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Summary

Chapter 1 will review the background of linear orders and tree orders.

Chapter 2 will review and generate the results on transformation under MAω1

mainly coming from [1]. In particular, we prove that, under MAω1 , coherent and

Countryman are two equivalent conditions.

Chapter 3 will investigate the transformation from a R-embeddable coherent tree to

a Countryman line. We first show that every Countryman line has a R-embeddable

partition tree and explain the necessity of R-embeddability. We then show that

for any countable linear order O that cannot be embedded into Z, it is consistent

to have a R-embeddable coherent tree T ⊂ O<ω1 which contains no Countryman

suborder (with its lexicographical order). This gives a negative answer to the

question whether there is a transformation from R-embeddable coherent trees to

Countryman lines. In chapter 3, we will also give an equivalent formulation for a R-

embeddable coherent tree T to contain a Countryman suborder X – TX is a subtree

of some R-embeddable coherent T ′ ⊂ Z<ω1 . As for the problem of containing

Countryman suborder, a condition under which an R-embeddable coherent tree is

Countryman (with its lexicographical order) is also discussed in chapter 3.

vii



Summary viii

Chapter 4 will discuss several properties related to the transformation from Coun-

tryman to coherent. As a particular case, we show how a small part of a partition

tree of some Countryman line affects a large part of the partition tree. We also

show how different Countryman types affect the minimal size of basis for Coun-

tryman lines. We expect that the properties found in this chapter may lead to

interesting applications.



Chapter 1
Introduction

The notion of a linear order is a useful concept and plays an important role

in mathematics. The theory of linear orders was first systematically studied by

Cantor (Cantor, 1895) when he proved that Q is the unique countable dense lin-

ear order without endpoint. Since then, the class of countable linear orders has

been well studied. There are some very pleasant and deep properties of countable

lines: Laver’s theorem (Laver, 1971) – the class of countable scattered orderings

is well-quasi-ordered under embeddability; the class of countable orders admits a

2-element basis – every countable line contains a subline of type ω or ω∗; Universal

object (Cantor, 1895) – every countable line can be embedded into Q; etc. So

the next natural step is to attempt to develop a similar structure theory for linear

orders of the next cardinality – ℵ1.

As we can see, well ordering ω1, its reverse ω∗1 and uncountable subset of real num-

bers are uncountable lines, but there are more. Kurepa (Kurepa, 1935) first sys-

tematically studied trees and their connection to lines, using lexicographical order

to get a line from a tree and partition tree to get a tree from a line. Then Aron-

szajn (Aronszajn, 1935) constructed an uncountable tree (which is today called

Aronszajn tree) and its lexicographical order contains no suborder isomorphic to

1



1.1 Countryman lines and coherent trees 2

ω1, ω∗1 or uncountable set of reals. It has been also observed (see, for example, S.

Todorcevic, 1984) that every Aronszajn line – uncountable line with no suborders

of type ω1, ω∗1 or uncountable set of reals – is isomorphic to a lexicographically

ordered Aronszajn tree.

The structure of ω1 and ω∗1 is very clear. For uncountable sets of real numbers,

Baumgartner showed in (Baumgartner, 1973) that PFA implies that any two ℵ1

dense subsets of reals are isomorphic. Hence, under PFA, a strong structure theory

for sets reals of size ℵ1 follows: well-quasi-ordered, one element basis, universal,

etc. However, similar problem about Aronszajn line was not clear until recently.

This chapter will historically introduce a subclass of Aronszajn linear orders, called

Countryman lines and the corresponding class of coherent trees (their lexicograph-

ical order – coherent line – too). Moreover, we also present some results charac-

terizing the Countryman line using coherent trees.

1.1 Countryman lines and coherent trees

Even after the method of partition trees and lexicographical orders was introduced,

the structure of Aronszajn line remained still not clear enough to solve problems

like, for example, the basis for Aronszajn lines. In 1970, R. Countryman asked

whether there is an uncountable linear order whose cartesian square is a countable

union of chains. Such a linear order is today known as Countryman line and it

is noticed by Countryman himself that every Countryman line is an Aronszajn

line. Then Shelah in [9] constructed the first example of a Countryman line and

pointed out that a Countryman line and its reverse have no uncountable isomorphic

suborder which means that any basis for Countryman lines and hence Aronszajn

lines must have at least 2 elements. Shelah then conjectured that it is consistent

that Countryman lines serve as a basis for Aronszajn lines and moreover that it is
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consistent to have a 2-element basis for Countryman lines – a Countryman line C

and its reverse C∗.

Shelah’s conjecture remained out of reach until S. Todorcevic in [5] introduced

his method of minimal walks on ordinals and used it to produce a number of

concrete trees and lines that are both Countryman (with their lexicographical

orders) and coherent (any 2 elements are different at only finite many places as

functions). His paper [4] makes this connection even more explicit by building

a deep structure theory of Aronszajn and coherent trees valid under PFA. Then,

building on this, J. Moore in [6] proved that PFA gives a positive answers to both

of the two conjectures of Shelah. In his theorem, the two Countryman lines that

form the basis for the class of Aronszajn lines are also coherent and in fact the

coherence plays an important role in his proof.

Besides the solution to the basis problem for Aronszajn lines, Countryman lines and

coherent trees are useful in other problems. For example [8], J. Moore has used

Countryman lines to construct (under PFA) a universal Aronszajn line – every

Aronszajn line can be embedded into it (an analogue to the role of Q in the class

of countable lines). In [21], Martinez-Ranero proved (under PFA) the analogue of

Laver’s theorem in this context, stating that the class of Aronszajn lines is well-

quasi-ordered under embeddability. Countryman property and coherence property

have other important usages too, e.g., partition problems solved in [5], L space

problems solved in [7], etc.

All above mentioned papers (and almost all papers about Countryman lines or

coherent trees that I know) use Countryman (or coherent) lines that are both

Countryman and coherent. Therefore, a nature question arises: are they the same?

The question actually has two sides:

1. is every Countryman line coherent?
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2. is every coherent line1 Countryman?

The answer to each question should give us a better description of both Country-

man lines and coherent trees and lines, and moreover, it should direct us towards

a new direction for further research and application of Countryman lines and co-

herent trees.

1.2 Transformations under MAω1

As we know that every partition tree of a Countryman line is an Aronszajn tree.

However, Aronszajn is not enough to describe the Countryman property, since for

example, Countryman line is preserved by forcing which preserves ω1 while Aron-

szajn may be not. Here we choose the coherent property to characterize Country-

man and investigating the deep connection between them. One motivation is that

there are some earlier results on transformation between Countryman lines and

coherent trees.

First, S. Todorcevic in [5] showed that trees with properties ω-ranging (i.e., ev-

ery element of the tree is a function from some ordinal to ω), coherent (i.e. the

difference of two functions is finite) and finite-to-one (i.e. the pre-image of any

element is finite) can be transformed into Countryman lines (i.e., the tree with

its canonical lexicographical order is Countryman). However, these properties are

very strong and it is not likely to be invertible. Then J. T. Moore in [6] showed

under PFA that every Aronszajn tree contains an uncountable subset that is a

Countryman line with its lexicographical order. His proof uses a part of the Proper

Forcing Axiom whose consistency needs some large cardinal assumption. Recent-

ly, S. Todorcevic has done more research on coherent trees and given a clearer

description of the transformation under MAω1 which is equiconsistent with ZFC.

1The coherent line mentioned here should be R-embeddable.
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In [1], he proved that every special coherent Aronszajn tree is a Countryman line

with its lexicographical order. Together with a well known fact that under MAω1 ,

every Aronszajn tree is special, we can observe the transformation from the co-

herent tree to Countryman line, i.e., under MAω1 , every coherent tree with its

canonical lexicographical order is a Countryman line. This result is highly use-

ful for providing important information on transformation from coherent tree to

Countryman line. There is also an unpublished S. Todorcevic’s result whose idea

can also be found in [1]: every Countryman line has a Lipschitz partition tree.

Lipschitz mentioned above is a property for trees introduced by S. Todorcevic and

in [1] he proved that under MAω1 , every Lipschitz tree has a lexicographical order

which is coherent, i.e., for any Lipschitz tree, there is a coherent tree which is tree

isomorphic to it. The above mentioned two results give an important contribution

on transformation from Countryman lines into coherent trees, i.e., under MAω1 ,

every Countryman line is isomorphic to an uncountable subset of some coherent

tree with its lexicographical order. This gives a clear description between coherent

trees and Countryman lines under MAω1 , and gives a natural guessing that this

may be true in ZFC. However, the above results are still limited to some forcing

axiom which is independent of ZFC and neither transformation is known in ZFC.

One major difficulty in studying the transformation between linear order and tree

order is that the transformation needs the lexicographical order which means tree

isomorphism cannot describe the linear structure and what we need is lexicograph-

ically isomorphism(i.e., preserves both tree order and linear order) which is not

well studied.
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1.3 Objectives

In view of the previous review, the following gaps still exist in the study on trans-

formation between Countryman lines and R-embeddable coherent trees:

1. Whether R-embeddable is necessary.

2. The transformation between Countryman lines and R-embeddable coherent

trees under ZFC.

The transformation exists by assuming some additional forcing axiom, and this can

decide the consistency of the transformation. But the transformation without any

additional axiom is still unclear. So to see the whole picture of the transformation

between Countryman lines and R-embeddable coherent trees, we still need to find

whether it is a consequence of ZFC or its negation is consistent.

The main aims of this study were:

1. to summarize and give a complete description of the transformation between

Countryman lines and R-embeddable coherent trees under MAω1 .

2. to investigate whether R-embeddable is necessary.

3. to investigate the transformation between Countryman lines and R-embeddable

coherent trees in ZFC.

4. to investigate several properties of Countryman line and coherent tree for better

understanding and further research.

Chapter 2 proves the existence of the transformation under MAω1 which completes

aim 1. Chapter 3.1 proves the necessity of R-embeddability which complete aim 2.

Chapter 3.2 constructs different models that provides different relations between

Countryman property and coherent property and some model contains a coherent

line which cannot be transformed to a Countryman line. This completes one side

of aim 3. Chapter 4 investigates the size of basis for Countryman lines. All chapter

are related to aim 4.

The results of this study may contribute to a better understanding of relations



1.4 Preliminaries 7

between Countryman lines and coherent trees. Also, result on connection between

R-embeddable and ranging type for Countryman may give a new view on different

type of Countryman lines, i.e., how simple can a countable linear order O be such

that the Countryman line can be partitioned into a R-embeddable O-ranging tree.

It is understood that besides R-embeddable coherent trees, there are some other

kinds of interesting coherent trees, for example, Souslin coherent trees, which can

be transformed into a Souslin line and there might be some deeper connection be-

tween these tree orders and linear orders. But since they cannot be transformed

into Countryman lines, they are beyond the scope of this study.

1.4 Preliminaries

Definition 1. An uncountable linear ordering L is Countryman (or say a Coun-

tryman line) if its square is a countable union of chains under product order, i.e.,

there is a partition

c : L2 → ω

such that for any (a, b), (a′, b′), if c(a, b) = c(a′, b′), then a < a′ → b ≤ b′.

Definition 2. (1) A partial order (T,<T ) is a tree order if the set of predecessors

of each element is a well order, i.e., for any x in T, predT (x) = {y ∈ T : y <T x}

is a well order. In this case, call T (or (T,<T )) a tree.

(2) If (T,<T ) is a tree order, x is in T, the height of x in T (written as htT (x)

or ht(x) if there is no confusing) is the order type of predT (x), i.e., the ordinal

α such that (α,∈) is isomorphic to (predT (x), <T ). The height of T is ht(T ) =

sup{ht(x) + 1 : x ∈ T}. The α-th level of T is Tα = {x ∈ T : ht(x) = α}. Also

some notation: T �α= ∪
β<α

Tβ, T t = {x ∈ T : t ≤T x} and for α ≤ ht(x), x �α is the

y ∈ Tα such that y ≤T x.

(3) If (T,<T ) is a tree, we say T has unique limits if for any x, y ∈ T such that
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ht(x) = ht(y) is a limit ordinal, x = y iff predT (x) = predT (y).2

(4) If (T,<T ) is a tree, we say x, y ∈ T are incomparable (written as x ⊥ y) if

x �T y ∧ y �T x, otherwise they are comparable (written as x 6⊥ y); for X ⊂ T , we

say X is a chain of T if any two elements of X are comparable; for Y ⊂ T , we say

Y is an antichain of T if any two elements of Y are incomparable; b is a branch of

T if b is a maximal chain.

(5) For a tree T which has unique limits and two elements x, y in T, ∆T (x, y) =

max{α ≤ ht(x), ht(y) : x �α= y �α}, simply use ∆(x, y) if there is no confusing.

(6) A tree (T,<T ) which has unique limits is an Aronszajn tree if ht(T ) = ω1, Tα

is countable for any α < ω1 and T has no uncountable branch.3

(7) For any Aronszajn tree T and X ⊂ T , say X is special if X is a countable union

of chains.4

(8) For any tree (T,<T ) a lexicographical order <lex (or written as <l or <lT ) of T

is a linear order such that for any x, y ∈ T , x <lex y iff

(a) x <T y or

(b) x, y are incomparable and x �∆(x,y)+1<lex y �∆(x,y)+1.

Notation: (1) Recall that every Aronszajn tree in this thesis has unique limits.

(2) Every Aronszajn tree in this thesis is one-rooted.5 So when we mention a non-

one-rooted Aronszajn tree T , we assume T has already been changed into T ′ where

T ′0 is a singleton, T ′n+1 = Tn for n < ω and T ′α = Tα for α ≥ ω.

Definition 3. (1) For any two partial orders (A,<A) and (B,<B), we say A is

B-embeddable (or say A can be embedded into B) if there is a mapping π : A→ B

such that

∀x, y ∈ A x <A y → π(x) <B π(y).

2This definition comes from [15].
3Although in some paper Aronszajn tree is also defined for trees which doesnot have unique

limits, in this thesis, Aronszajn trees are restricted to trees which has unique limits.
4When X equals T, this definition agrees with the usual definition of “T is special”.
5T is one-rooted if T0 is a singleton.
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(2)Two trees (T1, <T1), (T2, <T2) are tree isomorphic (also called isomorphic) if

there is a bijection π : T1 → T2 that preserves the tree order, i.e., x <T1 y implies

π(x) <T2 π(y) for any x, y in T1; two trees with lexicographical orders (T1, <T1

, <lex1), (T2, <T2 , <lex2) are lexicographically isomorphic if there is a bijection from

T1 to T2 that preserves both tree order and lexicographical order.

Remark: <T denotes the tree order and <lex (or <l or <lT ) denotes the lexico-

graphical order as long as there is no confusing.

Definition 4. (1) For any linear order O, we say an Aronszajn tree T is O-ranging

if T is a subset of O<ω1 .

(2) For any linear order O, a lexicographically ordered tree (T,<T , <l) is O-

branching if for any t ∈ T , (succT (t), <l) can be embedded into O, where succT (t) =

{s : ht(s) = ht(t) + 1 ∧ t <T s}

Remark: O-ranging tree is also O-branching.

As in this thesis we do not need to differ two lexicographically isomorphic trees,

from now on we assume every lexicographical ordered Aronszajn tree is a subset

of Q<ω1 and the lexicographical order is the canonical lexicographical order.6

Definition 5. (1) A lexicographically ordered Aronszajn tree T is coherent7 if T

Dxy = {α < dom(x), dom(y) : x(α) 6= y(α)} is finite for any x, y ∈ T . Assume

dom(x) ≤ dom(y), we use x =∗ y �dom(x) to denote above property.

(2) A line is coherent if it can be embedded into the lexicographical order of a

coherent tree.

Definition 6. (1) For an Aronszajn tree (T,<T ), we say a subset T ′ is a downward

closure subtree of T if there is a X ⊂ T such that T ′ = TX where TX = {t ∈ T :

6For s ∈ Qα, t ∈ Qβ , the canonical lexicographical order between them is s <l t if (1) s ⊂ t and
s 6= t or (2) s(∆(s, t)) < t(∆(s, t)) and ∆(s, t) < min{α, β} where ∆(s, t) = min{ξ : s(ξ) 6= t(ξ)}.

7Since we don’t differ lexicographically isomorphic trees, an Aronszajn tree is coherent if it is
lexicographically isomorphic to some coherent tree.
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∃x ∈ X t ≤T x} and the tree order of T ′ agrees with T i.e., <T ′=<T ∩(T ′)2 (and

the lexicographical order agrees too if T is lexicographically ordered)8.

(2) For an Aronszajn tree (T,<T ), we say T ′′ is a club restriction subtree of T if

there is a club C such that T ′′ = T �C where T �C= {t ∈ T : htT (t) ∈ C} and the

tree order (and lexicographical order if exists) agrees with T .9

Definition 7. For any Aronszajn tree T and club C, for any s, t ∈ T , ∆C(s, t) is

the α such that C(α) ≤ ∆(s, t) < C(α + 1) where C(α) is the α-th element of C.

Note for s, t ∈ T �C , ∆C(s, t) = ∆T �C (s, t).

Definition 8. A partition tree of a linear order L is a lexicographically ordered

tree T which contains a X ⊂ T such that T = TX and L order isomorphic to X

with the lexicographical order on T .

We don’t differ two isomorphic linear order. So from now on, we just assume X as

mentioned in above definition is L as long as there is no confusion.

Definition 9. Two Aronszajn trees T1 and T2 are tree (or lexicographically) iso-

morphic when restrict to a club (or say tree (or lexicographically) isomorphic on a

club set of levels) if there is a club C such that T1 �C is tree (or lexicographically)

isomorphic to T2 �C ; T1 and T2 are near each other if there are a club C and

Xi ∈ [Ti]
ω1 for i = 1, 2 such that (T1)X1 �C is tree isomorphic to (T2)X2 �C .

Definition 10. An Aronszajn tree T is a Lipschitz tree if for any X ∈ [T ]ω1 ,10 for

any mapping π : X → T such that ht(x) = ht(π(x)) for any x in X (i.e., π is level

preserving), there is X ′ ∈ [X]ω1 such that

For any x, y in X ′, ∆(x, y) ≤ ∆(π(x), π(y)).

8Note a downward closure subtree of an Aronszajn tree still has unique limits and hence an
Aronszajn tree.

9Note htT �C (t) = α iff htT (t) = C(α) for any t ∈ T �C .
10For any set A, for any cardinal κ, [A]κ = {B ⊂ A : |B| = κ}.
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Remark: It is equivalent to replace “∆(x, y) ≤ ∆(π(x), π(y))” in above definition

by “∆(x, y) = ∆(π(x), π(y))”: π−1 is also level preserving, so apply Lipschitz

property to π−1 : π′′X ′ → T will get an uncountable subset X ′′ of X ′ (and hence

of X) such that for any x, y in X ′′, ∆(x, y) = ∆(π(x), π(y)).

Definition 11. For any function a : [ω1]2 → Q, the tree induced by a is T (a) =

{aβ �α: α ≤ β < ω1} where aβ(ξ) = a(ξ, β)11 for any ξ < β and the tree order

is extension as functions, the lexicographical order is the canonical lexicographical

order.

11For convenience, we will use a(ξ, β) to denote a({ξ, β}) for any ξ < β.



Chapter 2
Countryman lines and coherent trees and

their connections

A coherent line can canonically induce or be induced from a coherent tree. So both

tree order and linear order – lexicographical order – are considered in this thesis.

This section will provide some basic connection between tree order and linear order.

Some results on transformation between Countryman line and coherent line under

MAω1 will also be presented in this section.

2.1 Partition trees and lexicographical orders

Let’s first present some facts.

Fact 2.1. Every Aronszajn tree with lexicographical order is lexicographically iso-

morphic to some subset of Q<ω1,1 where the tree order of Q<ω1 is extension as

functions and the lexicographical order of Q<ω1 is the canonical lexicographical or-

der.

1Q<ω1 = ∪
α<ω1

Qα and Qα={f : f is a function from α to Q}.

12
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Fact 2.2. A club restriction subtree of a tree which has unique limits still has

unique limits and a club restriction subtree of a coherent tree is still coherent.

Let’s recall that in this thesis, “partition tree” is used to transform a linear order

into a tree and “lexicographical order” is used to transform a tree order into a line.

See [13] or [2] for more on partition tree and lexicographical order. It is easy to see

that for a tree with only tree order there are different ways to define lexicographical

order on it. But in this section we will see that the partition tree of a linear order

is kind of “unique” up to take club restriction subtree.2

Remark: While in some paper only the tree order of a partition tree is considered,

in this thesis, a partition tree of a linear order is always lexicographically ordered.

One standard way to get a partition tree from a linear order L can be find in [13]

or [2]. Let’s recall the procedure:

(1) T0 = {L};

(2) Tα+1 = ∪{{I0, I1} : there is a I ∈ Tα such that I = I0 ∪ I1, I0 ∩ I1 = φ and

I0 6= φ, I1 6= φ};

(3) Tα = {∩b : b ⊂ ∪
β<α

Tβ, ∀β < α b ∩ Tβ 6= φ and ∩b 6= φ} for limit ordinal α.

The partition tree will be T = ∪{Tα : α < ht(T )} where ht(T ) = min{α : Tα = φ}.

Now we turn to prove the “uniqueness” of the partition of a linear order.

Definition 12. A sequence of models 〈Nα : α < ξ〉 is an elementary chain of

length ξ if there is a large enough cardinal κ, such that:

(1) ∀α < ξ (Nα,∈) ≺ (H(κ),∈);3

(2) for any α < β < ξ, (Nα,∈) ≺ (Nβ,∈) and Nα ∈ Nβ.

And call it continuous elementary chain if it has the following additional property:

(3) If α is an infinite limit ordinal, then Nα = ∪
β<α

Nβ.

2i.e., any two partition trees of a linear order are isomorphic when restricted to a club level
(going to club restriction subtrees).

3H(κ) = {x ∈ Vκ : |tc(x)| < κ} where tc(x) is the transitive closure of x. And we are also
allowed to write Nα ≺ H(κ) instead of writing (Nα,∈) ≺ (H(κ),∈).
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Remark: In this thesis, κ = ω2 if κ in the above definition is omitted.

Fact 2.3. If 〈Nα : α < ω1〉 is a continuous elementary chain and each Nα is

countable, then

(1) Nα ∩ ω1 = sup(Nα ∩ ω1) is a countable ordinal and C = {Nα ∩ ω1 : α < ω1} is

a club.

(2) If A ⊂ ω1, Nα ∩ ω1 ∈ A and A ∈ Nα, then A is stationary.

Let’s call C = {Nα∩ω1 : α < ω1} the club induced from the continuous elementary

chain 〈Nα : α < ω1〉. This club will be frequently used, especially when we are

taking a club restriction subtree. Since in this thesis most properties related to a

club are closed under taking a subclub, for such a property, if there is a club which

satisfies the property, then there is a club in N0 which satisfies the property, and

then C satisfies the property since C is a subclub of any club in N0.

The following theorem shows that for Aronszajn trees, the lexicographical order

can determine the tree order:

Proposition 2.4. If (S,<S, <lS), (T,<T , <lT ) are two lexicographically ordered

Aronszajn trees, X, Y are uncountable subsets of S and T respectively and π :

(X,<lS) → (Y,<lT ) is an isomorphism, then there is a club C such that SX �C

is tree and lexicographical isomorphic to TY �C. Moreover, there is a lexico-

graphically isomorphism f : SX �C→ TY �C such that f agrees with π, i.e.,

π′′(Ss ∩X) = T f(s) ∩ Y for any s ∈ SX �C.

Proof. Going to downward closure subtrees, we can assume S = SX and T = TY .

Let 〈Nα : α < ω1〉 be a continuous elementary chain, N0 contains all relevant

objects and each Nα is countable and C = {Nα ∩ω1 : α < ω1}. Then we are going

to show that C is such a club we need.

First, we make some notation: for any s ∈ S, t ∈ T

As = A ∩ Ss = {x ∈ X : s ≤S x}, Bt = B ∩ T t.
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It is easy to see that As, Bt are intervals of X and Y repectively.

Define f : S �C→ T �C by: for any α ∈ C, for any s ∈ Sα, f(s) is the t ∈ Tα such

that Bt = π′′As. The following claim will show that the mapping is well-defined:

Claim 1: For any α ∈ C for any s ∈ Sα there is a t ∈ Tα such that Bt = π′′As.

proof of claim 1: Fix α ∈ C , s ∈ Sα and ξ such that α = Nξ ∩ ω1. Pick x ∈ As
(x exists since we have assumed S = SX). Then x /∈ Nξ and hence π(x) /∈ Nξ and

hence ht(π(x)) ≥ α. Let t ∈ Tα and t ≤T π(x). It is suffice to show Bt = π′′As.

Subclaim 1.1 π′′As ⊂ Bt.

proof of subclaim 1.1: Suppose otherwise, there is some x′ ∈ X ∩ As such that

π(x′) /∈ Bt and WLOG assume x <lS x
′. Repeat previous procedure we can find

some t′ ∈ Tα such that π(x′) ∈ Bt′ and hence t <lS t
′. As t, t′ ∈ Tα and t 6= t′,

we know ∆(t, t′) < α. Then a standard argument (e.g., see Corollary 2.6) will

show that there is a t′′ ∈ Nξ ∩ T such that t, t′, t′′ are pairwise incomparable and

t <lT t
′′ <lT t

′. Now by elementarity of Nξ, pick y′′ ∈ Bt′′∩Nξ and let x′′ = π−1(y′′)

(hence ht(x′′) < α). Then t <lT y
′′ <lT t

′ and hence x <lS x
′′ <lS x

′. As As is an

interval, x′′ ∈ As and hence ht(x′′) ≥ α. A contradiction. This finishes the proof

of subclaim 1.1.

Subclaim 1.2 π′′As ⊃ Bt.

proof of subclaim 1.2: Just notice π−1 is a isomorphism from B to A. Then repeat

the previous proof we can get π−1′′Bt ⊂ As. This finishes the proof of subclaim

1.2 and hence the proof of claim 1.

Claim 2: f is a tree isomorphism and hence a lexicographical isomorphism.

proof of claim 2: It is easy to see that f is injective, and f is surjective since π

is surjective. To show f preserves the tree order, pick arbitrary s, s′ ∈ S �C such

that s <S s
′. Pick any x ∈ As′(⊂ As). Then π(x) ∈ Bf(s) and π(x) ∈ Bf(s′). Then

f(s) <T π(x) and f(s′) <T π(x). So f(s) <T f(s′) since f is level preserving. So f

is a tree isomorphism. And the following fact is suffice to show the lexicographical
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isomorphism:

if s <lS s
′ and s is incomparable with s′ for some s, s′ ∈ S �C , then As <lS As′

4

and hence Bf(s) <lT Bf(s′) and hence f(s) <lT f(s′).

This finishes the proof of claim 2 and hence proof of the proposition.

Remark: Then the “uniqueness” of the partition tree of a linear order easily

follows: two partition trees of an Aronszajn line are lexicographically isomorphic

on a club level. In particular, one partition tree is special iff the other partition

tree is special.

This theorem also suggests that under some condition, tree orders can also tell the

difference of linear orders–there lexicographical orders– and this gives a way to get

different linear order types from different tree order types (for different tree order

types, readers are referred to [11]):

Corollary 2.5. If T0 and T1 are partition trees of L0, L1 respectively and they are

not tree isomorphic when restrict to a club,5 then L0 is not isomorphic to L1. If

moreover T0 and T1 are not near each other, then L0 and L1 contain no uncountable

isomorphic suborder.

Above corollary can be applied with special property: if T0 mentioned above is

special while T1 is non-special, then L0 and L1 are not isomorphic. Moreover, L1

cannot be embedded into L0, and if T1 contains no special subtree, then L0 cannot

be embedded into L1 either.

Most time we are interested in uncountable subset instead of the whole tree itself.

The reason is although we can transform the whole tree into a line, we may not

able to transform a line into a whole tree:

4i.e. for any x ∈ As and x′ ∈ As′ , x <lS x′.
5i.e., for any club C, T0 �C is not isomorphic to T1 �C .
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Corollary 2.6. For any lexicographically ordered Aronszajn tree (T,<T , <lT ), there

is an uncountable subset X that cannot be partitioned into a whole tree, i.e., for any

lexicographically ordered tree (S,<S, <lS), (X,<lT ) is not isomorphic to (S,<lS).

Proof. By going to an uncountable subtree ({t ∈ T : T t is uncountable.} will work),

we can assume for any t ∈ T , T t is uncountable.

Let 〈Nα : α < ω1〉 and C = {Nα ∩ ω1 : α < ω1} be as before. Let C1 be all

nonaccumulate points of C. Then it is suffice to prove that X = T �C1 cannot be

partitioned into a whole tree.

Suppose otherwise, (S,<S, <lS) is an lexicographically ordered tree and π : (X,<lT

) → (S,<lS) is an isomorphism. Let f : T �D→ S �D be the lexicographical

isomorphism guaranteed by Proposition 2.4 where D is some club (note here T =

TX) and we can assume D ⊂ C ′ (C ′ is the set of all accumulate points in C) and

hence D ∩ C1 = φ. Pick a t ∈ T �D, by Proposition 2.4, π′′T t ∩X = Sf(s). Note

f(s) is the <lS-least element of Sf(s). So T t∩X has a <lT -least element too which

contradicts the following fact:

Claim: T t ∩X contains no least element.

proof of claim: Suppose otherwise, u is the least element. Note u 6= t since t /∈ X.

Let ht(u) = Nη ∩ ω1. Define in Nη:

A = {z ∈ T : t <T z and z is the <lT -least element in T t ∩ Tht(z)}.

Then A is uncountable since u ∈ A. It is easy to see that A is a chain which

contradicts that T is an Aronszajn tree. This finishes the proof of the claim and

hence the proof of the corollary.

Remark: Although some Aronszajn line cannot be partitioned into a whole tree,

it may contain some Aronszajn subline that can be partitioned into a whole tree.

Recall that it is shown in [6], that under PFA, every Aronszajn line contains either

C or C∗ where C is the lexicographical order of arbitrary coherent tree. Later
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(see remark after Lemma 3.8) we will also give an example that in some model of

ZFC there is an Aronszajn line which contains no Aronszajn subline that can be

partitioned into a whole tree.

Recall that a linear order is coherent if it can be embedded into the lexicographical

order of some coherent tree. Now it should be clear that “almost” every partition

tree will work:

Fact 2.7. If L is a coherent line and (T,<T , <lT ) is its partition tree, then there is

a club C such that T �C is coherent. Moreover, we can extend T �C to a coherent

tree (T ′, <T ′ , <lT ′) such that L and even (T,<lT ) can be embedded into (T ′, <lT ′).

Proof. Let S be a coherent tree such that L can be embedded into S. It is easy to

see that SL is still coherent. Then by Proposition 2.4, there is a club C such that

SL �C lexicographically isomorphic to T �C . So T �C is coherent.

For the moreover part, let’s just define T ′ ⊃ T �C ∪L by put every point in

T �ω1\C ∩L as an endpoint:

(1) If α = β + 1 < ω1 is a successor ordinal, first, T ′′α is (lexicographically) order

isomorphic to T �(C(β),C(β+1)] via f ′α such that:

(i) tree order is preserved;

(ii) T ′′α is a subset of {s_q : s ∈ T ′β and q ∈ O} for some countable linear order O;

(iii) t(β) = t′(β) implies f ′α(t)(β) = f ′α(t′)(β) for any t, t′ ∈ TC(α).

Then embed O into Q and get T ′α isomorphic to T ′′α which is a subset of {s_q : s ∈

T ′β and q ∈ Q}.

(2) If α < ω1 is a limit ordinal, then T ′α = {s : there exists some t ∈ TC(α) such

that for all β < α, fβ(s �β) <T t}, i.e., the sequences induced from T .

It is easy to see that T ′ is the desired tree we want.

The proof of above fact actually shows the following:
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Corollary 2.8. (1) An Aronszajn line L is coherent iff there is a partition tree T

of L and a club C such that T �C is coherent.

(2) For any lexicographically ordered Aronszajn tree (T,<T , <l), for any club C,

(T,<l) is a coherent line iff (T �C , <l) is a coherent line.

2.2 Some results under MAω1

A transformation from coherent trees to Countryman lines under MAω1 is guar-

anteed by the following theorem which only needs a weaker condition than MAω1 :

Theorem 2.9 ([1]). Every special coherent tree is Countryman with its lexicograph-

ical order.6 So in particular, MAω1 implies that every coherent tree is Countryman

with its lexicographical order.

The in particular part is actually using the following well-known fact (the proof

can also be found in [10]):

Fact 2.10 ([14]). MAω1 implies that every Aronszajn tree is special.

S. Todorcevic actually proved a stronger result which is unpublished, I will refer it

here with his permission:

Theorem 2.11 (Todorcevic). If T is an R-embeddable coherent tree and T is

ω-ranging, then T is Countryman with its lexicographical order.

Proof. This follows from Corollary 3.15 below.

Note every special Aronszajn tree can be canonically extended to a binary special

tree (i.e., a special Aronszajn tree is a club restriction subtree of some binary

special tree). So above theorem can imply Theorem 2.9.

The following fact will be frequently used:

6i.e., the linear ordering for the tree is its lexicographical order.
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Fact 2.12. (1) For an Aronszajn tree T, the following are equivalent:

(a) T is special.

(b) There is a club C such that T �C is special.7

(c) T is Q-embeddable.

(2) For an Aronszajn tree T, the following are equivalent:

(a) T is R-embeddable.

(b) There is a club C such that T �C+1 is special.8

(c) For any nonstationary set X, T �X is special.

Fodor’s Lemma is well-known and frequently used:

Lemma 2.13 (Fodor’s Lemma [19]). Every regressive function on a stationary set

is constant on a stationary subset.

To get the transformation from Countryman lines to coherent trees, I will use

another unpublished works of S.Todorcevic with his permission:

Theorem 2.14 (Todorcevic). If T is an Aronszajn tree X ⊂ T and X is Coun-

tryman with its lexicographical order, then there is a club C such that the club

restriction subtree TX �C is Lipschitz.

See appendix for a proof.

The following theorem is a slight generalization of [1] Lemma 4.2.7 and the proof

is similar too:

Theorem 2.15 (MAω1). If T is a Lipschitz tree, X ⊂ T and X is Countryman,

then TX is lexicographically isomorphic to a coherent tree. Moreover, X is Coun-

tryman can be replaced by the following weaker property:

for any n < ω, for any A consists of uncountable pairwise disjoint subsets of Xn,

7Recall that T �X= ∪α∈XTα for any X ⊂ ω1.
8C + 1 = {α+ 1 : α ∈ C}.
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there are a, b ∈ A s.t. for any i < n, ai <lex bi, where ai, bi are i-th elements of

a, b.

Proof. WLOG, assume T = TX . Define a poset

P = {p : p is a finite partial function from T to Q[ω1]<ω such that:

(1) for any t ∈ dom(p), p(t) is a finite partial function from ht(t) to Q;

(2) for any two elements s <lex t in dom(p), ∆(s, t) ∈ dom(p(s))∩dom(p(t)) and for

any ξ ∈ dom(p(s)) ∩ dom(p(t)), p(s)(ξ) = p(t)(ξ) if ξ < ∆(s, t), p(s)(ξ) < p(t)(ξ)

if ξ = ∆(s, t). }

And p < q (p is stronger than q) if p 6= q and

(a) dom(p) ⊃ dom(q) and for any t ∈ dom(q), p(t) extends q(t) as a function;

(b) for any s, t in dom(q) and for any ξ ∈ (dom(p(s)) ∩ dom(p(t))) \ (dom(q(s)) ∪

dom(q(t))), p(s)(ξ) = p(t)(ξ).

First, we need to show that P is c.c.c.

Fix {pα : α < ω1} ⊂ P . By Fodor’s Lemma, we can find a stationary subset Γ1

and a countable ordinal α0 such that:

(1) for any α ∈ Γ1, for any s, s′ ∈ dom(pα), (ht(s) < α0)∨ (ht(s) ≥ α), (∆(s, s′) <

α0) ∨ (∆(s, s′) ≥ α) and dom(pα(s)) ∩ α < α0;

(2) pα (α ∈ Γ1) is constant below α0 level, i.e., pα’s (α ∈ Γ1) have the same size m

and for any i < m, for any α, β ∈ Γ1, s �α0= t �α0 and pα(s) �α0= pβ(t) �α0 where

s, t are <lex-ith element of dom(pα), dom(pβ) respectively.

Define aα = {s �α: s ∈ dom(pα) ∧ ht(s) ≥ α}. Now we can find an uncountable

subset Γ of Γ1 such that aα’s has the same size n and for all α 6= β in Γ:

(i) aα(i) and aβ(j) are incomparable for all i, j < n;

(ii)∆(aα(i), aβ(i)) = ∆(aα(j), aβ(j)) for all i, j < n.

By the fact of X is Countryman or use the property mentioned in the theorem,

we can find γ 6= δ in Γ such that aγ(i) <lex aδ(i) for all i < n. Now we can find

a p ∈ P that is stronger than pγ and pδ: dom(p) = dom(pγ) ∪ dom(pδ) and for
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s ∈ dom(p)

(1) if ht(s) < γ then ht(s) < α0 and pγ(s) = pδ(s), define p(s) = pγ(s);

(2) if ht(s) ≥ γ and s ∈ dom(pγ), define p(s) = pγ(s) ∪ {(∆(pγ(0), pδ(0)), 0)};

(3) if ht(s) ≥ γ and s ∈ dom(pδ), define p(s) = pδ(s) ∪ {(∆(pγ(0), pδ(0)), 1)}.

Then it is easy to check that p is a member of P and p is stronger than pγ and pδ.

This shows that P is c.c.c.

Now note that Dt,ξ = {p ∈ P : t ∈ dom(p) ∧ ξ ∈ dom(p(t))} is dense for each

t ∈ T and ξ < ht(t). By MAω1 , assume G is a filter that intersects each Dt,ξ for

all t ∈ T and ξ < ht(t). Then dom(∪G) is T , rang(∪G) is a subset of Q<ω1 . By

definition of P we can see ∪G is a lexicographical isomorphism between rang(∪G)

and dom(∪G). By definition (b) of forcing extension, it is easy to see rang(∪G) is

coherent. This finishes the proof.

Corollary 2.16 (MAω1). Every coherent tree is Countryman with respect to it-

s lexicographical order and every Countryman line has a partition tree which is

coherent. In particular, a line is Countryman iff it is coherent.

Proof. “A coherent tree is Countryman” follows from Theorem 2.9. Assume L is a

Countryman line and T is its partition tree. Then by Theorem 2.14 and Theorem

2.15, there is a club C such that T �C is coherent. Then by Corollary 2.8, L is

coherent.

Under MAω1 , coherence can be slightly generalized:

Definition 13. For any α < ω1, an uncountable subset A ⊂ [Q]<ω1 is α-coherent

if for any s, t ∈ A, {ξ < dom(s), dom(t) : s(ξ) 6= t(ξ)} has order type less than α.

And an Aronszajn tree is α-coherent if it is lexicographically isomorphic to some

α-coherent uncountable subset of [Q]<ω1 .

Note the usual coherent means ω-coherent. Now we will list under MAω1 some

equivalent statement for Countryman.
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Corollary 2.17 (MAω1). For any Aronszajn line L, the following are equivalent:

(1) L is Countryman.

(2) L is coherent.

(3) For any partition tree T of L, there is a club C such that T �C is Countryman

(or coherent).

(4) L is α-coherent for some α < ω1, i.e., it has an α-coherent partition tree T .

(5) L contains a Countryman dense subset.

(6) For any 0 < α < ω1, for any L′ ⊂ Lα where the order for Lα is the lexico-

graphical order, if L′ is an Aronszajn line, then L′ is Countryman.

Proof. Corollary 2.16 gives the equivalence between (1) and (2). Corollary 2.8 gives

the equivalence between (2) and (3). (1)→ (4) is trivial, let’s prove (4)→ (1).

Fix an infinite α < ω1 and a α-coherent partition tree T . Let’s just assume T itself

is a α-coherent subset of [Q]<ω1 and <l is its lexicographical order. We will prove

that T is Lipschitz and has the property mentioned in Theorem 2.15 and hence T

is coherent (and Countryman).

Claim 1: T is Lipschitz.

proof of claim 1: Let f : X → T be a level preserving map for some X ∈ [T ]ω1 .

Define for any x ∈ X, Dx = {β < ht(x) : x(β) 6= f(x)(β)} ∪ {α}. Then Dx has

order type ≤ α + 1. Find least ξ ≤ α such that {Dx(ξ) : x ∈ X} is unbounded

where Dx(ξ) is the ξ-th element of Dx if exists and undefined otherwise. Find an

uncountable subset Y ⊂ X and a δ < ω1 such that:

(1) δ bounds < ξ-th elements of Dx for any x ∈ Y , i.e., Dx ∩ Dx(ξ) ⊂ δ for any

x ∈ Y ;

(2) {x �Dx(ξ): x ∈ Y } is an antichain;

(3) for any x, y in Y , x �δ= y �δ and f(x) �δ= f(y) �δ.

Then for any x, y in Y , δ ≤ ∆(x, y) < min{Dx(ξ), Dy(ξ)} by (2) and (3). And

hence ∆(f(x), f(y)) = ∆(x, y) by (3) and definition of Dx, Dy. This finishes the
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proof of claim 1.

Claim 2: For any n < ω, for any uncountable subset A ⊂ T n consists of pairwise

disjoint subsets, there are a, b in A such that ai <l bi for any i < n where ai, bi

are i-th elements of a, b respectively.

proof of claim 2: Without loss of generality, we can assume that for any a ∈ A ,

ht(a0) ≤ ht(ai) for any i < n. Let X0 = {a0 : a ∈ A }, define f0 : X → T

by f0(a0) = a1 �ht(a0). Then repeat the proof of claim 1, we can find uncountable

X1 ⊂ X0 (corresponding to the Y in proof of claim 1) such that for any a0, b0 ∈ X1,

a0 <l b0 iff f0(a0) <l f0(b0) iff a1 <l b1.

Repeat above argument n− 1 times we can find X0 ⊃ X1 ⊃ ... ⊃ Xn−1 such that

for any i < n, for any a0.b0 ∈ Xi, a0 <l b0 iff ai <l bi. Then pick a, b ∈ A such

that a0, b0 ∈ Xn−1 and a0 <l b0, and hence ai <l bi for any i < n. This finishes the

proof of claim 2.

Then by Theorem 2.15, T is coherent. This shows (4)→ (1).

(1) → (5) is trivial, let’s prove (5) → (1). Fix a dense subset L′ which is Coun-

tryman, and let S be a partition tree of L. Then SL′ is a partition tree of L′. By

Fact 2.7, there is a club C such that SL′ �C is coherent. Note S \ SL′ consists only

endpoints since L′ is dense in L, and hence S �C \SL′ �C consists only endpoints.

So S �C is ω + 1-coherent and hence coherent. Then L is coherent by Corollary

2.8. This shows (5)→ (1).

(6)→ (1) is trivial, let’s prove (1)→ (6).

Pick a partition tree T of L such that T is a coherent subset of [Q ∩ (0, 1)]<ω1

and the lexicographical order is the canonical lexicographical order. Without loss

of generality, assume L itself is a subset of [Q ∩ (0, 1)]<ω1 . Fix 0 < α < ω1 and

L′ ⊂ Lα such that L′ is an Aronszajn line. For any l ∈ Lα, fix a countable se-

quence tl = l(0)a0al(1)a0a...al(ξ)a0.... Then it is easy to see that {tl : l ∈ L′} is

isomorphic to L′. Let S be the downward closure of {tl : l ∈ L′} and the tree order
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of S is extensions as functions and the lexicographical order of S is the canonical

lexicographical order. It is suffice to show that S is coherent. Fix a club C such

that for any β ∈ C, for any γ < β, γα < β. Use the construction in Fact 2.2,

we can assume S ′ = S �C is a subset of [Q]<ω1 such that for any s, t ∈ S ′, for

any ξ < htS′(s), htS′(t), s(ξ) = t(ξ) if s �[C(ξ),C(ξ+1))= t �[C(ξ),C(ξ+1)), i.e., for each

ξ < ω1, we embed {t �[C(ξ),C(ξ+1)): t ∈ T �C} into Q .

Now we are going to show that S ′ is (α + ω)2-coherent by:

Claim 3: For any s ∈ S, for any t ∈ ThtS(s), Dst = {ξ ∈ C : there is some

η ∈ [C(ξ), C(ξ + 1)) such that s(η) 6= t(η)} has order type less than α + ω.

proof of claim 3: Let s = 〈s(i) : i < α〉 and note each s(i) ∈ T . For each i < α,

let βi =
∑

j<i(ht(s(j)) + 1). Then s �[βi,βi+1)= s(i). Note by definition of C,

for any ξ such that C(ξ) ∈ (βi, βi+1), C(ξ) = βi + C(ξ) and hence s �[C(ξ),βi+1)=

s(i) �[C(ξ),βi+1). This shows that [βi, βi+1)∩Dst is finite and hence finishes the proof

of the claim.

Then for any s, t ∈ S, Dst, s(i), βi are as above, Dst ∩ [βi, βi+1) has order type less

than α+ω. Then Dst has order type less than (α+ω)α. So S ′ is (α+ω)2-coherent.

Then S ′ and hence S is Countryman. This finishes the proof of the corollary.

Remark: Note it is not hard to use ♦ (diamond principle)9 to construct an Aron-

szajn tree which contains a dense Countryman and coherent subset but is neither

Countryman nor coherent itself. So MAω1 is necessary for above corollary.

9See [18] or [10] for ♦.



Chapter 3
From R-embeddable coherent trees to

Countryman lines

3.1 R-embeddablity

This section will give the reason we choose R-embeddable coherent trees other than

arbitrary or special coherent trees.

Definition 14. Assume L is a Countryman line and L2 = ∪
n<ω

Cn where each Cn

is a chain. Say this partition L2 = ∪
n<ω

Cn has maximal property if:

for all n < m in ω, for all (a, b) in Cm, Cn ∪ {(a, b)} is not a chain, i.e. for some

(c, d) ∈ Cn, either a < c ∧ b > d or a > c ∧ b < d.

Definition 15. Let Λ denote the set of countable limit ordinals, i.e., Λ = {λ <

ω1 : λ is a limit ordinal.}.

Lemma 3.1. For any Countryman line L, there is a partition with maximal prop-

erty.

Proof. Let L2 = ∪
n<ω

C ′n be arbitrary partition of L2 into countably many chains.

Let L2 = {lα : α < ω1}. Define Cn by induction on n. If Cm is defined for any

26
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m < n, then define Cn = ∪
α<ω1

Dα where Dα is defined by induction on α:

D0 = C ′n \ ( ∪
m<n

Cm);

Dα = ∪
β<α

Dβ, if α is a limit ordinal;

Dα+1 = Dα ∪ {lα} if lα /∈ ∪
m<n

Cm and Dα ∪ {lα} is a chain, and Dα+1 = Dα

otherwise.

It is easy to check that each Dα is a chain and hence Cn is a chain. It is also easy

to see that L2 = ∪
n<ω

Cn is a partition of L2 into countably many chains. Note that

the construction of Dα at successor stages will guarantee that this partition has

the maximal property.

Now we are ready to show that any partition tree of a Countryman line is R-

embeddable if we are allowed to take club restriction subtree.

Theorem 3.2. If T is a partition tree of some Countryman line X, then T is

R-embeddable when restricted to a club level, i.e., T �C is R-embeddable for some

club C. Hence, every Countryman line has an R-embeddable partition tree.

Proof. Let 〈Nα : α < ω1〉 be a continuous elementary chain, N0 contains all rele-

vant objects and each Nα is countable and C = {Nα ∩ ω1 : α < ω1}. Then we just

need to prove that T �C is R-embeddable.

First, as X is Countryman, assume X2 = ∪
n<ω

Cn is a partition with maximal prop-

erty. Define C : X2 → ω by C(x, y) = n iff (x, y) ∈ Cn.

To get a embedding into R, the following property will be needed:

Claim 1: For any α ∈ C, for any s ∈ T �α ∩X, for any x, y ∈ X, if ∆(x, y) ≥ α,

then C(s, x) = C(s, y) and C(x, s) = C(y, s).

proof of claim 1: Assume otherwise, fix α ∈ C and s, x, y ∈ X be such that

∆(x, y) ≥ α and C(s, x) 6= C(s, y) (the proof for C(x, s) = C(y, s) is similar.).

WLOG, assume C(s, x) < C(s, y). Assume x �α= y �α= t and α = Nβ ∩ ω1. By

elementarity, A = {z : C(s, z) = C(s, x)} is uncountable since A ∈ Nβ while x ∈ A
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is not in Nβ. Then Nβ |= “A is uncountable”. Now we need the following:

Subclaim 1.1:there are z, w in A ∩ Nβ that are incomparable with t such that

z <lex t <lex w.

proof of subcliam 1.1: Suppose otherwise, assume there is no such z (similar

for no such w), i.e., for any r ∈ A ∩ Nβ, r ≥lex t. Then for any γ such that

ht(s) < γ < ht(t), t �γ is the least element in (TA)γ under the order <lex, i.e.,

min((TA)γ) = t �γ. Then

Nβ |= min((TA)γ) exists for any γ > ht(s) and {min((TA)γ) : γ > ht(s)} is an

uncountable chain.

Then by elementarity, T contains an uncountable chain too. This contradicts the

fact that T is an Aronszajn tree. This finishes the proof of subclaim 1.1.

Now fix z, w guaranteed by subclaim 1.1. By maximal property of the partition,

assume (a, b) ∈ CC(s,x) such that a <lex s ∧ b >lex y or a >lex s ∧ b <lex y. Then

we have a <lex s ∧ b >lex z or a >lex s ∧ b <lex w. This is a contradiction since

C(a, b) = C(s, z) = C(s, w). This finishes the proof of claim 1.

Now define f : T �C→ [ω]ω by f(t) = {C(s, x) : s ∈ T �ht(t) and x ∈ T t ∩X} for

any t ∈ T �C . It follows from claim 1 that we can fix a x and f(t) won’t change and

hence t <T t
′ in T �C implies f(t) ⊂ f(t′). To prove f is an embedding, we need

to prove t <T t
′ in T �C implies f(t) 6= f(t′). It is enough to prove the following:

Claim 2: For any α ∈ C, for any s 6= s′ ∈ T �α ∩X, for any x ∈ X \ T �α
C(s, x) 6= C(s′, x) and C(x, s) 6= C(x, s′).

proof of claim 2: Suppose otherwise, C(s, x) = C(s′, x) = m (the proof for

C(x, s) 6= C(x, s′) is similar). Define B = {a ∈ T : C(s, a) = C(s′, a) = m}.

Then B ∈ Nβ where α = Nβ ∩ ω1 and B is uncountable by elementarity and the

fact that x is in B. Now pick r <lex p in B ∩ Nβ and WLOG assume s <lex s
′.

Then C(s, p) = C(s′, r) = m and s <lex s
′ while p >lex r. Contradict the fact that

Cm is a chain. This finishes the proof of claim 2.



3.1 R-embeddablity 29

For the hence part, see Fact 2.7 for extending T �C by adding elements in T \T �C
as endpoints. This finishes the proof of the theorem.

The following explains the reason we restrict ourselves to R-embeddable trees:

Corollary 3.3. If a Countryman line has a coherent partition tree, it has a R-

embeddable coherent partition tree too.

Proof. Fix a Countryman line X and its coherent partition tree (T,<T , <l). Let

T ′′ = T �C be R-embeddable for some club C. Use method described in Fact 2.7 to

extend T ′′ to a coherent tree T ′ with X\T ′′ as endpoints. Then T ′ is R-embeddable

by Fact 2.12.

On the other hand, R-embeddable is the best we can expect, i.e., we cannot expect

the partition tree of a Countryman line to be special. The following example can be

found in [1] (see Lemma 2.2.2 Lemma 2.2.4 and Lemma 2.2.17 in [1] for a proof)1:

Example 3.4. ([1]) In ZFC, there is always a finite-to-one2 (in particularly it is

R-embeddable) coherent tree T ⊂ ω<ω1 (i.e. T is ω-ranging) that is Countryman3;

adding a Cohen real will add a finite-to-one (and also R-embeddable) coherent

tree T ⊂ ω<ω1 that is Countryman and contains no stationary antichain4. So in

particularly, it is consistent to have a coherent tree that is Countryman while it

contains no special subtree.

Also there are some coherent tree that is Countryman while it is not R-embeddable.

And so take a club restriction subtree is necessary.

Example 3.5. It is consistent to have a coherent tree that is Countryman and not

R-embeddable:

1A similar construction will be given in latter proof.
2finite-to-one as functions, i.e., the preimage of any element is finite
3T (ρ1) constructed in [1] is such a tree.
4A stationary antichain is an antichain X such that ht(X) = {ht(x) : x ∈ X} is stationary.
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firstly, start from a R-embeddable coherent tree T ⊂ Q<ω1 that is Countryman and

non-special (e.g. previous example);

secondly, define a 1-shift T (1) of T as following:

For s ∈ T , s(1) ∈ Qht(s)+1, s(1)(β + 1) = s(β) for β < ht(s) and s(1)(α) = 0 for

limit ordinal α;

finally, T (1)– the downward closure of {s(1) : s ∈ T}– is what we need.

To prove that the example has the required properties, first, it is easy to see that

T (1) is coherent.

Then, as all successor levels of T (1) is lexicographically isomorphic to T , (T (1) �Λ+1

, <lT (1))5 can be embedded into (T,<lT ). Note (T (1) �Λ, <lT (1)) can also be embed-

ded into (T,<lT ). A partition of (T,<lT ) into countably many chains can easily

induce a partition of (T (1), <lT (1)) into countably many chains (see also Proposition

3.16). Then T (1) is Countryman.

At last, if T (1) is R-embeddable, then T (1) is special by Fact 2.12 and the fact that

T (1) �Λ tree isomorphic to T (1) �Λ+1.

3.2 An R-embeddable coherent tree may be not

Countryman

As mentioned before, S.Todorcevic showed that every ω-ranging R-embeddable

coherent tree is Countryman with its lexicographical order. In this section, we will

see that it will not be true if we replace ω-ranging by Q-ranging (or even just ω∗-

ranging). But if we just want an uncountable subset of a R-embeddable coherent

tree to be Countryman, Z-ranging is enough and it is the best we can expect.

This section will also give an example with stronger negation (i.e., R-embeddable

coherent trees that contain no Countryman suborder with their lexicographical

5Λ is the set of limit ordinals below ω1 and recall that Λ + 1 = {λ+ 1 : λ ∈ Λ}.
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orders). So whether there is a transformation from R-embeddable coherent tree to

Countryman line depends on the ranging.

Theorem 3.6. Assume O is a countable linear order.

(1) If O can’t be embedded into ω, then it is consistent to have a R-embeddable

O-ranging coherent tree T such that (T,<lT ) is not Countryman.

(2) If O can’t be embedded into Z, then it is consistent to have a R-embeddable

O-ranging coherent tree T (⊂ O<ω1) such that (T,<lT ) contains no Countryman

suborder.

Before we prove the theorem, we need a few lemmas. First, note if O ⊂ O′, then

an O-ranging tree is also an O′-rang tree. So we just need to deal with several

linear order O’s:

Fact 3.7. (1) If O can’t be embedded into ω, then O contains a subset of type ω∗

or ω + 1.

(2) If O can’t be embedded into Z, then O contains a subset of type (ω + 1)∗ or

ω + 1.

The following lemma proves case ω∗ for (1) of Theorem 3.6:

Lemma 3.8. If T ⊂ (ω∗)<ω1 is a finite-to-one coherent tree with no stationary

antichain, then T contains no stationary Countryman suborder, i.e., for any X ∈

[T ]ω1 such that ht(X) is stationary, X is not Countryman.

Proof. First, let’s denote ω∗ by ω∗ = {−n : n ∈ ω} with order −n > −(n + 1) for

any n ∈ ω.

Suppose otherwise, X is a stationary Countryman suborder (assume |X ∩ Tα| ≤ 1

for any α < ω1) and X2 = ∪
n<ω

Cn is a partition that witnesses the Countryman

property. Define X0 = {x ∈ X : ∃tx ∈ X x <T tx}. Since X \X0 is an antichain

and T contains no stationary antichain, ht(X0) is stationary. For any x ∈ X0,
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fix a tx ∈ X such that x <T tx. Define a function f : X0 → ω by f(y) = i

iff (y, ty) ∈ Ci. Then we can find X1 ⊂ X0 and m,n ∈ ω such that ht(X1) is

stationary, f ′′X1 = {m} and tx(ht(x)) = −n for any x ∈ X1.

Claim: There are x ∈ X1 and {xn ∈ X1 : n < ω} such that x0 <T x1 <T ... <T

xk <T xk+1 <T ... <T x.

proof of Claim: Suppose otherwise, for any x ∈ X1, {y ∈ X1 : y <T x} is finite.

Assume By going into a stationary subset assume ht(X1) only consists of limit

ordinals. Then define a regressive function h : ht(X1)→ ω1 by

h(α) = max{ht(y) : y ∈ X1 ∧ y <T xα} where xα is the element in Tα ∩X1.

Going to a subset Z of X1 such that ht(Z) is stationary and h is constant on

ht(Z). As T has no stationary antichain, there are z1, z2 in Z such that z1 <T z2

and hence h(ht(z2)) ≥ ht(z1). But h(ht(z2)) = h(ht(z1)) < ht(z1), a contradiction.

This finishes the proof of the claim.

Now fix x and {xn : n < ω} guaranteed by the claim. As T is finite-to-one, we

can find a k < ω such that x(ht(xk)) < −n. Then we have xk <l x since xk <T x

and txk >l tx since txk �ht(xk)= xk = x �ht(xk)= tx �ht(xk) and txk(ht(xk)) = −n >

x(ht(xk)) = tx(ht(xk)). This contradict the fact that both (xk, txk) and (x, tx) are

in Cm.

Remark: As we said before, that it is consistent to have an Aronszajn line which

contains no Aronszajn subline that can be partitioned into a whole tree. One such

example is L = T �X where T is the tree mentioned in the above lemma and X is

any uncountable nonstationary subset of ω1. If L′ ∈ [L]ω1 can be partitioned into

a whole tree (S,<S, <lS) (i.e., (L′, <lT ) is order isomorphic to (S,<lS) where <lT

is the lexicographical order of T ), then we will get a contradiction since on one

hand, (S,<lS) is Countryman as by Theorem 3.14, (L,<lT ) and hence (L′, <lT ) is,

while on the other hand, by Proposition 2.4, S �C is lexicographically isomorphic

to TL′ �C for some club C, and so S �C is not Countryman since according to
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previous lemma, TL′ �C is not. Note above argument actually shows that for any

L′ ∈ [L]ω1 , for any partition tree S of L′, htS(L′) is nonstationary.

Definition 16. For any countable linear orders O, O′ such that O ⊂ O′, for any

coherent tree T ⊂ O<ω1 , the completion of the coherent tree T for O′ (or say the

completion of T if O = O′) is T ∗ = {t ∈ O′<ω1 : there is some s ∈ Tdom(t) such that

{α ∈ dom(t) : t(α) 6= s(α)} is finite.}.

A coherent tree T is complete if its completion is T itself.

Remark: Above lemma will also induce a R-embeddable ω + 1 (or (ω + 1)∗)-

ranging coherent tree which is not Countryman. If there is a T as mentioned in

the previous proposition and T ∗ is its completion for (ω+ 1)∗, then T ∗ contains an

antichain (with respect to the tree order) which is not Countryman (with respect

to the lexicographical order). Hence, there is a R-embeddable (ω + 1)-ranging

coherent tree with this property too.

Now, we will construct a ω + 1-ranging R-embeddable coherent tree which con-

tains no uncountable Countryman suborder. First, let’s describe some sufficient

condition for this.

Definition 17. An Aronszajn tree T ⊂ (ω + 1)<ω1 has property (*) if:

(1) for any X ∈ [T ]ω1 , for any club C, there is a x ∈ TX �C such that xaω ∈ TX ;

(2) for any Y ∈ [T ]ω1 such that ht(Y ) is stationary, for any n < ω, there are

n < m < ω and t1, t2 in Y such that ta1m <T t2

Lemma 3.9. If T ⊂ (ω + 1)<ω1 is an R-embeddable Aronszajn tree has property

(*) and contains no stationary antichain, then T contains no Countryman suborder

with its canonical lexicographical order.

Proof. Suppose otherwise, X ∈ [T ]ω1 and (X,<l) is Countryman where <l is the

lexicographical order. Let X2 = ∪
n<ω

Cn be a partition witness that X is Country-

man. Let 〈Nα : α < ω1〉 be a continuous elementary chain, N0 contains all relevant
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objects and each Nα is countable and C = {Nα ∩ ω1 : α < ω1}. Let A : T �Λ→ ω

be a partition of T � into countably many chains.

Let x witness (1) of property (*) for X and C. Note there is some i < ω such

that x_i ∈ TX (otherwise Z = {t ∈ TX : t_ω ∈ TX and x has only one immediate

successor in TX} has stationary height by Fact 2.3. Let Zn = {t ∈ Z : A(t_ω) =

n}. Then for some n, Zn has stationary height. This contradict that T contains no

stationary antichain.). Fix such an i. Define Y = {t ∈ TX : tai ∈ TX ∧ taω ∈ TX}.

Then Y ∈ [T ]ω1 and ht(Y ) is stationary by Fact 2.3. Define Yn = {t ∈ Y : there

are u, v in X such that (u, v) ∈ Cn, tai <T u and taω <T v}. Fix a n such that

ht(Yn) is stationary.

Apply (2) of property (*) to Yn and i, we get m ∈ (i, ω) and t1, t2 in Yn such that

ta1m <T t2. By definition of Yn, we have (uj, vj) ∈ Cn such that taj i <T uj and

taj ω <T vj for j = 1, 2. Now we have u1 <l u2 and v1 >l v2 (note ta1 i <l t
a
1m <l t

a
1 ω

and hence u1 <l u2 <l v2 <l v1) which contradict the fact that Cn is a chain for

product order.

Now we will construct a coherent tree with properties mentioned in above lemma

and it will be suffice for Theorem 3.6. The construction will use the method of

minimal walk introduced by S. Todorcevic in [5].

Definition 18. (1) A C-sequence is a sequence 〈Cα : α < ω1〉 such that

(i) Cα+1 = {α};

(ii) if α is a limit ordinal, then Cα is a cofinal subset of α of order type ω.

(2) A step from a countable ordinal β towards a smaller ordinal α is the minimal

point of Cβ that is ≥ α. The cardinality of the set Cβ ∩ α, or better to say the

order-type of this set, is the weight of the step.

(3) For a C-sequence, a walk (or a minimal walk) from a countable ordinal β to a

smaller ordinal α is the sequence β = β0 > β1 > ... > βn = α such that for each
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i < n, the ordinal βi+1 is the step from βi towards α.

(4) For a C-sequence, the full code of the walk is the function ρ0 : [ω1]2 → ω<ω,

defined recursively by ρ0(α, β) = 〈|Cβ ∩ α|〉_ρ0(α,min(Cβ \ α)) with boundary

value ρ0(α, α) = φ6

(5) For a C-sequence, The maximal weight of the walk is the function ρ1 : [ω1]2 → ω,

defined recursively by ρ1(α, β) = max{|Cβ∩α|, ρ1(α,min(Cβ \α))} with boundary

value ρ1(α, α) = 0.

(6) For a C-sequence, the number of steps of the minimal walk is the function

ρ2 : [ω1]2 → ω, defined recursively by ρ2(α, β) = ρ2(α,min(Cβ \ α)) + 1 with

boundary value ρ2(α, α) = 0

Here are some basic fact about the ρ-functions from [1]:

Lemma 3.10. ([1]) (1) For any α < β < ω1, if α is a limit ordinal, there is an

ordinal ξ < α such that for any η ∈ (ξ, α)7, α is in the walk from β to ξ.

(2) ρ1 is finite to one and hence R-embeddable.

(3) ρ1 is coherent.

(4) For any α < β, ρ2(α, β) > 0.

(5) For any α ≤ β, if α is a limit ordinal, then there is a ξαβ < α such that for

any γ ∈ [ξαβ, α), ρ2(γ, β) = ρ2(α, β) + ρ2(γ, α).

(6) For any α < β, if ρ2α ≮T (ρ2) ρ2β, then ∆(ρ2α, ρ2β) is a successor ordinal.

Now we can start our construction. Note our construction is a little different from

that in [1].

Construction: First in ground model V , fix a partition of ω1 into countably

many stationary sets: ω1 = ∪
n<ω

Sn and an uncountable almost disjoint family

6Note firstly we write ρ0({α, β}) as ρ0(α, β) where the smaller appears first; secondly, although
{α} is not in the domain, ρ0(α, α) is defined for convenience.

7Here (∗, ∗) denotes the interval of ordinals.
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{Aα : α ∈ Λ}, i.e., for any α < β in Λ, Aα ⊂ ω is infinite and Aα ∩ Aβ is finite.

For any infinite α ∈ Λ, fix a surjection πα : Aα → α such that every ξ < α has

infinitely many preimage.

Then force with Cohen forcing Fn(ω, 2) = {p : p is a finite partial function from

ω to 2} where the order is extension as functions. Let G be a generic filter and

r = ∪{p : p ∈ G}. We don’t distinguish a subset of ω and its characteristic function

so we can assume that r ⊂ ω.

Now our C-sequence will be defined as (Cα+1 = {α}):

for infinite α ∈ Λ, define Cα(n) – the nth element of Cα: a0 = min(Aα ∩ r),

Cα(0) = πα(a0); an+1 = min{i ∈ Aα ∩ r : i > an and πα(i) > Cα(n)}, Cα(n+ 1) =

πα(an+1).

The final coherent function a : [ω1]2 → ω + 1 and hence the coherent tree T (a) =

{aβ �α: α < β < ω1} will be defined by: for any α < β < ω1,

a(α, β) =

 ω : α ∈ Sρ1(α,β)

ρ1(α, β) : otherwise

Remark: For any p ∈ Fn(ω, 2), if dom(p) = n for some n, then for any infinite

α ∈ Λ, p computes Cα correctly, i.e., if replace r in the computation of Cα by p

and Cα(i) is computed to be ξ for some i < ω, ξ < α, then p 
 Cα(i) = ξ, and

vise-verse. Moreover, if p computes Cα(i), then p computes Cα(j) for any j < i.

First, we need to check that the coherent function and tree are well-defined:

Lemma 3.11. C-sequence, ρ1 and a are as constructed above.

(1) For any infinite α ∈ Λ, Cα has order type ω. So ρ1 and hence a is well-defined.

(2) For any α < β < γ < ω1, ρ1(α, β) = ρ1(α, γ) iff a(α, β) = a(α, γ). So T (a) is

coherent and tree isomorphic to T (ρ1). Hence T (a) is R-embeddable.

Proof. (1) It is suffice to prove that for any α ∈ Λ, Cα is unbounded in α and for
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any ξ < α, Cα ∩ ξ is finite. Now fix a α ∈ Λ.

Claim: For any ξ < α, Cα ∩ ξ is finite and Cα 6⊂ ξ.

Proof of claim: Fix a ξ < α. For any p ∈ Fn(ω, 2), pick a n < ω such that

dom(p) ⊂ n and πα(n) > ξ. Then extend p to q such that q(n) = 1 and q(i) = 0

for i ∈ dom(q)\ (dom(p)∪{n}). It is easy to check that q 
 |Cα∩ ξ| ≤ n∧Cα 6⊂ ξ.

So a density argument shows that Cα∩ ξ is finite and Cα 6⊂ ξ: D = {p : p 
 Cα∩ ξ

is finite.} and E = {p : p 
 Cα 6⊂ ξ} are dense.

(2) Trivial. Note for the hence part we can take the R-embedding to be f : T (ρ1)→

ωω:

f(s)(n) = |{ξ < ht(s) : s(ξ) = n}|.

The following fact will be needed in following proof:

Fact 3.12. If P is a countable forcing poset, X ⊂ V is a set in V [G] where G is

a generic filter over P, then there is a sequence 〈Yn : n < ω〉 in V [G] such that

Yn ∈ V for any n < ω and X = ∪
n<ω

Yn. In particular, if X ∈ V [G] and X ⊂ V is

an uncountable (or stationary) subset of ω1, there is an uncountable (or stationary)

Y ∈ V such that Y ⊂ X. Hence, a club in V [G] contains a subset that is a club in

V and a stationary set in V is stationary in V [G].

Now we come to the key lemma:

Lemma 3.13. (1) T (ρ1) and hence T (a) contains no stationary antichain.

(2) T (a) has property (*).

Proof. (1) Fix X ⊂ T (ρ1) a subset of stationary height. By coherence and going to

a stationary subset we can assume X = {ρ1α : α ∈ Γ} for some stationary Γ ⊂ Λ.

By previous fact and going to a stationary subset we can assume Γ ∈ V .

Using density argument, it is suffice to prove the following:

Claim 1: For any p ∈ Fn(ω, 2), there are some q ≤ p and α < β in Γ such that
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q 
 ρ1α <T (ρ1) ρ1β.

Proof of claim 1: Fix a p ∈ Fn(ω, 2). Extend p if necessary, we can assume

dom(p) = n for some n < ω. Note only a finite part (of size ≤ n) of Cα is

computed by p for any α ∈ Λ. Find a stationary subset Γ1 ⊂ Γ and an ordinal

α0 < ω1 such that (let Cp
α be the finite set computed by p)

(i) Cp
α ⊂ α0 for any α ∈ Γ1;

(ii) Cp
α = Cp

β for any α, β ∈ Γ1.

Now pick α < β in Γ1 and m > n such that πβ(m) = α (such m exists since

preimage of α is infinite). Extend p to q ⊂ (m + 1)× 2 such that q �[n,m)= 0 and

q(m) = 1. Then Cq
β = Cp

β ∪ {α} = Cp
α ∪ {α}. It follows from the definition of ρ1

that q 
 ρ1α = ρ1β �α, i.e., q 
 ρ1α <T (ρ1) ρ1β.

(2) Let’s first prove (1) of property (*).

In V [G], fix X ∈ [T (a)]ω1 and club C. By previous fact and going to a subclub we

can assume C ∈ V and C ⊂ Λ. Pick any α ∈ ∩
n<ω

acc(Sn ∩ C)8. Let’s first prove

the following:

Claim 2: {ξ ∈ C ∩ α : a(ξ, α) = ω} is unbounded below α.

proof of claim 2: Fix a η < α, we want to find some ξ ∈ [η, α) such that a(ξ, α) = ω.

For any p ∈ Fn(ω, 2), extend p if necessary we can assume dom(p) = n for some

n < ω. Pick η′ > η,max(Cp
α) and η′ < α. α ∈ acc(Sn ∩ C), so we can find

a ξ ∈ Sn ∩ C \ (η′ + n) below α. Note |Cp
α| ≤ n. Pick an increasing sequence

〈mi < ω : i < n + 1 − |Cp
α|〉 such that πα(mi) = η′ + i for i < n − |Cp

α| and

πα(mn−|Cpα|) = ξ (we can do this since each ordinal has infinite preimage).

Now extend p to q ⊂ (mn−|Cpα| + 1) × 2 such that q �n= p, q(mi) = 1 for i <

n + 1 − |Cp
α| and q(j) = 0 for the rest j ≤ mn−|Cpα|. Then Cq

α = Cp
α ∪ {η′ + i : i <

n − |Cp
α|} ∪ {ξ}. Hence q 
 ρ1(ξ, α) = n. So q 
 a(ξ, α) = ω. This finishes the

proof of claim 2.

8For any uncountable X ⊂ ω1, acc(X) = {α < ω1 : sup(X ∩ α) = α}. Note acc(X) is always
a club.
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Now (1) of property (*) follows from the coherence of a and claim 2.

Then we prove (2) of property (*).

By coherence of a, it is suffice to prove for Y = {aα : α ∈ Γ} for some stationary

Γ. Now fix a n < ω and such a Y together with the stationary Γ. Going to a

stationary subset we can assume Γ ∈ V and Γ ⊂ ∩
n<ω

acc(Sn) ∩ Λ.

For any p ∈ Fn(ω, 2), extend p if necessary we can assume dom(p) = k for some

k < ω. Find a stationary subset Γ1 ⊂ Γ and an ordinal α0 < ω1 such that

(i) Cp
α ⊂ α0 for any α ∈ Γ1;

(ii) Cp
α = Cp

β for any α, β ∈ Γ1.

Fix α < β in Γ1 such that α ∈ Sn′ and m > n, k, n′. Pick an increasing sequence

〈li < ω : i < m−|Cp
α|〉 such that l0 > n+max(Aα∩Aβ) and πα(li) = max(Cp

α) + i

for any i < m−|Cp
α|. Then pick an increasing sequence 〈l′j < ω : j < m+ 1−|Cp

β|〉

such that l′0 > lm−1−|Cpα| and πβ(l′j) = max(Cp
α) + j for any j < m − |Cp

β| and

πβ(lm−|Cpβ |) = α.

Now extend p to q ⊂ (l′
m−|Cpα| + 1) × 2 such that q �n= p, q(li) = 1, q(l′j) = 1

for above mentioned li’s and l′j’s and q(i) = 0 for the rest i ≤ l′
m−|Cpα|. Then

Cq
α = Cp

α ∪ {max(Cp
α) + i : i < m − |Cp

α|〉} and Cq
β = Cp

β ∪ {max(Cp
α) + i : i <

m − |Cp
α|〉} ∪ {α}. Recall Cp

α = Cp
β. So q 
 “ρ1α <T (ρ1) ρ1β and ρ1(α, β) = m”.

Note α /∈ Sm. So aα <T (a) aβ and a(α, β) = m. This finishes the proof of (2) of

property (*) and hence the proof of the lemma.

Now Theorem 3.6 follows:

Proof of Theorem 3.6: (1) By Fact 3.7, we just need to prove for O = ω∗ or

O = ω + 1. The case O = ω∗ follows from Lemma 3.8 and note then T (ρ1) we

just constructed is a finite to one coherent tree with no stationary antichain (so

the tree for Lemma 3.8 can be induced from T (ρ1) from a bijection between ω and

ω∗). The case O = ω + 1 follows from Lemma 3.9, Lemma 3.11 and Lemma 3.13.
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(2)By Fact 3.7, we just need to prove for O = ω + 1 or O = (ω + 1)∗. The

case O = ω + 1 follows from Lemma 3.9, Lemma 3.11 and Lemma 3.13. For the

case O = (ω + 1)∗. Let T ⊂ (ω + 1)<ω1 be an R-embeddable coherent tree with

no Countryman suborder. Here we don’t distinguish (ω + 1)∗ and −(ω + 1) =

{−α : α < ω + 1}. Denote −T = {−t : t ∈ T} where (−t)(ξ) = −(t(ξ)) for

any ξ < ht(t). Then −T is an R-embeddable coherent tree. If −T contains a

Countryman suborder, then −T contains an antichain −X whose lexicographical

is Countryman. Then its reverse order (X,<lT ) is Countryman. A contradiction.

Hence −T is a witness for case O = (ω+1)∗. This finishes the proof of the theorem.

3.3 An equivalent condition for coherence being

Countryman

Previous section shows that non-ω-ranging (non-Z-ranging) R-embeddable coher-

ent tree may be not Countryman (or may contain no Countryman suborder) with

its lexicographical order. This gives a negative answer to the question “whether

R-embeddable coherence implies Countryman”. However, as we said before, there

are some positive answer: every R-embeddable ω-ranging coherent tree is Coun-

tryman (S. Todorcevic). So to make the situation on transforming R-embeddable

coherence to Countryman clear, we need to answer the following two questions:

1. what is the sufficient (or equivalent) condition for a R-embeddable coherent tree

to be Countryman (with its lexicographical order)?

2. what is the sufficient (or equivalent) condition for a R-embeddable coherent tree

to contain a Countryman suborder?

This section will give some sufficient conditions for R-embeddable coherence to

be Countryman and contain a Countryman suborder respectively and then prove

that these conditions are actually the “equivalent” conditions. As the investigating
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goes on, we can see that what really matters is not when a R-embeddable coher-

ent tree contains a Countryman suborder, but when the nonstationary levels of a

R-embeddable coherent tree is Countryman. So the real question is:

3. for an uncountable subset X ⊂ ω1, what is the equivalent condition for a

R-embeddable coherent tree to have (T �X , <lT ) to be Countryman?

Let’s start from a sufficient condition for a R-embeddable coherent tree to contain

a Countryman suborder. By previous section, the condition shouldn’t be weaker

than Z-ranging. However, we do have a “weaker” (looking) condition:

Theorem 3.14. If (T,<T , <l) is a R-embeddable Z-branching coherent tree and

X is an uncountable nonstationary subset of ω1, then (T �X , <l) is Countryman.

Proof. WLOG, we can assume T is Q-ranging and X contains all successor or-

dinals. By Fact 2.12, let T �X= ∪
n<ω

An where each An is an antichain. Define

function A : T �X→ ω by A(x) = n iff x ∈ An (assume An’s are pairwise disjoint).

Now for any (a, b) ∈ X2, define Dab = {α < ht(a), ht(b) : a(α) 6= b(α)} (Dab is

finite by coherence), Aba : Dab → [ω]<ω where Aba(α) = {A(a �aα r) : α ∈ Dab,

(a(α) < r < b(α)) or (b(α) < r < a(α)) and a �aα r ∈ T and b �aα r ∈

T} ∪ {A(a �α+1} and Aab is similarly defined. Then define a structure for (a, b):

S(a, b) = 〈Dab, A(a), A(b), a, b, Aba, A
a
b〉 where a serves as a function with domain

Dab (similarly for b). To prove each structure is finite, it is enough to show the

following:

Claim 1: Aba(α) (or similarly Aab (α))is finite for any (a, b) and any α ∈ Dab.

proof of claim 1: Suppose otherwise, and WLOG assume a(α) < b(α), then

{r : a(α) < r < b(α) ∧ a �aα r ∈ T ∧ b �aα r ∈ T} is infinite. Pick an infinite

increasing subset (or infinite decreasing subset if no increasing one). Then to-

gether with b(α) we can find a subset of (succT (b �α), <l) with order type ω + 1.

Contradict the fact that T is Z-branching. This finishes the proof of claim 1.

Say two structures S(a, b), S(c, d) are isomorphic if A(a) = A(c), A(b) = A(d)
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and there is an order isomorphism π : Dab → Dcd such that a(α) = c(π(α)),

b(α) = d(π(α)), Aa(α) = Ac(π(α)), Ab(α) = Ad(π(α)) for any α ∈ Dab.

Then define C(〈D,m, n, f1, f2, f3, f4〉) = {(a, b) ∈ X2 : 〈D,m, n, f1, f2, f3, f4〉

structure isomorphic to S(a, b)} for each D ∈ [ω]<ω, m,n ∈ ω, f1, f2 functions

from D to Q, f3, f4 functions from D to [ω]<ω. And the partition for X2 will

be X2 = ∪{C(〈D,m, n, f1, f2, f3, f4〉) : D ∈ [ω]<ω, m,n ∈ ω, f1, f2 are func-

tions from D to Q and f3, f4 are functions from D to [ω]<ω.}. There are on-

ly countably many C(〈D,m, n, f1, f2, f3, f4〉)’s, so it is suffice to prove that each

C(〈D,m, n, f1, f2, f3, f4〉) is a chain for product order.

Assume, towards a contradiction, (a, b), (c, d) are in the same part of the parti-

tion, i.e., S(a, b) structure isomorphic to S(c, d), and a <l c while b >l d. a, c are

incomparable for the tree order as A(a) = A(c), so ∆(a, c) < ht(a), ht(c).

Claim 2: Dab ∩∆(a, c) = Dcd ∩∆(a, c).

proof of claim 2: Suppose otherwise, let α = min(Dab 4Dcd) < ∆(a, c). WLOG,

assume α ∈ Dab \ Dcd and α = Dab(n) < Dcd(n) (nth element of Dab and Dcd

correspondingly). Then A(c �α+1) = A(a �α+1) ∈ Aa(α) since α < ∆(a, c), and

Aa(Dab(n)) = Ac(Dcd(n)) by structure isomorphism. Then we have A(c �α+1

) ∈ Ac(Dcd(n)) and so A(c �α+1) = A((c �Dcd(n))
ar) for some r. Note c �α+1<T

(c �Dcd(n))
ar. A contradiction. This finishes the proof of claim 2.

Then for any α < ∆(a, c), if α /∈ Dab, b(α) = a(α) = c(α) = d(α) and if

α ∈ Dab, b(α) = d(α) by the above claim and the structure isomorphism. So

∆(b, d) ≥ ∆(a, c). Similarly, we have ∆(a, c) ≥ ∆(b, d). So ∆(a, c) = ∆(b, d).

Denote ξ = ∆(a, c). We have a(ξ) < c(ξ) as a <l c and b(ξ) > d(ξ) as b >l d.

There are several cases:

Case 1: ξ ∈ Dab ∩Dcd.

Then a(ξ) = c(ξ) by claim 2 and the structure isomorphism. Contradiction.

Case 2: ξ /∈ Dab ∪Dcd.
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Then a(ξ) = b(ξ) and c(ξ) = d(ξ). Contradict that a(ξ) < c(ξ) and b(ξ) > d(ξ).

Case 3: ξ ∈ Dab \Dcd.

Then c(ξ) = d(ξ) and so a(ξ) < c(ξ) = d(ξ) < b(ξ). Then A(a �aξ c(ξ)) ∈ Aa(ξ)

and so A(c �ξ+1) ∈ Aa(Dab(n)) where n is the number such that ξ = Dab(n). By

structure isomorphism, A(c �ξ+1) ∈ Ac(Dcd(n)), i.e., there is some r such that

(c �Dcd(n))
ar ∈ T and A(c �ξ+1) = A((c �Dcd(n))

ar). But c �ξ+1<T (c �Dcd(n))
ar. A

contradiction.

Case 4: ξ ∈ Dcd \Dab.

Then d(ξ) < a(ξ) = b(ξ) < c(ξ). Repeat the proof of case 3 we can get a contra-

diction.

In any case, there is a contradiction. This finishes the proof of the theorem.

For any ω-branching coherent tree T (assume T is Q ∩ (0, 1)-ranging), let T ′ be

the downward closure of {ta0 : t ∈ T}, then T ′ is still ω-branching (Q ∩ [0, 1)-

ranging) and coherent, moreover, (T,<lT ) can be embedded into (T ′ �Λ+1, <lT ′)
9

via π(t) = ta0 for t ∈ T . Then Theorem 2.11 is easily deduced from Theorem 3.14:

Corollary 3.15. If T is a R-embeddable ω-branching coherent tree, then T is

Countryman with its lexicographical order.

By Theorem 3.6, we see that Theorem 3.14 is the best we can expect. And although

above theorem shows for the whole nonstationary levels, by Proposition 3.16, it

shows no more than a subset that captures the tree (i.e., a subset whose downward

closure subtree is the whole tree). Let’s now see for a |mathbbR-embeddable coher-

ent tree T the difference between containing an uncountable Countryman suborder

and having T �A is Countryman for any nonstationary A ⊂ ω1.

Proposition 3.16. (Countryman is closed under countable self union) (1) If (L,<L

) is a Countryman line, (A,<A) is an uncountable linear order and A = ∪
n<ω

An is a

9Recall that Λ + 1 = {α+ 1 < ω1 : α is a limit ordinal.}.
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partition such that (An, <A) can be embedded into (L,<L) for any n, then (A,<A)

is Countryman.

(2) For any partition tree T of some Countryman line, if X ∈ [T ]ω1 is special, then

X is Countryman. In particular, if T is R-embeddable, then T �A is Countryman

for any uncountable nonstationary A ⊂ ω1.

(3) T is an R-embeddable coherent tree containing an uncountable Countryman

suborder, iff T is contained in the completion of some R-embeddable coherent tree

T ′ such that T ′ �A is Countryman for any nonstationary A ⊂ ω1

Proof. (1) Let L2 = ∪
n<ω

Cn be a partition witnesses that L is Countryman. Let

πn : An → L be an embedding.

Now we can partition A2 into countably many chains: for any m,n, k in ω, define

D(m,n, k) = {(a, b) : a ∈ Am ∧ b ∈ An ∧ (πm(a), πn(b)) ∈ Ck}. It is easy to see

that A2 = ∪
m,n,k<ω

D(m,n, k) is a countable partition. So it suffice to show that

D(m,n, k) is a chain (for product order) for any m,n, k < ω.

Fix m,n, k < ω and pick (a, b), (c, d) ∈ D(m,n, k). Assume a <A c and we need

to show b ≤A d. First, πm(a) <L πm(c) since πm is an embedding. Second,

πn(b) ≤L πn(d) since (πm(a), πn(b)) ∈ Ck and (πm(c), πn(d)) ∈ Ck. Last, b ≤A d

since πn is an embedding.

(2) follows from (1).

(3) Note the “if” part follows from Fact 2.12 and Corollary 4.7. For the “only if”

part. Assume X ∈ [T ]ω1 is Countryman. Just take T ′ = TX . Then T ′ has the

desired property by (2) and T is contained in the completion follows from the fact

that T is coherent.

Note by remark after definition 16, an R-embeddable coherent tree T contain-

s a Countryman suborder doesn’t imply T �Λ+1 is Countryman. So unlike R-

embeddability, property that every (uncountable) nonstationary set of levels is
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Countryman is not closed under taking completion. So it is necessary that T is a

contained in a completion of some R-embeddable coherent tree with this property.

As R-embeddable coherent tree that contains a Countryman suborder can be

viewed as a (subtree of) completion of R-embeddable coherent tree with prop-

erty that every (uncountable) nonstationary set of levels is Countryman. So the

question becomes that when does a R-embeddable coherent tree has this property?

Theorem 3.17. (1) If (T,<T , <lT ) is a R-embeddable coherent tree, then the fol-

lowing are equivalent:

(a) (T,<lT ) is Countryman.

(b) T is a subtree of some R-embeddable ω-ranging coherent tree T ′.

(2) If (T,<T , <lT ) is an R-embeddable coherent tree, then the following are equiv-

alent:

(c) (T �A, <lT ) is Countryman for any uncountable nonstationary A ⊂ ω1.

(d) T is a subtree of some R-embeddable Z-ranging coherent tree T ′.

(e) (T �Λ+1, <lT ) is Countryman.

Before we start the proof, we should note that above mentioned “T is a subtree of

some T ′” is necessary since we can easily get a Q-branching tree by taking a club

restriction subtree.

First, note only levels in Λ + 1 matters:

Fact 3.18. If T is an R-embeddable Aronszajn tree and T is ω-ranging (or Z-

ranging) at levels C+ 1 for some club C, i.e., for any s ∈ T �C, for any immediate

successor t, t = s_n for some n < ω (or n ∈ Z), then T is a subtree of some R-

embeddable ω-ranging (or Z-ranging) Aronszajn tree T ′. Moreover, T ′ is coherent

(or Countryman or both) if T is.

Proof. Without loss of generality, just prove for ω-ranging and assume T ⊂ (ω<ω)<ω1

and is ω-ranging at levels C+1, i.e., t(α) ∈ ω for any t ∈ T for any α ∈ C. Embedd
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T to ω<ω1 by

for any t ∈ T , f(t) has height (length) ω ∗ ht(t) and f(t) �[ωα,ωα+ω)= t(α)10 for

α < ht(t).

Then it is easy to see that T lexicographically isomorphic to (f ′′T ) �Λ, i.e., T can

be viewed as a subtree of f ′′T . We only need to prove f ′′T is R-embeddable. Recall

that T is ω-ranging at levels C+ 1 for some club C. Go to an uncountable subclub

C ′ such that for any α ∈ C ′, ωα = α. Then T �C′+1 is isomorphic to (f ′′T ) �C′+ω

which is isomorphic to (f ′′T ) �C′+1. So (f ′′T ) �C′+1 is special and by Fact 2.12

and hence f ′′T is R-embeddable. For the moreover part, note the construction will

never destroy the coherence. And the Countryman part follows from Proposition

3.16.

Let’s prove the theorem starting from an easy case:

Lemma 3.19. (1) If (T,<T , <lT ) is an R-embeddable Aronszajn tree such that

(T,<lT ) is Countryman, then T is a subtree of some R-embeddable ω-ranging Aron-

szajn tree T ′ such that (T ′, <lT ′) is Countryman.

(2) If (T,<T , <lT ) is an R-embeddable Aronszajn tree such that (T �Λ+1, <lT ) is

Countryman, then T is a subtree of some R-embeddable Z-ranging Aronszajn tree

T ′ such that (T ′ � Λ + 1, <lT ′) is Countryman.

Proof. (1) Assume T ⊂ Q<ω1 and by Fact 2.12 A : T �Λ+1→ ω is a partition into

antichains. Let c : T 2 → ω be a partition witnesses Countryman. For any s ∈ T ,

let Bs = {q ∈ Q : s_q ∈ T} and fix a cofinal sequence Cs in Bs with order type

1 or ω. Let Cs(n) denote nth element of Cs. Now we want to embed T to some

T ′ satisfying the assumption of previous fact with the club C = Λ. For any t ∈ T ,

define f(t) to be a sequence of length ≤ ht(t) + 1 such that for any α ≤ ht(t)

(1) if α = β + 1, then f(t)(α) = t(β);

10Here we don’t distinguish a finite sequence σ and its extension with eventually 0’s – σ_
⇀
0 .
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(2) if α ∈ Λ and α < ht(t), then f(t)(α) = n if t(α) ∈ (Cs(n − 1), Cs(n)] where

s = t �α;

(3) if α ∈ Λ and α = ht(t), then f(t)(α) is undefined and f(t) has length ht(t).

To show that f ′′T (let’s don’t distinguish f ′′T and its downward closure) is R-

embeddable, by Fact 2.12, just need to define a partition of (f ′′T ) �Λ+1 into count-

ably many antichains. Define g : (f ′′T ) �Λ+1→ ω2 by for any s ∈ (f ′′T ) �Λ, let

s′ ∈ Tht(s) be such that f(s′) = s and g(s_n) = (A(s′_Cs′(n), c(s′, s′_Cs′(n))).

Assume s_m <f ′′T t
_n and s′, t′ in T are corresponding preimages. If t′(ht(s′)) =

Cs′(m), then g(s_m) 6= g(t_n) by first coordinate. If t′(ht(s′)) < Cs′(m), then

g(s_m) 6= g(t_n) by second coordinate. This finishes the proof of (1).

(2) For any s ∈ T , Bs is defined as before and Cs is a sequence in Bs that is

both cofinal and anti-cofinal with order type 1 or 2 or ω or −ω or Z depending

on whether Bs has minimal or maximal element. Define f similarly except for

α ∈ Λ and α < ht(t), for −n < 0, f(t)(α) = −n if t(α) ∈ [Ct�α(−n), Ct�α(−n+ 1)).

And define g similarly except the second of g(s_n) is c(s′_Cs′(0), s′_Cs′(n) for

any s ∈ T �Λ and n ∈ Z.

Above lemma suggests that Countryman should have some connection to ω-ranging

(or Z-ranging for not whole Countryman). However, above construction will prob-

ably destroy the coherent property since partition for immediate successors of each

s ∈ T is considered separately, i.e., no interaction between s 6= s′ in Tα for some α

is considered.

Before we go to the main lemma, we need some definition:

Definition 19. (1) If T is a coherent tree, the canonical completion of T is T ∗ =

{t : ∃t′ ∈ Tht(t)t =∗ t′ and ∀α < ht(t)t(α) ∈ Aα} where Aα = {q : s_q ∈ Tα+1 for

some s}.

(2) If T is a coherent tree, the one step canonical completion of T is T (1) = {t ∈
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T ∗ : ∃t′ ∈ Tht(t) Dtt′ = {α < ht(t) : t(α) 6= t′(α)} has size at most 1.}.

Now we come to our key lemma which takes care of the whole level instead of each

s ∈ T at the same time:

Lemma 3.20. (1) If T is an R-embeddable coherent tree and (T,<lT ) is Country-

man, then its canonical completion T ∗ is also R-embeddable coherent and (T ∗, <lT ∗)

is Countryman.

(2) If T is an R-embeddable coherent tree and (T �Λc , <lT ) is Countryman where

Λc is the complement of Λ, then its canonical completion T ∗ is also R-embeddable

coherent and (T ∗ �Λc , <lT ∗) is Countryman.

Proof. (1) Note R-embeddability follows from Corollary 4.7. Assume T ⊂ (Q ∩

(0, 1))<ω1 . Then T can be lexicographically embedded into Λc levels of T ′ = down-

ward closure of {t_0 : t ∈ T}. Moreover, T ’s canonical completion can be embed-

ded into Λc levels of canonical completion of T ′. So (1) follows from (2) and let’s

just prove (2)

(2) Assume T ⊂ Q<ω1 . Let c : (T �Λc)2 → ω witnesses that (T �Λc , <lT ) is

Countryman.

Note T ∗ = ∪
n<ω

T (n) where T (n+1) = (T (n))(1). In fact, we just need to prove the

following:

claim: (T (1) �Λc , <lT (1)) is Countryman where T (1) is the one step canonical com-

pletion.

Let’s first assume that claim is true and prove the lemma. First, (T (n+1) �Λc

, <lT (n+1)) is Countryman (just treat T (n) as a new “T”). Let cn : T (n) �Λc→ ω be

a partition witnesses Countryman. Then c∗ : T ∗ �Λc→ ω3 is defined by

c∗(s, t) = (m,n, ci(s, t)) where m (or respectively n) is least j (k) such that s ∈ T (j)

(t ∈ T (k)) and i = max{m,n}.

It is easy to check that c∗ witnesses that T ∗ �Λc is Countryman.
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Proof of claim: Let A : T �Λc→ ω be a partition into antichains. For any s ∈

T (1) \ T , fix s′ ∈ Tht(s) such that Dss′ = {α < ht(s) : s(α) 6= s′(α)} has size 1, fix

αs to be the ordinal in Dss′ and fix s′′ ∈ Tαs+1 such that s′′(αs) = s(αs). And if

s ∈ T , then denote s′ = s′′ = s. For any x, y ∈ T (1), let

Dxy = {α < min{ht(x), ht(y)} : x(α) 6= y(α)}.

Now for any s, t ∈ T (1),

Est = Dst ∪Dss′ ∪Dss′′ ∪Dtt′ ∪Dtt′′ .

Now use a finite structure to characterize s, t:

S(s, t) = 〈Est, s, t, s′, t′, s′′, t′′, A′, c, π〉 where s, t, s′, t′, s′′, t′′ are functions (may be

partial) on Est, A
′ is defined for x ∈ {s, t, s′, t′, s′′, t′′} and α ∈ Est by A′(x, α) =

A(x �α+1) and π(x) = 0 if x ∈ T , π(x) = 1 if x ∈ T (1) \ T .

Now we partition T (1) into isomorphic structures. And we just need to show that

for any s, t, u, v ∈ T (1), if S(s, t) is isomorphic to S(u, v) and s <lT (1) u, then

t ≤lT (1) v.

Fix s, t, u, v ∈ T (1) such that S(s, t) is isomorphic to S(u, v) and s <lT (1) u. We

will prove the case that s, t, u, v ∈ T (1) \ T , and we will see that the proof works

for the rest cases.

First, repeat the argument in Theorem 3.14, we can get that ∆(s, u) = ∆(t, v) =

∆(s′, u′) = ∆(t′, v′) and Est ∩ ∆(s, u) = Euv ∩ ∆(s, u). Let ξ = ∆(s, u). Note if

αs ≥ ξ (or αt ≥ ξ), then ∆(s′′, u′′) = ξ (or ∆(t′′, v′′) = ξ).

If t = v, then it is trivial. Now assume t 6= v. Now we will discuss by cases.

Case 1: ξ ∈ Est ∩ Euv
Assume ξ = Est(n) = Euv(n), then by structure isomorphism, s(ξ) = u(ξ). A

contradiction. So this case never happens.

Case 2: ξ 6∈ Est ∪ Euv.

Then t(ξ) = s(ξ) < u(ξ) = v(ξ). Hence t <lT (1) v.

Case 3: ξ ∈ Est \ Euv.
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First note that if αs 6= ξ, then s(ξ) = s′(ξ) and if α = ξ, then s(ξ) = s′′(ξ).

Similarly for t, u, v. Now we will discuss several subcases.

subcase 3.1: αs 6= ξ and αt 6= ξ.

Then s′ �ξ= u′ �ξ (recall ∆(s′, u′) = ξ) and s′(ξ) = s(ξ) < u(ξ) = u′(ξ). So

s′ <lT u
′. By c(s′, t′) = c(u′, v′), t′ ≤lT v′. Note also t′ �ξ= v′ �ξ and ξ = ∆(t′, v′).

So t′ <lT v
′ and t′(ξ) < v′(ξ). So t(ξ) < v(ξ) and hence t <lT (1) v.

subcase 3.2: αs 6= ξ and αt = ξ.

Then s′ <lT u′ and hence t′′ ≤lT v′′ (c(s′, t′′) = c(u′, v′′)). So t′′(ξ) < v′′(ξ)

(∆(t′′, v′′) = ξ). Note also t(ξ) = t′′(ξ) since ξ = αt and v(ξ) = v′′(ξ) since ξ 6∈ Euv.

So t(ξ) < v(ξ) and hence t <lT (1) v.

subcase 3.3: αs = ξ and αt 6= ξ.

Similar as subcase 3.2 using s′′, u′′ and t′, v′.

subcase 3.4: αs = ξ and αt = ξ.

Similar as before using s′′, u′′ and t′′, v′′.

Case 4: ξ ∈ Euv \ Est
Similar as case 3.

Now we have proved that in any possible case, t <lT (1) v. This finishes the proof

of the claim and hence the proof of lemma.

Remark: Canonical completion is necessary here. For example, if T ⊂ ω<ω1 is a

finite to one coherent tree. Then (T,<lT ) is Countryman. But if T contains no

stationary antichain, then T ∗ – its completion for ω + 1 – is not Countryman and

actually, (T ∗ �Λ+1, <lT ∗) is not Countryman.

Now we are ready to prove Theorem 3.17:

Proof of Theorem 3.17: (1) (b) → (a) follows from Theorem 3.14 or Corollary

3.15.

(a)→ (b). Assume T ∗ is the canonical completion of T . Then T ∗ is R-embeddable
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coherent and Countryman by Lemma 3.20. Let Aα = {q : ∃s ∈ T ∗s_q ∈ T ∗α+1}.

Let Cα be a cofinal sequence in Aα of order type 1 or ω. Then repeat the proof in

Lemma 3.19 using Aα (Cα) to replace Bs (Cs) for s ∈ T ∗α. It is easy to check that

the resulting tree is moreover coherent.

(2) (c)→ (d) is similar as (a)→ (b).

(d)→ (c) follows from Theorem 3.14.

(d)→ (e) follows from Theorem 3.14.

(e) → (d). Assume T ⊂ Q<ω1 and {qn : n < ω} is an enumeration of Q. Fix

A : T �Λc→ ω be a partition into chains. For any s ∈ T �Λ+1, let {sn : n < ω} lists

T s ∩ ∪
n<ω

Tht(s)+n. Xnm = {t ∈ T �Λc : t = sn for some s ∈ TΛ+1 and A(s) = m.}. It

is easy to see that each (Xnm, <lT ) can be embedded into (T �Λ+1, <lT ). So T �Λc

is Countryman by Proposition 3.16. Hence (d) holds (similar as (a) → (b)). This

finishes the proof of Theorem 3.17.

Theorem 3.17 has very interesting applications. For example, every coherent tree

– unless it is special – comes from (i.e., is a subset of) a coherent tree that is not

Countryman:

Corollary 3.21. If T is an R-embeddable coherent tree and T is not special, then

it has a super tree T ′ which is R-embeddable and coherent and (T ′ �Λ+1, <lT ′) is

not Countryman.

Proof. Going to a super tree we can assume T is Z-ranging (if no such super tree,

then T ′ = T works). Let T ′ be a completion of T for {−ω, ω} ∪ Z. Then we can

get that (T ′ �Λ+1, <lT ′) is not Countryman. Otherwise, going to a super tree T ′′,

by Proposition 2.4 and Theorem 3.17 (actually the proof of Theorem 3.17), T ′′T ′�Λ+1

is Z-ranging and has maximal and minimal immediate successor on a club (i.e.,

for some club C, for any s ∈ T ′′T ′�Λ+1
with height in C, s has maximal and minimal

immediate successor in T ′′T ′�Λ+1
). So T ′′T ′�Λ+1

is finitely branching and hence special.
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Hence T is special. A contradiction.



Chapter 4
From Countryman lines to R-embeddable

coherent trees

4.1 Special trees

Previously, we code the difference of two elements in a coherent tree and by using

coherence we can guarantee that there are at most countably many codes. And this

is how we get the Countryman property from the coherent property by assuming

some additional assumption. It is then natural to use the coherence to countably

code some other structure, such as special property:

Theorem 4.1. If T is a coherent tree, X is a subset of T such that ht(X) is a

club and X is special, then T is special.

Proof. Assume ht(X) = ω1 (otherwise, replace T by T ′ = T �ht(X) which is coherent

by Fact 2.2 and T ′ is special iff T is special by Fact 2.12). By going to a subset

assume |X ∩ Tα| = 1 for any α < ω1. And assume T ⊂ ω<ω1 since we can have T

tree isomorphic to some coherent T ′ ⊂ ω<ω1 and T is special iff T ′ is special. Let

X = ∪
1≤n<ω

An witness that X is special and define A : X → ω \ {0} by A(x) = n

53
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iff x ∈ An.

Define f : T → Vω
1 by induction on levels of T :

If t ∈ T0, then f(t) = {0}.

If f is defined on Tβ for any β < α. For any t ∈ Tα, let {x} = X ∩ Tα, Dt =

{γ < α : t(γ) 6= x(γ)} and assume γ0, ..., γn is an increasing enumeration of Dt.

f(t) = {A(x)} ∪ {(i, x(γi), t(γi), f(t �γi)) : i ≤ n}.

Since Vω is countable, it is suffice to prove that each preimage is an antichain.

Suppose otherwise, there are s <T t such that f(s) = f(t) and (ht(s), ht(t)) is least

(with respect to the product order). Let {x} = X ∩ Tht(s) and {y} = X ∩ Tht(t).

f(s) = f(t) implies A(x) = A(y) and hence x is incomparable with y. Let δ =

∆(x, y). It is easy to see that Ds∩δ = Dt∩δ. And δ is in Ds or Dt since x(δ) 6= y(δ)

while s(δ) = t(δ).

We will prove for the case that δ ∈ Ds and the other case is similar. Assume

δ = Ds(i). Then δ /∈ Dt since otherwise δ = Dt(i) and then x(δ) = y(δ) by

f(s) = f(t) which contradicts the definition of δ. Then Ds(i) < Dt(i) and hence

s �Ds(i)<T t �Dt(i) and f(s �Ds(i)) = f(t �Dt(i)) by f(s) = f(t). This contradicts the

assumption that (ht(s), ht(t)) is the least one with such property. This finishes the

proof of the theorem.

If we can find a Countryman line without the above mentioned property, then it will

contain no coherent suborder. However, it was found later that the Countryman

line has a even stronger property:

Theorem 4.2. For any Countryman line L and its partition tree T , there is a club

C such that, for any uncountable subset X ⊂ T , if X is special, then T �ht(X)∩C is

special. In particular, if X is special and ht(X) is a club, then T is special.

Let’s fix a partition c : L2 → ω of L2 into countably many chains.

1Here V is the universe and note Vω is countable.
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The following lemma will be needed:

Lemma 4.3. There is a club C such that for any x, y, z, w ∈ L, if c(x, y) = c(z, w),

x ⊥ z and y ⊥ w, then ∆C(x, z) = ∆C(y, w).

Proof. Let 〈Nα : α < ω1〉 be a continuous elementary chain, N0 contains all relevant

objects and each Nα is countable and C = {Nα ∩ ω1 : α < ω1}.

Suppose this C doesn’t work. Assume c(x, y) = c(z, w) = n. WLOG, assume

x <lT z and ∆C(x, z) < ∆C(y, w). Then there is some β = Nα ∩ ω1 such that

∆(x, z) < β ≤ ∆(y, w). Fix ξ = ∆(x, z) + 1 < β. Define

D = {t >T y �ξ: there are y′, w′ >T t, x′ >T x �ξ and z′ >T z �ξ such that

c(x′, y′) = c(z′, w′) = n}.

It is easy to see that D ∈ Nα and y �β∈ D. So D is uncountable. Pick a t ∈ D such

that t ⊥ y �β. We can assume t <lT y �β. According to definition of D, fix w′ >T t

and z′ >T z �ξ such that c(z′, w′) = n. Then c(x, y) = c(z′, w′). But x <lT z
′ and

y >lT w
′. A contradiction. This finishes the proof of the lemma.

Proof of Theorem 4.2: Let C be a club guaranteed by above lemma. Let A :

X → ω be a partition of X to countably many antichains. For any t ∈ T �ht(X)∩C ,

fix lt ∈ L such that t ≤T lt (lt exists because T is the partition tree of L) and fix

xt ∈ X such that ht(t) = ht(xt).

Now we can define a partition of T �ht(X)∩C into countably many antichains:

T �ht(X)∩C= ∪{B(m,n) : m < ω and n < ω} where B(m,n) = {t ∈ T �ht(X)∩C :

A(xt) = m and c(lxt , lt) = n}.

It is suffice to prove that each B(m,n) is an antichain.

Suppose towards a contradiction that there are s, t ∈ B(m,n) such that s <T t.

Note, xs ⊥ xt and hence ∆(lxs , lxt) < ht(s) ∈ C. By previous lemma, ∆(ls, lt) <

ht(s) since c(lxs , ls) = c(lxt , lt). This contradicts the fact that s <T t. This finishes

the proof of the theorem.
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Also above two theorems can be used to construct a type of Aronszajn trees whose

lexicographical order contains no coherent or Countryman suborder.

Above theorem can also be applied to coherent trees:

Corollary 4.4. If T is coherent and R-embeddable (or at least there is an uncount-

able Γ ⊂ ω1 such that T �Γ is special), then there is a club C such that for any

uncountable subset X ⊂ T , if X is special, then T �ht(X)∩C is special.

Proof. First prove the case when T is R-embeddable. Then T is tree isomorphic

to some ω-ranging R-embeddable coherent tree T ′. Then T ′ is Countryman by

Theorem 2.11 or Corollary 3.15. Now the corollary follows from the Theorem 4.2.

Then prove the case when T �Γ is special for some uncountable Γ ⊂ ω1. Then

T �Γ is R-embeddable where Γ is the closure of Γ, i.e., Γ = {α < ω1 : α ∈ Γ or

sup(Γ∩ α) = α}. Treat T �Γ as a new tree and repeat above argument we can get

the conclusion.

Remark: We will see that the R-embeddability required in above corollary is nec-

essary: start with a coherent Souslin tree2 T ⊂ ω<ω1 , let T ∗ be the completion of

T for Z. Then T ∗ contains an antichain of arbitrary nonstationary height, but T ∗

contains no uncountable special levels.

Above remark tells that a coherent tree which contains nonstationary antichain

(i.e., an antichain whose height is nonstationary) may contain no uncountable spe-

cial levels, and Theorem 4.1 tells that a coherent tree which contains a special

subset with club height is special. There is still a gap that whether a coherent

tree T which contains a stationary co-stationary antichain (or equivalently special

subset) contains uncountable special levels (i.e., an uncountable subset Γ ⊂ ω1

2The existence of a coherent Souslin tree follows from ♦ (just a slightly generalization of the
proof of existence of a Souslin tree in [16] or [15]) or see another construction in [5].
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such that T �Γ is special).

The answer is no. To prove this, let’s first introduce the following:

Definition 20. (1) For a stationary set S ⊂ ω1, a ♦S-sequence (or ♦(S)-sequence)

is a sequence 〈Sα : α ∈ S〉 such that Sα ⊂ α and for any X ⊂ ω1, {α ∈ S : X ∩α =

Sα} is stationary.

(2) For a stationary set S, ♦S asserts that there is a ♦S sequence.

The following can be found in [18]:

Fact 4.5 ([18]). If V = L, then ♦S holds for any stationary S.

Now we can give the proof:

Proposition 4.6. S is a stationary and co-stationary subset of ω1. Assume ♦S,

then there is a coherent tree T and a subset X ⊂ T such that, X is an antichain,

ht(X) = Λ \ S and T is not special when restrict to an uncountable set of levels,

i.e., for any A ∈ [ω1]ω1, T �A is not special.

Proof. Assume S consists of only limit ordinals. Fix a ♦S sequence 〈Aα : α ∈ S〉.

Now construct a coherent T and an antichain X ⊂ T with properties:

(1) ht(X) = Λ \ S and |X ∩ Tα| ≤ 1 for any α < ω1;

(2) for any α < β < ω1, there is a s ∈ ωβ−α 3 such that for any t ∈ Tα \ Xα,

tas ∈ Tβ \Xβ, where Xξ = X ∩ T �ξ+1;

(3) for any α < ω1, Xα is an antichain;

(4) for any α < ω1, Tα is coherent, i.e., {ξ < α : s(ξ) 6= t(ξ)} is finite for any

s, t ∈ Tα.

Let ϕ(α, β, s) denote the statement:

for any t ∈ Tα \Xα, tas ∈ Tβ \Xβ.

Now let’s start the construction:

3β − α is the ordinal ξ such that α+ ξ = β.
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T0 = {φ}, X0 = φ.

Now assume for any β < α, Tβ, Xβ has been defined and property (1),(2) are

preserved.

Case 1: α = β + 1 for some β.

Tα = {tan : t ∈ Tβ \ Xβ and n ∈ ω}, Xα = Xβ. It is easy to see that property

(1),(3),(4) are preserved. To see (2), fix η < γ ≤ α. Case γ < α follows from

induction and we can assume γ = α. By induction, we can find s such that

ϕ(η, β, s) holds. Then ϕ(η, γ, san) holds for any n < ω.

Case 2: α ∈ Λ \ S.

Fix 〈αn : n < ω〉 increasing and cofinal in α. Fix x0 ∈ Tα0 \Xα0 .

For each n < ω, pick an 6= bn such that ϕ(αn, αn+1, an) and ϕ(αn, αn+1, bn) (note by

construction of successor steps, there are infinitely many s such that ϕ(αn, αn+1, s)

holds). Tα = {saban 〈ai : n < i < ω〉 : s ∈ Tαn \Xαn and n < ω} ∪ {xa0 〈ai : i < ω〉}.

Xα =
⋃
β<αXβ ∪ {xa0 〈ai : i < ω〉}.

It is easy to see that property (1) holds. For (2), note for any ξ < α, ξ < αn for some

n, then there is some a such that ϕ(ξ, αn, a), then ϕ(ξ, α, aaban 〈ai : n < i < ω〉). For

(3), if there is some x ∈ Xα such that x <T x
a
0 〈ai : i < ω〉, then x <T x

a
0 〈ai : i < n〉

for some n < ω. This contradict the choice of ai. For (4), if s, t ∈ Tα, then by

definition of Tα, {ξ < α : s(ξ) 6= t(ξ)} = {ξ < αn : s �αn (ξ) 6= t �αn (ξ)} for some

n < ω. Hence (4) follows by induction hypothesis.

Case 3: α ∈ S.

Fix 〈αn : n < ω〉 increasing and cofinal in α. Fix x0 ∈ Tα0 .

Pick an by induction on n. If am is defined for any m < n, pick an to be any

a ∈ ωαn+1−αn such that:

(i) ϕ(αn, αn+1, a);

(ii) if Aα code a f : T �Γ∩α→ ω partition into antichains where Γ is an unbounded

subset of α (note we can assume at every stage ξ > 0 we have fixed a bijection
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between Tξ → [ωξ, ω(ξ+1)) and f is a subset of ωα×ω), then d(a) = min{f(t)+1 :

t ∈ T �Γ∩(αn,αn+1] and t ≤T xa0 〈ai : i < n〉aa} is the least we can achieve. (Here we

assume min(φ) = 0.)

Then Tα = {sa〈ai : n ≤ i < ω〉 : s ∈ Tαn \Xαn and n < ω}, Xα =
⋃
β<αXβ.

It is easy to see that property (1),(3) holds. For (2), note for any ξ < α, ξ < αn for

some n, then there is some a such that ϕ(ξ, αn, a), then ϕ(ξ, α, aa〈ai : n ≤ i < ω〉).

For (4), if s, t ∈ Tα, then by definition of Tα, {ξ < α : s(ξ) 6= t(ξ)} = {ξ < αn :

s �αn (ξ) 6= t �αn (ξ)} for some n < ω. Hence (4) follows by induction hypothesis.

This finishes the construction and T =
⋃
α<ω1

Tα, X =
⋃
α<ω1

Xα.

It is easy to see that T is coherent and X ⊂ T is an antichain and ht(X) = Λ \ S.

So we are left to show that for any Γ ∈ [ω1]ω1 , T �Γ is not special.

Suppose otherwise, there is a Γ ∈ [ω1]ω1 and f : T �Γ→ ω is a partition into

antichains. Then fix a continuous elementary chain 〈Nα : α < ω〉 such that N0

contains all relevant objects and let C = {sup(Nα∩ω1) : α < ω1}. Fix a α ∈ S∩C ′

such that Aα codes f �T �Γ∩α , where C ′ is the set of accumulate points of C (note

sup(Nα ∩ ω1) = α).

Let 〈αn : n < ω〉 and x0 be the fixed elements in the construction and an be the

chosen ones in the construction for each n < ω. Let x = xa0 〈an : n < ω〉. Let

β = min(Γ \ α). Pick y ∈ T x ∩ Tβ such that ϕ(α, β, y �[α,β)). Let f(y) = m.

There is a n0 < ω such that for any n > n0, d(an) defined in the construction

is either 0 or greater than m + 1. Since α ∈ C ′, we can pick δ < α such that

sup(Nδ ∩ ω1) > αn0+1. Let n1 < ω be such that αn1 < sup(Nδ ∩ ω1) ≤ αn1+1.

Then H(ω2) |= β > αn1 and there is some y ∈ Tβ such that f(y) = m and

ϕ(αn1 , β, y �[αn1 ,β)).

By elementarity, Nδ |= there is a β′ > αn1 and there is some y′ ∈ Tβ′ such that

f(y′) = m and ϕ(αn1 , β
′, y′ �[αn1 ,β

′)).

Pick such β′ and y′ in Nδ and hence β < sup(Nδ ∩ω1) ≤ αn1+1. Pick a c such that
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ϕ(β′, αn1+1, c). Then ϕ(αn1 , αn1+1, (y
′ �[αn1 ,β

′))
ac) and d((y′ �[αn1 ,β

′))
ac) ≤ m+ 1 <

d(an1) (note d(an1) cannot be 0 since Γ ∩ (αn1 , αn1+1] 6= 0). Contradict the choice

of an1 .

Here is a summary for speciality of a coherent tree under different conditions:

Corollary 4.7. Suppose T is a coherent tree and X ⊂ T is an uncountable subset

such that X is special.

(1) If ht(X) contains a club, then T is special.

(2) If ht(X) is stationary and T �Γ is special for some uncountable set Γ ⊂ ω1,

then T �ht(X)∩C is special for some club C.

(3) It is consistent that ht(X) is stationary and T contains no special uncountable

set of levels, i.e., T �Γ is not special for any uncountable Γ ⊂ ω1.

(4) For any uncountable set Γ ⊂ ω1, T �Γ is special iff for some downward closed

subtree T ′, T ′ �Γ is special. In particular, if T �Γ is special, T ∗ �Γ is special where

T ∗ is the completion of T .

Proof. (1) follows from Theorem 4.1, (2) follows from Corollary 4.1 and (3) follows

from Proposition 4.6. Let’s prove (4). Only the “if” part need a proof. Fix an

uncountable Γ ⊂ ω1 and assume T ′ �Γ is special where T ′ is a downward closed

subtree of T .

Fix a partition A : T ′ �Γ→ ω such that each A−1′′{n} is an antichain.

For each α < ω1, fix an injection πα : α + 1→ ω.

Define Dst = {ξ < ht(s), ht(t) : s(ξ) 6= t(ξ)} for any s, t ∈ T . Note if T is coherent,

then T ⊂ O<ω1 for some countable linear order O. Hence s(ξ) is defined.

Define f : T → ω by: f(t) = min{|Dst| : s ∈ T ′ht(t)}.4

Define g : T → ω1 by: g(t) = min{ξ ≤ ht(t) : f(t �ξ) = f(t)}.

Now we can define a partition of T �Γ into antichains. For any t ∈ T �Γ,

4Note for s ∈ T ′, htT (s) = htT ′(s). So we donot distinguish htT and htT ′ .
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(1) if t ∈ T ′, then let F (t) = A(t);

(2) if t /∈ T ′, then f(t) > 0. Fix t′ ∈ T ′ht(t) such that |Dtt′| = f(t). Enumerate Dtt′

in increasing order: ξ0 < ξ1 < ... < ξn. Note by definition of g(t), ξn ≤ g(t). Then

let F (t) = A(t′)a〈〈t(ξi), t′(ξi), πg(t)(ξi)〉 : i ≤ n〉.

According to above definition of F , the range of F is countable. It is suffice to

prove that each preimage is an antichain.

Suppose otherwise, there are s, t ∈ T �Γ such that F (s) = F (t) and s <T t. If

s ∈ T ′, then t ∈ T ′ by length of F (t). Then A(s) = A(t). A contradiction.

Now assume s /∈ T ′. Note f(s) = |F (s)|−1
3

= |F (t)|−1
3

= f(t). Then s <T t implies

g(s) = g(t). As F (s) = F (t) and πg(s) = πg(t), we can get that Dss′ = Dtt′

where s′, t′ are chosen to define F (s), F (t) respectively. Hence s′(ξ) = t′(ξ) for any

ξ ∈ Dss′ = Dtt′ . Note also for any ξ ∈ ht(s) \ Dss′ , s
′(ξ) = s(ξ) = t(ξ) = t′(ξ).

This shows that s′ <T ′ t
′. This contradicts that A(s′) = A(t′) and s′, t′ ∈ T ′ �Γ.

This finishes the proof of (4) and hence the proof of the corollary.

4.2 Basis for Countryman lines

Since there are some kinds of Countryman lines that are coherent, if there is some

Countryman line which is not coherent (or contains no uncountable coherent sub-

set), then it must be different from those that are both Countryman and coherent.

So it should be helpful to know different Countryman types, especially if we try

to find some Countryman line which contains no coherent subline. One interest-

ing problem about different Countryman types is the basis problem. This section

will define an equivalence relation on Countryman lines, investigate the size of the

equivalence class and relate it to size of basis.

Definition 21. For two Countryman lines L1, L2, say they are equivalent (written

as L1 ∼ L2) if they have something in common, i.e., there is an uncountable line
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L which can be embedded into both L1 and L2.5

We need the following to prove that “ ∼ ” is an equivalence relation.

Lemma 4.8. If L1, L2 are both Countryman, then the following are equivalent:

(1) L1 ∼ L2.

(2) There is a countable partition of L1 — L1 = ∪
n<ω

Xn — such that each (Xn, <L1)

can be embedded into (L2, <L2).

(3) L1 + L2 is Countryman where L1 + L2 is the lexicographical order of ({0} ×

L1) ∪ ({1} × L2).

(4) For any uncountable partial injection f : L1 → L2, there is a X ∈ [dom(f)]ω1

such that X is isomorphic to f ′′X via f .

Proof. (1) → (2). Assume c : L2
1 → ω witnesses that L1 is Countryman. Assume

L can be embedded into both L1 and L2 and WLOG assume L is a subline of L1.

Fix a bijection j : L1 → L. Define for each n < ω

Xn = {x ∈ L1 : c(x, j(x)) = n}.

Then each Xn is isomorphic to f ′′Xn ⊂ L and hence can be embedded into L2.

(2)→ (3) follows from Proposition 3.16.

(3)→ (4). Assume c : (L1 +L2)2 → ω witnesses that L1 +L2 is Countryman. Let

Xn = {x ∈ L1 : c(x, f(x)) = n}. Then pick X to be some uncountable Xn.

(4)→ (1). Trivial.

Equivalence follows easily:

Lemma 4.9. ∼ is an equivalence relation.

Proof. Only transitivity needs a proof. Now assume Li (i < 3) are Countryman and

L0 ∼ L1, L1 ∼ L2. Then by previous lemma, L0 +L1 and L1 +L2 are Countryman

5Or say they near each other as Shelah mentioned in [9].
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and hence L0 + L1 + L1 + L2 are Countryman (since L0 + L1 ∼ L1 + L2). Then

L0 + L2 is Countryman. Hence L0 ∼ L2 by previous lemma.

Fact 4.10. The size of equivalence (∼) class on Countryman is greater than or

equal to the size of basis for Countryman.

In most time, they have the same size. And we are actually going to investigate

the size of the equivalence class.

The filter defined on coherent trees introduced in [1] will be used to investigate the

equivalence relation:

Definition 22. For an Aronszajn tree T ,

U(T ) = {A ⊂ ω1 : A ⊃ ∆(X) for some uncountable X ⊂ T}.

I(T ) is its dual ideal, i.e., I(T ) = {X : Xc ∈ U(T )}.

The following fact comes from [1]:

Fact 4.11. [[1]] If T is Lipschitz (or coherent with no Suslin subtree), then U(T )

is a filter.

Following gives the connection between filter U(T ) and non-equivalent Countryman

lines.

Definition 23. Assume T ⊂ Q<ω1 is an Aronszajn tree and X ⊂ ω1. T (X) is

defined to be the Aronszajn tree T (X) = {tX : t ∈ T} where for α < ht(t)

tX(α) =

 t(α) : α 6∈ X

−t(α) : α ∈ X

i.e., preserve the tree order and lexicographical order on levels in Xc while change

the lexicographical order on levels in X to its reverse. We will simply use <TX

(or <T since tree order is not changed) and <lX to denote the tree order and

lexicographical order of T (X) respectively.
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Lemma 4.12. Assume T is a Lipschitz tree such that (T (X) �Λc , <lX) is Country-

man for any X ⊂ ω1. Then for any X, Y ⊂ ω1, (T (X) �Λc , <lX) ∼ (T (Y ) �Λc , <lY )

iff X∆Y ∈ I(T ).

Proof. Fix X, Y ⊂ ω1.

(⇒). Fix bijection π between them mapping tX to tY . By (4) of Lemma 4.8, there

is some uncountable A ⊂ T such that π is an isomorphism between ({tX : t ∈

A}, <lX) and ({tY : t ∈ A}, <lY ). It is easy to check that ∆(A) ∩ (X∆Y ) = φ. So

X∆Y ∈ I(T ).

(⇐). Pick an uncountable A ⊂ T such that ∆(A) ∩ (X∆Y ) = φ. Then ({tX : t ∈

A}, <lX) is isomorphic to ({tY : t ∈ A}, <lY ). Then (T (X) �Λc , <lX) ∼ (T (Y ) �Λc

, <lY ).

Assumption in above lemma is easily satisfied for coherent trees that are Country-

man (on nonstationary levels) by Theorem 3.17 (going to a super tree if necessary).

Surprisingly, we will see the assumption is easily satisfied by just Countryman too.

Lemma 4.13. If T is a partition tree of some Countryman line L, then there is

some club C such that for any X ⊂ ω1, (T �C (X) �Λc , <lX) is Countryman.

Proof. Pick a club C1 such that T �C is R-embeddable. By Proposition 3.16,

(T �C1�Λc , <lT ) is Countryman. Let c : T �C1�Λc→ ω witness this. Pick a subclub

C with property mentioned in Lemma 4.3. Now we are going to prove that this C

works. Let A : T �C�Λc→ ω witness the R-embeddability.

Fix any X ⊂ ω1. Define cX : T �C (X) �Λc→ ω3 by for any sX , tX ∈ T �C (X) �Λc

cX(sX , tX) = (A(s), A(t), c(s, t)).

Now assume cX(sX , tX) = cX(s′X , t
′
X) and sX <lX s′X . t = t′ is trivial so assume

t 6= t′. Then s ⊥ s′ since A(s) = A(t) and similarly t ⊥ t′. By Lemma 4.3,

∆C(s, s′) = ∆C(t, t′). So either ∆C(s, s′) ∈ X hence s >lT s
′, t ≥lT t′ and hence
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tX ≤lX t′X or ∆C(s, s′) 6∈ X hence s <lT s′, t ≤lT t′ and hence tX ≤lX t′X . This

finishes the proof of the lemma.

The following fact can be used to compute the size of equivalence class of Coun-

tryman lines (see also in [10]):

Fact 4.14. If I is a σ-complete proper ideal on ω1, then there are ω1 many disjoint

sets in I+ (= P(ω1) \ I). In particular, |P(ω1)/I| = 2ω1.

Proof. Use Ulam’s matrix.

Corollary 4.15. Assume there is a nonspecial Countryman line6. Then there are

2ω1 many pairwise non-equivalent Countryman lines. In particular, the basis for

Countryman lines has size at least 2ω1.

Proof. Fix a non-special Countryman line L and its partition tree T . By previ-

ous lemma, going to a club restriction subtree we can assume (T (X) �Λc , <lX) is

Countryman for any X ⊂ ω1.

Claim 1: For any X ⊂ ω1, if X ∈ I(T ), then T �X is special.

proof of claim 1: Fix X ∈ I(T ) and uncountable A ⊂ T such that ∆(A) ∩X = φ.

Then TA never split at levels in X and hence the partition of TA �X+1 induces a

partition of TA �X . So TA �X is special and by Theorem 4.2 T �X is special.

Now let I = {X ⊂ ω1 : T �X is special.} be the ideal consists of sets of special

levels. I is proper since T is nonspecial. By Lemma 4.12 and claim 1, we have that

the size of equivalence classes ≥ |P(ω1)/I(T )| ≥ |P(ω1)/I|. Note I is σ-complete.

Then the corollary follows from above fact.

We just introduced one type of non-equivalence – T (X) � T (Y ) for some specific

T and X, Y such that X∆Y 6∈ I(T ). Note their partition trees may be tree

isomorphic. Now we are going to introduce a new type of non-equivalence.

6Nonspecial means some (equivalently every) partition tree is not special.
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Definition 24. For two Lipschitz trees T, T ′

(1) say T ≡ T ′ if there is an uncountable partial tree isomorphism, i.e., an un-

countable partial level preserving map π : T → T ′ such that for any x, y ∈ dom(π),

∆(x, y) = ∆(π(x), π(y)) 7.

(2) say T ≡C T ′ if for some club C, T �C≡ T ′ �C .

(3) say T < T ′ if there is an uncountable partial level preserving map π : T → T ′

such that for any x, y ∈ dom(π), ∆(x, y) < ∆(π(x), π(y)).

(4) say T <C T
′ if for any club C, T �C< T ′ �C .

Here are some properties of ≡,≡C , < and <C :

Fact 4.16. Assume Ti (i < 2) are two Lipschitz trees.

(1) ≡,≡C are equivalence relations and <,<C are partial orderings.

(2) If T0 < T1 and T1 ≡ T2, then T0 < T2. Similarly for >. If T0 <C T1 and

T1 ≡C T2, then T0 <C T2. Similarly for >C.

(3) If Ti (i < 2) are partition trees for Countryman lines Li (i < 2) such that

L0 ∼ L2, then T0 ≡C T1.

(4) If T0 <C T1, then for any Ai ∈ [T ]ω1 (i < 2), (A0, <lT0) � (A1, <lT1) (if they

are Countryman).

(5) If T0 <C T1 and P is a c.c.c. poset, then V P � T0 <C T1.

(6) If T0 < T1 and π : T0 → T1 is any uncountable level preserving partial mapping,

then there is an uncountable A ⊂ dom(π) such that π �A witnesses T0 < T1.

Proof. (1) For “≡”, only transitivity needs a proof. Fix T0 ≡ T1 via π and T1 ≡ T2

via σ. For any s ∈ dom(π), fix a s′ ∈ (T1)dom(σ) such that ht(s) = ht(s′) and

s′′ ∈ (T2)rang(σ) such that s′′ = σ(x) �ht(s′) for some x ∈ dom(σ) ∩ T s′ . Then

f : rang(π) → T1 defined by f(π(s)) = s′ is a level preserving map on T1. By

Lipschitz, there is an uncountable A ⊂ dom(π) such that f is tree isomorphic on

7π will induce a tree isomorphism between Tdom(π) and T ′
rang(π).
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π′′A. Going to an uncountable subset we can assume that A, π′′A,A′ = {s′ : s ∈ A}

and A′′ = {s′′ : s ∈ A} are antichains. Then the map sends every s ∈ A to s′′ is an

uncountable partial tree isomorphism. So T0 ≡ T2 and hence ≡ is an equivalence

relation.

For “ ≡C ”, just note that if C ′ ⊂ C are clubs, then T �C≡ T ′ �C implies T �C′≡

T ′ �C′ .

For “ < ”, the proof of transitivity is the same as ≡. The irreflexivity follows from

Lipschitz.

For “ <C ”, just use the definition and the fact that < is a partial ordering.

(2) The construction for (1) works for (2) too.

(3) Follows from Proposition 2.4.

(4) Follows from (2) and (3).

(5) Note that if C ′ ⊂ C are clubs, then T �C′< T ′ �C′ implies T �C< T ′ �C . Then

(5) follows from the fact that every club in a c.c.c. forcing extension contains a

subclub in the ground model.

(6) Let σ : T0 → T1 witnesses T0 < T1. For any s ∈ dom(π), fix s′ ∈ (T0)dom(σ).

Going to an uncountable subset A′ ⊂ dom(π) and by Lipschitz, we can assume

for any s0, s1 ∈ A′, ∆(s0, s1) = ∆(s′0, s
′
1). For any t = π(s), let t′ = σ(s′).

Going to an uncountable subset A ⊂ A′ and by Lipschitz, we can assume for any

t0, t1 ∈ π′′A, ∆(t0, t1) = ∆(t′0, t
′
1). Then for any s0, s1 ∈ A, ∆(s0, s1) = ∆(s′0, s

′
1) <

∆(σ(s′0), σ(s′1)) = ∆(π(s0), π(s1)).

Note ≡,≡C , < and <C are relations concern tree orders, they have nothing to do

with the lexicographical order. So (4) of above fact actually says that some tree

property may in some sense decide linear order property.

Definition 25. gen(Fclub) = min{|F | : F generates Fclub} where F generates Fclub
means that every club (on ω1) contains a subclub in F .
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Now we can get non-equivalent Countryman lines by iterated forcing a set of co-

herent trees linearly ordered by <C .

Lemma 4.17. Assume κ, λ are two cardinals (may be finite). If 〈Si : i < κ〉 is

<C-increasing sequence of Lipschitz trees, 〈Tj : j < λ〉 is <C-decreasing sequence

of Lipschitz trees and Si <C Tj for any i < κ, j < λ, then there is a c.c.c. poset P

of size max{κ, λ, gen(Fclub)} which forces an R-embeddable coherent tree T such

that Si <C T <C Tj for any i < κ, j < λ.

Proof. First fix a poset which forces an R-embeddable coherent tree (see also 3.17):

P0 = {p : p : [ω1]2 → ω is a finite partial function such that

(1) p(·, β)8 is one to one, i.e., if (α, β) 6= (α′, β) ∈ dom(p), then p(α, β) 6= p(α′, β),9

(2) for any α ∈ dom0(p) = {ξ : ∃δ (ξ, δ) ∈ dom(p)}, for any β ∈ dom1(p) = {δ :

∃ξ (ξ, δ) ∈ dom(p)}, if α < β, then (α, β) ∈ dom(p).}.

The order is that for p, q ∈ P0, p ≤0 q iff

(1) q ⊂ p and

(2) for any β, γ ∈ dom1(q), for any α ∈ dom0(p) \ dom0(q), p(α, β) = p(α, γ).

Then fix a set F of clubs which generates the club filter and has size gen(Fclub).

Now for any i < κ.j < λ, for any α < ω1, fix siα ∈ (Si)α and tjα ∈ (Tj)α. For any

club C ∈ F , by (6) of previous fact, choose XijC ∈ [ω1]ω1 such that for any α < β

in XijC , ∆C′(s
i
α, s

i
β) < ∆C′(t

j
α, t

j
β) where C ′ = {α ∈ C : sup(C ∩ α) = α}.

The required forcing will be as following:

P = {p = (p0, Ap, Bp, Cp, 〈Xp
ijC : i ∈ Ap, j ∈ Bp, C ∈ Cp〉) : p0 ∈ P0, Ap ∈

[κ]<ω, Bp ∈ [λ]<ω, Cp ∈ [F ]<ω and Xp
ijC ∈ [XijC ]<ω satisfying that

(1) Xp
ijC ⊂ dom1(p0) and

(2) for any β, γ ∈ Xp
ijC , ∆C(siβ, s

i
γ) < ∆C(p0(·, β), p0(·, γ)) < ∆C(tjβ, t

j
γ). }.

8Recall that for unordered pair {α, β}, we may always write it ordered as (α, β) for α < β.
9Here one to one is to make sure the final tree is R-embeddable. Another way is to use

Theorem 4.1 to make the final tree special.
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Note condition (2) implies that there is some α < β, γ such that p0(α, β) 6= p0(α, γ).

The order is that for p, q ∈ P , p ≤ q if p0 ≤0 q
0 and Aq ⊂ Ap, Bq ⊂ Bp, Cq ⊂ Cp

and Xq
ijC ⊂ Xp

ijC for any i ∈ Aq, j ∈ Bq, C ∈ Cq.

To prove that this P works. First, it is easy to see that |P| = max{κ, λ, gen(Fclub)}.

Second, let’s prove that P is c.c.c.. Fix {pα : α < ω1} ⊂ P . Going to a stationary

subset Γ ⊂ ω1 we can assume that

(1) dom(p0
α), dom0(p0

α), dom1(p0
α)(α ∈ Γ) form ∆-systems respectively, p0

α(α ∈ Γ)

are constant when restrict to the root and for α < β in Γ, they don’t overlap, i.e.,

dom0(p0
α), dom1(p0

α) < β ≤ dom0(p0
β)\ root of dom0, dom1(p0

β)\ root of dom1,

(2) Apα , Bpα , Cpα(α ∈ Γ) form ∆-systems respectively,

(3) for each i, j, C in the corresponding root, Xpα
ijC(α ∈ Γ) forms a ∆-system with

the same size and they don’t overlap.

Now letA0, B0, C0 be the roots of Apα , Bpα , Cpα respectively. D =
⋂
C0 and D′ =

{α ∈ D : sup(D ∩ α) = α}.

Now fix some i, j, C in the root, assume Xpα
ijC \ α = {α0, ..., αn−1}. Going to a

stationary subset Γ′1 ⊂ Γ, we can find a τ < ω1 such that

(4) dom0(p0
α) ∩ [τ, α) = φ, dom1(p0

α) ∩ [τ, α) = φ,

(5) Xpα
ijC ∩ α < τ and are constant (for α ∈ Γ′1),

(6) the splitting points of {siαk �α: k < n} are below τ and {siαk �τ : k < n} are

constant (for α ∈ Γ′1) (so we can assume {siαk �α: k < n} = {sα(k) : k < n′} for

some n′ ≤ n),

(7) the splitting points of {tjαk �α: k < n} are below τ and {tjαk �τ : k < n} are

constant (for α ∈ Γ′1) (so we can assume {tjαk �α: k < n} = {tα(k) : k < n′′} for

some n′′ ≤ n).

Repeat above procedure for each i, j, C in the root (which is finite) and we get a

stationary Γ1.

Then going to an uncountable subset Γ2 ⊂ Γ1 and by Lipschitz, we can assume



4.2 Basis for Countryman lines 70

that for each i, j, C in the root, {sα(k) : α ∈ Γ2} {tα(k′) : α ∈ Γ2} are antichains

for each k < n′, k′ < n′′ and

(8) for any k0 < k1 < n′, for any α < β in Γ2, ∆(sα(k0), sβ(k0)) = ∆(sα(k1), sβ(k1)),

(9) for any k0 < k1 < n′′, for any α < β in Γ2, ∆(tα(k0), tβ(k0)) = ∆(tα(k1), tβ(k1)),

(10) for each k < n, the mapping sends siαk to tjαk (with domain {siαk : α ∈ Γ2})

witnesses Si �D′< Tj �D′ .

Now pick α < β in Γ2 and we want to find some p < pα, pβ. First let Ap = Apα∪Apβ ,

Bp = Bpα ∪Bpβ and Cp = Cpα ∪Cpβ . Then extend p0
α, p

0
β to q0 such that domi(q

0)

(i < 2) is their union and q0(ξ, δ) = nξ where (ξ, δ) is new added and nξ’s are

different (for different ξ’s) natural numbers not appeared in rang(p0
α), rang(p0

β).

For i, j, C,

(a) if 〈i, j, C〉 ∈ Apα ×Bpα × Cpα \ Apβ ×Bpβ × Cpβ , then Xp
ijC = Xpα

ijC ,

(b) if 〈i, j, C〉 ∈ Apβ ×Bpβ × Cpβ \ Apα ×Bpα × Cpα , then Xp
ijC = X

pβ
ijC ,

(c) if 〈i, j, C〉 6∈ Apα ×Bpα × Cpα ∪ Apβ ×Bpβ × Cpβ , then Xp
ijC = φ,

(d) if 〈i, j, C〉 ∈ Apα ×Bpα ×Cpα ∩Apβ ×Bpβ ×Cpβ (i.e., in the root), then Xp
ijC =

Xpα
ijC ∪X

pβ
ijC and extend q0 to p0: let δ = ∆C′(tα(0), tβ(0)) > ∆C′(sα(0), sβ(0)) = δ′

and choose ξC ∈ (∆(sα(0), sβ(0)), C(∆C(tα(0), tβ(0)))) ∩ C; define p0(ξC , η) = m0

for η ∈ dom1(p0
α)\dom1(p0

β) and p0(ξC , η) = m1 for η ∈ dom1(p0
β)\dom1(p0

α) where

m0,m1 are two different natural numbers that never appeared before.

We first need that p ∈ P . We have from the construction that p0 ∈ P0, Ap ∈

[κ]<ω, Bp ∈ [λ]<ω, Cp ∈ [F ]<ω, Xp
ijC ∈ [ω1]<ω and Xp

ijC ⊂ dom1(p0). Now we want

to prove (2) of definition P is satisfied. Fix i, j, C and θ, γ ∈ Xp
ijC . If i, j, C falls

in case (a)-(c), then it is trivial. Now assume i, j, C are as in case (d). If β, γ are

both in dom1(p0
α) (or dom1(p0

β)), then it is trivial.

To make notation simple, assume θ = αk, γ = βl and γ′ = αl for some k, l < n.

Now we will discuss by cases.

Case 1: ∆(tjθ, t
j
γ′) < τ .



4.2 Basis for Countryman lines 71

∆C(siθ, s
i
γ) = ∆C(siθ, s

i
γ′) < ∆C(p(·, θ), p(·, γ′)) = ∆C(p(·, θ), p(·, γ)) < ∆C(tjθ, t

j
γ′) =

∆C(tjθ, t
j
γ).

Case 2: ∆(p(·, θ), p(·, γ′)) < τ ≤ ∆(tjθ, t
j
γ′).

Then ∆(siθ, s
i
γ) = ∆(siθ, s

i
γ′), ∆(p(·, θ), p(·, γ′)) = ∆(p(·, θ), p(·, γ)) ≤ ξC and ∆(tjθ, t

j
γ) =

∆(tjγ′ , t
j
γ) > ξC . Hence (2) of definition P follows.

Case 3: ∆(siθ, s
i
γ′) < τ ≤ ∆(p(·, θ), p(·, γ′)).

Then ∆(siθ, s
i
γ) = ∆(siθ, s

i
γ′) < τ , ∆(p(·, θ), p(·, γ′)) = ∆(p(·, θ), p(·, γ)) = ξC and

∆(tjθ, t
j
γ) = C ′(δ). Hence (2) of definition P follows.

Case 4: ∆(siθ, s
i
γ′) ≥ τ .

Then ∆(siθ, s
i
γ) = C ′(δ′), ∆(p(·, θ), p(·, γ)) = ξC and ∆(tjθ, t

j
γ) = C ′(δ). Hence (2)

of definition P follows.

Hence p is a condition in P . And it is easy to see from the construction that

p < pα, pβ. So P is c.c.c..

Finally we need to prove that this P forces a coherent tree we want. Assume G

is a generic filter. First note for any α < β < ω1, Dαβ = {p : (α, β) ∈ dom(p0)}

is dense and hence a = ∪{p0 : p ∈ G} is a one to one coherent map (see also

Theorem 2.15) which induces the desired R-embeddable coherent tree T = T (a).

For each i < κ, j < λ, to prove Si <C T <C Tj, we just need for each C ∈ F ,

X ′ijC = ∪{Xp
ijC : p ∈ G} is uncountable. It is suffice to prove that for any α < ω1,

EijCα = {p : i ∈ Ap, j ∈ Bp, C ∈ Cp and Xp
ijC 6⊂ α} is dense. Given p ∈ P and

extend p if necessary we can assume i ∈ Ap, j ∈ Bp, C ∈ Cp. Pick some β large

enough in XijC . Extend p to q such that

(1) Xq
ijC = Xp

ijC ∪ {β} and the rest are the same as p,

(2) for each ξ ∈ Xp
ijC , fix δξ ∈ C such that ∆(siξ, s

i
β) < δξ < C(∆C(tjξ, t

j
β)).

Define dom0(q0) = dom0(p0) ∪ {δξ : ξ ∈ Xp
ijC} and dom1(q0) = dom1(p0) ∪ {β}.

Define q0(δξ, β) = nξ, q
0(δξ, ξ

′) = n′ξ for ξ ∈ Xp
ijC , ξ

′ ∈ dom1(p0) where nξ, n
′
ξ

are different (and different for different ξ’s) natural numbers that never appeared
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before. q0(γ, β) is arbitrarily defined to satisfy the definition of P for γ ∈ dom0(p0).

It is easy to check that q < p and q ∈ EijCα. So EijCα is dense. This finishes the

proof of the lemma.

Using the fact that <C is preserved by c.c.c. forcing, we can add many differen-

t Countryman lines by iterating (with finite support) above forcing poset. Note

MAgen(Fclub) can be achieved by finitely support iterating c.c.c. forcing with suffi-

cient length since c.c.c. forcing won’t change gen(Fclub).

Corollary 4.18. (1) Assume MAgen(Fclub). Every basis for Countryman lines has

size 2ω1.10

(2) Assume MAgen(Fclub). There are 2ω1 many Aronszajn trees such that any two

of them contain no uncountable isomorphic subtree when restrict to a club.

Remark: It has been proved in [11] that it is consistent with MAκ that any two

Aronszajn trees contain isomorphic subtree (restrict to a club). Above corollary

provides a new view of this problem.

Now we are going to investigate the consistency of “least size of basis for Country-

man lines is not 2 or 2ω1”. First let’s fix some notation.

Definition 26. (1)K = {P : P is a poset of size ω1 and P has property (K) which

is guaranteed by a set in H(ω2)}11.

(2) MAK(ω1) is the statement that for any poset P ∈ K, for any D connection of

ω1 many dense subsets of P , there is a filter G which meets each dense set D ∈ D.

Lemma 4.19. Assume MAK(ω1) and for any two R-embeddable coherent tree tree

S, T , S ≡C T . Then {(T (X), <X) : X ⊂ ω1} is a basis for Countryman lines where

T is arbitrary R-embeddable coherent tree. In particular, the least size of basis for

Countryman lines is |P(ω1)/I(T )|.
10 This is related to a claim of [1].
11X guarantees that P has property (K) if any model that contains P and X satisfies that P

has property (K).
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Proof. According to the proof of Theorem 2.15, for any Countryman line L and

its Lipschitz partition tree S, the poset which forces S to be coherent is in K (note

the property (K) is guaranteed by the Countryman property – the partition of L2

into countably many chains – which has size ω1). So every Countryman line is

coherent.

Note every R-embeddable tree is special since the poset which forces such tree to

be special is in K.

Now given any Countryman line L and its R-embeddable coherent partition tree

S. Pick a club C such that S �C≡ T �C . By ≡, let A,B be uncountable subset of

S �C , T �C respectively such that (S �C)A is tree isomorphic to (T �C)B via π. Let

S ′ = (S �C)A, T
′ = (T �C)B. It is suffice to prove that (S ′, <lS′) ∼ (T ′(X), <lX)

for some X ⊂ ω1.

To find the X, let’s first prove this:

Claim 1: S ′ contains an uncountable binary subtree.

proof of claim 1: Let P = {p ∈ [S ′]<ω : S ′p is binary.} and the order is p ≤ q

iff p ⊃ q. Let’s check the property (K). Fix {pα : α < ω1} ⊂ P . Going to an

uncountable subset we can assume pα’s form a ∆-system with root r and all have

same size n. By coherence, we can find a stationary Γ ⊂ ω1 and α0 < ω1 such that

(1) for any α ∈ Γ, for any s, t ∈ pα \ r, s �[α0,α)= t �[α0,α);

(2) for any α, β ∈ Γ, S ′pα �α0= S ′pβ �α0 .

Going to an uncountable subset Γ1 ⊂ Γ such that ∪{(pα \ r) �α: α ∈ Γ1} is an

antichain. So any two elements in {pα : α ∈ Γ1} are compatible. Then P has

property (K) and note this is witnessed by coherence and R-embeddability which

can be coded in H(ω2). So P ∈ K. Note P is c.c.c., so there is a p ∈ P which

forces the generic filter to be uncountable. Then P(≤ p) = {q ∈ P : q ≤ p} will

force an uncountable binary subtree (note P(≤ p) ∈ K). A filter which meets each

Dα = {p : p 6⊂ T �α} will give an uncountable subset whose downward closure is
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binary. This finishes the proof of claim 1.

Now let S ′′ be an uncountable binary subtree of S ′ and T ′′ = π′′S ′′. Note for any

s ∈ S ′′, π either preserves the lexicographical order of immediate successor of s

or maps the lexicographical order of immediate successor of s reversely. This is

the reason we choose a binary subtree. Let A = {s ∈ S ′′ : s has two immediate

successor s0 <lS s1 in S ′′ such that π(s0) >lT π(s1).}. Now we need to find a

subtree such that splitting points on the same level behaves the same way, i.e., π

preserves (or reversely maps) the lexicographical order of immediate successor on

the entire level.

Define a poset Q = {p ∈ [S ′′]<ω : for any si ∈ p (i < 4), if ∆(s0, s1) = ∆(s2, s3),

then s0 ∧ s1 ∈ A iff s2 ∧ s3 ∈ A.}. Recall that s ∧ t = s �∆(s,t).

Claim 2: Q ∈ K.

proof of claim 2: First it is easy to see that |Q| = ω1. Now fix {pα : α < ω1} ⊂ Q.

So (S ′′, <lS) is Countryman. Fix c0 : S ′′2 → ω a partition into chains and similarly

c1 : T ′′2 → ω a partition into chains. Going to an uncountable subset we can

assume pα’s form a ∆-system with root r and all have same size n. By coherence,

we can find a stationary Γ ⊂ ω1 and α0 < ω1 such that

(1) for any α ∈ Γ, for any s, t ∈ pα\r, s �[α0,α)= t �[α0,α) and π(s) �[α0,α)= π(t) �[α0,α);

(2) for any α, β ∈ Γ, S ′′pα �α0= S ′′pβ �α0 and T ′′π(pα) �α0= T ′′π(pβ) �α0 ,

(3) for any α, β ∈ Γ, c0 �p2
α
= c0 �p2

β
and c1 �π(pα)2= c1 �π(pβ)2

12,

(4) they don’t overlap, i.e., for any α < β in Γ, for any s ∈ pα, t ∈ pβ \ r,

ht(s) < β ≤ ht(t).

For any α < β in Γ, we want to show pα ∪ pβ ∈ Q and hence pα is compatible

with pβ. Pick si ∈ pα ∪ pβ (i < 4) such that ∆(s0, s1) = ∆(s2, s3). The only

nontrivial case is ∆(s0, s1) = ∆(pα(0), pβ(0)) = ξ ∈ [α0, α) where pα(0) is the <lS-

least element of pα \ r. WLOG, assume s0, s2 ∈ pα and s1, s3 ∈ pβ. Let s′0, s
′
2 ∈ pβ

12Here “=” actually means isomorphic.
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be the corresponding elements of s0, s2 in pα, i.e., s′0 = pβ(n) iff s0 = pα(n). So

s1 �β= s′0 �β and s3 �β= s′2 �β. Then s0 ∧ s1 = s0 ∧ s′0, s2 ∧ s3 = s2 ∧ s′2. By (3),

s0 <lS s′0 iff s2 <lS s′2 and π(s0) <lT π(s′0) iff π(s2) <lT π(s′2). WLOG, assume

s0 <lS s
′
0. Then either π(s0) <lT π(s′0) or π(s0) >lT π(s′0). Hence either s0∧s′0 6∈ A

and s2∧s′2 6∈ A or s0∧s′0 ∈ A and s2∧s′2 ∈ A. So pα∪pβ ∈ Q. This proves that Q

has property (K). Note property (K) is guaranteed by coherence and Countryman

which can be expressed by a set of size ω1. This finishes the proof of claim 2.

Like in claim 1, we can find an uncountable subset B ⊂ S ′′ such that for any

si ∈ B (i < 4), if ∆(s0, s1) = ∆(s2, s3), then s0 ∧ s1 ∈ A iff s2 ∧ s3 ∈ A. Let

A′ = {s ∈ S ′′B : s has two immediate successor s0 <lS s1 in S ′′B such that π(s0) >lT

π(s1).}. Let X = {α < ω1 : ∃s ∈ A′ htS′′(s) = α}. So S ′′ is lexicographically

isomorphic to T ′′π′′B(X) via π. Hence S ∼ S ′′B ∼ T ′′π′′B(X) ∼ T (X ′) where X ′ =

∪{[C(α), C(α+ 1)) : α ∈ X}. So {T (Y ) : Y ⊂ ω1} is a basis for Countryman line.

The in particular part follows from Lemma 4.12.

Now we are going to force a model which satisfies assumption of previous lemma

and |P(ω1)/I(T )| = 4.

First, let’s start from a model which satisfies GCH and contains a special complete

coherent tree T such that there is X0 ⊂ ω1, X0 6∈ I(T ) and X1 = Xc 6∈ I(T ) where

Xc = ω1 \ X (for example, we can choose L). We then fix a well ordering < on

H(ω2). Then fix a surjection f : ω2 → ω2 × ω2 × 3 such that each preimage has

size ω2.

Then let’s introduce some notation:

Definition 27. (1) For a special complete coherent tree S, PS = {p = (cp, fp) :

cp ∈ [ω1]<ω, fp is a finite level preserving partial mapping from S to T such that

for any s, t ∈ dom(fp), for any α ∈ cp, ∆(s, t) < α iff ∆(fp(s), fp(t)) < α}.

p ≤ q iff cp ⊃ cq and fp ⊃ fq.
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(2) For an uncountable X ⊂ ω1, PX = {p ∈ [T ]<ω : ∆(p) = {∆(s, t) : s ⊥ t in

p} ⊂ X}.

p ≤ q iff p ⊃ q.

Our goal is to get the assumption in Lemma 4.19 and

P(ω1)/I(T ) = {φ/I(T ), X0/I(T ), X1/I(T ), ω1/I(T )}.

The assumption in lemma 4.19 can be achieved by iterating PS for every possi-

ble complete special coherent tree S and every possible poset P with property

(K). And by iterating PX for X ∩ Xi 6∈ I(T ) (i < 2) we can get P(ω1)/I(T ) ⊂

{φ/I(T ), X0/I(T ), X1/I(T ), ω1/I(T )}. So the only problem is to preserve Xi 6∈

I(T ) (i < 2). Let’s first see the two step iteration case.

Lemma 4.20. For any special complete coherent tree S, PS is proper. Moreover,

for large enough regular θ, for countable M≺ H(θ), p ∈ PS is (M,PS)-generic iff

M∩ ω1 ∈ cp.

Proof. Fix large regular θ and countable M ≺ H(θ). Assume δ = M∩ ω1. Fix

A : S → ω witnesses that S is special and A′ : T → ω witnesses that T is special.

We just need to prove the moreover part since for any p ∈ PS, (cp ∩ {δ}, fp) ∈ PS.

For the moreover part, fix p ∈ PS. First, assume δ ∈ cp. Fix D ∈M dense in PS.

It is suffice to assume p ∈ D and find some q ∈ D ∩M compatible with p. Let

α < δ be such that

(1) for any s ∈ dom(fp), ht(s) < α or ht(s) ≥ δ;

(2) cp ∩ δ < α;

(3) for any s, t ∈ dom(fp), s �[α,δ)= t �[α,δ) and fp(s) �[α,δ)= fp(t) �[α,δ).

Assume dom(fp) \ S �δ= {si : i < n}. By elementarity, find a q ∈ M ∩ D such

that there is δ′ > α and

(i) p and q agree below α, i.e., cp ∩ α = cq ∩ α, Sdom(fp) �α= Sdom(fq) �α and

Trang(fp) �α= Trang(fp) �α;
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(ii) (1)(2)(3) mentioned above holds for q when replace p, δ by q, δ′;

(iii) dom(fq) has the same tree structure as dom(fp) and dom(fq) \ S �δ= {s′i :

i < n}, A(si �δ) = A(s′i �
′
δ) for any i < n and A′(fp(si) �δ) = A′(fq(s

′
i) �
′
δ) for any

i < n.

Note for any i, j < n, either ∆(si, s
′
j) < α when ∆(si, s

′
j) = ∆(si, sj) and

∆(fp(si), fq(s
′
j)) = ∆(fp(si), fp(sj)) or ∆(si, s

′
j) ∈ [α, δ′). Hence, it is easy to check

that (cp ∪ cq, fp ∪ fq) ∈ PS.

Second, assume p is (M,PS)-generic. Suppose towards a contradiction that δ 6∈

cp. We can fix a extension p′ < p such that there are s, t ∈ dom(fp′) such that

∆(s, t) < δ ≤ ∆(fp′(s), fp′(t)). Then D = {q ∈ PS : cq 6⊂ ∆(s, t)} ∈ M is dense.

It is easy to check that for any q ∈ D ∩M, p′ is incompatible with q. So p is not

(M,PS)-generic. A contradiction.

Lemma 4.21. For any uncountable X ⊂ ω1, PX either is c.c.c. or collapses ω1.

Moreover,

(1) PX is c.c.c. iff X 6∈ I(T );

(2) PX collapses ω1 iff X ∈ I(T ).

Proof. It is suffice to prove that X 6∈ I(T ) → PX is c.c.c. and X ∈ I(T ) → PX
collapses ω1.

First, let’s assume X ∈ I(T ). Let G be a generic filter and A = ∪G. Then A is

unbounded below ωV1 since Dα = {p ∈ PX : p 6⊂ T �α} is dense for any α < ωV1 .

And ∆(A) ⊂ X ∈ I(T ). So I(T ) is not a filter in the generic extension. Hence ω1

is collapsed.

Second, assume X 6∈ I(T ). Let {pα : α < ω1} be a subset of PX . We can find a

stationary set Γ ⊂ ω1 and a countable ordinal α0 such that

(1) for any α ∈ Γ, for any s ∈ pα, either ht(s) < α0 or ht(s) ≥ α;

(2) for any α ∈ Γ, for any s, t ∈ pα \ T �αo , s �[α0,α)= t �[α0,α);
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(3) for any α < β in Γ, Tpα �α0= Tpβ �α0 .

Let A = {pα(0) �α: α ∈ Γ} where pα(0) is the <lT -least s ∈ pα such that ht(s) ≥ α.

Since X 6∈ I(T ), we can find α < β in Γ such that pα(0) �α⊥ pβ(0) �β and

∆(pα(0), pβ(0)) ∈ X. It is then easy to check that pα ∪ pβ ∈ PX and stronger than

both pα and pβ.

Corollary 4.22. If P is a forcing notion such that P × PXi (i < 2) preserves

ω1, then 
P Xi 6∈ I(T ) (i < 2). In particular, for any P having property (K) or

P = PS for some special complete coherent tree S or P = PX for some X ⊂ ω1

such that X ∩Xi 6∈ I(T ) (i < 2), 
P Xi 6∈ I(T ) (i < 2).

Proof. Let’s just prove for i = 0 and i = 1 is similar.

Suppose otherwise, 1P X0 6∈ I(T ). Then there is a p ∈ P such that p 
P X0 ∈

I(T ). Then by previous lemma, P(≤ p)∗PX0 and hence P(≤ p)×PX0 will collapse

ω1. Contradict the fact that P × PX0 preserves ω1.

For the moreover part, if P has property (K), then P × PX0 is c.c.c. and hence

preserves ω1. If P = PS for some special complete coherent tree S. Then S is still

special complete and coherent in V PX0 . So V PX0 � PS is proper. Hence PX0 ∗ PS
is proper. So the product forcing PS × PX0 is proper and hence preserves ω1. If

P = PX for some X ∩X0 6∈ I(T ). Then according to the proof of previous lemma,

PX × PX0 is c.c.c..

Definition 28. Let {Ni : i < m} be a finite set of countable subsets of H(ω2). We

will say that {Ni : i < m} is a symmetric system if

(1) For every i < m, (Ni,∈, <) is a countable elementary substructure of (H(ω2),∈

, <)13.

(2) Given distinct i, i′ < m, if δNi = δNi′ (recall δNi = Ni ∩ ω1), then there is a

(unique) isomorphism ΨNiNi′
: Ni → Ni′ . Furthermore, we require that ΨNiNi′

is

13Recall < is a well-ordering fixed in the ground model.
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the identity on Ni ∩Ni′ .

(3) For all i, j < m, if δNi < δNj , then there is some j′ < m such that δNj = δNj′

and Ni ∈ Nj′ .

(4) For all i, j, j′ < m, if Ni ∈ Nj and δNj = δNj′ , then there is some i′ < m such

that ΨNjNj′
(Ni) = Ni′ .

We will now inductively define our forcing Pα using the method introduced in [20].

P0 = {p = (φ, {(Ni, 0) : i < m}) : m < ω and {Ni : i < m} is a symmetric

system.}.

For p, q ∈ P0, p ≤0 q iff {Np
i : i < mp} ⊃ {N q

i : i < mq}.

Not just P0, for any α ≤ ω2, for any condition p ∈ Pα, p = (p0, {(Ni, βi) : i < m})

where p0 is a sequence of length α, βi ≤ α and {Ni : i < m} is a symmetric system.

Definition 29. For any condition p = (p0, {(Ni, βi) : i < m}), ∆p = {(Ni, βi) :

i < m}.

For α+1 < ω2, denote f(α) = (α0, α1, α2) (recall that f : ω2 → ω2×ω2×3 is fixed

at first in the ground model). Let’s define a Pα-name for a forcing notion Q̇α.

(1) α2 = 0. Let (Ṗ , <̇) be the α1-th14 forcing with property (K) in V Pα0 such that


Pα0
Ṗ ⊂ ω1. Then Q̇α is either the trivial forcing {1} or Ṗ and

||Q̇α = Ṗ||α = ||Ṗ has property (K)||α.

(2) α2 = 1. Let Ẋ be the α1-th subset of ω1 in V Pα0 . Then Q̇α is either the trivial

forcing {1} or PẊ and

||Q̇α = PẊ ||α = ||Ẋ ∩Xi 6∈ I(T ) (i < 2)||α.

(3) α2 = 2. Let Ṡ be the α1-th special complete coherent tree in V Pα0 . Then Q̇α
is either the trivial forcing {1} or PṠ and

14Here we require 
Pα0
2ω1 = ω2 and a canonical ordering of P(ω1) of type ω2. We will prove

later that 
Pξ 2ω1 = ω2 for any ξ ≤ ω2. And the canonical ordering can be given by the <-least
Pα0 name for a bijection between 2ω1 and ω2 where < is the well ordering of H(ω4) fixed at the
beginning.
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||Q̇α = PṠ||α = ||Ṡ is a special complete coherent tree ||α.

Then Pα+1 = {p = (p0, {(Ni, βi) : i < m}) : m < ω, p0 is a sequence of length α+ 1

and {Ni : i < m} is a symmetric system such that

(1) βi ≤ (α + 1) ∩ sup(Ni ∩ ω2) for i < m;

(2) q �α= (p0 �α, {(Ni,min{βi, α}) : i < m}) ∈ Pα;

(3) p0(α) is either 1 – the weakest condition in Q̇α or p �α
Pα p0(α) is (Ni[Ġ], Q̇α)-

generic for any Ni such that α ∈ Ni and (Ni, α + 1) ∈ ∆p.}

For p, q ∈ Pα+1, p ≤α+1 q iff

(1) p �α≤α q �α;

(2) p �α
Pα p0(α) ≤ q0(α);

(3) for any (Ni, βi) ∈ ∆q, there is a β′ ≥ βi such that (Ni, β
′) ∈ ∆p.

We now come to the case α ≤ ω2 is a limit ordinal.

Pα = {p = (p0, {(Ni, βi) : i < m}) : m < ω, p0 is a sequence of length α and

{Ni : i < m} is a symmetric system such that

(1) βi ≤ (α + 1) ∩ sup(Ni ∩ ω2) for i < m;

(2) for any γ < α, q �γ= (p0 �γ, {(Ni,min{βi, γ}) : i < m}) ∈ Pγ.

For p, q ∈ Pα, p ≤α q iff p �γ≤ q �γ for any γ < α.

Now we are going to prove that Pω2 forces the assumption of Lemma 4.19 and

|P(ω1)/I(T )| = 4. First, we will use some facts from [20].

Definition 30. (1) For a countable ordinal α > 0, a forcing poset P is α-proper

iff for sufficiently large regular cardinal λ and every continuous elementary chain

〈Mi : i < α〉 of countable elementary submodel of H(λ) containing P , the following

holds: every p ∈ P ∩M0 has an extension q ≤ p that is (Mi,P)-generic for every

i < α.

(2) Say P is finitely proper iff P is n-proper for every n < ω.

Remark: In [20], Aspero-Mota iterated a different notation – V-finitely proper.
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Note every finitely proper poset is V-finitely proper so the same procedure works.

In this thesis we just need to iterate finitely proper posets. And by Lemma 4.20,

for any special complete coherent tree S, PS is finitely proper. Hence, by corollary

4.22, PS × PXi (i < 2) is finitely proper. Hence Q̇ × PXi (i < 2) is always finitely

proper since c.c.c. posets are finitely proper.

Lemma 4.23 ([20]). Assume Pω2 is a defined as above with Q̇α possibly replace

by some finitely proper poset. Then the following holds.

(1) If N is a symmetric system and N ∈ N , then N ∩ N is a symmetric system

and for any symmetric system W ∈ N such that W ⊃ N ∩ N , N ∪ {ΨNN ′(W ) :

W ∈ W , N ′ ∈ N , δN ′ = δN} is a symmetric system extending both N and W.

(2) Pω2 is ℵ2-c.c..

(3) For any α ≤ ω2, Pα is proper. Moreover, if N∗ ≺ H(θ) is a countable

elementary submodel for some large regular θ and (N∗ ∩ H(ω2), α) ∈ ∆p (or

(N∗ ∩H(ω2), sup(N∗ ∩ω2)) ∈ ∆p for the case α = ω2), then p is (N∗,Pα)-generic.

(4) 
Pω2
2ω1 = ω2.

(5) For any α < ω2, Pω2 forces Ġ+
α = {p0(α) : p ∈ Ġω2} generates a V Pα-generic

filter over Q̇α.

Then Pω2 preserves cardinals and every subset of ω1 in V Pω2 appears in V Pγ for

some γ < ω2 (since it has ω1 elements and by ω2-c.c. each element is determined

by ω1 many conditions).

Corollary 4.24. (1) V Pω2 � “MAK(ω1) and for any R-embeddable coherent tree

S, S ≡C T”.

(2) If Xi 6∈ I(T ) in V Pω2 (i < 2), then

V Pω2 � P(ω1)/I(T ) = {φ/I(T ), X0/I(T ), X1/I(T ), ω1/I(T )}

.
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Proof. (1) If in V Pω2 Ṗ ∈ K and Ḋ is a collection of ω1 dense sets., WLOG, assume

Ṗ ⊂ ω1. Assume Ẋ ∈ HV Pω2 (ω2) witnesses that Ṗ has property (K). Then Ṗ , ḊẊ

appear in some early stage γ < ω2, i.e., Ṗ , ḊẊ ∈ V Pγ . Assume Ṗ is the δ-th such

forcing with property (K). Let α be large enough such that f(α) = (γ, δ, 0). Then

Ṗ has property (K) in V Pα since Ẋ ∈ V Pα . Hence Q̇α = Ṗ . Hence at the final

model V Pω2 there is a filter meets each dense set in Ḋ.

If Ṡ is an R-embeddable coherent tree in V Pω2 . Then the forcing which forces Ṡ

to be special is in K. So Ṡ is special. Let Ṡ ′ be its completion. Then repeat above

argument, we can get that Ṡ ′ ≡C T . Hence Ṡ ≡C T .

(2) For any Ẋ ⊂ ω1 in V Pω2 , we have 4 cases:

Case 1: Ẋ ∩X0 ∈ I(T ) and Ẋ ∩X1 ∈ I(T ).

Then Ẋ/I(T ) = φ/I(T ).

Case 2: Ẋ ∩X0 6∈ I(T ) and (̇X) ∩X1 6∈ I(T ).

Then Q̇α = PẊ for some α < ω2. And hence (̇X) ∈ U(T ). Hence Ẋ/I(T ) =

ω1/I(T ).

Case 3: Ẋ ∩X0 ∈ I(T ) and (̇X) ∩X1 6∈ I(T ).

Then as in case 2, Ẋ ∪X0 ∈ U(T ). Then Ẋ/I(T ) = X1I(T ).

Case 4: Ẋ ∩X0 6∈ I(T ) and (̇X) ∩X1 ∈ I(T ).

As in case 3, Ẋ/I(T ) = X0/I(T ). This shows that in V Pω2 , P(ω1)/I(T ) =

{φ/I(T ), X0/I(T ), X1/I(T ), ω1/I(T )}.

Now we are left to prove that φ/I(T ), X0/I(T ), X1/I(T ), ω1/I(T ) are pairwise

different in V Pω2 . And we just need to prove that Xi 6∈ I(T ) (i < 2) in V Pω2 .

Lemma 4.25. Xi 6∈ I(T ) (i < 2) in V Pω2 .

Proof. By symmetry, we just need to show X0 6∈ I(T ). By Corollary 4.22, we just

need to show that Pω2 × PX0 preserves ω1. We will prove by induction that for

each α ≤ ω2, Pα × PX0 is proper.
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α = 0. Fix a large enough regular cardinal θ and a countable N∗ ≺ H(θ). Let,

N = N∗ ∩ H(ω2). It is suffice to prove that for any (p, q) ∈ P0 × PX0 such that

(N, 0) ∈ ∆p, (p, q) is (N∗,P0 × PX0)-generic. Now let’s fix such a (p, q) and a

dense subset D ∈ N∗ of P0 × PX0 . Going to a stronger condition we can assume

(p, q) ∈ D and we just need to find a (p′, q′) ∈ D ∩N∗ compatible with (p, q).

Let D′ = {(p′, q′) ∈ D : ∆p′ ⊃ ∆p ∩N}. Then D′ ∈ N∗ (since ∆p ∩N ∈ N∗) and

(p, q) ∈ D′. Let E = {q′ : ∃p′ (p′, q′) ∈ D′} ∈ N∗. Fix a maximal antichain E ′ ⊂ E

and E ′ ∈ N∗. Note E ′ is countable since PX0 is c.c.c.. Hence E ′ ⊂ N∗. Pick a

q′ ∈ E ′ such that q 6⊥ q′. By elementarity, pick a p′ ∈ N∗ such that (p′, q′) ∈ D′.

Hence, (p′, q′) ∈ N∗ and (p′, q′) 6⊥ (p, q) by Lemma 4.23.

α = ᾱ + 1. First, let’s prove that Pα × PX0 is isomorphic to Pᾱ ∗ (Q̇ × PX0): (1)

((p, q̇), r)→ (p, (q̇, r)) is a bijection from Pα×PX0 to Pᾱ∗(Q̇ᾱ×PX0) since p 
Pᾱ q̇

is (N [Ġᾱ], Q̇ᾱ)-generic iff p 
Pᾱ (q̇, r) is (N [Ġᾱ], Q̇ᾱ × PX0)-generic; (2) the order

for the poset is also preserved.

Then by Lemma 4.23, Pᾱ ∗ (Q̇ × PX0 and hence Pα × PX0 is proper.

α is an infinite limit ordinal. Fix a countable N∗ ≺ H(θ) for some large regular θ

and p ∈ N∗∩Pα. Let N = N∗∩H(ω2). It follows from the construction of Pα and

Lemma 4.20, Lemma 4.21 that there is a condition p′ <α p such that (N,α) ∈ ∆p′

(here we assume α < ω2, since if Pω2 × PX0 is not proper, then in V Pω2 , there is

some A ∈ [T ]ω1 such that ∆(A) ∩X0 = φ. Then such A appears at some previous

stage, A ∈ V Pγ for some γ < ω2. Then Pγ ×PX0 collapses ω1.). Now we just need

to show (p′, r) is (N,Pα × PX0)-generic for any r ∈ PX0 .

Fix D ∈ N∗ a dense open subset of Pα×PX0 . Extending p′ we can assume p′ ∈ D

and we just need to find some (q, r′) ∈ D ∩N compatible with (p′, r).

Suppose first cf(α) = ω. Then we can find some σ ∈ N∗ ∩ α above supp(p′) =

{ξ < α : p′(ξ) is not the weakest element.}. Let Gσ ×G be Pσ × PX0-generic and

(p′ �σ, r) ∈ Gσ ×G. By Lemma 4.23, p′ �σ is (N∗,Pσ)-generic. Then by induction
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hypothesis, (p′ �σ, r) is (N∗,Pσ × PX0)-generic. So

N∗[Gσ ×G] � ∃(q, r′) ∈ D (q �σ, r
′) ∈ Gσ ×G ∧ supp(q) ⊂ σ.

Pick such a (q, r′) ∈ N∗[Gσ ×G]. (q, r′) ∈ N∗ since (q, r′) ∈ D. Then q 6⊥ p′ since

q �σ 6⊥ p′ �σ (both in Gσ) and their supports are below σ. So (p′, r) 6⊥ (q, r′).

Now suppose cf(α) > ω. Fix a σ ∈ N ∩ α such that

(i) for any (N ′, ξ) ∈ ∆p′ such that ∆N ′ < ∆N , sup(N ′ ∩N ∩ α) < σ 15;

(ii) σ bounds supp(p′) ∩ sup(N ∩ α).

Like in case cf(α) = ω, we can find (q, r′) ∈ D such that (q �σ, r′) 6⊥ (p′ �σ, r).

According to the proof of Lemma 4.23, q 6⊥ p′. Hence (q, r′) 6⊥ (p′, r).

This finishes the proof for limit α and hence the proof of the lemma.

Now we have the following:

Corollary 4.26. (1) It is consistent to have the least size of the basis for Coun-

tryman lines to be 4.

(2) For any n < ω, it is consistent to have the least size of the basis for Countryman

lines to be 2n+1.

Proof. (1) follows from Lemma 4.19, Corollary 4.24 and Lemma 4.25.

(2) The proof for (1) works for (2) too. Just replace the partition ω1 = ∪
i<2
Xi

in construction for (1) by a partition ω1 = ∪
i<n+1

Xi. And replace 2 by n + 1 in

appropriate place in the proof.

4.3 Some applications

Now we are ready to get the following application:

15Note there are finitely many such N ′ and for each N ′, there is a N̄ such that δN̄ = δN and
N ′ ∈ N̄ , then sup(N ′ ∩N ∩ α) ≤ sup(ΨN̄N (N ′) ∩ α) ∈ N ∩ α.
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Theorem 4.27. (1) T (ρ2) is lexicographically isomorphic to a coherent tree.

(2) T (ρ2) is special. In particular, T (ρ2) is Countryman with respect to its lexico-

graphical order.

Proof. (1) Define a function a : [ω1]2 → Z by: for any α < β

(i) a(α, β) = 0 if α is a limit ordinal;

(ii) a(α, β) = ρ2(α, β)− ρ2(α− 1, β) if α is a successor ordinal.

Notation: <l denotes the canonical lexicographical order for sequences and hence

<l is the lexicographical order for both T (ρ2) and T (a).

We want to prove that T (a) is the tree we want. First, we show that it is coherent:

Claim 1: T (a) is coherent.

proof of claim 1: Suppose otherwise, there are α < β such that Dαβ = {η <

α : a(η, α) 6= a(η, β)} is infinite. Note Dαβ consists of only successor ordinals. Let

γ ≤ α be the least δ such that Dαβ∩δ is infinite and it is easy to see that γ is a limit

ordinal. Let ξγα, ξγβ be as guaranteed by Lemma 3.10 and let ξ = max{ξγα, ξγβ}.

Then ξ < γ and hence Dαβ ∩ [ξ, γ) is infinite. Now pick η ∈ Dαβ ∩ [ξ, γ) and we

have a(η, α) 6= a(η, β). But on the other hand, by Lemma 3.10,

a(η, α) = ρ2(η, α)− ρ2(η− 1, α) = (ρ2(γ, α) + ρ2(η, γ))− (ρ2(γ, α) + ρ2(η− 1, γ)) =

ρ2(η, γ)− ρ2(η − 1, γ) = a(η, γ).

And similarly, a(η, β) = a(η, γ). Hence a(η, α) = a(η, β). A contradiction. This

finishes the proof of claim 1.

Now define a mapping π : T (ρ2)→ T (a) by π(ρ2β �α) = aβ �α. Then we just need

to show:

Claim 2: π is a lexicographical isomorphism.

Proof of claim 2: First we need to show that π is well defined, i.e., for any α ≤ β <

γ, ρ2β �α= ρ2γ �α implies that π(ρ2β �α) = π(ρ2γ �α), and this is easily followed by

the definition of a and π. Hence, it is followed that π preserves the tree order.

Then we need to show that π is a bijection, it is enough to show that it is an
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injection. Pick any two distinct elements in T (ρ2): ρ2β �α 6= ρ2γ �α. Let δ =

∆(ρ2β �α, ρ2γ �α). Then δ is a successor ordinal by Lemma 3.10. And hence

a(δ, β) = ρ2(δ, β) − ρ2(δ − 1, β) 6= ρ2(δ, γ) − ρ2(δ − 1, γ) = a(δ, γ). So π is an

injection.

At last, we are left to show π preserves the lexicographical order. Pick any ρ2β �α<l

ρ2γ �α, we need to show aβ �α= aγ �α. If ρ2β �α<T (ρ2) ρ2γ �α, then we are done

since π preserves the tree order. Now assume τ = ∆(ρ2β �α, ρ2γ �α) < α and

ρ2(τ, β) < ρ2(τ, γ). Note τ is a successor ordinal by Lemma 3.10. So a(τ, β) =

ρ2(τ, β)−ρ2(τ −1, β) < ρ2(τ, γ)−ρ2(τ −1, γ). And also note aβ �τ= aγ �τ since we

have proven that π is well defined. Now we have aβ �α<l aγ �α and so π preserves

the lexicographical order. This finishes the proof of claim 2.

Now we have that T (ρ2) is lexicographically isomorphic to T (a) which is coherent.

(2) According to Theorem 4.1, it is suffice to prove that {ρ2α �α: α < ω1 is an

infinite limit ordinal} is an antichain. Pick two arbitrary infinite limit ordinals

α < β < ω1. Find a ξαβ < α guaranteed by Lemma 3.10 and pick γ ∈ [ξαβ, α). We

have ρ2(γ, β) = ρ2(α, β) + ρ2(γ, α) > ρ2(γ, α) and so ρ2α �α is incomparable with

ρ2β �β. This finishes the proof of the theorem.

Remark: Above proof can be generalized to prove that T (ρ0) is lexicographically

isomorphic to a coherent tree. See also [21] for a proof that T (ρ0) is tree isomorphic

to a coherent tree.
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Proof of Theorem 2.14: We will use Lemma 4.3 to prove this theorem and

use notation in Theorem 4.2. Let T ′ = T �C and we are going to show that T ′

is Lipschitz. For any level preserving map π : X → T ′ where X ∈ [T ′]ω1 , let

Xn = {x ∈ X : C(lx, lπ(x)) = n}. Pick a n < ω such that Xn is uncountable.

It is suffice to prove that for any x, y ∈ Xn, ∆T ′(x, y) = ∆T ′(π(x), π(y)) (here

∆T ′(s, t) is the first difference of s and t with respect to T ′). Suppose otherwise,

assume there are x, y ∈ Xn such that ∆T ′(x, y) < ∆T ′(π(x), π(y)) (similar for the

case ∆T ′(x, y) > ∆T ′(π(x), π(y))). Let α = ∆T ′(π(x), π(y)). Then as points in

T , ∆(x, y) < C(α) and ∆T (π(x), π(y)) ≥ C(α) where C(α) is the α-th element

of the club C. Then C(lx, lπ(x)) = C(ly, lπ(y)) = n which contradicts Lemma 4.3

since lx �C(α) 6= ly �C(α) while lπ(x) �C(α)= lπ(y) �C(α). This finishes the proof of the

theorem.

Proof of Fact 2.1: Let (T,<T , <lT ) be arbitrary lexicographically ordered Aron-

szajn tree. Define S ⊂ Q<ω1 and a lexicographical isomorphism π : T → S by

induction on the height of S:

S0 = {φ} and π′′T0 = S0.

If Sα is defined and π �T �α+1 is defined and lexicographically isomorphic, let

87
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fα : Tα+1 → Q be an embedding preserving <lT , then Sα+1 = {safα(t) : s ∈ Sα,

t ∈ Tα+1 and π(t �α) = s} and π(t) = π(t �α)afα(t) for any t ∈ Tα+1. It is easy to

see that π �T �α+2 is also lexicographically isomorphic.

If α is a limit ordinal and for any β < α, Sβ is defined and π �T �β is defined

and lexicographically isomorphic, then Sα = {∪{π(t �β) : β < α} : t ∈ Tα} and

π(t) = ∪{π(t �β) : β < α} for any t ∈ Tα. It is easy to check that π �T �α+1 is also

lexicographically isomorphic.

Proof of Fact 2.2: If T has unique limits and C is a club in ht(T ). To see T �C

has unique limits, just note that any element which has limit height in T �C has

limit height in T too and the predecessors in T �C is cofinal in predecessors in T .

Assume (T,<T , <l) is coherent and C ⊂ ω1 is a club. Assume 0 ∈ C. T �C= {t ∈

T : htT (t) ∈ C} and the tree order and the lexicographical order of T �C are the

restriction of <T and <l on T �C . Now we just need to define a coherent tree S

and a lexicographical isomorphism π : T �C→ S. Still do induction on α:

If α = 0, S0 = {φ} and π′′(T �C)0 = S0.

If Sα is defined and π �(T �C)�α+1 is defined and lexicographically isomorphic, let

Aα = {t �[C(α),C(α+1)): t ∈ TC(α+1)}, and since Aα is countable, we can find fα :

Aα → Q to be any embedding preserving lexicographical order, then Sα+1 =

{safα(t) : s ∈ Sα, t ∈ (T �C)α+1 and π(t �C(α)) = s} and π(t) = π(t �C(α))
afα(t)

for any t ∈ (T �C)α+1. Note that fα(t) = fα(t′) iff t �[C(α),C(α+1))= t′ �[C(α),C(α+1)).

It is easy to see that π �(T �C)�α+2 is also an lexicographical isomorphism.

If α is a limit ordinal and for any β < α, Sβ is defined and π �T �β is defined and

lexicographically isomorphic, then Sα = {∪{π(t �β) : β < α} : t ∈ (T �C)α} and

π(t) = ∪{π(t �β) : β < α} for any t ∈ (T �C)α. It is easy to check that π �(T �C)�α+1

is also lexicographically isomorphic.

Then we just need to show that S is coherent. Pick x, y ∈ S. Recall that in

the construction of successor levels, we have s(α) 6= t(α) iff π−1(s) �[C(α),C(α+1)) 6=
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π−1(t) �[C(α),C(α+1)). Then by the fact that T is coherent, we can get that {α <

ht(s), ht(t) : s(α) 6= t(α)} is finite. And hence S is coherent.

Proof of Fact 2.3: (1) If β ∈ Nα ∩ ω1, then N |= β is countable. Let f : ω → β

be a surjection in Nα. Then β ⊂ Nα since f ∈ Nα and ω ⊂ Nα.

C is unbounded since Nα∩ω1 ≥ α and C is closed since Nα = ∪β<αNβ for limit α.

(2) By elementary, we just need to prove that Nα |= A is stationary. Pick any club

D ∈ Nα and then H(ω2) |= D is a club. Then D is unbounded in Nα∩ω1 and hence

Nα ∩ ω1 ∈ D. So H(ω2) |= D ∩ A 6= φ. By elementary again, Nα |= D ∩ A 6= φ.

Then Nα |= A is stationary.

Proof of Fact 2.12: (1) (a) implies (b) and (c) implies (a) are trivial. So we just

prove (b) implies (c). Assume T �C= ∪n<ωAn be a partition of T �C into countably

many antichains. Define a map f0 : T �C→ Q by induction on n:

f ′′0A0 = {0}.

If f0 �∪m≤nAm is defined and the range is finite, then we define f0 �An+1 . For any

t ∈ An+1,

if t is maximal (with respect to the tree order) in ∪m≤n+1An, f0 = max(rang(f0 �∪m≤nAm

)) + 1;

if t is minimal in ∪m≤n+1An, f0 = min(rang(f0 �∪m≤nAm))− 1;

if t is neither maximal nor minimal, f0(t) = (min(a+ b)/2 where a = max{f0(s) :

s ∈ ∪m≤nAm and s <T t} and b = min{f0(s) : s ∈ ∪m≤nAm and t <T s}.

Now f0 �∪m≤n+1Am is defined and the range is still finite.

It is easy to see that f0 : T �C→ Q defined above is an embedding. For any

α < ω1, fix πα : T �[C(α),C(α+1))→ Q to be any embedding for the tree order. Define

f : T → Q×Q (the order for Q×Q is the lexicographical order) by:

for any t ∈ T , assume ht(t) ∈ [C(α), C(α + 1)) and t′ ∈ TC(α) such that t′ ≤T t,

then f(t) = (f0(t′), πα(t)). It is easy to see that f is an embedding. And hence T

is Q-embeddable.
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(2)(a)→ (b). Let f : T → R be an embedding. Just pick C to be ω1. Then C + 1

is the set of successor ordinals below ω1. Define a : T �C+1→ Q by: for any t ∈ T

such that ht(t) = α+1, define a(t) to be any rational in the interval (f(t �α), f(t)).

It is easy to see that for any q ∈ Q, a−1′′{q} is an antichain. So T �C+1 is special.

(b) → (c). Let C be any club and T �C+1= ∪n<ωAn be a partition of T �C+1

into countably many antichains. Let X be any nonstationary set. Going to a

subclub of C we can assme that C ∩ X = φ. Let gα : T �[C(α),C(α+1))→ ω be an

injection. Define a partition T �ω1\C= ∪m,n<ωB(m,n) by: for any t ∈ T �ω1\C , if

C(α) < ht(t) < C(α + 1) and t �C(α)+1∈ Am, then t ∈ B(m, gα(t)). It is easy to

check that each B(m,n) is an antichain. So T �ω1\C and hence T �X is special.

(c)→ (a). Assume X is the set of successor ordinals below ω1. Repeat the proof in

(1), we can get that T �X is Q-embeddable. Let f0 : T �X→ Q be an embedding.

Extend f0 to f : T → R by: f(t) = sup{f0(s) : s <T t and s ∈ T �X} for any t ∈ T

such that ht(t) is a limit ordinal.

Proof of Fodor’s Lemma: Suppose otherwise, f is regressive on a stationary set

S and for any α < ω1, f−1{α} is nonstationary. Let Cα be a club that disjoint

from f−1{α}. It is straightforward to check that C = 4α<ω1Cα = {β : for any

α < β, β ∈ Cα} is a club and disjoint from S. Contradict that S is stationary.

Proof of Fact 3.7: (1) Note O is infinite. If O contains no minimal element, then

O contains a subset of tyoe ω∗ and we are done. Now assume m is the minimal

element of O.

If for any x ∈ O, the interval (m,x) is finite, then O can be embedded into ω. So

we can find some x ∈ O such that the interval (m,x) is infinite. Then interval

(m,x) contains a subset of ω or ω∗ and hence O contains a subset of type ω+ 1 or

ω∗.

(2) If for any m < x in O, the interval (m,x) is finite, then O can be embedded

into Z. So we can find m < x in O such that the interval (m,x) is infinite. Then
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the interval (m,x) contains a subset of ω or ω∗ and hence O contains a subset of

type ω + 1 or (ω + 1)∗.

Proof of Lemma 3.10: (1) Let β0 > ... > βn be the walk from β to α. Let

ξ = max ∪
i<n

(Cβi ∩ α). It follows from the definition of minimal walk that this ξ

works.

(2) Suppose otherwise, there are β < ω1, n < ω and a sequence {αi : i < ω} below

β such that ρ1(αi, β) = n. Then α = sup{αi : i < ω} ≤ β. Pick a i < ω such that

|Cα ∩ αi| > n and αi > ξ if α < β where ξ is guaranteed by (1). Then α is in the

walk from β to αi. Hence ρ1(αi, β) ≥ ρ1(αi, α) ≥ i > n. A contradiction.

(3) It is suffice to prove that for any α < βω1, ρ1α = ρ1β �α. We will do induction on

α. Take ξ a witness for (1). Enlarge ξ if necessary we can assume that |Cα ∩ ξ| >

ρ1(α, β). For any η ∈ (ξ, α), first note it follows from the definition of ρ1 that

ρ1(η, β) = max{ρ1(α, β), ρ1(η, α)}; then we get that ρ1(η, β) = ρ1(η, α). So we

get ρ1α �(ξ,α)= ρ11β �(ξ,α). Then ρ1α =∗ ρ1β �α since by induction ρ1α �ξ=∗ ρ1ξ =∗

ρ1β �ξ.

(4) is trivial. (5) follows from (1) and the definition of ρ2. (6) follows from (5).

Proof of Fact 3.12: In V [G], assmue G = {gn : n < ω}. Let Ẋ ∈ V be a name

for X. Then for each n < ω, define in V : Yn = {x : gn 
 x ∈ Ẋ}. 〈Yn : n < ω〉 is

the sequence required.

If X ⊂ ω1 is uncountable (or stationary), then there is a n < ω such that Yn is

uncountable (or stationary) in V [G]. So Y = Yn is what we need.

If C ⊂ ω1 is a club in V [G], then by previous conclusion, we can find uncountable

Y ∈ V such that Y ⊂ C. Then the closure of Y is a club in V and contained in

C. And if S ⊂ ω1 is stationary, then S intersects every club in V . By previous

conclusion, S intersects every club in V [G]. So S is stationary in V [G].

Proof of Fact 4.11: Given uncountable X, Y ⊂ T , it is suffice to find uncountable

Z ⊂ T such that ∆(X) ∩∆(Y ) ⊃ ∆(Z). For any α < ω1, pick xα ∈ X, yα ∈ Y of
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height ≥ α. Define level preserving map π which maps each xα �α to yα �α. By

Lipschitz (use Fodor’s Lemma for coherent tree with no Suslin subtree), going to an

uncountable subset Γ ⊂ ω1, we can assume π is tree isomorphism on {xα �α: α ∈ Γ}.

Going to an uncountable we can assume {xα �α: α ∈ Γ} and {yα �α: α ∈ Γ} are

antichains. So Z = {xα �α: α ∈ Γ} works.

Note for any uncountable A ⊂ T , we can find an uncountable subset which is an

antichain ( For any α < ω1, pick aα, bα ∈ A such that α ≤ ∆(aα, bα) < ht(aα) ≤

ht(bα). Define π′ mapping each aα to bα �α. Then an uncountable subset of A such

that π′ is tree isomorphism guaranteed by Lipschitz is an antichain.

Sketch proof of Lemma 4.23: (1) Follows straightforwardly from the definition.

See [20] for more details.

(2) Prove inductively on α ≤ ω2 that every {pξ : i < ω2} ⊂ Pα contains a pairwise

compatible subset of size ω2. Recall GCH is true in the ground model. Now fix

{pξ : i < ω2} ⊂ Pα and pξ = (pξ0, {(N
ξ
i , β

ξ
i ) : i < m}) for some m < ω (WLOG,

assume m is independent of ξ). For each ξ < ω2, going to a stronger condition, we

can assume for any τ < ξ, pξ0(τ) is either the weakest element or can be viewed

as a countable ordinal ξτ (since Q̇ is forced to be of size ≤ ω1, ξτ can be picked

to be the η such that pξ0(τ) is forced to be the η-th element of Q̇). We may

also assume the transitive collapses of N ξ
i are the same for different ξ and ∪

i<m
N ξ
i

form a ∆-system with root X. Moreover, ∪
i<m

(N ξ
i \ X) ∩ ω2 don’t overlap and

〈 ∪
i<m

N ξ
i , X, 〈N

ξ
i : i < m〉〉 are all isomorphic.

For α = 0, it is straightforward to check that any two pα and pβ are compatible.

For α = ᾱ+ 1, going to a subset, we can assume ξτ = η for some fix η < ω1. Then

by induction we can find a subset Γ ∈ [ω2]ω2 such that {pξ �ᾱ: ξ ∈ Γ} are pairwise

compatible. Then {pξ : ξ ∈ Γ} are pairwise compatible.

For α infinite limit, if α < ω2, then find a subset Γ ∈ [ω2]ω2 and a σ < ω2 such that

supp(pξ) ⊂ σ for all ξ ∈ Γ. Then it follows from the induction hypothesis. Now
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assume α = ω2. Going to a subset, we can assume {supp(pξ) : ξ < ω2} forms a

∆-system with root s. Now pick σ < ω2 that bounds X and s. Then by induction,

we can find a subset Γ ∈ [ω2]ω2 such that {pξ �σ: ξ ∈ Γ} are pairwise compatible.

It is straightforward to check that {pξ : ξ ∈ Γ} are pairwise compatible.

(3) By Lemma 4.20 and Lemma 4.21, we just need to prove the moreover part. We

will prove by induction on α. Fix countable N∗ ≺ H(λ) for some large regular λ.

Let N = N∗ ∩ H(ω2). Fix D ∈ N∗ a dense open subset of Pα. Fix p ∈ Pα such

that (N,α) ∈ ∆p if α < ω2 and (N, sup(N ∩ ω2)) ∈ ∆p if α = ω2. Extend p if

necessary, we assume p ∈ D. We need to find some q ∈ D∩N∗ compatible with p.

For α = 0, it is the same as usual forcing with model as side condition (use (1)

above).

For α = ᾱ + 1, fix Gᾱ a generic filter for Pᾱ and p �ᾱ∈ Gᾱ. Let

E = {r ∈ Q̇ᾱ/Gᾱ : r = q0(ᾱ)/Gᾱ for some q ∈ D such that q �ᾱ∈ Gᾱ or no q ∈ D

such that q �ᾱ∈ Gᾱ and q0(ᾱ)/Gᾱ ≤ r}.

It is easy to see that E is dense. By induction hypothesis, p �ᾱ is (N∗, Gᾱ)-

generic. Then by definition of Pα, p0(ᾱ)/Gᾱ is (N [Gᾱ], Q̇ᾱ)-generic. So there is

some r ∈ E ∩N∗[Gᾱ] such that r 6⊥ p0(ᾱ)/Gᾱ. Note the second case in definition

of E won’t happen for r. Let q ∈ D ∩ N∗[Gᾱ] such that r = q0(ᾱ)/Gᾱ. Then

q ∈ N∗ since D ∈ V . To show q 6⊥ p, fix p′ ∈ Gᾱ extends both p �ᾱ and q �ᾱ and

p′ 
 r 6⊥ p0(ᾱ)/Gᾱ. Then (p′0
ar′,∆p′ ∪∆p) extends both p and q where r′ is forced

by p′ �ᾱ to be stronger than r and p0(ᾱ).

For α infinite limit, suppose first cf(α) = ω. Then we can find some σ ∈ N∗ ∩ α

above supp(p) = {ξ < α : p(ξ) is not the weakest element.}. Let Gσ be Pσ-generic

and p �σ∈ Gσ. Then by induction hypothesis, p �σ is (N∗,Pσ)-generic. So

N∗[Gσ] � ∃q ∈ Dq �σ∈ Gσ ∧ supp(q) ⊂ σ.
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Pick such a q ∈ N∗[Gσ]. Then q ∈ N∗ since q ∈ D. Then q 6⊥ p since q �σ 6⊥ p �σ

(both in Gσ) and their supports are below σ.

Now suppose cf(α) > ω. Fix a σ ∈ N ∩ α such that

(i) for any (N ′, ξ) ∈ ∆p such that ∆N ′ < ∆N , sup(N ′ ∩N ∩ α) < σ;

(ii) σ bounds supp(p) ∩ sup(N ∩ α).

Like in case cf(α) = ω, we can find q ∈ D such that q �σ 6⊥ p �σ. Let r ∈ Pσ
extending both q �σ and p �σ. Let r′ = (r′0,∆r ∪∆p ∪∆q) ∈ Pα where supp(r′) =

supp(r)∪supp(q)∪supp(p), r′ �σ= r �σ, for τ ∈ supp(q)\σ, r′ �τ
Pτ “r′0(τ) ≤ q0(τ)

and is (N ′[Ġτ ], Q̇τ )-generic for N ′ such that δN ′ ≥ δN and (N ′, ξ) ∈ ∆p for some

ξ” (note Q̇τ is either c.c.c. or has form PS, this r′0(τ) can be chosen by Lemma

4.20) and for τ ∈ supp(p) \ σ, r′0(τ) = p0(τ).

Let’s now check that r′ ∈ Pα. First note {M : ∃ξ(M, ξ) ∈ ∆r′} = {M : ∃ξ(M, ξ) ∈

∆r} and hence is a symmetric system. Then we just need to check the generic

condition, i.e., for any τ ∈ supp(r′), for any (M, ξ) ∈ ∆r′ , if τ ∈M and τ ≤ ξ, then

r′ �τ
Pτ “r′0(τ) is (M [Ġτ ], Q̇τ )-generic”. For τ < σ, this is true since r′ �σ= r �σ.

For τ ∈ [σ, sup(N ∩ α)), τ ∈ supp(q). If (M, ξ) ∈ ∆q, then the generic condition

is true since r′0(τ) ≤ q0(τ). If (M, ξ) ∈ ∆p, then δM ≥ δN by choice of σ (note

τ ∈ M ∩ N ∩ α) and hence the generic condition is true by choice of r′0(τ). For

τ ≥ sup(N ∩ α), (M, ξ) ∈ ∆p since q ∈ N and ξ 6∈ N . Then the generic condition

is true since r′0(τ) = p0(τ).

It is easy to see that r′ extends both p and q. This finishes the cf(α) > ω case

since q ∈ D ∩N∗.

(4) Recall GCH is true in the ground model. So |Pω2| = ω2. Together with ω2-c.c.,

we have (2ω1)V
Pω2 ≤ (|Pω2|ω1)V = (ω2)V . So V Pω2 � 2ω1 = ω2.

(5) It is suffice to prove that Ġ+ is forced to meet every dense open subset of Q̇α
in V Pα . Fix Ḋ a dense open subset of Q̇α in V Pα . Fix p ∈ Pω2 . By extending p we

can assume p0(α) is not the weakest condition (hence forced to be generic). Since
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Ḋ is dense, we can find a name ṙ such that p �α
Pα “ṙ ≤Q̇α p0(α) and ṙ ∈ Ḋ”.

Then p′ is obtained from p by replacing p0(α) by ṙ. And p′ 
Pω2
Ġ+ ∩ Ḋ 6= φ.
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abstract This thesis investigates the transformation between R-embeddable co-

herent trees and Countryman lines. I will show that it is consistent to have a

R-embeddable coherent tree whose lexicographical order is not Countryman and

moreover it has no Countryman suborder. I will also give an equivalence relation

for an R-embeddable coherent tree to be Countryman. Some properties about basis

for Countryman lines which is related to transform Countryman lines to coherent

trees will be given in this thesis too.
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