
COMPUTATIONAL MODELING OF CELL 
SIGNALING DYNAMICS: HYPOTHESIS 

MANAGEMENT AND PARAMETER ESTIMATION 
METHODS APPLIED TO THE AKT PATHWAY   

 

 

 

 

 

NIM TRI HIEU 

(B.Eng., NTU) 

 

 

A THESIS SUBMITTED  

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  

IN COMPUTATION AND SYSTEMS BIOLOGY 

(CSB) 

SINGAPORE-MIT ALLIANCE 

NATIONAL UNIVERSITY OF SINGAPORE 

2012 	  



   Page II 
 

DECLARATION 
 

 

I hereby declare that this thesis is my original work and it has been 

written by me in its entirety. I have duly acknowledged all the sources of 

information which have been used in the thesis. 

This thesis has also not been submitted for any degree in any university 

previously. 

 

 

 

 

__________________ 

Nim Tri Hieu 

17 April 2013 

 



   Page III 
 

ACKNOWLEDGMENTS 
I find myself among the most fortunate students of the world to have Dr. Lisa 

Tucker-Kellogg as a PhD advisor. I am grateful to my co-advisor Prof. Jacob 

White, whose teaching passion and intellectual capacity define the person I 

wish to become. I am indebted to my co-advisor Prof. Marie-Véronique 

Clément for her kind guidance and facilitation throughout my PhD study. I 

would like to express my deepest appreciation to my collaborator Dr. Felix 

Margadant for his generosity in time and resource in the microscopy 

simulation project.   

I would also like to thank the wonderful people who have made my work and 

life so immensely better that I can never express enough gratitude:  

Dr. Luo Le, my collaborator from the MVC Lab for generously giving 

her time, data, and training; 

My teachers: Co Nguyen Thi Quy, Thay Le Thanh Xuan, Thay 

Nguyen Thanh Dung, Prof. Vivekanand Gopalkrishnan, Prof. Kwoh Chee 

Keong, Prof. Ho Hwee Long, and Ms. Helen Low, for making me a better 

person in so many different ways; 

My lab mates from the Tucker-Kellogg Groups: Shi Yuan, Li Huipeng, 

Wang Junjie, Neha Bahl, Akila Surendran, Huang Lu, and Lakshmi 

Venkatraman; 

My lab mates from the Mechanobiology Institute, NUS: Xu Xiaochun, 

Liu Chengcheng, Zhang Wenwei, Liu Sihan, Zhang Bo, and Zhao Chen; 



   Page IV 
 

My lab mates from the Computational Biology Laboratory, NUS 

School of Computing: Ngo Thanh Son, Chiang Tsung-Han, and Wang Yue; 

My lab mates from the Computational Prototyping Group, MIT 

Research Laboratory of Electronics: Bo Kim, Lei Zhang, and Yu-Chung 

Hsiao; 

Nanyang Technological University, my alma mater, for giving me the 

generous financial support for my undergraduate study and oversea exchange 

programs; 

The Singapore-MIT Alliance, the Mechanobiology Institute, and 

National University of Singapore, for the financial support;  

Ms Hong Yanling, Ms Juliana Chai, Ms Carol Cheng, for the patient 

support in the tedious paperwork involved in my study and research; 

My mother Pham Thi Nguyen Luu and my father Nim Phic Chong, for 

their steadfast love in good or bad times; 

My three teenage younger brothers, for unintentionally providing me 

with endless motivation to work harder; 

And my wife Tran Thi Thanh Quy, the most important person in my 

life. 

 



   Page V 
  

TABLE OF CONTENTS 
DECLARATION ....................................................................................................................... II 

ACKNOWLEDGMENTS ....................................................................................................... III 

TABLE OF CONTENTS .......................................................................................................... V 

SUMMARY ............................................................................................................................... IX 

LIST OF TABLES AND BOXES ......................................................................................... XII 

LIST OF FIGURES .............................................................................................................. XIII 

LIST OF ABBREVIATIONS ................................................................................................ XV 

CHAPTER ONE: INTRODUCTION ....................................................................................... 1 

1.1 SIGNAL TRANSDUCTION NETWORKS ............................................................................... 1 

1.2 SYSTEMS BIOLOGY .......................................................................................................... 2 

1.3 SOME ONGOING CHALLENGES IN SYSTEMS BIOLOGY ...................................................... 3 

Constructing predictive kinetic models of signaling pathways ........................................... 4 

Estimating kinetic model parameter based on time-series protein concentrations .............. 5 

1.4 THESIS RESEARCH OBJECTIVES AND ORGANIZATION ...................................................... 6 

Research objectives ............................................................................................................. 6 

The CHEGS research approaches ........................................................................................ 7 

Thesis organization ............................................................................................................ 10 

Author contributions .......................................................................................................... 10 

CHAPTER TWO: MATERIALS AND METHODS ............................................................ 12 

2.1 MODELING-DRIVEN PATHWAY ANALYSIS ..................................................................... 12 

2.2 ODE MODEL ................................................................................................................. 12 

2.3 LINEAR SPLINE FOR REVERSE FITTING .......................................................................... 13 

2.4 MODEL COMPLEXITY REDUCTION ................................................................................. 14 

2.5 PARAMETER ESTIMATION (NON-SPEDRE) ................................................................... 15 

2.6 ANALYSIS OF MODEL FAMILIES/ENSEMBLES ................................................................. 16 

2.7 COMPUTATIONAL RESOURCES AND MODELING TOOLS .................................................. 16 



   Page VI 
 

2.7 EXPERIMENTAL METHODS ............................................................................................ 18 

Cell culture ......................................................................................................................... 18 

Treatment conditions ......................................................................................................... 19 

Time course measurements assay ...................................................................................... 19 

Lucigenin assay ................................................................................................................. 19 

Measurement of PIP3 by Immunofluorescence and Confocal Microscopy ...................... 20 

2.8 DATA NORMALIZATION. ................................................................................................ 22 

CHAPTER THREE: DATA-RICH PARAMETER ESTIMATION METHOD (SPEDRE)

 .................................................................................................................................................... 23 

3.1 INTRODUCTION ............................................................................................................. 23 

3.2 PRELIMINARIES ............................................................................................................. 26 

Ordinary differential equation (ODE) for mass action kinetics (MAK) ............................ 26 

Rate constant estimation objective .................................................................................... 27 

3.3 ALTERNATIVE OBJECTIVE FUNCTION ............................................................................ 28 

Error terms of dual objective function ............................................................................... 29 

Product of functions ........................................................................................................... 30 

3.4 LOOPY BELIEF PROPAGATION (LBP) ............................................................................ 31 

Factor graph ....................................................................................................................... 32 

Discretization and Joint Probability Tables ....................................................................... 33 

Loopy Belief Propagation .................................................................................................. 34 

Asymptotic Analysis of the Modified LBP (SPEDRE-base) Algorithm ........................... 36 

3.5 WEB SERVER IMPLEMENTATION ................................................................................... 38 

Input ................................................................................................................................... 38 

Processing method ............................................................................................................. 40 

Ouput ................................................................................................................................. 42 

3.6 BENCHMARK EXPERIMENT SETUP ................................................................................. 45 

3.7 RESULTS ....................................................................................................................... 46 

Scalability with artificial networks .................................................................................... 47 

Web service performance .................................................................................................. 55 



  Page VII 
 

3.8 DISCUSSION .................................................................................................................. 56 

Contribution ....................................................................................................................... 56 

Data mountain: challenges and opportunities .................................................................... 58 

CHAPTER FOUR: REDOX-REGULATED AKT ACTIVATION – BIOLOGICAL 

TEST CASE FOR SPEDRE AND OPPORTUNITY FOR MODELING ........................... 60 

4.1 ODE MODELING OF CELL SIGNALING PATHWAYS ......................................................... 61 

Model construction ............................................................................................................ 62 

Model calibration (parameter estimation) ......................................................................... 63 

Model simulation ............................................................................................................... 64 

Model analysis ................................................................................................................... 64 

4.2 AKT ACTIVATION PATHWAY ......................................................................................... 66 

4.3 MOTIVATIONS FOR MODELING DYNAMICS OF AKT PHOSPHORYLATION UPON 

ACTIVATION BY GROWTH FACTORS ......................................................................................... 67 

4.4 REDOX REGULATION OF AKT ACTIVATION PATHWAY .................................................. 68 

4.5 REGULATION OF INTRACELLULAR SUPEROXIDE ............................................................ 69 

4.6 MODELING REDOX-REGULATED AKT ACTIVATION ....................................................... 71 

4.7 PERFORMANCE OF SPEDRE IN COMPARISON WITH OTHER STANDALONE AND HYBRID 

METHODS ON THE AKT MODEL ................................................................................................ 74 

4.8 PUZZLING REDOX REGULATION PHENOMENON IN SERUM-INDUCED AKT ACTIVATION . 77 

4.9 CONCLUSION ................................................................................................................ 77 

CHAPTER FIVE: NON-CANONICAL ACTIVATION OF AKT IN SERUM-

STIMULATED FIBROBLASTS, REVEALED BY COMPARATIVE MODELING OF 

PATHWAY MECHANISMS .................................................................................................. 79 

5.1 INTRODUCTION ............................................................................................................. 79 

5.2 CANONICAL PIP3/AKT CASCADE .................................................................................. 83 

The delay between peak PIP3 activation and peak Akt phosphorylation. ......................... 83 

The null hypothesis model ................................................................................................. 84 

Rejection of the null hypothesis ........................................................................................ 87 

5.3 NON-CANONICAL MECHANISMS FOR AKT ACTIVATION ................................................ 88 



  Page VIII 
 

Non-canonical causes of altered Akt localization ............................................................. 88 

Non-canonical causes of altered Akt phosphorylation dynamics ...................................... 89 

Systematic generation of alternative scenarios .................................................................. 90 

5.4 MEMBRANE FRACTIONATION DYNAMICS ...................................................................... 94 

Model predicts non-trivial dynamics of membrane fractions ............................................ 94 

Membrane fractions time-series ........................................................................................ 95 

5.5 MODEL ANALYSIS WITH ADDITIONAL MEMBRANE FRACTION TIME-SERIES .................. 96 

Model re-calibration using additional membrane fraction time-series .............................. 96 

Model prediction of PIP3 inhibition experiments ........................................................... 101 

5.6 MODEL ENSEMBLE ANALYSIS ..................................................................................... 103 

5.7 ROBUSTNESS ANALYSIS OF PIP3-DEPENDENT RECRUITMENT MODEL ......................... 106 

5.8 DISCUSSION ................................................................................................................ 108 

Scope of study: PIP3-Aktp308 .......................................................................................... 108 

Timeline of hypothesis exclusions ................................................................................... 110 

Biology contributions ...................................................................................................... 110 

Modeling-driven methods contribution ........................................................................... 112 

Importance of studying Akt membrane localization ....................................................... 113 

Importance of studying the timings of Akt activity ......................................................... 114 

Caveats and future work .................................................................................................. 115 

Conclusions ...................................................................................................................... 118 

CHAPTER SIX: CONLUSIONS AND FUTURE WORK ................................................. 120 

6.1 SUMMARY OF METHODOLOGIES .................................................................................. 120 

6.2 SUMMARY OF CONTRIBUTIONS ................................................................................... 122 

6.3 FUTURE WORK ............................................................................................................ 123 

APPENDICES ......................................................................................................................... 125 

PAPERS AND PRESENTATIONS ...................................................................................... 129 

REFERENCES ....................................................................................................................... 130 



   Page IX 
 

 SUMMARY 
The complexity of cell signal transduction creates challenges for 

linking the observed effects to the underlying signaling pathways. 

Mathematical modeling of cell signaling can provide insights into the systems-

level effects of the pathways being studied, by simulating how protein levels 

changes with time (i.e. pathway dynamics). An important problem in building 

dynamic models of signaling pathways is parameter estimation, which is to 

estimate the reaction rate constants given the measured concentrations over 

time of the pathway species. Proteomics technology is starting to provide 

complete datasets (Mann, et al., 2013), and it is reasonable that a growing 

category of future parameter estimation problems would have time-series 

abundance of all species in the network. A class of parameter estimation 

methods called spline-based collocation methods can exploit the data 

abundance to avoid the bottleneck of numerical integration, but such methods 

have not achieved competitive runtime nor been widely adopted in user-

friendly tools. Employing systematic search and curve shape agreement, we 

converted the parameter estimation problem into an instance of an inferencing 

technique called belief propagation to develop an efficient spline-based 

collocation method. We developed computational tools for systematic 

parameter estimation of data-rich experiments (SPEDRE). SPEDRE has 

unique asymptotic behavior with runtime polynomial in the number of 

molecules and timepoints, but exponential in the degree of the biochemical 

network. SPEDRE thus can exploit large data sets, which are aligned to recent 
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developments towards complete proteomics. In comprehensive comparisons 

with state-of-the-art parameter estimation methods, SPEDRE showed superior 

or comparable performance in large-scale test cases using artificially 

constructed networks. 

After testing SPEDRE on a series of artificially constructed networks, 

we next applied the SPEDRE method on a real-life pathway which describes 

the serum-induced activation of the kinase Akt. Unexpectedly, the constructed 

model revealed puzzling Akt pathway dynamics that motivated further 

modeling study. Akt activity in mouse embryonic fibroblasts shows an 

overshoot and decline after serum stimulation, but this dynamic signaling 

behavior has not yet been fully investigated by the current literature. We 

compared the measured dynamics of phosphatidylinositol(3,4,5)-trisphosphate 

(PIP3) and Akt-phosphoThr308 (Aktp308) with computational models of pathway 

mechanisms, aiming to explain the overshoot of Akt activation after serum 

stimulation. ODE models were constructed based on literature evidence and 

measured time-series concentrations for model calibration. Time-course 

simulation showed inconsistency between the peak times of PIP3 (2min) and 

Aktp308 (30min). By systematically simulating non-canonical mechanisms for 

resolving this timing difference, we identified four potential hypotheses and 

constructed ensembles of ODE models to evaluate each hypothesis. Motivated 

by model predictions, experiments were performed to investigate the dynamics 

of membrane total Akt and membrane Aktp308 in cells treated with serum. 

These measurements yielded the following insights: Akt is sequestered at the 
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membrane for a prolonged period of time after PIP3 recruitment; and the 

delayed activation of Aktp308 in total cell lysate is caused by the delayed 

activation of membrane Aktp308. A hypothesis management analysis of five 

potential non-canonical mechanisms of augmented Akt phosphorylation 

supported the following hypotheses: augmented Akt recruitment to the 

membrane and Aktp308 sequestration at the membrane.  
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CHAPTER ONE: INTRODUCTION 
1.1 Signal transduction networks 

All living organisms rely on complex biochemical processes to maintain 

homeostasis and adapt to environmental changes. These mechanisms form highly 

dynamic and interconnected molecular networks that drive biological behaviors, 

including cellular decisions, signal transduction, feedback regulation and inter-cellular 

communication. Intricate systems-level behaviors, such as input–output behaviors and 

feedback, may arise from the interplay of simple biochemical reactions (Chen, et al., 

2009). Three categories of biological networks are mainly studied: gene regulatory 

network, metabolic pathway and signal-transduction network. These three pathway 

categories are not mutually exclusive and complex communications between different 

network types are often involved in any phenotype of the organism. The structure and 

functions of these networks are among the most active topics currently being studied 

around the world. 

Cell signaling describes critical processes regulating basic cellular mechanisms 

and homeostasis (Alberts, et al., 2007; Hancock, 2005; Weinberg, 2006). Signal-

transduction networks (or signaling pathways) transmit signals from outside the cell to its 

intracellular response mechanisms through biochemical events (binding without covalent 

modifications, phosphorylation, nitrosylation, ubiquitination, etc.) which trigger specific 

cellular responses or decisions (Gough and Yaffe, 2011; Scott and Pawson, 2009). With 

the rapid acceleration of new biological discovery in signaling pathways, many publicly 

available sources are currently available to share information about signaling pathways, 

including Science Signaling’s Database of Cell Signaling (AAAS and Stanford, 2012),  

KEGG PATHWAY database (Kanehisa, et al., 2012), SignaLink (Farkas, et al., 2011), 

and BioModels database (Li, et al., 2010).  
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Through signaling pathways, stimuli on the cellular surface such as growth factors 

are transmitted to molecules that are capable of carrying out certain responses, such as 

cell fate decisions, gene expression changes, and protein synthesis. Such behaviors 

resemble a molecular circuit with different responses (outputs) to different cues (inputs). 

This translation of environmental cues to cellular behaviors inevitably involves such 

complexity that makes studying signaling networks a major challenge to biologists 

without the aid of computational simulation. Mathematical modeling of signal-

transduction networks has contributed to several exciting biological discoveries in recent 

years (Hughey, et al., 2010; Janes and Yaffe, 2006).  

1.2 Systems biology 
A chief aim of systems biology is to determine how multiple individual 

components together produce a complex behavior (Kholodenko, et al., 2005). For 

example, Akt activity is determined by dynamic competition between many simultaneous 

individual reactions including protein phosphorylation, translocation, and 

dephosphorylation, not to mention lipid phosphorylation and dephosphorylation. Under 

the systems biology paradigm (Fall, et al., 2002; Palsson, 2006), studying the interactions 

between the signaling species may lead to the discovery of systems-level properties. 

Different types of model may apply to the biochemical network depending on the levels 

of knowledge about the reactions, ranging from abstract to specific (Figure 1.1). 
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Figure 1.1 –Computational models corresponding to levels of abstraction of links (from abstract to specific) in 
biochemical networks (reproduced from (Palsson, 2011).  
Statistical modeling and Bayesian networks are modeling techniques that describe non-directional relationships (statistical 
correlation) between biological entities. Boolean modeling and Bayesian networks describe the causal or statistically 
determined relationships between network components. Markov chains deal withthe general mechanisms of the network. 
Chemical reactions and kinetics modeling describe the specific biochemical reactions occuring within the biological 
networks.   

A recurring theme in systems biology which manifests in this thesis work is 

integration: between computational technologies and biological questions, of different 

model abstraction levels, and of different disciplines of science. First, biologist 

collaborators were often unfamiliar with the use of computational modeling in experiment 

design and required intensive interactions to elucidate how the models could meet their 

needs. Second, biological modeling could integrate cellular localization information into 

the kinetics models, which we found to be effective in designing biological experiments 

that could lead to biological discovery. Finally, various disciplines are involved in 

systems biology studies as an integrated effort to unravel complex behaviors at the system 

level. As clear evidence to this, the author has had an opportunity to interact with 

collaborators from different fields of study, including computer science, biochemistry and 

physics.  

1.3 Some ongoing challenges in systems biology 
Systems biology faces a range of technical and organizational challenges 

(Aderem, 2005), and this dissertation addresses two specific challenges: (1) constructing 
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predictive models, and (2) estimating parameters of kinetic models. Inferring biologically 

relevant hypotheses for experimental validation involves large amount of information and 

automation of the process is not yet well developed. Many state-of-the-art modeling 

studies still rely heavily on human intuition for model and experiment design (Albeck, et 

al., 2008; Basak, et al., 2007; Purvis, et al., 2008). In addition, even when models have 

been constructed, inferring kinetic reaction rates from time-series concentration 

measurements is known to be a nonlinear high-dimensional problem which is difficult to 

solve satisfactorily (Kleinstein, et al., 2006). 

Constructing predictive kinetic models of signaling pathways 
Kinetic modeling requires to a certain extent the knowledge of the concentration 

of signaling proteins, and the kinetic parameters for each biochemical reaction. It is 

commonly observed that the cellular processes that are being modeled often contain 

poorly understood aspects. Further, the temporal dynamics of cell signaling pathway is 

complex and unintuitive, as the dynamics of proteins in the pathways are often 

interdependent. 

Time- and resource-consuming biochemical experiments typically generate 

limited and often inconsistent data, which present a major challenge in modeling 

biological networks (Eungdamrong and Iyengar, 2004). Further, most large datasets 

inherently contain technical and biological noise, or various types of systematic and 

human error. Typically only a small number of species are measured for a batch of 

samples, whereas the desired results are the simultaneous measurements of different 

parameters in the same sample. Recently there have been more advanced quantitative 

proteomics technologies such as SILAC (Stable Isotope Labeling by Amino acids in Cell 

culture) that have increased the amount of data at an exponential rate (Reeves, et al., 

2009; Tasaki, et al., 2010). However the published data are often on different cell lines, 
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under different treatment conditions and prone to different levels of data error. This 

makes comparing model against available datasets a serious challenge. 

As quantitative experiment data are scarce and many kinetics parameters are 

unknown, models often become underdetermined and have poor predictive power. 

Additional experiments are often required to better calibrate models, but experiments are 

time- and resource-consuming. Prioritizing experiments to minimize cost and maximize 

information gain is an important goal in pathway modeling studies. A concrete example 

of how this goal is achieved can be found in this thesis work: ODE models are 

constructed to study dynamic behaviors of a signaling pathway, and modeling efforts 

points out which experiments are more likely to yield fruitful results.   

Estimating kinetic model parameter based on time-series protein 
concentrations 

In addition to building predictive network models, our next goal is to obtain the 

model parameters. Kinetic rate parameters are often unknown in many biochemical 

reactions and are technically difficult to determine experimentally (Eungdamrong and 

Iyengar, 2004). Further, many enzyme assays to measure the rate constants are usually 

conducted in vitro with purified components while the interaction may have vastly 

different kinetics in vivo due to scaffolding, local concentrations of the reactants, or 

molecular crowding. 

While it is possible in theory to estimate reaction rate parameters based on the 

time-series measurements given a biochemical network, the computation in practice is 

often intractable. Even tractable problems are often overwhelmed by suboptimal 

solutions, or obscured by noise. Using ODEs to represent the production and consumption 

rates of the biochemical systems, the estimation of the kinetic rate constants can be 

formulated as a nonlinear optimization task, which is known to be a difficult problem. As 

the number of unknown rate constants increases with larger pathways, the parameter 
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space becomes astronomical and the estimation is often too computational costly to be 

practical or too inaccurate to give useful prediction. A highly desirable goal is therefore to 

computationally estimate unknown rate constants in a signaling pathway model 

accurately and efficiently. Indeed, the estimation of parameters for ODE models has been 

posted as a challenge for the Dialogue for Reverse Engineering Assessments and Methods 

project (DREAM6, 2011, available at http://www.the-dream-project.org), a yearly 

competition for worldwide researchers to address the fundamental questions about 

systems biology (Stolovitzky, et al., 2007).  

In addition, a crucial computational challenge is to design software packages that 

are easily accessible to the broad community. With the availability of faster and more 

reliable web-based resources, a fast developing trend is to deploy applications as web 

services that can be run on any platform with internet connectivity. In this study, we 

developed such a web service for a parameter estimation tool (available at 

http://webbppe.nus.edu.sg:8080/opal2/SPEDRE) which performed efficiently on a niche 

of problems with sparse connectivity and abundant species concentration measurements. 

1.4 Thesis research objectives and organization 
Research objectives 

This thesis research focused on two specific topics, each dealing with a different 

scale and possessing a different set of characteristics within the context of systems 

biology. The first topic was “data-rich parameter estimation”, which aims to develop a 

method for estimating the reaction rates in a signaling pathway. As data-rich 

environments are increasingly feasible due to new proteomic technologies, our novel 

parameter estimation method (called SPEDRE) exploits this opportunity to achieve 

efficiency. SPEDRE makes a set of tradeoffs for improving efficiency in data-rich 

contexts, making it successful in low-degreed but not all types of networks. SPEDRE 
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exploits the data richness to avoid solving the system of ordinary differential equations 

(ODEs) numerically.  Instead of computing the “d[concentration]/dt” values (slow), but it 

instead interpolates the d[concentration]/dt values from data (fast). A low-degree model 

of Akt activation is used for comparing SPEDRE with current state-of-the-art methods. 

This research topic will be covered in Chapters Three and Four. 

Further work with the Akt model eventually revealed a previously unknown 

mismatch between the canonical pathway and the observed behavior.  Although PIP3 is 

close to Akt in the pathway, the time of peak PIP3 after serum stimulation was 

dramatically different from the time of peak Akt activation. This motivates the second 

topic of this thesis study, “modeling of Akt phosphorylation upon activation by growth 

factors”, where we seek to elucidate the mechanisms causing the large time delay 

between PIP3 and Aktp308 in mouse embryonic fibroblasts (MEF) upon serum-induction.  

The mismatch between the canonical model and data was confirmed quantitatively based 

on model simulations, suggesting the presence of non-canonical species. We propose 

novel modeling-driven methodology, “hypothesis management”, for building alternative 

models for reconciling the peak time mismatch. Hypothesis management results in 

extensive interfacing between computational modeling and wet-lab experiments, and 

several novel biological insights are discovered during this process. This specific 

modeling approach with alternative hypotheses about the Akt pathway carries constraints 

that make SPEDRE not applicable, and we instead employed state-of-the-art methods for 

the important task of parameter estimation. This topic is the heart of the thesis, and will 

be covered in Chapters Four and Five.  

The CHEGS research approaches  
In this thesis, we develop a common set of modeling-driven approaches applicable 

to both research topics. While some techniques were directly applied to the research 
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problem, others were more implicit and abstract. These commonalities can be described 

as follow: application of Computational methodologies to biological questions, 

Heuristics-based evaluation of alternatives, evaluation of maximum a posteriori (MAP) 

Estimates, sacrificing complexity in favor of Generalizability, and Systematic evaluation 

of alternatives (or CHEGS). 

The first common approach is to interface between the Computational 

methodologies and the biological application. Many computation tools were traditionally 

developed in other fields such as engineering and applied mathematics, and recently 

many studies have started to adopt these technologies to biology. Machine learning tools, 

such as clustering and classification, allow biologists to discover knowledge from the 

large and noisy datasets. Visualization tools help display complex data into forms that 

agree with human perception. Tools belonging to the “systems biology” categories, such 

as mathematical modeling, can help integrate different data sources into a unified 

conceptual framework surrounding the biological question of interest. High-performance 

computing tools, such as parallel and cluster computing, enable other computational 

methods to perform at high efficiency, to provide biological discovery with higher 

throughput and lower latency. These are typical ways that computational improvements 

can be applied to biological needs, and analogous applications can be found throughout 

this thesis. 

The second research technique is to use Heuristics based on biological 

practicality. The American Heritage Dictionary definition of heuristics is “a usually 

speculative formulation serving as a guide in the investigation or solution of a problem”. 

Heuristics serve our goals well because our biological questions are often not well-

formulated and the literature evolves rapidly with a constant stream of new evidence and 

findings. Thus for practical purposes, models were constructed based on current 
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biological evidence and understanding of the literature consensus, to carry out some 

useful functions. This research adopts heuristics to construct models that are useful for 

answering biological questions rather than making complex models. The common 

research technique is applied in Section 3.4 and 5.4 of the thesis. 

The third research technique seeks to evaluate the maximum a posteriori (MAP) 

Estimates of the alternative outcomes. MAP estimation is a mathematically principled, 

well-developed, and widely used method in the field of Bayesian statistics (Degroot, 

1970). This technique has the advantage of being less prone to human bias in hypothesis 

evaluation. This method was applied the parameter estimation work (Section 3.3) and a 

more indirect use of the method was applied to the Akt modeling study (Section 5.3). 

The fourth research approach deals with sacrificing complexity to gain 

Generalizability. This serves to avoid the problem of overfitting, described by Tetko et al. 

as when a model describes random error or noise instead of the underlying relationship 

(Tetko, et al., 1995). Typically, more complex models with a larger number of parameters 

are very successful at fitting training data (data used in model fitting), and yet often fail to 

extrapolate to test data (data not used in model fitting). On the other hand, models with 

fewer parameters may produce poorer match with training data but can be more 

generalizable when fitting with test data. As making useful prediction is the main goal of 

modeling, all projects in this thesis prefer simpler models whenever possible, to avoid the 

overfitting problem. The selection of simpler models allowed us to gain computational 

performance or conceptual simplicity, but at the cost of accuracy or precision. This 

common approach appears in Section 3.4 and 5.4 of the thesis. 

Finally, the last research approach employs systematic investigation of 

alternatives, with complete coverage at low resolution, and with explicit evaluation for 

the merits of each alternative. There are different ways to achieve the goal of systematic 
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evaluation of alternatives.  The “data-rich parameter estimation” work presents an 

example of systematic evaluation of alternatives computational during the program 

execution. At the conceptual level, the “modeling of Akt phosphorylation upon activation 

by growth factors” work achieves systematicity by enumerating the finite number 

reactions and construction hypothesis for modifying each of the reactions. Further, 

systematicity is also achieved by the use of spline to represent any dynamic of 

perturbation, not just some simple pseudo-species driven by a first-order effect 

downstream of serum stimulation. This common approach appears in Section 3.4 and 5.4 

of the thesis. 

Thesis organization 
Chapter Two describes the materials and methods employed in this thesis. Chapter 

Three of the thesis describes the novel parameter estimation methodology for data-rich 

biochemical pathways. Chapter Four presents a biological test case to benchmark the 

novel method with the current state-of-the-art parameter estimation techniques. Chapter 

Four has a special role in bridging the topic of “data-rich parameter estimation” in 

Chapter Three to the topic of “modeling of Akt phosphorylation upon activation by 

growth factors”, as presented in Chapter Five. Finally, Chapter Six concludes the 

dissertation with a summary and a description of future work. Chapter Three to Chapter 

Five are partially adapted from jointly co-authored manuscripts, and the contributions 

from the author of this thesis can be found in the following “Author contributions” 

subsection. 

Author contributions 
Efforts from multiple parties are involved to make the collaborative research 

possible. The author has done the best attempts to give credit to the contributing authors, 
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at the relevant text in the thesis (e.g. figure legends, protocol descriptions). In addition, 

below is a summary of the author contributions (ideas, data) to this thesis work: 

• Experimental data for Akt modeling work: Luo Le, Sharon Lim 

• Experimental protocol description: Luo Le (Section 3.7 quoted text) 

• Experimental design (Akt modeling, SPEDRE): Lisa Tucker-Kellogg, 

Jacob K. White, Marie-Véronique Clément 

• All manuscripts were maintained by Tri Hieu Nim 

• First draft of the Akt modeling manuscript: Tri Hieu Nim 

• First draft of the SPEDRE manuscript: Tri Hieu Nim (Methods and 

Results), Lisa Tucker-Kellogg (Introduction and Discussion) 

• Manuscript revision: Tri Hieu Nim, Lisa Tucker-Kellogg, Marie-

Véronique Clément  

• Concept of product of functions (POF) alternative cost function: Lisa 

Tucker-Kellogg 

• Preliminary source code for parameter estimation using belief propagation 

on biochemical networks: Lisa Tucker-Kellogg 

• Concept of maximum relative error (MRE): Jacob K. White 

• Clamped spline in SPEDRE: Tri Hieu Nim 

• Revised source code for SPEDRE, web server implementation, test cases 

implementation and benchmarking comparison: Tri Hieu Nim 

• Source code of automating benchmarking comparison source code with 

COPASI (Hoops et al., 2006) for standalone and hybrid methods for 

parameter estimation: Tri Hieu Nim 
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CHAPTER TWO: MATERIALS AND METHODS  
2.1 Modeling-driven pathway analysis  

This thesis study extensively employs computer models for hypothesis 

construction and evaluation (Figure 2.1). This approach is particularly powerful in 

studying pathways where many signaling species participate in highly intertwined and 

sometimes non-intuitive networks.  

 

Figure 2.1 – Diagram illustration of the computational modeling approach for hypothesis construction and 
evaluation. 
Mathematical models of pathways evolves side-by-side with benchwork experiments. Comparison between model 
simulation and measurements provides information for refinement of model parameters and for designing experimental 
conditions. 

2.2 ODE model  
To model the biochemical behavior of the system, we used a system of ODEs to 

describe the time-evolution of the species concentrations in the pathway system. The 

model describes the dynamics of the inputs and observables which vary according to 

experimental conditions. 

Letting s denote species name and e denote experiment index, the change of the 

transient concentration ,s ex over time can be represented in ODE form as  
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dt
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where t is the transient time point, k is a set of every parameter in the system, ( ),tx k is a 

set of every experiment-dependent species ( ), ,s ex t k in the system, ( )ti is a set of every 

experiment-dependent input ( ),s ei t to the system represented by a predefined time-

evolution function, ( ),tv k is a set of every variable curve ( ), ,s ev t k represented by linear 

spline curves whose knots are defined by the parameters in k, and ,s ef is a function 

derivable from the biochemical reactions in the system which may involve a combination 

of species, inputs, variables and parameters in the system.  

The process of model calibration can be expressed as an optimization problem as  

{ } ( )2, , ,min SSE min ( ) ( , )data
s e s e s e

s e t
w x t x t⎧ ⎫

≡ ⋅ −⎨ ⎬
⎩ ⎭
∑∑∑k k

k

  

(2.2) 

where , ( )
data
s ex t is the measured data point, 

( )
, 2

, ( )
t

s e data
s e

t

nw
x t

=
∑

is a time-independent 

inverted mean-square weight calculated based on the observed data, and nt is the number 

of time points. By performing the optimization task described in Equation 2.2, we 

obtained k*, a set of optimized parameters in the system.  

Models were implemented and simulated using Matlab (v.7.6, The MathWorks, 

MA) with SBToolbox2 toolkit (Schmidt and Jirstrand, 2006) to perform in silico 

simulation. Models were available in TextBC format, which contains model states, model 

variables and model reactions information.  Standard configuration was used for ODE 

simulation in SBToolbox2 and its SBPD extension package (Schmidt and Jirstrand, 

2006). 

2.3 Linear spline for reverse fitting 
In the Akt modeling study (Chapter Five), we constructed a null-hypothesis model 

(H0) which describes the canonical pathway for Akt activation. From this H0 model, the 
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alternative hypotheses were constructed, each having a hypothesized input species. As the 

dynamics of the input species may be unknown, this leads to a reverse-fitting problem 

that has been previously addressed (Apgar, et al., 2008; Chu and Hahn, 2008; Thomaseth, 

et al., 1996). 

We used a novel approach in which in which the unknown input species is 

represented by a linear spline curve whose knots become parameters of the system. The 

model for each alternative hypothesis (e.g. recruitment, retention hypothesis) contains a 

newly introduced variable (e.g. “recruitment effect”, “retention effect”) whose 

concentrations are obtained from a linear spline. The spline is constructed by linearly 

interpolating between every consecutive pair of spline knots, whose value are subjected to 

optimization in the parameter estimation process. 

2.4 Model complexity reduction 
As a more complex model is more likely to agree with data after parameter 

optimization (due to overfitting), assumptions and constraints were imposed on model 

construction (as seen in Figure 5.2, Table 5.1-5.2 of Chapter Five) and model 

optimization. The direct conversion reactions (#2 and #5) were represented using mass 

action kinetics. The enzymatic reactions (#4 and #6) were represented using Michaelis-

Menten equations. To treat PIP3 a system input whose concentrations do not depend on 

the ODEs, the reactions involving PIP3 recruitment (#1 and #3) treat PIP3 as a simple 

multiplier. The knots for the linear spline were introduced sparingly to avoid the problem 

of overfitting. As a general rule, the rate constants are assumed to be the same for all 

experiments while initial concentrations while input and variables may be experiment-

specific. Identifiability analysis was performed during model construction, and the 

parameters which were strongly correlated to other parameters were removed. These steps 

resulted in a smaller subset of k, which were used in subsequent simulations. 
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2.5 Parameter estimation (non-SPEDRE) 
As we developed a parameter estimation method called SPEDRE as a part of this 

thesis study, more background and mathematical description for parameter estimation 

process will be covered in greater detail in Chapter Three. However it should be noted 

that the SPEDRE method developed in Chapter Three is not applicable to the models 

described in Chapter Five, as the low-degreed network requirement is not met. As a 

result, SBToolbox2 and its SBPD extension package (Schmidt and Jirstrand, 2006) were 

used for parameter estimation. In this section, we will describe the parameter estimation 

procedures used in the modeling study of Akt phosphorylation upon activation by growth 

factors, in non-mathematical language and in the context of the toolboxes used. 

Whenever applicable, published data and kinetic rate constants (Hatakeyama, et 

al., 2003) were adopted to ensure that the model does not violate biological knowledge 

(See Table 5.1 and 5.2). The remaining parameters were fitted to observed data (see 

Figure 5.1 and 5.6) in the process of model calibration. Parameter estimation was 

performed in multiple steps using the global search Particle Swarm Optimization (PSO) 

algorithm (Kennedy and Eberhart, 1942), the local search Nelder-Mead (NM) algorithm 

(Nelder and Mead, 1965) and manual tuning. For any combination of these steps, the final 

step always used the Nelder-Mead algorithm. 

When performing parameter estimation using a standard algorithm (PSO, NM), 

multiple-fit strategy was used. Each fit iteration applied an exponential noise (alpha=0.5) 

to the initial guess of all parameters before performing parameter estimation. Note that as 

the model changes its parameters after each round of parameter estimation, the initial 

guess for each run of parameter estimation changes every time. After 100 iterations, the 

parameter result with lowest sum-of-squared error (SSE) was retained for the subsequent 

steps of the parameter estimation pipeline. 
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Manual tuning refers to the process of manually adjusting each parameter to guide 

the simulation to match the observed data. The procedure was applied when multiple-fit 

parameter optimization was trapped in a local minimum and failed to return reasonable 

match with data, judged by the features of interest such as peak time and peak width. This 

approach can be effective in cases where even a hybrid method (global search followed 

by local search) fails to give reasonable match. 

In constructing the alternative scenarios to the canonical model, we introduced a 

new variable (e.g. “recruitment factor”, “retention factor”, etc.) and we represented its 

concentration over time using a linear spline.  The spline knots were a part of the system 

parameters, and would be optimized during parameter estimation. The model calibration 

process might also modify the rate constants and initial concentrations used in the 

canonical model, in addition to the spline knot parameters. 

2.6 Analysis of model families/ensembles 
The parameter estimation process generated a “nominal” model for each 

hypothesis. Subsequently, we constructed families of models for each alternative 

hypothesis based the “nominal” model, where each nominal parameter was multiplied by 

a factor between 0.1 and 10. This is similar to performing a local parameter sensitivity 

analysis. Based on the set of simulated time courses of each model, we abstracted the 

information into a peak vector, consisting of peak time, peak amplitude and peak width 

(distance between 90%-peak values before and after the peak) of four observables. 

2.7 Computational resources and modeling tools 
This research takes place in an era when emerging powerful technologies have 

enabled the handling of previously infeasible tasks. Massively parallel processing, 

provided by GPUs, has led to impressive growth (Figure 2.2). Advances in cloud 

technology have also enabled the execution of computationally costly tasks from lower-
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end client machines. This research has made use of these technologies to speed up the 

process of solving challenging biological problems in silico. Cheaper computing has also 

enabled this study to perform systematic evaluations of all alternatives (see Section 1.5), 

which has the advantages of covering search spaces more completely and avoiding bias. 

 

Figure 2.2 – Exponential growth of year-over-year in terms of Billion Floating-Point Operations per Second 
(GFLOP/s) for the CPU and GPU (Kirk and Hwu, 2010). 
Three of the most popular manufacturers are described: AMD, NVIDIA and Intel.  

Computer modeling and web-based resources have been progressively facilitating 

studies of biochemical networks such as signaling pathways (Klipp and Krause, 2011). 

Various computational tasks (in computational biology applications) are increasingly 

being aided and facilitated by the availability of specialized and general-purpose 

modeling tools (enumerated in Table 2.1) to perform model coding, model analysis and 

parameter estimation. 

 

 



   Page 18 
 

Tool	   Functionality	   References	  
COPASI	   Notation,	  analysis,	  and	  	  simulation	  of	  biochemical	  

models.	  Represented	  in	  ODE	  format.	  Supports	  
stochastic	  simulations.	  

(Hoops,	  et	  al.,	  2006)	  

CellDesigner	   Graphical	  representation	  and	  formatting	  of	  
biochemical	  networks;	  supports	  ODE	  model	  
implementation	  and	  simulation.	  	  

(Funahashi,	  et	  al.,	  
2003)	  

SBML	  Toolbox	   A	  toolbox	  of	  multiple	  functionalities	  for	  SBML	  
models	  (MATLAB-‐based);	  supports	  reading,	  writing,	  
graphical	  presentation,	  and	  simulation	  

(Keating	  et	  al.	  2006)	  

SB	  Toolbox	   A	  toolbox	  (MATLAB-‐based)	  for	  simulation	  of	  ODE	  
models;	  supports	  parameter	  estimation,	  bifurcation	  
analysis,	  steady	  state	  analysis,	  and	  model	  reduction.	  

(Schmidt	  and	  
Jirstrand	  2006)	  

SBW	   A	  common	  framework	  to	  facilitate	  communication	  
and	  combined	  use	  of	  heterogeneous	  applications;	  
support	  models	  in	  SBML	  format	  

(Hucka,	  et	  al.,	  2002)	  

Table 2.1 – A list of tools for analysis and simulation of physico-chemical  models that have been adopted in this 
thesis research.  
Details and availability of each tool can be found in the corresponding reference. The tool names were last verified in 2012 
by the author.  

2.7 Experimental methods  
All experiments in this study were either carried out by Dr. Luo Le (Department 

of Biochemistry, NUS) or by the author under the supervision Dr. Luo Le (“supervised 

experiments”). This section describes the protocols for the experiments involved, 

including quotations from the original text description in Dr. Luo Le’s thesis (available at 

http://scholarbank.nus.edu.sg/handle/10635/27948). The quoted text has been formatted 

and highlighted to avoid any confusion. 

Cell culture 
MEF cells were maintained in Dulbecco’s modified Eagle’s medium/high glucose 

(DMEM) supplemented with 2mM L-glutamine and 1mM gentamicin. Cells were 

incubated in a 5% CO2 incubator at 37ºC. Cells were grown in DMEM containing 10% 

fetal bovine serum (FBS). Under serum starved condition, cells were starved in DEMD 

containing 0.5% FBS.  
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Treatment conditions 
In wtFBS experiments, MEF cells were kept in serum starvation for 24 hours prior 

to measurement. Cells were treated with 10% FBS at the time of measurement (t=0).   

Time course measurements assay 
Time-series concentrations were measured based on for PIP3 fluorescence (used 

as model input) and Aktp308 (used as model observable). Immunoblotting  experiments to 

measure total Akt and Aktp308 were performed according to (Lim and Clément, 2007). 

Immunodetection of PIP3 level and confocal laser scanning microscopy was performed as 

described in (Lim and Clément, 2007). 

Lucigenin assay 
Cells were seeded and serum-deprived in 0.5%FBS/DMEM or maintained in 

10%FBS/DMEM before various drug treatments. In supervised experiments, cell culture 

was prepared by Dr. Luo Le and the subsequent steps of the assay were performed by the 

author, as described below. At different time points, cells were washed once with 1xPBS, 

trypsinized and harvested. Cell pellet was collected after centrifugation at 2000rpm at 

room temperature for 1 minute. The pellet was then resuspended and permeabilized in 

430µl 1x somatic cell ATP-releasing reagent, 400µl of which was used for measurement. 

Proton emission was recorded for 30 seconds with the Sirius luminometer (Berthold 

Technologies, Germany) after 100µl of 850µM lucigenin solution was injected 

automatically before reading. A blank control containing only 400µl 1x somatic cell 

ATP-releasing reagent was used to monitor the signal from auto oxidation of lucigenin if 

there was any. The intracellular O2
.- level was expressed as the luminescence unit after 

being normalized with the protein concentration (determined with the 30ul suspension left 

from the assay). The changes in O2
.- level under different treatments were reported as the 

percentage relative to the respective control cells.   
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Measurement of PIP3 by Immunofluorescence and Confocal 
Microscopy 

In supervised experiments, cell culture was prepared by Luo Le and subsequent 

steps were carried out by the author. Cells grown on cover slips were washed oncewith 1x 

PBS and fixed in 4% paraformaldehyde for 20minutes. After quenching with 100 mM 

NH4Cl and washing with PBS, the cells were permeabilized with 0.25% saponin for 10 

minutes at room termperature. The cells were blocked in 2%BSA, 5 % FBS in 1 x PBS 

and incubated with FITC conjugated anti – PIP3 antibody (Echelon, SaltLake City, UT) 

at a dilution of 1:50 for 1 hour at room temperature. The cells were washed three times 

before the cover slip was mounted for confocal analysis using a Carl Zeiss Lsm510 

META microscope with identical acquisition parameters for the same imagesession. 

The experiments listed in the subsections below were performed by Dr. Luo Le. 

These experiments, however, played a critical role in the outcome of the author’s thesis 

research. The following text was quoted from Dr. Luo Le’s thesis (Section 2.2), with the 

sole intention of aiding the interpretation of the biological data described in this thesis.  

"Western blot analysis 

SDS-PAGE and Western blot analysis were used to detect the phosphorylation level of 

Akt, total level of Akt, and total level of PDK1. Cells were washed once with cold 1x PBS and 

collected in PBS. The cell pellet was then lysed in the lysis buffer (50mM Tris-HCl pH7.4, 

150mM NaCl, 1mM EGTA, 1mM EDTA, 0.5% (v/v) Triton X-100) containing 1mM PMSF, 

5µg/ml leupeptin, 5µg/ml pepstatin A, 1µg/ml aprotinin and 1mM of sodium orthovanadate. 

Before measurement of protein concentration, the lysate was centrifuged at 14,000rpm for 10 

minutes to remove the debris. Protein quantification was performed using the Coomassie Plus™ 

Protein assay reagent (PIERCE, Thermo Fisher Scientific Inc, Rockford, IL, USA). SDS-PAGE 

was performed using the Bio-Rad Mini-PROTEAN® 3 Cell (CA, USA). The stacking gels used 

were 4% and the resolving gels used were 6.5%, 8% or 12% depending on the size of the target 

proteins. Protein samples were mixed with the 5xloading dye (0.313M Tris HCl (pH 6.8), 10% 

SDS (w/v), 0.05% bromophenol blue, 50% glycerol and 0.5M DTT) and heated at 95°C for 5 
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minutes before loading. Gel electrophoresis was conducted in the 1xSDS/Glycine buffer at 100V 

for 12% gel or at 120V for 6.5% and 8% gel. The resolved proteins were transferred onto a 

nitrocellulose membrane by the wet transfer method using the Bio-Rad Mini Trans-Blot® Cell 

(CA, USA). The transfer was conducted at 350mA for 1 hour at 4°C. The membrane was blocked 

in 5% (w/v) milk diluted in 1xTBST (20mM Tris – HCl (pH 7.6), 137mM NaCl, and 0.1% Tween 

20) for 1hour at room temperature. The membrane was washed with TBST to remove excess milk 

before blotted with respective primary antibodies (diluted in 5% (w/v) BSA) overnight at 4°C. 

After washing off the unbound primary antibody with TBST, the membrane was subsequently 

incubated with the respective horse radish peroxidase conjugated secondary antibodies (diluted in 

5% (w/v) milk) for 1 hour at room temperature. The detection was then performed with the 

Enhanced Chemiluminscence (ECL) using the Supersignal west Pico chemiluminescent substrate 

(PIERCE, Thermo Fisher Scientific Inc, Rockford, IL, USA). For re-probing the same membrane 

for different proteins, the membrane was stripped in the Restore Western Blot Stripping Buffer by 

5 minutes incubation at room temperature plus 10 minutes incubation at 37°C. The membrane was 

then blotted with primary antibodies and respective secondary antibodies. For densitometric 

analysis, the blots were scanned with EPSON Perfection 1250 and analysed by FujiFilm 

Multigauge V3.0.  

Membrane fractionation 

Membrane fractionation was performed as described previously (Taylor, et al., 2000). 

Cells were washed once and collected in ice-cold PBS. The cell pellet was resuspended in 

fractionation buffer (20mM HEPES (pH7.4), 5mM NaCl, 10mM MgCl2, 1mM EDTA) 

supplemented with 1mM phenylmethylsulfonyl fluoride (PMSF), 1µg/ml leupeptin, 1µg/ml 

pepstatin A, 1µg/ml aprotinin and 1mM sodium orthovanadate. Cells were lysed by 20 strokes 

with a dounce homogenizer at 4°C. The debris was removed by centrifugation at 700g for 10 

minutes at 4°C. The P100 and S100 fractions were further separated by high speed centrifugation 

(100,000g for 30 minutes at 4°C). The P100 fraction was then lysed in fractionation buffer 

containing 0.5% (v/v) Triton X-100. S100 and P100 fractions were then analyzed by SDS-PAGE 

and Western blot. For membrane fractionation, cadherin and SOD1 were used as membrane and 

cytosolic markers respectively. Absence of each marker in the opposite fraction showed the purity 
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of the fractionation process. Moreover, they served as loading controls for the corresponding 

fractions. " 

2.8 Data normalization.  
Raw data were normalized before model fitting, partly because experimental data 

were acquired by different assays (western blotting, confocal imaging), and partly to 

bring the data to the same scale as described by earlier model (Hatakeyama, et al., 2003). 

Time series data (Akt total, Aktp308, PIP3, and PDK1) were rescaled using the same 

normalization scheme (defined by the scale and offset values) for all experiments. Total 

cell lysate data were offset and normalized to have a highest value of 10. Membrane 

fractionation data were offset and normalized such that the concentration of a membrane 

fraction is never greater than that of total cell lysate. The quantification and normalization 

processes are available at the supporting website (http://webbppe.nus.edu.sg:8080/Akt). 
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CHAPTER THREE: DATA-RICH PARAMETER 
ESTIMATION METHOD (SPEDRE) 

3.1 Introduction  
Dynamic behaviors of biochemical networks can be captured by ordinary 

differential equation (ODE) models that compute the change of molecular concentrations 

with respect to time (Bentele, et al., 2004; Chen, et al., 2009; Fall, et al., 2002; Palsson, 

2006). For most biochemical pathways with known topology, most reaction rate constants 

(i.e., the coefficients of the differential equations) are not available from direct 

experiments. Rate parameters are typically estimated by regression, or fitting the global 

behavior of the simulated model to the experimentally observed concentrations. This is a 

difficult high-dimensional non-linear problem, and search strategies often experience 

poor convergence and local optima (Kleinstein, et al., 2006). The rate parameter 

estimation problem can naturally be formulated as minimizing a sum of squared errors 

(SSE), where each error is a difference between simulated concentration and observed 

concentration, and the summation is over time points and/or experimental treatments.  

The task of optimizing the SSE objective function can be attacked using a variety 

of “traditional” global and local search methods: LM (Levenberg-Marquardt, local), SD 

(steepest descent, local), SRES (stochastic ranking evolution strategy, global), PSO 

(particle swarm optimization, global) and GA (genetic algorithm, global) (Fogel, et al., 

1991; Kennedy and Eberhart, 1942 ; Levenberg, 1944; Marquardt, 1963; Michalewicz, 

1994; Runarsson and Yao, 2000). Local searches typically use nonlinear least squares 

optimization, and run very quickly, but they only explore the parameter space around a 

given start value.  Therefore, local methods depend on a good initial guess, meaning an 

initial guess within the basin of convergence of the global optimum.  If the objective 

function is rugged with many local optima, the chance of initializing in the optimal basin 

diminishes rapidly. Global methods (Moles, et al., 2003) typically use heuristics and 
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random sampling to explore the entire domain of parameters, and the runtime depends on 

the level of sampling performed. Despite the “global” terminology, the results produced 

by such methods carry no guarantee of global optimality, except as a theoretical limit as 

the sampling time goes to infinity.  Many local and global optimization methods have a 

subclass of problems (number of parameters, amount of data, amount of noise, etc.) for 

which a particular method performs best. In other scientific areas where optimization is 

required, hybrid global-local methods have performed well and hybrid methods have 

recently become popular for rate parameter estimation (Fomekong-Nanfack, et al., 2007; 

Katare, 2004; Rodriguez-Fernandez, et al., 2006; Zwolak, et al., 2005). Hybrid methods 

offer the promise of selecting a good region by global sampling, and then quickly 

selecting the optimal point in that region by local optimization. 

Traditional search methods generate a full vector of rate parameters, simulate the 

model with this full set of parameters, and then accept, reject, or adjust the parameters 

based on how well the simulation agrees with experimental measurements. For networks 

with few unknown parameters, these “simulate-and-match” methods have been very 

successful at finding good values. The search space for parameter vectors is exponential, 

and the inevitable trend with any type of exponential growth is that there will eventually 

be a large enough number of unknown parameters, such that reasonable sampling will not 

explore very many of the “basins of convergence,” and the results will deteriorate. Indeed 

many high-impact models of biological pathways continue to be built without automating 

the parameter estimation process (Albeck, et al., 2008; Basak, et al., 2007; Purvis, et al., 

2008).  

In contrast to standard “simulate-and-match” methods of parameter estimation, 

spline-based collocation methods have recently been developed that use experimental 

observations of a protein over time to interpolate the time derivative of the concentration, 
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rather than computing the derivatives based on simulating the ODEs. Traditional methods 

minimize the violation of experimental observations, subject to obeying the ODE 

trajectories, while the spline-based collocation methods can be seen as solving the dual 

optimization problem because they minimize the violation of the ODE trajectories, 

subject to obeying the experimental observations. Several spline-based collocation 

methods have been published recently. A spline-based collocation scheme for parameter 

fitting problems using a modified data smoothing method and a generalization of profiled 

estimation was proposed by (Ramsay, et al., 2007). A collocation scheme, particularly 

suited for problems with high noise and short time-course, was introduced by Brewer and 

colleagues (Brewer, et al., 2008). Zhan et al. used non-linear programming (NLP) to 

optimize the dual objective (Zhan and Yeung, 2011). Note that these spline-based 

collocation methods require an extensive input dataset with observations for many or all 

of the proteins. In the past, few large networks had such comprehensive measurements 

available, but recent trends in proteomic technology (Zhang and Neubert, 2009) suggest 

that data-rich cases may be increasingly common in the future. Many spline-based 

collocation methods have been published with claims of good accuracy, but to the best of 

our knowledge, efficiency and runtime have not yet been compared with state-of-the-art 

non-spline parameter estimation methods. The asymptotic runtime of spline-based 

collocation approaches has also been neglected. 

Scalability with network size is a major remaining challenge in the parameter 

estimation field, regardless of the objective function or optimization approach. A 

common strategy for large systems is to decompose the problem. However, the objective 

functions of parameter estimation are not generally decomposable. Some decomposition 

approaches exploit specific situations, such as having derivatives available at all 

timepoints (Chou, et al., 2006), or having small sub-networks connected by species with 
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observed concentrations (Koh, et al., 2006). The dual objective functions of spline-based 

collocation methods are not readily decomposable, but they do exhibit the important 

property of sparse interdependence (“locality”) between the variables. This locality can be 

a basis for conditional decomposition. 

Belief propagation (see (Meltzer, et al., 2009) review and (Pearl, 1988) textbook) 

is an inference method for probabilistic graphical networks with sparse interdependence 

or locality. It can compute the maximum a posteriori (MAP) values for variable 

parameters in a factor graph, given joint probability distributions that describe the 

dependencies between adjacent variables. For acyclic graphs, belief propagation 

guarantees exact optima, and for general graphs, a variant called “loopy belief 

propagation” (LBP) has had empirical success at approximating the MAP (McEliece, et 

al., 1998; Murphy, et al., 1999).  

Our method of Systematic Parameter Estimation in Data Rich Environments 

(SPEDRE) optimizes the dual objective approximately, via loopy belief propagation. The 

innovation is conditional decomposition of the problem into local sub-problems, with pre-

computed look-up tables for the discretized solutions to the local terms of the dual 

objective function. SPEDRE provides dramatic improvement in empirical efficiency, and 

in effect brings the spline-based collocation (dual objective) methods to the same level of 

efficiency as the state-of-the-art (primal objective) methods. Asymptotic runtime is 

polynomial with respect to the number of species, parameters and timepoints in the 

biological networks, while it is exponential only in the degree of the network.  

3.2 Preliminaries 
Ordinary differential equation (ODE) for mass action kinetics 
(MAK) 

Mass action kinetics (MAK) describes the behavior of solutions as a sum of 

elementary reactions weighted by coefficients called the reaction rates or the kinetic 
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constants. The production and consumption of each species can thus be described using 

ODEs. For example consider a 2-species artificial pathway A⇄B. Using k1 (and k2) to 

denote the forward (and reverse) reaction rates, we can model the system as follows:   

 
 

(3.1) 
 
 
 

Solving Equations 3.1 provides the time evolution of the species, dependent on 

rate parameter vector .k
r

The inverse problem, estimating the rate parameters from 

observed levels of the species, is a deceptively difficult nonlinear optimization problem 

(Kleinstein, et al., 2006). We define the degree of each ODE to be the number of terms in 

its right hand side, analogous to the node degree in a biochemical network diagram. 

Rate constant estimation objective   
To estimate the rate constants, the most standard (“primal”) approach is to use a 

nonlinear least squares technique to minimize the weighted sum of squared error (SSE) 

objective function 

 
(3.2)  

 

where Nt is the number of observed timepoints per experiment, , ( )data
e i jx t is the observed 

concentration of species i in experiment e, and , ( , )sim
e i jx t k

r
is the simulated level of species 

i in experiment e as a function of time and rate constants .k
r

 SSE is the most widely-used 

objective for evaluating the success of parameter estimation, but size of the SSE error 

(which is expected to grow with the number of things being summed) grows with the size 

of the network. Therefore we also employ the species maximum relative error (MRE), 

and parameter percentage error (PPE), defined as follows: 
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              (3.4) 
 
 
 
              

(3.5) 

 

Besides conventional SSE values, we also assessed the parameter estimation 

quality using the species maximum relative error (species MRE), a dimensionless metric. 

Species MRE is an improvement over SSE in this case because MRE does not depend on 

size of the system, and therefore can evaluate the ability to match data over a range of 

network sizes. The weight
( )2, ( )

t

data
e i m

m

N

x t∑
, the inverted mean squared of the data for all 

timepoints, makes the measure equivalently sensitive to relative errors in any species 

regardless of whether the species has high or low concentration. Species MRE is a 

preferred choice in this work, as it specifies the maximum distance between the simulated 

and observed trajectories for all species. 

If the SSE objective function has multiple minima, different sets of parameters 

may match the same set of data equally well. Thus we also used maximum and median 

PPE (parameter percentage error) as additional metrics to assess a parameter estimation 

method, evaluating whether the underlying parameters were indeed recovered. This is 

only feasible for simulated test cases, where the parameter values are known. 

3.3 Alternative objective function  
Inspired by primal-dual transformations from the field of linear programming, we 

construct an alternative parameter estimation problem that resembles a “dual” of the 

conventional problem.  The standard “primal” formulation of the problem is to optimize 
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the agreement between model concentrations and experimental concentrations, subject to 

the constraint that the model concentrations satisfy the ODEs (i.e., that the model 

concentrations are taken from a time-evolved trajectory of the ODEs).  For the “dual” 

problem, we instead seek to minimize the violation of the ODEs (i.e., the amount by 

which the right hand side differs from the left hand side of the ODE), subject to the 

constraint that the model concentrations exactly match the experimentally observed 

concentrations.  In the dual approach, rather than solving the ODEs, we construct 

piecewise lookup-tables of model behavior, that violate the ODEs but match the observed 

concentrations; then we minimize the disagreement between the piecewise (interpolated) 

derivatives and the ODE reactions of production and consumption. We propose no 

analogous duality theorem for this primal-dual transformation, but we merely observe that 

a correct solution to the dual problem would also solve the primal problem. 

Error terms of dual objective function     
The error terms of our dual objective function, εe,i,j, minimize the disagreement 

between the right hand sides of the ODEs (which we denote ODE
if , see Equation 3.1) and 

the species derivatives (computed using the species derivatives interpolated from the 

observed data):   

               ( ), , ,

ˆ
,

j

spline

ODE data
e i j i e i

t t

df k x
dt

ε
=

⎛ ⎞
⎜ ⎟
⎜ ⎟
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⎝ ⎠

= −
r

 (3.6) 

indexed over experiments e, species i, and timepoints tj. ,
data
e ix  are the time-series 

observations of species i in experiment e. The εe,i,j  terms are similar to the terms of other  

spline-based collocation methods, but we remark that each εe,i,j is defined in terms of a 

small subset of the parameters k
r

, while each term of a “primal” SSE objective utilizes all 

parameters via simulation. 
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The interpolated derivative d̂
dt

 in Equation 3.6 is computed using clamped cubic 

splines. Clamped spline interpolation approximates the first derivatives using three data 

points and two endpoint derivatives (Tewarson, 1980).  End-point derivatives make the 

computation of the spline unique.  Figure 3.1 illustrates the derivative for species xi at 

timepoint tj, approximated (dashed arrow) using a clamped cubic spline based on 

observed data for tj-1, tj and tj+1; and endpoint derivatives from the ODEs at timepoints tj-1 

and tj+1. We estimated the endpoint derivatives by computing ( )
1j

eODE
i t t

kf
−=

r
and

( )
1j

eODE
i t t

kf
+=

r
, the right hand side of the ODE for species i, experiment e at timepoint tj-1 

and tj+1, respectively. Other spline methods could also be used to compute the 

approximate derivatives.  

 

Figure 3.1 – Illustration of computing the approximate derivative using clamped spline interpolation  
 

Product of functions  
Among different schemes for combining error functions into an objective (e.g. 

sum of squares), we chose multiplication:   
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The product of functions (POF) is a decomposable expression that will later facilitate the 

use of belief propagation for probabilistic inference on a factor graph.  By inspection, the 

POF is minimized when individual error terms εe,i,j are minimized. Assuming the network 

is low-degree, each εe,i,j is a low-dimensional term involving a small subset of the rate 

parameters k
r

. The εe,i,j error terms cannot be optimized as independent problems because 

the subsets of k
r

are not mutually exclusive.  However, the low-dimensionality of εe,i,j  

means we can pre-compute solutions for each εe,i,j subproblem systematically.  We pre-

compute a complete look-up table Te,i,j that gives the value of εe,i,j for each possible 

(discretized) combination of the relevant k
r

 parameters. To combine many low-

dimensional systematic εe,i,j solutions into an optimal high-dimensional parameter vector 

is a problem that resembles belief propagation, except with a sparsely connected, cyclic 

graph instead of an acyclic graph.  We next describe in Section 5.4 how to compute a 

global estimate of k
r

as a graphical inference problem using LBP. 

3.4 Loopy Belief Propagation (LBP) 
We now express the POF optimization as an inference problem on a factor graph, 

in preparation for using a type of “belief propagation” or “message passing” algorithm to 

infer values of the variables that best satisfy the factorized objective function (Pearl, 

1988; Yedidia, et al., 2003).  We construct a factor graph with nodes for the variable 

parameters of k
r

and the factors εe,i,j. The possible values of each ki are represented as a 

discrete probability distribution, with uniform initial distributions (uniform prior 

probabilities).  The joint probability distribution encoding the interdependence between 

the variable parameters is a lookup table for each factor, computing exhaustively the 

values of the error term εe,i,j (the violation of one ODE, at one timeslice, in one 

experiment) for each combination of its variable parameters.  This summarizes how 
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SPEDRE uses a factor graph to formally represent the decomposition of the global 

estimation problem into a network of sub-problems.  Because the factor graph we define 

would not be acyclic, standard belief propagation (Pearl, 1988) does not apply. Finally we 

employ a message passing scheme (Koh, et al., 2007; Murphy, et al., 1999) that has been 

empirically successful in computing approximate MAP solutions on graphs with cycles 

(McEliece, et al., 1998).   

Factor graph 
A factor graph is a bipartite graph with factor nodes εe,i,j (for each experiment e, 

ODE i, and timepoint tj) and variable parameter nodes ki (for the members of k
r

).  We 

connect a factor node εe,i,j to a parameter node ki if and only if ki appears in the equation 

for εe,i,j.  

For each factor node, a factor graph has a joint table (or joint probability 

distribution) to describe the probability of each combination of values for the adjacent 

variable nodes.  We compute a constant look-up table Te,i,j, based on the error term εe,i,j, 

for the joint probability of each combination of the adjacent variable parameters. (Section 

5.2 describes how errors are converted into probabilities.)  Note that εe,i,j represents the 

discrepancy between the right hand side of the i-th ODE (computed using the variable 

parameters) and the left hand side of the ODE (computed from spline-based interpolation 

of the data for experiment e, species i, and timepoint tj).  Each factor node thus serves to 

enforce the equality of one ODE at one timeslice and one experiment.  An example factor 

graph corresponding to the 2-species A⇄B system is shown in Figure 3.2 with variable 

nodes (rate parameters) represented by circles, and factor nodes (εe,i,j) by rectangles.  
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Figure 3.2 – A partial factor graph of the example 2-species system, shown for one timepoint tj and one 
experiment e.  
The complete factor graph would include factor nodes for every timepoint and every experimental treatment, each 
connected to the k1 and k2 variable nodes.  

Discretization and Joint Probability Tables  
Each variable node ki is associated with a 1-dimensional discrete probability 

distribution, which represents the current belief about the likeliness of that value being in 

the optimal parameter vector. In theory, variable parameters are real numbers, but to 

permit us to evaluate combinations “systematically,” we discretize the domain of each 

parameter into a finite number of sub-intervals, or bins, and we represent each bin by its 

midpoint. Coarser intervals (larger bins) will yield faster runtime at the expense of 

accuracy.  At the start of the algorithm, the 1-dimensional discrete probability distribution 

for each variable parameter is uniform, representing lack of prior knowledge about the 

value of that parameter.  During the process of belief propagation, the discrete probability 

distributions will be updated by a message passing algorithm, until convergence or until 

an iteration limit.  

If factor node εe,i,j has degree d, then the joint table Te,i,j is a d-dimensional table, 

and each dimension is discretized with the same binning as the variable parameters of the 

d adjacent variable nodes (Figure 3.3). To convert the error terms εe,i,j into probabilities, 

we use a Boltzmann-like exponential weighting: ( ) ( ), ,exp e i jp f C ε= × − . This makes large 

violations exponentially unlikely, and C is a normalization constant to make p(f) a valid 
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probability distribution, i.e. all entries in the discrete joint table sum up to 1. (Alternative 

methods of representing a systematic solution of εe,i,j would also have been possible.)   

 

 

 

  

 
Figure 3.3 –  Illustration of a joint probability table of 3 dimensions, corresponding to rate constants k1, k2 and k3. 
Each dimension of the look-up table corresponds to one associated variable parameter (variable node in the factor graph), 

binned into 3 possible values.  The joint probability computed for each cell of the table (e.g., ( )
1 2 32, 3, 1k k kp f
= = =

for the 

cell with k1= 2nd bin, k2=3rd bin, k3=1st bin) is obtained by converting the εe,i,j error term into a probability, via exponential 
weighting and normalization. 

Note that minimizing the error means maximizing the probability. These 

probability distributions do not change during the course of belief propagation and can be 

pre-computed.  The error term εe,i,j must be computed for every possible discrete 

combination of the relevant parameters, using the midpoint of each parameter bin, and the 

errors can then be converted to probabilities to fill in the joint probability table Te,i,j. The 

optimal combination of parameters for each εe,i,j sub-problem can be found trivially by 

scanning the  Te,i,j table.  

Due to the discretization required by this method, the estimated value of each 

parameter is a range rather than a single value. Although discretization sacrifices some 

accuracy (analogous to round-off error), we choose the variable parameters to be 

discretized, sometimes quite coarsely, because the output of such a method might be ideal 

input for a local search method, such as Levenberg-Marquardt or Steepest Descent, to 

refine afterwards, using a more precise simulation-based objective function. 

Loopy Belief Propagation 
Belief propagation can be described informally as two types of message passing: 

variable nodes X pass messages (1-dimensional probability distributions, X fµ → ) to 
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adjacent factor nodes f to communicate what the variable node believes to be the value of 

its variable.  Factor nodes f in turn pass a message (1-dimensional probability distribution,

f Xµ →
) to adjacent variable nodes X communicating what they believe the variable values 

to be.  Each message from a factor causes the variable nodes to update their probability 

distributions, and that update also alters the later messages sent out by the variable nodes.  

In acyclic graphs, the message passing algorithm yields a provably exact, optimal MAP 

solution for the variables, efficiently. (Murphy, et al., 1999) describe the LBP algorithm, 

extending the message passing framework to achieve good heuristic approximations for 

cyclic graphs.  We use a variant of the LBP message-passing algorithm detailed in (Koh, 

et al., 2007), summarized in Box1 as “SPEDRE-base.” 

In a discrete joint distribution g with dimensions X1,X2,..,Xm, we define the 

maximization over a dimension Xi as follows: 

 

 
(3.8) 

 

 

where ~Xi denotes the set of all dimensions in g except Xi.  
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Box 3.1 – SPEDRE-base algorithm for computing the MAP estimates on a factor graph.   
N(node) is the set of neighbors adjacent to node. Steps B.1.1.2 and B.2.1 include a logarithm operation as a heuristic to 
avoid rounding off small numbers to zero.  Because normalizing the messages or probability distributions does not affect 
the final MAP results (Yedidia, et al., 2003), we also perform normalization after the computation of step B.1.1.2 and B.2.1 
so that the messages and beliefs are always valid probability distributions at every iteration.  The messages history serves 
as a buffer for incoming messages, and the algorithm makes implicit use of the message history during steps B.1.1.2  and 
B.2.1. Input and output for the algorithm is illustrated in Section 5.5. 

Convergence in step B occurs when no normalized message in the current 

iteration differs by more than a tolerance value from the corresponding message in the 

previous iteration. As the LBP algorithm is not guaranteed to converge, and in some cases 

might oscillate (Murphy, et al., 1999), we impose an additional criterion to limit the total 

number of iterations.  

Asymptotic Analysis of the Modified LBP (SPEDRE-base) 
Algorithm 

To determine the run time for step A in Box 5.1, we need to find the size of each 

lookup table and the number of lookup tables that need to be computed. Each dimension 

of the joint table corresponds to one variable node, which is one reaction in the 

corresponding ODE. Hence the number of dimensions of the joint table, which is the 

A. Initialization:  

A.1. Compute lookup joint tables, , for each factor node 

A.2. Set all variable nodes to uniform distribution 

B. Propagation: repeat until convergence  

  B.1. For each factor node   

B.1.1. For each variable node   

B.1.1.1. Collect : the message from variable node to , which is , the 

current probability distribution of  

B.1.1.2. Compute   

B.1.1.3. Send to the message history of  

  B.2. For each variable node  

B.2.1. Update the distribution of to , where  are stored in the 

message history of  



   Page 37 
 

degree of the factor graph, is proportional to the number of reactions in the ODE. The size 

of a joint table is  O  (#binsdegree). The factor graph defines one factor node for each ODE, 

for every experiment and at every timepoint excluding the two end timepoints. Therefore, 

the number of joint tables is the product of the number of ODEs (or species), 

experiments, and timepoints (=#species×#experiments×#timepoints). Therefore, the 

required time for step A is:  

  O  (#species×#experiments×#timepoints×degree×#binsdegree)  (3.9) 

From step B.1 in Box 5.1, for every iteration, each factor node iterates through 

each of the neighboring variable nodes and performs multiplication. This is equivalent to 

the multiplication operation between a joint tables and a one-dimensional discrete 

distribution, which takes the run time proportional to the size of the joint table, or O  

(#binsdegree). Since there are degree variables connected to the factor node, the 

computation requires O  (degree×#binsdegree) operations. Thus the time required for step 

B.1 is O  (#species×#experiments×#timepoints×degree×#binsdegree). From step B.2 in Box 

5.1, for every iteration, each variable node needs to compute its new distribution based on 

the messages from the factor nodes.  As there are #rates variable nodes, the maximum the 

number of computed messages is #species×#experiments×#timepoints and each message 

has size #bins, so the time required for step B.2 is: 

  O  (#species×#experiments×#timepoints×#rates×#bins)  (3.10) 

To run on all the factor nodes for #iterations iterations, the time required for step B is:  

  O(#iterations×#species×#experiments×#timepoints×(#rates×#bins  

             + degree×#binsdegree)) (3.11) 
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Since the run time for step B.1 and B.2 dominates that of step A and step C, the total time 

complexity of the LBP algorithm (SPEDRE-base) is:      

  O(#iterations×#species×#experiments×#timepoints×(#rates×#bins  

             + degree×#binsdegree)) (3.12) 

The time complexity scales exponentially with the factor graph degree, which is 

defined as the maximum number of variable nodes adjacent to any factor node, or the 

maximum number of unknown rate parameters appearing in any ODE. For a factor graph 

with bounded degree, the method scales polynomially with respect to the number of 

species, timepoints and discrete bins. This means the method scales very well on 

biological pathways with a small bounded number of reactions per species. Our 

asymptotic runtime compares favorably with conventional (“primal”) methods, because 

primal methods search for full-length parameter vectors in a space that grows 

exponentially with the number of parameters. Although primal methods with heuristic 

sampling do not have to cover the entire parameter space, they must maintain some 

coverage of the major “valleys” of the objective function.  If the number of valleys and 

inflection points grows with the size of the parameter space, then primal methods will 

perform poorly (accuracy versus runtime) on large networks. 

3.5 Web server implementation 
Input 

SPEDRE requires two main inputs from users: the connectivity of the network, 

and the concentrations of the molecular species.  The connectivity must be specified as an 

XML file in COPASI_ML format (Hoops, et al., 2006), which can be obtained from 

SBML format using a link to the conversion service in CopasiWeb (Dada and Mendes, 

2009). The concentrations of the molecular species are specified in a comma separated 

value (CSV) file, and would typically contain time series measurement from western 
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blots or from SILAC proteomics (Zhang and Neubert, 2009). Using the submission form 

of SPEDRE, users can also customize the execution of SPEDRE. The web server 

homepage provides descriptions and illustrations for many sample pathways, and include 

a set of automatically constructed networks (circular or tree) with different sizes and 

published biological pathways (Akt canonical pathway (Hatakeyama, et al., 2003), 

MAPK pathway (Huang and Ferrell, 1996) and Actin Filament Assembly-Disassembly 

pathway (Berro, et al., 2010)). 

SPEDRE allows advanced users to customize how the optimizer executes based 

on specific needs of the rate constant estimation problem. The universal discretization 

scheme for all the rate constants can be specified by setting three values: lower bound, 

upper bound and number of discrete bins. The individual rate constant can override its 

upper bound and lower bound if these are specified in the network connectivity input file. 

The binning scheme can be set to linear or logarithmic scaling. The maximum number of 

iterations allows users to limit the run time of SPEDRE, which is often a trade-off to the 

accuracy of returned results. The maximum number of iteration can be set to 0 if users 

wish to perform a standalone local search. The anticipated error rate allows users to add 

Gaussian noise to the provided observed data. The number of samples taken per voxel is 

used in the rate constant space discretization operation in SPEDRE where each voxel will 

be represented by the specified number of samples. 

For every reaction in the pathway model, SPEDRE requires a predefined reaction 

type, as defined by the "rate law" value when the model is created using Copasi software 

(Hoops, et al., 2006). Through the conversion service provided at the CopasiWeb service 

(Dada and Mendes, 2009), the reaction types in the output file are typically assigned a 

different name, which requires users to change name for these the reaction types (or rate 

laws) manually. Although more reaction types can be supported in the future, SPEDRE is 
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currently restricted to the following sets of reaction types: “Mass action (irreversible)”, 

“Michaelis-menten catalysis” and “Enzyme simple” (reaction rate × enzyme × substrate).   

SPEDRE accepts data file described in comma separated value (TXT or CSV 

format). The content format is similar to a time-course simulation output from the Copasi 

software (Hoops, et al., 2006), where first line specifies the headers (timepoints and 

species names) and first column specifies time values. When certain data point is invalid, 

the timepoint involved will be removed from all species before performing rate constant 

estimation as per normal.  

Processing method 
The SPEDRE web server estimates rate constants using a web server 

implementation of SPEDRE. Although there are many computational methods available 

for parameter estimation (Funahashi, et al., 2003), as reviewed in (Hoops, et al., 2006; 

Moles, et al., 2003; Schmidt and Jirstrand, 2006) and (Rodriguez-Fernandez, et al., 2006), 

we are not aware of any other web servers, besides CopasiWeb (Dada and Mendes, 2009) 

and SPEDRE (available at http://webbppe.nus.edu.sg:8080/opal2/SPEDRE). 

Parameter estimation in biological networks is challenging because the parameters 

are shared between different ODEs, which makes them impossible to estimate 

individually.  Even if each parameter can take on only a fixed number of possible values, 

the number of possible combinations of these parameter values becomes astronomical, 

growing exponentially with respect to the number of reactions.  SPEDRE exploits the 

sparsity of the network to divide up the problem, and it performs a systematic search with 

approximate accuracy by using a probabilistic inference technique called Loopy Belief 

Propagation (Murphy, et al., 1999). The pipeline for executing the rate constant 

estimation task is illustrated in Figure 3.4. 
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Figure 3.4 – Processing pipeline for SPEDRE 

From Figure 3.4, the pipeline for rate constant estimation in SPEDRE can be 

described in five components: input, rate constant space discretization loopy belief 

propagation, local optimization and output. Many options are available for users to 

customize how SPEDRE executes, including the number of bins per rate constant in 

computing the joint table and the number of iterations of belief propagation. Taking 

network connectivity and observed data from users, rate constant space discretization 

transforms the continuous range of rate constants into discrete bins, with the coarseness 

defined by users. The discrete rate constant space allows SPEDRE to perform loopy 

belief propagation, which is an iterative procedure that will terminate by convergence or 

when the specified maximum number of iterations is reached. Upon termination, a bin 
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plot is displayed to the users, where optionally the bins’ midpoint will be used as initial 

guess for local optimization. Full methods are provided with the SPEDRE-base algorithm 

in Section 5.4.  

The asymptotic analysis of the SPEDRE algorithm reveals interesting properties 

of the method, in which the time complexity scales exponentially with the network degree 

but polynomially with the number of species, time points and discrete bins. 

Correspondingly, this means the method scales well on biological pathways with a 

bounded number of reactions per species. Dense networks with hub-like species have 

high network degree and thus are unsuitable for SPEDRE-base algorithm, and SPEDRE 

handles these cases by running the Levenberg-Marquardt algorithm (Marquardt, 1963). 

The SPEDRE algorithm was implemented using C++ language with an interface 

with Copasi (version 4.6, build 32) (Hoops, et al., 2006). SPEDRE web server was 

implemented using the Opal toolkit, as introduced in (Ren, et al., 2010), among other 

tools. To display the customizable bin plot of SPEDRE results, Google Chart API 

(Google Inc.) was used. 

Ouput 
An example execution based on the MAPK cascade is shown in Figure 3.5. Using 

the web interface, users can submit the input files following the specified format, and 

SPEDRE performs the computation task while simultaneously displaying the execution 

page. Different execution specifications may result in very different run time, thus some 

may require several hours to complete. The users can therefore bookmark the location of 

the output page for a later visit. A status page is linked to the execution page and shows 

the percentage of the overall task that has been completed. Users are advised to refer to 

the asymptotic analysis of SPEDRE algorithm to adjust the SPEDRE execution 

configuration for dense networks.  
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Upon completion, SPEDRE returns an estimated range for each rate constant, in 

the form of a bin plot, as shown in Figure 3.5.  A bin plot is a visual representation of the 

resulting voxel in high dimensional space, which gives users an impression of the 

exponential number of possible combinations of rate constants, even in a coarsely 

discretized search space. Each bin indicates a range in which the estimated reaction rate 

lies, and the mid-point can be taken as the estimated value. Further search within this 

range can be performed by any method, for example by using the midpoint of the output 

range as an initial guess for a point-based method. We follow SPEDRE-base with the 

Levenberg-Marquardt (LM) algorithm of local optimization (Marquardt, 1963), which is 

available through a seamless interface with Copasi, because hybrid global-local methods 

have been an effective strategy for many complex optimization problems (Ashyraliyev, et 

al., 2009; Nim, et al., 2010; Rodriguez-Fernandez, et al., 2006).  
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Figure 3.5 – SPEDRE execution results using MAPK sample derived from (Huang and Ferrell, 1996).  
Details of the execution configuration of this test case are provided on the web page.	  
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The bin plot shown in Figure 3.5 was generated using the Google Chart API 

(Google Inc.), which imposed certain constraints, including the maximum URL length of 

2,048 characters (for plot formatting) and maximum plot size of 300,000 pixels. Users 

may encounter a cluttered plot for a very large network (>30 rate constants). As the API 

is actively developed with large user base across the industry, this	  current	   limit	  can	  be	  

overcome	  with	  new	  updates	  of	  the	  API.	  	  

3.6 Benchmark experiment setup 
We propose that the SPEDRE-base algorithm should be followed by a local search 

method such as LM, because a hybrid approach can correct some of the fine-grained 

inaccuracies created by the discretization and by the numerically approximate derivatives.  

SPEDRE-base is written in C++, the same language as the Copasi parameter estimation 

tools (Hoops, et al., 2006). A wide variety of parameter estimation algorithms assert 

claims of supremacy, and algorithms in the “evolutionary strategies” family are 

particularly well-reviewed (Moles, et al., 2003). For a fair comparison, we chose a variety 

of standard methods:  

• Local search: Steepest Descent (SD), Levenberg-Marquardt (LM) 

• Global search: SPEDRE-base, Genetic Algorithm (GA), Evolution Strategy 

using Stochastic Ranking (SRES), Particle Swarm Optimization (PSO) 

Four forms of global and two forms of local optimization produce 8 hybrid 

methods: SPEDRE, SRES_LM, PSO_LM, GA_LM, SPEDRE-base_SD, SRES_SD, 

PSO_SD and GA_SD. Note that hybrid methods GA_LM and PSO_LM were previously 

proposed by Katare et al. (Katare, 2004). Rodriguez-Fernandez et al. also proposed the 

hybrid of SRES with a local optimizer (Rodriguez-Fernandez, et al., 2006).  The 

implementations of the comparison algorithms were used through the Copasi software 
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package (version 4.4, build 26). Each parameter estimation method was run with custom 

configuration (e.g. number of generations, number of iterations, etc.) such that all 

methods take a similar amount of time to complete. However, this constraint may not 

always hold (see Table 5.1) as local search methods and GA can converge very quickly, 

regardless of user-defined iteration limits. Copasi (.CPS) source files are available at the 

SPEDRE homepage, describing the model parameters and configuration for each 

parameter estimation method on each test case (including the ring networks, artificial 

networks and the Akt model). Experiments were performed on an Intel® CoreTM i7 

2.8GHz CPU and 4GB memory workstation running Windows® XPTM. 

3.7 Results 
Initial tests were designed to confirm that the SPEDRE-base method can solve 

simple parameter estimation problems.  We also monitored performance as a function of 

network size and timepoint spacing, in order to probe two sources of potential error in the 

SPEDRE-base method: spline accuracy, and the POF objective function. Simple tests 

were designed with ring-shaped networks (Figure 3.6A) and with nominal parameters 

randomly chosen to be at exact mid-points of the parameter discretization bins. Simulated 

data were generated with random initial concentrations, using the nominal rate 

parameters. For each run of SPEDRE-base, we monitored the objective  

 
(3.13) 

 
 

normalized with respect to the number of factors in the product of Equation 3.13. The 

objective declined when the number of timepoints increased (Figure 3.6B), indicating as 

expected that SPEDRE gives better estimates of the parameters when timepoints are 

densely sampled. 

log(POF)Normalized log(POF) ,*( 2)t sN N=
−
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Figure 3.6 – Performance of SPEDRE on a series of ring networks.  
(A) Ring network diagram; (B) normalized log(POF) with respect to the number of timepoints on different network sizes; (C) 
normalized log(POF) of LBP predicted rate constants, versus the normalized log(POF) of nominal (“correct”) rate 
constants on circular networks of 10 to 100 species with 11 timepoints.  (Total simulation duration was 4s, with 0.4s for 
each time step). Each rate constant was discretized into 10 equidistant bins from 0.05 to 1.05, with the nominal rate 
constants selected from among the bin midpoints.  Dataset can be found at 
http://webbppe.nus.edu.sg:8080/opal2/SPEDRE.    

Next we compared the normalized log(POF) value between the results of 

SPEDRE-base, and the nominal (“correct”) rate constants, using 10 time steps (i.e. 11 

timepoints) for each test. Figure 3.5C shows that the POF scores of the exact nominal 

parameters were higher than the POF scores of the parameters found by SPEDRE-base, 

for all networks of significant size. Because SPEDRE-base found parameters with better 

scores than the “correct” parameters, we infer that the POF objective is an imperfect score 

of parameter accuracy.   

Scalability with artificial networks 
The complete SPEDRE method consists of SPEDRE-base (Sections 3.3-3.4) 

followed by LM to refine the discretized results from SPEDRE-base. We compared the 

performance of the complete SPEDRE method against a selection of popular local, 

global, and hybrid methods, on parameter estimation problems from low-degree 

networks. Random networks of increasing size (from 30 to 150 species) were constructed 

with low degree (two-thirds of the reactions involving 3 species, and one-third involving 

2 species), to generate parameter estimation problems with increasing scale. We tested 14 

parameter estimation methods including SPEDRE-base, LM (local), SD (local), SRES 

(global), PSO (global) and GA (global), plus hybrid global-local combinations of these 
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methods (e.g. SRES_LM denotes the global method SRES plus the local method LM). 

Runtime and multiple error scores were measured as a large-scale screen.  

We compared the performance of all 14 parameter estimation methods on a series 

of randomly constructed low-degreed networks, including run time, species maximum 

relative error (MRE), median and maximum parameter percentage error (PPE). The 

networks vary in size from 30 species to 150 species. Data sets were obtained by 

simulating the networks with nominal reaction rates, to which 20% Gaussian noise or no 

noise was added to generate simulated observations. A sample network of size 30 is 

shown in Figure 3.7. Figure 3.8 showed the performance of all standalone and hybrid 

methods on an artificial network with 130 species and 130 reaction rates (each bar 

showing the average with error bar indicating standard deviation from three tests with 

different parameter sets using the same network topology), where complete comparison 

results on different network sizes are shown in Table 3.1. To score the quality of the 

parameter estimation results, we used an additional metric called weighted SSE, defined 

as: 

(3.14) 

  

which follows the default SSE objective function used in the Copasi software package. 

All metrics were normalized such that the highest score for any method is 1.0. Note that 

low runtime indicates good scalability, and low species MRE, median and maximum PPE 

indicate good accuracy.   
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Figure 3.7 – Network diagram for a random artificial low-degreed network of size N=30, with 30 species and 30 
reaction rates.  
Random reactions (with two-thirds of the reactions involving 3 species, and one-third involving 2 species) were added 
between the species such that the maximum degree for each node is three.   
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Figure 3.8 – Comparison of standalone and hybrid methods on artificial network containing 130 species and 130 
reaction rates. 
Test cases uses (A) noiseless and (B) 20%-noise data. Asterisks (*) denote the top methods with respect to accuracy. 
Pluses (+) denote the top methods with respect to runtime. When several methods have the same score, it often means 
these methods reached the same local minimum. Multiple scoring schemes (species MRE, PPE and weighted SSE) were 
used to compare the parameter estimation quality, but we advocate species MRE, as it specifies the maximum distance 
between the simulated and observed trajectories for all species.  
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A
#species 30 40 50 60 70 80 90 100 110 120 130 140 150

#rates 30 40 50 60 70 80 90 100 110 120 130 140 150
SPEDRE-base 179.00 371.00 403.00 438.00 445.00 820.00 1074.00 967.00 1296.00 1361.00 1313.00 2030.00 1523.00

SD 45.85 81.76 11.68 314.40 392.83 191.30 1620.82 2170.96 3419.98 2347.64 7703.70 11940.30 933.06
SRES 58.80 92.84 156.70 270.27 316.99 611.26 1021.93 1160.46 1480.59 2598.70 3479.96 5057.88 5062.28
PSO 41.12 71.39 113.57 178.25 212.99 484.20 656.73 961.04 983.49 1027.77 3261.39 2871.87 3390.76

LM 6.08 11.82 26.49 43.66 54.85 264.25 361.56 2378.30 742.78 7869.39 8861.93 7311.95 13759.10
GA 11.59 16.22 31.59 46.88 54.13 116.08 171.21 177.17 265.93 519.84 365.74 369.99 942.00

SPEDRE 184.90 383.50 428.66 482.30 497.90 1094.14 1341.31 2378.14 1837.57 2846.32 3382.29 3922.84 4590.40
SRES_LM 65.63 104.22 188.65 314.28 361.84 844.50 1298.83 1721.88 2237.46 6142.50 5363.98 6954.63 6959.03
PSO_LM 46.71 84.24 140.32 223.41 258.93 719.27 924.70 1494.72 1495.69 2405.80 5268.79 5170.96 10030.72

GA_LM 18.30 27.19 59.00 114.24 106.81 375.81 480.83 1547.64 774.23 1745.40 4726.79 3056.65 3935.97
SPEDRE-base_SD 199.22 376.69 491.70 593.56 661.64 1332.56 1870.68 1370.84 2936.21 2794.18 6406.89 5034.06 3277.99

SRES_SD 78.80 98.90 163.54 432.76 504.49 1053.32 1853.88 2166.70 3110.46 5773.13 3827.50 10126.94 12500.08
PSO_SD 57.28 104.94 140.76 353.53 410.83 846.24 1538.01 2156.44 2538.13 3021.81 4624.04 7522.93 5931.39

GA_SD 15.91 47.11 125.78 109.57 76.10 283.73 200.20 262.58 414.52 832.31 2470.91 606.38 1870.73
SPEDRE-base 1.55 0.14 0.54 0.51 1.07 1.73 3.08 3.51 3.00 3.28 5.59 1.82 3.51

SD 1.90 0.01 2.50 0.63 0.18 1.77 1.85 1.44 3.95 3.74 1.43 1.51 4.32
SRES 0.14 0.07 0.43 0.07 0.21 0.38 1.92 1.82 2.33 1.75 2.03 1.59 1.47
PSO 0.21 0.00 0.13 0.04 0.10 0.10 0.16 1.37 1.39 2.28 1.66 1.34 1.97

LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.18 0.00 2.23 2.48 2.39 2.19
GA 0.32 0.06 0.35 2.01 1.24 0.69 1.93 3.34 2.38 4.74 5.02 4.65 2.99

SPEDRE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.12
SRES_LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00
PSO_LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13

GA_LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 2.48 0.00 0.00
SPEDRE-base_SD 0.09 0.09 0.17 0.06 0.08 0.21 0.18 2.27 1.60 1.53 1.01 0.78 2.27

SRES_SD 0.11 0.06 0.43 0.06 0.06 0.36 1.93 1.37 2.35 0.93 1.95 1.29 1.38
PSO_SD 0.19 0.00 0.13 0.04 0.10 0.09 0.16 1.30 1.39 1.64 1.67 1.03 1.85

GA_SD 0.24 0.03 0.35 0.47 1.18 0.44 1.93 3.34 2.38 4.34 5.02 4.65 2.87
SPEDRE-base 27.48 9.46 14.35 11.46 16.87 14.90 13.59 24.68 23.04 20.36 14.19 12.57 18.07

SD 32.54 4.20 67.69 23.81 29.29 42.41 59.20 28.70 52.41 45.93 28.26 27.87 65.22
SRES 18.66 13.53 38.71 29.67 32.58 29.69 28.60 32.68 30.55 34.69 47.00 42.75 35.73
PSO 8.95 6.29 11.04 22.17 16.29 18.28 31.39 33.23 20.21 32.37 41.24 34.79 36.50

LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.46 0.00 8.54 3.66 2.94 8.00
GA 28.36 26.15 42.18 75.22 65.25 48.71 48.29 80.16 35.85 68.05 80.80 85.08 59.39

SPEDRE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.53 0.00 0.00 0.00 0.00 1.16
SRES_LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.00
PSO_LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.23

GA_LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.20 0.00 0.00 4.11 0.00 0.00
SPEDRE-base_SD 15.00 8.99 20.63 7.54 12.58 11.93 11.91 25.76 20.18 19.25 9.10 11.22 17.48

SRES_SD 17.54 12.90 38.69 27.41 24.57 29.15 27.77 23.80 26.69 20.23 46.97 35.11 24.46
PSO_SD 6.82 4.04 11.07 20.53 14.76 17.35 31.07 28.79 19.64 22.92 40.59 29.54 35.21

GA_SD 23.91 7.17 38.74 68.82 65.22 42.51 48.29 80.16 34.93 65.84 79.98 85.08 59.17
SPEDRE-base 237.38 471.52 872.72 94.60 519.65 3176.70 2101.73 1322.18 3436.00 1078.67 1078.67 1322.18 1322.18

SD 625.76 2659.10 8329.70 670.23 5888.93 20566.17 3978.75 8772.20 17238.52 2460.96 3030.34 1469.82 6602.07
SRES 118.88 877.92 629.13 531.54 4382.51 2381.09 1595.55 1948.94 17032.30 5740.76 4490.07 9452.44 1944.64
PSO 183.45 916.74 995.66 113.44 195.62 2860.01 2439.33 1443.32 5924.59 10551.76 5279.34 880.36 3382.48

LM 0.00 0.21 0.01 0.00 0.02 0.09 0.02 2457.33 0.01 2131.87 375.86 472.85 2341.52
GA 298.17 965.15 867.51 269.92 909.93 3170.23 5041.65 2926.78 9206.24 3599.76 7302.22 2269.59 9361.82

SPEDRE 0.00 0.21 0.01 0.00 0.02 0.09 0.02 120.54 0.01 0.02 0.00 0.02 114.07
SRES_LM 0.00 0.21 0.01 0.00 0.02 0.09 0.02 0.01 0.01 64.12 0.00 0.02 0.01
PSO_LM 0.00 0.21 0.01 0.00 0.02 0.09 0.02 0.01 0.01 0.02 0.00 0.02 168.41

GA_LM 0.00 0.21 0.01 0.00 0.02 0.10 0.02 104.02 0.01 0.02 369.81 0.02 0.01
SPEDRE-base_SD 163.46 459.39 632.60 89.58 407.41 508.05 2102.31 1330.38 3486.13 696.18 767.21 1304.98 1330.38

SRES_SD 110.79 877.72 629.14 527.14 3934.94 2359.20 1564.14 1262.06 16963.00 4731.55 4485.81 6973.70 1882.32
PSO_SD 155.06 881.96 995.78 110.93 188.06 2859.58 2439.40 1169.56 5906.41 6398.32 5271.96 841.59 3282.58

GA_SD 297.65 1045.57 845.51 266.91 910.23 3113.74 5041.65 2926.78 9206.24 3586.45 7262.57 2269.60 9320.24
SPEDRE-base 23.13 5.03 18.80 3.90 36.87 26.27 29.50 480.92 40.72 65.07 71.35 62.15 495.80

SD 9.58 0.06 53.89 6.34 3.76 44.35 66.39 15.30 25.57 29.95 23.12 12.87 359.18
SRES 1.46 0.49 3.62 2.24 4.72 7.66 23.39 20.74 10.50 18.10 35.88 29.20 40.59
PSO 1.02 0.05 0.73 1.17 1.48 2.43 4.77 7.39 7.56 12.88 19.05 14.76 31.28

LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.83 0.00 22.31 8.07 10.51 19.25
GA 6.86 1.59 7.65 57.48 45.11 23.28 63.96 206.90 21.51 91.17 291.94 296.91 95.13

SPEDRE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02
SRES_LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PSO_LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05

GA_LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 8.05 0.00 0.00
SPEDRE-base_SD 2.06 2.79 4.50 0.54 1.81 2.13 3.75 32.40 13.20 14.41 2.79 3.41 35.58

SRES_SD 1.02 0.43 3.61 1.86 2.25 6.52 20.15 9.61 6.93 4.53 35.42 20.18 12.16
PSO_SD 0.84 0.02 0.69 0.91 1.03 2.24 4.58 5.81 6.63 8.86 17.40 10.58 29.05

GA_SD 5.81 0.18 5.04 19.74 40.63 10.10 63.96 206.67 20.32 44.23 236.46 295.48 83.22
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Table 3.1 - Comparison of standalone and hybrid methods on artificial networks of size N=30 to 150. 
Test cases uses (A) noiseless and (B) 20%-noise dataset. Each dataset used in each test case was constructed by 
simulating the network using nominal reaction rates, where no noise or 20%-noise (Gaussian) was added to the data. 
Multiple scoring schemes (species MRE, PPE and weighted SSE) were used to compare the parameter estimation 
accuracy. Cells highlighted in reds have the best score among all methods being compared for each test case (i.e. 
column). 

The speed and accuracy of stochastic global methods (e.g., SRES, PSO, GA) 

depend on the degree of sampling, where greater sampling gives better quality at the 

expense of runtime. To compare sampling methods fairly, we chose all user-defined 

B
#species 30 40 50 60 70 80 90 100 110 120 130 140 150

#rates 30 40 50 60 70 80 90 100 110 120 130 140 150
SPEDRE-base 218.00 337.00 394.00 476.00 623.00 854.00 663.00 978.00 1334.00 1526.00 1064.00 971.00 1131.00

SD 46.18 89.19 11.64 316.70 514.65 257.48 1599.03 2125.53 3167.19 3153.12 7448.58 3874.49 933.42
SRES 67.91 100.85 162.09 266.29 366.18 1022.04 910.20 1105.80 1420.47 2417.06 3434.50 4284.40 4967.57
PSO 38.16 75.86 111.68 175.06 291.10 561.95 637.14 924.54 966.24 1587.53 2420.28 2422.15 3296.85

LM 33.43 70.15 168.29 274.05 364.45 689.68 960.56 1165.86 2993.21 6320.72 9437.22 7686.98 13845.50
GA 11.01 18.17 28.41 38.95 81.31 175.38 151.01 152.66 240.05 360.74 623.43 696.54 900.67

SPEDRE 451.19 713.20 868.42 1093.52 1486.02 2295.08 1823.81 3370.43 4082.31 5944.94 6351.52 5904.16 7852.76
SRES_LM 83.07 135.02 241.65 408.60 610.45 1476.64 1444.57 2470.96 2800.64 5257.76 7769.19 8540.23 12118.42
PSO_LM 54.60 111.42 188.78 315.36 529.44 1138.85 1265.09 2281.20 2382.06 4418.50 6690.32 6648.70 10082.04

GA_LM 26.07 54.34 105.64 177.54 327.68 829.96 898.97 1094.38 1602.22 3288.61 4847.31 4999.45 7697.34
SPEDRE-base_SD 236.30 384.55 489.41 641.28 878.14 1149.22 1338.42 2583.02 1665.05 2164.93 4774.39 4904.55 8001.94

SRES_SD 88.39 144.35 171.96 430.30 645.24 1728.72 1770.72 1767.84 2682.67 4831.30 5502.14 5945.54 10262.09
PSO_SD 56.33 79.69 116.52 328.93 570.18 614.44 1511.03 2194.90 2206.35 4633.73 6857.10 2572.82 4480.91

GA_SD 27.80 64.58 51.98 160.38 119.89 279.41 877.63 179.88 447.78 1674.19 1133.25 1282.67 1931.93
SPEDRE-base 0.62 0.23 0.68 0.60 1.42 0.90 3.26 3.17 4.04 3.13 4.71 3.08 2.67

SD 2.08 0.04 2.49 0.79 0.21 1.84 2.13 1.53 2.03 3.60 2.68 1.83 4.62
SRES 0.25 0.09 0.15 0.14 0.21 0.50 1.85 1.58 2.99 1.78 2.12 1.66 2.01
PSO 0.18 0.06 0.06 0.10 0.17 0.63 0.26 1.05 4.90 1.51 2.13 2.54 2.01

LM 0.17 0.04 0.03 0.09 0.06 0.22 0.15 2.14 0.31 2.32 2.13 2.78 2.84
GA 0.82 0.09 0.29 1.31 0.79 0.75 2.39 3.61 1.99 4.85 5.07 4.04 3.45

SPEDRE 0.17 0.04 0.03 0.09 0.06 0.22 0.15 0.26 0.31 1.51 2.12 2.79 2.01
SRES_LM 0.17 0.04 0.03 0.09 0.06 0.22 0.15 0.26 0.31 1.51 2.12 1.56 2.01
PSO_LM 0.17 0.04 0.03 0.09 0.06 0.22 0.15 0.26 0.31 1.51 2.13 1.56 2.01

GA_LM 0.17 0.04 0.03 0.09 0.06 0.22 0.15 2.15 0.31 2.31 2.13 1.56 2.01
SPEDRE-base_SD 0.17 0.05 0.24 0.18 0.06 0.33 0.43 1.19 2.97 1.97 3.56 1.56 2.69

SRES_SD 0.19 0.05 0.15 0.12 0.18 0.47 1.81 1.40 2.59 1.77 2.12 1.65 2.01
PSO_SD 0.20 0.06 0.06 0.11 0.15 0.63 0.19 0.95 4.85 1.51 2.13 2.54 2.01

GA_SD 0.34 0.05 0.24 0.30 0.77 0.68 1.97 3.61 2.00 3.98 4.29 3.89 2.93
SPEDRE-base 13.41 16.81 21.63 29.40 17.12 17.94 29.75 45.31 35.82 37.16 35.55 36.36 28.97

SD 26.81 7.99 67.50 21.12 27.67 42.35 55.31 26.39 27.04 43.61 47.13 42.36 65.22
SRES 14.24 21.62 45.60 24.40 26.05 24.04 35.09 32.22 31.92 28.97 42.76 43.67 34.29
PSO 10.91 8.70 25.92 12.96 33.91 39.60 27.67 34.68 23.70 36.76 45.97 36.23 33.08

LM 4.57 7.54 6.80 5.98 5.12 7.69 6.10 13.09 6.76 23.59 19.11 22.47 22.18
GA 36.65 20.17 50.95 57.63 69.44 38.35 46.63 67.29 44.62 68.36 91.36 51.93 65.77

SPEDRE 4.56 7.58 6.74 6.37 5.12 7.69 5.78 6.90 6.56 20.67 19.04 24.43 20.74
SRES_LM 4.56 7.76 6.86 5.81 5.12 8.14 5.66 7.31 6.73 16.78 18.66 20.84 19.37
PSO_LM 4.56 7.53 6.93 5.86 5.12 7.51 5.73 6.53 6.62 17.25 18.92 21.75 21.96

GA_LM 4.56 7.47 6.87 6.18 5.12 7.88 5.92 11.86 6.65 22.56 19.70 21.45 20.37
SPEDRE-base_SD 8.44 8.90 18.90 19.52 12.85 16.33 21.96 26.43 35.39 35.03 33.54 28.40 28.99

SRES_SD 11.76 13.87 45.50 19.84 20.74 23.74 34.72 30.16 24.79 29.14 39.75 40.37 29.12
PSO_SD 9.18 8.42 25.91 8.86 28.33 40.20 24.58 30.94 22.50 35.64 46.00 36.23 32.29

GA_SD 28.57 11.59 49.60 44.78 69.23 35.31 42.83 67.29 44.61 66.60 89.71 51.65 65.76
SPEDRE-base 91.97 1614.55 446.12 94.60 3690.53 992.23 1375.99 1786.26 1078.67 3562.98 3941.98 2864.12 2325.19

SD 614.91 2690.55 8321.16 1265.29 5918.13 20546.73 3940.45 7626.02 17028.11 2367.48 5390.70 4422.37 6602.05
SRES 97.85 540.13 605.26 199.47 2347.42 1581.79 816.01 2747.54 14673.32 4694.30 1077.28 6786.43 2565.13
PSO 121.47 193.26 1403.78 93.88 3378.73 4383.18 1517.32 833.99 6533.92 3055.62 2910.83 2016.52 12826.11

LM 31.73 2018.79 1426.18 54.84 91.58 617.49 2176.05 2356.21 120.80 2507.12 1058.79 1634.69 1273.24
GA 368.26 1175.42 877.94 110.83 2333.11 5992.86 2982.71 3866.59 558.68 3210.93 935.67 2857.30 18994.64

SPEDRE 32.97 2031.75 1426.18 55.21 91.58 667.07 2177.95 795.87 316.41 322.57 1063.96 1639.72 964.11
SRES_LM 33.10 2061.66 1426.18 54.83 91.58 797.79 2201.72 698.90 115.77 370.60 1083.64 970.82 1058.46
PSO_LM 32.97 2025.21 1426.18 55.48 91.58 601.37 2251.30 761.80 99.83 1049.41 1073.30 1012.75 964.79

GA_LM 32.91 2000.01 1426.18 54.26 91.58 674.29 2188.84 2369.24 203.50 2416.73 1175.29 866.83 1006.20
SPEDRE-base_SD 73.69 1567.19 93.98 93.80 3094.34 975.27 808.96 1737.04 1092.61 3577.90 3940.50 2498.67 2312.60

SRES_SD 87.34 726.95 604.68 189.53 2164.01 1581.41 740.72 2641.92 14371.91 4205.20 1083.35 5995.12 2170.82
PSO_SD 113.66 192.93 1403.78 93.03 3275.05 4383.32 1516.37 598.21 6517.54 2847.95 2910.79 2016.52 12727.29

GA_SD 354.57 1238.28 878.42 108.00 2333.10 5989.61 2417.63 3866.59 544.95 3208.83 858.57 2797.69 18993.98
SPEDRE-base 8.60 4.68 16.63 18.32 36.53 16.99 51.56 577.58 60.17 1721.13 1354.80 5819.39 610.46

SD 9.58 1.16 54.33 8.52 5.99 47.48 62.54 27.09 9.74 172.17 289.92 234.15 512.19
SRES 3.33 1.64 5.49 4.72 5.41 7.98 19.22 25.43 19.86 161.01 275.56 230.12 122.01
PSO 1.50 1.29 1.52 2.35 5.34 24.25 8.50 21.83 11.81 159.34 264.46 222.68 104.50

LM 1.28 1.06 1.05 1.86 1.82 2.59 2.83 31.71 3.17 161.24 235.46 208.96 105.18
GA 14.66 2.34 6.92 24.72 36.26 21.44 38.21 145.10 21.83 266.69 615.43 276.80 202.57

SPEDRE 1.28 1.06 1.05 1.86 1.82 2.59 2.83 12.47 3.17 146.49 235.72 210.69 78.98
SRES_LM 1.28 1.06 1.05 1.86 1.82 2.60 2.83 12.52 3.17 146.64 235.16 200.31 78.83
PSO_LM 1.28 1.06 1.05 1.86 1.82 2.59 2.83 12.47 3.17 146.40 234.92 200.26 78.99

GA_LM 1.28 1.07 1.05 1.86 1.82 2.60 2.83 31.67 3.17 161.29 235.80 200.33 78.86
SPEDRE-base_SD 2.43 1.16 4.17 4.60 2.71 8.80 9.49 19.12 40.38 184.38 343.15 227.37 189.19

SRES_SD 2.83 1.27 5.44 3.25 4.28 7.52 18.42 23.27 12.59 158.30 270.34 224.91 106.56
PSO_SD 1.42 1.28 1.51 2.06 4.11 23.86 7.11 17.54 26.96 156.71 263.99 222.68 102.94

GA_SD 6.32 1.18 6.38 8.65 33.05 17.94 23.91 145.10 20.83 252.69 508.89 272.44 192.69
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iteration limits to allow the sampling-based (global or hybrid) methods to run for at least 

the same length of time as SPEDRE (-base or hybrid), prior to comparing accuracy. 

However it was often not possible to ensure equal runtime. SRES and its hybrids usually 

required additional runtime on large networks, and PSO sometimes suffered poor scaling 

as well. The GA method always converged very quickly, regardless of user-defined 

iteration limits, but this is not necessarily an advantage because the accuracy of GA (and 

GA hybrids) was significantly worse for large networks. A full assessment of 

comparative performance therefore requires a holistic view of the trade-off between 

runtime and accuracy.  

Accuracy comparison based on the size-130 error-free test case (Figure 3.8A, 

asterisks) showed SPEDRE to be among the best scoring methods. Tied with SPEDRE 

were two hybrid global-local methods SRES_LM and PSO_LM. Error bars on these three 

methods are negligible, indicating that the performance was consistent across the three 

random replications of the test.  Note that SRES_LM, PSO_LM, and SPEDRE, in 

addition to comparable accuracy, showed comparable runtime (first column group). It 

should be noted that LM had much worse performance (blue columns marked with LM 

label) when not seeded with an initial guess from global methods such as SPEDRE-base, 

SRES or PSO.   

For the 20%-noise test case, Figure 3.8B showed a set of 5 methods (marked with 

asterisks), including SPEDRE, that were tied for best performance.  This comparative 

result should be interpreted with awareness that all methods had poor absolute accuracy 

(see Table 5.1B, column 130). 

For test cases of size below 100 (Table 5.1A, column 30-90), the local search 

method LM easily achieved best accuracy, as did any LM-hybrid methods (rows for 

species MRE, maximum PPE, median PPE and weight SSE, cells highlighted in red). For 
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networks of size 100 and above (columns 100-150), LM performed worse than any LM-

hybrid method, with the exception of the size-110 test case. In test cases of size 110 to 

140 (column 110-140), SPEDRE was tied with PSO_LM in accuracy (species MRE row, 

cells highlighted in red) and both were not worse than any other method. Test cases of 

size 100 and 150 were the only large cases where SPEDRE did not achieve the best score.   

As expected, introduction of 20% noise (Table 5.1B), caused worse accuracy on 

most methods, compared with noiseless tests (Table 5.1A).  For tests with 20% noise, 

SPEDRE and SRES_LM were the best performing methods for large test cases, according 

to the species MRE score, except in the test of size 140 (Table 5.1B, comparing the 

Species MRE set of rows, with best scores in red). In the size-140 test case, SPEDRE 

scored worse than other LM-hybrid methods, but SPEDRE-base_SD achieved the same 

best score as other LM-hybrid methods (column 140, species MRE row, cells highlighted 

in red). Based on other measures of accuracy (maximum PPE, median PPE and weighted 

SSE), the best scoring method may vary between test cases (maximum PPE, median PPE 

and weighted SSE, cells highlighted in red), but most best-scoring methods are LM-

hybrid methods. We thus conclude that SPEDRE was “tied” with other state-of-the-art 

methods, for the spectrum of artificial, low-degree data-rich problems we constructed. 

In summary, the best performing methods (asterisks in Figure 3.8) are consistently 

SPEDRE and a subset of hybrid stochastic-local methods. Highly similar scores can occur 

when multiple methods converge to the same local optimum. Accuracy tests showed the 

following trends: (a) for small networks, local methods performed well; (b) hybrid 

methods (including SPEDRE) showed superior accuracy to standalone local or global 

methods; (c) SPEDRE accuracy was comparable to the accuracy of other hybrid methods; 

(d) the quality scores of SPEDRE-base were significantly worse than SPEDRE, 

confirming that the LM post-processor is indeed important for refining discretized results. 
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We conclude that SPEDRE was “tied” with other state-of-the-art methods, for the 

spectrum of low-degree data-rich problems we constructed.   

Web service performance 
Depending on execution configuration, SPEDRE can achieve various performance 

outcomes. Table 3.2 shows the web server’s performance on 5 test cases using noiseless 

and 20%-noise data. The objective function value provides an indication of how well the 

simulated dynamics using estimated rate constants matches the time-series data. The total 

run time is represented as the sum of the SPEDRE run time and the Levenberg-Marquardt 

local optimization run time. SPEDRE was executed with lower bound = 0, upper bound = 

1, logarithmically spaced binning with 5 bins, maximum number of iterations = 5, 

Gaussian noise = 0 and number of samples per voxel = 5.  

 

Table 3.2 – SPEDRE’s perfomance on synthetic networks (circular network, tree network with random branch) 
and biological networks (PI3K/Akt cascade, MAPK cascade and Actin Filament Assembly / Disassembly pathway). 

 

The test cases used coarse discretization to complete fast at the expense of 

accuracy. For the PI3K/Akt cascade and the MAPK cascade, the objective function was 

low, indicating good match with data. Run time was low for Levenberg-Marquardt post-

processing compared to SPEDRE, indicating that a hybrid global-local method incurs low 

additional run time cost compared to a global method alone. The BPPE run time gives 

empirical validation of the asymptotic run time. The high-degreed Actin Filament 

Objective	  
function	  
value

BPPE	  
run	  time	  
(s)

LM	  run	  
time	  (s)

Total	  
run	  time	  
(s)

Circular	  network	  (80	  
species) 0.71 17.00 3.17 20.17
Tree	  network	  with	  
random	  branching	  (80	   1.56 75.00 4.26 79.26
PI3K/Akt	  cascade 6.72E-‐07 25.00 0.41 25.41
MAPK	  cascade 9.29E-‐07 91.00 0.51 91.51
Actin	  Filament	  Assembly	  /	  
Disassembly 1.37 468.00 0.51 468.51
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Assembly / Disassembly pathway has only 14 species and 25 reactions while the low-

degreed circular network has 80 species and 80 reactions, yet execution on the latter 

network finishes about 27 times faster than the former.  

3.8 Discussion 
Contribution 

The key innovations of SPEDRE are the use of a probabilistic graphical model to 

decompose the dual objective function, and pre-computation of discrete solutions to each 

subproblem. The method has a well-defined asymptotic runtime and good scalability, in 

exchange for approximate heuristic optimization.  

The web-service interface of SPEDRE has its unique properties from other 

competitors and the computational power of a web server makes it suitable for intensive 

rate constant estimation jobs. The server has dynamic display of the bin plot, as shown in 

Figure 3.4 (bottom) which is customizable, due to the interface with the Google Chart 

API. There are certain limited types of invalid input that are tolerated, such as by 

eliminating mis-input datapoints from the data file. The interface with Copasi (Hoops, et 

al., 2006) also provides an automatic ”rescue” for parameter estimation problems 

involving a dense network or other features that violate the requirements of SPEDRE. 

This service is not predictive because measured rate constants are not yet available for 

pathways of significant size.  For users who wish to address the accuracy of parameter 

estimation as a purely mathematical problem, artificial datasets are available and a 

weighted sum of squared error (SSE) is displayed. 

The SPEDRE approach aims for asymptotic scalability at the expense of accuracy. 

This philosophy appears in (a) the use of splines to approximate the species derivative, 

(b) the use of binning to discretize the parameter space, and (c) the use of loopy belief 

propagation for probabilistic inference. Each of these elements can introduce error. We 
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believed that the dangers of compounded errors would make the SPEDRE method less 

robust to noisy data than simulation-based methods. The expected sensitivity of SPEDRE 

to input noise has not yet been confirmed in the tests shown (and in other tests); rather we 

found that all methods gave unacceptably poor answers with noisy data. Future work 

must continue to characterize the numerical stability, approximation error, and noise 

tolerance of SPEDRE and other parameter estimation methods. 

The accuracy and speed of SPEDRE were compared against several methods of 

parameter estimation, in low-degree, data-rich test cases. SPEDRE performance was 

competitive in all tests, and SPEDRE was the best performing method for the Akt 

network test. We conclude that SPEDRE performs well when tested in the specific niche 

of problems for which it was designed. Naturally the SPEDRE performance would 

degrade (perhaps exponentially) outside of its intended niche. SPEDRE exhibits an abrupt 

trade-off between problem type and performance, but performance trade-offs are not new 

to parameter estimation research. Major pathway simulation software packages already 

maintain collections of multiple parameter estimation methods, rather than expecting a 

single best method to cover all problems.  

A current hurdle for broader applicability of SPEDRE is the inability to handle 

high-degree nodes. Many biological networks are scale-free (i.e. the degree distribution 

follows a power law). Thus, while many small networks are low-degree, large networks 

often have at least one hub. In order for new spline-based collocation methods to be truly 

superior to conventional (“primal” objective) parameter estimation methods, they would 

have to handle high-degree networks and extensive gaps in experimental observations, 

robustly. Future innovations may be able to develop a new composition of parameter 

estimation methods, so that low-degree subproblems can be solved by SPEDRE and high-

degree hubs can be treated separately.  
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A side-effect of our work is to provide performance comparisons for several 

hybrid and standalone parameter estimation methods. Our tests reproduced the earlier 

observation that hybrid methods generally perform better than standalone global methods 

(Ashyraliyev, et al., 2009; Rodriguez-Fernandez, et al., 2006). Future work may be able 

to exploit this non-additive runtime effect, perhaps through deeper integration of global 

and local search methods, rather than applying independent methods sequentially. 

Data mountain: challenges and opportunities 
Development of high-throughput technologies has enabled large-scale quantitative 

readouts for many proteins simultaneously (Yaffe, 2008). The massive amount of 

information is a challenge for many researchers who seek to unfold the complex 

mechanism of many biological functions. Particularly, this potentially rich source of 

biological knowledge calls for novel data analysis and modeling paradigms (Tan and 

Linding, 2009). 

Systems biology was famously attacked by Sydney Brenner as “low input, high 

throughput, no output” (Friedberg, 2008). However, when applied to large-scale data 

(high input), the “high throughput” capability of computational modeling can be powerful 

enough to discover many complex biological relationships than many other methods. 

Indeed the advent of large scale technologies, such as genomics and proteomics 

technologies, created an opportunity where computationally driven analysis methods 

could accelerate the pace of knowledge discovery. 

From large quantitative proteomics data, Toni et al. employed Bayesian model 

selection to infer the posterior distribution over four models for phosphorylation and 

dephosphorylation dynamics, and computed the amount of support given to each model 

(Toni, et al., 2012). In a different context, Tan and Linding surveyed and devised various 

computational methods to handle phosphorylation data detected in systematic proteomic 



   Page 59 
 

experiments for a “kinome” network rescontruction (Tan and Linding, 2009). These cases 

underline the importance of handling massive amount of data. 

A distinguishing feature of SPEDRE is that it requires large amounts of 

concentration measurement data, which would have been prohibitive a decade ago. 

Traditional experimental methods required an investment of labor and resources that was 

roughly linear in the number of proteins studied. New proteomic methods can measure 

additional proteins at virtually no additional cost, and proteomic datasets are starting to 

provide data-rich environments with measurements of all proteins in a system. SILAC 

technology has recently been used for time-series measurements of 147 proteins (Tasaki, 

et al., 2010) in NIH3T3-derived cells, and again for time-series of 534 proteins in the 

cytosol and 626 proteins in the nucleus in glucocorticoid-exposed myogenic cells 

(Reeves, et al., 2009). Most proteomic studies have not been performed with time-series 

repeats for studying dynamics, but large-scale dynamic data will become increasingly 

available with the explosive growth in the number of proteomic experiments (Zhang, et 

al., 2011). New studies of large networks will give rise to huge parameter estimation 

problems, with rich datasets, but with too many unknown parameters for conventional 

methods to solve. 

We believe that proteomic technology both enables and requires novel approaches 

to parameter estimation such as SPEDRE. As models grow in size due to technological 

advances, decomposition-based methods will probably dominate non-decomposition-

based search methods, which suffer from the curse of dimensionality. The trade-offs 

exhibited by our method may be increasingly desirable for future trends in parameter 

estimation.  
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CHAPTER FOUR: REDOX-REGULATED AKT 
ACTIVATION – BIOLOGICAL TEST CASE FOR 
SPEDRE AND OPPORTUNITY FOR MODELING 

Cell signaling pathways and metabolic networks are increasingly subject to 

mathematical modeling that simulates biochemical reaction kinetics using ordinary 

differential equations to represent the production/consumption of molecular species over 

time. Whether a model is built de novo, or adapted by recalibrating a previous model for a 

new cellular context, there is often a need to estimate kinetic rate constants based on time-

series experimental measurements of molecular concentrations or enzyme activities. The 

SPEDRE method described in the previous chapter estimates reaction rates for 

biochemical networks, taking as input the connectivity of the network and the 

concentrations of the molecular species at discrete timepoints. The method was tested on 

artificial networks that could satisfy the requirement of sparse networks with abundant 

observation of pathway species.  

After testing SPEDRE on a series of artificially constructed networks, we next 

applied the SPEDRE method to a real-life pathway which describes the redox-regulation 

of Akt activation based on previous experimental studies of Akt by our collaborators 

(Lim and Clement, 2007). Recall that aberrant hyper-activation of the Akt pathway has 

been detected in up to 50% of all human tumors and the Akt pathway is an attractive 

target for anti-cancer drug discovery (Mitsiades, et al., 2004). Our model of Akt includes 

oxidative inactivation of the lipid phosphatase and tensin homolog on chromosome 10 

(PTEN), as well as the phosphatidylinositol 3-kinases (PI3K) activation, as competing 

regulators of Akt in serum-stimulated fibroblasts (Kwon, et al., 2004; Testa and 

Bellacosa, 2001). A more detailed understanding of PTEN dynamics is important because 

many cancers activate Akt through disruptions of PTEN.   
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In this chapter, we will first give a background overview of signaling pathway 

modeling (Section 4.1), before introducing the kinase Akt and its activation pathways 

(Section 4.2). We will then describe the modeling efforts for constructing a redox-

regulated model of Akt activation (Section 4.3-4.6). Section 4.7 describes the Akt 

activation pathway model constructed as a biological test case to benchmark the 

performance of the SPEDRE method with current state-of-the-art parameter estimation 

methods. As a side effect, the Akt model brings out a puzzling phenomenon (Section 4.8) 

that requires further investigations, which will be covered in Chapter Five.  

4.1 ODE modeling of cell signaling pathways  
Signal transduction pathways (signaling pathways) are actively being unraveled 

and reconstructed (Palsson, 2011). Many disease processes (such as heart disease, 

diabetes, autoimmunity, and cancer) arise from defects in signal transduction pathways, 

which underscores the importance of studying signaling pathways (Loewenstein, 1999). 

In modeling study of signaling pathways, it is an essential task to describe the 

biochemical processes involved and ultimately formulate a mathematical model. 

Mathematical modeling is a powerful technique to describe and abstract the 

underlying processes involved in complex systems such as those in a cell or organism (de 

Jong, 2002). For signaling pathways, mathematical models use quantitative variables to 

represent the concentrations of the signaling molecules and describe the rates at which 

these molecules interact under the physical and biochemical laws that govern the 

reactions. To describe biochemical processes in signaling pathways, many modeling 

formats have been developed including stochastic modeling, probabilistic modeling, and 

ordinary differential equation (ODE) modeling. This thesis will work exclusively with 

ODE modeling for signaling pathways, which is a continuous and deterministic modeling 

framework describing the production/consumption rates of the species in a pathway. For 
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studies of complex biochemical pathways, ODE modeling has been highly successful at 

elucidating complex dynamic behaviors (Aldridge, et al., 2006) and emergent properties 

in a complex system (Huang and Ferrell, 1996). Modeling has the potential to supplement 

or to reduce the number of bench work experiments required for hypothesis generation 

and biological data interpretation (Voit, 2000).  

ODE modeling typically includes model construction, calibration (i.e. parameter  

estimation), simulation, and analysis. The following subsections will describe in more 

detail each of the techniques listed above. 

Model construction 
Before constructing a model, it is an essential task to search for published models 

that are topologically similar or having common species and reactions to the current 

signaling pathway of interest. If the model of interest is built de novo, canonical 

knowledge of the pathway should be gathered from literature and evaluated for 

inclusion/exclusion in the model. Upon the derivation of the model topology from 

literature evidence and other necessary assumptions, an equivalent system of ODEs for 

the model can be constructed. 

Following the construction of the ODEs, the parameter values (initial values of 

system components and kinetic parameters of chemical reactions) are obtained from 

literature evidence or marked for parameter estimation (described in the next section). 

Literature evidence may also help confine the unknown parameters to certain ranges 

based on the biochemical reactions involved. The narrower the permissible ranges of the 

parameters, the easier it is for the optimization process to find a good solution (i.e. 

prediction for parameter values) since the search space will be smaller. Assumptions and 

constraints for the model should be clearly defined at this stage. 
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Model calibration (parameter estimation) 
Construction of ODE models requires knowledge of the reaction rates and initial 

concentrations, which must typically be estimated based on experimental measurements 

of molecular concentrations over time. The process of estimating model parameters is 

referred to as model calibration or parameter estimation. This is equivalent to a search in 

the space of models (same network topology with different parameter values) for a small 

subset of models that could produce time-course simulations in agreement with the 

training data. Model calibration is a critical and difficult step in any ODE modeling study, 

due to the complex interdependency between the ODE variables. Parameter estimation 

can be a challenging task because some ultra-sensitive models may exhibit vastly 

different dynamics and property with different parameter values (Trunnell, et al., 2011).  

Model calibration (parameter estimation) involves solving an optimization 

problem, which essentially attempts to minimize an objective function that measures the 

quality of an estimated parameter set in satisfying a given criteria (e.g. recapitulating 

dynamics of training data) for the ODE model. More discussion of the metrics for 

evaluating goodness-of-fit in model calibration can be found in Chapter Five. However, 

model calibration is often a difficult nonlinear optimization problem (Kleinstein, et al., 

2006) which poses a challenge to many modeling research studies including this work. 

Thus manual tuning still play an important role in calibrating ODE model for signaling 

pathways (Albeck, et al., 2008; Basak, et al., 2007; Birtwistle, et al., 2007). 

Innovative parameter estimation algorithms continue to be developed with 

significant improvement over previous methods. Many of these methods are heuristics-

based, relying on randomized sampling of an exponential-sized parameter space, and 

therefore suffering from having slow runtime on large networks (Chou and Voit, 2009). A 

wide variety of optimization methods (Fogel, et al., 1991; Kennedy and Eberhart, 1942 ; 
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Levenberg, 1944; Marquardt, 1963; Michalewicz, 1994; Runarsson and Yao, 2000) are 

applicable to the parameter estimation problems. A strategy of running some of these 

parameter estimation methods together with manual tuning will be adopted in Chapter 

Four. 

Model simulation  
After parameters are estimated, models can attempt to simulate new 

configurations of the system, which is essentially to extrapolate beyond the data used in 

model fitting. This means models can be used for predicting the experiments that have not 

been performed or used in calibration process. One of the most important steps to achieve 

this task is by performing dynamic simulation. Once the set of ODEs in the model is 

defined and the parameter values are known, the ODE system can be numerically solved, 

and thus the behavior of a network can be simulated in response to certain initial 

conditions and external inputs. 

From the dynamics simulation, the time-dependent behavior of the concentrations 

(i.e. the ODE variables) can be obtained and analyzed. Various software packages such as 

SimBiology (The MathWorks, MA), COPASI (Hoops, et al., 2006), and SBToolbox 

(Schmidt and Jirstrand, 2006) can graphically display the time course of any species in 

the system. These simulated time-series (or trajectories) provide a comprehensive 

dynamic view of the system, including the changes in species concentrations and in fluxes 

of reactions in the pathway. In addition to providing visualization of dynamic trends, 

model simulation is also useful as part of other analysis methods, described in the next 

section. 

Model analysis 
One very powerful property of ODE models is their ability to simulate the time-

dependent behavior of protein concentrations in the system. As the complexity increases 
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with the interplay between pathway species, dynamics become a rich source of 

information which may shed light on the underlying biological mechanisms of the 

signaling pathway. An example of how dynamical analysis could lead to biological 

insights can be found in a recent modeling study of plasmin activation mediated by 

urokinase-type plasminogen activator (Venkatraman, et al., 2011). Simulation of the 

states and dynamics of plasmin activation suggested a transition of the plasmin steady 

state (i.e. bistability) that was dependent on the initial concentration of precursor 

urokinase. This prediction was subsequently validated in vitro, and the findings could 

have potential impact in the study of angiogenesis, metastasis, wound healing, and 

fibrosis. 

Parameter sensitivity analysis (or sensitivity analysis for short) describes changes 

of molecule concentrations as result of changes in the values of parameters (thus 

sometimes referred as local sensitivity analysis). Sensitivity analysis has been shown to 

be a powerful tool to investigate complex kinetic models, identifying the “influential” 

parameters which has strong impacts on certain model behaviors (e.g. readout species) 

while screening out the non-influential ones (Komorowski, et al., 2011).  

Model identifiability analysis evaluates the theoretical possibility of learning the 

true value of the underlying parameter after obtaining an infinite number of observations. 

While it is unrealistic to obtain an infinite number of observations, the practical 

identifiability of the model can still be obtained by computing the Hessian matrix (or the 

Fisher information matrix). By inverting the Hessian matrix, the approximate Variance-

Covariance matrix is obtained, and the diagonal elements of this matrix can be used to 

construct the confidence intervals for the parameters. With this knowledge, certain 

strongly correlated parameters can be removed or refined in order to improve model 

identifiability (Quaiser and Mönnigmann, 2009).   
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4.2 Akt activation pathway 
The critical decision between cell survival and apoptosis is regulated by 

sophisticated signaling networks, where the kinase Akt (also known as protein kinase B – 

PKB) plays many important anti-apoptotic roles. Akt promotes cell survival by 

inactivating the pro-apoptotic proteins BAD, FKHR and pro-caspase-9; by activating the 

pro-survival kinase mTOR; and by inactivating the tumor repressor p53 through MDM2 

(Carnero, et al., 2008). Note that some articles may use “Akt” to denote the gene and 

AKT to denote the protein, but this work will refer to both as “Akt”. Akt is frequently 

overactivated in many cancer types (Osaki, et al., 2004) and promotes resistance to anti-

cancer drugs (Tokunaga, et al., 2008). There are three known isoforms of the human Akt 

kinase: Akt1, Akt2, and Akt3; whose functions are specific to cell lines (Koseoglu, et al., 

2007). The three closely related isoforms consist of a central catalytic domain, a 

conserved N‑terminal pleckstrin homology (PH) domain,  and a C‑terminal regulatory 

hydrophobic motif (Hanada, et al., 2004). In serum starved primary and immortalized 

fibroblasts, Akt1 is catalytically inactive and can be activated by growth factors, rapidly 

and specifically. Akt2, also activated by growth factors, plays an important role in the 

maintenance of normal glucose homeostasis (Cho, et al., 2001), and is found to be 

activated in ≈40% of ovarian cancers (Yuan, et al., 2000). Akt3 has a less clear role, but 

increased Akt3 enzymatic activity was detected in estrogen receptor-deficient breast 

cancer and androgen-insensitive prostate cancer cell lines (Nakatani, et al., 1999), 

suggesting that  Akt3 is involved in the aggressiveness of steroid hormone-insensitive 

cancers. 

Except Akt3, all Akt isoforms contain two regulatory phosphorylation sites: Thr308 

in the activation loop within the kinase domain, and Ser473 in the C-terminal regulatory 

domain. In vitro, phosphorylation of either Thr308 or Ser473 leads to partial activation of 
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Akt; and phosphorylation of both residues leads to a synergistic activation of the enzyme 

(Alessi, et al., 1996). This thesis study will focus on the activation of Akt (all isoforms) 

by Thr308 phosphorylation, which is specifically phosphorylated by the kinase PDK1 

(phosphatidylinositol dependent kinase 1). Activation of the kinase Akt by growth factors 

is mediated by its membrane recruitment by phosphatidylinositol (3,4,5)- trisphosphate 

(PIP3). In addition to the PIP3/Akt cascade, a number of novel Akt binding proteins have 

been identified and these proteins (including Actin, Erk1/2, Hsp90, and Hsp27) could 

regulate the activity of Akt, (Song, et al., 2005). 

One of the most well-studied mechanisms of Akt activation is the PIP3/Akt 

cascade. The membrane lipid phosphatidylinositol(3,4,5)-trisphosphate (PIP3) is capable 

of activating protein kinases (Newton, 2009), including the recruitment of Akt and PDK1 

to the cell membrane, where Akt can be phosphorylated at Thr308 by 3- phosphoinositide-

dependent protein kinase 1 (PDK1 or PDPK1) (Raimondi and Falasca, 2011). Upon being 

phosphorylated, Akt dissociates from the plasma membrane and can be dephosphorylated 

by many phosphatases such as PP2A (Protein phosphatase 2). Therapeutic studies to 

inhibit the upstream pathway of Akt at different points, including the kinases (such as 

PDK1) and phosphatases (PP2A) are actively underway (Carnero, 2010). 

4.3 Motivations for modeling dynamics of Akt 
phosphorylation upon activation by growth factors 
Transient hyper-activation of Akt pathway in normal cells could provide insight 

into why tumor cells have sustained Akt activation (Leslie and Downes, 2004; Lim and 

Clément, 2007). A recent trend across biology is to separate the effects of signal duration 

(timing) from that of signal magnitude in determining some of the functions of a pathway 

(Ebisuya, et al., 2005; Longo, et al., 2008). A famous study of temporal control of the 

transcription factor NFkappaB activation unearthed a crucial signaling module for inter- 

and intracellular signaling, cellular stress responses, cell growth, survival, and apoptosis 
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(Hoffmann, et al., 2002). In another case study using rat pheochromocytoma PC12 cells, 

sustained activation of ERK leads to neuronal differentiation whereas transient activation 

of ERK leads to increased proliferation (Qiu and Green, 1992). In the Akt pathway, 

traditionally the magnitude of phosphorylated Akt is associated with various signaling 

functions (Cicenas, et al., 2005; Descamps, et al., 2004; Lafon-Cazal, et al., 2002), but 

recent studies have raised the importance of the kinetics of phosphorylated Akt, such as 

for cell proliferation (Costello, et al., 2002; Donahue and Fruman, 2003; Murphy, et al., 

2002; Pouysségur and Lenormand, 2003) and cell cycle progression (Longo, et al., 2007).  

Duration of Akt activation is therefore an important property that has not been fully 

characterized. 

Understanding of the dynamics and duration of Akt activation is of wide 

applicability to various cell signaling functions. For studies of temporal pathway 

dynamics, mathematical modeling has been highly successful elucidating complex 

dynamic behaviors (Aldridge, et al., 2006) and emergent properties in a complex system 

(Huang and Ferrell, 1996). Thus, we anticipate that modeling of Akt pathway dynamics 

will provide indirect information that may provide biological insight into the pathway.  

4.4 Redox regulation of Akt activation pathway 
Reactive oxygen species (ROS) can be damaging at high doses, but at low doses 

ROS participate in a range of normal signaling processes (“redox regulation”) (Flohé, 

2010), for example via reversible modifications of cysteine residues (Stamler and Hess, 

2010). Redox regulation is an important influence in signaling pathways involving 

tumorigenesis (Montero and Jassem, 2011), cancer cell metabolism (Cairns, et al., 2011), 

inflammation (Li and Fukagawa, 2010) and cytoskeletal remodeling (Cannito, et al., 

2010). ROS have very potent effects on cell survival and apoptosis (Acharya, et al., 

2010), but the mechanisms are numerous and complex.  Ratio of two intracellular ROS, 
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superoxide and hydrogen peroxide, correlates with cell fate decisions (Pervaiz and 

Clement, 2007; Zhu, et al., 2011). In fibroblasts and endothelial cells, superoxide (O2•-) 

was found to promote Akt activation and survival signaling with potency comparable to 

growth factors, via phosphatase inactivation (Clément and Pervaiz, 2001).  We reported 

that O2•- promotes phosphorylation of Akt via S-nitrosylation to inactivate PTEN (Lim 

and Clément, 2007) in mouse embryonic fibroblasts (MEF).  Several other mechanisms 

have been found for redox regulation of the Akt pathway, including the oxidation of 

protein tyrosine phosphatases (PTPs) and oxidation of pathway kinases such as PI3Kinase 

and Akt (Leslie, 2006).  

4.5 Regulation of intracellular superoxide 
Superoxide, a radical far less reactive than other free radicals such as HO-, does 

not react at all with most molecules in aqueous solution. First discovered as leakage from 

the electron transport chain in mitochondria, superoxide has long been studied as the key 

player in aging and apoptosis (Halliwell and Gutteridge, 2007). Superoxide also functions 

as a signaling species for cell (Pervaiz and Clement, 2007; Clément and Pervaiz, 2001; 

Suzuki et al., 1997; Kamata and Hirata, 1999). Figure 4.1 shows the time-series dynamics 

of intracellular superoxide in MEF cells using lucigenin assay. 

 

Figure 4.1 – Lucigenin measurements of superoxide time-series in MEF.  
Cells were grown in (A) 10%FBS or (B) serum starved in 0.5%FBS for different time points before intracellular superoxide 
level was measured by lucigenin luminescence. The level of intracellular superoxide was expressed as percent of DMSO 
control cells foreach time point. The value represents the mean and standard deviation of two independent experiments. 
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A diverse range of enzymes, including nitric-oxide synthase (NOS) family and 

NADPH oxidase (NOX) family, have been found to catalyze superoxide production 

(Wang et al., 2000; Brown and Griendling, 2009). However, the membrane-bound 

NADPH oxidase (NOX) complex is regarded as the major source for superoxide 

production for redox regulation (Pervaiz and Clement, 2007; Clément and Pervaiz, 2001). 

NOX is the key family of enzymes that produce superoxide in macrophages, neutrophils 

and endothelial cells and fibroblasts (Ray and Shah, 2005; Brown and Griendling, 2009). 

Among the members of NOX family, Nox1, Nox2 and Nox5 have been suggested to be 

involved in cell proliferation (Brown and Griendling, 2009). The Nox proteins, their 

activators (Noxa) and organizers (Noxo), and the small G-protein Rac, form a tight 

control over NOX-dependent superoxide production, as illustrated in Figure 4.2. 

 

Figure 4.2 - Regulation of superoxide production by NOX family (Brandes, 2003) 
Anti-oxidant proteins such as superoxide dismutase (SOD), catalase, GSH 

peroxidase and GSH reductase counterbalance the superoxide production, keeping 

superoxide levels under tight control (Dröge, 2002; Halliwell and Gutteridge, 2007). The 

major source of regulating superoxide is SOD, which facilitates the conversion of 

superoxide to H2O2 in aqueous solution. More particularly, a member of SOD, SOD1 has 

been found not only to react with superoxide, but also to regulate Nox-dependence 

production of superoxide (Harraz et al., 2008). SOD1 reduces the availability of Rac1 by 



   Page 71 
 

forming a complex with it, and is released by H2O2 oxidization. This reduces the 

availability of Rac1, the activator of NOX, which consequently inhibits superoxide 

production.  

4.6 Modeling redox-regulated Akt activation  
The kinase Akt takes a “hub” position in the vast and complex signaling networks 

in various cell types (Chen, et al., 2009). The mechanism and dynamics of Akt activation 

by growth factor is complex and is further complicated by various crosstalk with other 

pathway such as p53 and Erk. Study of Akt activation thus may shed light to the complex 

machinery that confers cell survival advantages to tumors. As a result, a number of 

published models were specifically built to study the activation and dynamics of Akt 

(Hatakeyama, et al., 2003; Suresh Babu, et al., 2008; Wang, et al., 2009).  

Many modeling studies of Akt, such as (Lee, et al., 2008) and (Shih, et al., 2008), 

collapse the Akt activation cascade into a single step containing only PI3Kinase and Akt. 

However, other studies such as (Hatakeyama, et al., 2003; Suresh Babu, et al., 2008), 

address the complex biochemical interplay between kinases, phosphatases and 

phospholipids in regulating the dynamics of Akt phosphorylation. The complexity of Akt 

dynamics also led to increasing efforts to construct multi-scale models, such as the study 

by (Shih, et al., 2008) which describes the activation mechanisms of Akt both at the 

molecular scale and at the scale of the signaling network. However, it should be noted 

that few or no modeling studies have addressed the role of “intracellular environmental 

effects” such as redox regulation in the activation and dynamics of Akt.  

We built a novel model of Akt activation ( “Akt model”), using our experimental 

data from recent studies (Lim and Clément, 2007). The model was built manually based 

on dynamic measurements of the Akt pathway, observed in serum-starved mouse 

embryonic fibroblasts stimulated by the addition of 10% serum to the culture medium 
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(Lim and Clément, 2007). Recall that Akt is a kinase, frequently over-activated in 

cancers, that signals for survival and proliferation. The signaling events in our model of 

Akt activation are illustrated in Figure 4.3, Table 4.1, and described as below.  

 

Figure 4.3 – Network diagram of the Akt model, including redox-regulation of PTEN.  
The prefix “inact” denotes inactive species; the suffix “cyto” (or “mem”) indicates cytosolic (or plasma membrane) 
localization. The suffix “p308” indicates phosphorylation at residue Thr308. 

As PTEN oxidation promotes Akt activation, we represented the inactive form of 

PTEN by PTENox. The sources for generating ROS (O2, water, etc.) and consuming ROS 

were group into “Environment”, in order to simplify the complex chain of cellular ROS 

production. Among the enzymes capable of catalyzing superoxide production (e.g. NOX 

and NOS family), the model simplifies the process by only using NOX, which can 

catalyze the production of ROS from Environment. DPI is known for inhibiting proteins 

in NOX family, as shown earlier in Figure 4.3. It has been observed that PTEN is 

oxidized by superoxide upon addition of GF stimulus, indicating a mechanism for GF_R 

to activate PTENox production (Lim and Clément, 2007). Therefore, it is hypothesized 

that the signal from GF_R is transmitted to PTENox by activating NOX, which in turn 

activates superoxide production, which promotes PTEN oxidation. “Antioxidant 

capacity” (such as SOD), which can be inhibited by DDC functions as a counterbalance 

of NOX to maintain homeostatic level of ROS (Halliwell and Gutteridge, 2007). 
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Akt is activated after stimulation by serum (growth factors), not only via the 

canonical activation of PI3Kinase (PI3K) by serum, but also via reactive oxygen species 

(ROS) and ROS-induced inactivation of the phosphatase PTEN. ROS are produced by 

NADPH oxidase (NOX), and degraded by anti-oxidants. The phosphorylation and 

activation of Akt is a multi-step process, involving the translocation of Akt from the 

cytosol to the cell membrane and its phosphorylation by the kinase PDK1 at Thr308. The 

translocation of Akt and PDK1 to the membrane is controlled by the level of 

phosphatidylinositol 3,4,5-trisphosphate (PIP3), which is determined by the balance 

between PIP3 production (by serum-activated PI3Kinase) and PIP3 degradation (by the 

PTEN phosphatase). Phosphorylated Akt returns to the cytosol and is subject to 

dephosphorylation by PP2A.  

 
Table 4.1 – Rate constant and nominal values in the Akt model.   
The prefix kM indicates a Michaelis-Mentent constant. The prefix kcat indicates a catalytic rate constant. As described in 
main text, the prefix “inact” denotes inactive species; the suffix “cyto” (or “mem”) indicates cytosolic (or plasma membrane) 
localization; and the suffix “p308” indicates phosphorylation at residue Thr308,which is crucial for Akt activation. The following 
species have initial concentration of 1.0: GF, R, NOX, PI3K, Environment, SOD, PTEN, PIP3, Akt-cyto, PP2A, PDK1. The 
remaining species have initial concentration of 0.0.  

Index Reaction Rate constant name Value 
1 GF + R → GF_R  k_uptake 14.39 
2 inactNOX → NOX  kM_activNOX 0.1 
3 inactNOX → NOX  kcat_activNOX 5.19 
4 inactPI3K → PI3K  kM_activPI3K 0.09 
5 inactPI3K → PI3K  kcat_activPI3K 6.81 
6 NOX → inactNOX  k_deactNOX 3.19 
7 PI3K → inactPI3K  k_deactPI3K 8.46 
8 Environment → ROS  kM_NOX 0.15 
9 Environment → ROS  kcat_NOX 13.56 
10 ROS → Environment  kM_AntioxidantCapacity 1 
11 ROS → Environment  kcat_AntioxidantCapacity 50 
12 PTEN → PTENox  kM_ROS 0.09 
13 PTEN → PTENox  kcat_ROS 0.72 
14 PIP2 → PIP3  kM_PI3K 0.3 
15 PIP2 → PIP3  kcat_PI3K 0.4 
16 PIP3 → PIP2  kM_PTEN 0.3 
17 PIP3 → PIP2  kcat_PTEN 0.5 
18 Akt-cyto → Akt-mem  kcat_PIP3_Akt_cyto 0.4 
19 Akt-mem → Akt-cyto  k_Akt_cyto 0.01 
20 Akt-mem → Akt-p308  kcat_PDK1_mem 0.6 
21 Akt-p308 → Akt-cyto  kcat_PP2A_Akt_cyto 0.1 
22 Akt-p308 → Akt-cyto  kM_PIP3_PDK1_cyto 0.5 
23 PDK1-cyto → PDK1-mem  kcat_PIP3_PDK1_cyto 0.22 
24 PDK1-mem → PDK1-cyto  k_PDK1_mem 0.12 
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4.7 Performance of SPEDRE in comparison with other 
standalone and hybrid methods on the Akt model  
Using simulation, we generated complete datasets with artificial noise at levels of 

0%, 1%, and 20%. Experiment setups follow the artificial test cases described in Section 

3.6. Parameter estimation performance was compared between SPEDRE and some 

popular methods (Figure 4.4). The complete comparison results (14 methods using 6 

different noise levels) are shown in Table 4.2. 

 

Figure 4.4 – Comparison of parameter estimation algorithms applied to the Akt network, with noise levels 0, 1% 
and 20%. 
Method performance was assessed by (A) species maximum relative error (MRE), (B) median parameter percentage error 
(PPE), (C) maximum parameter percentage error, and (D) runtime.  

According to Figure 4.4A-C, the prediction quality of SPEDRE (leftmost bar, 

shaded black) is better than the other methods for noise-free and 1%-noise data sets. With 

noise levels of 20%, all methods perform unacceptably, providing worse than 100% 

species maximum relative error, as shown in Figure 4.4A. Similarly, on the 20%-noise 

data set, all methods have unacceptably high median and maximum parameter percentage 

error, as shown in Figure 4.4B-C. In this parameter optimization test with Akt dynamics, 

SPEDRE out-performed other methods, indicating that the parameter neighborhoods it 
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gave to LM were better than the neighborhoods from other global methods, even though 

SPEDRE-base had equivalent performance in non-biological tests. 

Figure 4.4D also displays a counterintuitive phenomenon, in which the local 

search method LM takes longer to run than any hybrid method including LM as a post-

processor. LM performs many iteration cycles if it starts with a random guess, but it 

converges quickly if it starts with the output of a global search method. Adding more 

phases of search would be expected to increase rather than decrease the total runtime, but 

in this case, a phase of global search led to faster LM convergence, which more than 

compensated for the time of running the global search.  
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Table 4.2 – Comparison of rate parameter estimation methods applied to the Akt model.  
The methods were grouped standalone (A) and hybrid (B) methods. Each dataset used in each test case was constructed 
by simulating the network using nominal reaction rates.  Different levels of Gaussian noise were added to the simulated 
dataset: 0%, 1%, 2%, 5%, 10%, and 20%. The accuracy of each method was evaluated using species MRE, median PPE 
and maximum PPE.  

 
  

Gaussian 
Noise SPEDRE-base SD SRES PSO LM GA 

R
un

 ti
m

e 
(s

) 0% 0.11 13.16 69.42 272.70 272.70 15.97 
1% 0.09 13.55 66.88 278.09 278.09 17.45 
2% 0.08 15.34 62.69 270.17 270.17 10.55 
5% 0.09 15.53 68.72 272.19 272.19 15.47 
10% 0.09 14.39 57.81 328.20 328.20 8.95 
20% 0.08 11.31 67.53 282.88 282.88 21.83 

Sp
ec

ie
s M

R
E

 0% 139.71 651.59 276.99 38.57 38.57 207.01 
1% 279.58 649.47 251.58 40.41 40.41 306.70 
2% 168.50 649.98 312.91 14.39 14.39 327.88 
5% 358.35 655.63 269.93 15.16 15.16 133.78 
10% 350.64 656.86 324.63 41.42 41.42 329.15 
20% 401.46 670.21 303.99 71.40 71.40 209.25 

M
ed

ia
n 

PP
E

 0% 37.95 5695.86 3046.31 86.67 86.67 74.49 
1% 90.47 5688.68 2679.22 75.60 75.60 94.92 
2% 69.06 5678.84 2711.93 68.13 68.13 99.54 
5% 96.48 5699.22 2082.84 98.97 98.97 74.86 
10% 181.24 5684.21 1423.99 94.33 94.33 95.58 
20% 86.93 5698.06 1913.27 91.70 91.70 97.77 

M
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 P
PE

 0% 5119.05 394607.37 257379.30 39476.90 39476.90 30494.72 
1% 10393.03 453194.65 180024.46 31861.77 31861.77 7099.94 
2% 12395.93 486121.75 177815.97 13015.37 13015.37 17846.60 
5% 42036.94 344113.26 36698.60 17219.76 17219.76 1012.34 
10% 39882.51 443011.03 310906.61 49899.80 49899.80 5252.86 
20% 6139.83 388826.77 106555.93 12211.36 12211.36 12715.30 

  
Gaussian 
Noise SPEDRE SRES_LM PSO_LM GA_LM MLBP_SD SRES_SD PSO_SD GA_SD 

R
un

 ti
m

e 
(s

) 0% 5.11 6.31 3.53 16.53 9.03 0.42 0.17 4.72 
1% 4.14 5.80 0.91 16.95 0.61 0.44 0.38 0.59 
2% 3.00 5.91 1.98 2.72 0.61 0.22 0.17 3.97 
5% 5.20 9.63 2.42 6.20 0.64 0.28 0.17 6.30 
10% 6.73 16.08 22.19 14.36 0.63 0.22 0.23 7.34 
20% 19.09 15.56 16.27 18.88 0.53 0.44 0.20 1.13 
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ie
s M

R
E

 0% 1.44E-04 1.37 39.19 0.41 130.16 276.55 38.57 206.99 
1% 3.51 6.74 40.34 6.96 233.96 251.38 40.41 307.27 
2% 7.00 7.14 14.28 6.99 168.48 312.89 14.39 327.85 
5% 17.90 17.89 15.34 17.43 354.81 269.86 15.17 104.31 
10% 36.01 34.74 40.35 33.38 348.85 324.63 41.42 249.89 
20% 71.72 66.45 71.28 117.40 394.03 303.83 71.40 209.25 
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E

 0% 8.18E-04 1.46 86.61 0.52 34.08 3046.31 86.67 68.10 
1% 7.76 37.39 75.60 30.13 94.86 2679.22 75.60 94.47 
2% 21.61 16.64 68.09 17.42 69.05 2711.93 68.13 98.63 
5% 33.68 46.49 98.29 27.59 93.25 2082.84 98.97 30.65 
10% 60.94 98.97 98.94 88.71 182.22 1423.99 94.33 95.86 
20% 93.32 519.97 87.40 91.55 94.95 1913.29 91.70 97.77 

M
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 P
PE

 0% 3.23E-02 9898.98 39281.20 86.64 5144.11 257379.30 39476.90 30494.72 
1% 352.71 5666.18 31862.44 326.44 10392.66 180024.46 31861.77 7099.94 
2% 587.63 9900.00 13003.46 584.17 12395.93 177815.97 13015.37 17273.97 
5% 9679.44 3308.92 17113.54 353.17 42036.82 36698.60 17219.76 198.35 
10% 9085.24 22857.83 49460.50 18064.79 39882.51 310906.61 49899.80 5275.28 
20% 8307.48 6621.28 12235.64 10563.50 6139.73 106555.62 12211.36 12715.30 
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4.8 Puzzling redox regulation phenomenon in serum-
induced Akt activation  
Despite recent progress, there remain many puzzling effects of redox regulation in 

cancer cells (Reeves and Hoffmann, 2009; Ufer and Wang, 2011). One such puzzle can 

be found in our own previous work, where we give 10% serum to cells growing in 0.5% 

serum, to trigger both superoxide production and Akt pathway activation.   In particular, 

MEFPTEN-/- cells exhibited strong Akt activation upon serum-stimulation, unless 

superoxide production had been blocked with the inhibitor diphenyleneiodonium chloride 

(DPI) as shown in Figure 4.5 and (Lim and Clément, 2007).  Although serum (containing 

a cocktail of growth factors) had been found to augment Akt activation via superoxide 

and oxidation of PTEN, the apparent ability of superoxide to increase Akt activation in 

MEFPTEN-/- cells suggests an additional, novel PTEN-independent mechanism.   

 

Figure 4.5 – Time series data from MEFPTEN-/- cells treated with 10%FBS with or without DPI pre-incubation for 2 
hours. Data obtained from Dr. Sharon Lim and quantified by the author. 

4.9 Conclusion 
Redox regulation is a major mechanism controlling the Akt activation pathway, 

and study of this regulation mechanism may lead to potential therapeutics application 

(Leslie, 2006). We constructed a novel Akt model which contains mechanisms for ROS 

to control the dynamics of Akt Thr308 phosphorylation. Model simulation could lead to 

important insights about the dynamics of redox regulation in MEF cells, although more 

measurements would be required for model calibration.  

The model was used as a realistic test case for comparison between SPEDRE and 

other state-of-the-art parameter estimation methods. Benchmark performance of SPEDRE 
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was shown to be superior to other methods in terms of accuracy, while the runtime of all 

methods was comparable. However, certain limitations of SPEDRE, including its 

stringent requirement of rich data and sparse networks (as discussed in Section 4.7 of the 

previous chapter), still remain a problem for future development. 

While building the Akt activation pathway models, a puzzling phenomenon 

(Figure 4.5) motivated us to perform further investigations into the activation dynamics of 

Akt under serum induction. It was also noticed from the time-series measurements that 

the Akt activation pathway contained non-trivial dynamics (with peaks and declines) that 

might not be fully explained by the current literature (Hatakeyama, et al., 2003). The next 

chapter will describe a modeling study which identifies a mismatch between the canonical 

pathway and current data from serum-induced Akt activation.  We use modeling to 

characterize the ups and downs in the time-series dynamics of Akt phosphorylation, and 

consequently we discover unexpected difficulty in using the canonical model to explain 

even the qualitative ups and downs of the time-series measurements.  The chapter then 

proposes some alternative hypotheses capable of reconciling the model with the 

observations.  
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CHAPTER FIVE: NON-CANONICAL ACTIVATION OF AKT 
IN SERUM-STIMULATED FIBROBLASTS, 

REVEALED BY COMPARATIVE MODELING OF 
PATHWAY MECHANISMS   

5.1 Introduction  
The pathway of Akt activation has many documented influences (Carnero, 2010; 

Leslie, 2006; Osaki, et al., 2004; Reeves and Hoffmann, 2009; Ufer and Wang, 2011) but 

the key steps can be summarized simply. Growth signals and stress pathways activate 

PI3K, which converts PIP2 (Phosphatidylinositol (4,5)-bisphosphate) into PIP3 

(Phosphatidylinositol (3,4,5)-trisphosphate). PIP3is a membrane phospho-lipid with 

potent signaling effects, and its concentration is kept low by the PTEN phosphatase, 

which converts PIP3 back into PIP2 (Vazquez and Devreotes, 2006). PIP3 activates 

PDK1 (3- phosphoinositide-dependent protein kinase 1 or PDPK1) through a binding 

reaction that recruits PDK1 to the cell membrane (Newton, 2009). PIP3 also recruits Akt 

to the cell membrane, where Akt can be phosphorylated at Thr308 by PDK1 (Raimondi 

and Falasca, 2011). We use Thr308 phosphorylation interchangeably with Akt activation 

because the phosphorylation of Akt at Thr308 correlates strongly with Akt kinase activity, 

and in some contexts is a better correlate with activity than Ser473 (Vincent, et al., 2011).  

Active Akt dissociates spontaneously from the membrane, and targets many downstream 

effectors (Ananthanarayanan, et al., 2007). The PP2A phosphatase de-phosphorylates and 

inactivates Akt (Liao and Hung, 2010). We refer to these key steps as the “canonical” Akt 

pathway. The total net activation of Akt represents a competitive dynamic between 

processes of activation and inactivation. 

Many signaling “hubs” such as Akt achieve differential specificity of downstream 

function in part through the dynamics of activation, and not only through the magnitude 

of activation (Ebisuya, et al., 2005; Longo, et al., 2008). Temporal effects in the 
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activation of NF-kappaB have been found to regulate cell growth, survival, and apoptosis 

(Hoffmann, et al., 2002). In MAPK signaling, transient versus sustained activation of Erk 

is responsible for the difference between proliferation and neuronal differentiation in rat 

pheochromocytoma PC12 cells (Qiu and Green, 1992). In the TGF-β/Smad signaling 

pathway, changes in doses of TGF- β stimulation have differentiated effects on short-term 

versus long-term P-Smad2 response dynamics (Zi, et al., 2012; Zi, et al., 2011). By 

precisely controlling the p53 response duration upon DNA damage, Purvis and colleagues 

discovered different fates for cells exposed to p53pulses (recovery) versus cells exposed 

to sustained p53 signaling (senescence) (Purvis, et al., 2012). In the Akt pathway, 

dynamics are also important. Both cell proliferation (Costello, et al., 2002; Donahue and 

Fruman, 2003; Murphy, et al., 2002; Pouysségur and Lenormand, 2003) and cell cycle 

progression (Longo, et al., 2007) have been found to depend on the timing, not just the 

magnitude, of Akt activation. 

When quiescent cells are stimulated with growth factors, the level of 

phosphorylated Akt rises from very low to a brief extreme of very high activation, 

followed by a decline to a moderate steady level. Indeed many signal transduction 

pathways have a similar trend, which is routinely attributed to receptor internalization. 

This peak and decline (sometimes called “overshoot” or “negative feedback”) is a 

dominating feature of Akt dynamics. 

Previous modeling studies (Hatakeyama, et al., 2003; Suresh Babu, et al., 2008; 

Wang, et al., 2009) have included the PIP3/Akt pathway, but their focus of analysis has 

been the downstream targets of Akt (e.g.Erk) and the crosstalk between the PIP/Akt 

pathway with other pathways (e.g. Ras/Raf). Thus the relationship between the peak-and-

decline dynamics of PIP3 and Akt Thr308 has not been questioned in these studies. 

Previous modeling has simulated the peak and decline of Akt phosphorylation by 



   Page 81 
 

assuming a receptor-internalization effect (Hatakeyama, et al., 2003), but this assumption 

should be examined more rigorously. Akt is an exceedingly popular protein in biomedical 

research, with >5000 Akt publications inNCBI Pubmed 

(http://www.ncbi.nlm.nih.gov/pubmed/) during 2011. Countless groups perform time-

series measurements of phospho-Akt, expecting it would reflect the canonical pathway, 

including PI3K, PTEN, PIP3, and PDK1. For example, our previous work measured Akt 

activation dynamics, as readout for the downstream functional impact of PTEN 

modification (Lim and Clément, 2007). The use of Akt as a landmark makes it 

particularly important to understand Akt activation dynamics accurately and 

quantitatively. 

Mathematical modeling with ordinary differential equations (ODEs) can simulate 

the simultaneous interplay between multiple activation and inhibition effects, and has 

been particularly useful for revealing how simple binary reactions can come together to 

produce a complex emergent behavior (Aldridge, et al., 2006; Huang and Ferrell, 1996).  

Another use of dynamic models is to compare simulations against observations, and 

identify unexplained effects or incompatibilities that might escape notice without 

quantification. In previous work, we used a dynamic model of pathway activation to 

uncover unknown effects of the drug LY303511 in regulating the sensitivity of HeLa 

cervical carcinoma cells to apoptosis (Shi, et al., 2009). In this way, detailed analysis of 

network dynamics can help find novel relationships. The peak and decline of Akt 

activation contain implicit dynamic information, which can be analyzed via modeling, 

and may shed light on system regulation. 

When an observed behavior has an unknown mechanism, computational modeling 

can be used for generating and managing a set of alternative biochemical hypotheses, as 

demonstrated by Hua et al. for alternative mechanisms of Bcl-2 (Hua, et al., 2005).  The 
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use of models for hypothesis construction and evaluation is particularly powerful in 

studying pathways where many signaling species participate in highly intertwined and 

sometimes non-intuitive networks. Carrying out wet lab experiments to probe each 

candidate in a traditional hypothesis-experiment approach consumes valuable time and 

resources. In contrast, a hypothesis-model-experiment paradigm may contain less 

expensive cycles of hypothesis-model-hypothesis that can reduce the number of 

experiments. Furthermore, mathematical modeling can exploit subtle features of 

experimental data such as dynamics or non-additive effects, to make deeper 

interpretations or stronger inferences, thus providing return for the investment of 

resources into modeling. Non-automated human intuition is often excellent at generating 

hypothetical mechanisms, but a computational approach reduces bias in selecting 

hypotheses, illustrates the likely outcomes of possible experiments, and refines intuitive 

hypotheses (e.g., less binding) into quantitative components (e.g., less association, more 

dissociation).  

In this work, we used modeling and experiments to study the peak and decline of 

Akt Thr308 in serum-stimulated fibroblasts. We modeled the Akt pathway downstream of 

PIP3 and upstream of Akt Thr308 phosphorylation, and compared model simulations 

against available observations, including our previous time-series immune-blots of 

Aktp308 and immuno-fluorescence of PIP3. We assessed and rejected the “canonical” 

pathway (the null hypothesis), and then systematically generated a series of alternative 

hypotheses, each corresponding to a novel explanatory effect occurring at one step of the 

pathway. Simulations suggested informative experiments, and measurements were 

performed. Because our experimental observations were relative fold-change and not 

absolute concentrations, and because we don’t know the rates of the unknown 

mechanisms, we evaluated each hypothesis using a family of differently parameterized 
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models, and we aligned model and data according to fold-change behaviors such as peak 

time. Multiple hypotheses were disqualified as incompatible with observations. We 

conclude that the peak and decline of Akt activation is predominantly caused by 

recruitment or retention of Akt at the cell membrane by some factor that is PI3K-

dependent but PIP3-independent. 

5.2 Canonical PIP3/Akt cascade   
The delay between peak PIP3 activation and peak Akt 
phosphorylation.   

As input data for building a model of serum-stimulated Akt activation, we used 

previously published time-series measurements of PIP3 abundance and Akt 

phosphorylation in mouse embryonic fibroblasts (MEFs) (Lim and Clément, 2007).  

MEFs had been serum-deprived (given 0.5% FBS for 24 hours) prior to stimulation at 

time t=0 with 10% serum (FBS).  In four replicates of Akt phosphorylation at Thr308 

(Aktp308) time series, Aktp308 peaks at 30-60 minutes before declining to a steady state of 

activation (Figure 5.1, solid curves). Surprisingly, PIP3 activation peaked at 2 minutes 

(Figure 5.1 dashed curve), an order of magnitude earlier than Aktp308. We replicated some 

of the PIP3 and Aktp308 time-series measurements and tested additional time-points, but 

we continued to observe the delay between 2-5 minutes peak activation of PIP3 (Figure 

5.S3). During model calibration, we will fit the Aktp308 simulation to mimic only the 

earliest of the 4 curve peaks (which is the most conservative approach). 

Previous models of Akt pathway dynamics produced nearly simultaneous peaks 

for PIP3 and Akt phosphoryation (Hatakeyama, et al., 2003; Suresh Babu, et al., 2008), 

and to the best of our knowledge, previous models of Akt pathway dynamics have not 

been compared with experimental observations of PIP3 dynamics.  The large time 

difference between PIP3 and Aktp308 (Figure 5.1) is intriguing considering that PIP3 is 

only one step away from Akt activation in the canonical PIP3/Akt cascade.  Recall that 
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PIP3 activates PDK1 (PIP3-dependent kinase 1), by binding it and recruiting it from the 

cytosol to the plasma membrane.  PIP3 also recruits Akt to the membrane.  At the 

membrane, PDK1 phosphorylates Akt directly at Thr308 (Raimondi and Falasca, 2011).  

So we asked whether a standard “null hypothesis” model of Akt activation dynamics 

would be capable of reproducing the observed dynamics of PIP3 and Aktp308. 

 

Figure 5.1 – Quantified time-series of PIP3 (dotted line) and Aktp308 (4 solid lines for 4 experimental replicates) in 
arbitrary units.   
The densitometry of Aktp308 was normalized by the densitometry of total Akt, and then rescaled such that the highest level 
in each time-series was equal to 10.0 (for consistency with the previous model by Hatakeyama et al.) Note that the earliest 
of the Aktp308 curves peaks at 30 minutes. The first PIP3 immunofluorescence experiment was performed by Sharon Lim, 
NUS Department of Biochemistry, and two replicates were performed by Luo Le and the author (Appendix A1). Cells were 
normally grown in culture containing 10% fetal bovine serum (FBS). At 24 hours before t=0, cells were starved in culture 
containing 0.5% FBS. At time t=0, cells were treated with 10%FBS and measurement was performed at different 
timepoints after t=0. Raw data was rescaled before plotting, and rescaled data were used in model calibration. 

The null hypothesis model 
Although the PIP3/Akt cascade is included in some previous models 

(Hatakeyama, et al., 2003; Suresh Babu, et al., 2008), we constructed a custom model of 

the canonical PIP3/Akt cascade (network diagram shown in Figure 5.2A) tailored to 

reconciling the time difference between PIP3 and Aktp308 in Figure 5.1. This model, 

called H0, functions as our null hypothesis. The H0 model was constructed using ordinary 

differential equations (ODEs), where each ODE represents the production/consumption of 

a molecular species over time.  Integrating the ODEs provides a time-evolution (a 

simulated trajectory) of the species abundance over time.  
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The reaction equations and parameters of H0 appear in Table 5.1 and Table 5.2.  

PIP3 levels, assumed to be a time-varying input stimulus for the system (previously 

adopted by (Nägele, et al., 2010)) were plugged into the model by spline interpolation of 

the time-series data to provide a continuous curve (Figure 5.1C, dashed line).  The 

interpolated PIP3 levels were utilized in the ODEs for the downstream species, but the 

PIP3 levels were not governed by the ODEs.  Under different treatment conditions (see 

Materials and Methods), PIP3 level may be taken from different spline curves. The key 

output of the simulations would be Aktp308, the sum of membrane Aktp308 and cytosolic 

Aktp308.  

 

 

 

Table 5.1 – Reactions and rate constants used in the H0 model.  
The “process” column describes conversion from substrates to products. Modifier: the enzymes (PIP3:PDK1m, 
Phosphatase) or the recruiter (PIP3). Reaction velocity: the speed which the reaction takes place, which may depend on 
some modifiers. Rate constants: values of the reaction rates used. Reference: the source of the rate constant values, or 
“Estimation” if the values were allowed to be optimized.  

Index	   Process	   Reaction	  velocity	  	   Modifier	   Rate	  
constants	   Reference	  

#1	   PIP3	  +	  PDK1	  =>	  
PIP3:PDK1m	  

k1[PIP3][PDK1]	   PIP3	   k1	  =	  1.79	   Estimation	  

#2	   PIP3:PDK1m	  =>	  
PIP3	  +	  PDK1	  

k2[PIP3:PDK1m]	   	   k2	  =	  9.9	   Estimation	  

#3	   PIP3	  +	  Aktc	  	  =>	  
PIP3:Aktm	  

k3[PIP3][Aktc]	   PIP3	   k3	  =	  5.27	   Estimation	  

#4	   PIP3:Aktm	  =>	  PIP3	  
+	  Aktp308m	  

k4[PIP3:PDK1m][PIP3:Aktm]
/(k5+[PIP3:Aktm])	  

PIP3:PDK1m	   k4	  =	  2450	   (Biondi, et al., 2000) 
	   	   k5	  =	  68000	   (Biondi, et al., 2000) 
#5	   Aktp308m	  =>	  

Aktp308c	  
k6[Aktp308m]	   	   k6	  =	  0.49	   Estimation	  

#6	   Aktp308c	  =>	  Aktc	   k7[Phosphatase]	  
[Aktp308c]/(k8+[Aktp308c])	  

Phosphatase	   k7	  =	  5	   Estimation	  
	   	   k8	  =	  1.65	   Estimation	  
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Table 5.2 – Initial concentrations of the species used in the H0 model.  
Species: name of the species in H0. Initial concentration: initial concentration values used in the model, where PIP3 value 
is taken from measured data as “Input”, and Aktp308 is the sum of Aktp308m and Aktp308c. “Optimized”: whether the values 
were subjected to optimization process. 

Parameters were adjusted to maximize agreement between simulations and 

observations, for multiple experimental treatments.  We required the same reaction rates 

and initial concentrations to be used when fitting multiple experimental treatments, 

because the treatments were performed on the same cell type.  All model parameters were 

constrained such that every species started at its un-stimulated steady state (i.e., when 

nothing is added at t=0).  The binding rate of PIP3:PDK1m to PIP3:Aktm was derived 

from (Biondi, et al., 2000; Hatakeyama, et al., 2003). The binding rate of PIP3 to Aktc 

and that of PIP3 to PDK1 were allowed to be different. Finally, based on the observation 

that PDK1 and Akt have undetectable levels at the membrane in serum-deprived cells 

(Lim and Clément, 2007), we required that the initial state of the system must have all 

PDK1 and Akt in the cytosol. The H0 model was fit to the observations (Figure 5.1C) 

using a multiple fitting approach. Both global search (particle swarm optimization) and 

local search (Nelder-Mead) methods with multiple initial starts were used (Kennedy and 

Eberhart, 1942; Nelder and Mead, 1965). 

Species	   Initial	  concentration	   Optimized?	  
PIP3	   Input	   No	  
PDK1_total	   10	   No	  
PDK1	   9.75	   Yes	  
PIP3:PDK1m	   0.25	   No	  
Akt_total	   10	   No	  
Aktc	   9.988	   Yes	  
PIP3:Aktm	   0.001	   Yes	  
Aktp308m	   0.001	   Yes	  
Aktp308c	   0.01	   No	  
Aktp308	   Aktp308m	  +	  Aktp308c	   No	  
Phosphatase	   0.24	  	   Yes	  
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Rejection of the null hypothesis 
As there are unknown parameters in the H0 model, we considered a family of 

different models, each containing the same set of ODEs as in Table 4.1, but with different 

values for the model parameters. Extensive efforts to fit the H0 model family to the 

observed Aktp308 measurements were unsuccessful, suggesting that there was no instance 

of H0 model that recapitulates the observed dynamics of Aktp308 with the given PIP3 data 

as input. Among the 200 optimized models, the top 20 models for H0 family (ranked 

based on sum-of-square difference with data) were simulated (Figure 5.2B, solid black 

curves) and compared with measured Aktp308 time-series (Figure 5.2B, dashed red curve). 

Each model in the H0 family may contain different values for the kinetic parameters, 

derived from the reaction equations of H0 combined with multiple independently 

optimized rate parameters.  

Compared with the observations for Aktp308, simulation of the H0 model was 

unable to produce a slow rise and a late decline of Akt activation producing a peak at 30 

minutes and the assortment of simulated trajectories contains no match with the observed 

concentration profile.  There are some simulations of peak and decline, but they are early, 

mirroring the early peak and decline of PIP3 at 2 minutes.  We interpret these 

experiments to mean that the downstream effects of PIP3 are insufficient to explain the 

dynamics of Aktp308.  Dynamics of Aktp308 in response to that of PIP3 is at the heart of 

the Akt pathway and we focus narrowly on this phase of the cascade for the remainder of 

the paper. We henceforth use observations of PIP3 as input, and build models that seek to 

explain Aktp308 as output.  
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Figure 5.2 – The canonical model of Akt activation. 
(A) Network diagram for H0 (canonical pathway) model family and (B) Time course simulation of the best-fit models for H0 
compared with measured Aktp308 time-series. All simulated time courses were normalized to have the same concentration 
at t=120min. The assumptions used in constructing the model, how the kinetic parameters were estimated and how 
simulations of the model were performed are described in materials and methods. The phosphatases capable of 
dephosphorylating Aktp308 are represented by a single entity Phosphatase in the model. 

5.3 Non-canonical mechanisms for Akt activation 
Non-canonical causes of altered Akt localization 

In normal cells, the majority of Akt is in its inactive form at the cytosol (Lim and 

Clément, 2007). The canonical PIP3/Akt cascade describes the well-studied recruitment 

of Akt to the membrane by the membrane lipid PIP3. The lesser known mechanisms of 

altering Akt localization are described below. 

A number of other factors have been reported to directly or indirectly alter the 

localization of Akt at the membrane. H-ras and Rac1 were reported to induce Akt 

translocation to the membrane (Yang, et al., 2012). The PAK1 kinase domain was found 

to function as a scaffold to facilitate Akt stimulation by PDK1 and to aid recruitment of 

Akt to the membrane (Higuchi, et al., 2008). The TNF receptor associated factor 6 

(TRAF6) protein was found to be a direct E3 ligase for Akt and was essential for Akt 

membrane recruitment and phosphorylation upon growth-factor stimulation (Yang, et al., 

2009). Gao et al. and Lasserre et al. report that Akt activation is mediated by raft and 

membrane microdomain compartmentalization (Gao, et al., 2011; Lasserre, et al., 2008). 

While not affecting the localization of Akt, p38alpha can induce re-localization of PP2A 

to the membrane, leading to dephosphorylation and inhibition of Akt phosphorylation 

(Zuluaga, et al., 2007). The membrane-bound complex Freud-1/Aki1, when stimulated by 
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EGF, was able to induce the formation of a PDK1/Akt complex and thus regulated Akt 

activation in a concentration-dependent biphasic manner (Nakamura, et al., 2008). All 

Akt recruitment factors above are non-canonical and have not been as well studied as 

PIP3. However, this body of literature motivates us to consider non-canonical 

mechanisms which might be capable of explaining the canonical PIP3/Akt pathway fails 

to explain the peak time difference between PIP3 and Aktp308. 

Non-canonical causes of altered Akt phosphorylation dynamics 
With the increased understanding of Akt activation mechanisms, many studies 

have discovered many signaling molecules that affect both the duration and magnitude of 

membrane Akt phosphorylation. Prolonged Akt activation is increasingly found to be an 

important factor in for cells to perform many signaling functions. The duration of Akt 

activation is known to work by regulating the dephosphorylation (Brognard and Newton, 

2008; Brognard, et al., 2009; Rocher, et al., 2007; Zhang and Riedel, 2009). When 

nutrients are limiting, Akt signaling is intensified and prolonged due to the blockage of 

mTOR activation and the release of Akt from p70S6K-dependent inhibition (Plas and 

Thompson, 2005). Mutant forms of PI3K catalytic subunit and mutations in PTEN might 

result in modified abundance of PIP3, promoting an increase in the strength or duration of 

Akt-activating signals (Zhang, et al., 2011). The inhibition of the p38/MAPK pathway 

leads to an amplification of the magnitude and duration of the PI3K/Akt pathway (Heit, et 

al., 2002). In human mammary epithelial cell, knocking down INPP4B or PTEN has a 

significant effect on the magnitude and duration of insulin-stimulated Akt activation 

(Gewinner, et al., 2009).  

Some recent studies are starting to pay attention to the signaling molecules that 

may directly alter the duration of Akt activation, which may further our current 

understanding of the important kinase. Brognard and colleagues reported that the 
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depletion of PHLPP2 significantly prolonged the duration of Akt phosphorylation 

(Brognard and Newton, 2008; Brognard, et al., 2009). However, the two isoforms 

PHLPP1 and PHLPP2 were found to have differential activity to attenuate the duration of 

Akt signaling (Zhang and Riedel, 2009). Liu et al. showed that MyCF may interfere with 

regulation of the duration of Akt activation or signaling (Liu, et al., 1998). In astroglial 

cells, the duration of Akt activation was much more abbreviated in response to 

streptozotocin compared to glucosamine (Matthews, et al., 2007). The treatment of the 

growth factors NGF and PDGF produced equivalent maximal activation of Akt relative to 

IGF-1 and insulin but of shorter duration (Habib, et al., 1998). In retinal progenitor cells 

treated with both Epo and insulin, while the total amount of Akt phosphorylation 

remained unchanged, the duration of Akt phosphorylation was prolonged compared to 

that of Epo alone (Sangheraab, et al., 2011). Rocher et al. reported that the early response 

gene IEX-1 prolonged the activity of Akt by inhibiting the direct dephosphorylation of 

Akt by the PP2As (Rocher, et al., 2007). Liu et al. reported that phorbol 12-myristate-13-

acetate (PMA) reduced Akt phosphorylation duration from 90 minutes down to 15 

minutes in myeloid 32D cells (Liu, et al., 2006). In HepG2 cells, the combined “heat 

shock + mild electrical stimulation” treatment extended the duration of Akt 

phosphorylation through an increase of Hsp72 expression (Morino, et al., 2008). Finally, 

Yoon and colleagues reports that selenite maintained the duration of the activation of PI3-

K/Akt pathways for at least 48h, much longer than that of growth factors and other stress 

factors (Yoon, et al., 2002). This stream of evidence suggests that many factors exist to 

alter the dynamics of Akt activation, and many of them may be non-canonical. 

Systematic generation of alternative scenarios  
The failure of the canonical PIP3/Akt pathway to explain the peak time difference 

between PIP3 and Aktp308 (see Section 4.2) necessitated the quest for alternative 
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explanations. To obtain maximum coverage and generality, we considered different 

hypotheses affecting the same step in the pathway (Figure 5.3A). Each hypothesis 

contains the canonical pathway with the addition of a hypothetical “pseudo-species”. This 

approach demonstrated two main components of the CHEGS common techniques: 

systematic evaluation of alternatives and sacrificing complexity for generalizability. 

Some proteins and complexes were found to recruit Akt to the membrane 

(Higuchi, et al., 2008; Nakamura, et al., 2008; Yang, et al., 2009), justifying the 

introduction of a hypothetical “recruitment factor” in recruitment model. Akt was known 

to have different states depending on the environments (Murata, et al., 2003), and thus we 

hypothesize that one state of Akt is trapped at the membrane (retention model). PP2A, a 

phosphatase of Akt, was found to have differential activity under normal environment and 

under oxidative stress (Foley, et al., 2007), and hence we hypothesize that one state of 

Phosphatase is inaccessible to Akt (dephosphorylation model). There is not much 

literature evidence suggesting that the phosphorylation activity of PDK1 is regulated by 

external factors, but a model for this scenario was constructed for the purpose to complete 

coverage of all alternatives.  

Starting with five steps of the pathway (Figure 5.3A) corresponding to five 

alternative hypotheses, we immediately discarded the hypothesis of perturbed PDK1 

recruitment to the membrane (“PDK1 recruitment”), based on previous time-series 

measurements of membrane PDK1 (Luo, 2011). PDK1 recruitment dynamics were a 

close mirror of the PIP3 dynamics (peaking at 2-5mins), indicating no non-canonical 

effect modifying or delaying the dynamics of PDK1.   
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Figure 5.3 – Five alternative hypotheses, each with one non-canonical effect (in red).  
(A) Systematic investigation of the pathway for unknown effect. Five events (dashed boxes) in the canonical PIP3/Akt 
cascade were identified: PDK1 recruitment, Akt recruitment, Akt Thr308 phosphorylation, Akt membrane-cytosol 
translocation and Akt Thr308 dephosphorylation. One event (PDK1 recruitment by PIP3) dashed gray box) was considered 
unlikely to be regulated by external effects, due to our measurement of membrane PDK1 time-series. The systematic 
investigation generates five models (each corresponding to one hypothesis) to reconcile the discrepancy between PIP3 
and Aktp308: (B) PIP3-dependent recruitment model (C) PIP3-independent recruitment model, (D) retention model, (E) 
dephosphorylation model, and (F) phosphorylation model. In recruitment models, a “recruitment factor”, dependent or 
independent of PIP, alters the rate of PIP3-induced Akt translocation from cytosol to membrane. In retention model, a 
“retention factor” prevents dissociation of Akt from the membrane after phosphorylation. In dephosphorylation model, a 
“dephosphorylation factor” disrupts the interaction between cytosolic Aktp308 and its phosphatases.  In phosphorylation 
model, a “phosphorylation factor” enhances the catalytic activity of PDK1 to phosphorylate membrane Akt.   

There could potentially be some non-canonical perturbation at any of the 

remaining 4 steps of the canonical PIP3/Akt cascade in Figure 5.3 (Akt recruitment, Akt 

Thr308 phosphorylation, Akt membrane-cytosol translocation, and Akt Thr308 

dephosphorylation).  We do not know the exact molecular mechanism that would cause 

each hypothetical perturbation, so we cannot model potential perturbations with explicit 

enzyme kinetics.  Instead, we constructed an arbitrary spline curve to represent any 

hypothetical perturbation effect over time.  The shape of the spline curve can later be 

optimized for the model to fit the observed trends (the “reverse fitting pipeline”, Figure 

5.4). For each potential scenario, the hypothetical effect was represented as an input to the 

system, whose value was obtained from a linear spline. The spline was constructed by 

linearly interpolating between the knots, which became part of the system’s parameters 
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for optimization. The dynamics of this input was obtained based on the optimized spline 

knots (see Section 2.3). In other words, optimizing the perturbed model to fit the data 

would solve for the shape of the spline curve, which tells us when the perturbation would 

occur.  

We constructed the alternative models by adding a pseudo-reaction (spline curve) 

at the appropriate step of the pathway.  Since “Akt recruitment” may or may not require 

PIP3, we build two mechanisms for perturbing this step (Figure 5.3B-C). For each of the 

remaining 3 steps, one alternative hypothesis was constructed (Figure 5.3D-F).  

 

Figure 5.4 – Flowchart describing the reverse-fitting method used in this study.  
Each hypothesized perturbation was encoded as a pseudo-species with a spline curve for its time series profile. Rate 
parameters for biochemical reactions and the spline curve were optimized simultaneously, to fit data. Finally, models 
improve subsequent experiments by predicting when hypothetical effects would achieve peak effect, or by rejecting 
unlikely hypotheses. 

Note that the pseudo-reaction should not be misinterpreted as representing a true 

biochemical mechanism; it is only an interface between the differential equations of the 

canonical pathway, and the spline curve for the dynamic of the perturbation. The 

alternative hypotheses (Figure 5.3B-F) were constructed based on previous evidence 

whenever possible, and the hypothetical effects were introduced systematically to each 

reaction of the H0 model. To maximize the generality of the representation, we use a 

reaction-like process to describe the unknown perturbation that might occur at each step 

of the pathway. A more conventional approach would have been to construct an artificial 

molecule and hypothesize its parameters, but we rejected this approach because it can 
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give an artificial appearance of validity to the cosmetic implementation of the 

perturbation. We utilize instead a time-dependent process (in the form of a linear spline) 

because it creates greater emphasis on delineating when an unknown event reaches its 

peak. We then computed the spline knots to derive what perturbation would have to occur 

to the hypothesis in question, such that including this perturbation would suffice to 

explain Aktp308 based on PIP3 input. 

5.4 Membrane fractionation dynamics   
Model predicts non-trivial dynamics of membrane fractions 

Using the same fitting procedure that had been applied to the H0 model families, 

all five model families with additional hypothetical effect could match the dynamics of 

Aktp308 equally well (Figure 5.5A). This necessitates acquiring additional data for model 

calibration, in an attempt to single out a scenario that is more likely to happen in cells 

than other scenarios. Simulation of membrane PDK1 (Figure 5.5B) did not show a clear 

distinction between different models, suggesting that measuring this time-series may not 

provide useful information for discriminating between the alternative hypotheses. In 

contrast, simulation from four alternative models revealed non-trivial dynamics of 

membrane total Akt and membrane phosphorylated Akt (Figure 5.5C-D), which 

motivated the measurement the two time-series. 

 

Figure 5.5 – Time course simulations of the five alternative models. 
(A) Aktp308, (B) membrane PDK1, (C) membrane total Akt, and (D) membrane Aktp308. Model predictions suggested 
measurement of membrane total Akt and membrane phosphorylated Akt may help discriminate between alternative 
hypotheses.  
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Membrane fractions time-series 
Fractionation experiments were performed to obtain the time-series membrane 

fractions of Aktp308, total Akt and PDK1 (Figure 5.6). We summarize the major peaks 

from the fraction time-series as follow: the PDK1m level (solid curve) peaks at 2 minutes 

and quickly decreases to near its un-stimulated (t=0) level by 60 minutes; the membrane 

total Akt level (dashed curve with diamond markers) peaks at 5 minutes and stays high 

until 30 minutes before decreasing; and the membrane Aktp308 level (solid curve with 

triangle markers) peaks at 30 minutes with a minor peak at 5 minutes. These time-series 

fractionation measurements indicate that Akt is present at the membrane for a prolonged 

period of time after the PIP3 levels have increased and decreased. We interpret this to 

mean that the delayed activation of Aktp308 in total cell lysate is contributed by the 

delayed activation of membrane Aktp308. 

 

Figure 5.6 – Time-series western blot fractionation experiments. 
Fractionation experiements (performed by Luo Le, NUS Department of Biochemistry) of the membrane fraction of total Akt 
(Akt mem) and Aktp308 (Aktp308 mem). Methods and Materials for the experiments can be found in Dr. Luo Le’s thesis, 
Section 2.2. Quantification was performed based on western blot densitometries fromat least three replicates. The time-
series were measured in fold-changes compared to un-stimulated state (t=0). Aktp308 measures were taken from Aktp308 at 
t=0 plus median increments from 3 replicates. Measures of total Akt were taken from total Akt at t=0 plus median 
increments from 6 replicates (measured in fold-change). Due to the use of median measures, error bars are not applicable 
to the plots, but complete datasets are available at the project webpage (http://webbppe.nus.edu.sg:8080/Akt). The curves 
were arbitrarily scaled and offset such that the concentration of Aktp308 is always less that of total Akt, and the data is of 
the same scale as the arbitrary units being used in the alternative models. The dynamics observed in the right plot was 
produced by at leastthree replicates. Numerical values for normalization procedures can be found at the project webpage. 
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5.5 Model analysis with additional membrane fraction time-
series  

Model re-calibration using additional membrane fraction time-
series 

Based on the total cell lysate time-series and the additional membrane fraction 

data, we performed model fitting to assess the ability of each alternative hypothesis to 

recapitulate the measured dynamics. Simulated time-course from optimized model in 

each hypothesis was compared with time-series data in total cell lysate Aktp308 (Figure 

5.7A-J, blue curves) and membrane fraction experiments (Figure 5.7A-J, red, green and 

purple curves).  
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Figure 5.7 – Comparison between experimental time-series and simulated time courses. 
Evaluation was performed for PIP3-independent recruitment model (A-B), PIP3-dependent recruitment model (C-D), 
retention model (E-F), dephosphorylation model (G-H), and phosphorylation model (I-J). The following species were 
compared and contrasted: total cell lysate Aktp308 (blue curve), membrane PDK1 (red curve), membrane total Akt (purple 
curve), and membrane Aktp308 (green curve). (A-J) Solid line represented simulation and dashed line represented 
measurements. All dynamics were measured in relative concentration (arbitrary unit). Criteria for match include the ability 
of simulated time course to reproduce the peak time, peak duration and peak amplitude of measured time-series, in the 
order of importance.  The following simulation-data pairs were considered poor matches: (H) purple curves, and (J) purple 
curves, due to the dynamic mismatch shown by the purple arrows. The green curves in (F), (H) ad (J) were considered 
partial matches. (K-O) Peak time of each model was compared with peak time of data and the difference is highlighted by 
gray bar. Σ(error): sum of all differences (gray bars). 
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A good fit was determined by the sum-of-square error (SSE) score between 

simulated and measured time-series. However, as data was arbitrarily scaling and offset 

was applied to data quantification, requirement of absolute timepoint-by-timepoint match 

between simulated and measured time-series would be unnecessary. We instead evaluated 

a match based on its peak properties: peak time, peak duration (width) and peak 

amplitude. Note that peak timings are not affected by scaling and offset. Based on the 

numerical values for peak difference and by manually observing the curve dynamics in 

Figure 5.7, we define the following three categories of comparison outcomes: plausible 

match (matching peak times and rise-and-decline dynamics), partially plausible match 

(mismatching peak times but agreeing in most rise-and-decline dynamics), and 

implausible match (failing both criteria). The curve pairs classified as partially plausible 

or implausible match are described in the caption of Figure 5.7. 

Our previous work (Nim, et al., 2010) suggested that the Akt model might contain 

high complexity and the objective function landscape might be rugged with multiple local 

minima. This prevents any standalone parameter estimation method from delivering 

satisfactory agreement between simulation and measurements, and model calibration 

tasks required broad and repeated sampling of the parameter space. Indeed our early 

attempts to fit the models with the data were unsuccessful, and we subsequently 

employed a multi-step strategy for model calibration. In this multi-step method, a 

collection of fitted models were obtained from global optimization (particle swarm 

optimization), manual fitting was performed to pick out the potential candidates based on 

ability to match peak timings of measured time-series, and local optimization (Nelder-

Mead method) was performed as the last step to refine the parameters. 

As observed in Figure 5.7A-B, the PIP3-dependent recruitment model was able to 

reproduce all four sets of dynamics in the serum-stimulated MEF. In simulations of this 
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model (Figure 5.7B purple solid curve), the “recruitment factor” augmented the amount 

of Akt recruited to the membrane, generating a second peak at 30 minutes. While 

measured membrane total Akt time-series of did not display this 2-peak dynamics 

dramatically (Figure 5.7B, purple dashed curve), it showed that membrane total Akt level 

was high at both 5 minutes and 30 minutes, in agreement with the computed dynamics. 

The 2-peak dynamics of membrane total Akt created a similar 2-peak dynamics of 

membrane Aktp308, which was observed in membrane Aktp308 measurement. In summary, 

the PIP3-dependent recruitment model showed a strong resemblance to the data. 

The PIP3-independent recruitment model, similar to the PIP3-dependent 

recruitment model, showed a reasonable match between PIP3-independent recruitment 

model and time-series data (Figure 5.7C-D). In this model simulation, the 2-minute peak 

of PIP3 created a similar 2-minute peak of membrane PDK1 (Figure 5.7C, red curves), in 

agreement with data. This PDK1m peak was delayed to30 minutes when propagated to 

membrane Aktp308 (Figure 5.7C, blue curves), in agreement with the 30-minute peak of 

data. Model simulation also exhibited a peak at 2 minutes and a prolonged high level of 

membrane total Akt (Figure 5.7D, purple curves) from 2-60 minutes, similar to the 

observed trend. The peak at 30 minutes from observed membrane Aktp308 time-series 

(Figure 5.6D, green curves) was not recapitulated by simulation, but the difference is not 

strong enough to reject the PIP3-independent recruitment model. In summary, the PIP3-

independent recruitment model showed an adequate resemblance to the data. 

In retention model, simulation showed that membrane total Akt level stays high 

upon recruitment (Figure 5.7F, purple solid curve). Under this condition, the level of 

Aktp308 was able to reach a high level at 30 minutes (Figure 5.7F, green curve) before the 

retention effect decreased and allow more Aktp308 to reach the cytosol and be 

dephosphorylated. Thus the simulated membrane Aktp308 dynamics was able to capture 
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the peak at 30 minutes of observations, albeit with a much stronger peak. This led us to 

conclude that the retention model was inferior to the PIP3-independent and PIP3-

dependent recruitment models evaluated by agreement with membrane fraction time-

series. In summary, the retention model showed a good match to the data. 

While the dephosphorylation model was able to match the total cell lysate Aktp308 

data (Figure 5.7G), it exhibited irreconcilable mismatch with membrane fraction 

measurements (Figure 5.7H). Under this scenario, the inaccessibility of cytosolic 

phosphatases (“Phosphatase”) created an augmented level of cytosolic Aktp308 which 

produced a peak at 30 minutes (data not shown) leading to the similar 30-minute peak of 

total cell lysate Aktp308. However, this effect led to a dramatic decrease of membrane 

total Akt from 2 minutes (Figure 5.7H, purple solid curve, marked with arrows) and 

membrane Aktp308 from 10 minutes (Figure 5.7H, green solid curve), both of which 

contradicted the measured dynamics. In summary, the dephosphorylation model did not 

adequately resemble the data. 

Finally, the phosphorylation model was also able to match two data series (Figure 

5.7I). However, this model failed to reproduce the dynamics of membrane total Akt 

(Figure 5.7J, purple curves) and has partially plausible match with the dynamics of 

membrane Aktp308 (Figure 5.7J, green curves). It should be noted that the dynamic 

behavior of the phosphorylation model shared some similarity with the dephosphorylation 

model. Thus, similar to the dephosphorylation model, the phosphorylation model also did 

not adequately resemble the data. 

We next compared between the peak time of the simulated and observed time 

course, highlighted the mismatch by grey bars (Figure 5.7K-O). While the PIP3-

dependent recruitment and retention models displayed good agreement in terms of peak 

time (total error = 12.4 and 13.4, respectively), the phosphorylation, PIP3-independent 
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recruitment, and dephosphorylation models exhibited poor agreement especially with 

respect to membrane Aktp308 (total error = 20.76, 32.4, and 29.6 respectively). By also 

taking into account the comparison results with measured membrane total Akt and 

membrane Aktp308 time-series into account, the dephosphorylation model (Figure 5.7H) 

and phosphorylation model (Figure 5.7J) had much poorer agreement compared to the 

PIP3-independent recruitment model (Figure 5.7D). By failing in both categories, the 

dephosphorylation and phosphorylation models were both rejected as not being supported 

by the membrane fractionation measurements. 

Model prediction of PIP3 inhibition experiments 
From the model calibration results earlier (Figure 5.6), three remaining models 

were not disqualified based on dynamics comparison with membrane fraction time-series 

measurement: PIP3-dependent recruitment, PIP3-independent recruitment and retention 

models. We next performed PIP3-blocked simulation experiments using these three 

models and asked whether the predicted results of PIP3 knockdown, according to the 

three remaining hypotheses, would be different enough so that doing this experiment 

would allow at least one hypothesis to be excluded by the results. 

We simulated the three remaining models under the two treatments: a control 

treatment where cells were stimulated by serum as in previous experiments, and a PIP3-

blocked treatment where PIP3 concentration is constant over time. When PIP3 was 

blocked, two of the models (the PIP3-dependent recruitment and the retention model) 

showed dramatic change where the peak of membrane total Akt was obliterated (Figure 

5.8A, B, and C). The remaining PIP3-independent model (Figure 5.8C, dashed red curve 

marked with black arrow) showed that membrane total Akt level still increase rapidly to 

peak at 30min. 
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Based on model simulations (Figure 5.8C), we proposed to measure total 

membrane Akt dynamics, using a PIP3-specific inhibitor in addition to 10%FBS 

treatment at time t=0. Measurement of Aktp308 in total cell lysate or other protein may not 

be beneficial in discriminating among three alternative hypotheses (Figure 5.8A, B, and 

D). If this experiment showed non-trivial dynamics similar to simulated dynamics of 

membrane total Akt under PIP3-independent recruitment hypothesis, two hypotheses 

(PIP3-dependent recruitment and retention) can be disqualified, greatly reducing the 

number of alternatives. On the other hand, if the measured dynamics showed a flat 

trajectory, this could be used as a basis to reject the PIP3-independent recruitment 

hypothesis, narrowing the number of possibilities in our study. However, it should be 

taken into consideration that PIP3-blocked experiments may also have practical 

constraints, including the lack of PIP3-specific inhibitors. 

This PIP3-blocked experimental design may not be obvious from manual 

observation of previous measurements. A PIP3-independent Akt recruitment effect might 

recruit Akt to membrane and not activate it, because there might not be enough active 

PDK1 available. The relative availability of PDK1 relative to membrane total Akt is 

uncertain and other members of the hypothesis family might predict otherwise. But there 

exist parameter values for the PIP3-independent recruitment model, in which Akt would 

not get activated after PIP3 is blocked. In other words, all the hypotheses would show the 

same behavior towards Aktp308 in total cell lysate. On the other hand, the fractionation 

would show Akt recruitment which would always differ between the PIP3-independent 

recruitment and PIP3-dependent recruitment hypotheses under the PIP3-blocked 

condition. 
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Figure 5.8 – Time course simulation of three candidate alternative models. 
(A) Aktp308, (B) membrane PDK1, (C) membrane total Akt, and (D) membrane Aktp308 from three alternative models: PIP3-
dependent recruitment, PIP3-independent recruitment, and retention. Treatment conditions in simulation include: 10%FBS 
(control) and PIP3 inhibition+10%FBS at time t=0. Model predictions suggested that membrane total Akt (black arrow) has 
non-trivial dynamics under the PIP3-independent recruitment hypothesis.  

5.6 Model ensemble analysis  
With the complexity and potential lack of well-defined minima in the alternative 

models, it was possible that multiple models within each alternative hypothesis could 

match data equally well. Modeling studies such as by Chen et al. have considered 

multiple fits for evaluation model behavior rather than relying on a single best model 

(Chen, et al., 2009). Following this approach, we proceeded to evaluate a broad spectrum 

of individuals belonging to each model family. 

We defined a feature vector called the “peak vector” which is a simplified 

representation of the dynamics of each trajectory, based on the properties of the highest 

peak in all species time course. In this current system, the peak vector is a 12-dimensional 

vector consisting of peak time, peak amplitude and peak width (illustrated in Figure 5.9A) 

of the four species that were measured in time series. All peak vectors obtained from 

simulation were divided by the peak vector from the measured time-series of the 

corresponding species. In each model family, each of the 26 nominal parameters (i.e. best 

estimates from the optimal recruitment or retention model obtained by multiple-fitting 

described in the previous sections) was one-at-a-time doubled or halved, generating 

additional 52 slightly modified individuals surrounding the optimal model (i.e. model 

with nominal parameters). The normalized peak vectors computed from these model 
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simulations (solid thin lines) were plotted alongside the peak vector of the measured time-

series (dashed thick line) in Figure 5.9B-D. 

  

Figure 5.9 – Model ensemble analysis of three candidate alternative models. 
(A) A diagram illustrating the definitions of the peak properties. Peak width is defined as the difference between the times 
when the level reaches 90% of the peak value in the time course. (B-D) A novel visualization scheme for displaying a 
multi-factorial comparison between an experimental dataset and afamily of models. In these comparisons, 3 peak 
properties areused for comparing each of 4 measured species (3*4=12 axes). In each radar chart plot, four green axis 
indicate the peak times of the four measured species. Four brown axes indicate the peak amplitude and four gray 
axesindicate the peak width of the four measured species. The thickly dashed black circle indicates the peak vector of 
measurements, which is normalized to a unit vector. Multiple individuals of (B) PIP3-dependent recruitment, (C) retention, 
and (D) PIP3-independent model families (53 models per family) were compared with respect to the 12-dimensional peak 
vectors. Each model family contains the nominal parameters with one parameter doubled or halved. Peak time, peak 
amplitude and peak width were groups into arcs of the circle marked by solid, dashed and dotted double-headed arrows. 
Each arc contains four axes corresponding to the four measured time-series. All peak vectors from simulation (solid thin 
lines) were normalized with respect to the peak vector from measured data (dashed thick lines) before plotting. Min 
squared error: minimum sum of squared error, evaluated using 4 either peak times or all 12 peak characteristics within 
each model ensemble.  
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If all peak characteristics are considered equally important, the retention model 

family (minimum squared error = 2.56) would rank slightly higher than PIP3-dependent 

recruitment model family (minimum squared error = 3.08), and both are much better than 

the PIP3-independent recruitment model family (minimum squared error = 5.87). 

However, if peak time (green arrows) of each measured time-series is considered the most 

important property, it can be observed that some individuals of recruitment model could 

match all four measured peak times (minimum squared error = 0.093). In comparison, no 

individuals of the retention model family (minimum squared error = 0.541) or PIP3-

independent recruitment model family (minimum squared error = 0.397) could match the 

peak time of measured membrane total Akt. 

The PIP3-independent recruitment model has bad agreement with the membrane 

Aktp308 peak time, but that alone was considered insufficient to disqualify it because the 

simulated time course matched a second peak in the experimental observation of 

membrane Aktp308. However, another reason why PIP3-independent hypothesis is ranked 

low by the score is that multiple species having poor agreement with the peak width 

(Figure 5.9D, gray axes). It is an interesting observation that this hypothesis family can 

match either one peak time or another peak time but not both (Figure 5.9D, green axes). 

We observe that this type of diagram gives an intuitive display of this either-or 

contradiction, and we hope future work in pathway modeling will consider reuse of this 

visualization approach. 

The variation among members of each model family indicates the landscape 

ruggedness of the peak vector around the nominal parameters. Variation within both 

PIP3-dependent recruitment is high (Figure 5.9B) but some of the individuals have good 

agreement with measurements, implying that this locality in the parameter landscape is 

rugged with some deep minima. In comparison, the retention model family and PIP3-
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independent recruitment model family (Figure 5.9B-C) showed a lower variation level 

where all individual peak vectors have almost equal values in all dimensions except the 

peak time and peak width of membrane total Akt. 

In summary, based on the model families comparison in Figure 5.9 (in addition to 

time-series matching in Figure 5.7 earlier), we ranked the PIP3-dependent recruitment 

hypothesis highest. While the other two hypotheses were hard to discriminate from Figure 

5.9 visually, we relied the peak time matching score to rank the PIP3-independent 

recruitment hypothesis second, and the retention hypothesis third. 

5.7 Robustness analysis of PIP3-dependent recruitment 
model  
Model calibration may produce models that are hyper-sensitive to certain 

parameters. We have observed earlier (Figure 5.8) that the PIP3-dependent recruitment 

model might have high variation around the nominal parameters (best estimates from 

model calibration), and we proceeded to identify the core set of parameters that most 

strongly impact the peak vector values. We thus performed the robustness analysis on all 

three hypotheses that were not disqualified, and this section will take the PIP3-dependent 

recruitment as an example. Robustness analysis results of other two hypotheses are 

available at the project webpage (http://webbppe.nus.edu.sg:8080/Akt).  

In our robustness analysis (or local parameter sensitivity analysis), we 

systematically multiplied each parameter by 10x, where x took 21 evenly distributed 

values from -1 to 1. The 12 peak vector dimensions were plotted for model with 

modification in each reaction rate parameter (Figure 5.10A) or “recruitment factor” spline 

knot parameters (Figure 5.10B). 

Overall, each subplot in Figure 5.10 contains mostly flat lines, suggesting that the 

peak vector of the recruitment model is insensitive to most parameters, although there are 

certain exceptions. The peak times of Aktp308, membrane Aktp308 and membrane total Akt 
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is highly sensitive to the value of recruitment factor at 30 minutes (Figure 5.10A, dashed 

lines) and 120 minutes (Figure 5.10A, dotted lines with marker). This is expected as with 

low values of recruitment factor at 30 minutes, the30-minute peak in nominal recruitment 

model could diminish leading to an earlier peak; or with high values of recruitment factor 

at 120 minutes, a new higher peak could be generated abruptly at a later timepoint than 30 

minutes. While the peak amplitude is robust to reaction rate parameters (Figure 5.10B), 

the peak time and peak width can be sensitive (i.e. increased outcome amount is more 

than the changed amount in parameters) to some reaction rate parameters. These cases 

often correspond to the situations where the peak was abolished due to the reaction rate 

values, resulting in an excessively wide and/or late peak. In summary, it can be concluded 

that the recruitment model is partially robust, i.e. robust with respect to many but not all 

parameters. 
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Figure 5.10 – Model robustness analysis. 
Robustness analysis of Aktp308 peak time, Aktp308 peak amplitude and Aktp308 peak width with respect to (A) reaction rate 
parameters and (B) recruitment factor spline knot parameters in PIP3-dependent recruitment model. The model was 
simulated with each parameter varied 1 order of magnitude above and below nominal values. Here k1-k8 correspond to 
the reaction rates as indicated in Table 1. Peak properties are described in Figure 5.9.  

5.8 Discussion 
Scope of study: PIP3-Aktp308  

In Chapter Four, we identified a puzzling phenomenon in the Akt activation 

pathway under serum stimulation, leading to the search for “non-canonical activation of 
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Akt in serum-stimulated fibroblasts” as described in this chapter. Starting from the earlier 

Akt model for testing the SPEDRE method (Chapter Four), we narrowed down the scope 

to between PIP3 and Aktp308, due to the discovery of the large delay between the peak 

times of the measured time-series of these two species (Figure 5.1).  

Within this PIP3-Aktp308 scope, we constructed the H0 model representing the 

canonical Akt activation pathway, at the individual-biochemical-process level of details. 

There have been numerous models that contain Akt activation pathway, but models such 

as by Leander et al. (Leander, et al., 2012) collapse the signaling cascade between PIP3 

and Akt, making the activity of Akt closely tied to that of PI3Kinase. In our H0 model, by 

examining the pathway at a more fine-grained level of details, we discovered that 

interesting phenomena affecting the activation dynamics of Aktp308 may occur between 

PIP3 and Aktp308. More specifically, H0 was unable to explain the delay between the 

peaks of PIP3 and Aktp308, suggesting that some non-canonical effect causes the 

overshoot dynamics of Aktp308.    

The failure of H0 to explain the large time-delay led to the search for an 

alternative hypothesis to reconcile the mismatch. We performed a modeling-driven 

hypothesis management approach in which the back-and-forth interaction between 

modeling and experiments is the centerpiece. As a result, we obtained novel biological 

insights about the prolonged membrane localization of Akt upon serum induction, and we 

reduce the initial number of hypotheses from 6 down to 3 remaining candidates, all 

capable of explaining the current data.  

With the success demonstrated above, we found that the hypothesis management 

approach with reverse fitting pipeline was effective enough to allow many mechanisms to 

be discarded.  However, manual effort was required for many steps in the process, and 
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this requirement is not yet a limiting factor in our PIP3-Aktp308 scope. To expand this 

method to large pathways, future developments are need to provide greater automation. 

Timeline of hypothesis exclusions 
Based on simulations for the canonical pathway (H0) model, this null hypothesis 

was insufficient to explain the dynamics of Aktp308 in total cell lysate. An external time-

dependent factor was systematically introduced to different steps of the activation 

pathway, producing five alternative hypotheses. We assessed and ranked these five 

models based on agreement between simulated and measured time courses. The 

dephosphorylation and phosphorylation model families were rejected by the membrane 

fraction time-series experiments, because they couldn’t explain why Akt would remain 

localized at the membrane after PIP3 levels decline. This analysis left three hypotheses 

potentially capable of explaining current data: PIP3-dependent augmented recruitment, 

prolonged membrane retention, and PIP3-independent augmented recruitment. Finally, 

the PIP3-dependent recruitment model was ranked highest based on the “peak vector” 

analysis from an ensemble of models from each hypothesis family, but the retention 

model and PIP3-independent recruitment model were not ruled out. Table 5.3 summarizes 

which models were considered viable (Pass) or unviable (Fail) after each stage.   

 

Table 5.3 – Summary of model evaluation for null hypothesis and four alternative hypotheses, based on three 
tests performed in this study.  

Biology contributions 
Several aspects of this study may be of potential interest to Akt scientists. First is 

the novel mismatch between the peak times of PIP3 and Aktp308 (Figure 5.2), which has 

Test
Aktp³⁰⁸	  time-‐series Membrane	  time-‐series Ensemble	  analysis

Model

H0 Fail
Dephosphorylation Pass Fail
Phosphorylation Pass Fail
PIP3-‐independent	  recruitment Pass Pass Ranked	  second
Retention Pass Pass Ranked	  third
PIP3-‐dependent	  recruitment Pass Pass Ranked	  first
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not been reported in the literature. This mismatch of kinetics was not previously known 

and the peak and decline was previously attributed to receptor internalization 

(Hatakeyama, et al., 2003). The duration and timing of Akt phosphorylation were of wide 

biological significance, ranging from neuron latency (Camarena, et al., 2010), cardiac 

function (Hu, et al., 2008), cytotoxic T cell fate (Macintyre, et al., 2011), angiogenesis 

(Liao, 2008; Reed, et al., 2009), and proliferation in many cell types (Longo, et al., 2007; 

Longo, et al., 2008). The three remaining plausible hypotheses, out of five initial 

candidates, imply there is a membrane-localized mechanism that augments Akt levels at 

the membrane. This prolonged presence of Akt at the membrane (whether via recruitment 

or retention) is important because Akt impacts many downstream targets and the timing 

of its activity can regulate the downstream effect. 

The second biology contribution is the implied significance of non-canonical 

activators. Via a series of hypothesis exclusion steps, we narrowed the initial five 

alternative scenarios down to a few very similar hypotheses: recruitment (PIP3-dependent 

or PIP3-independent) or retention of Akt at the membrane. Based on literature evidence, 

we can list some known non-canonical effects that fit these criteria: (1) Akt can bind 

PI34P in addition to PIP3 (Burelout, et al., 2007), and so PI34P might be responsible for 

the prolonged localization of Akt at the membrane after PIP3 levels decline. (2) Pak1 has 

been reported to serve as an anchor for localizing Akt at the plasma membrane (Higuchi, 

et al., 2008).  (3) NHE1 is an integral membrane protein has been reported to promote 

Akt signaling through an indirect scaffolding effect (Wu, et al., 2004).  (4) Membrane 

microdomains and caveolae are also known to regulate Akt localization (Gao, et al., 

2011). These candidates do not represent an exhaustive list of non-canonical Akt 

activators, but carries substantial biological importance worthy of further investigation as 

future work.  



  Page 112 
 

Modeling-driven methods contribution 
After finding the canonical model to be inadequate, we investigated the PIP3/Akt 

cascade following a top-down and holistic approach typical for a systems biology study, 

but without requiring extensive omic-scale data. We assumed there was a single non-

canonical effect acting on the canonical pathway, and we systematically enumerated the 

steps of the canonical pathway at which a hypothetical perturbation may occur. This 

perturbation at each step was encoded using a pseudo-reaction (mathematically a linear 

spline), and we allowed the perturbation to take an arbitrary dynamic (spline shape). Then 

this spline can be optimized to allow the model to best match the data.  In a simplistic 

view, we are making the following assumption: the observed Akt curve(s) should be 

equal to the network-propagated effects of PIP3, plus the network-propagated effects of 

the non-canonical perturbation.   This allows us to perform the reverse fitting process 

(Figure 5.4), by back-computing the unknown perturbation curve shape from the known 

PIP3 and Aktp308 dynamics. In our implementation, we represented the perturbation curve 

using a linear spline with unknown spline knots, and we reverse-fit the solution by 

optimizing the values of the spline knots, to maximize agreement with the observations.  

The introduction of splines to represent the combined effect of the multiple 

unknown effects on the reactions is unconventional, and proves to be useful in 

distinguishing among hypotheses in this study. Effectively, we obtained a complete 

model of the perturbed system, facilitating various in silico experiments. This enables us 

to carry out experimental validation to distinguish among different hypothesis families, to 

prioritize the experiments which may lead to novel biological discovery. Biological 

experiments are often expensive compared to in silico experiments, and performing a 

smaller number of more efficient experiments may provide enough savings to pay for the 

cost of computational modeling. Although anecdotal, the illustrations from model 
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simulation were concrete, evocative, and valuable for the human process of deciding how 

to spend money. For example, by simulating the different alternative scenarios, modeling 

helps illustrate the time windows when the novel effects would be most easily observable. 

This allows more efficient extraction of information from a minimum expense of 

experiments to perform. 

Importance of studying Akt membrane localization 
For future studies of how Akt achieves prolonged localization at the membrane 

after PIP3 levels fall, there is a technology available for controlling Akt localization, 

independent of PIP3. Akt-Myr, a chimeric protein which was composed of a 

myristoylated constitutively active form of Akt and the ligand-binding domain of a 

mutant estrogen receptor (Kohn, et al., 1998),  can control Akt signaling activation in 

both timing and duration. Myr-Akt is inactivated in the absence of 4-hydroxytamoxifen 

(4OHT), but is activated rapidly by the addition of 4OHT (Murayama, et al., 2007). This 

constitutively membrane-bound active form of Akt provides a wide range of applications 

in studying the effect of membrane Akt.  

The endogenously membrane-localized active Akt could also have important 

implications for other downstream effectors in the signaling pathways. In chemotaxing 

cells, Akt is found to transiently translocate to the plasma membrane in response to 

receptor stimulation, which may indicate some important function in chemotaxis (Meili, 

et al., 1999). The isoform Akt2 is found to accumulate at the plasma membrane of 

insulin-stimulated adipocytes, and this accumulation correlates with Akt2-specific 

regulation of the trafficking of the GLUT4 glucose transporter (Gonzalez and McGraw, 

2009). Although distinguishing between the recruitment hypothesis and retention 

hypothesis may seem like splitting hairs, they have different implications for the 

localization of active Akt. This selection of examples points to an enormous potential for 
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biological effects to be regulated by the localization of active Akt at the membrane versus 

cytosol. 

Importance of studying the timings of Akt activity  
As described in the previous section, the localization of Akt is important in 

various cellular functions. More subtly, the dynamics of the localized concentration of 

Akt and its phosphorylation have been found to have an important role biological in 

various cell types and contexts. Akt is one of the most consistently over-activated 

pathways in cancer (Stephens, et al., 2012) and mechanisms allowing normal cells to 

achieve a transient peak of extreme Akt activation could be mutated to provide a 

permanent state of extreme Akt activation in cancer.  

The biological importance of Akt duration is strongly supported by recent 

literature evidence. “Hub” proteins (i.e., factors with many downstream targets and 

effectors) often achieve differential functions through the dynamics of activation, and not 

exclusively through the magnitude of activation (Ebisuya, et al., 2005; Longo, et al., 

2008). A very recent report shows that the dynamics of p53 plays a crucial role in 

determining cell fate (Purvis, et al., 2012), which underscores the importance of studying 

Akt activation dynamics given the amount of crosstalk occurring between the two 

pathways (Gottlieb, et al., 2002; Wee and Aguda, 2006). The amplitude and duration of 

Akt are critical factors in determining cell cycle progression in various cell types (Longo, 

et al., 2007; Longo, et al., 2008). Sustained activation of ERK, a downstream effector of 

Akt activation, is required for proliferation of fibroblasts, whereas transient activation 

does not induce cell-cycle entry (Murphy, et al., 2002; Pouysségur and Lenormand, 

2003). Sustained activation of Akt is also required for the proliferation and survival of 

activated murine T and B cells (Costello, et al., 2002), and for driving cell-cycle 

progression of CLL B cells stimulated with CpG oligonucleotides (Longo, et al., 2007). 
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Duration of Akt is also critical to maintain latency in neurons, as the ability of different 

growth factors to maintain latency is directly proportional to the duration of PI3-K 

signaling (Camarena, et al., 2010). In SUR1-tg and Kir6.2 KO mice, both the extent and 

duration of Akt signaling are important in regulating cardiac function (Hu, et al., 2008).  

Finally in cytotoxic T cells, the strength and duration of Akt activity dictates the 

transcriptional program and determines cell fate (Macintyre, et al., 2011). 

Caveats and future work 
This study dealt with models where the parameter values were unknown, thus 

necessitating the parameter estimation process. As a high-dimensional non-linear 

optimizer is never guaranteed to find globally optimal values, there is a risk of accepting a 

significantly worse model than the optimal model. If a good-fit model (H0, 

phosphorylation model, dephosphorylation model) indeed exists and we have failed to 

find it, the rejection of these models will not be valid. To overcome this shortcoming, we 

performed multiple complementary methods of parameter estimation and used a large 

number of random restarts before accepting a “best-fit” model to the data, judged solely 

by our parameter estimation strategy.  Besides, we adopted a conservative strategy for 

ruling out models, only rejecting the cases with gross violations of the experimental 

measurements.  

In our reverse fitting pipeline, we make necessary assumptions to keep the models 

simple and thus manageable. Each hypothetical effect (linear spline) increases the number 

of unknown parameters in the system, which worsens the problem of overfitting.  With 

excessive degrees of freedom any hypothesis can fit the data and none could be rejected. 

The alternative hypotheses were thus carefully designed to limit the additional degrees of 

freedom introduced to the H0 model. At the other extreme, our model will be overly 

simplistic if we require the parameters to be identifiable from the data (Srinath and 
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Gunawan, 2010). Our modeling presents a case of under-determined models with 26 

unknown parameters.  We were able to proceed with under-determined models because 

overfitting does not interfere with correct rejection of a hypothesis, and we were still able 

to reject most of the hypotheses by interplay between modeling and experiments. 

However, biological systems are frequently redundant, and more than one 

perturbation of the canonical pathway may actually occur. We assumed in Figure 5.3 that 

the unknown effect would occur at one of 5 possible steps in the canonical pathway of 

Akt activation, but this assumption could be incorrect if there are multiple simultaneous 

effects, if an effect straddles a boundary between hypotheses, or if there is an unknown 

effect that phosphorylates Akt without utilizing any other factors in the canonical 

pathway. We built a single “nominal” network formalization to represent each model 

family, based on literature evidence and our measurements. There are possible 

phenomena which do not fit the five formalized families of hypotheses (Figure 5.3B-F). 

For instance, this study assumes PIP3 was active, membrane-bound PDK1 was active, 

and phosphorylated Akt was active. However any of these species may be partially 

inactive, inactivated or sequestered by unknown effects, e.g. the plasma membrane or 

cytosol may have microenvironments that increase or decrease specific reactions of the 

pathway. Further, some environment factors such as pH (Bright, et al., 1989) are known 

to affect multiple reactions at once, making it possible that single non-canonical 

phenomena could affect more than one step of the model.  Finally there could be 

violations of our simplifying assumptions.  For instance, we interpreted the lack of PP2A 

in the membrane fraction (Luo, et al., 2012) to indicate that dephosphorylation is 

cytosolic in this cell type. For future work, it is desirable to increase the diversity in each 

model family where each individual model may not share the same network depiction. 

However it should also be noted that the number of possibilities is infinite and we can't 
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guarantee coverage of an infinite space. There should be a trade-off between the time 

resource and the potential of each network depiction to be biologically relevant. If a 

model is too complex, it will have too many free parameters, resulting in an overfitted 

model with diminished capacity to make new predictions. 

Besides the risk of erroneously rejecting hypotheses based on poor-fit 

parameterization, there is also a risk of over-interpreting a good-fit model as describing 

how the alternative hypothesis would necessarily work. In the complex high-dimensional 

model space, there may be multiple minima equally capable of producing the good fit.  

For a hypothesis that fits data, we do not select a single minimum (such as the model 

parameterization we reached) and labeled other minima as inferior, but rather we simply 

conclude that there exists one parameter set that allows this hypothesis to fit the 

measurements.  We also do not assign absolute score of fitness among alternative 

hypotheses, other than an acceptable/unacceptable decision for each hypothesis. In a near 

future, when more datapoints are available, we may adopt methods such as Bayesian 

scoring of multiple model parameterizations (Eydgahi, et al., 2013) to achieve better 

ranking for the alternative hypotheses by quality of fit. Note that this fitting would utilize 

the experimental error bars.   

Experimental time-series measurements are subject to many sources of noise, 

which affect proper interpretation of biological meaning. For example, western blot 

experiments generally deviate farther from an ideal linear response when the protein has 

very low abundance or very high abundance. In time-series experiments, there is greater 

consistency in the timepoint-to-timepoint trends for each batch, than there is from batch 

to batch in replication. We instead plot the median (Figure 5.6) and also we also provide 

primary data from all replicates. We primarily assess the time-series qualitatively, by 

computing the curve-shape features (Figure 5.9). While these features are represented 
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using numbers, we call them qualitative because they have lower resolution than the 

original dataset, and the decision which alternative hypotheses to reject included human 

inspection (with no automated cut-off). For future work, we seek to improve the 

theoretical curve-shape features with maximal robustness to the underlying distribution of 

experimental noise.  

The PIP3 inhibition experiment suggested by modeling in Figure 5.8 has several 

practical constraints, including the lack of specific PIP3-inhibitors. A follow-up 

experiment by Dr. Luo Le (Appendix A2) used LY294002 (inhibitor of PI3Kinase) 

together with 10%FBS treatment and measured the dynamics of membrane total using 

western blot. Comparing the measured time series (Appendix A2, right plot, dashed 

curve) to the simulated time course from each model (solid curves), the PIP3-independent 

recruitment model (red curve) displayed the least agreement with data. In other words, 

there may be a PI3K-dependent but PIP3-independent mechanism of Akt recruitment to 

the membrane, but further experiments ruled out the possibility of a PI3K-independent or 

LY290004-independent recruitment effect. 

Conclusions  
As demonstrated throughout this chapter, computational modeling is a powerful 

tool to study complex interactions between signal transduction species. While 

investigating each model, we observe non-obvious distinctions and similarities among the 

models that can be tested experimentally. The time-evolved simulations give insights to 

how the system changes with time, thus helping experimentalists focus more narrowly on 

certain time windows when novel effects are more likely to be observed. By utilizing 

model predictions, one can decrease the number of time-points to measure, or decrease 

the probability of missing an effect because of choosing the wrong timepoints. 

Meanwhile, modeling serves to visualize complex system-level effects in a signaling 
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network. As mathematic modeling has been previously shown to give insights that human 

intuition may fail to catch (Berro, et al., 2010), modeling Akt activation dynamics can 

lead to more efficient experiments. The hypothesis management coupled with reverse-

fitting approach in this study could be extended to similar biochemical pathway studies 

where data show non-trivial dynamics such as that of Aktp308 in MEF cells treated with 

10% FBS. Even subtle or transient effects that increase Akt activation are important to 

elucidate because the existing pathways that can heighten Akt activation in normal cells 

may also be adopted by cancers to activate Akt further or longer. 

In conclusion, efforts to improve or challenge the canonical signaling pathways 

are often met with great obstacles, both from the massive body of published literature and 

the unknowns (such as reaction rates) associated with each published discovery. 

Experiments to probe new frontiers for unknown pathway components often require 

enormous investment of time and resource. The relatively new computational systems 

biology paradigm can be a promising solution to the current bottlenecks. By performing 

the low-cost in silico experiments, computational modeling can predict more informative 

experiments and extract the stronger inferences from the analysis of existing data. With 

more advances to the hypothesis management in the future, it is hoped that every step of 

the scientific method can be integrated seamlessly: experiment designs, data acquisition 

using high-throughput assays, and hypothesis evaluation (more automated) work in 

conjunction to accelerate biological findings.  
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CHAPTER SIX: CONLUSIONS AND FUTURE WORK 
6.1 Summary of methodologies 

This thesis research has been focused on two systems biology topics: (1) data-rich 

parameter estimation methodology and (2) modeling of Akt phosphorylation dynamics 

upon activation by growth factors. Parameter estimation is one of the main challenges in 

pathway modeling studies, and is currently still an active area of research. In the first 

topic, we developed the SPEDRE method to tackle this problem, but the method has 

special requirement of complete data for all species in the pathway. To perform 

benchmark comparison between SPEDRE and current state-of-the-art methods, we 

constructed a model of Akt activation, based on previously published data (Lim and 

Clément, 2007).  

Further modeling of the Akt pathway led to the unexpected discovery of 

unresolved mismatch between the peak times of PIP3 and Aktp308 in the canonical Akt 

activation pathway, and in the second topic of the thesis, we developed a novel approach 

we call “hypothesis management” to reconcile this mismatch. Our approach includes the 

following novel approaches: constructing alternative hypotheses with linear spline 

representing the hypothetical effect over time, reverse fitting to determine the spline 

curve trend, treating time-dimensions as absolute and concentration-dimension as 

relative, and peak characteristics analysis of model families.  

A common thread connecting the two research topics is the CHEGS approach, as 

introduced in Section 1.5. Below, we summarize how the elements of CHEGS  were used 

in each research topic.  

In the “data-rich parameter estimation” work (Chapter Three and Four), we 

employed Computational methods to estimate kinetic parameters in biochemical 

pathways, applied to cases with abundantly available data. The belief propagation 
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algorithm, which employs Heuristics extensively, played a critical role in finding the 

approximate MAP estimates. The ODE models and kinetic rate parameters were 

converted into a probability framework, and the best fits between simulated and estimated 

time courses were equivalent to the MAP Estimates. To achieve scalability to large 

problems, we chose coarse discretization instead introduce a post-processor was used in 

our method to refine the coarse-grained estimates to improve the Generalizability of 

method. The granularity of each rate parameters represented the trade-off between 

parameter accuracy and of computation time. Finally, using discretization, the parameter 

space was Systematically covered and evaluated using inferencing methods. 

Similar to the “data-rich parameter estimation” work, the “modeling of Akt 

phosphorylation upon activation by growth factors” work (Chapters Four and Five) also 

utilized the CHEGS approach in many aspects. We constructed Computational models to 

apply to current state-of-the-art knowledge of the Akt activation pathway to prove the 

existence of unknown effects. Heuristics were used in this problem, since each model 

family was represented by one model formulated based on our best knowledge of the 

current literature and recent data. The merits of each model were evaluated based on 

goodness of fit, similar to a MAP Estimate, based on experimental data. To represent the 

hypothetical effect in each alternative model, we used a “spline curve” which introduced 

a set of free parameters as spline knots to the systems. By limiting the spline complexity, 

we sacrificed complex models in favor of more Generalizable models with lower 

degrees-of-freedom which might hold more predictive power. Finally, we Systematically 

introduced the modification to each reaction to produce hypothetical modifications of this 

canonical pathway that might reconcile the inconsistency between the canonical pathway 

and recent experimental data. 
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6.2 Summary of Contributions 
This thesis produced two sets of deliverables: first it introduces a novel hypothesis 

management approach to the study of an important pathway of cell survival, and second it 

produces efficient algorithms, packaged in a freely available software format with a 

graphical interface, that enables biologists to harness the power of the server from any 

desktop computer. In addition, each individual research project also presents some unique 

contributions judged by its own merits.   

The data-rich parameter estimation work (Chapters Three and Four) introduced a 

novel method of estimation for reaction rate parameters in ODE models of biochemical 

pathways.  The methodology novelty is the partial decomposition of the parameter 

estimation problem, the systematic evaluation of fitness of the ODEs using coarse 

discretization, and the use of inferencing techniques in a probabilistic network to compute 

the maximum a posteriori estimates efficiently but approximately. Theoretical asymptotic 

analysis, which is not possible in most parameter estimation methods, points out the 

characteristics of the problems that yield high efficiency for SPEDRE methods. In the 

context of data-rich parameter estimation, this work is among the few methods to provide 

a general-purpose application with a web server graphical interface. The method was 

evaluated empirically in comparison with 14 state-of-the-art parameter estimation 

methods, and showed superior performance in the low-degree Akt model with low-noise 

data.  

The “modeling of Akt phosphorylation upon activation by growth factors” work 

(Chapter Four and Five) contributed to the scientific community in three aspects. In the 

first aspect, we introduced novel methodologies. First, we identified 5 steps in the 

canonical pathway (one step was rejected, leaving 4). Next, representing the trend of each 

hypothetical effect over time by linear splines, we built candidate models for modifying 
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each step in the canonical pathway. The spline knots were optimized together with other 

model parameters (reaction rates, initial concentrations), and the spline shape was 

obtained by parameter estimation (in other words, we explored with automation the 

hypothesis space with different spline shapes). Finally, the analysis and prediction from 

modeling led to the execution of two biological experiments that yielded novel insights 

into the Akt activation pathway.  

In the second aspect, the hypothesis management process achieved sufficient 

specificity to discriminate among the alternative hypothesis based on the biological 

measurements, which successfully narrowed five hypotheses (plus one null hypothesis) 

down to three remaining candidates. This serves as a “pruning” process from the 

extensive search space, which helps limit the number of possibilities for further 

experiments to pursue.  

In the final aspect, this project introduces a potentially useful way to look at 

biological time-series data: qualitative analyses based on absolute-time and relative-

concentration. This method accounts for the nature of western blots experiments where 

the most reliable information is the timings of events. To study multiple model ensembles 

comparatively, we also abstract the trajectories into sets of “peak characteristics”. An 

analysis of “peak characteristics” from a model ensemble from each model structure 

allows a different way to discriminate between alternative hypotheses. 

6.3 Future work 
For the “data-rich parameter estimation” work, it is essential to continue to 

characterize the types of problems that can be applied efficiently to the SPEDRE 

methods. The coming age of complete measurements for all species (Mann, et al., 2013), 

will provide many data-rich problems for SPEDRE to be applied to. Besides, the current 
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stringent requirements of sparse network must be relaxed (such as by incorporating 

pathway decomposition techniques)  to allow a wider range of applications.  

For the “modeling of Akt phosphorylation upon activation by growth factors” 

work, modeling has to continue to evolve to incorporate new findings, especially those 

that involve augmented membrane recruitment or prolonged membrane retention of Akt. 

Model parameters can be further refined from more powerful model calibration 

technologies, including high-throughput proteomics time-series data and advance 

parameter estimation methods.  

While the thesis has addressed several gaps in the current scientific knowledge of 

systems biology, it also presents new challenges for future development. It is hoped that 

the research approaches that have been to some success in this thesis could be found 

useful and therefore adopted in other related venues in computational systems biology.  
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APPENDICES 
This Appendices section describes the additional figures and data that were 

generated in the course of this thesis study. Figure A1 described two replicates of the 

PIP3 immunofluorescence experiments (in main text Figure 5.1), under the treatment of 

10% FBS stimulation at time t=0. The cell culture was prepared by Dr. Luo Le, and 

subsequent immunofluorescence and confocal imaging experiments were performed by 

the author under supervision, following the protocols described in Chapter Three. These 

replicates (Figure A1) confirmed the early peak time of PIP3 (at 2min or 5min), 

incompatible with the 30min peak time of Aktp308 under the null hypothesis. Figure A2 

describes the time-series membrane fractionation measurements of total Akt in MEFs 

treated with LY290004 at 2 hours before t=0, and then treated with 10%FBS at t=0 

(performed by Dr. Luo Le). The “flat” dynamic of membrane total Akt (dashed line) 

suggests that a non-canonical Akt recruitment effect, if exists, is also inhibited under the 

treatment of LY290004.  
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Figure A1 – Two replicates (A) and (B) of PIP3 immunofluorescence confocal imaging time series measurement in 
serum-stimulated wild type mouse embryonic fibroblasts (MEF). 
Experiments were performed by the author as “supervised experiments”. Cells were normally grown in culture containing 
10% fetal bovine serum (FBS). At 24 hours before t=0, cells were starved in culture containing 0.5% FBS. At time t=0, 
cells were treated with 10%FBS and measurement was performed at different timepoints after t=0. Bottom right plot: 
quantified time-series (arbitrary scaling) of PIP3. 
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Figure A2 – Quantified time-series data of membrane total Akt fractions under LY290004 treatment compared with 
the simulated time course from three alternative models. 
Data were obtained from western blot experiments performed by Dr. Luo Le (NUS Department of Biochemistry). Dashed 
line: observed time-series for membrane total Akt (n=3 replicates). Solid line: simulated time course of membrane total Akt 
from each model. 
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