred 9 haplotypes (H1 – H9) from 10 common 

(MAF > 5%) noncoding SNPs, including 1173C>T and -1639G>A. Of these, 5 
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common haplotypes were further grouped into the low-dose A (H1, H2) and high-

dose B (H7, H8, H9) haplotypes, explaining about 25% of dose variability [141]. 

Patients homozygous for the low-dose AA VKORC1 haplotype also had higher odds 

of over-anticoagulation (defined as an INR>5) [116] and required a longer time to 

therapeutic INR and time to INR>4 [123].  

 Haplotypes correlated with VKORC1 messenger ribonucleic acid (mRNA) 

levels, suggesting that the effect on warfarin dose occurs at the transcriptional level 

[141]. There is some evidence that among the noncoding SNPs associated with 

warfarin dose requirements, -1639G>A is possibly the functional SNP. The SNP was 

found to alter promoter activity [140] and affect gene expression [142]. The G allele 

preferentially associates with active chromatin, which is consistent with increased 

mRNA expression, while the A allele generates a suppressor E-box binding site [142].  

 Though several VKORC1 SNPs were found to be associated with warfarin 

dose requirements, -1639G>A, 1173C>T and haplotypes were equally and the most 

predictive of warfarin dose requirements across all races [143]. Therefore 1 SNP 

would be sufficient to capture the variation in VKORC1. A meta-analysis estimated 

that -1639GA and GG carriers required 52% and 102% more warfarin than AA 

carriers [144].  

 VKORC1 -1639G>A also exhibits distinct interethnic differences in MAF. The 

A allele is present in 41%, 11% and 67% in Caucasians, African Americans and 

Asians respectively [131]. In our local population, the A allele was also most common 

in Chinese, followed by Malays and Indians [132]. Apparently, the high dose G allele 

is appropriately more common in populations that require higher doses and vice versa. 

Expectedly, these interethnic differences have been suggested to explain the 

interethnic differences in warfarin dose requirements [132] and dose variance 
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explained [143]. This implies that ethnicity may be a surrogate for VKORC1 genotype, 

and this notion will be explored further in Study 2. Finally, several coding SNPs were 

associated with warfarin resistance [132,145-147], but their predictive value is 

uncertain. 

 

2.3.3 Other Genes 

 After CYP2C9 and VKORC1, other genes in the warfarin interactive pathway 

have also been investigated for their effects on warfarin response. Amidst the many 

studies which only investigated selected genes, a Swedish study comprehensively 

examined all 29 genes known to be in the warfarin interactive pathway at the time 

(therefore not including CYP4F2), suggesting that protein C (PROC), APOE, EPHX1, 

GGCX and ORM1-2 may be potential additional genetic factors of warfarin response 

[148]. Subsequently, the first genome-wide association study (GWAS) in a Caucasian 

population did not find further genetic factors other than CYP2C9 and VKORC1 [19]. 

However, this study was underpowered (n = 181) to detect variants that explained 

<20% of warfarin dose variability. Another larger GWAS (n = 1053) in a Swedish 

population was able to detect CYP4F2 in addition to CYP2C9 and VKORC1 [149]. 

With no further major genetic factors forthcoming, a recent study investigated copy 

number variations in CYP2C9, VKORC1, CYP4F2, GGCX and CALU, but found them 

to be rare in all the major races and thus have practically no role in explaining 

warfarin dose variation [150].  

 Genes with an important role in the warfarin interactive pathway and a 

growing body of data are discussed in more detail separately while other genes with 

scanty data are grouped and discussed together. 
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GGCX 

The GGCX gene was re-sequenced in at least 3 groups of Japanese and 

European patients [18,151-153] and is one of the most intensively investigated. Three 

SNPs rs699664 (R325Q), rs12714145 (intron 2 variant) and rs11676382 (intron 14 

variant) were found to have an effect on WMD in separate studies [152,154-157], but 

these findings were largely not replicated in others [18,153,156,158-162]. The 

contributions of these SNPs were also small, around 2 to 3% [152,154].  

These studies were conducted in several races but the differences in results do 

not appear to be due to interethnic differences in MAFs. The MAF of rs699664 was 

about 0.27 – 0.33 for all populations except African Americans in which it was 0.682 

[163], and the MAF of rs12714145 ranged from 0.2 to 0.4. However, rs11676382 is 

relatively common in Caucasians (MAF ~0.06 – 0.11) [152,156,163] but is almost 

absent in Asians and African Americans [18,156,163]. Even then, the association 

which was first detected in Caucasians [152] could not be replicated in another larger 

Caucasian population [156]. 

The rs699664 (R325Q) variant is a promising candidate SNP since it is non-

synonymous and higher carboxylase activity has been demonstrated in the mutant 

enzyme (325Q) compared to the wild type (325R), by having a higher affinity for 

vitamin K [164]. This seems to coincide well with the finding that variant carriers 

require lower doses [155], since higher affinity for vitamin K would imply a lower 

need for vitamin K, which in turn implies that a lower warfarin dose would be needed 

to interfere with vitamin K levels needed for carboxylation. One explanation that the 

rs699664 association was not replicated in other populations may be that it is 

particularly relevant only in the Japanese population. A genotypic difference in the 

correlation between the ratio of undercarboxylated osteocalcin (ucOC) to intact 
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osteocalcin (OC) with serum menaquinone-7 (MK-7) has been observed, also 

suggesting that the vitamin K requirement for gamma-carboxylation may differ by 

rs699664 genotype [165]. ucOC is a sensitive index of bone vitamin K status and the 

ucOC/OC ratio has been correlated to dietary vitamin K intake. Interestingly, the 

ucOC/OCratio was not observed for vitamin K1 (phylloquinone) and menaquinone-4, 

which are found in leafy vegetables, and meat, liver, butter, egg yolk and cheese 

respectively, but only with MK-7 which is found almost exclusively in natto, 

fermented soybeans commonly eaten by the Japanese [165,166]. MK-7 has a much 

longer half life and is more potent than vitamin K1 in its effect on coagulation [167]. 

It was also proposed that there may be an interaction effect between R325Q genotype 

and vitamin K intake, since high vitamin K intake may cancel the genotypic effect of 

R325Q by overcoming the lower affinity of 325R [164]. The mixed results even 

among Japanese [17,155] may therefore be due to different dietary vitamin K intake in 

the subjects, which unfortunately was not captured. 

Another variant of interest in GGCX is the CAA microsatellite repeat in intron 

6. Japanese individuals who were heterozygous for 13 repeats (10/13 or 11/13) 

required higher doses [151]. A similar trend was found in Slovenian patients (only in 

CYP2C9*1/*1 subgroup) [168], and with higher number of repeats in Swedish patients 

(13/13 or n/14-16 repeats) [169] and in African Americans (16 or 17 repeats) [160]. 

However, other studies in Caucasians, Japanese and Han Chinese did not find similar 

associations [18,22,148,152,153]. The reason for these conflicting results is not totally 

clear, but could be due to different repeat frequencies, different classification of the 

genotypes or even chance. In general, the CAA microsatellite appears to be associated 

with higher dose requirements at higher numbers of repeats, which are more common 

in Caucasians than Japanese (the frequency in Han Chinese was not reported), 
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although one study showed an opposite trend [152]. It is also possible that some of the 

significant findings were false positives, since the p-value was marginal in most cases. 

There is no data to date on the exact role of the CAA microsatellite repeat but it 

appears to be related to reduced sensitivity to warfarin, postulated to be due to 

increased GGCX activity [151].  

 

CYP4F2 

A non-synonymous SNP rs2108622 (V433M) in CYP4F2 first emerged as an 

additional marker for warfarin dose requirements in a study using the Affymetrix drug 

metabolizing enzymes and transporters panel, explaining an additional 2% of dose 

variability on top of clinical factors, CYP2C9 and VKORC1 [78]. This finding was 

subsequently replicated in some Caucasian, Chinese and Japanese populations 

[149,161,170-175] but not in others [18,20,162,176-179]. Patients homozygous for the 

mutant alleles required about 1 – 2.5mg/day more warfarin than patients with the 

wild-type alleles [78,149,170]. The small but significant effect of CYP4F2 has also 

been established in GWAS for both acenocoumarol and phenprocoumon [180,181]. 

The role of CYP4F2 in the warfarin interactive pathway was initially unknown but 

functional studies subsequently found it to be a vitamin K1 oxidase (Figure 3) and the 

V433M polymorphism was associated with reduced capacity of the enzyme, 

explaining the higher doses required [77].  

 

EPHX1 

In light of the possible role of mEH in warfarin pharmacodynamics, common 

SNPs in EPHX1 have been included in several pharmacogenetic studies. A common 

non-synonymous SNP rs1051740 (Y113H) showed possible association with WMD 
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in Israelis and Caucasians [158,163]. While this association was not replicated in 

subsequent studies [161,163], there were a few other signals from EPHX1. These 

include rs4653436 in the 5’ flanking region in Caucasians and Han Chinese 

[148,159,182], rs2292566 (K119K) in Caucasians [161] and an intronic SNP rs1877724 

in Han Chinese [18].  

 mEH is a biotransformation enzyme in the endoplasmic reticulum with an 

apparent dual role in detoxifying reactive epoxide intermediates of environmental 

toxins and drugs into less toxic dihydrodiols and bioactivation of carcinogenic 

polycyclic aromatic hydrocarbons [183], and has recently been associated with 

carbamazepine dose requirement [184,185] and risk of lung, colorectal and squamous 

cell esophageal cancers [186-189]. Functional studies indicate that the 2 common 

SNPs Y113H and H139R result in similar mEH activity but may alter enzymatic 

function by affecting mEH enzyme stability [190]. Furthermore, mEH protein content 

and hepatic enzyme activity exhibits large interindividual variation but much of this 

variability could not be accounted for by the 2 common SNPs. Instead most of it may 

be regulated by posttranscriptional controls [191]. EPHX1 has 2 noncoding exon 1 

sequences, E1 and E1-b, and their promoters drive tissue-specific expression of mEH 

[192]. The E1-b variant transcript, which is widely and preferentially expressed in 

most tissues, lies in a polymorphic region that is not in LD with Y133H or H139R 

[193]. Interestingly, rs4653436 and rs1877724 lie within this promoter region, 

suggesting that these SNPs may have a possible role in mEH expression, or tag other 

polymorphisms that do. Despite the conflicting biochemical evidence of the role of 

EPHX1 in the warfarin interactive pathway, the multiple association signals might 

indicate a yet to be characterized role in the pathway. 
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APOE 

 ApoE is involved in vitamin K uptake and exists as 3 major isoforms, encoded 

by alleles ε2, ε3 and ε4. Although ε3 is the most common allele in all populations, the 

3 alleles occur in different frequencies across populations [194]. There is conflicting 

evidence regarding the effect of APOE genotypes on warfarin dose requirement. 

Some studies found that ε4 homozygotes require a higher coumarin dose 

[148,195,196], while other studies found the opposite [197,198]. However, association 

of APOE genotype and WMD was largely not replicated, including in our 

Singaporean population [22,196,199-201].  

 

Other Genes 

 The evidence with clotting factor genes is generally scanty, partly because 

different sets of variants were studied in different studies. A few significant 

associations have been detected in coagulation factor II (F2) rs5896 (T165M) 

[202,203], coagulation factor VII (F7) rs510335 [202], 10-basepair insertion at -323 

[107]) and PROC  rs5936 (S141S), rs1799808 [18], rs1799809, rs2069901, rs2069910, 

rs2069919 [148]). However, these results were not replicated in the few other studies 

that included them [22,151,159,161,178]. No significant associations were found with 

coagulation factor IX (F9), coagulation factor X (F10) or protein S (PROS1) variants 

[107,151]. 

 CYP2C18 and CYP2C19 polymorphisms were associated with WMD, 

although the association was fully explained by LD with CYP2C9*2 and/or *3 [148]. 

However, in other studies CYP2C19 did not affect WMD [127,204]. Furthermore, a 

study also showed that although CYP2C19 genotype affects R-warfarin 

pharmacokinetics, its effect is not translated into any significant pharmacodynamic 
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effect, especially when warfarin is given as a racemate [205]. CYP3A5 also did not 

affect warfarin dosing, although it is one of the main enzymes responsible for R-

warfarin metabolism [206]. Interestingly, one study found cytochrome P450 2A6 

(CYP2A6) *2 (H160L) to be associated with lower warfarin dose [207] although 

CYP2A6 contributes negligibly to warfarin metabolism [208]. All other CYP enzymes 

did not affect WMD [148]. Other isolated findings include ABCB1 (D haplotype) [206] 

and CALU (rs11653, rs1006023, rs2307040, rs339054 and rs339097 [148,179,209]. 

 In summary, other than CYP2C9 and VKORC1, there is limited and conflicting 

data on the effect of other candidate genes in the warfarin pathway. Their effect, if 

present, appears to be small as well. Other than CYP2C9, VKORC1 and APOE, other 

candidate genes have also not been studied in the local population yet. Given the 

relative importance of GGCX, EPHX1 and CYP4F2 in the warfarin pathway, these 3 

genes will be explored further in this thesis. 

 

2.4 Dose Prediction from Genetic Factors  

 Dosing algorithms incorporating CYP2C9, VKORC1 and non-genetic variables 

have been developed in various populations and are able to account for up to 50 to 

60% of warfarin dose variability [16,22-26,88,155,210-213]. However, due to 

interethnic differences in MAF, the contribution of CYP2C9 and VKORC1 to warfarin 

dose variability differs between populations [13,214,215]. In African Americans, such 

dosing algorithms generally explain only up to 30% of dose variability [216]. 

 Since CYP2C9 and VKORC1 have also been associated with early INR 

response, such as time to therapeutic range and risk of over-anticoagulation [116,123], 

it has been hypothesized that most of the genetic information may be captured in early 

INR values. However, several large recent studies showed that genes were still 
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relevant, albeit with lower contributions, even after including early INR values and 

thus are still useful for dose refinement [217-220]. 

 The goal of a dosing algorithm is to improve dose accuracy and hopefully the 

associated clinical outcomes in patients needing warfarin, therefore that ability must 

be demonstrated to support its clinical use. Dosing algorithms have been compared 

with each other [221-224] and also compared against clinical and fixed dose regimens 

[134,225-228] in terms of their dose prediction accuracy in independent patient 

cohorts, therein validating the clinical utility of genetic factors. Generally, all 

pharmacogenetic algorithms have similar performances but performed best in 

Caucasians and Asians, and worst in African Americans. Surprisingly, the best 

performing algorithms in the different races were not necessarily the ones derived 

from the same races [222]. This may be due to differences between the sample 

populations used to derive these algorithms, such as certain unmeasured clinical 

factors or even target INR. Pharmacogenetic algorithms have consistently shown 

better dose prediction compared to clinical or fixed dose regimens [134,225-228]. For 

example, the International Warfarin Pharmacogenetics Consortium (IWPC) 

pharmacogenetic algorithm accurately predicted the warfarin dose in about 46% of 

patients, compared to 38% and 29% using a clinical algorithm and 5mg/day fixed 

dose respectively, with accurate dose being defined as within ±20% of their actual 

dose [225].  

 Although pharmacogenetic algorithms have generally been shown to improve 

warfarin dose prediction, the ultimate value of genetic factors lies in their ability to 

improve clinical outcomes. Several prospective clinical trials comparing 

pharmacogenetic dosing to clinical or standard dosing have been completed but the 

clinical validity of CYP2C9 and VKORC1 is still inconclusive due to limitations in 
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study design and sample size of the studies [229-235]. As such, large randomized trials 

such as the Clarification of Optimal Anticoagulation through Genetics (COAG) [236], 

Genetics InFormatics Trial (GIFT) [237], The EUropean Pharmacogenetics of 

AntiCoagulant Therapy (EU-PACT) [238] and Warfarin Adverse Events Reduction 

for Adults Receiving Genetic Testing at Therapy Initiation (WARFARIN) [239], are 

being undertaken to answer the clinical question more definitively. The results of 

another large trial (CoumaGen-II) have recently been published, indicating that 

pharmacogenetic dosing could improve anticoagulation control [240]. Locally a 

prospective randomized trial is also underway to evaluate the benefits of a 

pharmacogenetics-based dosing regimen compared to traditional dosing [241].  

 

2.5 Population Impact of Genetic Factors 

 Despite being superior to clinical algorithms and fixed doses, pharmacogenetic 

algorithms are generally accurate in about 40% (ranging from about 30-50%) across 

various populations [222] and the margin of improvement appears modest. This leads 

to the question of what practical benefit can be expected from implementing WPGT 

in a population.  

 In terms of dose accuracy, there have been at least 2 attempts at quantifying 

the population impact of WPGT. Analysis of dose prediction accuracy in the 

multiethnic IWPC dataset revealed that patients requiring ≤3mg/day and ≥7mg/day 

(amounting to 46% of the cohort), benefit from WPGT. More patients in these dose 

groups had accurate dosing with WPGT than with the clinical algorithm (model with 

only clinical variables) or 5mg/day fixed dose, whereas the proportions achieving 

accurate dose for patients in the intermediate dose range (3 to 7mg/day) were similar 

with all 3 approaches [225].  
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 Another way to estimate the impact of WPGT in a population might be to use 

the collective proportion of genotype combinations apart from the most common. For 

example, if the CYP2C9 wildtype/VKORC1 wildtype combination is the most 

combination, the sum of all other genotype combinations would represent those that 

may benefit from WPGT. This approach was adopted in 1 study which took the 

proportion of those carrying any variant CYP2C9 and VKORC1 alleles, estimated to 

be 60% in Puerto Ricans [242].  

 However, these 2 groups of patients deemed to benefit may not coincide. That 

is, those requiring ≤3mg/day or ≥7mg/day may not necessarily be carriers of variant 

CYP2C9 and VKORC1 alleles. Though dose requirements of patients with different 

genotype combinations may differ, there is also likely to be substantial overlap 

between them. The proportions of patients requiring ≤3mg/day or ≥7mg/day thus 

depend on the effect sizes of the variant alleles and their frequencies, which differ by 

race [131,216,243,244]. The racial variation in allelic frequencies is most distinct with 

VKORC1 (MAF of -1639G>A is 67% in Asians, 41% in Whites and 11% in Blacks), 

followed by CYP2C9*2 (15% in Whites vs. 3% in Blacks and Asians) and CYP2C9*3 

(6%, 4% and 2% in Whites, Asians and Blacks respectively) [131]. Since different 

populations have different warfarin dose requirements [9,10], the simple proportion of 

variant carriers in a population, or proportion of patients needing low and high doses 

(defined as ≤3mg/day or ≥7mg/day) may not provide an accurate representation of the 

impact of WPGT. 

 The PAF is a metric commonly used in traditional epidemiology to quantify 

the contribution of risk factors to the burden of disease. The PAF represents the 

“proportional reduction in average disease risk over a specified time interval that 

would be achieved by eliminating the exposure(s) of interest from the population of 
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interest while distributions of other risk factors in the population remain unchanged” 

[36]. Extending the same idea to genetic variation, disease risk may be attributed to 

the presence of a variant allele at a particular SNP [245], and theoretically this may 

differ across populations as a function of the MAF and/or effect size of the SNP. This 

approach has been applied to several common disease such as diabetes [246-248], lung 

cancer [249], systematic lupus erythematosus [250], asthma and hay fever [251], 

Parkinson’s disease [252] and cutaneous melanoma [253], among others.  

 In the case of warfarin, genetic variants (CYP2C9 and VKORC1) have been 

mostly associated with WMD, which is a continuous outcome. To calculate an 

equivalent of the PAF, some manipulation would be necessary to obtain a 

dichotomous outcome. Furthermore, the value to the PAF of a genetic variant (in 

which the alternative is to carry the wild type allele) is questionable since it is not 

modifiable [36]. Applying the PAF to an outcome associated with WPGT, in this case 

dose prediction accuracy, by comparing to situations without WPGT, would give a 

practical representation of its population impact. In other words, this would estimate 

the population impact of using genetic information, rather than the genetic variation 

per se. 

  

2.6 Social, Ethical and Economic Issues with WPGT 

2.6.1 Patients’ Attitudes towards PGT 

 In addition to clinical validity, patient acceptance is also essential for 

successful implementation of PGT in the clinic. A study of patients’ and physicians’ 

perspectives on PGT in Germany revealed that majority of patients are acceptive and 

optimistic about PGT but are concerned about adverse PGT results, privacy and 

possible detection of other diseases [254]. Indeed, privacy, confidentiality and cost 
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were the main concerns that emerged from other studies as well [255-257]. A more 

recent large survey of the US public also revealed strong enthusiasm for PGT, with 

interest being influenced by a combination of personal factors, awareness of genetics, 

and health and medication history. Notably, a risk of loss of confidentiality severely 

impacted interest in PGT [258]. A particular concern in PGT is the possibility of 

generating ancillary information unrelated to the purpose of the PGT, which 

optimistically did not negatively affect public interest in PGT in the same survey 

[259]. Currently, the CYP2C9 and VKORC1 variants related to warfarin dose 

requirements are not associated with any disease risk, but there is always a possibility 

that such information may emerge in the future.  

 It appears that patient demand is much stronger for PGT compared to genetic 

testing for late onset chronic diseases such as breast cancer (here termed as “disease 

genetic testing” (DGT)), possibly because patients perceive PGT similarly to a routine 

biochemical test [37]. Studies have been done to evaluate patients’ attitudes towards 

DGT, including in our Asian population [260,261]. However, PGT differs from DGT 

in the nature of the information it conveys. Since PGT is intended to predict drug 

responses rather than disease risk, it is less laden with medical, social or personal 

significance [39]. PGT is therefore less risky than DGT due to lower potential of its 

results being misused or having unintended far-reaching consequences. Nevertheless, 

there are still ethical, social and legal issues associated with PGT which needs to be 

addressed [39,40]. Since Asians and Caucasians can have different knowledge and 

attitudes towards DGT as in the case of Parkinson’s disease [261], it is possible that 

Asians have different perceptions of PGT as well. Attitudes predict intentions to 

undergo genetic testing and test uptake [262]. Therefore, knowledge of perceptions 
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and attitudes of Asians on WPGT would facilitate its clinical implementation by being 

able to address any misconceptions and concerns.  

 Actual uptake of a health intervention is influenced by more than just attitudes 

towards it. The Health Belief Model (HBM) is a widely used framework for 

predicting health behaviours and examples of its use include prediction of intention to 

undergo genetic testing for colorectal cancer [263], and its uptake [264,265]. The 4 

core constructs of HBM are perceived susceptibility and perceived severity of 

diseases, perceived benefits and perceived barriers to preventive action. Two 

additional constructs that are often included are cues to action and health motivation 

[266]. As WPGT is not yet clinically available, not applicable to existing warfarin 

patients and a remote possibility for the general public, the intention here was to 

obtain a gauge of its acceptance, considering its potential benefits and possible ethical, 

social and legal risks, rather than to predict its actual uptake. As a result, not all the 

constructs in the HBM were systemically measured. Rather, similar studies mentioned 

above were used as the framework [254-259]. 

 

2.6.2 Economic Sustainability of WPGT 

 Due to the scarcity of resources, another necessary consideration for the 

clinical translation of WPGT is its economic sustainability. At around US$400, the 

cost of WPGT is one of the major barriers to routine clinical use [267]. The economic 

evaluation of a health intervention can take place under 2 major frameworks: cost 

effectiveness analysis (CEA) or cost utility analysis (CUA), where benefits are 

expressed as natural units or quality-adjusted life years (QALYs) respectively, and 

CBA, where both costs and benefits are expressed in monetary terms. Under the CBA 

framework, WTP is used to value the benefits, both health and non-health related, in 
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monetary terms [268,269]. It has been argued that WTP is superior to QALYs by 

enabling a more comprehensive valuation of benefits [270]. For example, in certain 

cases such as DGT, a non-health related benefit like diagnostic or prognostic 

information can have utility to patients [269] and this would not be captured in a CEA 

or CUA. Furthermore, the outcome in a CEA/CUA is one-dimensional and the 

incremental cost-effectiveness ratio is subject to variable interpretation [271]. In the 

UK, a threshold has been set by the National Institute for Health and Clinical 

Excellence (NICE) at £20-30000 per QALY, but the figure has been subject to 

constant debate [272]. In principle, a CBA can tell if an intervention is worthwhile and 

reflect what is more socially desirable [268]. However, most economic evaluations of 

healthcare interventions have been CEA/CUAs [269], possibly in part due to 

reservations on the accuracy and reliability of WTP methodologies [273].  

 So far, the cost-effectiveness of WPGT is inconclusive [38] and unsurprisingly 

no CBAs have been done. Verhoef et al.[38] undertook a systematic review of CEAs 

involving the use of PGT for the dosing of warfarin and other coumarin derivatives 

but could not conclude whether WPGT was cost-effective or not due to variability in 

study methodology, quality and choice of outcome measures. Moreover, effectiveness 

in those CEAs was either based on assumptions or scanty clinical data. However, the 

recently published results of the Coumagen-II trial, which demonstrated an absolute 

increase of 11% in time in therapeutic range and a relative risk of 0.48 in serious side 

effects with pharmacogenetic dosing compared to standard care, suggested that the 

input values were realistic and might even be slightly conservative [240]. 

 Despite the potential advantages, there are several methodological issues and 

biases afflicting WTP estimation methods. These include hypothetical bias (where 

responses do not represent actual valuation), strategic bias (where respondents 
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deliberately gives a WTP amount different from their true WTP to attempt to 

influence the price of the good or service in question), under-sensitivity to the 

magnitude of benefit, over-inflation of the valuation of the intervention in question 

(i.e. budget constraint bias), dependence of WTP estimates on income and 

questionable external validity and reliability [274-278]. However, WTP estimation and 

CBAs in healthcare have increased in the last 2 decades, at least partly due to 

improvement in WTP estimation methods that reduce some of these problems [273]. 

 WTP can be derived from revealed preference (RP) (observed market demand) 

or stated preference (SP) data (what people say they would do). Lacking RP data in 

most healthcare contexts, SP methods come in useful in generating information on the 

value of healthcare goods and services. SP methods can also value WTP and 

preferences for new products and services that are not yet in the market, such as 

WPGT in this case. SP methods can be further divided into 2 categories: contingent 

valuation (CV) and choice modeling, including discrete choice experiments (DCEs). 

DCEs has several advantages over CV, such as being able to value individual 

attributes (and thus are more information efficient), and are less prone to hypothetical 

bias and compliance (yea-saying) bias. However they tend to be more complex to 

design, complete and analyze, and take a longer time to complete [279]. Nevertheless, 

these disadvantages are minor relative to the significant advantages of DCEs. 

 The DCE is therefore an increasingly popular preference elicitation method 

used in healthcare, where respondents choose between hypothetical or real options in 

several choice sets, thereby implicitly indicating their relative preferences for various 

product attributes. When cost is one of the attributes, a DCE can be used to elicit 

WTP for individual attributes and/or the overall product [280]. In the DCE context, 
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preferences refer to the relative importance of attributes to respondents when making 

a choice among alternatives.  

 DCE has its underpinnings in consumer theory. The doctrine underlying DCEs 

is that the value of a good or service can be decomposed into its constituent parts 

(attributes), and consumers have preferences for and derive utility from these 

attributes rather than the good or service per se [280]. The technique elicits part-worth 

utilities for each attribute, which indicates their relative importance and how people 

trade between product features and price [281]. These utilities can then be used for 

policy analyses, such as assessing the relative impacts of attributes and predicting 

uptake rates [282]. A more detailed background on DCE is provided in Lancsar & 

Louviere (2008) and Louviere & Lancsar (2009) [280,282].  

 DCEs were initially used in transport and environmental economics but has 

been introduced and applied to a wide range of healthcare applications in the last 2 

decades [280], such as eliciting WTP for PGT for the treatment of depression [283], 

DGT for colorectal cancer [284], meningococcal vaccine [285], a rapid malaria 

diagnostic test [286], health improvement in physical activity on prescription [287], 

and preferences for genetic counseling [288], colorectal cancer screening methods 

[289] and treatment modalities of attention deficit hypersensitivity disorder [290]. To 

date, it has not been applied to WPGT in any country. 
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CHAPTER 3: ADDITIONAL GENETIC DETERMINANTS OF WARFARIN 

MAINTENANCE DOSE (STUDY 1) 

3.1 Introduction 

With the roles of CYP2C9 and VKORC1 well established, other genes in the 

warfarin interactive pathway have also been studied for association with warfarin 

response. In this study, 3 genes (CYP4F2, GGCX and EPHX1) that are closely 

involved in the vitamin K cycle, the site of action of warfarin (thus arguably relatively 

more important), and have demonstrated inconsistent results in other populations with 

respect to their effect on WMD, were chosen for investigation. Given the conflicting 

results regarding the effects of CYP4F2 (rs2108622 (V433M)), GGCX (rs699664 

(R325Q), rs12714145 and rs11676382) and EPHX1 (rs1051740 (Y133H), rs4653436, 

rs2292566 and rs1877724), the objective of this study was to determine their effects 

on WMD in a multi-ethnic Asian population. All exonic regions of EPHX1 were also 

studied to uncover other SNPs that may affect warfarin dose requirements, as the 

whole gene has not been studied with respect to warfarin response before. Three other 

GGCX SNPs (rs2592551 (R406R), rs10179904 (T414T), rs67988001 (intron 2 

variant)) were also studied as a result of our genotyping methodology. GGCX 

rs11676382 (intron 14 variant) was not included because it was not expected to be 

present in an Asian population [291].  

 

3.2 Materials and Methods 

3.2.1 Study Population 

The study subjects were patients receiving maintenance warfarin therapy with 

a stable therapeutic INR between 2 and 3 for at least 3 months, recruited from the 

ACCs at the National University Hospital (NUH) and Tan Tock Seng Hospital in 
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Singapore between June 2002 and June 2004 for a previous genotyping study [28,132]. 

Patients aged below 18 years or those with liver disease, malabsorption or chronic 

diarrheal diseases, or those taking drugs that may potentially interact with warfarin 

were excluded. Dietary advice to avoid foods that may interfere with warfarin 

pharmacokinetics was given to patients during warfarin therapy. Clinical information 

including age, weight, gender, ethnicity and mean daily WMD were recorded. A 

subject was classified as Chinese, Malay or Indian if he or she and his or her parents 

and paternal and maternal grandparents all belong to the same ethnic group. The mean 

daily WMD was the mean of 2 consecutive doses when INR readings were stable. 

The study was approved by the hospitals’ ethics review committees and written 

informed consent was obtained from all patients. A copy of the ethics approval letter 

is appended in Appendix 1. 

 

3.2.2 Genotyping 

Sample Preparation and CYP2C9 and VKORC1 Genotyping  

Deoxyribonucleic acid (DNA) extraction and genotyping of CYP2C9 and 

VKORC1 have been performed previously as reported, using direct sequencing and 

pyrosequencing respectively [28,132]. 

  

SNP Genotyping in CYP4F2, GGCX and EPHX1 

Selected SNPs in CYP4F2 and GGCX, and exons of EPHX1 were genotyped 

by polymerase chain reaction (PCR), and direct sequencing of the PCR products was 

carried out using the BigDye Terminator Version 3.1 Cycle Sequencing Ready 

Reaction Kit (Applied Biosystems Inc, Foster City, CA, USA) on the ABI 3130xl 

Automated Sequence Analyzer (Applied Biosystems) with the forward PCR primer, 
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reverse PCR primer or an internal primer, where appropriate. Primers were designed 

to flank exon 11 in CYP4F2, exons 8 and 9 in GGCX (covering SNPs rs699664 

(R325Q), rs2592551 (R406R) and rs10179904 (T414T)) and a 793 base pair region in 

intron 2 of GGCX (covering rs12714145 and rs67988001). For EPHX1, primers were 

designed to flank all exons, intron-exon junctions and the SNP rs4653436 in the 5’ 

flanking region. Both sense and antisense strands were sequenced to confirm variants. 

Briefly, PCR was carried out in 25µl reactions using MasterMix (Promega, Madison, 

USA), with an initial denaturation step at 95°C for 5 minutes, followed by 35 cycles 

of 95°C for 30 seconds, 54°C to 61°C for 30 seconds and 72°C for 1 minute, followed 

by a final extension step at 72°C for 5 minutes. Generated sequences were compared 

with the reference sequences (NG_007971 for CYP4F2, EU135733.1 for GGCX and 

NG_009776 for EPHX1). The PCR and sequencing primers are provided in Appendix 

2. 

 

Microsatellite Genotyping in GGCX 

PCR was performed to amplify the CAA microsatellite marker rs10654848 

using a HEX-labeled forward primer. PCR conditions were similar to that for SNP 

genotyping except that the number of cycles was 25 instead of 35. The labeled PCR 

products and 500 ROX size standard (Applied Biosystems, Foster City, CA, USA) 

were separated on the ABI 3100 Automated Sequence Analyzer (Applied Biosystems) 

and analyzed using GeneScan software (Applied Biosystems). All experiments were 

carried out in at least duplicate. Each allele was then sequenced to confirm the 

number of CAA repeats.  
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3.2.3 Statistical Analysis 

Analyses were performed using R version 2.11.1 [292] and the genetic analysis 

software PLINK v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/) [293]. Deviation 

from Hardy-Weinberg Equilibrium (HWE) was assessed within each ethnic group 

using the exact test of Wigginton et al. [294]. A p-value <0.001 was used to indicate 

deviation from HWE and these SNPs were excluded from subsequent analyses. 

Differences in genotype distributions among the ethnic groups were tested using the 

chi-square test / Fisher’s exact test.  

The genotypes of the GGCX CAA microsatellite were clustered into 4 groups 

based on the number of repeats for analyses: group 1 (n/10 repeats), group 2 (n/11–12 

repeats), group 3 (n/13 repeats) and group 4 (n/14–15 repeats), where ‘n’ refers to any 

smaller number of repeats. This clustering was similar to that used in most studies on 

this variant [151,152,169].  

Association analysis of SNPs and GGCX CAA microsatellite with WMD was 

done using multiple linear regression and analysis of variance (ANOVA). SNPs with 

MAF <0.01 were first filtered away and a stepwise regression using Akaike 

Information Criteria (AIC) was done on the remaining variants from CYP4F2, GGCX 

and EPHX1. Variants that emerged as significant variables in the stepwise regression 

were then entered into a ‘base’ model consisting of previously known predictors (age, 

weight, presence or absence of CYP2C9*3, VKORC1 381 genotype) [16] and 

ethnicity, to determine their additional contributions. Finally, stratified analysis by 

ethnicity was performed to explore possible interethnic differences in genetic effects 

of the new variant(s). The analysis plan is represented in Figure 4 below. 
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Figure 4. Analysis Flowchart of SNPs and GGCX CAA Microsatellite 
 

 

 

 The LD pattern between EPHX1 SNPs was visualised using Haploview 

Version 4.2 [295]. Haplotype blocks were estimated using the confidence intervals 

method of Gabriel et al.[296], and tested for association correcting for the covariates 

mentioned above. Within each haplotype block, each haplotype was in turn tested for 

association with WMD, adjusting for the above mentioned predictors and ethnicity. 

Rare SNPs (MAF <0.01) were pooled and tested for association based on their 

presence or absence using multiple linear regression accounting for covariates. This 

was based on a method recently developed for analysis of rare variants discovered 

through resequencing within a functional unit such as a gene [297]. The log-

transformed warfarin dose was used as the dependent variable in all univariate and 
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variants are summarized in Appendix 4. Of the 35 common SNPs from EPHX1 and 6 

SNPs from CYP4F2 and GGCX, there were significant differences in MAF among the 

ethnic groups for 17 SNPs (Appendix 4).  

 Five SNPs emerged from the stepwise regression but when adjusted for known 

predictors, only CYP4F2 rs2108622 (V433M) was significantly associated with 

WMD, contributing an additional 2.8% to warfarin dose variability. GA or AA 

carriers required approximately 0.55mg/day more than GG carriers, when averaged 

across all levels of other covariates (adjusted means of log warfarin dose = 0.507, 

0.578 and 0.569 for GG, GA and AA carriers respectively). The EPHX1 intronic SNP 

rs1877724 which was borderline significant, did not contribute additionally after 

rs2108622 was accounted for (Table 1). 

Model r
2
 r

2
 change ANOVA  p-

value* 
Location of new SNP 

Base**  0.584 - - - 
1) Base + rs2108622  0.612 0.028 2.4 x 10-4 CYP4F2 V433M 
2) Base + rs1877724  0.594 0.010 0.05 EPHX1 intron 1 
3) Base + rs3817268  0.584 0 0.90 EPHX1 intron 2 
4) Base + rs67892231  0.585 0.001 0.31 EPHX1 K117R 
5) Base + rs2292568  0.589 0.005 0.22 EPHX1 P284P 

6) Base + rs2108622 + rs1877724  0.618 0.006*** 0.16***  

* Compared with base model 
** Base model = age + weight + CYP2C9*3 + VKORC1 381 + ethnicity 
*** Compared with model 1 
 

Table 1. Effects on WMD of 5 SNPs Emerging from Stepwise Regression after 

Adjusting for Known Predictors 
 

 

 

 Upon stratified analysis by ethnicity, no big difference in the effect of 

CYP4F2 rs2108622 (V433M) was observed among the 3 races, judging from its 

additional contribution of between 3.0 and 4.5%. However, there was substantial 

variation in r2 among the 3 races (54.4% to 73.2%) and was lowest in Malays, 

possibly indicating more unknown factors in them (Table 2). 
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Variable  Regression coefficient (p-value†) 

All Chinese Malay Indian 

n = 248 n=131 n=81 n=36 

Intercept  0.886 (***) 1.026 (***) 0.825 (***) 0.650 (**) 

Age  -0.005 (***) -0.005 (***) -0.005 (***) -0.006 (**) 

Weight  0.003 (***) 0.002 (**) 0.002 (.) 0.006 (**) 

CYP2C9*3  -0.152 (***) -0.270 (***) 0.016 -0.140 (*) 

VKORC1 381 TC  -0.130 (***) -0.258 (*) -0.100 (*) -0.062 

VKORC1 381 CC  -0.310 (***) -0.414 (***) -0.276 (***) -0.408 (***) 

Indian ethnicity  -0.023 - - - 

Malay ethnicity  -0.059 (**) - - - 

CYP4F2 rs2108622 GA  0.071 (***) 0.051 (*) 0.079 (*) 0.106 (.) 

CYP4F2 rs2108622 AA  0.062 (.) 0.122 (*) 0.083 0.036 

r
2
  0.612 0.595 0.544 0.732 

r
2 (without CYP4F2)  0.584 0.563 0.499 0.702 

r
2 change due to addition of CYP4F2  0.028 0.032 0.045 0.030 

†p-value: *** 0.001 ** 0.01 * 0.05 . 0.1 

 

Table 2. Model Estimates of CYP4F2 rs2108622 and Known Predictors in the 3 

Ethnic Groups 
 

 

 

3.3.2 EPHX1 Haplotype Association 

 The LD pattern across EPHX1 appeared similar in the 3 ethnic groups 

(Appendix 5). Five haplotype blocks were estimated using the confidence interval 

method in Haploview. None of the haplotypes were associated with WMD in the 

haplotype test after adjusting for known predictors (Table 3). 
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Block SNPs Haplotype Frequency p-value 

1 rs4653436 rs12741681 rs12744609 GAA 0.754 0.614 
ACG 0.185 0.861 
GCA 0.057 0.106 

2 rs3738040 rs1877724 rs3738042 
rs41266229 rs41266231 rs3738046 

rs3738047 

GTGGGGG 0.330 0.051 
GCGGGGG 0.231 0.172 
ACGGGGA 0.208 0.852 
GCAAAGG 0.137 0.681 
GCGGGCG 0.057 0.101 
GCGGGGA 0.019 0.585 

3 rs3738048 rs55743622 CA   0.944 0.101 
TC 0.057 0.101 

4 rs1051740 rs2292566 CG          0.466 0.957 
TG       0.276 0.950 
TA      0.258 1.000 

5 33430A>G rs4149223 rs2234922 
rs2292567 rs4149226 rs2292568 

rs1051741 rs45467394 rs4149227 
rs4149228 rs4149229 rs4149230 

AGAGCCCGCAGG 0.336 0.560 
AGAGTCCGCAGG 0.153 0.404 
ACGGTCTGCAGG 0.119 0.226 
GCAGCTCTAGGC 0.0766 0.287 
ACAGCCCGCAAG 0.0726 0.761 
AGAATCCGCAGG 0.0685 0.802 
ACAGCCCGCAGG 0.0617 0.474 
ACAGCTCTAGGC 0.0522 0.614 
ACAGTCCGCAGG 0.0295 0.597 

 

Table 3. EPHX1 Haplotype Blocks, Haplotype Frequencies and Multivariate 

Association Results 
 

 

 

3.3.3 Association of Rare SNPs with WMD 

 There were 37 rare SNPs in EPHX1 (28 novel and 9 catalogued), and of the 

248 patients, 45 had at least 1 rare SNP. The presence of rare SNPs was not associated 

with WMD (p = 0.091). Grouping and testing of the rare SNPs by features that may 

influence their function, such as whether they were coding or noncoding, synonymous 

or nonsynonymous, was also attempted but none of these groupings of rare SNPs 

were significantly associated with WMD. However, the presence of noncoding rare 

SNPs was marginally associated with WMD, with those carrying at least 1 rare 

noncoding SNP requiring about 0.34mg/day less than those without (p = 0.088). 
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3.4 Discussion 

 Exonic regions of EPHX1 and selected variants in CYP4F2 and GGCX were 

surveyed in this study and only the CYP4F2 rs2108622 (V433M) variant was 

significantly associated with WMD after accounting for previously known predictors. 

This is in line with a recent study in another Singaporean multiethnic Asian 

population, which also found CYP4F2 V433M to significantly influence warfarin 

dose requirements, albeit only in the subgroup of patients with low-dose VKORC1 

diplotypes [172]. Despite several studies failing to replicate this association 

[18,20,162,177,298], results from a recent meta-analysis found that heterogeneous and 

homogenous variant carriers require 10% and 21% more warfarin than wild-type 

carriers respectively [299] and the results herein are consistent with this finding. 

CYP4F2 is now established as an additional genetic factor for response to warfarin as 

well as the other coumarin derivatives acenocoumarol and phenprocoumon 

[180,181,300,301]. However, its additional contribution is relatively small and is 

unlikely to dramatically improve dose prediction.  

 On the other hand, the associations of the previously described GGCX variants 

with WMD failed to replicate in our cohort, like in most other studies that included 

them [17,18,152,153,156,158,159,161,163,178]. The 2 GGCX SNPs (rs699664 and 

rs12714145) also failed to demonstrate an effect on acenocoumarol and 

phenprocoumon response [301,302]. The CAA microsatellite appears to have an effect 

on WMD only with higher number of repeats (≥14 repeats) [160,169], which is 

relatively rare in our population. Therefore its effect, if any, is unlikely to be relevant 

in our population.  

 This study also comprises the first exon sequencing of EPHX1 to determine 

whether any coding or splice site variants of the gene affect WMD in our multiethnic 
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Asian population. Non-exonic variants reported to be associated with WMD 

(rs4653436 and rs1877724) were also deliberately captured. The intronic SNP 

rs1877724 was marginally associated with WMD after adjusting for known covariates 

and ethnicity, but failed to reach statistical significance after accounting for CYP4F2 

V433M. This is consistent with a Han Chinese study in which the association between 

rs1877724 and WMD was also marginal [18]. A Caucasian study investigating 

rs4653436 did not find an association with WMD as well [178]. Furthermore, in an 

earlier GWAS in Caucasians, no EPHX1 SNPs reached genome-wide significance 

[19]. In those studies which reported a significant association between an EPHX1 SNP 

and WMD the contribution of the SNP was small, in the range of 1–5% 

[18,148,159,161]. The effect of rs1877724 in our population, if any, is likely to be 

smaller than that of CYP4F2 V433M. 

 One explanation for the failure to detect significant associations between the 

studied variants and WMD in our population is inadequate power. A post-hoc power 

calculation for MAF >1% at the 5% significance level using QUANTO Version 1.2.4 

[303] revealed that the sample size in this study provided about 80% power to detect a 

genetic variant with marginal r2 of at least 3%. MAF is one of the factors affecting 

statistical power in genetic association analyses, other than sample size and effect size 

[304]. In fact, the QUANTO software also takes in MAF as one of the parameters. 

Intriguingly, the output does not show any effect of MAF on power (Appendix 6). 

The fact that some of the EPHX1 SNPs have low MAF, and that their numbers are 

relatively small (only 6 SNPs have MAF between 1 and 5%), should not pose a big 

problem of false negatives. Since numerous studies including much larger ones, have 

failed to replicate these associations, it is likely that the true effect size of the GGCX 

and EPHX1 variants if any, are actually smaller. As such, the lack of association 
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between GGCX and EPHX1 variants and WMD in this study is likely to be due to a 

lack of a meaningful effect in our population rather than a lack of power.  

Defining the phenotype in genetic association studies is challenging, entailing 

completeness, reliability and validity [305]. It has also been demonstrated that 

phenotypic complexity, measurement bias and poor phenotypic resolution can affect 

the power to detect genetic variants in association studies, using the example of 

attention deficit hyperactivity disorder (ADHD) [306]. Warfarin response can be 

defined in many ways, such as WMD, time to stable dose, time to therapeutic range, 

% time in therapeutic range, INR achieved with a fixed starting dose, INR achieved 

on day X (usually ≤7), INR>4 in first week, variation in clotting factor activities, 

warfarin plasma concentrations, bleeding risk, and so on. In fact, several of these have 

been used as outcomes in genetic association studies, although WMD is the most 

commonly used one. Compared to phenotypes like ADHD, warfarin response is far 

less complex, albeit still fraught with variability and thus potential for poor 

phenotypic resolution. The usual target INR range is 2 to 3, implying that the WMD 

itself would contain some amount of variability. In other words, different warfarin 

doses may lead to an INR between 2 and 3, and qualify as WMD. An alternative 

target variable like WMD normalized to stable INR would theoretically remove much 

of this variability. However, a meta-analysis of CYP2C9 and VKORC1 effects on 

some of these outcomes (other than WMD) do not seem to indicate that they have 

better promise in detecting genetic associations [307]. Furthermore, there is no linear 

relationship between warfarin dose and INR [308]. Given the narrow therapeutic index 

of warfarin, the range of warfarin doses for INR to remain between 2 and 3 (i.e. the 

inherent variability of WMD) is likely to be very small. Finally, keeping in mind the 

ultimate goal of translating warfarin pharmacogenetic research into clinical practice, 



 

44 

 

the target variable should also be one that is convenient for clinical application. 

Considering all these factors, WMD is still a more suitable outcome variable than a 

INR-normalized WMD or INR achieved with a fixed starting dose, despite its 

shortcomings. 

 Despite the lack of a sizable effect, the present findings and others collectively 

still point to the possibility that mEH may have a yet to be defined role in the warfarin 

interactive pathway. Recent efforts in understanding the transcriptional regulation of 

EPHX1 showed that the proximal promoter regions of the classic and alternative 

exons 1 (E1 and E1-b respectively) are key drivers of transcription in the liver and 

most body tissues, respectively [192,193]. Haplotype analysis of a region spanning 

both promoters and the whole gene also showed that Alu polymorphisms in the 

promoter regions, which affect transcriptional activity, reside in a haplotype block 

that extends to exon 3 [193]. rs1877724 and rs4653436 (associated with WMD in a 

Caucasian study [148]) are within this haplotype block, so it is possible that these 

SNPs tag other polymorphisms that affect transcription and thus protein activity.  

 Most of the novel SNPs discovered in the course of genotyping were rare. It 

was suggested that a large fraction of low frequency nonsynonymous SNPs have 

deleterious effects [309]. Interestingly, the presence of noncoding rare SNPs turned 

out to be marginally associated with WMD in this study. This is not totally surprising 

as some of the noncoding rare SNPs may exert their effects through transcriptional 

regulation since approximately 40% of them lie in the same haplotype block with the 

promoters, as defined by Yang et al. [193]. Nevertheless, nonsynonymous SNPs also 

seem to have different effects according to their predicted impact on the protein 

function. Among the 7 nonsynonymous rare SNPs, 4 were predicted to be benign by 

PolyPhen [310] and patients with these SNPs required approximately 4.3 mg/day 
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(after accounting for covariates) and most of them required a dose higher than 

predicted (by the pharmacogenetic model with previously known predictors and 

CYP4F2), while patients with the other 3 nonsynonymous SNPs predicted to be 

possibly damaging, required approximately 2.7 mg/day and slightly less than 

predicted. Although the number of SNPs and patients here were too small to draw any 

firm conclusions on the effect of rare SNPs by their possible effect on the gene 

product, these results suggest that rare SNPs may be worth studying on a larger scale. 

This is exemplified by a recent study which found that pooling rare variants in 

CYP2C9 that tend to reduce the enzyme activity had an effect on the WMD [134].  

 Apart from CYP2C9, VKORC1 and CYP4F2, other genetic factors of warfarin 

dose requirements have been elusive. Possibly, gene-gene and/or gene-environment 

interactions may explain part of the remaining variability. Considering the roles and 

interactions of the established and the herein studied genes (Figure 3), a possible 

gene-gene interaction may occur between VKORC1 and CYP4F2, given that the 

amount of vitamin K1 available for GGCX would depend in part on the simultaneous 

activities of both gene products. However, the overall VKORC1 and CYP4F2 

interaction was not statistically significantly (ANOVA between models with and 

without interaction terms; p-value = 0.375) and the r2 was increased by only 0.68%. 

Gene-gene interactions may instead occur between VKORC1 and EPHX1 and/or 

GGCX but neither EPHX1 nor GGCX have been shown to have a significant main 

effect, so indiscriminate testing for interactions is imprudent due to the rapid inflation 

in type 1 error. Moreover, statistical interaction may not necessarily reflect biological 

interaction, and vice versa [311]. The lack of a significant statistical interaction 

between VKORC1 and CYP4F2 simply means it does not explain warfarin dose 

variability any further, rather than demonstrate a lack of biological interaction. 
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 VKORC1 -1639G>A correlates with mRNA expression of the gene in the liver 

[141,142], and thus may result in different clotting propensity manifesting as different 

baseline INR values. Theoretically, if VKORC1 or ethnicity (which is correlated with 

VKORC1 genotype) is correlated with baseline INR, the baseline INR should be a 

better predictor of warfarin dose since it is closer to the phenotype along the causal 

pathway, and also incorporates variation from other factors such as vitamin K levels 

and clotting factor activities (Figure 6).  

 

Figure 6. Causal Pathway of Genetic and Non-genetic Factors on Warfarin Dose 
 

 

 

 There is however no information on how baseline INR varies with VKORC1 

genotype or ethnicity. Interestingly, some studies have explored the incorporation of 

early INR readings to refine dose prediction [218,219,312] and a simulation study have 

even suggested that baseline clotting factors levels would be useful in predicting 

WMD [313]. Only 1 study can be found to consider the baseline INR as a predictor 

and it was disappointingly quite a poor one on its own [314]. This may be due to the 

canalization effect (which is “the relative robustness of key physiologic parameters, 

features and processes despite wide genetic and phenotypical variability of other 

factors”), that has been proposed to apply to the coagulation cascade as well 
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[313,315,316]. Despite the wide variability in clotting factor activities in normal 

subjects, INR exhibits low variability. This canalization effect is however expected to 

be reduced with anticoagulant therapy and the variation in clotting factor activities 

then results in variation of warfarin dose required [313]. If so, complex gene-gene and 

gene-environment interactions that stabilize the INR in normal individuals, may 

explain part of the remaining warfarin dose variability. 

 The presence of 3 distinct ethnic groups within our study population poses the 

risk of false positive associations due to population structure. The allele frequencies 

of CYP4F2 rs2108622 differ significantly across the 3 ethnic groups. The minor allele 

A is more common in Indians than in Chinese and Malays (MAF = 0.472, 0.244 and 

0.222, respectively) (Appendix 4). However, the association between the SNP with 

WMD does not appear to be an artifact since it is significant even after adjusting for 

ethnicity. In addition, it also has a significant effect within each ethnic group (Table 

2). In light of significant associations in other populations as well, CYP4F2 rs2108622 

is likely to be a genuine finding. 

To the best of our knowledge, this study has the largest cohort of Malays and 

Indians in addition to Chinese, enabling the exploration of genetic factors in 

explaining interethnic differences in warfarin dose requirements. Among these 3 

ethnic groups, warfarin dose requirements in Malays are the least well understood. 

Current predictors explain only about 50% of their dose variability, compared to 57% 

in Chinese. More intriguingly, Malays have a VKORC1 haplotype distribution which 

is intermediate between Chinese and Indians, yet require doses similar to the Chinese. 

Given the finding that the MAF of CYP4F2 V433M in Chinese and Malays are 

similar, and that none of the studied GGCX and EPHX1 variants were associated with 

warfarin dose requirements, none of the studied variants could account for the lower 
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than expected (from their VKORC1 haplotype distribution) warfarin dose 

requirements in Malays, suggesting that other genetic loci, non-genetic factors, or 

joint effects of genetic variants with one another or with non-genetic factors may 

explain their warfarin dose requirements instead. 

 In conclusion, CYP4F2 V433M has a small but significant effect on WMD in 

our multiethnic Asian population, while GGCX and EPHX1 failed to demonstrate an 

effect. 
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CHAPTER 4: TRANSLATIONAL ASPECTS OF GENETIC FACTORS IN 

PHARMACOGENOMICS (STUDY 2) 

4.1 Introduction 

 It has recently been recognized that the relationship between association p-

values and discriminative ability of genetic markers for complex diseases are not 

necessarily proportional [317,318]. Therefore, genetic markers should be evaluated by 

their ability to improve predictive accuracy, or clinical validity, apart from their 

association with disease [317,319]. Disappointingly, the genetic signals identified for 

complex diseases thus far are generally inadequate as disease classifiers despite being 

replicated across multiple populations and displaying statistically significant effect 

sizes [318,320,321]. As with complex diseases, pharmacogenetic traits are believed to 

be polygenic [322], although the observed effects are considerably larger than those 

detected in complex diseases, and are likely to involve fewer genes [323].  

 Prior to the proliferation of genetic analyses, warfarin dose requirements have 

been observed to vary between different ethnic and population groups, with Asians 

requiring lower doses than Caucasians [9,10]. In the multi-ethnic population of 

Singapore, Chinese and Malays have been observed to require lower doses compared 

to Asian Indians [28,132]. Interestingly, the frequency of the VKORC1 haplotype 

associated with high warfarin dosage displayed considerable interethnic variability, 

and is appropriately more common in populations that require higher warfarin doses, 

and vice versa [132,243,324]. Furthermore, in dosing algorithms the contribution of 

race has been observed to drop drastically after the inclusion of these genetic factors, 

suggesting that the interethnic differences in dose requirements may be explained at 

least in part by genetic factors, and that race could be a surrogate for genetic factors 

[132,225]. If so, genetic factors would have much lower or even no additional utility 
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over ethnicity. However, there is also evidence that most genetic diversity occurs 

within members of the same race rather than between races [325,326]. This study thus 

aimed to explore the clinical relevance of CYP2C9, VKORC1 and CYP4F2 beyond 

the known and easily available clinical factors in predicting WMD. This was done 

using 2 approaches: exploring the contribution of genes over and above clinical 

variables in explaining variation in warfarin dose requirements, and comparing the 

predictive accuracy of WMD with and without genes.  

 

4.2 Materials and Methods 

4.2.1 Study Population 

 Data from the same 248 patients (131 Chinese, 81 Malays and 36 Asian 

Indians) in Study 1 were used in this study. Genotyping of CYP2C9*3 [28], VKORC1 

(381; rs7196161) [132] and CYP4F2 V433M (rs2108622) were previously reported or 

described in Study 1. It was previously established that VKORC1 381 alone is 

sufficient to distinguish between the 2 common haplotypes H1 and H7 in VKORC1 

[16]. Gene names mentioned henceforth in this study will refer to the described 

variants here. CYP2C9*2 was excluded as this variant is considerably rare in our 

populations [16,28].  

 

4.2.2 Statistical Analysis 

Correlation between Genes and WMD 

 All analyses were performed in R Version 2.11.1 [292]. The contributions of 

CYP2C9*3, VKORC1 and CYP4F2 to warfarin dose variation have been established 

in this study population previously and in this thesis (Study 1) [28,132], but their 
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relationships with WMD was re-demonstrated in turn in this particular subset of 248 

patients using linear regression with log warfarin dose as the response.  

 

Correlation between Ethnicity and Genes 

 Given the concurrence between ethnic variation in warfarin dose requirement 

and inter-ethnic differences in the MAF of VKORC1, 2 hypotheses were investigated: 

(i) whether the 3 genes are predictive of self-reported ethnicity; and (ii) whether the 

genes are still useful in explaining warfarin dosage after adjusting for ethnicity. To 

explore the first hypothesis, the Wright’s Fixation Index (FST), which is a measure of 

population differentiation, was used. For 2 populations with allele frequencies 

denoted as p1 and p2, the FST is defined as:  

��� = (�� − �	)	

(�� + �	)(2 − �� − �	) 

(Equation 1) 

 For each FST, the empirical p-value was calculated as the proportion of 

1,353,095 SNPs in the Singapore Genome Variation Project (SGVP) [243] with FST 

values at least as large as the observed statistic using allele frequencies from the 

clinical sample. A multinomial regression was also performed, with the genes as 

predictors and ethnicity as the response to assess the relative contribution of each 

gene in explaining ethnicity. The statistical significance of each gene was evaluated 

using ANOVA. To investigate the second hypothesis, a linear model between log 

warfarin dose and the genes was constructed, after adjusting for previously 

established clinical factors like age and weight [16], and ethnicity. The additional 

contribution of the genes beyond age, weight and ethnicity in explaining WMD was 

also assessed with ANOVA.  
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Predictive Accuracy of WMD from Genetic and Clinical Factors  

 The comparison of accuracy of the 3 genes and clinical factors (age and 

weight) in predicting WMD was the second approach adopted in investigating the 

translational value of genetic factors and also a measure of clinical validity. A cross-

validation exercise was performed where 80% of the 248 samples was used to train 

the regression model, which was subsequently used to predict the dose requirement 

for the remaining 20%. In each cross-validation, 2 statistics were measured: (i) the 

proportion of the variance explained by the model (r2) with the training data; and (ii) 

the proportion of patients where the predicted dose was found within 20% of the 

actual dose. The second criterion is deemed to be within clinically acceptable limits 

and has commonly been used as a threshold for assessing dose prediction accuracy 

[221,222,225]. Some fixed dose regimens were also included for comparison. While 

5mg/day is a common standard starting dose, it is not unusual in clinical practice to 

give lower doses to Chinese and Malay patients and so a race-specific fixed dose 

regimen was also included for comparison. 100 iterations of the cross-validation were 

performed for each model, and 8 models involving fixed dose regimens and various 

combinations of clinical and genetic factors were considered:  

(A) Fixed dose of 5mg/day in all patients 

(B) Fixed dose of 3mg/day for Chinese and Malays, and 5mg/day for Indians 

(C) Ethnicity only 

(D) Age, weight and ethnicity 

(E) Two main genetic factors only (CYP2C9*3 and VKORC1) 

(F) Age, weight, ethnicity, CYP2C9*3 and VKORC1 

(G) Age, weight, CYP2C9*3, VKORC1 and CYP4F2 

(H) Age, weight, ethnicity, CYP2C9*3, VKORC1 and CYP4F2 
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4.3 Results 

4.3.1 Correlation between Genes and WMD 

 As expected, all 3 genes were significantly associated with WMD, explaining 

between 5 and 31% of the dose variance (Table 4). Of note, carriers of the T allele of 

VKORC1 required higher doses, with almost 3mg/day difference expected between 

TT and CC carriers. This coincides with the interethnic difference in warfarin dose 

requirements and allele frequency of VKORC1 (Appendix 3). Chinese had the lowest 

frequency of the T allele as well as the lowest dose requirement (MAF = 0.111, 

median dose = 3.00mg/day), followed by Malays (MAF = 0.346, median dose = 

3.50mg/day) and Indians (MAF = 0.875, median dose = 5.11mg/day). 

Gene & variant Genotype Predicted dose, mg/day (SE)* r
2 (%) ANOVA p-value 

CYP2C9*3 AA 3.577 (1.031) 5.5 1.97 x 10-4 
AC/CC 2.457 (1.099) 

VKORC1 381 CC 2.783 (1.033) 31.3 2.20 x 10-16 
CT 4.115 (1.047) 
TT 5.455 (1.064) 

CYP4F2 rs2108622 GG 3.088 (1.102) 8.8 1.25 x 10-5 
GA 3.779 (1.048) 
AA 4.802 (1.039) 

SE: standard error 
* Predicted from linear model of each gene on log warfarin dose 
 
Table 4. Association Analysis between Each of the 3 Genes with WMD, Without 

Adjusting for Clinical Variables and Ethnicity 
 

 

 
4.3.2 Correlation between Ethnicity and Genes 

 Based on FST calculations, VKORC1 was highly differentiated among the 3 

ethnic groups, with significant differences in all pair-wise comparisons. While the 

observed MAF differences between the Indians and the other 2 ethnic groups at 

CYP2C9*3 and CYP4F2 were similar to that at VKORC1 (Appendix 3), there was no 

significant distinction between the Chinese and Malays at CYP2C9*3 and CYP4F2 

based on FST (Table 5).  
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SNP 
FST (empirical p-value*) 

Chinese – Malays Chinese – Indians Malays - Indians 

CYP2C9*3 0.0005 (0.706) 0.0220 (0.399) 0.0163 (0.400) 
VKORC1 381 0.0783 (1.16 × 10-3) 0.5838 (2.73 × 10-5) 0.2942 (4.12 × 10-4) 
CYP4F2 rs2108622 0.0007 (0.679) 0.0565 (0.186) 0.0690 (0.092) 
*Defined as the proportion of 1,353,095 SNPs in the SGVP with FST values at least as 
large as the observed FST in this analysis 
 
Table 5. SNP Level FST Values between Ethnic Groups 
 

 

 

 The multinomial regression between the ethnicity and the genotypes of the 3 

genes identified VKORC1 (p-value < 10-16) and CYP4F2 (p-value = 4.66 × 10-4) to be 

strongly associated with ethnic distribution, but not CYP2C9*3 (p-value = 0.106).  

 Apart from individually having a significant effect on WMD, all 3 genes were 

also additionally important for explaining warfarin dose variation (p-value ranging 

from 6.2 × 10-4 for CYP4F2 to p < 10-16 for VKORC1, Table 6), even after adjusting 

for ethnicity and the 2 clinical factors (age and weight). In addition, CYP4F2 

significantly contributed in explaining dose variation (p = 2.42 x 10-4), even after 

taking into account ethnicity, clinical factors and the 2 main genetic factors 

CYP2C9*3 and VKORC1 (Table 6).  

Model variables r
2 (%) ANOVA p-value* 

Age, weight, ethnicity  33.4 - 
Age, weight, ethnicity + CYP4F2 37.4 6.2 x 10-4 
Age, weight, ethnicity + CYP2C9*3 38.8 6.1 x 10-6 
Age, weight, ethnicity + VKORC1 53.2 < 10-16 
Age, weight, ethnicity + VKORC1 (+ CYP2C9*3) 58.4 1.09 x 10-7 
Age, weight, ethnicity + CYP2C9*3 + VKORC1 (+ CYP4F2) 61.2 2.42 x 10-4 

* Base model consists of only age, weight and ethnicity. ANOVA p-value compares 
the stated model against the base model, except for the last 2 models where the 
ANOVA compares the stated model with the model immediately preceding it – thus 
evaluating the contribution of the locus in brackets.  
 
Table 6. Contribution of Genes other than Their Effect through Ethnicity 
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4.3.3 Predictive Accuracy of WMD from Genetic and Clinical Factors 

 Through a cross-validation procedure, the accuracy of warfarin dose 

prediction in 8 settings involving fixed dose regimens and different combinations of 

clinical and genetic factors were compared (Figure 7). Due to the different dose 

requirements in the 3 ethnic groups, a standard dose of 5mg/day performed worst in 

terms of accuracy (model A), predicting the dosage for only 25% of the patients 

within acceptable error margin. As expected, a race-specific fixed dose, where 

3mg/day was assigned to Chinese and Malays and 5mg/day assigned to Indians, 

performed better (model B), yielding very similar predictive accuracy to the use of 

ethnicity alone (model C). Incorporating clinical variables (age and weight) on top of 

ethnicity increased both the amount of dose variance explained (r2) and also the 

proportion of patients that were accurately predicted (model D), but the improvement 

was marginal compared to when the genetic factors were incorporated (models E – 

H). The model incorporating only CYP2C9*3 and VKORC1 (model E) already 

outperformed models that utilize only clinical variables and ethnicity (models A - D), 

and the improvement was even more significant when these variables were 

incorporated in addition to the 2 genes (model F). The addition of CYP4F2 without 

(model G) and with (model H) the inclusion of ethnicity marginally increased the 

amount of dose variance explained.   
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Bar chart showing the mean cross-validated r2 (blue bars) and proportion of patients 
with predicted dose within ±20% actual dose (red bars) of 8 models. Error bars 
represent the 95% confidence interval (CI) of the respective measures. Model A: fixed 
dose of 5mg/day for all patients; model B: fixed dose of 3mg/day for Chinese and 
Malays, and 5mg/day for Indians; model C: ethnicity alone; model D: age, weight and 
ethnicity; model E: CYP2C9 and VKORC1; model F: age, weight, ethnicity, CYP2C9 
and VKORC1; model G: age, weight, CYP2C9, VKORC1 and CYP4F2; model H: age, 
weight, ethnicity, CYP2C9, VKORC1 and CYP4F2 

 

Figure 7. Prediction Accuracy of Various Fixed Dose, Clinical and Genetic 

Models 
 
 
 
4.4 Discussion 

 While large-scale genetic studies in many common diseases and complex traits 

have unveiled numerous genomic loci that are associated with these phenotypes, the 

clinical relevance and utility of these findings have been relatively limited due to the 

marginal contribution by each locus. This then raises questions on the clinical 

relevance of pharmacogenomics, as drug response can also be considered a complex 

disease. In the case of warfarin, the observation of a strong correlation between the 

genotypes of CYP4F2 and VKORC1 with ethnicity poses the question of whether 
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there is any merit in performing genetic testing, since self-reported ethnicity may 

already function as an effective surrogate to represent the genetic information. 

 Using data from a multiethnic patient population consisting of 3 major ethnic 

groups in Singapore (consisting of Chinese, Malays and Asian Indians), this study 

established the additional contribution that genetic testing can yield beyond easily 

assayed clinical biomarkers like age, weight as well as self-reported ethnicity. The 

findings suggest that even within each ethnic group, genetic information from the 3 

loci (VKORC1, CYP2C9 and CYP4F2) was still important in assessing warfarin dose 

requirements. The broad classification of individuals by self-reported ethnicity thus 

can still result in under or over-dosing, with the severity and fraction of affected 

individuals differing depending on the ethnic group.  

 Based on statistical testing of various models (Table 6) and comparison of 

predictive accuracy (Figure 7), the small but significant contribution of CYP4F2 was 

also confirmed. CYP4F2 increased the r2 by almost 3% even after including VKORC1 

and CYP2C9. This is consistent with study 1 and also in line with the only study to 

date which evaluated the additional role of CYP4F2 in terms of prediction accuracy, 

where the difference in predictive accuracy in terms of r2 with and without CYP4F2 

was 5% [134]. In addition, when evaluated in another study by another statistical 

criterion, the AIC, the inclusion of CYP4F2 was also found to improve a basal dosing 

model of known clinical and genetic factors [327]. 

 Out of the 3 loci surveyed, VKORC1 was most predictive of ethnicity, while 

the associations between ethnicity and the genotypes of CYP2C9 and CYP4F2 were 

considerably weaker. This concurs with a previous genome-wide comparison of 

genetic variability across the Chinese, Malays and Indians in Singapore, where 

VKORC1 was amongst the ten most differentiated regions across the genome between 
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these 3 ethnicities [243]. Despite the strong correlation between VKORC1 and 

ethnicity, all the genes surveyed contributed additional predictive information for 

warfarin dose requirements on top of ethnicity. This is not particularly surprising 

since 85-90% of our genetic variation is due to differences within ethnic groups and 

only 10-15% due to differences between ethnic groups [325]. This suggests that even 

if self-reported ethnicity is statistically associated with warfarin dose variation, it is 

unlikely to be clinically useful on its own for predicting dose requirements, nor as a 

surrogate for the genetic factors that are involved in warfarin dose response. This 

finding concurs with those of a previous study which explored the contribution of race 

to genotypic variance across 3 pathways (irinotecan, fluorouracil and insulin) in the 4 

Hapmap populations using hierarchical clustering and principal component analysis 

[326]. In addition, self-reported population or ethnic membership is likely to be even 

less useful with increasing rates of inter-ethnic marriages, particularly in multi-ethnic 

societies like Singapore, since self-reported ethnicity is likely to be misleading in the 

presence of genetic admixture.  

 The main objective of the predictive accuracy calculations here was not to 

evaluate specific dosing algorithms but to demonstrate the clinical validity of genetic 

factors to predict warfarin dosing in our population. The relative contribution of 

genetic information beyond conveniently attained clinical information such as age and 

weight will be important in deciding the importance of genetic testing. Studies 

assessing the prediction accuracy of warfarin dosing algorithms use measures such as 

mean absolute error (MAE), coefficient of determination (r2), and proportion of 

patients with predicted dose within certain limits of the actual dose (±20% or ± 

1mg/day) [134,221,225,226]. Similar measures were used in this study as these are 

easily interpretable and allow direct comparisons with published findings. However, 
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each measure represents only some aspect of dose prediction accuracy. This may 

explain why as genetic variables were added on to clinical variables, the r2 increased 

considerably but the proportion of patients with predicted dose within ±20% actual 

dose only increased slightly. With the second measure, improvements in predictions 

that fall outside this range were undetected, yet these are likely where most of the 

improvements lie.  

 The prediction accuracy of clinical and genetic factors combined (model F) 

compared well with other different populations in terms of r2 and proportion of 

patients with predicted dose within ±20% actual dose [134,221,225,226]. For example, 

the clinical relevance of genetic factors was similar to the observations by the IWPC, 

which similarly reported that genetic factors improved the prediction accuracy for an 

additional 6 - 8% of the samples beyond non-genetic biomarkers like age and weight 

[225].  

 In conclusion, genetic information adds value in addition to clinical 

biomarkers and self-reported population/ethnic membership for predicting warfarin 

dose requirements.  
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CHAPTER 5: RELEVANCE OF WARFARIN GENOTYPING FROM A 

PUBLIC HEALTH PERSPECTIVE: THE POPULATION ATTRIBUTABLE 

FRACTION AS A MEASURE OF THE IMPACT OF WARFARIN 

PHARMACOGENETIC TESTING (STUDY 3) 

5.1 Introduction 

 There is now substantial data to show that WPGT can improve dose prediction 

(clinical validity) [225-227,328] but whether routine genotyping is worthwhile also 

depend on its population impact, which can be expressed as the proportion of the 

population which would benefit, or the reduction in proportion of undesirable 

outcomes. Clinical utility data would be ultimately necessary and ideally the 

population impact is estimated based on relevant clinical outcomes but pending 

which, knowing the population impact of WPGT on intermediate outcomes such as 

dose accuracy can also be enlightening.  

 Two previous approaches in estimating the population impact of WPGT 

include taking the proportion of patients requiring low and high doses (≤3mg/day and 

≥7mg/day ) and taking the collective proportion of genotype combinations apart from 

the most common [225,242]. However, these may not provide an accurate 

representation of the impact of WPGT. 

 Through a simple manipulation of the initial warfarin dose accuracy, where 

the outcome of interest (or ‘disease’ in classical PAF definition) was defined as 

‘inaccurate starting dose’ (outside ±20% actual maintenance dose) and ‘exposure’ 

defined as ‘no genotyping’, the PAF was applied to assess the impact of WGPT in 

patients who need warfarin therapy. Although the PAF here was derived from a 

measure commonly used in assessing algorithm performance (i.e. proportion 

predicted within 20% actual dose), it offers a different perspective of the value of 
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WPGT, one that is more convenient for decision making on WPGT recommendations 

in a particular population. Indeed, several studies have evaluated the performance of 

published pharmacogenetic algorithms using the above-mentioned measure [134,225-

228] and this was not the aim here. 

 The objective of this study was to estimate the potential population impact of 

WPGT and identify populations that may or may not benefit from WPGT. Using data 

from IWPC, the proportion of patients requiring ≤3mg/day or ≥7mg/day and their 

relationship with the different genotype combinations by race was first explored to 

determine the validity of the previous approaches, and then the population impact of 

WPGT estimated using the PAF. 

 

5.2 Materials and Methods 

5.2.1 Study Population 

 The expanded IWPC dataset containing clinical and genotype data for 6922 

warfarin patients from 22 study sites was obtained from the PharmGKB database 

[329]. The dataset contained information on demographics, indication for warfarin 

therapy, stable therapeutic dose, treatment INR (INR achieved with a stable warfarin 

dose), target INR (desired INR), use of concomitant medications, and presence of 

genetic variants of CYP2C9 and VKORC1. Some potentially important variables such 

as vitamin K intake, smoking status and adverse events were not included as they 

were not uniformly available across all the study sites [225]. CYP4F2 genotype data 

was also not available. Those who did not reach stable doses, target INR not within 2 

to 3 and those without dose information were excluded. Populations for which dose 

simulation could not be performed due to unavailability of genotype frequencies 

(Koreans) and undefined races (Asians and others/unknown) were also excluded. For 
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PAF calculation, those with missing clinical information (age, height, weight) needed 

for the IWPC dosing algorithms were further excluded. 

 

5.2.2 Dose Simulation of Genotype Combinations 

 All analyses were performed in R Version 2.11.1 [292]. To predict the 

warfarin dose requirements for each genotype combination within each race due to 

variation in CYP2C9 and VKORC1, effect sizes estimated from the study population 

and genotype frequencies from the Hapmap (Utah residents with northern and western 

European ancestry [CEU]; Yoruba in Ibadan, Nigeria [YRI]; Japanese in Tokyo, 

Japan [JPT]; Han Chinese in Beijing, China [CHB]) were used to simulate the dose 

distributions. CYP2C9 genotype was expressed as the number of variant (*2 or *3) 

alleles present, and all other variant alleles were considered as *1. VKORC1 -

1639G>A (rs9923231) was used as the tagging SNP and missing genotypes were 

imputed using the same rules as reported by the IWPC [225].  

 Within each race, the square roots of warfarin doses were regressed on 

CYP2C9 and VKORC1 genotypes and the regression coefficients used as the effect 

size. Simulations were performed for 100,000 individuals in each race, where the 

genotype at each gene was sampled from a multinomial distribution with cell 

probabilities equal to the population-specific genotype frequencies from Hapmap. An 

additive nature was modeled to the effect of the 2 genes, and the root dose of each 

individual was simulated from a Gaussian distribution around the estimated effect size 

with the corresponding SEs as the standard deviation (SD), given the sampled 

genotype combination of the individual. The obtained distributions were back 

transformed to yield the actual dose distributions.  
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5.2.3 Calculation of PAF 

 In epidemiology, PAF is calculated for an exposure for a disease, which is a 

dichotomous state. Though the ‘population’ here would include only people requiring 

warfarin therapy, the PAF can be easily multiplied by the number of new warfarin 

patients in a given time interval to estimate the absolute number of patients who 

would benefit from WPGT. Here the predicted warfarin dose was dichotomized as 

‘accurate’ (defined as within ±20% actual dose) and ‘inaccurate’ (outside ±20% 

actual dose). Ideally the first dose given is the dose the patient needs (i.e. maintenance 

dose) but an initial dose within ±20% of the actual dose was deemed to be within 

clinically acceptable limits, thus ‘accurate’, and this standard has been used in several 

studies assessing dose prediction accuracy [221,222,225]. The ‘disease’ was defined as 

‘inaccurate initial dosing’, since this is what we wish to reduce. All patients receiving 

warfarin can receive their initial dose based on a fixed dose regimen (5mg/day), 

clinical or pharmacogenetic algorithm. The IWPC clinical and pharmacogenetic 

algorithms were used for initial dose prediction [225]. The ‘exposure’ was defined as 

‘no WPGT’, and both scenarios (fixed dose and clinical algorithm) were compared 

against WPGT. The comparison between the clinical algorithm and WPGT would 

represent the true impact of WPGT (where the only difference is the addition of 

genetic factors) while the comparison between the fixed dose regimen and WPGT 

would represent the practical impact of WPGT for centers which routinely use a fixed 

dose regimen and do not formally incorporate clinical factors into initial dose choice.  

 In addition to a 5mg/day fixed dose regimen, a 3mg/day fixed dose regimen 

for Japanese and Chinese was also explored, since Asians are known to require lower 

doses [9,10]. A 6mg/day fixed dose was also tested in Blacks as it approximated the 
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mean simulated dose. The PAF was calculated using the formula below for a range of 

exposure prevalence (5 – 99.9%): 


�� = 
� − 
�

�

× ���% 

(Equation 2) 

where �� is the proportion with the outcome of interest (inaccurate dosing) in the 

whole (warfarin patient) population and �� is the proportion with the outcome in the 

unexposed (genotyped). The PAF at 99.9% prevalence of no WPGT was used to 

approximate that of 100% prevalence (PAF100%), the impact of implementing WPGT 

in all warfarin patients for a population that is currently not using WPGT. 

 

5.3 Results 

5.3.1 Study Population 

 After excluding those who did not reach stable dose, target INR not within 2 

to 3 and those without dose information, 4237 patients remained. All Malays and 

almost all Indians did not have height information for PAF calculation so they were 

also excluded. After further excluding the Koreans, Asians and others/unknowns, 

3672 remained for dose simulation (2543 Whites, 639 Blacks, 227 Japanese and 263 

Chinese). Those with missing clinical information (age, height, weight) needed for the 

IWPC dosing algorithms were further excluded and 3252 patients remained for PAF 

calculation (2305 Whites, 627 Blacks, 195 Japanese and 125 Chinese).  

 

5.3.2 Dose Simulation 

 Consistent with previous observations of interethnic variation in warfarin dose 

requirements [9,10], Blacks were found to require the highest doses, followed by 

Whites and then Chinese and Japanese (Figure 8, black lines). As a result, the 
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proportion falling into the ≤3mg/day and ≥7mg/day groups differed dramatically by 

race (Table 7). More Japanese and Chinese fell into these dose extremes (53 – 58%) 

compared to Whites and Blacks (36 – 43%). 

 Since only 2 genes were modeled here, the overall dose distribution is the sum 

of the distributions of 9 genotype combinations (3 genotypes per gene: wild type, 

heterozygous variant and homozygous variant for each SNP; 32 = 9 combinations). 

The sizes of the distributions of each genotype combination are proportional to their 

expected frequency, so some colored lines may not be visible if their expected 

frequency is very low or zero (Figure 8, colored lines). A visual inspection of the 

distributions of the individual genotype combinations revealed that different 

combinations predominated in different populations (Figure 8, colored lines), and 

their contributions to the low and high dose groups also differed (Table 7). Whites 

displayed the largest genetic variation (with more colored lines being visible), while 

Japanese and Chinese displayed little variation, and Blacks exhibited the least. For 

Whites, several genotype combinations made up the ≤3mg/day group, while only 1 or 

2 combinations dominated in Blacks (CYP2C9WT/VKORC1-1639GG), Japanese and 

Chinese (CYP2C9WT/VKORC1-1639AA and CYP2C9WT/VKORC1-1639AG) in 

that dose group. Similarly, 2 to 3 combinations dominated the ≥7mg/day group for 

Whites, and 1 combination (CYP2C9WT/VKORC1-1639GG) for Blacks. Very few 

Japanese and Chinese patients required ≥7mg/day.  

 The predominant combination in each race (CYP2C9WT/VKORC1-1639AG 

and CYP2C9WT/VKORC1-1639GG for Whites, CYP2C9WT/VKORC1-1639GG for 

Blacks, and CYP2C9WT/VKORC1-1639AA for Japanese and Chinese) did not 

necessarily dominate the intermediate dose group (≤3mg/day and ≥7mg/day). Instead, 

the distributions spread over at least 2 dose groups. The dose group that was deemed 
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to benefit from WPGT (≤3mg/day and ≥7mg/day) thus did not coincide squarely with 

the presence of variant alleles. 

Genotype 
combination* 

Proportion of population with dose 
requirement ≤3mg/day (%) 

Proportion of population with dose 
requirement ≥7mg/day (%) 

Whites Blacks Japanese Chinese Whites Blacks Japanese Chinese 

WT/GG 1.1 5.7 0.0 0.0 10.7 34.3 0.0 0.0 

Varhet/GG 1.3 0.1 0.0 0.0 1.8 0.2 0.0 0.0 

Varhom/GG 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WT/AG 4.3 1.0 6.5 1.6 4.2 1.2 0.3 0.3 

Varhet/AG 3.6 0.0 0.4 0.5 0.5 0.0 0.0 0.0 

Varhom/AG 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WT/AA 5.4 0.0 48.2 42.6 0.5 0.0 0.2 0.2 

Varhet/AA 3.2 0.0 2.2 7.1 0.0 0.0 0.0 0.0 

Varhom/AA 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

All 19.9 6.8 57.2 51.8 17.8 35.6 0.4 0.6 
*Genotype combinations refer to CYP2C9/VKORC1 -1639 genotype, where WT = no 
variant alleles (CYP2C9 *1/*1), Varhet = 1 variant allele (CYP2C9 *1/*2 or *1/*3), 
Varhom = 2 variant alleles (CYP2C9 *2/*2, *2/*3 or *3/*3). 

Table 7. Proportion in Dose Extremes by Genotype Combination and Race
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Simulated dose requirements using effect sizes from the IWPC dataset and genotype frequencies from Hapmap (CEU, YRI, JPT, CHS). The 
sizes of the density plots of individual genotype combinations (colored lines) and overall distribution (black lines) are proportional to their 
expected frequencies. CYP2C9WT = no variant alleles (*1/*1), CYP2C9Varhet = 1 variant allele (*1/*2 or *1/*3), CYP2C9Varhom = 2 variant 
alleles (*2/*2, *2/*3 or *3/*3). 
 
Figure 8. Warfarin Dose Requirements by Genotype Combinations and Race
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5.3.3 PAF 

 Overall, the addition of genetic information to clinical information could 

reduce inaccurate dosing by 13.7% (Figure 9a, WPGT vs. clinical algorithm). 

However, there was differential benefit across the populations. Whites stood to 

benefit the most, with 18.4% reduction in inaccurate dosing from complete 

implementation of WPGT, followed by Chinese and Japanese (PAF100% = 15.9% and 

9.2% respectively). Blacks actually did worse with WPGT compared to the clinical 

algorithm, as manifested by a negative PAF.  

 Overall, complete implementation of WPGT yielded greatest benefit when 

compared to the scenario where all patients received a 5mg/day fixed initial dose 

(Figure 9b, WPGT vs. fixed dose). In this case, overall inaccurate dosing could be 

reduced by 22.8% but again there were racial differences. Chinese and Japanese now 

stood to benefit most (PAF100% = 46.8% and 37.9% respectively), followed by Whites 

(PAF100% = 23.5%) then Blacks (PAF100% = 5.3%) who would only benefit slightly. 

Since Asians are known to require lower warfarin doses and may often be given a 

lower fixed starting dose, WPGT was also compared to a 3mg/day fixed dose for 

Japanese and Chinese. In both populations, patients did worse with WPGT compared 

to the 3mg/day fixed dose. WPGT was also not better than a 6mg/day fixed dose in 

Blacks. 
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a) WPGT compared with Clinical Algorithm 
In this scenario, those not receiving WPGT were assumed to be dosed initially using a 
clinical algorithm. For a population that is not implementing WPGT at all, the PAF 
corresponding to 100% prevalence is interpreted as the proportional reduction in 
inaccurate dosing if everyone were dosed using a pharmacogenetic instead of the 
clinical algorithm. Positive values indicate that WPGT is better than a clinical 
algorithm while negative values indicate the opposite. The negative values however 
do not have a meaningful interpretation. 
 

 
b) WPGT compared with Fixed Dose 
In this scenario, those not receiving WPGT were assumed to be dosed initially using a 
fixed dose of 5mg/day. For Japanese and Chinese, a 3mg/day initial fixed dose 
regimen, and for Blacks a 6mg/day fixed dose, were also added for comparison. 
Again, negative PAF values are non-interpretable except for indicating that WPGT is 
worse than the fixed dose. 

Figure 9. PAF by Prevalence of WPGT and Race 
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 It was previously demonstrated in the IWPC population that those requiring 

low (≤3mg/day) or high doses (≥7mg/day) benefit most from WPGT whereas those 

requiring intermediate doses (>3 to <7mg/day) do not [225]. To further explore how 

the PAF compared with this finding and the dose simulation findings herein, PAF was 

also calculated by dose groups. In the whole IWPC population, the impact in the low 

and high dose groups was the most and least in the intermediate dose group (Table 8). 

This was expected and consistent with the conclusions of the study by the IWPC 

[225]. However, when stratified by race, some distinct differences were revealed. In 

Whites, the overall pattern was still present though those in the intermediate dose 

range also benefited to some extent. Blacks in the intermediate dose range (which 

made up 57.5% of the Black population) however, did worse with WPGT. So even 

though the 35.9% in the high dose group benefited, there was little or no overall 

impact in this population. For Japanese, only those requiring low doses (57.3% of the 

Japanese population) benefited substantially while all Chinese benefited, when 

compared to a clinical algorithm or the 5mg/day fixed dose. 

 When the PAF values by dose groups (Table 8) were inspected against the 

simulated dose distributions (Figure 8), there appears to be no correlation between 

extent of genetic variation and PAF, whether across all doses or within each dose 

group. For example, in the low dose group, genetic variation increases in the order of 

Blacks, Japanese/Chinese and Whites but their corresponding PAFs did not increase 

in the same order. Furthermore, within Blacks alone PAF varies dramatically despite 

having almost the same amount of genetic variation across the 3 dose groups. This 

reiterates the unsuitability of using proportions of a population requiring low and high 

doses, or proportions carrying variant genotype combinations as a measure of the 

population impact of WPGT.  
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Population Total 
n 

Overall 
PAF (%) 

Low dose group (≤3mg/day) Intermediate dose group (>3 to <7mg/day) High dose group (≥7mg/day) 

n PAF (%) Proportion (%) n PAF (%) Proportion (%) n PAF (%) Proportion (%) 

WPGT vs. clinical algorithm 

IWPC 3252 13.7 768 22.4  1914 2.6  570 20.2  
Whites 2305 18.4 509 26.7 20.0 1414 8.9 62.0 382 23.8 18.0 
Blacks 627 -6.2* 53 3.9 6.6 392 -22.8* 57.5 182 10.4 35.9 
Japanese 195 9.2 130 14.2 57.3 63 0 42.3 2 0 0.4 
Chinese 125 15.9 76 13.9 52.0 45 18.2 47.4 4 25.0 0.6 

WPGT vs. 5mg/day fixed dose 

IWPC 3252 22.8 768 35.8  1914 3.3  570 33.0  
Whites 2305 23.5 509 33.2 20.0 1414 11.1 62.0 382 30.4 18.0 
Blacks 627 5.3 53 5.7 6.6 392 -38.6* 57.5 182 39.0 35.9 
Japanese 195 37.9 130 49.2 57.3 63 7.4 42.3 2 0 0.4 
Chinese 125 46.8 76 51.3 52.0 45 37.9 47.4 4 25.0 0.6 

WPGT vs. 3mg/day fixed dose 

Japanese 195 -7.8* 130 -8.3* 57.3 63 -7.8* 42.3 2 0 0.4 
Chinese 125 -34.8* 76 -76.3* 52.0 45 0 47.4 4 25.0 0.6 

WPGT vs. 6mg/day fixed dose 

Blacks 627 -2.4* 53 5.7 6.6 392 -21.3* 57.5 182 17.1 35.9 

All PAF values listed are based on 100% no WPGT (PAF100%). 
*Negative PAF values have no meaningful interpretation except for implying that WPGT is worse than the comparator. 
 

Table 8. PAF by Race and Dose Groups 
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5.4 Discussion 

 Although the promise of pharmacogenomics is one of personalized medicine, 

the decision of whether to implement it ultimately relies on a population-based 

approach. Despite the recognition of the roles of CYP2C9 and VKORC1 on warfarin 

dose variation and the availability of several commercial genotyping platforms testing 

for these variants, whether or not to routinely genotype all new warfarin patients still 

remains a debate. The FDA has judiciously stopped short of recommending genetic 

testing prior to warfarin initiation due to insufficient evidence on its clinical utility 

and cost-effectiveness. Here, a different perspective to this problem is offered by 

estimating the potential impact of WPGT in several populations in terms of reduction 

in inaccurate initial dose. 

 In this study, the relationships between CYP2C9 and VKORC1 genotype 

combinations and dose requirements were first explored in different races among the 

IWPC population to examine the consistency and validity of previous methods of 

estimating WPGT population impact. The dose simulation results revealed much 

overlap between dose distributions of different genotype combinations and that some 

would have a substantial proportion falling within the intermediate dose range. The 

presence of variant CYP2C9 and/or VKORC1 alleles thus may not necessarily 

translate to benefit from WPGT according to the 3 and 7mg threshold. PAF 

calculations by dose groups also revealed that this dose threshold does not hold for all 

races. The overall pattern (where those requiring ≤3mg/day and ≥7mg/day benefit) 

was largely observed only in Whites, who make up the majority of the IWPC 

population. In most other races, patients in the intermediate dose range either did 

worse (Blacks) or benefited substantially (Chinese). The proportion of patients 
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deemed to benefit based on the 2 approaches used earlier thus do not apply across all 

races.    

 In trying to estimate the population impact of WPGT, it is not necessary to 

find race-specific dose thresholds for dividing the population into those who would 

benefit and those who would not. Moreover, there is little practical use in knowing 

these dose thresholds. Here the PAF was used as a measure of the population impact 

of WPGT and different races were found to benefit to different extents.  

 If WPGT is implemented in Whites, inaccurate dosing would be reduced by 

about 18% if everyone were currently dosed using a clinical algorithm, and by about 

24% if everyone were currently given a 5mg/day fixed dose. For Blacks, WPGT was 

worse than the clinical algorithm and 6mg/day fixed dose, and only marginally 

superior to a 5mg/day fixed dose regimen. Moreover, the marginal benefit over the 

5mg/day fixed dose was found to be at the expense of worse prediction in more than 

half of Blacks (Table 8). For Chinese and Japanese, switching from the clinical to the 

pharmacogenetic algorithm could reduce inaccurate dosing by about 16% and 9% 

respectively. However, the reduction would be much greater if all Chinese and 

Japanese were receiving 5mg/day initially (PAF100% = 47% and 38% respectively). 

This is not surprising since Chinese and Japanese have lower dose requirements. 

However, a lower initial fixed dose of 3mg/day actually performed better than WPGT 

in Chinese and Japanese.  

 The IWPC has collated genotype and phenotype data from warfarin patients of 

different ethnicities from study sites in US, UK and Asia and developed a consensus 

dose prediction algorithm [225]. Differences in the ability of CYP2C9 and VKORC1 to 

explain warfarin dose variability in different races have been previously recognized. 

In general, pharmacogenetic algorithms perform better in Whites and Asians than in 



 

74 

 

Blacks [213,222]. When explored within the IWPC population, a similar trend was 

revealed with VKORC1, that it explains a greater proportion of warfarin dose 

variability in Whites than Blacks, even though the effect size was similar across all 3 

racial groups. It was thus postulated that Whites, Blacks and Asians would have 

similar benefit despite differences in VKORC1 allele frequencies, which accounted for 

differences in its contribution to warfarin dose variability in different populations 

[143]. However, interethnic differences and the lack of benefit from the 

pharmacogenetic algorithm compared to a fixed dose in Blacks, Japanese and Chinese 

was not revealed until these populations were analyzed separately here. 

 The poorer performance of WPGT compared to the clinical algorithm and 

6mg/day fixed dose in Blacks, and 3mg/day fixed dose in Japanese and Chinese may 

be explained by a combination of a suboptimal pharmacogenetic algorithm and 

different dose distributions. Plots of predicted against actual doses provide clues on 

the explanation to this somewhat surprising finding (Appendix 7). In all 4 races, low 

doses tended to be over-predicted while high doses tended to be under-predicted, 

pointing to a sub-optimal dosing algorithm. Due to the right-shift in dose distribution 

in Blacks, and left-shift and ‘compactness’ of the dose distributions in Japanese and 

Chinese relative to that of Whites, the race-specific fixed doses were able to ‘capture’ 

enough of the respective populations to outperform the pharmacogenetic algorithm. 

The Blacks, Japanese and Chinese all have little genetic variation yet have different 

dose distributions (Figure 7). The observed dose distributions of the different races 

were therefore the result of their particular genetic makeup (of CYP2C9, VKORC1), 

though not necessarily the amount of genetic variation.  

 The IWPC pharmacogenetic algorithm was used as the representative WPGT 

here, since it was developed in a multiethnic population and is one of the better 
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performing algorithms across different races, outperforming even some ethnic specific 

algorithms [221,222]. Moreover, race-specific models have also been explored in the 

IWPC population and were found to be inferior to the general model. No details were 

provided on these race-specific models but it is likely that they were compared to the 

general model in terms accuracy measures used for model selection (i.e. MAE, % 

within 1mg/day and r2 on the training set) [225]. If so, a better general model 

(compared to a race-specific model) does not necessarily translate to better 

performance compared to a race-specific fixed dose. 

 Studies that compared the IWPC pharmacogenetic algorithm with clinical and 

fixed dose regimens and found it to be superior were all performed in Caucasian or 

mixed (majority Caucasian) populations [134,225,226,228], except for 1 

in Japanese [227]. The discrepancy between some of the results here (that races other 

than Whites do not benefit) and these studies may have been due to the influence of 

the Caucasians (who indeed do better with a pharmacogenetic algorithm), and 

methodological differences (for the Japanese study). Takeuchi et al [227] in the 

Japanese study have demonstrated a similar benefit pattern to the IWPC study [225] 

using different dose thresholds and an accurate dosing definition of within ±1mg/day 

of the actual dose, which would likely represent more than ±20% actual dose for a 

Japanese population who needs lower doses than Caucasians. The overall proportion 

with accurate dosing (according to their definition) with the pharmacogenetic and 

clinical algorithms were 71.5% and 64% respectively, not as dramatically different as 

it may appear to be when presented by dose groups. Such comparisons should be 

carried out in more non-Caucasian populations. 

 The validity of the PAF estimates depends on the absence of confounders. In 

the way the PAF was applied in this study, there was actually no confounding at all 
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since the ‘disease’ was measured under counterfactual conditions. The estimates are 

therefore valid as long as other factors affecting warfarin dose such as age, weight, 

diet, drugs and compliance do not change significantly in the near future. As 

mentioned in the methods, the PAFs calculated herein are applicable only to those 

who need warfarin. There is little data of the prevalence of warfarin use but it is 

estimated to be 1 – 2% in developed countries [1].  

 The PAF is typically used for exposures that increase disease risk and if the 

exposure decreases disease risk, PAF becomes negative, which occurred in several 

instances here. In this case, the negative values have no meaningful interpretation and 

the prevented fraction (PF) (i.e. fraction of potential total disease load prevented by 

the protective factor), obtained by reversing the exposure coding, should be used 

[330,331]. The interpretation of a negative PAF is difficult because it is no longer a 

true fraction as there would be some additional counterfactual ‘cases’ (patients with 

inaccurate dosing) which are not included in the denominator in the calculation of the 

PAF [332]. However, PAF is related to PF in the expression below [333], so a more 

negative PAF does correlate with a higher PF even though it is difficult to interpret its 

absolute value. 

1 − �� = 1
1 − ��� 

(Equation 3) 

 Overall, the findings support WPGT in Whites but not in Blacks, Japanese and 

Chinese. However, there are several limitations to this analysis and more studies are 

needed in Blacks and Asians to confirm these results. Firstly, only the IWPC 

algorithm was used here and other algorithms may have different performances which 

will thus affect the PAF. This may explain why the results appear to contradict the 

results of Study 2, where dose prediction using a pharmacogenetic algorithm is 
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superior to an ethnic-specific fixed dosing. The IWPC pharmacogenetic algorithm 

was developed in a largely Caucasian population while the predictive accuracy 

obtained in Study 2 was based on cross-validation of models trained in the 

Singaporean Asian population and therefore would have predicted better. Secondly, 

the numbers of Chinese and Japanese were much smaller in comparison to Whites and 

Blacks and so the PAF estimates may not be as stable. Thirdly, only the impact of 

genotyping CYP2C9 (*2 and *3) and VKORC1 was assessed here. Additional genetic 

factors may further improve dose prediction and thus PAF. For example, some 

variants associated with WMD that are almost exclusively found in African 

Americans, such as CYP2C9 *5, *6, *8 and *11 [20,133,136], CALU rs339097 [209], 

CYP2C9 rs7089580, VKORC1 -8191 (rs61162043) [334], may improve dose 

prediction and thus make WPGT useful in this population. Fourthly, other potentially 

important clinical and genetic factors such as smoking status, alcohol consumption, 

vitamin K intake, CYP4F2, APOE and GGCX, were not available in the IWPC dataset 

[225], and thus the impact of WPGT may be over or under-estimated. Lastly, 

population impact was only measured in terms of initial dose accuracy. These results 

need to be considered together with evidence of clinical benefit (such as decrease in 

bleeding or thromboembolism), which are still forthcoming.  

 This analysis suggests that race is important, at least in informing policy 

decisions on the implementation of WPGT. Given the genetic diversity, potential 

benefit as expressed by the PAF and empirical evidence of clinical benefit in the 

reduction of hospitalization [235] and serious adverse drug reactions (ADR) [240], 

WPGT can be recommended in Whites. In 2008, the uptake of warfarin genotyping in 

the US is only 1.7% [335], so there is still much potential for benefit. On the other 

hand, there is currently insufficient evidence to recommend WPGT in Blacks and 
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Asians. More studies are needed to validate and compare the performance of different 

pharmacogenetic algorithms with a 3mg/day fixed dose in Asians to confirm whether 

genotyping is of benefit.   

 In conclusion, the PAF was used as a measure of the population impact of 

WPGT and Whites were found to benefit from genotyping while Blacks, Chinese and 

Japanese may not.  
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CHAPTER 6: ATTITUDES, WILLINGNESS-TO-PAY AND PREFERENCES 

FOR WARFARIN PHARMACOGENETIC TESTING (STUDY 4) 

6.1 Introduction 

 In addition to clinical validity, patient acceptance and economic sustainability 

are also necessary for successful implementation of PGT in the clinic. In this study, 

attitudes were measured as willingness to undergo WPGT, perceived benefits of 

WPGT, and concerns or barriers to taking WPGT. ‘Perceived benefits’ and ‘concerns’ 

are latent variables which were measured using 2 Likert scales, and were meant to 

measure how much respondents think WPGT can benefit them (after basic 

information on it has been provided), and their level of concern regarding ethical, 

social or legal issues pertaining to WPGT respectively.  

 In view of the inconclusiveness of cost-effectiveness studies on WPGT [38], 

this study will also use the DCE methodology to elicit the WTP and preferences for 

WPGT so as to have a grasp of its feasibility from the economic point of view as well 

as determine what potential patients would value in such a test. The WTP estimates 

may also potentially be used in a formal CBA. WPGT is still not a routine clinical 

procedure, so preferences here would pertain to the introduction of the test rather than 

delivery of the test. These present different scenarios, where different attributes would 

be relevant [283]. 

 In the context of a CBA, all members of society benefit from a health 

intervention from a societal perspective. While users of the intervention directly 

benefit, others benefit from knowing that the intervention is available and from the 

fact that patients have access to the intervention [273]. Therefore, the general 

population would provide a societal perspective, allowing a more holistic value 

estimation of the intervention, and is therefore more relevant for policy making and 
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resource allocation. Since WPGT is most beneficial when administered to new 

warfarin patients before dose initiation, it may be argued that the general public is the 

more appropriate population to study. On the other hand, patients may be more 

suitable subjects as they are better able to value the benefits of the intervention [336]. 

Furthermore, FDA has recently issued a guidance on the use of patient-reported 

outcome instruments to support claims in approved medicinal product labeling, 

especially those pertaining to patients’ symptoms, signs or an aspect of functioning 

[337], highlighting the importance of studying the patient population as well. In this 

study, both general public and warfarin patients were surveyed to allow estimation of 

ex-ante and ex-post WTP respectively. It also allows the exploration of attitudes on 

WPGT with and without the experience of the process of dose stabilization and 

counseling on warfarin side effects respectively. Though neither population can be 

considered ideal, both populations can offer valuable insight into the attitudes and 

WTP for WPGT of new warfarin patients, who are difficult to recruit. Both 

populations were also restricted to the Chinese, the predominant race in Singapore 

due to possible attitude and preference differences among races, and resource 

constraints.  

 The previous study (study 3) suggested that WPGT may not benefit the 

Chinese. However, this is still tentative and the PAF should be further investigated, 

such as using different pharmacogenetic algorithms and more importantly using 

clinical outcomes, to come to a more definitive verdict. WPGT thus may still be of 

benefit in the Chinese, especially if other genetic or non-genetic factors are found and 

added to the algorithm from future research. Furthermore, the findings of this study 

can also give some indication of the acceptance of PGT for other drugs. It should also 
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be mentioned again that given the hypothetical nature of WPGT to the particupants, a 

gauge of its acceptance was of a greater interest than actual intention or uptake.  

The objective of this study was to determine the attitudes, WTP and 

preferences for WPGT among Singaporean Chinese. One of the specific aims was to 

estimate the price that new patients requiring warfarin would be willing to pay for 

WPGT. Uptake rates for 3 hypothetical warfarin pharmacogenetic tests at different 

prices (price sensitivity) were also estimated. In addition, the following relationships 

were also hypothesized: 

i) Attitudes would be associated with socio-demographic and clinical variables related 

to warfarin intake in patients (length of warfarin therapy, number of INR tests needed 

till dose stabilization and history of ADR), or related to experience with drugs in the 

public (history of ADR and knowledge of friends/family with serious ADR),  

ii) Higher perceived benefits would be associated with higher willingness to undergo 

WPGT,   

iii) Higher concerns would be associated with lower willingness to undergo WPGT, 

and 

iv) Preferences would be associated with socio-demographic and clinical variables (as 

defined above in i)). 

 

6.2 Materials and Methods 

6.2.1 Study Outline 

 The parts and flow of this study is represented in Figure 10 below, with brief 

details on the nature or purpose, final sample size and date of each part. Full details 

are given in the following method section. Pilot 1 formed the groundwork for the 

development of the main survey, while pilot 2 and pilot 3 served to pre-test and refine 
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 Previous studies [16] and personal communications with ACC pharmacists 

from various hospitals suggested that majority of warfarin patients in Singapore were 

elderly Chinese or Malay. Due to resource constraints and the likelihood that many 

Chinese patients cannot speak English (an observation which the ACC pharmacists 

also assent to), the initial target population (and thus pilot 1 participants) was 

restricted to only the Mandarin-speaking Chinese warfarin patients. However, a 

considerable number of English-speaking Chinese were encountered during the 

course of recruiting patients for pilot 1. Coupled with the finding in pilot 1 that higher 

education (and thus higher likelihood to be English speaking) was associated with 

better understanding of WPGT and DCE, English-speaking Chinese were also 

included in the subsequent phases of the study. Patients who have participated in pilot 

1, but not pilot 2, were allowed to participate in the main survey again if they consent 

to. 

 Patients completed the main survey using a self-administered pen and paper 

questionnaire with DCE versions randomized by day (i.e. 1 version per day of 

recruitment). The study was approved by the hospital’s ethics review committee and 

written informed consent was obtained from all patients. Pilot 1 patients were paid 

S$5 while pilot 2 and main survey patients were paid S$10 for their participation. 

 

General Public  

 Pilot 3 participants were National University of Singapore (NUS) staffs (from 

libraries, administrative offices, bookshops and canteens) who were approached 

directly in Jul 2011 while main survey participants were recruited via referral from 

NUS students in Dec 2011. Eligibility criteria were age ≥ 40 years old, self-reported 

Chinese ethnicity and have never been on warfarin therapy. To avoid potential bias in 
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the main survey, a limit of 1 participant per household and up to 3 participants 

referred by each student, was imposed. Participants were required to supply their 

postal code, house number and email of the referring NUS student to verify this. The 

main survey was administered via a web survey generated using SSI Web 7.0.22 

(Sawtooth Software Inc., Orem, USA), where DCE versions were automatically 

randomized. A lower age limit of 40 years old was set to avoid getting a 

disproportionately young sample considering the mode of administration of the main 

survey. This part of the study was approved by the NUS Institutional Review Board. 

All participants including those in pilot 3 were reimbursed S$10 for completing the 

survey. 

 

Sample Size Calculation for Main Surveys 

 The sample size n required for each population was estimated based on 

requirements for the DCE using Orme’s ‘rule of thumb’ formula 

���
� ≥ 500 

(Equation 4) 

where t = number of tasks/questions, a = number of alternatives per task, c = number 

of analysis cells (largest number of levels for any 1 attribute if considering main 

effects only) [281]. Values t = 6, a = 2 and c = 4 were used for calculation, as intended 

in the design. The DCE design (See DCE under Survey Design for details) was then 

iteratively run through the Choice Based Conjoint (CBC) Design Efficiency Test in 

SSI Web 7.0.22 (Sawtooth Software Inc., Orem, USA) using sample sizes in the 

region estimated by Orme’s formula, assuming % choosing ‘none’ option is 15 – 

20%. In the ‘Advanced test’ of the CBC Design Efficiency Test, the absolute 

precisions (SEs) of parameter estimates are estimated under conditional logit 
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estimation using simulated data. A suggested guideline for SEs of main effects is 

about 0.05 or less [338]. The estimated SEs by the CBC Design Efficiency Test using 

different sample sizes and % choosing ‘none’ option are shown in Appendix 8. No 

formula exists for DCE analysis using Hierarchical Bayes (HB) method (see 

Econometric Analysis under Statistical Analysis for details), but it does not appear to 

require greater sample sizes than traditional methods [339].  A sample size of 200 for 

each population was finalized as a compromise between precision and resource 

constraints. 

 

6.2.3 Initial Pilot Study (Pilot 1) 

Specific Aims 

 Pilot 1 is a semi-qualitative study for collecting relevant information for 

questionnaire development as well as assessing the feasibility of the study. The 

specific aims were to  

i) determine the effectiveness of WPGT education,  

ii) identify views and concerns about WPGT, 

iii) identify the most relevant efficacy attribute(s) for the DCE, and   

iv) determine the ability to complete the DCE. 

 

Format and Content of Interviews 

 Individual face to face interviews with patients were conducted in Mandarin, 

using a semi-structured interview protocol (Appendix 9) with the aid of show cards 

(Appendix 10). All interviews were conducted by the same interviewer (SL Chan) and 

lasted approximately half an hour each. Voice recording was also done to aid data 
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recollection. The target sample size was 30 to 50, in line with recommendations for 

such pilot studies [340]. 

 Patients were first asked some questions about their warfarin therapy, such as 

length of therapy, experience on the management process, worries about taking 

warfarin, length of time taken to stabilize dose, and adverse events. Some of these 

questions were intended to be possible warm-up questions in the DCE, depending on 

what attributes were eventually chosen, while others were important background 

information. Prior knowledge of pharmacogenetics was briefly ascertained and then 

WPGT explained with the aid of the first 4 show cards (Appendix 10). The first and 

second cards outlined why management of warfarin is difficult, the current 

management strategy and briefly described WPGT. The third and fourth show cards 

listed the potential benefits and risks of WPGT respectively. Post-education 

understanding of WPGT was then assessed based on the patient’s ability to state at 

least 1 anticipated benefit (after show card 2) or explain it in their own words (after all 

4 show cards). As it became apparent soon after the start of the interviews that a 

substantial proportion had difficulty understanding WPGT, both patient and 

interviewer ratings of the perceived level of post-education understanding were added 

to strengthen the evaluation of whether the patient could understand it. These ratings 

ranged from 1 to 5, with 1 representing no understanding and 5 representing good 

understanding. Patients rated 4 or 5 by the interviewer were considered able to 

understand WPGT. Patients were also asked if they would be concerned about any of 

the associated possible ethical or social risks. 

 Identification of relevant attributes and their levels is an important part in the 

design of a DCE. While the original plan was to simply identify the most important 

and relevant efficacy attribute(s), and verify the chosen WTP range for the DCE, a 
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decision was made to try out a mock DCE early on in the interviews to ascertain if 

patients can grasp the concept and complete a sufficient number of choice tasks. This 

decision was also in light that a sizable proportion might not be able to understand 

WPGT. Therefore, this data would be important in determining how feasible the main 

survey would be. In the last part of the interview, the DCE was briefly introduced and 

the patient asked to choose 1 or 2 of 5 shortlisted possible efficacy attributes. Those 

who chose 2 attributes were also asked if they thought them related and to rank them 

in order of importance. These 5 attributes were: 

i) Chance of having accurate starting dose, 

ii) Time to stable dose, 

iii) Number of INR tests until stabilization, 

iv) Risk of serious adverse events in the first 3 months, and 

v) Risk of hospitalization due to serious adverse events in the first 6 months. 

 The DCE was then further explained and patients were then requested to 

complete a mock DCE with 3 attributes (number of INR tests until dose stabilization, 

risk of serious side effects in the first 3 months and total cost in first 6 months) and 2 

alternatives (with or without WPGT). The first few mock DCEs contained 5 choice 

sets and subsequent ones had 7 in view of the need to include additional choice sets 

for validity. Details on the development of efficacy attributes and design of this mock 

DCE are found in Appendix 11.  

 

Data Analysis 

The ability to understand WPGT after education was assessed based on the 

patients’ ability to explain it in their own words, state at least 1 potential benefit and 

interviewer rating of perceived level of understanding by the patient of at least 4. The 
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2 most important efficacy attributes were chosen based on frequency of the most 

important attribute chosen by the patients. The second choice by the respondents was 

not used in the final decision as a substantial proportion only chose 1 attribute. 

Finally, the ability to understand and complete the DCE was assessed based on the 

post-DCE evaluation and the ability to complete all the choice sets offered. In the 

post-DCE evaluation, those who said they had no problems and/or were able to 

verbalize their though process while doing the exercise, or made comments that 

indicate their understanding (such as stating other factors that may affect their choice 

or state which attribute was most important to them while choosing), were deemed to 

be able to understand the DCE. 

Descriptive and bivariate statistical analyses were carried out using Stata/SE 

10.0 for Windows (StataCorp LP, College Station, TX). 

 

6.2.4 Pilot 2 and 3 

 A structured questionnaire was constructed based on input from pilot 1 and 10 

participants were asked to complete it on paper before being debriefed to find out if 

they found any part of it problematic or difficult to understand. Questions were also 

asked to elicit their thought processes while answering some of the questions to 

determine if they understood them as intended (see debrief questions in Appendix 12). 

Before the main survey in the general public, pilot 3 was conducted using an almost 

identical questionnaire (except for background questions on warfarin intake) in 12 

members of public in the same manner. The last 4 participants in pilot 3 completed 

the questionnaire via web survey on a laptop to further identify any technical or 

formatting problems.  
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6.2.5 Survey Design 

Questionnaire Structure and Development 

 The structured questionnaire was refined based on pilot 2 and 3 findings, 

which are summarized in Appendix 13. To ensure meaningful responses, basic 

information on warfarin and WPGT (which was also used in the pilot studies) were 

provided at appropriate points in the survey and true/false questions were included to 

ascertain the level of understanding of the information provided. The rationale and 

structure of the DCE and the definitions of the attributes were then provided, and 2 

questions designed to test their understanding of the efficacy attributes were also 

included before the DCE tasks. After pilot 3, the 4 true/false questions which were 

meant to test warfarin knowledge were dropped to shorten the survey and also 

considering that most patients scored well, thus providing little information. 

 Apart from the attitude questions and DCE, background questions on warfarin 

intake, demographics, socio-economic status, disease risk perception and self-

evaluation survey cognitive burden were also collected. Housing type was used as an 

approximate proxy for socio-economic status (see Footnote1). For the general public, 

questions on ADR history, knowledge of friends’ or relatives’ ADR history and 

perception of value of a new test that could potentially decrease the number of INR 

tests needed (should they need warfarin) were asked instead of questions on warfarin 

intake. 

 The disease risk perception question asked respondents to rate their risk of 

developing 6 diseases (stroke, heart attack, diabetes, cancer, H1N1 infection and 

hepatitis B) in their lifetime on a 6 point scale. These 6 conditions are a selection of 

                                                           
1 Housing typaes in Singapore can be categorized into public (also known as HDB (Housing   
Development Board)) or private (condominiums or landed), and HDB flats range from 1-room to 5-
room or executive types. HDB is the government board providing public housing in Singapore. 
Housing type is closely correlated with monthly household income, Source: Census 2010 (Available 
from: http://www.singstat.gov.sg/pubn/popn/c2010sr2/t31-38.pdf)  
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common chronic diseases as well as commonly known infectious diseases, and were 

intended to give an indication of general self-perception of disease. Presence of these 

diseases was also captured under the ‘already have it’ option. A sizable proportion of 

patients used the ‘don’t know’ option (which was added because 2 patients in pilot 2 

found it taboo to rate one’s risk or found it hard to put down a risk), which provided 

no information on disease risk perception. This question was thus revised (‘don’t 

know’ option removed, number of response categories reduced to 4 and H1N1 

infection and hepatitis B removed) after pilot 3 to further shorten the survey and 

improve the quality of responses for the public main survey.  

 For self-evaluation of survey cognitive burden, respondents were asked to rate 

the ease of understanding the instructions, level of concentration needed and how 

offensive they found the survey contents on an 11-point scale. However, it was 

noticed that some patients (during patient main survey) have misread the scale labels 

and/or gave responses that were inconsistent with the interviewer’s perception of their 

understanding of the questionnaire (based on the need for explanation). These scales 

were subsequently dropped for the public survey (after pilot 3) and replaced with 1 

question to ask if any difficulty was encountered with the DCE instead.  

 The questionnaire consisted of 5 sections: information on warfarin, DCE, 

information on WPGT, attitudes towards WPGT and demographics, background 

information and quality of survey. Questionnaires for both populations were also 

available in Mandarin and translation was checked by a second person. Representative 

questionnaires for warfarin patients and the general public are given in Appendix 14 

and Appendix 15 respectively.  

 

 



 

91 

 

Attitudes 

 Respondents’ willingness to undergo WPGT was captured on a 5-point scale. 

A supplementary question was also included to capture possible reasons for being 

‘very unwilling’ to undergo WPGT.  

 Perceived benefits and concerns of WPGT were 2 separate concepts and were 

measured using several items each to capture their relevant dimensions. The items 

chosen to represent each concept were adapted from previous studies [254,260] or self-

constructed, and were refined through pilot 2. Items for the 2 scales were interspersed 

and participants were asked to express their agreement to the statements on a 5-point 

Likert scale (Section 4 Question 2, Appendix 14 & Appendix 15).  

 

DCE 

 Based on pilot 1 results, 2 efficacy attributes most relevant to patients were 

selected. The levels of these 2 efficacy attributes cover the range of values reported in 

prospective clinical trials comparing WPGT and standard management [230,231,233] 

(see Appendix 11 for development of these attributes). Instead of an alternative-

specific design as presented in the mock DCE in pilot 1 (show cards 8 – 16, Appendix 

10), the nature of test was incorporated as an attribute to capture possible preferences 

for the genetic nature of WPGT and to overcome design efficiency issues with an 

alternative specific design. WPGT is not yet available in clinical practice in Singapore 

but reported costs of genotyping CYP2C9 and VKORC1 in the US range from 

US$200-600 (S$260 – 780, based on Dec 2010 exchange rates) [267,341-343]. With 

decreasing costs of genotyping, the price of WPGT when it eventually becomes 

available in Singapore is expected to fall within the range of S$100 – S$600. The 2 
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efficacy attributes, together with nature of test and cost, describe WPGT. The 4 

attributes and their levels are shown in Table 9 below. 

Attribute Levels 
Nature of test  Genetic, Non-genetic  
Number of INR tests needed till dose stabilization  5, 13, 21  
Risk of serious side effects (major bleeding or clotting)  1%, 5%, 9% per year  
Cost of test  $100, $225, $375, $600  

 

Table 9. DCE Attributes and Levels 
 
  

 The DCE design was generated using SSI Web 7.0.22 (Sawtooth Software 

Inc., Orem, USA). Each choice set contained 2 alternatives (hypothetical tests) where 

respondents were asked to choose the one they preferred. Following the completion of 

each choice set, respondents would be asked if they would actually take the test they 

had chosen. This is a technique known as ‘dual-response none’, which guards against 

information loss (thus preserving efficiency and power) while retaining market 

realism [344]. As a balance between the cognitive burden on respondents (as assessed 

in the initial pilot study), statistical efficiency and practicalities of administering a pen 

and paper survey (among patients), the final design contained 4 versions with 6 

random choice sets each. Up to 15 versions of 6 random choice sets were first 

generated and then 4 with the least number of dominant choice sets were chosen and 

tested for efficiency using the CBC Design Efficiency Test in SSI Web 7.0.22. The 

final design and design efficiency test results are given in Appendix 8. Two fixed 

choice sets (not used for model estimation) were also added to all 4 versions as 

holdout tasks for assessment of predictive ability of the estimated model. The holdout 

tasks were placed at the fifth and seventh positions in all versions for both 

populations. All respondents had to complete a total of 8 choice sets.  
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6.2.6 Statistical Analysis 

Transformation of Questionnaire Variables 

 Knowledge scores were calculated for DCE attributes pertaining to WPGT 

efficacy (Section 2 questions 5 & 6, Appendix 14 & Appendix 15) and WPGT 

(Section 2 question 1, Appendix 14 & Appendix 15) by taking the number of 

questions correctly answered respectively. These scores were used as an indicator of 

survey quality since the self evaluation of survey cognitive burden was dropped in the 

patient population and removed for the public. Due to a sizable proportion of patients 

having missing disease risk perception information and a different scale being used in 

the public, this was also dropped from the analyses. Presence of the 4 chronic diseases 

(as indicated under ‘already have it’) was used instead. 

 The following demographic and clinical variables were collapsed for analysis 

due to the small numbers in some cells. 

i) Marital status:  

� Divorced/separated + widowed 

ii) Educational status:  

� No qualification/lower primary + primary 

� Secondary + upper secondary 

� Diploma + degree 

iii) Housing type:  

� 1-2 room HDB + 3-room HDB 

� 4-room HDB + 5-room HDB or executive 

� Private condominium + landed 

iv) Length of warfarin therapy (Section 2 question 1, Appendix 14):  

� ≤1 week + >1 week to <3 months 
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� 3 to 6 months + 7 to 12 months 

� >1 to 3 years + >3 years 

v) Number of INR tests needed till stabilization (Section 2 question 3, Appendix 14): 

� <5 + 5 to 9 

� 10 to 14 + 15 to 20 + ≥21 

 All analyses were performed using Sawtooth Software or Stata. 

 

Attitudes  

 Univariate associations between willingness to undergo WPGT and 

respondent characteristics were explored using the Fisher's exact test or one-way 

ANOVA, where appropriate. Perceived benefits and concerns about WPGT were 

measured on 2 Likert scales, so Cronbach’s alpha was first used to assess their 

internal consistencies. Item analysis was also performed to identify and eliminate any 

problematic items. Perceived benefits and concerns about WPGT were expressed as 

summary scores from the Likert items designed to measure each concept, calculated 

as the average score on the 5 point scales. Higher scores indicated higher perceived 

benefits or higher concerns respectively. The scores were assumed to be on a 

continuous scale and univariate associations between perceived benefits and concerns 

with respondent characteristics were analyzed using the student’s t-test, one-way 

ANOVA or Pearson’s correlation, as appropriate. A p-value of <0.05 was considered 

statistically significant.  

 

Econometric Analysis 

 Individual utility coefficients were estimated from DCE data using HB in 

CBC/HB Version 5.2.8 (Sawtooth Software Inc., Orem, USA). HB estimates 
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individual utilities from an optimal mix of an upper level model, or prior (which 

assumes a multivariate normal distribution), and a lower level model, or posterior 

(which assumes a multinomial logit model for individual utilities) iteratively using a 

Gibbs sampler, a Monte Carlo Markov Chain algorithm. More details are provided in 

the Sawtooth Software manual [344]. All attributes except nature of test were 

specified as linear. Validity of the HB estimates was verified using predictive 

accuracy on the 2 holdout tasks. 

 Using the individual HB utilities, 3 welfare measures were calculated: i) 

marginal WTPs (mWTPs), ii) relative attribute importances and iii) WTP for 3 

hypothetical WPGTs. mWTPs were calculated using the following formula [345]: 

!"#�$ = %$
%&

 

(Equation 5) 

where %$ is the estimated coefficient on attribute i and %& is the coefficient for price. 

Relative importance scores for each attribute were calculated by expressing the range 

of each attribute’s utility as a proportion of the sum of the utility ranges of all 

attributes [281]: 

'() =  +(,))
∑ +(,$).$/�

 

(Equation 6) 

where '() is the importance score of the nth attribute (,)) among N attributes, and 

+(,)) is the utility range. As the actual clinical benefit of WPGT over no WPGT is 

still uncertain, 3 hypothetical scenarios representing the possible benefits of WPGT 

were constructed (presented as different combinations of attributes) and the WTP-

values for them calculated using the following formula [345,346]: 
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"#� =  0 %$
−%&$

(∆,$) 

(Equation 7) 

mWTPs are for single attributes while WTPs are for entire goods or services, in this 

case the hypothetical WPGTs, which are composed of 4 attributes. 

 Uptake rates at different prices (price sensitivity) for these 3 hypothetical 

WPGTs were also simulated in SMRT 4.20.2 (Sawtooth Software Inc., Orem, USA), 

using the ‘shares of preference’ simulation method [347].  

 Summary statistics of mWTPs, attribute importances and WTPs were 

presented as medians with their 95% confidence intervals (CI). The 95% CIs were 

obtained by bootstrapping using 1000 replications using the bias correction method to 

account for the skewed distributions, as described in Haukoos and Lewis (2005) [348]. 

 To explore the association between preferences and socio-demographic and 

clinical characteristics, hierarchical multiple linear regression was performed with 

attribute importances (calculated using (Equation 6) as the dependent variable. The 

first level of independent variables in the model consists of socio-demographic 

variables, followed by clinical variables in the second level. A p-value of ≤0.05 is 

considered statistically significant. 

 

6.3 Results 

6.3.1 Pilot 1 

Patient Characteristics 

 Of 174 patients approached, 43 were ineligible (28 cannot speak Mandarin and 

15 were deemed to have poor cognitive function), 81 refused to participate and 50 

agreed to participate, giving a response rate of 38.2%. Of those who refused 

participation, 47 (58%) were males. One patient had to be dropped from the analysis 
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as she was thought to have poor cognitive function and was not giving meaningful 

answers during the interview, resulting in a final sample size of 49. The patient 

characteristics are summarized in Table 10. 

Patient characteristics n (%) 

Age, median (range) 58 (22 – 82) 
Gender  
 Female 14 (28.6) 
 Male 35 (71.4) 
Highest educational level attained  
 No formal education or lower Primary 7 (14.3) 
 Completed Primary 13 (26.5) 
 Completed Secondary 16 (32.7) 
 Completed ‘A’ levels 4 (8.2) 
 Diploma  5 (10.2) 
 Degree or higher 4 (8.2) 
Housing type  
 3-room HDB 6 (12.5) 
 4-room HDB 16 (33.3) 
 5-room HDB 15 (31.3) 
 Private condominium or landed 9 (18.8) 
 Others 2 (4.2) 
Length of warfarin therapy  
 <3 months 8 (16.3) 
 3 to 6 months 7 (14.3) 
 7 to 12 months 1 (2.0) 
 >1 to 3 years 9 (18.4) 
 >3 years 24 (50.0) 
History of serious adverse events  
 Bleeding* 8 (16.3) 
 Clotting 0 
Time taken to stabilize dose†   
 <4 weeks 6 (12.5) 
 1 to 2 months 8 (16.7) 
 >2 months 11 (22.9) 
 Don’t know 16 (33.3) 
 Not stable yet 7 (14.6) 
Participating in WPGT clinical trial 3 (6.1) 
Taken any genetic test in the past 1 (2.0) 

* Based on patient’s self report. If bleeding occurred in a critical organ or required 
medical intervention it was considered serious. This mirrors closely the definition of 
major bleeding in McMillin et al [233]. 
† Stable dose was defined as the time when 2 consecutive INR readings at least 2 
weeks apart were within therapeutic range and when there were no dose changes. 
Based on patient’s recall or verification against their anticoagulation record card, 
where available. 
 
Table 10. Pilot 1 Patient Characteristics 
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Experience and Feelings on Warfarin Management 

 Most patients have been taking warfarin for a while and have since adapted to 

the demands of being on warfarin therapy. Many still found it troublesome to have to 

do INR tests and see the pharmacist regularly and the degree of this feeling varied 

quite widely, depending on their frequency of review and work commitments. Other 

hassles included having to watch their diet and other drugs they take, and having to 

take the necessary precautions before dental procedures. Despite these 

inconveniences, most patients recognized the importance of these monitoring and 

restrictions. Some expressed that they would trade inconvenience for the assurance of 

good INR control. On the other spectrum, a few patients were rather non-compliant to 

ACC reviews and diet restrictions as they haven’t felt that doing so have adversely 

affected them or simply found it too troublesome. 

 Most patients also did not remember or have any extraordinary experience 

during the initiation period, except 1 who had purple toe syndrome and another who 

remarked that daily INR tests and injections were a torture. Frequent INR monitoring 

was not mentioned until prompted by the interviewer, except by 4 patients. Some 

mentioned having to watch diet and remember to take their medicines initially, 

suggesting that the lifestyle adjustments in the initial period affected patients more 

than the inconveniences of frequent INR monitoring. 

 Eighteen patients (37%) said they had no worries taking warfarin. Of the 

remaining 31 patients, most were worried about hurting themselves and bleeding. 

Those who had no worries tended to be older than those who did, and surprisingly 

half of those who had a bleeding episode before still did not worry.   
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Understanding and Concerns about WPGT 

 Patients’ prior knowledge of pharmacogenetics was briefly ascertained by 

asking if they have heard of it and to briefly explain what they understood by it if they 

had. Only 3 patients had heard of pharmacogenetics and 2 of them gave a correct 

explanation. 28 patients were able to either state at least 1 anticipated benefit and/or 

explain WPGT. Overall, 65% were deemed to be able to understand WPGT. Those 

who were able to understand WPGT were younger (mean age: 52.1 vs. 64.8 years, t-

test p = 0.0029) and more educated (χ2 p = 0.007). Those who did not know their time 

to stable dose also tended not to understand WPGT, compared to those who were able 

to state a duration (χ2 p = 0.002). Asking patients to state anticipated benefits after 

show card 2 (Appendix 10) was also intended as a way to assess if patients were 

hopeful that WPGT would benefit new patients should it become available. 

Interestingly, 1 patient thought it would not be of significant benefit as other factors 

like diet would still affect the dose.  

 Three patients (6.3%) had some concerns about WPGT prior to being shown 

the possible risks in show card 4. One patient was concerned about what was actually 

tested (i.e. whether other unintended tests would be done using the DNA) and another 

stated anxiety as a concern. The third patient could not verbalize her exact concerns 

but was opposed to genetic testing. After being shown the possible risks of WPGT, 7 

patients (14.6%) said they would be concerned about at least 1 of the risks. The 3 

patients who expressed prior concerns were among these 7. The most commonly cited 

concerns were the risk of other disease risks being revealed from WPGT results in the 

future, and being labeled, which can affect self-perception and cause anxiety.  
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Most Important Efficacy Attributes 

 Forty-three patients were asked to choose 1 or 2 from 5 shortlisted possible 

efficacy attributes which they felt was more important or relevant. Five patients were 

asked only if the 2 mock DCE efficacy attributes were important and to rank them. 

One patient terminated the interview before reaching this part. Thirty-one patients 

(72.1%) chose 2 attributes but most of them (77.4%) felt that the 2 attributes they 

chose were related.  While the number of INR tests till stabilization was the most 

commonly chosen attribute (Table 11), all 5 attributes were important as they were all 

chosen with somewhat comparable frequency. This is not particularly surprising as all 

5 are inherently related and many patients indeed had a hard time choosing 1 or 2. 

INR tests and ACC reviews were a bane to many patients, thus attribute 3 was most 

relevant and tangible. While many patients were also concerned about ADR, as 

revealed in earlier parts of the interview and in their choice of attributes 4 or 5, some 

appeared to have difficulty grasping the concept of risk. The time frame (3 months 

and 6 months for attributes 4 and 5 respectively) used to define the cumulative risk 

caused confusion in some patients. Some other patients did not chose attributes 4 or 5 

saying that “the risk will still be there… can’t do anything about it”. Attribute 1 was 

relatively more difficult to explicate. Several patients could not understand it and 

more explanation was required for others to understand it. 

Most 
important 
attribute* 

Second most important attribute*, n(%) Total 

1 2 3 4 5 Nil 

1 0 1 (2.3) 0 0 0 2 (4.7) 3 (7.0) 
2 1 (2.3) 0 1 (2.3) 0 1 (2.3) 1 (2.3) 4 (9.3) 
3 2 (4.7) 3 (7.0) 0 1 (2.3) 4 (9.3) 6 (14.0) 16 (37.2) 
4 4 (9.3) 4 (9.3) 1 (2.3) 0 1 (2.3) 1 (2.3) 11 (25.6) 
5 0 1 (2.3) 1 (2.3) 5 (11.6) 0 2 (4.7) 9 (20.9) 

Total 7 (16.3) 9 (20.9) 3 (7.0) 6 (14.0) 6 (14.0) 12 (27.9) 43 (100) 

*Attribute 1: Chance of having accurate starting dose, 2: Time to stable dose, 3: 
Number of INR tests till stabilization, 4: Risk of serious ADR in first 3 months, 5: 
Risk of hospitalization due to serious ADR in first 6 months. 

Table 11. Combinations of Efficacy Attributes Chosen by Pilot 1 Patients 
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Understanding of DCE 

 The mock DCE was conducted on 44 patients. Five of them attempted 5 

choice sets and 39 attempted 7 choice sets. Overall 30 patients (68.2%) were able to 

understand it, and most could handle all the choice sets given to them. Unsurprisingly, 

a large majority (93.3%) of those who could understand WPGT also understood the 

DCE. Interestingly, 9 patients also commented that a different payment mode, 

particularly the ability to use Medisave (see Footnote2), would affect their choice.  

 

6.3.2 Main Survey 

Study Populations 

 Out of 580 warfarin patients approached, 413 met the eligibility criteria but 

only 222 of them consented to do the survey, giving a response rate of 53.8%. 

Nineteen subsequently withdrew after finding the questionnaire too difficult or 

tedious and 3 responses were found to be completed by the same individuals. The 

second of these 3 duplicate responses were therefore deleted. After removing another 

6 cases with missing data, 194 warfarin patients remained for analysis. There were 

more males among the valid respondents (73.7%) compared to those who refused 

(56.5%), so the sample may not be representative of the general warfarin patient 

population. Forty-one warfarin patients (21.1%) needed substantial assistance in 

completing the questionnaire.  

 For the general public, 224 logged into the web survey but 17 did not meet 

eligibility criteria and 20 did not complete the survey. A total of 187 respondents 

                                                           
2 Medisave is a national medical savings scheme in Singapore which helps individuals put aside part of 
their income into their Medisave Accounts to meet their future personal or immediate family's 
hospitalization, day surgery and certain outpatient expenses. Under the scheme, every employee 
contributes 6.5-9% (depending on age group) of his monthly salary to a personal Medisave account. 
(source: http://www.moh.gov.sg/mohcorp/hcfinancing.aspx?id=304)  
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completed the survey and no information could be captured on non-respondents. 

Characteristics of both patient populations are summarized in Table 12. 
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Patients 

(n = 194) 
Public 

(n = 187) 

Questionnaire completed in English, n(%)  117 (60.3%) 159 (85.0%) 
Age, mean (SD)  57.3 (13.8) 52.5 (5.2) 
Male gender, n(%)  143 (73.7%) 51 (27.3%) 
Religion, n(%)  

 

 

Christianity  55 (28.4%) 53 (28.3%) 
Buddhism  80 (41.2%) 76 (40.6%) 
Taoism  15 (7.7%) 14 (7.5%) 
Free thinker  43 (22.2%) 44 (23.5%) 
Others  1 (0.5%) 0 

Marital Status, n(%) 
 

 

Single  24 (12.4%) 11 (5.9%) 
Married  150 (77.3%) 159 (85.0%) 
Divorced / Separated / Widowed  20 (10.3%) 17 (9.1%) 

Highest educational Status, n(%) 
 

 

PSLE  45 (23.2%) 22 (11.8%) 
GCE ‘O’ or ‘A’ levels  94 (48.5%) 87 (46.5%) 
Diploma / Degree  55 (28.4%) 78 (41.7%) 

Housing type, n(%)   

 

1 – 3 room HDB  49 (25.3%) 19 (10.2%) 
4 – 5 room HDB  118 (60.8%) 116 (62.0%) 
Condominium/landed  27 (13.9%) 52 (27.8%) 

Participated in WPGT clinical trial, n(%)  13 (6.7%) NA 
Taken genetic test in the past, n(%)  5 (2.6%) 3 (1.6%) 
Number of chronic diseases, n(%)   

 

0 127 (65.5%) 172 (92.0%) 
1 44 (22.7%) 14 (7.5%) 
2 17 (8.8%) 0 

 
3 6 (3.1%) 0 

 
4 0 1 (0.5%) 

Length of warfarin treatment, n(%)   

 

Up to 3 months 29 (15.0%) NA 
3 to 12 months 32 (16.5%) 

 
>1 year 124 (63.9%) 

 
 

Don’t know 9 (4.6%) 
 

Number of INR tests needed till stabilization, n(%)  
 

 
≤9 96 (49.5%) NA 

 
≥10 38 (19.6%) 

 
 

Don’t know 60 (30.9%) 
 

History of ADR, n(%)  
 

 
Yes 52 (26.8%) 25 (13.4%) 

 
No 124 (63.9%) 135 (72.2%) 

 
Don’t know 18 (9.3%) 27 (14.4%) 

Know of friends/relatives with history of ADR, n(%) NA 56 (30.0%) 
Have friends/relatives taking warfarin, n(%)  NA 25 (13.4%) 
DCE attribute knowledge score, mean (SD)* 1.40 (0.71) 1.58 (0.67) 
WPGT knowledge score, mean (SD)** 3.70 (0.62) 3.65 (0.56) 

PSLE: Primary School Leaving Examination (the qualification of Primary education 
in Singapore), GCE ‘O’ or ‘A’ levels: General Certificate of Education ‘Ordinary’ or 
‘Advanced’ levels (academic qualifications in the Commonwealth countries including 
Singapore), HDB: Housing Development Board, NA: not applicable 
* DCE attribute knowledge score ranges from 0 to 2. 
** WPGT knowledge score ranges from 0 to 4. 
 

Table 12. Characteristics of Main Survey Populations 
 



 

104 

 

Willingness to Undergo WPGT 

 About 38% of patients and 60% of the public indicated that they were 

‘somewhat willing’ or ‘very willing’ to undergo WPGT (Table 13). A greater 

proportion of patients were neutral (46.4%) compared to the public (30.0%). Of the 10 

patients and 3 public respondents who indicated ‘very unwilling’, the top reason 

indicated was cost. Four also indicated being uncomfortable with a genetic test and 3 

did not think it would benefit them. Overall, relatively few respondents (10% of 

public and 16% of patients) were unwilling to undergo WPGT. 

 Willingness to undergo WPGT was significantly associated with gender, 

educational status, length of warfarin treatment and number of chronic diseases 

present in warfarin patients (Table 13). Willingness was higher in males, the better 

educated and those with more chronic diseases. The trend with length of treatment 

appeared U-shaped; those who had been on warfarin for less than 3 months or more 

than a year were more willing to undergo WPGT, compared to those who were on 

warfarin for between 3 months and 1 year. In the public, willingness was associated 

with history of ADR and number of chronic diseases present. Those with no ADR 

history were more willing to undergo WPGT while those who were not sure tended to 

be neutral.  

 

Perceived Benefits and Concerns about WPGT 

 The perceived benefits and concern scales in both populations had acceptable 

internal consistencies, with Cronbach’s alpha >0.7 for all of them (Table 14). The 4 

items on the perceived benefits scale were administered to warfarin patients but item 

analysis revealed item (ii) to be problematic. Cronbach’s alpha for the perceived 

benefits scale before removing that item was 0.60, and 0.76 when the item was 



 

105 

 

removed. The direction of item (ii) was consequently reversed, and item (iii) dropped 

(due to similarity with item (i)) in the public survey. Both warfarin patients and the 

public have relatively high perceived benefits (mean scores 3.77 and 3.97 

respectively) and moderately high concerns (mean scores 3.30 and 3.33 respectively) 

about WPGT (Table 13). Since the perceived benefits and concern scores are actually 

ordinal scale data, their cumulative frequencies are also shown in Figure 11 and 

Figure 12 respectively to show their medians and distributions as well. 

 Perceived benefits of benefits from WPGT was not significantly associated 

with any socio-demographic or clinical variables in patients but was associated with 

housing type and the value placed in a new test that may potentially decrease the 

number of INR tests needed in the public population. Those with higher 

socioeconomic status (as measured by housing type) and those who placed more value 

in the new test had higher perceived benefits. Concern score again was not 

significantly associated with background variables in patients, but was associated with 

housing type and educational status in the public. Higher socioeconomic status and 

educational status were associated with decreased level of concern about WPGT in 

the public. 
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Characteristics Willingness to undergo WPGT, n(%*) Perceived benefits† Concern† 

VU SU N SW VW 
p-

value 
Score, mean 

(SD) 
p-

value 
Score, mean 

(SD) 
p-

value 

WARFARIN PATIENTS 10(5.2) 21(10.8) 90(46.4) 50(25.8) 23(11.9)  3.77 (0.63)  3.30 (0.69)  

Age, mean (SD) 62.7(10.8) 57.9(12.9) 56.9(14.0) 56.2(15.8) 58.5(10.4) 0.715 -0.101†† 0.163 0.066†† 0.364 
Gender           
 Male 6(4.2) 10(7.0) 69(48.3) 38(26.6) 20(14.0) 0.032 3.80(0.62) 0.210 3.29(0.68) 0.823 
 Female 4(7.8) 11(21.6) 21(41.2) 12(23.5) 3(5.9)  3.67(0.65)  3.32(0.72)  
Religion           
 Christianity  1(1.8) 6(10.9) 24(43.6) 17(30.9) 7(12.7) 0.243 3.85(0.79) 0.730 3.16(0.88) 0.349 
 Buddhism  4(5.0) 10(12.5) 42(52.5) 13(16.3) 11(13.8)  3.75(0.49)  3.34(0.63)  
 Taoism  1(6.7) 3(20.0) 5(33.3) 4(26.7) 2(13.3)  3.73(0.40)  3.40(0.61)  
 Free thinker  4(9.3) 2(4.7) 19(44.2) 16(37.2) 2(4.7)  3.71(0.70)  3.36(0.53)  
 Others‡  0 0 0 0 1(100)  4.33(0)  3.00(0)  
Marital status           
 Single 1(4.2) 3(12.5) 10(41.7) 8(33.3) 2(8.3) 0.844 3.83(0.54) 0.361 3.33(0.59) 0.720 
 Married 8(5.3) 15(10.0) 73(48.7) 35(23.3) 19(12.7)  3.74(0.65)  3.28(0.70)  
 Divorced/Widowed 1(5.0) 3(15.0) 7(35.0) 7(35.0) 2(10.0)  3.93(0.53)  3.41(0.70)  
Highest educational status           
 PSLE  3(6.7) 13(28.9) 14(31.1) 7(15.6) 8(17.8) 0.001 3.61(0.59) 0.110 3.30(0.58) 0.885 
 GCE ‘O’ or ‘A’ levels  5(5.3) 6(6.4) 49(52.1) 22(23.4) 12(12.8)  3.78(0.72)  3.28(0.76)  
 Diploma / Degree  2(3.6) 2(3.6) 27(49.1) 21(38.2) 3(5.5)  3.88(0.45)  3.33(0.65)  
Housing           
 1 – 3 room HDB  2(4.1) 6(12.2) 25(51.0) 10(20.4) 6(12.2) 0.709 3.63(0.65) 0.187 3.33(0.62) 0.916 
 4 – 5 room HDB  6(5.1) 14(11.9) 51(43.2) 31(26.3) 16(13.6)  3.82(0.64)  3.29(0.71)  
 Condominium/landed  2(7.4) 1(3.7) 14(51.9) 9(33.3) 1(3.7)  3.81(0.53)  3.28(0.72)  
Participated in WPGT clinical trial           
 Yes 0 0 8(61.5) 2(15.4) 3(23.1) 0.359 3.46(1.14) 0.068 3.00(0.95) 0.103 
 No 10(5.5) 21(11.6) 82(45.3) 48(26.5) 20(11.1)  3.79(0.57)  3.32(0.66)  
Taken genetic test in the past           
 Yes 0 0 4(80.0) 0 1(20.0) 0.576 3.93(0.72) 0.552 3.00(0.91) 0.329 
 No 10(5.3) 21(11.1) 86(45.5) 50(26.5) 22(11.6)  3.76(0.63)  3.30(0.68)  
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Table 13 continued 

Characteristics Willingness to undergo WPGT, n(%*) Perceived benefits† Concern† 

VU SU N SW VW 
p-

value 
Score, mean 

(SD) 
p-

value 
Score, mean 

(SD) 
p-

value 

Length of treatment           
 Up to 3 months 0 2(6.9) 12(41.4) 10(34.5) 5(17.2) 0.033 3.82(0.73) 0.740 3.24(0.79) 0.717 
 3 to 12 months 1(3.1) 1(3.1) 22(68.8) 7(21.9) 1(3.1)  3.69(0.76)  3.28(0.65)  
 >1 year 8(6.5) 17(13.7) 54(43.6) 32(25.8) 13(10.5)  3.77(0.56)  3.33(0.67)  
 Don’t know 1(11.1) 1(11.1) 2(22.2) 1(11.1) 4(44.4)  3.93(0.72)  3.08(0.77)  
Number of INR tests needed till 
stabilization 

     
 

    

 ≤9 4(4.2) 11(11.5) 41(42.7) 33(34.4) 7(7.3) 0.114 3.82(0.54) 0.312 3.38(0.68) 0.187 
 ≥10 2(5.3) 2(5.3) 21(55.3) 8(21.1) 5(13.2)  3.79(0.58)  3.15(0.58)  
 Don’t know 4(6.7) 8(13.3) 28(46.7) 9(15.0) 11(18.3)  3.67(0.76)  3.26(0.75)  
History of ADR           
 Yes 0 7(13.5) 25(48.1) 14(26.9) 6(11.5) 0.530 3.87(0.51) 0.316 3.37(0.66) 0.268 
 No  9(7.3) 12(9.7) 54(43.6) 33(26.6) 16(12.9)  3.72(0.70)  3.24(0.69)  
 Don’t know 1(5.6) 2(11.1) 11(61.1) 3(16.7) 1(5.6)  3.81(0.37)  3.48(0.73)  
Number of chronic diseases present           
 0 7(5.5) 15(11.8) 64(50.4) 34(26.8) 7(5.5) 0.017 3.77(0.59) 0.295 3.33(0.65) 0.179 
 1 2(4.6) 4(9.1) 17(38.6) 13(29.6) 8(18.2)  3.73(0.65)  3.30(0.73)  
 2 0 2(11.8) 8(47.1) 2(11.8) 5(29.4)  3.98(0.67)  3.25(0.88)  
 3 1(16.7) 0 1(16.7) 1(16.7) 3(50.0)  3.44(1.03)  2.70(0.33)  
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Table 13 continued 

Characteristics Willingness to undergo WPGT, n(%*) Perceived benefits† Concern† 

VU SU N SW VW 
p-

value 
Score, mean 

(SD) 
p-

value 
Score, mean 

(SD) 
p-

value 

GENERAL PUBLIC 3(1.6) 16(8.6) 56(30.0) 73(39.0) 39(20.9)  3.97(0.55)  3.33(0.68)  

Age, mean (SD) 54.0(6.6) 51.2(3.4) 52.9(6.1) 51.7(4.5) 53.8(5.5) 0.202 0.019†† 0.796 -0.054†† 0.466 
Gender           
 Male 0 3(5.9) 16(31.4) 19(37.3) 13(25.5) 0.747 4.05(0.57) 0.245 3.23(0.73) 0.203 
 Female 3(2.2) 13(9.6) 40(29.4) 54(39.7) 26(19.1)  3.94(0.54)  3.37(0.66)  
Religion           
 Christianity  2(3.8) 5(9.4) 13(24.5) 19(35.9) 14(26.4) 0.737 4.08(0.53) 0.332 3.28(0.75) 0.200 
 Buddhism  1(1.3) 5(6.6) 27(35.5) 31(40.8) 12(15.8)  3.94(0.55)  3.43(0.69)  
 Taoism  0 1(7.1) 6(42.9) 5(35.7) 2(14.3)  4.00(0.41)  3.49(0.50)  
 Free thinker  0 5(11.4) 10(22.7) 18(40.9) 11(25.0)  3.88(0.60)  3.18(0.62)  
Marital status           
 Single 1(9.1) 0 2(18.2) 4(36.4) 4(36.4) 0.201 4.00(0.71) 0.154 3.47(0.98) 0.778 
 Married 1(0.6) 15(9.4) 47(29.6) 63(39.6) 33(20.8)  3.99(0.52)  3.32(0.66)  
 Divorced/Widowed 1(5.9) 1(5.9) 7(41.2) 6(35.3) 2(11.8)  3.73(0.66)  3.33(0.72)  
Highest educational status           
 PSLE  1(4.6) 1(4.6) 6(27.3) 11(50.0) 3(13.6) 0.287 3.97(0.44) 0.089 3.59(0.51) 0.039 

 GCE ‘O’ or ‘A’ levels  1(1.2) 9(10.3) 32(36.8) 31(35.6) 14(16.1)  3.88(0.56)  3.38(0.66)  
 Diploma / Degree  1(1.3) 6(7.7) 18(23.1) 31(39.7) 22(28.2)  4.07(0.55)  3.20(0.73)  
Housing           
 1 – 3 room HDB  2(10.5) 1(5.3) 4(21.1) 10(52.6) 2(10.5) 0.168 3.61(0.65) 0.007 3.58(0.84) 0.010 
 4 – 5 room HDB  1(0.9) 12(10.3) 37(31.9) 44(37.9) 22(19.0)  3.98(0.49)  3.39(0.62)  
 Condominium/landed  0 3(5.8) 15(28.9) 19(36.5) 15(28.9)  4.07(0.58)  3.11(0.70)  
Have friends/relatives taking warfarin           
 Yes 1(4.0) 0 4(16.0) 14(56.0) 6(24.0) 0.073 4.08(0.39) 0.279 3.16(0.65) 0.177 
 No 2(1.2) 16(9.9) 52(32.1) 59(36.4) 33(20.4)  3.95(0.57)  3.36(0.68)  
Taken genetic test in the past           
 Yes 0 0 1(33.3) 0 2(66.7) 0.207 4.33(0.33) 0.246 3.13(1.01) 0.613 
 No 3(1.6) 16(8.7) 55(29.9) 73(39.7) 37(20.1)  3.96(0.55)  3.33(0.68)  
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Table 13 continued 

Characteristics Willingness to undergo WPGT, n(%*) Perceived benefits† Concern† 

VU SU N SW VW 
p-

value 
Score, mean 

(SD) 
p-

value 
Score, mean 

(SD) 
p-

value 

History of ADR           
 Yes 0 4(16.0) 4(16.0) 14(56.0) 3(12.0) 0.001 4.08(0.49) 0.199 3.40(0.57) 0.559 
  No 2(1.5) 9(6.7) 36(26.7) 53(39.3) 35(25.9)  3.98(0.55)  3.30(0.72)  
 Don’t know/not sure 1(3.7) 3(11.1) 16(59.3) 6(22.2) 1(3.7)  3.81(0.57)  3.43(0.58)  
Know of friends/relatives with history 
of ADR 

     
 

    

 Yes 0 5(8.9) 14(25.0) 24(42.9) 13(23.2) 0.754 4.08(0.49) 0.078 3.28(0.65) 0.471 
 No 3(2.3) 11(8.4) 42(32.1) 49(37.4) 26(19.9)  3.92(0.56)  3.35(0.69)  
“If you need to take warfarin, how 
much would you value a new test that 
can potentially decrease the number of 
INR tests needed?” 

     

 

    

 Not at all 0 1(33.3) 1(33.3) 1(33.3) 0 < 

0.001 
2.78(0.77) < 

0.001 
2.53(0.50) 0.158 

 A little 1(5.3) 6(31.6) 7(36.9) 5(26.3) 0 3.96(0.41) 3.57(0.70)  
 Somewhat more 0 3(6.0) 20(40.0) 21(42.0) 6(12.0) 3.75(0.55) 3.31(0.68)  
 Quite a lot 2(2.5) 4(5.1) 19(24.1) 39(49.4) 15(19.0) 4.08(0.51) 3.34(0.64)  
 Very much 0 2(5.6) 9(25.0) 7(19.4) 18(50.0) 4.14(0.47) 3.29(0.73)  
Number of chronic diseases present           
 0 2(1.2) 15(8.7) 53(30.8) 68(39.5) 34(19.8) 0.089 3.97(0.56) 0.850 3.31(0.67) 0.114 
 1 1(7.1) 0 3(21.4) 5(35.7) 5(35.7)  3.95(0.43)  3.49(0.76)  
 4 0 1(100) 0 0 0  3.67(0)  4.60(0)  

p-values <0.05 are bolded. VU: Very unwilling, SU: somewhat unwilling, N: neutral, SW: somewhat willing, VW: very willing 
*% are within row. 
†Perceived benefits and concern scores range from 1 to 5, with higher scores representing higher perceived benefits or concerns respectively. 
Item (ii) from the perceived benefits scale (Table 14) was not included in the calculation. 
††Pearson’s correlation coefficient 
‡The patient with ‘others’ religion was combined with ‘free thinkers’ for analysis. 
 

Table 13. Attitudes on WPGT and their Relationships with Socio-demographic and Clinical Variables
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With regards to WPGT, 

 Cronbach’s alpha 

Perceived benefits scale Patients Public 

i) I am hopeful that it can detect which dose works best. 

0.76* 0.71† 
ii) I don’t think it will lower my risk of warfarin side effects. 
iii) I think it can predict a more suitable starting dose for me. 
iv) I am hopeful that there may be less trial and error in finding my warfarin 

dose. 

Concern scale   

i) If it reveals that I need a very low or very high dose, I would feel anxious. 

0.72 0.71 

ii) I am worried that it may subsequently reveal that I possess additional risk 
factors for another disease that I was unaware of. 

iii) I am worried that the results may be passed onto unauthorized persons. 
iv) Apart from the fact that I’m taking warfarin or have a pre-existing 

condition, if it reveals that I need a very low or very high dose, I may be 

additionally disadvantaged when buying health insurance.
 ‡

  

v) Apart from the fact that I’m taking warfarin or have a pre-existing 
condition, if it reveals that I need a very low or very high dose, I may be 

additionally treated unfairly at work or job-seeking.
 ‡

 

Agreement to all items was answered on a 5-point Likert scale.  
*Calculated with item (ii) removed as it worsened the overall Cronbach’s alpha when 
included. 
†Item (ii) was reversed (i.e. ‘I think it will lower my risk of warfarin side effects.’) 
and item (iii) was removed for the public. 
‡A “NA” option was added to these 2 items as some warfarin patients do not buy 
insurance or work. 

 
Table 14. Perceived Benefits and Concern Scales and their Internal Consistencies 
 

 

 

Figure 11. Cumulative Frequencies of Perceived Benefits Scores 
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Figure 12. Cumulative Frequencies of Concern Scores 

 
 
 
Relationship between Perceived Benefits and Concerns with Willingness to Undergo 

WPGT 

 As hypothesized, higher perceived benefits of WPGT was associated with 

higher willingness to undergo it (p <0.001 in both populations). Higher concern was 

significantly associated with lower willingness to undergo WPGT in public (p = 

0.004), but not in patients although a similar trend was present (p = 0.072).  

 

WTP and Attribute Importances 

 The mWTP and attribute importances for warfarin patients and the general 

public are summarized in Table 15. Among warfarin patients, the median mWTP was 

S$89 for a genetic vs. non-genetic test, S$17 for every decrease in number of INR 

tests needed and S$63 for every % decrease in annual risk in serious side effects. The 

respective values in the general public were S$20, S$25 and S$109. The public was 

less willing to pay for a genetic test as compared to a non-genetic test but was more 

willing to pay for reduction in number of INR tests needed and serious ADR risk than 

warfarin patients. In both populations the attribute importances were generally 
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consistent with the respective mWTPs and both populations placed a similar emphasis 

on cost of test.  

 Only educational status was statistically associated with side effect importance 

in patients. Importance placed on side effect risk increased with increasing 

educational status (p = 0.0405). No other demographic or clinical variables were 

associated with any of the attribute importances in patients or the public. The 

prediction accuracies for the 2 holdout tasks using the HB model parameters are given 

in Table 16. 

 Warfarin patients 
(n = 194) 

General Public 
(n = 187) 

mWTP, median (95% CI)   
 Genetic vs. non-genetic test $88.61 

($55.11 to $123.33) 
$19.80 

($12.15 to $42.84) 
 Every decrease in number of INR tests $16.61 

($10.50 to $18.42 
$24.94 

($20.04 to $31.36) 
 Every decrease in % risk of serious side 

effects 
$63.37 

($49.10 to $85.04) 
$109.36 

($86.59 to $133.84) 
Attribute importances (%*), median (95% CI)   
 Nature of test 7.90 

(7.28 to 8.87) 
3.57 

(3.25 to 3.89) 
 Number of INR tests needed before warfarin 

dose stabilizes  
18.88 

(16.27 to 22.74) 
24.65 

(21.28 to 27.96) 
 Risk of serious side effects (Major bleeding or 

clotting)  
34.26 

(30.59 to 40.61) 
44.11 

(41.50 to 46.72) 
 

Cost 
26.14 

(23.39 to 27.91) 
24.69 

(23.08 to 26.44) 

* Importances are relative proportions across all 4 attributes and add up to 100% 
within every individual. Estimates here are the medians across all individuals for each 
attribute and thus may not add up to 100%. 

Table 15. mWTP and Attribute Importances 
 
 
 
 Warfarin patients General public 

Holdout task 1 93.3% 93.0% 
Holdout task 2 80.9% 88.2% 

 
Table 16. Prediction Accuracy of Holdout Tasks 
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WTP and Price Sensitivity of Uptake Rates of Hypothetical WPGTs 

 The WTP for the 3 hypothetical WPGTs are shown in Table 17. The public 

had higher median WTPs for all 3 hypothetical WPGTs than patients. The best case 

WPGT naturally commanded the highest WTP and both groups were more willing to 

pay for a WPGT that decreased their risk of serious side effects than one that 

decreased the number of INR tests needed (WPGT variant 1 vs. WPGT variant 2). 

This is consistent with the observation that the side effects attribute had higher 

importance score than the INR test attribute. The predicted uptake rates of the 3 

hypothetical WPGT as price varied from $100 to $600 are shown in Figure 13. The 

rates represent the proportion that are predicted to choose each hypothetical WPGT 

over no WPGT at different prices, and therefore should be interpreted as relative 

indications of preference rather than actual uptake rate. In line with mWTP and WTP 

estimates, a higher uptake rate was expected in the public compared to patients at 

almost every price point. In both populations, ‘best case WPGT’ was the most 

preferred, followed by ‘WPGT variant 1’ then ‘WPGT variant 2’ at every price point. 

As expected, predicted uptake rates fell with increasing price. 

Attribute No WPGT 
(baseline) 

Best case 
WPGT* 

WPGT variant 
1* 

WPGT variant 
2* 

Nature of test Non-genetic Genetic Genetic Genetic 
Number of INR tests needed 
before warfarin dose stabilizes  

13 5 13 5 

Risk of serious side effects 
(Major bleeding or clotting)  

5% per year 1% per year 1% per year 5% per year 

WTP (warfarin patients), 
median (95% CI) 

 $571.34 
($419.87 to 

$702.26) 

$397.33 
($282.91 to 

$523.11) 

$164.30 
($146.88 to 

$224.68) 

WTP (general public), median 
(95% CI) 

 $730.45 
($605.06 to 

$801.04) 

$454.01 
($340.76 to 

$553.98) 

$227.65 
($175.98 to 

$292.58) 

* Each scenario was compared with the baseline for calculation of WTP and price 
sensitivity simulation. For price sensitivity simulation, price of no WPGT was 
specified as $0. A total of 3 variants representing different combinations of the 
attributes were presented. 
 

Table 17. Hypothetical WPGTs and WTP 
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Lines represent proportion of patients and public predicted to choose each 
hypothetical WPGT over no WPGT at prices ranging from $100 to $600. The 
specifications of the 3 hypothetical WPGTs are given in Table 16. 

Figure 13. Price Sensitivity of Uptake Rates of the Hypothetical WPGTs 
 

 

 

6.4 Discussion 

 Patients’ acceptance is an important consideration in the clinical 

implementation of PGT and their views on pharmacogenomics and PGT has duly 

been studied qualitatively and quantitatively [254-257]. Since attitudes may be 

influenced by cultural factors, results from these (Caucasian) studies may not be 

applicable to our population. To the best of our knowledge, this is the first study on 

attitudes, WTP and preferences for WPGT. Two populations (warfarin patients and 

general public) were surveyed to estimate the likely attitudes, WTP and preferences 

for WPGT in new warfarin patients. Current warfarin patients, having experienced the 

process of repeated INR tests during the initial dose stabilization, as well as 
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counseling on warfarin side effects, are likely to be better able to appreciate the value 

of improving these aspects. On the other hand, normal members of public usually do 

not actively consider the value of such clinical interventions and may place a lower 

value on their benefits until the need befalls them, in this case needing to take 

warfarin. New warfarin patients, who are at the transition between these 2 

populations, are assumed to be intermediate in their attitudes, WTP and preferences 

for WPGT. 

 The results indicate that Singaporean Chinese (both patients and public) were 

generally willing to undergo WPGT or were neutral about it. Only a small proportion 

indicated unwillingness. They also had relatively high perceived benefits and 

concerns about WPGT. These results are consistent with those of Rogausch et al. 

[254], although no direct comparison could be made on the figures due to different 

question structure and analysis methods. As expected, higher perceived benefits of 

benefit from WPGT was associated with higher willingness to undergo it while the 

opposite was true for level of concern. Willingness to undergo WPGT tended to be 

higher in the public. One possible explanation of this is that the public’s lack of 

experience with being on warfarin therapy had led them to under or overestimate the 

benefits of WPGT. In this case, it appeared that they perceived the benefits of WPGT 

more positively, as reflected by the slightly higher perceived benefits score.  

 Patients who were males, better educated and had more chronic diseases were 

more willing to undergo WPGT. The relationship between chronic disease burden and 

willingness may be explained by a higher desire to reduce further health-related 

problems or inconveniences, while the relationships with gender and educational 

status may possibly be related to the ability to understand the information provided 

and appreciate the potential benefits of WPGT. To investigate this, further analyses 
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was done to explore if willingness differed by WPGT knowledge scores and whether 

patients needed substantial assistance with completing the questionnaire. Though 

WPGT knowledge score was not associated with willingness to undergo WPGT, those 

who needed substantial assistance with completing the questionnaire were generally 

less willing to undergo WPGT. Females and the less educated tended to need 

substantial assistance, so it appears that the ability to comprehend the questionnaire is 

a likely explanation for the observation. Several cognitive biases, including difficulty 

in understanding certain medical information, can affect patients’ ability to make 

good decisions [349], so this highlights the importance of making the information on 

WPGT more easily understandable and taking time to explain it to patients. The 

reason for the U-shaped pattern with length of treatment and willingness to undergo 

WPGT is also not immediately obvious. One speculation is that new patients (<3 

months) were still overwhelmed by the inconvenience of frequent INR tests and fear 

of ADR, while long term patients (>1 year) desired relief from the burdens of long 

term warfarin therapy, since the need for regular INR monitoring and the risk of side 

effects, among other factors, have an impact on quality of life [350]. If so, it is 

possible that the duration that patients need to be taking warfarin may be the 

underlying factor. To further understand the decision making process at the time when 

WPGT would be needed, it would be useful to study the effect of anticipated length of 

therapy on willingness to undergo WPGT. 

 Respondents from the public who valued more a hypothetical new test that 

may reduce the number of INR tests needed, were logically more willing to undergo 

WPGT. While most of the public were willing to undergo WPGT, those without an 

ADR history tended to be more willing, and those who were not sure of their ADR 

history tended to be neutral. Patients who had experienced an ADR may have 
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negative emotions and less trust towards their healthcare providers [351,352], so a 

possible explanation for this observation is that some of those who experienced an 

ADR are now skeptical of medical interventions.    

 Assuming new warfarin patients just about to start their first dose are 

intermediate between warfarin patients and normal individuals in terms of their WTP, 

the results suggest that if the number of INR tests needed till stabilization with WPGT 

can be reduced to 5 and risk of serious side effects reduced to 1% per year, at least 

half of new warfarin patients would be willing to pay between S$570 and S$730 for 

this test. This is in comparison with no WPGT, where the number of INR tests needed 

till stabilization was specified at 13 and risk of serious side effects at 5% per year. If 

the risk of serious side effects can be reduced to 1% per year but patients still require 

the same number of INR tests to reach stabilization with WPGT (WPGT variant 1), 

the median WTP would fall to between S$400 and $450. If patients require fewer INR 

tests but have the same risk of side effects (WPGT variant 2), the median WTP would 

be between S$160 and S$230. The former (WPGT variant 1) appears to be more 

likely as the recently published results of the CoumaGen-II clinical trial comparing 2 

pharmacogenetic algorithms and standard care suggested that WPGT is associated 

with lower risk of serious ADR but not reduced number of INR tests needed. In the 

trial, the 90 day incidence of serious ADR was 4.5% and 9.4% in the combined 

pharmacogenetic arm and controls respectively, p = 0.001), while number of INRs 

measured were similar (mean 7.70 and 7.47 respectively, p = 0.35) [240]. It should be 

noted again that these WTP estimates were based on assumed benefits of WPGT and 

data from more clinical trials would be needed to establish its actual clinical benefits, 

which would affect patients’ WTP. Placing the WTP estimates in context, for a 

diagnostic test, Singaporean Chinese are willing to pay a sum (best case WPGT) 
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similar to a subsidized colonoscopy in Singapore [353], which may need to be 

repeated at least every 10 years. With falling genotyping costs, WPGT is likely to cost 

much less than the estimated WTPs and thus be economically sustainable. In fact, it 

has even been argued that CBAs are not necessary for PGT as great increase in 

medical spending is unlikely [35]. 

 From the WTP as well as mWTP estimates, both warfarin patients and the 

general public were more willing to pay for safety rather than convenience. This is 

also reflected in their preferences for the various attributes. This is reasonably 

expected since an episode of a serious side effect is likely more detrimental than the 

inconvenience and pain of a few additional blood tests. Unsurprisingly, both patients 

and public placed a similar emphasis on cost, but the nature of test appeared to affect 

the choice of patients more than that of the public. This may be due to genuine 

concerns about the genetic nature of WPGT or an artifact from inadequate 

understanding of the information provided and/or the DCE methodology. In WTP 

studies of a rapid diagnostic test for malaria, ex-post WTP tended to be higher than 

ex-ante WTP [286,354]. In contrast, ex-ante WTP was higher than ex-post WTP in this 

study. Again, the relationships between attribute importances with attribute 

knowledge and WPGT knowledge scores were explored to determine if lack of 

understanding of the information provided might have affected the results.   

 Higher attribute knowledge score was associated with lower ‘nature of test’ 

importance (p = 0.0003), higher side effect importance (p = 0.0014) and lower cost 

importance (p = 0.0186) in patients but not the public. Notably, the patient population 

was older and less educated than the public and many had problems grasping even the 

concept of genes. Though general knowledge of genes was not measured here, 

another study in Singaporean Chinese, which assessed some basic concepts of 
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genetics and the genetic basis of Parkinson’s disease using 6 items, revealed poor 

knowledge of genetics [261]. In addition, patients who needed substantial assistance 

with completing the questionnaire also had lower side effect importance (p = 0.0004) 

and higher cost importance (p = 0.0405), suggesting that lack of understanding may 

have affected their computed WTP. Patients with lower attribute knowledge score or 

had difficulty with the questionnaire probably also had difficulty understanding the 

concept of risk, and thus may put less importance on the side effect attribute than 

those who had better knowledge scores or had no problem with the questionnaire. The 

public generally scored better on attribute knowledge and thus no association between 

attribute knowledge score and importances were detected. Another sign that a higher 

emphasis on ‘nature of test’ was due to problems with the DCE was that the 4 

respondents from the general public who indicated having ‘a lot’ of problem with the 

DCE (as opposed to ‘a little’ or ‘not at all’) had significantly higher mWTP for a 

genetic test (median mWTP = $130.44, $5.88 and $33.99 respectively, kruskal-wallis 

rank sum test p-value = 0.0174).  

 Of all demographic and clinical variables, only educational status was 

significantly associated with side effect importance in patients. No associations 

between demographic or clinical variables and attribute importances were detected in 

the public. This is not surprising as demographic variables are generally not very 

useful for delineating attribute preferences [355,356] and preferences may be better 

separated by some unmeasured attitudinal or behavioral factors. The association 

between educational status and side effect importance in patients is also in line with 

the above mentioned observations that a higher ability to understand the concepts in 

the questionnaire was associated with higher side effect importance.  
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 There are several limitations to this study. Firstly, sampling was non-random 

so generalizability of the results may be limited. Random sampling was not feasible 

due to logistical impracticalities (difficulties in screening and contacting potential 

subjects, and the need to collect personal particulars to do this) and a limited patient 

population size. For warfarin patients, the coverage was probably quite high, since 

recruitment took place at almost every ACC session in a 4 – 5 month period. In other 

words, most patients would have been encountered at least once. Secondly, there may 

be some non-response bias. Males were somewhat overrepresented in the patient 

sample while females were overrepresented in the public sample. Given that male 

patients tended to have higher willingness to take WPGT, the actual willingness 

among patients may be lower. The samples were also more highly educated than the 

general population (% with diploma or degree = 28.4%, 41.7% and 22.1%, in patients, 

public sample and general population (Census 2010 ≥40 year old [357]), respectively), 

and with educational status being a significant predictor of willingness (in patients) 

and concern score (in public), the actual willingness to undergo WPGT may be lower, 

and concern level may be higher. Nevertheless, the public sample is quite comparable 

in terms of educational status with the general population of age 30 to 60 years old (% 

with diploma or degree = 41.2% [357]), a group who might become future warfarin 

patients. With an increasingly educated population, the results may actually have 

future applicability. Thirdly, there was evidence of inadequate understanding and 

difficulty with the concepts put forth and DCE in some respondents, which may have 

given rise to inaccurate results. However, this may reflect the actual situation in the 

clinic, where some patients would have difficulty understanding information on the 

WPGT even if it is explained by a doctor, and therefore make a similar choice as they 

would in an artificial DCE setting if the choice was completely voluntary. Usually 
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though, this is not the case for many medical decisions especially in Asian countries. 

Even in a western society, not all patients want to participate in decision making 

[358]. This brings on the fourth limitation, which is that the effect of agency on choice 

was not studied. Many patients, especially the older and less educated, tend to leave 

medical decisions to their doctor and may be persuaded to take a test if it is 

recommended by the doctor. Majority of doctors would also persuade the patient 

and/or the family members to accept a treatment he/she thinks is best for the patient 

[359]. Since in such cases some patients who wouldn’t choose the test voluntarily end 

up doing the test under their doctor’s recommendation, not considering the agency 

effect would produce a more conservative estimate of the WTP and uptake rate for 

WPGT. Fifthly, only the Chinese were studied and thus the results could not be 

extrapolated to other ethnic groups. Sixthly, the perceived benefits and concern scores 

were analyzed as interval scale data although they are strictly speaking ordinal scale. 

The decision was made to analyze them as such since non-parametric methods are not 

as robust and the results are more difficult to interpret. Accordingly, the scores were 

simply used as gauge of the level of perceived benefits and concern, rather than 

having any further meaning in themselves. And lastly, only the WTP of out-of-pocket 

payment was evaluated but not other payment schemes such as the use of Medisave (a 

national healthcare savings scheme for working Singaporeans), or government 

subsidies. Though this was suggested by at least 1 patient in pilot 1, it was not 

included due to potential complexity in the design and analysis of the DCE. Besides, 

WPGT is unlikely to be of priority to be considered for Medisave usage or 

government subsidies. 

 As discussed, there are several selection and measurement biases that may 

affect the validity of the results. From information available about the possible 
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sources of these biases, the actual willingness to undergo WPGT may be lower. 

Similarly, actual perceived benefits may be lower and concerns higher. However, 

there is no reason to believe that the sentiment would be overly negative. It should 

also be emphasized that actual uptake of WPGT, when it does become available, 

would likely differ from the indicated levels of willingness, as other factors that affect 

the actual behavior are not measured. This would be the case even if willingness was 

measured without bias here. The estimated WTP for WPGT was also affected by 

differential understanding of the DCE but it is difficult to predict whether actual WTP 

(a function of actual price and uptake) would be higher or lower than estimated. Apart 

from the effect of this bias, other factors affecting uptake were not measured. The 

directions of the part worth estimates in the expected directions provide face validity, 

and relatively good prediction accuracies of the holdout tasks provide internal 

validity. External validity of WTP estimates from DCEs has been largely untested due 

to lack of RP data and is an ongoing issue in the field [360]. 

 In conclusion, patient acceptance is not likely to be a major barrier to clinical 

implementation of WPGT. However, patient education is necessary and the ethical, 

social and legal issues should be addressed in the process. The median WTP for 

WPGT in Singaporean Chinese ranged from about S$160 to S$730, depending on the 

actual clinical benefits WPGT can bring. Both patients and public generally placed 

most emphasis on side effects, followed by cost, number of INR tests and nature of 

test. With falling costs of genotyping, WPGT is likely to be economically sustainable.  
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CHAPTER 7: CONCLUSIONS 

7.1 Major Findings 

 This thesis comprises of 4 studies focusing on different aspects of warfarin 

pharmacogenomics, from marker discovery to specific issues pertaining to clinical 

application. In study 1, genetic variants in CYP4F2, GGCX and EPHX1 were 

investigated for association with WMD in the hope of finding markers that may 

further explain warfarin dose variability in our multiethnic Singaporean population. 

CYP4F2 V433M (rs2108622) was found to be significantly associated with WMD 

after accounting for known factors such as age, weight, CYP2C9, VKORC1 and even 

race. CYP4F2 V433M contributed an additional 2.8% to dose variability, which is 

relatively small compared to the effects of CYP2C9 and VKORC1. On the other hand, 

GGCX and EPHX1 did not contribute additionally to warfarin dose variability in our 

population, or at least have too small an effect to reach statistical significance. 

 Study 2 further dissected the role of genetic factors in the context of race and 

the analysis revealed that while race was closely correlated with VKORC1 genotype, 

genetic information (including VKORC1 genotype) still provided additional input in 

explaining warfarin dose variation, as manifested in the ANOVA analysis and 

improvement in predictive accuracy of WMD. Furthermore, the addition of CYP4F2 

led to a statistically better prediction model despite its small contribution, a slight 

improvement in prediction accuracy as measured by the proportion of patients with 

predicted dose within ±20% actual dose. Race is thus not a sufficient surrogate for the 

known genetic factors, and dosing algorithms that include CYP4F2 should be further 

evaluated. 

 Having established the value of the genetic factors, study 3 went on to explore 

the population impact of WPGT by adopting the PAF as a measure. Using the 
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multiethnic IWPC dataset, the analysis suggested that WPGT (testing for the well 

established variants in CYP2C9 and VKORC1 only) would likely benefit Caucasians 

but not Blacks, Chinese and Japanese, in whom 6mg/day (for Blacks) or 3mg/day (for 

Chinese and Japanese) fixed doses seemed to achieve the right dose just as well as 

WPGT if not better. 

 Study 4 was an attitudinal and econometric study surveying warfarin patients 

and the general public to infer the acceptability and WTP for WPGT in potential 

warfarin patients. Both populations had relatively high perceived benefits of WPGT 

and were generally willing to undergo it, but also had some concerns. When choosing 

between WPGTs (or between undergoing and not undergoing WPGT in practice), the 

ability of WPGT to reduce side effect risk was most important, followed by cost, 

number of INR tests needed till stabilization and lastly nature of test. The estimated 

median WTP for WPGT ranged from S$160 to S$730 depending on its actual clinical 

performance, and so is likely to be economically sustainable with falling genotyping 

costs. Due to the higher educational status of the study populations, the actual 

willingness and perceived benefits may be lower, while level of concern may be 

higher. In view of the methodological biases in this study, the results should therefore 

be interpreted cautiously. 

 

7.2 Clinical Significance 

 The findings in this thesis have potential practical implications on the 

improvement of warfarin management through application of pharmacogenomics in 

Singapore and beyond. In the local context, addition of CYP4F2 V433M may improve 

the previously developed dosing algorithm [16], albeit by a small degree. With falling 

genotyping costs, the cost of including an additional variant on a genotyping platform 
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is likely to be marginal and thus worthwhile. Unsurprisingly, a recent analysis 

proposed that multiplexed preemptive genotyping may be more efficient that single 

‘reactive’ testing, given that two-thirds of the population would use at least 1 drug 

with an established pharmacogenetic association within a 5 year period [361]. 

Furthermore, with the cost of whole genome sequencing approaching US$1000 in the 

next few years [362], established and potential genetic markers lay waiting in one 

single test if it gains a foothold in routine medical practice someday. 

 Currently, there appears to be a general acceptance that although race is a key 

factor determining WMD, it becomes irrelevant after genotype is taken into account 

[143,225] and that the major races studied thus far (Caucasians, Blacks, Asians) may 

benefit from WPGT [134,225,226]. The role of race was brought back into focus in 

studies 2 and 3, in which the results concurred with the first inference but not the 

second. It appears contradictory that while study 2 confirmed that race alone is not a 

sufficient surrogate for genotype (in particular VKORC1) as previously suggested 

[132], but study 3 suggests that WPGT may be no better than a race-specific fixed 

dose. The contradiction may partly be explained by methodological differences and 

discrepancy in the definition of superiority from statistical and clinical viewpoints. 

Nevertheless it cautions practitioners against assuming that statistical association 

between genetic factors and WMD in different races or several races combined 

necessarily leads to clinical benefit and more importantly, highlights the pitfall of 

extrapolating findings in a mixed population to its individual races. Individual 

populations may also have genetic variants specific or more relevant to them, or 

additional undiscovered variants that might make WPGT useful. Apart from racial 

differences associated with genetics, differences in cultural aspects such as diet, 

lifestyle and behavior may also affect warfarin control. Therefore populations 
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differing sufficiently in these aspects may be worth studying individually, especially 

with regards to clinical outcomes. In the local context, it would be particularly useful 

to compare WPGT against a 3mg/day fixed dose in Chinese and Malays. 

 Evidence of clinical benefit from ongoing clinical trials is still necessary 

before most practitioners would be willing to adopt WPGT. However, for it to reach 

the end of the translational road to have its intended effect, social, ethical, legal, 

logistical and economic issues have to be addressed. Some of these issues were 

explored in study 4 and there was indication of reasonable acceptance and economic 

sustainability in the local Chinese population, giving assurance that these are not 

likely to be major barriers. Study 4 also highlighted the need to educate potential 

patients on WPGT and counsel them to allay any concerns, should WPGT be 

eventually implemented in Singapore. Looking forward, outreach programs to educate 

the public on pharmacogenomics and personalized medicine could already be started 

given the possibility of more PGTs being incorporated into clinical practice. Social 

media is one channel, a powerful and efficient one, to reach out to and to garner views 

and concerns about PGT from the public. Through constant engagement with the 

public on these matters, hopefully they would be more prepared and receptive when 

the need for a PGT comes. 

 

7.3 Limitations 

 Although the patient cohort used in studies 1 and 2 for SNP discovery and 

validation was one of the largest multiethnic population in the region (the next largest 

being a Malaysian cohort [363]), the number of Malays and Indians were still too 

small for meaningful analysis on their own and thus genetic variants that may be 

relevant to certain races (especially Malays) could not be detected. The range of 
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genetic variants studied were limited and the overall sample size was also not large 

enough to detect variants with smaller effects. In addition, potentially important 

clinical variables such as dietary vitamin K intake, alcohol intake, smoking status and 

level of compliance were not available in the dataset for Studies 1 and 2. 

 It appears that Study 1 in this thesis, and other studies, which failed to 

replicate the associations for the variants in GGCX and EPHX1, were victims of the 

winner’s curse, a phenomenon where the true genetic effect size of a newly identified 

association tends to be biased upwards [364]. Therefore, future studies attempting to 

replicate these or other isolated associations should consider correcting for this bias, 

perhaps by using the one-parameter maximum likelihood method recently proposed 

for quantitative traits, so that the appropriate sample size required can be calculated 

[365]. 

 The final IWPC dataset used for PAF calculations in study 3 also contained a 

relatively small number of Japanese and Chinese. Coupled with the fact that only the 

IWPC algorithms were assessed, the conclusion that Blacks, Japanese and Chinese do 

not do better with WPGT compared to a race-specific fixed dose needs to be 

confirmed and further examined. Furthermore, assessment of the utility of genetic 

factors in studies 2 and 3 was made only with respect to warfarin dose accuracy, an 

intermediate outcome. Applying the same analysis on clinical outcomes such as 

reduction in INR tests needed or bleeding events, when available, would yield a more 

complete picture of the value of genetic factors. Another limitation of this analysis 

was that information for genes other than CYP2C9 (*2 and *3) and VKORC1 were not 

available and therefore it could not be determined if these additional factors may 

make WPGT superior to clinical and fixed dose regimens, especially in Blacks, 

Japanese and Chinese.  



 

128 

 

 In the last study, the main limitation was the possible bias in the samples from 

non-random sampling and non-response. Inadequate understanding of the survey by 

some participants (more so in the patient population) may also have affected the 

results. Patients who needed substantial assistance with the survey, an indicator of 

difficulty in understanding the survey, responded slightly differently in terms of their 

willingness to undergo WPGT and preferences. Also, the survey asked for the 

participants’ autonomous choices on WPGT, which may not accurately reflect clinical 

practice in Singapore, where the doctor usually has a strong influence on the 

healthcare decisions of patients. In view of these limitations, the elicited willingness 

to undergo WPGT and WTP may not reflect the true state of affairs when WPGT is 

eventually ready for the clinic. In the DCE, 2 fixed tasks were included as an internal 

validity check but it was not possible to evaluate the external validity of the WTP 

estimates. However this is a common challenge for WTP studies in healthcare and is 

an area of active research [277]. 

 

7.4 Future Directions 

 Alongside warfarin pharmacogenomic research, new oral anticoagulants has 

been developed, garnering hope of doing away with the problems of using warfarin 

altogether. Two agents, dabigatran (a direct thrombin inhibitor) and rivaroxaban (a 

factor Xa inhibitor), are now FDA-approved and a third agent apixaban (another 

factor Xa inhibitor) is in phase III clinical trials [366]. These are attractive alternatives 

to warfarin, given that routine monitoring is not needed. If these agents become the 

main anticoagulant of choice, warfarin pharmacogenomics would be redundant except 

for being a fine case study. However, it appears likely that there will be a considerable 

number of years before this happens, if it does. Weighing the risks and benefits 
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between the new agents and warfarin, currently only a few select subgroups (those 

with poor control despite good compliance or due to unavoidable drug interactions, 

and warfarin naïve patients needing anticoagulation for atrial fibrillation) may be 

suitable for the new agents, if cost is not a concern [367]. Clinicians are a lot more 

familiar with warfarin and how to handle its problems compared to the new agents, so 

the lack of a monitoring test may actually unnerve some, not to mention the lack of an 

antidote, lack of experience on how to handle drug interactions (though fewer) and 

lack of data in patients with relevant co-morbidities. The (in)practical aspects 

(needing to take twice daily) and high costs are also not in the favor of new agents at 

the moment [367,368]. Continued research on these new agents is needed to fill these 

clinical gaps.  

 Since warfarin will still be the dominant oral anticoagulant for some time, 

there are aspects of warfarin pharmacogenomics worth pursuing, especially in the 

local context. With the advancement of genotyping technologies and next generation 

sequencing being the new workhorse of genetic studies, GWAS in less well studied 

Asian populations like Malays and Indians would be valuable in uncovering possible 

genetic variants that are relevant to these populations. Stratified analysis in study 1 

showed that warfarin dose variability in Malays was the least well understood among 

the 3 Asian ethnic groups, so discovery of additional genetic factors might be 

beneficial to this ethnic group, which is not only the second largest ethnic group in 

Singapore but also the majority in Malaysia and Indonesia.  

 Existing and potential warfarin patients have been studied here with regard to 

their attitudes and WTP for WPGT. However, healthcare professionals taking care of 

warfarin patients are instrumental in the delivery of WPGT and so their knowledge 

and attitudes on WPGT should also be studied. One such study in the US suggests that 
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much needs to be done in terms of educating and convincing healthcare professionals 

about WPGT [369], but it has several methodological limitations. Besides, the 

situation may be different now (after more time for pharmacogenomic news to 

assimilate in the medical community) and in our local setting. Identification of 

potential barriers and needs of healthcare professionals can then help direct the 

necessary efforts to prepare them effectively for WPGT implementation. Patients’ 

decision to undergo WPGT can be considerably affected by their doctor’s 

recommendation, so understanding how the attributes of WPGT affect doctors’ 

decisions to recommend WPGT (by way of a DCE) would also be valuable. The 

effect of different payment vehicles has also been suggested to affect patients’ WTP. 

However, instead of another DCE to elicit WTP using a different payment vehicle, it 

may suffice to determine the desire for Medisave usage and subsidies, conditioning on 

the actual cost of warfarin genotyping. Ultimately, warfarin genotyping would be 

recommended based largely on its clinical utility; Medisave and subsidies are ways to 

make it is affordable for most patients. 

 Cutting edge technology aside, more aggressive and systematic effort in 

managing diet and compliance may be what some patients need. These factors have 

long been known to play a role in warfarin response but are difficult to measure and 

are often conveniently omitted from pharmacogenetic algorithms. In fact, there is 

recently renewed interest in the investigation of the effect of vitamin K on warfarin 

dose variability [370,371]. In a recent study, partial least squares regression was used 

to dissect and detect the correlation between warfarin dose and vitamin K intake, 

which is confounded by other non-genetic variables such as body weight and physical 

activity [371]. To facilitate such a study locally, research is also needed to first 

develop an instrument to quantify vitamin K intake, such as a local version of the K-
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card [372]. Low vitamin K intake has been associated with unstable anticoagulation 

control [97] and supplementation with low dose vitamin K has been shown to improve 

stability [98,373]. Therefore, a validated instrument to measure vitamin K intake 

would also be useful in identifying such patients for early intervention and appropriate 

dietary counseling. Having to watch one’s diet was one of the main challenges to new 

warfarin patients (as revealed in pilot 1 of study 4), so a better ability to quantify and 

control its effect may not only help doctors and pharmacists achieve better 

anticoagulation control but may be reassuring and empowering for patients.  

 Lastly, apart from vitamin K intake per se, dietary fat intake may be an 

important but overlooked factor affecting warfarin response. Vitamin K is a fat-

soluble vitamin and it has been found that changes in its plasma concentrations were 

mirrored by changes in triglyceride levels in healthy individuals [374]. Although 1 

small study did not find a significant correlation between dietary fat intake and WMD 

[375], there are case reports of such a possibility, such as this case of orlistat 

enhancing warfarin effect, possibly by reducing vitamin K absorption [376]. Larger 

studies should be designed to investigate both the effects of vitamin K and fat intake, 

as well as their possible interaction. 

 In essence, 

“In all affairs it’s a healthy thing now and then to hang a question mark on 

the things you have long taken for granted.” - Bertrand Russell 

"Make everything as simple as possible, but not simpler." - Albert Einstein 
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Appendix 2. PCR and Sequencing Primer Sequences 

Gene Fragment PCR Primers PCR product 
size 

(basepairs) 

Sequencing primers (forward/reverse) 

Forward (5’ � 3’) Reverse (5’ � 3’) 

CYP4F2 Exon 11 TGCCACAGTGCCACACTATT GAGCTGGAACTTGGACCATC 819 PCR primers 
GGCX Intron 2  CTTGGTGGCCAGAAATGC ATCAGGAAGCCAGCTTGAGA 793 GTAGAGACGGGGTTTCACCA/ 

AGCCAGCTTGAGATAAAGCAG 
Intron 6  TGCCCTTGCTTATTACATAGGA  GTGGCTGGGTAGATGCCTAA 441 PCR primer* 
Exon 8  ACTTTCCTTTTCAGTGGAACAC AAAGGCAAAGCAGACTCAAA 778 PCR primers 

EPHX1 5’ promoter TATCCAAGATTGCCTCCCAC  GGTTAATCATCCATCCAGCG 319 PCR primers 
Exon 1 
(alternative) 

GCCCTTTAAGTAGCCCGTTT AGTGTTCCGACTTGGGTGAC  609 PCR primer/ 
GGGCGGACCAACTACAAGT 

Exon 1 
(classic) 

CCTTCTTTTAGATGGGACTCG TCTTTCATTTCCAGAAAGACG 850 GATGGGACTCGAGCACTGAT/ 
PCR primer 

Exon 2  TTTTCCCAGGATGATGAACAG GGGCATAGAGGAGGTGATGA 791 TAAAATCAGGGACAGGGTTG/ 
PCR primer 

Exon 3  GAGGCATGACTGGCTTGAAC GGACTGGATGGTGCATTTCT 758 AAGAAATGCGAAGTCTACAGTGA/ 
PCR primer 

Exon 4  GAAACCGGGAGGCAATAATC GGCCCTCTGGTGTTCTATGA 755 PCR primers 
Exon 5  GTGTTCCCACCAGGCTCTC GGAGTTGGAGAAGGGAGGTT 746 PCR primer/nil† 
Exon 6  CGTTGACTTGGATCCTCCTG GGGGTGAAAGCCACTATGAA 789 PCR primers 
Exon 7  GATGCCGAGGCAGAGTTAAG GGGAGTCAGGCATGTAGAGG 754 PCR primers 
Exon 8  CTGCCTGTGACACGAGGATA CACCCACAAGGAGCCATAAA 701 PCR primers 
Exon 9  ATTTAGAGGCTGTCCCATGC GGTGCCATTGGTCTGGTG 795 PCR primers 

* Only forward was sequenced to confirm number of CAA repeats 
†No primer could be designed for sequencing in the reverse direction due to a string of TG repeats located just after the exon. Attempts to 
sequence using the reverse primer during the optimization stage resulted in multiple peaks after that repeat region, a possible symptom of 
enzyme slippage.
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Appendix 3. Study 1 Patient Characteristics 
 

 
All  

(n=248) 
Chinese 

(n=131) 
Malays   

(n=81) 
Indians  

(n=36) 

Age(yr), mean (SD)  56.4 (13.2) 57.3 (13.3) 55.2 (13.0) 55.9 (13.5) 

Weight (kg), mean (SD)  63.5 (14.0) 62.5 (14.2) 63.9 (13.3) 66.0 (14.8) 

Daily maintenance warfarin dose 
(mg), median (range)  

3.50 
(0.79 – 14.50) 

3.00 
(1.00 – 8.00) 

3.50 
(0.79 – 7.00) 

5.11 
(1.25 – 14.50) 

Indication for warfarin use (%)  
    

 Thromboembolism  23.4 16.0 40.7 11.1 

 Atrial fibrillation  35.1 32.8 32.1 50.0 

 Heart valve replacement  31.5 38.2 19.8 33.3 

 Others  10.1 13.0 7.4 5.6 

CYP2C9*2 (%)  
    

 Present  0.8 0 1.2 2.8 

CYP2C9*3 (%)  
    

 Present  9.3 6.9 8.6 19.4 

VKORC1 381 genotype (%)  
    

 CC  56.0 78.6 42.0 5.6 

 CT  28.2 20.6 46.9 13.9 

 TT  15.7 0.8 11.1 80.6 
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Appendix 4. MAF of Genetic Variants Genotyped in CYP4F2, GGCX and 

EPHX1 (Study 1) 

GGCX CAA 
microsatellite 
grouping  

Genotypes 

All  
(n = 248) 

Chinese  
(n = 131) 

Malays  
(n = 81) 

Indians 
(n = 36) 

Frequency 
(%) 

n Frequency 
(%) 

n Frequency 
(%) 

n Frequency 
(%) 

n 

Group 1 8/10 0.8 
88 

0 
48 

1.2 
24 

2.8 
16 

10/10 34.7 36.6 28.4 41.7 

Group 2 10/11 30.6 

100 

38.2 

68 

21.0 

20 

25.0 

12 
11/11 8.1 12.2 3.7 2.8 

10/12 0.8 0 0 5.6 

11/12 0.8 1.5 0 0 

Group 3 8/13 0.4 

25 

0 

11 

1.2 

13 

0 

1 10/13 6.9 6.1 9.9 2.8 

11/13 0.8 2.3 4.9 0 

Group 4 8/14 0.4 

35 

0 

4 

1.2 

24 

0 

7 

10/14 7.7 0.8 14.8 16.7 
11/14 2.8 0.8 6.2 2.8 
13/14 2.0 0.8 4.9 0 
14/14 0.8 0 2.5 0 
11/15 0.4 0.8 0 0 

 

Positiona SNP Location Amino 
acid 

change 

Allele MAF χ2 p-
valueb Major Minor All 

(n=248) 
Chinese 
(n=131) 

Malay 
(n=81) 

Indian 
(n=36) 

CYP4F2 

 rs2108622 exon 11 V433M G A 0.270 0.244 0.222 0.472 <0.001 

GGCX 

 rs12714145 Intron 2  G A 0.399 0.401 0.457 0.264 0.056 

 rs67988001 Intron 2  G A 0.294 0.351 0.278 0.125 0.003 

 rs699664c Exon 8 R325Q G A 
0.292 0.351 0.278 0.111 0.001 

 rs2592551c Exon 9 R406R C T 

 rs10179904 Exon 9 T414T C T 0.105 0.050 0.173 0.153 <0.001 

EPHX1 

224061834 rs4653436 5' flanking  G A 0.188 0.176 0.179 0.250 0.189 

224061994 2575C>Td, e 5' flanking  C T 0.036 0.050 0.031 0 0.337 

224064364 rs12741681 5' flanking  A C 0.246 0.244 0.241 0.264 0.896 

224064596 rs12744609 Alternative intron 1  A G 0.188 0.172 0.179 0.264 0.275 

224064670 5251G>Td Alternative intron 1  G T 0.002 0 0.006 0  

224064793 5374C>Td Alternative intron 1  C T 0.002 0.004 0 0  

224064836 5417A>Gd Alternative intron 1  A G 0.004 0 0.012 0  

224079660 rs3738039 Exon 1  G T 0.010 0.019 0 0 0.595 

224079664 rs3738040 Exon 1  G A 0.216 0.244 0.210 0.125 0.332 

224079729 rs55948105 Exon 1  A G 0.006 0.011 0 0  

224079807 20388A>Gd Exon 1  A G 0.002 0.004 0 0  

224079882 20463T>Cd Intron 1  T C 0.002 0 0 0.014  

224079978 rs1877724 Intron 1  C T 0.337 0.271 0.401 0.431 0.008 

224080011 rs3738042 Intron 1  G A 0.149 0.137 0.136 0.222 0.108 

224083004 rs41266229 Intron 1  G A 0.149 0.137 0.136 0.222 0.071 

224083020 rs41266231 Intron 1  G A 0.149 0.137 0.136 0.222 0.071 

224083083 23664G>Ad Exon 2 V10V G A 0.002 0.004 0 0  

224083181 rs3738046 Exon 2  R43T G C 0.056 0.073 0.056 0 0.028 

224083256 rs3738047 Intron 2  G A 0.230 0.267 0.204 0.153 0.408 

224083318 rs3738048 Intron 2  C T 0.056 0.073 0.056 0 0.028 

224083518 rs55743622 Intron 2  A C 0.056 0.073 0.056 0 0.028 

224085956 26537A>Cd Intron 2  A C 0.002 0 0.006 0  

224085969 26550G>Ad, f Intron 2  G A 0.002 0 0.006 0  

224085994 rs3817268 Intron 2  G T 0.163 0.176 0.136 0.181 0.768 

224086055 rs56237740 Intron 2  T G 0.002 0.004 0 0  

224086150 rs55798709 Exon 3 E77E G A 0.022 0.042 0 0 0.005 

224086256 rs1051740 Exon 3 Y113H T C 0.466 0.470 0.537 0.292 0.013 

224086269 rs67892231 Exon 3 K117R A G 0.010 0 0.006 0.056 <0.001 

224086276 rs2292566 Exon 3 K119K G A 0.258 0.290 0.216 0.236 0.027 

224086397 rs2260863 Intron 3  C G 0.067 0.034 0.080 0.153 0.002 

224086492 27073A>Gd Intron 3  A G 0.002 0.004 0 0  

224092849 33430A>Gd, g Intron 3  A G 0.077 0.088 0.086 0.014 0.060 

224092864 rs4149223 Intron 3  G C 0.436 0.408 0.432 0.542 0.371 

224093028 rs55784606 Exon 4 H139Y C T 0.004 0.008 0 0  
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224093029 rs2234922 Exon 4 H139R A G 0.131 0.099 0.148 0.208 0.056 

224093239 rs2292567 Intron 4  G A 0.071 0.069 0.056 0.111 0.390 

224093268 rs4149224 Intron 4  C T 0.004 0.008 0 0  

224093284 rs56178222 Intron 4  C T 0.002 0.004 0 0  

224093343 33924G>Ad Intron 4  G A 0.002 0 0 0.014  

224093354 33935C>Td, h Intron 4  C T 0.004 0.004 0.006 0  

224093364 33945C>Td Intron 4  C T 0.002 0.004 0 0  

224093946 rs4149226 Intron 5  C T 0.387 0.420 0.303 0.458 0.009 

224093948 34529G>Ad Intron 5  G A 0.002 0.004 0 0  

224094091 34672C>Gd Intron 5  C G 0.002 0 0.006 0  

224094171 rs34143170 Exon 6 H247H C T 0.008 0 0.012 0.028  

224094198 rs56300109 Exon 6 N256K C A 0.002 0 0.006 0  

224094253 rs35073925 Exon 6 T275A A G 0.020 0.019 0.031 0 0.396 

224094276 34857G>Cd Exon 6 L282L G C 0.002 0.004 0 0  

224094282 rs2292568 Exon 6 P284P C T 0.133 0.149 0.111 0.125 0.833 

224094312 34893G>Td Exon 6 M294I G T 0.002 0.004 0 0  

224094383 34964C>Td Intron 6  C T 0.004 0 0.006 0.014  

224096779 37360G>Ad Exon 7 E341K G A 0.002 0.004 0 0  

224097191 37772G>Cd Intron 7  G C 0.018 0.011 0.037 0 0.102 

224098852 rs1051741 Exon 8 N357N C T 0.135 0.111 0.136 0.222 0.040 

224098944 39525A>Td Exon 8 E388V A T 0.002 0.004 0 0  

224099099 39680G>Ad Intron 8  G A 0.002 0.004 0 0  

224099152 rs45467394 Intron 8  G T 0.133 0.145 0.117 0.125 0.923 

224099153 rs4149227 Intron 8  C A 0.133 0.145 0.117 0.125 0.923 

224099300 rs4149228 Intron 8  A G 0.133 0.145 0.117 0.125 0.923 

224099321 39902C>Td Intron 8  C T 0.002 0 0 0.014  

224099374 39955G>Ad Intron 8  G A 0.002 0.004 0 0  

224099481 40062A>Gd Exon 9 Y393C A G 0.002 0.004 0 0  

224099542 rs45540739 Exon 9 V413V G A 0.002 0.004 0 0  

224099550 40131A>Gd Exon 9 K416R A G 0.002 0 0.006 0  

224099551 rs4149229 Exon 9 K416K G A 0.073 0.099 0.056 0.014 0.021 

224099602 rs45550332 Exon 9 A433A G A 0.006 0 0.019 0  

224099653 rs4149230 Exon 9 S450S G C 0.133 0.145 0.117 0.125 0.923 

224099686 40267C>Gd 3' UTR  C G 0.002 0.004 0 0  

224099706 rs4653695 3' UTR  A C 0.063 0.084 0.031 0.056 0.375 

224099766 40347T>Ad 3' UTR  T A 0.002 0 0 0.014  

224099854 40435C>Td 3' UTR  C T 0.002 0.004 0 0  

224099912 40493C>Td 3' flanking  C T 0.004 0.008 0 0  
aChromosome position based on National Center for Biotechnology Information 
(NCBI) Genome Build 36.3 
bGenotypic frequencies compared among Chinese, Malays and Indians using 
Pearson’s χ2 test or Fisher’s exact test for those MAF>0.01 
cSNPs were in perfect LD (r2 = 1) 
dVariants not catalogued in NCBI dbSNP Build 130 are considered novel, and are 
numbered based on positions on Genbank genomic sequence NG_009776 for EPHX1 
e2575C>T is rs117582469 in dbSNP Build 135 
f26550G>A is rs146555972 in dbSNP Build 135 
g33430A>G is rs79860830 in dbSNP Build 135 
h33935C>T is rs189380029 in dbSNP Build 135 
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Appendix 5. LD Maps of EPHX1 in All Patients and Each of the 3 Ethnic G

All patients 

in All Patients and Each of the 3 Ethnic Groups (Study 1) 
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Appendix 6. Power Calculation for Study 1 (QUANTO output) 

Model # 1 
Outcome:                        Continuous 
Design:                         Independent individuals 
Hypothesis:                     Gene only 
Sample size:                    248 individuals 
Significance:                   0.050000, 2-sided 
Gene 
   Mode of inheritance:         Additive 
   Allele frequency:            0.0100 to 0.1000 by 0.0200 
Continuous trait settings 
   Main                         0.5400 
   Std. dev.                    0.2000 
 
   Marginal R2                     Main effect 
   R2G                0.0100      *bG           0.1421 
   (*indicates calculated value) 
 
Parameter       Null        Full      Reduced 
-------------------------------------------------- 
Gene            bG=0        bG        ---- 
-------------------------------------------------- 
 
                                 Power 
                          ------------------ 
   Frequency         R2G                Gene          bG 
-------------------------------------------------------- 
    0.010000      0.0100              0.3517      0.1421 
                  0.0200              0.6097      0.2010 
                  0.0300              0.7848      0.2462 
                  0.0400              0.8891      0.2843 
                  0.0500              0.9459      0.3178 
    0.030000      0.0100              0.3517      0.0829 
                  0.0200              0.6097      0.1172 
                  0.0300              0.7848      0.1436 
                  0.0400              0.8891      0.1658 
                  0.0500              0.9459      0.1854 
    0.050000      0.0100              0.3517      0.0649 
                  0.0200              0.6097      0.0918 
                  0.0300              0.7848      0.1124 
                  0.0400              0.8891      0.1298 
                  0.0500              0.9459      0.1451 
    0.070000      0.0100              0.3517      0.0554 
                  0.0200              0.6097      0.0784 
                  0.0300              0.7848      0.0960 
                  0.0400              0.8891      0.1109 
                  0.0500              0.9459      0.1239 
    0.090000      0.0100              0.3517      0.0494 
                  0.0200              0.6097      0.0699 
                  0.0300              0.7848      0.0856 
                  0.0400              0.8891      0.0988 
                  0.0500              0.9459      0.1105 
-------------------------------------------------------- 
 



 

190 

 

 
 
 
 
 
 
 
 
Model # 2 
Outcome:                        Continuous 
Design:                         Independent individuals 
Hypothesis:                     Gene only 
Sample size:                    248 individuals 
Significance:                   0.050000, 2-sided 
Gene 
   Mode of inheritance:         Additive 
   Allele frequency:            0.1000 to 0.4000 by 0.1000 
Continuous trait settings 
   Main                         0.5400 
   Std. dev.                    0.2000 
 
   Marginal R2                     Main effect 
   R2G                0.0100      *bG           0.0471 
   (*indicates calculated value) 
 
Parameter       Null        Full      Reduced 
-------------------------------------------------- 
Gene            bG=0        bG        ---- 
-------------------------------------------------- 
 
                                 Power 
                          ------------------ 
   Frequency         R2G                Gene          bG 
-------------------------------------------------------- 
    0.100000      0.0100              0.3517      0.0471 
                  0.0200              0.6097      0.0667 
                  0.0300              0.7848      0.0816 
                  0.0400              0.8891      0.0943 
                  0.0500              0.9459      0.1054 
    0.200000      0.0100              0.3517      0.0354 
                  0.0200              0.6097      0.0500 
                  0.0300              0.7848      0.0612 
                  0.0400              0.8891      0.0707 
                  0.0500              0.9459      0.0791 
    0.300000      0.0100              0.3517      0.0309 
                  0.0200              0.6097      0.0436 
                  0.0300              0.7848      0.0535 
                  0.0400              0.8891      0.0617 
                  0.0500              0.9459      0.0690 
    0.400000      0.0100              0.3517      0.0289 
                  0.0200              0.6097      0.0408 
                  0.0300              0.7848      0.0500 
                  0.0400              0.8891      0.0577 
                  0.0500              0.9459      0.0645 
-------------------------------------------------------- 
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Appendix 7. Predicted versus Actual Warfarin Doses in IWPC Populations (Study 3) 
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2

Predicted doses using the IWPC pharmacogenetic algorithm were plotted against actual daily doses by race. Within each plot, the black diagonal 
line is the y=x line, indicating perfect prediction, and the 2 grey lines demarcate the boundaries within which predicted doses were considered 
accurate (i.e. within ±20% actual dose). The 2 vertical dotted lines demarcate low dose (≤3mg/day), intermediate and high dose (≥7mg/day) 
groups. In Whites, the 5mg/day fixed dose (horizontal blue line) and the segment of the population which would be thus accurately dosed are 
demarcated within the 2 vertical blue lines (i.e. all patients between the 2 vertical blue lines were accurately dosed using the 5mg/day fixed 
dose). Similar demarcations are made for Blacks (6mg/day), Japanese (3mg/day) and Chinese (3mg/day) using their respective race-specific 
doses in parentheses. In these 3 races, the region between the vertical red lines captures a substantial proportion of the population such that the 
proportion between the grey lines is outnumbered.   
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Appendix 8. Final DCE Design (Study 4) 

Version* Task Concept Nature of test Number of INR tests 
till stabilization 

Risk of serious 
ADR (% per year) 

Cost 
of test 

0 1 1 Genetic 5 1 $225  

0 1 2 Non-genetic 13 5 $375  

0 2 1 Genetic 5 5 $375  

0 2 2 Genetic 13 1 $100  

1 1 1 Genetic 5 5 $375  

1 1 2 Non-genetic 21 1 $225  

1 2 1 Genetic 5 1 $600  

1 2 2 Non-genetic 13 9 $100  

1 3 1 Genetic 21 5 $600  

1 3 2 Non-genetic 13 5 $225  

1 4 1 Genetic 5 9 $100  

1 4 2 Non-genetic 21 1 $100  

1 5 1 Non-genetic 13 1 $600  

1 5 2 Genetic 21 9 $375  

1 6 1 Non-genetic 5 5 $375  

1 6 2 Genetic 13 1 $225  

2 1 1 Genetic 13 9 $100  

2 1 2 Non-genetic 21 5 $225  

2 2 1 Genetic 5 5 $600  

2 2 2 Non-genetic 13 1 $375  

2 3 1 Non-genetic 13 1 $225  

2 3 2 Genetic 5 9 $100  

2 4 1 Genetic 5 1 $375  

2 4 2 Non-genetic 21 5 $600  

2 5 1 Genetic 21 5 $225  

2 5 2 Non-genetic 5 9 $100  

2 6 1 Genetic 13 9 $600  

2 6 2 Non-genetic 21 1 $600  

3 1 1 Non-genetic 5 9 $100  

3 1 2 Genetic 13 1 $375  

3 2 1 Non-genetic 5 5 $375  

3 2 2 Genetic 21 9 $225  

3 3 1 Genetic 21 1 $600  

3 3 2 Non-genetic 13 5 $375  

3 4 1 Genetic 13 9 $600  

3 4 2 Non-genetic 21 1 $225  

3 5 1 Non-genetic 5 5 $100  

3 5 2 Genetic 5 1 $375  

3 6 1 Non-genetic 13 9 $100  

3 6 2 Genetic 13 1 $225  

4 1 1 Genetic 13 1 $100  

4 1 2 Non-genetic 5 9 $225  
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4 2 1 Genetic 21 1 $375  

4 2 2 Genetic 13 5 $375  

4 3 1 Non-genetic 5 5 $600  

4 3 2 Non-genetic 21 9 $100  

4 4 1 Genetic 5 1 $225  

4 4 2 Non-genetic 13 5 $600  

4 5 1 Genetic 21 9 $225  

4 5 2 Non-genetic 13 9 $375  

4 6 1 Genetic 21 5 $100  

4 6 2 Non-genetic 13 5 $600  

* Version 0 = fixed tasks 

Summary of Design Efficiency Tests 

  Estimated SEs of parameters* 

Simulation conditions** n = 150,  
15% none 

n = 200,  
15% none 

n = 200,  
20% none 

Nature of test    
 Genetic  0.03688 0.03199 0.03182 
 Non-genetic 0.03688 0.03199 0.03182 
Number of INR tests    
 5 0.06256 0.05433 0.05334 
 13 0.05472 0.04752 0.04707 
 21 0.06216 0.05413 0.05326 
ADR risk per year    
 1% 0.05781 0.05017 0.04961 
 5% 0.06867 0.05942 0.05782 
 9% 0.07111 0.06173 0.06045 
Cost    
 $100 0.08820 0.07641 0.07485 
 $225 0.07603 0.06605 0.06502 
 $375 0.08010 0.06954 0.06774 
 $600 0.07870 0.06803 0.06640 
None 0.09233 0.08228 0.06803 

SE: standard error 
* From ‘Advanced test’ of the CBC design efficiency test in SSI Web 7.0.22. Random 
responses of sample size n were simulated and parameters estimated under the 
aggregate logit framework in this test. The recommended guideline for SEs of main 
effects is ≤0.05. 
** Sample sizes and % of respondents choosing the ‘none’ option. 
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Appendix 9. Study 4 Pilot 1 Interview Protocol 

Interview protocol for pilot 1 (30 – 50 patients) 

Introductory Script 

Notes:  

To be used to approach potential subjects (Chinese patients heading for ACC) for 

both cognitive interviews and main survey. Change details as necessary. 

Note demographic details (age & gender) of all patients approached to capture details 

on non-responders. 

Assess suitability of patient while engaging patient  

Ability to speak Mandarin 

Ability to give consent / signs of cognitive function problems 

 

Good morning/afternoon, my name is Sze Ling, a graduate student from NUS and I’d 

like to invite you to participate in a survey on warfarin pharmacogenetic testing 

(PGT). Do you have a few minutes to let me explain more about the study? 

早上好/下午好，我的名字叫思玲，是新加坡国立大学的研究生。我想邀请你参

加一项关于华法林（Warfarin）药物基因测试的研究调查。能给我几分钟的时

间向你解释一下吗？ 

 
[Continue if patient hasn’t flatly refused]  
 

May I know if you have heard about genetic testing? Research in recent years has 

now enabled us to predict your warfarin dose by testing your genes. This PGT may 

benefit new patients who need warfarin but its use in clinical practice depends on 

whether patients are willing to undergo the test and whether they are willing to pay 

for the test. Hence, the purpose of this study is to find out what you think of warfarin 

PGT and whether you will be willing to pay for it. Please note that NUHS currently 

does not have any official plans to implement warfarin PGT.  

请问您有听过基因测试吗？近年来的研究现在已经能让我们测试基因就能够预

测你需要的华法林剂量。这个基因测试有可能让需要华法林的新病人受益，不

过它在临床的成功使用取决于病人愿不愿意接受和支付。所以，这项研究的目

的是要知道你对华法林基因测试的看法以及愿意支付的价格。我要先说明国大

医院目前还没有正式实施华法林基因测试的计划。  

 
So I’d like to do an in-depth individual interview with you in Mandarin. This is the 

first phase of this study and the purpose here is to find out more about your 

experience with warfarin therapy and what is important to you, especially if choosing 

between having and not having a PGT. This interview will take about 30 minutes and 

will be voice recorded. The voice recording is solely intended to help us recall the 

contents and will be kept strictly confidential. With the digital recordings, we do not 

need to return to you at a later date for any clarifications. Hence, this will be more 

convenient for you as well.  
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我想和你以华语做个单独深入访谈。这是本研究的第一阶段，而这里的目的是

要了解你服华法林的经验和什么效益指标对你最重要，尤其在选择于做不做华

法林基因测试之间。访谈将持续大约 30分钟，而会被录音。这录音完全是为了

帮助我们回忆访谈内容，而将会严格保密。有了录音我也不需要日后再跟你澄

清，所以这样对你也比较方便。 

 

[If patient seem uncomfortable]: If you are not comfortable with the digital voice 

recording, we shall not proceed further.  如果你对录音不自在，我们恐怕不能继续

。 

 
In appreciation of your taking time to take part in this research study, we will 

reimburse you $5 for your time and inconvenience.  

为了感谢您抽空参与这项研究，我们将会支付你 5元来报销您的时间和不便。 

 

[Proceed to consent taking if patient is suitable & agreeable] 

 

Consent Taking  

Notes: 

To be done at interview venue 

Re-emphasize some points in patient information sheet 

� You are invited to take part in this research study because you are a warfarin 
patient 

� Phases of the study and no. of patients involved 
� This interview will be recorded but participation is voluntary and you may stop at 

any time Your medical care will not be affected in any way 
� All records, including the voice recording, will be kept confidential 
 

Do you have any other questions about the study? 

你对这项研究还有别的问题吗？ 

[Give $ and complete consent document (2 sets)] 
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Semi-structured Interview Protocol 

 

PART 1: INTRODUCTORY QUESTIONS & BACKGROUND 

INFORMATION  

Aim: To get patients thinking about different warfarin therapy monitoring measures 

that are possible efficacy attributes in the discrete choice experiment. 

Note: Point here is not to get exact answers but to get them thinking 

There are no right or wrong answers. Your responses will also not be judged. 

这里没有正确或错误的答案。您的回答也不会被评定。 

 

1. How long have you been on warfarin therapy?  

    你服华法林（Warfarin）多久了？  

 <3 months  

 3 – 6 months 

 7 – 12 months 

 >1 – 3 years 

 > 3 years 

 Don’t know/Not sure 

 
2. What do you think of your warfarin management so far? 

   到现在为止，你觉得你的华法林（Warfarin）管理怎么样？ 

 

3. What was your experience like in the first few weeks when you first started 
warfarin? 

    在你开始服华法林（Warfarin）的头几个礼拜的经验是怎么样的？ 

 

4. What is your biggest worry with regards to the use of warfarin? 

    你服华法林（Warfarin）最大的担心是什么？ 

 
If on warfarin for <3 months:  

5. Is your dose stable now?  

    你的剂量现在稳定了吗？ 

(i.e. 2 consecutive INR values at least 2 weeks apart that was within the target 
therapeutic range and during which no changes to warfarin dose was made) 

(i.e. 连续 2 次分开至少 2个星期的 INR 结果在治疗目标范内，也没有更改剂量) 

 Yes (go to 6) 

 No 

 Don’t know/ Not sure  

 
6. (When you first started warfarin), how long did it take to stabilize your dose?  

   （当你开始服华法林时），花了多少时间才稳定你的剂量? 

 < 2 weeks 

 2 – 4 weeks 

 1 – 2 months 

 >2 months 

 Don’t know/Not sure (Go to 6a) 
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6a) Do you remember how many clinic visits it took to stabilize your dose? 

      你记得需要复诊几次才稳定你的剂量吗? 

 Yes: ___________ visits 

 No 

 
7. How many INR tests have you had since beginning warfarin therapy/until your 
dose was stable? 

   从你服华法林开始/从开始到你剂量稳定为止，你做了几次 INR测试？ 

  <5 

 5 – 9 

 10 – 14 

 15 – 20 

 ≥ 21 

 Don’t know/Not sure 

 
8. Have your doctor or pharmacist told you what the risk of bleeding or clotting side 
effects is? 

     你的医生或药剂师曾经告诉你出血或凝血副作用的风险是多少吗？ 

 Yes  

 No  

 
9. What do you think is the risk of bleeding or clotting side effects in the first 3 
months? 

    你觉得在头 3个月出血或凝血副作用的风险是多少？ 

 <1% 

 1 – 5% 

 6 – 10% 

 ≥11% 

 Don’t know/Not sure 

 
10. Have you experienced any side effects due to over- or under-anticoagulation (for 
eg., clotting, bleeding or use of vitamin K)?  

   你有没有经历过因为抗凝过度或不足而引起的任何副作用 ？（例如: 凝血,流

血或需要服用维他命 K）  

 Yes, clotting 

 Yes, bleeding 

 Yes, used Vitamin K 

 Yes, but not sure of the details 

 No 

 Don’t know/Not sure 

 
11. Are you enrolled in the warfarin PGT clinical trial? 

   你有参加华法林基因测试的临床试验吗？ 

 Yes 

 No 

 
 
 



 

199 

 

12. Have you ever taken any genetic test in the past? 

   你在过去有接受过任何基因测试吗？ 

 Yes  

 No 

If yes, what was the genetic test?  

如果有，是什么基因测试？________________________________________ 

 

13. May I know your age?  

     请问你的年龄是什么？______________________ 

14. Gender [observe]: ___________________ 

14a. Highest educational level attained: 

14b. Housing type: 

14c. Did anyone accompany you here today? 

14d. If yes, is that person the decision maker for your healthcare matters? 
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PART 2: KNOWLEDGE ABOUT WARFARIN PHARMACOGENETIC 

TESTING & OBTAINING RELEVANT INFORMATION FOR MAIN 

SURVEY 

Aim:  

� To assess baseline knowledge about warfarin pharmacogenetic testing (PGT) and 
post-education understanding 

� To find out what anticipated benefits and concerns patients have about warfarin 
PGT. 

� To determine the most relevant efficacy attribute for the discrete choice 
experiment (DCE) 

� To estimate the WTP range for warfarin PGT (for DCE)  
Aid: Show cards to provide basic information on warfarin PGT 

Note: Encourage patients to be as specific as possible. Eg. “Can you be more 

specific?”, “Can you explain that in detail?” “Can you give some examples?” 

 

Knowledge, anticipated benefits & concerns 

15) Have you heard of pharmacogenetics? 

      你有听过药物遗传学吗？ 

Yes � go to 16 

No � [Show cards on warfarin PGT (slide 1 & 2 only)] & go to 17 

16) What do you think the term pharmacogenetics mean? 

     你觉得“药物遗传学”这名称是什么意思？ 

 Go through show cards (slide 1& 2 only) after patient answers 
 
17) Can you explain what warfarin PGT is to me in your own words? 

     你可以向我解释什么是华法林基因测试吗? 

 
18) What benefits do you think a warfarin PGT can bring?/ How do you think 
warfarin PGT can help a new warfarin patient? 

     你觉得华法林基因测试可以带来什么好处？/你觉得华法林基因测试可以怎么

帮助一个新的华法林病人？ 

 
19) What concerns would you have, considering it involves testing your DNA? 

   因为这涉及到测试你的 DNA，你有什么担心吗？ 

 Go through show cards (slide 3&4) after patient answers 
 
20) Do you think the show cards are helpful in explaining what warfarin PGT is?  

   你觉得这些显示卡对于解释什么是华法林基因测试有帮助吗？ 

 
21) Do you have any comments on these show cards? / Is there any part which is not 
clear in the show cards? 

     你对这些显示卡有什么意见吗？/ 这些显示卡有哪里不清楚吗？ 

21a) On a scale of 1 to 5, can you rate how well you think you understood what 
warfarin PGT is? 1 represents cannot understand at all and 5 represent understand 
very well. 
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按 1到 5的尺度,你觉得你有多了解什么是华法林基因测试？1 代表很不了解，5 

代表很了解。 

 
21b) Rate respondent on understand on same scale. 
 
22) Do you think any of these would be of concern to you? [show slide 4] 

     你觉得这些对你是顾虑吗？ 

 

Mock DCE to test understanding (To replace questions on attributes & cost) 

In the next part of the study I intend to do a choice experiment where patients will 
choose between having or not having the warfarin PGT. So I’ll now like to try a short 
version of it to see where it needs to be improved. To decide whether or not to take 
the warfarin PGT you would want to compare some things, and that will be mainly 
the benefit and cost.  
 
23) Which 1 or 2 of these 5 attributes would you choose to represent benefit? In other 
words, which of these are most important or relevant to you? [Show list of 5 
attributes] 
 
24) Why? 
 
25) Can you explain why you didn’t pick this? [choose 1 or 2 other attributes] 
Here I’m using no. of INR tests and risk of ADR to represent benefit. [Show blank 
DCE format] 
 
The purpose of the choice experiment is to see how you make trade-offs between 

benefit and cost, and from there deduce how much patients are willing to pay for the 

test. Therefore I’ll show you 5 choice sets where the numbers here will vary. [show 2 

examples] Pretend you are a new warfarin patient, the warfarin PGT is available and 

that taking it is optional. For each choice set, choose the option you would go for as 

though it is the real situation.  

 

Let me explain the attributes: 
 
1) The number of INR tests is a reflection of how accurately the warfarin PGT 
predicts your starting dose. This is the average number you can expect to have from 
beginning until your dose stabilizes.  
 
2) In the initial period your INR will take some time to stabilize so the risk of ADRs 
such as bleeding or clotting are the highest during this period. We are referring to risk 
of serious ADRs during the first 3 months, such as major bleeding, thromboembolism 
or vit K use. [show and explain risk using box grid] 
 
3) Cost is expressed as the total cost incurred in the first 6 months. This includes the 

cost of INR tests, ACC visits, drugs and the warfarin PGT for this case (PGT).  

 

Do you have any questions? 
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在这研究的下一步我打算做个选择实验，要求病人选择要不要做华法林基因测

试。所以我现在要尝试一个简短的版本，看看那里需要改进。作出选择之前你

会要先比较一些东西，而这主要就是效益和花费。 

 

23) 在这 5个当中，你会选择哪 1或 2个来代表效益？换句话，哪个对你最重要

或相应？ 

 

24) 为什么? 

 

25) 你可以解释为什么没有选这个？ 

 

在此我用从开始到剂量稳定时 INR 检测的次数和严重副作用的风险来代表效益。

[Show blank DCE format] 

这选择实验的目的是要看你在效益和花费之间怎么取舍，而从中推断病人愿意

支付的价格。所以我会给你 5个选择组，而每组这些数字都会不同。[show 2 

examples] 假设你是个新的华法林病人，基因测试已经可得，而且是可选的。请

把每个选择组当真实情形来评估。 

让我解释这三个考虑范围的意思。 

1）INR检测的次数反映 warfarin基因测试给你开始剂量的预测有多准确。这是

从开始到剂量稳定是平均需要的 INR检测数次。 

 

2）在初期你的 INR需要一些时间来稳定，所以初期流血或凝血副作用的风险

比较高。我们指的是头 3个月内严重副作用的风险，比如大出血，凝血（静脉

血栓形成或肺动脉栓塞）以及维他命 K的使用。 

 

3）这是头 6个月的花费。这包括 INR测试，看药剂师，药物和基因测试的总

花费。 

 

有什么问题吗？ 

Post-DCE Evaluation 
26) Do you think you can understand the choice experiment? 

你觉得你能了解这个选择试验吗？ 

 
27) What problems do you have while doing the choice experiment? 

在做选择试验时有什么问题吗？ 
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I have shown you several possible ways the warfarin PGT may benefit a patient. 

[Show warfarin PGT slide 3] Do you think these 2 are the best representations of its 

benefits? In other words are these important or relevant to you? 

刚才我给你看了华法林基因测试可能帮助新病人的几种方式。你觉得这两个是

华法林基因测试效益的最好代表吗？换句话，这两个对你重要或相应吗？ 

If not, which of these other benefits would you want to consider instead of these, if 

you have to make such a choice? 

如果这两个不是最好代表，你会要考虑哪个，如果你得选择做不做华法林基因

测试？ 

28) Do these 2 seem independent to you? [INR tests & ADR] 

这两个对你来说是各自独立的吗？也就是说，它们之间有关系吗？ 

 
29) I have 7 choice sets for you here, do you think you can answer all of them 
accurately?  

这里我们有 7个选择组。你觉得你可以准确地回答全部吗？ 
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Efficacy Attributes 

These [show slide 3] are different ways that the warfarin PGT may benefit a new 
patient. In the next part of this study I’ll be doing a choice experiment where I’ll ask 
patients to choose between having and not having the warfarin PGT. To make the 
choice, they would need to compare a few things, for example out of the 2 options one 
may be more effective but more expensive, and the other less effective but cheaper. 
Therefore, we hope to find out what attributes are most important or relevant to you 
when you make such choices. There are a few ways to express effectiveness here.. 
[show cards on possible attributes] 

这些是华法林基因测试可能帮助新病人的几种方式。在这研究的下一步我将会
做个选择实验，要求病人选择要不要做华法林基因测试。作出选择之前需要先

比较一些东西，比如两个选项中有一个可能比较有效却同时也比较贵，另一个

则比较便宜可是却没那么有效。因此，我们希望知道你做这种选择时最终要或

相关的考虑范围。这里有几个可表达有效性的方法。 

 
23) Which of these are most relevant or important to you? In other words, if you have 
to make choices between having and not having warfarin PGT, which of these do you 
want to consider? You may choose 1 or 2. 

     这些当中哪个对你最重要或最相关？换句话，假设我要你决定你是否要做华

法林基因测试，你会考虑以上的几个范围？你可以选一个或两个。 

 
24) Why? 

   为什么? 

 
25) Can you explain why you didn’t pick this? [choose 1 or 2 other attributes] 

     你可以解释为什么没有选这个？ 

 
If >1 attribute chosen: 

26) Do they seem independent to you?  

     这些考虑范围对你来说是各自独立的吗？也就是说，它们之间有关系吗？ 

 
Cost 
This warfarin PGT is already available in the US and it costs about US$200-600 
(S$260-780). Imagine that the test is available in Singapore and taking it is voluntary.  

这个华法林基因测试已经在美国推出了。价格是在 200- 600 美元之间（那是新

币 260-780元之间）。现在，请你假设这个测试也来到了新加坡，而且测试是

自愿的。  

 
27) What is the maximum price you will be willing to pay for it? (assuming no 
subsidy, out-of-pocket payment) Your answer does not have to be in the price range I 
mentioned.  

   你愿意为它付出的最高价格是什么？（假设没有津贴）你的回答不必在我刚

才提到的价格范围之内。  
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[Optional] 

B8) If there’s subsidy, how much subsidy would you need before you agree to take 
the test, assuming the price is $500? 

      如果有津贴，你需要多少津贴你才会同意测试，假设价格是 500元？ 

 

CLOSING 

We have come to the end of our discussion. Thank you so much for your participation.  我们已经来到了访谈的尾声。非常谢谢您的参与。  
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Appendix 10. Study 4 Pilot 1 Show Cards 

 华法林华法林华法林华法林 (Warfarin)

� 您正在服用防止血液凝固的药物华法林华法林华法林华法林 (Warfarin) 的问题的问题的问题的问题
• 你需要正确的剂量以防止凝血或出血
� 许多因素会影响一个人所需要的华法林剂量

3

2

INR (International 

Normalized Ratio)☺

�

�

0 1 2 3
月

Wafarin PGT Slide 1

年龄 体重 药物 饮食 某种疾病 基因
用来检测你华法林反应的血液报告

 

 华法林目前的治疗管理华法林目前的治疗管理华法林目前的治疗管理华法林目前的治疗管理
� 你从标准剂量开始，需要通过频密的验血来寻找适合你的剂量
华法林华法林华法林华法林(warfarin)(warfarin)(warfarin)(warfarin)基因测试基因测试基因测试基因测试
� 一个从一开始就可以帮助医生预测你需要的剂量的基因测试
• 一次的验血

� 需要5 毫升的血液
Warfarin PGT Slide 2

 

Show card 1 

Show card 2 
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 华法林华法林华法林华法林(warfarin)(warfarin)(warfarin)(warfarin)基因测试基因测试基因测试基因测试可能带来的好处可能带来的好处可能带来的好处可能带来的好处
� 较少的剂量调整
� 较少的 INR 验血检测
� 较短的时间内稳定剂量
� 较短的时间内达到 INR 治疗范围
� 在INR治疗范围内的时间更长
� 较少出血或凝血副作用
� 较少因副作用而住院的次数
X X X X X

☺

�

�
3

2
INR

X

�开始的剂量更准确 0 1 2 3
月

Warfarin PGT Slide 3

 

 华法林华法林华法林华法林(warfarin)(warfarin)(warfarin)(warfarin)基因测试基因测试基因测试基因测试可能带来的风险可能带来的风险可能带来的风险可能带来的风险
� 焦虑
� 被附上名称的可能性，例如：“敏感”，“耐药”，“高风险”，或“没反应者”

� 虽然可能性很小，但可能会影响你对自己的感想或
� 可能会影响买保险或就职的能力

� 而且虽然现在不是这样，未来的研究有可能使人们能以华法林(warfarin)基因测试结果揭示其他疾病的风险
Warfarin PGT slide 4

 

 

Show card 3 

Show card 4 
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没有没有没有没有华法林(warfarin)基因测试 有有有有华法林(warfarin)基因测试效益效益效益效益花费花费花费花费我选择：
 

 

没有没有没有没有华法林(warfarin)基因测试 有有有有华法林(warfarin)基因测试剂量稳定为止剂量稳定为止剂量稳定为止剂量稳定为止 INR 测试次数测试次数测试次数测试次数头头头头3333个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险头头头头6666个月内的总个月内的总个月内的总个月内的总花费花费花费花费我选择：
 

 

 

 

 

 

 

 

 

Show card 5 

Show card 6 
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 头头头头3333个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险
• 1% • 6%

 

 

例子1没有没有没有没有华法林(warfarin)基因测试 有有有有华法林(warfarin)基因测试剂量稳定为止剂量稳定为止剂量稳定为止剂量稳定为止 INR 测试次数测试次数测试次数测试次数 11 8头头头头3333个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险 3% 3%

头头头头6666个月内的总个月内的总个月内的总个月内的总花费花费花费花费 $650 $950我选择：
 

 

 

 

 

 

 

 

Show card 7 

Show card 8 
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例子2没有没有没有没有华法林(warfarin)基因测试 有有有有华法林(warfarin)基因测试剂量稳定为止剂量稳定为止剂量稳定为止剂量稳定为止 INR 测试次数测试次数测试次数测试次数 11 5头头头头3333个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险 6% 3%

头头头头6666个月内的总个月内的总个月内的总个月内的总花费花费花费花费 $350 $650我选择：
 

 

选择组1没有没有没有没有华法林(warfarin)基因测试 有有有有华法林(warfarin)基因测试剂量稳定为止剂量稳定为止剂量稳定为止剂量稳定为止 INR 测试次数测试次数测试次数测试次数 11 5头头头头3333个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险 3% 3%

头头头头6666个月内的总个月内的总个月内的总个月内的总花费花费花费花费 $650 $950我选择：
 

 

 

 

 

 

 

 

Show card 9 

Show card 10 
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选择组2没有没有没有没有华法林(warfarin)基因测试 有有有有华法林(warfarin)基因测试剂量稳定为止剂量稳定为止剂量稳定为止剂量稳定为止 INR 测试次数测试次数测试次数测试次数 8 8头头头头3333个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险 6% 3%

头头头头6666个月内的总个月内的总个月内的总个月内的总花费花费花费花费 $350 $650我选择：
 

 

选择组3没有没有没有没有华法林(warfarin)基因测试 有有有有华法林(warfarin)基因测试剂量稳定为止剂量稳定为止剂量稳定为止剂量稳定为止 INR 测试次数测试次数测试次数测试次数 11 5头头头头3333个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险 6% 3%

头头头头6666个月内的总个月内的总个月内的总个月内的总花费花费花费花费 $650 $950我选择：
 

 

 

 

 

 

 

 

Show card 11 

Show card 12 
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选择组4没有没有没有没有华法林(warfarin)基因测试 有有有有华法林(warfarin)基因测试剂量稳定为止剂量稳定为止剂量稳定为止剂量稳定为止 INR 测试次数测试次数测试次数测试次数 11 5头头头头3333个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险 6% 1%

头头头头6666个月内的总个月内的总个月内的总个月内的总花费花费花费花费 $650 $1250我选择：
 

 

选择组5没有没有没有没有华法林(warfarin)基因测试 有有有有华法林(warfarin)基因测试剂量稳定为止剂量稳定为止剂量稳定为止剂量稳定为止 INR 测试次数测试次数测试次数测试次数 8 5头头头头3333个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险 3% 1%

头头头头6666个月内的总个月内的总个月内的总个月内的总花费花费花费花费 $650 $650我选择：
 

 

 

 

 

 

 

 

Show card 13 

Show card 14 
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选择组6没有没有没有没有华法林(warfarin)基因测试 有有有有华法林(warfarin)基因测试剂量稳定为止剂量稳定为止剂量稳定为止剂量稳定为止 INR 测试次数测试次数测试次数测试次数 11 5头头头头3333个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险 6% 3%

头头头头6666个月内的总个月内的总个月内的总个月内的总花费花费花费花费 $950 $1250我选择：
 

 

选择组7没有没有没有没有华法林(warfarin)基因测试 有有有有华法林(warfarin)基因测试剂量稳定为止剂量稳定为止剂量稳定为止剂量稳定为止 INR 测试次数测试次数测试次数测试次数 8 5头头头头3333个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险个月内严重副作用的风险 3% 1%

头头头头6666个月内的总个月内的总个月内的总个月内的总花费花费花费花费 $350 $950我选择：
 

  

Show card 15 

Show card 16 



 

214 

 

Appendix 11. Study 4 Pilot 1 Supplementary Methods 

Development of efficacy attributes 
 

 Efficacy of WPGT can be expressed in terms of various clinical outcomes. 

These outcomes are intrinsically correlated with one another, but more than 1 may be 

chosen if patients view them as independent. While it is ideal that the selection of an 

efficacy attribute(s) and their levels are guided by evidence, relevance and 

accessibility (ease of being understood) of the attribute to the patient may be more 

important. Supplementary Table 1 summarizes the existing evidence of the effect of 

WPGT on various clinical outcomes. Follow up time in the clinical studies therein 

were used as guides to put a time period to define the efficacy attributes and their 

levels. 
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Outcome Measure Results (WPGT vs. 
standard) 

Sample 
size 

Duration of 
follow up 

Ref 

Therapeutic 
range 

Time within range 
(%) 

41.7% vs. 41.5% 38 28 days [229] 
45.4% vs. 24.5%* 185 Till stabilization [230] 
69.7% vs. 68.6% 200 3 months [231] 
43.3% vs. 44.9% 229 90 days [233] 

Time within range 
(mean days) 

18.5 vs. 19.6 121 50 days [234] 

Time below range 2.01 vs. 8.00* (days) 185 Till stabilization [230] 
48.0% vs. 47.1% (% 
time) 

229 90 days [233] 

Time above range 1.77 vs. 6.58* (days) 185 Till stabilization [230] 
8.7% vs. 8.0% (% 
time) 

229 90 days [233] 

% time out of 
range 

30.7% vs. 33.1%  200 3 months [231] 

Time to 1st 
therapeutic range 

HR 2.89 (95% CI: 
2.11–3.97)* 

185 Till stabilization [230] 

5.4 vs. 4.8 (mean no. 
of doses) 

229 90 days [233] 

Time to 1st supra-
therapeutic INR/ 
vitamin K use  

53.4 vs. 47.1 (mean 
days) 

200 3 months [231] 

Stable dose Time to stable 
dose  

14.1 vs. 32.2* (mean 
days) 

185 Till stabilization [230] 

24 vs. 35* (median 
days) (HR 0.52) 

121 50 days [234] 

% with stable 
dose 

82.0% vs. 61.7%* 

INR tests Total no. (mean) 4.9 vs. 10.7* 185 Till stabilization [230] 
7.2 vs. 8.1 200 3 months [231] 

Dose changes Mean no. of 
changes 

3.0 vs. 3.6* (p=0.035) 

8.4 vs. 7.0 229 90 days [233] 
Time to 1st dose 
change  

3.1 vs. 3.6 (No. of 
doses) 

% with dose 
changes 

83.5% vs. 78% 

ADR Rate of major 
bleeding 

RR 0.69 (95% CI: 
0.16-2.9) 

  [377]
† 

% of minor 
bleeding 

3.2% vs. 12.5%* 185 Till stabilization [230] 

% with ADR 34.7% vs. 42.4% 200 3 months [231] 
11.5% vs. 13.3% 121 50 days [234] 

% with serious 
ADR 

4% vs. 5.1% 200 3 months [231] 
1.75% vs. 3.47% 229 90 days [233] 

Hospitalization All cause 18.5% vs. 25.5%* 3584 6 months [235] 
Due to bleeding/ 
thromboembolism 

6.0% vs. 8.1%* 

Ref: reference, HR: hazard ratio, * statistically significant, † Meta-analysis of studies 
[229-231] 
 
Supplementary Table 1. Summary of Improvements in Clinical Outcomes with 

WPGT in Prospective Studies 
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 While several clinical trials are currently ongoing to clarify the clinical benefit 

of WPGT, evaluations of dose prediction accuracy of published dosing algorithms in 

several populations, including the Singapore multiethnic population, have consistently 

demonstrated substantial improvement over clinical and fixed-dose models 

[134,221,225-227]. Dose prediction accuracy is expressed as the MAE, prediction r2 or 

proportion of patients with predicted dose within acceptable limits of their actual dose 

(±20% or ±1mg/day) and the results are summarized in Supplementary Table 2. As an 

efficacy attribute, the third measure (proportion of patients with predicted dose within 

acceptable limits of their actual dose) can be expressed as the chance of having an 

accurate starting dose. This is also the most likely measure out of the 3 to be 

understood by patients. 

Reference Definition of 
accuracy 

Results (% of patients) Remarks 

IWPC 2009 [225] Predicted dose 
within ±20% 
actual dose 

 P C F  

<21mg/wk 33 25.9 0 

21-49mg/wk 54.6 53.6 51.6 

>49mg/wk 36.8 9.6 0 

overall 45.5 39.3 28.6 

Roper et al. 2010 [221] 45.9 (IWPC algorithm, best performing) 5 models 
compared 

Chan et al. [328] 46.8 (P) vs. 40.0 (RS) vs. 25.1 (F)  

Sagreiya et al. 2010 

[134] 
Predicted dose 
within 
±1mg/day of 
actual dose 

63 (P) vs. 54 (C) vs. 38 (F)  

Shaw et al. 2010 [226] 31 – 41 (P) vs. 24 (F) 6 models 
compared 

Takeuchi et al. 2010 

[227] 
 P C  

≤10.5mg/wk 68 36 

>10.5-<31.5mg/wk 80 79 

≥31.5mg/wk 21 0 

overall 71.4 64.1 

P: pharmacogenetic model, C: clinical model, F: fixed dose (5mg), RS: race specific 
dose (3mg for Chinese & Malays, 5mg for Indians), wk: week 
* In the Singapore Asian population 
 
Supplementary Table 2. Summary of Studies on Accuracy of Dose Prediction 

 
  

 The list of possible clinical outcomes that may be used as efficacy attributes 

were then trimmed down to 5, which were deemed to have more clinical relevance to 
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patients than the others. The main intention of reducing the number of attributes was 

to facilitate the selection process for patients. The 5 shortlisted attributes were: 

i) Chance of having accurate starting dose (accurate dose defined as ±20% 

maintenance dose), 

ii) Time to stable dose, 

iii) Number of INR tests till stabilization,  

iv) Risk of serious ADR (thrombosis, bleeding or use of vitamin K) in the first 3 

months, and 

v) Risk of hospitalization due to serious ADR in first 6 months. 

 

Design of mock DCE 

 To generate a mock DCE, relevant attributes and their levels have to be chosen 

and defined. Two efficacy attributes (Number of INR tests till stabilization and risk of 

serious ADR in the first 3 months) were chosen as these were thought to be the 2 most 

relevant. The levels of these 2 attributes were chosen to cover the reported ranges in 

existing studies (Supplementary Table 1) and are given below: 

� Number of INR tests till stabilization: 5, 8, 11 

� Risk of serious ADR in first 3 months: 1%, 3%, 6% 

 The cost attribute was expressed as total expenditure on warfarin management 

in the first 6 months. This included the cost of INR tests, ACC visits, drugs (warfarin 

only) and WPGT (if applicable). WPGT is not yet available in clinical practice in 

Singapore but reported costs of genotyping CYP2C9 and VKORC1 in the US range 

from US$200-600 (S$260 – 780, based on Dec 2010 exchange rates) [267,341-343], so 

it was decided to explore a range of $100-$600 for WPGT alone. Using subsidized 

rates the cost incurred for INR tests, ACC visits and drugs in the first 6 months were 
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estimated to be between $365 and $635, and therefore cost levels including WPGT 

were set at $350, $650, $950 and $1250. Detailed calculations are given in 

Supplementary Table 3. 

Time  Estimated 
no. of INR 
tests 

Estimated cost for 
INR tests & ACC 
visits* 

Total in 6 
months 
including drug* 

Total cost in 6 months 
including WPGT 

Lower end 
(+ $100) 

Upper end 
(+ $600) 

Week 1 4 – 7 $100 - $167.50 $365 - $635 $465 $1235 

Week 2 2 – 4 $45 - $90 

Week 3 1 – 2 $22.50 - $45 

Week 4 1 – 2 $22.50 - $45 

Month 2 – 3 4 – 8 $90 - $180 

Month 4 – 6 2 – 3  $45 - $67.50 

* No. of INR tests assumed to be equal to no. of ACC visits. Prices used for 
calculations are: INR test: $12.50, ACC visit: $20 for first visit, $10 for subsequent 
visits, drug: $1.40 per week. 

Supplementary Table 3. Calculation of Cost Attribute 

  

 Choice sets were designed to present 2 alternatives at once, 1 without WPGT 

(current management) and the other with WPGT, as this was thought to be the most 

likely scenario confronting patients should WPGT become available. 5 – 7 choice sets 

were then created by manually varying the attribute levels, not according to any 

statistical design, as the aim here was not to analyze it but to assess if patients can 

understand the DCE and complete a sufficient number of tasks. However, in the set of 

7 choice tasks, 1 task was purposely designed to be dominant (i.e. 1 alternative is 

logically preferred) as an additional assessment if patients understand the exercise.  
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Appendix 12. Study 4 Pilot 2 and 3 Debrief Questions 

1. Are there any words or things that are difficult in the questionnaire? 

2. Do you understand what is warfarin? 

3. Check answers to section 1 question 1.  

If wrong: Why did you chose this answer? 

Do you think this question (question after section 1) is a good test of your knowledge 

of the information we gave? 

4. Check answers to section 2 questions 5 & 6. If wrong: Why did you choose this 

answer? 

5. Do you have any problems with the choice experiment? (Probe further as 

appropriate) 

6. Do you understand what is WPGT? 

Check answers to section 3 question 1. If wrong: Why did you choose this answer? 

7. How did you make your choice for this question? (Pick at a few, especially section 

4) 

8. What were you thinking when you made the choice? (Pick at a few questions, 

especially section 4) 

9. Do you have any other comments on the questionnaire? 
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Appendix 13. Summary of Study 4 Pilot 2 and 3 Results 

Pilot 2 

 Eleven patients consented to participate but 1 withdrew, leaving 10 patients 

who completed pilot 2, 4 in English and 6 in Chinese. There were 5 males and 

females each and the mean age was 52. All questions in section 1 were answered 

correctly except for 1 by 1 patient, but half of the patients had at least 1 wrong answer 

to section 2 questions 5 and 6, which were designed to test attribute knowledge. Four 

patients also had problems with the DCE and did not complete it initially. One of 

them could not complete the rest of the questionnaire. For the rest, most questions in 

section 3 were correctly answered. In the last section, 2 patients indicated ‘already 

have it’ or ‘don’t know’ for all items in question 5, thus providing no information on 

self-perception of disease risk. One found it offensive while the other found it difficult 

to put down a risk. 

 

Pilot 3 

 Eight participants completed the questionnaire on paper (6 females, 2 males; 7 

in English and 1 in Chinese; mean age 52 years) and 4 completed it online (all female, 

1 in English and 3 in Chinese, mean age 47 years). Most participants found the survey 

lengthy and technical and had to take some time to understand the information. There 

was generally no problem with sections 1 and 3, but 3 participants had problems 

understanding the DCE. One participant did not understand 1 item on the perceived 

benefits scale (Section 4 question 2c) and was confused by the negative direction of 

the statement and another participant found section 5 question 10 (self-perception of 

disease risk) a bit taboo. 
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Appendix 14. Study 4 Main Survey Patient Questionnaire Sample 

Participant No.: ____________     DCE Version: 1 
 
Date: ____________________     Time: ________ 
 

QUESTIONNAIRE ON ATTITUDES, WILLINGNESS TO PAY AND 

PREFERENCES FOR WARFARIN PHARMACOGENETIC TESTING 

 

SECTION 1: INFORMATION ON WARFARIN 

 
Thank you for taking part in this survey. First, here is some basic information about 
warfarin so that you will be able to answer the subsequent questions.  
 
Warfarin 

� A medicine for preventing abnormal blood clots in our blood vessels by 
making blood less likely to clot.  

 

The problem with warfarin 
� It is a difficult drug to manage because the dose every patient needs to achieve 

the same anti-clotting effect can vary a lot.  
� The dose of warfarin is adjusted, based on the results of periodic blood tests 

called INR test. 
� The INR test measures how likely blood clots and we want to maintain the 

INR value within a target range. The most suitable dose maintains the INR 
within the target range. 

� If the dose is too low, the risk of blood clots increases and if the dose is too 
high, the risk of bleeding increases.   

� When warfarin is first started, a ‘standard’ dose is usually given and then 
adjusted until the target range is reached (i.e. trial & error), so INR tests are 
more frequently needed in the initial stabilization period. 

� Warfarin control is ideal when a patient reaches target INR range quickly and 
remains there. The risks of bleeding or clotting side effects are the lowest in 
this situation.  

� However, this is not easy to achieve because many factors such as age, weight, 
diet, certain medications and diseases, and genes* can affect the dose a person 
needs. 

 
*Genes are the hereditary materials passed from parents to children, and are what 
makes one person different from another (for e.g. the colour of our eyes) 
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We now have a few questions to check that you now have some idea about warfarin. 

 

1. Please indicate if the statements below are TRUE or FALSE, based on the 

information provided on the previous page.  (Circle one option each) 

 

a) Warfarin dose is adjusted according to INR 

test results. 
TRUE FALSE 

b) The most suitable dose is the one that 

maintains a patient within the target range. 
TRUE FALSE 

c) The risks of side effects are higher when the 

patient is NOT in target range. 
TRUE FALSE 

d) The dose each patient needs may be different 

and currently this dose is determined by trial 

and error. 

TRUE FALSE 
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SECTION 2: CHOICE EXPERIMENT  

You have seen the problems with using the drug warfarin. Imagine there is a new 
blood test (which is different from an INR test) that can help to improve the anti-
clotting control and therefore safety of the drug. We will describe 4 attributes of this 
new test and then ask you a series of choice questions on which test you would prefer. 
This is called a choice experiment and the purpose is to learn about your preferences 
(i.e. what you like more or like less) through the choices you make. 
 
Let’s first go through the 4 attributes as it is important that you understand them 
before doing the choice experiment. 
 
Attributes of Hypothetical New Test 

The new test is a one-time blood test done just before starting the drug Warfarin and it 
can be described by the following attributes. The first attribute describes what type of 
test it is, the second and third attributes represent how good the test is in improving 
the management of warfarin, and the fourth is cost. 
 
 Attribute Levels in choice 

experiment 
Explanation 

1 Nature of test Genetic or non-
genetic 

If it’s genetic it means the test works by 
getting information about your genes.  

2 Number of INR tests 
needed till dose 
stabilization 

5 to 21 � Warfarin dose is adjusted based on 
INR test results.  

� The closer your starting dose is to 
your actual dose, the fewer INR tests 
will be needed.  

� Each INR test is usually 
accompanied by a visit to the 
pharmacist, who will review the 
results and adjust the dose if 
necessary. The whole visit can take 
several hours.  

� Dose stabilization is defined as the 
time when 2 consecutive INR 
readings at least 2 weeks apart are 
within target range and no dose 
changes are made.  

3 Risk of serious side 
effects (major bleeding 
or clotting) 

1% per year to 9% 
per year 

� Poor warfarin control is linked to a 
higher risk of side effects.  

� Better control means the risk of 
serious side effects will be lower.  

� A risk of 1% per year means every 
year 1 in a 100 patients will 
experience a serious side effect. 

4 Cost of test $100 - $600 This will be a one-time out-of-pocket 
payment. There will not be any subsidy 
and you CANNOT pay for this using 
Medisave or any insurance.  
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Before proceeding to the choice experiment, here are some questions to further help 
you familiarize with the attributes, especially the second & third attributes. 
 
1. How long have you been on warfarin therapy? (Tick one) 

 1 week or less 

 >1 week to <3 months  

 3 to 6 months  

 7 to 12 months [skip to question 3] 

 >1 to 3 years [skip to question 3] 

 > 3 years [skip to question 3] 

 Don’t know/Not sure 

 
2. Is your dose stable now? (Stable dose is defined as the time when 2 consecutive 
INR readings at least 2 weeks apart are within target range and no dose changes are 
made.) (Tick one) 

 Yes  

 No  

 Don’t know/ Not sure 

 
3. How many INR tests did you have from beginning until your dose was stable or 
until now if dose is not stable? (Stable dose is defined as the time when 2 consecutive 
INR readings at least 2 weeks apart are within target range and no dose changes are 
made.) (Tick one)   

 <5 

 5 – 9 

 10 – 14 

 15 – 20 

 ≥ 21 

 Don’t know/Not sure 

 
4. Have you experienced any side effects (for eg., clotting, bleeding or use of vitamin 
K)? (Tick all that applies) 

 Yes, clotting 

 Yes, bleeding 

 Yes, used Vitamin K 

 Yes, but not sure of the details 

 No 

 Don’t know/Not sure 

 
5. IF patient A needs 12 INR tests before his warfarin dose is stable while patient B 
only needs 5, which of the following is correct? (Tick one) 

 Patient A has better warfarin control 

 Patient B has better warfarin control 

 Don’t know/Not sure 
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6. IF the risk of a bleeding or clotting side effect is 2% per year WITH the new test 
and 5% per year WITHOUT the new test, which of the following is correct? (Tick 
one) 

 Warfarin control is BETTER with the new test 

 Warfarin control is THE SAME with the new test 

 Warfarin control is WORSE with the new test 

 Don’t know/Not sure 

 

Now we will ask you a series of choice questions. In each question,  we will show you 
2 hypothetical new tests at a time and ask you to choose the one you prefer. An 
example of a choice question looks like this:  
 

Choice Experiment Example 

(You DO NOT need to answer this) 

 Test A Test B 

Nature of test  Genetic Non-genetic 

Number of INR tests needed before warfarin 
dose stabilizes  

5 13 

Risk of serious side effects (Major bleeding 
or clotting)  

5% per year 5% per year 

Cost of test  $375 $225 

   

If these were the only 2 choices, I would choose:    
 

 Yes No 

If your chosen test is now available and is not 
compulsory, would you really have taken it?  

  

 
Here are some important points to note for the choice experiment: 
� This new one-time blood test is most useful for new patients, just before starting 

on the drug. When doing the choice experiment, imagine the time just before 

you started on warfarin. 
� Please study the 2 options carefully and consider them as though they are real 

choices before making your choice. They may look very similar to you but their 
attribute levels will differ. 

� When making decisions we ask that you think about what you would prefer, NOT 
what you think would be best for your family or your friends. 

� There are no right or wrong answers. We understand that everyone may make 
different choices. We want to know what you prefer. 

 
Here are the instructions for the choice experiment: 
� Please indicate the test you would prefer. 
� There are 2 parts to each choice question. Please answer both parts. 
 
We will now begin the series of choice questions.  
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Choice Set 1 

 

 Test A Test B 

Nature of test  Genetic Non-genetic 

Number of INR tests needed before warfarin 
dose stabilizes  

5 21 

Risk of serious side effects (Major bleeding 
or clotting)  

5% per year 1% per year 

Cost of test  $375 $225 

   

If these were the only 2 choices, I would 
choose (tick one):  

  

 

 

 Yes No 

If your chosen test is now available and is 
not compulsory, would you really have taken 
it? (tick one)  

  

 
 
 
 
 

 

 

 

 

Choice Set 2 

 

 Test A Test B 

Nature of test  Genetic Non-genetic 

Number of INR tests needed before warfarin 
dose stabilizes  

5 13 

Risk of serious side effects (Major bleeding 
or clotting)  

1% per year 9% per year 

Cost of test  $600 $100 

   

If these were the only 2 choices, I would 
choose (tick one):  

  

 

 

 Yes No 

If your chosen test is now available and is 
not compulsory, would you really it?  (tick 
one) 
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Choice Set 3 

 

 Test A Test B 

Nature of test  Genetic Non-genetic 

Number of INR tests needed before warfarin 
dose stabilizes  

21 13 

Risk of serious side effects (Major bleeding 
or clotting)  

5% per year 5% per year 

Cost of test  $600 $225 

   

If these were the only 2 choices, I would 
choose (tick one):  

  

 

 

 Yes No 

If your chosen test is now available and is 
not compulsory, would you really have taken 
it?  (tick one) 

  

 

 

 

 

 

 

 

 

Choice Set 4 

 

 Test A Test B 

Nature of test  Genetic Non-genetic 

Number of INR tests needed before warfarin 
dose stabilizes  

5 21 

Risk of serious side effects (Major bleeding 
or clotting)  

9% per year 1% per year 

Cost of test  $100 $100 

   

If these were the only 2 choices, I would 
choose (tick one):  

  

 

 

 Yes No 

If your chosen test is now available and is 
not compulsory, would you really have taken 
it?  (tick one) 
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Choice Set 5 

 

 Test A Test B 

Nature of test  Genetic Non-genetic 

Number of INR tests needed before warfarin 
dose stabilizes  

5 13 

Risk of serious side effects (Major bleeding 
or clotting)  

1% per year 5% per year 

Cost of test  $225 $375 

   

If these were the only 2 choices, I would 
choose (tick one):  

  

 

 

 Yes No 

If your chosen test is now available and is 
not compulsory, would you really have taken 
it?  (tick one) 

  

 
 
 
 

 
 
 
 

Choice Set 6 

 

 Test A Test B 

Nature of test  Non-genetic Genetic 

Number of INR tests needed before warfarin 
dose stabilizes  

13 21 

Risk of serious side effects (Major bleeding 
or clotting)  

1% per year 9% per year 

Cost of test  $600 $375 

   

If these were the only 2 choices, I would 
choose (tick one):  

  

 

 

 Yes No 

If your chosen test is now available and is 
not compulsory, would you really have taken 
it?  (tick one) 
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Choice Set 7 

 

 Test A Test B 

Nature of test  Genetic Genetic 

Number of INR tests needed before warfarin 
dose stabilizes  

5 13 

Risk of serious side effects (Major bleeding 
or clotting)  

5% per year 1% per year 

Cost of test  $375 $100 

If these were the only 2 choices, I would 
choose (tick one):  

  

 

 Yes No 

If your chosen test is now available and is 
not compulsory, would you really have taken 
it?  (tick one) 

  

 

 

 

 

Choice Set 8 

 

 Test A Test B 

Nature of test  Non-genetic Genetic 

Number of INR tests needed before warfarin 
dose stabilizes  

5 13 

Risk of serious side effects (Major bleeding 
or clotting)  

5% per year 1% per year 

Cost of test  $375 $225 

   

If these were the only 2 choices, I would 
choose (tick one):  

  

 

 Yes No 

If your chosen test is now available and is 
not compulsory, would you really have taken 
it?  (tick one) 

  

 

 

 
If you indicated that you would NOT really take the option you chosen for ALL 8 
choice sets, can you please share with us why?  
_____________________________________________________________________
_______________________________________________________
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SECTION 3: INFORMATION ON WARFARIN PHARMACOGENETIC 

TESTING  

 
After the choice experiment I believe you are quite familiar with the attributes of the 
new test already. There is such a new test which is currently still under research and 
may be introduced into clinical use in the near future. We will briefly describe it here 
as we would like to ask you some questions about how you feel about such a test in 
the next section. This new test is called warfarin pharmacogenetic test (WPGT).  
 
Warfarin Pharmacogenetic Test (WPGT) 

� One-time blood test done just before starting warfarin 
� It uses your genes (DNA) to predict the dose you’ll need 

 

Possible benefits  
� More accurate starting dose, which theoretically would translate to: 

� Fewer dose adjustments 
� Fewer INR tests (during initial stabilization phase) 
� Shorter time to stable dose 
� Shorter time to reach target INR range 
� Longer time spent in target INR range 
� Lower risk of bleeding or clotting side effects 
� Lower risk of hospitalization due to side effects 

� As a result of these possible benefits, you MAY save some money 
 

Possible risks  
These are some theoretical risks of WPGT. You may or may not find them a problem.  

� Anxiety 
� Possibility of labels attached to people, for eg, “sensitive”, “resistant”, “high 

risk” or “non-responder” 
� May affect self perception 
� May affect even ability to obtain insurance or employment 

� Although not the case now, future research may make it possible to indicate 
risk of other diseases based on the information obtained from the WPGT  
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We now have a few questions to check that you now know about WPGT before we 

proceed to the next section. 

 

1. Please indicate if the statements about WPGT below are TRUE or FALSE, based 

on the information provided on the previous page. (Circle one option each) 

 

a) It is a genetic test. TRUE FALSE 

b) It works by predicting the dose you need. TRUE FALSE 

c) While it is not perfect, warfarin treatment is 

expected to be safer and more effective with WPGT.  
TRUE FALSE 

d) WPGT is different from an INR test. TRUE FALSE 

 
 
 



 

232 

 

SECTION 4: ATTITUDES TOWARDS WPGT 

We’ll now ask you some questions on how you feel about WPGT.  
� Imagine that your doctor has just prescribed warfarin for you and has given you 

all the information above about WPGT.  
� Imagine that the WPGT is available and is not compulsory. 
 
1. On this scale below, how willing are you to take the WPGT before starting on 
warfarin therapy? (Please circle one option)   

Very unwilling Somewhat unwilling Neutral Somewhat willing Very willing 

1 2 3 4 5 

 
If you indicated ‘very unwilling’, what is the reason? (Tick all that applies) 

 It’s too costly 

 I’m uncomfortable with a genetic test 

 I don’t think it will benefit me 

 Others (pls specify): ________________________________________ 

 
2. I’ll now ask you to rate your agreement to statements using these 5 levels of 
agreement. (Please circle one option each)  

With regards to the WPGT, 
 

Strongly 
disagree 

Disagree Neutral Agree 
Strongly 

agree 

a) I am hopeful that it can detect which 
dose works best 

1 2 3 4 5 

b) If it reveals that I need a very low or 
very high dose, I would feel anxious 

1 2 3 4 5 

c) I don’t think it will lower my risk of 
warfarin side effects. 

1 2 3 4 5 

d) I am worried that it may subsequently 
reveal that I possess additional risk 
factors for another disease that I was 
unaware of 

1 2 3 4 5 

e) I think it can predict a more suitable 
starting dose for me. 

1 2 3 4 5 

f) I am hopeful that there may be less trial 
and error in finding my warfarin dose 

1 2 3 4 5 

g) I am worried that the results may be 
passed onto unauthorized persons 

1 2 3 4 5 

For items h) and i): 
Apart from the fact that I’m taking warfarin or have a pre-existing condition, if it reveals that I need a 
very low or very high dose,  

  Strongly 
disagree 

Disagree Neutral Agree 
Strongly 

agree 
 

h) I may be additionally disadvantaged 
when buying health insurance 

1 2 3 4 5 N/A 

i) I may be additionally treated unfairly 
at work or job-seeking 

1 2 3 4 5 N/A 

 

3. Are there any other concerns about WPGT that we have not captured in the 
statements above? If yes, please kindly share with us. 

_____________________________________________________________________

_______________________________________________________ 
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SECTION 5: DEMOGRAPHICS, BACKGROUND INFO, QUALITY OF 

SURVEY 

Thank you for completing the survey till this point. This is the last section and we will 
now collect some personal information about you to help us have a better 
understanding of your responses compared to other participants.  
 
1. Age: _______________   
   

2. Gender:  Male 

  Female 

   

3. Religion:  Christianity 

  Buddhism 

  Taoism 

  Islam 

  Hinduism 

  Free thinker 

  Others (pls specify): ______________ 

   

4. Marital status:  Single 

  Married               

  Divorced/ Separated 

  Widowed 

   

5. Highest Educational level 
attained: 

 No qualification / lower primary 

 Primary (PSLE) 

 Secondary (‘O’/’N’ level) 

 Upper secondary (‘A’ level/vocational) 

 Diploma 

 Degree 

   

6. Housing type:  1-2 room HDB 

  3-room HDB 

  4-room HDB 

  5-room HDB or Executive 

  Private condominium 

  Landed 

   

7. Which language are you 
more comfortable with? 

 English 

 Mandarin 

 Both English and Mandarin 
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8. Are you enrolled in any warfarin PGT clinical trial? 

 Yes 

 No 

 
9. Have you ever taken any genetic test in the past? 

 Yes  

 No 

If yes, what was the genetic test? __________________________________ 
 
10. What do you think is your chance of developing the following diseases in your 
lifetime? We would like to know your personal perception of these chances. You can 
base them on your lifestyle, family history and any other relevant information. (Please 
circle one option each) 

 Not 
at all 

Very 
unlikely 

Somewhat 
unlikely 

Somewhat 
likely 

Very 
likely 

Definitely 
Already 
have it 

Don’t 
know 

a) Stroke 1 2 3 4 5 6 7 8 

b) Heart attack 1 2 3 4 5 6 7 8 

c) Diabetes 1 2 3 4 5 6 7 8 

d) Cancer 1 2 3 4 5 6 7 8 

e) H1N1 infection 1 2 3 4 5 6 7 8 

f) Hepatitis B 1 2 3 4 5 6 7 8 

 
11. In your opinion, on a scale of 0 to 10, how easy is it to understand the instructions 
in the survey that you have just completed? (Please circle one option) 

Least 
easy 

 
        

Most 
easy 

0 1 2 3 4 5 6 7 8 9 10 

 
12. In your opinion, on a scale of 0 to 10, how hard do you need to concentrate during 
the survey that you have just completed? (Please circle one option) 

Very 
hard 

 
        

Not at 
all 

0 1 2 3 4 5 6 7 8 9 10 

 
13. In your opinion, on a scale of 0 to 10, how offensive do you find the survey that 
you have just completed? (Please circle one option) 

Most 
offensive 

 
         

Least 
offensive 

0 1 2 3 4 5 6 7 8 9 10 

 
14. Was there anything about this questionnaire that you found difficult to understand? 

 Yes 

 No 

If Yes, please specify: ___________________________________________ 
 
We have come to the end of the survey. Thank you very much for your participation.  
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Appendix 15. Study 4 Main Survey Public Questionnaire Sample (Screenshots) 
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