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SUMMARY 

Chronic obstructive pulmonary disease (COPD) and asthma account for most 

obstructive lung diseases that place a huge burden on health services and society. There are 

currently limited therapeutic options for severe asthmatic and COPD patients. 

Andrographolide and 14-deoxy-11,12-didehydroandrographolide (DDAG) are the main 

biologically active constituents isolated from Andrographis paniculata. Andrographolide has 

been shown to activate nuclear factor erythroid-2-related factor 2 (Nrf2). As Nrf2 activity is 

reduced in COPD, we hypothesize that andrographolide may have therapeutic value for 

COPD. Our group has also recently reported novel anti-inflammatory effects of 

andrographolide in a mouse asthma model as well. However, andrographolide has been 

shown to possess cytotoxic activity towards tumour cell lines. As DDAG is an analogue of 

andrographolide, we hypothesized that DDAG retains the anti-inflammatory effects for 

asthma but is devoid of cytotoxicity.  

Contrary to andrographolide, DDAG did not elicit any cytotoxic activity in A549 and 

BEAS-2B human lung epithelial cells and rat basophilic leukemia (RBL)-2H3 cells using a 

MTS assay. BALB/c mice sensitized and challenged with ovalbumin (OVA)-developed 

allergic airway inflammation. DDAG dose-dependently inhibited OVA-induced increases in 

total cell counts and eosinophil counts, IL-4, IL-5, and IL-13 levels in lavage fluid and serum 

OVA-specific IgE level in a mouse asthma model. In addition, DDAG attenuated OVA-

induced airway eosinophilia, mucus production, mast cell degranulation, pro-inflammatory 

biomarker expression in lung tissues, and airway hyperresponsiveness (AHR) to methacholine 

in mice. DDAG also blocked p65 nuclear translocation and DNA-binding activity in the 

OVA-challenged lung and in TNF-α -stimulate d human lung epithelial cells.  

Andrographolide suppressed cigarette smoke-induced increases in BAL fluid cell 

counts, levels of IL-1β, MCP-1, IP-10 and KC, and levels of oxidative biomarkers 8-
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isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Andrographolide also 

promoted inductions of glutathione peroxidase (GPx) and glutathione reductase (GR) 

activities in lungs from cigarette smoke-exposed mice. In BEAS-2B cells, andrographolide 

markedly increased nuclear Nrf2 accumulation, promoted binding to antioxidant response 

element (ARE), and total cellular glutathione level in response to CSE. Andrographolide up-

regulated ARE-regulated gene targets including glutamate-cysteine ligase catalytic (GCLC) 

subunit, GCL modifier (GCLM) subunit, GPx, GR and heme oxygenase-1 (HO-1) in BEAS-

2B cells in response to CSE.  

Taken together, current study demonstrated that andrographolide possesses anti-

oxidative properties against cigarette smoke-induced lung injury probably via augmentation 

of Nrf2 activity. DDAG, on the other hand, retains the anti-inflammatory activities of 

andrographolide for asthma probably through the inhibition of NF-κB, and thus, DDAG may 

be considered as a safer analogue of andrographolide for the potential treatment of asthma.  
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1. INTRODUCTION 
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1.1 Obstructive Lung Disease  

Respiratory disease is a common and important cause of illness and death around the 

world. Respiratory disease can be segregated into two major categories, which include 

obstructive lung disease and restrictive lung disorders. Obstructive lung diseases which are 

characterized by airway obstruction while restrictive lung disease is characterized by reduced 

lung volume due to restricted lung expansion. Obstructive lung diseases are far more common 

than restrictive diseases in a general population (Culver, 2011). To assess the pathophysiology 

of obstructive lung disease, spirometrical measurement which provides the initial lung 

function is commonly used. The main diagnostic criteria for a lung diseases lie in a 

diminished forced expiratory volume in 1 second (FEV1)/ the total volume of air exhaled 

during a forced manoeuvre, the forced vital capacity (FVC) (Macintyre, 2009).  

A person is said to have airway obstruction when the ratio of FEV1/FVC is less than 70% 

(Seemungal et al., 2008). Diseases resulting in obstructive pathophysiology primarily include 

asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, and bronchiolitis 

(Ryu et al., 2001). Although a broad spectrum of disorders is associated with airflow 

obstruction, COPD and asthma account for most obstructive lung disease (Ryu et al., 2001).   

Both diseases are characterized by airway obstruction, which is variable and reversible in 

asthma but is progressive and largely irreversible in COPD (Barnes, 2008c). As the incidence 

of asthma and COPD is increasing globally, both diseases are placing an increasing burden on 

health services in industrialized and developing countries (Mannino et al., 2007; Pearce et al., 

2007). In asthma and COPD, there is chronic inflammation of the respiratory tract, and when 

the intensity of the inflammation increases, there are acute exacerbations in both diseases as 

well (Barnes, 2008c).  

Nonetheless, there are marked differences in inflammation pattern in asthma and COPD 

that occur within the respiratory tract. The differences are linked to the recruitment of 



 

 

3 

 

inflammatory cell types and production of mediators that underlie both of the diseases. Hence, 

asthma and COPD also have different consequence to inflammation and respond differently to 

therapy (Ichinose, 2009). There have been several recent important advances in our 

understanding of the immunopathology of asthma and COPD (Murphy et al., 2010; Yao et al., 

2009). The understanding of the similar and different immune mechanisms that are involved 

in both asthma and COPD has important implication for the development of new therapies for 

these troublesome diseases. 

 

1.2 Asthma 

Asthma is a chronic respiratory disease characterized by episodic attacks of impaired 

breathing (Akinbami et al., 2011). According to Global Initiative for Asthma’s (GINA) 

guidelines, asthma is defined as a chronic inflammatory disorder of the respiratory airways in 

which various cells and cellular elements play a role. The chronic inflammation is associated 

with AHR that leads to recurrent episodes of shortness of breath, coughing, wheezing, and 

chest tightness, particularly at night or in the early morning. These episodes are usually 

associated with widespread, but variable, airflow obstruction within the lung that is often 

reversible either spontaneously or with treatment (GINA, 2011). Asthma comprises a range of 

heterogeneous phenotypes that differ in presentation, aetiology and pathophysiology. Allergic 

(extrinsic) and non-allergic (intrinsic) asthma are 2 well characterized asthma phenotypes. 

People with allergic asthma develop the disease early in life. They are atopic (producing IgE 

specific to identifiable allergens) and have identifiable allergic triggers, and other allergic 

diseases such as rhinitis or eczema or a family history of allergic diseases. Non-allergic 

asthma develops later in life (after 40 years of age) and it is associated with aspirin-

exacerbated respiratory disease (AERD) but not with allergic sensitization. Hence, non-

allergic asthma is generally not as well understood. Other types of asthma phenotype include 
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exercise-induced asthma, obesity-related asthma and neutrophilic asthma. Nonetheless, in 

patients with asthma of any severity, up to 50% of them have a T-helper Type 2 (Th2)-

predominant phenotype. Asthma that presents without evidence of Th2 immunity remains 

poorly understood (Wenzel, 2012). Although several types of asthma have been classified 

clinically, allergic asthma is the most common form of the disease (Mukherjee et al., 2011). 

Allergic asthma is a chronic respiratory condition characterized by airway inflammation, 

mucus hypersecretion, and AHR (Galli et al., 2008b). Increased mucus secretion and airway 

hyper-responsiveness leads to recurrent wheezing and shortness of breath (Moreira et al., 

2011). 

 

1.2.1 Epidemiology and Burden of Asthma 

Asthma is a widespread disease. There are 300 million people affected by asthma 

worldwide (Masoli et al., 2004). Nearly 30 million people in the United State alone are 

affected by asthma, accounting for about 12% of children and 9% of adults in the US (Juhn, 

2012). In Singapore, the prevalence of asthma has risen over the last 40 years but now appears 

to have stabilized, with approximately 5.5% of children in 1969 to 20% of children in 1994 

affected by the disease (Wang et al., 2004). Another recent survey estimated that almost 9% 

of school attending children have asthma and about quarter of them is inadequately controlled 

(Yang et al., 2007). In the United States, 10.5 million school days were reported to be missed 

by asthmatic children aged 5-17 years in the year 2008 alone. Each day, an average of 9 

persons in the United States dies from asthma. In addition, 2 out of 100 person with asthma 

are hospitalize and 8.4 out of 100 person with asthma have emergency department visit in 

2009 (Akinbami et al., 2012). The morbidity due to asthma, direct health care costs, indirect 

costs such as lost productivity, and mortality due to asthma continue to pose a high burden to 

the United States economy (Akinbami et al., 2011). 
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1.2.2 Pathophysiology of Asthma  

Asthma is a chronic inflammatory disease accompanied by remodelling of the airways 

and AHR that result in the clinical expression of airway obstruction that usually is reversible. 

The symptoms and physiological changes in asthma often involved airway narrowing. Several 

factors contribute to the development of airway narrowing in asthma. Airway smooth muscle 

(ASM) contraction responding to multiple bronchoconstrictor mediators and neurotransmitter 

is the predominant mechanism of airway narrowing and is largely reserved by brochodilators. 

During acute exacerbations, airway oedema, which is due to increased microvascular leakage 

in response to inflammatory mediators, also play a role in airway narrowing. Structural 

changes, often termed "remodelling", lead to airway thickening that may play an important 

role in more severe disease and is not fully reversible by current therapy. Mucus 

hypersecretion, which is a product of increased mucus secretion and inflammatory exudates, 

may lead to luminal occlusion that is also known as mucus plugging (GINA, 2011). 

The structural changes are manifested by changes that involve all the layer of the 

respiratory airway wall.  Changes in the epithelium include an increased number of goblet 

cells and epithelial detachment. Subepithelial fibrosis results from the development of 

increased deposition of extracellular-matrix molecules in the lamina reticularis which lies 

beneath the epithelial basement membrane and changes in fibroblasts with increased 

development of myofibroblasts and increased vascularity. Blood vessels in the airway walls 

proliferate under the influence of growth factors such as vascular endothelial growth factor 

(VEGF) and may contribute to increased airway wall thickness. The increased size 

(hypertrophy), number (hyperplasia) and function of ASM cells contribute to the increased 

thickness of the muscular layer of the airways wall (Figs 1.1 and 1.2) (Galli et al., 2008b).    
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Figure 1.1. Tissue sections from the airway of a non-asthmatic person (a–c). A normal 

small bronchus stained with haematoxylin and eosin (H&E) in a. There are few goblet cells 

(black arrows in insets) in the epithelium. The basement membrane and underlying lamina 

reticularis (at asterisk in a) are normal. Sections in b were stained with periodic acid–Schiff  

(PAS) and diastase to stain mucus red. The submucosa (the length of the double-headed 

arrows in a) contains few leukocytes and the occasional mast cell (blue arrows in c), and the 

bronchial smooth muscle (SM) has few adjacent mast cells (red arrow in c) visualize by 

staining with pinacyanol erythrosinate (PE) which stain mast cells purple. Adapted from Galli 

(Galli et al., 2008b) 
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Figure 1.2. Tissue sections from the airway of a patient with severe asthma (d–f). A small 

bronchus from a patient with a history of severe asthma are stained with H&E in d, PAS and 

diastase in e and PE in f. Mucus (M) fills the airway lumen (d and e). There are many goblet 

cells (black arrows in insets) and the occasional intra-epithelial mast cell (black arrows in f). 

The lamina reticularis (asterisk in inset in d) is noticeably thickened. The submucosa (double-

headed arrows in d) contains many eosinophils (green arrows in inset in d) and other 

leukocytes, as well as mast cells (blue arrows in f). There is more bronchial smooth muscle 

(SM) than in a–c in figure 1.1, and there are many mast cells (red arrows in f) among bundles 

of smooth muscle cells. Adapted from Galli (Galli et al., 2008b) 
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1.2.2.1 Inflammatory and Structural Cells  

The inflammatory responses of allergic asthma are mediated by Th2 cells together 

with mast cells, B cells and eosinophils, as well as a number of inflammatory cytokines and 

chemokines (Galli et al., 2008a). 

 

T Lymphocytes  

T lymphocytes are critical mediators of the allergic airway inflammation in asthma. 

Pathogenic allergen-specific T lymphocytes are generated in regional lymph nodes and are 

then recruited into the airway by chemoattractants produced by the asthmatic lung. These 

recruited effector T lymphocytes and their products then mediate the cardinal features of 

asthma that includes airway eosinophilia, mucus hypersecretion, and AHR. 

Although T lymphocytes are important mediators of adaptive immune responses and 

are vital for host defence against infection, aberrant accumulation of T lymphocytes in the 

lung is seen in numerous non-infectious pulmonary inflammatory diseases such as asthma, 

where T lymphocytes in the lung are believed to orchestrate an abnormal inflammatory 

process. In asthma, the airways develop prominent inflammation with accumulation of 

activated effector T lymphocytes around the airways and in the airway lumen. It is thought 

that these cells are recruited into the lung and serve as the critical controllers of airway 

inflammation (Medoff et al., 2008). 

There are several subsets of T lymphocytes, each with a distinct function and these 

cell types can be distinguish based by the virtue that they express unique combinations of 

molecules in their membranes. Two major classes of T-lymphocytes are distinguished by the 

presence of either CD4, which presence on T helper (Th) and Regulatory (Treg) lymphocyte, 

or CD8, which presence on cytotoxic T lymphocyte (Tc). Different subtypes of T helper 

lymphocytes have been defined on the basis of the cytokines they secrete. The main cytokines 
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orchestrating T helper type 1 (Th1) and T helper type 2 (Th2) differentiations are IL-12 and 

IL-4, respectively (Lund et al., 2003). In turn, Th1 cells produce interferon-γ (IFNγ), whereas 

Th2 lymphocytes primarily produce IL-4, IL-5 and IL-13.  

Th2 lymphocyte plays a significant role in allergic asthma. Although clinical studies 

increasingly suggest that asthma is a heterogeneous disease, observational immunologic 

studies in human asthma, allergen challenge models in both human asthma and animal models, 

and substantial in vitro data has substantiated the notion that asthma is primarily a Th2 

disease (Lloyd et al., 2010). As an example, recent study has affirmed that Th2 driven 

inflammation defines major sub-phenotypes of asthma as Th2 biased response are seems to be 

detectable in 50% of individuals with asthma (Woodruff et al., 2009). In asthma patients, the 

Th2 lymphocytes become exuberant and drive mast cell, and eosinophilic inflammation 

(Robinson, 2010). The notion that Th1 lymphocytes could have an inhibitory role in asthma 

as they can directly inhibit the development of Th2 lymphocytes
 
has been substantiated by the 

deletion of the Th1 lymphocytes master transcription factor T-bet in mice results in the 

development of spontaneous AHR and IL-13-dependent eosinophilia (Finotto et al., 2002). 

Nonetheless, when IFNγ, the signature Th1-type cytokine, is administered to the airways of 

patients with asthma, there is no improvement of disease symptoms (Boguniewicz et al., 

1995). The positive correlations between the numbers of Th2 lymphocytes present in the 

airways with disease severity further strengthen the suggestion that Th2 lymphocytes plays an 

essential role in human asthma. 

Although atopic asthma has a substantial Th2 lymphocyte component, the disease is 

particularly heterogeneous, and the discovery of several of other T lymphocyte subsets, such 

as T helper type 17 (Th17) lymphocytes, T helper type 9 (Th9) lymphocytes and regulatory T 

(Treg) lymphocytes (Lloyd et al., 2010) has suggested that other T lymphocytes also 

contribute to the development of asthma. The cytokine environment at the time of CD4
+
 T 
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lymphocyte activation is a critical determinant in generating these effector subsets, owing to 

the ability of certain cytokine to activate specific transcription factors required for the 

differentiation of the Th subsets. In the case of Th1 and Th2 cells, this process was dependent 

on IL-12 acting on T-bet and IL-4 acting on GATA-binding protein 3 (GATA3), respectively 

(Murphy et al., 2002). GATA3 is a transcription factor that is vital for the differentiation of 

uncommitted naive T lymphocytes into Th2 lymphocytes and regulates the secretion of Th2 

cytokines (Ho et al., 2007). Clinical studies have revealed that there is an increase in the 

number of GATA3
+
 T lymphocytes in the airways of stable asthmatic subjects (Caramori et 

al., 2001). Stimulation of T lymphocytes following ligation of the T cell receptor (TCR) and 

CD28 co-receptor by antigen-presenting cells (APCs), GATA3 is phosphorylated and 

activated by p38 mitogen-activated protein kinase (MAPK), and subsequently translocate to 

the nucleus, where it binding to the promoter region of Th2 cytokine genes 

(Maneechotesuwan et al., 2007). Nuclear factor of activated T cells (NFAT) is a T 

lymphocyte–specific transcription factor that enhances the transcriptional activation of the Il4 

promoter by GATA3 (Ho et al., 2007). Similarly, applying the concept that a specific 

cytokine exerts its effect on a transcription factor to mediate lymphocyte differentiation has 

led to the identification of other Th subsets, such as the regulatory T lymphocytes (Tregs) and 

Th17 lymphocytes (Zhou et al., 2009). 

Th9 lymphocytes are a discrete population of IL-9-secreting CD4
+
 T lymphocytes that 

depend on transforming growth factor-β (TGF-β) for their development (Veldhoen et al., 

2008). Th9 lymphocytes were first identified as a subpopulation of Th2 lymphocytes, but 

recent experimental analysis revealed that Th9 lymphocytes had divergent regulatory 

capabilities (Xing et al., 2011). Generation of these Th9 lymphocytes involves expression of 

PU.1, which is a transcription factor is expressed specifically in subpopulations of Th2 

lymphocytes with low IL-4 expression, and secretion of IL-9 from Th9 lymphocytes is 
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upregulated by IL-25 (Angkasekwinai et al., 2010; Chang et al., 2010). These discoveries 

strongly establish Th9 lymphocytes as a distinctive Th lymphocytes subtypes. 

Th17 lymphocytes are a distinct lineage of CD4
+
 effector T lymphocytes that express 

IL-17 and the key transcription factors retinoic acid receptor-related orphan receptor-γt 

(RORγt) and RORα (Harrington et al., 2005; Park et al., 2005). Tissue-infiltrating CD4
+
IL-

17
+
 T lymphocytes and the up regulation IL-17 have been documented in the lungs of patients 

with asthma (Pene et al., 2008) and the levels of IL-17 correlate with disease severity (Chang 

et al., 2012; Wang et al., 2011). Furthermore, adoptive transfer of Th17 cells induces 

neutrophilia and imparts resistance to steroid therapy, suggesting that IL-17 may function to 

promote neutrophil recruitment (Kolls et al., 2004) and could therefore be particularly 

important in severe asthma which is often characterized by neutrophilic inflammation and 

steroid resistance (McKinley et al., 2008).  Besides IL-17, Th17 lymphocytes also produce a 

small amount of IFNγ and no IL-4 (Harrington et al., 2005).  

CD8
+
 T lymphocytes, which play a pivotal role in tumour cell killing and protection 

during viral infection through the secretion of IFN-γ and cytolytic factors, were considered to 

be less essential or even as a negative regulator for the development of allergic inflammation. 

Indeed, studies reported protective effects of CD8+ T lymphocytes in allergic airway disease 

because of production of IFN-γ and the ability to suppress Th2 responses (Huang et al., 1999; 

Suzuki et al., 1999). However, cell transfer studies using CD8
+
 αβ T lymphocytes has 

demonstrated that not only CD4
+
 T lymphocytes but also CD8

+
 T lymphocytes were essential 

to the development of AHR and allergic inflammation, either directly (Sawicka et al., 

2004) or in concert with sensitized CD4
+
 T lymphocytes (Isogai et al., 2004; Koya et al., 

2007; Miyahara et al., 2004). CD8-deficient mice are less susceptible to allergic airway 

inflammation, but the transfer of in vitro-generated antigen-primed effector memory CD8
+
 αβ 

T lymphocytes into sensitized CD8-deficient mice increased AHR, eosinophilic inflammation 
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and the levels of IL-13 in bronchoalveolar lavage (BAL) fluid (Miyahara et al., 2004). While 

CD8
+
 αβ T-lymphocytes have been demonstrated to have pro-inflammatory effects, CD8

+
 γδ 

T-lymphocytes are believed to have inflammation inhibitory effects (Isogai et al., 2003). 

Antibody based depletion studies has also shown that depletion of residential CD8
+
 T 

lymphocytes enhance the late airway response and airway inflammation in a rat model of 

asthma (Isogai et al., 2005), and enhance the effects on airway remodelling in a rat model of 

asthma (Tsuchiya et al., 2009). Cytotoxic T lymphocytes type 2 (Tc2) is a subsets of CD8
+
 T 

lymphocytes that produce IL-4, IL-5 and IL-13 but not IFN-γ. Recent studies have 

demonstrated in the absence of IFN-γ, CD8 T lymphocytes assume a Tc2-biased phenotype 

and potentiate inflammation (Tang et al., 2012). The presence of CD8
+
 T lymphocytes in 

asthmatic airways is well documented. Tc2 are increased in BAL fluid of atopic asthma 

patients (Cho et al., 2005). Additionally, bronchial biopsies from patients with atopic and 

non-atopic asthma contain CD8
+
 T cells that produce IL-4 and IL-5 (Ying et al., 1997). 

However, despite these correlations, the role play by CD8
+
 lymphocyte remains to be further 

explored. 

Regulatory T lymphocytes (Tregs) are T lymphocytes that suppress potentially 

harmful immune responses. The inappropriate immune response to allergens observed in 

asthmatic patients may be explain by the reduced or altered function of Treg lymphocytes 

populations in these patients. Several TReg lymphocyte subsets have been described, including 

naturally occurring forkhead box P3 (FOXP3)
+
CD4

+
CD25

+
 lymphocytes (nTreg) and 

inducible Treg (iTreg) lymphocytes, which develop in vitro or in vivo following antigen 

stimulation (Robinson, 2009). The majority of nTregs express the transcriptional factor 

FOXP3, and their development and function are dependent upon it. In contrast, iTregs are 

usually FOXP3 negative, but they can express this transcription factor in certain antigen 

presentation situations (Langier et al., 2012). Beside the CD4
+
CD25

+
 Tregs that function via 
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cell-cell contact, other types of regulatory suppressive T lymphocytes that act via modulatory 

cytokines such as regulatory T helper lymphocytes type 3 (Th3) and regulatory T 

lymphocytes type 1 (Tr1) have been identified. Th3 are dependent on TGF-β and are 

observable in mice models in which low doses of the antigen exposure induces oral 

tolerization (Kumar et al., 2011a). Tr1 lymphocytes are defined by their specific cytokine 

production profile, which includes the secretion of high levels of IL-10 and TGF-β, and their 

ability to suppress antigen-specific effector T lymphocytes responses via cytokine-dependent 

mechanisms (Langier et al., 2012). Transfer of CD4
+
CD25

+
 Treg lymphocytes attenuates 

airway inflammation and AHR as well as prevents the allergen-induced activation of DCs in 

the airways (Joetham et al., 2007; Leech et al., 2007; Strickland et al., 2006). Treg 

lymphocytes exert their inhibitory action through both direct and indirect mechanisms. In the 

direct mechanism, Treg produce anti-inflammatory cytokines, such as IL-10 and TGF-β, 

express inhibitory molecules, such as cytotoxic T lymphocyte antigen 4 (CTLA4) (Kearley et 

al., 2005; Ostroukhova et al., 2004) and induce the down regulation of MHC class II and the 

co-stimulatory molecules CD80 and CD86 by antigen-presenting cells (APC) (Cederbom et 

al., 2000). Intriguingly, Treg lymphocytes do not necessarily produce IL-10 themselves but, 

instead, the Treg lymphocytes can induce IL-10 production from bystander CD4
+
T 

lymphocytes to mediate the suppressive effect (Kearley et al., 2005). In asthmatic patients, the 

presence of CD4
+
CD25

+
 T lymphocytes in the airways correlated positively with the patient’s 

FEV1 and corticosteroid treatment increases the number of CD4
+
CD25

+
 T lymphocytes in the 

airways of patients with asthma (Hartl et al., 2007). The characterizations for cytokine 

dependent subset of regulatory T lymphocytes (Th3 and Tr1) have been impeded by the lack 

of a specific surface marker (Langier et al., 2012). Finally, T lymphocytes play a critical role 

in the pathophysiology of asthma. Identification of distinct subset of would further advance 
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our understanding about the disease and may lead to the development of a more specific 

treatment for asthma. 

Eosinophils  

Eosinophil in the sputum is a hall-mark of asthma and it has been used as marker for 

effective corticosteroid therapy or treatment compliance (Hargreave, 2007). In uncontrolled 

asthma, eosinophils are present in the sputum and also in BAL fluid (Holgate, 2008). 

Eosinophils differentiate and undergo trafficking under the regulation of the transcription 

factors GATA binding protein (GATA)-1&2, and CCAAT-enhancer-binding proteins 

(c/EBP), the chemokine eotaxin, as well as the CD4
+
 Th2 lymphocyte-derived survival 

cytokines such as IL-3, IL-5 and granulocyte macrophage colony-stimulating factor (GM-

CSF). Eosinophils express receptors for the pro-inflammatory mediators complement 

component 5a (C5a) and platelet-activating factor (PAF), the cytokines IL-2, IL-3, IL-5, IFN-

γ, and GM-CSF, as well as the immunoglobulins IgG and IgA, and C-C chemokine receptor 

type 3 (CCR3) (Minai-Fleminger et al., 2009). Eosinophils are a rich source of basic granule 

proteins, such as major basic protein (MBP), eosinophil peroxidase (EPO), and eosinophil 

cationic protein (ECP) which altogether have been shown to cause significant tissue 

destruction and involved in the development of AHR (Minai-Fleminger et al., 2009). MBP, 

which accounts for more than 50% of the eosinophil granule protein mass, was found to 

activate human lung mast cell and cause histamine release. EPO, which is a cationic enzyme 

that is capable of catalysing the formation of highly toxic oxidants, has significant potential to 

induce cellular injury as well (McElhinney et al., 2003). ECP, a ribonuclease which has been 

attributed with cytotoxic and fibrosis promoting functions, has been developed as a marker for 

asthma as elevated ECP levels are observed in asthmatic patients (Bystrom et al., 2011). 

Eosinophils also release and up to 28 cytokines, chemokines and growth factors such as IL-4, 

IL-6, IL-8, IL-10, IL-13, GM-CSF, stem cell factor (SCF), nerve growth factor (NGF) and 
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TGF-β as well as eosinophil-derived lipid mediators, such as leukotriene C4 (LTC4) and PAF, 

which potently act as bronchoconstrictors and secretagogues (Minai-Fleminger et al., 2009; 

Wegmann, 2011) and prostaglandin E2 (PGE2) has been shown to enhance eosinophil survival 

(Profita et al., 2003). Additionally, because eosinophils secrete considerable amounts of TGF-

β, eosinophils contribute to processes leading to airway remodelling. As a result, eosinophils 

have been identified as valuable targets for therapeutic intervention in asthma (Wegmann, 

2011).  

Mast cell  

Mast cells play a key role in asthma. Mast cells, along with dendritic cells are among 

one of the first immune cells to interact with allergens (Galli et al., 2008a). Mast cells are 

potentially long-lived cells and mast cell number, distribution, function and phenotype can be 

regulated by various factors whose local concentrations can change at the sites of innate or 

adaptive immune responses (Galli et al., 2005). In humans there are two main kinds of mast 

cell phenotypes, the first contains tryptase and the second stores tryptase, chymase 

carboxypeptidase A and cathepsin-G (Matsumoto et al., 2007). Mast cells are highly 

granulated high-affinity IgE receptor (FcεRI) bearing tissue-dwelling cells, which develop 

from myeloid progenitors expressing CD34, proto-oncogene c-Kit (CD117/c-kit) and alanine 

aminopeptidase (CD13). Mast cells are widely distributed in connective tissues and mucosal 

surfaces (Minai-Fleminger et al., 2009). Mast cells are recruited to the airways by stem-cell 

factor (SCF) released from epithelial cells. Additionally, mast cell are also recruited by 

interleukin 8 (IL-8/CXCL8) and interferon-γ-inducible protein 10 (IP10/CXCL10) produced 

by airway smooth muscle cells (Brightling et al., 2005; John et al., 2009). These chemokines 

also prime mast cells for heightened mediator secretion. In return, mast cells secrete CCL19 

which, through its CCR7, stimulates airway smooth muscle cell migration and contributes to 

smooth muscle hyperplasia (Holgate, 2008; Kaur et al., 2006). The cross-linking of IgE-
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bound FcεRI complexes in response to activation by specific allergens on mast cell surface 

leads to the “early phase” of the allergic reaction within minutes. The “early phase” of allergy 

is characterized by vasodilation, increased vascular permeability, vascular leakage and 

oedema in which mast cells degranulate and secrete of various granular preformed mediators 

such as tryptase, chymase, histamine and proteoglycans as well as of newly-synthesized 

mediators, such as arachidonic acid metabolites, such as prostaglandin D2 (PGD2), leukotriene 

B4 (LTB4) and LTC4 (Galli et al., 2008a; Li-Weber et al., 2003), as well as the later 

production of many cytokines, chemokines and growth factors such as IL-1, IL-3, IL-4, IL-5, 

IL-6, IL-8, IL-10, IL-11, IL-13, GM-CSF, TNF-α, TGF-β, basic fibroblast growth factor (b-

FGF), vascular endothelial growth factor (VEGF) and NGF (Minai-Fleminger et al., 2009).  

These mediators are responsible for the increase in microvascular permeability and 

contraction of smooth muscle, which may account for the bronchoconstriction seen in asthma. 

Concomitantly, the recruitment of macrophages, T lymphocytes and eosinophils takes place 

(Galli et al., 2008b). These cytokines and chemokines liberated by the inflammatory cells in 

the early phase initiate the “late phase” that usually peaks a few hours later (Bloemen et al., 

2007; Gould et al., 2008). The release of these mediators is tightly controlled by signalling 

pathways that are propagated through the cell by specific phosphorylation and 

dephosphorylation events. IgE-dependent activation is mediated through a complex cascade 

of signal transduction initiated by tyrosine-protein kinase Lyn (Lyn), spleen tyrosine kinase 

(Syk) and Fyn kinases from the Src family (Roth et al., 2008). Mast cells homeostasis is 

controlled by IgE, IL-4, IL-10 and TGF-β1, which down regulate important effector proteins 

such as c-Kit and FcεRI in long-term mast-cells cultures (Ryan et al., 2007). Among the 

mediators released by mast cells, the lipid mediators as well as histamine have an essential 

role in the recruitment of Th2 lymphocytes and of eosinophils to the inflammatory site and in 

sustaining the allergic process (Minai-Fleminger et al., 2009). 
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Macrophages  

Macrophages are the most abundant immune cell population in normal lung tissue and 

serve critical roles in innate and adaptive immune responses. Macrophages exert its prominent 

defensive effects of the respiratory tract from airborne pathogens. Macrophages are 

specialized to recognize, phagocytose, and destroy these infectious agents and then promote 

appropriate tissue repair after successful pathogen clearance (Byers et al., 2011). 

Macrophages also play an important role in the pathogenesis of asthma. Studies have 

suggested that macrophages could be directly involved in the development of AHR as 

macrophages modulate the contractility of ASM by inducing histamine release from mast 

cells and basophils, by augmenting cholinergic neurotransmission via the generation of 

thromboxane A2, and by impairing airway β-adrenergic function through the production of 

oxygen radicals (Yang et al., 2012). Activated macrophages may also be an important effector 

cells in airway inflammation as experimental model of an acute exacerbation of chronic 

asthma have demonstrated that macrophages can stimulate Th2 cytokine secretion by primed 

CD4
+
 T lymphocytes via mechanisms involving the expression of CD80/86 costimulatory 

molecules (Herbert et al., 2010). 

Alveolar macrophages (AMs) and interstitial macrophages (IMs) represent the 2 major 

populations of macrophages that occupy different compartments in the lung (Moreira et al., 

2011). AMs are found in alveoli lumen, presiding a nonspecific innate defence mechanism 

while IM inhabit the interstitium where they interact with interstitial lymphocytes and help in 

mounting a specific immune response. In general, IMs are considered as antigen-presenting 

macrophages, but when AMs are primed with allergen ex-vivo, they can also help in 

expanding allergen-specific T-lymphocytes response (Balhara et al., 2012). AM can be 

derived from circulating blood monocytes, which colonize the tissues under inflammatory and 

non-inflammatory states, or from a stable, self-sustaining population of resident lung 
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macrophages, the IMs, which serve as obligate intermediate between blood monocytes and 

AMs (Yang et al., 2012).  Local proliferation in human and murine airways is also sustained 

by colony-stimulating factor (CSF) (Balhara et al., 2012). The monocytes migrate to the lungs 

in response to chemoattractants such as monocyte chemotactic protein-1 (MCP-1/CCL2), 

acting on C-C chemokine receptor type 2 (CCR2) (Deshmane et al., 2009). 

Generally, macrophages (including AMs and IMs), are exhibit unique activation 

patterns upon exposure to cytokines and/or toll-like receptor (TLR) agonists. Two such 

subpopulations have been extensively studied and these are the classical (M1) and 

alternatively activated (M2) macrophages (Mantovani et al., 2009). M1 macrophages are 

differentiated by IFN-γ and lipopolysaccharide (LPS) in both mice and humans (Joshi et al., 

2010; Moreira et al., 2010). M1 macrophages release inflammatory cytokines and chemokines 

such as IL-6, IL-12, TNF-α, interferon-γ-inducible protein 10 (IP-10/CXCL10), and 

Macrophage inflammatory protein-1α (MIP-1α/CCL3). These cells also produce high levels 

of nitric oxide (NO) and are known to drive inflammation in response to intracellular 

pathogens (Cassol et al., 2009). The Th2 cytokines IL-4 and IL-13 are involved in the 

polarization of alternatively activated (M2) macrophages (Moreira et al., 2011). Both mouse 

and human M2 macrophages have enhanced expression of scavenger and mannose receptors 

(Varin et al., 2010), and increased phagocytic activity of foreign pathogens and apoptotic 

cells (Mills et al., 2000), but are inept at the clearance of intracellular pathogens (Schuh et al., 

2003). Besides the classical M1 and M2 macrophages stimuli, other factors such as IL-10 and 

TGF-β or immune-complexes are also involved in polarizing the macrophage phenotype (Liu 

et al., 2011). The polarization of M2 macrophages by IL-4 and IL-13 is dependent on the 

induction of signal transducer and activator of transcription 6 (STAT6), which leads to the 

activation of pro-fibrotic cytokines, chitinase-like molecules (Moreira et al., 2010), and 

“found in inflammatory zone-1” (FIZZ1) (Nair et al., 2005). Both M1 and M2 macrophages 
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are shown to be involved in the developments of asthma although M2 are intuitively present 

given the Th2-driven lung environment in asthma (Moreira et al., 2011). The pro-

inflammatory cytokines IL-1β and IL-6 produce by the M1 macrophages have direct effects 

on Th2 lymphocytes proliferation (Doganci et al., 2005), and promote fibroblast activation 

(Gallelli et al., 2008). The recruitment and the survival of eosinophils in the lung is increase 

by IL-1β and IL-6 as both of this cytokine increase the production of GM-CSF by 

macrophages and fibroblast (Ilmarinen-Salo et al., 2010). M1 polarized macrophages are 

consider as a component of asthma exacerbation (Moreira et al., 2011). M2 polarized 

macrophage on the other hand are potent inflammatory cells release pro-fibrotic and pro-

inflammatory factors, that can cause increased inflammatory cell recruitment, mucus secretion, 

and AHR in asthma (Moreira et al., 2011). 

 

Epithelial Cells 

Airway epithelium is an important controller of inflammatory, immune and 

regenerative responses to allergens, viruses and environmental pollutants that contribute to the 

pathogenesis of asthma. Airway epithelial cells (ECs) represent the first line of defence 

against microorganisms, gases and allergens as they lie at the interface between the host and 

the environment (Xiao et al., 2011). As a barrier to the external environment, ECs express 

many pattern recognition receptors (PRRs) such as TLRs, NOD-like receptor (NLR), C-type 

lectins and protease-activated receptors (PAR) that rapidly detect and react to pathogen-

associated molecular patterns (PAMPs) originate from microbes or to damage-associated 

molecular patterns (DAMPs) released upon tissue damage, cell death or cellular stress 

(Lambrecht et al., 2012). Epithelial PRRs activation leads to the release of cytokines, 

chemokines and antimicrobial peptides that attract and activate innate and adaptive immune 

cells. Although the epithelium was initially considered to function solely as a physical barrier, 
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recent studies have demonstrated that EC activation is a play a central role in influencing the 

recognition of inhaled allergens that activates the local network of dendritic cells (DCs), 

which coordinate the ensuing immune response, and thereby bridging innate and adaptive 

immunity (Hammad et al., 2008). Human respiratory EC express huge number of TLRs and 

have been shown to react functionally to a number of TLR ligands. Upon ligand engagement, 

TLRs signal via a series of adaptor proteins, leading to the activation of transcription factor 

nuclear factor-κB (NF-κB) and the subsequent production of the expression of an array of 

inflammatory cytokine genes (Sha et al., 2004). Intriguingly, studies have demonstrated that 

the recruitment, activation and intraepithelial migration of DCs in response to inhaled 

endotoxin require only epithelial Toll-like receptor 4 (TLR4) triggering (Hammad et al., 

2009). The crucial role of NF-κB in regulating of airway inflammation was elucidated in mice 

deficient in the NF-κB subunits p50 or p65, which demonstrated reduced responses to 

endotoxin and allergens (Yang et al., 1998). Recent studies have also shown that constitutive 

activation of NF-κB in airway ECs was sufficient to activate DCs, breach inhalational 

tolerance and promote sensitization to OVA (Ather et al., 2011; Sheller et al., 2009), while 

inhibition of epithelial NF-κB in the contrary reduced Th2 lymphocytes recruitment and 

airway remodelling (Broide et al., 2005). Th2 effector cytokines may subsequently sustained 

the epithelial responses to allergens and provides an important feedback loop that can 

perpetuate disease (Lambrecht et al., 2012). IL-4 and IL-13 induce airway ECs to produce 

GM-CSF and the chemokines IL-8 (CXCL8), which attract neutrophils, eotaxin-1 (CCL11) 

which attract eosihophils and thymus and activation regulated chemokine (TARC/CCL17) 

which attract Th2 lymphocytes (Lordan et al., 2002). Hence it is evidence that airway ECs 

orchestrates various aspects of allergic sensitization and is a critical player in allergic 

inflammation. 
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Mediators of Asthma  

 
Figure 1.3 Cytokines involved in asthma. Myeloid dendritic cells processed the allergens 

are by release the chemokines CC-chemokine ligand 17 (CCL17) and CCL22, which act on 

CC-chemokine receptor 4 (CCR4) to attract T helper 2 (TH2) cells. Th2 cells have a central 

role in orchestrating the inflammatory response in allergic asthma through the release of IL-4 

and IL-13 (which stimulate B cells to synthesize IgE), IL-5 (which is necessary for 

eosinophilic inflammation), and IL-9 (which stimulates mast cell proliferation). Epithelial 

cells play an important role in orchestrating the inflammation of asthma through the release of 

various cytokines. Epithelial cells release stem-cell factor (SCF), which is important for 

maintaining mucosal mast cells at the airway surface. Epithelial cells may also release CCL11, 

which recruits eosinophils via CCR3.  Inhaled allergens activate sensitized mast cells by 

crosslinking surface-bound IgE molecules to release several bronchoconstrictor mediators, 

including histamine, cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2). Adapted 

from Barnes (Barnes, 2008c) 
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1.2.2.2 Mediators of Asthma  

Th2 Cytokine 

Th2 cytokine play a vital role in the development of atopic asthma as the expression of 

Th2 cytokines could be related to activity of disease, symptom scores, airway eosinophilia, 

and airway hyperresponsiveness (Georas et al., 2005). In addition, the expression of Th2 

cytokines are increased after allergen inhalation challenge in patients with atopic asthma and 

decreased with corticosteroid treatment (Lloyd et al., 2010). The main Th2 cytokines involved 

are those encoded by the IL-4 gene cluster, which contains the genes encoding IL-4, IL-5, IL-

9, IL-13, and GM-CSF on chromosome 5q31-q33. This cluster of cytokine genes is co-

regulated, providing coordination of the allergic cascade (Robinson, 2010). Studies in mouse 

models in which Th2 cytokines such as IL-4, IL-5, IL-9 or IL-13 have been individually 

genetically knocked out or immunologically block antibodies have provided important 

evidence that the Th2 axis can drive eosinophilic airway inflammation and AHR (Lloyd et al., 

2010). When Th2 lymphocytes failed to develop in response to antigen, such as in IL-4Rα
−/−

 

or Stat6
−/−

 mice, allergic airway inflammation is not induced (Cohn et al., 2004). Both IL-4 

and IL-13 have a crucial role to promote isotype switching of B cells to IgE and goblet cell 

metaplasia by acting on epithelia,  whereas IL-4, but not IL-13, is crucial for maintaining the 

Th2-lymphocytes phenotype (Oettgen, 2000).  

IL-5 is a cytokine that play a key role in eosinophil differentiation, recruitment, 

activation, and survival at sites of allergic inflammation. Systemic and local (inhaled) 

administration of IL-5 to asthmatic patients results in an increase in circulating eosinophils 

(Stirling et al., 2001). Additionally, IL-5, which is mainly produced by Th2 lymphocytes and 

to a lesser degree by activated mast cells, is also involved in B-cell differentiation (Wegmann, 

2011). The expression of IL-5 is elevated in BAL fluid in patients with asthma and the level 

of IL-5 in BAL fluid and the bronchial mucosa correlates with disease activity (Flood-Page et 
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al., 2007). The roles of IL-5 underlying the pathogenesis of asthma have been demonstrated 

by a number of in vivo studies. Mice deficient for IL-5 do not develop the eosinophilia, lung 

damage, and airways hyperreactivity normally resulting from ovalbumin (OVA) sensitization 

and aeroallergen challenge (Foster et al., 1996). Similarly, the IL-5 receptor α-chain (IL-5R 

alpha)-deficient mice demonstrated an impaired IL-5 induce eosinophilia in response to 

parasitic infections (Yoshida et al., 1996). Furthermore, mice that constitutively 

overexpressed IL-5 in the lung spontaneously developed prominent airway eosinophilia 

associated with AHR (Lee et al., 1997). When IL-5 was targeted by antisense molecules or by 

an anti–IL-5 monoclonal antibody (mAb), significant reduction of airway eosinophilia and 

consequently the pathologic features of experimental asthma, including AHR was observed 

(Hamelmann et al., 1997; Lach-Trifilieff et al., 2001). In spite of these encouraging in vivo 

results, clinical trials with the anti–IL-5 monoclonal (mAb), mepolizumab reported a 

reduction in blood and sputum eosinophils in patients with mild-to-moderate asthma but lack 

of improvement in asthmatic symptoms, AHR, and allergic late-phase response (Flood-Page 

et al., 2007; Leckie et al., 2000). Although the outcomes of these clinical trial prompted 

discussion about the role of eosinophils in the pathogenesis of asthma, more recent clinical 

trials that investigated the therapeutic effect of mepolizumab in patients with severe 

corticosteroid-refractory and highly eosinophilic form of asthma, have shed new light on the 

role of eosinophils in asthma and especially in distinctive asthma phenotypes (Haldar et al., 

2009; Nair et al., 2009). Both of these clinical studies have reported a significantly reduced 

exacerbation rate and a reduction in blood and sputum eosinophils. As such, these studies also 

indicate the need of distinguishing distinct asthmatic phenotypes that might require different 

therapeutic approaches.  

IL-9 is involved in the onset and progression of asthma and IL-9 is detected in 

biopsies from patients with asthma and localizes to CD4
+
 T lymphocytes, although there are 
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several other cellular sources of IL-9, including mast cells and eosinophils (Soroosh et al., 

2009). Biological targets for IL-9 include mast cells, B lymphocytes, T lymphocytes, T 

lymphocytes clones, hemopoietic progenitors, and immature neuronal cell lines (Steenwinckel 

et al., 2007). Overexpression of IL-9 in mice induces inflammation mediated by eosinophils, 

mucus hyperplasia, mastocytosis, AHR, and increased expression of other Th2 cytokines and 

IgE (Zhou et al., 2001). Targeting IL-9 with antibody inhibits pulmonary eosinophilia, mucus 

hypersecretion, and AHR after allergen challenge of sensitized mice.  The effects of IL-9 in 

mice such as pulmonary eosinophilia and mucus hypersecretion are mediated via the release 

of IL-13, whereas its effects on mastocytosis and B lymphocytes lung infiltration seem to be 

direct (Steenwinckel et al., 2007). IL-9 plays an key role in differentiation and proliferation of 

mast cells and interacts synergistically with SCF (Barnes, 2008a). The presence of IL-9 in 

mouse and human is highly associated with mast cell accumulation in the airways, as well as 

AHR and globlet cell metaplasia (Lambrecht et al., 2009).  

IL-13 induces AHR and mucus hypersecretion by activating STAT6 in the airway 

epithelium (Kuperman et al., 2002) and produces several of the structural changes seen in 

chronic asthma, including goblet cell hyperplasia, airway smooth muscle proliferation and 

subepithelial fibrosis (Wills-Karp, 2004). IL-13 also increases the expression of acid 

mammalian chitinase (AMCase) and neutralization of AMCase inhibits IL-13 mediated AHR 

and Th2-driven inflammation (Zhu et al., 2004). The airways of asthmatic patients have an 

increased expression of IL-13. Additionally, there is a transient increase in IL-4 in BAL fluid 

after allergen challenge, whereas the secretion of IL-13 is sustained and correlates with the 

increase in the number of eosinophils in the airways (Barnes, 2008a). In addition to Th2 cells, 

IL-13 is produced by several cell types including mast cells, basophils, and eosinophils 

(Barnes, 2008a). 
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IL-17 

The IL-17 family consists of six members in mammals including IL-17 (now 

synonymous with IL-17A), IL-17B, IL-17C, IL-17D, IL-17E (also called IL-25), and IL-

17F. Among the IL-17 family members, the most investigated cytokine is IL-17 (Park et al., 

2010). IL-17 and IL-17F share the greatest similarity showing 50% identity at the amino acid 

level. Genes encoding IL-17 and IL-17F are located on chromosome 1-A4 region in mice and 

on chromosome 6p12 location in humans. IL-17 and IL-17F may have derived via a gene 

duplication event owing to their sequence similarity and proximity in the genome (Pappu et 

al., 2008). Other than Th17 lymphocyte, other cell types such as CD8
+ 

T cells, γδ T cells, and 

natural killer T cells also produce IL-17 while eosinophils, neutrophils, macrophages, and 

monocytes can also be sources of IL-17 in some cases (Park et al., 2010).  

Similar to the IL-17 cytokine family, IL-17 receptors form a unique family composed 

of five members which are IL-17RA, IL-17RB, IL-17RC, IL-17RD, and IL-17RE (Gaffen, 

2009). The IL-17 receptor (IL-17R, renamed IL17-RA) is ubiquitously expressed and ligand 

binding causes secretion of pro-inflammatory cytokines and chemokines such as IL-8, IL-6, 

growth-related oncogene α (GROα/CXCL1), macrophage inflammatory protein-2-beta (MIP-

2β/CXCL3), CXCL5 and granulocyte chemotactic protein 2 (GCP-2/CXCL6) (Nograles et al., 

2008). Signaling through the IL-17R is critically required to develop allergic asthma since IL-

17R-deficient mice fail to develop allergic asthma in response to intranasal ovalbumin (OVA) 

after intraperitoneal sensitization (Souwer et al., 2010). 

IL-17 exerts a wide variety of biological activities due to ubiquitous distribution of its 

receptor (Pappu et al., 2008). IL-17 plays an important role in driving allergic inflammation. 

IL-17 has been reported in the lungs, sputum, and BAL fluid of asthma patients (Park et al., 

2010). The up-regulation of IL-17 mRNA expression in the airways of an asthma mouse 

model further substantiated the evidence for the involvement of IL-17 in the pathogenesis of 
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asthma (Hellings et al., 2003). Recent Study have reveal that inhibition of IL-17 by 

administration of IL-17-specific antibody resulted in significantly less AHR and fewer 

neutrophils in the BAL fluid and administration of recombinant IL-17 to mice increased their 

susceptibility to AHR (Lajoie et al., 2010). Activation of the IL-17RA by the binding of IL-17, 

activates NF-κB and MAPK pathways (Park et al., 2010). IL-17 orchestrate local 

inflammation by inducing the release of proinflammatory cytokines such as TNF-α, IL-1β, 

granulocyte colony-stimulating factor (G-CSF) production by bronchial fibroblasts and 

epithelial and airway smooth muscle cells. Additionally, IL-17 can act in synergy with IL-6 to 

induce mucus proteins (Muc5B and Muc5AC) or with IL-1β and TNF-α to enhance Vascular 

endothelial growth factor (VEGF) (Wang et al., 2008). Moreover, IL-17 induces the 

expression of not only eosinophil-guiding chemokines like regulated and normal T cell 

expressed and secreted (RANTES/CCL5) and eotaxin (CCL11) but also other inflammatory 

mediators like intercellular adhesion molecule 1 (ICAM-1) and cyclooxygenase-2 (COX-2). 

Taken together, IL-17 acts as an orchestrating cytokine in immune and inflammatory 

responses. 

Blockade of IL-17 activity with anti-IL-17 monoclonal antibody that is injected before 

allergen inhalation bronchial neutrophilic influx are significantly reduced. Because 

neutrophils may be important in airway remodeling in chronic severe asthma, targeting IL-17 

may hold therapeutic potential in human asthma (Hellings et al., 2003). Receptors for IL-17 

such as IL-17RA and IL-17RC may be the other possible targets for inhibition of IL-17 

activities as human bronchial epithelial cells pretreated with anti-IL-17R antibody 

demonstrated a decrease in IL-17 activity (McAllister et al., 2005). A soluble form of IL-

17RC, which binds to IL-17 and IL-17F with high affinity, has been shown to inhibit the 

signalling of IL-17 in fibroblast (Kuestner et al., 2007). Based on these data, the therapeutic 

potential of inhibiting IL-17 activities is anticipated. 
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IL-33 

IL-33, also called IL-1F11 or nuclear factor from high endothelial venules (NF-HEV), 

is a member of the IL-1 family of cytokine (Joshi et al., 2010; Prefontaine et al., 2010). IL-33 

is an inducer of the Th2 branch of adaptive immunity and signals through a complex 

membrane bound interleukin 1 receptor-like 1 (IL1RL1/ST2) protein (Schmitz et al., 2005). 

The IL-33/ST2 pathway also contributes to allergen-induced airway inflammation and AHR 

(Kearley et al., 2009), both important features of asthma. The IL-33/ST2 axis triggers the 

release of several proinflammatory mediators, such as chemokines and cytokines, and induces 

systemic Th2-type inflammation in vivo (Schmitz et al., 2005). In the presence of antigen, IL-

33 binds the surface receptor ST2 and polarized naïve CD4+ T lymphocytes into a population 

of T lymphocytes which produce IL-5 and IL-13, but not IL-4. This polarization are 

modulated by ST2 receptor and myeloid differentiation primary response gene (88) (MyD88), 

but not IL-4 or signal transducer and activator of transcription 6 (STAT6). The IL-33-induced 

T-lymphocytes differentiation is also dependent on the phosphorylation of mitogen-activated 

protein kinase and NF-κB, but not the induction of GATA-binding protein 3 (GATA3) or T 

lymphocytes–specific T-box transcription factor (T-BET) (Kurowska-Stolarska et al., 2008). 

Additionally, IL-33 also acts as a selective chemoattractant of Th2 lymhocytes (Komai-Koma 

et al., 2007). Aside from Th2 lymphocytes, ST2 is present on mast cells, basophils, 

eosinophils, macrophages, and ECs (Prefontaine et al., 2010). Human macrophages 

constitutively expressed the membrane-associated (ST2L) and the soluble (sST2) ST2 

receptors. Studies has demonstrated that bone marrow derived human macrophages primary 

responses to IL-33 by skewing in favours of M1 chemokine generation while IL-33 addition 

to polarized human macrophages promotes or amplifies M2 chemokine expression, thus 

signifying that IL-33 might amplify allergic responses by promoting an overall activation of 

both M1 and M2 macrophages (Joshi et al., 2010). In response to allergen exposure, airway 
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ECs released IL-33 (Chustz et al., 2011). IL-33 is typically sequestered in the nucleus of ECs, 

but it can be secreted upon epithelial activation. IL-33 activates lung DCs during antigen 

presentation and thereby drives a Th2-type response in allergic lung inflammation by acting 

on the ST2 receptor (Besnard et al., 2011). By blocking IL-33, the development of Th2 

response due to sensitization to inhaled antigens by DCs was abolished (Lambrecht et al., 

2000). The expression of IL-33 is higher in airway ECs of subjects with asthma (Prefontaine 

et al., 2010). Taken together, these data support a role for IL-33 in the pathogenesis of allergic 

asthma. 

 

Tumour necrosis factor-alpha (TNF-α) 

TNF-α is a pro-inflammatory cytokine that has been implicated in many aspects of the 

airway pathology in asthma. Induced sputum and BAL fluid from asthmatic patients have 

elevated levels of TNF-α (Obase et al., 2001). An up-regulated expression of TNF-α has also 

been detected in alveolar macrophages, mast cells, leukocytes and bronchial epithelial cells 

(Ackerman et al., 1994; Cembrzynska-Nowak et al., 1993; Gosset et al., 1991; Ying et al., 

1991). Expression of TNF-α in the asthmatic airway play an important role in amplifying 

inflammation by the activation of NF-κB and the expression of numerous immune and 

inflammatory response genes (Berry et al., 2007). TNF-α induces the expression of multiple 

airway epithelial genes, including cytokines (IL-5, GM-CSF), chemokines (eotaxin, MCP-1, 

RANTES), adhesion molecules (ICAM-1) and mucins (Muc5AC) (Matera et al., 2010). Other 

than increasing the epithelial expression of adhesion molecules, TNF-α is also a 

chemoattractant for neutrophils and eosinophils (Lukacs et al., 1995). Furthermore, TNF-α 

directly induces histamine release from human mast cells (van Overveld et al., 1991) and 

induce transient AHR (Thomas et al., 1995). Additionally, TNF-α stimulate T lymphocytes 

activation and cytokine release (Chen et al., 2011). TNF-α also reduce glucocorticoid 
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responsiveness in monocytes and up-regulates the pathways involved in chronic airway 

remodelling and subepithelial fibrosis (Hansbro et al., 2011). Several humanized anti-TNF-α 

neutralizing antibodies (infliximab, adalimumab and golimumab) are available (Desai et al., 

2009). Nonetheless, the research article which demonstrated that infliximab could suppress 

exacerbations in patients with moderate asthma has recently been retracted (2011; Erin et al., 

2006). Blocking of TNF-α with etanercept, which is a human soluble TNF-α receptor (TNFR), 

attenuated AHR and improved lung function in a small study of patients with refractory 

asthma. However, serious concerns remain over the safety of TNF-α blockade, which may 

increase susceptibility to respiratory infection (Berry et al., 2006). 

 

Chemokines and Adhesion Molecules  

During inflammation, leukocytes are recruited into tissues by adhesion molecules and 

chemokines. At sites of inflammation, cytokines produced in the tissue induce endothelial cell 

adhesion molecule expression. The vascular recruitment of leukocytes is a three-step process 

involving low affinity rolling of leukocytes on the endothelium followed by arrest of the 

leukocyte on the endothelium through high affinity adhesion, and the subsequent 

transmigration of the leukocyte through the endothelium. The rolling of leukocytes on the 

vessel wall is mediated by selectins. Selectins are a family of calcium-dependent, type I 

transmembrane glycoprotein family of adhesion molecules (McEver, 2002). The low-affinity 

nature of selectins allows the characteristic "rolling" action of leukocytes. Currently known 

selectins include E-selectin, P-selectin, and L-selectin, named for the cell type in which they 

were originally identified: endothelium, platelet, and leukocyte respectively. IL-1, LPS and 

TNF-α mediate the expression of E-selectin by endothelium (Kelly et al., 2007). Additionally, 

rolling can also be mediated by very late antigen 4 (VLA4) (which is also known as leukocyte 

α4β1-integrin) in its low affinity state interacting with vascular cell adhesion molecule-1 
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(VCAM-1) on the endothelium (Alon et al., 1995). Binding of selectins on leukocytes 

increases the affinity of the integrin family of receptors that then bind to the endothelial cell 

adhesion molecules such as ICAM-1 or VCAM-1 which are up regulated by Th2 cytokines 

(Cook-Mills et al., 2011). The high affinity integrin binding of leukocytes mediates the arrest 

of the leukocytes on the endothelium, and the subsequent migrate on chemokine gradients 

into the tissue. While both neutrophils and eosinophils bind to E-selectin, the chemokine 

provided the specificity for leukocyte cell type base on the chemokine receptors it has. 

Eotaxin (CCL11) selectively recruits eosinophils by binding to CCR3 which is not expressed 

by neutrophil and monocytes (Baggiolini et al., 1997).  

Regulated upon activation in normal T cells, expressed, and secreted (RANTES/CCL5) 

are crucial to the delivery of eosinophils and T lymphocytes into the airways during asthma 

and during OVA-induced allergic airway disease (Hogan et al., 2008). RANTES which is 

produced by endothelial cells, fibroblasts, T lymphocytes, eosinophils, platelets and other 

cells (Zhang et al., 2010), may activate cells by binding to CC chemokine receptor-1 (CCR1), 

CCR3, or CCR5, which it shares with other chemokines (Schuh et al., 2003). Although 

RANTES was constitutively expressed in the airways, it expression was elevated in patients 

with asthma (Zhang et al., 2010). 

Monocyte chemotactic protein-1 (MCP-1/CCL2) recruits monocytes and T 

lymphocytes to the sites of inflammation and it is produced by bronchial epithelial cells, 

macrophages, and smooth muscle cells. Levels of MCP-1 are elevated in the airways of 

asthmatics (Sutcliffe et al., 2009). Moreover, IL-13-induced inflammation in mice is 

associated with an increase in MCP-1 release and that the disease process is attenuated in 

MCP-1 hematopoietic cell receptor CC chemokine receptor 2 (CCR2) knockout mice (Zhu et 

al., 2002). Additionally, MCP-1 stimulate the release of histamine or leukotriene from mast 
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cells or basophils, induce production of transforming growth factor-β (TGF-β) and 

procollagen by fibroblast and enhance Th2 lymphocytes polarization (Melgarejo et al., 2009).  

 

Chitinases  

Chitinases have been suggested to play a pivotal role in Th2-mediated allergic 

diseases such as asthma (Guan et al., 2009; Sutherland et al., 2009). Chitinases such as 

chitotriosidase and acidic mammalian Chitinase (AMCase) are enzymes that degrade chitin, 

the second most abundant biopolymer that is an essential structural component of the fungal 

cell wall and is present in the exoskeleton of arthropods and the microfilarial sheath of 

nematodes (Tharanathan et al., 2003). There are also chitinase-like proteins such as YKL-40, 

Ym1 and Ym2 that lack chitinolytic activity but retain chitin-binding ability. Although 

chitinases were originally believed to function in host defense against parasitic infections, 

there is currently ample evidence to support an association of acidic mammalian chitinase and 

YKL-40 with allergic asthma.  Zhu and coworkers reported the first clinically relevant finding 

regarding the role of chitinase in asthma (Zhu et al., 2004) where exaggerated quantities of 

AMCase were detected in the epithelial cells and macrophages of lung biopsies taken from 

patients with asthma. Subsequently, utilizing a 2D gel electrophoresis proteomics approach, a 

concurrent elevation of the BAL fluid protein level of AMCase, Ym1 and Ym2 was also 

observed in a OVA-induced mouse asthma model (Zhao et al., 2005). On the contrary, there 

is no change observed in chitotriosidase protein level in BAL fluids. In addition to AMCase, 

serum and lung tissue levels of a chitinase-like protein YKL-40 have been found to be 

increased in patients with asthma. Moreover, circulating YKL-40 levels correlated positively 

with asthma severity, thickening of the lung subepithelial basement membrane, frequency of 

rescue inhaler use, and deterioration in pulmonary function in asthmatic subjects studied 

(Chupp et al., 2007). Thus, YKL-40 and AMCase levels may be useful biomarkers for Th2-
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dependent allergic airway inflammation, and the AMCase level may be useful for monitoring 

the effectiveness of anti-inflammatory therapy in asthma. 

 

1.2.2.3 Airway Hyperresponsiveness (AHR) 

Physiologically, airway responsiveness describes the ability of the airways to narrow 

after exposure to constrictor agonists. AHR consists of an increased sensitivity of the airways 

to constrictor agonists, which is presented by a smaller concentration of a constrictor agonist 

needed to initiate the bronchoconstrictor response, a steeper slope of the dose-response and a 

higher maximal response to the agonist (Jiang et al., 2012; O'Byrne et al., 2003). AHR is 

therefore an exaggerated constriction of the airways in response to bronchoconstrictor stimuli. 

Viral-induced exacerbations, allergen exposure and occupational exposures can also briefly 

enhance the underlying AHR in individual patients. AHR has been identified as an important 

feature in patients with current, symptomatic asthma and AHR is regarded as a key diagnostic 

criterion of asthma (Bousquet et al., 2007; Busse, 2010). Clinically, AHR is documented by a 

decreased bronchial airflow after inhalation challenge with methacholine or histamine as the 

severity of AHR correlates with the severity of asthma and with the amount of treatment 

needed to control symptoms; The patients with more severe airway disease often have a 

greater degree of AHR  (Galli et al., 2008b). Conversely, an improvement in AHR is 

associated with better control of asthma (Busse, 2010). Thus, the methods for measuring 

airway responsiveness have been standardized and are widely accepted.  

To understand the components that comprise AHR, the factors that contribute to AHR 

has been suggested to be divided into two categories, the persistent and the variable AHR 

(Busse, 2010; Covar, 2007; O'Byrne et al., 2009). The persistent aspects of AHR have been 

largely attributed to structural changes in the airway, particularly in those patients with more 

severe disease; these structural changes alter the architecture of the airways to make them 
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thicker, less compliant, and more narrowed, all features associated with a greater degree of 

constriction and closure when stimulated by contractile substances. The variable component 

of AHR is believed to relate to inflammatory events in the airway, which are variable and 

influenced by numerous environmental events such as exposure to allergens, respiratory 

infections and treatment. Nonetheless, it is understood that these processes are interrelated 

and likely to be interdependent. Hence, the level of AHR represents both collective and 

synergistic events in the airway and is the result of multiple processes (Busse, 2010).  

 

1.2.3 The mouse model of asthma  

Studies in animal models form the basis for much of our current understanding of the 

pathophysiology of asthma, and are central to the development of drug therapies. While there 

are comparative dissimilarities in genetics, immunology, anatomy and physiology, the use of 

laboratory animals clearly allows investigators to test hypothesis about the causal mechanisms 

underlying disease in ways that cannot be done in man.  

We use mouse asthma model in our study as it has the benefit of being easy to handle, 

together with its obvious practical advantages related to cost and gestation period (Corry et al., 

2006). The mouse has also become the species of choice for our studies because of the 

availability of immunological and molecular tools available to study them as the entire mouse 

genome has been sequenced, and the variety of in-bred strains with different phenotypic traits. 

Our research focused primarily on generating allergic inflammation by sensitizing and 

challenging animals with OVA, leading to an acute inflammatory response and airways 

hyperresponsiveness. The protocol starts by systemically sensitising the animals via 

intraperitoneal injections separated by one week to ovalbumin OVA absorbed onto an 

adjuvant. Aluminium hydroxide (Al(OH)3) was used as the adjuvant as it primes the immune 

response towards a Th2 phenotype (Stevenson et al., 2011). This is followed by allergen 
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exposure to the airways via aerosol administration one week after the last sensitisation. These 

models have provided important insights into the nature of the allergic airway inflammation, 

particularly the significance of the Th2 phenotype in this disease and have been useful in the 

identification of potential drug targets for interventions involving allergic pathways. 

Nonetheless, mouse models are not exact replicas of human asthma. There are a 

number of issues with existing animal models of asthma that must be recognized including the 

requirement for adjuvant during senitisation in most models, the acute nature of the allergic 

response that is induced and the use of adult animals as the primary disease model. It has also 

been proposed that chronic OVA exposure leads to tolerance and poorly maintained 

inflammation, possibly through the induction of Treg lymphocytes, which limits the ability to 

mimic the chronic aspect of asthma and the associated airway remodelling (Stevenson et al., 

2011). 

That being said, the OVA-induced allergic lung inflammation mouse model can 

replicate many of the central features of allergic asthma including increased specific IgE 

production, mucus hypersecretion, bronchoconstriction responses, a Th2-biased inflammation 

rich in eosinophils and nonspecific AHR. Observations from mouse models of allergic asthma 

support many existing paradigms, and therefore it is utilized to examine our hypotheses.  

 

1.2.4 Current Treatment  

The treatment for current asthmatic patients includes the use of medication for short-

term relief, the daily use of preventive medication to avert attacks, monitoring of early 

symptoms, avoiding factors that trigger attacks and removing risks such as tobacco smoke or 

mould from the environments (Akinbami et al., 2011). As the airway obstruction of asthma is 

due to inflammation and AHR, bronchodilating and anti-inflammatory therapy is usually 

applied (Hoshino et al., 2009). Inhaled corticosteroids and short-acting and long-acting β-2-
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adrenoceptor agonists are now the mainstay of asthma treatment. Inhaled glucocorticoids are 

the priority for asthma treatment as airway inflammation in asthma responds well to steroid. 

On the other hand, if an asthma patients only have a mild intermittent asthma, the patient will 

only be treated with short-acting inhaled β-2-selective agonist such as salbutamol (Cazzola et 

al., 2011). Asthma is a disease that can be managed with the use of anti-inflammatory therapy 

as a huge portion of asthmatic patients are reasonably well controlled with inhaled 

corticosteroids, cysteinyl leukotriene receptor antagonists and/or injections of anti-IgE 

antibody, omalizumab. Theophylline has also been used as a bronchodilator, but the cardiac 

and central nervous system side effects and relative low efficacy have led to a marked 

reduction in its use (Hansel et al., 2004).  

The cysteinyl leukotrienes (CysLTs), leukotrienes (LT) C4, D4 and E4 are one of the 

most potent contractile agonists of airway smooth muscle. By interacting with the Cysteinyl 

leukotrienes receptor 1 (CysLT1), they increasing vascular permeability and stimulate mucus 

secretion, all of which would induce an acute asthmatic attack. Corticosteroids treatments are 

not effective against the biosynthesis and the actions of cysteinyl leukotrienes (Gyllfors et al., 

2006). The currently available oral cysteinyl leukotrienes receptor 1 antagonists such as 

montelukast are not only beneficial in treatment of chronic asthma (Reiss et al., 1998), it has 

also recently found to be effective in acute asthma exacerbation (Ramsay et al., 2011). 

Although CysLTs antagonists can be used as a monotherapy in mild to moderate asthma, their 

main use is as an adjunct therapy to inhaled corticosteroids (Polosa, 2007) as these drugs are 

generally less effective than inhaled glucocorticoids (Montuschi et al., 2010).  

Although inhaled corticosteroids are effective at suppressing airway inflammation, 

they do not influence the natural history of the disease, even when the corticosteroids 

treatment is started early in childhood (Bisgaard et al., 2006; Guilbert et al., 2006). Moreover, 

the use of higher dose of corticosteroids has associated morbidities (Blakey et al., 2012). 
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Inhaled corticosteroids are also not effective in virus-induced exacerbations (Harrison et al., 

2004) and in those asthmatics who smoke (Chaudhuri et al., 2003). The failure of 

corticosteroids to decrease the level of expression of TNF-α in asthmatic airways might 

explain why corticosteroids have limited effects in more severe forms of the disease (Truyen 

et al., 2006). 

Despite intensive use of these anti-inflammatory interventions, 5–10% of asthmatics 

have severe asthma, which does not respond to treatment, and continue to have significant 

disabling and/or life-threatening symptoms (Moore et al., 2007). Patients with severe asthma 

account for 50% of asthma-related healthcare costs (Yang et al., 2012). Severe corticosteroid-

refractory asthma patients face the greatest morbidity and mortality. There are currently 

limited therapeutic option for patients whom only have incomplete control and thus, it is 

imperative to derive novel treatment for this group of patients. 

 

1.3 Chronic obstructive pulmonary disease (COPD) 

COPD is a disease state characterized by slow and progressive development of airflow 

limitation that is not fully reversible, in sharp contrast to asthma where there is variable 

airflow obstruction that is usually reversible spontaneously or with treatment. The airflow 

limitation is associated with dysregulated inflammatory response of the lungs to noxious 

particles or gases (Naeije, 2005).  Physiologically, the chronic airflow limitation is reflected 

by reducing expiratory flow, such that a slow forced expiration is required to empty the lungs.  

The severity of COPD is defined by the most popular classification of COPD, the 

Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification (Rabe et al., 

2007) which is based on the forced expiratory volume in 1 second (FEV1) as the most 

important criterion, categorize patients into 4 stages, described as mild (I), moderate (II), 

severe (III), or very severe (IV). A COPD patient may start seeking medical attention at stage 
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II due to the chronic respitory symptoms or an exacerbation of their disease but are usually 

unaware of lung function abnormality during stage I. Stage III is characterized by further 

worsening of airflow limitation, greater shortness of breath, reduce exercise capacity, fatigue, 

and repeated exacerbations that almost always have an impact on patients' quality of life. At 

the most severe stage of COPD, stage IV, respiratory failure may occur and quality of life is 

very appreciably impaired and exacerbations may be life threatening (GOLD, 2011). In 

current clinical practice, COPD is diagnosed and monitored via symptoms, lung function and 

the assessment of responses to inhaled pharmacological agents (Rabe et al., 2007). 

The deterioration of lung function in COPD is associated with chronic obstructive 

bronchitis and emphysema that commonly co-exist. Bronchitis, which is an inflammation of 

the bronchus, is resulted from structural remodelling of the lung that includes the narrowing 

of the small airways due to peribronchiolar fibrosis and luminal obstruction by inflammatory 

mucus exudates (Dournes et al., 2012). Airway obstruction occurs long before the patient is 

aware of symptoms because of its slowly progressive nature. Emphysema is a disease with 

enlargement of airspaces, destruction of lung parenchyma which reduce the gas-exchange 

surface area of the lung and loss of lung elasticity as a consequence of skewed activation of 

proteases (Brusselle et al., 2011; Cosio et al., 2009; Mocchegiani et al., 2011). The pathologic 

changes which resulted from repeated injury and repair, correlate with disease severity and 

persist on after smoking cessation (Rabe et al., 2007). In general, inflammatory cell 

infiltration, the imbalance of proteinase-antiproteinase system, oxidative stress and airway 

remodelling contributes to the decline in pulmonary function associated with the development 

of COPD (Cosio et al., 2009; Larsson, 2007; Shapiro, 2002). 
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1.3.1 Epidemiology and Burden of COPD 

COPD is a global health problem that is estimated to cause the death of at least 2.9 

million people annually (Lopez et al., 1998). As 210 million people worldwide are estimated 

to have COPD, it is predicted to become the third most common cause of death after 

ischaemic heart disease and cerebrovascular disease and the fifth most prevalent disease 

worldwide by 2020 (Lopez et al., 1998) . It affects over 5% adults (age 18-74), is currently the 

fourth leading cause of death worldwide and is the only major cause of death that is still rising 

(Pauwels et al., 2004; Sin et al., 2005). Subsequently, COPD will be the direct underlying 

cause of 7.8% of all deaths by 2030 (Mathers et al., 2006). The economic burden of COPD 

and the health care costs has exceeded those of asthma by more than 3 folds (Barnes, 2000). 

Exacerbations of COPD account for the greatest burden on the health care system in 

developed countries. Indeed, the total direct costs of respiratory disease in the European 

Union are estimated to be about 6% of the total health care budget, where COPD alone 

accounts for 56% of this cost of respiratory disease or aproximately €38.6 billion (Rabe et al., 

2007). In the United State, the direct costs of COPD were $18 billion and the indirect costs 

totalled $14.1 billion (Skrepnek et al., 2004). Because of its persistently increasing prevalence, 

mortality and disease burden, COPD is a major public health concern and the focus of intense 

research. 

 

1.3.2 Etiology  

Cigarette smoking is the single most important identifiable major risk factor for the 

development of COPD (Huvenne et al., 2011). Although COPD also occurs in non-smokers 

that is exposures to a range of both environmental fumes and dusts, such as coal dusts, or 

person with α1-antitrypsin deficiency and history of childhood respiratory infections, cigarette 

smoking has been accounted for 80–90% of all COPD cases (El-Zein et al., 2012; Gaschler et 
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al., 2010). Smoking directly correlates with the early onset of chronic obstructive pulmonary 

disease (COPD). Nonetheless, individuals vary greatly in their susceptibility to the effects of 

tobacco smoke (Castaldi et al., 2011). In spite of this, according to the World Health 

Organization (WHO), over 1.3 billion people worldwide continue to smoke (World Health 

Organization., 2005; World Health Organization., 2003).  Cigarette smoke is a rich source of 

potent oxidants both in gaseous and water-soluble phases (Pryor, 1992). The cigarette smoke-

derived oxidants damage airway epithelium and alveolar wall, leading to infiltration of 

macrophages and neutrophils (Cantin, 2010; Foronjy et al., 2008; Yao et al., 2011). In 

additionally, cigarette smoke is not just a direct exogenous source of reactive oxygen species 

(ROS), it also induces endogenous production of ROS from activated inflammatory cells, 

such as alveolar macrophages and neutrophils (MacNee et al., 2001)  in the lung, resulting in 

an imbalance between oxidants and antioxidants (Rahman et al., 2006a). This is likely due to 

the high oxidative burden in the lungs of smokers which has been estimated
 
to be on the order 

of 10
15

 free radicals per
 
puff (Church et al., 1985). Furthermore, the degree of oxidative stress 

increases
 
greatly with the severe exacerbations in COPD (Drost et al., 2005). Hence, reduction 

of oxidative stress in COPD patients is clinically beneficial as it could reduce inflammation 

and reverse corticosteroid resistance. Nonetheless, N-acetyl cysteine, the current and the only 

approved antioxidant is inadequate in reducing progression and exacerbation of COPD 

(Decramer et al., 2005).  Thus, novel anti-oxidant activator is very much needed.  

 

1.3.3 Inflammatory cells  

COPD is a complex disease that involves several types of inflammatory cells (Barnes, 

2003).  Although both asthma and COPD involve chronic inflammation in the respiratory 

tract, there is a discernible difference in the type of inflammatory cells involved and in the site 

of inflammation (Barnes, 2004). Increased numbers of macrophages and neutrophils are 
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observed in sputum and BAL fluid of COPD patients (Keatings et al., 1996; Pesci et al., 

1998a). Similarly, BAL fluid and sputum also demonstrate increased inflammatory 

biomarkers such as cytokines, proteases, and soluble cytokine receptors (Barnes et al., 2006). 

However, in contrast to asthma, eosinophils are not prominent in COPD patients’ lung except 

during exacerbation or when patients have concomitant asthma (Fabbri et al., 2003). 

Inflammation in COPD is not a separate entity by itself but is integrally related to oxidative 

stress and protease–antiprotease imbalance. Chronic inflammation plays a critical role in the 

pathogenesis of COPD through their potential release of ROS, cytokines, chemokines, 

elastase, and metalloproteinase in response to cigarette smoke. Although cigarette smoke is 

the major cause of chronic inflammation of the lungs, the inflammation in COPD patient does 

not stop after cessation of smoking (Lapperre et al., 2006). Moreover, the inflammatory cell 

infiltration correlates well with the severity of airflow obstruction (Hogg et al., 2004). In 

contrast, chronic bronchitis, which is define by a productive cough for more than 3 months for 

more than 2 successive years is not necessarily associated with airflow limitation (Barnes, 

2003). Thus, inflammation is highly implicated in the disease process. 

 

Neutrophils   

Neutrophil accumulation in the lung is a prominent feature of COPD. BAL of smokers 

has an increase in neutrophils compared with nonsmokers as cigarette smoke is known to 

induce macrophages to release neutrophilic chemotactic factors. Higher number of neutrophils 

have been found in bronchial epithelium and lamina propria in smokers compared with 

controls (Pesci et al., 1998b), and the number of neutrophil is higher in the small airways than 

large airways (Battaglia et al., 2007).
 
When compared to healthy nonsmokers and healthy 

smokers, bronchial biopsies from GOLD stage III and IV COPD patients (severe/very severe) 

demonstrate a corresponding increase in neutrophils in the airway submucosa (Di Stefano et 
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al., 2009). Furthermore, acute COPD exacerbations are often associated with microbial 

infections and neutrophilic inflammation (Sethi et al., 2009). 

Neutrophils are a rich source of inflammatory mediators, reactive oxygen species and 

tissue proteases (Barnes et al., 2003; Stockley, 1999). Activation of lung neutrophils leads to 

the release of granule proteins such as neutrophil elastase (NE) and myeloperoxidase (MPO) 

(Borregaard et al., 2007) that could contribute to the bronchial inflammation and to structural 

changes such as peribronchiolar fibrosis and emphysema (Baraldo et al., 2004; Woolhouse et 

al., 2005). In emphysema, neutrophil degranulation leads to alveolar wall destruction which 

resulted to mucociliary dysfunction and reduced mucociliary clearance. In chronic bronchitis, 

inflammation which is characterized by mucosal infiltration with neutrophils, macrophages, 

and lymphocytes, resulted in epithelial disruption, smooth muscle hypertrophy and fibrosis 

(Quint et al., 2007). 

Neutrophils are responsible for significant damage when they accumulate at sites of 

inflammation and are harmful to healthy tissue. The neutrophils role in the cellular host 

defence against microorganisms relies in part on their ability to generate large amounts of 

superoxide anion (O2–) and related ROS through activation of nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase on the plasma membrane, an ability which is 

known as respiratory bursting. Oxidant such as O2– and hydrogen peroxide (H2O2) serve as 

intracellular signaling molecules for a variety of chemokines, including LTB4, TNF-α, IL-1, 

and TGF-β1, as well as various other growth factors (Circu et al., 2010). 

The accumulation of neutrophils is a dynamic process that consists of recruitment 

from the bloodstream and clearance from the lungs as a result of phagocytosis of apoptotic 

cells. Recently, cigarette smoke has been discovered to impair the ingestion of neutrophils by 

macrophages and decreases the ability of macrophages to phagocytose apoptotic cells through 

inhibition of actin rearrangement (Minematsu et al., 2011). The inability to clear neutrophils 
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would lead to a greater release of destructive neutrophil products. This leads to a cascade of 

events that damages central and peripheral airways along with terminal airspaces, causing the 

physiologic and clinical abnormalities in COPD. 

 

Macrophages  

Macrophages play an important role in the pathophysiology of COPD. Macrophages 

account for the majority of inflammatory cells recovered by airway lavage, regardless of 

whether or not the subjects are non‐smokers, healthy smokers or smokers with airways 

disease(O'Donnell et al., 2006). There is however a significant increase of macrophages in 

airways, lung parenchyma, BAL fluid and sputum in patients with COPD. Moreover, 

macrophage numbers in the airways correlate well with the severity of COPD (Di Stefano et 

al., 1998). The increase of macrophages numbers in COPD patients and smoker are partly due 

to the increased recruitment of monocytes from circulation in response to monocyte-selective 

chemokines and partly due to the increase proliferation and prolonged macrophages survival 

in the lungs.  Macrophages can be directly activated by cigarette smoke to release 

inflammatory mediators including TNF-α, MCP-1, reactive oxygen species (ROS), and 

neutrophil chemotactic factors such as keratinocyte-derived chemokine (KC) (Keatings et al., 

1996). Macrophages also secrete a wide array of tissue proteases, including matrix 

metalloproteinase  (MMP) which mediate the lung parenchymal damage (Barnes et al., 2003).  

 

Epithelial Cell  

Epithelial cells are key regulators of neutrophil trafficking into the airway lumen 

(Quint et al., 2007). Cigarette smoke exposure induced the expression of IL-1β, IL-8 and GM-

CSF in normal human bronchial epithelial cells (NHBE) via the activation of both the NF-κB 

and MAPK pathways (Hellermann et al., 2002). The airway epithelium is one of the first 

targets of cigarette smoke. Studies have demonstrated that alveolar epithelial cell apoptosis 
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increased disproportionately to alveolar cell proliferation in emphysema (Calabrese et al., 

2005). The damage to epithelial cells of the lower respiratory tract is partly due to cigarette 

smoke-derived oxidants which cause direct injury to membrane lipids, proteins, carbohydrates 

and DNA, resulting in loss and destruction of lung tissue (Demedts et al., 2006; Morissette et 

al., 2009). The epithelial barrier breakdown reduce the ability of lung to exclude foreign and 

reactive materials and increase the likelihoods of respiratory infections (Taylor, 2010). 

 

1.3.4 Mediators of COPD  

1.3.4.1 Chemokines 

Neutrophil Chemoattractant 

Neutrophil recruitment to the airways is mediated by various mediators. IL-8 (CXCL8) 

is one of the most notable chemoattractant of neutrophils (Gernez et al., 2010). IL-8 level 

correlate with the increased proportion of neutrophils and are markedly increased in induced 

sputum of patients with COPD (Keatings et al., 1996). Additionally, the level of IL-8 in BAL 

fluid can be used as a marker to determine the susceptibility of current smokers to pulmonary 

emphysema (Tanino et al., 2002).  

Cigarette smoke also induces macrophages to release IL-8 (Quint et al., 2007). 

Additionally, IL-8 are also released by neutrophils themselves to attract more neutrophils and 

therefore, a self-perpetuating inflammatory state may be established (Scapini et al., 2000). 

When anti-IL-8 antibodies are use therapeutically, the neutrophils chemotactic activity is only 

partially reduced, of the order of approximately 30%, signifying blocking IL-8 alone may not 

be sufficient as a therapeutic strategy to attenuate neutrophil inflammation in the respiratory 

tract (Beeh et al., 2003).  
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Figure 1.4 Cytokines involved in COPD. Inhaled irritants, such as cigarette smoke, activate 

epithelial cells and macrophages to release multiple cytokines, including proinflammatory 

cytokines TNF-α, and IL-1β which amplify inflammation, and several chemokines that attract 

circulating cells into the lungs. MCP-1/CCL2 acts via CCR2 to attract monocytes (which 

differentiate into macrophages in the lungs); KC/CXCL1 and IL-8/CXCL8 act via CXCR2 to 

attract neutrophils and monocytes; and IP-10/CXCL10 act via CXCR3 to attract T 

lymphocytes. Adapted from Barnes (Barnes, 2008c). 
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There are two receptors for IL-8, one of which is CXCR1, which is a low-affinity 

receptor that is specific for IL-8, and CXCR2, which has high affinity and is share by others 

CXC chemokines including CXCL1. IL-8 also induces neutrophils to release of 

myeloperoxidase (MPO) which contributes to further recruitment of inflammatory cells and 

sustain inflammation (Quint et al., 2007).  

CXCL1 is a small cytokine belonging to the CXC chemokine family that is also 

known as Growth-related oncogene-α (GRO-α) or keratinocyte chemoattractant (KC). 

CXCL1/KC is secreted by alveolar macrophages and airway epithelial cells in response to 

stimulation with TNF-α (Schulz et al., 2004). CXCL1 activates both neutrophil and 

monocytes via CXCR2 (Geiser et al., 1993). The concentrations of CXCL1/KC were 

significantly elevated in induced sputum and BAL of patients with COPD compared with 

non-smokers or normal smokers (Traves et al., 2002). In animal models of inflammation, 

blockade of CXCR1 and CXCR2 by specific inhibitors significantly attenuated neutrophilic 

airway inflammation (Chapman et al., 2007). In endobronchial biopsies from patients with 

severe COPD, both CXCR1 and CXCR2 are expressed in high levels and play important roles 

in severe exacerbations (Qiu et al., 2003). 

In the airways of COPD patients, E-selectin, which is necessary for slowing down 

circulating neutrophils, is upregulated on endothelial cells, while ICAM-1, which regulates 

neutrophil adhesion and transcellular migration, is upregulated in on basal epithelial cells. (Di 

Stefano et al., 1994; Scott et al., 2002). Neutrophil influx is also dependent on the presence of 

leukotriene B4 (LTB4), TNF-α, GM-CSF and macrophage-derived matrix metalloproteinase 

(MMP)–12 (Gernez et al., 2010). LTB4 stimulates neutrophil chemotaxis, degranulation, 

release of lysosomal enzymes, and generates reactive oxygen species (ROS). TNF-α also 

plays a role in cellular migration by stimulating the secretion of GM-CSF, IL-6 and IL-8. 
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(Quint et al., 2007). MMP-12 induced an auto-feedback loop that causes macrophages to 

release TNF-α, further enhancing the neutrophil influx.  

 

Monocyte Chemoattractant   

Monocyte chemotactic protein-1 (MCP-1/CCL2) which is a potent chemoattractant for 

monocytes, is express by alveolar macrophages, T lymphocytes and epithelial cells. MCP-1 

activates CCR2 on monocytes and T lymphocytes (Rose et al., 2003). CCR2 play a key role 

in COPD as sputum, BAL and lung of patients with COPD has an increase of MCP-1 level 

(Traves et al., 2002). Macrophage inflammatory protein-1α (MIP-1α/CCL3) is a 

chemoattractant for monocytes and neutrophils via CCR1. MIP-1α is released by 

macrophages. Interferon-γ-inducible protein 10 (IP-10, CXCL10) is a member of the non-

ELR CXC chemokine family that is produced by several cell types, particularly epithelial 

cells (Sauty et al., 1999). IP-10 has been attributed to several roles, including chemoattraction 

for monocytes (Dufour et al., 2002) and inducing the production of MMP-12 in human 

alveolar macrophages (Grumelli et al., 2004). 

 

1.3.4.2 Cytokine 

TNF-α 

TNF-α is a pleiotropic inflammatory cytokine that has a broad spectrum of 

inflammatory effects relevant to COPD. TNF-α is produced by alveolar macrophages, 

neutrophils, T lymphocytes, mast cells and epithelial cells following contact with different 

pollutants including cigarette smoke (Chung, 2006). In animal models, TNF-α has been 

shown to induce an inflammatory cell infiltrate into the lungs, pulmonary fibrosis and 

emphysema, all of which are pathological features associated with COPD (Lundblad et al., 

2005).  TNF-α concentrations are increased in peripheral blood, bronchial biopsies, induced 
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sputum and BALF of patients with stable COPD compared with control subjects. Furthermore, 

TNF-α level in sputum was shown to increase significantly during acute COPD exacerbations 

(Matera et al., 2010). The activation of NF-κB by TNF-α will leads to the transcription of 

inflammatory genes, including cytokines, chemokines and proteases. TNF-α is synthesized as 

a precursor before being converted to the biologically active TNF-α by metalloproteinase 

(MMP). It has been demonstrated that the release of active TNF-α from the macrophages after 

acute smoke exposure is dependent on matrix metalloproteinase-12 (MMP-12) (Churg et al., 

2003). Unexplained weight loss occurs in about 50% of patients with severe COPD and 

chronic respiratory failure. TNF-α release from circulating cells was increased in COPD 

patients with weight loss (Agusti et al., 2008). Infliximab is a monoclonal antibody against 

TNF-α. Infliximab was used to treat autoimmune diseases such as psoriasis, Crohn's disease, 

ankylosing spondylitis, psoriatic arthritis, rheumatoid arthritis, and ulcerative colitis (Matera 

et al., 2010). Nonetheless, infliximab failed to alleviate symptoms, lung function, and exercise 

performance of COPD patients, as assessed by effects on when administrated at the doses that 

are effective in individuals with rheumatoid arthritis (Rennard et al., 2007). Infliximab was 

also no effective in patients with severe COPD who have cachexia (Dentener et al., 2008). 

These surprising findings may indicate that the drug does not adequately neutralize local 

concentrations of TNF-α or that other cytokines are more important. Moreover, when TNF-α 

are block in COPD patients, there was an increase in the incidence of chest infections and 

cancers, raising concerns that suppression of TNF-α may be detrimental in patients with 

COPD who are already predisposed to bacterial lung infections and cancer. 
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IL-1β 

Similar to TNF-α, IL-1β is a potent activator of alveolar macrophages from COPD 

patients (Russell et al., 2002b). IL-1β activates macrophages to secrete various inflammatory 

cytokines and chemokines as well as stimulating the expression of elastolytic MMPs from 

multiple cell types (Culpitt et al., 2003).  In addition, IL-1β also stimulate the bronchial 

epithelial cells to produce extracellular matrix glycoproteins (Chung, 2006). The increases in 

sputum and lavage fluid IL-1β have been documented in smokers compared with non-

smokers (Ryder et al., 2002). Furthermore, IL-1β together with TNF-α has been identified as 

key cytokine that is able to initiate inflammatory cascades during exacerbations of COPD 

(Hackett et al., 2008). As such, studies investigating the efficacy of canakinumab, an fully 

human mAb that neutralizes the bioactivity of human IL-1β in patients with COPD are 

currently in progress (Church et al., 2009). 

 

Granulocyte‐macrophage colony stimulating factor (GM‐CSF) 

GM-CSF play an important role in cigarette smoking-related lung diseases because it 

governs the growth, activation, and survival of leukocytes directly implicated in the 

pathogenesis of COPD (Vlahos et al., 2006). GM‐CSF, which is released from macrophages 

and epithelial cells, exerts its effect by increasing cytokine expression and priming 

inflammatory cells to amplify their responses to other stimuli (Hamilton, 2002). Moreover, 

GM-CSF which is a direct neutrophil chemotactic factor (Gomez-Cambronero et al., 2003) 

increases neutrophil survival in the respiratory tract (Barnes et al., 2003). GM-CSF is also 

directly implicated in the development of small airway fibrosis (Xing et al., 1996). The 

concentrations of GM-CSF in BAL fluid are increased in stable COPD and are significantly 

elevated during exacerbations (Balbi et al., 1997). Similarly, studies have also reveal that the 

levels of GM-CSF in sputum are increased in stable COPD (Saha et al., 2009), and during 

exacerbations of COPD (Tsoumakidou et al., 2005). Recent studies have shown that 
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neutralization of GM-CSF by intranasal administration of anti–GM-CSF antibody to mice 

exposed to cigarette smoke significantly reduce cigarette smoke-induced airways 

inflammation and suggested potential therapeutic implication in COPD (Vlahos et al., 2010). 

 

1.3.4.3 Proteases and antiproteases 

The protease-antiprotease imbalance has been proposed to play a major pathogenic 

role in the development of emphysema. The observation that the instillation of papain, an 

plant elastolytic proteinase, into the lungs of hamsters led to pronounced emphysema (Gross 

et al., 1965) was essential to the formation of the proteinase-antiproteinase imbalance 

hypothesis. These observations led to the notion that emphysema develops due to the release 

of uncheck proteases by the inflammatory cells which lead to the destruction of the 

parenchymal matrix (Abboud et al., 2008). Hence, early studies of COPD focus on the effect 

of protease induce lung inflammation and the subsequent lung injuries.  

 

Neutrophil elastase (NE) and α1-antitrypsin (α1-AT) 

NE is a potent serine protease that that hydrolyze many proteins in addition to elastin. 

NE which is stored in azurophilic granules in neutrophils play an important role in host 

defence as mice lacking neutrophil elastase has been demonstrated to have an impaired 

response to gram negative bacterial induce sepsis (Belaaouaj, 2002). However, as a result of 

NE capacity to efficiently degrade extracellular matrix, overproduction of NE has been 

implicated in a variety of destructive diseases including COPD. Administration of elastase, 

either by intratracheal instillation or aerosol inhalation (Wright et al., 2008) not only lead to 

emphysema, it also cause infiltration of neutrophils and lymphomononuclear cells, mucus cell 

metaplasia, pulmonary edema, hemorrhage and rupture of the respiratory epithelium (Birrell 

et al., 2005c). These changes lead to alterations in lung function that are consistent with those 
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observed in COPD patients (Birrell et al., 2005b). The alpha-1 antitrypsin (α1-AT) is a serine 

protease inhibitor that protects the pulmonary tissue from deleterious effects of proteolytic 

enzymes (Kohnlein et al., 2008). As such, α1-AT deficiency is known to predispose to COPD 

and is symptomatically treated as COPD (Rabe et al., 2007). However, α1-AT deficiency only 

occur in a small portion of COPD patients and COPD patients with or without α1-AT 

deficiency shows different molecular and cellular characteristics due to the specific deficiency 

present in α1-AT deficiency (Hattesohl et al., 2011).  As elastase can be rapidly induced 

emphysema, many early animal COPD models used elastase as the sole agent to study the 

effect potential drugs in treating COPD. However, as the inflammation of the elastase model 

is transient and resolves within a week of elastase administration, it does not reflect the 

progressive, slowly resolving inflammation associated with COPD and the model has 

gradually fallen out of favours (Stevenson et al., 2011).  

 

MMPs and Tissue inhibitor of MMPs (TIMP) 

MMPs constitute a large family of zinc-dependent endopeptidases that are capable of 

degrading extracellular matrix components. Alveolar macrophages may play a pathogenic role 

in emphysema as they express MMPs when induced by cigarette smoking (Lemaitre et al., 

2006). Among the MMPs, MMP-12 is the prominent MMP in the mouse. MMP-12 knock-out 

mice prevented emphysema induced by chronic cigarette smoke exposure (Hautamaki et al., 

1997). Similarly, MMP-12 knock-out mice has attenuated emphysema (Wang et al., 2000; 

Zheng et al., 2000).  MMP-9 knockout mice however are not protected against cigarette 

smoke induced emphysema (Lanone et al., 2002). Moreover, as aforementioned, MMP-12 

also cleaves membrane-bound 26kDa pro-TNF-α to the 17kDa mature TNF-α protein, acting 

as a “TNF-α converting enzyme” (Black et al., 1997; Moss et al., 1997). The MMPs are 

counteracted by four tissue inhibitor of MMPs (TIMP1-4). TIMPs may be either secreted as 
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soluble proteins (TIMP-1, TIMP-2, and TIMP-4) or bound to extracellular matrix (ECM) 

components (TIMP-3) (Melendez-Zajgla et al., 2008). The TIMPs are synthesized by 

connective tissue cells and leukocytes and form non-covalent complexes with MMPs.  TIMPs 

bind to the zinc binding catalytic site of the MMPs with a 1:1 molar ratio (Mocchegiani et al., 

2011). Among the TIMP, only TIMP-1 is highly implicated in COPD. The Secretion of 

TIMP-1 from alveolar macrophages is increased in response to inflammatory stimuli but the 

cells derived from COPD patients has a reduce TIMP-1 and therefore favouring increased in 

elastolysis (Russell et al., 2002a). 

NEs and MMPs “support” each other by inhibiting their counterpart endogenous 

inhibitors. NEs inhibits TIMPs, and MMPs degrade α1-AT (Shapiro, 2002). These proteinases 

cleave components of the ECM to generate elastin fragments or collagen-derived peptides 

such as N-acetyl proline-glycine-proline (PGP), which have been shown to be chemotactic for 

monocytes and neutrophils (Weathington et al., 2006). Although unchecked proteinase has 

deleterious effects on the lungs, the imbalance of protease and anti-protease are largely due to 

oxidative stress in the overall pathogenesis of COPD as oxidant not only induce proteases 

secretion, cigarettes or biomass smoke exposure also can inactivate endogenous antiproteases 

activities (Cavarra et al., 2001).  

 

1.3.4.4 Oxidant and antioxidant  

Oxidative stress is a cardinal feature of COPD. While oxidant generation is part of the 

normal cellular metabolism and is critical for cell homeostasis, oxidative stress can occurs 

when the burden of oxidants is not well counterbalanced by the antioxidant defence system 

and results in harmful effects (Lin et al., 2010). Inhaled reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) and reactive chemicals (e.g. aldehydes) from cigarette smoke, 

together with endogenous oxidants arise from inflammatory cells, such as activated 
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neutrophils and macrophages, constitute a major oxidative burden to the lungs (Mak, 2008). 

Oxidants in cigarette smoke may also activate resident cells in the lung such as epithelial cells 

and alveolar macrophages to release chemokine which recruit additional inflammatory cells 

into the lung (Louhelainen et al., 2008). Chronic exposure to cigarette smoke perpetuates this 

response, leading to the increased production of inflammatory cytokines and degradative 

enzymes as well as defects in homeostatic mechanisms such as inactivation of anti-proteases, 

anti-oxidants and repair mechanisms (van der Toorn et al., 2007). The down regulation of 

antioxidant pathways has also been associated with acute exacerbations of COPD (Lin et al., 

2010).  Lung injury due to oxidants is linked to oxidation of proteins, DNA, and lipids 

(Biswas et al., 2009). Pulmonary levels of oxidant biomarkers such as 3-nitrotyrosine (3-NT), 

8-isoprostane and 8-hydroxydeoxyguanosine (8-OHdG) have been shown to correlate 

positively with COPD severity (Inonu et al., 2012; Louhelainen et al., 2008; Yao et al., 2011). 

The degree of pulmonary
 
oxidant-antioxidant imbalance correlates well with the severity

 
of 

COPD (Drost et al., 2005). Thus, the ability of the lungs to respond to oxidative stress
 
is an 

important determinant of their relative resistance
 
or susceptibility to COPD. 

Antioxidants are agents that decrease steady-state ROS and protect cellular 

macromolecules from oxidative modification. An antioxidant rapidly reacts with oxidant to 

produces less reactive species. The lung has a large reserve of endogenous enzymatic and 

non-enzymatic antioxidants. Antioxidant enzymes include superoxide dismutase (SOD), 

catalase, glutathione peroxidases (GPx), glutathione S-transferase (GST) and the heme 

oxygenase-1 (HO-1) system. Non-enzymatic antioxidants include glutathione (GSH), 

bilirubin, carbon monoxide and ferritin.  

GSH is the most abundant free thiol antioxidant that reacts with peroxides to form 

glutathione disulfide (GSSG) and is recycled by glutathione reductases (GR). GPx also 

catalyze a variety of GSH reactions including the breakdown of H2O2. GSH is more 
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concentrated in the epithelial lining fluids and plays an important role in maintaining optimal 

redox balance in the lungs. In addition, under catalysis of GST, GSH is capable of rapidly 

detoxifying harmful xenobiotic components of tobacco smoke (Harju et al., 2008). GSH is 

sensitive to oxidative stress. In response to acute cigarette smoke exposure, there is a transient 

upregulation of GSH in the epithelial lining fluids to counteract the increased oxidants, but it 

is eventually overwhelmed by ongoing oxidative stress. Cigarette smoke also affects GPx, GR, 

and GST, all of which are detoxifying enzymes involved in the GSH redox system in the 

lungs. These observations suggest that smokers are predisposed to oxidative injuries (Lin et 

al., 2010). Similar to GPx and GSH, catalase catalyse the decomposition of H2O2 to water and 

oxygen. Polymorphisms of the catalase gene have been shown to be related to an imbalanced 

of oxidant and antioxidant system in COPD patients (Mak et al., 2007). SODs are antioxidant 

enzymes that catalyze the dismutation of superoxide into oxygen and hydrogen peroxide. 

There are three forms of superoxide dismutase, SOD1 (Cu/Zn SOD), SOD2 (MnSOD) and 

SOD3 (extracellular SOD, ecSOD). SOD1 and SOD2 are primarily localized in lung cells and 

SOD3 is mainly in the extracellular space of the lung (Oberley-Deegan et al., 2009). 

Heme oxygenase (HO) is an enzyme that catalyzes the degradation of heme to 

generates biliverdin, iron, and carbon monoxide (CO). The products of heme catabolism 

mediate the antioxidant properties of HO. In the airways, HO-1 is expressed in the epithelium, 

smooth muscle, type II pneumocytes, and alveolar macrophages. HO-1 expression which can 

be induced by heme, hypoxia, hyperoxia, NO, endotoxin and pro-inflammatory cytokines (An 

et al., 2012), is extremely sensitive to agents that cause oxidative stress. HO-1 exhibits 

powerful antioxidant and anti-inflammatory properties. HO-1 expression is upregulated in 

several pulmonary diseases, including COPD and asthma. The over-expression of HO-1 in 

animal models is beneficial in several lung diseases including COPD (Shinohara et al., 2005). 
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The biliverdin that is generated by HO-1 is subsequently converted to bilirubin, a 

potent endogenous antioxidant (Fredenburgh et al., 2007). In vitro and in vivo studies have 

shown carbon monoxide (CO) has both anti-inflammatory and anti-oxidant capacities 

(Montuschi et al., 2001). In fact, a recent clinical trial which have been carried out to 

determine the effect of CO in the treatment of stable COPD have found that CO treatment led 

to trends in reduction of sputum eosinophils and improvement of responsiveness to 

methacholine (Bathoorn et al., 2007). The generation of iron-catalysed ROS has been 

minimized as free iron produced by HO-1 is taken up by ferritin, a major intracellular iron 

storage protein that removes excess free iron (Lin et al., 2010).  

The association of COPD with genetic variations of antioxidant genes has also been 

reported. There is a decrease of HO-1expression in COPD patients. Studies have shown that 

the polymorphism of the HO-1 gene is associated with increased susceptibility to emphysema 

in smokers (Hirai et al., 2003). Furthermore, in response to oxidative stress, this 

polymorphism resulted in reduced transcriptional activity of the HO-1 gene and decrease HO-

1 antioxidant capacity. Similarly, single-nucleotide polymorphisms (SNPs) in SOD3 have 

been reported to either protect (Young et al., 2006) or promote (Dahl et al., 2008) 

development of COPD.  

Nuclear factor erythroid-2-related factor 2 (Nrf2) is a redox-sensitive basic leucine 

zipper transcription factor and is critical in protecting the lung against oxidative stress. Nrf2 

regulates expression of antioxidants including GPx, GR and HO-1 by binding to the 

Antioxidant Response Element (ARE) present in the promoters of these genes (Adair-Kirk et 

al., 2008; Hubner et al., 2009). The selective inactivating mutations in Kelch-like ECH-

associated protein 1 (KEAP1), an Nrf2 inhibitor, enhances Nrf2-directed constitutive 

expression of multiple antioxidants genes (Singh et al., 2006a). Impaired Nrf2 activities have 

been implicated in several pulmonary diseases including acute respiratory distress syndrome, 
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pulmonary fibrosis, asthma and COPD (Boutten et al., 2011; Cho et al., 2006). Studies have 

revealed a significant decline in NRF2-regulated antioxidant defenses such as HO-1 and 

GCLM as well as a higher degree of oxidative damage in peripheral lung tissues of patients 

with COPD as compared with lungs of patients without COPD (Malhotra et al., 2008). In 

animal models, Nrf2 gene disruption resulted in ablated expression of antioxidants gene and 

enhanced susceptibility to emphysema after cigarette smoke exposure (Rangasamy et al., 

2004). Activation of Nrf2 by triterpenoids such as CDDO-imidazolide has demonstrated 

beneficial effects in a cigarette smoke-induced emphysema animal model (Sussan et al., 2009). 

Drug discovery of novel compounds with property of strengthening antioxidant defense is a 

vital strategy for COPD drug development.  

 

1.3.5 Mouse Models of COPD 

Animal models have played an instrumental role in broadening our mechanistic 

understanding of COPD. In our studies, cigarette smoke model were utilized to investigate 

our hypothesis as the model is induced by same insult as in humans. Cigarette smoking model 

are advantages over other models for COPD as it uses the predominant disease-causing agent 

to model several key features of the disease in small animals. Moreover, as there are over 

4000 hazardous compounds, of which 200 are highly toxic (Brunnemann et al., 1991) and it 

has more than 10
15

 free radicals in every puff of smoke (Church et al., 1985), single stimuli 

such as elastase and LPS are not likely to replicate the complex response to smoke. Chronic 

cigarette smoke exposure to animals produces emphysema, airway inflammation and airway 

remodelling. Cigarette smoke also causes lung inflammation where macrophages and 

neutrophils are prominent (Pauwels et al., 2001; Rabe et al., 2007). Moreover, cigarette smoke 

induces inflammation exposure that is not as pronounced as the response to either LPS or 

elastase and it is insensitive to glucocorticoids treatments (Marwick et al., 2009). Similar to 
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physiological alterations in humans, cigarette smoking appear to effectively mimic the 

progressive, low-grade, slow resolving and steroid-insensitive inflammation associated with 

COPD. As acute exacerbations in COPD patients, which contribute to the accelerated lung 

function decline and disease progression, are a major cause of hospitalization and death 

(Makris et al., 2007), several groups have begun to attempt to model the pathologies and 

physiological changes associated with late-stage COPD by challenging animals exposed to 

smoke with agents known to cause exacerbations such as bacteria and viruses. Studies 

combining virus and cigarette smoke exposure demonstrated that virus infection may reduce 

or enhance the inflammatory response depending depended on the type of virus (Gualano et 

al., 2008; Meshi et al., 2002) and the dose of virus infection (Robbins et al., 2006). 

Additionally, infecting small animals with bacteria has also been used to model COPD acute 

exacerbation-like changes. The effects of bacterial infection on cigarette smoke exposed mice 

are also dependent on the species of bacteria involved. Bacterial infection generally enhanced 

inflammation but the clearance of bacteria may be enhanced (Gaschler et al., 2009) or 

reduced (Drannik et al., 2004) dependent on the species of bacteria involved. These studies 

underscore the complexity of combining cigarette smoke exposure with human pathogens to 

model these acute events. As the entire mouse genome has been sequenced and mouse can 

readily be manipulated to generate genetically modified mouse models, mouse has become 

the species of choice for investigators to test hypothesis about the causal mechanisms 

underlying disease in ways that cannot be done in human. Mice with Nrf2 (Rangasamy et al., 

2004) and MMP-12 knockout (Hautamaki et al., 1997) have shed light on the molecular 

mechanisms involved in mediating the inflammation and lung pathologies induced by 

cigarette smoke exposures. In our studies, BALB/C mice were preferred over other strain of 

mice as mouse strains comparison studies have found that although the types of changes in 

response to cigarette smoke exposure were similar among the strains studied, the degree of the 
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changes did vary and BALB/C mice consistently had the greatest response to cigarette smoke 

exposure in term of the proportion and numbers of neutrophils and levels of KC in the BAL 

fluid, whereas C57BL/6 mice consistently had the smallest response (Morris et al., 2008). 

Female mice were used in the present study as there is evident that women are more 

susceptible to the effects of smoke than men (Gan et al., 2006; Langhammer et al., 2003; 

Martinez et al., 2007; van Durme et al., 2009). Even in mouse models, female A/J mice 

develop emphysema earlier than male A/J mice (March et al., 2006). However, cigarette 

smoke induced mouse COPD model requires months of smoke exposure (around 4 to 6 

months) to generate pathologies and functional changes consistent to those observed in COPD 

patients. This approach is thus an expensive and time-consuming proposition.  Hence, many 

laboratories use an acute (<1 week) model of cigarette smoke induced lung inflammation as 

primary model to examine the efficacy of prospective therapies. Although emphysema is not 

obvious in the acute model, it does provide preliminary effect on cigarette smoke induce 

oxidative stress and inflammatory response that is useful in guiding further studies as the 

changes are very mild compared to those observed in human. The pathologies and lung 

function changes associated with these models would most likely constitute mild COPD 

(GOLD 1 and 2) (Churg et al., 2007; Rabe et al., 2007). Regrettably, most cases of COPD are 

not diagnosed until the disease has become severe (GOLD 3 and 4) (Rabe et al., 2007). 

Moreover, cigarette smoking models do not produce the severe disabling disease seen in 

humans and the lesions due to cigarette smoking do not appear to progress after cessation of 

smoke exposure (Wright et al., 2008). Thus, we must bear these limitations in mind when we 

design and interpret the results from animal models. 
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1.3.6 Current Drug  

Similar to asthma, current guidelines for COPD management advocate the use of 

inhaled β2-agonists, inhaled anticholinergics and inhaled corticosteroids for symptomatic 

management (GOLD, 2011). Long acting bronchodilators such as the anti-cholinergic 

tiotropium, and the β2-agonists salmeterol and formoterol have all been shown to improve 

lung function, quality of life and reduce the time to first exacerbation when compared to 

placebo (Donohue et al., 2003; Tashkin et al., 2004). Similarly, inhaled steroids have been 

demonstrated to significantly reduce the rate of exacerbations in COPD in several clinical 

trials (Alsaeedi et al., 2002; Calverley et al., 2007). In spite of these beneficial effects and in 

sharp contrast to asthma, neither bronchodilators nor inhaled steroids are able to alter the rate 

of decline of lung function (Vestbo et al., 1999) or improve survival (Calverley et al., 2007) 

in COPD. The inability of current drug therapy to halt the relentless progression of lung 

function deterioration in COPD patients may be due in part to the inability of these drugs to 

fully reverse the inflammatory changes that occur in COPD (Loppow et al., 2001). For 

example, although corticosteroids are effective in attenuating the release of IL-8, TNF-α and 

MMP-9 from macrophages of normal subject and normal smokers in vitro, corticosteroids are 

not effective in macrophages from patients with COPD (Culpitt et al., 2003). Although 

bronchodilators such as phosphodiesterase 4 inhibitor roflumilast has been newly approved 

for the treatment of COPD, it suffers from dose-limiting major side effects such as diarrhoea, 

headache, nausea and weight loss (Page et al., 2012). In addition, current drug do not alter the 

oxidative or apoptotic processes that are critical to the pathogenesis of COPD (Imai et al., 

2005; Zheng et al., 2005). Given the importance of antioxidant in COPD, researchers have 

sought to determine whether antioxidant administration would improve disease outcomes in 

COPD. The most commonly used antioxidant for these studies is n-acetylcysteine (NAC), 

which is a known precursor of glutathione, as it has established safety profile and is relatively 
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easy to tolerate in its oral form (Dekhuijzen et al., 2006). Nonetheless, the therapeutic use of 

NAC in COPD has yield conflicting results, and while some studies have shown beneficial 

effects of NAC with regard to lung function (Stav et al., 2009) and COPD exacerbations 

(Hansen et al., 1994), some clinical trials concluded that NAC was ineffective at preventing 

deterioration of lung function or preventing exacerbations (Schermer et al., 2009). Although 

smoking cessation, supplemented oxygen therapy for hypoxemic patients, lung reduction 

surgery for selected patients with emphysema alters the course of COPD, there is currently no 

specific treatments halting the relentless progression of COPD, which leads to increasing 

symptoms and disability and increases the risk of premature death in COPD patients (Barnes, 

2008b; Barnes, 2010; Morjaria et al., 2010). As a result, the lack of effective treatments and 

the escalating healthcare burden has created an impetus for researchers to seek novel and 

more effective compounds aimed at reducing the progression of COPD and control the 

underlying disease process.  

 

1.4 Andrographolide and DDAG  

 

1.4.1 Andrographis paniculata 

Andrographis paniculata (Burm. F.) Nees, commonly known as ‘king of bitters’ due 

to its bitterness, is an herbaceous plant belonging to the Family Acanthaceae. Similar to 

weeds, A. paniculata is easily grown and propagate over a broad eco-geographical range 

(Aromdee, 2012). A. paniculata is a plant indigenous to Southeast Asian countries and it is 

highly cultivated for mass production in many Asian countries due to the high demand for its 

active constituents (Aromdee, 2012). A. paniculata has a long history of therapeutic usage in 

Indian and Chinese medicine as it is traditionally was used for the prevention and treatment of 

upper respiratory tract infection in Asian countries and also in Scandinavia (Chang et al., 

2008a; Coon et al., 2004; Poolsup et al., 2004). With the long history of uses, A. paniculata is 
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known by various vernacular names in various places where it is traditionally use. It is known 

as Kalmegh in India, Chuan-Xin-Lian in China, Fah Tha Lai in Thailand, and Hempedu bumi 

in Malaysia. 

 

1.4.2 Andrographolide  

A number of active constituents are described from the plant, which mainly include 

diterpene lactones, flavonoids and polyphenols (Koteswara Rao et al., 2004). However, 

andrographolide (Fig. 4), 14-deoxy-11,12-didehydroandrographolide (DDAG) (Fig. 5) and 

neoandrographolide are the three prime constituents isolated from A. paniculata (Lim et al., 

2012; Pholphana et al., 2004). Among the isolated compound, andrographolide (C20H30O5) is 

the most abundant diterpenoid in A. paniculata, making up about 4% of dried whole plant, 

0.8~1.2% of dried stem and 0.5~6% of dried leaf extracts (Chao et al., 2010b). 

Andrographolide has been demonstrated to have multiple pharmacological properties 

and it has been proposed to be a potential chemotherapeutic agent (Varma et al., 2009). As 

such, the toxicity profile has been extensively studied. Intraperitoneal injection affording 

doses of 4-50 mg/kg of of andrographolide over body weight in mice (Iruretagoyena et al., 

2005; Mishra et al., 2011) has been investigated. At the doses used, andrographolide was well 

tolerated by mice, and no evidence of toxicity was observed. Indeed, the LD50 for 

intraperitoneal administration of andrographolide was 11.6 g/kg in rats. (Handa et al., 1990). 

Even in human subjects, no side effects were observed when participants were monitored for 

changes in liver and kidney functions, blood counts, and other laboratory measures when 

treated with 1,200 mg/day of andrographolide for 5 days (Hancke et al., 1995). 
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Figure 3  Andrographis paniculata. Adapted from Valdiani (Valdiani et al., 2012) 

 

 

 

 

 

 

 

 

Figure 4. Andrographolide 
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Andrographolide has also been reported to have diverse pharmacological potential 

including hepatoprotective (Negi et al., 2008), antiviral (Aromdee et al., 2011b; Calabrese et 

al., 2000; Ko et al., 2006; Lin et al., 2008; Wiart et al., 2005), anti-cancer (Kumar et al., 

2004b; Lim et al., 2012; Varma et al., 2009), antipyretic (Suebsasana et al., 2009), 

antibacterial (Aromdee et al., 2011a; Jiang et al., 2009; Wang et al., 2010) and anti-

inflammatory (Abu-Ghefreh et al., 2009; Bao et al., 2009) activities. 

Recently, andrographolide has also been shown to have antioxidant activities by 

inhibiting oxygen radical production in neutrophils and inhibition in phorbol 12-myristate 13-

acetate (PMA) induced superoxide and nitric oxide formation in BALB/c mice (Sheeja et al., 

2006). The exact molecular mechanism that mediates these anti-inflammatory effects of 

andrographolide has not been unequivocally determined. However, andrographolide has been 

reported to have the ability to activate antioxidant system and probably acting thorough Nrf2 

activation pathway. 

It has been demonstrated that intraperitoneal treatment of andrographolide in mice 

significantly increase the glutathione (GSH) concentration and glutathione peroxidase (GPx) 

activities (Neogy et al., 2008). Besides, oral andrographolide administration significantly 

induced the activities of GSH, glutathione reductase (GR) and GPx in the liver of 

hexachlorocyclohexane (BHC)-treated mice. The studies shown that andrographolide 

effectively activate antioxidant in severe liver damage (Trivedi et al., 2007). 

It has been demonstrated that incubation of andrographolide in rat primary hepatocyte 

also increase the expression of glutathione S transferase (GST) protein, mRNA level and 

activities (Chang et al., 2008b). The study showed that GST-P enhancer-1 (GPE1) (a critical 

promoter of GST) luciferase activities was up regulated by andrographolide treatment. This 

finding further supports the notion that Nrf2 activities was up-regulated by andrographolide as 

Nrf2 is a transcriptional factor that bind to GPE1. 
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Studies using a hypoxia/reoxygenation model has showed that treatment with 

andrographolide protected the stressed cardiomyocytes by up-regulating the cellular-reduced 

glutathione (GSH) level and antioxidant enzyme activities. After treating the cell with 

andrographolide alone, the enzymatic activities of GPX, GR and the cellular GSH level were 

all increased when compare to vehicle controls (Woo et al., 2008). Subsequently, to determine 

the molecular mechanism of andrographolide in activating the endogenous antioxidant system, 

it was discover that the glutamate-cysteine ligase, catalytic subunit (GCLC) and glutamate-

cysteine ligase, modifier subunit (GCLM) mRNA and protein level were up-regulated upon 

andrographolide treatment (Woo et al., 2008). The GSH synthesis is regulated by the 

induction of the GCL transcript which is controlled by antioxidant response elements (ARE) 

(Rahman et al., 2000). These findings have shown for the first time the direct effect of 

andrographolide on Nrf2 activities as Nrf2 is the essential positive regulator of ARE-mediated 

gene expression.  

In addition, to better understand the specific effect andrographolide has on gene 

expression, an mRNA microarray analysis on andrographolide treated cells is conducted to 

screen for andrographolide’s effect in mouse gene transcription. Out of the 28,853 genes 

analysed, the study found that 25µM of andrographolide treatment of primary mouse 

hepatocytes up-regulated 18 genes and almost all of them were related to metabolism, and 

oxidation/reduction. Among the genes that were up-regulated, genes such as Gst, Srxn1, Gclm, 

Nqo1, Gpx2 and Gsr (Glutathione reductase gene) are Nrf2-dependent genes (Rangasamy et 

al., 2004).  That study further support the notion that andrographolide is a Nrf2 activator.    

Andrographolide has been shown to promote Nrf2 nuclear translocation in a human 

endothelial cell line. By probing Nrf2 protein in the cell nuclear extracts, and by measuring 

Nrf2-induced antioxidant response element (ARE) activation in cells transfected with ARE-

luciferase construct, it has been demonstrated that andrographolide treatment induced a time-
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dependent Nrf2 nuclear translocation and increase in transcriptional activities (Yu et al., 

2010).  

Given that the known anti-oxidative effects of andrographolide and the protective 

effect against oxidative stress, it is therefore proposed that andrographolide protects the lung 

against cigarette smoke-induced lung inflammation.  

 

1.4.3 14-deoxy-11,12-didehydroandrographolide 

DDAG is another major naturally occurring analogue isolated from A. paniculata, and 

DDAG has also been identified as a metabolite of andrographolide when given systemically 

to rats (He, 2003). Both andrographolide and DDAG are structurally similar, although 

andrographolide contains a hydroxyl group and two additional hydrogen atoms (Tzeng et al., 

2012). 

At low doses, both andrographolide and DDAG compounds were not cytotoxic, and 

both of the compounds are effective in inhibiting pro-inflammatory cytokine secretion 

induced by TNF-α activation in astrocyte cultures (Tzeng et al., 2012) 

In some cases, there are difference in activities between andrographolide and DDAG. 

For instance, DDAG is known to inhibit α-glucosidase more potently than andrographolide 

(Dai et al., 2006). Conversely, DDAG has been reported to be less cytotoxic to a variety of 

tumour cell lines as compared to andrographolide (Kumar et al., 2004b; Nanduri et al., 2004; 

Tan et al., 2005). DDAG has been shown to have lower cytotoxicity as the 50% of cytotoxic 

concentrations (CC50) to Vero cells for DDAG was 243µM, but CC50 of Andrographolide 

and 14-deoxyandrographolide to Vero cells were 76µM and 80µM, respectively. These 

findings indicate that DDAG is safer to be used for activities other than anticancer purpose 

(Aromdee et al., 2011b).  
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Figure 5. 14-deoxy-11,12-didehydroandrographolide (DDAG) 
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In addition, DDAG which demonstrated a potent hypotensive effect (Zhang et al., 

1998), has been shown to effectively inhibit cytokine and nitric oxide production from Raw 

264.7 macrophage cell line stimulated with LPS and IFN-. DDAG has also been shown to 

attenuate high glucose-induced fibrosis and apoptosis in a renal mesangial cell line (Chao et 

al., 2010a; Lee et al., 2010). Nonetheless, while andrographolide prevented PC12 toxicity due 

to the synergistic effects of H2O2 and astrocyte-conditioned medium (ACM), DDAG on the 

other hand was not able to rescue PC12 cell death that occurs due to the same treatment (H2O2 

and ACM). 

The differences in pharmacological activities of these compounds are related to their 

structures. The molecular mechanism that mediates the actions of DDAG has not been 

unequivocally determined. Nevertheless, as both andrographolide and DDAG significantly 

attenuated TNF-α, IL-6, macrophage inflammatory protein-2 (MIP-2), and nitric oxide (NO) 

secretions from LPS/IFN-γ stimulated RAW 264.7 cells, the inhibition of NF-B 

transcriptional activity by these compounds are strongly supported (Chao et al., 2010a; Xia et 

al., 2004). Since we have recently reported a broad-spectrum of anti-inflammatory effects for 

andrographolide in an OVA-induced allergic lung inflammation model (Bao et al., 2009), it is 

necessary to elucidate the effects of DDAG, as an analogue of andrographolide, in allergic 

asthma.  
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2. RATIONALE AND OBJECTIVES 
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COPD and asthma are global pandemics that are major causes of morbidity and 

mortality. COPD is currently the fourth leading cause of death worldwide (Pauwels et al., 

2004) while asthma is an airway disease which affects around 300 million people of all ages 

and ethnic backgrounds (Masoli et al., 2004). Despite the fact that cigarette smoke is a major 

cause for COPD, efforts sought to restrict tobacco consumption have thus far ineffective, 

leading to an increase in prevalence of COPD especially in less develop countries (Huvenne 

et al., 2011). The increase incidence of COPD will lead to a significant increase in economic 

and social burden as currently there is no effective drug for the treatment of COPD as most 

current drugs only reduce the symptoms but fail to attenuate the underlying inflammation and 

the progressive deterioration of lung function (Barnes, 2010). On the other hand, current 

mainstay therapies for asthma are β2 agonists and inhaled corticosteroids which although are 

effective in controlling asthma, 5-10% of patients who suffer from uncontrollable asthmatic 

symptoms are refractory to corticosteroids treatment (Moore et al., 2007). There is an 

imperative need to discover and develop novel, safe and potent drugs for both asthma and 

COPD.  

Andrographolide and DDAG are both bioactive compounds isolated from the plant 

Andrographis paniculata (Lim et al., 2012). Andrographolide has been shown to activate 

nuclear factor erythroid-2-related factor 2 (Nrf2), a redox-sensitive antioxidant transcription 

factor (Yu et al., 2010). As Nrf2 activity is reduced in COPD, we hypothesize that 

andrographolide may have therapeutic value for COPD. On the other hand, although novel 

anti-inflammatory effects of andrographolide in a mouse asthma model have been reported 

(Abu-Ghefreh et al., 2009; Bao et al., 2009), andrographolide has been shown to possess 

cytotoxic activity, especially in tumour cell lines (Nanduri et al., 2004; Tan et al., 2005). We 

hypothesized that DDAG, as an analogue of andrographolide, may retain the anti-

inflammatory effects for asthma but is devoid of cytotoxicity.  
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The main aim of these studies was to explore the potential therapeutic effects of 

andrographolide as a novel anti-oxidative stress compound on COPD in a cigarette smoke 

induce lung injury model and to examine the potential anti-inflammatory DDAG in allergic 

asthma mouse model and elucidate their molecular mechanisms. The findings in this study 

may shed light on novel molecular drug target for both asthma and COPD and broaden our 

understanding in rational drug design. The studies could also lead to the development of 

efficacious therapies that have minimal side effects. 

  



 

 

70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. MATERIAL AND METHODS 
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3.1. Materials and reagents  

Drugs and chemicals used in this PhD project are as follows:  

 3-[(E)-2-[(1R,4aβ)-Decahydro-6α-hydroxy-5α-(hydroxymethyl)-5,8aα-dimethyl-2-

methylenenaphthalen-1-yl]vinyl]furan-2(5H)-one (14-Deoxy-11,12-

didehydroandrographolide) (>98% purity, TCM Institute of Chinese Materia Medica, 

Nanjing, People's Republic of China);  

 

 3-[2-[decahydro-6-hydroxy-5-(hydroxymethyl)-5,8α-dimethyl-2-methylene-1- 

napthalenyl]ethylidene]dihydro-4-hydroxy-2(3H)-furanone (andrographolide),  

 anti-β-actin monoclonal antibody, 10% neutral buffered formalin, acetyl-β-

methylcholine chloride, aluminium hydroxide (Al(OH)3), bovine serum albumin 

(BSA), chicken ovalbumin (OVA), dimethyl sulfoxide (DMSO), eosin Y, Harris 

hematoxylin solution, hematoxylin solution Gill no. 3, heparin, periodic acid solution, 

Schiff’s reagent, skim milk powder (Fluka) and Tween 20 (Sigma-Aldrich, St Louis, 

MO, USA);  

 

 3R4F research cigarettes (Tobacco and Health Research Institute, University of 

Kentucky, Lexington, KY, USA);  

 

 Fast SYBR Green Master Mix, RNAlater (Applied  Biosystems, Foster  City,  CA,  

USA);  

 

 Alkaline phosphatase (AP) conjugate substrate kit, agarose, blotting paper, 

polyvinylidene difluoride (PVDF) membrane, tetramethylethylenediamine (TEMED), 
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3,3´,5,5´-tetramethylbenzidine (TMB) substrate kit, Triton X-100 (Bio-Rad  

Laboratories, Hercules,  CA,  USA);  

 

 Ammonium chloride (NH4Cl) (BDH Laboratory Supplies, Poole, England);  

 

 Agarose, phosphate buffered saline (PBS), sodium dodecyl sulfate (SDS), and tris-

acetate-EDTA (TAE) (1st  BASE, Singapore);  

 

 Diethylpyrocarbonate (DEPC)-treated water, penicillin, streptomycin, random primer, 

Roswell Park Memorial Institute (RPMI) medium, Trizol, and trypan blue (Invitrogen, 

Carlsbad, CA, USA);  

 

 Mouse keratinocyte chemoattractant (KC/CXCL1) Duoset, mouse interferon-γ-

inducible protein 10 (IP-10/CXCL10/CRG-2) DuoSet, mouse monocyte 

chemoattractant protein-1 (MCP-1/CCL2/JE) DuoSet and Mouse IL-1 beta DuoSet, 

Mouse IL-13 DuoSet,  mouse CCL11/Eotaxin DuoSet (R&D  Systems,  Minneapolis,  

MN,  USA);  

 

 Avidin-horseradish  peroxidase (HRP), biotinylated anti-mouse IgE, biotinylated anti-

mouse IgG1, biotinylated anti-mouse IgG2a, OptEIA
TM

 mouse total IgE set, 

OptEIA
TM

 mouse IL-4 set, and OptEIA
TM

 mouse IL-5 set, (BD  Biosciences  

Pharmingen,  San  Diego,  CA, USA);  
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 Bicinchonic acid (BCA) protein assay kit, calf serum, fetal bovine serum (FBS), 

Restore™ PLUS western blot stripping buffer (Thermo Fisher Scientific Inc, Waltham, 

MA ,USA);  

 

 M-PER Mammalian Protein Extraction Reagent containing HALT protease inhibitor 

cocktail (Pierce, Rockford, IL, USA);  

 

 Cotinine ELISA (Bio-Quant, San Diego, CA, USA);  

 

 8-isoprostane (8-iso-PGF2) and 8-OHdG EIA kit (Cayman Chemicals, Ann Arbor, 

MI, USA);  

 

 3-nitrotyrosine (3-NT) ELISA kit (Upstate/Millipore, Billerica, MA, USA);  

 

 Sodium carbonate (Na2CO3)  (Kanto  Chemical, Tokoyo, Japan);  

 

 Absolute ethanol, isopropanol (Merck, Darmstadt, Germany);  

 

 HistoClear and Histomount (National Diagnostics, Atlanta, GA,  USA);  

 

 Avian myeloblastosis virus (AMV) reverse transcriptase, dNTP mix, polymerase 

chain reaction (PCR) master mix, and  ribonuclease inhibitor (Promega, Madison, WI, 

USA);  

 

 Ethidium bromide (Research Organics, Cleveland, OH, USA);  
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 Anti-β actin and anti-p65 polyclonal antibody (Cell Signaling Technology, Beverly, 

MA, USA);  

 

 Anti-TATA binding protein (TBP, Abcam, Cambridge, UK);  

 

 Enhanced chemiluminescent (ECL), western blotting detection reagents, and 

hyperfilm (GE Healthcare, Piscataway, NJ, USA);  

 

 Protease inhibitor cocktail (complete) (Roche Diagnostics, Indianapolis, IN, USA);  

 

 HRP-conjugated anti-mouse Ig, HRP-conjugated anti-rabbit Ig, AP-conjugated anti-

mouse Ig, and AP-conjugated anti-rabbit Ig (Dako, Glostrup, Denmark);  

 

 TNF-α (BioSource, Camarillo, CA, USA); and 

 

 Nuclear extract kit, TransAM™ NF-κB p65 Kit,  TransAM™ Nrf2 Kit (ActiveMotif, 

Carlsbad, CA, USA). 

 

3.2. Mouse Model 

Female BALB/c mice of 6 to 8 weeks old (Animal Resources Centre, Canning Vale, 

Western Australia, Australia) were maintained in the animal housing unit on a 12-hours light-

dark cycle with food and water available ad libitum. The temperature in the animal room 

ranged from 18°C to 26°C with an average temperature of 22°C. Maintenance diets generally 

contain 4-5% fat and 14 % protein. Generally a minimum of 3 days of acclimatization is 

required for mice to adapt to their new surroundings. Animal experiments were performed 
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according to the Institutional guidelines for Animal Care and Use Committee of the National 

University of Singapore. 

 

3.2.1. Asthma mouse model and DDAG treatment protocol 

BALB/c mice, were sensitized and challenged with ovalbumin (OVA) as described 

previously (Bao et al., 2009). Briefly, mice were sensitized by intraperitoneal (i.p.) injections 

of 20 g OVA and 4 mg Al(OH)3  as adjuvant suspended in 0.1 ml saline on day 0 and 14. 

Aluminium hydroxide is the most commonly used adjuvant as it primes the mice immune 

response towards a Th2 phenotype. Following this, the mice were challenged with 1% OVA 

aerosol for 30 minutes administer by DeVilbiss Ultra-Neb Large-Volume Ultrasonic 

Nebulizer (Sunrise Medical Respiratory Products, Somerset, PA) as shown in figure 3.1 on 

day 22, 23 and 24. DDAG (0.1, 0.5, and 1 mg/kg) or vehicle (1% DMSO) in 0.1 ml saline was 

given by i.p. injections 2 hours before and 10 hours after each OVA aerosol challenge. Saline 

aerosol was used as a negative control. To ensure the strict hygiene standard of the cages’ 

environment, we changed the cage beddings three times a week. 
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Figure 3.1.  Allergen aerosol delivery system.  The ultrasonic nebulizer  was  used  to 

aerosolize  1%  of  OVA  saline  solution  and  pump  the  aerosol  mist  into  an  adjacent 

chamber where the aerosolized solution was inhaled into the airways of the mice. Up to 8 

mice can be put into the chamber during OVA or saline challenge. 
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Figure 3.2. Cigarette smoke and Sham Air delivery system. Peristaltic pump are used to 

deliver room air or cigarette smoke to the chamber. Both sham air and cigarette smoke 

chamber receive a constant flow of fresh air and have an exhaust tubing to keep the chamber 

ventilated. Additionally, the smoke chamber receives a constant flow of cigarette smoke while 

the sham air chamber receives the similar flow of room air. 

  

Sham Air Smoke 

Peristaltic Pumps 
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3.2.2. Cigarette smoke-induced lung injury and andrographolide treatment protocol 

Mice were placed in a ventilated chamber filled with 4% cigarette smoke delivered by 

a peristaltic pump (Masterflex, Cole-Parmer Instrument Co., Niles, IL, USA) at a constant 

rate of 1 L/min as shown in figure 3.2 according to methods described by Chan et al. (Chan et 

al., 2009). Total suspended particulate of 4% cigarette smoke was 493.549.6 mg/m
3
 (n=4) 

recorded using the MicroDust Pro-aerosol monitor (Casella CEL, Bedford, UK). To develop 

cigarette smoke-induced lung injury, mice were exposed to 10 sticks of 3R4F research 

cigarettes (Tobacco and Health Research Institute, University of Kentucky, Lexington, KY, 

USA) over a period of 60 minutes a day for 5 consecutive days (Braber et al., 2011). Mice in 

the sham air group were simultaneously placed in another ventilated chamber but exposed to 

fresh air. Andrographolide (0.1, 0.5, and 1 mg/kg; Sigma, St. Louis, MO, USA) or vehicle (1% 

DMSO) in 0.1 mL saline was given by intraperitoneal injection 2 hours before each cigarette 

smoke exposure as described by Bao et al. (Bao et al., 2009). Mice were sacrificed 24 hours 

after the last cigarette smoke or sham air exposure, and lung samples were collected for 

various analyses. 

 

3.3. Collection of bronchoalveolar lavage (BAL) fluid from mice 

BAL fluid was collected 24 hours after the last saline or OVA challenge as previously 

described (Bao et al., 2009) for the asthma mouse model or 24 hours after the last cigarette 

smoke exposure for the cigarette smoke induce lung injury model. Mice were anaesthetized 

by an i.p. injection of 300 µl of an anaesthetic mixture (ketamine: medetomidine: H2O = 3: 4: 

33, Parnell, Alexandria NSW, Australia & Pfizer, Auckland, New Zealand). Tracheotomy was 

performed by inserting a blunt needle (20G) into the trachea. Ice-cold PBS (0.5 ml × 3) was 

instilled into the lungs and a final volume of 1.2~1.3 ml of BAL fluid was retrieved from the 

lungs. BAL fluid total and differential cell counts were determined immediately after BAL 
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fluid extraction. BAL fluid supernatants were stored at −80 °C for cytokine, chemokine levels 

and oxidative lung damage markers analysis. 

 

3.4. Total and differential BAL fluid cell counts  

The BAL fluid was centrifuged at 3000 rpm for 5 minutes at 4°C. Supernatant was 

collected and stored at -80°C until further experiments. The pellet was resuspended in 200 µl 

of 8.5 mg/ml NH4Cl for 5 min at room temperature to remove red blood cells. The cell 

suspension was centrifuged at 3000 rpm for 5 min at 4°C and the supernatant was discarded. 

Subsequently, the cell pellet was resuspended in 200 µl of RPMI supplemented with 10 

mg/ml BSA. A total number of viable cells was enumerated using a haemocytometer (10 µl 

cell suspension: 10 µl 0.4 % trypan blue) under a microscope (magnification ×200). 

Following the total cell count, aliquots (10
5 

cells/150 µl) of the cell suspension were 

cytospinned onto a slide in a Shandon Cytospin 3 (Thermo Electron Corporation, Pittsburgh, 

PA) at 600 rpm for 10 min at room temperature. The BAL fluid cells were stained with a 

modified Wright staining (Bao et al., 2009). Briefly, cytospin slides were fixed and stained 

with 800 µl of Liu A for 30 seconds followed by 1600 µl of Liu B for 90 seconds. Differential 

cell count was then performed on a minimum of 500 leukocytes (magnification ×1000). Four 

types of inflammatory cells, namely eosinophils, macrophages, neutrophils, and lymphocytes 

were identified and their respective percentage in the total inflammatory cells was enumerated, 

based on standard morphological criteria and staining (Figure 3.3 and Figure 3.4). The 

absolute number of four types of inflammatory cells was calculated by their percentages and 

total inflammatory cell count. The epithelial cells were excluded in the differential cell count. 
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Figure 3.3. Type of cells found in BAL fluid of mice. (A) Control BAL fluid collected 

from the mouse sensitized with OVA and challenged with saline; (B) BAL fluid collected 

from the mouse sensitized with OVA and challenged with OVA. Mac, macrophages; Eos, 

Eosinophil; Lym, lymphocyte; Neu, neutrophil.   
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Figure 3.4. Type of cells found in BAL fluid of mice. (A) Control BAL fluid collected 

from mouse exposed to Sham Air; (B) BAL fluid collected from mouse exposed to cigarette 

smoke. Mac, macrophages; Eos, Eosinophil; Lym, lymphocyte; Neu, neutrophil.   
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3.5. Lung total protein extraction  

Lungs were isolated from the thoracic cavity 24 hours after the last OVA or saline 

challenge and stored in -80°C until study. Before the lungs were remove, cardiac puncture 

carried out after the mice were anaesthetized by an i.p. injection of 300µl of an anesthetic 

mixture (ketamine: medetomidine: H2O = 3: 4: 33, Parnell, Alexandria NSW, Australia &  

Pfizer, Auckland, New Zealand). Lung lobes were then cut into small pieces using scissors 

and homogenized in ice-cold M-PER Mammalian Protein Extraction Reagent containing 

HALT protease inhibitor cocktail (Pierce, Rockford, IL, USA) with a homogenizer 

(SilentCrusher M, Heidolph Elektro GmbH & Co, Kelheim, Genman). Lysates were then 

incubated on ice for 30 minutes before centrifugation (18,000g for 5 minutes); supernatants 

were collected, and protein concentrations were determined using a BCA protein assay kit 

(Thermo Fisher Scientific Inc, Waltham, MA ,USA).  

 

3.6. ELISA  

3.6.1. Cytokines and chemokine levels in BAL fluid  

For the asthma mouse model, levels of IL-4, IL-5, IL-13 and eotaxin in the 

supernatant of the BAL fluid were determined by ELISA according to the manufacturer’s 

instructions. IL-4 and IL-5 ELISA were obtained from BD PharMingen (San Diego, CA). 

Eotaxin and IL-13 were purchased from R&D Systems (Minneapolis, MN). For the cigarette 

smoke model, BAL fluid levels of keratinocyte chemoattractant (KC/CXCL1), interferon-γ-

inducible protein 10 (IP-10/CXCL10), monocyte chemoattractant protein-1 (MCP-1/CCL2) 

and IL-1 were measured using ELISA R&D Systems (Minneapolis, MN) according to the 

manufacturer’s instructions. Briefly, 50 µl of diluted capture antibody (diluted to the 

appropriated concentration in relevant coating buffer) was coated to each well of an ELISA 
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plate (NUNC, Denmark). The plate was sealed with parafilm and incubated overnight at 4°C. 

Next day, the coating buffer was aspirated and the plate was washed with wash buffer (PBS 

with 0.05% Tween-20). Following the last wash, any remaining wash buffer was removed by 

inverting the plate and blotting it against clean paper towels. Ensuing washing, the plate was 

blocked with 300 µl PBS with 10% FBS for 2 hours. Following blocking, 50 µl of standards 

or BAL fluid samples were added into each well accordingly and incubated for 2 hours at 

room temperature. Next, after washing away the unbound samples and standards, the plate 

was incubated with biotinylated-detection antibody plus HRP for 1 hour (BD OptEIA™ Kit) 

or with biotinylated-detection antibody for 1 hour followed by HRP for 45 minutes (R&D). 

Subsequently, after washing, 50 µl of a substrate solution was added to each well, and 

incubated for 30 min in the dark, followed by addition of 50 µl stopping solution (1M H2SO4). 

Finally, the optical density of each well in the plate was read at 450 nm with λ correction at 

570 nm within 30 min. The detection limits for the cytokines and chemokine used are as 

follows: 4 pg/ml for IL-4; 4 pg/ml for IL-5; 15.6 pg/ml for IL-13; and 2 pg/ml for eotaxin. 9 

pg/ml for IL-1; 15 pg/ml for IP-10; and 16 pg/ml for both MCP-1 and KC. 

 

3.6.2. Oxidative damage marker level in BAL fluid 

BAL fluid levels of oxidative damage markers were measured using competitive 

ELISA kit for 3-nitrotyrosine (3-NT) (Upstate/Millipore, Billerica, MA, USA), in addition to 

8-isoprostane (8-iso-PGF2) and 8-hydroxy-2-deoxy Guanosine (8-OHdG) (Cayman 

Chemicals, Ann Arbor, MI, USA) according to the manufacturers' instructions (Ho et al., 

2012). This assay was based on competition between the samples’ oxidative damage markers, 

the antigen (8-isoprostane, 8-OHdG and 3-NT) and the supplied competing antigen (8-

isoprostane-acetylcholinesterase conjugate/8-isoprotane tracer, 8-OHdG-acetylcholinesterase 

conjugate/8-OHdG tracer and nitrated BSA) for a limited number of specific primary 
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antibodies. Both 8-isoprostane and 8-OHdG kits come with secondary antibody pre-coated 

plate and enzyme link antigen (8-isoprostane Tracer, 8-OH-dG Tracer respectively) while the 

3-NT kits comes with the enzyme link secondary antibody and antigen (nitrated BSA) for 

well coating.  Briefly, for the 3-NT assay, 96-well plates were coated with 5 μg/mL nitrated 

bovine serum albumin (BSA) overnight, and blocked with blocking buffer for 2 hours. 50 μl 

of BALF sample or standard samples and 50 μl of 2×anti-nitrotyrosine were added to each 

well. Subsequently, the plates were incubated at 37 °C for 60 min. After un-bound antibody 

were remove by washing, 100 μl per well of enzyme link secondary antibody (1× anti-rabbit 

IgG, HRP-conjugate) was added and incubated at 37 °C for 60 min. For the 8-isoprostane and 

8-OHdG assay, a 50 μl BALF sample or standard, 50 μl competing enzyme link antigen and 

the primary antibody (8-OHdG monoclonal antibody and 8-Isoprostane antiserum) were 

added to each pre-coated well, incubating for 14 hours at 4°C.  For the entire assays, the 

plates were washed between each step. Following competitive binding, substrate solution 

(Ellman’s reagent for 8-isoprostane and 8-OH-dG, LumiGlo Chemiluminescent® Substrate 

for Nitrotyrosine) were added into each well in the dark. The product of the enzymatic 

reaction for 8-isoprostane and 8-OH-dG assay produces a distinct yellow colour which was 

determined spectrophotometrically at wavelength between 405-420 nm. While the products 

for the enzymatic reaction for 3-NT was measured with the luminescence as relative light 

units (RLU). Luminescence was measured using a microplate reader and the background 

luminescence subtracted from the values. The levels were calculated with the standard curve 

and expressed as picograms per milliliter of BAL fluid (8-isoprostane, 8-OH-dG) or 

nanomolar per milliliter of BAL fluid (Nitrotyrosine). 
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3.6.3. Immunoglobulin levels in serum  

For the asthma mouse model, blood was collected from the mouse through cardiac 

puncture, and allowed to clot by leaving at room temperature for 3 hours. The clear 

supernatant was collected as the serum, and stored at -80°C until further experiments. Serum 

levels of total IgE, OVA-specific IgE, OVA-specific IgG1 and OVA-specific IgG2a were 

assayed by ELISA. Briefly, ELISA plate was incubated at 4°C overnight with coating buffer 

containing either 20 µg/ml OVA (for OVA-specific IgE, OVA-specific IgG1 and  OVA-

specific IgG2a) or IgE capture antibody (for total IgE measurement). The following day, the 

plate was blocked with 10% FBS in 300 µl PBS for 2 hours at room temperature.  Following 

blocking, total IgE standards or diluted serum samples were added into the respective wells 

and incubated for 2 hours. Next, the respective detection antibodies were added and the 

mixtures were incubated for 1 hour. After that, HRP-conjugated antibody was added and 

incubated for 45 min, followed by substrate solution for 30 minutes in the dark. Finally, the 

optical density of each well was read at 450 nm with λ correction at 570 nm within 30 

minutes of adding stopping solution. The detection limit for total IgE is 2 ng/ml. 

 

3.6.4. Cotinine Measurement  

For the cigarette smoke model, cotinine is the major metabolite of nicotine (Benowitz, 

2009). Plasma cotinine levels was measured as a marker of cigarette smoking. Immediately 

after sham air or cigarette smoke exposure, blood was drawn and the blood samples were 

centrifuged for 15 minutes at 5,000 g at 4° C. The resultant plasma cotinine levels were 

measured by ELISA (Bio-Quant, San Diego, CA, USA) according to the manufacturer’s 

instructions. Absorbance was measured at 450 nm in a microplate reader. 
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3.7. Measurements of airway hyperresponsiveness (AHR) 

Mice were anesthetized and tracheotomy was performed as described (Bao et al., 

2009). The animal was intubated with a cannula that is connected to a multiport that leads to 

the pneumotach, ventilator and nebulizer within the FinePointe Series RC Sites (Buxco 

Research System, Wilmington, NC). The mouse was ventilated at a fixed breathing rate of 

140 breaths/min and the lung resistance (Rl) and dynamic compliance (Cdyn) in response to 

 

 

 

Figure 3.5. The FinePointe™ system (Buxco Research Systems, Wilmington, NC, United 

States). The system measures the resistance and compliance of mouse in response to 

aerosolized methacholine. The system comes with in-line aerosol, ventilator, and heated bed. 
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increasing concentrations of nebulized methacholine (0.5– 8.0 mg/ml) were recorded using 

FinePointe data acquisition and analysis software (Buxco Research System). The 

methacholine used was dissolved in PBS and administered through the system nebulizer at a 

volume of 10μl per aerosol. PBS is nebulised before and after methacholine administration to 

serve as a baseline and to clean up the nebulizer. A different nebulizer was used for different 

animal and the system was air dried before proceeding to the next animal. Results are 

expressed as a percentage of the respective basal values in response to PBS. 

 

3.8. Histology 

Histological studies were performed for the allergic mouse model studies. Essentially, 

lungs were isolated from the thoracic cavity 24 hours after the last OVA or saline challenge 

after the injection with a lethal dose of anaesthesia  (300µl of an anaesthesia mixture) and 

after cardiac puncture was performed, fixed in 10% neutral buffered formalin solution for at 

least 48 hours, and processed in a tissue processor (Leica Microsystems, Wetzler, Germany). 

Briefly, lungs were dehydrated in a series of ethanol mixtures (70% to 80% to 90% to 

100%, 30 minutes each and 2 hours for 100%), and immersed in xylene for 10.5 hours. Lungs 

were infiltrated with hot paraffin for 3 hours and embedded in paraffin wax. The specimens 

were then cut into 5 µm sections using a microtome (Leica Microsystems, Wetzler, Germany) 

and fixed on slides. For H&E staining, slides were deparaffinized with HistoClear for 10 min 

and rehydrated in a series of ethanol to water mixtures (100% to 90% to 70% to water and 

each for 2 minutes). The sections were then stained with Harris haematoxylin for 5 minutes, 

washed in the distilled water, and differentiated in 0.1% acid alcohol solution for 30 seconds. 

The sections were washed with tap water for 5 minutes and counter stained with Eosin for 1 

minute. Subsequently, the sections were dehydrated in a series of ethanol solutions (70 % to 

90% to 100% and each for 30 seconds) and immersed in HistoClear for 10 minutes. 
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Evaluation of inflammation around peribronchial and perivascular areas was semi-

quantitatively performed in a blind manner as previously described (Myou et al., 2003). A 

subjective scale (0 - 4) was assigned as follows: 0: no inflammatory cells; 1: occasional 

cuffing with few inflammatory cells; 2: most bronchi or vessels surrounded by a thin layer of 

inflammatory cells; 3: most bronchi or vessels surrounded by a thick layer (2 - 4 cells layer 

deep) of inflammatory cells; 4: most of bronchi or vessels surrounded by a thicker layer (more 

than 4 cells layer deep) of inflammatory cells.  Likewise, for periodic acid Schiff (PAS) 

staining, slides were deparaffinized with HistoClear for 10 minutes and rehydrated in a series 

of ethanol to water mixtures (100% to 90% to 70% to water and each for 2 minutes). 

Subsequently, the sections were sequentially immersed in the periodic acid (5 minutes), water 

(5 minutes), and Schiff`s reagent (15 minutes). The sections were washed with tap water for 5 

minutes and stained in Gill Haematoxylin for 90 seconds. Next, the sections were dehydrated 

in a series of ethanol mixtures (70% to 90% to 100% and each for 2 minutes) and cleared with 

HistoClear for 10 minutes. Evaluation of mucus production or goblet cell hyperplasia was 

semi-quantitatively performed in a blind manner as previously described (Grunig et al., 1998). 

According to the percentage of PAS-positive mucin-producing cells in the epithelium, scores 

(0 - 4) were assigned as follows: 0, no goblet cells; 1, < 25%; 2, 25–50%; 3, 50–75%; 

4, >75%.  Lung tissue mast cells were stained using toluidine-blue, and the number of intact 

and degranulating mast cells was counted in the entire lung sections as described (Pushparaj 

et al., 2009). Briefly, toluidine-blue staining for lung mast cells were perfomed by 

deparaffinized paraffin sections slides with HistoClear for 10 minutes and rehydrated in a 

series of ethanol to water mixtures (100% to 90% to 70% to water and each for 2 minutes). 

Next, the sections were rinsed in water and immersed in the toluidine-blue stains for 2 

minutes. The sections were washed with tap water for 10 minutes and dehydrated in a series 

of ethanol mixtures (70% to 90% to 100% and each for 2 minutes) and cleared with 
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HistoClear for 10 minutes. Mast cells were identified as those cells that contained toluidine 

blue–positive granules. For both H&E and PAS staining, bronchioles with the maximum 

internal diameter two times greater than the minimum internal diameter were not used for 

analysis. The scoring of inflammatory, goblet cells as well as intact and degranulating mast 

cells was performed in 2 - 4 preparations of each mouse and mean scores were calculated 

from 4 - 5 mice. 

 

3.9. Cell cultures 

A549 human lung epithelial cells, BEAS-2B human transformed lung epithelial cells, 

and RBL-2H3 rat basophilic leukemia cells were obtained from the American Type Tissue 

Collection (American Type Tissue Collection, Rockville, MD, USA). A549 and BEAS-2B 

cells were cultured in RPMI 1640, while RBL-2H3 cells were grown in DMEM. Both media 

were supplemented with 10% FBS, penicillin (100 U/mL), and streptomycin (100μg/mL), and 

cells were grown at 37°C in a humidified 5% CO2 incubator.  

 

3.9.1. Cell viability assay 

A549 cells (3×10
4
/well), BEAS-2B cells (5×10

4
/well) and RBL-2H3 cells (3×10

4
/well) 

were seeded on flat-bottomed 96-well plates for overnight, and then incubated with increasing 

concentrations (3–120 M) of DDAG or andrographolide for 24 hours and 48 hours at 37°C. 

Both DDAG and andrographolide was dissolved in DMSO.  Cell viability was analyzed using 

the CellTiter 96
®
 AQueous non-radioactive cell proliferation assay (Promega,

 
Madison, WI) 

according to the manufacturer’s protocol. This MTS assay is based on the ability of viable 

cells to convert a soluble tetrazolium salt to a colour formazan product. Absorbance was 
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recorded at 490  nm (Tecan microplate reader infinite M200; Mannedorf, Switzerland) and 

equal volume of DMSO treated cells were used as control. 

 

3.9.2. In Vitro Inflammation model  

To explore the anti-inflammatory mechanism of action of DDAG, A549 cells (1×10
6
 

cells) were seeded in a 100 mm Petri dish, and at 90% confluence, cells were treated with 

30μM DDAG or vehicle (0.1% DMSO) for 4 h before stimulation with 10 ng/mL TNF-α for 

30 min and protein lysates were prepared for analysis. 

 

3.9.3. In vitro cigarette smoke exposure model  

Cigarette Smoke Extract (CSE) was freshly prepared immediately before each 

experiment by bubbling smoke from one cigarette to 10 mL of RPMI 1640 medium 

supplemented with 1% FBS at a rate of one cigarette every 10 min as described (Kode et al., 

2008). CSE was adjusted to pH 7.4 and sterile-filtered through a 0.45-m Acrodisc filter (Pall, 

Ann Arbor, MI, USA). CSE preparation was standardized by setting the optical density at 0.8 

±0.05 with absorbance wavelength at 340 mm. Control medium was prepared in the same 

way as CSE except for bubbling fresh air into 10 mL of RPMI medium. BEAS-2B were 

cultured in RPMI 1640 supplemented with 1% FBS. Cells were pre-incubated with a non-

toxic concentration of 30 M andrographolide (Bao et al., 2009) or vehicle (0.05% DMSO) 

for 1 h before exposure to 2% CSE for indicated times to explore the anti-oxidants mechanism 

of action of andrographolide in cigarette smoke extract exposed medium. Using the MTS 

assay, 2% CSE had no adverse effect on the viability of BEAS-2B cells.  
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3.10. Nuclear Protein extraction  

For the allergic inflammation model, nuclear proteins were extracted from lung tissues 

and A549 cells using a Nuclear Extract Kit (Active Motif, Carlsbad, CA, USA). Using the 

same kit, for the cigarette smoke exposure model, cytoplasmic and nuclear extractions were 

performed according to manufacturers’ instructions. Briefly, the cells are firstly collected in 

ice-cold PBS in the presence of phosphatase inhibitors to limit further protein modifications 

such as proteolysis, and dephosphorylation. Subsequently, the cells are resuspended in 

hypotonic buffer to swell the cell membrane and make it fragile. Detergent was then added to 

cause the leakage of the cytoplasmic proteins into the supernatant. After collection of the 

cytoplasmic fraction, the nuclei are lysed and the nuclear proteins are solubilized in the lysis 

buffer in the presence of the protease inhibitor cocktail. The extracted proteins were used for 

immunoblotting studies or transcription factor transactivation assay.  

 

3.10.1. NF-B and Nrf2 DNA-transactivation Assay  

For the allergic inflammation model, nuclear proteins were also analyzed for NF-B 

DNA-binding activity using the TransAM™ NF-B p65 transcription factor assay kit (Active 

Motif). For the cigarette smoke exposure model, nuclear extracts were used for measuring 

Nrf2 binding activity to immobilized antioxidant response elements (ARE) using a 

TransAM™ Nrf2 kit (Active Motif). Briefly, both of this kit contains a 96-well plate with 

immobilized oligonucleotide containing either the NF-κB consensus binding sequence (5'-

GGGACTTTCC-3') or ARE consensus binding site (5'-

GTCACAGTGACTCAGCAGAATCTG-3') which the active form of Nrf2 contained in the 

nuclear extract will specifically bind to. Nuclear extracts (5 µg) were incubated in the wells 

for 1 hour and anti-p65 primary antibodies or anti-Nrf2 antibodies were then added into the 



 

 

92 

 

wells following washing. A HRP-conjugated secondary antibody was subsequently added to 

detect the bound primary antibody. Developing solution and stopping solution were used to 

develop a colorimetric reaction. The absorbance was measured at 450 nm with a reference 

wavelength of 655 nm by a microplate reader (Tecan microplate reader infinite M200; 

Mannedorf, Switzerland). In addition, the wild-type or mutated NF-κB or Nrf2 consensus 

oligonucleotide was added into the reactions as the competitive or mutated competitive 

control to monitor the specificity of the assay. 

 

3.11. Immunoblotting 

For the NF-B p65 nuclear translocation studies, lung and cell culture nuclear proteins 

were utilized while for Nrf2 nuclear translocation studies, both cell culture cytoplasmic and 

nuclear proteins were used for immunoblotting studies. A similar amount of protein (30 µg) 

mixed with sample buffer were separated by 10% SDS-PAGE in a Trans-Blot tank (Bio-Rad 

Laboratories, Hercules, CA, USA) and transferred to a PVDF membrane using a semi-try 

transblotter (ATTO Corp, Tokyo, Japan). The PVDF membrane was blocked with 5% skim 

milk powder (Fluka, Sigma) in Tween-20 Tris buffered saline (TTBS) for 2 hours and probed 

overnight at 4°C with either with anti-p65 (Cell Signaling Technology, Beverly, MA) for NF-

B p65 nuclear translocation studies or with rabbit anti-Nrf2 (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) antibodies for Nrf2 nuclear translocation studies.  The PVDF was 

subsequently washed with TTBS for 10 times (2 - 3 min each), and incubated in HRP-

conjugated anti-rabbit or anti-mouse antibodies for two hours before being developed on 

hyperfilms using an ECL reagent. After washing several times in TTBS, ECL reagent was 

removed with western blot stripping buffer. Subsequently, the PVDF was blocked again, 

reprobed with anti-TATA box binding protein (TBP) (Abcam, Cambridge, UK) or mouse 

anti--actin (Cell Signaling Technology, Beverly, MA) and developed using an AP substrate 
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kit. Band intensity was quantitated using ImageJ software (NIH) as described previously (Goh 

et al., 2012). 

 

3.12. RNA extraction and Reverse Transcription 

Lungs were isolated from the thoracic cavity 24 hours after the last OVA or saline 

challenge for the allergic mouse model as well as 24 hours after the last cigarette smoke 

exposure for the cigarette smoke lung injury model. The isolated lung are immediately stored 

in RNAlater at -80°C. Before RNA isolation, lung tissues were removed from the RNAlater 

with sterile forceps, immersed in 1 ml Trizol (Invitrogen, Carlsbad, CA, USA), and 

homogenized on ice using the homogenizer. Next, RNA isolation was performed using Trizol 

according to the instructions from Invitrogen. Similarly, for Nrf2 transactivation in vitro 

studies, mRNA is extracted at the mentioned time point using Trizol following manufacturer 

instructions. After dissolving the isolated RNA in DEPC water, spectrophotometric 

measurements was perform using NanoDrop ND-1000 (Thermo Fisher Scientific Inc, 

Waltham, MA, USA) to quantify the amount and purity of the RNA present in the sample. 

Both A260/A280 (DNA/protein) and A260/A230 (DNA/organic contaminants) ratio were 

recorded as an indicator of purity of RNA. An acceptable level of purity for RNA extracts 

should be around 1.9 to 2.1 for both A260/A280 and A260/A230 ratio. Subsequently, cDNA 

was synthesized from 1 µg of isolated RNA by a random primer and AMV reverse 

transcriptase using a multi-well thermal cycler (GeneAmp PCR system 2700, Applied 

Biosystems, Foster City, CA, USA).  
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3.13. Polymerase Chain Reaction (PCR)  

For the allergic mouse model studies, PCR amplifications were then performed on 1 µl 

of cDNA template in a 25 µl reaction volume containing 12.5 µl of 2×PCR master mix (50 

units/ml TaqDNA polymerase, 400 µM dATP, 400 µM dGTP, 400 µMdCTP, 400 µM dTTP, 

and 3 mM MgCl2), 9.5 µl nuclease-free water, 1 µl forward primer (10 µM) and 1 µl reverse 

primer (10 µM) using the multiwell thermal cycler. Primers used in the PCR reactions are 

listed in Table 3.1. PCR products were separated by electrophoresis on 2% agarose gels 

stained with ethidium bromide (100 V, 30 min) and were visualized under an ultraviolet 

transilluminator. Furthermore, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 

used as a housekeeping gene to normalize variations between sample loadings. For the 

cigarette smoke exposed mouse and Beas-2B cells studies, quantitative real time PCR were 

perform to quantify the gene expression profile. Template cDNA (100ng) in PCR mixture 

containing Fast SYBR Green Master Mix (Applied Biosystems, Foster City, California, USA) 

with a total reaction mixture volume of 20 μl were added in MicroAmp optical 96-well 

reaction plates. Plates were sealed, centrifuged, and then subjected to amplification. 

Quantitative real time PCR was performed using a sequence detection system (ABI 7500 

Cycler; Applied Biosystems, Foster City, CA). The PCR protocol consisted of 2 minutes at 

50°C and 10 minutes at 95°C, followed by 40 cycles of 15 seconds at 95°C and 1 minute at 

60°C. All measurements were done in triplicate. The primers for inflammatory and 

antioxidant genes are listed in Table 3.2. The mRNA expression levels for all samples were 

normalized to the level of the housekeeping gene 18S. Following amplification, melting curve 

analysis was performed to determine the specificity of the amplified products. Data 

acquisition and analysis were performed using the ABI 7500 software, version 2.0.5 (Applied 

Biosystems). 
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Table 3.1.  Primer sets for RT-PCR analysis 

 
Target  

(Accession ID) 

 Primer Sequence  No. of 

Cycle  

Length  

(bp)  

Reference 

      

AMCase 

(gi|37999744) 

Forward  5’-TGGGTTCTGGGCCTACTATG-3’ 32 483 (Zhao et al., 

2005) Reverse  5’-GCTTGACAATGCTGCTGGTA-3’ 

      

Ym1 

(gi|285015) 

Forward  5’-CTGGAATTGGTGCCCCTACA-3’ 32 624 (Zhao et al., 

2005) Reverse  5’-CAAGCATGGTGGTTTTACAGGA-3’ 

      

Ym2 

(gi|22123907) 

Forward  5’-CAGAACCGTCAGACATTCATTA-3’ 32 429 (Zhao et al., 

2005) Reverse  5’-ATGGTCCTTCCAGTAGGTAATA-3’ 

      

YKL-40 

(gi|142347793) 

Forward  5’-GTACAAGCTGGTCTGCTACT-3’ 30 277 (Bao et al., 

2009) Reverse  5’-GTTGGAGGCAATCTCGGAAA-3’ 

      

E-selectin 

(gi|118130193) 

Forward  5’-AACGCCAGAACAACAATTCC-3’ 35 227 Primer 3 

Reverse  5’-TGAATTGCCACCAGATGTGT-3’ 

      

COX-2 

(gi|118130137) 

Forward  5’-GGAGAGACTATCAAGATAGT-3’ 40 861 (Jung et al., 

2007) Reverse  5’-ATGGTCAGTAGACTTTTACA-3’ 

      

Muc5ac 

(gi|114431223) 

Forward  5’-GAGTGACATTGCAGGAAGCA-3’ 38 361 Primer 3 

Reverse  5’-CAGAGGACAGGAAGGTGAGC-3’ 

      

IL-17A 

(gi|142367609) 

Forward  5’-CCGCAATGAAGACCCTGATAGA-3’ 35 187 (Egan et al., 

2008) Reverse  5’-CAGCATCTTCTCGACCCTGAAA-3’ 

      

IL-33 

(gi|257900494) 

Forward  5’-TCCTTGCTTGGCAGTATCCA-3’ 35 52 (Verri et al., 

2008) Reverse  5’-TGCTCAATGTGTCAACAGACG-3’ 

      

VCAM-1 

(gi|31981429) 

Forward  5’-CAAGGGTGACCAGCTCATGAA-3’ 30 518 (Bao et al., 

2009) Reverse  5’-TGTGCAGCCACCTGAGATCC-3’ 

      

GADPH 

(gi|126012538) 

Forward  5’- AGGTCGGTGTGAACGGATTTG-3’ 30 95 (Lampton et 

al., 2008) Reverse  5’-GGGGTCGTTGATGGCAACA-3’ 
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Table 3.2.  Primer sets for real time-PCR analysis  

 
Target  

(Accession ID) 

 Primer Sequence  Length  

(bp)  

Reference 

 

MMP-12 

(gi|115392137) 

 

Forward  

 

5’-TTTCTTCCATATGGCCAAGC-3’ 

 

198 

 

(Deguchi et 

al., 2005) Reverse  5’-GGTCAAAGACAGCTGCATCA-3’ 

     

TIMP-1 

(gi|113205064) 

Forward  5’-GTGGGAAATGCCGCAGAT-3’ 67 (Manoury et 

al., 2006) Reverse  5’-GGGCATATCCACAGAGGCTTT-3’ 

     

GM-CSF 

(gi|145301581) 

Forward  5’-GGGCGCCTTGAACATGAC-3’ 76 (Wuthrich et 

al., 2005) Reverse  5’-TTGTGTTTCACAGTCCGTTTCC-3’ 

     

TNF- 

(gi|133892368) 

Forward  5’-TCGAGTGACAAGCCCGTAGC-3’ 68 (Mashreghi et 

al., 2008) Reverse  5’- CTCAGCCACTCCAGCTGCTC-3’ 

     

MIP-2 

(gi|118130527) 

Forward  5’-AGTGAACTGCGCTGTCAATGC-3’ 143 (Hu et al., 

2004) Reverse  5’-AGGCAAACTTTTTGACCGCC-3’ 

     

iNOS 

(gi|146134510) 

Forward  5’-CGGGCAAACATCACATTCAGATCCCG-3’ 69 (Boyer et al., 

2011) Reverse  5’-TATATTGCTGTGGCTCCCATGTT-3’ 

     

GCLM 

(gi|53759142) 

Forward  5’-AATCAACCCAGATTTGGTCAGG-3’ 56 Primer Bank 

Reverse  5’-GAGATACAGTGCATTCCAAGACA-3’ 

     

GCLC 

(gi|308199422) 

Forward  5’-GGAGGAAACCAAGCGCCAT-3’ 79 Primer Bank 

Reverse  5’-CTTGACGGCGTGGTAGATGT-3’ 

     

GR 

(gi|305410788) 

Forward  5’-CACTTGCGTGAATGTTGGATG-3’ 242 Primer Bank 

Reverse  5’-TGGGATCACTCGTGAAGGCT-3’ 

     

GPx-2 

(gi|375163496) 

Forward  5’-GGTAGATTTCAATACGTTCCGGG-3’ 52 Primer Bank 

Reverse  5’-AGCCACATTCTCAATCAGCAC-3’ 

     

HO-1 

(gi|298676487) 

Forward  5’-GCAGAGGGTGATAGAAGAGGC-3’ 46 Primer Bank 

Reverse  5’-GATGTTGAGCAGGAACGCAGT-3’ 

     

18S 

(gi| 225637497) 

Forward  5’-GCCGCTAGAGGTGAAATTCTTG-3’ 66 (Medicherla et 

al., 2008) Reverse  5’-CATTCTTGGCAAATGCTTTCG-3’ 
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3.14. Biochemical Assay Antioxidant Activities  

3.14.1. Antioxidant Activities in Lung Tissue 

Frozen lung tissues were homogenized in PBS and used for assessment of the 

activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx) and 

glutathione reductase (GR) using specific biochemical assays, according to the manufacturer’s 

instruction (Cayman Chemical, Ann Arbor, Michigan, USA). Catalase activity was 

determined based on the reaction of the enzyme with methanol in presence of an optimal 

concentration of hydrogen peroxide. The formaldehyde produced is measured 

spectrophotometrically with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole as the 

chromogen. The catalase activity was expressed as nmol/min/mg of protein in the sample. The 

quantification of SOD activity was determined by using tetrazolium salt for detection of 

superoxide radicals generated by xanthine oxidase and hypoxanthine. The SOD assay 

measures all three types of SOD (Cu/Zn, Mn, and FeSOD). One unit of superoxide is defined 

as the amount of enzyme needed to exhibit 50% dismutation of the superoxide radical. The 

glutathione peroxidase (GPx) activity was examined spectrophotometrically in lung through 

an indirect couple reaction with glutathione reductase. Oxidized glutathione, produced on 

reduction of hydroperoxide by GPx, is recycled to its reduced state by glutathione reductase 

and NADP reduced. The oxidation of NADP reduced to NADP
+
 is accompanied by a 

decrease in absorbance at 340 nm. Under conditions in which the GPx activity is rate limiting, 

the rate of decrease in the A340 is directly proportional to the GPx activity in the sample. The 

GR activity was monitor by measuring the rate of NADPH oxidation. The oxidation of 

NADPH to NADP
+
 is accompanied by a decrease in absorbance at 340nm and is directly 

proportional to the GR activity in the lung sample. 
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3.14.2. Glutathione Assay  

BEAS-2B cells were stimulated with CSE for 24 hours as describe above. Glutathione 

(GSH) levels were determined using glutathione assay kit (Cayman Chemical, Ann Arbor, MI) 

according to manufacturer instructions. Briefly, BEAS-2B cells were harvested by gently 

scraping the culture dish and centrifuged. The cells are subsequently resuspended in PBS 

buffer before sonication and centrifugation to obtain the cell lysate supernatant. 50 μl of 

supernatant are used for the quantification of GSH.  Principally, the kit used glutathione 

reductase (GR) for the quantification of GSH. The sulfhydryl group of GSH reacts with 

DTNB and produces a yellow coloured TNB (5-thios-2-nitrobenzoic acid). The mixed 

disulfide is reduced by GR to recycle the GSH and produce more TNB. Therefore, the rate of 

TNB production is directly proportional to this recycling reaction which in turn is directly 

proportional to the concentration of GSH in the sample. The estimation of GSH in the sample 

is measured by absorbance at 405 nm.  

 

3.15. Statistical analysis 

Data are presented as means ± SEM. One-way ANOVA followed by Dunnett’s test was 

used to determine significant differences between treatment groups. Significant levels were 

set at p<0.05.   
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4. ANTI-INFLAMMATORY EFFECTS OF 14-DEOXY-11,12-

DIDEHYDROANDROGRAPHOLIDE IN ALLERGIC ASTHMA 

MOUSE MODEL  

  



 

 

100 

 

4.1. Results 

 

4.1.1.  DDAG is less cytotoxic than andrographolide  

To determine the cytotoxicity profile of DDAG and andrographolide, both of these 

compounds were incubated with 3 different cell-lines at two different time points, 24 hours 

and 48 hours. MTS assays were carried out to determine the viability profile with DMSO as 

vehicle control for both andrographolide and DDAG. MTS assay are colorimetric assays 

generally used to determine cytotoxicity of potential medicinal agents as these agents would 

stimulate or inhibit cell viability and growth. Our present findings reveal that andrographolide 

dose-dependently and time-dependently reduced the viability of A549 (Figure 4.1) and 

BEAS-2B human lung epithelial cells (Figure 4.2) and RBL-2H3 mast cells (Figure 4.3). At 

low dosage, andrographolide were less cytotoxic toward BEAS-2B cells,  which is an 

epithelial virus transformed normal human bronchial epithelium obtained from autopsy of 

non-cancerous individuals as compare to the tumour cell lines tested, such as A549 and RBL-

2H3 cells. At 30 µM, andrographolide treatment at 48 hours reduced the viability of A549 and 

RBL-2H3 cells to approximately 60% and 40% of control respectively while maintaining the 

viability of BEAS-2B cells lines of above approximately 90% compared to control at the 

same concentration of andrographolide treatment. In contrast, DDAG did not reduce cell 

viability of these cultured cells at all concentrations tested and at both 24 and 48 hours of 

exposure. On the other hand, even with 48 hours of high dosage of DDAG (120 µM) 

treatment, all the cell lines tested show an show a viability above approximately 90% as 

compare to vehicle control.  These data suggest that andrographolide treatments are more 

cytotoxic compared to DDAG treatment especially towards tumour cell lines. 
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Figure 4.1.  Effects of andrographolide (open circles) and 14-deoxy-11,12-

didehydroandrographolide (DDAG) (filled squares) on cell viability of A549 cells at 24 and 

48 h time intervals. Andrographolide dose-dependently decreased the cell viability of A549 

ccells. In contrast, DDAG had no effect on the viability of A549 cells at all concentrations 

used and both time intervals. Values shown are the means ± SEM of six separate experiments. 

*Significant difference between andrographolide and DDAG, p < 0.05. 
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Figure 4.2.  Effects of andrographolide (open circles) and 14-deoxy-11,12-

didehydroandrographolide (DDAG) (filled squares) on cell viability of BEAS-2B cells at 24 

and 48 h time intervals. Andrographolide dose-dependently decreased the cell viability of 

BEAS-2B cells. In contrast, DDAG had no effect on the viability of BEAS-2B cells at all 

concentrations used and both time intervals. Values shown are the means ± SEM of six 

separate experiments. *Significant difference between andrographolide and DDAG, p < 0.05. 
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Figure 4.3.  Effects of andrographolide (open circles) and 14-deoxy-11,12-

didehydroandrographolide (DDAG) (filled squares) on cell viability of RBL-2H3 cells at 24 

and 48 h time intervals. Andrographolide dose-dependently decreased the cell viability of 

RBL-2H3 cells. In contrast, DDAG had no or minor effects on the viability of RBL-2H3 cells 

at all concentrations used and both time intervals. Values shown are the means ± SEM of six 

separate experiments. *Significant difference between andrographolide and DDAG, p < 0.05. 
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4.1.2.  DDAG reduces bronchoalveolar lavage fluid Th2 cytokines 

BAL fluid was collected 24 hours after the last OVA or saline aerosol challenge. After 

separation of infiltrating cells, the bronchoalveolar lavage (BAL) fluids were quickly stored in 

-80°C until ELISA. By using ELISA, we observed that OVA challenge caused a notable 

increase in IL-4, IL-5, IL-13 and eotaxin levels in BAL fluid of OVA sensitize mice as 

compare to Saline challenge mice. The increase of these cytokines represent an enhance Th2 

response typically observe in allergic asthma patients. IL-5 together with eotaxin lead to an 

increase of eosinophils infiltration while IL-4 and IL-13 are critical in IgE class switching.  

DDAG significantly (p < 0.05) reduced IL-4, IL-5, and IL-13 and, to a lesser extent, eotaxin 

levels in BAL fluid, in a dose-dependent manner (Figure 4.4).  

 

4.1.3.  DDAG reduces serum immunoglobulins 

To study the effects of DDAG on the continuing OVA-specific Th2 response in vivo, 

levels of total IgE, OVA-specific IgE, OVA-specific IgG1 and OVA-specific IgG2a were 

determined using ELISA. Substantial elevation in serum total IgE, OVA-specific IgE, and 

OVA-specific IgG1 levels was observed, with no changes in OVA-specific IgG2a levels, in 

OVA-sensitise and challenged mice (Figure 4.5). DDAG significantly (p < 0.05) suppressed 

OVA-specific IgE levels and, to a lesser extent, the serum levels of total IgE and OVA-

specific IgG1 (Figure 4.5). DDAG had no effects on the serum level of OVA-specific IgG2a. 

The production of subclasses of immunoglobulins is regulated by cytokines derived mainly 

from T helper cells. The Th2 cytokine IL-4 induces IgG1 and IgE production, whereas the 

Th1 cytokine IFN-γ induces IgG2a in mice. Therefore, these findings imply that DDAG is 

able to modify the Th2 immune activity in the OVA mouse asthma model. 
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Figure 4.4.  Effects of 14-deoxy-11,12-didehydroandrographolide (DDAG) on BAL fluid 

Th2 cytokines. BAL fluids were collected 24 h after the last OVA aerosol challenge. Levels 

of IL-4, IL-5, IL-13, and eotaxin were analyzed using ELISA (n = 6–9 mice). Lower limits of 

detection were as follows: IL-4 and IL-5 at 4 pg/mL, IL-13 at 15.6 pg/mL, and eotaxin at 2 

pg/mL. Values shown are the means ± SEM. *Significant difference from DMSO control, p < 

0.05.  
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Figure 4.5.  Effects of 14-deoxy-11,12-didehydroandrographolide (DDAG) on serum 

immunoglobulins. Mouse serum was obtained 24 hours after the last OVA aerosol challenge. 

The levels of total IgE, OVA-specific IgE, OVA-specific IgG1, and OVA-specific IgG2a 

were analysed using ELISA (n = 6–9 mice). Values shown are the means ± SEM. *Significant 

difference from DMSO control, p < 0.05. 
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4.1.4.  DDAG reduces lung inflammatory biomarkers  

To study the effects of DDAG on the profile of expression of inflammatory 

biomarkers, lungs were harvested 24 hours after the last aerosol challenge.  The reverse 

transcription PCR data shows that OVA challenge markedly up-regulated lung mRNA levels 

of the inducible endothelial cell adhesion molecules, such as vascular cell adhesion molecule 

1 (VCAM-1) and E-selectin (or endothelial-leukocyte adhesion molecule 1), and chemokines 

such as monocyte chemotactic protein-1 (MCP-1/CCL2), which are pivotal for the 

recruitment of inflammatory cells (Hogan et al., 2008; Kelly et al., 2007).  MCP-1 recruits 

monocytes to sites of tissue injury, infection, and inflammation. Chitinases including acidic 

mammalian chitinase (AMCase), and chitinase like protein such as Ym1, Ym2, and YKL-40 

have been shown recently to play critical roles in airway inflammation and remodelling 

(Chupp et al., 2007; Guan et al., 2009; Zhao et al., 2005; Zhu et al., 2004). Furthermore, 

AMCase and YKL-40 are highly associated with allergic bronchial asthma in patients (Shuhui 

et al., 2009). IL-17 and IL-33, a member of the IL-1 cytokine family, are two effector 

cytokines that have been shown to be essential for airway inflammation and remodelling 

(Kearley et al., 2009; Nembrini et al., 2009). Both IL-17 and IL-33 have been associated with 

severe and steroid insensitive asthma (Alcorn et al., 2010; Prefontaine et al., 2009). 

Cyclooxygenase-2 (COX-2) is known to be essential for PGD2-mediated airway eosinophilia 

and AHR (Shiraishi et al., 2008), and Muc5ac, essential for mucus hypersecretion (Morcillo 

et al., 2006). Pretreatment with DDAG (1 mg/kg) strongly suppressed the expression of 

VCAM-1, E-selectin, MCP-1, AMCase, Ym-2, YKL-40, Muc5ac, COX2, IL-17, and IL-33 

levels in the allergic airways of OVA sensitize and challenge mice lungs (Figure 4.6). Taken 

together, these data suggest that DDAG is a potent anti-inflammatory agent.  
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Figure 4.6.  Effects of 14-deoxy-11,12-didehydroandrographolide (DDAG) on lung 

inflammatory biomarkers. Lung tissues were collected 24 h after the last OVA aerosol 

challenge. Total mRNA was extracted using TriZol reagent, and the PCR products were 

separated in a 2% agarose gel visualized under UV light. GADPH was used as an internal 

control. The experiments were repeated three times (n = 3 mice) with a similar pattern of 

results. 
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4.1.5.  DDAG suppresses allergic airway inflammation  

OVA challenge markedly increased total cell and eosinophil counts. A minor but 

significant increase of lymphocyte and neutrophils upon OVA challenge was also observed 

(Figure 4.7). DDAG (0.1, 0.5, and 1 mg/kg) significantly decreased total cell and eosinophil 

counts in BAL fluid in a dose-dependent manner (Figure 4.8). At 1 mg/kg, DDAG also 

reduced macrophage and lymphocyte counts.  

Lung tissue was collected 24 hours after the last OVA challenge. OVA aerosol 

challenge induced substantial inflammatory cell infiltration into the peribronchiolar and 

perivascular connective tissues as compared to saline challenge (Figure 4.9). The majority of 

the infiltrated inflammatory cells were eosinophils. Pre-treatment with DDAG (1 mg/kg) 

markedly diminished the eosinophil-rich leukocyte infiltration (Figure 4.9). OVA-challenged 

but not saline challenge mice developed goblet cell hyperplasia and mucus hypersecretion in 

the bronchi. The OVA-induced mucus secretion was markedly suppressed by DDAG (1 

mg/kg) as visualize by PAS staining (Figure 4.10). 

 

4.1.6.  DDAG prevents lung mast cell degranulation 

OVA aerosol challenge markedly decreased intact mast cell number and increased 

degranulating mast cells in the lungs. Increase in OVA specific IgE will lead to mast cell 

activation upon OVA challenge in OVA sensitize mouse as mast cell contain the high affinity 

IgE binding receptor, FcεR1. Activated mast cell would release score of preform mediators, 

newly formed lipid mediators and cytokines such as eosinophil chemotactic factors leading to 

an enhance inflammatory response. DDAG (1 mg/kg) reduced mast cell degranulation and 

restored intact mast cell number similar to saline aerosol control (Figure 4.11).  
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Figure 4.7.  Inflammatory cell counts in BAL fluid obtained from sensitized mice 24 h 

after the last saline aerosol (n = 7 mice) or OVA aerosol (n = 7 mice) challenge. OVA 

challenge induced marked infiltration of inflammatory cells into the peribronchiolar and 

perivascular connective tissues as compared with saline aerosol challenge. 
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Figure 4.8.  Effects of 14-deoxy-11,12-didehydroandrographolide (DDAG) on OVA-

induced inflammatory cell recruitment. DDAG dose-dependently reduced OVA-induced 

inflammatory cell counts in BAL fluid from sensitized mice 24 h after the last OVA aerosol 

challenge (DMSO, n = 7; 0.1 mg/kg, n = 8; 0.5 mg/kg, n = 7; and 1 mg/kg, n = 10). 

Differential cell counts were performed on a minimum of 500 cells to identify eosinophils 

(Eos), macrophages (Mac), neutrophils (Neu), and lymphocytes (Lym). 
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Figure 4.9.  Effects of 14-deoxy-11,12-didehydroandrographolide (DDAG) on OVA-

induced inflammatory cell recruitment. Histological slides showing lung tissue eosinophilia 

(magnification 200×) 24 h after the last challenge of saline aerosol, OVA aerosol, OVA 

aerosol plus DMSO, or OVA aerosol plus 1 mg/kg DDAG are displayed. Quantitative 

analyses of inflammatory cell infiltration in lung sections were performed as previously 

described (Bao et al., 2009). Scoring of inflammatory cells was performed in at least three 

different fields for each lung section. Mean scores were obtained from four animals. 

*Significant difference from DMSO control, p < 0.05. 

  

0

1

2

3

4

Saline OVA DMSO DDAG

In
fl

a
m

m
a

ti
o

n
 S

c
o

re

*

OVA 

DMSO + OVA DDAG + OVA 

OVA 

Saline 



 

 

113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10.  Effects of 14-deoxy-11,12-didehydroandrographolide (DDAG) on OVA-

induced mucus hypersecretion. Histological slides showing lung mucus secretion 

(magnification 200×) 24 h after the last challenge of saline aerosol, OVA aerosol, OVA 

aerosol plus DMSO, or OVA aerosol plus 1 mg/kg DDAG are displayed. Quantitative 

analyses of inflammatory cell infiltration and mucus production in lung sections were 

performed as previously described (Bao et al., 2009). Scoring of goblet cells was performed 

in at least three different fields for each lung section. Mean scores were obtained from four 

animals. *Significant difference from DMSO control, p < 0.05. 
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Figure 4.11.  Effects of DDAG on OVA-induced lung mast cell degranulation. Lung tissue 

mast cells were stained using toluidine-blue, and the number of intact and degranulating mast 

cells was counted (magnification x 200) in the entire lung sections. Black arrow heads point 

to intact mast cells. Red arrow heads indicate degranulating mast cells. Mean scores were 

obtained from 4 animals. *Significant difference from DMSO control, p < 0.05. 
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4.1.7.  DDAG reduces AHR  

OVA-challenged mice developed AHR, which is typically reflected by high lung 

resistance (Rl) (Figure 4.12) and low dynamic compliance (Cdyn) (Figure 4.13). Rl is defined 

as the pressure driving respiration divided by flow. Cdyn refers to the distensibility of the 

lung and is defined as the change in volume of the lung produced by a change in pressure 

across the lung. DDAG (1 mg/kg) dramatically reduced Rl and restored Cdyn in OVA-

challenged mice in response to methacholine, suggesting that the immune-mediated airway 

pathology in vivo was modified 

 

4.1.8.  DDAG inhibits NF-κB activation  

To determine if DDAG, like andrographolide, could inhibit NF-κB in ovalbumin 

(OVA)-challenged mice (Bao et al., 2009), the nuclear translocation of the p65 subunit and 

p65 DNA-binding activity in lung tissues from mice treated with DDAG were examined. 

OVA challenge markedly raised the level of p65 subunit in the nuclear extract of lung tissues 

and promoted nuclear p65 DNA-binding activity (Figure 4.14). DDAG (1 mg/kg) 

significantly (p < 0.05) reduced both nuclear p65 translocation and DNA-binding activity to 

the basal levels.  

The mechanism of action of DDAG in TNF-α-stimulated A549 human lung epithelial 

cells in vitro was verified. TNF-α plays a critical role in asthma (Brightling et al., 2008; 

Vroling et al., 2007) and is a potent stimulator of human airway epithelial cells (Newton et al., 

2007). A sharp increase in total nuclear p65 level and p65 DNA-binding activity was 

observed upon TNF-α treatment, and DDAG markedly abated these TNF-α-mediated 

responses (Figure 4.15). 
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Figure 4.12.  Effects of 14-deoxy-11,12-didehydroandrographolide (DDAG) on OVA-

induced AHR. Airway responsiveness of mechanically ventilated mice in response to 

aerosolized methacholine was measured. AHR is expressed as the percent change from the 

baseline level of lung resistance (Rl, n = 7–9 mice). Rl is defined as the pressure driving 

respiration divided by flow. *Significant difference from DMSO control, p < 0.05. 
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Figure 4.13.  Effects of 14-deoxy-11,12-didehydroandrographolide (DDAG) on OVA-

induced AHR. Airway responsiveness of mechanically ventilated mice in response to 

aerosolized methacholine was measured. AHR is expressed as the percent change from the 

baseline level of dynamic compliance (Cdyn, n = 7–9 mice). Cdyn refers to the distensibility 

of the lung and is defined as the change in volume of the lung produced by a change in 

pressure across the lung. *Significant difference from DMSO control, p < 0.05. 
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Figure 4.14.  Effects of 14-deoxy-11,12-didehydroandrographolide (DDAG) on NF-κB 

activity in OVA-challenged lungs. Immunoblotting of p65 NF-κB in nuclear extract of lung 

tissues isolated from mice 24 h after the last OVA challenge. TBP nuclear protein was used as 

an internal control. The experiments were repeated three times with a similar pattern of results. 

Nuclear p65 DNA-binding activity was determined using a TransAM p65 transcription factor 

ELISA kit. Values shown are the mean ± SEM of three separate experiments. *Significant 

difference from DMSO control, p < 0.05. 
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Figure 4.15.  Effects of 14-deoxy-11,12-didehydroandrographolide (DDAG) on NF-κB 

activity in in TNF-α-stimulated A549 human lung epithelial cells. Immunoblotting of p65 NF-

κB in nuclear extract of A549 cells stimulated with 10 ng/mL TNF-α for 5 min, in the 

presence and absence of DDAG (30 μM). TBP nuclear protein was used as an internal control. 

The experiments were repeated three times with a similar pattern of results. Nuclear p65 

DNA-binding activity was determined using a TransAM p65 transcription factor ELISA kit. 

Values shown are the mean ± SEM of three separate experiments. *Significant difference 

from DMSO control, p < 0.05. 
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4.2.  Discussion  

DDAG is the next most abundant of the naturally occurring labdane diterpene lactones 

in Andrographis paniculata besides andrographolide (Koteswara Rao et al., 2004; Pholphana 

et al., 2004). DDAG has been shown to be a metabolite of andrographolide and can also be 

synthesized chemically from the parent compound (He, 2003; Nanduri et al., 2004). 

Nevertheless, the present knowledge of the pharmacological actions of DDAG is much less 

than for andrographolide. Indeed, a clinical study of andrographolide in upper respiratory tract 

infection has been reported (Chang et al., 2008a), whereas investigations of DDAG are still at 

the early preclinical stage. Despite their structurally similarity, there is a notable difference 

between these two diterpenoids with regard to cytotoxicity. Andrographolide contains an α-

alkylidene γ-butyrolactone moiety and three hydroxyls at C-3, C-19 and C-14 that are 

accountable for the cytotoxic activities of andrographolide against numerous cancer cell lines 

(Varma et al., 2009). The lacking of an OH group at the C14 position and the double bond at 

C11 and C12 in DDAG structure might be related to the non-cytotoxic properties. Our present 

findings reveal that andrographolide exerted a strong dampening effect on the cell viability of 

human lung epithelial cell lines and rat mast cell line, but DDAG appeared to be non-

cytotoxic to these culture cells. These data are consistent with observations reported by other 

laboratories on other cell lines (Nanduri et al., 2004; Tan et al., 2005) and strongly support 

the notion that DDAG is a noncytotoxic analogue of andrographolide. 

Th2 cytokines play an essential role in the pathogenesis of the allergic airway 

inflammation (Galli et al., 2008a; Medoff et al., 2008), and NF-B is a critical transcription 

factor for Th2 cell differentiation (Das et al., 2001). IL-4 in conjunction with IL-13 are 

imperative for B cell antibodies isotype switching from IgM to IgE. Whereas IL-5 is vital for 

the growth, differentiation, recruitment, and survival of eosinophils which contribute to 

inflammation and even airway remodelling in asthma (Takatsu et al., 2008). Furthermore, IL-
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13 also plays a pivotal role in the effector phase of Th2 responses such as eosinophilic 

inflammation, airway-smooth-muscle hyperplasia, the induction of goblet-cell hyperplasia 

with mucus hypersecretion, the recruitment of monocytes, macrophages and T cells into the 

airway spaces, AHR and airway remodelling (Wills-Karp, 2004; Wynn, 2003). IL-4, IL-5 and 

IL-13 can be produced by various lung resident cells such as bronchial epithelial cells, tissue 

mast cells and alveolar macrophages as well as infiltrated inflammatory cells such as 

lymphocytes and eosinophils. Our results show that DDAG significantly reduced the levels of 

IL-4, IL-5, IL-13 and eotaxin in BAL fluids from OVA-challenged mice. Similar findings 

were observed in OVA-challenged mice with disrupted NF-κB function via conditional 

knockout of IKKβ in the airway epithelium (Broide et al., 2005). In addition, repression of the 

NF-κB signalling pathway has been shown to block IL-13-induced eotaxin production in 

cultured human airway smooth muscle cells (Li et al., 1999). Therefore, the observed 

reduction of IL-4, IL-5, IL-13, and eotaxin levels in BAL fluid from DDAG-treated mice may 

be due to inhibition of NF-κB activation in the inflammatory and airway resident cells. 

The most abundant immunoglobulin isotype in the blood is IgG, an immunoglobulin 

that provides the bulk immunity to most blood borne infectious agents. There are different 

IgG subclasses such as IgG1, IgG2a, IgG2b, and IgG3. During a T-cell dependent immune 

response, a progressive change takes place in the predominant immunoglobulin class of the 

specific antibodies. This subclass switch is influenced by T-cells and their cytokines. In mice, 

IL-4 preferentially switch activated B cells to the IgG1 isotype (associated with Th2 immune 

response) while IFN-γ and IL-12 enhances IgG2a responses (associated with Th1 immune 

response) (Pulendran et al., 1999). The reduction of IgG1 by DDAG treatment in our 

observation further substantiates the notion that DDAG significantly reduce the Th2 response 

thereby attenuating the role Th2 cytokines play in orchestrating the complex series of events 

leading to immunoglobulin E (IgE) production, and the development, recruitment, and 
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activation of the primary effector cells of the allergic response such as mast cells and 

eosinophils. 

Elevated serum IgE levels are a hallmark of the Th2 immune response. Clinical 

studies have shown that humanized mAbs against IgE such as omalizumab was effective in 

patients with poorly controlled, moderate to severe allergic asthma (Busse et al., 2011; Lin et 

al., 2004). When the serum concentration of unbound IgE were decrease by omalizumab 

treatment, the expression of high-affinity IgE receptor FcεRI on several cell types were 

decrease as well (Lin et al., 2004). This will also decrease the amplification of the 

inflammatory response mediated by T helper cells to prevent IgE-dependent allergen 

presentation. IgE in turn is produce by B-Cell. NF-κB plays a crucial role in B-cell 

proliferation and development (Schulze-Luehrmann et al., 2006; Siebenlist et al., 2005). IL-4 

and IL-13 are important in directing B-cell growth, differentiation, and secretion of IgE (Li-

Weber et al., 2003; Wills-Karp, 2004). Therefore the significantly reduced serum level of 

OVA-specific IgE in OVA-challenged mice by DDAG treatment may be attributed to the 

inhibition of NF-κB during B-cell activation and of IL-4- and IL-13-mediated class switching 

to IgE. 

The biological activities of IgE are mediated through its interaction with the high-

affinity IgE receptor FcεRI on mast cells and basophils. Once the mice is sensitized to OVA 

as allergen, subsequent encounters with OVA cause crosslinking of IgE bound to the FcεRI 

which initiates multiple signaling cascades leading to NF-B activation and stimulate the 

release of granule-associated and newly generated mediators that are responsible for the early 

allergic response (Galli et al., 2008a; Klemm et al., 2006). Subsequently, the release of 

cytokines and chemokines that recruit macrophages and eosinophils will leads to the late 

allergic response (Cockcroft et al., 2007). 
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Eosinophils play a central role in the pathogenesis of allergic inflammation (Hogan et 

al., 2008; Takatsu et al., 2008). IL-5 is a unique cytokine for the differentiation and survival 

of eosinophils in response to allergen provocation. Study has demonstrated specific anti-IL-5 

therapy is efficacious in severe asthma patients who had frequent exacerbations and showing 

eosinophilic sputum (Haldar et al., 2009). Their findings suggest that eosinophils have a role 

as important effector cells in the pathogenesis of severe exacerbation of asthma. The view 

expressed in Haldar et al. were further supported by Nair et al. when they show that systemic 

steroids can be withdrawn in severe asthma patients who had eosinophilic sputum when 

treated with mepolizumab, a monoclonal antibody against interleukin-5 (Nair et al., 2009). 

Our present findings demonstrate that DDAG prevented inflammatory cell infiltration into the 

airways as shown by a significant drop in total cell counts and eosinophil and lymphocyte 

counts in BAL fluid, and in tissue eosinophilia in lung sections.  

Leukocyte transmigration into the airways is orchestrated by cytokines such as IL-4, 

IL-5, and IL-13 and coordinated by specific chemokines such as eotaxin and RANTES in 

combination with adhesion molecules as exemplified by VCAM-1 and E-selectin (Hogan et 

al., 2008; Kelly et al., 2007).  Upon OVA provocation, autacoid mediators release by mast 

cell such as histamine and the cysteinyl leukotrienes (CysLTs) increase endothelial expression 

of E-selectin which initiate leukocyte rolling, followed by the expression of intercellular 

adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1), which 

interact with integrin receptors to arrest the leukocyte and assist its passage into the 

perivascular space (Kelly et al., 2007). The activation of VCAM-1 gene expression is 

regulated by the transcription factors nuclear factor kappa B (NFκB) as VCAM-1 expression 

is induced by the cytokines TNF-α and IL-1β (Cook-Mills et al., 2011). Chemokines such as 

monocyte chemotactic proteins-1 (MCP-1/CCL2) and eotaxin-1 (CCL11) direct and prime 

leukocytes for mediator secretion (Palmqvist et al., 2007; Velazquez et al., 2011). Apart from 
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cysteinyl leukotrienes, eotaxin also plays a role in promoting eosinophil recruitment in 

response to allergic provocation via CCR3 (Luster et al., 1997). IL-13 is by far the most 

potent inducer of eotaxin expression in airway epithelial cells (Li et al., 1999). IL-17 has been 

shown to induce eotaxin production from airway smooth muscle cells (Rahman et al., 2006c), 

whereas IL-33 can promote eotaxin release from macrophages (Liew et al., 2010).  

DDAG markedly suppressed E-selectin, VCAM-1, MCP-1, IL-17 and IL-33 mRNA 

expression and eotaxin production in OVA-challenged lungs. These findings are likely to be 

due to DDAG-mediated NF-κB inhibition, as the genes for E-selectin, VCAM-1, MCP-1 and 

eotaxin contain the κB site for NF-κB within their promoters (Kumar et al., 2004a). These 

finding may also associated with reduced mast cell degranulation with DDAG treatment as 

mast cells has recently been demonstrated to play a key role in a Th2 cytokine-dependent 

asthma model through production of adhesion molecules, including ICAM-1 and VCAM-1, 

by liberation of TNF-α (Chai et al., 2011). Taken together, the suppression of these 

inflammatory cytokines and chemokines by DDAG treatment in OVA-challenged lungs may 

be one of the main reasons for the reduction in eosinophil infiltration.    

A family of chitinase proteins including AMCase, Ym1, Ym2 and YKL-40 has 

recently been found to be elevated in allergic airway inflammation in human and in mouse 

asthma models (Chupp et al., 2007; Zhao et al., 2005; Zhu et al., 2004). They are mainly 

expressed in airway epithelium and alveolar macrophages. AMCase level is increased in a 

mouse asthma model and in asthmatic subjects in an IL-13-dependent manner (Zhu et al., 

2004). When given intratracheally, IL-13 elevates Ym1 and Ym2 levels in BAL fluid from 

mice in vivo (Webb et al., 2001). Besides, YKL-40 serum level correlates positively with 

asthma severity, airway remodelling and deterioration of pulmonary function in asthmatic 

subjects (Chupp et al., 2007). In a chronic asthma mouse model, only AMCase and Ym2 

proteins but not Ym1 were found to be up regulated in the proteomes of lung tissues and/or 
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BAL fluid (Wong et al., 2008). Overall, chitinases may play a role in airway inflammation 

and remodelling. Our data show that DDAG markedly down-regulated AMCase, Ym2 and 

YKL-40 mRNA expression in the lungs of OVA-challenged mice. These may be a 

consequence of the major drop in IL-4 and IL-13 levels in the airways with DDAG treatment 

and may contribute to the diminished pulmonary eosinophilia. 

We observed a dramatic reduction in airway mucus production in DDAG-treated mice 

as compared with DMSO control. Cumulative evidence indicates that IL-4, IL-5, IL-13, and 

IL-17 play a critical role in goblet cell hyperplasia and mucin Muc5ac gene and protein 

expression in mice (Fujisawa et al., 2009; Justice et al., 2002; Morcillo et al., 2006). Muc5ac 

gene expression is dependent on the transcriptional activity of NF-B (Justice et al., 2002; 

Morcillo et al., 2006). In addition, selective ablation of NF-κB function in the airway 

epithelium has been shown to reduce OVA-induced mucus production in mice (Birrell et al., 

2005a). As such, the reduction in mucus production and Muc5ac mRNA expression in the 

lungs of DDAG-treated mice may be attributable to a significant drop in IL-4, IL-5, IL-13, 

and IL-17 levels and an inhibitory action on NF-κB in the airway epithelium.  

IL-4, IL-5, and IL-13 have been shown to induce AHR, in which major basic protein 

and cysteinyl-leukotrienes have been implicated (Hogan et al., 2008; Leigh et al., 2004; 

Takatsu et al., 2008; Wills-Karp, 2004). Recently, IL-33 was found to directly trigger AHR in 

mice (Liew et al., 2010). In addition, IgE-mediated mast cell activation may contribute to 

airway hyperresponsiveness by producing a wide array of mast cell-derived lipid mediators 

and inflammatory cytokines (Galli et al., 2008a; Klemm et al., 2006; Woodruff et al., 2009). 

Thus, the observed reduction in AHR by DDAG treatment may be associated with the 

reduction in Th2 cytokine and IL-33 production, tissue eosinophilia, serum IgE levels and 

mast cell degranulation. 
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Persistent NF-κB activation has been observed in allergic airway inflammation in 

humans and in animal model of asthma (Edwards et al., 2009). p65 protein levels in 

peripheral blood mononuclear cells (PBMCs) were higher in moderate and severe asthmatics 

than in normal individuals. In addition, while high amount of IκB phosphorylation were 

characteristic of asthmatic patients, greater p65 activation was also observe in severe 

asthmatics (Gagliardo et al., 2003). Similarly, p65 protein abundance and IκB 

phosphorylation are also higher in PBMCs of children with moderate asthma when compared 

to normal individuals (La Grutta et al., 2003). Moreover, when compared to non-asthmatic 

individuals, nuclear extracts from bronchial biopsies and induced sputum cells (Hart et al., 

1998) of patients with asthma show higher NF-κB activation as measured by gel shift assays 

and immunohistochemical examination of bronchial biopsy specimens with an antibody to 

p65. Likewise, bronchial epithelial cells from stable, corticosteroid naïve asthmatics have also 

shown greater levels of NF-κB activation (Zhao et al., 2001). The importance of NF-κB in 

disease pathogenesis has also been highlighted in the mouse models of allergic asthma. 

Compared to control mice, bronchial epithelium of mice sensitise and challenge with OVA 

exhibits robust and rapid inhibitory κB kinase α/β (IKK-α/β) activity and p65 nuclear 

translocation (Poynter et al., 2002). Mice lacking p50 on the other hand have reduced 

eosinophil infiltration in response to OVA challenge. This effect could be attributed to a lack 

of Th2 cytokines such as IL-4, IL-5, IL-13 (Das et al., 2001), and the chemokine eotaxin 

(Yang et al., 1998). This study further demonstrated the importance of NF-κB signalling in 

both allergic inflammation and mucus production. On the other hand, activation of 

doxycycline-inducible constitutively active IKK-β transgene not only induces p65 nuclear 

translocation, inflammatory cell infiltration and concomitant production of pro-inflammatory 

mediators, it was able to induced AHR, even without allergen sensitization and challenge 

(Pantano et al., 2008). Besides, antigen receptor activation in T and B lymphocytes and mast 
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cells culminates in NF-κB activation (Cheng et al., 2011; Galli et al., 2008a; Klemm et al., 

2006; Schulze-Luehrmann et al., 2006; Shinohara et al., 2009). In addition, TNF-α 

stimulation of airway epithelial cells triggers NF-κB activation and gene expression (Newton 

et al., 2007). These studies further underscore the importance of NF-κB signalling in the 

generation of pro-inflammatory cytokines, chemokines and adhesion molecules. Furthermore, 

various therapeutic strategies targeted at the NF-B activity such as NF-B-specific decoy 

oligonucleotide (Desmet et al., 2004), p65-specific antisense oligonucleotide (Choi et al., 

2004),  p65-targeting siRNA (Platz et al., 2005) and inhibitory B kinase- (IKKβ)-selective 

small molecule inhibitor (Birrell et al., 2005a) have demonstrated beneficial effects in 

experimental asthma models. Our data revealed a significant inhibition of p65 nuclear 

translocation and B DNA-binding activity by DDAG in OVA-challenged lungs in vivo and 

in TNF-α-stimulated human lung epithelial cells in vitro. Our findings show for the first time 

that DDAG, like andrographolide, may exert anti-inflammatory actions via inhibition of NF-

κB activity both in OVA-challenged lungs in vivo and in TNF-α-stimulated human lung 

epithelial cells in vitro.  

We report here for the first time that 14-deoxy-11,12-didehydroandrographolide 

(DDAG), a naturally occurring noncytotoxic analogue of andrographolide, effectively reduced 

OVA-induced inflammatory cell recruitment into BAL fluid, IL-4, IL-5, IL-13, and eotaxin 

production, serum IgE synthesis, pulmonary eosinophilia, mucus hypersecretion, mast cell 

degranulation, and AHR in a mouse asthma model, probably via inhibition of NF-κB activity. 

These findings support a potential therapeutic role for DDAG in the treatment of asthma 

subject to further laboratory study. 
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5. ANTI-OXIDATIVE STRESS EFFECTS OF 

ANDROGRAPHOLIDE IN CIGARETTE SMOKE INDUCE 

LUNG INJURY MOUSE MODEL  
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5.1. Results 

5.1.1.  Andrographolide attenuates cigarette smoke-induced lung inflammation  

Cotinine is a stable metabolite of nicotine and it is often used as a surrogate maker for 

nicotine exposure (Benowitz, 2009). Plasma cotinine levels in 4% cigarette smoke-exposed 

mice were sharply elevated above 100 ng mL
-1

. In contrast, plasma cotinine level in sham air 

control mice was undetectable (Figure 5.1). The cotinine level was similar with the level 

observed by others groups (Lu et al., 2007) and in serum of human smokers (Scott et al., 

2000). BAL fluid was collected 24 hours after the last cigarette smoke or sham air exposure. 

Cigarette smoke inhalation markedly increased BAL fluid total cell and neutrophil counts, 

with moderate but significant elevation in macrophage counts, as compared with sham air 

control (Figure 5.2). The low level of total BAL fluids’ cell count in cigarette smoke 

inhalation models is reflective of the low grade of inflammation found in COPD patients. To 

examine the effect of andrographolide in cigarette smoke induce lung injury mouse model, 

cigarette expose mouse was treated prophylactically with andrographolide. Our study show 

that andrographolide (0.1, 0.5 and 1 mg kg
-1

) significantly suppressed the total inflammatory 

cell and neutrophil counts in BAL fluid in a dose-dependent manner as compared with the 

DMSO control (Figure 5.3). Andrographolide (1 mg kg
-1

) also showed a moderate inhibitory 

effect on macrophage count but did not reach statistical significance.  
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Figure 5.1. Effects of cigarette smoke in mice.  Blood was collected immediately after 1 h 

4% cigarette smoke exposure and plasma cotinine levels were measured using ELISA (n = 6). 

Values shown are the mean  SEM. *Significant difference from Sham Air (SA), P < 0.05. 
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Figure 5.2. Effects of cigarette smoke-induced inflammatory cell recruitment. 

Inflammatory cell counts in BAL fluid obtained from mice 24 h after the last sham air (n = 9 

mice per group) or cigarette smoke (n = 9 mice per group) exposure. Values shown are the 

mean  SEM. *Significant difference from Sham Air, P < 0.05. 
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Figure 5.3. Effects of andrographolide on cigarette smoke-induced inflammatory cell 

recruitment. Andrographolide dose-dependently reduced cigarette smoke-induced 

inflammatory cell counts in BAL fluid from mice 24 h after the last cigarette smoke challenge 

(DMSO, n = 6; 0.1 mg kg
-1

, n = 6; 0.5 mg kg
-1

, n = 6; and 1 mg kg
-1

, n = 8 mice per group). 

Differential cell counts were performed on a minimum of 500 cells to identify eosinophil 

(Eos), macrophage (Mac), neutrophil (Neu), and lymphocyte (Lym). Values shown are the 

mean  SEM. *Significant difference from DMSO, P < 0.05. 
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5.1.2.  Andrographolide attenuates cigarette smoke-induced inflammatory cytokine 

and chemokine Level  

IL-1β plays a critical role in the inflammatory response induced by cigarette smoke 

exposure. KC (CXCL1), IP-10 (CXCL10) and MCP-1 (CCL2) are key chemokines in 

attracting macrophages and neutrophils.  BAL fluid levels of IL-1β, IP-10 (CXCL10), MCP-1 

(CCL2) and KC (CXCL1) were significantly raised in cigarette smoke-exposed mice as 

compared to sham air control mice (Figure 5.4). Andrographolide was able to abate the BAL 

fluid levels of IL-1β, IP-10, MCP-1 and KC in a dose-dependent manner, reaching significant 

inhibition at the dose of 1 mg kg
-1

.  

 

5.1.3.  Andrographolide attenuates cigarette smoke-induced inflammatory and 

proteolytic mediators’ gene expression  

Andrographolide (1 mg kg
-1

) significantly suppressed the elevated gene expression of 

lung tissue GM-CSF, TNF- and MIP-2 (as known as GRO- or CXCL2) induced by 

cigarette smoking (Figure 5.5). Cigarette smoke also up-regulated the gene expression of 

inducible nitric oxide synthase (iNOS), a pro-oxidant enzyme responsible for NO production 

and subsequent oxidative lung damage. Andrographolide markedly reversed the iNOS gene 

expression down to basal level (Figure 5.5). Furthermore, the increase in gene expression of 

matrix metalloproteinase-12 (MMP-12) and tissue inhibitor of metalloproteinase-1 (TIMP-1), 

a metalloproteinase and an anti-metalloproteinase critical for lung remodelling and repair in 

COPD, by cigarette smoke was significantly inhibited by 1 mg kg
-1

 andrographolide (Figure 

5.5).  
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Figure 5.4. Effects of andrographolide on cigarette smoke BAL fluid cytokine and 

chemokine levels. BAL fluid levels of IL-1β, MCP-1, KC, and IP-10 were analyzed using 

ELISA (n = 6 mice per group). Lower limits of detection were as follows: IL-1 at 9 pg mL
-1

; 

IP-10 at 15 pg mL
-1

; and MCP-1 and KC at 16 pg mL
-1

.  Values shown are the mean  SEM. 

*Significant difference from DMSO, P < 0.05. 
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Figure 5.5. Effects of andrographolide on cigarette smoke-induced lung tissue pro-

inflammatory and proteolytic mediator gene expression in mice. Real-time PCR analyses of 

cytokine, chemokine and protease gene expressions in lung tissues (n = 6 mice per group). 

The mRNA expression levels for all samples were normalized to the level of the 

housekeeping gene 18S. Values shown are the mean  SEM. *Significant difference from 

DMSO, P < 0.05. 
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5.1.4.  Andrographolide protects against cigarette smoke-induced oxidative lung 

damage  

BAL fluid was used to assay for 3-NT, a product of protein nitration indicative of 

oxidative protein damage; 8-OHdG, a marker for oxidative DNA damage; and 8-isoprostane, 

an indicator for lipid peroxidation, using ELISA. Cigarette smoking significantly elevated 

BAL fluid levels of 3-NT, 8-OHdG and 8-isoprostane as compared to the sham air control 

(Figure 5.6). Andrographolide markedly suppressed the levels of 3-NT, 8-OHdG and 8-

isoprostane at all three doses used, ameliorating oxidative damage to proteins, DNA and 

lipids induced by cigarette smoking. 

 

5.1.5.  Andrographolide augments the GPx and GR activities 

Cigarette smoke exposure induced a marked adaptive increase in the lung catalase 

activity as compared to sham air. Andrographolide (1 mg kg
-1

) significantly reduced the 

catalase activity. In contrast, lung SOD activity was not altered by cigarette smoke challenge 

or by andrographolide treatment (Figure 5.7). The activity of GPx, an antioxidant enzyme 

capable of reducing H2O2 to H2O by oxidizing GSH, was not altered by cigarette smoke but 

was substantially augmented in cigarette smoke-exposed mouse lungs by andrographolide. On 

the other hand, lung GR activity was markedly abated by cigarette smoke exposure, but 

andrographolide treatment totally restored GR activity (Figure 5.7). In brief, andrographolide 

promoted the GSH-related enzyme activities, which may be attributable to its antioxidant 

effects. 
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Figure 5.6. Effects of andrographolide on cigarette smoke-induced BAL fluid oxidative 

damage marker levels. 8-Isoprostane, 8-OHdG and 3-NT levels were measured using ELISA. 

Lower limits of detection were as follows: 8-isoprostane at 2.7 pg mL
-1

; 8-OHdG at 33 pg 

mL
-1

; and 3-NT at 0.1 M.  Values are means ± SEM for 6 mice per group. *Significant 

difference from DMSO, P < 0.05. 
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Figure 5.7. Effects of andrographolide on cigarette smoke-induced lung antioxidant 

enzymatic activities. Mice were exposed to 4% cigarette smoke for 1 h daily for 5 consecutive 

days with or without andrographolide treatment. Enzymatic activities of SOD, catalase, GPx 

and GR in lung tissues obtained 24 h after the last cigarette smoke challenge were measured 

using ELISA. Values are means ± SEM for 6 mice per group. *Significant difference from 

DMSO, P < 0.05. 
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5.1.6.  Andrographolide promotes nuclear Nrf2 accumulation  

To investigate the molecular mechanism of andrographolide anti-oxidative effects, we 

studied nuclear Nrf2 translocation and transactivation in BEAS-2B human bronchial epithelial 

cells. Addition of 2% CSE to BEAS-2B cells which don’t have an impair Nrf2 system like 

those in COPD patients, resulted in marked nuclear translocation of Nrf2 at 4 hours, and 

andrographolide (30 M) does not affect the nuclear Nrf2 level at this time point. Thus, the 

data suggest that andrographolide does not affect normal Nrf2 activation induced by cigarette 

smoke. In contrast, at 24 hours after CSE exposure, nuclear Nrf2 of CSE only and DMSO 

treated cells dropped to the basal level, but andrographolide treatment maintained the nuclear 

Nrf2 level elevated in BEAS-2B cells (Figure 5.8). On the other hand, cytoplasmic levels of 

Nrf2 were scarcely detectable in control and all treatment groups (Figure 5.8).  This 

observation is expected as under basal conditions, Keap1 constantly targets Nrf2 for 

ubiquitination and proteasomal degradation. As a consequence, there are minimal cytoplasmic 

levels of Nrf2. To further substantiate the finding, Nrf2 ARE binding activities were studied 

using Nrf2 transactivation assay. The transactivation activities of Nrf2 were found to be 

significantly higher in andrographolide-treated BEAS-2B 24 hours after 2% CSE exposure 

(Figure 5.9).  

5.1.7.  Andrographolide promotes GSH level 

Glutathione (GSH), a ubiquitous tripeptide thiol, is a vital cellular protective 

antioxidant in the lungs as the cellular stress response induced by cigarette smoke extract is 

critically dependent on the intracellular GSH concentration (Muller et al., 1998). Cellular 

GSH level was also strongly elevated by andrographolide in BEAS-2B cells exposed to 2% 

CSE for 24 h (Figure 5.10). Our data suggest that andrographolide is able to sustain nuclear 

Nrf2 accumulation and activation in cells exposed to cigarette smoke, leading to augmented 

production of GSH.  
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Figure 5.8. Effects of andrographolide on nuclear Nrf2 level. Cytoplasmic and nuclear 

extracts of BEAS-2B cells treated with 2% CSE in the presence and absence of 30 µM 

andrographolide for 4h and 24h were separated in 10% SDS-PAGE. Immunoblots were 

probed for Nrf2. -actin and TBP were used as internal controls for cytosolic and nuclear 

proteins, respectively. The experiments were repeated four times with similar pattern of 

results. Protein band intensities were quantified using ImageJ software and were normalized 

to β-actin controls. Values shown are the mean ± SEM. *significant difference from DMSO, 

P < 0.05. 
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Figure 5.9. Effects of andrographolide on nuclear Nrf2 level. Nuclear extracts of BEAS-

2B cells treated with 2% CSE in the presence and absence of 30 µM andrographolide for 4h 

and 24h ARE-binding activity of Nrf2 in nuclear extracts of BEAS-2B cells stimulated with 

2% CSE in the presence and absence of 30 µM andrographolide for 4 h and 24 h was 

determined using a TransAM Nrf2 ELISA kit. *significant difference from DMSO, P < 

0.05. 
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Figure 5.10. Effects of andrographolide on cellular GSH levels. Cellular GSH levels at 24 h 

after exposure to 2% CSE in the presence and absence of 30 µM andrographolide were 

measured using a GSH assay kit. Experiments were repeated four times and values are 

expressed as means ± SEM. *significant difference from DMSO, P < 0.05. 
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5.1.8.  Andrographolide augments Nrf2-regulated gene targets  

Nrf2 is the primary transcription factor that plays an important role in cellular defence 

against oxidative stress (Kobayashi et al., 2005). Nrf2 is critical for maintaining the GSH 

redox state via transcriptional regulation of GR and in GSH level by regulating gene that 

essential in the de novo synthesis of GSH (Harvey et al., 2009). To investigate biological 

responses to nuclear Nrf2 accumulation and activation, we examined Nrf2-specific 

antioxidant gene expressions including GR, GPx-2 and HO-1 as well as biosynthetic enzymes 

of the glutathione such as glutamate-cysteine ligase catalytic (GCLC) subunit and glutamate-

cysteine ligase modifier (GCLM) subunit in BEAS-2B cells exposed to 2% CSE for 12 hours 

and 24 hours. Andrographolide treatment significantly enhanced the expression of 

antioxidants GCLM, GCLC, GR, GPx-2 and HO-1 in CSE-exposed BEAS-2B cells as 

compare to DMSO or CSE-exposed only BEAS-2B cells (Figure 5.11 and 5.12). Specifically, 

both GCLM and GCLC gene expression level was significantly increase at both 12 and 24 

hours. Notably, andrographolide augmented gene expression of both GPx-2 by about 12 folds 

as compare to DMSO controls at 24 hours of CSE exposure and HO-1 by about 8 folds as 

compared to DMSO controls at 12 hours of CSE exposure. The observation further 

substantiate the notion that andrographolide treatment active Nrf2 as both GPx-2 and HO-1 

are highly regulated by Nrf2 transactivational activities. Taken together, our results clearly 

indicate that andrographolide is a potent enhancer of antioxidant gene expression in response 

to cigarette smoke.  

  



 

 

144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. Effects of andrographolide on antioxidant gene expression. Total RNA was 

extracted from BEAS-2B cells treated with 2% CSE in the presence and absence of 30 µM 

andrographolide for 12 h and 24 h, and gene expression was quantified using real-time PCR 

and normalized to 18S control gene. Experiments were repeated three times and values are 

expressed as means ± SEM. *significant difference from DMSO, P < 0.05.  
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Figure 5.12. Effects of andrographolide on antioxidant gene expression. Total RNA was 

extracted from BEAS-2B cells treated with 2% CSE in the presence and absence of 30 µM 

andrographolide for 12 h and 24 h, and gene expression was quantified using real-time PCR 

and normalized to 18S control gene. Experiments were repeated three times and values are 

expressed as means ± SEM. *significant difference from DMSO, P < 0.05. 
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5.2. Discussion  

Cigarette smoke contains high concentrations of potent oxidants and free radicals 

including reactive aldehyde, quinone, hydroquinone, semiquinone and superoxide (Cantin, 

2010; Yao et al., 2011). Exposure to cigarette smoke causes lung epithelial cell damage and 

triggers production of pro-inflammatory cytokines and chemokines, leading to inflammatory 

cell infiltration and activation, especially the neutrophils and macrophages. Both neutrophils 

and macrophages are rich sources of endogenous reactive oxygen species (ROS), reactive 

nitrogen species (RNS) and tissue proteases such as elastase and metalloproteinases, entailing 

additional oxidant burden to the lungs and facilitating destruction of alveolar walls. Our 

findings reveal for the first time that andrographolide prevented cigarette smoke-induced lung 

infiltration of neutrophils and, to a lesser extent, macrophages in a dose-dependent manner. 

The decrease in inflammatory cell accumulation could be associated with a decrease in BAL 

fluid cytokine and chemotactic factor. 

Keratinocyte-derived chemokine (KC/CXCL1; an IL-8 homologue in mice) and 

macrophage inflammatory protein-2α (MIP-2α/CXCL2) are pivotal for neutrophil lung 

infiltration while monocyte chemotactic protein-1 (MCP-1/CCL2) and interferon-γ-inducible 

protein 10 (IP-10/CXCL10) are essential for recruitment of macrophages and monocytes 

(Brusselle et al., 2011; Conti et al., 1995; Cosio et al., 2009; Dufour et al., 2002; Lee et al., 

1995; Louhelainen et al., 2008). Granulocyte‐macrophage colony stimulating factor 

(GM‐CSF) is another direct neutrophil chemotactic factor (Gomez-Cambronero et al., 2003) 

and survival factor in the respiratory tract (Barnes et al., 2003) that is up regulated by 

cigarette smoke (Vlahos et al., 2006). Our findings demonstrated that andrographolide was 

able to suppress the increase of KC, IP-10, MCP-1, MIP-2 and GM-CSF in lungs from 

cigarette smoke-exposed mice. 
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Among the chemokine studied, MCP-1, KC, MIP-2α, IP-10, and GM-CSF can be 

stimulated by tumour necrosis factor-α (TNF-α) (Becker et al., 1994; De Plaen et al., 2006; 

Ohmori et al., 1993; Standiford et al., 1991). Cigarette smoke has been reported to induces 

the alveolar macrophages to release TNF‐α (Keatings et al., 1996), which is considered to be 

a key inflammatory mediator in lung pathology (Barnes, 2004) as the activation of TNF-α 

receptor also induces the production and release of several inflammatory mediators, such as 

Interleukin-1β (IL-1β), and protease such as MMP-12. Andrographolide treatment 

significantly attenuated the mRNA expression of both TNF‐α and IL-1β.  

We also observed a sharp rise in lung matrix metallopeptidase-12 (MMP-12) 

expression together with an adaptive increase in lung TIMP-1 expression in cigarette smoke-

exposed mice. MMP-12, which is produced by macrophages and induced by the presence of 

IP-10 (Grumelli et al., 2004), is able to degrade elastin, disrupting lung architecture leading to 

airspace enlargement (Hautamaki et al., 1997; Mocchegiani et al., 2011). The resulting elastin 

fragments can also lead to a positive feedback loop that further increasing macrophage 

recruitment (Hunninghake et al., 2009). Mice deficient in MMP-12 were protected against 

cigarette smoke-induced lung inflammation and emphysema (Hautamaki et al., 1997). An 

association study has strongly suggested that MMP12 plays a role in determining lung 

function and susceptibility to COPD in adult smokers (Hunninghake et al., 2009). 

Nonetheless, histological examination of cigarette smoke exposed mouse lung was not 

performed as acute cigarette smoke exposure was shown not to cause a significant air space 

enlargement, a canonical feature in emphysema (Rajendrasozhan et al., 2010). 

Andrographolide reversed the elevation of lung MMP-12 expression and the adaptive increase 

in TIMP-1 in cigarette smoke-exposed mice. These findings implicate a protective role of 

andrographolide against airway inflammation, remodeling and emphysema in COPD.  
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Oxidative stress emitted by the cigarette smoke and generated from the infiltrated 

macrophages and neutrophils play a pivotal role in the pathogenesis in COPD (Rahman et al., 

2006b). Excessive accumulation of ROS and RNS in the lungs results in protein denaturation, 

lipid peroxidation, and DNA damage as determined by the levels of 3-nitrotyrosine (3-NT) 

(Sugiura et al., 2011), 8-isoprostane (Louhelainen et al., 2008) and 8-hydroxydeoxyguanosine 

(8-OHdG) (Aoshiba et al., 2012; Tzortzaki et al., 2012), respectively in BAL fluid or in 

induced sputum. Lipid peroxidation, which leads to destruction of membrane lipid, is a well-

established mechanism of
 
cellular injury (Rahman et al., 1996; Rahman et al., 2002). 

Oxidative stress leads to peroxidation of arachidonic acid form a unique series of 

prostaglandin-like compound knows as isoprostanes. The isoprostanes possess potent 

biological activities, which includes bronchoconstriction and plasma exudation (Janssen, 

2008). Moreover, patients with COPD have increased exhaled breath condensate 8-

isoprostanes compared to healthy smokers and non-smokers (Montuschi et al., 2000). 

Reactive oxygen species (ROS) attack guanine bases in DNA easily and form 8-OHdG 

(Cheng et al., 2003) which can cross the cell membrane and is usually detected in the urine or 

serum of patients who have diseases associated with oxidative stress (Svoboda et al., 2008). 

Indeed, sputum 8-OHdG was statistically significant increase in COPD when compared with 

non-COPD smokers and healthy subjects (Tzortzaki et al., 2011). Nitrotyrosine on the other 

hand is an indicator of the involvement of reactive nitrogen species in irreversible oxidative 

reactions and has been associated with altered protein function (Davis et al., 2002; Murata et 

al., 2004). 3-nitrotyrosine is one of the most common products of the action of reactive 

nitrogen species on proteins. As peroxynitrite from cigarette smoke is able to nitrate tyrosine 

(Yamaguchi et al., 2007), nitrotyrosine levels are increased in the sputum of patients with 

COPD compared to healthy subjects and those with asthma (Ichinose et al., 2000). We 

observe that andrographolide completely blocked the increase of all three oxidant biomarkers 
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in BAL fluid from cigarette smoke-exposed mice in a dose-dependent manner. The 

suppression of 3-NT level can be partly explained by the inhibitory effect of andrographolide 

on the inducible nitric oxide synthase (iNOS) expression. The reduction in iNOS, partly due 

to the down regulation of cytokines such as TNF-α and IL-1β which regulate is expression 

(Radomski et al., 1993), may leads to a drop in nitric oxide (NO) production, peroxynitrite 

(ONOO
−
) formation, and protein nitration of tyrosine residues (Sugiura et al., 2011). When 

nitric oxide is produced in high concentrations, such as with inducible NOS, it can react with 

oxygen or superoxide to form the highly reactive compounds nitrogen dioxide and 

peroxynitrite, which shifts the cellular redox potential to a more oxidized state. In addition, 

andrographolide has also demonstrated potent antioxidant activity by enhancing both 

glutathione peroxidase (GPx) and glutathione reductase (GR) activities in lung tissues from 

cigarette smoke-exposed mice, which further augment the lung antioxidant capacity. In 

agreement with our results, studies by Neogy et al.(Neogy et al., 2008) demonstrated that 

intraperitoneal treatment of andrographolide significantly increase the glutathione peroxidase 

activities. 

 Cigarette smoke exposures induce both oxidative stress and inflammatory response.  

Administration of andrographolide in mice ameliorated oxidative stress in lungs, suppressing 

the subsequent up-regulation of chemokines and eventually reducing the neutrophil and 

macrophage influx. To investigate the molecular mechanism of antioxidant action for 

andrographolide, we studied the effects of andrographolide on nuclear translocation and 

activation of the redox-sensitive transcription factor, nuclear factor erythroid 2-related factor 

2 (Nrf2) and the gene expression of Nrf2-regulated antioxidant gene targets in cigarette smoke 

extract (CSE)-treated human bronchial epithelial cells (BEAS-2B). Nrf2 are studied because it 

plays a predominant role in antioxidant protection against oxidative damage in the lungs 

incurred by cigarette smoking (Boutten et al., 2011). Nrf2 gene disruption in mice resulted in 
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enhanced susceptibility to emphysema and oxidative stress induced by cigarette smoke 

exposure (Rangasamy et al., 2004). More significantly, Nrf2 activities in patients with 

advanced COPD are reduced in peripheral lungs, resulting in reduced antioxidant responses 

and persistent oxidative stress. The reduction of Nrf2 activity may be due to a drop in the 

Nrf2-positive regulator DJ-1 level, which permits destabilization of Nrf2 protein via rapid 

proteasomal degradation by Keap1 (Malhotra et al., 2008). Nonetheless, even in DJ-1-

disrupted human epithelial cells, Nrf2 activator such as sulforaphane was able to enhance 

Nrf2 antioxidant defence in response to cigarette smoke (Malhotra et al., 2008), indicating 

that Nrf2 activation is an attractive therapeutic approach to the treatment of COPD (Boutten et 

al., 2011). 

In line with other studies (Lee et al., 2011; Taguchi et al., 2011), our data show that 

cytoplasmic levels of Nrf2 in BEAS-2B cells of control and all treatment groups were almost 

undetectable. It is mainly due to rapid ubiquitination and proteasomal degradation of Nrf2 

targeted by Kelch-like ECH-associated protein 1 (Keap1), a E3 ubiquitin ligase. At nuclear 

fraction however, andrographolide strongly promoted Nrf2 nuclear stabilization and 

accumulation, and binding to antioxidant response element (ARE) in BEAS-2B cells exposed 

to CSE for 24 hours. Indeed, andrographolide has been shown to elevate Nrf2 nuclear level in 

human endothelial cells (Yu et al., 2010). Furthermore, in the process of developing a reporter 

gene assay for monitoring Nrf2 activation, andrographolide was found to be the most potent 

Nrf2 activator among 2000 biologically active compounds tested (Smirnova et al., 2011). By 

enhancing Nrf2 protein nuclear accumulation and transactivational activity, our finding 

further substantiate the notion that andrographolide is an effective Nrf2 activator.  

Glutathione (GSH) is an endogenous non-protein thiol with potent free radical 

scavenging capacity (Biljak et al., 2010; Cantin, 2010; Gould et al., 2011). GSH is an 

important intra- and extracellular lung antioxidant involved in maintenance of epithelial 
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integrity, and its deficiency leads to airway injury and epithelial damage (Rahman et al., 

1999).  Andrographolide noticeably enhanced cellular level of GSH in BEAS-2B cells in 

response to CSE, providing a powerful first line antioxidant defence against cigarette smoke-

induced epithelial damage. In agreement with our studies, andrographolide has also been 

shown to promote GSH level in nicotine-stimulated peripheral blood lymphocytes (Das et al., 

2009). 

Consistent with the Nrf2 activation by andrographolide in BEAS-2B cells, we have 

also observed robust inductions of Nrf2-regulated gene targets including GCLC, GCLM, GR, 

GPx-2 and HO-1 (Adair-Kirk et al., 2008; Hubner et al., 2009) by andrographolide in 

response to CSE.  

Glutamate-cycteine ligase (GCL), which is the rate-limiting enzyme in the GSH 

biosynthesis pathway, is a heterodimer comprising of the catalytic subunit (GCLC) and the 

regulatory subunit (GCLM) (Biljak et al., 2010; Gould et al., 2011). The increase of GSH 

level may be attributed to the increase in GCLC and GCLM expression as GCL contribute to 

the de-novo synthesis of GSH. In agreement with this result, overexpression of GCLM 

increases the cellular GSH, rendering cells resistant to oxidative stress (Tipnis et al., 1999). 

Similarly, up-regulation of GCLC alone has also been reported to support high levels of 

intracellular GSH (Mulcahy et al., 1995). Recently, overexpression of GCL in human 

granulosa tumor cells has been shown to increase total GSH levels and protect against H2O2-

induced cell death (Cortes-Wanstreet et al., 2009). 

In addition, GSH also functions as a reducing substrate in the redox cycle to facilitate 

the reduction of H2O2 by GPx to H2O and glutathione disulphide (GSSG), to prevent 

peroxide-induced
 
DNA damage, lipid peroxidation and protein degradation. As the oxidative 

burden in the lungs of smokers has been estimated
 
to be on the order of 10

14
 free radicals per

 

puff (Church et al., 1985) and many of these oxidants, such as relatively long-lived tar 



 

 

152 

 

semiquinone that can generate H2O2, GSH and GSH-related enzymes present in the lower 

respiratory tract are believed to act as a first line of defense against attacks by cigarette smoke 

(DeLeve et al., 1990). GPx also have been shown to reduce of peroxynitrite to nitrite (Sies et 

al., 1997) and thus further attenuating the free radical stress impose by cigarette smoke.  

Beside de novo synthesis, GSH level are also sustain in the redox cycle by GR, which 

play an important role in reducing glutathione disulfide (GSSG) to the sulfhydryl form of 

glutathione (GSH) (Biljak et al., 2010; Cantin, 2010). GPx and GR are important endogenous 

antioxidant enzymes responsible for the oxidative balance in the lungs in response to cigarette 

smoke (Biljak et al., 2010; Gould et al., 2011). It has been reported that GPx activity was 

markedly decreased in patients with COPD (Biljak et al., 2010; Kluchova et al., 2007; Santos 

et al., 2004; Vibhuti et al., 2007). It is noteworthy that andrographolide was able to augment 

the GPx-2 expression level by at least 12 folds in BEAS-2B cells in response to CSE 

stimulation. The observed slow rate of GPx-2 gene induction starting at 24 h is consistent 

with that reported by Singh et al. (Singh et al., 2006b) that Nrf2 activation-induced GPx-2 

expression occurred after 24 h and peaked at 72 h. In their studies, activation of Nrf2 by
 

specific knock down of Keap1 by siRNA upregulated the expression of
 
GPx-2, whereas Nrf2 

siRNA down-regulated the expression of GPX2
 
in lung epithelial cells (Singh et al., 2006b). 

The slow induction of GPx-2 might be due to the slow degradation rate of this protein (Chu et 

al., 1999). Our findings clearly indicate that activation of Nrf2 activity leading to up-

regulation of GSH level is an antioxidant mechanism of action for andrographolide against 

cigarette smoking.  

Aside from the GSH cycle, andrographolide also induced a rapid 8-fold increase in 

HO-1 gene expression in BEAS-2B cells exposed to CSE within 12 h. Our findings are in line 

with those reported that HO-1 mRNA induction peaked at 6-8 h and returned to basal level at 

24 h in human lung fibroblasts stimulated with CSE (Baglole et al., 2008) and in human 
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bronchial epithelial cells treated with Nrf2 activator (Kumar et al., 2011b). Under oxidative 

stress condition, free heme, a pro-oxidant catalysing production of free radicals, is released 

from hemoproteins to induce oxidative damages. HO-1 can be rapidly induced under the 

control of the Nrf2 transcription factor to catabolize heme into labile iron (Fe), carbon 

monoxide and biliverdin. The latter end product can be further converted by biliverdin 

reductase into bilirubin. All three reactive products have been shown to possess antioxidant 

and anti-inflammatory actions (Fredenburgh et al., 2007; Gozzelino et al., 2010). HO-1 

overexpression in macrophages reduces TNF-α (Otterbein et al., 2000) secretion and inhibits 

GM-CSF production in response to LPS stimulation (Sarady et al., 2002). In addition, 

transgenic mice overexpressing HO-1 have reduced levels of macrophage inflammatory 

protein (MIP)-2 in BAL fluid during endotoxemia (Ryter et al., 2007). More importanly, 

patients with COPD showed reduced levels of HO-1 in BAL fluid alveolar macrophages 

(Fredenburgh et al., 2007). Adenovirus-mediated gene transfer of HO-1 in mice ameliorated 

elastase-induced inflammation and airspace enlargement (Shinohara et al., 2005). 

Polymorphisms of the HO-1 promoter associated with reduced HO-1 expression have been 

linked to increased susceptibility to emphysema development (Exner et al., 2004). The 

antioxidant actions of andrographolide against cigarette smoke-induced lung injury may also 

be linked to augmented HO-1 expression. 

In conclusion, this study reveals for the first time that andrographolide can augment 

antioxidant gene expression and activities probably via up regulation of Nrf2 activity in 

experimental models of cigarette smoke exposure. Besides, inhibition of nuclear factor-B 

(NF-B) is another well-established mechanism of action for andrographolide to bring about 

anti-inflammatory effects (Bao et al., 2009; Lim et al., 2012), which may contribute to some 

of the protective effects observed in the present study. The reduction in cigarette smoke-

induced lung oxidative damage afforded by andrographolide is likely associated with the 
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significant decline in BAL fluid inflammatory cell counts, in chemokine, cytokine and 

protease productions, and the up-regulation of GSH redox defence system and HO-1 

expression. These findings support a novel therapeutic value for andrographolide in the 

treatment of COPD. 

 Although our COPD is an acute model, the study provides us with positive preliminary 

data. For future study, we should proceed with a chronic cigarette smoke-induced COPD 

mouse model with clinical features similar to COPD patients, such as reductions in Nrf2 

protein and activities to further validate the therapeutic value of andrographolide in COPD. 
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General Discussion 

Andrographolide and DDAG are both biologically active constituents that can be 

extracted from Andrographis paniculata (Lim et al., 2012; Pholphana et al., 2004). The plant 

extract have been traditionally used in upper respiratory tract infections. Current studies have 

further expanded our understanding on the effects of both of these compounds in an allergic 

asthma and COPD mouse models and the molecular targets involved.  

Although DDAG and andrographolide are structurally similar, our present data 

showed that DDAG was less cytotoxic to tumour cell lines but still maintained similar anti-

inflammatory effects as andrographolide in an allergic asthma mouse model (Bao et al., 2009). 

There was however subtle difference between the anti-inflammatory effects of 

andrographolide and DDAG treatment in the allergic mouse models and the difference could 

be further explore to enhance our understanding on the mechanism of action for both of these 

compounds. Additionally, our studies also demonstrated that andrographolide have a strong 

anti-oxidative and anti-inflammatory effects on cigarette smoke induce oxidative damage and 

inflammation and thus position andrographolide as a multi-potential drug candidate.  

Nonetheless, while DDAG was shown to be less cytotoxic than andrographolide, the 

effects of DDAG was not examined in the COPD mouse models as studies has demonstrated 

that andrographolide but not DDAG treatment protects cardiomyocyte against hypoxia and 

reoxygenation injury. Furthermore, only andrographolide but not DDAG treatment enhances 

the antioxidant potential of cardiomyocyte through the activities of a number of antioxidant 

enzymes and the GSH level (Woo et al., 2008). Andrographolide also cost less than DDAG 

and therefore made a better drug candidate. Hence, only the effects of andrographolide in 

oxidative damage models were studied.  

The differences between andrographolide and DDAG are very intriguing and could be 

further examined in future studies. 
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Conclusion 

COPD and asthma are both obstructive respiratory diseases that have high mortality 

and morbidity but currently lack effective treatments. The effects of andrographolide on 

cigarette smoke induced lung injury model and the effects of DDAG on allergic asthma 

mouse model has been explore on this study.  

This study demonstrates that andrographolide possesses anti-oxidative properties 

against cigarette smoke-induced lung injury possibly via the augmentation of Nrf2 activity. 

Upon andrographolide treatment, cigarette smoke induced oxidative stress markers are 

markedly reduced while both GR and GPx activities were augmented. Andrographolide also 

markedly reduced neutrophil and macrophages infiltration, inflammatory cytokine and 

protease production. Additionally, the significant increase of GPx-2 and HO-1 expression as 

well as the cellular GSH level by andrographolide treatment strongly exemplified a Nrf2 

pathway activation.   

This study also shown that DDAG as a non-cytotoxic analogue of andrographolide, 

retains the anti-inflammatory activities of andrographolide for the treatments of OVA induce 

allergic asthma via the inhibition of NF-κB. DDAG effectively reduce OVA induced 

inflammatory cell infiltration, BAL fluid Th2 cytokine and eotaxin level as well as serum total 

and OVA specific IgE level. Together with the reduction or AHR, the anti-inflammatory 

effects of DDAG were further reinforced by the reduction in pulmonary eosinophilia, mucus 

hypersecretion and mast cell degranulation observed histologically. 

This study demonstrated that Nrf2 activation by andrographolide may have therapeutic 

potential for treating COPD while DDAG may be considered as a safer analogue of 

andrographolide for the potential treatment of asthma. Thus, it is crucial to further substantiate 

the effects of both of these compounds in chronic and exacerbation models, ideally under 

therapeutic dosing regimens, for a more complete assessment of these compounds’ 
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therapeutic potential. These findings also warrant future research into both andrographolide 

and DDAG derivative as to further elucidate the active functional group in this compound so a 

more potent and safer therapeutic drug for both asthma and COPD patients can be developed.  
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