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Title: A Perennial Simulation Framework for Integrated Crisis Management Studies

This thesis presents a perennial simulation framework that targets the trans-disciplinary

field of crisis management simulation. The state of the art in crisis management recog-

nizes a broad spectrum of tasks, categorized as hindsight, foresight, or decision support,

with the ultimate goal of achieving information superiority over a given crisis. Computer

simulation is invaluable in this regard, but the development of comprehensive, modern

simulations for crisis management is stymied by the stringent requirements of the latter.

Our research provides a robust framework which reflects the state of the art in both

fields, in addition to exploiting recent novelties such as virtual worlds and symbiotic

simulation.

We use the term perennial simulation to refer to any integrated, symbiotic simulation

created by our framework that targets multiple physical or virtual worlds, and is flexible

in its capacity to support hindsight, foresight, and decision support studies. In order

to establish the context of perennial simulations, we first provide a lifecycle analysis

of a typical perennial system. Next, the framework is detailed at both a conceptual

level and as an implementation, followed by a series of experiments which test the

capabilities of the framework. The first of these employs a perennial simulation to test

users’ response to egress advisories during a building evacuation. In addition, a novel

configuration of our framework called MMOHILS is used to overcome weaknesses in

traditional agent-based simulation through an appeal to virtual worlds. The second

study focuses on mining traffic data from video feeds in an effort to determine the

benefits of adding a perennial component to a traditional simulation environment. A

side goal is to successfully integrate legacy models into our framework without restricting
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their access to sensor data. The final study created a prototype perennial system that

targets an existing sensor-enabled building for the purpose of enhancing “building sweep

scenarios” for mixed-reality participants. This serves as an instructional overview of the

framework’s practical usage, with an emphasis on using an established sensor test-bed.

Throughout these studies, validation and scalability concerns are addressed.

Results indicate that the perennial simulation framework is suitable for crisis manage-

ment simulation studies. Live exercises demonstrated symbiotic simulation’s efficacy for

building egress scenarios, and scalability tests confirm that this technique can easily

accommodate 100 agents in a world of arbitrary size. Symbiotic simulation was shown

to be practical within the tight time constraints of crisis management, and a technique

that trades accuracy for performance was demonstrated. Simulations created with the

perennial framework were demonstrated to have a clear benefit to decision makers even

under increased sensor-level uncertainty. Finally, validation techniques for agents in

crisis-relevant scenarios were presented, and a rigorous practical validation of our egress

MMOHILS was performed. Considered collectively, our experiments demonstrate the

capacity for trans-disciplinary crisis management simulation evident in our framework.
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Chapter 1

Introduction

1.1 The Magnitude of Preparedness

Crisis management is a field characterized by the stark contrast between pairs of similar

crises at different points in time. Such “before and after” comparisons evince the radical

effect that proper handling of a critical situation can have on lives saved, property

salvaged, and health risks ameliorated.

Consider the deadliest natural disaster in the history of the United States: in 1900,

a category four hurricane swept into the coastal city of Galveston, flooding the area

and leading to six thousand deaths. The residents of Galveston had been concerned

about hurricanes striking the city, but were nonetheless ill-prepared for the disaster.

Compounding the situation with grim irony, the Galveston Weather Bureau (GWB)

section director had publicly stated only nine years earlier that “it would be impossible

for any cyclone to create a storm wave which could materially injure the city” and

recommended not to build a seawall [1]. Reacting to this disaster, the GWB immediately

reversed its position and pushed forward with plans to strengthen the city against future

hurricanes. A five meter high seawall was constructed, and the entire city was elevated

several meters more using dredged sand. A mere fifteen years later, Galveston was struck

by a storm of the exact same strength. This time, there were only fifty-four deaths [2].

The story of Galveston is a triumph, but what about crises with more far-reaching

consequences and fewer directly obvious solutions? The last century of influenza epi-

demics offers some relevant historical knowledge about these types of endeavors. One of

the worst modern outbreaks was the Spanish Flu, a particularly virulent disease which

claimed roughly 50 million lives worldwide in three outbreaks between 1918 and 1919

[3]. Fast-forward to 2007, and densely packed urban areas combined with easy access to

1



Chapter 1. Introduction 2

intercontinental flights have created a situation ideal for spreading disease. Yet despite

being physiologically similar to the deadliest pandemic in history, various descendants

such as the Avian flu and the Hong Kong flu have wreaked far less havoc on the world’s

population. Certainly some of this is beyond the realms of organized response; for exam-

ple, the H1N1 virus had a lower infection rate among people over 40 due to resistances

developed from past exposure to flus. In addition to simple luck, though, several delib-

erate disease control techniques have also had an impact. Vaccines are now developed

quickly and deployed globally. At the same time, various non-vaccination policies such

as contact tracing and quarantine have proven to be extremely effective in stymieing

pandemics. The former provides decision support to health officials at the time of crisis,

and the latter can actually restrict the spread of viruses with long incubation periods

and parallel development of symptoms and susceptibility [4]. To emphasize, vaccines

can be combined with these techniques to boost the efficacy of the combined response

effort.

Although progress is usually reactionary, sometimes the risk of a disastrous outcome is

enough to inspire preventative action. Such is the case with traffic control systems in

dense urban environments, where congestion and reckless driving can amass and lead

to deadly consequences. The city of New York has collected traffic statistics for slightly

over a century. During that time, traffic fatalities have decreased in total from 471 to 209

despite the population doubling [5]. Other cities were forced to modernize more rapidly.

Public safety concerns leading up to the 1984 summer Olympics prompted Los Angeles

to invest heavily in a then-untested automated traffic control system called ATSAC.

This system monitored and adjusted traffic lights at 118 intersections, providing real-

time statistics and allowing administrators to manually override signal timings if such

direct control was necessary. In total, a record-breaking 5.7 million Olympic tickets were

sold that year, adding to the 7 to 8 million already living in the city (although there was

certainly some overlap). Against this incredible population crunch, the ATSAC system

was successful at minimizing congestion —so successful, in fact, that it was immediately

expanded to four times its original size. This new system paid for itself in a year, and

has been expanded now to cover the entire city [6] [7] [8].

All three cases share a similar theme: the magnitude of preparedness to mitigate a cri-

sis. When we think of crisis management, we often think of grandiose examples such as

the first one, and indeed such broad strokes are often required to combat the immedi-

ate event. Galveston was able to strengthen itself against hurricanes by understanding

the nature of the crisis (i.e., that hurricane damages are caused by storm surges rather

than high winds) and by applying a straightforward mechanical solution. The influenza

example, on the other hand, stressed the importance of maintaining an “information
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superiority” of sorts throughout the development of the crisis. Contact tracing, quaran-

tine, and vaccination can have radically different costs and benefits depending on the

nature of the epidemic. Being able to accurately estimate their effects and tradeoffs

is invaluable to anyone in a decision-making capacity. In the case of traffic planning

and preparedness, a clear understanding of the problem before it developed into a single

catastrophic event was enough to prompt New York and Los Angeles to employ pre-

ventative solutions. Learning from past crises (hindsight), dealing with a crisis as it

develops (decision support) and planning for future crises (foresight) are three key goals

of crisis management, and will be a recurring element of this thesis.

In addition to demonstrating the inherent variety of crisis management, the three anec-

dotes just presented also confirm its complexity. Shoring up Galveston’s defenses was

a straightforward, localized effort, while effective contact tracing can require massive

centralized information systems. Similarly, managing traffic in New York at the turn of

the 20th century demanded far less sophistication than automating signal timings in Los

Angeles eighty years later. Ending back where we began, in Galveston, one might note

that modern hurricane tracking systems and community training exercises have done at

least as much as sea walls in terms of saving lives. Communication and collaboration

are required to defend against any modern crisis.

1.2 Trends in Crisis Management Simulation

A common technology used to perform crisis management research is computer sim-

ulation. Indeed, most crisis-related fields have embraced simulation to some degree.

Hospitals simulate patient flow through emergency rooms in an attempt to learn what

happens upon reaching peak capacity. Fire spread models are applied to past crises to

determine how different building designs might have aided evacuation or impeded fire

spread. Even community training exercises benefit from having a central simulation one

can query about the current state of the virtual crisis. A comprehensive assessment of

crisis management asserts that crises are best managed by acting on all possible inter-

vention points before, during, and after a crisis [9]. Assuming that one can be created, a

complete simulation environment is very useful in this regard, as it provides a rigorous,

robust framework for coordinating response while minimizing uncertainty.

Although effective, such comprehensive approaches can be challenging to realize through

simulation, which has its own requirements and restrictions. Figure 1.1 depicts a

seemingly-credible visualization of Detroit’s infamous housing and crime situation in

the early 1970’s. Despite its appearance, this visualization was actually extracted from

the computer game Micropolis, and it is merely a facsimile of the true economic reality
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Figure 1.1: A scene from 1972 Detroit, Michigan, as visualized in Micropolis (from
the same source code as Sim City). This game is often misconstrued as a simulation

by the general public; in actuality, its academic credibility is negligible.

of Detroit at the time. Verification and validation are two key tasks which distin-

guish computer simulation from other software development endeavors. Each individual

model which composes the simulation must be validated, as must the entire intercon-

nected system. Not surprisingly, these tasks increase in difficulty as the system grows

in size. Producing a valid system at the time of crisis is challenging, as is maintaining a

long-running simulation without sacrificing validity. Some systems are, by design, easier

to validate than others. The ATSAC system, for example, lists as a key feature its com-

putation of real-time traffic flow statistics. These are used to evaluate the performance

of the system, and can be compared against the original signal strategy as a means of

hypothesis verification. This automatic confirmation of expectations is reminiscent of a

technique from symbiotic simulation, which will be introduced in Chapter 2. It demon-

strates that care must be taken while constructing a system to ensure that it has the

means to remain relevant over time.

Unfortunately, modern developments in simulation come with their own challenges. The

ATSAC’s use of real-time sensing and feedback may help prepare it to function as a sym-

biotic simulation, but such systems are often costly to implement and maintain. Other

modern techniques such as agent-based simulation enable new research of more complex

heterogeneous interactions, but feature additional challenges regarding validation. In

particular, human behavior under certain conditions may be difficult to measure quan-

titatively, frustrating efforts at empirical validation [10]. This is discussed more fully in

Section 3.4. Finally, the paradox of new techniques is that they tend to obviate previous

work which has already proven its worth. Any attempt to improve the field of simulation

must avoid cutting off the past several decades of progress as a necessary requirement.

Solving these issues is crucial to enabling practical, credible systems which make full

use of the benefits of simulation. A commitment to verified, valid models is what dis-

tinguishes the simulation sciences from traditional software development where “good

enough” is considered acceptable. Many of the tools used to assist crisis management
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are based on crude or outdated technology, partly because the risk of potentially invalid

results from newer, untested systems is simply too high. Discerning how to apply the

science of simulation to the field of crisis management in a way that maximizes both

software reuse and validity is a challenging task that we will set out to accomplish and

describe in this thesis.

1.3 The Path Towards a Comprehensive Solution

The primary problem our research is trying to address is that simulation for crisis man-

agement currently lacks a comprehensive, conceptual framework that meets its needs

as a trans-disciplinary field. (The full extent of this problem is presented in Chapter

2). We approached this problem from a modeling and methodology point of view. The

primary goal will be to develop a framework which encapsulates the necessary aspects of

simulation reuse for foresight, hindsight, and decision support studies. This framework

will be designed to operate within the restrictive demands of crisis management systems,

but it will also be applicable to simulation in general. Such a system will necessarily

take a long view in its approach; as we shall see, some researchers have made progress

towards resolving various pieces of the problem, but the state of the art is nowhere near

a comprehensive solution. Rather than focusing on one key problem area and solution,

we will attempt to generalize our framework in a way that maximizes its potential for

conceptual reuse, as well as providing a non-trivial amount of library-level reuse.

Once a clear foundation has been established, we will demonstrate a best-case reference

implementation of the framework given the current technology available to simulation

scientists. Moving from a purely theoretical framework to an implementation will ne-

cessitate that trade-offs are made. The ubiquitous decision in computer science between

performance and memory utilization will require careful deliberation. In addition, sev-

eral design decisions specific to simulation will require our attention. We will justify

these when appropriate. Finally, as we build the implementation, we will test its effi-

cacy —and, by association, that of the framework— in a series of real-world simulation

studies. Each of these will be designed to stress a different aspect of the simulation

framework.

In addition to our primary goal of developing a framework, we are also interested in

exploring new research opportunities enabled through the incorporation of useful cross-

domain technologies such as virtual reality. We are particularly interested in the pos-

sibility of using virtual environments populated by physical (human) users to capture

input in situations which would otherwise require approximation. Thus, we are not

developing new behavioral models for humans, but rather providing a mechanism by
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which such models can be created in previously inaccessible circumstances of interest.

Another tangential goal is the ability to incorporate imperfect video information into

our simulation in real time as a means of maximizing existing infrastructure utilization.

Chapter 2 lists all major and minor contributions, and any additional novelties will be

covered as they become relevant in the succeeding chapters. In order to properly estab-

lish the scope of these contributions, our framework and the experiments it enables will

be evaluated in comparison to similar existing technologies, when such systems exist.

As a tertiary goal, we will also consider the performance implications of the framework

and its various configurations. Several of the latter involve the use of virtual worlds,

leading us to investigate the limits on perennial simulations. In particular, we investigate

the upper bound on world size, simultaneously connected users, and the accuracy of

symbiotic simulation versus its performance.

Finally, we are concerned with the ability of any new system, including our own, to func-

tion as well as possible with the abundance of existing models and simulations. Any new

system will necessarily obviate some amount of previous work; it is our goal to provide

some means of backwards compatibility which allows legacy systems to interoperate to

some useful degree with new systems designed with our framework.

1.3.1 Objectives

The goals discussed in the previous section will now be consolidated into the objectives

of this research. These objectives are, in order of importance:

• To formulate a perennial simulation framework which bridges the trans-

disciplinary gap between simulation and crisis management. This system will

contain elements which ensure its applicability across all levels of crisis response.

• To develop an implementation of this framework and use this to test its limits

pertaining to crisis management. The exploration of side goals such as virtual

world interaction and symbiotic simulation’s efficacy in particular are considered

part of this objective.

• To develop general techniques for crisis management simulation which help to

expand its applicability despite the real-world challenges faced. In particular, the

incorporation of real-time data and the difficulty in modeling human behavior in

crisis-relevant situations will be discussed.
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1.3.2 Introduction of Perennial Simulation

Previous sections have referred to a framework with perennial characteristics. The use

of this term is specific to this thesis and its contributing research, and was justified as

a means of distinguishing the framework from similar techniques with different focuses

(see Section 3.9). The lexicological motivation behind the term perennial is its emphasis

on “persistent, enduring” and “regularly repeated” processes [11] —qualities which the

perennial simulation framework attempts to incorporate. With this in mind, we define

the perennial simulation framework as follows:

Perennial Simulation Framework

The perennial simulation framework enables the creation of robust, long-running

simulation systems which target physical/virtual locations and their interactions.

These simulations are flexible in their capacity to provide foresight, hindsight, and

decision support studies, particularly under the tight time constraints inherent in

crisis management. The integrated nature of this framework allows more accurate

modeling of human agents in novel situations through the use of a technique called

MMOHILS (discussed later).

Given this definition, we refer to simulations created by our framework as perennial in

nature, or as having perennial elements. An important clarification to the remainder

of this thesis is that the term “perennial simulation” does not connote a new field to

rival that of simulation, and that when we discuss perennial simulation in comparison to

traditional simulation, we are merely employing a useful shorthand to talk about “sim-

ulations not created by our framework that are lacking integrated, symbiotic elements”

versus “simulations created by our framework that feature integrated, symbiotic ele-

ments”. The value of the perennial simulation framework is the greater ease it affords in

the creation and maintenance of perennial simulations, while the simulations themselves

primarily feature the ability to meet the trans-disciplinary needs of crisis management

simulation.

1.4 Thesis Outline

The remainder of this thesis will proceed as follows:

• Chapter 2 will cover relevant background information, setting the problem in its

proper context and defining the shape of the solution as well as listing specific

contributions.
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• Chapter 3 presents a full summary of all related work in the fields of crisis

management, computer simulation, and various minor relevant areas.

• Chapter 4 details the proposed framework, its various interacting components,

and its intended usage. A sample implementation is also provided.

• Chapter 5 covers the various studies undertaken to show the efficacy of the

proposed framework. Each of these tests a particular component of the overall

framework or implementation. An explanation of results obtained accompanies all

reported data.

• Chapter 6 concludes the thesis.



Chapter 2

The Path Towards a Solution

2.1 The Trans-Disciplinary Nature of Crisis Management

Simulation

In Chapter 1, simulation was offered as a technology for enabling powerful crisis manage-

ment studies. Simulation is suitable for managing the increased complexity inherent to

these studies, in addition to providing a level of formalization which is missing from mere

ad-hoc solutions. Unfortunately, several issues complicate the reality of this dependency.

To begin with, simulation cannot simply be “applied” to a given crisis management task

without first satisfying its myriad requirements: in particular, verification, validation,

the incorporation of real-time data, and the analysis of sensitivity. Additionally, as sim-

ulation is repeatedly applied to an ever-increasing number of crisis management studies,

it will undoubtedly generate new techniques which must be incorporated back into the

field of simulation. Finally, as the domain evolves, care must be taken to ensure that

any borrowed techniques are modified to maximize reuse without sacrificing accuracy.

For example, agent-based simulation —a technique borrowed from the field of artificial

intelligence— lacks the flexibility to deal with novel study environments without also

risking validity. This minor point must be addressed before the value of agent-based

simulation can become fully exploited by the cross-domain field of crisis management

simulation.

In fact, crisis management simulation is far beyond a multidisciplinary domain —it is

a true trans-disciplinary field, in that it crosses into disciplines beyond the academic

domain and may require “extensive interaction between the developers and the end

9
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users” [12]. Figure 2.11 outlines the two domains, listing key components in blocks I

and II. Each domain can be seen as the side to a cube, with block III enumerating

the crossover field of “Simulation for Crisis Management”. A “borrowed” component in

Block I originated in a field other than than simulation, but was later incorporated due

to its perceived utility to simulation scientists. Each component will be examined more

thoroughly in the following sections.

Figure 2.1: Breakdown of the trans-disciplinary overlap between simulation and crisis
management. Some simulation techniques originated in a different domain; these are
marked as “borrowed” in Block I. Unknown components for trans-disciplinary compat-

ibility are marked with a “?” in Block III.

2.1.1 The Science of Simulation

The reader is expected to be familiar with simulation in general, and relevant work in

the field will be covered in Chapter 3. For completeness, we will provide a minimal

overview of simulation; [15] is recommended for in-depth coverage targeting novices to

the field.

A simulation is a “model of a real or imagined system [designed for] conducting exper-

iments” [16]. Simulation is used when experimenting with the physical system directly

is too expensive or otherwise impractical. Simulation requires models of the systems

1An attempt was made to color-code all critical information in this thesis in such a way that readers
with color vision deficiency and related vision impairments will be able to distinguish it. (See: [13] and
[14]) Please contact the author if you are nonetheless unable to view this document properly.
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under investigation, and the entire application must undergo vigorous phases of veri-

fication and validation to ensure that it is an acceptable approximation of the system

being modeled.

Lacking sophisticated technology, simulation can be done manually or via spreadsheets.

Spreadsheet simulation in particular occupies a research niche which is still being ex-

plored. New developments in this area includes the parallelization of Excel-based models

on a grid [17], integrating better state-space searching for supply chain models [18], and

a push for Monte Carlo spreadsheet simulation as an easily accessible tool for finance and

marketing [19]. For the most part, however, the field of simulation has come to mean ex-

clusively computer simulation, in which the various models and connective components

are realized using a simulation programming language or with help from a simulation

library. Computer simulation enables processing of significantly more complex inter-

actions, such as “human-in-the-loop” simulation (Figure 2.1, Block I), which leverages

a real-time, highly interactive simulation to train a user in a complicated or other-

wise dangerous task. In addition, computer simulation can readily “borrow” interesting

techniques from other fields in computer science, encouraging cross-domain research and

ensuring the field will never grow stale. A good example of this is the work done by

developers of Massively Multiplayer Online (MMO) games. Research on distributed

simulation —performed by the military and academia— ran in parallel to research for

online games —performed by private corporations. Each of these groups had their own

design goals, leading to the development of vastly different solutions. Recently, several

researchers have started importing the work done regarding online games into the field

of simulation, leading to systems that are cheaper to develop and more compatible with

general-purpose programming languages and commodity hardware.

A technique called symbiotic simulation is both relatively new and comparatively niche;

as such, even domain experts may require a brief overview. Introduced early into the 21st

century, a symbiotic simulation is defined as a continuously-executing simulation which

attempts to optimize a corresponding physical system in a way that is mutually beneficial

[20] [21]. As depicted in Figure 2.2, this requires constant monitoring of physical sensors.

A controller will periodically dispatch multiple “What-If?” simulations, the results of

which are analyzed and used to predict the future behavior of the system. At this point,

the system may be adjusted through the use of effectors, with the intent of optimizing

its behavior. All predictions can be validated over time, allowing the system to double-

check the efficacy of its proposed solutions. The power and automation afforded by

symbiotic simulation cements its place as a key component in our proposed solution.

As a result of the constantly increasing size of the field of simulation, several organizing

frameworks were developed to manage its complexity. Two of these are listed in Figure
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Figure 2.2: Illustration of the symbiotic feedback loop central to symbiotic simulation.
Note the possibility of “Multi” components, which are capable of acting as both sensors

and effectors.

2.1: the High-Level Architecture (HLA) and the Service-Oriented Architecture (SOA).

The first of these is a general-purpose distributed simulation framework with origins in

the military. The HLA is language-agnostic, allowing programs written in any language

to connect over a network through a shared run-time infrastructure. The SOA, on the

other hand, was designed primarily for inter-operability, and originated in the field of

information technology. An SOA attempts to abstract business services in a way that

allows trading or distributing them online. It goes without saying that some of these

services may be simulation components, hence the use of SOAs for inter-operability in

simulation. A key observation for both the HLA and SOA is that each framework was

designed to meet the needs of its users as best as possible given the relevant historical

context. The HLA, for example, was specifically designed to replace an older technique

called Distributed Interactive Simulation (DIS). Likewise, the SOA is generally consid-

ered to have evolved into the field of cloud computing. Both of the older techniques (DIS

and SOA) are still widely used, as they address different needs than their progeny.

2.1.2 The Field of Crisis Management

A full breakdown of the field of crisis management will be presented in Sections 3.1.1

and 3.1.2. Here, we will provide a brief summary to aid in understanding Figure 2.1.
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Crisis management is a field that encompasses all techniques to mitigate, prevent, and

respond to crises. A crisis is a disruptive, unpredictable event that can lead to loss of

life or resources if badly managed. Crises may include disasters, epidemics, “man-made”

mistakes like oil spills, and active instigations of violence such as riots. Managing these

disastrous events requires a full-spectrum response, including preventative measures long

before the actual event, immediate (stop-gap) mitigation techniques at the time of crisis,

and a sustained post-crisis response.

The general public is usually unaware of the full breadth of tactics that crisis manage-

ment teams must deploy, assuming instead that fire escape routes and flu vaccinations

constitute the bulk of crisis management. More conscientious citizens may take part in

community training exercises, learning how to report and deal with tropical storms and

flooding. And those affected by a crisis will no doubt see clearly visible response teams

soon after the initial event. Contrary to its superficial aspects, crisis management is,

fundamentally, a constant war of information. Fire escape routes must be tailored to

maximize egress time while minimizing bottlenecks. Flu vaccines require precision de-

ployment strategies, as noted in Chapter 1. Community training coordinators require a

full understanding of the nature and spread of potential future crises, lest they teach the

wrong response and inadvertently increase the risk their trainees will encounter. Finally,

disaster response teams need to know which regional hospital to dispatch ambulances

to —a particularly difficult task, as hospitals tend to operate near peak capacity even

under non-crisis conditions.

Fortunately, crisis managers have a variety of tools available to help them cope with

the complexity of a given crisis. As most of the key tasks of crisis management are

information-centric, it should come as no surprise that these tools tend to focus on in-

formation as an end goal. Pedestrian dynamics, for example, offers a well-researched set

of movement patterns for pedestrians under different movement conditions and density

levels. Community training exercises, as mentioned earlier, provide necessary informa-

tion to responsible members of the community in advance of future crises. In addition,

expert consultation is often utilized when designing mitigating infrastructure projects

(e.g., “How high should we build the seawall?”). Many of the tools listed in Block I in

Figure 2.1 would also benefit crisis management, which leads to the natural question of

what simulation for crisis management would look like.

2.1.3 Bridging the Trans-Disciplinary Gap

The potential for collaboration between simulation and crisis management is vast. Figure

2.1 depicts three major examples of this crossover in Block III, decomposed into pieces
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which “fit” together to form the overall solution.

The first crossover area is concerned with virtual pre-enactment of crises. Community

training exercises from Block II are useful in preparing the general public for crises, but

the quality of the training depends heavily on the quality of the arbiter mediating the

exercise. It is common for participants to under-estimate the time required to perform

key tasks: an ambulance driver, for example, may estimate his arrival time based on

non-crisis traffic conditions, failing to take into account the increase in congestion due to

panic [22]. The arbiter is responsible for affirming each time estimate and decision made,

but this is often beyond the capability of one human to accomplish. Thus, one might

consider importing techniques from human-in-the-loop simulation and online gaming

(Block I), thereby allowing the simulation engine to act as an arbiter. This also allows

training exercises to increase in size, since communication between multiple arbiters

is straightforward if each arbiter is actually a simulation. In order to combine these

two technologies (I and II) to arrive at our solution (III), a new component is required

—marked with a “?” in Figure 2.1. This component provides the means to substitute

virtual agents for human agents, and it has two facets. At one extreme, humans must be

indistinguishable from software agents to the simulation engine, since agent generation

will be necessary to run estimation models. At the other extreme, software agents must

be indistinguishable from humans to the participants, since interaction patterns must

remain the same despite who is controlling each agent. Approaching each extreme will

require an increasing amount of effort, so one would expect a workable solution to lie

somewhere in the middle.

The second crossover area aims to apply the power of existing models and simulations

to past crises, in an attempt to identify the exacerbating factors in each scenario. In this

case, one might consider creating an agent-based system that deals with traffic simulation

systems. This work might be combined with pedestrian dynamics studies with the goal of

robustly analyzing the past. In this case, the missing component is a means for validating

agent behavior in a specific historical context. Agent-based simulations suffer from

difficult validation cycles, and the possibility of emergent behavior, covered in Chapter

3, may require novel combinations of agent types to be re-validated. Unfortunately,

the traditional method of model-building —namely, observing humans in an existing

scenario and extracting the model through repeated measurement— is impractical for

two reasons. First, the past event may be impossible to recreate, as the physical location

it takes place at may no longer exist. Second, introducing human agents into such a

scenario may be dangerous. Some form of proxy is required.

The third crossover area aims to create a comprehensive system which is specifically

tuned for crisis management simulation. The promising, relatively new field of symbiotic
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simulation is the key contribution from Block I. Likewise, all levels of crisis management,

from foresight all the way through hindsight will be incorporated from Block II. Com-

bining these elements to create a generalized solution will require a great deal of effort,

mostly in the form of an overarching framework. Such a framework will necessarily max-

imize re-use; it would be unfortunate to create an integrated system for foresight studies

that is incapable of handling hindsight. Realizations of this framework will require more

up-front effort, but will incorporate factors for constant renewal, thus prolonging their

lifespans and leading to the term perennial being used to describe them. Henceforth, we

shall speak about the perennial framework as a means of enabling simulation for crisis

management.

2.2 A Simulation Framework for Crisis Management

In Section 2.1, we outlined the intersection between crisis management and simulation.

In this section, we will explore the fundamental nature of the problem before us, and

the shape of a solution.

2.2.1 The Shape of a Solution

Given the broad nature of both simulation and crisis management, it is especially im-

portant that we clearly describe the shape of our proposed solution. Section 2.1.3 listed

three key examples of inter-operability: a means of seamless human/virtual agent in-

teraction, a validation technique for novel, crisis-relevant domains, and a “perennial”

framework to link the fields. We had begun introducing several additional goals in

Chapter 1, such as exploring the potential of virtual worlds. Combining these together,

we arrive at the shape of our solution to the problem of integrating crisis management

and symbiotic simulation. We will know we have arrived at an adequate solution when:

• We have tested the use of symbiotic simulation in a crisis-relevant scenario, prefer-

ably through the use of an online virtual environment with feedback to human

users.

• We have developed a framework which is capable of formulating and encapsulating

the above, and have assessed it with respect to existing alternatives.

• We have outlined a variety of useful configurations of the framework, and have

demonstrated the steps necessary to utilize the most interesting of these cases.

• We have stressed the framework to determine the real-world overhead of perennial

simulation.
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2.2.2 Specific contributions

The major contributions of this thesis are, in order of importance:

• A perennial simulation framework, designed with crisis management in mind,

which enables component re-use through foresight, hindsight, and decision-support

studies.

• Means for validating agent behavior in specific, difficult situations required by

crisis management, thus expanding the breadth of scenarios that can be modeled

via agent-based simulation.

• Techniques for mixing virtual and human agents in virtual worlds and simula-

tion studies, allowing simulations to pad a world with agents of either kind when

necessary.

In addition, the following minor contributions will be provided, in no specific order:

• A reference implementation of the perennial simulation framework, with some

means of inter-operability for legacy systems (i.e., those systems designed without

a perennial element in mind).

• An analysis of several possible interactions between real and virtual worlds, as

enabled by the major contributions.

• A strategy for quantifying value in a way that is useful to simulation administrators

and enables the analysis of tradeoffs between various action plans, while also taking

into consideration the need for a fast solution given limited computing time.

• Some insight into the efficacy of symbiotic simulation for crisis management, es-

pecially with regards to the question of whether or not humans respond positively

to symbiotic feedback.

2.2.3 The Generic Quality of The Perennial Simulation Framework

One would be remiss in assuming that the solution, once fully realized, is restricted

solely to the inter-operability between crisis management and simulation. Revisiting

Figure 2.1, one might note that only three sides of the cube are visible. Components

introduced for III will have other uses, enabling solutions for entirely different domains.

Leaving aside the cube metaphor for a moment, consider the case of ambulance dispatch

discussed in Section 2.1.2. Such a system is intended to minimize capacity crunches
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during a crisis, but a similar setup might be used by, e.g., an automotive repair provider

to dispatch incoming requests to one of several similarly equipped repair shops. In

addition, the virtual worlds we use for gathering pedestrian data (Section 5.1) could

easily be reconfigured to experiment with virtual-presence education, similar to the joint

lecture experiment carried out in 2011 between the University of Western Australia and

the University of Kentucky [23].

The key observation here is that, although our system is designed with crisis manage-

ment as its primary application domain, its components are generic enough that several

other domains can benefit from it with minor modifications. Thus, we will refrain from

cluttering the framework’s description in Section 4.2 with crisis management jargon, and

we will keep the reference implementation in Section 4.3 loosely coupled with respect to

crisis-specific components. When necessary, we will narrow the scope of discussion to

details specific to crisis management, but all major and minor contributions should be

considered generic improvements first, and crisis-specific connectivity second.



Chapter 3

Related Work

3.1 Work in Crisis Management

Crisis management is an important focal point of this research; thus, a topical review

of existing research in the field is pertinent. However, the techniques encompassed by

this domain depend heavily on the fundamental definition of what constitutes a crisis.

Sections 3.1.1 and 3.1.2 will detail the terms “crisis” and “crisis management”, and

Section 3.1.3 will present related work in the field.

3.1.1 Definition and Taxonomy of a Crisis

Most work on crisis management neglects to specify what is actually meant by the term

“crisis”. Based on their subject matter, it is possible to arrive at the authors’ assumed

definitions, of which there are three. First and most prevalent is the idea of a crisis as

a natural or man-made disaster [24] [25] [26] [9] [27]. Disasters may occur naturally,

as with hurricanes and earthquakes [25], or they may be a result of human activity

like traffic collisions [27]. Continuing the analogy, a disaster may occur on a very large

scale, or it may only affect a small area. As noted in [27], even small disasters may

escalate to affect a wide area if not properly dealt with. This reflects the disruptive

nature of a crisis. Typically, information sharing is vital to stymie the compounding

escalation of these events [28]. The second general category of crises includes agents

acting against the goodwill of the general public [26] [29]. Such an instigated crisis may

be a terrorist attack or an insider threat; the unknown nature of the agents’ intentions

requires information hiding and meta-level reasoning [29]. Finally, there is the notion

of a business or public-relations disaster [30] [31] [32]. Here, the risk is not to human

18
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lives or infrastructure, but to the well-being of a company. Timely and precise decision-

making is key to resolve a business crisis [33], which might include strikes, consumer

privacy violations, and product recalls.

Figure 3.1: The various types of crises, arranged in a taxonomy with examples.

Figure 3.1 represents this empirical taxonomy, depicting the three primary categories,

numerous sub-categories in each, and a few representative examples. Several observa-

tions are in order. First, disasters and instigated crises often include a high risk for loss

of life, while business crises tend to only affect a single company and are generally non-

lethal in and of themselves. Second, the main difference between disasters and instigated

crises is the fact that the instigator consciously continues to act to prolong the crisis he

may have also caused. This makes the event much more unpredictable, and often intro-

duces the need for adversary modeling. Third, we observe that many crises straddle two

or even all three categories. A case of poisoned medicine might combine aspects of an

instigated crisis with that of a business crisis [31]. Bio-terrorism straddles disasters and

instigated crises. Finally, all crises have an element of public relations (PR) to them.

Nonetheless, Figure 3.1 provides a useful conceptual isolation, in that it separates the

“difficult” crises (insider threats) from the straightforward ones (natural or man-made

disasters), and completely isolates the business elements of a crisis, which never incur

loss-of-life. Some crises, such as peacekeeping and humanitarian relief [26] [34], may

not benefit from this classification, and will require ad hoc categorization based on the
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unique aspects of each incident. For the remainder of this paper, whenever we use the

term “crisis”, we will use it to mean either a disaster or an instigated crisis. Business

crises are far outside the scope of our research and will not receive further discussion.

In addition to this prima facie categorization of the nature of a crisis, a handful of

authors have taken the time to provide a more rigorous description; the simplest of

these describes a crisis as “[an event] with potentially disastrous consequences”[9], or

“a situation that has reached an extremely difficult or dangerous point” [35]. Expand-

ing on this, [36] explains that a crisis “occurs as a surprise. . . threatens one or more

valued goals. . . and leaves little time for response”. Finally, [24] states that crises are

“situations with a high degree of threat to important values, and a high degree of time

pressure”. Note that, as mentioned in [27], minor disasters can build up to create the

“extremely. . . dangerous point” from [35]. Resource management is crucial to mitigating

crises; [27], for example, notes that “every crisis requires allocation of certain resources

in order to rectify the situation”, and others agree [9]. Finally, most crises are compli-

cated by the fact that performance indicators are not weighted equally within the same

domain, country, or expert committee [28]. In other words, choosing the “best solution”

is not often obvious or even possible.

Combining the unique aspects of each definition with the literature-based taxonomy of

crises yields an appropriate definition which we will use for the remainder of this paper:

Crisis

A crisis is a disruptive event that cannot be predicted. If mismanaged or otherwise

left unchecked, a crisis will have a cascading effect, leading to a loss of life or

resources. Crises may either occur naturally or be instigated and exacerbated

by an iniquitous entity. Crises require swift action to mitigate their destructive

potential.

3.1.2 Explanation of Crisis Management

The works referenced in the previous section —in addition to contributing towards a

definition of the term “crisis”— primarily dealt with ways to mitigate the damage caused

by crises. The formal study of these factors and how to best deal with their myriad

complexities and inter-connected relationships constitutes the field of crisis management,

which can be understood based on its events and actions.

The events a crisis manager must deal with are manifold, spanning the time before,

during, and after a crisis. They are also referred to as “problems”, “tasks”, or “goals”.

Tufekci and Wallace explain how different events in the timeline of an emerging crisis
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require radically different strategies to mitigate. Figure 3.2 is from their research on

Emergency Management [9], modified for Gupta and Ranganathan’s traffic collision

crisis scenario [27].

Figure 3.2: Tasks of Emergency Management arranged in time with respect to the cri-
sis event. Potential crisis management intervention periods are marked as CM; example

interventions from a traffic crisis are given in dashed boxes.

A crisis event is divided into four stages including the event itself: cause, incident,

event, and impact. For the sake of discussion, assume the event is Gupta and Ran-

ganathan’s example of a multi-car traffic collision crisis [27]. In this case, the incident

may be a single car skidding out of control1. At this point the event is imminent, but

some last-minute intervention (such as automatically sounding the car’s horn when it

detects skidding) may still be both possible and helpful. Directly preceding the inci-

dent is the cause, which in our case is a slippery roadway. Finally, after the event is

the impact: property damage. Mitigation can occur before or after each stage. If an

intervention strategy occurs, for example, between cause and incident, then we can

say that its purpose is to either stop the transition from cause to incident, to limit the

amount of the cause that remains effective, or to limit the degree to which the incident

is magnified by the cause. The nature of any given crisis will radically affect the number

and cost of strategies available at each stage. By extension, some strategies may take

an exceedingly long time to implement, or may become effective only after a certain

penetration level has been reached. Installing a special braking system is an example

with both of these properties. Several other example strategies are provided by Figure

3.2; most need no further explanation. As noted by the authors, the best strategies will

generally involve a combined effort over all five mitigation points.

Broadly speaking, all of Tufekci and Wallace’s categories use foresight to prepare in-

tervention strategies. The notion of hindsight only exists implicitly in Figure 3.2 as

an assumed source of domain knowledge from which one draws intervention strategies.

1In a densely populated area, even a minor accident can build up to disastrous consequences. Los
Angeles, origin of the ATSAC system, lists an “extreme incident” or Sig Alert as “any unplanned event
that causes the closing of one lane of traffic for 30 minutes or more”.
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Other researchers have relied on hindsight as a first-class relative to foresight, including

[34], which lists it as a key task. Additionally, the Federal Emergency Management

Agency (FEMA) includes hindsight in the “Information Update” stage of its lifecycle

diagram of crisis management [37]. Figure 3.3 depicts the FEMA diagram, updated

with crisis management tasks from the literature reviewed earlier [9] [38] [26]. Several

trends are evident. First, each of the five phases relies on some form of information

superiority —this is unsurprising given the nature of crisis management. Second, the

early phases feature tight time constraints, while the later phases can spare time but

demand a high level of accuracy. This mirrors the time-driven nature of decision support

studies, introduced below, versus the knowledge-driven nature of hindsight and foresight

studies. Finally, the FEMA diagram makes explicit the cyclical nature of crisis occur-

rences. The notion of expecting and actively preparing for a future crisis may seem

sensible or even trivial, but it is a point that is often overlooked, leading to confusion

and misrepresentation. In particular, this clarifies the role of “Preparedness” studies in

Tufekci and Wallace’s diagram (Figure 3.2), which would otherwise seem to occur both

after L4 and before L0.

Figure 3.3: The FEMA crisis management lifecycle diagram, annotated with tasks
from the literature. Note the emphasis on crisis management’s cyclical nature.

Hindsight and foresight are both extremely useful for large-scale crises. The former
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enables administrators to avoid repeating the mistakes of past crises, while the latter

encourages experimenting with novel solutions to potential future crises. The final cat-

egory of crisis management is that of decision support. Essentially a component of the

“Response” step, it is much broader and more critical than implied in [9]. Decision

support encompasses all data gathering, “What-If?” scenario analysis, and tertiary

activities that may be required by crisis management administrators during the time

directly after a crisis. This category of tasks is often the most difficult element of crisis

management, as it is characterized by both an extreme time crunch and a paucity of

available information. The tendency of some crises (namely disasters) to destroy por-

tions of a city’s technological infrastructure only serves to aggravate this. As such, it is

common for decision support tasks to be partitioned such that they can be dealt with as

quickly as possible during the actual crisis. For example, several city evacuation routes

may be carefully researched in advance of a crisis, with the actual plan chosen depend-

ing on sensor readings at the moment of crisis itself. Existing research confirms that

—from a decision support point of view— providing a good, timely solution is better

than applying the best possible solution after too long of a delay. Section 3.1.3 covers

this in more detail.

3.1.3 Topical Review of Crisis Management Research

A great deal of research exists to deal with the various tasks of crisis management.

During the time of crisis itself, as well as before and after, information and communica-

tion are the most commonly-cited goals. [25] claims that information is “the common

denominator” in all crises, lambasting the damage caused by “conflicting information”.

That said, the mechanics of most environmental disasters have been well-studied. Fire

spread models are thoroughly understood in most interior and exterior contexts. Pa-

pers by Belkhouche et al [39] and Douglas et al [40] are two excellent examples; the

former for its simplicity and the latter for its use of DDDAS (a novel dynamic data-

gathering technique, described later) to capture the specifics of a wilderness fire. Floods

and earthquakes have been heavily researched, too. Besides studies of the physical forces

which cause disasters, many researchers are now looking at the capabilities of emergency

response teams after the initial catastrophic event. Fiedrich, for example, focuses on

research allocation after earthquakes [41]. Jain [42] and Shendarkar et al [43] both study

egress after a bomb attack, rather than modelling the actual explosion. More general

studies like that of Low et al [44] use sophisticated technologies such as the High-Level

Architecture [45] to model the relatively simple —but extremely useful— patterns of

crowds of people. Wilcox applies similar logic in an attempt to understand the issue of

neighborhood crime. His work is notable for its use of modern agent-based simulation
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techniques; in particular, he creates an agent-based lattice architecture to study the

complex effects of “reciprocal social influences” on criminal activity [46].

Recently, studies of infectious diseases have become more common. Such studies are

usually concerned with the spread of disease within a certain geographical space (such

as a university campus [47] or an entire urban region [48]), and the extent of the effect of

policy on the spreading of the disease. Some are concerned with life-long diseases such

as AIDS [49]. Most studies take preparedness as a theme, speculating, for example, on

the effect that various historical outbreaks would have in a modern urban environment.

Given the number and importance of these types of studies, we find it disappointing

that so few of them rely on DDDAS. This technique, described in detail in the following

section, gathers data from very large, online, dynamic data sets, and is often used

to study public policy from a simulation-based perspective. We would expect future

infectious disease studies to start integrating DDDAS out of necessity, and are surprised

this has not already happened.

Resource management is as equally well-studied as the mechanics of physical disaster. In

Gupta and Ranganathan’s work (which also appealed to the FEMA diagrams), resource

management is identified as a key task during a crisis. Nash equilibriums from game

theory are employed in an attempt to optimize various tricky crisis-related resource

problems [27]. Fiedrich’s work, mentioned earlier, approaches earthquakes with the

observation that rescue attempts are put under extreme pressure by limited resources

and high demand, and that resource allocation after a crisis can have the greatest impact

on mitigating damages [41]. Likewise, the World Health Organization (WHO) cites

“prioritization of limited resources” as a key goal in dealing with infectious disease

outbreaks [4].

Information management takes center stage in a lot of work, often from differing perspec-

tives and to a variety of end goals. For example, Tufekci and Wallace put information

at the center of their work, arguing for a holistic approach spanning pre- and post-

objectives of crisis management [9]. They argue that the interconnected nature of crisis

incidents —even small ones— requires a global analysis of the combined situation. The

work of Cross et al. and Sakairi et al. is similarly concerned with global information

management, but from the perspective of collaboration during a crisis. Sakairi et al.

use AJAX and other web technologies to speed up visualization of GIS data [50], while

Cross et al. attempt to enhance communication from a military perspective [51]. [52]

is similar, using indexing techniques to improve access to real-time information from a

Command, Communication, and Control (C3) point-of-view. Finally, [38] uses a fed-

erated system to handle the meta-level task of “collaboration management” —that is,

organizing collaborations themselves. Collaboration is defined as “occur[ring] whenever
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humans and/or computer applications work together to accomplish a common goal”, and

involves rules on “when, how, and by whom” each collaborative activity is performed

[38].

Also studied is the notion of response to a crisis. Smith and Hayne attempt to pro-

vide fast decision-making capabilities, noting that “an underlying assumption of crisis

management is that a series of timely but non-optimal decisions will generally yield a

better outcome than optimal decisions made too late.” [24]. They use “elimination

by aspects” to achieve speedup over a utility function when performing multi-objective

analysis in real-time. Finally, Jacobs et al. utilize a multi-user virtual environment

called MUDSPOT to analyze crisis planning by real users in a virtual representation of

a crisis [34]. This appeal to a virtual world is not uncommon, as many have noted its

potential utility as an emerging technology [9] [53].

In relation to our work, the existing literature on crisis management is considered suffi-

cient, and our primary focus is on bridging the trans-disciplinary gap between simulation

and crisis management. The latter is slowly moving towards a reliance on the former.

Studies performed without an appeal to simulation are still common, but most recent

studies recognize its potential and wholeheartedly embrace simulation as part of an in-

tegrated solution [9] [54]. That said, existing work on crisis management is deficient in

regards to simulation in general and agent-based simulation in particular. Simulation,

as stated in Chapter 2, is capable of shortening the time gap between the occurrence of

a crisis event and the moment when information superiority over that crisis is achieved.

Agents provide a natural encapsulation model for humans, and allow reasoning about

domains which have typically proven challenging for older, top-down simulation method-

ologies. Our work will attempt to bring these two technologies to crisis management.

Finally, we observe the practical success of DDDAS in its stated goal of enabling sim-

ulation with exhaustively large data sets. We choose to leverage a similar technology

(symbiotic simulation) to achieve some of the benefits of DDDAS without the additional

complexity of reconfiguring sensors. Nevertheless, our sensors as defined in Chapter 4

are designed to be DDDAS-capable: although our reference implementation uses a static

dependency tree to refer to sensors, an alternative implementation may choose to store

sensors in a more flexible data structure and swap active sensors at runtime.

3.2 Work in Health Care Simulation

Related to crisis management is the field of health care simulation. Many hospitals have

undertaken logistical studies to increase throughput and decrease waiting time under

normal operating conditions. Such studies would, at the time of a crisis, be useful for
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measuring the strain on each hospital and allowing ambulances to divert to less congested

drop-off points.This assumes, of course, that these simulations are valid for such an

application. In fact, the pattern of measuring the system under “normal” conditions

and then optimizing it after a certain threshold has been reached is reminiscent of

symbiotic simulation’s pursuit of equilibrium.

Several interesting studies stand out. One of these manages to reduce the waiting

time for low-risk patients through the use of an improved triage protocol known as

“Provider-Directed Queuing” [54]. The authors note that, like many other hospital

studies, a considerable change in arrival rate over time makes reasoning about the system

difficult. Nonetheless, they achieve promising enough results to justify testing a real-

world implementation of the modeled system. Improvements in waiting time of 44%

to 76% are observed in the pilot study used to validate this simulation. This excellent

validation technique allows them to overcome the unfortunately high variance in their

output data.

Other hospital simulations follow a similar pattern. A model is formed to study a

variable such as queue length [55] or patient no-show rate [56]. The most critical areas

for optimization are considered first, with a vigorous output analysis and validation step

to support the derived conclusions. Occasionally, a surprising correlation is discovered

—such as [56]’s observation that a reduction in the number of appointment types at

a hospital led to a reduction in the number of no-shows. Overall, hospital simulation

studies tend to be logistics studies, focusing on patient flow or hospital resources and

capacity.

Healthcare is another field which has been moving steadily towards a reliance on simu-

lation. One noticeable exception is that of physicians themselves, as noted by Fackler

[57]. Although physicians identify patterns and perform just-in-time mental modeling

[58], there is a curious resistance to extracting the modeling of mundane or repetitive

tasks into computer simulations. Some fields of medicine (such as anesthesia) are mov-

ing towards simulation technology, with doctors fulfilling a “decision support” style role

situated between the simulation and the patients. This notion of experts fulfilling a

central role making critical decisions based on simulated data will be encouraged and

enhanced in our framework in Chapter 4.

Regarding our work, we see the value in [54]’s use of real-world experimentation as a

means of overcoming uncertainty. We make use of this technique in our first study

(Section 5.1) through the application of a virtual-world experiment with live users. Our

second experimental study, while not directly related to health care simulation, draws

inspiration from past work in this field by attempting to analyze the trade-offs of various

dispatch strategies in a time and space-critical scenario (Section 5.2). Finally, regarding
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past research holistically, we speculate that simulation’s lukewarm reception by physi-

cians is indicative of a deficient regard for credibility. According to Law, “a simulation

model and its results have credibility if the decision-maker and other key project per-

sonnel accept them as correct.” [59]. While validity is of the utmost importance in

terms of guaranteeing a model’s correctness, credibility is essential for ensuring that ex-

perts will actually make use of the system and trust its results. We attempt to address

this through the application of virtual world re-enactments of crisis scenarios, and by

providing categorical assessments of symbiotic feedback (through, e.g., Pareto analysis),

instead of merely providing the “best” solution.

3.3 Work in Symbiotic Simulation

Symbiotic simulation was defined in Chapter 2, and most early work in the field followed

the “Grand Challenges” specification to the letter. For example, consider Low et al ’s [60]

application of symbiotic simulation to the problem of queue overflow in semiconductor

assembly plants. An emulated system represents the production factory, and the Witness

modeling software performs “What-If?” analysis. Agent-based technology is used to

create the symbiotic link. When a certain queue length is reached, the optimizing agent

attempts to determine the upper and lower queue sizes for several Wire-bond and Test

machines. Choosing the appropriate queue sizes will limit outsourcing while preventing

overflow on-site. Unfortunately, the entire system relied on an emulation of the real

world; there was no “physical system”. Cross-validating with a pilot study performed at

a real-world factory would have helped increase confidence in the results of the system.

The term “emulation” is also somewhat misleading, as it implies perfect imitation of

the physical system. Despite these shortcomings, Low et al ’s approach stands as an

excellent example of a classic symbiotic simulation system. Moreover, it is interesting

to note the authors’ claim that symbiotic simulation is necessary to “respond to abrupt

changes in the physical system” —a claim that echoes our own decision to leverage

symbiotic simulation for crisis management. In fact, an “abrupt change” in Low et al ’s

work could be considered synonymous with the “extremely difficult or dangerous point”

identified in our previous overview of crisis management.

Later work by Aydt et al formalizes the distinction between reactive and preventative

symbiotic simulation [61]. This distinction is visualized in Figure 3.4, which illustrates

a thresh-hold condition in each case. In reactive analysis, the threshold is crossed at

time tc, at which point “What-If?” analysis is triggered and preventative measures are

taken. By time ta, these measures have taken effect, and the critical condition is no

longer affecting the system. Some time later, the system resumes normal behavior. In



Chapter 3. Related Work 28

preventative analysis, “What-If?” analysis is triggered at points ta3, ta2, and ta1, all of

which predict that the system will soon cross into the critical zone. Depending on the

cost of intervention, action can be taken at either of the three action points, and the

critical point tc never occurs.

Figure 3.4: Reactive versus Preventative Symbiotic Simulation

Aydt et al. recognizes that Type I and Type II errors can occur in preventative symbiotic

simulation. Type I errors occur if the system does not detect that the threshold has

been crossed, and allows the system to continue unimpeded past the crisis point. These

can be eliminated entirely by using reactive analysis as a fall back. Type II errors

occur if the system predicts that the threshold will be crossed when, in reality, such

a thing would not have actually happened. These errors increase in likelihood as the

probability of a critical condition decreases, and are usually very costly as they apply

unnecessary interventions. The authors introduce a G-value estimation to determine

when preventative analysis is appropriate [61].

A related field to symbiotic simulation is that of Dynamic, Data-Driven Application

Systems (DDDAS). Darema provides a clear definition of these: “DDDAS entails the

ability to incorporate additional data into an executing application and, in reverse,

the ability of applications to dynamically steer the measurement process.” [21]. Such

“additional data” are assumed to be so vast —a full listing of all real estate transactions

in a state for the past five years, or real-time atmospheric pressure readings over an

entire region— that the steering step is always necessary. Data sets need not be real-

time, though: the AIMSS project is an example DDDAS study that mines previously

published housing prices and tenant relocations from the world wide web in an attempt

to determine the “happiness” and “over-crowdedness” of a neighborhood [62]. Finally,

DDDAS is sometimes utilized as an extension to traditional simulation models, such as

maintenance scheduling for semiconductor supply chains [63].

Our work borrows heavily from symbiotic simulation, deeming it crucial to effective cri-

sis management. As symbiotic simulation is a relatively new field, we find it lacking in

several regards. Most importantly, symbiotic simulation is too rigid in its application of

a maximization function for measuring performance. More complex and flexible metrics



Chapter 3. Related Work 29

are necessary when dealing with human agents, which we attempt to address in Sec-

tion 4.3.3.1 and throughout this thesis. Similarly, the distinction between reactive and

preventative simulation does not adequately capture the fact that Type I errors are so

costly to crisis management that they must never be triggered. This is because the true

cost of triggering crisis response for a non-crisis is not money or time lost, but loss of

public confidence in the crisis response mechanism itself —something which will lead to

uncertainty and therefore massive loss during the next actual crisis. We attempt to mit-

igate this by assigning a human the role of Implementer, and relegating the perennial

simulation to the role of decision support rather than absolute authority. This is similar

to simulation’s role as discussed in the previous section on health care simulation.

3.4 Work in Agent-Based Simulation

As previously stated, developing a comprehensive perennial simulation framework will

necessitate borrowing techniques from agent-based simulation. In addition to serving

as the primary modeling abstraction within our framework, agent-based modeling and

simulation may also be useful to validate models —especially when combined with virtual

worlds.

A simple yet insightful study performed early in the lifetime of agent-based simulation

attempted to determine if humans’ tendency to over-estimate the probability of “good”

events and under-estimate the probability of “bad” events (known as “optimistic bias”)

was beneficial or detrimental to their betting performance under conditions of uncer-

tainty [64]. A sample world was created which forced agents to make a series of bets,

each of which had a probability for success, a reward for success, and a penalty for

failure. Knowledge of each of these three data points could be obscured by uncertainty.

Several agent were constructed that mimicked the human tendencies of optimistic bias

and emotional bias (ignoring the probability of success when the reward greatly ex-

ceeded the penalty for failure, and vice-versa). Classic Von Neumann rational agents,

which would only act in a way that maximized their expected utility, were included as

a control group. After several runs under varying levels of uncertainty, it was found

that agents with an optimistic or emotional bias tended to outperform rational agents

when some uncertainty was present. The authors speculate that this beneficial depar-

ture from normative rationality is reflective of conditions encountered in the real world,

as humans are generally capable of discerning the costs of success and failure, but are

poor judges of the probability of success. This study took place early into the modern

era of agent-based simulation, and serves as an illustrative example of the technique in

general.
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An excellent overview of agent-based simulation is given by Lee and Son [65]. This

crowd simulation study first categorizes agent-based approaches into three categories:

• The economical approach assumes that decision makers are rational, and reasons

out movement patterns based on this logic. As seen in [64], humans rarely behave

with strict rationality.

• The psychological approach “considers human cognitive natures explicitly, [but]

mainly focuses on... behavior under simplified and controlled laboratory experi-

ments” [65].

• The synthetic engineering approach attempts to reconstruct a model from observed

human behavior. Whereas the first two approaches are forms of forward reasoning,

this approach operates on the basis of reverse engineering.

Lee and Son choose the third approach, settling on Belief-Desire-Intention (BDI) models

as the specific enabling technology. BDI models are goal-based, and are thus much easier

to understand than complex neurological models. This clarity is very important for a

simulation, as validation often requires experts in various different fields to understand

model assumptions and interactions.

The BDI model used in Lee and Son’s study is reverse-engineered from data gathered

by human participants in the Cave Automatic Virtual Environment (CAVE), a fully

immersive 3D virtual environment created using screen projection [66]. The study makes

reasonable assumptions, and its approach to modeling is both responsible and sensible.

The authors mention in passing that the CAVE could be used to validate their model,

and in stopping there they —quite unfortunately— pass up a golden opportunity to lend

credibility to their model through rigorous validation. This highlights a problem with

agent-based simulation studies in general: validation is often left as an afterthought [55]

[56].

Many crowd dynamics simulations use agents; these will be listed in Section 3.6. One

particularly interesting case stands out: Chaturvedi et al took an otherwise-ordinary

topic —egress from a burning building— and created a seamless interaction between

the agent-based component and the fire model [67]. This allowed the fire to spread

and limit the actions of the agents, while at the same time ensuring that any actions

taken by agents attempting to escape (e.g., breaking an exterior window) also affected

the environment of the fire. Such mutual reflexive feedback is reminiscent of symbiotic

simulation, although this particular study is missing a few key technical aspects to be

considered fully symbiotic.
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A great example of the potential future of the field is Padgham’s work, which integrates

BDI reasoning capabilities into the Java simulation library RePast [68]. This integrated

system is then used to study the behavior of residents and city-planners in response to

bush fires. An emphasis is placed on loosely coupling systems as a means of reusing

existing high-fidelity systems. Padgham’s work reflects a trend of using agent-based

cognitive reasoning in the social sciences, which is something that leads naturally to a

possible application of symbiotic simulation.

Figure 3.5: Virtual processes for two arbitrary simulations running on the same host
machine.

Tangential to this is the work of Hybinette and Fujimoto [69] [70], which is becoming

increasingly relevant given the inherent complexity and performance overhead of agent-

based models combined with the need for reasonably fast results in symbiotic simulation.

Using dynamic virtual logical processes, a simulation can reduce the number of physical

processes required on a host machine. In all cases, this outperforms replication [70].

Figure 3.5 illustrates the concept. Two simulations are running in concert on the same

host machine. Simulation 1 was created first, and then simulation 2 was “cloned” from it.

At the point of cloning, all virtual processes in simulation 2 map to the same physical

processes that simulation 1 was using. Eventually, virtual process C in simulation 2

(denoted as V2
C) intends to simulate an action that conflicts with simulation 1’s perceived

view of the world. The physical process for C is cloned, leading to a total of 4 physical

processes and 6 virtual processes. To accomplish this, a message passing paradigm is

used to determine if and when a physical process should be cloned [69]. Essentially,

any message that is not multi-cast to all virtual processes chained to the same physical

process may induce the duplication of a physical process. This agent virtualization

technique is transparent and quite suitable for mitigating the performance penalty of

massive “What-If?” analysis incurred by our perennial framework.

From the perspective of achieving our goals as laid out in Chapter 2, the breadth of

existing work on agent-based simulation is both essential and fully matured. Software

agents are well established in the field of artificial intelligence, with frameworks such
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as RePast enabling fast prototyping of new agent models and novel multi-agent combi-

nations. Agents are an effective isolation mechanism, enabling a variety of scalability

techniques and migration strategies. If speed is paramount, frameworks such as MASON

offer similar functionality to RePast with excellent, scalable performance [71].

Regarding the use of agent-based simulation for new areas (such as crisis management

simulation), the literature primarily identifies challenges related to validation. Most of

these stem from the emergent behavior inherent in systems built using a bottom-up,

heterogeneous approach [72]. Going further, [10] approaches the difficulty of empiri-

cal validation from the viewpoint of agent-based economics models, but the problems

identified are applicable to the field of agent-based simulation in general. Empirical

validation is usually approached as either an indirect calibration approach, or as a check

against available historical case-studies. The problem with the former approach is that

model development is often encouraged by the existence of large data sets. In contrast,

“there are many potentially important variables and parameters for which data do not

currently exist. Some may not be amenable for quantitative measurement” [10]. This

is compounded by the potential lack of availability or insufficient quality of empirical

data. The problem with the latter approach is that it does not apply a very strong

test to the model. Individual traces are not sufficient to determine typical model be-

havior, in addition to the challenge of accurately capturing the historical traces in the

first place. Non-economics agent-based simulation research confirms these issues. [73]

notes the lack of empirical data impeding traditional validation approaches for multia-

gent systems, and proposes relying on face validity via a human expert immersed in a

virtual instantiation of the model. Similarly, [74] notes that while agent-based models

may aid in understanding complex social systems, a high level of inter-agent interaction,

increased number of assumptions inherent in the model, and common lack of an experi-

mental control dataset frustrates validation efforts. Finally, [75] describes the validation

of a juvenile delinquency model using the indirect calibration approach identified by

[10]. The authors rely on data from a large, multi-year study, comparing the model’s

performance given the first year of data to the actual data reported in the second year.

It should be clear that in the case of crisis management simulation, the rare and random

nature of crises hinders the ability to build the large datasets required for validation,

while at the same time challenging the construction of historical case-studies. To ad-

dress these issues, we draw inspiration from [54], and use high-fidelity real-world studies

carried out in a virtual environment, as described in Section 4.2.6. A consequence of

this approach is the need to address the mixing of humans and software agents in vir-

tual worlds. In Sections 5.1.3.1 and 5.3, we show how to allow this type of mixing by

carefully limiting agent-to-agent interactions with a focus on role validity at runtime,

while simultaneously maintaining immersion.
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3.5 Work in Human-In-The-Loop Simulation

The earliest human-in-the-loop simulations were flight simulators, which were used to

reproduce the experiences encountered in an aircraft cockpit while shielding pilots from

any inherent risks and reducing the overall cost of training [76]. Following that, space

flight began to use simulation technology for the same purpose. Ackerman presents

comprehensive insight into what these kinds of systems might take into account [77]. In

hindsight (the paper was published in 1959) some of Ackermans’s suggestions might seem

outlandish —his casual assumption that spacecraft will be nuclear powered, for example,

or the various questionably ethical means by which one might simulate pressure— but

his categorical survey of necessary components is valid and worth reviewing. A space-

craft module simulator would have to replicate the sights and sounds of space flight,

while accounting for weightlessness, food, and fatigue. Computer technology is relied

upon only for sound and visual simulation; a great deal of the paper is concerned with

mechanical means for mimicking the realities of space flight.

Over the intervening decades, the space industry has expanded its simulators to cover

more than simple flight sensations. Peaden describes the massive human-in-the-loop

simulations used by the National Aeronautics and Space Administration (NASA) to

train teams to coordinate properly on missions [78]. Introduced partly as a response

to the Challenger disaster, these real-time exercises train groups of personnel ranging

in size from individual component maintainers all the way up to full launch teams.

NASA’s training simulations bear some similarity to a technique called MMOHILS,

which is discussed in Chapter 4. Tellingly enough, Peaden reflects on “whether it might

be possible and beneficial to add some low fidelity software simulated humans to certain

training curriculum” —an idea which MMOHILS expands on wholeheartedly.

There exist applications of human-in-the-loop simulation in the military as well. Downes

et al describe a system which is used for gauging the performance of information systems

within the military, using real humans as well as software agents to gather data on

information sharing between soldiers throughout the course of a mission [79]. Data-

sets gathered from humans are found to be more accurate than those gathered from

software agents, exposing several flaws in the way software agents are modeled. Downes

et al ’s work is interesting, but possible future work and extensions are greatly under-

emphasized. For example, one might consider upgrading the existing agent models using

real-time data gathered from the human participants.

Many more examples of human-in-the-loop simulation exist within the literature. Hop-

kinson and Sepulveda’s work is the most relevant, as it is concerned with the issue of

role validity within all such simulations. Essentially, a human acting withing a loop
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satisfies role validity if he is acting in accordance with the specific role he is meant to be

playing for the purpose of the exercise. If a human is not role-valid, then the simulation

can either prompt him to correct his behavior, or remove him from the virtual world

and abort the training procedure. Either approach conserves resources, and reduces the

total time that the simulation is running in an invalid state. Hopkinson and Sepulveda

use case-based reasoning to identify violations of role, creating a flexible yet dynamic

system which can catch errors in real-time [80].

Our research builds directly on existing work in the field of human-in-the-loop simula-

tion, extending it with techniques from massively-multiplayer online games to form a

niche configuration of perennial simulation that we call MMOHILS (see: Section 4.2.6).

Additional methods are presented which allow for easier role validation and psycho-social

validation within a MMOHILS; this becomes important if participants are not trusted

(i.e., if the “loop” in this case is an existing onine game world). To this end, [80]’s work

on role validation is used almost verbatim. Generally speaking, we found the existing

research in human-in-the-loop simulation to be of excellent quality, but at the same time

unfortunately dated. MMOHILS is our attempt to bring to modernity the elements of

this field that we need for our perennial framework.

3.6 Work in Crowd Dynamics

Many crisis conditions require an understanding of crowd movement patterns, and indeed

one of our prototype studies is largely crowd-based. As such, work from the field of crowd

dynamics will now be covered.

One of the most well-known studies in crowd dynamics was Fruin’s Pedestrian Planning

and Design [81]. After observing a staggering amount of pedestrian traffic, overall

distributions of human speed versus crowd density were extracted, and a generalized

flow analysis was applied. Though not motivated by simulation, Fruin’s classification of

rooms and walkways into “Levels of Service” was easy to translate into a digital format,

and many simulation studies have worked off of or validated to his data (including our

own).

Fruin’s “Levels of Service” (L.O.S.) are widely used in building planning projects; they

are both accurate and extremely simple to grasp. The EvacNET modeling framework,

introduced in the next chapter, provides a good summary of each L.O.S. [82]. Figure

3.6 details the walkway L.O.S., which are used for long, straight rooms like walkways or

hallways. Other L.O.S. exist for stairways, landings, and situations of queuing as well.
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Figure 3.6: Walkway levels of service (L.O.S.), summarized by EvacNET. PFM stands
for “pedestrians per foot-width of walkway, per minute”.

Fruin’s contribution to pedestrian planning should not be understated. Recently, how-

ever, there have been clarifications and extensions to his original measurements. To-

gawa’s observations [83] of movement speed versus density are generally considered to

be more accurate [84], and newer studies such as Aoki [85] and the Green Guide [86]

match Togawa’s data, thus adding to the consensus.

Moving beyond mere mechanics, Still’s work on the Legion simulation software [84] is an

excellent showcase of the effort involved in validating an agent-based simulation platform.

Legion is one of the few simulation toolkits available for crowd dynamics studies which

uses software agents, although this may be less reflective of a trend against agent-based

methods in general than a preference for agent-aware libraries such as JADE [87] or

RePast [88]. Indeed, the number of agent-based crowd dynamics studies is not small

[43] [44] [67].

Other studies are much more focused. Helbing’s introduction of social forces posits that

a large crowd composed of sub-groups of people is concise, flexible, and accurate for

describing pedestrian movement [89]. Groups (or individuals) are assigned three vectors

representing their attractiveness towards their goal location, away from other people

in general, and towards others in their group. Although incompatible with traditional

physical forces (the social forces in a model do not balance), the equations that govern

their application are the same as those found in physics. One recent study augments

social forces with the means to approximate age-based parameters [90]. Agents are

considered too intensive to process individually, so small groups of humans featuring

“homogeneity of goals” are handled by the model. The assumption is made that only

the resultant (group) behavior must be valid; the internal workings of the model need

not represent the conscious decision-making process of an actual pedestrian.
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Although the social forces approach to modeling crowds is attractive, we discount its

use for crisis management because it relies on two controversial assumptions:

• The behavior of a person exhibits certain regularities [90]. We consider this as-

sumption unrealistic in the face of a crisis.

• A person will make optimum movement choices [90]. Research has already shown

[91] that this assumption is tenuous, and may endanger the validity of a model.

Crowd dynamics studies are useful to crisis management; however, a great deal of at-

tention must be paid to the assumptions common to each study. The nature of a crisis

—sporadic, disruptive, and catastrophic— couldn’t be further removed from the mun-

dane nature of a crowd of pedestrians. Helbing’s original paper on social forces admits

that his model probably cannot represent complex human behavior [89].

Regarding our research, existing work from crowd dynamics is used extensively in our ex-

periments. Fruin and Togawa’s measurements are employed to model movement within

several building scenarios, presented in Chapter 5. Note that, despite its prevalence in

the academic community, we consider Helbing’s work to be unacceptable for a variety

of reasons. Besides those mentioned previously, we also consider the social forces model

to be inadequate as it only deals with the operational level of movement, with no re-

gard for the strategic or tactical level (e.g., route choice). Regardless, once a suitable

model was selected, our remaining contributions to the field of crowd dynamics were

minimal. In particular, we attempted to show that symbiotic feedback could be used

to optimize a crowd under egress conditions, while reducing counterproductive behavior

such as herding.

3.7 Work In Traffic Modelling and Simulation

In addition to pedestrian elements, many crisis simulations, including one of our pro-

totype studies, have an element of traffic simulation. Our work benefits from existing

traffic models, of which the field is well-saturated. Boxill and Yu provide a thorough

overview of the most-used traffic simulation packages as of the turn of the century [92].

Broadly speaking, these models operate at one of three resolutions. Microscopic models

are the slowest and most accurate, operating at the level of each vehicle. Macroscopic

models calculate congestion based on each link (road and intersection). They are less ac-

curate but much faster. Mesoscopic models operate in between the two extremes, both

in terms of accuracy and performance. Some studies operate at multiple resolutions,
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such as [93], which leverages both micro- and mesoscopic models simultaneously. Re-

cently, microscopic models have received a great deal of research attention; Chowdhury

et al. explore them in more detail in [94]. The most feature-complete simulation pack-

ages were AIMSUM, Paramics, and DYNAMIT. In addition, MITSIMLab is a popular

open-source alternative with a comprehensive feature set [95]. Other interesting models

like DRACULA and NEMIS focused on smaller tasks such as driver behavioral patterns

over time or evaluating the impact of route choice. Some newer research attempts to

combine microscopic traffic models with agent-based simulation techniques [96]. The

black-box nature of agents is an attractive mechanism for abstracting driver behavior,

and provides a modular means of adding new types of agents such as pedestrians or traf-

fic lights. Tao and Huang provides a good example, using the FIPA-compliant JADE

framework [87] to design a traffic simulation which represents cars as agents and can

dynamically shuffle agents onto different networked computers if the resources of one

system become exhausted [97].

Our traffic study relies on the work of Krauss, which defines a microscopic, collision-free,

space-continuous traffic model with a focus on driver imperfections and jam modelling

[98] [99]. Drivers respond to congestion through dynamic user assignment, which is

implemented as described in [100]. The SUMO simulation package provides an integrated

framework for all of these approaches [101]. In addition to being backed by sound

reasoning and mathematical rigor, Krauss’s work has several key properties which make

it suitable for our prototype study. These will be presented in Section 5.2.2.2.

Similar to crowd dynamics, our research used traffic modeling techniques primarily for

experimental means. Existing research was found to be acceptable, and was used without

modification.

3.8 Work in Massively Multiplayer Online Games and Vir-

tual Worlds

The simulation community has recently taken notice of the research potential of online

games. Massively-Multiplayer Online (MMO) games can be seen as having a comple-

mentary feature set to human-in-the-loop simulation: they boast an extraordinarily large

number of users, but serve no research or training purposes and exist solely for profit

or leisure. In Chapter 4, we will introduce a technique to take advantage of this feature

set by integrating it into a simulation. This section will provide an overview of the

technology and merits of online games and virtual worlds in general.
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Many online games run on cheap, ubiquitous hardware such as the i686 architecture

coupled with any of the major vendors’ graphics cards. Rapid innovation has led to

games like Spiral Knights, which runs on almost any computer using a combination of

Java and OpenGL, features an immersive 3D world, and operates at 30 frames-per-

second (fps), dropping down to 25 fps only for frenzied action scenarios. Figure 3.7

shows the Spiral Knights client in operation with an fps counter overlaid.

Figure 3.7: The online game Spiral Knights, running reasonably fast on a modest
machine from 2010.

As a point of reference, we consider 30 fps more than adequate for most immersive online

experiences. Feature length films have been standardized to 24 fps since the 1920s, with

only the most recent movies filming at 48 fps [102]. Hand-drawn animations are inked

at an even lower resolution (often 12 fps, or even 6 fps for slower scenes) and then

simply duplicate frames to reach 24 fps [103]. Information collected by the Insomniac

games studio, which produces action-intensive interactive games, showed no correlation

between frame rate and either sales or reviewers’ ratings of games rendering at 30 versus

60 fps. We are not aware of any studies specifically measuring the effect of framerate on

immersiveness, but the subjective evidence presented indicates that 30 fps is adequate

for action-intensive scenes, with lower framerates suitable for slightly less frenetic virtual

worlds.

Online games generally measure success by the size of their user bases. As the number

of connected users increases, however, scalability quickly becomes an issue.
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A great deal of work has been done by both commercial entities and researchers towards

this end. Valadares et al. provide a good overview of the challenges faced and common

techniques in the field [104]. Online virtual worlds typically require a small number of

transaction updates to the server’s database, and a large number of self-state updates

to users in the immediate area. As the latter overwhelmingly affects performance, scala-

bility has typically been achieved through either zoned partitioning of the virtual world

or area-of-interest (AOI) techniques which restrict the broadcast of updates. These two

scalability mechanisms are based on the observation that network bandwidth is usually

the limiting factor in large-scale virtual world performance [105]. Lesser-used techniques

include distributed memory caching, which achieves some amount of partition tolerance

through key distributed, and transactional memory, which functions as an optimistic

approach to consistency maintenance. Overall, though, much of the field focuses on the

improvements gained by AOI techniques, with results ranging anywhere from two to

seven times the number of agents [106] [107].

The problem of consistency in the face of heterogeneous client connectivity is explored

in more detail in [108], which states that absolute consistency is neither possible nor

necessary, and further categorizes consistency as either causal, observational, or space-

time. A consistency approach based on dynamic scene-graphs is then recommended. In

terms of raw numbers, [109] requires anywhere from five to ten servers to support 1000

connected users, and performs a thorough analysis of the effect this has on the per-user

consistency of the virtual world. Recently, there has been a trend towards peer-to-peer

(P2P) networked systems rather than traditional client-server models. For example,

the Badumna network suite achieves a 75% reduction in network traffic my migrating

non-critical operations to a P2P system [110]. Another novel research initiative involves

the application of the REST principles to multi-user environments. The principle of

“statelessness”, combined with selective caching of large datasets, enabled a sample

game world to scale up to 1,600 simultaneous agents [111]. Studies such as these are

pushing the boundaries of what we can expect from virtual environments in the future.

Partly as a response to the promising work done for online games, Adobbati et al. de-

veloped a multi-agent infrastructure called Gamebots, which runs on top of the popular

Unreal Tournament engine [112]. The early version of this system, developed in 2001,

was limited to 32 simultaneous connections and suffered from weak support for agent-

based techniques such as domain ontologies. It was later re-implemented as part of the

Pogamut 3 platform, which added full support for agent-based simulation [113]. The

Pogamut 3 perception cycle operated at 10 fps, with the number of connected agents

limited only by the Unreal Tournament server. Following the success of Pogamut 3,

the CIGA middleware was designed to further the development of intelligent agents in

virtual environments, particularly with regards to performance [114] [115]. The CIGA
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developers noted several reasons why agent-based systems were not able to use exist-

ing MMO technology as-is. These range from the conceptual (game engines deal with

low-level representational requirements while multi-agent systems are concerned with

high-level semantic abstractions) to the practical (typical multi-agent systems feature

non-durative agent actions, while game engines require reasoning to be performed over

the duration of an agent’s action), and help to explain why the earlier Gamebots sys-

tem suffered from such poor performance. The CIGA developers explored the use of

subscription filtering, tight coupling of an agent’s physical and cognitive sensing proce-

dures, and caching of the semantic world model, and tested up to 150 connected agents

in non-arbitrary contexts [115].

3.9 Comparable Existing Techniques

3.9.1 Existing Simulation Technology

Having presented a review of existing relevant work in the field, we will now attempt to

consolidate and compare the existing techniques which are most similar to the peren-

nial simulation framework. Unlike the earlier literature review, this section will focus

specifically on where each similar technique is lacking, with detailed comparisons to the

framework itself as presented in Chapter 4. The reader may wish to review Section 4.2

before continuing with this section, as framework-specific terminology is used heavily.

The technologies that most resemble perennial simulation are DDDAS, the CAVE the

HLA, and symbiotic simulation. Table 3.1 lists these in the first column, with possible

roles they may fulfill as framework components in the second column. The third col-

umn lists shortcomings of each technique when compared to the perennial simulation

framework. We will now address each candidate in greater detail.

DDDAS explicitly focuses on the relationship between the data being sensed at run-

time and the quality of the running application (usually a simulation) as a result of

this data [21]. Research from this field has developed several means of steering the

measuring process when faced with an insurmountable quantity of data [40] [116] [63],

and would certainly prove useful to perennial simulations as they scale in size. As a

paradigm, DDDAS is inherently powerful enough to handle any task; however, its cur-

rent form lacks several key refinements required for crisis management simulation. For

one, DDDAS is overly focused on real-time applications, implicitly ruling out hindsight

and foresight studies. The ability to incorporate real-time data can only be applied in

real-time, unlike our framework’s sophisticated history windows and swappable sensors,
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Technique Strengths,
Applications

Lacking Elements,
Limitations

DDDAS • Dynamically sample
sensescape

• Manage very large
sensescapes

• Historical “What-If?” simulation

• Strong hierarchy of sensors and their
capabilities/availabilities

• Strongly defined role for Implementers

• Tools for Implementers to quantify
crises and their possible solutions

CAVE • Very high immersion
for MMOHILS

• Potential for navi-
gating information

• Clear benefits to
training exercises

• Essentially a visualization technique;
not a simulation-centric one

• No physical/virtual mapping; virtual
worlds are isolated

• No means to address validity, esp.
auto-validation

HLA • Scalable via interest
management

• Flexible via object
models

• Possible foundation
for implementation

• High overhead for adhering to federa-
tion’s assumptions

• Benefits may not be realized, esp. if
used within one organization

• Over-emphasizes training scenarios

Symbiotic
Simulation

• Used centrally by
perennial simulation

• Unable to cope with crisis-required
performance metrics

• Only applicable to one phase of crisis
management (Response)

• Lacks insight from the crisis manage-
ment point of view

Table 3.1: Comparison of perennial simulation to similar existing techniques

which can be reconfigured as necessary to speculate about hypothetical solutions to his-

torical crises. At the other end of the spectrum, DDDAS does not provide a suitable

enough role for Implementers, thereby limiting its usefulness for symbiotic decision

support. Certainly some DDDAS studies —such as the fire spread model in [40]— func-

tion acceptably within the domain of crisis management. In fact, one may argue that

our work is a subset of DDDAS in the strict definition of the term. However, we find this

classification to be an oversimplification which masks the focus our framework places on

crisis management simulation. For example, [40] relies on an oversimplified performance

metric, as addressed in Section 3.1.1. Providing a realistic tracking of fire spread is

useless to Implementers unless they can experiment with the model and quantify their

options according to various, often conflicting metrics. Put another way, arguing that
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perennial simulation is a subset of DDDAS is akin to arguing that it is a subset of sim-

ulation in general —true, perhaps, but irrelevant to our ultimate goal of addressing the

needs of crisis management simulation.

The CAVE is a virtual reality environment with several notable benefits. Its hardware

requirements are relatively modest: essentially five screen projectors and several sets of

3D glasses. Multiple users can explore the same virtual environment at the same time,

navigating around virtual obstacles as well as each other [117]. The immersion level is

very high, as users’ physical steps directly correlate to their movements through the vir-

tual room. As such, a CAVE would be an excellent means of achieving higher immersion

in the perennial niche technique of MMOHILS. Furthermore, the ability to create flat

“panels” that users can interact with permits a whole new range of potential applications

in community training [118] [119]. There is a cheaper, single-screen alternative to CAVE

called “ImmersaDesk”, which achieves some amount of 3D immersion at a fraction of

the cost, and is fully compatible with models developed for CAVE [117]. New consumer

technology such as the Oculus Rift headset may yet bring affordable VR immersion to

the masses [120]. Despite these advantages, the CAVE and its variants are solutions

to the narrow problem of virtual world immersion, and lack the general scope of our

research. Putting crisis management aside for a moment, even the niche configuration

of MMOHILS has a broader scope than the CAVE. The former serves as a means of

gathering data for simulations, and addresses the concerns of verification and validation

that are essential in the domain of simulation. The latter exposes a sophisticated API for

building and deploying virtual worlds, but provides no mechanisms for scrutinizing their

correctness. Returning to the broader issue of crisis management simulation, perennial

simulations offer a strong notion of interacting worlds that the CAVE lacks. The idea

of virtual studies and virtual establishment provide sophisticated methods for reasoning

about interconnected physical-to-virtual spaces while carefully managing sensors and ef-

fectors so as to avoid accidental contradictions. In addition, perennial simulation re-uses

symbiotic simulation’s idea of a constantly-running model to allow for automatic vali-

dation of a subset of model assumptions; this feature is also absent in the CAVE. While

it serves as an excellent solution to the problem of high-fidelity virtual world creation,

the CAVE would serve better as a component of a total solution based on the perennial

simulation framework, and is clearly incapable of replacing it.

The HLA (and, by extension, its predecessor DIS) consists of interacting simulations

called “federates” which adhere to compatible timing and serialization protocols. It

boasts an impressive feature set, such as language-agnostic cooperation among feder-

ates, the ability to utilize multiple time management strategies simultaneously, and

excellent scalability of world size via sophisticated information management techniques
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[45]. That said, the HLA lacks the ability to be agile, requiring a great deal of de-

velopment effort to use effectively. As a result, researchers have sought several lither

solutions, each with a reduced feature set but a more rapid development process [22]

[121]. An implementation of the perennial simulation framework may use the HLA as

an enabling technology, thereby gaining all of its benefits as well as its flaws. Our own

work eschews this approach, based on the observation from Figure 4.1 that both the

creation and primary use of a perennial simulation for crisis management are contained

within the same organizational entity. Thus, we expect that development resources can

be conserved by relaxing the restrictions of the HLA and supporting only a reduced

feature set. At that point, it is misleading to continue refering to that subset with the

standardized term “HLA”. In addition to this narrow limitation, the HLA also suffers

from the broad issue of being over-focussed on training exercises. Although hindsight

and foresight studies are not precluded by the HLA, its primary use for training has led

to design decisions which favor this use. The already cumbersome HLA becomes even

more time-consuming to set up for scenarios such as mirrored worlds —a flaw which it

shares with the CAVE. Beyond these practical considerations, the HLA “lacks facilities

for agent-centric sensing and acting” [114], reducing its utility for agent-based, virtual

world simulation. In summary, though the HLA may serve as an adequate foundation for

a comprehensive implementation of the perennial simulation framework, it is hampered

by too many design requirements that incur a cost yet provide no appreciable benefit

for perennial simulations.

Symbiotic simulations are designed to interact with physical systems in “mutually ben-

eficial” ways [20]. The dynamic feedback loop which optimizes a real-world system was

covered in Section 2.1.1, and extending this nascent technology is a key element of this

thesis. Given that its inclusion in the perennial simulation framework is a foregone

conclusion, all that remains is to evaluate its shortcomings. First, symbiotic simulation

is myopic in its assessment of the physical system. Univariate performance metrics are

abundant, and “What-If?” analyses are expected to allow straight-forward comparisons.

Analysis of alternatives usually does not require human intervention. Crisis management

simulation, on the other hand, can affect human lives and livelihoods. Crisis manage-

ment personnel (Implementers, in the parlance of perennial simulation) may be forced

to choose between several imperfect solutions, in part due to tight time constraints.

The importance of “What-If?” analysis in a symbiotic decision support context is not

to optimize the system per se, but rather to provide Implementers with the means of

evaluating alternative scenarios to the maximal extent possible in the time available.

Second, symbiotic simulation provides only an operational-level solution (that of how to

constantly optimize a dynamic, physical system) with no means of approaching tactical
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or strategic problems. In terms of Figure 3.3, symbiotic simulation may be an appro-

priate tool to use for the Response phase, but attempting to increase knowledge of the

system to mitigate future crises is far outside of its scope. For crises that cannot be

fully eliminated, the Information Update and Preparedness phases of Figure 3.3 exist to

ensure that future variants of the same crisis are mitigated based on experience gained

addressing the current crisis. Finally, symbiotic simulation is fundamentally a narrowly-

focussed technique from the field of simulation. The perennial simulation framework

provides several tools (such as MMOHILS) designed to enable, among other things,

community training exercises and virtual re-enactments of crises. To this extent, it is

a true trans-disciplinary approach to the problem of simulation for crisis management.

Relying on techniques from only one half of the trans-disciplinary divide risks alienating

experts on the other side; a comprehensive solution must incorporate the state of the

art from both domains.

In conclusion, although there are some techniques which bear a similarity to our peren-

nial simulation framework, none of them target the same niche or provide a truly compa-

rable feature set. This is to be expected; if a sufficient technology already existed, there

would have been no need to explore a new conceptualization. That said, our framework

builds off of several of the techniques discussed above, and anyone implementing the

framework would do well to study all of them and borrow existing solutions to various

narrow problems.

3.9.2 Existing Software Engineering Frameworks

A great many frameworks exist to coordinate reuse within large-scale software systems.

Our framework’s reference implementation deals primarily with re-use at the conceptual

level, as well as providing a small (but effective) amount of library-level reuse through

shared components and inheritance. Nonetheless, it is pertinent to briefly review ex-

isting software engineering frameworks so that future implementations of the perennial

framework may target software reuse more effectively.

Software reuse is a well-studied problem in general, although its success often varies

by domain. In addition to practical matters such as cost, successful re-use relies on

applications sharing some commonality that can be exploited [122]. A variety of software

frameworks exist to facilitate this process, such as COM and CORBA, which allow the

creation of components written in different programming languages to communicate

and interoperate with ease [123] [124] [125]. Similarly, the FIPA specifications manage

lifecycles and encapsulate message-passing behavior among heterogeneous interacting

agents within an agent-based software system [126] [127]. One issue with software reuse
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is the method by which one searches the repository of developed software libraries to

find existing compatible components. To this end, solutions such as the FIPA-compliant

JADE framework have introduced yellow pages services to aid in discovery [87].

Research on software reuse has also been undertaken in the field of computer simulation.

The HLA, as discussed previously, caters to simulation interaction and time synchro-

nization, achieving reuse primarily through its Base Object Models (BOMs). These

models “contain the essential elements for specifying aspects of the conceptual model

and documenting an interface of a simulation component that can be used and reused

in the design, development, and extension of interoperable simulations” [128]. Similarly,

the Discrete Event System Specification (DEVS) aids interoperability by representing

discrete event simulations using powerful formalisms [129]. One criticism of these sys-

tems is that they only allow re-use of a component “as-is”, rather than providing for

further combinations. A good overview of the state of the art in model composability,

reuse, and validation is provided in [130].



Chapter 4

Proposed Framework

The previous chapters established the simulation community’s need for an enduring sys-

tem which is robust for a myriad variety of studies; that is, one with perennial elements.

This chapter will fully elaborate on the proposed Perennial Simulation System as the

primary theoretical work of this thesis. First, it would be prudent to carefully construe

exactly what such a perennial system would entail. The most reasonable way of doing

this is to examine the lifecycle of such a system from the viewpoint of its intended usage.

Following this, we will elaborate the proposed framework’s components as they pertain

to the system at a high level of abstraction. Finally, we will present our implementation

of this general framework alongside a discussion of the various choices that had to be

made during the implementation phase.

4.1 Design

4.1.1 Conceptual Overview of Creation and Usage

The total lifetime of a perennial simulation is split between a creation and a perennial

phase, the latter of which provides the entire motivation for using a perennial system

in the first place. Each phase encompasses a distinct timespan, as illustrated in Figure

4.1. The creation phase is concerned with the design and construction of the system,

and is similar to its counterpart from classical simulation. After proper validation, the

system enters into the perennial phase, where it is put to its intended use. The process

may be restarted at the creation phase if expansion of the existing system is required.

This creates a cycle which is common in most simulation undertakings; it is the internal

makeup of the perennial phase which distinguishes a perennial system from a classical

one, and provides a clear increase in value.

46
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Figure 4.1: Conceptual overview of a perennial system.

The creation phase proceeds linearly in time from the inception of the study until the

system’s complete construction. It consists of a series of processes1 tightly coupled to

deliverables. Observation of a real-world problem spurs people in positions of responsi-

bility to seek a solution. Simulation is selected as an appropriate tool which requires, as

input, a document that clearly and completely defines the actual problem. This enables

domain experts and simulation engineers to commence the design stage; their goal is

to prepare two additional documents. The first of these explains the assumptions the

simulation team is relying on, and is retained until validation begins. The second doc-

ument lays out the details of the entire simulation system. It is used by engineers and

programmers in the development stage to realize the actual simulation system. Follow-

ing the system’s creation, verification and validation proceed as normal [131] [59] [15],

making use of both the assumptions document and the simulation system itself.

In each of these coupled sub-steps, the term “internal” is used to describe the entities

performing the planning, design, or construction, while the documents they produce

are “public”. Internal entities share responsibility for creating and maintaining the

simulation, in addition to having the same usability requirements. This is in contrast to

“third-party” agents (introduced in the second phase), which only share the latter. Both

types of agents need not reveal the exact details of their contributions to the system;

“public” items, on the other hand, are always fully visible to any entity regardless of

their affiliation. Finally, the notion of an “unpredictable” event is used to capture the

essence of crises, which for many reasons occur with little to no warning at unknowable

intervals.

1Here, the term “process” is used to refer categorically to development meetings, planning sessions,
and other constructive events in time.
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After construction and validation, the system enters into general use, also called the

perennial phase. A simple linear time flow is no longer sufficient for understanding

the system, as multiple parties vie for its use at arbitrary points in time. Hence, Figure

4.1 depicts the simulation system at the center of all these requests, some of which are

now from external third-party entities. The simulation studies are tightly coupled to

the simulation system, and are always run by internal groups. Hindsight studies assess

historical events based on existing data and other related studies. Foresight studies

predict the impact or likelihood of potential future events. They rely on hand-coded

test data and extrapolations on or distributions of existing data, in addition to several

“non-simulation” tasks. Finally, at the moment of crisis, “What-If?” analysis can

be employed to provide decision support, thus leveraging the full power of symbiotic

simulation. To avoid confusion, this approach will be referred to hereafter as symbiotic

decision support.

All core simulation studies require supporting tasks which are not themselves pure sim-

ulations. Specifically, input from constantly active sensors must be processed, and the

system must undergo constant auto-validation. The active sensors may either be main-

tained internally or by a third party, while auto-validation is intrinsically an internal

task. In addition, other studies may be run using the copious amounts of data gath-

ered by the simulation system. Such studies are generally undertaken by third parties.

Inward-pointing arrows on Figure 4.1 denote which of these tasks contribute to the sys-

tem, while outward-pointing arrows denote those which merely benefit from its existence.

Figure 4.1 captures the most fundamental form of a perennial system’s creation and

subsequent use. As with any abstraction, this conceptual breakdown should not be

seen as rigid or all-encompassing. For example, a multinational perennial system might

feature such extreme distribution of control that the term “internal” loses all relevance.

In this case, developers should extend the perennial lifecycle diagram with more precise

definitions relevant to the task at hand.

4.1.2 Design Goals

Creating a system which categorically fulfils the usage requirements of the previous

section should merely be one of the marks of a successful framework. Proceeding from

objective measures of practicality, we will now list a set of subjective qualities which are

vital to ensuring our framework can be used with efficacy.

The quantitative design goals are as follows:
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• The framework should be scalable up to a reasonable number of agents (several

dozen to several hundred) within a virtual world of city-like proportions.

• The use of symbiotic simulation should be practical within the tight time con-

straints of crisis management simulation. Strategies must exist for sacrificing a

small amount of accuracy for a large gain in performance.

• Perennial simulation must be shown to have a noticeable benefit with respect to

the most similar existing technology. In particular, its improved decision-making

accuracy must be demonstrated.

• Symbiotic simulation must be shown to be effective in scenarios with crisis elements

and human factors. In particular, we expect that symbiotic feedback will improve

egress times in building evacuation scenarios.

The qualitative design goals are as follows:

• The framework should be modular. Functionality should be encapsulated in a

way that encourages reuse and eases the task of reconfiguring the system. Similarly,

when new components are required, they should be simple to define as extensions

of existing ones.

• Adhering to the system should require minimal cognitive overhead for vet-

erans of simulation and systems design. This will be accomplished by designing

lightweight components through an appeal to parsimony. The framework as a

whole should not be arduous to implement or use.

• Despite its simplicity, the framework must remain powerful and flexible enough

to meet the requirements set out in Chapter 2. It should be fully capable of

managing a wide variety of studies, including foresight, hindsight, and decision-

support studies.

• As much as possible, the framework should adequately capture reality, including

complex phenomena like augmented reality systems and virtual spaces. One of the

primary purposes of the perennial simulation framework is to reason about modern

constructs such as these, and to leverage them to enable new and interesting studies

that push the boundaries of simulation.

The aforelisted qualities were used as guiding principles throughout the creation and

design of the perennial simulation framework. Some are less immediately relevant, and

will grow in prominence once we begin specifying the implementation.
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4.1.3 Framework Scope

Before detailing the framework, an effort will be made to narrow its scope and identify

key novelties. As explained in Section 3.9, the perennial simulation framework builds

off of the symbiotic feedback loop present in [20]. The virtual environments of the

CAVE [117] and the HLA [45] were inspirations for the virtual world interactions of

perennial simulation, but were found to be overly-focussed on technical implementation

details while simultaneously ignoring the implications therein. Our analysis of these

interactions led directly to the development of MMOHILS, one of perennial simulation’s

most useful niche configurations. These research elements form the primary technical

motivations behind the development of perennial simulation as a whole, and establish

its scope thus:

• The perennial simulation framework is most suitable for scenarios where a symbi-

otic simulation must be integrated with a physical location of interest.

• The framework is primarily to be used for running foresight, hindsight, and decision

support studies, with an emphasis on the tight time constraints inherent in crisis

management scenarios.

• The framework was designed to manage a myriad combination of sensors and

worlds (physical and virtual), with a specific focus on their interactions, the ability

to replay historical data over different scenarios, and the potential for “What-If?”

analyses of varying types.

Perennial simulation was also motivated by the lack of a proper trans-disciplinary tool

for crisis management simulation. In this respect, it builds off the work of [38], [56],

and [90], which establish simulation’s potential in the field, as well as [57] and [58],

which establish resistance to the technology, especially from experts. The lack of a

credible, powerful tool for applying simulation techniques to crisis management tasks

was influential in refining the scope of perennial simulation, having the following effects:

• The framework specifically pertains to crisis management simulation; its intended

users are crisis management experts and simulation scientists who are working

together in this trans-disciplinary field.

• The framework can be applied to tasks which span all five stages of crisis manage-

ment. In particular, it is suitable for the cyclical nature of crises as observed by

various disaster relief organizations [4] [37].
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• A perennial simulation has a long lifecycle punctuated by periods of intense use

(corresponding to crisis events or community training exercises). Studies which

intend to re-run historical crises and evaluate alternative resolution strategies are

within the scope of perennial simulation.

Finally, several minor adjustments were made to the scope of the research, based on

similar work in virtual world environments and game-based training, such as [121], [43],

and [67].

• The framework’s primary niche configuration, MMOHILS, is used to gain data

from areas which require monitoring human behavior but are typically difficult to

observe directly.

• The framework exists at a high level of abstraction, organizing conceptual elements

without limiting the use of any particular implementation.

The virtual aspects of the framework, especially MMOHILS, are of particular use to

crisis management simulation, as they broaden the set of plausible study areas and

boost preparedness exercises such as community training. Users of the framework will

note that there is no comparable alternative in this regard. The organization of the

various sensor data can to some extent be supplemented by techniques from DDDAS

[21], although the motivation behind this technique is different. The most novel aspect

of the framework is its comprehensive approach to crisis management simulation, as

it embodies a solution which favors both of these disciplines easily. This is evident

from the lifecycle approach to perennial simulation, which is illustrated in the following

section. This allows the framework to provide a higher degree of information superiority

over crises than existing methods. Finally, the main challenge to overcome is that of

credibility, from a simulation point of view. A perennial simulation may be valid, but if

the Implementers are unwilling to trust its advice then it will inevitably be wasted.

4.2 A Framework for Perennial Modeling and Simulation

Given a clear understanding of the lifecycle of a perennial simulation and its built-in

qualities, it is now appropriate to detail the framework one would use to realize the

system. Where clarity is required, first-order logic formulas will be used to resolve

potential ambiguities. While the building blocks of this framework bear some similarity

to traditional simulation components, each has been reworked and carefully combined
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to achieve the goals previously listed. From this standpoint, the perennial framework

presented is an instrument of methodology rather than, e.g., a software library.

In addition to the contribution of the framework itself, a realistic implementation will

also be detailed. Unlike the framework, which exists as an instrument of methodology,

the actual implementation must be realized as a software library. As such, it will be

presented as a modular system which is written in a high-level general-purpose program-

ming language, carefully considers the tradeoffs of various implementation decisions, and

acts as an independent contribution. Two of the studies presented in Chapter 5 use this

implementation in one of its various incarnations, while the remaining study depicts it

in a nascent form.

4.2.1 Top-Level Framework Overview

The components and interaction of a perennial simulation are detailed in Figure 4.2.

The simplest relationship to grasp is between the Real System, which includes relevant

physical and virtual locations of interest, and the Implementers or Controller, who

are attempting to study some aspect of these locations. When a crisis occurs, the

Implementers are in need of symbiotic decision support, whereas the Controller

attempts to optimize the system during foresight and hindsight-driven studies. The

remaining components in Figure 4.2 exist to expedite or enhance usage of the system as

a whole [132].

The subset of the real system which can be monitored by sensors forms the Sensescape,

while the analogous concept for effectors is the Effectscape. Individually, sensors read

data from the real system, while effectors are used to change the system based on the

Implementers’ decisions. The remaining system is either concerned with simulating the

crisis (Models, Simulations, and various Validation studies) or with presenting vi-

sualizations of it to the Implementers. Note that the real system may contain virtual

worlds, populated by virtual users which receive visualization data and interact with

Implementers in a similar fashion to their physical counterparts. Finally, the Convert-

er/Agglomerator exists to help sensors convert data points between various expected

formats. This, along with the Access Layer and DB, will be discussed in Section 4.2.3.

The internal workings of each component in Figure 4.2 will now be described completely;

all sub-components will be enumerated using tables. Where ambiguities exist, first-

order logic formulas will be presented to help clarify inter-component relationships more

explicitly. Each first-order logic formula uses terms defined in Table 4.1. Complicated

terms will be provided as separate, un-numbered definitions as they become relevant.
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Figure 4.2: Perennial Simulation framework

Term Meaning

I = {i1, i2, .., in} The set of all identifiers

key(in) The key of identifier in
value(in) The value of identifier in
WP = {w1, w2, .., wn} The set of all physical worlds

WV = {w1, w2, .., wn} The set of all virtual worlds

WS = {s1, s2, .., sn} The set of all sensors; the sensescape

WE = {e1, e2, .., en} The set of all effectors; the effectscape

Table 4.1: First-order-logic terms used to describe the perennial framework
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Optional Property (Key) Possible Values Purpose

N name physical.X
virtual.Y

Identifies the world. E.g., physi-
cal.1, virtual.1

Y description (text) Brief rationale for why this
world is included in the simula-
tion study.

N location (identifier) Physical/virtual worlds that
share the same identifier are
assumed to be capable of
interaction.

Table 4.2: Properties of a World in the Real System

4.2.2 Real System

The real system being studied is composed of both the physical environment and a

number of virtual worlds, some of which correspond directly to the physical components.

Table 4.2 details the properties of each world. The name is used to identify the world

to the simulation; all names are numbered starting from zero. A brief description may

help system users to understand the purpose of this world in respect to the simulation

as a whole. The location is an identifier; the only requirement for identifiers is that

they satisfy an identity requirement in first-order logic, as shown in Equation 4.1.

∀i1, i2 : i1 ∈ I ∧ i2 ∈ I ⇒

(key(i1) = key(i2)) ∧ (value(i1) = value(i1))⇒ i1 = i2 (4.1)

From Table 4.1, we know that I is the set of all properties, where any given property

in is composed of a key kn and value vn. In other words, any two properties with the

same keys will be considered equal if their values are the same. In case of the location

value from Table 4.2, reasonable identifiers might be a name (e.g., “Building #10”) or

a set of geographic coordinates (e.g., “47.362101 LAT,-122.054144 LNG”).

The importance of the virtual world will vary in any given study. Some studies may

have several virtual worlds, while others will require none. Conversely, some studies

may have no need of the physical world, and will exist exclusively at virtual locations.

Physical world locations are always distinct —satisfying Equation 4.2— while virtual

locations may overlap. If two worlds share the same location, they can influence each

other to some degree. More formally, considering the sets of physical and virtual worlds,

Equation 4.3 holds. Conversely, if two worlds do not share the same location, they are

said to be independent, as Equation 4.4 states. (Note that independence is a reflexive
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relationship.) Some of the consequences of influence are described in Section 4.2.5, with

a more complex example presented in Section 4.2.6.

∀wp1, wp2 : wp1 ∈WP ∧ wp2 ∈WP ∧ wp1 6= wp2 ⇒

loc(wp1) 6= loc(wp2) (4.2)

∀wp ∈ (WP ∪WV ), ∀wv ∈WV

: loc(wp) = loc(wv)⇒ Influence(wp, wv) (4.3)

∀w1 ∈ (WP ∪WV ), ∀w2 ∈WV

: loc(w1) 6= loc(w2)⇒ Independent(w1, w2) (4.4)

The effective number of physical and virtual worlds will vary depending on the given

study. All studies, however, will require at least one clearly defined world; the formula

for this invariant is trivial to construct.

4.2.3 Sensescape and Effectscape

Recall from Table 4.1 that the sensescape is composed of all available sensors, while

the effectscape consists of the set of actuators. Essentially, the former represents the

portions of each world that can be detected, while the latter represents areas that one

can effect changes on. It is common for these two concepts to overlap, as sensors and

effectors may be tightly coupled if they meet the requirements of Equation 4.5, another

symmetric relationship. Multiple sensors and effectors may interact to form a tightly

coupled region, or they may even share the same hardware. For example, a temperature

sensor might be hardwired to control the output of a heating unit.
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∀w ∈ (WP ∪WV ) :

∃s ∈WS , location(s) = location(w) ∧ world(s) = w

⇒ ∃e ∈WE), location(e) = location(w) ∧ world(e) = w

⇒ TightlyCoupled(s, e) (4.5)

Table 4.3 details the properties of sensors and effectors. The name is used to identify

the sensor, while the target explains the portion of the world being sensed. The world

itself is also necessary, to distinguish similar locations accessible from different worlds.

Sensors will not generate data outside their range, and an effector will only accept input

that falls within this value. The former of these is shown in Equation 4.6; the latter is

a trivial constraint on input parameters and is not formalized.

∀s ∈WS ,∀time :

[(time < valid datetime(s).start)∨

(time > valid datetime(s).end)]⇒

!∃data : time(data) = time ∧ sensor(data) = s (4.6)

Skipping ahead, the restricted property is used to toggle which effectors can only be

utilized by implementers. In the case of decision-support studies, these represent cases

where it is preferable for a human to make the final decision on whether or not to activate

an actuator. For example, a building’s sprinkler system might be automatic and non-

restricted, while the ability to request assistance from the local fire department would

require approval. The restricted flag only applies during decision support studies;

during hindsight and foresight studies, any possibility can be considered. The final row

in Table 4.3 allows users to expand the functionality of sensors and effectors by defining

additional properties.

The remaining two properties do not apply to effectors, and are the key to establishing

a diversification of sensor types. The valid-datetime specifies a bound on the time

periods simulations may request data for. This property may also be set to “Infinity” or

“Bound”. The former states that the sensor is capable of generating values for any time-

span. The latter implies that its availability is tied to another sensor. An additional

flag, “Real-time”, indicates that this sensor is capable of generating data while the

simulation is running. A setting of “Infinity” implies that the “Real-time” flag is also
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Optional Property (Key) Possible Values Purpose

N name (identifier) Uniquely identifies this
sensor or effector. (E.g.,
“sensor.water-level”)

N target (identifier) Specify the modeled construct
being sensed or changed.

N world physical.X
virtual.Y

Denotes which world contains
the target.

Y range (text) Range of values measurable by
sensors; range of values effectors
accept as input.

N* valid-
datetime

(Start, End),
Infinity,
Bound

+ Real-time?

Specifies the range this data is
valid for. “Infinite” data can
be generated. “Real-time” is an
optional flag, and means that
data will become available later;
bound sensors rely on other sen-
sors’ valid-datetime.

Y* mapping-
function

S = {s1, s2, s3}
F (S)→ value

Set of sensors, and a function
which maps these sensors to a
combined value.

Y+ restricted true
false

Whether implementer approval
is required to activate actua-
tion.

Y . . . (Varies) Additional, user-defined prop-
erties

* only applies to sensors
+ only applies to effectors

Table 4.3: Properties of Sensors and Effectors

set. Finally, the mapping-function reserves a set of sensors, and declares a function

which produces values based on these sensors. It is used to combine the input of several

sensors, or to convert the raw format from one sensor into another format expected by

one of the models (respectively, the “Agglomerator” and “Converter” in Figure 4.2).

For implementation purposes, the mapping function may be realized programmatically;

it does not necessarily represent a function in the strict mathematical sense. This will

be covered in greater detail in Section 4.3.

Given its formal description, we can broadly consider as “sensors” any data-generating

entity which the models have access to. Some of these may gather data in real-time, while

others provide historical data or estimations based on known distributions. The different

sensor “types” listed in Figure 4.2 are all generated from the same template; there is

nothing hard-coded about what defines a specific sensor type. As an example, consider

Distributions, Manual Data, and Higher-Order Data —three sensor types omnipresent

in the field of simulation. The name, target, world, and range of a set of sensor will
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not help to differentiate them into types. The valid-datetime and mapping-function

attributes, however, allow for a full specialization of sensors by category. Table 4.4 gives

an example of how these attributes might be defined to create the three sensor “types”

in question. It is important to note that, with the exception of historical sensors, these

sensor types are entirely defined by their properties. Thus, a “physical” sensor that

reconfigures its “world” property to “virtual” is now considered a “virtual sensor” by

virtue of its configuration alone2. As a general modeling construct, it is valuable to

represent sensors in a way that is flexible to the needs of the modeler.

Conceptually, it is possible to describe historical sensors using the same sensor attributes

which serve to differentiate all other sensor types. This would have the unfortunate

implication of requiring each model to completely reconfigure its sensor setup merely

to switch between current and historical data requests. Instead, the Access Layer is

defined to take a data request from a model and pick the relevant sensor, historical or

otherwise. A database (DB) stores data from all other sensors, automatically creating

a historical sensor for every other sensor type. Section 4.3 covers the intricacies of

implementing this effectively.

The availability of sensors and effectors unambiguously defines the ability of one world

to “influence” another. Given the set of sensors and effectors, and assuming that items

introduced are not identical to each other unless explicitly stated, a Mirror relationship

can be defined by Equations 4.7.

∀w1, w2 ∈ (WP ∪WV ) : ∃s1, s2 ∈WS :

(world(s1) = w1 ∧ world(s2) = w2 ∧ Influence(w1, w2))

⇒Mirror(w1, w2, location(w1) (4.7)

That is, if two sensors belong to two different worlds which influence each other, the

first world is said to mirror the second at that location. Similarly, Equation 4.8 holds

for effectors.

∀w1, w2 ∈ (WP ∪WV ) : ∃s1 ∈ S,∃e2 ∈ E :

(world(s1) = w1 ∧ world(e2) = w2 ∧ Influence(w1, w2))

⇒ Tunable(w2, w1, location(w1) (4.8)

2This assumes, of course, that the sensor’s implementation is updated to target the aforementioned
virtual world.



Chapter 4. Proposed Framework 59

Sensor Type Attribute Sample Value

Estimations/ name sensor.interarrival.exp
Distributions valid-datetime Infinity

mapping-function S = ∅, F(S) = exp(1.2)

Manual Test Data name sensor.dec10th-arrivals
valid-datetime {Start; End} =

{10/12/2006, 08:00;
10/12/2006, 18:00}

mapping-function S = ∅, F(S) = {
(8:00, 1), (8:10, 2),
(8:12, 1), (8:16, 1), etc.
}

Higher-Order Data name sensor.arrivals-per-hour
valid-datetime Bound
mapping-function S = {

s1 =
sensor.interarrival.exp
}
F(S) = {
g(0, 0, s1.next())
}
g = λ(x, y, z) :
(if x+z¿60 then y
else
g(x+z, y+1, s1.next())

Physical Data name sensor.room-occupancy
world physical
valid-datetime {Start; End} =

{01/01/2005, 08:00;
01/01/2006, 23:59}
+Real-Time

Virtual World Input name sensor.room-occupancy2
world virtual.2
valid-datetime {Start; End} =

{01/01/2005, 08:00;
01/01/2006, 23:59}
+Real-Time

Historical Data (Special case; see below.)

Table 4.4: Sample Sensor Combinations



Chapter 4. Proposed Framework 60

In other words, if a sensor for one world and an effector for another are at the same

location, then the second world is tunable at that location from the point of view of the

first world. Tunable sensors can be optimized by “What-If?” analysis, and “Mirrored”

locations can be represented to virtual users in a virtual simulation study. These terms

have other implications for visualization, discussed later.

It is important not to lose sight of the purpose of these components. Ultimately, sensors

are used to describe what data can be gathered, and effectors are used to describe how

implementers can propagate changes through the system. A great many sensor types

can be modeled by the default property set, and many more are enabled with user-

defined properties. New hard-coded types which require system-level support (like the

“historical sensors”) will generally not be required. They should only be created if an

entirely novel situation is being modeled.

4.2.4 Models and Simulations

The models block contains the various models available to the simulations; the latter

providing the data processing necessary to leverage the former to generate useful output.

The field of simulation contains several definitions for what constitutes a model and

a simulation; the simplest defines the former as an approximation of an event, and

the latter as a running instance of the model that allows for repeated observation [133].

Various sub-domains in simulation contain their own well-founded and stable definition

of what constitutes a model and a simulation, and we do not wish to limit the applica-

bility of our framework by being overly strict with our definition of the two. Therefore,

we accept as valid any implementation that matches or extends the following definitions:

Model

A model is a representation of a real-world process that can be advanced through

discrete time steps to recreate or approximate that process. Individual decision-

making components of a model are encapsulated into independent entities known

as agents.

Simulation

A simulation is a runtime representation of a model. Simulations track various

sources of input via sensors, and may coordinate dispatching this information

to all active agents. Running the same time-sliced sensor information through

a simulation (assuming random number generators are reset to the same seed)

will produce the same output; thus, simulations are repeatable. Simulations may

interact with physical or virtual elements of the real system they are modelling via
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effectors, which may in turn require implementers to have the final say in making

crucial decisions.

Categorically, all of the simulations in the system fall into one of two groups: primary

simulations, which represent the essential studies being carried out by the perennial

simulation, and secondary simulations, which exist for a variety of miscellaneous

purposes. Models are grouped the same way, and secondary models may add a number

of other components necessary for their functioning. For example, instead of creating

a sensor that produces data for a secondary model, one might create a component that

reads in data from the other sensors and converts this to an acceptable format on-the-fly.

The component system is designed to be flexible enough to handle “legacy” simulations

written without interoperability in mind.

As previously stated, the primary simulations will be agent-based simulations. Agent-

based simulations encapsulate behavior into entities which sense and modify their en-

vironment, and communicate with each other [134]. This technique has been shown

to model complex human behavior in a fairly intuitive manner, and this intuitiveness

can ease certain aspects of validation. Human behavior models will be necessary in

most crisis management studies, as crises tend to feature a strong human component,

and require more than simple physics-based models to capture the variability of human

decision-making.

The primary simulations will generally belong to one of several categories. Most

simulations will exist for hindsight, foresight, and “What-If?” guided symbiotic decision

support. In addition, a constantly-running model is also needed both for auto-validation,

and to trigger the “What-If?” analysis when a thresh-hold has been crossed or will be

imminently. Finally, several simulations may be virtual in nature, which means that

they take place in a virtual representation of a physical location. Using a virtual world

reduces costs compared to real-world training exercises, and allows more dangerous

physical locations to be simulated safely.

The secondary simulations and other secondary components are designed to encap-

sulate so-called “legacy simulations”. A legacy simulation meets or exceeds the following

definition; there is no corresponding definition of a “legacy model”, since any secondary

modeling components used by a legacy simulation are considered black-box details and

maintain their own internal specifications.

Legacy Simulation

A legacy simulation is a runtime representation of a real-world process which is

capable of reading from various sensors but may not operate effectors. Legacy
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simulations may or may not utilize agents and discrete time step updates. Legacy

simulations are repeatable.

Despite not being first-class components in the perennial simulation framework, legacy

simulations are nonetheless important. Many excellent crisis-related models and sim-

ulations exist, though not all of them meet the requirements put forth by our frame-

work. Treating them as legacy simulations enables some degree of interaction with

our framework, allowing them to function as helper simulations or to provide data for

cross-validation.

4.2.5 Implementers, Visualization, Virtual Users, and the Controller

A great deal of output is available from each of the “What-If?” analysis simulations;

this output, along with that from the constantly running model, is sent to a Controller

module, which may use the data in one of three ways:

• The Controller may send output to the Visualization block. This is the normal

destination for output, as it provides graphs and charts which make the data

accessible, as well as animations which convey the progression of a crisis. A special

visualization target, Virtual Users, capitalizes on the existence of the virtual

worlds to allow for an immersive experience of the crisis.

• Output may instead be sent to the Implementers. This group represents the

policy makers who must review the generated scenarios and determine which plans

to accept. They may also reference the visualizations.

• Finally, after some delay, output from a “What-If?” simulation may be compared

with the actual output of the constantly running model to determine if the sys-

tem’s behavior was accurately predicted. If minor adjustments are necessary, the

Controller may send feedback to the running model.

Supplemental to the controller’s functionality, output from any simulation may be for-

warded directly to the Visualization block. The idea here is that the Controller ’s

logic is only necessary for real-time, symbiotic feedback, and any mundane output can

be managed directly. Finally, note that the Visualizations may be causally linked to

the virtual worlds, as indicated in Figure 4.2 with a dashed line. This linking has already

been explained in equations 4.3, 4.7, and 4.8. By making similar assumptions to those

used in Section 4.2.3 we arrive at one more descriptive property:
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∀wv ∈WV , wp ∈WP : L = loc(wv)

: (Mirrors(wv, wp, L) ∧ Tunable(wv, wp, L)

⇒ V irtualStudy(wv, wp) (4.9)

That is, if a virtual location mirrors and is tunable by a physical location, then it is

possible to do a Virtual Study of that location. If the reverse is true (a physical location

is mirrored and tunable) then we say the physical world is Virtually Established, as

shown in Equation 4.10. This implies that changes in the virtual world can be used to

modify the physical world as well, which could be useful for allowing implementers to

actuate change from within a virtual world. Nonetheless, we are currently not concerned

with the potential of virtual establishment within our framework.

∀wv ∈WV , wp ∈WP : L = loc(wp)

: (Mirrors(wp, wv, L) ∧ Tunable(wp, wv, L)

⇒ V irtuallyEstablished(wp, wv) (4.10)

4.2.6 Example Niche Configuration: MMOHILS

The entire space of possible configurations within the perennial framework is vast, and

most of these will be created on an ad hoc basis for any given study. Some configurations,

however, are generally applicable to a specific, commonly-recurring set of studies, and

as such are termed niche configurations. One niche configuration engineered for an early

perennial simulation draws inspiration from human-in-the-loop simulation, and is called

Massively Multiplayer Online Human-In-the-Loop Simulation, or MMOHILS3.

Human-in-the-loop simulation, introduced in Chapter 3, is a technology which can be

used to train humans in activities that would otherwise be prohibitively dangerous or

expensive. As shown in Equation 4.11, the human’s situation within the simulation loop

is accomplished via sensors and effectors which act on a virtual training world and which

that human has access to.

3MMOHILS is pronounced homonymously to “molehills”.
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∀v ∈WV , h :

(Human(h) ∧ InLoop(h, v))⇔

(∃s ∈WS : world(s) = v ∧ ∃e ∈WE : world(e) = v

∧HasAccess(h, s) ∧HasAccess(h, e)) (4.11)

Extrapolating equation 4.11, we can arrive at the concept of a MMOHILS via a simple

insight: if the virtual world is a Virtual Study of a corresponding physical system with

similar sensor locations, then the simulation also benefits from the human in the loop.

Continuing our example of pilot training, one might record the real-time reactions of

the pilot to virtual sensor data and incorporate this into the behavioral model of an

AI-controlled pilot. Moreover, the physical counterpart to the virtual world need not

actually exist, so long as it is representative of the real-world conditions one wishes to

study. In other words, a virtual environment can be created which is a Virtual Study

of a hypothetical scenario, in much the same way that a human-in-the-loop simulation

may generate weather conditions and terrain specifically to test a pilot’s response. Some

existing research approximates the functionality of MMOHILS, the CAVE environment

being the preeminent example [66]. Unfortunately, most traditional human-in-the-loop

simulations are concerned with single-user environments, or require dedicated and ex-

pensive hardware —to its credit, the CAVE suffers only from the former.

Starting from the formalized notion of a MMOHILS, further refinements were made by

considering the strengths of human-in-the-loop simulation along with those of massively-

multiplayer online games. The original paper ([135]) describes the goals of the MMO-

HILS niche configuration: to track a large number of users as they progress through a

virtual environment that is also a simulation, thus providing a valid and valuable “human

factor” which might otherwise be missing from comparable agent-based simulation tech-

niques. The incentive scheme used to motivate virtual world participants is described

in Section 4.3.3.2. Validation of MMOHILS generally uses traditional techniques with

any “human factors” validated using psychological evaluations such as surveys. This is

discussed in depth in Section 4.3.3.3.

Niche configurations such as MMOHILS are important because they encapsulate a

complex phenomenon using the simple abstractions of perennial simulation. This al-

lows anyone familiar with the framework to model said phenomenon without switching

paradigms, thereby expanding the boundaries of simulation in general. It is left as

an exercise to future modelers to extract other niche configurations from the perennial

simulation-scape.
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4.2.7 Benefit of Perennial Simulation Compared to Similar Techniques

Having detailed the framework and one of its niche configurations, the most pertinent

concern is what benefit our framework provides over and above alternatives in the field.

First, we would stress that the idea of a perennial simulation was conceived primarily

as a result of a lack of sufficient existing alternatives, and that no single approach

fulfils the exact requirements of the framework as detailed. This was discussed earlier

in Section 3.9. That said, we consider a perennial simulation to be most similar to

a traditional simulation —that is, one without perennial elements. In the absence of

a perennial simulation framework, one would perform classical simulation studies and

use them to train Implementers how to respond to a hypothetical future crisis. If

the actual crisis exhibited different properties than expected, the Implementers would

have to rely on their experience and intuition to guide their decision-making. Recall

from Section 3.9 that a symbiotic simulation cannot be used as-is when the performance

metric is non-trivial. This is often the case for crisis management applications, and is

the motivation behind our creation of the perennial simulation framework. Our goal is

to allow Implementers to leverage the maximum amount of information possible in the

time allotted during a crisis event.

The perennial simulation framework affords several qualitative benefits, such as the

ability to organize sensors more effectively for hindsight and foresight studies, and an

effective mapping between physical and virtual worlds that enables powerful simulation

techniques such as MMOHILS. These are important considerations, but the greatest

benefit afforded is to symbiotic decision support, which is also the framework’s most

difficult benefit to quantify. To arrive at a reasonable measurement of this benefit, it

is worth examining how human experts arrive at decisions under similar conditions of

uncertainty and limited knowledge. Extensive research has shown that human decision-

making proceeds by using inference to fill in gaps in existing information, with a higher

weight on past knowledge. The order in which information arrives is thus important,

as even experts tend to maintain their original assessments when presented with newer,

conflicting information [136] [137]. Furthermore, research indicates a decrease in human

creativity under conditions of high stress, but no corresponding decrease in general intel-

ligence or decision-making strategy [138]. This supports our view that properly trained

Implementers will react positively to simulation results presented at the time of crisis,

even if stress conditions are high (but not unbearably so; see [139]). In addition, this

emphasizes the importance of maintaining the simulation’s credibility or, put another

way, of ensuring that we are always generating results the Implementers can trust.

Some of this credibility can be established using a simulation without perennial elements

to plan for crisis events in advance. However, the landscape of potential scenarios is too
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vast to map entirely beforehand, and for crisis management the problem of uncertainty

expands this search space exponentially. Recall that crises may destroy infrastructure

which is also part of the sensescape. This has the adverse effect of introducing uncer-

tainty into the sensor outputs. Such uncertainty is likely quantifiable, but may result in

Implementers unsure of how to choose between multiple plans which are all valid under

the current range of reported data. Here, a perennial simulation finds its niche, running

decision-support simulations at the time of crisis to assess the implications of the current

uncertainty level. In addition, the results obtained can be validated automatically as

the crisis progresses, ensuring that any mistakes are quickly corrected. This provides

Implementers with a level of information superiority that allows them to make the best

possible inferences in novel crisis situations. Thus, we can arrive at a general hypothesis

that adding perennial elements to a traditional simulation (via our framework) will lead

to improvements in a decision-support environment with some data-related uncertainty.

To support this, we build a model of the Implementers’ decision-making process for our

traffic incident scenario in Section 5.2.7, and use this model to gather data on the exact

amount of benefit that perennial simulation provides.

4.3 Implementation

The framework as described is somewhat inchoate, in that it assumes that each com-

ponent is trivial to realize. This is the result of an intentional effort to avoid dirtying

the theoretical elements of the framework with the artifacts and limitations of any given

representation. To definitively state the optimum implementation at any given point in

time would defeat the purpose of declaring a general-purpose framework, as the technol-

ogy available to create simulations is constantly improving. Thus, the previous sections

focused on the perennial framework as a timeless theoretical and conceptual entity.

In this section, an implementation of the perennial simulation framework is provided with

the goal of making the best possible use of current technology. As this goal’s nature is

subjective, we will first make some general remarks regarding key qualities of the library,

possible implementation languages, and other design choices. Following this, a top-level

class diagram will be shown. Finally, each component will be detailed fully, with any

particularly confounding points expounded on in their own sections. Techniques will

be suggested, and their tradeoffs analyzed. The reader should take note that while the

framework is independent of the externalities of language, architecture, and platform,

the reference implementation is burdened by the limitations of all three. We would

therefore advise the reader to use caution in accepting these implementation choices at

face value; they are based on the current state of simulation, which will certainly change
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in the future. The framework as presented in Section 4.2 is less likely to deteriorate as

technology progresses, and should be used as a starting point for future work on novel

implementations.

4.3.1 General Implementation Details

It would now be prudent to examine several assumptions which motivate the design of

the given implementation, all of which follow from the goals stated in Section 4.1.2. Each

assumption, although subjective by its very nature, will be backed up by an appeal to

reason which attempts to justify its inclusion on the list of desirable qualities. Following

this, a set of implementation choices will be presented. These are more objective in

nature, and follow from the accepted assumptions.

4.3.1.1 Implementation Assumptions

The implementation is assumed to have the following properties:

1. It will be presented as a linkable library.

2. It will use object-oriented programming techniques to facilitate interoperability.

3. It will strive to remain domain-agnostic, relying on users to affix further semantic

detail to a core set of simulation components.

4. The visualization component will be separate from the remainder of the library.

First, the implementation will be presented as a linkable library. Regardless of what

constitutes a “library” in the programming language chosen, the implementation itself

will remain cleanly separated from any project which uses it. If possible, the library will

be distributable as a single, packaged file. A clean separation of library code from the

studies it is used in has several benefits. First, compatibility between different releases

of the library will be easier to guarantee, as any additions unique to one particular

study will be located outside of the library’s namespace. Second, versioning releases

of a single file is much easier, as its cryptographic hash value can be calculated and

provided independently for verification. SHA-2 and FSB are two secure cryptographic

hash functions which can be used to generate these checksums. The benefit of using a

secure hash function (versus, say the popular MD5 function) is that it enables verifying

downloads of the library file in a tamper-proof way.
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Second, the implementation will use object-oriented programming techniques as a means

of facilitating interoperability. Object oriented programming (OOP) is a programming

paradigm which has been shown to increase interoperability through its encapsulation

of methods and properties into common class descriptions that can be used to generate

objects of a given class type [140]. Alternatives to OOP include prototype-based pro-

gramming and aspect-oriented programming, among others. Each of these approaches,

including OOP, has its own set of flaws. The reason we settled on OOP is that it pro-

vides a simple, easy to grasp abstraction for interoperability that is common across most

modern programming languages4. Although the current implementation uses a single

programming language, employing a widely-supported technique like OOP allows us to

remain open to future expansion of the implementation across languages and platforms.

Third, the implementation will avoid, when possible, catering to a single domain of

simulation. This will in turn require users of the framework to incorporate the semantics

of their own domain of research. This decision fits with our goal of flexibility in

Section 4.1.2. The alternative is to add provisions for specific domains, ensuring that

the majority of our system will never be used in a single study. This would result in

a bloated, difficult-to-maintain code base, and would fail to provide any real benefit,

as the specification of any particular semantics is bound to fall short of what some

percentage of real users will need. The goal of being able to capture reality was a

guiding force behind the framework definition, and is particularly visible in the way that

sensors are defined. We will therefore forward this design choice to the implementation

stage, by ensuring that our system is agile enough to capture the syntax of any arbitrary

simulation study without burdening users with semantics that they would prefer to add

themselves.

Finally, the visualization component will be designed as a separate library. This require-

ment was added after initial work implementing a portion of the framework, and is nec-

essary due to the extreme variety and incompatibility of visualization tools —even those

authored in the same programming language. Despite a move towards cross-compatible

high-level programming languages, modern visualization toolkits immediately impose

large amounts of overhead. Even generic “windowing toolkits” like the GIMP Toolkit

(GTK+) [141], IBM’s Standard Widget Toolkit (SWT) [142], and Nokia’s Qt framework

[143] exhibit this flaw, as they either tie one to a particular operating system (GTK+)

or programming language (SWT), or they are bound to obsolete programming practices

and are incapable of upgrading (Qt). Newer, experimental frameworks such as Phoenix

[144] exhibit a promising abundance of cross-compatibility, but tend to be restricted by

4The term “object-oriented” is not strictly defined. Here, we take it to mean that a language provides
polymorphism, inheritance, and encapsulation. This definition excludes a small number of common
languages such as JavaScript, Lua, and Pascal; however, each of these languages provides some means
of approximating the first two properties (usually at the expense of the third).
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the most primitive backend (Win32) and, as such, lack more powerful features which

are well-established in the more powerful backends (Qt and GTK+).

Every project which uses our library will have its own visualization requirements, so

separating the visualization component from the core simulation components will grant

particularly assiduous users the ability to write a drop-in replacement without invalidat-

ing the core library’s checksum. Furthermore, the loosely coupled nature of sensors in a

perennial simulation might actually obviate the need for visualization in any centralized

way. Consider a typical building thermostat, which contains a tightly coupled sensor,

effector, and model. The thermostat measures the room’s temperature and attempts

to adjust it to match the desired temperature set by the user. Internally, a model is

used to avoid jarring temperature changes, likely via a simple backoff algorithm. This

type of subsystem does not require built-in visualization support, as it is intended to

be treated as a unit rather than a set of components. It can thus operate unmodified

and independent from the rest of the perennial framework. This conglomerate sensor

system likely has its own vendor-supplied visualization toolkit (written in an arbitrary

language) which can be loosely coupled to the perennial visualization component using,

e.g., TCP sockets. If the visualization component was tightly coupled to and reliant on

the simulation component, such laissez-faire integration would not be possible.

4.3.1.2 Implementation Choices

The assumptions provided in the previous section greatly simplify the remaining imple-

mentation decisions. These decisions are designated global or local in scope, depending

on whether they affect the entirety of the reference implementation or only one aspect

of it. Local decisions will be covered as they become relevant. The global decisions are

more far-reaching:

1. Choice of programming language

2. Choice of visualization toolkit

3. User data customization strategy

The first far-reaching decision is which programming language to use to realize the

reference implementation. Table 4.5 lists several potential candidates along with their

key properties. For the purpose of simulation, programming languages are separated into

two categories: general purpose and simulation specific. The former are designed to

be capable of accomplishing any computer-related task, while the latter are customized

specifically for computer simulation. Each language’s level of abstraction is also listed:



Chapter 4. Proposed Framework 70

Language Category Abstraction
Level

Performance
(versus C)

OSS? Latest
Update

C General Low 1.0 , 1.0 , 1.0 , 1.0 Yes 2011

C++ General Medium 1.0 , 1.0 , 1.4 , 1.5 Yes 2011

Java General High 2.0 , 2.7 , 2.3 , 3.3 Yes 2012

JavaScript General High 4.2 , 4.1 , N/A , N/A Yes 2011

Python General High 43.9 , 38.6 , 50.6 , 54.3 Yes 2012

Modelica Simulation High (no data) Yes 2012

SimScript Simulation High (no data) No 2007

Simula Simulation High (no data) Yes 1984

Simulink Simulation Very High (no data) No 2012

VisSim Simulation Very High (no data) No 2011

Table 4.5: Comparison of potential programming languages. General and Simulation
languages were considered, based on their performance, popularity, level of abstraction,

availability, and pertinence.

low denotes languages which require the user to manage memory and carefully structure

their code, while high implies automatic memory management and abundant techniques

for encapsulation. Some simulation languages abstract at a very high level, allowing

the modeling of an entire system using block diagrams and flowcharts. The remaining

three categories are more straightforward. The performance of each general-purpose

language is estimated5 on four machines. The first two of these (from left to right) are

single-core (32-bit, then 64-bit kernels), while the latter-two are quad-core. Next, the

OSS column lists whether or not a viable version of the software exists as Open Source

Software. Finally, the date of the most recent update to each language’s standard is

shown.

After careful consideration, the Java programming language was chosen to realize our

reference implementation. In order of importance, the motivating factors behind this

decision are as follows. First, a high or very high abstraction level was deemed neces-

sary, as it eases the task of verification by handling lower-level details automatically.

Of the general-purpose languages with a high level of abstraction, Java featured the

best performance. JavaScript is close, but was considered lacking in the breadth of

its standard library, as well as being slightly behind in terms of standardization. A

continually updated standard was considered necessary, as it allowed the language to

capture new programming techniques that presumably enable more robust design pat-

terns. Compared to simulation languages, Java had the benefits of an Open Source

implementation as well as a recent standard update. This left Modelica and Java as

the best options representing simulation and general languages respectively. The final

5Performance statistics are based on measurements by [145] across 13 benchmarks, scaled relative
to the time taken by the fastest implementation. A value of 2.0, for instance, indicates that a given
implementation takes twice as long as the fastest implementation.
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deciding factor was the accessibility of the Java programming language as evinced by

the size of its community on [146]. A wide audience is of the utmost importance to

a reference implementation, as it maximizes community feedback to the betterment of

the nascent framework. Anecdotally, one might consider the positive effect that a large

target audience had on the development of the Repast simulation environment, which

also enticed new users by being written in Java [88].

Given the decision to use Java, the remaining choices narrowed in scope substantially.

As Java had already been chosen as the language of the simulation component, using

a different language for the visualization component would complicate interoperability

efforts. We were thus restricted to the various Java visualization toolkits. Of these,

LWUIT, AWT, LCDUI, and Thinlet were either outdated or developed specifically for

restricted devices. Several others, including Java-Gnome, wx4j, and Qt Jambi, were

merely wrappers around other toolkits such as Qt or Gtk. As mentioned in Section

4.3.1.1, relying on a single-toolkit wrapper comes with its own host of problems. The

remaining two options were Swing, from Sun, and SWT, from IBM. Swing renders

all GUI components using Java code, while SWT wraps native components whenever

possible. Swing is toolkit-agnostic, while SWT has support for multiple backends. Both

support the majority of architectures and operating systems currently available, and

neither is a clear winner in terms of performance or memory usage. As both toolkits

were essentially equal, the decision between them became arbitrary and SWT was chosen

as the visualization toolkit for the GUI component.

The perennial framework also required a strategy for passing data between various sen-

sors, effectors, and additional components. This became particularly pertinent when

user-specified types were considered, since each user of the implementation may have

varying data requirements. Several possible type management strategies were consid-

ered:

• Untyped — Use the most generic type provided by the language, such as Java’s

Object class or C++’s void* type. This allows full flexibility without providing

any type guarantees.

• Loosely Typed — Provide a common subclass for each distinct data-type, but

require type-casting to extract the expected type. This provides full flexibility

with minimal type guarantees.

• Strongly Typed — Provide common subclasses for distinct data-types, and per-

form all data interaction through methods. This is less flexible, but provides

strong typing guarantees and makes full use of the object-oriented programming

paradigm.
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• Fixed Types — Provide common subclasses and a set of expected types, but

do not allow user-level subclassing. This enables a more streamlined framework

design (since all types are known), but does not allow user-defined types.

The first and last approaches each exhibited a strong weakness that precluded them

from consideration. Without type information, a sensor risked being mistaken for an

effector, and a simulation risked being confused with a model. Without the possibility

for user-defined types, the implementation would needlessly restrict its users and repre-

sent the framework poorly. From the remaining two options, loose typing was chosen for

its flexibility and ease of implementation. Strong typing would have required needless

diligence, as user-defined types tend to be aware of each other. For example, a cus-

tom sensor type was probably created for use in a custom simulation, so expecting the

simulation to cast to that type is not unreasonable.

4.3.2 Class Diagram

Figure 4.3: Concise UML class diagram of a perennial framework implementation.

Figure 4.3 shows the main class interactions of our perennial framework implementation

using a reduced Unified Modeling Language (UML) class diagram [147]. This diagram

is a concise representation of the components in the software library; more detailed

diagrams follow in subsequent sections. Finally, a complete UML diagram which con-

solidates all of these details and more is catalogued in Appendix B.

As can be seen from Figure 4.3, the implementation of our perennial framework is

controller-centric with respect to sensors, effectors, models, and worlds. It is agent-

centric with respect to simulations, agents, and their data. We will now describe each

element of the implementation in greater detail.
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4.3.2.1 World and Target

As shown in Figure 4.4, a world maps closely to its theoretical representation. Worlds

are constructed with a name, description, and location, similar to their breakdown in

Table 4.2. A controller is also passed in during construction, ensuring that worlds have

access to controller-provided functionality at all times. Worlds maintain their own sensor

coverage mappings, which can be broadened with the function expandHistoryWindow.

This allows the controller to set up historical simulations by simply polling each world

for the list of valid sensor timespans.

Figure 4.4: UML Class Diagram for Worlds and Targets

In addition to the necessary components of a world, Figure 4.4 also depicts the internals

of a target and various exceptions which a world may inadvertently generate. The

target is part of the sensor specification, and is used extensively throughout the simu-

lation. In addition to the target identification string, a target also includes a reference

to the world in which it is located. This is not required by the framework, but proves

useful in that it allows targets to be passed back and forth without losing the context in

which they are valid. Various exceptional behavior is captured in the perennial.except
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namespace. All exceptions are named after the constraint they enforce; e.g., an Emp-

tyStringException occurs when a String value is required to be non-empty. This is

the case, for example, with the “world” string passed into a target’s constructor.

Finally, the action class is used to exchange notifications among a variety of simulation

elements. Actions occur when the global setup of the perennial study is modified. For

example, an action will occur if a sensor is added to or removed from the sensescape.

Actions are not part of the original framework specification, but are a side-effect of the

choice to use Java for the GUI as well as the simulation component. By relying on actions

to convey relevant changes, we approximate a popular software methodology known as

Model-View-Controller, and leverage that technique to reduce programming time.

4.3.2.2 Sensor, Effector, and Data

Sensors, effectors, and the data they process are all detailed in Figure 4.5. Sensors and

effectors are constructed with roughly the same set of properties defined in Table 4.3. In

addition, several actions are defined to aid integration with the GUI. Up-to-date access to

real-time data is provided by a continuous sensor, which is another extension specific

to this implementation. Traditional sensors and effectors use timespans to specify their

current and historically valid ranges, while continuous sensors use a singleton object of

type continuous timespan. Invalid timespan configurations (i.e., those which end

before they start) will raise LogicalExceptions.

Sensors and effectors both operate on instances of the data class, which contains a

set of datum objects sorted in order of start time. Each individual datum contains

“something”, which is represented by Java’s generic Object class. The data class itself

provides a weak type guarantee as per the weak type requirement introduced in Section

4.3.1.2; beyond that, it is the responsibility of the given sensor, effector, or simulation

to downcast the datum into an appropriate class and react to it.

Individual studies performed with this implementation are free to extend Sensor and

Effector with needed functionality. To improve usability, two additional classes were

added that are not explicitly part of the original framework. The first sensor type is

the SocketSensor (and, analogously, SocketEffector), which reads data from a TCP

socket and provides it to the simulation when requested. This allows sensor interaction

code to be written in a more systems-friendly language such as C++ and then simply

published to a pre-specified socket. Most major languages support socket programming,

so this technique greatly widens the breadth of available sensors with which our im-

plementation can interact. The second sensor type is the DistributionSensor, which

wraps common distributions such as uniform, normal, poisson, or exponential. This
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Figure 4.5: UML Class Diagram for Sensors, Effectors, and Data

class allows the most common distributions to be represented as sensors, reducing the

amount of boilerplate code that must be written to instantiate a new simulation study.

4.3.2.3 Dependency Tree and History Window

Sensors, effectors, and worlds rely on two key components: the Dependency Tree

and the concept of a History Window. The dependency tree is meant to resolve

an implementation detail regarding interacting sensors. Consider three sensors, A, B,

and C. Sensor A is configured (via its mapping-function) to merge data from sensors

B and C. Sensor B, meanwhile, presents a higher-level view of the raw data in Sensor
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Figure 4.6: UML Class Diagram for the Dependency Tree and History Window

C. At each time tick, these sensors must be updated in an explicit order, namely: C

first, then B, then A. Any other update order will lead to consistency errors. Thus, the

dependency tree is aware of all causal links between sensors, allowing sensor updates

to be read and computed from the leaves of the tree upwards. Independent clusters of

sensors are collected via a node called DONE which is the root of the dependency tree;

thus, there is only ever a single dependency tree per simulation experiment. As one

might expect, cycles in the dependency tree are an error; if discovered, they trigger a

SensorCycleException.

The history windows solves another implementation issue, that of access to historical

data. This class coordinates all available sensors, providing a temporal mapping of

all times at which Sensors were active and recording data in the past. To simplify

matters, the local filesystem is used to store historical data, rather than a fully-functional

relational database as recommended in Figure 4.2. The Cached Data class encapsulates

this, loading the data objects on demand, so migrating to a database-backed variant of

the current implementation would be a straightforward procedure.

4.3.2.4 Controller

The Controller functions as a highly centralized entity which manages and connects

worlds, sensors, simulations, and other lesser components. To this end, it contains a

complete mapping of all components present and active in the perennial system. Func-

tions such as addWorld, getWorldNames, and getWorld provide complete, encapsulated

access to the global set of components. The controller is responsible for firing off events

such as those subscribed to in a world’s addHistoryListener function. In addition, the

controller also manages its own set of events, such as the addSensorChangeListener,
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Figure 4.7: UML Class Diagram for the Controller

which fires whenever a sensor is added or removed. Many of these listeners are intended

to ease GUI integration, but some may have uses within a running simulation as well.

The function Speculate is a class-scoped, recursive function which is intended to help with

the generation and management “What-If?” simulations. Speculate takes a mapping of

data items to effectors, which it uses as the basis of the first “What-If?” analysis. The

simulation passed in to Speculate is run, and the results are saved as an object of type

WhatIfResults. The function returns true if the stopping condition has been reached;

otherwise, it may decide to prune the result set or mutate the set of effectors and thus

explore a new plan. This continues until a satisfactory answer has been obtained. Section

4.3.3.1 expands on this in more detail, offering both a utility-based metric and stopping

condition as well as a Pareto-front approach.

The controller is somewhat complicated internally, but its external interface is unsur-

prising and concise. The only mildly complicated element introduced by the controller

is the null simulation. This is a simple construct that allows modelers to specify “no

simulation”; it can be used to set up arbitrary sensor templates. The null simulation

represents another implementation-defined choice that embellishes the pure theoretical

framework.
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Figure 4.8: UML Class Diagram for Models and Simulations

4.3.2.5 Model, Simulation

The contents of models and simulations, shown in Figure 4.8, vary little from their

theoretical specification in Section 4.2. A model has a name and a list of targets,

neither of which can change once it has been constructed. Likewise, a simulation wraps

a model and represents that model being exercised over the course of a given timespan.

Multiple models may be managed by a single simulation through subclassing; the single

model listed implies that a simulation must manage at least one model. Simulations

also contain a mapping of sensors to targets, which allows the same simulation to be

reconfigured and reused in various similar studies. Finally, simulations keep track of the

last point in (simulation) time that they were updated. This is a dynamic property; it

only has meaning for a running simulation.

Models and simulations are loosely-specified components; it is intended that the entirety

of their functionality be realized through subclassing. Simulation sub-classes must im-

plement two functions: updateSimulation and finishSimulationRun. The first of these

gives the running simulation a timespan and a list of data mapped to each sensor. In

return, the simulation is expected to process all data entities and update its internal

state. The second function merely tells the simulation to complete any pending tasks
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once the simulation run has ended. The simulation base class will automatically call

these function as the controller calls the updateTimer function, which performs some

minor additional logic for continuous timespans. In terms of functionality, the simula-

tion is considered more visible than the models. Since models are driven by simulations,

the model class need export no additional functionality. If a model requires additional

external functionality (i.e., an updateModel function) then it may accomplish this in a

subclass, and a corresponding simulation subclass must respect these requirements.

Simulations contain additional protected constructor functions, as well as the Make-

Placeholder static function which constructs a pseudo-abstract object given a set of

properties describing a sensor. These functions are a relic of the initial desire to specify

a simulation as a detached entity, and then instantiate it once it starts running. (This

is also the reason that the simulation class contains no initSimulationRun function; the

simulation object is re-created for each new simulation run.) In retrospect, an argument

can be made that this method of managing simulation lifecycles is somewhat unwieldy,

and could probably be handled more simply by virtualizing the restart function and just

relying on that. That said, the current approach to simulation creation has no flaws

beyond a minor increase in complexity, so refactoring it was not deemed critical to the

health of the framework as a whole.

4.3.2.6 Agent

Figure 4.9: UML Class Diagram for Agents

An agent is an active, self-contained entity within a single simulation. Like simulations,

agents achieve their breadth of diversity through subclassing. Each agent maintains a

list of sensors, although this is primarily for bookkeeping purposes. Agents do not read

data directly from sensors, but rather receive data objects within the update function

which is called by the parent simulation of each agent. (If greater parallelism is required,

agents may negotiate with the simulation and read directly from the sensescape, but this
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is the exception rather than the rule.) The init function is called once whenever the

agent is restarted in a given simulation environment, and may include initial sensor

readings. The completed function is called either when the simulation is done, or when

the agent has completed all of its tasks within the simulation. Regardless of its source,

this function instructs the agent to return any borrowed resources and quietly exit.

As stated above, each agent distinguishes itself from its peers through object inheri-

tance and polymorphism. There are other options; for example, an agent may receive

events that tell it the simulation has started or is updating. These events would then be

processed by an event handler, and agents would distinguish themselves via the com-

bination of event handlers registered to respond to each event type. Although equally

valid, we chose not to use an event subscription model, as it is somewhat less cognitively

cohesive than inheritance. For all its verbosity, a subclass of agent called “Helbing-

SocialForcesPedestrian” very clearly self-documents its intended functionality [148]. In

addition, relying on an object-oriented technique (inheritance) for agents allowed us to

continue using the same abstraction for this component of the simulation, thus keeping

the overall design simpler.

4.3.2.7 Remaining Simulation Components

Figure 4.10: Screenshot of the GUI component, showing a simple sensor dependency
tree.
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All of the components in Figure 4.2 are present in the framework implementation to

some degree. Some have been explicitly modeled in the previous series of UML diagrams.

Others, such as the converter/agglomerator or the access layer are present implicitly in

the software. The GUI component of the implementation, shown in Figure 4.10, was

considered non-integral to the framework as a whole, and its UML diagram has not been

presented. Please contact the author if you are interested in the interaction between the

GUI and the simulation component.

4.3.3 Local Implementation Decisions

The entire implementation as presented is self-contained and functional. All globally-

relevant decisions have been presented, and the UML class diagrams shown have reflected

these decisions. That said, there are several locally-relevant decisions which can ease the

development of any perennial simulation. These will be covered briefly here, and can be

considered antecedent to the development of an implementation in any given language.

4.3.3.1 Measuring the Extent of a Crisis

In order to properly simulate the management of an arbitrary crisis, there must be some

way to measure the severity of that crisis. This is even more important for symbiotic

simulation, which depends on an accurate measurement of performance to auto-validate

selected strategies from its “What-If?” simulations. Unfortunately, historically sym-

biotic simulation has focussed on domains with a very clearly defined or limited role

for human decision-making, such as manufacturing and shipping. Where humans are

given “full freedom” to act in the system, their available interactions are often narrowly

defined. For example, work by Low et al uses sophisticated ontologies and behavior

models to represent humans, yet limits their actions to simple goal-directed movement

[44].

An accurate performance metric is necessary from a simulation standpoint alone. How-

ever, the essence of the problem is even more nuanced, since the nature of this metric

differs slightly depending on whether one is running a hindsight or foresight study versus

symbiotic decision support. Regarding the former, the full breadth of available solutions

should be probed, and those that have any deserving qualities should be presented and

categorized by those qualities. In this environment, only truly bad mitigation strategies

should be discarded. Conversely, when one is running “What-If?” simulations during

a crisis, the need for guidance outweighs the need for precision6. Recall that, for crisis

6Note that, while precision wanes in importance, accuracy is nonetheless critical
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management, making a decision quickly is often better than waiting for additional data

at the risk of making no decision [24]. One final problem remains for all three study

categories: the fact that, even in a field such as crisis management, different situations

and different cultures prioritize performance parameters differently [149]. With this in

mind, an approach is needed that deals with all of these problems and is adaptable with

respect to the different ways of delineating a crisis.

As a solution to the local problem of measuring crisis performance, we propose using a

utility function for decision support studies, and estimating a Pareto front for hindsight

and foresight studies. Both will rely on the same partial performance metrics, such

as loss-of-life and property damage. Several additional items, such as “technology”,

“resources”, “infrastructure”, and “culture”, were identified by [25] as broadly significant

categories in emergency response situations. Expanding on this, we arrive at our partial

performance metrics for crises:

• Loss of Life

– Number of Human Lives Lost (NH) — Total number of human lives lost

during a simulation run.

• Loss of Land

– Arable Land Lost (NLA) — Total land lost (km2) which was suitable for

farming and agriculture.

– Habitable Land Lost (NLH) — Total land lost (km2) which was suitable for

humans to live on.

– Traversable Land Lost (NLT ) — Total land lost (km2) which allowed for

human movement. Generally excludes deserts, dense jungles, etc.

• Loss of Necessities and Public Services

– Loss of Power (NBP ) — Maximum electricity (kWh/day) lost on any one

day during the crisis.

– Prolonged Power Loss (NBPp) — Average electricity (kWh/day) lost during

the crisis.

– Loss of Potable Water (NBW ) — Maximum amount of water (L3/day) lost

on any one day during the crisis.

– Public Transport Loss (NBT ) — Average down-time (hours/day) of buses

and trains.

• Environmental Loss
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– Animal Deaths (NEA) — Total biomass (kg) of all animals that died.

– Loss of Biodiversity (NEB) — Total number of species that lost sufficient

biodiversity to drop below replacement levels.

– Habitat Loss (NEH) — Total land (km2) which lost all ability to harbor

natural life.

– Increase in Greenhouse Gases (NEC) — Total weight (kg) of increased green-

house gases caused by the crisis.

• Financial Loss

– Loss of Home (NFH) — Total number of homeless after the crisis.

– Loss of Property (NFP ) — Total damage done to homes, in the local currency

unit.

– Loss of Business (NFB) — Total days of business lost, estimated from the

number of businesses forced to suspend operation during the crisis, and the

expected economic output of the area under normal circumstances.

– Medical Expense (NFM ) — Total medical expenses incurred due to the crisis.

This list captures all of the main damaging factors of a crisis. We assume that a rea-

sonable range can be defined for each partial performance metric, and use an overline

to represent a normalized version of each parameter. Thus, NFM represents the nor-

malized medical expenses of a crisis. Both Pareto analysis and our utility function are

capable of handling additional performance metrics (the latter by means of normalized

values and scaling factors). For example, a school board might devise a new metric for

“days of school closure”, or might incorporate this amount into the NFB sum. Similarly,

a corporate executive might try to extend our model to cover business crises by adding

a category for “PR-related losses”. Certainly, these are reasonable decisions. However,

the former is an example of a category that is too specific for our generalized framework,

while the latter was explicitly excluded from our work in Chapter 3.

For decision support studies, each factor X is multiplied by a weighting factor WX and

combined to form a utility function which can be used as an overall grade of the crisis,

as shown in Equation 4.12. Each weighting factor can range from 0.0 to 1.0, with 0.0

implying that a given factor has no relevance to the study at hand. Two of the factors

do not follow this rule: WH and WHS . The weighting factor for human life, WH , is

held constant at 1.0. An additional factor, WHS is called the human scaling factor.

This must be at least 1.0, and has no upper bound. The human scaling factor is useful

to prioritize human life heavily over a combination of other parameters. The decision

was made to introduce WHS —instead of artificially raising WH above 1.0— because it
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serves a different ontological purpose than all the other weighting factors. Even when

set to its lowest possible value, it still ensures that human life is placed above any other

single factor. In addition, the value of WHS tends to be based on considerations, such

as job risk, which do not themselves change with any rapidity. Thus, most applications

can simply decide on a permanent value for WHS early into the study, and then proceed

to change only the other weighting factors.

P = WLA(NLA) +WLH(NLH) +WLT (NLT ) +WBP (NBP ) +WBPp(NBPp)

+WBW (NBW ) +WBT (NBT ) +WEA(NEA) +WEB(NEB) +WEH(NEH)

+WEC(NEC) +WFH(NFH) +WFP (NFP ) +WFB(NFB) +WFM (NFM )

+WH ·WHS(NH) (4.12)

For hindsight and foresight studies, the list of performance factors must be explored

through “What-If?” simulation to produce an estimation of the Pareto front for that

scenario. The Pareto front —sometimes called a Pareto set or Pareto frontier— is

a set of choices for which no other point strictly dominates an existing choice. This

concept, known as Pareto efficiency, implies that performance can not be increased for

one parameter without a consequent reduction in another. Figure 4.11 illustrates a

Pareto front estimation for habitat loss (NEH) on the x-axis and property loss (NFP )

on the y-axis. The diamonds represent data points which are non-dominated and thus

contribute to the Pareto front, while circles represent points which are strictly dominated

and thus do not contribute. The estimated Pareto front is drawn between all points in

the Pareto set. The concept is similar in three or more dimensions; the only challenges

are an increase in the time required to compute the Pareto front and an increased

difficulty visualizing the results.

Computing a Pareto front takes a large amount of time, and usually requires the use

of some form of converging algorithm such as a genetic algorithm. For the purpose

of discussion, the PISA framework is a fully-functional Pareto estimation package that

meets our needs [150]. Once computed, a Pareto front’s value lies in its ability to fully

capture the tradeoffs between various decisions. For example, in the case of Figure 4.11,

one might wish to choose a solution which maximizes NEH at the expense of NFP , or

one might wish to ensure that both remain above a given threshold. Finally, as observed

in [151], in certain cases a utility function can be used to approximate a Pareto front,

but it will only capture points near the extremes of each parameter (the far left and far

right diamonds in Figure 4.11). This justifies our decision to use a utility function for
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Figure 4.11: An example of a Pareto front estimation on the minimum values of NEH

and NFP .

decision support studies; it can be used to quickly explore portions of the Pareto set

while still allowing administrators to prioritize different partial metrics.

The sum of weighted partial metrics and the appeal to Pareto analysis together pro-

vide the necessary level of functionality required by hindsight, foresight, and symbiotic

decision support studies. First, both techniques allow policy makers to identify and

mark only those parameters which matter to a given crisis scenario. Second, the Pareto

front method can be used to generate various graphs that capture the interactions of

the numerous partial metrics. This allows researchers to ask informed questions such as

“How much more environmental damage could have been prevented without drastically

increasing the number made homeless?”. Third, the utility function allows calculation

of the most important crisis-related factors quickly and with less precision than (but

similar accuracy to) a Pareto analysis. Finally, a Pareto front may be approximated

after the fact, to determine if the solution captured by the utility function during the

crisis actually performed as well as expected. This is a normal consequence of hindsight

studies, and is one of the benefits of using a combined perennial system.

4.3.3.2 MMOHILS Considerations and Incentives

MMOHILS is a powerful technique that captures data using real humans participating

in simulations of virtual environments. Motivating users quickly becomes challenging
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with virtual worlds, especially when users are physically removed from simulation coor-

dinators. The temptation to view the simulation as a game and try to “win” it, cheat,

or just playfully misbehave increases, since most existing virtual worlds are currently

presented as online games. In [135], we proposed borrowing incentives from the field of

microeconomics for the purpose of encouraging good behavior. We also recommended

splitting MMOHILS into two categories, experimental and unannounced, as a way of

diversifying the MMOHILS ecosystem and allowing better targeting of incentives. Both

types operate on real users in virtual environments; the difference is in their degree of

trust and participation, and the capability to coordinate and monitor them. In addi-

tion, experimental MMOHILS was designed to be simple and inexpensive to implement,

while its unannounced counterpart aims to achieve a maximum number of connected

users regardless of the cost.

Experimental MMOHILS is suitable for small groups comprising less than 100 partic-

ipants, all of which are knowingly participating, with good intention, in an experiment.

Users are connected through a local area network (LAN), which features round-trip

network delays of 1 to 2 ms [152]. They will likely be located at workstations in the

same computer lab, and can therefore be monitored to reduce the chance of misbehav-

ior. In addition, social pressures can more easily be applied to reduce cheating. From a

software design point of view, discrete, time-stepped simulation is the best choice, as it

co-operates nicely with a technique used in online gaming called the lock-step protocol

which waits for updates from all users before processing each time step. Since users

are trusted, much of the processing can be shifted from the server to the client pro-

grams themselves. This reduces the processing requirements of the server, helping to

make MMOHILS more affordable on commodity hardware. Due to the small number of

trusted users, cash handouts are acceptable as a motivating factor.

Unannounced MMOHILS was designed to leverage the full power of massive numbers

of users, and proceeds without them knowing the full extent of the study. Ideally, the

simulation would be concealed within an existing, popular online game as a means to

increase its potential user base. As such, users are connected through the Internet,

with round-trip delays of 150 to 300 ms, thus obviating full-locking techniques, which

introduce too much unnecessary latency. Client updates must be processed when re-

ceived by the server, and then immediately broadcast to all users in the virtual vicinity.

Unlike traditional online games, a MMOHILS must ensure that all users see the same

world state at all times, within the degree of precision required. A policy must be

maintained for ejecting users that lag behind in network speed. Moreover, techniques

such as interest management must be employed to handle the massive increase in world

space and user base that massively multiplayer online games cater to. The software

side of an unannounced MMOHILS will likely be much more complicated than that of
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the experimental variant. In addition, unannounced MMOHILS deals with users who

receive less trust. This reflects on the server, which cannot offload critical tasks to the

client programs and thus requires more powerful hardware. Extra care is also required

in the verification step, as the client program will be running on an unknown variety of

hardware configurations.

Monitoring of clients in the unannounced setup is infeasible for a number of reasons,

and the general goodwill of players cannot be assumed. Assuming that client programs

can be secured, the validity of each user’s role and psycho-social state must be assessed

at all times during the simulation. Methods to accomplish this are discussed in the next

section. Finally, incentive management takes on a much higher level of importance in

unannounced MMOHILS, as cash handouts become prohibitively expensive. It is vital

that as many participants as possible finish each experiment, and equally important that

they remain immersed lest they become bored and leave the simulation prematurely. We

propose combining an incentives system with regularly scheduled events to overcome this

problem. Daily events reward all players who complete the event with in-game items,

and give particularly special rewards to those players who “finish first” in each event.

At all non-event times, the online world is running normally as a game, and the items

won during events prove to be rather useful. We conclude with a paragraph, from the

original MMOHILS paper, describing a sample MMOHILS incentives setup.

Figure 4.12: A sketch of an online system designed to create a strong incentive to
complete the simulated egress quickly.

Suppose that players can explore the virtual world, fight each other, or cast

magical spells. Fighting reduces an opponent’s vigor, and a battle is lost

when one player’s vigor reaches zero. Spells reduce the caster’s vim, and

perform a variety of effects. Both vim and vigor replenish gradually over

time, and they can be restored to 100% immediately by consuming vim po-

tions and vigor potions respectively (see: Figure 4.12). This setup induces a

huge demand for vim and vigor potions, as they allow players to immediately
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refresh their avatars. Every day at noon, all players are transported to a new

location and informed that they will be rewarded with 1 of each potion type

if they can reach a target destination —10 of each if they’re one of the first

five players to arrive.

This example event is an egress simulation in disguise. The event’s location

is a virtualized floor plan of a building, and the the goal locations are exits.

Rewards enforce the desire to exit the “building” as quickly as possible [135].

4.3.3.3 Validation Techniques for MMOHILS

Given their reliance on human participants, MMOHILS present some unique challenges

in terms of simulation validity. These are compounded by the use of incentives in

particular and virtual environments in general, so a thorough treatment of the subject

is pertinent. Since the majority of validation tasks performed for MMOHILS are the

same as those for any other simulation, a brief introduction to the process of validation

will be given. This topic is covered extensively by Law [15] and Sargent [131], and

a succinct overview is provided in [59]. While Law focuses on the practical side of

simulation, Sargent focuses on statistics-based approaches and provides a full overview

of all available techniques. Both authors’ work is considered definitive and time-tested

as a means of validating simulation studies.

A model is said to be valid if it is “an accurate representation of the system for the

particular objectives of the study” [59]. Validation should be performed as the simula-

tion is being developed, as it will be considerably more difficult if delayed until after

deployment. “The most definitive test of a simulation model’s validity is establishing

that its output closely resembles the output data that would be observed from the ac-

tual system” [59]. The phrase would be observed is used because most simulations are

commissioned to study a system that does not (yet) exist. The method Law proposes

requires considering both the proposed system and the most similar existing system.

The simulation is first configured to run experiments in the existing system, and one

concludes that its outputs match. Following that, the simulation is modified to reflect

the proposed system. “The greater the commonality between the existing and proposed

systems, the greater our confidence in the model of the proposed system” [59]. An

example of this two-step validation technique is presented in Section 5.1.3.1, where we

validate pedestrian movement behavior in comparison to an existing physical movement

study performed by Daamen and Hoogendoorn.

MMOHILS encounters additional difficulties due to its placement within a real-world

system. Law in particular is concerned with an over-emphasis on statistical methods,
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stating that nearly all real-world systems produce non-stationary and autocorrelated out-

put2, and thus traditional statistical tests are not directly applicable. In addition, the

classic null hypothesis test is flawed, as its query into whether or not the real system and

the model are the “same” is clearly false: the model is an approximation by definition.

One could argue that Law is over-stressing the contention, but we find his criticisms

particularly warranted for the complex world of online virtual simulation. Turing test

validation, degenerate tests, comparison to a second model, and animation are also pre-

sented as tools to aid validation efforts, but we emphasize that results comparison is the

most definitive test of validity. In terms of our experiments, we attempted to demon-

strate the validity of human elements whenever possible. In particular, Section 5.1.3.1

covers our attempts to validate via Law’s notion of proposed and existing systems.

Next, MMOHILS introduces several additional validation requirements that are specific

to its use of human agents in online virtual worlds. First, the physical distributions of

each user over time must be analyzed and compared with that of real humans in similar

environments. This ensures that humans have the capacity to move in a mechanically

similar way in the virtual environment as they would in the physical world. Second,

the social characteristics of agents must be validated. This step involves ensuring that

emergent social patterns (such as queueing) exist in the virtual world as well as the

physical. Third, role validity must be confirmed. All participants have a role in the

simulation, and it is essential that they never violate this role during the course of the

study. Finally, the psycho-social state of the users must be tested. Any psycho-social

factor, such as stress or threat level, must be confirmed through the use of surveys.

Studies may attempt to minimize the importance of psycho-social factors, but at the

very least immersion must be tested to determine if users are identifying with their

avatars. There are several methods to detect immersion, such as scanning chat logs

for phrasing that indicates identity. For example, participants referring to their own

avatars as “me” and “I” indicates a moderate level of virtual presence. Our previous

work discusses these considerations in greater detail [153].

One challenging area in model validation of MMOHILS is sensitivity analysis of input

parameters. To use an example from our work: agents in the library experiment dis-

cussed in Section 5.1.2.1 are modeled as ellipses, having a major axis of 57.9cm and a

minor axis of 33cm. Despite coming from Fruin’s established work, even these measure-

ments have been questioned [84]. Sensitivity analysis would ask if this difference has

a significant impact on model output. Can we say, for example, that our model is not

2Non-stationary means that observations of the same system over time will produce different distri-
butions; autocorrelated means that the observations within a real-world output process are correlated
with each other.
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sensitive to the choice of an agent’s breadth and depth varying by 5 to 10 cm? Sensi-

tivity analysis is particularly difficult for a MMOHILS. If time, money, and manpower

permits, the simulation can certainly be run multiple times with different input distri-

butions. However, each run of a MMOHILS is considerably more expensive than that of

a software agent simulation. We propose dealing with this problem by validating input

parameters using traditional means when applicable, and relying on animation and the

MMOHILS’s greater commonality to the existing system (accomplished by leveraging

real users) when traditional means do not apply. We consider MMOHILS to offer a

trade-off between higher accuracy due to human participants, and the ability to run de-

tailed sensitivity analysis via multiple replications. This is similar to the approach taken

by the PDQ hospital simulation discussed earlier [54], which also uses strong system va-

lidity to overcome high data variance. If the purpose of a given MMOHILS is to create

new agent models, then these models can be used to perform sensitivity analysis after

the fact. We did not attempt to create such models, so this method was unavailable to

us.



Chapter 5

Experimental Studies and Results

Given the size and the generic nature of the perennial simulation framework introduced

in Chapter 4, it is highly unlikely that any single study will exercise all components

of the framework simultaneously. Thus, three studies were undertaken which utilize

the framework in a variety of ways. The first of these takes place at a high level of

abstraction, assuming that all needed sensors are available for the purpose of testing

a specific hypothesis via the MMOHILS niche configuration. The third study exists

at an antipode, mirroring a physical system as closely as possible in an attempt to

demonstrate construction of a credible prototype. The middle study exists both as

a classical experimental study and as an appeal to the concept of legacy simulations.

Combined, these three studies test a majority of the framework on the most relevant

levels, and lead to a clear understanding of its implications and potential utility.

Figure 5.1 presents a complete breakdown of the various regions of the perennial simu-

lation framework and which studies exercised each one. These regions are categorical,

and combine to form the complete feature-space of the perennial simulation framework

as a whole. Each region is sized according to its importance to the end goal of trans-

disciplinary crisis management simulation; hence, the “Simulation Focus” (which can

be foresight, hindsight, or decision support) is the largest. The three studies detailed

in Sections 5.1, 5.2, and 5.3 are listed below the feature-space, and have corresponding

color-coded entries in the side panels that indicate their individual contributions to ex-

ploration of the feature-space. For example, Study 1 exercises decision support, while

Study 2 exercises hindsight and foresight. Several notable features unique to each given

study are also listed, such as Study 1’s scalability tests. Finally, note that a small per-

centage of the feature-space was intentionally left black. This represents the unexplored

potential of the framework, which future work may attempt to fill in.

91
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Figure 5.1: Coverage of framework concepts by experiment. Larger boxes in the
feature-space represent more important concepts. Color-coded by experiment.

The feature-space of perennial simulation is considered to be sufficiently well explored

for the purpose of this thesis. Of the unexplored regions, three of the more interest-

ing elements are explicitly identified. First, as mentioned in Section 4.2.5, the notion

of virtually established worlds is outside the scope of this thesis. We find the idea of

virtual-to-physical world interaction fascinating, but to even begin to attempt this re-

quires a strong understanding of the fundamental concept of virtual studies. Second,

the notion of entity matching has not been explored. To match entities means to pre-

serve their identities over a long period of time and across several simulation runs. This

might be used, for example, to provide different symbiotic advice to agents who received

community training than those who would not benefit from it. Although potentially

useful, it is not clear just how much benefit such a technique would bestow, nor is it

clear exactly how to implement matching in a robust and generic way. As such, we

consider this esoteric to the core framework. Finally, the notion of Implementers guid-

ing the automation process was not studied. Normally, the “optimization mechanism”

listed in Figure 5.1 is either managed automatically, or it requires the Implementer to

play a strong role. A third option exists: Implementers can create protocols based on

simulation data, thereby automating various mundane but non-trivial decisions. The

perennial simulation system would then perform the role of a knowledge-based expert

system, aiding the implementers by freeing up time for them to focus on the truly novel

aspects of a given crisis. Such a sophisticated idea is too many abstraction levels re-

moved from the design goals of the perennial simulation framework for us to consider,

although one would be remiss not to explore its potential at some later point.
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Naturally, the use of the perennial simulation framework also simplified construction of

the studies themselves. This will be covered in greater detail as each study is presented,

but a few general remarks will help to set the context. Study 1 was performed using

an early prototype implementation of the framework, so it missed several opportuni-

ties (such as mixed physical/virtual agents) offered by the framework in its final form.

Nonetheless, this study benefitted from the formulation of MMOHILS and the inter-

actions between the constantly running model and the “What-If?” analyses. Study

2 benefited greatly from the history window and sensor dependency graph, as well as

the technique of encapsulating legacy models so that they could interact to some extent

with perennial components. Finally, Study 3 made heavy use of socket sensors as an

abstraction to facilitate interaction within the sensescape. Sensor hierarchies and inter-

action with virtual agents were two other key elements that facilitated construction of

this study. The aforelisted benefits are only the most prominent examples; the reader

will be informed of additional advantages throughout the remainder of this chapter.

Each study will now be presented in a similar format, starting with a brief introduction

to the purpose of the study, followed by its perennial setup and that of any experiments,

and ending with observed results.

5.1 Library Egress Study

For our first study, a pedestrian movement MMOHILS was created and used for symbiotic-

guided evacuation of a virtual building environment undergoing a mild hypothetical cri-

sis. This “library egress study” was a complete, self-contained simulation study, and

was the inspiration behind the perennial framework as a whole. It is described in its

original context in [154].

The library egress study was performed to assess the effect of introducing a symbiotic

feedback loop into a simulation of pedestrian egress. The benefit of symbiotic feedback

was measured by comparing an egress simulation without this feedback to one that

includes it. We expected that symbiotic feedback would improve both total evacuation

time and average evacuation time, as well as improving the cohesiveness of egress on the

whole. A secondary goal was to experiment with MMOHILS as a niche configuration

of our perennial framework, since the concept of MMOHILS was still conceptual at

that point in time. We were originally attracted to this niche configuration as it was

uncertain how accurate software agents would be in representing human decision-making

in response to symbiotic feedback. A tertiary goal was to examine the construction of

perennial simulations in general. As an enabling first step, the library egress study was

our largest and most comprehensive study.
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5.1.1 Concise Overview

Most pedestrian experiments gather statistics based on a bird’s-eye view of the world

[84] [89] [91] [155]. In particular, Fruin’s model of pedestrians models them as ellipses

viewed from a top-down perspective [81]. Hence, we created a similarly-structured two-

dimensional virtual world for players to explore. Users are represented as ellipses, their

breadth and depth determined by Fruin’s measurements. Players use intuitive mouse-

centric controls to move around by clicking in the direction they wish to travel. Each

avatar has a heading which rotates to match the direction of movement. Avatars collide

with environmental obstacles and with each other, which halts their forward movement.

Collisions due to velocity are resolved before those due to rotation, allowing users to

“shuffle” around other players. Visual consistency is maintained by always showing

the “current” player’s avatar with pink hair; unintentional collusion is mitigated by

portraying all other avatars with the same brown-haired model. A screenshot of the

virtual world at an arbitrary point in time and from an arbitrary player’s perspective is

shown in Figure 5.2.

Figure 5.2: Two players exploring an online virtual world.

A suitable virtual world was created by studying existing university library blueprints.

The final virtual construct was non-specialized (that is, it was not engineered to favor

symbiotic egress), and was reasonably scaled with respect to the occupants. The use

of MMOHILS allowed us to create the specific virtual world that we wanted to study,

rather than be confined to the set of existing physical buildings (see: Section 4.2.6).
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5.1.2 Perennial Components and Organization

The study just described was an inspiring force behind the perennial simulation frame-

work, and as such it was only retrospectively incorporated into something resembling

Figure 4.2. As a primitive study, it differs from the final system in three key ways.

• There was assumed to be only one virtual world. The concept of physical and

virtual worlds co-existing and cross-influencing had not been clearly defined yet.

• Automatic sensor management was only introduced late into development. Histor-

ical sensors were programmed by hand and had to be managed manually. At least

one simulation run was disturbed by human errors in regards to data gathering.

• Humans were not strictly modeled as Agents. It would have been difficult to

incorporate software-controlled Agents into the environment without them seeming

obvious and out-of-place.

The differences listed here are essentially historical artifacts and are considered non-

critical to the operation of a successful perennial simulation. Indeed, the remainder of

the system can be modeled using the latest component specification.

The library egress study exercised a small, vertical section of the perennial framework.

The real system had a single (virtual) world with a single set of agents. These agents

represented the building’s occupants, and their positions and headings were sensed by

the constantly-running model at regular intervals throughout each simulation run. A

network flow model was used for “What-If?” analysis, and a single effector was used

to modify and optimize the virtual world. This effector manipulated the simulation

by giving group-optimized goals to the agents; an existing physical analogue might

accomplish this using connected devices like mobile phones. The Implementers simply

approved every plan, and a visualization was provided in real time. The rest of the

framework remained unutilized.

As per the requirements in Section 4.2, two simulations were used to manage the library

egress MMOHILS. The first of these maintained a constantly running model of the

current state of the world. This was quasi agent-based, and included the positions of

all users at all times. The second was a simulation of the possible routes users may

take to exit a building, and was expected to provide “What-If?” analysis and symbiotic

feedback to the real system. The latter served as a secondary model, and was chosen

for its speed and simplicity. The following subsections will detail each component of the

perennial system in turn.
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5.1.2.1 Real System

The real system was composed of a single virtual world representing a two-story library.

Book stacks were located on the second floor, with a variety of media (movies, periodi-

cals) on the ground floor. Each floor measured 45.7 m by 29.2 m, with actual walkable

space limited to 983.09 m2 on the first floor, and 651.98 m2 on the second floor. The

real system was based off a series of university library schematics, but it corresponds

exactly to no specific physical system.

The second floor, shown in Figure 5.4, is where all agents begin at the time of crisis.

Following the announcement of an evacuation, they must proceed to one of four staircases

(labeled A through D) and descend to the corresponding staircase on the first floor. As

depicted in Figure 5.5, the first floor has one main exit in the front of the building and

a second, smaller exit near the back. A legend describing the coloring scheme of these

diagrams is shown in Figure 5.3.

Figure 5.3: Legend of library diagram structures and obstacles.

The crisis event was considered non-specific, and the focus was on building egress. As

this study was not concerned with perceptions of stress or peril by the agents, the cause

of the egress cannot be something like a fire or earthquake. Rather, we informed users

that the announcement had been given to evacuate due to several ceiling tiles that had

collapsed on the first floor. They were told that the situation was not dangerous, but

that they must evacuate with all due speed. The location of the collapsed ceiling tiles

is shown in Figure 5.5, and will be discussed in greater detail later.

5.1.2.2 Egress Model

In addition to the constantly-running model (which approximated an agent-based sys-

tem), an egress model is triggered at various intervals to perform “What-If?” analysis of

the building’s crowd behavior. At the time, we decided that a secondary model was

sufficient for modeling egress, and we settled on the EvacNET network flow simulator.
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Figure 5.4: All agents start on the 2nd floor of the library.

Figure 5.5: All exits and hazards are located on the 1st floor of the library.
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EvacNET is a fast, powerful modeling software. It treats agent egress as a network flow

problem, and was calibrated to Fruin’s measurements of pedestrian capacities. Evac-

NET makes no appeal to behavioral modeling, so it always arrives at an optimal egress

strategy. As described previously, our system coordinates with the real system by in-

forming each user of this optimal escape route. Thus, it is necessary to have a model

which guides users optimistically towards a “best case” egress scenario.

A filter was used to convert the virtual library world into a format that EvacNET

could parse. Figures 5.7 and 5.8 depict the full graphical model of our library using

the standard EvacNET syntax, which is summarized in Figure 5.61 [82]. The actual

EvacNET input file generated by this filter is presented in full in Appendix A.

Figure 5.6: Example EvacNET syntax with descriptions.

Normally, bi-directional flow between two rooms would reduce the uni-directional dy-

namic capacity of each transit. However, we both expected and observed very little

actual cross-flow, so there was no need to modify the dynamic capacity of each tran-

sit. This was consistent with the single-directional nature of traffic in egress studies in

general.

Two hazard sets were introduced to restrict flow in the building and thus hinder egress.

Hazard set 1 was intended to only slightly reduce flow, while hazard set 2 would severely

impede movement. Both hazard sets only affected a small part of the model, thus

allowing informed users to skip the congestion entirely. Specifically, each hazard set

modified the EvacNET model in the following manner:

• Hazard set 1 reduced the dynamic capacities of RM7.1↔RM6.1 and RM7.1↔RM2.1

from 3 to 1, and increased their traversal times from 6 and 5 time intervals to 14

and 13, respectively.

1We have extended the official EvacNET specification with the following syntax: RM1.2↔RM14.2
represents a bi-directional link between RM1.2 and RM14.2.
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Figure 5.7: EvacNET model of our library, second floor.

Figure 5.8: EvacNET model of our library, first floor.

• Hazard set 2 increased the traversal time of RM1.1↔RM10.1 from 7 to 12

time intervals. In addition, transits RM8.1↔RM9.1 and RM3.1↔RM4.1 were

removed from the model, to represent areas made inaccessible due to obstruction.

5.1.2.3 Practical Modeling Considerations

The previous sections presented the system as it was modeled. During the implemen-

tation stage, several practical alterations were required. First, “What-If?” analysis

was limited to two trigger events: the start of the egress study and the traversal by

a user of a staircase. Although the EvacNET model could run instantaneously, it was
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essential that user guidance was only updated at points of increased uncertainty, lest

participants become confused by constantly changing advice. Second, validation was

not performed automatically, as Figure 2.2 might suggest, but was performed manually,

and occurred offline after the experiments had concluded. Although automatic valida-

tion would have been more convenient, resources were limited and more time was spent

running validation studies than adding optional features to the perennial system. Third,

sensitivity analysis determined that congestion did not noticeably affect egress for the

small number of users in our study. Thus, only one simulation was run for each triggered

“What-If?” analysis. Fourth, an attempt was made to give distinct groups of users the

same initial evacuation advice. This was based on the observation in [156] and [157] that

people respond strongly to social networks involving people they are physically close to.

In other words, directing a group to split up would likely result in users ignoring that

particular piece of advice, and placing less confidence in future advice from the system.

Finally, whenever possible, results from previous EvacNET runs were cached and reused.

Several representative evacuation scenarios were computed offline and pre-cached. This

optimization was not necessary for a small network like ours, but may become more

pertinent as the cost of “What-If?” analysis increases appreciably.

All of these exceptions were superficial in nature, and most were motivated by considera-

tions of performance or parsimony. None of them had any adverse effect on the accuracy

or precision of the study.

5.1.3 Verification, Validation, and Calibration

A major problem faced by any MMOHILS developer is how to verify the client program

on a potentially enormous diversity of client machines. Subtle inconsistencies can occur

on different computers, due to things like 32/64-bit incompatibilities, variable behavior

of floating-point arithmetic, or different versions of shared libraries. Our MMOHILS was

carried out in a lab environment, so it would have been possible to individually verify

each unique hardware configuration. However, we were also concerned with the general

case of unannounced MMOHILS, in which the client machine is almost never known

beforehand. To anticipate such a possibility, we decided to target a virtual hardware

specification rather than a physical one. The Java Virtual Machine was chosen as the

most robust, powerful, and readily available virtual machine at the time. We deployed

using the JVM distribution from Sun Microsystems (now Oracle), since it was the most

mature at the time of this study’s inception.

By implementing our client (and server) in the Java Programming Language, we reduced

the amount of verification required from potentially limitless hardware configurations to



Chapter 5. Experimental Studies and Results 101

one: the abstract hardware specification of the Java Virtual Machine. However, we also

lost some amount of performance by relying on interpreted code. Several optimizations

discussed in [158] were used to overcome the inherent performance hit caused by run-

ning interpreted code. In addition, we used ProGuard [159] to obfuscate the contents

of the packaged JAR file beyond recognition; this could be used to limit cheating in

unannounced MMOHILS, and it also boosted performance slightly.

Validation was more complicated than verification, and it required the MMOHILS-

specific considerations described in Section 4.3.3.3. The following sections will detail

the validation steps necessary for our pedestrian egress study.

5.1.3.1 Experimental Validation

Daamen’s pedestrian movement exercises were used to validate the progression of users

through the virtual world of our library egress study [155]. Figure 5.9 depicts the various

virtual rooms created to mirror Daamen’s real-world locations. The rectangular room set

(A, B, and C) was used to study pedestrian movement on walkways. The square room

set (D, E, and F) captured more complicated movement patterns which only emerge

when cross-flow is present. Finally, the bottleneck room set (G and H) was designed to

showcase certain non-optimal behavior which emerges only around bottlenecks.

Figure 5.9: Dimensions of the rooms studied by Daamen, which were also used in our
calibration exercise.

In total, 38 users took part in 16 simulation runs, each of which was located in one of the

virtual rooms from Figure 5.9. Rooms A, C, D, and E were each simulated once; Rooms

B, F, and H were simulated twice; and Room G was simulated 6 times. At the beginning
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of each simulation run, users were divided into proportional groups and placed at their

starting locations. They were informed to walk in the direction they were facing, at a

normal movement speed, avoiding obstacles and other users similarly to how they would

in the real world. If a user disobeyed these instructions, she was informed in real-time

by a warning light. Continually misbehaving users could be automatically culled from

the simulation; fortunately, no user ever crossed the threshold for total removal.

Movement data from the “wide bottleneck” simulation runs were compiled to form a

profile of average user movement, which was then compared with the measurements of

Fruin [81] and Togawa [83]. The bottleneck data sets were considered the most repre-

sentative, as the narrowing room width forced users to anticipate and avoid collisions,

much like the pedestrians in Fruin and Togwa’s studies. The raw data were considerably

noisy, so a five-point, centrally moving average was applied to smooth it. Culling of all

data before a user began moving and after he reached his destination was also necessary,

for obvious reasons. The number of “warning” points was low enough to be considered

irrelevant. Plotted versus free-space-per-user, our data appear next to Fruin’s in Fig-

ure 5.10; plotted versus crowd density, our data appear next to Fruin and Togawa’s in

Figure 5.11. In each plot, an exponential curve is fitted to our data to enhance visual

identification of trends.

Figure 5.10: Normalized velocity versus free space per user.

Figure 5.10 shows a close match between Fruin’s measurements and our own. User

velocity increased with respect to surrounding free space, leveling out at 90% normalized

velocity, compared to an expected maximum of 100%. Figure 5.11 helps to explain this

disparity by showing that our data match Togawa’s measurements much more closely

than they match Fruin’s. This is fortuitous, as Togawa’s measurements are generally
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Figure 5.11: Normalized velocity versus crowd density.

Property Observed Value

Average Forward Distance (m) 0.628 ± 0.606

Average Interleaved Agents 0.786 ± 0.413

Average Parallel Agents (D<1.5 ag/m2) 2.936 ± 1.663

Average Parallel Agents (D>3.0 ag/m2) 3.707 ± 1.703

Table 5.1: Social patterns of pedestrians.

held to be more accurate than Fruin’s in regards to movement speed [84]. We consider

minor differences at minimum and maximum velocities to be negligible. Between 2.0

and 3.0 people-per-square-meter, however, the data oscillate wildly. This is due to the

sparsity of data points which fell within this range. Fortunately, this trend carried over

into the movement study itself, as occupants tended to either cluster in slow-moving

packs or move unimpeded at full speed. We monitored pedestrian density at all times

to ensure that this value never fell into the 2.0 to 3.0 range; hence, the model was

considered acceptably valid for our study.

Perhaps with a larger virtual space and longer simulation runs, more data points could

have been gathered and greater confidence ascribed to our model within the middling

density ranges. This would be mandatory if our library simulator were ever to be used

for generic pedestrian movement studies. We stress, however, that data points gathered

outside these ranges are perfectly valid for the library egress study, and that any potential

sources of invalidity never presented themselves during our egress exercises. Thus, our

simulation was valid with respect to its intended usage scenario.

Validation of social patterns, specifically those observed by Daamen [155], was done

through analysis of re-runs of the simulation data. In particular, Daamen observed
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that participants tended to spread out and fill all available width, even at low densities.

Second, Daamen noted that pedestrians approaching a bottleneck would fan out in an

attempt to get closer to their goal locations. Thirdly, Daamen observed that pedestrians

tended to shuffle through a bottleneck at half-step interleavings, in part due to the in-

creased congestion. We observed all three of these phenomena; two of them are depicted

in Figure 5.12. Daamen also observed micro-lane formation. Although this behavior

was present in our simulation, it was largely suppressed by the short duration of each

simulation run.

Table 5.1 lists several social properties of our agent population. As agents funnel through

the bottleneck, they tend to look straight ahead to what is termed the “forward agent”.

The average forward distance is either the distance between these two agents, or zero

if no forward agent exists. A good indication of the half-step interleavings observed by

Daamen is the presence of a separate agent between the current and forward agents.

This is the average interleaved agents. To measure the tendency of pedestrians to fill

the entire room’s available width, we measured the average parallel agents count for

both low and high density values. (Middling densities, as previously discussed were

not considered due to noisy data.) One pedestrian is considered in parallel to another

if the latter is within 50 cm (forwards or backwards) of the former, and agents count

themselves into this total. For the most part, the data match what we expect, although

it should be noted that visual analysis is valuable in cases such as this, where patterns

are difficult to extract from the raw data. One exception was the average micro-length,

which proved difficult to isolate automatically and was also not readily evident from a

visual review of the data. Future work may consider longer experiment times or more

complex room layouts in an attempt to extract this particular social pattern.

Figure 5.12: Screenshots from our live MMOHILS experiment. Left : users overtaking
each other by half-steps in narrow corridors. Right : all available passageway width is

used, even at low densities.
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Role validation used case-based reasoning similarly to [80]’s approach. By populating a

case base with known “misbehaving” entities, we were able to match users against this

case base in real time to determine if any of them belonged in the set of misbehavers. If

so, we warned them. Our case base was a simple classification case base, and used the

agent’s speed and directional heading as parameters. This configuration could detect

bad behavior like abrupt stopping or sudden changes in direction. Detection of such

behavior could, of course, be performed after the simulation runs. However, we felt

that warning users in real-time improved the robustness of our data by allowing users

to correct their own errors and thus avoid long-term data degradation.

Psycho-social validation was straightforward; we consciously chose an environment where

stress was not a factor, and which minimized other psycho-social constraints. As pointed

out by [64], however, humans tend towards “optimistic bias” when asked to estimate

chances applied to themselves. More importantly, this tendency does not apply when

humans are asked to estimate the same probabilities applied to others. Thus, if a user

in our simulation did not consider his avatar to represent himself, but rather saw his

avatar as some other entity, then the validity of his decision-making process would be

in jeopardy. For the purposes of our study, which contained very few probability-based

decisions, a simple debriefing session was sufficient to determine how each player viewed

himself in the online world. See Section 4.3.3.3 for a discussion of possible extensions to

psycho-social validation.

5.1.4 Structure of Experiments

All experiments excluding those discussed in Section 5.1.3.1 took place in the virtual

library world described in Section 5.1.2.1. Users were granted time to explore the virtual

building before the simulation began, and they performed a mock egress with no hazards

in place. Both exits and all four staircases were made known to all users during this

phase, and a floor plan of the library was displayed in a central location. Hazard sets

were not disclosed beforehand. Figure 5.13 shows several users initially exploring the

online virtual world.

A total of 38 participants took part in our study. Not including the validation runs

described earlier, there were four comparative and four progressive simulation runs.

Participants in the comparative runs were split evenly into two groups, one of which

received symbiotic guidance on the first run, the other on the second. This was intended

to counter the natural learning effect from one run to the next. The comparative runs all

used hazard set 1, and were designed to objectively measure the benefit that symbiotic

feedback lent to egress. We expected symbiotic simulation to offer a definite advantage.
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Figure 5.13: Photograph of users exploring the virtual world in real time.

Conversely, the progressive runs used hazard set 2, and required all users to be online

at the same time. The purpose of these runs was to see if symbiotic simulation had

any noticeable long-term effects on egress time. Our hypothesis was that learning and

a general increase in confidence would lead to reduced egress time overall.

All participants’ computers were connected to the same local network, with <3 ms

round-trip network latency between each computer and the server. Two neighboring

computer labs were used to hold all the participants and the server; combined, the

experiments took four hours to complete.

5.1.5 Discussion of Results

Generally speaking, total evacuation time was 25% shorter with the introduction of sym-

biotic feedback. The EvacNET model suggested routes that avoided potential bottle-

necks, and real-time goal-directed instructions helped guide occupants out of the building

quickly and efficiently. Total evacuation time is sensitive to outlying data points (i.e.,

a single slow user) so the average evacuation time should be considered more indicative

of the real system’s performance. (Total evacuation time would be more indicative for

cases with a source of peril, such as building fires.)

Figure 5.14 graphs the average time taken to evacuate the library building with and

without instructions generated by the symbiotic simulation. For groups A and B, and

then the two combined, the left-hand bar shows the average time to evacuate the building

with no guidance, and the right-hand bar shows the average time to evacuate with
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Figure 5.14: Average evacuation time, with and without symbiotic simulation.

symbiotic-induced guidance. The white segments towards the bottom of the graph

represent one standard deviation of the averaged values. Figure 5.14, makes it clear

that symbiotic simulation helps to reduce average egress time. Improvements of 14%

with a 37% reduction in standard deviation were observed. Put simply, the symbiotic

runs were more cohesive than the normal runs, in addition to being faster. This implies

that symbiotic simulation helped to bring individual evacuation time closer to some

optimum value.

Figure 5.15: Evacuation time ordered sequentially, exhibiting some evidence that
symbiotic simulation enhances learning.

Figure 5.15 shows the egress times of all users after several iterative runs of the second

hazard set. Rounds 1 and 3 use no symbiotic guidance, while rounds 2 and 4 feature

symbiotic simulations. Total egress time is graphed in the background; the white and

black lines represent average egress time and one standard deviation of the average time
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respectively. Although total egress time remains roughly unchanged between pairs of

like rounds, the average time to evacuate the building clearly decreased after repeated

runs. Normal egress times dropped from 26.6 ±12.3s to 24.1±9.2s, and symbiotic egress

times dropped from 20.9 ±6.3 to 19.5 ±6.0s.

The difference from one symbiotic-guided egress to another is only 7%, with virtually

no change in standard deviation. However, the normal egress times showed a much

more significant improvement of 10%, with a reduction in standard deviation of 25%.

Average egress time decreased, and standard deviation lessened. These four rounds

were carried out after those in Figure 5.14, after users had become very familiar with

the environment. The only change in the environment was in the set of hazardous tiles.

We expect that the first symbiotic simulation (Round 2) had the unanticipated effect

of training users in how to exit the building given this new hazard set, thus indirectly

affecting egress times in Round 3. This is not conclusive, but the data indicate a strong

likelihood.

The crucial observation relating to our results is that any decrease in evacuation time

denotes success. The environment in which the evacuation exercise took place was

neither very complex nor heavily congested. It was not designed with a bias towards

symbiotic egress. Hence, our results clearly demonstrate the power of symbiotic feedback,

if only to enforce and enable occupants to expedite egress in an environment they are

already somewhat familiar with. To that end, our results also directly imply that users

will, ceteris paribus, accept guidance from an authority figure in times of uncertainty.

This is consistent with other research in the field, such as [156] and [157], and is crucial

to symbiotic simulation when humans are active agents.

The results observed relied on the fact that sensing within the virtual world was totally

accurate. Some amount of uncertainty would be expected in a physical analogue of this

building. Sensing each human participant’s position, determining if each user was fol-

lowing his instructions, and actually informing the user of his target staircase or exit are

three key areas where noise should be expected. In addition, sensing the total number

of users would certainly be prone to noise; normal building occupants might not have a

tracking device (i.e., their phones) turned on, and they might crowd together, compli-

cating approaches based on infrared sensing or facial recognition. We expect that as the

inaccuracy of the sensors and effectors increases, the total benefit gained from symbiotic

simulation would decrease. Fortunately, the virtual library environment was both very

simple and sparsely populated. Truly disastrous egress conditions tend to arise when

neither of these conditions hold, so there is every reason to expect that most physical

environments would benefit enormously from symbiotic feedback. In short, there are
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considerations that will both decrease and increase the efficacy of symbiotic simulation

in actual applications, but the net result is likely to be overwhelmingly positive.

5.1.6 Scalability

In the interest of examining the scalability of perennial simulation, we performed a

series of experiments which stressed the simulation we had constructed for the library

egress scenario. We were primarily concerned with determining the per-agent overhead of

experimental MMOHILS. In addition, we attempted to measure the space-wise overhead

of our perennial simulation, as well as the cost of symbiotic exploration via “What-If?”

analysis.

The per-user overhead of the simulation comprised two parts: the overhead of each

human participant in the virtual world, and the overhead of each agent in the Evac-

NET model. The latter will be covered separately, as it partially indicates the cost of

providing symbiotic decision support. The former relates directly to the cost of each

agent in the constantly-running model; therefore, it can be used to provide an accurate

predictor of the overhead of maintaining a perennial simulation for crisis management

at a Virtual Study location. For practical reasons, agent scalability was tested using

headless clients —randomly-walking game clients which performed no graphical pro-

cessing, thus allowing a large number to be run on the same machine at the same time.

An Intel Core i7 MacBook Pro (8 effective cores) with Java 1.6, 64-bit server edition

was used to host both the headless clients and the server. Figure 5.16 depicts the per-

formance with a varying number of agents. For the sake of discussion, a frame refresh

of 90ms corresponds to about 11 fps, which is approximately the limit for acceptable

real-time immersive experiences. The virtual (upper) data points were obtained with

headless clients, while the real (lower) data points were measured in our previous work

[158]. Our actual experiments in [154] note that, when all 38 test users were connected,

latency was 45.5 ms. This is consistent with the “stepping” pattern that occurs as de-

mand on the server increases. The cause of this stepping pattern is well-known to video

game developers: when a frame update deadline is missed, the current update is delayed

until the next frame, leading to a net loss (in this case) of 30ms regardless of the actual

increase in latency.

Several aspects of Figure 5.16 merit further discussion. First, although the machine

used for testing virtual demand was much more powerful than the machines used to

measure real demand, there is about 10 to 15ms of overhead on the virtual data points.

At the same time, CPU utilization (not shown) only peaked after 80 connected clients.

We expect that the difference in performance is due either to overhead imposed by
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Figure 5.16: Performance of our MMOHILS as client connections increased. The
upper data points (blue squares) were measured using headless clients, while the lower

data points were gathered on physical, networked machines.

task switching at the operating system level, or by performance differences in the JVM

on Windows versus OS X. Second, we observe that the plateaus in Figure 5.16 are

evenly-spaced: the first occurs after 25 connected users, the second after 50, and the

third after 75. When a borderline number of agents was connected, updates would only

occasionally miss the frame boundary, leading to values outside the plateaus. Overall

performance was not affected by Java’s threading model: the 60-user study was re-

run with half the agents forced onto a separate JVM (and thus a separate core), and

performance was observed to be the same. As a result, we can reasonably expect that

using more powerful servers would increase the number of agents supportable at each

plateau, leading to a cumulative boost in performance and allowing more simultaneous

participants in the MMOHILS. At some point, the bandwidth of the network would

also have to be considered —all of our tests used commodity hardware, but proper game

servers typically exploit teaming of multiple network cards and feature high bandwidth,

low latency connections to a shared intranet. Finally, we reconfirmed our observation

in [158] that the slowest client limits the height of each plateau on our graph. This

height difference accumulates, such that extrapolating our real-world experiments to 60

connections would theoretically equate to 66ms. Compared to our virtual refresh rate

of 93ms, this is an effective improvement of 4.4 fps, gained solely by targeting more

appropriate hardware.

Given the “stepping” performance in Figure 5.16, combined with our observation that

the network, client machines, operating system, and JVM used can greatly affect the

height and breadth of each plateau, we would make an educated guess that the limit on
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the number of connected users in an experimental MMOHILS study (with reasonable

fps) can easily reach 100, and is likely somewhere between 200 and 300. Estimating

an upper bound on unannounced MMOHILS is more difficult, as these simulations

are typically embedded in online MMO games which feature several hundred thousand

simultaneous online players. (Recall that experimental MMOHILS aims to be easy

to develop and suitable for small, trusted groups, while unannounced MMOHILS at-

tempts to achieve a maximum amount of scalability regardless of development cost.)

Commercial games invariably use information management techniques similar to those

found in the HLA, thus partitioning the user base and reducing the per-player band-

width to an acceptable level. As a result, the fps of each client may never dip below a

suitable level of immersion; rather, the limit of the MMOHILS will manifest as a result

of exhausting the simulation’s capacity to generate valid data with a user base full of

inconsistent world views. Commercial MMOs, as described in Section 3.8, often achieve

tens of thousands of simultaneously connected players. As a caveat to the anecdotal ev-

idence of MMO games, note that scalability is achieved by making “assumptions about

user distribution, update frequency, and read and write operation in the environment”,

and that such constraints ignore the true cost of “creating undesirable restrictions on

how users should behave and what functionalities they may expect” [104]. As a result,

although MMOs provide a good example of the absolute limits on agent connectivity,

full-featured virtual environments and practical simulation-specific considerations may

reduce this value. For example, [104] lists no more than 1000 and as few as 50 connected

users as the limits for research-oriented virtual world technology. We would therefore

cautiously estimate that unannounced MMOHILS should aim to incorporate several

hundred to several thousand simultaneous online human agents.

Figure 5.17: Performance of our MMOHILS client with 50 connected users as world
size increases.
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Our second performance measurement concerned the scalability of the size of our virtual

world. Figure 5.17 shows our results. The smallest world measured was 0.25 km2 —

roughly the size of 35 soccer fields. A population of 50 headless clients was randomly

scattered throughout the area. The choice of 50 agents corresponded to the upper limit

on the second plateau measured earlier, and was intended to test the sensitivity of the

simulation to changes in world size. The world scaled successfully up to 72 km2 with

no significant loss of performance, but the client machine froze for larger worlds. This

occurred because the clients were programmed to keep each square meter of terrain in

memory at all times, leading to an overhead of 0.6 GiB2 per client, or 30 GiB overall,

at world sizes above 80 km2. Most of this memory was paged out at any given time,

but the sheer volume of data eventually overwhelmed the system and led to thrashing.

This problem could be easily remedied through obvious mechanisms, but 72 km2 was

considered sufficient, as it represents an area larger than Manhattan Island, and is thus

more than enough space for the several hundred agents that experimental MMOHILS

can support.

Regarding the maximum world size for unannounced MMOHILS, we can arrive at a

reasonable estimate by considering a similar online game, also programmed in Java, with

the same world building-block resolution of 1 m. Minecraft is an immersive 3-D game

released in 2011 with a theoretical maximum world size of 157.5 square megameters3.

Typical Minecraft multiplayer worlds range from 300 km2 for mid-range, amateur setups

to 850 km2 for high-end, professional servers [160]. The longest straight-line distance

perambulated in Minecraft without a noticeable increase in lag is 292 km, leading to

a justifiable maximum world size of 85264 km2, which is roughly 120 times the size of

Singapore [161]. The game is still mostly playable beyond this point, but the increased

reticule lag threatens immersion validity; thus, we consider this to be the upper bound

on world size for unannounced MOHILS.

Finally, we attempted to measure the overhead of providing symbiotic decision support

at the time of crisis. An important aspect of this is the quality of information that one

can extract from the simulation within a short timespan from the occurrence of the crisis

event. Gauging an upper bound on this is important, as effective crisis management is

characterized by strong information superiority. The elemental component of perfor-

mance for symbiotic simulation is the time taken to run a single “What-If?” scenario.

This can be seen as the atomic unit of performance, as running multiple “What-If?”

scenarios at the same time is trivial with sufficient hardware, but improving performance

of the unit itself is challenging and often requires re-designing the simulation engine to

21 GiB is equal to 230 bytes, or about 1.074 GB.
3As its name implies, Minecraft allows exploration beneath a world’s surface, but only to a depth

of 255 meters. From a top-down perspective, therefore, it functions exactly like our 2-D simulator, and
one would reasonably expect the performance to be no better than that of a comparable 2-D world.
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respect specific parallelization assumptions. Measuring this elemental performance was

challenging in our case, since our EvacNET model resolved instantaneously.

Figure 5.18: Snapshot of our library virtual world running in OpenPedSim. The
velocity of each agent is indicated by its color and length: cyan ellipses for fast-moving

agents, and red circles for agents that have stopped.

In the interest of obtaining a meaningful measurable result, we re-implemented our egress

environment using the OpenPedSim simulator. This pedestrian dynamics simulator uses

a generalized centrifugal force model (gcfm) to simulate pedestrian movement at

a microscopic level. The gcfm is somewhat similar to Helbing’s social-forces model, in

that it treats agents as Newtonian particles and moves them through time via numerical

integration on a set of force equations. The gcfm attempts to improve upon Helbing’s

original model by providing more accurate results for highly congested rooms [162].

Figure 5.18 shows a screenshot of the visualizer running a version of the second-floor

library environment with obstacles removed. Seeing as it builds on Helbing’s work,

OpenPedSim is subject to the criticisms in Section 3.6 and should therefore not be

considered valid in the context of providing symbiotic feedback for our users. Rather, it

was chosen because of a few key properties, listed below.

• The model is microscopic, individualistic, and continuous in both time and space.

It therefore represents one of the highest resolutions of information one might need

for egress modeling.

• The simulator runs at a very fine-grained resolution of 10 ms, thereby representing

the most computationally intensive egress models.
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• The software design is similar to EvacNET, in that it was programmed in C++

and requires the use of external resources (such as pipes) to process output in real

time. Thus, any slowdown will likely be due to the complexity of the model, rather

than, e.g., performance differences between programming languages.

For these reasons, OpenPedSim is considered to be a good representation of the worst-

case performance of any complex, agent-centric simulation system. To further stress

the performance of OpenPedSim, we created a model of the library world’s second floor

with all obstacles removed. (Removing obstacles allowed more agents to be in close

proximity to each other, thus adding to the complexity of the gcfm at each time tick.)

An increasingly large group of agents was scattered randomly throughout the navigable

space, and the order was given to evacuate. Based on observed data with real users, we

limited the simulation time to 30 seconds, as the first notification that users received

generally removed the most uncertainty and provided more symbiotic benefit than any

single other message. Figure 5.19 depicts the results of our performance measurements.

Figure 5.19: Performance of OpenPedSim operating as a symbiotic smiulation as
number of agents increases.

Our results allow us to arrive at a reasonable estimate of elemental performance. It

is clear that the simulation becomes impractical for symbiotic-guided egress after 140

users, as a prediction of the world state 30 s into the future takes at least that long to

compute. This does not completely eliminate the utility of the simulation; for example,

one might use the difference between the OpenPedSim results and observed values to

tune a historical case-base in real time. For pure symbiotic feedback, however, we would

expect a delay of no more than 10 s, or 80 agents as per Figure 5.19. As the elemental

performance factor, this is quite low, even by the restrained expectations of exper-

imental MMOHILS. Even worse, this must be considered alongside the generational
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nature of search algorithms such as the Pareto or utility function approaches mentioned

in Section 4.3.3.1. The potential for slowdown increases as we demand more accurate,

long-running results for ever-broadening areas of interest.

Fortunately, there are several optimizations and mitigating factors that allow us to

reasonably expect better real-world performance. First, the poor performance from

Figure 5.19 emerges only when 80 or more agents are gathered in a single room and

simulated at the operational level. For various hallways, stairwells, and corridors, a

simple network flow model like EvacNET will suffice; thus, as agents exit the main

room, they are removed from the calculation of the gcfm for the remaining agents,

leading to an exponential drop in complexity. Second, we expect that a high-resolution

technique such as gcfm will only be used to “zoom in” on a particularly troubling area.

For example, if several dozen agents are taking longer to exit a room than intended,

then a small gcfm can be used to determine if their physical motion is the root cause

of this delay, as in [67]. In such a case, the runtime behavior of agents is already

outside the scope of what is expected, so the ability to extract any information at

all overrides symbiotic decision support’s normally strict requirements. Third, partial

or low-resolution results can be streamed to Implementers or users in real-time, while

the slower models resolve. This can be accomplished by running at a larger time step

(within the acceptable range of the gcfm) or running a second, faster model and then

attempting to improve the preliminary results. This particular approach is useful for its

flexibility: if the deadline for action has arrived, then the most-accurate model which

has fully resolved may be used. Finally, the worst-case performance for OpenPedSim is

nonetheless compartmentalized. In the case of a large-scale, unannounced MMOHILS

setup, each individual room will have its own population of users. Large rooms can be

migrated to separate hardware, and corridors can manage supply and demand between

these numerous independent models. Instead of having an upper bound of 80 agents in

total, such a system would have an upper bound of 80 agents per room, which is far

more viable. For these reasons, we expect that the elemental performance of symbiotic

simulation can reach an acceptable level with a modest amount of development effort.

Evaluating the performance of symbiotic decision support for unannounced MMOHILS

is significantly more difficult in this case. For optimistic users, low-resolution models

such as EvacNET have nearly infinite capacity, and should allow a full exploration of

state space even with thousands of users. More pessimistic users might observe the slow

performance of the (high-resolution) OpenPedSim model. Based on our measurements

of real users, we found that symbiotic egress feedback need not be sophisticated to have

a profound effect (see Section 5.1.5), so we tend towards the optimistic opinion. To

this end, we conclude that, unlike MMOHILS in general, reliable symbiotic decision

support will be bound not by the users’ perceptions of consistent world views, but by a
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trade-off between accuracy and resolution. At one end of the spectrum will be models

such as EvacNET, which feature excellent confidence regarding very general, high-level

tactical egress decisions. At the other end will be resource-hungry models such as gcfm,

which provide extremely detailed information about low-level specifics such as physical

movement at the expense of precision. A full breakdown of the real-world performance

characteristics of unannounced MMOHILS is beyond the scope of this thesis, but at

the very least an accurate, coarse-grained level of symbiotic feedback is feasible.

5.1.7 Significance and Conclusions

The library egress study described above was the first simulation study to use MMO-

HILS, as well as the first use of our nascent perennial framework. Regarding the former,

this study helped to confirm the strengths of using real humans in a virtual experimen-

tation environment. This approach allowed us to be flexible in defining the environment

for our study and to maintain a homogeneity with respect to the various validation envi-

ronments. Validation succeeded on all levels, confirming that users in the virtual world

both maintained their roles throughout the simulation and exhibited the physical prop-

erties of actual pedestrians in real-world crowds. Although each run of the MMOHILS

required significantly more resources than a traditional simulation, the data gathered

were of far greater validity. Reconfiguring the simulation to study a different building or

hazard set would also be far easier than re-running a data-gathering exercise with real

users in the physical world.

In addition to its function as a pioneering MMOHILS study, the library egress study

was also a full-fledged perennial simulation of a virtual crisis management exercise.

The purpose of this perennial simulation was to study the effect of symbiotic simula-

tion and agent-specific advice on humans exiting a building. In particular, we showed

that, consistent with our expectations from the literature, users responded positively

to advice in a virtual environment similarly to how they would in the physical world.

Moreover, the consistent decrease in both average egress time and standard deviation

of egress times indicates that symbiotic feedback can optimize even a simple pedestrian

movement exercise such as our experiment. This result was not obvious a priori, and

represents a significant positive aspect of symbiotic simulation when applied to human

egress. Without the perennial simulation framework, it would have been difficult or

impossible to demonstrate this effect. Finally, we performed a series of stress-tests to

gauge the performance of MMOHILS and symbiotic decision support in general. Based

on these measurements and reasonable assumptions, experimental MMOHILS was

found to scale upwards of 100 users, and unannounced MMOHILS could reach several

thousand. World size had no effect on this number. Symbiotic feedback was somewhat
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more limited, depending on the fidelity of information required. High-level tactical in-

formation could be provided at no cost, while microscopic movement details required

clever optimizations after 80 connected users. Middling resolutions could likely scale to

the full size of unannounced MMOHILS; therefore, we conclude that MMOHILS and

symbiotic decision support scale to acceptable levels.

As was previously mentioned, a MMOHILS is merely a perennial simulation set up to

exhibit certain properties. This setup is formally called a niche configuration after its

use in highly targeted studies. Thus, the benefits of MMOHILS reflect positively on the

perennial framework as a whole. In particular, the library egress study demonstrated the

framework’s flexibility in analyzing new scenarios. Sensors, effectors, and simulations

had clearly defined roles, and virtual worlds were used to captilize on the ability to study

a hypothetical building environment rather than requiring a corresponding real-world

location. Operating costs were high compared to a software agent-based simulation, but

were much lower than that of a similar real-world experiment. In addition, the use of a

virtual environment allowed data to be gathered and processed in a simple, streamlined

manner. Re-using the same software at multiple different virtual locations (i.e., when

validating to Daamen’s environments) required little effort and could be carried out

instantaneously. All of these positive aspects come from the specification of MMOHILS

as a niche configuration of the perennial simulation framework.

5.2 Incident Response (Traffic) Study

The second major use-case of the perennial framework was a traffic simulation applied

to investigate incident response on a university campus [163]. This built off our previous

perennial study and provided several key improvements and novelties. Most importantly,

it served as a multi-level study, capable of running foresight or hindsight simulations,

while exhibiting potential for symbiotic decision support via its reliance on vast amounts

of processed real-time data. Additionally, it provided a robust method for interfacing

legacy simulation components with the perennial framework, something which had been

raised as a concern when the framework was first reviewed. This study also provided

some direct inspiration and refinements of the framework proper, such as the history

window and the sensory dependency trees. Finally, a minor point of interest is the

automated image processing algorithm used to mine traffic data from security cameras

in real time (with some caveats, see Section 5.2.3.1).

The simulation created for this study was designed to estimate the time taken by security

vehicles to respond to incidents under different levels of congestion and at different

locations on the campus. Real-world traffic data captured from security cameras were
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used to test the efficacy of dispatching security vehicles to incidents based on their

locations. It is assumed that security officers might alternatively be dispatched on foot,

so the ability to extrapolate current traffic conditions and estimate the time required

to drive to an area of incident is valuable to security personnel. This may serve as

a form of decision support, or may operate through foresight to prepare for possible

traffic incidents. The benefit of using real-time sensor data was offset by the burden

of supporting a legacy traffic simulator which was not designed to interface with our

perennial framework. We demonstrate a method of encapsulating legacy components

which allows them full access to the sensescape while requiring only minor modifications

in the form of boilerplate code.

The incident response study combined many aspects of traditional simulation, such as

a vehicular traffic model and a sensor capable of providing real-time data. The goals

described previously are mostly specific to the perennial framework, particularly the task

of handling legacy simulations. Therefore, this simulation exercise will play out much

like a traditional traffic management simulation, rather than exploring an entirely novel

concept such as MMOHILS. This was an intentional decision, and reflects the nature

of “transitional” perennial simulation projects. As the perennial simulation framework

slowly becomes commonplace, the typical simulation project will treat this framework

more as an “add-on” rather than a centric element of methodology. Even given full

acceptance, most studies will be much more prosaic than Figure 4.1 seems to imply.

Such systems are nonetheless capable of capitalizing on the full benefits of the perennial

simulation framework, and thus it is useful to view this and other transitional studies

with this in mind.

5.2.1 Concise Overview

Responding to incidents on a small, congested road network with a highly variable

capacity is exactly the kind of event that can suffer from a “conglomerate effect” —a

buildup of smaller, non-critical factors that leads to catastrophic failure unless prompt

action is taken [27]. Campus road networks tend to comprise a handful of arterial

roads with a limited number of lanes. If construction or a traffic accident reduces

capacity, then incident response cannot proceed with adequate efficiency, allowing a

mostly benign event to worsen. Dispatching a security vehicle during peak congestion is

ineffectual at best; in the worst case, an incorrect dispatch will cause an officer to become

occupied attempting to service a request he cannot possibly reach. In the meantime,

another (reachable) request may arise, stressing the typically limited resources of security

response teams. Making the right decision based on the current state of the road network

is crucial.
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This combination of mundane incidents with a potential cascading effect is exactly the

kind of scenario that can benefit from symbiotic decision support. When a situation

arises, implementers can run several “What-If?” simulations to determine how best

to respond: by vehicle or by foot. These simulations can capture difficulties such as

congestion due to construction or poor weather conditions. Ultimately, the implementer

must make the final decision, but providing her with a wide range of useful information

about the current situation allows her to make the best possible decision given the

current information. In addition, this decision can be validated later in a hindsight-

focused study.

5.2.2 Perennial Components and Organization

Unlike the previous study, which was required to proceed without a complete framework,

the incident response study had the benefit of a fully-functional framework implemen-

tation. This greatly eased development by clarifying the roadmap and allowing a clean

separation of components. No historical artifacts were introduced by this study.

Perennial components fell broadly into two categories: those which would be part of any

perennial simulation study, and those specifically required for legacy simulation. The

real system comprised a physical world and its Virtual Study counterpart, with camera

feeds used as data sources. A road network model was prepared using a mature traffic

simulation package, and full “What-If?” capability was imparted through the use of

perennial components. The main effector on the system was the implementers’ ability

to dispatch vehicles to response sites; thus, a form of symbiotic feedback was possible. As

stated before, the incident response study featured a strong transitional element. Were

the system to continue in development, one would expect most legacy components to

eventually be rewritten as first-class perennial components so that full symbiotic decision

support could be performed in a streamlined fashion. In this case, symbiotic triggers

would include actual incidents, with the possibility to run preventative simulations to

detect dangerous levels of congestion.

The following subsections will detail each component of the perennial simulation in turn.

5.2.2.1 Traffic System Components

Despite focusing on legacy system compatibility, our traffic system featured several com-

ponents which interacted with the remainder of the system in a manner typical of peren-

nial simulation elements. These include the world and sensors, as well as their associated

history window and dependency tree.
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Target Description

Upper North-west entrance, upper main road and
small roundabout

Round Large roundabout; connects upper, east, and
south main roads

East North-east entrance, east main road

South Southern entrance, south main road, major
traffic light intersection leading to south-east
entrance

SEast South-east entrance, south-east main road,
intersection to two other campus locations
(which are not modeled)

Table 5.2: Targets for the world “virtual.1”.

Our traffic system consists of two worlds, “physical.1” and “virtual.1”. The latter was a

virtual study of the former, and contained five targets as described in Table 5.2. These

targets cover several thoroughfares, intersections, entrances/exits, and roundabouts, and

serve to completely describe the major traffic influences on campus. (Several minor but

essential sources of traffic, such as shuttle buses and city transit, are modeled using

schedules and route maps.) Figure 5.20 depicts each target represented as a combination

of several sensors. These components will be described in more detail in a later section.

Additionally, the traffic study makes use of the history window and sensor dependency

tree —in fact, this is the study which first introduced these two items as necessary

components of the reference implementation. Figure 5.20 depicts a subset of the sensor

dependency tree; the mechanics of these two elements were introduced in complete detail

in Section 4.3.2.3.

5.2.2.2 Traffic system legacy model

The virtual road network was modeled using the “Simulation of Urban Mobility” (SUMO)

package [101]. Running a predictive simulation in SUMO required a road network, a list

of vehicle types, and a list of routes. The road network listed all nodes (intersections,

lane splits and merges) and edges (paths between nodes) in a simple XML format.

Rules on U-turns, number of lanes, lane priorities, and lane usage (e.g., car lanes versus

bus lanes) are all specified as properties of edges or through the use of connections

(specialization templates describing what happens when two edges meet). In addition,

bus stops are represented by automatically segmenting an edge at a given point. Buses

themselves require additional logic in the vehicle types list to make proper use of bus

stop edges.
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To obtain the aforelisted road network data, a variety of GIS data sources were combined,

with Open Street Map providing the bulk of the road network [164]. Particularly tricky

sections of the road network were sketched, paced, and modeled manually. Figure 5.20

presents just such an example: the roundabout connecting the campus’s three major

roadways, with cars represented in silver, taxis in blue, and shuttles in orange. Since

SUMO expects traffic to flow on the right (and in Singapore the reverse is true), the

road network was flipped about the Y-axis before being sent to the simulation engine.

Care was taken to ensure that this did not lead to an invalid model; see Section 5.2.4

on validation. Only one intersection had a traffic signal; its timing was extracted from

camera footage at that location.

Figure 5.20: Left : The main roundabout on campus, with various vehicles navigating
it. Dashed arrows indicate the direction of traffic flow. Small 2-lane segments compli-
cate this location. Right : The roundabout camera’s sensor dependency tree. Squares

(colored yellow) represent “leaf” sensors, which must be processed first.

Vehicles were grouped into categories with similar properties. Cars, taxis, motorcycles,

and trucks each had different driving behavior characteristics as defined in [99], which

were found to be consistent with our observed traffic data. City buses and campus

shuttles functioned as larger vehicles with the additional property of periodically stop-

ping to pick up and release pedestrian passengers. A vehicle’s behavior was modified by

the driver’s imperfection parameter; this is a common technique for introducing driver

variability into traffic models.

The route list was generated each time a “What-If?” simulation was requested by the

controller. As explained below, each simulation run could avail itself of a series of arrival

times and route choices for each sensor location. Buses and shuttles were generated first,

as they appeared on a regular schedule. For each bus or shuttle arrival, the nearest arrival

time from the input data was tagged as being a public transport vehicle, and given a

predefined route including bus stops. Then, the remaining entrance arrivals were tagged
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as one of the remaining vehicle types. Each of these types was given a route based on

the observed node choice probability at each intersection.

Before continuing to describe the system, it is worth reflecting for a moment on SUMO’s

role as a legacy simulation component. As previously mentioned, the SUMO traffic

simulation toolkit was chosen over more prominent traffic simulation packages for a

variety of reasons. First, Krauss’s work is sound, rigorous, and fully validated. Second,

it fits both requirements of a “legacy” model: it is not an agent-based model, and it

cannot be run in real-time in discrete time-steps4. Therefore, Krauss’s model is an

ideal example of a high-quality legacy model that one might wish to incorporate into a

perennial simulation. Using a model which is specifically incompatible as a first-class

perennial element proves the point that our legacy integration approach works.

5.2.3 Introduction to Image Processing

Video footage from security cameras was mined for traffic data, using techniques bor-

rowed from the fields of image processing and information retrieval. As this is an an-

cillary activity and tangential to the field of simulation, a brief introduction to image

information extraction will be presented in this section. This should not be taken as a

representative literature review, since it will only cover the specific technologies we chose

for our implementation and a few prominent alternatives. The actual image processing

pipeline used for information extraction will be detailed in Section 5.2.3.1.

Several independent steps are required to extract vehicle data from a series of video

frames. Background elimination, edge detection, and object labeling are universal, al-

though various intermediate filtering steps are also commonly used to refine the process

[165]. The simplest approaches are region based, and perform well on low to medium

levels of congestion. For heavy or overlapping traffic, a more powerful algorithm is re-

quired that tracks the features of an individual vehicle [166], or attempts to project 3-D

models of existing vehicles onto the video footage and thus form a match [167]. Both

of these approaches, while certainly more sophisticated, have their own caveats as well;

the former is difficult to implement and time-intensive to tune, while the latter requires

the modeler to have existing 3-D models of all potential vehicles in the system.

Early work in automated traffic-related image processing focused on identifying traffic

violations and congestion, with little thought given to using the mined data as input into

a real-time simulation. As the field matured, mined traffic data were used in a broader

4In fact, SUMO does use a discrete timer, but the dynamic user assignment strategies require multiple
simulation runs to reach equilibrium, and thus cannot be performed in lock step with real time.
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range of endeavors, especially automated signal control. A good example of this sub-

domain is [168], which studies the possibility of controlling traffic signals dynamically in

response to actual traffic data. DDDAS is leveraged to predict the optimal traffic signal

patterns in a series of complex intersections. The author implies that traffic cameras will

provide the input data, but it is unclear how much of this is actually occurring in real-

time. The study is notable for its emphasis on modern techniques such as DDDAS and

the SOA; the latter was introduced in Section 2.1.1 as a means of achieving simulation

interoperability. Unfortunately, modern studies will often suffer from a form of myopia:

[169], for example, attempts to dynamically adjust traffic signals, but makes no appeal

to real-time data or symbiotic response.

Our work relies heavily on the ViBe background elimination algorithm [170] and Per-

reault’s median filter [171]. ViBe is notable for its performance, resistance to camera

jitter, and modest requirement of only a single frame of startup data. Perreault’s ap-

proach uses an array of past kernel values to compute each pixel’s filtered value in

constant time with respect to kernel size. Using these techniques, we chose to create

our own region-based tracking algorithm. Region-based tracking seemed acceptable, as

our traffic network experienced only moderate levels of congestion. Unlike most re-

lated work, our footage comes from security cameras, which are often badly positioned

with respect to traffic. This presents a challenge to our object tracking algorithm, and

ultimately puts a limit on the quality of the data that can be provided to our simulation.

5.2.3.1 Image Processing Pipeline

One week’s worth of traffic footage, recorded daily from 3pm till 4pm, was processed

to retrieve the arrival time, estimated velocity, and on-screen entrance of each vehicle

that passed within range of each camera. Available to this algorithm was a list of

entrance locations (in screen co-ordinates), the distance of each possible route through

that location, and a mask image which was generated by hand to help reduce the impact

of static noise sources, such as nearby highways, trees blowing in the breeze, or busy

pedestrian crossings.

The image processor was implemented as a series of GStreamer plugins. GStreamer is

a multimedia processing framework built around the idea of a software pipeline. Audio

and video streams flow from sources through a series of mutative nodes until they

reach a sink and terminate. This approach is highly flexible and, as we shall see later,

capable of being parallelized.

The complete image processing pipeline, presented in Figure 5.21, is broken into four

phases. First, the input phase reads a source MPEG file, removes the audio track, and
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balances the video stream. Next, the filter phase applies a mask to each frame, followed

by the ViBe background eliminator and finally Perreault’s median filter. The filtered

video stream is then duplicated. The display phase operates on one copy of the stream

and simply presents the candidate objects to the user. Figure 5.22 shows a sample frame

from the display phase. Finally, the identification phase converts the colorspace from

YUV to RGB, and performs segmentation, object identification, and object tracking in

that order. After each object exits the camera’s field of view, its path and traversal

information are saved to a flat file.

Figure 5.21: GStreamer pipeline for our image processing algorithm, with sources
and sinks as rounded rectangles. “Default” plugins are provided by GStreamer; the

“Custom” plugins were programmed as part of development.

The segmentation algorithm we used grouped together pixels which shared a common

minimum threshold number of neighbor pixels. Object identification was performed by

first checking if each segment’s area was above some minimum value. If so, the segment

was promoted to an object. If not, the segment was conditionally promoted depending

on the histogram of color values it contained, under the assumption that vehicles tended

to contain narrower histograms than other moving objects like pedestrians. Finally, the

object tracking algorithm operated in two steps. First, new objects were detected by

checking if they overlapped one of the entrance locations. Second, objects from the

previous time-step were compared against objects in the current time-step by size and

position; the nearest match became part of a “tracked” object. When a tracked object

overlapped an exit location, the tracking of that object was considered complete.

When operating on real-world data, the system exhibited a few weaknesses. First, the

traffic cameras had a tendency to shake in the wind, and were prone to temporary fluctu-

ations in their histograms. ViBe was capable of filtering out either of these individually.

If both occurred at the same time, however, they resulted in a small number of frames

consisting solely of numerous fragmented artifacts. Second, a car’s windows tended to

be marked and eliminated along with the background, which would occasionally cause

the segmentation algorithm to split a car into four or five separate pieces. Figure 5.22

depicts an example of this false segmentation; in this case, the object tracking algorithm
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Figure 5.22: Left : Output of the GStreamer X Image Sink node; possible objects are
highlighted in pink. A pedestrian (left) will be removed in the “object identification”
phase. Right : Screenshot of image tracking system, showing a false segmentation: the

two marked nodes are actually part of the same car.

was able to recover, but if the false segmentation continued for several frames, or if two

cars overlapped during a timespan with high background noise, then the image tracking

information would need to be manually corrected.

5.2.4 Verification, Validation, and Calibration

The incident response study required a great deal of manual verification effort. One po-

tential source of uncertainty was the use of a right-side driving traffic simulator (SUMO)

with a left-side driving road network. To this end, the output of several traffic runs at

each congestion level was analyzed at one-second intervals to ensure that vehicles did not

skip road segments, take abnormally long paths, or engage in other incorrect behavior.

In addition, SUMO’s capacity to operate at high levels of congestion was confirmed by

checking that vehicles did not enter the road network until space was available for them,

and that vehicles did not exhibit “collision-like” behavior at intersections. Many traffic

simulators including SUMO introduce a collision-free driving model that force-brakes

any vehicle which would otherwise engender a collision. This leads to rapid deceleration

which is beyond the physical capacity of a real vehicle’s braking system, and represents

an error.

Another time-consuming area of verification involved the automated image processing

algorithm used to extract traffic patterns. The potential for inaccuracy was first quan-

tified automatically by counting the number of frames with fragmentation artifacts and

classifying them by their severity. An artifact in this context refers to a segmented region
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Classification Threshold % Frames

Negligible NI ≤ 5 ∨ NO = 0 89.14%

Mild 5 < NI ≤ 10 ∧ NO ≤ 2 9.0%

Severe NI > 10 ∨ NO > 2 1.86%

Table 5.3: Frame artifact errors by category

Category % Objects Affected

Erroneous Tracking 3.42%

Split 11.12%

Total 14.53%

Correct Initially Correct 65.99%

Recoverable Errors 19.48%

Total 85.47%

Table 5.4: Percent of object identification errors by category

of one input frame which has corresponding region in the previous or following frames.

Table 5.3 lists the percentage of frames with negligible, mild, and severe fragmenta-

tion, as well as defining each category. NI and NO in this table refer to the number

of artifacts existing in an isolated area of the image versus overlapping a non-artifact,

respectively.

Any frame with mild or severe artifact fragmentation could conceivably interfere with

the detection of zero, some, or all of the objects which appeared in that frame. A sample

frame with this issue is shown in Figure 5.22. Thus, although Table 5.3 provides a good

approximation of the scope of the error in the system, extrapolating this data to arrive at

the actual errors in object detection was impossible, and verification proceeded manually

for the next phase. For each one-hour video stream, the number and types of vehicles

tagged by the image processing algorithm was compared to a list enumerated by hand.

We observed two primary types of errors. A tracking error occurred when an artifact

was incorrectly identified as an object for one frame, thus affecting the perceived route

of the vehicle through the recorded area. A split error occurred when an object was

artificially split into several artifacts for one frame. In this case, the image processing

algorithm was unable to detect that multiple artifacts should be aggregated to form one

resultant object. Table 5.4 lists our results; in total, 85.47% of vehicles were correctly

identified. In some case, a single-frame error was detected and corrected (by skipping

that frame and interpolating the frames before and after); these do not count towards the

error total and instead are listed as “recoverable”. All errors were manually corrected

prior to running the simulation.

Once it had been established that our image detection algorithm and mirroring of the
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road network performed as intended, validation efforts could proceed. Estimations of

input data, where applicable, were accurate with p<0.01. Vehicle inter-arrival time was

exponential in nature, while intersection choice behavior tended to be uniform. To ensure

that SUMO processed the road network accurately, a scenario matching the recorded

data points was set up and run to completion. As expected, individual vehicles did not

exactly match the recorded data at all time points, but overall congestion levels were

closely matched on road segments which fell within the recorded zones.

Validation of the incident response zones described in Section 5.2.5 was also performed.

Since we relied on existing vehicles rather than injecting patrol cars directly into the

network, there was a risk of sparse data leading to inaccurate response radii. To check

this, we ran a series of simulations that flooded the network, and generated a count

of the maximum number of vehicles that could exist on each road segment. Then, we

compared this number to the actual number of vehicles per segment during a simulation

run, ensuring that roughly the same proportion of maximum capacity was utilized per

road segment at any point in time. This provided a small but helpful level of validity in

asserting that incident response zones were not adversely affected by outliers.

5.2.5 Structure of Experiments

Three areas were analyzed for congestion. Region A was centrally located near the

main campus roundabout, while Region B and Region C were located near the edge

of the campus. To alter congestion levels, the inverse of the mean inter-arrival time

was modified by a constant factor at each entrance, while route choice probabilities at

each node remained unchanged. We refer to this scaling of origin-destination pairs as a

“congestion factor”. Twenty experiments were run at each region, with a total of four

congestion factors analyzed. For each of these experiments, an incident was introduced

into the simulator at the same point in time.

When an incident entered the system, the controller immediately responded by spawning

off a series of “What-If?” simulations with the goal of measuring the time it would take

for a vehicle to respond to that scenario from any point on the campus road network.

Approximately thirty of these simulations were required to reach an acceptable error

threshold. As the traffic network continued to update during this period, it was essential

that “What-If?” analysis concluded speedily. Thus, each simulation scenario was run

in its own thread, and its input and output were encapsulated into a scenario file that

allowed it to run on any computer in the local network. Fortunately, SUMO can process

road networks fairly quickly, so a single multi-core machine was sufficient to complete

the “What-If?” activity within a few minutes.
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The “What-If?” experiments were then combined to form a “response radius” for each

scenario. Any vehicle which could reach the area of incident within a given time limit

was considered within the response radius. For example, Figure 5.23 depicts the average

(plus variance) response radius around all three areas, with a graphical representation of

Region A’s response time of 60s at a congestion level of 1.0. Based on our assumption

that incidents will be responded to by security personnel who are currently on patrol,

we do not inject cars into the simulation when an incident occurs. Rather, we simply

track all existing vehicles throughout the time limit, and flag which ones pass through

the area of incident. This creates an approximation of the response radius, and repeated

simulations under similar conditions increase the accuracy of this approximation.

5.2.6 Discussion of Results

Figure 5.23 shows the effect of congestion on the response radius. Region A’s response

radius decreased slightly as congestion increased, but remained relatively unaffected

overall. This is likely due to its central location near the intersection of three major

roadways. Regions B and C each noticed a steady drop in response radius as congestion

increased, reflecting the remoteness of these locations and their subsequent vulnerability

to increased congestion. Region B’s response radius plummeted under a congestion

factor of 2.0, which is particularly troubling as 2.0 only represents a medium-high level

of congestion. Recall that the default congestion factor of 1.0 was extracted from non-

peak traffic patterns from 3pm till 4pm.

Figure 5.23: Left : Campus road network, with three regions marked A, B, and C.
Region A’s incident response radius and variance are depicted for congestion factor 1.0.
Right : Mean response radius (± 1 standard deviation) for each region under different

congestion factors (scaled O/D arrival rates).

The data gathered express their value in their applicability to various knowledge ac-

quisition tasks. Predicting that a central location like A is easier to reach than the

others is obvious, but discerning between Regions B and C (which both seemed equally
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remote, but had different response radii) was a valuable addition to the pool of total

information available to dispatch personnel. As the complexity of the road network in-

creases, the ability to back up “obvious” statements with actual experimental evidence

becomes essential. Regarding the image processing algorithm, performance was accept-

able for real-time operation, and all of the image processing pipeline’s shortcomings

have straightforward workarounds which are discussed in [163]. Thus, it is reasonable

to assume that it could run unattended in real time. This combined with the very

nature of the perennial simulation framework would allow campus security administra-

tors the ability to run “What-If?” simulations on the traffic network during any given

period of congestion. This would be invaluable for training, where the presence of a

simulation-based “arbiter” removes a substantial amount of guesswork [22].

In addition to the data gathered for reasoning about the road network, the integration

of a legacy simulation into the perennial framework was also a marked success. The

legacy model was cleanly incorporated into the framework through the use of inheritance,

thus giving it access to all real-time and historical sensor information. For foresight or

hindsight studies (including “What-If?” analyses), this was sufficient. Non-symbiotic

decision support is possible with minor modifications to the image processing algorithm.

The only feature unavailable would be real-time symbiotic decision support, and this is a

limitation of legacy models in general rather than a weakness of the perennial framework.

In the case of SUMO, for example, absolute positioning of cars is technically possible,

but there is a risk that inserting cars directly might invalidate some of the modeling

assumptions of the various traffic movement models. In addition, placing cars directly

would require guessing their routes based on their previous locations. These problems

are by no means intractable; rather, they serve to illustrate the boundaries that one

invariably ends up pushing against when attempting to shoe-horn a legacy model into

a modern framework. Were these limitations to be overcome, SUMO could exist as a

first-class perennial simulation component.

5.2.7 Comparison to Non-Perennial Methods

The traffic incident system was further enhanced in an attempt to answer the question

of how perennial simulation compares to traditional simulation-guided preparedness.

As noted in Section 4.2.7, traditional simulation is the technology which fulfils the

most similar role to perennial simulation without being encumbered by unnecessary

restrictions (such as with symbiotic simulation or the HLA). We judged that perennial

simulation’s real-time decision support capabilities should provide the greatest benefit

and thereby confer the strongest justification for the framework itself.
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The basic structure of our comparison study was a simplified version of the incident study

from Section 5.2.5. Traffic accumulates and propagates through a road network. At some

point an incident occurs, and security personnel (playing the role of Implementers) must

decide whether to dispatch officers in a vehicle or by foot. Walking is generally slower

than driving, unless congestion is throttling the network. Thus, the ability to dispatch

the correct mode of transport is critical to the officers arriving on time and pacifying the

situation. For simplicity’s sake, we estimated an arrival time of 240s as the maximum

time an officer would take to arrive by foot. The Implementers are assumed to have

a large amount of historical data on network congestion and its effect on trip time.

Perennial simulation adds the ability for Implementers to perform runtime queries at the

time of incident using up-to-the-minute road network data. The quality of information

added by perennial simulation over traditional simulation is judged by its ability to

avoid false positives (dispatch by foot when vehicles would have arrived on time) and

true negatives (dispatching a vehicle that won’t actually arrive on time).

Figure 5.24: Screenshot of the enlarged area network running in the MITSIM X11
visualizer, rotated to 45◦. Various key roads have been labeled.

The road network from our previous study was enlarged to better capture the cascading

effect of congestion over time. This was accomplished using geo-spatial data retrieved

from OpenStreetMap [164], with cleanup performed against a variety of third-party

sources such as Google Maps. Figure 5.24 depicts our expanded network in the visu-

alizer for MITSIM. This traffic simulator, which is part of the MITSIMLab simulation

package discussed in Section 3.7, features a powerful microscopic movement model that
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incorporates driver reaction time, allows individualistic route assignment, and has ad-

vanced traffic management system controls. MITSIM contains a much broader feature

set than SUMO; thus, we considered it more appropriate for our task of performing

predictive analyses in a complicated, realistic scenario. Traffic demand was increased

proportionally for the origin and destination nodes which were present in the original

study, while the remaining candidate nodes received a fraction of this value based on

the given roadway’s lane count and total length. MITSIM uses “congestion factors” to

increase demand proportionally; demand was thus adjusted so that a congestion factor

of 1.0 represented the mild traffic observed from security camera feeds. Congestion was

increased up to a factor of 3.8, at which point traffic jams rendered the entire roadway

unnavigable. Compared to our original study, several simplifying decisions were made.

First, traffic lights were not modeled explicitly; instead, demand was decreased in timed

intervals to account for their presence. Second, security vehicles were dispatched from

a single origin to a single destination, in order to maintain consistent, comparable data

on congestion levels. These locations are marked on Figure 5.24, in addition to the

three roadways (C1, C2, and C3) which present congestion information to Implementers.

Third, security personnel moving by foot were advanced using a linear time movement

model, assuming that such personnel would be unaffected by sidewalk crowds. Several

distributions of officers’ starting locations were simulated to determine the upper bound

on arrival time of 240s, at which point this value was simply used as a threshold on the

drivers’ arrival times. Finally, the MITSIM road network required the same horizontal

axis modification used earlier in Section 5.2.2.2.

Evaluating the benefits of perennial simulation required us to measure the effect of

new information on Implementers at the time of an incident. From existing research,

we know that Implementers would likely maintain their decision-making capabilities

even through stressful situations [138]. In addition, we feel they are likely to respond

positively to simulation-generated advice, based on our own research into symbiotic

decision support as well as existing research such as [136] and [137]. Based on this, we

chose to model the Implementers’ role in this comparison study using decision trees. A

decision tree is a directed, acyclic graph used to formalize concepts in decision-support

analysis. Decision trees represent decision points and the criteria for moving between

them using traditional graph vertices and edges. They are a useful tool for presenting

decisions in a way that experts can grasp while still remaining readily accessible to

programmers. As such, they typically manifest a high level of credibility, and ease

validation of expert roles within a simulation study [172] [173]. Figure 5.25 depicts the

decision tree used to represent the Implementers’ decision-making process. At the time

of incident, an Implementer must choose whether to dispatch security personnel by foot

or by vehicle. The current congestion levels for two major roadways along the shortest
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driving route are known to Implementers. These are expressed as vehicle density values

C1 and C2, and are sufficient for determining the appropriate reaction. As shown in

Figure 5.25, values of C1 outside the range of 27 to 45 present only one option. For the

remaining values, C2 can completely describe a solution unless it is between 54 and 72.

For the slim number of cases in which C1 and C2 fall within both ranges (which account

for only 8.27% of our training data), an appeal is made to perennial simulation. Several

“What-If?” scenarios are run, and are classified according to the summed squared

difference between C1 and C2 in the current situation versus the “What-If?” analysis.

The resultant travel times of the various “What-If?” scenarios are weighted by this

sum, and are further scaled by a small amount to represent humans’ tendency towards

optimistic and emotional bias. Scenarios which predict success are weighted higher,

while failure predictors receive less weight. The scenarios are then averaged to provide

a general recommendation: either dispatch drivers (PS(D)) or walkers (PS(W )). The

Implementers will follow this advice, unless it is unavailable (PS(∅)), in which case they

will use the best estimate from historical data, and dispatch a driver if C2 is less than

69 and a walker otherwise.

Figure 5.25: Decision tree representing incident response strategy on the larger road
network. Nodes marked with a “D” or “W” indicate a decision to drive or walk to the

location of incident.

The constants in Figure 5.25 were estimated from a set of 3000 vehicle traces at various

congestion factors ranging from 1.0 (normal congestion) to 3.8 (very congested). For

each vehicle trace, the values C1, C2, and C3 were known, as was the total trip time in

seconds. Although undesirable, false positives are considered less damaging than true

negatives, as the latter leads to a situation where no security personnel reach the area of

incident in time. As such, false positives received half the weight of true negatives when

assessing the severity of an incorrect incident response. Figure 5.26 contains a plot of

trip time for each congestion parameter, as well as for the combined sum of congestion,

for reference. C1 is a strong indicator of trip time, and C2 is nearly as accurate. C3

suffers from artifacts typical to MITSIM for short, straight road segments, leading to a
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striated pattern. In addition, its predictive power is comparatively weak, most likely due

to its location far downstream from the security vehicle’s origin. Further analysis of the

data led us to conclude that C1 provides the most stable indicator of trip arrival time,

with C2 covering the areas where C1 is not consistent. For some combinations of C1

and C2, it was impossible to predict success or failure with an accuracy 10% better than

chance. These situations were expected to benefit the most from perennial simulation.

Figure 5.26: Data used to train the decision tree. From left to right, top to bottom:
congestion parameters C1, C2, and C3, as well as the sum total of all three parameters.

The data used to estimate the parameters in the Implementers’ decision tree are assumed

to be free from error, as any real-world application of such a system will be required

to manually ensure that training data are correct. At the time of crisis, however, un-

certainty will perturb the data presented to the Implementers and thus disrupt their

ability to make accurate decisions. We assume that an error estimate will be known to

the Implementers at runtime. This assumption is reasonable, since building a decision

tree in the first place will require manually correcting data, so the amount of error can

be estimated based on the error of the data that was cleaned for this purpose. For most

scenarios, the error value will not perturb the congestion levels enough to affect the

results of the decision tree. At times, however, multiple conflicting decisions will be pre-

sented to Implementers, who must then rely on their intuition to make the final decision.

For traditional simulation, this means that they will choose to employ what worked well
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in similar past scenarios. In a perennial environment, however, several “What-If?” sim-

ulations can be run, using a Monte Carlo sampling method across the possible values of

each congestion parameter with the given error value. Once this is done, the scenario re-

sults are combined into a single recommendation (to dispatch drivers or walkers) which

the Implementers will put into action. Regardless of their path through the decision

tree, their choice will then be evaluated by the network simulator, to confirm whether

or not their expectations matched reality.

Figure 5.27: Improvement offered by perennial simulation in the Control scenarios.

Figure 5.28: Improvement offered by perennial simulation in the Testing scenarios.

Figures 5.27 and 5.28 depict our results for the Control and Testing scenarios, respec-

tively. Each scenario varied the uncertainty from 0.0 up to 0.1, distorting the reported

values of C1 and C2 with uniform likelihood. If these two parameters led to a definitive
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answer from the decision tree, they were placed in the Control category —and were not

considered likely to benefit from perennial simulation. All other cases were expected

to benefit, and were placed in the Testing category. 47,000 simulation traces of dis-

patched vehicles were sampled, and the decrease in false positives and true negatives

were recorded, as shown in the graphs. In addition, the combined improvement is rep-

resented as a green line with circles, and is considered the most accurate measure of the

perennial system’s efficacy.

As shown in Figure 5.27, the Control group featured a general overall improvement and

better true negative avoidance, both of which hovered around 1.8 to 3.2%. False positive

avoidance generally remained positive, and had no real impact on the overall performance

of the system. These results are typical of what one would expect with a control group

—the use of perennial simulation in cases where it is not strictly needed does not offer a

significant improvement over traditional simulation methods. As uncertainty increases,

both systems experience the same degradation in predictive power (not shown in the

graphs), so the benefit remains roughly unaffected. Incidentally, we were surprised to

find that perennial simulation improves over traditional methods at all in this case. A

3% improvement does not justify the cost of setting up a perennial simulation, but if the

system is already present for the Testing cases, then Implementers may take advantage

of the system in mundane cases as well.

Figure 5.28 captures the essence of perennial simulation’s improvement in the Testing

group. Recall that entities in this group are necessarily difficult to reason about, even

if information is perfect. In this case, perennial simulation incurred a slight penalty in

terms of false positives, but countered this with a large improvement in true negative

reduction. The overall trend line is positive, and increases from 4.0% to 7.2% as uncer-

tainty increases. In other words, the perennial simulation is more than twice as good at

reducing error rates than it was in the Control group, and this predictive power func-

tions acceptably when faced with data uncertainty. It compensates by dispatching more

vehicles than are strictly necessary, but as stated before, true negatives are sufficiently

more damaging than false positive to justify this, and the overall trend line remains

positive. Eventually, too much error will perturb the results and lead to far more false

positives, dragging the trend line downwards. This is not shown, as an error rate of 0.1

is already considerably noisy, and simulation should generally not be relied upon if the

input data does not satisfy a minimum required level of precision.

The nature of the improvement gained by perennial simulation merits further discussion.

First, the Control group exhibited greatly improved control over true negatives, with

no corresponding effect on false positives. This indicates that the decision tree used to
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represent the Implementers’ decision-making process could benefit from the incorpora-

tion of feedback from a perennial simulation. This reflects well on perennial simulation:

even for clear-cut, seemingly-obvious decisions in a highly-correlated decision space, the

application of perennial simulation techniques allows one to glean slightly more informa-

tion and make an overall better decision. Next, we consider the trend of worsening false

positives in return for better true negatives and overall better predictive performance.

In this case, the weighting factors chosen for positive and negative information were de-

termined statically, mostly because the Implementers’ reasoning process was necessarily

abstracted. However, in a real system perennial simulation offers Implementers the abil-

ity to reason about the consequences of their actions and change their partial utility

metrics dynamically. For example, in a high-risk security scenario, the Implementer

may choose to ascribe no cost to false positives up to a given threshold, in which case

our system could reasonably be expected to boost performance by 12 to 15% or more

with only minor tuning. The ability to incorporate Implementers in the loop is one of

the key strengths of perennial simulation. Finally, we would stress that, even though the

results obtained were clearly positive, the abundance of perennial simulation’s benefit is

difficult to accurately quantify. Our attempt with these scenarios was to try to compare

perennial simulation to the “next best thing” available to crisis managers, and to that

extend these experiments succeeded. However, a gain in predictive performance is only a

small portion of the true potential benefit that perennial simulation has to offer. Future

work may yield better quantifiers, but it would be unwise to depreciate the qualitative

aspects of the framework.

5.2.8 Significance and Conclusions

The perennial simulation framework was again leveraged to provide increased modeling

flexibility, this time for an incident response study carried out on a traffic network of

a university campus. Similar to the previous example, the cost of development was

slightly higher using the perennial framework, but the time spent was far outweighed

by the benefit in creating opportunities for hindsight and foresight, as well as easy

management of “What-If?” analyses. The model chosen for this study was a “legacy

model” not originally designed to work within a perennial context, yet this limitation

was partially overcome using a very simple inheritance abstraction.

The benefits of enabling legacy interaction with a perennial system were manifold. The

legacy model now was able to access the complex network of sensors that the perennial

framework organizes, which simplified the reuse of historical input data. In addition, the

incorporation of real-time video data was now possible, although in practice our image

processing algorithm lacked the required precision for this. Interaction between the
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physical world and its virtual study equivalent was clearly delineated and presented no

conceptual obstacles. Unfortunately, legacy models cannot directly be used for symbiotic

simulation within the perennial framework. By definition, their lack of agents and a

discrete time step complicates their application to decision-support tasks. However,

if a non-legacy model were to be connected to the system, that model could benefit

from spawning “What-If?” analyses using the traffic legacy model for cross-validation.

This is the surest way to enable symbiotic decision support, thus striking a balance

between accuracy and development cost. One final benefit was noticed during the design

stage: the system was significantly easier both to plan and develop, since the perennial

framework handled most of the difficulty of managing sensors and worlds.

The traffic study was further expanded to provide a comparison between perennial sim-

ulation and the most similar existing technique: traditional simulation. The decision-

making process of the Implementers was modeled, and and increase in predictive power

was recorded for the perennial scenario. This predictive power functioned well regardless

of the uncertainty level, and even provided some benefit to seemingly-trivial cases in the

control group as well.

The traffic simulation study we performed demonstrated the tradeoffs between high con-

gestion and response to security incidents. The system designed for this task used traffic

data extracted from cameras, which leads to the possibility of estimating a response ra-

dius during the event of an actual incident. Overall, our approach for automatically

extracting traffic data from an existing network of security cameras was a success. Man-

ual processing of camera data was required, but most of this was due to minor issues that

the system could, in time, be tuned to automatically avoid. Processing could be per-

formed efficiently, and using a pipelined system opened up the possibility of parallelizing

each processing step, most likely leading to a boost in performance.

5.3 Building Monitor Prototype

The third study carried out with the perennial simulation framework was a prototypi-

cal application of an automatic building monitor system (or “smart building”) and its

use to aid full building sweeps in the event of a crisis [174]. Using “sweep teams” to

search every room in a building is a common tactic when all building occupants must

be informed of the need to evacuate. These teams are often forced to operate under

tight time constraints, and must rely on limited two-way radio communication and even

simple heuristics such as closing doors once rooms have been cleared [175]. Recent ad-

vances in sensor network technology allow easy monitoring of an entire building through

communicating motes; the Indriya sensor network testbed is an example of just such a
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system [176]. We targeted this existing physical system to test the construction of a pro-

totype that could leverage the perennial simulation framework to provide an abundance

of information to sweep teams tasked with notifying the entire building’s occupants.

Unlike the previous two studies, which also served as classical simulation studies in

their own right, the building monitor study was intended to function as a prototype

application of our perennial framework with actual real-world systems in mind. In other

words, the goal of this study was to explore the creation of the system itself, rather than

to investigate some ulterior prospect (such as the benefit of symbiotic advice or the use of

legacy systems). At the same time, where previous studies assumed perfect knowledge

as a means of advancing to the actual experiments as quickly as possible, this study

specifically bound itself to existing, working technology. A virtual world was still used to

ease development, but the goal was that, by mirroring a real building, the modifications

necessary to realize this system physically would be simple and straightforward.

5.3.1 Concise Overview

Interior environments such as buildings offer a unique challenge to crisis management,

as they feature both dense populations and relative isolation between groups. This risks

reducing the effect of intervention strategies, as many crisis management tasks rely on

informing as many people as possible of some key notification. The obvious example

would be a notification to evacuate, but as the first experiment involved the task of

egress we will focus instead on another facet of building notification. Consider zoned

quarantine, a form of social distancing that can work to limit the spread of infectious

diseases [177] [4]. Research data indicate that, generally speaking, quarantines are more

effective if enacted early, and then only if an overwhelming the majority of individuals

adhere to the restrictions imposed by the quarantine [178]. Related research confirms

that people are more likely to follow advice in a crisis if it is given by a human authority

figure [43]. Thus, using teams of notifiers who physically patrol the entire building

informing occupants of the intent to quarantine maximizes the chances that such orders

will be received, understood, and followed by all. Despite this benefit, notification teams

present their own challenges, mostly due to the time-intensive nature of building sweeps.

Personnel posted at building entrances can inform anyone wishing to enter the building,

but this will not prevent occupants already inside from blithely changing locations within

the building. In such cases, the notification teams must backtrack to ensure that as many

people are informed as possible. As the number of buildings or layout complexity of each

increases, this task will quickly overwhelm the human capacity for planning.



Chapter 5. Experimental Studies and Results 139

To deal with the complexities of this task, we propose using a network of low fidelity

sensors to detect building occupant presence in real-time, coupled with “What-If?” sim-

ulations to optimize the dispatch of notification teams throughout the building. Various

sensing nodes in the building’s sensor network will relay readings which can be combined

to form an overall picture of the building’s current occupancy. Small teams will be as-

signed routes to trace through the building, informing occupants on a per-room basis. If

a room’s sensors detect unexpected activity, nearby teams will either be rerouted or split

and sent to investigate the potential source of new occupants to notify. This symbiotic

feedback loop will ensure that as many people are notified as possible, while minimizing

the time required to notify the entire building.

5.3.2 Perennial Components and Organization

The elements of perennial simulation included a variety of sensors, models, and simula-

tions. The target environment was the Indriya sensor network testbed, an experimental

sensor network under development at the National University of Singapore (NUS). The

building monitor prototype was targeted at a virtual study of this environment, which

would allow swapping of physical sensors with their virtual equivalents, and the intro-

duction of estimations for rooms with no sensors. Thus, the concept of a virtual study

proves its viability for a third time, as it enabled rapid construction of a prototype while

still remaining true to the original system.

The Indriya network operates across three floors of the COM1 building at NUS. We

chose to focus on the first floor of the building, because of its greater sensor density com-

pared to the basement, and its more interesting geometry compared to the second floor.

The layout of this floor, marked with the locations of SBT80 sensing nodes, is depicted

in Figure 5.29. The most interesting area is the winding thoroughfare which extends

from the entrance past the Technical Services Desk to the back staircase. Sensors for this

room were simulated individually and used to build a picture of the room’s occupancy

at any given time. This combined indication of a room’s total occupancy is a type of

agglomerated data, which was first introduced in Chapter 4. Such information exists as

the property of its own unique sensor, which can be loaded from history independent of

its constituent sensors as a means of increasing performance. This is exactly what we

did for the cluster of sensors (61, 62, and 65) near the south-east side of the building.

Finally, several estimation sensors were created for the rooms with no sensors, which

may or may not have contained Telos B motes; these rooms are shaded in Figure 5.29.

The Indriya sensor network is under continuous expansion5, so it seemed reasonable

5The latest update increased the sensor count from 127 to 139 nodes; however, at the time of publi-
cation, the corresponding documentation had not been similarly updated.
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to assume that more rooms would receive presence-sensing SBT80 boards in the future.

In the event that this does not happen, the current presence estimators could easily be

removed from the sensescape.

Figure 5.29: Layout of sensors in COM1, floor 1. Not shown are non-sensing nodes,
which are used for processing or passing data through the sensor network.

5.3.2.1 Real System

Several different categories of sensors are used to form the overall picture of building

occupancy; they will now be described in turn. The most logical place to start is with

the Telos B motes which form the bulk of the Indriya network’s sensing capacity.

The sensor network is composed of 127 Telos B motes connected through the TinyOS

operating system. Each mote may have an attached sensor: either a Wi-Eye (infrared)

sensor or an SBT80 multi-modal sensor. For the purpose of this study, we chose to

focus on the SBT80 sensors, which offered a more interesting opportunity to combine

sensor inputs, and were also more numerous within the Indriya framework. Figure 5.29

depicts the locations of Telos B motes with SBT80 sensors within the first floor of the

target building.

The SBT80 sensors provide output for six distinct sensor types [179]. Table 5.5 lists these

types along with each sensor’s output range and effective sensing range. Internally, each

sensor outputs a value between 0 and 4096, which sets a bound on the precision one can

expect from these sensors. Sensors can update at 30 ms intervals, although propagation

through the sensor network itself will limit this frequency. Data were captured from

the following four sensors. The visual light sensor can detect electromagnetic radiation

with a wavelength of 350 to 750 nm, and tended to vary between its maximum and
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Type Axes Units Range Used

Visual Light (VL) 1 A/W [0.0, +0.3] Yes

Infrared (IR) 1 A/W [0.0, +0.6] Yes

Acoustic (MIC) 1 dB [-45, -39] Yes

Temperature (TEMP) 1 ◦C [-25, +150] Yes

Magnetometer (MAG) 2 gauss [-6, +6] No

Accelerometer (ACC) 2 g [-1.5, +1.5] No

Table 5.5: Properties of the SBT80 board’s individual sensors

minimum value depending on whether the building’s lights were on or off. The passive

infrared sensor can detect wavelengths between 700 and 1100 nm, and was affected by

the number of people in the room. Microphone sensors picked up various sources of

noise, and the temperature sensor was generally unaffected by the occupancy level of

the main room. Some of the noise may have been due to the sensors being situated

near the ceiling. The remaining two sensors —the magnetometer and accelerometer—

were not deemed useful for sensing occupants. Existing research often uses the former

in outdoor environments to detect vehicles, while the latter might have some interesting

application in determining building health during, e.g., an earthquake. Overall, though,

the relevance of these two sensors toward human occupancy sensing was negligible.

Several publicly available sets of SBT80 sensor data were analyzed to determine how

they might be used to detect occupants. Figure 5.30 depicts sample data for our four

sensors of interest, with a 200 ms centrally moving average used to smooth out noise. We

then defined a presence sensor, with dependencies on each sub-sensor, which flagged

room occupancy using the following set of rules.

1. If the visible light sensor rose sharply from its minimum to maximum values, this

strongly indicated the presence of new users.

2. If the passive infrared sensor detected a value near its maximum, this strongly

indicated presence.

3. If the microphone’s average rose more than 20% above its history-weighted average,

this weakly indicated presence.

Each of the three conditions listed above provided a unit of confidence, with the mi-

crophone providing only half a unit. Following this, we defined a combined presence

sensor for each room based on the combination of SBT80 confidence values. For each

item listed above, its detection by any sensor in the room counted towards its unit of

presence. If more than one sensor detected the same component, the unit of presence
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was still only counted once. If the final presence value was above a threshold of 1.5,

presence was detected. This is a simplification of an approach listed in [180], and allows

multiple sensors to collaborate and cover each other’s blind spots.

Figure 5.30: Sample data points received through socket sensors; the red line repre-
sents a 200ms centrally moving average applied as a smoothing function.

According to the requirements of our perennial framework, each sensor type had an as-

sociated historical sensor which could be used to access past data. This was particularly

useful for groups of sensors which were positioned in under-utilized corridors, such as 61,

62, and 65 in Figure 5.29. For these sensors, we were able to simply load the combined

historical sensor, and avoid the need to re-calculate the combined effect at each time

tick. In addition to this, we defined an estimated room presence sensor which could

provide real-time or historical data in the place of a combined presence sensor where

such a sensor did not exist. This was based on an optimistic assumption that the rooms

Indriya currently does not sense are excluded primarily for privacy reasons, and that

the success of our virtual study might open the possibility of more room-specific nodes

like number 76.

In addition to sensing occupants, simulations would require locational data on the teams

themselves. This was essential to avoid a feedback loop, with notification teams trigger-

ing, e.g., the passive infrared sensors and the system being unable to detect that this

was due to the teams moving throughout the building. From the simulation’s point of

view, the team sensing infrastructure need only operate at the rough granularity of a

room. In other words, as parts of the building became notified, the only information

required by the simulation was the identifier of the team which notified each room, and

the point in time that room was notified. This could be achieved through the building’s

omnipresent WiFi network or, in the simplest case, through physical coordination using
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two-way radios or mobile phones. Given these possibilities, our system assumed that

team locational data were available.

The building monitor prototype contained one major class of effectors: the team notifi-

cation strategies. This comprised the routes that should be taken by each of the teams

to minimize total notification time, and could be relayed to each team through what-

ever communication channel was used for updating locational data (i.e., WiFi or mobile

phones/radios). Unlike the library egress study, we had little cause to worry about teams

disregarding information, since these were trained response teams instead of arbitrary

individuals. There is some research which shows that even diligent, highly trained teams

will break down under conditions of extraordinary stress, but for notification and egress

this situation does not occur [139].

5.3.2.2 Practical Sensor Considerations

As part of our prototype study, we were required to consider the possibilities for collect-

ing data from the physical system as well as its virtual counterpart. Although the In-

driya sensor network uses Java for class descriptors, the nodes themselves run TinyOS,

and it is not possible to communicate with them in a tightly coupled manner. Instead,

there are three possible ways to gather data from the network:

1. Data may be read in bulk after the program had completed running on the network.

2. Data may be read at runtime through a TCP connection to the mote’s serial

forwarder.

3. Data may read from the MySQL database which stores data as requested by the

program. The update frequency of data in this database is not entirely clear.

As our system dealt primarily with playback of SBT80 historical data, either the first

or third item was sufficient for the virtual component of our simulation. That said, we

designed the system with real-time operation in mind, so some strategy for extracting

sensor readings as they occurred was needed. Here, the perennial reference implemen-

tation’s socket sensors proved extremely valuable, as they logically separated the raw

sensor data from the method by which it was provided. In particular, by relying on

the second data access pattern, we could write a small utility in C++ which connected

to the mote’s TCP port and pushed data to a Java socket sensor. If the third data

access pattern’s update frequency were high enough, we could also write a small pro-

gram in, say, PHP which constantly checked the database and pushed any new data to
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a Java socket sensor. Using this clean separation, the source of any particular datas-

tream need not be known to the simulation processing it. Moreover, every sensor in this

prototype utilized sockets; even the combined sensors presented their data via socket

sensors. This proved useful later, for hot-swapping historical sensors out for estimators

and vice-versa.

We were fortunate that the Indriya sensor network provided a host of convenient meth-

ods for accessing data. Careful readers will note that we could have even written a TCP

socket reader in Java, and bound the retrieval of sensor data strongly to our imple-

mentation. However, the benefit of the loose coupling afforded by the socket sensor

approach is that it can be flexibly adapted to less forgiving sensor network setups —as

long as there is some way of reading data from the motes in real time, that data can

simply be pushed to a socket for the simulation component to deal with. This requires

minimal boilerplate code to set up, and no modifications to the existing hardware.

5.3.2.3 Models and Simulations

The vast quantities of sensor data captured by the building monitor prototype were

then processed by several models (which were in turn used by a variety of simulations).

One of these has already been covered: the combined presence sensor mentioned

previously functions as a coarse model of presence within a room. Several other models

were made available to the system; these will now be covered in turn.

A room occupancy model was used to turn the concept of presence into an estimate

of the number of people currently occupying a room. This model comprised two parts.

First, for any given room, a maximum occupancy value was obtained. This was simply

calculated from the room’s floorspace combined with recommendations from Singapore’s

Fire Safety Codes for public buildings [181]. Following that, the model was also tasked

with determining the implications of presence. For rooms with actual sensors, a positive

presence value was correlated with a 90% occupancy value. This was done to ensure

that sweep teams were always re-routed to deal with actual observances of occupancy.

For rooms with estimated sensors, the desirability of a room waxes and wanes over

time (either in the shape of a sine wave, or according to a pre-defined schedule), and

occupants will leave or enter a room based on that desirability value. This was done

to approximate room usage over the course of a given day, and provided implementers

a natural abstraction for modifying the system. In both cases, the presence of a sweep

team would cause a room’s occupancy level to deviate from the physical system and

virtually plummet. This was used to signify that the notification teams were getting

their message across to occupants.
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In addition to occupancy, the detailed path of egress for each user was also modeled. As

sweep teams proceeded through the building, they delivered a notification which may

have also included an order to evacuate. In this case, the desirability of a room was set to

zero, and the users contained in that room were told to find egress routes. Modeling user

egress was necessary, as users exiting the building would trigger presence sensors on their

way out. We suppressed presence values if users could potentially be exiting through

that location, so accurate estimates of egress route and time were needed. For this, we

made use of EvacNET; see Section 5.1.2.2 for an overview of its syntax. Our previous

work on the library egress study indicated that EvacNET calculated agent egress rates

which were significantly faster than reality; thus, we slowed agent egress times generated

from EvacNET by a factor of 2. Figure 5.31 depicts the EvacNET diagram for the first

floor of COM1. The full specification is listed in Appendix C.

Figure 5.31: EvacNET model of the COM1 target world. The “1X” rooms represent
a set of rooms with the same properties; e.g., 11.1, 12.1, etc.

The final model handled team movement throughout the building. This model performed

estimates of the time required to search and notify a room, as well as the time required

to move from room to room. EvacNET had no bearing on these calculations, as the

teams were not engaging in straightforward egress, but were instead reacting to building

occupants as they encountered them. Teams were expected to notify occupants as

they encountered them in hallways, and to answer any questions the occupants might

have. Equation 5.1 captures the general form of this model. Table 5.6 explains these

parameters, and lists the distributions we attached to each independent variable. Note

that this calculation could be performed piecemeal if the time required for part of a

notification team’s route was required. Also note that normal distributions were always

bounded to be non-negative.
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Parameter Description Value

TNotify Time to notify entire route Derived

THallway Time to notify a hallway Derived

TRoom Time to notify a room Derived

TDelay Time cost (s) of a generic delay 30

PDelay Probability of a generic delay oc-
curring

NORMAL(0.05, 0.05)

TT Walkway traversal time for a
given room

From EvacNET

TG Time cost (s) to notify a random
group

20

LG Probability of encountering a
random group

NORMAL(0.2, 0.1)

NC Node capacity for a given room From EvacNET

PC Percent of capacity currently uti-
lized

From sensors

LQ Probability of being asked a
question while informing a room

NORMAL(0.5, 0.2)

TQ Time required (s) to answer a
question in an arbitrary room

NORMAL(30, 30)

Table 5.6: Parameters of the notification model

TNotify =
∑

THallway +
∑

TRoom + TDelay ∗ PDelay

THallway = TT + TG ∗ (1.0 + LG)

TRoom = NC ∗ PC ∗ LQ ∗ TQ (5.1)

These models were combined to form two simulations. First, the constantly-running

simulation tracked the team locations and the occupancy levels of each building. This

ran in real time, and was scanned periodically by the controller in case symbiotic simu-

lation was required. Second, the “What-If?” analyses simulated the teams’ progression

through the building and the general state of the notification exercise. These were trig-

gered by the controller for various reasons discussed in Section 5.3.3, and their output

data were collected and used to globally optimize the notification strategies of the sweep

teams. As with all perennial simulations, the constantly-running models have uses out-

side the field of crisis management. For example, one might determine which meeting

rooms were currently free based on the output of the presence sensors, and broadcast

this information in a publicly accessible manner.
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5.3.2.4 Usage as a Reduced Framework Tutorial

One of our goals was to use this prototype to introduce the framework and its imple-

mentation to new users. This was one of the reasons that a physical location was favored

over an abstract virtual one. With this goal in mind, we refactored the building moni-

tor prototype into a simplified version which serves to describe how one might use our

framework to build a simulation. The full specification is included in Appendix D.

5.3.2.5 Mixing Human and Software Agents

Another goal with this prototype was to explore the possibility of incorporating actual

human users into the software agent mix. We covered this concept briefly in [135],

but at that time the framework had not yet been fully formed. Here, we consider the

requirements of what we term “agent form transparency”. For an agent to exist in

either form (human or software), the human users must have access to the same input

and output mechanisms as the software agents, and may not have further means of

interacting with the system or each other. For input, this includes all sensors applicable

to an agent, as well as the agent-to-agent sensescape. For output, this includes effectors

(although agents rarely access these directly), environment interaction protocols, and

agent-to-agent communication techniques —both internal to the simulation and external

to it. If all of these conditions match exactly, then the potential exists for validly

mixing human and software agents. The library egress study violated this constraint

by allowing MMOHILS participants to speak to each other during the study; this led

to them generating information which could not possibly be captured by the simulation

itself.

For the building monitor prototype, agent input and output were kept clean of interfer-

ence, and cross-agent communication channels were restricted. The motivating use case

behind this effort was the notion of allowing historical walkthroughs to be performed

of past egress events. In this case, our flexible sensor setup allowed us to rewind and

replay historical events. By making use of agent form transparency, we were able to in-

ject agents into the historical event to determine how it would have affected total egress

times. In reality, these could be software agents with a pre-defined role (usually an ad-

ditional sweep team), or they could be human users interacting with the system through

a MMOHILS-like interface. Figure 5.32, shown in Section 5.3.4, depicts a mix of soft-

ware agents and human agents performing a historical walkthrough. Unlike traditional

MMOHILS users, which exist primarily as points of data, a participant in a walkthrough

is generally attempting to explore possible options in a previous event. This can be very
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useful for credibility purposes; i.e., to allow Implementers to experience and attempt to

modify the course of the past event themselves.

5.3.3 Symbiotic Optimization

During a sweep team exercise, the perennial simulation within the building monitor

prototype will periodically trigger symbiotic feedback to optimize the total notification

time. This is a form of preventative symbiotic simulation, and is necessary due to the

inherently unpredictable nature of building sweeps. For example, although an order to

evacuate may be imparted to occupants quickly, an order for quarantine could occasion-

ally give rise to lengthy questions about the exact limits of the quarantine. Thus, the

Controller will periodically run the team movement model and raise a flag if the current

teams’ progressions will not lead to egress in the previously calculated time. At this

point, multiple “What-If?” simulations are run, which attempt to determine how best

to distribute the slower teams’ workload to the faster teams. If a substantial speedup

can be obtained, this new information is then broadcast to the appropriate sweep teams.

Additionally, the perennial simulation performs reactive symbiotic simulation if it detects

occupants in an area of the building that previously was thought to be fully unoccupied.

In a non-egress context, occupants never actually leave their rooms, so “unoccupied”

has a much looser meaning: reactive simulation is triggered only if a fully empty room

now has occupants. In addition, there is some leeway with regards to the threshold for

actually triggering “What-If?” analyses. In particular, if a sweep team is known to be

within visible range of the newly detected occupants, then no symbiotic feedback was

deemed necessary.

Team dispatch follows a very simple set of rules: initial dispatch teams comprise either

two or four members, with one leader per pair of individuals, and a combined leader

for four-person teams. The four-person team may be split into two teams of two either

by the combined leader, or as advice from the symbiotic simulation. In both cases,

teams are only split as a last resort, to manage some unavoidable delay. Total building

notification time is used to determine the value of each “What-If?” simulation, and

the best plan is sent to each team via their respective communication devices. This

setup provides flexibility without sacrificing speed, and allows the simulation to provide

useful advice to the sweep teams without micro-managing them more than absolutely

necessary.
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5.3.4 Visualization Elements

Several visualization elements were required to support the activities of the imple-

menters. The implementers in our building monitor prototype had a small but far-

reaching role. They could override the sweep team notification strategy selected by

the controller, and they could blacklist sensors in the event of erroneous results. (The

Indriya sensor network generally did not have rogue sensors, but the ability to black-

list provided a safeguard against Byzantine behavior.) In addition, implementers could

choose to manually modify a room’s desirability level, allowing them to redirect teams

in the event that knowledge of occupancy reached them via some alternative channel.

Figure 5.32: Screenshot of the building visualization during runtime. Teams are
represented with blue circles; they may be software agents or actual humans undertaking

a historical walkthrough.

Given the responsibilities of the implementers, combined with the description of sensors

and agents, our system defined several visualization elements. First, the building visual-

ization depicted a floorplan of the world with team positions and room occupancy values

at any point in time. Second, the strategy visualization listed the most promising plans

generated by the controller through “What-If?” analysis, along with the estimated total

notification time and (if relevant) evacuation time. Finally, the statistics visualization

operated similarly to a more classical simulation visualization component, and showed

various calculated statistics along with their actual observed values. Parameters such as

the time to notify each room were shown here, as well as any other data relevant to the

progress of the evacuation.

Inspired by their success in defining the sensescape, we used sockets to connect each

data source to the various visualizations. This proved beneficial, as it allowed each

visualization component to operate loosely coupled to each sensor and without the need
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to know if it was operating on historical or real-time data, or on the physical environment

or its virtual equivalent.

5.3.5 Results and Discussions

Unlike the previous two studies, which focused on experimental results, the results of the

building monitor prototype were instructional in nature. This was seen as appropriate,

since forcing an experimental study would not have led to any interesting new data.

For example, testing if symbiotic simulation improved egress is trivial; the library egress

study already showed this under conditions of greater uncertainty, as the sweep teams in

this example are assumed to be trained and diligent. The sweep team exercise was used

as a focal point for this study, but the true research value here comes from its methodical

approach to apply perennial simulation to a real-world system. In this sense, it serves

as model for the creation of such systems.

Given this distinction, the results of the building monitor prototype were categorized

into two major categories: those related to our use of socket sensors and those which

are not. The decision to use socket sensors led to a cascade of interesting consequences,

most of which may be incorporated into a future version of the reference implementation.

As expected, none of these improvements affected the theoretical framework, which is

considerably more inert than its implementation. The findings inspired by the use of

sockets in this framework will be detailed first; following that, several additional points

of interest will be covered.

First, we observe that the use of socket sensors for all sensor types allowed for an easy

abstraction of data by separating the actual data from its source. Socket sensors were

originally intended to wrap non-Java sensors in a portable way, but they have now shown

themselves to be extremely useful for swapping around the variety of configurations one

might wish to study. The reference implementation can be somewhat rigid in regards to

the sensor setup, in that it assumes sensors will never change for a given target during

a simulation run. This is clearly false; for example, if a virtual sweep team notifies a

virtual room to evacuate, that room must no longer read from the real-time sensors, but

must instead switch to an estimation model. We were able to overcome this limitation

fairly easily by simply switching to a new sensor socket —the simulation was unaware

of the change.

The second interesting side-effect of using entirely socket sensors was the elimination

of the need for a sensor dependency tree. Every sensor maintained its own list of child

sensors, and received information from them in a manner perceived as real-time (either

actually in sync with reality, or manually advanced by the controller). Thus, each
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sensor received all the data it needed in the correct order by virtue of the network itself,

thereby removing the need for an explicit dependency tree. There are some downsides to

completely removing the tree from the library. First, sensor loops will now risk repeating

forever instead of generating an exception. Second, the GUI would now be unable to

properly represent sensor dependencies. Nonetheless, it would be an interesting exercise

to see how much of the dependency tree could be replaced with a sockets-based approach.

Next, we observe that sockets were a useful means of communicating with the visualizer

as well as with the models themselves. This allows the visualizations to share code with

the models that read from the sensor network, although the benefit is only apparent

if using the same programming language for the simulation component and the GUI.

Nonetheless, we might consider modifying the specification of sensors in the perennial

framework to account for a default socket on each sensor.

Regarding non-socket results, we observe that the perennial framework and implemen-

tation performed well in the task of setting up a prototype study. The value of using

a virtual study cannot be understated, as it allowed us to quickly prepare a system us-

ing the data and models on hand, while the flexibility of the sensescape (even without

sockets) enabled updating components as new data became available. The system con-

structed exhibited the capability to handle real-world systems with only a small amount

of overhead attributed to our perennial framework. Historical datasets were saved as

they were read from the sensescape, and replaying past scenarios was always possible.

Finally, the building monitor prototype displayed all of the qualities of a modern peren-

nial simulation. The use of historical walkthroughs reflected our work on MMOHILS,

and it is reasonable to assume that new niche configurations could easily be attached to

our system as they are developed. Results gathered by our system were used to generate

simple, optimizing team notification strategies, leading to the possibility for symbiotic

decision support. The system even incorporated a legacy model, in the form of the

EvacNET network specification. Thus, we consider this study a late-stage transitional

study, with all the modernity of a full perennial simulation system, coupled with a small

number of legacy elements to help gather information.
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Conclusions

In this work, we devised a perennial simulation framework that captured the benefits

of online symbiotic simulation for crisis management in a concise conceptual model.

Although previous research has touched on the subject of crisis management simulation,

a generalized method that operates across its entire breadth has remained relatively

unexplored. Here, we have demonstrated the material benefits associated with moving

towards such a system, as well as the risks of leaving crisis management tasks purely

to intuition and limited, one-off modeling. The perennial simulation framework eases

development of simulations which meet crisis management’s demanding standards of

allowing studies with a hindsight, foresight, or decision support focus. This system, in

turn, can be used to study and react to the tasks before, during, and after the occurrence

of a crisis.

Following the framework’s formulation, we created an implementation using current

technology, and then applied this implementation to investigate the research implications

of perennial simulations. Care was taken to ensure that any studies with experimental

components were verified and validated to an acceptable degree, as described in Sections

5.1.3.1 and 5.2.4. In addition to serving as experiments, these studies have explored

several novel areas of research that the perennial simulation framework enables. First

and foremost is the niche configuration termed MMOHILS, a type of simulation which

provides the means to mine data from human users interacting within a virtual world.

This opened up the possibility of validating new forms of software agents in previously

un-observable contexts. A full treatment of validation in MMOHILS was provided; in

particular, methods of role and psycho-social validation were required above and beyond

the validation requirements of traditional simulation. In addition to MMOHILS, a form

of sensor abstraction was used to allow real human agents to interact with virtual users.
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Finally, several means of managing the complexities of performance tradeoffs in crisis

management were provided.

The following sections clarify and expand upon the previous summary. Section 6.1 con-

solidates the methods used and findings observed, with Section 6.2 focussing specifically

on contributions and achievements. Section 6.3 provides broader comments pertaining

to the fields of simulation and crisis management themselves. Section 6.4 denotes specific

areas of interest to future research, and Section 6.5 concludes the chapter.

6.1 Summary

We proceeded methodically from a full examination of the shortcomings affecting crisis

management and computer simulation to a consolidated framework that enables con-

struction of what we termed perennial simulations designed to overcome the weaknesses

inherent in current techniques.

In Chapters 2 and 3, we demonstrated the elements missing from each domain of re-

search. Crisis management encompasses at least five distinct intervention zones, cat-

egorized into the three major research categories of hindsight, foresight, and decision

support. The level of sophistication apparent in existing research varied by organization

and by sub-domain. Some relied on simulation to an appreciable degree, but the overall

appeal to simulation was low. We consider this unfortunate, as simulation is a mature

field with many powerful techniques —such as agent-based simulation, symbiotic sim-

ulation, and human-in-the-loop simulation— that crisis managers could use to achieve

the information superiority that their own research identified as critical. Viewed from

the converse perspective, computer simulation was lacking an acceptably valid means of

modeling humans in situations of uncertainty. The state of the art in crisis management

simulation was found lacking for all parties involved. To realize the potential of this

trans-disciplinary field and address its current inadequacies, we introduced the concept

of a perennial simulation framework built specifically for crisis management.

In Chapter 4, we moved from an abstract idea of the shape of a solution to the solution

itself. This was accomplished by carefully examining the intended usage and lifecycle

of the framework. Given this clear picture of how the system might be used, we then

created a framework specification with the goals of being modular, powerful, and flexible,

while requiring minimal cognitive overhead and adequately capturing reality as well as

meeting several quantifiable goals. This is discussed further in Section 6.2. A high-level

component interaction diagram served to present the main elements of the perennial

framework and their corresponding communication requirements. These components
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were then detailed individually, with first-order logic equations used to clarify poten-

tial ambiguities. This formalism helped us identify a promising niche configuration we

termed MMOHILS, which was further developed through experimentation.

After thoroughly detailing the theoretical framework, development of a reference imple-

mentation began, with the goal of using current technology to expose our framework to

a wider audience. Given proper deliberation, Java was selected as both the language

of the library itself and that of its GUI component (coupled with SWT). The imple-

mentation relied on object-oriented programming techniques in general, and weak type

guarantees in regards to user-defined datatypes [132]. As a tertiary goal, it was decided

that the implementation should remain as free as possible from artifacts specific to the

field of crisis management. This would ensure that other trans-disciplinary collabora-

tions with the field of computer simulation would be possible, and boosted the value of

the framework as a generic method for handling modern simulation studies.

Given a properly conceived framework and implementation, several studies were per-

formed as detailed in Chapter 5. The first of these tested the MMOHILS niche config-

uration to create an egress simulation of a virtually established building [135]. Besides

serving as a demonstration of the perennial framework, this study also attempted to

discern the potential benefit of using symbiotic simulation to aid general building egress

[154]. MMOHILS was an appropriate choice for this study, as its virtual sensors could

assume perfect knowledge, while at the same time its output could be captured in total-

ity for further analysis. This enabled a rapid development cycle, allowing us to focus on

the task at hand —studying the human factors of symbiotic-guided egress— rather than

be delayed calibrating a physical building’s sensor network. After performing a thor-

ough validation of our perennial simulation, we proceeded to model egress of a two-story

library building with two sets of potential detours, using EvacNET to provide optimized

symbiotic egress feedback to users. Despite the simplicity of the building’s layout, we

observed a 14% improvement in average egress time due to symbiotic feedback, with

further positive implications for training exercise and non-egress applications.

The second study explored the use of an abundance of real-world traffic camera data to

facilitate foresight and hindsight studies for incident response management on a univer-

sity campus [163]. The experimental aspect of this study focused on determining the

response radius within which security personnel would be able to reach an incident by

vehicle. A pipelined image-processing algorithm was used to extract traffic data from se-

curity camera footage, thus leading to the creation of another virtual study of a physical

system via perennial simulation. After constructing the system, verification and valida-

tion proceeded as per our stated requirements for perennial systems [153]. Experiments
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with the system demonstrated that once congestion increased to twice the normal “mid-

day” traffic level, the response radius at non-central areas on campus became severely

constrained. In terms of the perennial framework, this study demonstrated a simple,

effective means of embedding “legacy” simulations into a perennial simulation which

allowed them to benefit from most of the perennial components, especially the sens-

escape. In addition, the image processing algorithm performed well, with a few caveats

that would have to be addressed for it to operate in real time.

The third study involved the creation of a perennial system prototype that was tied

closely to a real-world building and its sensor network (Indriya). Various physical

sensors were mapped to a virtual study that attempted to determine occupancy levels and

guide “sweep teams” with real-time feedback [174]. In addition, an automatic symbiotic

feedback component was triggered if cleared rooms suddenly became occupied, causing

the sweep teams to be split up or re-routed so as to minimize total building notification

time. Unlike the previous studies, which existed also for an experimental component,

the building monitor study focused on presenting a complete, thorough prototype of the

perennial system in a virtual study of an existing physical location and its technology. As

such, its results were instructional rather than experimental. Most interesting was the

concept, introduced in [135], that virtual users could interact with each other regardless

of whether they were software agents or actual human participants.

Throughout these studies, care was taken to ensure that perennial simulation remained

feasible for real-world applications. Our first experiment demonstrated the scalability of

MMOHILS and symbiotic simulation, both of which can scale to 100 (for experimental

MMOHILS) or 1000 (for unannounced MMOHILS) connected users in a world of arbi-

trary size. In addition, our second experiment confirmed the benefit offered by perennial

simulation in terms of enhanced decision support, improving the Implementers’ predic-

tive accuracy by roughly 6% when faced with sensor-level uncertainty. These quanti-

tative improvements are in addition to the numerous qualitative benefits of perennial

simulation.

6.2 Contributions and Achievements

The research carried out for this thesis followed the broad outline of Section 6.1. We will

now consolidate this research summary into the primary contributions and achievements

that resulted from this thesis as a whole.

The first and most important of the primary contributions is that of the perennial

simulation framework. Existing techniques from simulation and crisis management were
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improved upon, and new techniques (in particular MMOHILS) fostered, in an attempt to

bridge the trans-disciplinary gap and achieve full crisis management simulation. Peren-

nial simulation shares a similar creation phase with traditional simulation, and exposes

the system to multiple entities during the perennial phase [132]. We met our goal of

scaling to dozens of agents and city-sized environments (see: Section 5.1.6). Additionally,

the perennial simulation framework was shown to provide a benefit to Implementers

even in the face of increasing uncertainty (see: Section 5.2.7). Symbiotic simulation was

also shown to be effective for crisis management activities such as egress, in addition to

proving practical within the tight time constraints of symbiotic simulation (see: Sections

5.1.5, 5.1.6). Thus, we conclude that the perennial simulation framework meets our goal

of running of foresight, hindsight, and decision support studies, a well as reacting nimbly

to unpredictable crisis events.

The primary contribution of MMOHILS arose as a direct result of the perennial frame-

work’s first-order logic formalisms. This niche configuration combines the strengths

of human-in-the-loop simulation with massively multiplayer online games, and helped

us to meet our goal of exploring the various physical/virtual and virtual/virtual world

interactions implied by the framework. In addition, MMOHILS and its sensor design

allowed us to meet our goals of providing validation techniques for agent behavior in

crisis-relevant situations, as well as providing a general technique for mixing human and

virtual agents in virtual world simulation studies (see: Sections 4.2.6, 4.3.3.2, 5.1.5).

MMOHILS is one of many potential niche configurations, and it benefits from existing

fully within the perennial framework rather than being treated as an exception.

Regarding our minor contributions, the largest contribution in terms of source code was

an implementation of the perennial simulation framework (see: Section 4.2). Although

the true value of our research exists at the framework level, a workable implementation

was required to enable further experimenting with the concept of a perennial simulation

and MMOHILS. The implementation was shown to be flexible enough to deal with our

three, vastly different studies, as well as providing support for “legacy” simulations.

Several minor decisions were made in the implementation phase, including the use of a

dependency tree with a shared root node to manage sensor dependencies.

Other minor contributions such as an analysis of physical to virtual world interactions

and a study of human response to symbiotic feedback during a crisis have already been

covered as part of the major contribution of the framework. One final contribution was

the need to present a combined approach to the problem of measuring the extent of

a crisis. A full Pareto front analysis would be used for non-time-critical foresight and

hindsight studies, while a utility function would approximate the Pareto front favoring

local maxima on a per-parameter basis (see: Section 4.3.3.1). This exhibited an efficiency
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that was advantageous for decision support studies, where time was at a premium. The

demonstrated efficacy of symbiotic simulation is pertinent in that perennial simulation

enables the use of such a technique for decision support at a time of crisis.

6.3 General Discussion

The work performed on creating the perennial simulation framework, its implemen-

tation, and the three experimental studies led to several observed results which were

broader in scope than those listed in the previous section. These generally applied to

the framework or its implementation in toto, or generally to the fields of simulation or

crisis management.

• We created a framework which enables simulation of hindsight, foresight, and de-

cision support studies in a way that is flexible and allows component reuse. In

particular, the strong hierarchy present in the sensescape, the distinction between

physical and virtual worlds, and the ability of human participants to inter-mix

with software agents stand out as strong features of our framework.

• We demonstrated the value of creating virtual studies of physical systems, in that

they allow experimenting on hypothetical locations and situations. We demon-

strated a technique (MMOHILS) that thrives in virtual spaces and allows gath-

ering valid human data in circumstances which are otherwise unmeasurable. We

demonstrated verification and validation of such systems, which are acceptable

except under conditions of extreme stress [139].

• We created a reference implementation that proved its usefulness over the course

of three separate studies. The implementation featured encapsulating “legacy

simulations” in a way that allowed them to make use of the perennial framework

to some degree. This system also quantified the magnitude of a given crisis using

either a utility function or a Pareto front depending on the time constraints of the

situation.

• We studied the efficacy of symbiotic simulation for crisis management, demon-

strating that users tended to respond positively to advice. Such systems might

also be used for community training exercises.

The experiments performed covered limited sample points, but there were several key

factors which allow us to generalize their results. First, the scalability tests from Sec-

tion 5.1.6 indicate that MMOHILS can scale up to several hundred or several thousand
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users depending on the exact technique used. World size scales almost indefinitely, and

symbiotic simulation can generally keep up with the simulation as it increases, assuming

some necessary trade-offs are made. Second, the three experiments exhibited a broad

spread of abstraction, varying from the highly abstract world of the building egress

study to the realistic environment of the notification experiment. This demonstrates

the perennial simulation framework’s versatility when applied to real-world problems as

well as highly speculative niche areas of research. Third, the experiments all feature

obvious candidates for parallelism or workload distribution. For example, the pipelined

image processing algorithm used in the incident response study can be parallelized at

each stage of the pipeline as well as for each security camera feed. Similarly, the “What-

If?” analyses used in the library egress study are distinct from each other and can be

increased in number with the addition of more hardware. This, combined with informa-

tion management techniques already present in the field of distributed computing, allow

us to conclude that perennial simulations in general can scale to vast sizes with nominal

effort. Finally, the distinction between the theoretical framework and its implementa-

tion provide flexibility in the event that the latter is found lacking in some regard. The

third experiment encountered this to some degree, as socket sensors were found to be

superior to integrated (Java) sensors in all regards. Thus, the implementation can be

refactored many times without affecting the framework proper, providing a necessary

degree of adroitness in tuning the implementation to overcome issues as they arise.

6.4 Limitations and Recommendations for Future Research

The work presented forms a cohesive whole, with each of the three studies branching

off to explore various ambiguities or areas of interest. That said, several important

limitations to the current approach will now be discussed, followed by possible extensions

which merit future research.

The primary limitations to the perennial simulation framework and its implementa-

tion are threefold. First, the role of Implementers is more limited than it should be in

reality. The ability to guide Implementers acting within the simulation loop via informa-

tion updates is a great boost to their role compared to traditional simulation, but this

nonetheless represents a narrowing of their role from a crisis management point of view.

Essentially, the simulation currently delegates decision-making to the Implementer, while

an ideal setup would have the Implementer delegate tasks to the simulation system. This

is a necessary restriction, which can gradually be lifted as the field of crisis management

simulation matures. Second, none of the test studies covered the entirety of the simula-

tion framework. This was also a necessary caveat, as building a complete, single study
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would have been costly and risky —indeed, improvements from the first study were cru-

cial to the success of the second and third studies. In addition to this, we attempted to

introduce overlap between the three studies, and explained in the previous section which

key factors led us to conclude that all three together provided a reasonable coverage of

the framework. Third, all software components designed for this thesis were written

in a single programming language: Java. This risks restricting the applicability of our

technique, as different languages favor different programming techniques. For example,

we saw earlier that Javascript severely limits the way that object-oriented techniques

behave. Fortunately, we consider this limitation to be relatively harmless: Java is a

minimalistic language, and several languages (C#, Python, and to some extent C++)

contain all of Java’s functionality as a subset. Nonetheless, language interoperability

remains a limitation of our current framework implementation.

Regarding extensions, the first involves the framework itself, particularly the implica-

tions of a world being both virtually established and a virtual study simultaneously. Such

locations would theoretically have the potential to both sense and influence any inter-

section between the sensescape and effectscape, hypothetically enabling a virtual user

to have some simulacrum in the physical world. For example, a mobile phone might

be used as a “window” through which one views augmented reality avatars. This idea

is fascinating, but far beyond the bounds of what we were attempting to study. As it

stands, even the notion of virtual establishment has not been fully explored, as it has no

directly obvious benefit to crisis management simulation.

The second extension involves the implementation of the framework, specifically the

need to converge on a solution quickly. We proposed the use of a utility function,

which operates much more efficiently than a full Pareto front calculation, while still

approximating its per-parameter maximum to an acceptable degree. Several techniques

exist which are even faster than utility functions, such as the “elimination by aspects”

referenced by [24]. Such techniques were not relied upon in the current implementation

because it is not entirely clear that they are valid substitutes for utility functions in

all cases. Assuming these faster methods offer some guarantee of validity, one might

use them to guide the convergence of a Pareto front estimation, thereby creating a

middle-ground solution. For crisis management, only the two extremes of fast and

comprehensive are required. However, other sub-domains of simulation might benefit

from a middle-ground solution which is slightly slower than a utility function calculation

while also providing a more complete picture of the situation.

A related area of additional research involves the creation of various framework imple-

mentations with different goals than our own. The most obvious of these would be an

implementation designed to “plug in” to the High Level Architecture and thus maintain
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the benefits of our framework coupled with the HLA’s robust and extensive research

history. More recent improvements in this domain such as HLA Evolved feature

promising modernizations, such as extensive XML support and IPv6 addressing [182].

The primary benefit of our Java reference implementation comes from the accessibility

of the language, but we would not want to limit the use of our framework by needlessly

restricting the number of implementations. In addition, having multiple implementa-

tions ensures that the entire feature-space of the framework can be explored, including

those elements that might be easier to model in languages other than Java.

Finally, the traffic study itself requires improvements to the automated image process-

ing algorithm. In particular, a better pre-processing step coupled with rigorous par-

allelization of the image processing pipeline would enable operation on real-time data

without the need for manual correction. Unfortunately, this by itself has no value unless

the legacy model is upgraded to a first-class perennial component. At that point, the

possibilities of the system widen greatly; for example, one might incorporate support

for pedestrian dynamics, thus allowing the system to demonstrate its full potential for

symbiotic-guided decision support across all modes of travel throughout the campus

road network. Although interesting from a traffic simulation point of view, this would

not add much to our understanding of the perennial simulation framework.

6.5 Concluding Remarks

Over the course of this thesis, we have shown how one might approach the trans-

disciplinary field of crisis management simulation. Like the bulk of existing research,

our work leans more towards the hindsight and foresight elements of crisis management.

This is pragmatic and sensible, as the FEMA diagrams demonstrate that a substantial

effect can be gained from preparedness and information superiority. Unlike related work,

however, our framework has demonstrated a clear capacity for use in decision support

at the time of crisis. In particular, we recommended symbiotic simulation for use in this

area, and demonstrated its efficacy. Problems with using symbiotic simulation (such as

its need for a performance metric) were satisfactorily resolved. Three studies tested our

framework at various levels: two with experimental results and one which stressed the

framework through the implementation of a prototype. Various exciting elements of our

framework, such as MMOHILS, were also explored. The totality of our work brings the

fields of crisis management and computer simulation significantly closer together, and

enables various new and useful avenues of future research.
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Appendix A

Library EvacNET Specification

A.1 Generic Model Template

! Library model , no hazards

!

! Change maximum number of time periods allowed for egress

SYS

1

120

END

!

! Change how long a time period is, in seconds

SYS

3

2

END

!

! Change how model ’s name appears

SYS

5

LIBRARY MODEL

END

!

! Suppress option summaries

SYS

6

0

END

!

! Name of model file

SYS

7

LIBREG.MOD

END

!

! Name of results file

SYS
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8

LIBREG.RES

END

!

!

! Starting node , second floor

EN

RM15 .2 ,274,35

END

!

! Remaining second floor nodes

EN

RM1.2,55

RM2.2,8

RM3.2,8

RM4.2,8

RM5.2,27

RM6.2,55

RM7.2,47

RM8.2,17

RM9.2,23

RM10 .2,48

RM11.2,8

RM12 .2,59

RM13 .2,17

RM14 .2,11

SW1.2,8

SW2.2,2

SW3.2,5

SW4.2,5

END

!

!First floor rooms , including destinations

EN

RM1.1,98

RM2.1,54

RM3.1,73

RM4.1,55

RM5.1,54

RM6.1,45

RM7 .1 ,117

RM8.1,22

RM9.1,22

RM10 .1,40

SW1.1,8

SW2.1,2

SW3.1,5

SW4.1,5

DS1.1

DS2.1

END

!

!

! Arc definitions , second floor

EA
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RM1.2-RM15.2,2,9

RM15.2-RM1.2,2,9

RM5.2-RM15.2,5,7

RM15.2-RM5.2,5,7

RM6.2-RM15.2,2,9

RM15.2-RM6.2,2,9

RM10.2-RM15 .2,10,7

RM15.2-RM10 .2,10,7

RM7.2-RM15.2,5,4

RM15.2-RM7.2,5,4

RM9.2-RM15.2,1,7

RM15.2-RM9.2,1,7

RM12.2-RM15.2,6,4

RM15.2-RM12.2,6,4

RM13.2-RM15.2,1,6

RM15.2-RM13.2,1,6

RM1.2-RM14.2,2,2

RM14.2-RM1.2,2,2

RM13.2-RM14.2,2,1

RM14.2-RM13.2,2,1

RM13.2-RM12.2,2,5

RM12.2-RM13.2,2,5

SW1.2-RM3.2,3,1

RM3.2-SW1.2,3,1

RM6.2-RM7.2,2,5

RM7.2-RM6.2,2,5

RM8.2-RM7.2,2,4

RM7.2-RM8.2,2,4

RM8.2-RM9.2,2,2

RM9.2-RM8.2,2,2

SW2.2-RM11.2,1,1

RM11.2-SW2.2,1,1

RM1.2-RM2.2,3,2

RM2.2-RM1.2,3,2

RM1.2-RM5.2,3,3

RM5.2-RM1.2,3,3

RM2.2-RM3.2,3,1

RM3.2-RM2.2,3,1

RM4.2-RM3.2,3,1

RM3.2-RM4.2,3,1

RM4.2-RM6.2,3,2

RM6.2-RM4.2,3,2

RM5.2-RM6.2,3,3

RM6.2-RM5.2,3,3

SW3.2-RM13.2,3,1

RM13.2-SW3.2,3,1

SW4.2-RM8.2,3,1

RM8.2-SW4.2,3,1

RM12.2-RM11.2,3,5

RM11.2-RM12.2,3,5

RM10.2-RM11.2,3,3

RM11.2-RM10.2,3,3

RM10.2-RM9.2,3,4

RM9.2-RM10.2,3,4

END
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!

!

! Arc Definitions , stairs

EA

SW1.1-SW1.2,2,4

SW1.2-SW1.1,2,4

SW2.1-SW2.2,1,4

SW2.2-SW2.1,1,4

SW3.1-SW3.2,1,3

SW3.2-SW3.1,1,3

SW4.1-SW4.2,1,3

SW4.2-SW4.1,1,3

END

!

!

! Arc definitions , first floor

EA

RM7.1-RM5.1,11,2

RM5.1-RM7.1,11,2

RM5.1-RM1.1,8,3

RM1.1-RM5.1,8,3

SW3.1-RM3.1,3,3

RM3.1-SW3.1,3,3

SW4.1-RM2.1,3,3

RM2.1-SW4.1,3,3

RM1.1-DS1.1,6,2

RM3.1-RM7.1,9,4

RM7.1-RM3.1,9,4

RM3.1-RM5.1,6,3

RM5.1-RM3.1,6,3

RM9.1-RM3.1,3,3

RM3.1-RM9.1,3,3

RM4.1-DS2.1,1,2

SW1.1-RM8.1,3,1

RM8.1-SW1.1,3,1

SW2.1-RM6.1,1,2

RM6.1-SW2.1,1,2

END

!

!

!

%%%% TEMPLATE{HAZARD NODES} %%%%

!

!

!

!

! Run , output

!

RUN

EXAM

1

3

S

SW1.2-SW1.1

3
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S

SW2.2-SW2.1

3

S

SW3.2-SW3.1

3

S

SW4.2-SW4.1

3

S

RM1.1-DS1.1

3

S

RM4.1-DS2.1

END

QQ

A.2 Hazard Template: Control Set

!

!

!Arc definitions that will be modified by hazard 1

EA

RM7.1-RM6.1,3,6

RM6.1-RM7.1,3,6

RM7.1-RM2.1,3,5

RM2.1-RM7.1,3,5

END

!

!

!Arc definitions that will be modified by hazard 2

EA

RM9.1-RM8.1,3,2

RM8.1-RM9.1,3,2

RM4.1-RM3.1,1,6

RM3.1-RM4.1,1,6

RM8.1-RM10.1,1,6

RM10.1-RM8.1,1,6

RM10.1-RM1.1,1,7

RM1.1-RM10.1,1,7

END

A.3 Hazard Template: Hazard Set 1

!

!

!Arc definitions that will be modified by hazard 1

EA

RM7.1-RM6.1,1,14
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RM6.1-RM7.1,1,14

RM7.1-RM2.1,1,13

RM2.1-RM7.1,1,13

END

!

!

!Arc definitions that will be modified by hazard 2

EA

RM9.1-RM8.1,3,2

RM8.1-RM9.1,3,2

RM4.1-RM3.1,1,6

RM3.1-RM4.1,1,6

RM8.1-RM10.1,1,6

RM10.1-RM8.1,1,6

RM10.1-RM1.1,1,7

RM1.1-RM10.1,1,7

END

A.4 Hazard Template: Hazard Set 2

!

!

!Arc definitions that will be modified by hazard 1

EA

RM7.1-RM6.1,3,6

RM6.1-RM7.1,3,6

RM7.1-RM2.1,3,5

RM2.1-RM7.1,3,5

END

!

!

!Arc definitions that will be modified by hazard 2

EA

RM8.1-RM10.1,1,6

RM10.1-RM8.1,1,6

RM10.1-RM1.1,1,12

RM1.1-RM10.1,1,12

END
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Figure B.1: The full UML diagram for the perennial implementation. To increase
clarity, controller aggregation links and several other obvious links are not shown.
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COM1 EvacNET Specification

! COM1 , first floor model , empty rooms

!

! Change maximum number of time periods allowed for egress

SYS

1

120

END

!

! Change how long a time period is, in seconds

SYS

3

2

END

!

! Change how model ’s name appears

SYS

5

COM1 MODEL

END

!

! Suppress option summaries

SYS

6

0

END

!

! Name of model file

SYS

7

COM1.MOD

END

!

! Name of results file

SYS

8

COM1.RES

END

!
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! Non -replicated rooms.

EN

RM1 .1 ,135

RM2.1,85

RM3 .1 ,184

RM4 .1 ,178

RM5.1,52

RM6.1,35

RM7 .1 ,130

DS1.1

DS2.1

DS3.1

DS4.1

END

!

!Replicated rooms

EN

RM11 .1,15

RM12 ,15

RM13 .1,15

RM14 .1,15

RM15 .1,15

RM16 .1,15

RM21 .1,48

RM22 .1,48

RM23 .1,48

RM24 .1,48

RM25 .1,48

RM26 .1,48

RM27 .1,48

RM31 .1,81

RM32 .1,81

RM41 .1,48

RM42 .1,48

RM43 .1,48

RM44 .1,48

RM45 .1,48

RM46 .1,48

RM47 .1,48

RM48 .1,48

END

!

!

! Arc definitions , non -replicated rooms

EA

RM2.1-DS2.1,2,6

DS2.1-RM2.1,2,6

RM2.1-RM3.1,2,2

RM3.1-RM2.1,2,2

RM3.1-DS1.1,1,2

DS1.1-RM3.1,1,2

RM3.1-RM4.1,1,4

RM4.1-RM3.1,1,4

RM3.1-RM5.1,2,5

RM5.1-RM3.1,2,5
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RM3.1-RM6.1,2,4

RM6.1-RM3.1,2,4

RM6.1-RM7.1,2,7

RM7.1-RM6.1,2,7

RM6.1-DS4.1,1,4

DS4.1-RM6.1,1,4

RM7.1-RM5.1,2,7

RM5.1-RM7.1,2,7

RM5.1-RM1.1,2,4

RM1.1-RM5.1,2,4

RM1.1-DS3.1,3,4

DS3.1-RM1.1,3,4

END

!

!

! Arc Definitions , replicated rooms

EA

RM11.1-RM2.1,2,6

RM12.1-RM2.1,2,6

RM13.1-RM2.1,2,6

RM14.1-RM2.1,2,6

RM15.1-RM2.1,2,6

RM16.1-RM2.1,2,6

RM2.1-RM11.1,2,6

RM2.1-RM12.1,2,6

RM2.1-RM13.1,2,6

RM2.1-RM14.1,2,6

RM2.1-RM15.1,2,6

RM2.1-RM16.1,2,6

RM21.1-RM6.1,2,4

RM22.1-RM6.1,2,4

RM23.1-RM6.1,2,4

RM24.1-RM6.1,2,4

RM25.1-RM6.1,2,4

RM26.1-RM6.1,2,4

RM27.1-RM6.1,2,4

RM6.1-RM21.1,2,4

RM6.1-RM22.1,2,4

RM6.1-RM23.1,2,4

RM6.1-RM24.1,2,4

RM6.1-RM25.1,2,4

RM6.1-RM26.1,2,4

RM6.1-RM27.1,2,4

RM31.1-RM6.1,2,4

RM32.1-RM6.1,2,4

RM6.1-RM31.1,2,4

RM6.1-RM32.1,2,4

RM41.1-RM7.1,2,4

RM42.1-RM7.1,2,4

RM43.1-RM7.1,2,4

RM44.1-RM7.1,2,4

RM45.1-RM7.1,2,4

RM46.1-RM7.1,2,4

RM47.1-RM7.1,2,4

RM48.1-RM7.1,2,4
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RM7.1-RM41.1,2,4

RM7.1-RM42.1,2,4

RM7.1-RM43.1,2,4

RM7.1-RM44.1,2,4

RM7.1-RM45.1,2,4

RM7.1-RM46.1,2,4

RM7.1-RM47.1,2,4

RM7.1-RM48.1,2,4

END

!

!

!

!

!

! Run , output

!

RUN

EXAM

! Exam depends on actual statistics required.

END

QQ
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Simplified Building Monitor

Prototype

//Start the GUI if you want live feedback:

MainFrame f = new MainFrame (" config.txt ");

// Create your sensor classes:

class VL_Sensor extends SocketSensor {

VL_Sensor(String name , World world , Target target , Timespan validRng ,

String moteID)

{

//Save connection settings.

}

Data getData(Timespan interval , int tstep)

{

//e.g., access serialForwarder of a mote

//via TCP; track value via MySQL db , etc.

CurrVal = /* access Indriya */;

ArrayList res = new ArrayList <Data.Datum >();

res.add(new Data.Datum(interval.getStart(), new Double(currVal )));

return new Data(res);

}

}

class IR_Sensor extends SocketSensor {

IR_Sensor(String name , World world , Target target , Timespan validRng ,

String moteID)

{

//Save connection settings.

}

Data getData(Timespan interval , int tstep)

{

//e.g., access serialForwarder of a mote

//via TCP; track value via MySQL db , etc.

CurrVal = /* access Indriya */;

ArrayList res = new ArrayList <Data.Datum >();
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res.add(new Data.Datum(interval.getStart(), new Double(currVal )));

return new Data(res);

}

}

class MIC_Sensor extends SocketSensor {

MIC_Sensor(String name , World world , Target target , Timespan validRng ,

String moteID)

{

//Save connection settings.

}

Data getData(Timespan interval , int tstep)

{

//e.g., access serialForwarder of a mote

//via TCP; track value via MySQL db , etc.

CurrVal = /* access Indriya */;

ArrayList res = new ArrayList <Data.Datum >();

res.add(new Data.Datum(interval.getStart(), new Double(currVal )));

return new Data(res);

}

}

// Create Higher -Order sensor classes:

class PresenceSensor extends SocketSensor {

PresenceSensor(String name , World world , Target target , Timespan validRng ,

Hashtable <String , Sensor > src)

{

//Save the "src" sensors (VL, IR , etc.), e.g.:

this.ir = src.get("ir");

}

Data getData(Timespan interval , int tstep)

{

//Naive threshold sensor. A proper sensor will

// buffer values and detect sharp changes.

ArrayList res = new ArrayList <Data.Datum >();

int flags = (getData(vl ) >3000?1:0)

| (getData(ir ) >3500?2:0)

| (getData(mic ) >2000?4:0);

res.add(new Data.Datum(interval.getStart(), new Integer(flags )));

return new Data(res);

}

}

// Create Higher -Order sensor classes:

class CombinedPresenceSensor extends SocketSensor {

CombinedPresenceSensor(String name , World world , Target target , Timespan validRng ,

Vector <Sensor > src)

{

this.roomSensors = src; //At least 1.

}

Data getData(Timespan interval , int tstep)

{

//Sum all flags
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int flag = 0;

for (Sensor src : roomSensors) {

int curr = getData(src);

flag |= curr;

}

double confidence = ((flag &1) >0?1:0) + ((flag &2) >0?1:0) + ((flag &4) >0?0.5:0);

ArrayList res = new ArrayList <Data.Datum >();

res.add(new Data.Datum(interval.getStart(), new Boolean(confidence >1.5)));

return new Data(res);

}

}

// Create Controller , Worlds , Targets

Controller ctl = new Controller ();

World w = new World(ctl , "COM1", "COM1 ");

Target hall1 = new Target(w, "hall1 "); //etc.

// Instantiate Sensor Objects

Hashtable <String ,Sensor > make_sbt80(String s, Target t, World w, Timespan ti)

{

Hashtable <String ,Sensor > res = new Hashtable ();

String name = s+"-vl";

int mID = /* get mote ID */;

res.put(name , new VL_Sensor(name , w, t.sub(s).sub("v1"), ti , mID);

return res;

}

//" sub" targets are new; they allow better space breakdown

Timespan ti = new Timespan ("Now", "Inf");

Sensor sens38 = new PresenceSensor (" sens38", w, hall1.sub("s38"),

ti, make_sbt80 ("s38", hall1 , w, ti));

// Instantiate Sensor Objects , ctd.

// Initiate remaining sensors

Sensor sens44 = /* same */;

Sensor sens49 = /* same */;

Sensor sens53 = /* same */;

//Note: Historical timespans work too (if data exist)

Timespan ti2 = new Timespan ("1/1/2008 ,0:00" , "1/1/2008 ,1:00");

// Combine them

Sensor sensHall1 = new CombinedPresenceSensor (" sHall1", w,

hall1 , ti, make_vect(sens38 , sens44 , sens49 , sens53 ));

//Make more sensors

Sensor sensHall2 = /* same */;

Sensor sensBackHall = /* may use an "estimated room presence sensor"

for rooms with no actual sensors. */;

//Our "team" location sensors function similarly ,

// reporting the position for an agent , then aggregating.

// Create an Agent class

class TeamNotifierAg extends Agent {
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TeamNotifierAg(String name , Simulation sim , Hashtable <String , Sensor > sensors)

{} //easy

void init(LocalDateTime st, Hashtable <String ,Data > data)

{

this.goal = null;

this.location = new Point (0,0); //e.g.

}

void update(Timespan elaps , Hashtable <String ,Data > data)

{

if (this.goal == null) {

this.goal = /* choose a new room to notify. */

}

//Naive movement model.

dyn_vect path = new dyn_vect(location , goal);

path.scale(this.speed*elaps ). translate ();

this.location = path.getPos ();

if (this.location == this.goal) {

get_room(this.goal). notify ();

this.goal = null;

}

}

}

// Creating a Model , Simulation class

class TeamMovementModel extends Model {

TeamMovementModel(String name , Target [] targets)

{

//Our model class is primarily driven by the

// Simulation and implemented at the Agent level.

}

}

class TeamMovementSim extends Simulation {

void init(AraryList <Agent[]> teams , FloorSpec rooms)

{

/* save Agent teams locally , init agents */

/* save FloorSpec locally , partially initialize it */

}

void updateSimulation(Timespan ti , Hashtable <String ,Data > newData)

{

for (Agent [] tm : teams) {

for (Agent ag : tm) {

ag.update(newData ); // Simple update

}

}

if (/* check if room notified */) {

updateRooms(rooms);

}

}

}
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//Start the simulation

ctl.addWorld(w);

ctl.addModel(new TeamMovementModel ());

//Using "MakePlaceholder ()" is a minor design point.

Simulation temp = Simulation.MakePlaceholder (" team_sim", makeSensorList (),

null , new Timespan ("Now "));

//Make and initialize our simulation.

TeamMovementSim tsim = new TeamMovementSim ();

tsim.init(makeAgents (), makeFloorplan ());

ctl.replaceSimulation(temp , tsim);

//We would presumably add more simulations , and then:

ctl.startSimulation(tsim , new LocalDateTime ());
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