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Abstract 

In a previous expression microarray study, IL23A was identified as a putative target 

gene of RUNX3, a transcription factor and a prominent gastric tumour suppressor. 

IL23A encodes for the unique subunit of IL-23, a heterodimeric cytokine necessary 

for pathogen surveillance in the gut. Using reporter gene and promoter occupancy 

assays, together with ectopic expression and RNAi knockdown studies, IL23A was 

demonstrated to be a genuine target gene of RUNX3 in gastric epithelial cells. 

Furthermore, RUNX3 is a critical requirement for the synergistic induction of IL23A 

by TNF- and Helicobacter pylori – two key inflammatory signals strongly linked to 

human gastric carcinogenesis. In the presence of these stimuli, IL23A is robustly 

expressed and secreted by gastric epithelial cells, albeit not in its normal 

heterodimeric form. Lastly, stimulation of human PBMC-derived T cells with IL23A-

containing supernatant revealed functions for this protein in promoting T cell 

proliferation and IFN- production. Together, these data indicate that RUNX3 

functions as a tumour suppressor in part by modulating gastric inflammation and 

mucosal immunity.  
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Chapter 1:  

Introduction 
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1.1 The RUNX family members 

Runt-related (RUNX) proteins are key developmental transcriptional 

regulators whose dysregulation are often associated with human cancers (Ito, 1999). 

The founding member of the RUNX gene family is runt, a Drosophila “pair-rule” 

gene that controls segmentation in embryos and is required for neurogenesis and sex 

determination (Duffy and Gergen, 1991; Duffy et al., 1991; Ingham and Gergen, 

1988; Kania et al., 1990). Subsequently, RUNX genes are found in phylogenetically 

diverse organisms including nematode worm Caenorhabditis elegans, zebrafish 

Danio rerio and mammals (Sullivan et al., 2008). Despite their evolutionary 

divergence, the DNA-binding domain for these proteins remains highly conserved 

even in the most basic metazoan, indicating that RUNX proteins play fundamental 

role in cell biology (Sebe-Pedros et al., 2011; Sullivan et al., 2008).  

Mammalian RUNX was originally discovered by independent groups to be a 

nuclear factor that binds to the transcriptional enhancers in polyomaviruses and 

murine leukemia viruses (Kamachi et al., 1990; Speck et al., 1990). Shortly after, 

RUNX gene was found to be frequently targeted by t(18;21) chromosome 

translocation in human acute myelogenous leukemia (Miyoshi et al., 1991; Miyoshi et 

al., 1997). Due to the concurrent discovery of RUNX genes by various groups, RUNX 

genes were given a variety of names including polyomavirus enhancer-binding-

protein-2 alpha (PEBP2), core binding-factor alpha (CBF) and acute myelogenous 

leukemia (AML). Eventually, the term ‘RUNX’ was adopted to refer to genes 

encoding the runt-related proteins (van Wijnen et al., 2004).  

To date, three mammalian runt-related genes have been characterised; RUNX1 

(AML1/CBFA2/PEBP2B), RUNX2 (AML3/CBFA1/PEBP2A), and RUNX3 
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(AML2/CBFA3/PEBP2C) (Ito, 2004). A high level of sequence and structural 

homology is shared among all three members which include an enormously conserved 

128 amino acid Runt domain and a five amino-acid VWRPY domain (Coffman, 2003; 

Ito, 1999; Levanon et al., 2003; Rennert et al., 2003). The high degree of sequence 

similarity suggests the crucial importance of these domains to the function of RUNX 

proteins. The amino-terminal Runt domain is critical for RUNX proteins to function 

as transcription factors as it confers sequence specific DNA-binding and dimerisation 

with their non DNA-binding subunit, core-binding factor beta (CBF) (Kamachi et 

al., 1990). Although the Runt domain alone is able to bind DNA, its binding affinity 

and hence transcriptional activity are fully activated only when dimerised with CBF 

(Ogawa et al., 1993a; Ogawa et al., 1993b). The carboxyl-terminal VWRPY motif is 

responsible for repressing the transcriptional activity of RUNX proteins by acting as a 

platform to recruit co-repressors including transducing-like enhancer (TLE)/Groucho 

(Aronson et al., 1997; Imai et al., 1998; Levanon et al., 1994). In spite of these 

similarities, each RUNX gene product has seemingly distinct biological functions, 

which is best reflected in their respective murine knockout phenotypes (Levanon and 

Groner, 2004). 
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1.2 The pleiotropic roles of RUNX genes in development and diseases 

1.2.1 RUNX1 in haematopoiesis and leukaemia 

Amongst the RUNX genes, Runx1 is the most studied gene in both mouse and 

human. RUNX1 is a master regulator of haematopoiesis and its functional 

dysregulation often leads to leukaemia. Homozygous deletion of Runx1 in mice 

obliterated the fetal liver haematopoiesis and impaired the formation of vascular 

capillaries, demonstrating the importance of Runx1 in definitive haematopoiesis 

(Okada et al., 1998; Okuda et al., 1996; Takakura et al., 2000; Wang et al., 1996).  

Subsequently, it was discovered that Runx1 is essential for the emergence of 

hematopoietic stem cells (HSCs) from the hematogenic endothelial clusters in the 

embryonic aorta-gonad-mesonephros (AGM) region (North et al., 1999; Yokomizo et 

al., 2001). These discoveries highlight the critical role of Runx1 in the initiation of the 

hematopoietic system. In adult mice, Runx1 is essential for terminally differentiation 

of the multi-lineage hematopoietic cells. Conditional ablation of Runx1 in adult mice 

led to defective megakaryocytes, T- and B-lymphocyte development (Growney et al., 

2005; Taniuchi et al., 2002). During T cell development,  Runx1 is involved in the 

active repression of CD4 in CD4
-
CD8

-
 double negative immature thymocytes via 

direct binding to two Runx binding motifs in the CD4 silencer (Taniuchi et al., 2002).  

In human, RUNX1 is one of the most frequently disrupted genes in acute 

myelogenous leukaemia (AML) (Look, 1997; Osato, 2004; Speck and Gilliland, 

2002). Classical chromosomal translocations that inhibit RUNX1’s function through 

the generation of chimeric proteins are prevalent in various types of leukaemia 

including acute myelogenous leukaemia (AML1-ETO), chronic myelogenous 

leukaemia (AML1-Evi1) and childhood acute lymphoblastic leukaemia (TEL/AML1) 
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(Golub et al., 1995; Mitani et al., 1994; Nucifora et al., 1993). Moreover, loss-of-

function RUNX1 mutations were also found in both sporadic and familial cases which 

predispose the patients to the development of acute myeloid leukaemia (Osato et al., 

1999; Song et al., 1999). Interestingly, gain-of-function mutations caused by 

amplification of the RUNX1 locus and increased in its promoter activity are also 

leukemogenic (Niini et al., 2000; Wotton et al., 2002). Thus, it appears that RUNX1 

expression has to be precisely regulated to prevent leukaemia. Taken together, 

RUNX1 is a global regulator of embryonic and adult haematopoiesis whose 

dysregulation is strongly link to leukemogenesis. 

  

1.2.2 RUNX2 in bone development 

RUNX2 is a central regulator of bone development in mammals and 

vertebrates. Genetic ablation of Runx2 in mice resulted in impaired osteoblasts 

maturation and osteogenesis, thereby leading to complete lack of bone tissue 

formation (Komori et al., 1997; Otto et al., 1997). Consistent with this phenotype, 

Runx2 regulates the expression of a major set of osteoblast-related genes including 

osteocalcin, osteopontin, collagenase 3 and MMP9 that define the osteoblast lineage 

from mesenchymal stem cells (Ducy et al., 1999; Ducy et al., 1997; Geoffroy et al., 

1995; Jimenez et al., 1999; Pratap et al., 2005). While Runx2
-/-

 mice died from 

asphyxiation due to systematic lack of ossification, including the absence of ribs, 

Runx2
+/-

 mice displayed skeletal abnormalities that are characteristic of human 

heritable skeletal morphorgenesis disorder, cleidocranial dysplasia (Lee et al., 1997; 

Mundlos et al., 1997). Indeed, loss-of-function mutations of RUNX2 are found in 

patients suffering from this disease (Otto et al., 2002; Tessa et al., 2003; Xuan et al., 

2008).  
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Similar to the other two Runx transcription factors, Runx2 displays anti-

proliferative function in normal osteoprogenitors and pre-osteoblasts by affecting cell 

cycle progression at G1 phase, implicating a role in stringent cell growth control in 

this cell types (Galindo et al., 2005; Pratap et al., 2003; Teplyuk et al., 2008; Young et 

al., 2007b; Zaidi et al., 2007). Paradoxically, unscheduled expression of RUNX2 has 

also been reported in a subset of osteosarcomas (Blyth et al., 2005; Pratap et al., 

2006). The robust expression of RUNX2 in osteosarcomas correlates with metastasis 

and poor chemotherapy response by controlling genes linked to cell motility and 

adhesion (Lucero et al., 2013; Pereira et al., 2009; Sadikovic et al., 2010; San Martin 

et al., 2009; van der Deen et al., 2012). Furthermore, overexpression of RUNX2 is not 

restricted to osseous cancer but also observed in nonosseous cancers including 

prostate and breast cancers indicating that RUNX2 may have an oncogenic function in 

tumourigenesis (Akech et al., 2010; Das et al., 2009; Leong et al., 2010; Pratap et al., 

2009; Pratap et al., 2011; Pratap et al., 2008; van der Deen et al., 2010). 

 

1.2.3 RUNX3 in neuron and lymphocyte development 

RUNX3 is often considered the most primitive forms among all mammalian 

RUNX family members, as it retains the highest level of mammalian wide 

interspersed repeats (MIR), which are elements enriched in most ancient genes 

(Bangsow et al., 2001). It is also the smallest member that possesses all the structural 

hallmarks common to the RUNX family members (Bangsow et al., 2001). Unlike 

RUNX1 and RUNX2 which play fundamental roles in a restricted number of organs, 

RUNX3’s roles appear more pleiotropic. In mouse, Runx3 is expressed in specific cell 

types in the peripheral nervous system, haematopoietic cells as well as epithelial cells 

in gastrointestinal tract (Inoue et al., 2002; Levanon et al., 2002; Li et al., 2002; 
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Taniuchi et al., 2002). In line with this, Runx3-null mice displayed numerous 

anomalies including motor dis-coordination, reduction in peripheral cytotoxic T cells, 

and hyperplastic gastrointestinal epithelium (Inoue et al., 2002; Levanon et al., 2002; 

Li et al., 2002).  

In the nervous system, Runx3 controls the axonal projection of proprioceptive 

dorsal root ganglion neurons and thus, the ablation of Runx3 leads to severe ataxia in 

mice due to less neurite outgrowth (Inoue et al., 2002). In the hematopoietic system, 

RUNX3 is necessary for establishing the epigenetic silencing of CD4 in mature CD4
-

CD8
+
 cytotoxic T lymphocytes (Taniuchi et al., 2002; Woolf et al., 2003). Runx3-

deficient CD4
-
CD8

+
 cytotoxic T cells, but not CD4

+
CD8

-
 helper T cells, failed to 

proliferate and displayed defective cytotoxic activity, suggesting that Runx3 has 

critical function in lineage specification and homeostasis of CD8-lineage T 

lymohocytes (Collins et al., 2009; Taniuchi et al., 2002).  

 

1.2.4 RUNX3, a tumour suppressor for gastrointestinal cancers 

A role of RUNX3 in the gastrointestinal epithelium was first implicated by the 

pronounced hyperplastic gastric epithelia of the Runx3 knockout mice (Li et al., 

2002). Further analysis revealed that the fundic and pyloric region of the stomach 

displayed excessive proliferation. This was attributed to the suppression of apoptosis 

and reduced sensitivity to the growth inhibitory effect of transforming growth factor-

beta (TGF- (Ito, 2008; Li et al., 2002). The dysregulated proliferation and apoptosis 

experienced by gastric epithelial cells following the loss of Runx3 are consistent with 

its role as a tumour suppressor in this tissue type. However, the neonatal death of 

C57/BL6 Runx3
-/-

 mice has hampered detailed examination of the phenotype at the 

later stage of life. To overcome this problem, immortalised mouse gastric epithelial 
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cell lines, termed GIF lines were established from Runx3
+/+

 and Runx3
-/-

 E16.5 

embryos in a p53
-/-

 background (Li et al., 2002). Concordant with the tumour 

suppressive properties of Runx3, allografting of Runx3
-/-

.p53
-/-

 GIF cell lines but not 

their Runx3
+/+

.p53
-/-

 counterparts formed tumours in immuno-compromised nude 

mice (Li et al., 2002).  

More recently, Runx3-null mice in Balb/c genetic background that survived up 

to one year were generated for the examination of preneoplastic lesions in adult mice 

(Ito et al., 2011). Analysis of these mice revealed a phenotype that is remarkably 

similar to spasmolytic polypeptide-expressing metaplasia (SPEM), a preneoplastic 

lesion found in human gastric cancer (Goldenring and Nomura, 2006; Ito et al., 2011). 

As Runx3 is prominently expressed in pepsinogen-positive chief cells and Muc5AC-

positive surface mucous cells, it may be involved in the differentiation of these 

lineages. Indeed, loss of chief cells and antralisation of the stomach were observed in 

adult Runx3
-/-

 mice (Ito et al., 2011). This was likely consequent to the blockage in 

chief cells differentiation or trans-differentiation of chief cells into SPEM cells (Ito et 

al., 2011). Remarkably, the induction of an intestinal phenotype characterised by the 

upregulation of intestinal markers, Cdx2 and Muc2, was observed in the gastric 

mucosa of Runx3
-/- 

adult mice (Ito et al., 2011). These mixed characteristics of gastric 

and intestinal phenotypes in Runx3
-/-

 gastric epithelium indicates the occurrence of 

intestinal metaplasia (IM) (Ito et al., 2011). The above evidence suggests that loss of 

Runx3 in the gastric epithelium disrupts the identity of the epithelial cells causing the 

differentiation pathways to be easily altered by extracellular morphogenetic cues. 

More importantly, SPEM observed in Runx3-null mice was readily transformed into 

gastric adenocarcinoma when induced with a carcinogen, N-methyl-N-nitrosurea 

(MNU), indicating that the loss of Runx3 induces a pre-malignant state in the stomach 
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(Ito et al., 2011). Moreover, genetic ablation of Runx3 induced hyperplasia of gastric 

epithelia in the absence of Helicobacter pylori (H. pylori) infection or inflammation 

indicating that this is an epithelial cell autonomous phenomenon (Ito et al., 2011; Ito, 

2008). 

 The tumour suppressive function of Runx3 in mice is firmly supported by 

human clinical data. In human, loss of RUNX3 expression is strongly correlated to the 

genesis and progression of gastrointestinal cancer. Inactivation of RUNX3 was found 

in more than 80% of primary gastric tumours and gastric cancer cell lines due to 

hemizygous deletions, epigenetic silencing and protein mislocalisation (Ito et al., 

2005; Li et al., 2002). Furthermore, silencing of RUNX3 was prevalent in human 

colorectal carcinomas in which RUNX3 was inactivated in 40% of primary colorectal 

tumours and 60% of colorectal cancer cell lines (Ito et al., 2008). In addition, 

downregulation of RUNX3 is frequently observed in intestinal metaplasia (IM) which 

is often regarded as a precancerous state in gastric cancer (Li et al., 2002). Similarly, 

inactivation of RUNX3 induced intestinal adenomas in both human and mice, which 

provide favourable conditions for the progression of these adenomas to malignant 

adenocarcinomas (Ito et al., 2008). 

Chromosome 1p36, where RUNX3 resides, harbours a cluster of tumour 

suppressor genes, and is a deletion hotspot in diverse cancers of epithelial, 

hematopoietic, and neural origins (Bagchi and Mills, 2008). Examination of gastric 

cancer cell lines SNU1, NUGC3 and AGS together with clinical specimens revealed 

hemizygous deletions of RUNX3 occurred at frequencies which increase with tumour 

grade (Li et al., 2002). Moreover, epigenetic silencing of RUNX3 by promoter 

hypermethylation was found to be the most common aberrant methylation events in 

gastric and colorectal cancers (Ahlquist et al., 2008; Li et al., 2002; Oshimo et al., 
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2004; Soong et al., 2009; Subramaniam et al., 2009). The CpG dinucleotide sequence 

in the RUNX3 exon 1 region were completely methylated in RUNX3-negative cell 

lines whereas those that expressed RUNX3 were entirely methylation free (Li et al., 

2002). Subsequently, this phenomenon is also observed in bladder, breast, lung, 

pancreatic, brain cancers and hepatocellular carcinoma (Jiang et al., 2008; Kim et al., 

2004; Kim et al., 2005; Lau et al., 2006; Mueller et al., 2007; Sato et al., 2006; Woolf 

et al., 2003).  

Cytoplasmic sequestration of nuclear factor RUNX3 was also found in 38% of 

gastric cancer cases and in multiple cancer cell lines (Ito et al., 2005; Ito, 2008). 

Remarkably, cytoplasmic retention of RUNX3 in SNU16 cells resulted in larger 

tumour formation in nude mice (Ito et al., 2005). Localisation of transcription factor 

to the cytoplasm is thought to keep them in an inactive state. Therefore, the 

observation in SNU16 cells highlights the importance of the transcriptional activity of 

RUNX3 for its tumour suppressive function. Lastly, although the mutation of RUNX3 

turned out to be rare, a mutation R122C bears an amino acid substitution of arginine 

to cysteine was isolated from a gastric cancer patient (Li et al., 2002). This R122C 

mutation occurs within the evolutionarily conserved Runt domain and is capable of 

abolishing the tumour suppressive effects of RUNX3 (Li et al., 2002). The relevance 

of this mutation is underscored by the discovery of a mutation (R169Q) at the 

equivalent position in RUNX2 from a patient with the skeletal disorder cleidocranial 

dysplasia. Taken together, the above evidence strongly suggests that RUNX3 is a 

tumour suppressor causally related to the genesis and progression of gastric cancer. 
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1.3 Gastric carcinogenesis 

Gastric cancer is the fourth most prevalent malignancy accounting for 

approximately one million new cases annually in the world (Ferlay et al., 2010). The 

incidence of gastric cancer is particularly high in Asia (especially in Korea, Japan and 

China), Eastern Europe, and parts of Central and South America, and it is about twice 

as high among men than among women (Figure 1.1) (Garcia et al., 2011). Although 

the mortality rates have been substantially declining for several decades, the absolute 

number of new cases per year is increasing due to an aging population (Aaltonen et 

al., 2000; Ferlay et al., 2010; Garcia et al., 2011).  

 

 
 
 

Figure 1.1. Global variation in age-standardised stomach cancer incidence rates. Worldwide 

incidences of stomach cancer per 100,000 males (all ages). The incidence of gastric cancer is 
particularly high in Asia, Eastern Europe, and parts of Central and South America (Adapted from 
epidemiology study of Global cancer facts & figures, 2008). 
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More importantly, it remains the third leading cause of cancer death worldwide, 

exhibiting a persistently high mortality rate (9.7% of all cancer deaths per year) 

irrespective of gender or geographical region (Ferlay et al., 2010). The prognosis for 

stomach cancer is generally rather poor, with 5-year relative survival below 30% in 

most countries (Brenner et al., 2009). The exceedingly poor prognosis of gastric 

cancer is attributed to its typical late diagnosis, high recurrence rate post-surgical 

resection and limited range of treatment options (Carl-McGrath et al., 2007; 

Macdonald et al., 2001). Therefore, understanding the pathogenesis of gastric cancer 

at the molecular level is of great importance for providing better diagnosis of gastric 

cancer at early stages and wider range of therapeutic alternatives. 

 

1.3.1 Aetiology of gastric cancer 

Human gastric carcinogenesis is a multi-factorial and multi-step process. It 

involves a temporal sequence of chronic gastritis, atrophic gastritis, intestinal 

metaplasia, dysplasia, primary carcinoma, invasive carcinoma and metastatic tumour 

(Carl-McGrath et al., 2007; Correa, 1992; Yasui et al., 2005). This precancerous 

cascade reflects the accumulation of genetic and epigenetic alterations that acquire the 

cells with hallmark capabilities of cancer. Based on Laurén classification, 

histologically, gastric adenocarcinoma is generally subdivided into two main 

categories: intestinal-type carcinomas and diffuse-type carcinomas (Lauren, 1965). 

For many decades, the aetiology of gastric cancer was totally obscure. Considerable 

efforts were made to explore and identify the complex aetiology of environmental and 

genetic risk factors which influence the initiation, promotion and progression of 

gastric cancer (Chan et al., 2001; Correa, 2002; Kelley and Duggan, 2003; Stadtlander 

and Waterbor, 1999). In the early days, dietary and lifestyles factors were thought to 
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be the two major risk factors for gastric cancer (Correa et al., 1975). Indeed, more 

recently, wide-ranging prospective study has confirmed that high intake of salted, 

smoked and nitrated foods and low intake of fresh fruits and vegetables increase the 

risk of developing stomach cancer (Gonzalez, 2006; Howson et al., 1986; Kramer and 

Johnson, 1995; Odenbreit et al., 2000). Such diet causes stomach irritation by 

damaging the mucosa and disturbing the homeostatic balance between the gut flora 

and the epithelium, leading to atrophic gastritis. Injuries in the stomach epithelium 

cause excessive cell replication and increase the mutagenicity of carcinogens, thereby 

leading to cancer (Stadtlander and Waterbor, 1999; Takahashi et al., 1994; Tatematsu 

et al., 1975). On the other hand, the contribution of lifestyle factors such as alcohol 

consumption and cigarette smoking to stomach cancer had been intensively studied 

but the results are inconclusive (Hansson et al., 1994; Kabat et al., 1993; Nomura et 

al., 1990; Vaughan et al., 1995).  

The landmark discovery of Helicobacter pylori (H. pylori) in 1983 and its 

causal role in gastritis and peptic ulcers effected a re-examination of this classical 

view of gastric carcinogenesis. H. pylori are spiral-shaped, microaerophilic, Gram-

negative bacteria that are able to survive in acidic environment and colonise human 

gastric epithelium. The gastroenterologist Barry Marshall and the pathologist Robin 

Warren, in the 1980’s, first postulated for the association between H. pylori infection 

and human gastritis and gastric cancer (Kidd and Modlin, 1998; Marshall et al., 1985; 

Marshall and Warren, 1984; Warren and Marshall, 1983). This strong association was 

subsequently demonstrated in numerous studies in which independent cohorts of 

gastric cancer patients were retrospectively examined (Ekstrom et al., 2001; Forman 

et al., 1991; Fox and Wang, 2001; Nomura et al., 1991; Parsonnet et al., 1991; 

Uemura et al., 2001). H. pylori induces pre-neoplastic lesions that are similar to 
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spasmolytic polypeptide-expressing metaplasia (SPEM) in the stomachs of human 

(Craanen et al., 1992; Rugge et al., 1996; Schmidt et al., 1999) and experimental 

animals (Hirayama et al., 1996; Honda et al., 1998; Sugiyama et al., 1998; Watanabe 

et al., 1998). The disappearance of the inflammatory reaction post-eradication of the 

bacteria in human using antibiotics further supports that H. pylori is a causative agent 

(Blaser, 1992). During the past 20 years of research, the initially tentative association 

between persistent H. pylori infection and the development of gastric cancer has been 

well established, prompting the International Agency for Research on Cancer to 

classify H. pylori as type I carcinogen (WHO, 1994).   

H. pylori infects more than half of the world’s population from infancy, 

making it one of the most successful human pathogens (Suerbaum and Michetti, 

2002). H. pylori infection is highly prevalence in Asia, Africa and South America 

(Figure 1.2) (Bauer and Meyer, 2011). More than 50% of new gastric cancer cases 

and a 2.7- to 12-fold increase in the risk of developing gastric cancer can be attributed 

to H. pylori infection (Cover and Blaser, 1995; O'Connor et al., 1996; Parkin, 2006). 

This includes both intestinal-type and diffuse-type gastric cancers (Forman et al., 

1991; Nomura et al., 1991; Parsonnet et al., 1991; Talley et al., 1991; Uemura et al., 

2001). Critically, the prevalence of H. pylori infection mirrors the gastric cancer 

incidence in Asia, implying a strong association between them in this region  (Figure 

1.2) (Bauer and Meyer, 2011). Among East Asian countries, the overall prevalence 

rate was 59.6% in South Korea, 58.07% in China, 54.5% in Taiwan and 39.3% in 

Japan (Fujisawa et al., 1999; Hoang et al., 2005; Teh et al., 1994; Wang and Wang, 

2003). Among Southeast Asian countries, the reported prevalence rate was 57% in 

Thailand, 35.9% in Malaysia and 31% in Singapore (Deankanob et al., 2006; Fock, 

1997; Goh and Parasakthi, 2001). 
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Figure 1.2. Worldwide prevalence of H. pylori infection. Bacterial infection rates were presented 

in percentage (%). H. pylori infection is highly prevalence in Asia, Africa and South America. 
(Bauer and Meyer, 2011). 

 

Interestingly, there is considerable genetic heterogeneity among the strains of 

H. pylori circulating in different geographical regions. Studies show that certain 

genotypes are more prevalent in gastric cancer patients than in control population, and 

are therefore regarded to be of high virulence or oncogenic potential (Atherton et al., 

1995; Tomasini et al., 2003). One of these genetic factors is the “cag pathogenicity 

island” (cag-PAI), which is a 40 kilobase fragment of the H. pylori genome that 

encodes 31 genes. This fragment contains the coding sequences for the oncoprotein 

CagA and a type IV secretion system for the injection of CagA and other bacterial 

materials into gastric epithelial cells (Odenbreit et al., 2000). Translocation of CagA 

into host cells is well-known to cause dramatic morphological changes in the cells as 

reflected by strong actin polymerisation and cellular elongation, term the 
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‘hummingbird’ phenotype (Segal et al., 1999). The status of CagA as a marker of 

pathogenic disease resulted from the observation that patients infected with CagA-

positive strain of H. pylori showed higher incidences of both gastric inflammation and 

gastric adenocarcinoma compared to CagA-negative strains (Blaser et al., 1995a; 

Huang et al., 2003; Nomura et al., 2002; Queiroz et al., 1998; Wu et al., 2003). 

Another virulence factor carried by 50% of H. pylori strains is vacuolating toxin A 

(VacA) which is responsible for epithelial cell damage and is associated with gastric 

cancer development (de Figueiredo Soares et al., 1998; Peek and Blaser, 2002). Given 

the profound influences that H. pylori exerts on host cell biology, understanding the 

mechanisms of how it ‘hijacks’ the host cells is critical for gaining novel strategies for 

gastric cancer treatment.   

Besides bacterial infection, infection with human herpes virus 4, or Epstein-

Barr virus (EBV) was also detected in approximately 10% of gastric carcinoma cases 

throughout the world (Takada, 2000). It has been reported that the antibody titres 

against EBV were significantly higher in subjects who later developed EBV-

associated gastric cancer than those subsequently developed non-EBV-associated 

gastric cancer or control subjects (Levine et al., 1995).  EBV was found to be 

associated with both intestinal- and diffuse-type gastric cancers (Shibata and Weiss, 

1992), and appeared to be more prevalent in the male than in female (Tokunaga et al., 

1993). The mechanism of EBV-mediated gastric carcinogenesis remains largely 

unclear. However, chronic inflammation due to virus infection is a likely cause for the 

disease.  
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1.3.2 Inflammation and gastric cancer 

Inflammation is part of the complex biological response of cells to harmful 

stimuli, such as pathogens, damaged cells, or irritants (Ferrero-Miliani et al., 2007).  It 

is a protective attempt by the organism to remove the injurious stimuli and to initiate 

the healing process. Inflammation can be classified into acute or chronic. Acute 

inflammation is the body’s defence system to eliminate assaulting agents and prevent 

the dissemination of these agents in the body. However, if the body fails to end the 

inflammatory cycle, it may disturb the homeostatic balance of the immune system and 

result in chronic inflammation that exacerbates the wounds. Continual repairing of the 

wounding tissue by enhancing cell proliferation in a microenvironment enriched with 

inflammatory cells, growth factors, activated stroma and mutagenic agents potentiates 

or promotes cancer formation (Coussens and Werb, 2002).  Indeed, the similarities 

between conditions conducive to healing wound and tumorigenesis have prompted 

some researchers to consider tumours as wounds that never heal (Dvorak, 1986).  

The link between inflammation and cancer was first proposed by Rudolph 

Virchow in 1863 when he observed leukocyte infiltration in neoplastic tissue. The 

original hypothesis has been revisited numerous times in the subsequent years and a 

formidable body of evidence has been generated that corroborate inflammation-

mediated oncogenesis (Coussens and Werb, 2002). As a result of these researches, the 

causal relationship between inflammation and cancer is now well-accepted and 

tumour-promoting inflammation has been listed as one of the emerging hallmarks of 

cancer (Hanahan and Weinberg, 2011). The intimate link between chronic 

inflammation and cancer is particularly notable in the gastrointestinal tract where 

microbial contacts are frequent. Classical examples include hepatocellular carcinoma, 

inflammatory bowel disease (IBD)-associated colorectal cancer and H. pylori-
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associated gastric cancer. The aetiological agents of inflammation can be either 

infective, such as bacteria or viruses; or non-infective, such as physical or chemical 

irritants from the environment and diet.  

In recent years, the long-suspected influence of genetic susceptibility has 

come to the forefront. Current understanding points to the role of gene 

polymorphisms as yet another major determinant of aetiological forces (Correa and 

Schneider, 2005). The most prominent host polymorphisms associated with an 

elevated risk for gastric cancer were found in the Interleukin-1 (IL1) gene clusters, 

including IL1B (Interleukin-1 beta gene) and IL1RN (IL1 receptor antagonist gene) 

(El-Omar et al., 2000; El-Omar et al., 2003; Machado et al., 2001). Such 

polymorphisms were shown to affect the production of the proinflammatory cytokine 

IL-1 in response to H. pylori infection (Hwang et al., 2002). Subsequent study in 

mice demonstrated that ectopic production of IL-1 in the stomach leads to gastric 

inflammation and cancer (Tu et al., 2008). In addition to IL1 gene cluster 

polymorphisms, pro-inflammatory genotypes of TNFA (tumour necrosis factor alpha 

gene) and IL10 (Interleukin-10 gene) have also been identified as risk factors for 

gastric cancer (El-Omar et al., 2003). Not surprising that carriage of multiple 

proinflammatory polymorphisms of IL1B, IL1RN, TNFA and IL10 conferred greater 

risk for the disease (El-Omar et al., 2003). More recently, genetic variations in the IL-

12 family of cytokines and receptors were also found to be associated with 

inflammatory disease in the gastrointestinal tract. In particular, the polymorphisms in 

the Interleukin-12 (IL-12) cytokine family genes including, IL12A and IL12B are 

associated with increased risk of gastric cancer in H. pylori infected individuals 

(Navaglia et al., 2005). Interestingly, similar associations have been observed for IL-

12 receptor family. For example, a non-synonymous short nucleotide polymorphism 
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(SNP) of IL23R (Interleukin-23 receptor gene) was found to be associated with 

elevated risk of gastric cancer (Chen et al., 2011; Chen et al., 2010).   

In general, the genes that encode cytokines involved in the regulation of 

inflammatory responses are genetically polymorphic and different genotypes may 

determine the disease outcome and response to drug treatment. These genetic 

variations add to the complex interplay between the host system and environmental 

risk factors, which together often lead to a state of chronic inflammation in the gastric 

mucosa (Carl-McGrath et al., 2007). The above clinic-pathological evidence points to 

a strong link between inflammation and gastric cancer.  
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1.4 RUNX proteins function as transcription factors 

RUNX proteins are context-dependent transcriptional regulators. Studies in 

Drosophila, mammalian and other systems revealed that RUNX proteins are able to 

either increase or actively inhibit gene expression by cooperating with different 

subsets of transcription factors or cofactors in specific cells or tissue types (Wheeler 

et al., 2002). The transcriptional role of RUNX factors are dictated by the Runt 

homology domain that confers sequence specific binding and interaction with their 

universal binding partner CBF (Ito, 2004; Kamachi et al., 1990). Although the Runt 

domain has intrinsic DNA-binding capabilities, its binding affinity increases markedly 

when complexed with CBF (Ogawa et al., 1993a; Ogawa et al., 1993b). The 

interaction between RUNX and CBF is sufficiently strong that they were originally 

co-purified as a heterodimer in H-ras transformed NIH 3T3 cells (Kamachi et al., 

1990). The consensus RUNX target DNA sequence was further defined by Kamachi 

and colleagues as PuACCPuCA, whereby ‘Pu’ denotes a purine base. Subsequently, 

the physical binding between Runt domain, CBF and DNA was also resolved using 

X-ray crystallography (Kamachi et al., 1990; Nagata et al., 1999; Tahirov et al., 

2001).  

 

1.4.1 Downstream targets of RUNX 

In many tissues, RUNX proteins act as transcriptional activators or repressors 

to regulate gene expression at both genetic and epigenetic levels. A classic example 

for synergistic regulation is the cooperative DNA-binding and transcriptional 

activation of T cell receptor and Moloney murine leukemia virus enhancer elements 

by RUNX1 and Est-1 (Kim et al., 1999; Sun et al., 1995; Wotton et al., 1994). In 
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addition, RUNX1 also cooperates with Myb, PU.1, and C/EBP transcription factors 

to transactivate various promoters and enhancers of the hematopoietic-related genes 

(Britos-Bray and Friedman, 1997; Hernandez-Munain and Krangel, 1994; Petrovick 

et al., 1998; Zaiman and Lenz, 1996; Zhang et al., 1996). On the other hand, RUNX 

proteins recruit co-repressors such as Sin3A or TLE/Groucho to bring about 

transcriptional repression of hematopoietic- and osteoblastic-related genes (Imai et al., 

1998; Javed et al., 2005; Levanon et al., 1998; Wang et al., 1998). Furthermore, 

RUNX proteins are able to control gene expression through remodelling the 

chromatin structure. At the epigenetic level, RUNX1 interacts with p300/CREB-

binding proteins to recruit histone acetyltransferase, p300/CBP-associating factor, 

resulting in the de-repression of myeloperoxidase gene during myeloid differentiation 

(Kitabayashi et al., 1998). In a different context, Runx2 interacts with switch/sucrose 

nonfermentable (SWI/SNF) protein complex and C/EBPβ to epigenetically de-repress 

osteocalcin gene during osteoblast differentiation (Villagra et al., 2006). More 

recently, RUNX proteins are found to localise in nucleolar organizing regions where 

they epigenetically silence the expression of ribosomal RNA (rRNA) genes during 

interphase and mitosis (Pande et al., 2009; Young et al., 2007a). 

RUNX family members play divergent roles in developmental processes and 

human diseases which are reflected in the distinct subsets of target genes regulated 

between each RUNX factors. For example, RUNX1 regulates a long list of genes that 

are involved in haematopoiesis, including CFS-1 receptor, PU.1, CCND3 and 

IGFBP-3 (Bernardin-Fried et al., 2004; Huang et al., 2008; Iwatsuki et al., 2005; 

Okada et al., 1998; Zhang et al., 1994). RUNX2 orchestrates bone and cartilage 

formation through its regulation of key osteogenic genes including osteocalcin, 

osteopontin, collagenase 3 and MMP9 (Ducy et al., 1999; Ducy et al., 1997; Jimenez 
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et al., 1999; Pratap et al., 2005). In comparison, the target genes of RUNX3 are 

relatively less established due in part to its diverse functions in development in 

multiple tissue contexts. Candidate gene approach has often been applied to study 

target genes of RUNX3 within a specific cellular context. For example, CD4 and 

TrkB regulation by RUNX3 were studied in thymocytes and neuronal cells 

respectively (Inoue et al., 2007; Taniuchi et al., 2002). As Runx3-null mice display a 

hyperplastic gastric epithelium with reduced apoptosis, the growth regulator p21 and 

proapoptotic gene BIM1 were studied and established as RUNX3’s target genes in 

gastric epithelial cells (Chi et al., 2005; Yano et al., 2006). More recently, Claudin-1 

and AKT1 were also identified as target genes of RUNX3 in human gastric cancer 

cells (Chang et al., 2010; Lin et al., 2012). Despite these advances, much remains 

unknown of the full function of RUNX3 that could explain its frequent silencing in 

human gastric cancers.  

 

1.4.2 Identification of IL23A as a novel target gene of RUNX3 

As a first step to elucidate the genetic programme maintained by RUNX3 in 

gastric epithelial cells, an expression microarray study was previously performed 

(unpublished data). In this study, exogenous RUNX3 was reintroduced into a RUNX3 

non-expressing gastric cancer cell line, AGS. Changes in global gene expression were 

monitored by the analysis of RUNX3- or control-transfected cells across five different 

time points. The relative expressions of significantly altered genes with a false 

discovery rate of less than 5% are presented in the form of an expression ‘heat map’ 

as shown in Figure 1.3. In this study, 151 genes were found to be differentially 

expressed in the presence of exogenous RUNX3, of which 70 and 81 genes were 

upregulated and downregulated, respectively. 



23 
 

 

Upregulated genes Downregulated genes 

  

 

Figure 1.3. Heat map representation of a subset of candidate RUNX3 target genes. Time points 

of experiment are presented from left to right. ‘C’ and ‘R3’ denote control- and RUNX3-transfected 
cells respectively. Red colour in the heat map represents overexpressed genes; green, 
underexpressed genes; black, genes showing similar expression levels in RUNX3- verses control-
transfected cells.  

 

To extract biological insights from these microarray data, Gene Set 

Enrichment Analyses (GSEA) were performed (Edelman et al., 2006; Subramanian et 

al., 2005). Among the gene sets which are significantly correlated to ectopic RUNX3 

expression in AGS cells include those involved in the Wnt and apoptotic pathways 

(Figure 1.4). This is consistent with previous reports of RUNX3’s ability to attenuate 

the Wnt pathway, and its role as a gastric tumour suppressor (Chi et al., 2005; Ito et 

al., 2008; Li et al., 2002; Yano et al., 2006). In addition, this analysis revealed a group 

of genes involved in the immune response which are downstream of Interferon, 

Interkeukin-4 and -6 (Figure 1.4).  This hints at a novel function of RUNX3 in the 

immune response of gastric epithelial cells. Among the top 15 high-confidence 

candidate target genes, IL23A emerged as a prime candidate as it was strongly 

upregulated by RUNX3 (Table 1.1). With the interest of understanding the immune-

related function of RUNX3 in gastric epithelial cells, IL23A was chosen for 

downstream validation. IL23A encodes a 19 kDa subunit (p19) of the 
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proinflammatory cytokine IL-23, which plays a crucial role in host immunity and 

exhibits the effector functions of a novel class of helper T cells, known as Th17 

(Stockinger and Veldhoen, 2007; Volpe et al., 2008; Wilson et al., 2007). 

 

 

 
Figure 1.4. Gene set enrichment analysis of the microarray data. Gene sets are grouped into 

biological pathways in which they are involved. A subset of gene sets that are correlated to the 
transient expression of RUNX3 is shown (false discovery rate ≤ 0.25). 

 

 

 
Table 1.1. Fifteen high-confidence candidate RUNX3 target genes from microarray. ‘’ indicates 

strongly upregulated; ‘’ upregulated; ‘’ strongly downregulated; ‘’ downregulated. 
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1.5 The biological functions of IL-23 

IL-23 is a heterodimeric inflammatory cytokine that belongs to the IL-12 

family that has been genetically linked to gastric cancer. IL-23 is composed of a 

unique IL23A (p19) subunit and a common IL12B (p40) subunit that is shared with 

IL-12 (Figure 1.5). This cytokine was first discovered in a structure-based 

bioinformatics search and appeared closely related in structure to the IL12A (p35) 

subunit of IL-12 (Oppmann et al., 2000). The sharing of subunits of the IL-12 family 

members is not limited to the ligands but also applied to their receptors. Both IL-23 

and IL-12 share a common receptor subunit IL12RB1 that dimerises with either 

IL23R or IL12RB2 for ligands binding and signaling (Langrish et al., 2004; Parham et 

al., 2002).  

 

 

 
Figure 1.5. Schematic diagram of IL-12 and IL-23: members of a small family of pro-inflammatory 

heterodimeric cytokines. Both cytokines share a common IL12B subunit that is covalently linked 
either to IL12A subunit to form IL-12 or to IL23A subunit to form IL-23 (Oppmann et al., 2000; 
Langrish et al., 2004). 
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Despite the common characteristics between IL-12 and IL-23, they play profoundly 

distinct roles in immunity. IL-12 is well-known for promoting the differentiation of 

type I helper T cells (TH1) from naïve T cells whereas IL-23 in concert with TGF- 

and IL-6 are critical for the expansion of TH17 cells (Aggarwal et al., 2003; 

Kobayashi et al., 1989; Langrish et al., 2005; Murphy and Reiner, 2002; Trinchieri et 

al., 1992). 

IL-23 plays a pivotal role in the coordination of organ-specific inflammatory 

responses. This was revealed in experimental autoimmune and inflammatory studies 

in mice. Mice that lacked the IL-23-specific component IL23A are resistant to T cell-

mediated diseases as summarised in Table 1.2. Cua et al. had demonstrated that IL-23 

but not IL-12 is essential for the development of central nervous system (CNS) 

autoimmune inflammation. This was supported by the evidence that intense 

mononuclear cell infiltration of the spinal cord observed in heterozygous IL23a
+/-

 and 

IL12a
-/-

 mice (lack IL-12) but not in mice with IL23a
-/- 

or IL12b
-/-

 (lack IL-23) 

background (Cua et al., 2003). Subsequent studies by other research groups also 

suggest that mice that lack IL23a or IL23r were resistant to the development of 

autoimmune inflammation in the joint, gut, kidney and skin (Ghilardi et al., 2004; 

Hue et al., 2006; Langrish et al., 2004; Murphy et al., 2003; Uhlig et al., 2006; van der 

Fits et al., 2009). In contrast, widespread expression of IL23a in transgenic mouse 

model induced multi-organ inflammation, runting, infertility and premature death 

(Wiekowski et al., 2001). These pro-inflammatory activities of IL-23 have been partly 

attributed to its ability to support the development of auto-reactive TH17 cells which 

are characterized by the production of pro-inflammatory cytokine IL-17 (Bettelli et 

al., 2006; Langrish et al., 2005; Mangan et al., 2006; Veldhoen et al., 2006) . 
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Mouse genotype Mouse phenotype References 

IL23a
-/-

 

Defect in DTH responses 
Resistant to developing EAE and CIA 
Resistant to bacterial and chemical 
induced IBD 

Cua et al., 2003;  
Langrish et al., 2005; Murphy et al., 2003; 

Ghilardi et al., 2004; Mangan et al., 2006; Uhlig 
et al., 2006; Hue et al., 2006; Cox et al., 2012 

IL23a transgenic  Develop systemic inflammatory disease Wiekowski, et al., 2001; Kopp et al., 2003 

IL23a
-/-

. IL-10
-/-

  Resistant to T-cell mediated IBD Yen et al., 2006 

IL23r
-/-

 Resistant to developing Lupus Nephritis Kyattaris et al., 2010 

IL23r
-/-

.Rag2
-/- 

 Susceptible to chemical induced colitis Cox et al., 2012 

(DTH: delayed type hypersensitivity; EAE: experimental allergic encephalomyelitis; CIA: collagen-induced arthritis; 
IBD: inflammatory bowel disease) 

Table 1.2. Summary of the knockout and transgenic mouse phenotypes associated with 

IL23a/IL23r signaling. 

 

A comprehensive sequence analysis revealed that IL23A may have gone 

through positive selection pressure that directs towards inter-population and intra-

species sequence conservations, supporting a critical physiological role for IL-23 

(Tindall and Hayes, 2010). Although the exact role of IL-23 to the host is obscure, 

promoting pathogenic autoreactive T cells could not be the primary function of a 

cytokine that is so conserved in many animals. Therefore, it is more likely that severe 

autoimmune pathologies associated with IL-23/TH17 pathway are a reflection of the 

breakdown of tolerance to “self” tissues and antigens due to their dysregulation 

(McKenzie et al., 2006). There is ever-growing evidence suggesting that IL-23’s 

primary function was most likely more primitive in origin and related to forming a 

robust innate immune response for first-line defence against environmental assaults, 

during infection in the peripheral tissues such as gut, skin and lung (Tato and Cua, 

2008). Indeed, further investigations had shed some light for the protective roles of 

this cytokine. Although the true role of IL-23 awaits to be found but the robust IL-23 

response evoked by pathogens strongly suggest that IL-23 is essential for host 

defence.  
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In the gastrointestinal tract, bacterial-dependent IL-23 expression has been 

reported in lamina propria dendritic cells of the terminal ileum (Becker et al., 2003). 

Although IL23a
-/-

 mice are resistant to the development of autoimmune diseases, 

these mice will eventually succumbed to infection due to impaired bacterial clearance 

(Happel et al., 2005; Huang et al., 2004; Mangan et al., 2006). It was known that 

TH17 is involved in the recruitment of neutrophils to the site of microbial infection 

(Cruz et al., 2006; Kolls and Linden, 2004; Meeks et al., 2009). Some infectious 

models with a defective IL-23/TH17 immunity were reported to have increased 

disease susceptibility due to reduced neutrophils response thus higher microbial 

burdens (Happel et al., 2005; Kelly et al., 2005; Khader et al., 2005; Meeks et al., 

2009). In the stomach, evidences are accumulating for the involvement of IL-23 in 

regulating TH17 cells, in H. pylori-infected gastric mucosa (Caruso et al., 2008). IL-

17, a key regulator of neutrophil chemotaxis, was produced in excess in stomachs 

infected with H. pylori (Luzza et al., 2000; Mizuno et al., 2005). These evidences 

support an important role of IL-23 in mucosal host defence and pathogen surveillance. 

It is when this response goes unchecked that the beneficial role of IL-23 gets 

overcome by its pro-inflammatory properties.  

While it is well recognised that the main source cells for IL-23 are activated 

antigen presenting cells (APC) include dendritic cells and macrophages, the 

possibility of additional cell types that secrete this cytokine has not been ruled out 

(Oppmann et al., 2000). In fact, more recent study does provide evidence that 

keratinocytes secrete IL-23 especially in Psoriatic skin (Piskin et al., 2006). Given the 

important role of IL-23 in pathogen surveillance, it is possible that RUNX3 regulates 

IL23A in the gastric epithelial cells as part of its role as a gastric tumour suppressor to 
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enable effective surveillance against pathogens as well as neoplasia. Understanding of 

the transcriptional regulation of RUNX3 on IL23A is therefore crucial. 
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1.6 Project aims and objectives 

 

1. To demonstrate the transcriptional regulation of IL23A by RUNX3. 

 

2. To investigate the upstream signals involved in the induction of IL23A. 

 

3. To demonstrate the functional effects of RUNX3-induced IL23A production in 

gastric epithelial cells. 
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Chapter 2:  

Materials and methods 
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2.1 Mammalian cell culture  

2.1.1 Cell culture condition  

Cancerous human gastric epithelial cell lines AGS, KATOIII, SNU1, SNU5, 

SNU16, SNU719, MKN1, MKN7, MKN28, MKN45, MKN74 and non-cancerous 

human gastric epithelial cell lines HFE-145, GES-1 were maintained in Roswell Park 

Memorial Institute (RPMI) 1640 medium (Invitrogen, CA, USA). The same medium 

was used for culturing the human acute monocytic leukaemia cell line THP-1. 

Monkey kidney fibroblasts COS-7 and human embryonic kidney cells HEK293T 

were cultured in 1000mg/L glucose and 4500mg/L glucose Dulbecco’s Modified 

Eagle Medium (DMEM) (Invitrogen) respectively. All media were supplemented with 

10% fetal bovine serum (FBS) (Thermo Scientific Hyclone, Logan, UT), 100U/ml 

penicillin, 100µg/ml streptomycin antibiotics (Invitrogen) and 2mM L-Glutamine 

(Invitrogen). Adherent cells were sub-cultured in 10-cm tissue culture dishes and 

suspension cells were sub-cultured in non-treated tissue culture flasks (Nunc A/S, 

Roskilde, Denmark). Cell lines were maintained at 37
o
C in a humidified atmosphere 

containing 5% CO2 in the Water-Jacketed CO2 Incubator (Forma Scientific, OH, 

USA). All cell lines were stored in multiple aliquots of recovery cell culture freezing 

medium (Gibco, CA, USA) in liquid nitrogen and passaged for fewer than three 

months after resuscitation.  

 

2.1.2 Ligands/agonists and inhibitors treatments 

To activate the Toll-like receptors (TLR) and NOD-like receptor (NLR) 

pathways, cells were treated with 1µg/ml LPS, 1µg/ml Zymosan, 1µg/ml Pam3CSK4, 

1µg/ml Poly I:C, 1µg/ml R-848, 100µg/ml Flagellin, 10g/ml NOD1 (C12-iE-DAP) 
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or 50g/ml NOD2 (N-glycolyl-MDP) agonists (gifts from Dr. Vinay Tergaonkar, 

IMCB, A*STAR). In addition, 10ng/ml of human recombinant TNF-, IL-1, IL-1, 

IL-6, IFN- and/or 5ng/ml of TGF- (Peprotech, NJ, USA) were used to activate 

immune pathways in gastric epithelial cell lines. Cells were treated with the ligands 

for the indicated periods prior to quantitative RT-PCR (qRT-PCR) or Western-blot 

analysis. To block SHP2/Erk signaling pathway, cells were pre-treated with 50M of 

SHP2 protein tyrosine phosphatase (PTP) inhibitor, NSC87877 (R&D Systems, 

Minneapolis, MN) for 3h prior infection with Helicobacter pylori. To inhibit protein 

secretion, cells were treated with 1X Brefeldin A solution (eBioscience, CA, USA) 8h 

prior harvesting for Western blot analysis.  

 

2.1.3 DNA plasmids transfection and dual-luciferase reporter assay 

For the introduction of exogenous DNA plasmids into the cells, cells were 

transfected at 60-80% confluency. AGS and KATOIII cells were transfected using 

Lipofectamine
 
2000 reagent (Invitrogen) in 24-well tissue culture plates. IL23A 

promoter firefly reporter vector (1 – 2g), promoter-less Renilla luciferase reporter 

vector pRL-empty (250 – 500ng) and various expression vectors or empty vector (1.5 

– 2g) were co-transfected into the cells for 24 – 48h. Expression vectors used 

include pcDNA-FLAG encoding a FLAG-epitope as mock control, and pcDNA-

RUNX3 encoding amino-terminal FLAG-tagged human RUNX3 (Bae et al., 1995). 

Dual-Luciferase Reporter Assay System (Promega, Madision, USA) was used 

to measure the Firefly and Renilla luciferase activities of transfected cells according 

to the manufacturer’s protocol. Briefly, media were removed and 100l of 1x Passive 

Lysis Buffer (PLB) (Promega) was dispensed into each well. The cells were then 
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subjected to 2 cycles of freeze-thaw to ensure efficient lysis. Subsequently 40l of 

cell lysate was loaded on a 96-well assay plate (Nunc A/S), mixed with equal volume 

of Luciferase Assay Reagent II (LAR II) to quantify firefly luminescence using 

Veritas Microplate Luminometer (Turner Biosystems, CA, USA).  Renilla 

luminescence was measured by the addition of 40l Stop & Glo Reagent.   

 

2.1.4 Transient transfection of small interfering RNA (siRNA) 

For the introduction of siRNAs into cells, cells were seeded in antibiotics-free 

media one day before transfection in 24-well or 6-well tissue culture plates. The 

confluency of the cells during transfection is approximately 50%. Between 5 and 15 

pmol of ON-TARGETplus SMARTpool scrambled (control), RUNX3 and/or RUNX1 

siRNAs (Thermo Fisher Scientific, MA, USA) were transiently transfected into HFE-

145 cells using jetPRIME transfection reagent (Polyplus-transfection SA, Illkirch, 

France) for 48h followed by TNF- (10ng/ml) treatment and H. pylori (MOI100) 

infection. Subsequently, cells were harvested for qRT-PCR and/or western-blot 

analysis. 
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2.2 Helicobacter pylori culture and infection of mammalian cell lines 

 Helicobacter pylori (H. pylori) wild-type strain (NCTC11637) and its CagA-

defective isogenic strain (CagA) are kind gifts from Dr. Masanori Hatakeyama 

(Hokkaido University, Japan).  Both strains of bacteria were streaked and cultivated 

on a Trypticase Soy Agar supplemented with 5% sheep blood (Biomed Diagnostic, 

USA) to form colonies. H. pylori was cultivated at 37°C in a humidified and micro-

aerophilic atmosphere with 6–12% O2 and 58% CO2 generated using Anaero Pack-

MicroAero (MGC, Tokyo, Japan) in a sealed container for 3 days. Prior infection of 

mammalian cells, broth culture was prepared by inoculating colonies of H. pylori 

from agar into Brucella broth (Sigma-Aldrich, St. Louis, USA) supplemented with 

10% FBS and grown under the same atmosphere for 24h. Gastric cancer cell lines 

were seeded in a 6-well or 12-well tissue culture plates and infected with H. pylori 

harvested from the broth culture for indicated period at 100 multiplicity of infection 

(MOI). 
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2.3 Lentivirus production and transduction 

 Lentiviruses were produced according to the protocol described by(Tiscornia 

et al., 2006)with minor modifications. Briefly, 0.7x10
6
 HEK293T cells were seeded 

on a 6-well plate pre-coated with 0.001% of poly L-lysine (Sigma-Aldrich) one day 

before transfection. Lenti-Control, -RUNX3 or -RUNX3
R178Q

 transfer vectors (1µg) 

were co-transfected into HEK293T cells along with third generation packaging 

plasmids containing pLP/VSVG (1µg), pLP1 gag/pol (0.66µg) and pLP2 Rev 

(0.33µg) (ViraPower Lentiviral Expression system; Invitrogen) using 10µl of 

FuGENE HD (Roche, Basel, Switzerland). The cells were washed with PBS 18h post-

transfection and replaced with fresh DMEM supplemented with 15% FBS (Thermo 

Scientific HyClone). The virus-containing supernatants were harvested at 36h and 48h 

post-transfection. Viruses harvested at two different time points were pooled before 

freezing in aliquots at -80°C. For lentiviral transduction, cells cultured in 6-well or 

12-well plates at 80% confluency were incubated with 1/3 volume of virus-containing 

supernatants for 24h before splitting them for downstream experiments. Infected cells 

were subjected to TNF- treatment and/or H. pylori infection followed by qRT-PCR 

and/or western-blot analysis. For safety purposes, supernatants from infected cells 

were collected and filtered with 0.22m hydrophilic PVDF membrane filter unit 

(Millipore, Cork, Ireland) before ELISA or immune cell-based assays.  

 

 

 

 

 

 



37 
 

2.4 Generation of wildtype and mutant IL23A promoter-reporter constructs 

2.4.1 Molecular cloning 

Human IL23A promoter sequence (Genebank accession no NM_001265) was 

obtained from UCSC Genome Bioinformatics (http://www.genome.ucsc.edu/). The 

-1200 to +105 of human IL23A promoter was reversed transcribed into cDNA and 

amplified by polymerase chain reaction (PCR). PCR amplification was performed in a 

50μl reaction mixture containing 1.25U of Pfu Turbo DNA polymerase (Invitrogen), 

1X Pfu Turbo amplification buffer, 0.25 mM of dNTPs (Finzymes, Espoo, Finland), 

0.8M of forward primer (5’-GGACAAGTTTCTACGCGTAAAAGGGTCAAC-3’) and 

0.8M of reverse primer (5’-GAATCTCTGCCCAGATCTACTTGCTTTGAG-3’) using 

GeneAmp® PCR system 9700 (Applied Biosystems, CA, USA). The PCR cycling 

parameters consist of 24 cycles at 95
o
C for 30s, 55

o
C for 30s and 68

o
C for 20min. 

Final extension at 68
o
C for 20min was performed. PCR products were analysed by 

agarose gel electrophoresis and the band of correct size was excised and recovered 

with QIAquick gel extraction kit following manufacturer’s protocol (QIAGEN, 

Hilden, Germany). The PCR products were cloned immediately upstream of firefly 

luciferase gene via 5’ Mlu I and 3’ Bgl II sites in the pGL3-Basic plasmid, a firefly 

luciferase reporter vector (Promega, Madision, USA). The ligation of digested PCR 

products (3l) and linearised pGL3-Basic vector (3l) was performed using T4 DNA 

ligase (1l) (NEB, Ipswich, MA, USA) and incubated at room temperature for 1h or 

16°C overnight in a 10μl reaction. The cloning of the -1.2kb IL23A promoter was 

performed by Dominic Voon (Cancer Science Institute of Singapore, Singapore). 

 

 

http://www.genome.ucsc.edu/
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2.4.2 Site-directed mutagenesis 

 Mutant IL23A promoter constructs were generated using the QuikChange® II 

Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA). Wild-type IL23A 

promoter (-1.2 kb) sequence was used as a template and the PCR reaction mixture 

was set up as described in section 2.4.1. Primers listed in Table 2.1 were used to 

mutate putative RUNX and NF-B binding sites in IL23A promoter, as well as to 

generate truncated versions of IL23A promoters by PCR amplification. Compound 

mutants were generated by mutating individual sites in series. The amplified PCR 

products were subjected to Dpn I (Biolabs, UK) restriction enzyme digestion at 37°C 

for 4 h to completely digest the methylated parental plasmid DNA and the enzyme 

was subsequently denatured at 72°C for 20 min. The Dpn I digestion was visualised 

by gel electrophoresis in 0.8 % agarose gels.  
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Primer Sequence Nucleotide 
position 

Description 

d1-F 5’-AGGAACTTGAGACCA|GATGCAGGGAGGGGA-3’ 
-100 to -300 

Regions 

targeted for 

deletion 

d1-R 5’-TCCCCTCCCTGCATC|TGGTCTCAAGTTCCT-3’ 

d2-F 5’-TCATACTGGCTTCCC|GATTAATTTAAATAT-3’ 
-300 to -600 

d2-R 5’-ATATTTAAATTAATC|GGGAAGCCAGTATGA-3’ 

d3-F 5’-TCCTGGGCTTCCTAG|AGTTCTCCAAGTTCC-3’ 
-600 to -900 

d3-R 5’-GGAACTTGGAGAACT|CTAGGAAGCCCAGGA-3’ 

d4-F 5’-CGAGCTCTTACGCGT|CCATGGGGTCCAAAG-3’ 
-900 to -1200 

d4-R 5’-CTTTGGACCCCATGG|ACGCGTAAGAGCTCG-3’ 

mA-F 5’-GGGAGCCAGCTGTTGGTGCACCGATGGCCT-3’ 
-1161 

Mutation of 

putative 

RUNX sites 

mA-R 5’-AGGCCATCGGTGCACCAACAGCTGGCTCCC-3’ 

mB-F 5’-CCAGGCCTCTAGTGTCAGCACACCAAC-3’ 
-271 

mB-R 5’-GTTGGTGTGCTGACACTAGAGGCCTGG-3’ 

mC-F 5’-AGGCCATCGGTGCACCAACAGCTGGCTCCC-3’ 
-263 

mC-R 5’-GGGAGCCAGCTGTTGGTGCACCGATGGCCA-3’ 

mD-F 5’-ACCTGGGCTCCCCCTCGAGGGGGATGATGC-3’ 
-115 

mD-R 5’-GCATCATCCCCCTCGAGGGGGAGCCCAGGT-3’ 

mB-F 5’-ATGATGCAGGGAGGGACGCGTCACCTGCTGTGAGTC-3’ 
-90 

Mutation of  

NF-B site 
mB-R 5’-GACTCACAGCAGGTGACGCGTCCCTCCCTGCATCAT-3’ 

 
Table 2.1. List of primers used for mutation and truncation of IL23A promoter. Red coloured lines 

denote the deleted sequences and red coloured letters are the mutated bases. (d: deletion; m: 
mutation) 
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2.4.3 Chemical transformation of Escherichia coli 

Ligated plasmids or Dpn I digested products were transformed into 50μl of 

home-made chemically-competent Escherichia coli XL10-Gold strain originally 

obtained from Stratagene. The mixture was sat on ice for 30min prior heat-shock at 

42
o
C for 80s. The mixture was immediately returned to ice for 5min and shook in 

250µl Luria-Bertani (LB) medium at 37
o
C for 1h. The transformation mixture was 

subsequently plated onto LB agar plates containing 100μg/ml of ampicillin (Sigma-

Aldrich) and incubated overnight at 37
o
C for selection of successfully transformed 

bacterial cells. For the screening of positive clones, colonies were picked from the 

plate and inoculate into 3ml of LB prior shaking at 37
o
C for 4 hrs. For the purpose of 

amplifying existing DNA plasmids, the transformed bacteria containing the 

corresponding plasmids were inoculated directly into conical flasks containing 50ml 

of LB with ampicillin and incubated overnight for 15h.  

 

2.4.4 Plasmid DNA extraction and purification 

Mature cultures of bacteria were harvested by centrifugation at 9000rpm for 

15min at 4°C. DNA purification was performed at small-scale of 1.5ml of starter 

cultures with QIAprep Spin Miniprep columns (QIAGEN) or large-scale of 50ml of 

overnight cultures with QIAfilter Plasmid Midi/Maxi kit (QIAGEN) according to 

manufacturer’s protocols. DNA was dissolved in 50 l of elution buffer (10mM Tris-

Cl, pH8.5) and quantified using NanoDrop 1000 Spectrophotometer (Thermo Fisher 

Scientific). Plasmid DNA prepared from Midi kits were used for transient 

transfections subsequently. 
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2.4.5 Sequencing of plasmid DNA 

Clones of recombinant plasmid DNA were fully sequenced using BigDye 

Terminator version 3.1 Cycle Sequencing kit (Applied Biosystems). Each sequencing 

reaction was made up of 300ng of plasmid DNA, 3.2pmol of the forward or reverse 

primer (Section 2.4.1), 8μl of Terminator Ready Reaction Mix, and H2O to a final 

volume of 20μl. PCR was carried out in 96-well GeneAmp PCR System 9700 

(Applied Biosystems). The PCR reaction involves an initial denaturation at 95
o
C for 

3min and 40 cycles at 95
o
C for 30s, 52.5

o
C for 10s and 60

o
C for 4min. Purification 

and subsequent sequencing of the PCR products were carried out by the Sequencing 

Facility residing in 1
st
 Base (Singapore). 
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2.5 Methods for detecting protein-DNA interaction 

2.5.1 Electrophoretic Mobility Shift Assay (EMSA) 

COS-7 cells were transiently transfected with plasmids encoding Flag-

RUNX3, Flag-Empty or CBF using FuGENE 6 (Roche) for 24h. Nuclear extracts of 

transfected cells were prepared using NE-PER nuclear and cytoplasmic extraction kit 

(Thermo Scientific, MA, USA). The subsequent steps were performed using 

LightShift® Chemiluminescent EMSA kit (Thermo Scientific). The stated 

combination of nuclear extracts were incubated with 10M biotinylated probes 

containing putative RUNX binding sites (Table 2.2) and 1g PolydI:dC in 1X EMSA 

binding buffer (HEPES, pH 7.9) in a 20l reaction on ice for 30min. For super-shift 

assays, 0.1 g anti-FLAG or anti-RUNX3 (5G4) antibody was added in and incubated 

for another 30min at 4°C. At the end of incubation, loading dye was added to the 

samples prior electrophoresis in 6% glycerol tolerant polyarylamide gel under native 

conditions. Next, protein-oligonucleotide complexes were blotted onto Hybond-N+ 

Nylon membrane (GE Healthcare, UK) followed by UV cross-linking using UVC 500 

UV Crosslinker (GE Healthcare). The membrane was blocked by using blocking 

buffer containing HRP for 30min at RT and washed four times using washing buffer 

for 10min at RT with shaking. Next, the membrane was incubated in substrate 

equilibration buffer for 5min prior incubation with enhanced chemiluminescence 

(ECL) detection reagents (GE Healthcare). Chemiluminescent signals were captured 

on X-ray medical film (Fuji Photo Film, Tokyo, Japan) using SRX-101A Medical 

Film Processor (Konica Minolta, USA). 
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Label  Probe Oligonucleotide Sequence 

Biotin 

Probe_BC 
Sense CTAGCCACAGCAACCACACTACTCATTTCC 

Anti-sense GGAAATGAGTAGTGTGGTTGCTGTGGCTAG 

Probe_D 
Sense ATACCTGGGCTCCCCACAGAGGGGGATGAT 

Anti-sense ATCATCCCCCTCTGTGGGGAGCCCAGGTAT 

Probe_mBC 
Sense CTAGTGTCAGCACACCAACTACTCATTTCC 

Anti-sense GGAAATGAGTAGTTGGTGTGCTGACACTAG 

Non-
labelled 

Probe_BC 
Sense CTAGCCACAGCAACCACACTACTCATTTCC 

Anti-sense GGAAATGAGTAGTGTGGTTGCTGTGGCTAG 

Probe_mB 
Sense CTAGTGTCAGCAACCACACTACTCATTTCC 

Anti-sense GGAAATGAGTAGTGTGGTTGCTGACACTAG 

Probe_mC 
Sense CTAGCCACAGCACACCAACTACTCATTTCC 

Anti-sense GGAAATGAGTAGTTGGTGTGCTGTGGCTAG 

Probe_mBC 
Sense CTAGTGTCAGCACACCAACTACTCATTTCC 

Anti-sense GGAAATGAGTAGTTGGTGTGCTGACACTAG 

 
Table 2.2. Lists of oligonucleotides designed for EMSA studies. Red coloured letters denote the 

mutations in the corresponding RUNX sites. 

 

2.5.2 Chromatin immunoprecipitation (ChIP) 

Experiment was performed using UpState ChIP Assay Kit (Merck Milipore, 

Cork, Ireland) following manufacture’s protocol. Briefly, THP-1 cells (1 x 10
7
) were 

induced with 1g/ml of LPS for 24 h and treated with 1% formaldehyde. Cross-

linking reaction was quenched by glycine and cells were washed in 1X PBS 

containing 1X Complete protease inhibitor cocktail (Roche) and 10mM PMSF. Cells 

were lysed by ionic buffer supplemented with Complete protease inhibitors cocktail 

and PMSF on ice. The cell lysate was sonicated with 6 sets of 12s on ice using a 

sonicator (Thermo Fisher Scientific) set at 30% of maximum power, which routinely 

yields sheared DNA of approximately 500bp in length. Immunoprecipitation (IP) to 

enrich for RUNX3/DNA complexes was carried out by addition of 5g of anti-

RUNX3 (Active motif, Carlsbad, CA) or anti-CBF (kind gift from Dr. Ichiro 
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Taniuchi) antibodies into the lysate followed by incubation with the pre-cleared 

Protein G Agarose. Enriched protein/DNA complexes were eluted in NaHCO3 buffer 

with 20% SDS and reverse cross-linked in 5M NaCl at 65°C for 4-5h. DNA was 

purified using QIAGEN spin columns after RNase A (37°C, 30min) and Proteinase K 

(45°C, 1-2h) treatments. Quantitative RT-PCR was carried out using primer pairs that 

span across putative RUNX binding sites A, BC, D or BCD, and a region not 

containing putative RUNX binding site as a negative control. The primers used for 

ChIP analysis are listed in Table2.3. 

 

 
 
Table 2.3. Oligonucleotide primers and the position of targeted regions for ChIP assay. 
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2.6 Transcriptomic analysis 

2.6.1 Purification of RNA 

Cells were washed with phosphate-buffered saline (PBS) and resuspended in 

350µl of RLT lysis buffer containing 1% -mercaptoethanol. RNA extraction was 

performed using RNeasy Mini Kit and RNase-free DNase Set (QIAGEN) following 

manufacturer’s protocol. Briefly, cell lysates were homogenised by vortexing for 1 

minute, followed by addition of 70% ethanol and samples were transferred to RNeasy 

spin column. On-column digestion of genomic DNA was carried out using 80µl of 

RNase-free DNase I set (QIAGEN). The spin column was then washed with buffers 

RW1 and RPE, followed by a final spin to remove residual ethanol. RNA was 

subsequently eluted in 30-50µl of RNase-free water and quantified by NanoDrop 

1000 Spectrophotometer (Thermo Fisher Scientific).  

 

2.6.2 Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 

Complementary DNA (cDNA) was synthesized from 0.2-1.0µg of total RNA 

using Omniscript reverse transcription (RT) kit (QIAGEN) in a T3 Thermocycler 

(Biometra, DE UK). The reaction mixtures were incubated at 37
o
C for 70min and the 

Omniscript reverse transcriptase was inactivated at 95
o
C for 5min. Quantitative PCR 

was performed in 7500 Real-time PCR system using 1µl of cDNA and TaqMan 

Universal PCR Master Mix or Power SYBR Green Master Mix (Applied 

Biosystems). TaqMan gene expression probes for human IL23A/p19, IL12B/p40, 

RUNX3, RUNX1 and GAPDH (endogenous control) are Hs00900829_g1, 

Hs99999037_m1, Hs00231709_m1, Hs00231079_m1 and Hs99999905_m1 

respectively. The gene-specific oligonucleotide primers used for SYBR Green-based 



46 
 

measurements are listed in Table 2.4. For the analyses of TaqMan and SYBR Green 

RT-PCR results, the threshold cycle (CT) values of genes of interest were normalized 

against corresponding CT value of GAPDH to account for variations in cDNA input.  

 

 
 

Table 2.4. Gene-specific oligonucleotide primers and TaqMan primers used in quantitative RT-

PCR. 
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2.7 SDS polyacrylmide gel electrophoresis (PAGE) and Western blot 

Cells harvested from culture were washed with 1x PBS and spun down as cell 

pellets. Ionic buffer supplemented with 1x cOmplete protease inhibitor (Roche) and 

10mM PMSF was used to lyse the cells by resuspending the pellets. Passive lysis of 

cells was performed on ice for 15 mins followed by three cycles of freeze-thaw with 

vortex to completely lyse the cells. Samples were centrifuge at 10,000 rpm for 10mins 

at 4
o
C to collect the cell debris. Cell lysates were then transferred into fresh ependoff 

tubes and the amount of protein was quantified using Bradford Assay. Briefly, 2l of 

cell lysate was mixed with 1998l of 1X Bradford dye in cuvette and incubate at RT 

for 5min prior assaying at 595nm wavelength using GeneQuant 1300 

spectrophotometer (GE Healthcare). After quantification, amount of protein was 

normalized against the most diluted sample, and SDS-containing loading buffer was 

added before boiling for 5mins on heat block for protein denaturation. To cool down 

the samples after boiling, denatured protein lysates were centrifuged at 10,000 rpm for 

5min at RT. Using 10 – 15% PAGE gel, 50g of protein was loaded into each well 

and electrophoresed at 200V and 40mA (for one gel) for approximately 1h. Precision 

Plus Protein
TM

 standards (Biorad, CA, USA) was used as protein marker. Proteins 

were transferred onto a PVDF membrane (Biorad) at constant 100V for 1 h 45 min. 

After transfer, membrane was blocked using 5% skim milk in PBST (PBS + 0.1% 

Tween) (Fonterra, AU, New Zealand) for 30 min – 1h before overnight primary 

antibody incubation at 4
 o

C. Detection of IL23A protein was performed using anti-

IL23A antibody (eBioscience) at 250x dilution and RUNX3 protein was detected 

using anti-RUNX3 5G4 antibody at 1g/ml (kind gift from Kotaro Tada). For the 

detection of housekeeping protein, -tubulin specific antibody (Sigma-Aldrich) was 

used at 50000x dilution. Membranes were washed 3x with PBST buffer at RT 
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followed by incubation with HRP-conjugated anti-mouse secondary antibody (GE 

Healthcare) for 1h. After washing off excess secondary antibody, membranes were 

incubated with ECL reagent (GE Healthcare) for 5mins and chemiluminescent signals 

were captured as described in section 2.5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

2.8 Functional assays 

2.8.1 Harvesting mononuclear cells from human peripheral blood 

Human peripheral blood was purchased from NUH Blood Donation Centre 

and different types of blood cells were separated by gradient centrifugation. Briefly, 

25ml of blood was carefully layered on Ficoll-Paque PLUS with 1.077g/ml density 

(GE Healthcare). Blood cells were fractionated by centrifuging at 2400rpm for 30min 

with slow acceleration and deceleration. Human peripheral blood will be separated 

into various layers including plasma, mononuclear cells, granulocytes and red blood 

cells (RBC). After discarding the top-most layer of plasma, peripheral blood 

mononuclear cells (PBMC) were harvested using Pasteur pipette and transferred into 

a fresh tube. PBMCs were washed in 1X PBS containing 2mM EDTA, and 

centrifuged at 2100rpm for 10mins. RBCs were lysed by RBC lysis buffer prior 

centrifuging at 1500rpm for 5min. Supernatant was discarded and PBMCs were 

resuspended in RPMI supplemented with 10% FBS and penicillin/streptomycin. 

Subsequently, 0.1 – 0.2 x 10
6
 PBMCs in 100l of fresh medium were seeded into a 

96-well round bottom plate and incubated with equal volume of culture media 

harvested from gastric epithelial cells together with anti-CD3 antibody (clone OKT3) 

at 1.1ng/ml (suboptimal dose). PBMC were then cultured for three or seven days 

before analysis by flow cytometery. 

 

2.8.2 Neutralisation of IL23A in culture supernatant 

For the neutralization of secreted IL23A protein, 6-well plates were coated 

with 2g/ml of functional grade anti-IL23A antibody (eBioscience) or anti-mouse 

IgG (Santa Cruz) overnight at 4°C. The coated wells were washed once by 1X PBS to 
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remove unbound antibodies. Culture supernatants harvested from gastric epithelial 

cells were incubated on the coated wells for 2h at 37°C. The above step was repeated 

for another time by transferring the treated supernatants onto a fresh coated well. 

Supernatants were then collected and stored at 4°C for downstream immunological 

assays. 

 

2.8.3 Cell proliferation assay 

This assay was performed using CellTrace carboxyfluorescein diacetate, 

succinimidyl ester (CFSE) cell proliferation kit (Invitrogen) following manufacturer’s 

protocol. PBMCs harvested from human peripheral blood were re-suspended in pre-

warmed PBS with 0.1% BSA at a final concentration of 1x10
8
 cells/ml. PBMCs were 

stained with 10M/ml of CFSE solution at 37°C for 10min. The reaction was 

quenched by adding five volumes of ice-cold culture media to the cells followed by 

5min incubation on ice. Cells were concentrated by centrifugation (1500rpm, 5min) 

and washed 3 times by re-suspending the pellet in fresh media. In vitro culture of the 

PBMCs was set up and PBMCs were harvested at indicated time points. Cells were 

analysed using flow cytometer LSRII Special Order (BD Biosciences, San Jose, CA) 

with 488nm excitation and emission filters appropriate for fluorescein. Flow 

cytometry data were analysed using FlowJo computer software (Tree Star, OR, USA). 

 

2.8.4 Enzyme-linked immunosorbent assay (ELISA) 

Culture media of cells induced by the stated stimulants were harvested and 

stored at -20°C before use. ELISA was performed using IL-23, IFN- and IL-17 

ELISA Ready-SET-Go kit (eBioscience) following manufacture’s protocol. Briefly, 

transparent 96-well UV microplate (Corning, NY, USA) was coated with capture 
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antibody at 250x dilution at 4°C overnight. Unbound antibodies were removed by five 

washes of 1x PBST (PBS + 0.05% Tween). The wells were then blocked with 200l 

1x assay diluent for 1h at RT. The wells were washed five times using 1x PBST prior 

incubating with 100 – 200l of stimulated culture media for 2h at RT. Fresh medium 

was used as a negative control. After incubation, supernatants were aspirated and 

wells were washed with 1x PBST followed by incubation with detection antibody at 

250x dilution for another hour at RT. After binding of detection antibody, wells were 

incubated with avidin-HRP at RT for 30 mins in dark. The wells were washed up to 

seven times with 1x PBST for 2min each. After adding 100l of Substrate Solution 

for 15min at RT, the reaction was quenched by adding 50l of Stop Solution (1M 

H2SO4) and absorbance was measured at 450nm wavelength using microplate reader 

(Tecan, Männedorf, Switzerland).  

 

2.9 Statistical analysis 

The data are presented as with SEM. When two data sets were compared, the 

Student’s t-test was used and p-values <0.05 are considered significant. 
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Chapter 3:  

IL23A is a genuine target gene of RUNX3 in 

gastric epithelial cells 
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3.1 Introduction 

 

3.1.1 Transcription regulatory mechanisms 

Transcription initiation is a key node of eukaryotic gene expression. Research 

in unicellular and multicellular organisms has amply demonstrated the prominence of 

transcription factors in controlling development and homeostasis (Davidson, 2001). In 

mammalian system, gene regulation involves a complex interplay between activators, 

repressors, the general transcription machinery, and chromatin (Oelgeschlager et al., 

1996). This intricate task is controlled by multiple different transcription factors that 

bind to specific DNA sequences and modulate the activity of RNA polymerase. The 

cis-acting regulatory sequences upstream of a gene where transcription factors 

assemble is termed promoters and enhancers (Blackwood and Kadonaga, 1998). 

These regulatory regions are encompassed by chromatin in the cells where alteration 

or “remodelling” of which is required to permit the access of transcriptional 

regulators.  

Transcription factors are often grouped into families according to the sequence 

and structure of their DNA-binding domains. The RUNX family of transcription 

factors are one such example where the name originates from its DNA-binding 

domain termed the Runt domain (Kamachi et al., 1990). This domain defines the 

binding of RUNX to its unique cis-regulatory elements and therefore its contribution 

to differential gene regulation. Thus, in general, understanding how transcription 

factors distinguish and bind to specific sites is a crucial step for the investigation of 

gene expression. However, due to the limitations of current technology in performing 

a systematic mutational analysis of an endogenous gene in vivo, artificial assays are 

often employed.  
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The most widely-used functional assay for promoter analysis is genetic 

reporter assay (Brasier et al., 1989; Bronstein et al., 1996; de Wet et al., 1987; Wood, 

1995). Eukaryotic promoter sequences are typically ligated to a reporter gene that 

encodes an easily detectable enzyme, e.g. the firefly luciferase (luc), that acts as a 

surrogate reporter of transcriptional activity in the form of luminescent signal (Wood, 

1995). The expression of the reporter gene following its transfer into cultured cells 

provides a rapid and sensitive assay that quantifies the ability of the cloned promoter 

sequences to direct transcription. Through this approach, biologically active 

regulatory regions can thus be identified, and in vitro mutagenesis can be used to 

determine the roles of specific sequences within the cloned region.  

After defining the DNA sequence elements responsible for regulating a gene, 

one can further demonstrate the specific binding of the transcription factors to the 

functional sites. One biochemical approach to analyse protein-DNA interaction is to 

perform electrophoretic-mobility shift assay (EMSA) by using synthesised 

oligonucleotides comprising the functional binding sites (Fried and Crothers, 1981; 

Garner and Revzin, 1981). Binding of the protein-of-interest to DNA can be studied 

by the formation of retardation complexes during electrophoresis in a non-denaturing 

gel. To determine the specificity of the protein-DNA interaction for the transcription 

factor-of-interest, an antibody that is specific to the transcription factor can be added 

to create an even larger complex with a greater retardation or ‘shift’ in the 

electrophoresis. This method is referred to as a supershift assay, and is used to 

unambiguously define the presence of a specific protein-DNA complex.  

 The approaches described in the preceding paragraphs study are commonly 

employed to study the transcriptional regulation of genes on naked DNA. However, 

this is not the case for transcriptional regulation inside the cells where the DNA of all 
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eukaryotic cells is tightly bound to histones that constitute the chromatin. Thus, 

reporter gene assay needs to be complemented by studying the direct products of 

transcription, messenger RNA (mRNA), which are representative of endogenous 

promoter activity. In addition, EMSA experiments ought to be reinforced by 

accessing the in vivo promoter occupancy at the chromatin level in vivo. One of the 

frequently used assays for such purpose is chromatin immunoprecipitation (ChIP) 

(Bauer et al., 2002; Gilmour and Lis, 1985; Jackson, 1978; Solomon and Varshavsky, 

1985). This method ascertains the physical association of a known transcription factor 

with a specific genomic region in living cells. The protein-DNA interaction is often 

more complex at the genomic level as the binding of transcription factors on the 

regulatory sequences may be influenced by the presence of other transcription factors 

or co-factors. 

  

3.1.2 RUNX3: a transcription factor with tumour suppressor functions 

Cancer is caused by the accumulation of defects in many genes, especially 

those involved in important pathways, as a function of time, leading to an invasive 

malignancy. The hallmarks of cancer cells encompass a combination of dysregulated 

signaling pathways such as those involved in growth and death signals. Ultimately, 

transcription factors participate in all of these pathways by effecting the upregulation 

or downregulation of specific genes. Crucially, a lot of proto-oncogenes, oncogenes 

and tumour suppressor genes encode for transcription factors, for example p53, c-

Myc, ETS-1, STAT and AP-1. The RUNX family proteins, which were discovered as 

context-specific transcriptional regulators, possess tumour suppressive functions in 

multiple tissues. Among all three RUNX members, the biological roles of RUNX3 

appear to be the most diversified and complex. It is well-established that RUNX3 is 
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involved in neuronal development and immune cell functions, and acts as an 

important tumour suppressor in gastric epithelial cells (Section 1.2.3 and 1.2.4). 

Similar to other RUNX proteins, RUNX3 achieves its roles by specific 

interaction and partnership with other transcriptional regulators and signaling 

pathways. In the gastrointestinal epithelium, RUNX3 functions as an important 

regulatory node for both the tumour suppressive TGF- pathway and oncogenic Wnt 

signaling (Hanai et al., 1999; Ito et al., 2008; Ito and Miyazono, 2003). Being an 

integral component of the TGF- signaling pathway, RUNX3 cooperates with 

SMADs in gastric epithelial cells to activate the transcription of target genes such as  

p21
WAF/Cip1 

(Chi et al., 2005). On the other hand, RUNX3 acts as an attenuator of the 

canonical Wnt pathway through direct interaction with -catenin and TCF4 thereby 

down-regulating Wnt target genes c-Myc, cyclinD1, EphB2 and CD44 (Ito et al., 

2011; Ito et al., 2008). However, due to a restricted number of target genes identified 

to date, the full spectrum of RUNX3’s role as a tumour suppressor remains to be 

explored (section 1.4.1). 

Identification of target genes often expands the understanding of known 

biological roles of a transcription factor and may reveal unappreciated and unexpected 

functions. By employing the cDNA expression microarray technology (section 1.4.2), 

cytokine gene IL23A was identified as a high-confidence candidate target gene of 

RUNX3. This interesting observation points to a novel immune-related function of 

RUNX3 in gastric epithelial cells. To explore this possibility, experiments described 

in this chapter were designed to establish the transcriptional regulation of IL23A by 

RUNX3. 
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3.2 Results 

3.2.1 Validation of the regulation of  IL23A by RUNX3 in gastric cancer cell lines 

IL23A was identified as a putative RUNX3 target gene in AGS cells using 

cDNA expression microarray technology (Section 1.4.2). To validate the above 

observation, RUNX3 was transiently and ectopically expressed in a panel of three 

RUNX3-negative gastric epithelial cell lines including KATOIII, MKN28 and 

MKN7. In addition, AGS cell line was included to act as a biological replicate of the 

microarray experiment. By semiquantitative and quantitative RT-PCR, the induction 

of IL23A expression by ectopic RUNX3 was observed in five out of six cell lines 

(Figure 3.1A and 3.1B). The conservation of this regulation in multiple gastric cancer 

cell lines of heterogenous origins provides compelling evidence that RUNX3 is 

indeed a positive regulator of IL23A in gastric epithelial cells.  
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A.  

 

 
B. 

 

 
Figure 3.1. RUNX3 upregulates IL23A in multiple gastric cancer cell lines. Four RUNX3-null 

gastric epithelial cell lines were transiently transfected with RUNX3-expression vector for 24 and 
48 hours. IL23A transcripts were ascertained using (A) semiquantitative and (B) quantitative RT-
PCR. The qRT-PCR values of IL23A were normalised with those of GAPDH and expressed 

relative to the untransfected control ‘UT’. ‘UP’ denotes ‘unrelated protein’ and ‘R3’ denotes 
RUNX3. (N.A.: not available) 
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3.2.2 RUNX3 activates IL23A in a DNA-binding dependent manner 

To further investigate the positive regulation of IL23A by RUNX3, exogenous 

wildtype RUNX3-, RUNX3
R178Q

- and Control-expressing vectors were stably 

reintroduced into RUNX3-negative AGS cells by lentiviruses. RUNX3
R178Q

 bears an 

amino acid substitution of arginine to glutamine in the Runt domain of RUNX3 and is 

defective in DNA-binding (Inoue et al., 2007). Ectopic expression of wildtype 

RUNX3 (Lenti-RUNX3) in AGS cells led to a 20-fold increase in IL23A mRNA 

expression relative to the control-infected (Lenti-Control) sample (Figure 3.2). This 

marked increase was not observed for stable expression of RUNX3
R178Q

 (Lenti-

R178Q) in AGS cells, indicating that the induction of IL23A is dependent on 

RUNX3’s DNA-binding activity (Figure 3.2). As IL23A is a subunit of IL-23 belongs 

to the IL-12 family and closely resembles IL12A, the positive role of RUNX3 on all 

other IL-12 family members was examined. Surprisingly, the activating effect of 

RUNX3 was only observed for IL23A but no other family members of IL-12 

suggesting that RUNX3’s effect is unique to IL23A (Figure 3.3). 

 
 

Figure 3.2. RUNX3 activates IL23A transcript in a DNA binding-dependent manner. AGS cells 

were stably transduced with lentiviruses expressing either control (Lenti-Control), RUNX3 (Lenti-
RUNX3) or RUNX3

R178Q
 (Lenti-R178Q). Cells were harvested 48h post-infection and subjected to 

qRT-PCR. The values of IL23A transcripts were normalised with those of GAPDH and expressed 
relative to Lenti-Ctrl. Data are presented as means ± SEM (n=3). 
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Figure 3.3. The activating effect of RUNX3 is unique to IL23A. AGS cells were infected with the 

same series of lentiviruses described in Figure 3.2. Forty-eight hours post-transduction, cells were 
harvested for RNA extraction prior to cDNA synthesis. The expression of IL23A, IL27A, IL12A, 
IL12B and EBI3 transcripts were ascertained by qRT-PCR. The values were normalised with 

those of GAPDH and expressed relative to Lenti-Control calculated by Ct method. Data are 

presented as means ± SEM (n=3). (u.d.: undetectable) 

 

3.2.3 Putative RUNX binding sites in IL23A promoter 

Given the requirement of RUNX3’s DNA-binding ability for its activation of 

IL23A, the presence of RUNX3-responsive elements in the IL23A gene locus was 

determined. The promoter region of the IL23A gene from nucleotide (nt) -1250 to the 

transcriptional start site were first analysed using the computer programmes, TESS 

and TFSearch, against the online transcription factor consensus binding site database 

TRANSFAC (Heinemeyer et al., 1998). Among all the predicted transcription factor 

binding sites, four putative RUNX sites from nt-1161 to -1156 (site A), nt-171 to -166 

(site B), nt-163 to -158 (site C) and nt-115 to -110 (site D) were identified as shown in 

Figure 3.4A. These putative RUNX sites were further categorised as “regular” and 

“sub-optimal” to reflect their resemblance to the strict RUNX consensus binding 

sequence (Figure 3.4B). To demonstrate the functional relevance of these sites, the -

1200 to +105 upstream region of IL23A locus was cloned into a firefly luciferase 

reporter construct as shown in Figure 3.4B. 
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A. 

 

B. 

 

 
Figure 3.4. Sequences of the human IL23A promoter and the cloned IL23A promoter region in 
the luciferase reporter construct. (A) Sequence of the IL23A promoter from the -1200 to +150 was 

shown. Four putative RUNX consensus sites, identified using TFSearch program (Heinemeyer et 

al., 1998), were boxed in the promoter region. A putative NF- site was highlighted in black; a 
TATA-like sequence was marked in red and a transcriptional start site was highlighted in yellow. 
(B) Schematic diagram of the IL23A promoter firefly luciferase reporter construct. The putative 
RUNX sites were classified into regular RUNX sites (A and C) and sub-optimal RUNX site (B and 
D). The RUNX sites were mutated individually and in series as depicted in the boxes. The red 
letters in the callouts represent the mutated bases. 
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3.2.4 Mapping of RUNX3-responsive elements in the IL23A promoter 

Given the clear induction of IL23A by RUNX3 observed in the RUNX3-null 

gastric epithelial cell line, KATOIII (Figure 3.1), this cell line was chosen as a cell 

model to study the effect of RUNX3 on the cloned full-length (1.2kb) IL23A promoter 

in the luciferase reporter assay. Transient transfection of exogenous RUNX3 led to 

~6-fold increase in activity of the full-length IL23A promoter (Figure 3.5). This result 

suggests that functional RUNX binding site(s) are present within this cloned IL23A 

promoter. To identify the RUNX3-responsive elements in the IL23A promoter, a 

series of deletions were performed on the full-length IL23A promoter to generate 

truncated IL23A promoter fragments. The full-length promoter was divided into 

Regions 1, 2, 3 and 4 as depicted by the different colours in which Region 4 contained 

RUNX site A while the other three RUNX sites were located in Region 1 (Figure 3.5). 

The results showed that the deletion of Region 1 of the promoter completely 

abolished the induction of IL23A by RUNX3. Conversely, only subtle changes were 

observed when Regions 2, 3, or 4 were deleted despite the removal of RUNX site A 

(Figure 3.5). This observation indicates that site A is dispensable to RUNX3’s effect 

on IL23A promoter activity in in vitro reporter assays. The complete loss of RUNX3-

mediated induction following the deletion of the most proximal region (Region 1) 

clearly indicates that RUNX3 acts via the cis-acting elements within this promoter 

region (Figure 3.5). 
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Figure 3.5. RUNX3 mediates its effect through Region 1 (-300 and -100) of IL23A promoter. A 
series of deletions of the -1200 to +105 IL23A promoter construct was created as depicted by the 
schematic diagrams on the left. The truncated promoters were transiently transfected into KATOIII 
cells together with either control or RUNX3 expression vector for 48 h. The firefly luciferase 
activities of the transfected constructs were then measured and normalised against the internally 
co-transfected Renilla luciferase reporter. Oval shape on the promoter indicates the RUNX 
binding sites and V shape on the promoter indicates deletion of the corresponding region. (d: 
deletion) (means ± SEM) 
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3.2.5 Identification of functional RUNX binding sites 

To further pinpoint the RUNX sites responsible for transactivation of IL23A 

promoter activity by RUNX3, a series of point mutations were introduced into 

individual RUNX sites as depicted in Figure 3.4B. These mutations were generated 

initially into a reporter construct containing only the minimal region (Region 1) 

needed for RUNX3’s transactivating activity. Within the context of this minimal 

IL23A promoter, mutations of sites BC or site D led to a modest decrease in RUNX3-

responsiveness (Figure 3.6A). Complete abolishment of RUNX3’s activating effect 

was only observed in the triple RUNX sites mutant promoter. These results clearly 

suggest that all three RUNX sites were requisite for the activation of the minimal 

IL23A promoter by exogenous RUNX3 (Figure 3.6A). Lastly, the contribution of 

these three RUNX sites was studied in the context of the full-length IL23A promoter. 

Mutations of the three putative RUNX sites within Region 1 effectively abolished the 

~7-fold induction of the IL23A promoter activity by RUNX3, which was comparable 

to the truncated promoter activity bearing a deletion of the Region 1 (Figure 3.6B). 

These observations are consistent with the changes observed in the minimal IL23A 

promoter (Figure 3.6A and B). In summary, transactivation of the IL23A promoter by 

exogenous RUNX3 is mediated through sites B, C and D within the minimal promoter 

region (Region 1). 
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A. 

 
B. 

 

Figure 3.6. RUNX3 transactivates IL23A promoter through the three proximal RUNX binding 
sites. (A) IL23A minimal promoter constructs from which mutations of individual or multiple RUNX 
sites were generated as depicted in the schematic diagram on the left. These constructs were 
transfected into KATOIII cells together with either Control or RUNX3 expression vector. Cells 
were harvested 48h post-transfection for the measurment of the luciferase assay. (B) Compund 
RUNX sites mutants of full-length and minimal IL23A promoter constructs generated as shown in 
the diagram on the left. These constructs were transfected into KATOIII cells together with either 
Control or RUNX3 expression vector. The firefly luciferase activities of the transfected constructs 
were measured and normalised against the internally co-transfected Renilla luciferase reporter. 
The data presented are compilation of three independent experiments. On the promoter, oval 
shapes indicate the RUNX binding sites, V shape indicates deletion of the corresponding regions 
and X indicates mutation of the respective RUNX site. (d: deletion; m: mutation) (means ± SEM)  
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3.2.6 Involvement of RUNX1 in the regulation of the IL23A promoter 

Another RUNX family member that is expressed in normal gastric epithelium 

is RUNX1 (Sakakura et al., 2005; Usui et al., 2006). Similar to RUNX3, significant 

downregulation of RUNX1 was observed in gastric tumour tissues compared to the 

surrounding mucosa (Sakakura et al., 2005). As RUNX proteins share common DNA 

binding sequences, the potential role of RUNX1 in the regulation of IL23A was also 

examined. Similar to the exogenous RUNX3, ectopic expression of RUNX1 in both 

KATOIII and SNU16 cells led to an increase in the full-length IL23A promoter 

activity (Figure 3.7). Not surprisingly, RUNX1-mediated activation was ablated when 

the binding sites were disrupted (Figure 3.7). These results indicate that RUNX1 is a 

positive regulator of IL23A promoter in addition to RUNX3. Interestingly, the co-

expression of RUNX1 and RUNX3 led to an additive increase in the induction of 

IL23A promoter activity suggesting that RUNX3 and RUNX1 may play 

complementary role through the same binding sites (Figure 3.7). 
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 A. B. 

 

 
Figure 3.7. Both RUNX1 and RUNX3 transactivate IL23A promoter in gastric epithelial cells. 

Gastric epithelial cell lines (A) KATOIII and (B) SNU16 were transiently transfected with Control, 
RUNX3 and/or RUNX1 expression vectors together with full-length IL23A reporter constructs for 
48h. Cells were harvested and the firefly luciferase activities of the transfected constructs were 
measured and normalised against the internally co-transfected Renilla luciferase reporter. 

 

3.2.7 RUNX3 physically interacts with IL23A promoter in vitro 

Having identified the three functional RUNX sites in IL23A promoter, the 

binding of RUNX3 on these sites in vitro were determined by electrophoretic mobility 

shift assays (EMSA). Biotinylated oligonucleotide probes containing consensus 

RUNX sites B and C (Probe_BC) and site D (Probe_D) were synthesised and 

incubated with nuclear extracts of COS-7 cells expressing either exogenous FLAG-

RUNX3 or unfused FLAG-tag as a control (i.e. Mock). The incubation of Probe_BC 

with nuclear extract from untransfected COS-7 cells resulted in the appearance of 

several retardation (EMSA) complexes (lane 2 in Figure 3.8A), suggesting that 

endogenous proteins present in COS-7 cells were capable of binding to this probe. As 

such, these bands were regarded as ‘non-specific’ bands, though the possibility that 
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they contained endogenous RUNX proteins cannot be ruled out. When Probe_BC was 

incubated with COS-7 nuclear extracts overexpressing exogenous RUNX3, additional 

retardation complexes were observed (lanes 2 and 3 in Figure 3.8A). This shows that 

exogenous RUNX3 proteins display an affinity to sites B and C. 

 

A. B. 

  
 

Figure 3.8. The bindng of RUNX3 to RUNX sites B, C and D of the IL23A promoter determined 

by EMSA. (A) Biotinylated Probe_BC and (B) Probe_D were mixed with nuclear extracts of COS-
7 cells expressing exogenous FLAG-RUNX3 or FLAG-tag as a control (Mock). Supershift assays 
were performed by incubating the probes with nuclear extracts of COS-7 cells expressing FLAG-

RUNX3 in the presence of exogenous CBF, anti-RUNX3 (5G4) and anti-FLAG monoclonal 
antibodies. The above samples were resolved in a non-denaturing polyacrylamide gel for analysis 
of the presence of protein-DNA complexes. ( :RUNX3-specific complex;  non-specific complex) 

 

 

To verify the identity of the RUNX3-related EMSA complexes, super-shift 

assays were performed. The addition of COS-7 nuclear extracts containing the 

binding partner of RUNX proteins, CBF together with RUNX3, resulted in a further 

retardation (i.e. super-shift) of the RUNX3-related EMSA complexes (lanes 3 and 4 in 

Figure 3.8A). This is consistent with the formation of a larger protein-DNA complex 

containing the RUNX3/CBF heterodimer. To demonstrate the proteins that interact 
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with sites BC is RUNX3, a monoclonal antibody against RUNX3 (5G4) was used. 

This resulted in the super-shifting of all RUNX3-related bands due to the formation of 

larger EMSA complexes with the antibody (lane 5 in Figure 3.8A). Moreover, the 

addition of anti-FLAG antibody that recognised FLAG-RUNX3 resulted in a very 

similar pattern of super-shifts (lane 6 in Figure 3.8A), further confirming the RUNX3-

specific binding on sites B and C. Lastly, the ‘non-specific’ bands appeared to be 

affected by CBF and 5G4 antibody, suggesting a possible involvement of 

endogenous RUNX proteins.  

Similar results were observed when Probe_D was used in EMSA; RUNX3-

related complexes formed migrated up modestly with CBFand super-shifted in the 

presence of anti-FLAG antibody (Figure 3.8B). However, it was clear that RUNX3 

had a weaker binding affinity for Probe_D, as the intensity of the RUNX3-related 

bands was much lower relative to the non-specific complexes. This lower affinity of 

RUNX3 protein for Probe_D is consistent with the suboptimal nature of site D 

(Figure 3.4B). There is a possibility that additional transcription factors or cofactors 

are involved to enhance the binding of RUNX3 on this site. However, this event could 

not be recapitulated within a short and ‘naked’ EMSA probe (~20 nt).  

Together, the significant loss of RUNX3-responsiveness observed in 

luciferase reporter assays following the mutations of these sites is likely due to the 

ablation of direct RUNX3 binding on these sites as revealed by EMSA. To confirm 

these observations, interrogation of the binding of RUNX3 to the endogenous IL23A 

promoter at the level of chromatin is required. 
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3.2.8 Establish a cell model for in vivo binding of RUNX3 on the IL23A locus 

To study the binding of endogenous RUNX3 on IL23A promoter in vivo, a cell 

model expressing both RUNX3 and IL23A proteins was first established. It has been 

reported that monocytes express IL23A and secrete the heterodimeric IL-23 

(IL23A/IL12B) in response to bacteria endotoxin lipopolysaccharide (LPS) (Carmody 

et al., 2007). Thus, two acute monocytic leukaemia cell lines KG-1 and THP-1 were 

tested with the same stimulant. Using a sandwich ELISA containing anti-IL23A-

specific capture antibody and anti-IL12B detection antibody, secretion of IL-23 was 

only detected in LPS-stimulated THP-1 cells but not in KG-1 cells (Figure 3.9A). 

Therefore, THP-1 cell line was chosen for analysis of the expression of endogenous 

RUNX3. 

 

A. B. 

  

 
Figure 3.9. The expression of endogenous RUNX3 and IL23A proteins in monocytic cell lines. (A) 

KG-1 and THP-1 cells were stimulated with 1g/ml of LPS for 6h. Supernatants collected from 
these cells were subjected to IL-23 ELISA for quantification of the secreted amount of IL-23. (B) 

THP-1 cells were cultured in the presence or absence of 1g/ml LPS for 6h. Whole cell lysates 

were then prepared and analysed for RUNX3, IL23A and -actin (loading control) protein 

expression using Western blot together with 5g of human recombinant IL-23 which acts as a 
positive control for endogenous IL23A in THP-1 cells. (u.d.: undetectable) 
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Western blot analysis showed that RUNX3 was detected in resting THP-1 

cells and its expression was increased modestly upon treatment with LPS (Figure 

3.9B). In the case of IL23A, a ~19kDa band was detected in LPS-stimulated THP-1 

cells that corresponded well with the band of recombinant human IL-23 (rhIL-23) 

(Figure 3.9B). This is consistent with the results obtained from ELISA whereby the 

secretion of IL-23 was only observed in THP-1 cells treated with LPS. Although it 

appears that the latter method is more sensitive for the detection of IL23A. These 

results confirmed that THP-1 cells express endogenous RUNX3 and LPS-induced 

IL23A and is therefore a suitable cell model for studying in vivo binding of RUNX3 

on IL23A promoter. 

 

3.2.9 RUNX3 occupancy on IL23A promoter at the chromatin level 

After establishing THP-1 as a suitable cell model, chromatin 

immunoprecipation (ChIP) analysis was performed in the presence of LPS to 

determine the in vivo binding of RUNX3 on RUNX sites B, C and D in the IL23A 

promoter. Anti-RUNX3 and anti-CBF antibodies were used to pull-down RUNX3-

DNA complexes in formaldehyde cross-linked THP-1 cells. A schematic diagram that 

illustrates the target regions in IL23A promoter which were spanned by the 

corresponding primers was presented in Figure 3.10A. Using primers encompassing 

the various RUNX sites, the enrichment of genomic DNA fragments containing sites 

BC, D and BCD was observed (Figure 3.10B). Such enrichment was not observed in 

control samples that were incubated with anti-IgG antibody and no antibody, 

indicating that the enrichment is RUNX3-specific. In contrast, no precipitation was 

observed for the DNA fragment containing RUNX site A that was similar to the non-
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specific site control (Figure 3.10B). These results further support the earlier 

observation in reporter assay studies that site A is not involved in the regulation of 

IL23A by RUNX3 (Figure 3.5). Similar result was obtained when ChIP analysis was 

performed in AGS cells that had been transduced with Lenti-RUNX3 (Figure 3.10C). 

In this case, strong enrichments of genomic DNA fragments bearing Site B, C and D 

were observed for both polyclonal and monoclonal anti-RUNX3 antibodies. In 

summary, the data from EMSA and ChIP analyses demonstrate that the physical 

binding of RUNX3 to sites B, C and D of the proximal IL23A promoter is in 

concordance to their functional characterisation by reporter assays. 
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A. 
 

 
 
B. 

 

 
C. 

 

 
 

Figure 3.10. In vivo occupancy of RUNX3 on IL23A promoter in THP-1 and AGS cells. (A) 
Schematic diagram of IL23A gene locus and regions containing RUNX site or non-specific site 

spanned by corresponding set of primers (Table 2.3) (B) Chromatin immunoprecipitation (ChIP) 

was performed using THP-1 cells stimulated with LPS (1g/ml) for 24 hours. Anti-CBF and anti-
RUNX3 antibodies were used to immunoprecipitate DNA fragments that were cross-linked with 
RUNX3. Anti-IgG and no antibody were included as negative controls. PCR amplification of the 
DNA fragments were performed using primers designed to amplify the corresponding regions 
shown in (A) and quantitated using qRT-PCR method. The values were expressed relative to 
those of Region A in the presence of anti-IgG antibody.(C) The chromatin of AGS cells 
transduced with Lenti-RUNX3 virus was crosslinked and immunoprecipitated with rabbit IgG 
(rIgG) control, mouse IgG (mIgG) control, RUNX3 polyclonal, RUNX3 monoclonal (5G4 + 6E9) or 
H3K9Ace antibodies. The degrees of enrichment were measured using real-time PCR and 
expressed relative to rIgG control of NS3 sample. (NS: non-specific) 
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3.2.10 LPS is not a potent inducer for IL-23 in gastric epithelial cells 

Gastric epithelial cells are not known to express IL23A or secrete IL-23. To 

demonstrate that the transcriptional regulation of IL23A by RUNX3 was translated 

into an increase in its protein expression, the level of IL23A was first assessed in the 

supernatants of gastric epithelial cell lines SNU16, MKN45, MKN1, KATOIII and 

AGS using IL-23 ELISA. As IL-23 was only detectable in THP-1 cells post-

stimulation with LPS (Figure 3.9), the same stimulant was applied to gastric epithelial 

cell lines. However, the secretion of IL-23 in gastric epithelial cell lines could not be 

readily detected even in the presence of LPS, in stark contrast to THP-1 cells (Figure 

3.11). Given the tight regulation of IL23A observed in THP-1 cells, it is possible that 

gastric epithelial cells are hyporesponsive to LPS and additional signals relevant to 

this cell type may be required for IL-23 production. 

 

 

 
Figure 3.11. The secretion of IL-23 induced by LPS in gastric epithelial cell lines. A collection of 

five gastric epithelial cell lines and THP-1 cells were stimulated with 1mg/ml of LPS for 24h. 
Supernatants collected from these cells at the end of stimulation were subjected to sandwich 
ELISA for quantification of IL-23 secretion. The amount of cytokine was calculated based on the 
standard curve obtained from the recombinant human IL-23. (u.d.: undetectable) 
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3.3 Discussion 

The importance of IL-23 has to date been focused on its involvement in 

immunity against pathogens and autoimmunity against ‘self’. The remarkable 

phenotypes observed in IL23A knockout and transgenic mouse models (section 1.5) 

had revealed that it is critically important for this cytokine gene to be maintained at a 

homeostatic level. As a first step towards understanding the link between RUNX3 and 

IL23A, the direct regulation of RUNX3 on IL23A is addressed in this chapter. 

IL23A was first identified from a microarray study of RUNX3 target genes 

using gastric cancer cell line, AGS as a cell model (section 1.4.2). In validation 

studies, IL23A was found to be frequently upregulated in multiple gastric cancer cell 

lines (Figure 3.1). The variation for the basal levels of IL23A transcript in different 

gastric cancer cell lines could reflect the different driver mutations each line has 

inherited from the different gastric carcinomas from which they were derived. It is 

well-known that cancer is a heterogeneous disease which is reflected by their 

phenotypic and genomic diversities (Marusyk et al., 2012). Tremendous amounts of 

studies have shown that cell lines derived from tumours not only recapitulate the 

phenotypes of primary tumours but their genetic landscape is remarkably similar to 

that of the primary tumours from which they originated (Lin et al., 2008; Neve et al., 

2006; Sharma et al., 2010; Sos et al., 2009). Therefore, the heterogeneity of cancer is 

preserved in cancer cell lines which serve as a useful tool for in vitro studies. Given 

the heterogeneity of gastric cancer cell lines, the remarkable conservation of 

RUNX3’s positive regulation on IL23A in multiple cell lines implicates that this may 

be of central importance to the basic functions of gastric epithelial cells (Figure 3.1).  

In line with the transcriptional function of RUNX3, the activation of IL23A 

was found to be dependent on its DNA binding ability (Figure 3.2). This is clearly 
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reflected in the lack of activation of IL23A by its DNA-binding defective mutant of 

RUNX3, RUNX3
R178Q

. The DNA-binding dependent transactivation of IL23A by 

RUNX3 supports a direct role of RUNX3 in the regulation of IL23A in human gastric 

cancer-derived cell lines. In addition, this positive role of RUNX3 is not observed in 

other close family members of IL-12 (Figure 3.3). This highlights the specificity and 

uniqueness of RUNX3’s effect on IL23A. Through a combination of promoter 

deletion and mutation analyses, RUNX sites B, C and D were shown to functionally 

contribute to the transactivation of IL23A promoter by RUNX3 (Figures 3.5 and 3.6). 

The presence of multiple functional RUNX sites in IL23A promoter implicates that 

RUNX3 is an important regulator of this gene. Interestingly, less than 50% decrease 

in RUNX3-responsiveness was observed for mutation of either sites B and C or site D 

in IL23A promoter (Figure 3.6A). The above observation implicates that these RUNX 

sites are interdependent for RUNX3’s function on IL23A. Such regulatory 

mechanisms revealed a tight regulation of IL23A by RUNX3 as mutations of all these 

sites are necessary to impair RUNX3’s activation. Furthermore, RUNX1 was found to 

be another positive regulator of IL23A promoter (Figure 3.7). The involvement of 

RUNX1 in this regulation through the same RUNX binding sites revealed a certain 

degree of overlapping functions for RUNX proteins in this regard. Such phenomenon 

is not uncommon and has been observed for other RUNX target genes such as IgC, 

Defensin-3 and MDR1 (Hanai et al., 1999; Javed et al., 2000; Westendorf et al., 

1998). Furthermore, the additive effects of RUNX3 and RUNX1 on IL23A promoter 

activity revealed that they play similar but not identical roles in this regulation. 

However, the consensus sequence is not the sole determining factor that directs 

RUNX binding, as the involvement of other transcription factors or co-factors in the 

cells will also influence their affinity to the binding site (Carey, 1998; Joshi et al., 
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2007; Mann et al., 2009; Merika and Thanos, 2001; Stein and Baldwin, 1993). As 

such, a detail study into the preference of RUNX3 and RUNX1 on the different 

functional binding sites in IL23A promoter may reveal more insights on the additive 

increase observed for IL23A promoter. 

 In EMSA analyses, the same proximal RUNX sites B-D were shown to be 

critical for the binding of RUNX3 on IL23A promoter. The appearance of RUNX3-

related EMSA complexes reflects the affinity of RUNX3 on sites B and C (Figure 

3.8A). Although the traditional view of specific DNA recognition is relied on static 

contacts with the bases but more recent discoveries reveal that it is a dynamic process 

influenced by the interaction with other proteins in the cells (Fuxreiter et al., 2011). 

The formation of multiple RUNX3-related EMSA complexes on sites B and C 

suggests that other transcription factors and co-factors in COS-7 nuclear extracts are 

involved in the binding (Figure 3.8A). Factors that have lower affinity may dissociate 

from the oligonucleotides during the process of electrophoresis leading to different 

retardation complexes. More importantly, all of these RUNX3-related EMSA 

complexes were super-shifted by RUNX binding partner, CBF and further shifted by 

antibodies that recognised RUNX3, thus clearly demonstrates the specificity of 

RUNX3 binding on sites B and C. In the case of RUNX site D, although EMSA 

analysis showed certain degree of specificity of RUNX3 binding, the affinity of 

RUNX3 on this site is low (Figure 3.8B). One possible explanation is the suboptimal 

RUNX consensus sequence for site D and additional transcription factors or co-

factors may be required to enhance RUNX3 binding.  

The induction of IL23A protein by LPS in THP-1 cells suggests that IL23A is 

a transcriptionally active locus that is accessible by transcription factors and co-

factors binding (Figure 3.9). Together with the increased expression of RUNX3 in this 
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cell line upon LPS treatment, THP-1 is a useful cell model to assess the association of 

RUNX3 with IL23A promoter in vivo. In ChIP assay, precipitation of genomic DNA 

fragments containing RUNX sites B, C and D by antibodies against RUNX3 and 

CBF confirmed the endogenous RUNX3’s binding on these sites (Figure 3.10B). 

ChIP measures the interaction of proteins with their target DNA sequences in living 

cells which is a dynamic process involving chromatin remodelling, as well as 

positioning and modification of nucleosomes (Pascual-Ahuir and Proft, 2012). Given 

the complexity of the above process, the clear enrichment observed for all three 

RUNX sites further supports the specificity of endogenous RUNX3 binding on IL23A 

at the chromatin level. 

Through a combination of quantitative real-time PCR, sequence analysis, 

reporter gene assays, EMSA and ChIP, this chapter uncovers the molecular 

mechanisms underlying the transcriptional regulation of IL23A by RUNX3. In THP-1 

cell model, the lack of IL23A expression in the absence of LPS suggesting that IL23A 

is specifically and stringently regulated by inflammatory stimulus.  However, unlike 

THP-1 cells, LPS is not a potent inducer for IL-23 in gastric epithelial cell lines 

(Figure 3.11). Given the significance of RUNX3 role in the regulation of this gene, 

the regulatory machinery for IL23A expression in gastric epithelial cells warrants 

further investigation. 

  



79 
 

Chapter 4:  

RUNX3 is a critical requirement for the 

induction of IL23A expression by inflammatory 

stimuli in gastric epithelial cells 
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4.1 Introduction 

4.1.1 NF-B is a positive regulator of IL23A 

As with many cytokine genes, especially those involved in inflammatory 

responses, IL23A is a direct target gene of the NF-B (nuclear factor kB) pathway that 

plays a pivotal role in host immunity and inflammation. This was amply supported by 

data from mouse gene targeting experiments in which components of the NF-B 

pathway were targeted. NF-B-deficient monocytes isolated from c-rel
-/-

 and relA
-/- 

mice were defective in expressing IL23a in response to TLR (Toll-like receptor) 

ligands, indicating that NF-B is essential for the regulation of this gene (Carmody et 

al., 2007; Mise-Omata et al., 2007). This phenomenon was subsequently attributed to 

a proximal B binding site in murine IL23a promoter, which was requisite for 

induced IL23a expression (Mise-Omata et al., 2007). This regulatory mechanism 

appears to be conserved across species and NF-B induction of IL23A has been 

reported in human macrophages (Garrett et al., 2008). In the current study, this 

phenomenon is supported by the strong induction of IL23A in THP-1 cells by LPS, a 

potent activator of NF-B signaling (Figure 3.9). Given the constitutive expression of 

NF-B family members in a variety of cell types, it is likely that NF-B plays an 

important role in the regulation of IL23A in many tissue contexts, including the gastric 

epithelium. 

 

4.1.2 Activating the NF-B pathway in gastric epithelial cells 

In the stomach, a single layer of epithelial cells that separates the luminal 

contents of the mammalian stomach from the underlying tissues often represents the 

first line of defence of the body. Gastric epithelial cells, besides acting as a physical 
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barrier to protect the body from adverse environmental agents, have important 

immunological properties. The strategic location of gastrointestinal mucosal epithelial 

cells allows them to simultaneously interact with both luminal antigens and resident 

lamina propria immune cells which is important for mucosal immunity. A wide 

variety of stimuli, including pathogens, inflammatory cytokines, antigens and stress 

factors activate the canonical NF-B pathway in gastric epithelial cells (Pasparakis, 

2008).  

Gastrointestinal epithelial cells express a range of cytokine receptors that 

enable them activate the NF-B pathway in response to inflammatory signals, such as 

injury and infection of pathogens (Panja et al., 1998; Reinecker and Podolsky, 1995). 

This would trigger a cascade of cellular events that includes the secretion of 

chemokines for the recruitment of leukocytes; and cytokines for the amplification of 

the inflammatory signal and activation of host defence mechanisms (Burchett et al., 

1988; Elkon et al., 1997; Yamada et al., 2000). The most well-known inflammatory 

cytokines that activate NF-B signal transduction pathway in gastric epithelial cells 

are TNF- and IL-1(Pasparakis, 2008) Aberrant production of these cytokines were 

linked with gastric inflammation and cancer as discussed in section 1.2.6 (El-Omar et 

al., 2000; El-Omar et al., 2003; Oshima and Oshima, 2012). These highlight the 

importance of cytokine signaling pathways for the regulation of host immune 

response of epithelial cells in the stomach. 

In addition to the ability to response to cytokines, gastric epithelial cells are 

equipped with numerous germline-encoded pattern recognition receptors (PRR) to 

sense the presence of microbes via recognition of the conserved molecular structures 

known as pathogen-associated molecular patterns (PAMP). The best characterised 
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PRR are the Toll-like receptors (TLR) and NOD-like receptors (NLR), which play 

critical roles in distinguishing pathogens from commensal bacteria, and mounting a 

precise immune response (Kumar et al., 2009; Martinon et al., 2009; Wells et al., 

2011). TLR are localised on the cell membrane and/or endosomal membrane 

components to recognise extracellular and endocytosed PAMPs. In human, the 

majority of TLR identified to date have been shown to be present in the 

gastrointestinal epithelial transcriptome with the most well-studied being TLR4. 

However their spatial distribution in the epithelium, cell lineage specificity, and 

specific functions in different part of the gut remain unclear (Abreu, 2010; Ishihara et 

al., 2004; Schmausser et al., 2004; Schmausser et al., 2005; Wells et al., 2010). Unlike 

TLRs, which are membrane associated, NLRs are cyotosolic and responds to a wide 

range of bacterial ligands and toxins; as well as certain damage-associated molecular 

patterns (DAMP) of the host cell (Martinon et al., 2009; Williams et al., 2010). To 

date, the NLRs that have been well characterised in the gut are NOD1 and NOD2 

(NOD: nucleotide-binding oligomerisation domain protein) (Hirata et al., 2006; 

Hisamatsu et al., 2003; Kobayashi et al., 2005; Viala et al., 2004).  

At the onset of inflammation, this diverse range of stimuli that includes 

proinflammatory cytokines and bacterial components that triggers TLR and NOD 

signaling pathways, converge to activate IB kinase (IKK) complex (Abreu, 2010; 

Kim et al., 2008; Pasparakis, 2008). The activation of IKK complex will result in the 

phosphorylation and degradation of the inhibitory protein for NF-B (I-B) I-B, 

thereby releasing the NF-B into the nucleus and to activate the transcription of its 

target genes as depicted in Figure 4.1. (Abreu, 2010; Hayden and Ghosh, 2004; Kim 

et al., 2008; Verma et al., 1995; Wells et al., 2010). NF-kB is a heterodimeric 

transcription factors composed of various combinations of the Rel family of 
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transcription factors: c-Rel, RelA (p65), RelB, NF-B1 (p50/p105) and NF-B2 

(p52/p100). The most studied NF-B heterodimer is composed of p65 and p50. It is 

known that specific combination of these factors would confer variations such as 

induction kinetics, binding site and partner specificity that enables the fine-tuning of 

the specific functions of NF-B in a particular tissue type (Pasparakis, 2009).  

 

 
 

Figure 4.1. NF-B signal transduction pathway initiated by proinflammatory cytokines and 

pathogens in gastric epithelial cells. Proinflammatory cytokine such as TNF- and IL-1 as well as 
microbial components that bind TLR and NLR activate IKK (I-kB kinase). This activation event 

leads to phosphorylation and degradation of I-B (Inhibitory protein for NF-B) and translocation 

of NF-B into nucleus for activation of target genes. 
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4.1.3 Signaling events triggered by H. pylori infection in gastric epithelial cells 

Helicobacter pylori (H. pylori), a human stomach pathogen that infects half of 

the world’s population is a major risk factor for gastric inflammation and 

malignancies (Peek and Crabtree, 2006). It is now recognised that H. pylori infection 

triggers majority of the inflammatory cascades that have been implicated in gastric 

pathologies. The association of H. pylori CagA-positive strains with higher grades of 

gastric inflammation and increased risk of gastric cancer highlights the role of CagA 

in H. pylori-mediated inflammatory response (Blaser et al., 1995b; Parsonnet et al., 

1997).  

During H. pylori infection, the CagA protein is injected into host gastric 

epithelial cells through a type IV secretion system, which is often followed by its 

phosphorylation by host Src kinase that enables CagA to target host proteins and alter 

cellular processes (Hatakeyama, 2008; Peek, 2005). An important interaction appears 

to be that between phosphorylated CagA and a host phosphatase known as Src 

homology domain-containing protein tyrosine phosphatase (SHP2), which promotes 

the activation of extracellular signal regulated kinase (ERK) signaling pathway, 

leading to the aberrant proliferation of infected cells (Asahi et al., 2000; Hatakeyama, 

2004; Higashi et al., 2002; Stein et al., 2000). The phosphorylation of CagA appears 

to be a key regulatory node for the action of this protein, as hypophosphorylated 

CagA is shown to interact with the Interleukin 6/11 receptor gp130 to transactivate 

the JAK/STAT pathway (Lee et al., 2010).  

In addition to CagA, the type IV secretion system also delivers H. pylori-

derived peptidoglycan (ie. iE-DAP) into host cells. This leads to the stimulation of 

intracellular NOD1, as it recognises H. pylori-derived iE-DAP, resulting in the 
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activation of NF-B (Viala et al., 2004; Watanabe et al., 2010). It has been reported 

that H. pylori-mediated activation of NOD1 results in robust production of 

bactericidal -defensin and pro-inflammatory cytokines from gastric epithelial cells 

(Hishida et al., 2010). It is held that these early responses are crucial for effective host 

defence and bacterial clearance (Viala et al., 2004; Watanabe et al., 2010). The 

signaling pathways activated in gastric epithelial cells during H. pylori infection is 

depicted in Figure 4.2. Given the prominent involvement of the NF-B pathway 

activated by pathogens or host cell factors in gastric epithelial cells, the emphasis of 

this chapter is to establish if these pathways are responsible for the regulation of 

IL23A. 

 

 
 

Figure 4.2. Alteration of gastric epithelial cellular signaling by H. pylori. H. pylori delivers 

peptidoglycan (PGN) and CagA into gastric epithelial cells via Type IV secretion system. 

Peptidoglycan enters into the host cells binds onto NOD1 for activation of NF-B. The injected 
CagA is phosphorylated by Src kinase that leads to activation of SHP2/ERK signaling whereas 
the hypophosphorylated CagA activates JAK/STAT signaling pathway. (gp130: IL-6 receptor; 

IKKs: Inhibitory B kinase complex; JAK/STAT: Janus kinase/signal transducer and activator of 
transcription; TF: unknown transcription factor) 
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4.2 Results 

4.2.1 The induction of IL23A by inflammatory cytokines 

To determine if IL23A is regulated by the NF-B pathway in gastric epithelial 

cells, the gastric carcinoma cell line AGS was subjected to treatment with several NF-

B activating cytokines as well as other cytokines that are relevant to the regulation of 

this gene. Quantitative PCR analyses revealed that NF-B-activating cytokines TNF-

, IL-1 and IL-1 induced a 20-fold, 5.5-fold and 6-fold increase in IL23A 

transcripts relative to the unstimulated control (Mock), respectively (Figure 4.3). In 

contrast, no appreciable induction of IL23A was observed upon treatment with IFN- 

and IL-6, while TGF- had only marginal effects (Figure 4.3). In addition, a potential 

cooperation between TNF- and other cytokines was also investigated. 

 

 

 
Figure 4.3. The effects of various inflammatory cytokines on the expression of IL23A. AGS is 

singly treated with 10ng/ml of human recombinant IFN-, IL-1, IL-1, IL-6 and TGF-(5ng/ml), 

and co-treated with 10ng/ml of TNF- for 6h prior to the quantification of IL23A mRNA using qRT-
PCR. The values were normalised with those of GAPDH and were expressed relative to the Mock 
control. Data are presented as means ± SEM. Data presented are a compilation of three separate 
experiments and Student t-tests were performed (*p<0.05; **p<0.01). 
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However, no significant cooperation in IL23A induction was observed when AGS 

cells were co-treated with TNF- and various cytokines. Interestingly, the lack of 

additive effect also applied to IL-1 and IL-1, which resulted in significant 

activation of IL23A on their own (Figure 4.3). This observation suggests that TNF- 

and IL-1 are acting on a common pathway, most likely through the activation of NF-

B, with TNF- being the more potent activator. The lack of significant induction of 

IL23A by the other cytokines indicates that the TNF- signaling axis is the primary 

activator for this gene in AGS gastric epithelial cells. 

 

4.2.2 RUNX3 and TNF- cooperatively activates IL23A 

To investigate a potential involvement of RUNX3 in TNF--mediated 

induction of IL23A, AGS cells were transduced with lentiviruses to stably express 

wildtype RUNX3 (Lenti-RUNX3), RUNX3
R178Q

 (Lenti-R178Q) or no cDNA (Lenti-

Control) before treatment with TNF-. The results showed that TNF- treatment on 

Lenti-Control or -R178Q infected AGS cells resulted in ~20-fold induction of IL23A 

mRNA levels similar to the previous observations (Figure 4.3 and Figure 4.4). This 

induction was markedly augmented to 100-fold relative to that of Lenti-Control 

unstimulate levels in cells expressing wild type RUNX3 (Figure 4.4A). Importantly, 

this synergistic cooperation was consistently observed at the level of IL23A protein 

expression, whereby the highest level of IL23A protein expression was detected in 

RUNX3-expressing cells treated with TNF- (Figure 4.4B). 
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A. B. 

 

 

Figure 4.4. The expression of IL23A in the presence of RUNX3 and TNF-. (A) AGS cells were 

transduced with Lenti-Control, -RUNX3 or -RUNX3
R178Q

 for 48h preceding treatment with 10ng/ml 

of TNF- for 6h. Transcript expression of IL23A was determined by qRT-PCR and the values 
were normalised against those of GAPDH and were expressed relative to the Lenti-Control 
(Mock) sample. The data presented are a compilation of three independent experiments (means ± 
SEM). (B) AGS cells transduced with the same series of lentiviruses were cultured with 10ng/ml 

of TNF- for 18h. Whole cell lysates were then prepared and analysed for IL23A, RUNX3 and -
tubulin (loading control) protein expression using Western blot. 

 

The induction of IL23A transcript and protein by TNF- and the cooperative 

effects observed for TNF- and RUNX3 were recapitulated in the established 

promoter reporter system (Figure 4.5A). The necessity of RUNX3 was demonstrated 

by the abolishment of cooperativity on the full-length IL23A promoter when the 

proximal RUNX sites (B, C and D) were mutated (Figure 4.5A). Furthermore, these 

observations could be reproduced in another RUNX3-negative gastric carcinoma cell 

line, KATOIII (Figure 4.5B). These data collectively indicate a functional 

cooperativition between RUNX3 and TNF-/NF-B, which was dependent on the 

proximal RUNX sites within the full-length IL23A promoter. It is important to note 

that the mutation of RUNX sites had no impact on the activation of IL23A promoter 

by TNF- per se, indicating that TNF- acts via a distinct cis-acting element (Figure 

4.5A and 4.5B).  
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 A. B. 

 
 

Figure 4.5. Changes in IL23A promoter activity in response to RUNX3 and TNF-. Left panel 

depicts the schematic diagrams of wiltype and mutant IL23A promoter luciferase reporter 
constructs. Oval shapes on the promoter indicate the RUNX binding sites and X indicates 

mutation of the corresponding RUNX site. These promoter reporter constructs were transiently 
transfected into the cells together with either control- or RUNX3-expression vector for 24h 

followed by TNF- (10ng/ml) treatment for 24h. The luciferase activities of the constructs were 
then measured and normalised against those of Renilla luciferase activities. These values were 
expressed relative to the Control untreated sample. Experiments were performed in (A) AGS and 
(B) KATOIII cells. 
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4.2.3 TNF- activates IL23A promoter via the NF-B site 

To further demonstrate the activation of IL23A promoter by NF-B in gastric 

epithelial cells, a reported NF-B binding site in the IL23A minimal promoter reporter 

construct was mutated (Garrett et al., 2008). The result showed that a strong reduction 

in the TNF--responsiveness of IL23A promoter activity was observed in the NF-B-

mutated reporter construct (Figure 4.6). This result indicates that the induction of 

IL23A promoter activity by TNF-is at least mediated through the NF-B binding 

site. Interestingly, the mutation of NF-B binding site diminished the activating 

effects of RUNX3 (Figure 4.6).  

 

 

Figure 4.6. The activation of IL23A promoter by TNF-α is mediated through NF-κB binding site. 
Left panel depicts the schematic diagram of a series of wildtype and mutant IL23A minimal 

promoter reporter constructs. White ovals on the promoters indicate RUNX binding sites and the 
yellow oval indicates B binding site. These constructs were transfected into AGS cells before 

stimulation with TNF- (10ng/ml) for 24h. The promoter activities were evaluated with luciferase 
assays as described in Figure 3.5. The data are representative of experiments performed in 
triplicate and presented as means ± SEM. (*p<0.05). (κB: NF-κB consensus site) 
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The necessity of an intact NF-B site for the full effect of RUNX3 indicates that 

RUNX3’s effect is at least in part coupled to NF-B. Similar observation could be 

made in the context of the minimal promoter, where the IL23A promoter was induced 

strongest in the presence of RUNX3 and TNF- treatment (Figure 4.6). Accordingly, 

the synergistic effect between RUNX3 and TNF- was abolished when RUNX or 

NF-B sites was mutated alone or in combination (Figure 4.6). 

 

4.2.4 The involvement of TLR and NLR pathways in the regulation of IL23A  

The involvement of Toll-like receptors (TLR) and NOD-like receptors in the 

transcriptional regulation of IL23A in leukocytes has been reported previously. In the 

current study, such regulation was also observed in monocytic cell line, THP-1 as 

reported in the previous chapter (Figure 3.9). To investigate the relevance of these 

pathways in the regulation of IL23A in gastric epithelial cells, a screen was performed 

using a combination of TLR/NOD ligands or agonists listed in Table 4.1.  

 

Ligand Receptors Origin of ligand 

Pam3CSK4 TLR 1/2 Bacteria and mycobacteria 

Poly I:C TLR 3 Analog of dsRNA from virus 

LPS TLR 4 Gram negative bacteria 

Flagellin TLR 5 Bacteria 

Zymosan TLR 2/6 Fungi 

R-848 TLR 7/8 Viruses 

iE-DAP NOD1 
Gram negative and some Gram positive 
bacteria 

MDP NOD2 Bacteria 
 

Table 4.1. Summary of the ligands and their origins for different pattern recognition receptor 

(PRR) including Toll-like receptors (TLR) and NOD-like receptors (NLR).  
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The changes in IL23A mRNA levels following treatment with ligands of 

different receptors were shown in Figure 4.7. Unexpectedly, the TLR ligands did not 

have significant effects on IL23A expression in AGS cells (Figure 4.7). On the other 

hand, activating NOD1 using iE-DAP led to a 4-fold induction of IL23A (Figure 4.7). 

These observations indicate that the NOD1 pathway, most commonly activated by 

bacterial pathogens, has a role in the regulation of IL23A in gastric epithelial cells. 

 

 

Figure 4.7. Changes in IL23A expression in response to several ligands and agonists of TLR and 

NLR pathways. AGS cells were incubated with 1g/ml of Pam3CSK4, PolyI:C, LPS, Zymosan, R-

848, Flagellin (100g/ml), iE-DAP (10g/ml) and MDP (50g/ml) for 6h. Cells were harvested and 
IL23A mRNA was measured using qRT-PCR. The values were normalised with GAPDH and 

expressed relative to the mock control calculated by Ct method. Data are presented as means 
± SEM (n=3). 
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4.2.5 H. pylori infection induces IL23A expression 

To further explore the involvement of NOD1 pathway in the activation of 

IL23A, we infected gastric epithelial cells with H. pylori, as it is a known activator of 

the NOD1 pathway and a major bacterial pathogen in the human stomach. To 

establish a suitable bacterial titre for this study, AGS cells were infected with H. 

pylori at different multiplicities of infection (MOI). Figure 4.8 shows that increasing 

MOI of H. pylori resulted in progressively stronger induction of IL23A transcript. 

This result reveals a positive correlation between H. pylori infection and IL23A 

expression in AGS cells. Consistent with the intracellular distribution of NOD1 and 

the need of an active Type IV secretion system for the delivery of iE-DAP, heat-killed 

H. pylori had no effect on IL23A levels. 

 

 

Figure 4.8. H. pylori activates IL23A in a dose-dependent manner. AGS cells were co-cultured 
with different MOIs of live and heat-killed H. pylori for 6h prior quantification of IL23A transcript via 
qRT-PCR. The values were normalised with GAPDH and expressed relative to the MOI0 control 

calculated by Ct method. 
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4.2.6 CagA-status of H. pylori determines the outcome of IL23A induction 

Together with the introduction of iE-DAP into gastric epithelial cells, which 

actives NOD1, H. pylori also delivers the virulence factor CagA (section 4.1.2). To 

examine the effect of CagA on IL23A transcription, AGS cells were infected with 

either a wild type (WT) H. pylori or its CagA-defective isogenic strain (CagA) at 

four different time points. A comparison of the kinetics of IL23A induction resulting 

from the infection of WT and CagA H. pylori revealed that both strains activate 

IL23A mRNA maximally at 6h (Figure 4.9A). However, continual induction of IL23A 

was observed only in the samples treated with wild-type H. pylori at 24h suggesting 

that CagA is critical for sustained induction of this gene (Figure 4.9A). The induction 

kinetics of IL23A in response to H. pylori was compared with that of interleukin-8 

mRNA (IL8), a classical host target gene of CagA (Sharma et al., 1995). This reveals 

that the induction kinetics of IL23A closely resembled that of IL8, suggesting that 

these two cytokine genes may be part of a common pathway of host immune response 

(Figure 4.9B). 

 

A. B. 

  
 

Figure 4.9. Wildtype and CagA strains of H. pylori induction time-course for IL23A and IL8. AGS 

cells were infected with either wildtype (WT) or CagA strains of H. pylori (Hp) at MOI 100 for 0h, 
6h, 12h and 24h prior to the assessment of IL23A (A) and IL8 (B) transcripts by qRT-PCR. The 
values of each gene were normalised with GAPDH and expressed relative to those of 0h control. 
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To demonstrate the specificity of RUNX3’s action, changes in the expression of IL8 

were compared against that of IL23A. Although the induction of IL8 by H. pylori 

followed very similar kinetics to that of IL23A, it was clearly not dependent on 

RUNX3 (Figure 4.10). This suggests that RUNX3 may be involved in the regulation 

of a distinct subset of genes during H. pylori infection. 

 

A. B. 

 
 
Figure 4.10. RUNX3 specifically enhanced H. pylori-induced IL23A but not IL8 in gastric epithelial cells. 
AGS cells were infected with either WT or ΔCagA H. pylori for 6h prior measurement of IL23A and IL8 
transcripts by qRT-PCR. The normalised values are expressed relative to uninfected control. 
 

As CagA is known to interact with and acts through SHP2 in gastric epithelial cells, 

its involvement was examined using specific inhibitor. Treatment with 50M of 

SHP2 inhibitor (NSC87877) abolished CagA-dependent activation of IL23A by 

wildtype H. pylori (Figure 4.11). These data indicate that prolonged activation of 

IL23A by live H. pylori requires the activation of SHP2 pathway by the CagA 

oncoprotein. 
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Figure 4.11. IL23A induction by H. pylori requires activation of SHP-2/ERK pathway by 

oncoprotein CagA. AGS cells were incubated with 50M of SHP2 inhibitor (NSC87877) for 3h 

prior to the infection with wildtype (WT) or CagA strains of H. pylori (Hp) at MOI100 or vehicle 
(Mock) for 18h. The qRT-PCR values of IL23A were normalised with GAPDH and were expressed 
relative to the basal values of mock-infected samples (means ± SEM). Data presented are 
collected from three separate experiments and Student t-test were performed (*p<0.05). 

 

4.2.7 Induction of IL23A is observed in multiple gastric epithelial cell lines 

Having established that TNF- and H. pylori are the activating stimuli for 

IL23A in AGS cells, a collection of nine gastric epithelial cell lines were next tested to 

determine if these observation are reproducible. Remarkably, TNF- and H. pylori 

induce IL23A in a majority of these gastric cancer cell lines (Figure 4.12). 

Furthermore, similar effects were also observed in two non-cancerous gastric 

epithelial cell lines, HFE-145 and GES-1 (Figure 4.12). The conservation of these 

regulatory mechanisms across different gastric epithelial cell lines strongly suggests 

the central roles for H. pylori and TNF- in the regulation of IL23A in this cell type. 

These results implicate that IL23A plays a significant role in the inflammatory cascade 

downstream of TNF- and H. pylori infection. 
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Figure 4.12. TNF- and H. pylori upregulate IL23A over multiple gastric epithelial cell lines. Two 

non-cancerous and seven cancerous gastric epithelial cell lines were stimulated with TNF- 
(10ng/ml) or infected with wildtype H. pylori (MOI100) for 6h. IL23A mRNA levels were 
determined by qRT-PCR. The values were normalised with GAPDH and expressed relative to the 
Mock control of each cell line. Data are presented as means ± SEM (n=3). 

 

4.2.8 Inflammatory stimuli-induced IL23A is significantly enhanced by RUNX3 

Given the significance of TNF- and H. pylori on IL23A activation, the 

cooperation of these signals with RUNX3 was investigated. The results showed that 

in addition to the cooperation between TNF- and H. pylori, the presence of RUNX3 

resulted in a marked enhancement in the induction of IL23A (Figure 4.13A). This 

synergistic effect between RUNX3, TNF- and H. pylori on IL23A was particularly 

clear at the protein level (Figure 4.13B). Notably, this cooperative effect was entirely 

absent in the AGS cell line that ectopically expressed the RUNX3
R178Q

 DNA-binding 

defective mutant. These results indicate RUNX3 is a critical requirement for a strong 

induction of IL23A when AGS gastric epithelial cells are challenged by the pro-

inflammatory cytokine TNF- and the infection of H. pylori.  
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A. 

 

B. 

 

Figure 4.13. The expression of IL23A in response to RUNX3, TNF-and H. pylori. (A) AGS cells 

were transduced with Lenti-control, RUNX3 or RUNX3
R178Q

 lentiviruses for 48h preceding the 

treatment with 10ng/ml of TNF- and/or infection with H. pylori at MOI100 for 6h. Transcripts of 
IL23A were determined by qRT-PCR and the data presented are from three independent 

experiments (means ± SEM). (B) AGS cells transduced with the same series of lentiviruses were 

cultured with TNF- and/or infected with H. pylori (MOI100) for 18h. Whole cell lysates were then 

prepared and analysed for IL23A, RUNX3 and -tubulin (loading control) protein expression using 
Western blot. 

 

4.2.9 Knockdown of RUNX3 and RUNX1 confirm their positive roles on IL23A 

In the previous chapter, promoter reporter study revealed that RUNX1 is also 

a transactivator of IL23A promoter (Figure 3.7). Therefore, to validate the role of 

RUNX proteins in mediating TNF-/H. pylori induction of IL23A, an RNAi 

knockdown experiment targeting RUNX3 and RUNX1 was performed in an 
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untransformed gastric epithelial cell line, HFE-145 that expresses both RUNX 

proteins. The results reveal that RNAi targeting of either RUNX3 or RUNX1 led to a 

significant reduction in IL23A induction in HFE-145 cells co-treated with TNF- and 

H. pylori, compared with the cells targeted by control siRNA (Figure 4.14A). 

Concurrent targeting of RUNX3 and RUNX1 further reduced the response of IL23A to 

TNF-/H. pylori, confirming that both RUNX members play overlapping roles in the 

mediation of TNF-/H. pylori regulation of IL23A (Figure 4.14). The RNAi 

knockdown of RUNX3 and RUNX1 were confirmed by quantitative RT-PCR and 

Western blot (Figures 4.15A and 4.15B). Taken together, these studies support a 

positive role of RUNX3 and RUNX1 on the regulation of IL23A when gastric 

epithelial cells are challenged by inflammatory stimuli.    

 

 
 

Figure 4.14. The effects of RNAi knockdown for RUNX3 and RUNX1 on IL23A. HFE-145 cells 

were transiently transfected with 20pmoles control siRNA (siCtrl) or 5pmoles RUNX3 siRNA 
(siRX3) and/or 15pmoles RUNX1 siRNA (siRX1) for 48h preceding infection with H. pylori (Hp) at 

MOI100 and stimulation with TNF- (10ng/ml) for 6h. The transcripts of IL23A were measured by 
qRT-PCR. The values were normalised to those of GAPDH and were expressed relative to siCtrl 

Mock sample. (means ± SEM; n=3). Data are compiled from three separate experiments and 
Student t-tests were performed (**p<0.01). 

 
 
 
 
 
 
 



100 
 

 
A. 

 

B. 

 

Figure 4.15. The degree of RNAi knockdown for RUNX3 and RUNX1 in HFE-145 cells. (A) The 
normalised mRNA levels of RUNX3 and RUNX1 in the same samples described in Fig. 4.14 were 
measured by qRT-PCR and expressed relative to the basal values of siCtrl sample (means ± 

SEM; n=3). (B) Corresponding changes in RUNX3, RUNX1 and -tubulin (loading control) protein 
expression were analysed from whole cell lysates by Western blot. 

 

 

4.2.10 The induction of IL23A in AGS does not result in the secretion of IL-23 

To investigate if the expression of IL23A in AGS cells is translated to the 

secretion of the heterodimeric cytokine IL-23, of which IL23A is a subunit, the 

supernatants collected from resting and stimulated AGS cells were subjected to 

enzyme-linked immunosorbent assay (ELISA). Strikingly, in stark contrast to the 

robust secretion of IL-23 in LPS-stimulated THP-1 cells, the levels of IL-23 in AGS-

derived supernatants could not be detected even in the presence of all identified 

activating signals (Figure 4.16A). A possible explanation for the absence of secreted 
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IL-23, despite robust expression of IL23A, is the insufficient expression of its partner 

subunit, IL12B. To investigate this, the mRNA level of IL12B was measured in 

resting and treated AGS cells. Indeed, the partner subunit IL12B is neither expressed 

nor induced by any of the signals (Figure 4.16B). Together, these observations 

provide firm evidence that IL23A expressed in AGS cells is not secreted in the form 

of IL-23. 

 

A. 

 

B. 

 

Figure 4.16. The expression of the heterodimeric IL-23 (IL23A/IL12B) in AGS cells. (A) AGS cells 

were transduced with lentiviruses encoding Lenti-Control, Lenti-RUNX3, Lenti-RUNX3
R178Q 

for 

48h preceding TNF- (10ng/ml) and/or H. pylori (MOI100) stimulation for 24h. Supernatants were 
then harvested and subjected to sandwich ELISA for the quantification of IL-23 secretion. (B) The 

infected AGS cells as described above were stimulated with TNF-/or H. pylori for 6h. IL12B 
mRNA was quantitated using qRT-PCR and the values were normalised with GAPDH and 
expressed relative to the Mock control in THP-1 cells. (u.d.: undetectable) 
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4.2 Discussion 

As an extension from the earlier observation that IL23A is a target gene of 

RUNX3, this chapter establishes the physiological signals that regulate IL23A 

expression in gastric epithelial cells. In line with the findings by other groups, IL23A 

is positively regulated by NF-B signaling in THP-1, human acute monocytic 

leukemia cell line (Figure 3.9). Thus, different inflammatory stimuli that activate the 

NF-B pathway were explored in gastric epithelial cell lines.  

NF-B-activating cytokines TNF-, IL-1 and IL-1 were found to be 

inducers of IL23A (Figure 4.3). TNF- and IL-1 are produced in response to bacterial 

infection, inflammatory and other stimuli primarily by cells of the immune system 

such as macrophages and T and B lymphocytes (Burchett et al., 1988). These 

cytokines are involved in coordinating inflammatory response and host defence 

mechanisms against pathogens (Elkon et al., 1997; Sambhi et al., 1991; Wong and 

Goeddel, 1986; Yamada et al., 2000). Furthermore, TNF- and IL-1 belong to a 

group of cytokines that stimulate acute phase reaction and initiate a cascade of 

cytokine production for the recruitment of immune cells for host defence (Warren, 

1990). The activation of IL23A by these upstream signals implicates a role for IL23A 

in host acute inflammatory responses against pathogen challenge. On the other hand, 

the lack of induction for IL23A observed for IFN-γ, IL-6 and TGF-β does not rule out 

their involvement in this regulation (Figure 4.3). It is possible that the corresponding 

cytokine receptors are absence in gastric epithelial cells which causes them 

hyporesponsive to the signals. To rule out the involvement of other cytokines in the 

regulation of IL23A, the positive target genes for each cytokine signal should be 

analysed.  
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An intriguing observation is that RUNX3 cooperates strongly with TNF- in 

the induction of IL23A in gastric epithelial cells (Figure 4.4 and 4.5). Together with 

the analysis of proximal NF-B and RUNX consensus binding sites in IL23A 

promoter (Figure 4.6), the possibility of cooperativity between RUNX3 and TNF-

/NF-B on the transcription of IL23A is further strengthened. In addition, the robust 

expression of IL23A protein induced by RUNX3 and TNF- underscores the 

importance of this synergistic cooperation (Figure 4.6). Critically, the above findings 

revealed that gastric epithelial cells are a novel cell type that expresses IL23A. 

Given that NF-B family members are nuclear effectors of PRRs pathways, 

the inability of various ligands of these receptors to activate IL23A is surprising 

(Figure 4.7) (Abreu, 2010; Wells et al., 2010). The reason for this could be the 

expression of PPRs in gastric epithelial cells requires additional challenges, e.g. 

pathogen infection. The lack of co-receptors such as CD14 and MD2 in gastric 

epithelial cells may also render them hyporesponsive to TLR ligands (Ferrero, 2005; 

Watanabe et al., 2010). The NOD1 agonist, iE-DAP, was the exception among all 

ligands tested in its ability to activate IL23A in AGS cells (Figure 4.7). Unlike NOD2 

which is a general sensor for bacteria, NOD1 recognises a subset of microbes that 

contain the dipeptide iE-DAP, such as H. pylori, an important pathogen in the 

stomach (Boughan et al., 2006; McDonald et al., 2005; Viala et al., 2004; Watanabe et 

al., 2010). The specific induction of IL23A by NOD1, together with the notion that the 

same pathway is required for activation of the classical host immune cytokine IL-8, 

implicate that IL23A belongs to part of a general immune response that targets 

specific subset of pathogens, e.g. H .pylori (Grubman et al., 2010).   
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The positive correlation between the degree of H. pylori infection and IL23A 

mRNA levels implicates that IL23A may be required for evoking a strong immune 

response for bacteria clearance (Figure 4.8). Notably, the lack of induction of IL23A 

in AGS cells by heat-killed H. pylori suggests that it is an active and energy-

dependent process (Figure 4.8). However, the possibility that heat denatures some 

bacterial agonists require for the induction of IL23A cannot be ruled out. 

Nevertheless, the delivery of bacterial products into host cells requires adhesion of 

live H. pylori to the host cells for the insertion of the Type IV secretion system (Kwok 

et al., 2007; Rohde et al., 2003). The active induction of IL23A by H. pylori indicates 

the involvement of Type IV secretion system (Figure 4.8).  

CagA protein delivered by H. pylori into the host cells was crucial for 

sustained induction of IL23A (Figure 4.9). As discussed in Section 1.3.1, CagA-

positive strain of H. pylori is more virulent compared to CagA-negative strain. The 

prolonged induction of IL23A in gastric epithelial cells may be necessary to mount a 

proper immune response against CagA-positive H. pylori. The CagA-dependent 

induction of IL23A was suppressed when SHP2 activity was inhibited implicating that 

injected CagA protein is phosphorylated in AGS cells that leads to preferential 

activation of ERK1/2 signaling (Figure 4.11). Although, the transcription factors that 

are activated downstream of CagA/SHP2/ERK pathway remains unknown, ETS 

family of transcription factors which are well-known to be activated by ERK could be 

one of them (Foulds et al., 2004; Paumelle et al., 2002). Interestingly, ETS1 is also 

known to interact with RUNX1 protein on Mo-MLV and TCR enhancers in immune 

cells (Sun et al., 1995; Wotton et al., 1994). Therefore, the involvement of ETS1 and 

its cooperation with RUNX proteins in CagA/SHP2-dependent activation of IL23A in 

gastric epithelial cells will be worth investigating in the future. As inhibitor often has 
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broad spectrum effects, the involvement of SHP2 in the induction of IL23A by CagA 

requires further confirmation using RNAi specific targeting of SHP2 in the cells. 

The conservation of the effects for TNF- and H. pylori on IL23A observed in 

different gastric epithelial cell lines implicates that IL23A is part of the natural host 

immune response of gastric epithelial cells (Figure 4.12). More importantly, the 

induction of IL23A by TNF- and H. pylori was markedly potentiated by RUNX3, 

indicating a critical role of RUNX3 for the cooperative activation of IL23A 

expression (Figure 4.13). The ineffectiveness of RUNX3
R178Q

 suggests that the 

synergistic cooperation between RUNX3 and inflammatory stimuli happens at the 

level of transcriptional activation and requires the binding to DNA. Reduction of 

IL23A levels upon the knockdown of RUNX3 further confirmed its positive role in 

the regulation of IL23A in the presence of TNF- and H. pylori (Figure 4.14). These 

observations implicate the importance of RUNX3 in the regulation of IL23A during 

inflammation and infection. 

An intriguing observation is that IL23A expressed in AGS cells was not 

secreted in the known heterodimeric form, IL-23 (Figure 4.16A). This was likely due 

to the absence of the partner subunit IL12B (Figure 4.16B). A similar observation has 

been reported in intestinal epithelial cells where IL23A was expressed in the absence 

of IL12B (Maaser et al., 2004). Other studies have shown that IL23A was up-

regulated in synovial fibroblasts and colonic subepithelial myofibroblasts, especially 

in disease states (Kim et al., 2007a; Liu et al., 2007; Zhang et al., 2005). However, 

little is known about the function of IL23A in these tissue contexts. In mice, gene 

targeting of the cytokine and its receptor generally have same phenotypes. However, 

Ghilardi and co-workers found an unexpected uncoupling of the phenotypes of Il23a
-/-
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and Il23R
-/-

 mice. Specifically, they reported that the histological scores of Il23a
-/-

 

mice were reproducibly less severe than those of Il23R
-/-

 mice in chemical-induced 

colitis (Cox et al., 2012). These observations, together with those observed in the 

current study suggest that IL23A may functionally interact with proteins other than 

IL12B to mediate signals distinct from that of IL-23, possibly through another IL-

23R-associated heterodimeric receptor.    

 Findings in this chapter revealed that H. pylori infection and TNF- are two 

major upstream signals for regulating IL23A expression in gastric epithelial cells. 

Interestingly, the cooperation between RUNX3, TNF- and H. pylori significantly 

enhanced IL23A expression in gastric epithelial cells. The regulation of IL23A by 

TNF- and H. pylori in these cells implicates that this protein is part of the host 

defence mechanisms. Inactivation of RUNX3 that is frequently observed during 

gastric carcinogenesis may result in lower production of IL23A by gastric epithelial 

cells leading to defective host immune response against pathogen infection. The data 

presented in this study further suggests that IL23A is not secreted as the known 

heterodimeric form (IL-23) in AGS cells. There is a possibility that this protein is not 

secreted by gastric epithelial cells, or it might be secreted in an unknown form. Thus, 

the secretion of IL23A protein and the functional consequences of the above 

regulation in gastric epithelial cells will be further investigated in the following 

chapter.  
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Chapter 5: 

The functional effects of gastric epithelial cell-

derived IL23A on immune cells 
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5.1 Introduction 

5.1.1 The discoveries and known functions of IL23A/IL-23 

IL23A was discovered on the basis of the structural resemblance of its 

predicted tertiary structure to that of IL12A, which together with IL12B forms the 

heterodimeric cytokine, IL-12 (Oppmann et al., 2000). Further characterisation 

revealed that IL23A has no biological activity of its own, but when dimerised with 

IL12B they form a novel cytokine, IL-23 with distinct biological activities (Figure 

1.5). Although IL23A possesses a signal peptide within its N-terminal region that is 

characteristic of a secretory protein, it was demonstrated that the secretion of IL23A is 

only efficient in the presence of its partner subunit, IL12B (Oppmann et al., 2000). 

Therefore, it was suggested that cellular secretion of IL23A takes place only 

following dimerisation with an interacting partner protein (Oppmann et al., 2000). 

Similar to IL-12, IL-23 is usually secreted by activated antigen presenting 

cells (APC), in particular dendritic cells (DC) and macrophages (Hsieh et al., 1993; 

Macatonia et al., 1995; Oppmann et al., 2000). Studies have defined IL-12 as an 

important factor for the differentiation of IFN- producing Type I-helper T cells (TH1) 

cells from naïve T cells (Gazzinelli et al., 1993; Hsieh et al., 1993; Manetti et al., 

1993; O'Garra and Arai, 2000; Seder et al., 1993; Tripp et al., 1993). Therefore, the 

physiological function of IL-23 was first examined in the context of T cell 

proliferation and IFN- secretion. It was found that recombinant human IL-23 induced 

the proliferation of CD45RO memory T cells and the secretion of IFN- after 

prolonged CD3 and CD28 co-activation (Oppmann et al., 2000). These immune 

responses were effectively blocked by incubation with neutralising antibodies against 

the IL12B subunit (common partner for IL-23 and IL-12) and its receptor IL12R1 



109 
 

but not IL12A (the unique subunit for IL-12) suggesting the above effects are specific 

to IL-23 (Oppmann et al., 2000). 

Further insights into the unique function of IL-23 were generated in studies of 

the IL23a knockout mouse which revealed a crucial role in the development and 

effector functions of TH17, a novel helper T cell subset characterised by its secretion 

of IL-17  (Langrish et al., 2005; McGeachy et al., 2007; McGeachy et al., 2009). This 

prompted the purification of human TH17 cells for further characterisation of IL-23 

function. It is now well established that IL-23 is critical for the survival and 

proliferation of human TH17 cells and their production of IL-17 for the recruitment of 

neutrophils to the site of microbial infection (Acosta-Rodriguez et al., 2007; Cruz et 

al., 2006; Kolls and Linden, 2004; Meeks et al., 2009; Stockinger and Veldhoen, 

2007; Volpe et al., 2008; Wilson et al., 2007).  

Given the importance of IL-23’s effects on T cells, the functional 

consequences of gastric epithelial cell-derived IL23A will be tested on human 

(peripheral blood mononuclear cells) PBMC-derived T cells by employing a similar 

approach adopted by earlier studies on the characterisation of the heterodimeric 

cytokine IL-23 (IL23A/IL12B). 
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5.2 Results 

5.2.1. Accumulation of intracellular IL23A in AGS cells 

In the previous chapter, it was revealed that despite a robust expression of 

IL23A following its induction by RUNX3, TNF-and H. pylori, no secretion of IL-

23 was observed, possibly due to the absence of IL12B. To confirm the above 

observation, a panel of gastric epithelial cell lines were tested for the secretion of IL-

23 upon TNF- treatment with ELISA. In line with the previous observation, the 

absence of secreted IL-23 was not restricted to AGS cells, but consistently observed 

in multiple gastric cancer cell lines (Figure 5.1). However, these assays were 

performed using a ‘sandwich’ ELISA specific for the detection of IL23A/IL12B (IL-

23) heterodimer. Therefore, the possibility of the secretion of IL23A from gastric 

epithelial cells could not be excluded. 

 

 
 

Figure 5.1. The induction of heterodimeric IL-23 by TNF- in multiple gastric epithelial cell lines. 

Gastric epithelial cell lines AGS, MKN28, MKN45 and KATOIII were treated with 10ng/ml of TNF-

 whereas THP-1 was treated with 1g/ml of LPS for 24h. Supernatants collected from these 
cells were subjected to IL-23 ELISA. (u.d.: undetectable). 
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To further investigate the above possibility, AGS cells were stimulated to 

express IL23A in the presence or absence of a secretion-blocking agent, fungal 

macrocyclic lactone Brefeldin A (BfdA). The BfdA has proved to be a potent 

inhibitor of protein secretion in the endomembrane system of mammalian cells. 

(Dinter and Berger, 1998; Fujiwara et al., 1988; Klausner et al., 1992; Misumi et al., 

1986; Nylander and Kalies, 1999; Sciaky et al., 1997). Newly synthesised secretory 

proteins are docked to the rough endoplasmic reticulum (ER) and transited through 

the Golgi apparatus before being exported to the cell surface (Palade, 1975). 

Treatment with BfdA causes the trans-Golgi network to collapse and thus the 

accumulation of proteins inside the rough ER (Lippincott-Schwartz et al., 1991; 

Reaves and Banting, 1992).  

To assess the secretion of IL23A, AGS cells transduced with lentiviruses 

encoding Lenti-Control, Lenti-RUNX3 or Lenti-RUNX3
R178Q

 were stimulated with 

TNF- and H.pylori, before blocking with BfdA for duration of 8h. The results 

presented in Figure 5.2 revealed that inhibition of protein secretion by BfdA led to a 

clear induction of IL23A in Lenti-RUNX3 infected AGS cells even in the absence of 

inflammatory stimuli, compared with the unstimulated control (-BfdA) (Figure 5.2, 

lanes 3 and 4). Furthermore, a clear increase in intracellular IL23A protein was 

observed in the H. pylori- and TNF--stimulated Lenti-Control and Lenti-

RUNX3
R178Q

 samples (Figure 5.2, lanes 7, 8, 11 and 12). Consistent with this trend, 

the accumulation of IL23A in the cells was markedly higher in the presence of 

RUNX3, TNF- and H. pylori, reflecting their cooperative activation of IL23A 

(Figure 5.2, lanes 9 and 10). Together, these data reveal that the accumulation of 

IL23A following blockade of protein export, hence suggesting its secretion by AGS 

cells when induced by RUNX3, TNF- and H. pylori. 
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Figure 5.2. The accumulation of intracellular IL23A in AGS cells. AGS cells were transduced with 

lentiviruses expressing Control, RUNX3 or RUNX3
R178Q 

for 48h preceding TNF- (10ng/ml) 
treatment and H. pylori (MOI100) infection for 9h. Brefeldin A (BfdA) solution (1:1000) was added 
into the culture medium at the last 8h before the cells were harvested. Whole cell lysates were 

then prepared and analysed for the expression of IL23A, RUNX3 and -tubulin (loading control) 
using Western blot. A shorter exposure for IL23A protein was included to show the band 

morphology of IL23A induced by RUNX3, TNF- and H. pylori in the presence of BfdA. 
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5.2.2 The accumulation and secretion kinetics of IL23A 

To better understand the kinetics of IL23A accumulation and secretion, AGS 

cells infected with Lenti-RUNX3 virus were treated with TNF- and H. pylori for 

different durations before the blockade of protein export by BfdA in the last 8h. The 

results showed that the accumulation of IL23A protein resulting from the action of 

BfdA could be observed over multiple time points (Figure 5.3). The highest 

accumulation of IL23A protein was observed at 9h following TNF- and H. pylori 

stimulation indicating that the protein was synthesised and secreted within a short 

period of time (Figure 5.3, lanes 3 and 4). These results provide strong evidence for 

the secretion of IL23A by AGS cells upon induction. Furthermore, they revealed that 

the secretion of IL23A occurs transiently where maximal secretion occurs within 9h. 

 

 

 
Figure 5.3. The accumulation and secretion kinetics of IL23A in AGS cells. AGS was transduced 

with Lenti-RUNX3 virus as described in Fig 5.2 prior TNF- (10ng/ml) and H. pylori (MOI100) 

stimulation for 1h, 10h, 16h, and 25h followed by addition of Brefeldin A (BfdA) solution for 8h 
before the cells were harvested. Whole cell lysates were then prepared and analysed for the 

expression of IL23A and -tubulin (loading control) using Western blot. 
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5.2.3 Neutralising antibody effectively depletes IL23A from culture supernatant 

As a first step towards the functional characterisation of secreted IL23A in the 

supernatant of AGS cells, a monoclonal IL23A-specific antibody was tested for its 

ability to immunodeplete IL23A. The effectiveness of this antibody was assessed on 

its ability to deplete (or “neutralise”) secreted IL-23 in the supernatant of LPS-

activated THP-1. The extent of depletion was measured by IL-23-specific ELISA and 

results revealed a marked decrease in the secreted IL-23 following pre-incubation 

with the anti-IL-23A antibody, compared with an anti-IgG antibody (Figure 5.4). This 

result demonstrates that the anti-IL23A neutralising antibody was effective in 

depleting secreted IL23A and is therefore suitable for functional study of this protein 

in the subsequent assays. 

 

 

Figure 5.4. The effects of IL23A-specific neutralising antibody on secreted IL-23. THP-1 cells 

were stimulated with 1g/ml of LPS for 6h. Supernatants from both stimulated and non-stimulated 

THP-1 cells were harvested and incubated with either 2g/ml of anti-IL23A or IgG control 
antibody for 4h at 37°C. The treated supernatants were then subjected to sandwich ELISA for the 
quantitation of IL-23 in the supernatants. (u.d.: undetectable) 
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5.2.4 The activation of T cell proliferation by anti-CD3 antibody 

To establish a T cell model for studying the functional effects of the secreted 

IL23A from gastric epithelial cells, human peripheral blood mononuclear cells 

(PBMC) were treated with an anti-CD3 monoclonal antibody to activate T cells. For 

the purpose of optimising the time frame for T cell proliferation, PBMC were pulsed 

with a fluorescence dye CFSE (carboxyfluorescein diacetate, succinimidyl ester) 

followed by the activation with anti-CD3 in ex vivo culture for three and seven days. 

The results showed that there was no obvious difference in CFSE fluorescence 

intensity in PBMC three days after anti-CD3 activation compared to those at resting 

state (Figure 5.5). In contrast, a clear decrease in CFSE fluorescence was observed at 

day 7 in anti-CD3 activated T cells (Figure 5.5). The shift of cell population towards 

lower CFSE fluorescence intensity indicates that T cell division occurred seven days 

post-stimulation with anti-CD3. Having established seven days is required to achieve 

robust T cells proliferation ex vivo following anti-CD3 activation, this regime will be 

used for investigating the effects of IL23A induced by ectopic RUNX3 in gastric 

epithelial cells. 
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Figure 5.5. The proliferation of anti-CD3 activated T cells derived from human PBMC. PBMC 

harvested from human blood sample was stained with 5M CFSE dye prior to the activation by 
1.1ng/ml of anti-CD3 antibody to stimulate T cell proliferation as described in materials and 
methods (section 2.9.2). Next, 0.2 x 10

6
 of cells were seeded into each 96-well U bottom plate in 

fresh medium and cultured for three and seven days. Analysis of CFSE fluorescence was 
performed by flow cytometry. A gate was set to demarcate the proliferative T cells based on the 
profile in resting PBMC of day 3 and day 7 respectively. 
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5.2.5 Secreted IL23A stimulates T cell proliferation 

To assess the biological activity of secreted IL23A on T cell proliferation, 

anti-CD3 activated PBMC from four different donors were harvested and co-cultured 

with supernatants of AGS cells treated with either anti-IL23A or anti-IgG neutralising 

antibody. In these four independent experiments, significant variations in the 

proliferative potential of PBMC-derived T cells from different donors were observed 

(Figure 5.6A). This variation could be attributed to the different health statuses of the 

individual donors, which may affect the concentration of different mononuclear cells 

in the PBMC. Notwithstanding these fluctuations, a modest increase in T cell 

proliferation could be observed when cultured in the supernatants derived from AGS 

cells stably expressing RUNX3 in these four donors (Figure 5.6A). Importantly, the 

increase in T cell proliferation was specifically blocked in the same supernatants that 

were neutralised with anti-IL23A antibody, but not in anti-IgG control treated samples 

(Figure 5.6A). In contrast, the proliferative populations in anti-IgG- and anti-IL23A-

treated supernatants were indistinguishable in the cases of Lenti-Control and Lenti-

RUNX3
R178Q

 infected AGS cells, which is consistent with the lack of secreted IL23A 

in these samples (Figure 5.6A). The T cell proliferation assay for each PBMC donor 

was performed in triplicates and the data from one representative donor were 

presented in Figure 5.6B. Together, these data suggest that RUNX3-induced IL23A in 

gastric epithelial cells play a positive role in T cell proliferation. 
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A. 

 

 
B. 

 

 
Figure 5.6. The effects of supernatants derived from AGS cells on T cell proliferation. (A) CFSE-

stained PBMC cultured in the presence of anti-CD3 (1.1ng/ml) was incubated with the 
supernatants harvested from AGS cells infected with Lenti-Control, Lenti-RUNX3 or Lenti-

RUNX3
R178Q 

viruses that were treated with either 2g/ml of anti-IgG or anti-IL23A antibody. PBMC 
was cultured in AGS-derived supernatants for 7 days prior to analysis by flow cytometry. Due to 
the large variation in the extent of T cell proliferation between donors, the gating for proliferative T 
cells was set based on the Lenti-Control sample within each donor. The experiments for each 
PBMC donor were performed in triplicates and the flow cytometry plots from one replicate were 
presented. (B) Percentage of proliferating cells in response to AGS-derived supernatants. Data 
from a representative donor was presented and expressed as percentage of dividing cells. Data 
are presented as means ± SEM (n=3). * p < 0.05 
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5.2.6 IFN- production of T cells is modulated by secreted IL23A 

To gain further insights into the effects of AGS-derived IL23A on activated T 

cells, the culture supernatants of T cells were analysed for cytokine contents seven 

days after ex vivo culture. As IFN- is a signature cytokine produced by TH1 cells and 

IL-17 marks TH17 cells, the secretion of these two cytokines were measured in our 

study. As shown in Figure 5.7A, the level of IFN- in the T cell supernatant 

stimulated with Lenti-RUNX3 sample was significantly reduced following the 

depletion of IL23A by anti-IL23A antibody. Such a reduction was not observed in 

control samples in which activated T cells were cultured with supernatants from 

Lenti-Control and Lenti-RUNX3
R178Q

 samples (Figure 5.7A).  

 

A. B. 

 

Figure 5.7. The secretion of IFN- and IL-17 by T cells in response to various supernatants of 

AGS cells. The supernatants from T cells at seven days post-stimulation by the supernatants 
derived from AGS cells infected with Lenti-Control, Lenti-RUNX3 and Lenti-RUNX3

R178Q
 viruses 

that were pre-treated with 2g/ml anti-IgG or anti-IL23A antibody. The supernatants from cultured 

T cells were collected and subjected to ELISA for quantification of (A) IFN- and (B) IL-17. Data 
were expressed relative to anti-IgG of each donor and presented as means ± SEM (n=3). ** p < 
0.01, (N.S.: not significant.) 
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Notably, the secretion of IL-17 by T cells was not altered in the presence of IL23A-

specific neutralising antibody in the Lenti-RUNX3 sample (Figure 5.7B). This is 

surprising as IL-17 is normally produced by T cells in response to stimulation by the 

heterodimeric IL-23. The changes in the production of IFN- and IL-17 were 

consistently observed in PBMC derived from four independent donors (Figure 5.8A 

and 5.8B). The data provides evidence that AGS-derived IL23A plays a role in 

effecting a change in the T cell behaviour towards an IFN- producing phenotype. 

 
 
A. 

 

B. 

 

Figure 5.8. The secretion of IFN- and IL-17 by T cells derived from different donors in response 

to supernatants from Lenti-RUNX3 sample. T cells derived from PBMC of different donors were 
stimulated with supernatants derived from AGS cells infected with Lenti-RUNX3 viruses for 7 

days. These supernatants were pre-treated with 2g/ml anti-IgG or anti-IL23A antibody. The 
supernatants of cultured T cells were collected and subjected to ELISA for quantification of (A) 

IFN- and (B) IL-17. Data presented were expressed relative to those of anti-IgG of each donor as 
means ± SEM (n=3). (N.A.: not available) 
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5.3 Discussion 

The discovery of the expression of IL23A in gastric epithelial cells upon 

synergistic induction by RUNX3, TNF- and H. pylori raises important questions. H. 

pylori induces stomach inflammation by triggering host immune response whereas 

TNF- is a host cell factor activated during infection and is crucial for coordinating 

immune response (Elkon et al., 1997; Naumann and Crabtree, 2004; Pasparakis et al., 

1996; Peek and Crabtree, 2006; Sambhi et al., 1991; Wong and Goeddel, 1986). The 

cooperation of RUNX3 with these key inflammatory signals implicates a potential 

communication between epithelial cells and immune cells through IL23A. This 

chapter addresses the functional effects of IL23A regulated by RUNX3 and its 

contribution to T cell response. 

The lack of secretion of IL-23 by gastric epithelial cell lines has prompted the 

investigation of IL23A secretion using a protein secretion blocker (Figure 4.16A and 

5.1). Inhibition of intracellular IL23A protein trafficking by BfdA resulted in a robust 

accumulation of this protein, suggesting that IL23A is targeted for secretion in AGS 

cells (Figure 5.2 and 5.3). However, the above observation does not rule out the 

possibility of IL23A being targeted to the plasma membrane of the cells as both 

secretory and transmembrane proteins share the same transportation pathway that is 

targeted by BfdA. Nevertheless, solubilisation of the membrane proteins using a 

stronger lysis method did not result in greater level of IL23A protein detected 

compared to current lysis method (data not shown). Moreover, it was reported that 

IL23A contains a secretory signal peptide but lack transmembrane domain (Inoue, 

2010). Therefore, our results suggest that AGS-derived IL23A is most likely a 

secretory protein rather than a membrane-bound surface protein. The induction time-
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course experiment showed that IL23A was expressed and secreted at an early time 

point (Figure 5.3). This temporal pattern of IL23A secretion implicates that this 

protein is part of the acute inflammatory response against microbial infection such as 

H. pylori. Given the paradoxical roles of IL23A in host defence mechanism and 

autoimmunity in the gastrointestinal tract (section 1.5); it is of utmost importance to 

explore the functional relevance of this protein in gastric epithelial cells. 

The immunoregulatory effects of the secreted IL23A in gastric epithelial cells 

was investigated in an ex vivo culture system that employs T lymphocytes as 

responder cells. This approach will shed light on the existence of IL23A by the 

measureable function on T cell response. PBMC was chosen in this study as it 

contains a mixture of T and B lymphocytes, granulocytes and monocytes. The 

presence of these cells may be necessary for the amplification of T cell response, and 

is therefore a suitable platform for the exploration of IL23A’s effect. Using anti-CD3 

activated T cells derived from PBMC, a proliferative signal on these cells was 

observed from IL23A-containing supernatants derived from gastric epithelial cells 

(Figure 5.6A and 5.6B). Importantly, this enhanced proliferation could be blocked by 

an anti-IL23A neutralising antibody, hence confirming the specificity of IL23A’s 

effect. Unlike anti-CD3 which is a general inducer for T cell proliferation, RUNX3-

induced IL23A resulted in a modest increase in the percentage of proliferative T cell 

population in addition to the dramatic elevation caused by anti-CD3 (Figure 5.5 and 

5.6A) (Frauwirth and Thompson, 2002; Trickett and Kwan, 2003). This interesting 

observation suggests that the modest increase in the percentage of proliferative 

population may be attributed to a unique subset of responsive T cells. Thus, 

identification and purification of this specific subset of responder T cells would 

potentially demonstrate a clearer effect of IL23A derived from AGS cells. 
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As IL23A secretion has been shown to be dramatically induced by RUNX3, 

TNF- and H. pylori, supernatants from cells stimulated by these three activating 

signals would result in greater responsiveness by T cells. However, the drawback of 

using PBMC as a model is that these cells respond strongly to inflammatory stimuli 

(e.g. bacteria) especially in the presence of monocytes (Zareie et al., 2001; Ziegler-

Heitbrock, 2007). This strong immune response caused by bacteria may mask the true 

biological effects of IL23A. Consequently, TNF-- and H. pylori-treated samples 

could not be included in the current experimental setup; the modest differences 

observed for T cell proliferation could be attributed to the low level of IL23A secreted 

by AGS cells in the absence of these inflammatory stimuli (Figure 5.2). To enhance 

the level of IL23A and avoid non-specific effects from PBMC, purification of IL23A 

from the supernatant of gastric epithelial cells will be required to concentrate the 

amount of secreted IL23A in order to induce greater T cell response.   

In addition to the proliferative properties of T cells, measurement of cytokine 

secretion from T cells will also shed light on the effects of IL23A on the different 

subsets of T lymphocytes. Intriguingly, a significant difference was observed for the 

secretion of IFN- but not IL-17 by T cells in response to IL23A (Figure 5.7 and 5.8). 

This is unexpected as IL-23 is critical for the differentiation of IL-17 secreting TH17 

cells (Langrish et al., 2005; McGeachy et al., 2007; McGeachy et al., 2009). These 

data provide further evidence that gastric epithelial cell-derived IL23A plays a 

different role in eliciting T cell response as compared to IL-23 secreted by monocytes.  

In summary, these functional studies further strengthen the secretion of IL23A 

and therefore the importance of its regulation by RUNX3, TNF- and H. pylori in 

gastric epithelial cells. It is possible that RUNX3 is involved in the host inflammatory 
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response against pathogens through the regulation of IL23A secreted by gastric 

epithelial cells. The above phenomenon observed in T cells may reflect the 

communication between gastric epithelial cells and immune cells via IL23A. 

Therefore, we postulate that in addition to its previously reported effects on epithelial 

cell growth and apoptosis, RUNX3 promotes an effective inflammatory response by 

activating IL23A in response to inflammatory signals and infection. Studies have 

reported that efficient secretion of IL23A requires dimerisation with a partner subunit 

(Kopp et al., 2003; Oppmann et al., 2000). For instance, secretion of IL-23 by 

keratinocytes was promoted in transgenic mice that constitutively express IL12B 

(Kopp et al., 2003). However, there is no report to date about the association of 

IL23A with other subunits of the IL-12 family other than IL12B. It is possible that the 

partner subunit of IL23A in gastric epithelial cells has yet to be discovered and the 

identity of this unknown cytokine awaits further investigation. 
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Chapter 6: 

General discussion and future works 
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6.1 Summary of findings 

The current study establishes IL23A to be a novel target gene of the 

transcription factor and gastric tumour suppressor RUNX3 in gastric epithelial cells.  

RUNX3 was found to promote the transcription of IL23A in the majority of gastric 

cancer cell lines tested in this study. Through a combination of biochemical and cell 

biological studies, it demonstrated that RUNX3 binds to three RUNX binding site in 

the proximal IL23A promoter to transactivate IL23A transcription. In elucidating the 

upstream signals that regulates this gene in gastric epithelial cells, it was found that 

the proinflammatory cytokine TNF- and gastric pathogen H. pylori act as potent 

activating signals for IL23A in a wide range of gastric epithelial cells. It was shown 

that TNF- mediates its activation of IL23A via a conserved NF-B site at the 

proximal promoter.  Activation of the NF-B pathway by NOD1 also appears to play 

a role in the transient activation of IL23A transcription following H. pylori infection. 

However, sustained induction of this gene is determined by the activation of SHP2 

pathway and the presence of oncoprotein CagA, thereby revealing an intriguing two-

phase induction mechanism. Importantly, RUNX3 is a critical requirement for a 

synergistic induction of IL23A transcript and protein by TNF- and H. pylori. 

Furthermore, promoter studies and RNAi experiments revealed that RUNX1 plays 

similar but non-identical role as RUNX3 in the regulation of IL23A in gastric 

epithelial cell lines. Although the robust expression of IL23A promoted by RUNX3, 

TNF- and H. pylori identifies gastric epithelial cell as a novel source cell of IL23A, 

it does not appear to be secreted in its known heterodimeric form (i.e. IL-23). 

Nevertheless, the secretion of IL23A is supported by its rapid accumulation following 

the blockade of cellular protein export by Brefeldin A. Furthermore, stimulating the 

human T cells with secreted IL23A derived from AGS cells reveals putative functions 
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for this protein in promoting T cell proliferation and IFN production. Collectively, 

these findings indicate that RUNX3 as well as RUNX1 may play a hitherto 

unappreciated role in modulating mucosal immune response via a direct regulation of 

IL23A during gastric inflammation and infection by H. pylori. As H. pylori-induced 

inflammation represents a major risk factor in gastric cancer, these findings suggest 

RUNX3 may exert its tumor suppressive effect in part through an influence in gastric 

mucosal immunity and inflammation. Based on the data presented in this study, a 

model of RUNX1/3 regulation of IL23A is depicted in Figure 6.1. 

 

 

 

Figure 6.1. A model illustrating the regulation of IL23A by RUNX3 and inflammatory 

signals triggered by TNF- and H. pylori in gastric epithelial cells. ‘TNFR’ and ‘PGN’ 
denote tumour necrosis factor receptor and peptidoglycan, respectively; “” denotes 
transcriptional activation. 
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6.2 Significance of findings and future works 

Host immunity and inflammation are intimately linked with cancer. The long-

held theory of immune surveillance proposes that cells and tissues are constantly 

monitored by an ever-alert host immunity that is responsible for identifying and 

destroying the vast majority of incipient cancer cells, and thus nascent tumour 

(Burnet, 1970; Thomas, 1959). This theory was firmly supported by substantial 

studies from genetically engineered mice and clinical epidemiology, which showed 

that host immunity operates as a significant barrier to tumour formation and 

progression (Bindea et al., 2010; Ferrone and Dranoff, 2010; Kim et al., 2007b; 

Nelson, 2008; Smyth et al., 2006; Teng et al., 2008). On the other hand, tumour-

associated inflammatory response had the unanticipated, paradoxical effect of 

enhancing tumorigenesis, in effecting incipient neoplasias to acquire the hallmark 

capabilities of cancer. Subsequent studies on the intersections between inflammation 

and cancer have produced abundant and compelling evidence of the functionally 

important tumour-promoting effects of host immunity (Colotta et al., 2009; DeNardo 

et al., 2010; Grivennikov et al., 2010; Qian and Pollard, 2010). Given the significance 

of this causal relationship, tumour-promoting inflammation and evasion of tumour 

immunity are now regarded as emerging hallmarks of cancer (Hanahan and Weinberg, 

2011). The growing appreciation of the immunological dimensions of cancer reflects 

the fact that host immunity is a double-edge sword and homeostatic balance of 

immune response is therefore important.  

The strong connection between chronic inflammation and cancer is particular 

apparent in the gastrointestinal tract, where microbial challenge is frequent. The 

monolayer of epithelial cells that lines the gastrointestinal tract not only provides a 

physical barrier but also serves immunoregulatory functions. As gastric cancer is an 
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epithelial-derived disease, understanding the immune-related function of gastric 

epithelial tumour suppressor RUNX3 is therefore of specific relevance. The findings 

presented in this thesis reveal a novel role for RUNX3 in the regulation of the 

cytokine gene IL23A in gastric epithelial cells, thereby implicating a role for RUNX3 

in the modulation of gastric mucosal immunity.  

In elucidating the molecular machinery for the transcriptional regulation of 

IL23A, RUNX3 was found to be critical for the amplification of TNF- activation of 

NF-B pathway. Conversely, RUNX3’s own effect in the absence of exogenous 

stimulation also appears coupled with NF-B. Together; these observations signify a 

strong cooperation between NF-B and RUNX3 as well as RUNX1. Indeed, 

cooperation between classical tumour suppressor such as p53 and immune signaling 

has recently been reported (Puszynski et al., 2009; Schneider et al., 2010; Tergaonkar 

and Perkins, 2007). While the precise mechanism remains obscure, it is noteworthy 

that the RUNX- and NF-B-responsive elements are in close proximity on the IL23A 

promoter, which may enable direct interaction. In future studies, this possibility could 

be addressed by employing a combination of biochemical analyses such as co-

immunoprecipitation of NF-B and RUNX3 proteins, together with functional assays 

such as reporter gene assays. Recent studies have shown that the inhibition of NF-B 

in epithelial cells has an unexpected pro-inflammatory effects and contributes to 

carcinogenesis (Lind et al., 2004; Nenci et al., 2007; Pasparakis et al., 2002; van 

Hogerlinden et al., 1999). Such emerging evidence highlights the intricacies that exist 

within host immunity where the modulating role of RUNX3 on key NF-B targets 

could prove very significant. 
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During gastric carcinogenesis, host immune response and inflammation are 

often initiated by wounding of tissues due to pathogen invasion. Wound healing 

involves not only the clearance of microbes but also enhanced cell proliferation for 

tissue repair and the reconstitution of the barrier system. Failure to do so may perturb 

the homeostatic balance which leads to chronic inflammation, hyperproliferation and 

formation of neoplastic lesions (section 1.2.6); (Coussens and Werb, 2002). A major 

culprit for gastric inflammation and gastric cancer is H. pylori (Suerbaum and 

Michetti, 2002). The positive correlation observed for H. pylori infection and IL23A 

expression in this study implicates IL23A as a component of the innate host defense 

mechanism. This notion is further strengthen by the prolonged induction of IL23A by 

the CagA-positive strain of H. pylori, which confers a higher risk of gastric cancer and 

ulceration (Suerbaum and Michetti, 2002).  

In addition to the gastric epithelial cell-autonomous regulation, the balance of 

host immunity in vivo is delicately maintained by the communication between 

epithelial cells, immune cells and the surrounding stroma (Izcue et al., 2009; 

Shaykhiev and Bals, 2007). A growing body of evidence indicates a 

pathophysiological background for cancer is constituted by the impaired 

communication between immune and epithelial cells of the tissues (Shaykhiev and 

Bals, 2007). The observation that RUNX3-induced IL23A derived from AGS cells 

modulates T cells proliferation and differentiation point to a potential involvement of 

RUNX3/IL23A in the complex communication between epithelial and immune cells. 

In addition, AGS-derived IL23A was shown to modulate the production of IFN- by 

T cells suggests that it may promote the proliferation and differentiation of Type I 

helper T cells (TH1). In future studies, a detailed characterisation of the surface and 

intracellular markers expressed by the proliferating T cells fraction is necessary for 
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the identification of the specific subsets of T cells that respond to IL23A. Their 

identification will in turn enable the purification of the responsive subset of T cells to 

further elucidate the biological effect of gastric epithelial-derived IL23A. This should 

be complemented with assays based on a co-culturing of epithelial cells and immune 

cells, as it mimics the in vivo communication between these cell types that may 

further potentiate the effects of secreted IL23A (Bernhardt et al., 2010; Duell et al., 

2011). Lastly, future studies employing these approaches would be greatly advanced 

by the identification of the putative partner for IL23A. Given the body of evidence 

presented here, a proteomic approach using mass spectrometry can be employed to 

profile the secretome of AGS cells enriched with IL23A-specific antibody to reveal 

the identity of this putative cytokine. 

In addition to the data from human gastric cell lines, murine primary gastric 

epithelial cells were shown to express IL23a transcript upon TNF-treatment (Jason 

Koo, unpublished data). The conservation of this regulatory mechanism in both 

mouse and human strengthens its physiological relevance and produces an additional 

means for downstream investigation of the in vivo function of IL23a in mouse models. 

Of particular interest would be a stomach-specific knockout of IL23a to ascertain the 

in vivo role played by IL23a, which will also shed new light on the function of Runx3. 

In addition, H. pylori’s effects on IL23A in human gastric epithelial cell lines also 

await further validation through the use of murine Helicobacter infection models. 

Two strains of Helicobacter, H. felis and H. pylori have been proven to colonise 

mouse stomachs and lead to chronic inflammation (Chen et al., 1992; Ferrero et al., 

1995; Marchetti et al., 1995; Michetti et al., 1994). By establishing a model of 

Helicobacter infection, the role of IL23a in anti-bacteria immunity and inflammation 

in the stomach could be further established. Lastly, to demonstrate the functional 



132 
 

importance of RUNX1 and RUNX3 in the regulation of IL23A in vivo, a transgenic 

mouse model should be generated in which the Runx3-responsive element in IL23a 

promoter could be conditionally deleted using stomach-specific Cre/loxP 

recombination system.  

To complement the functional study of Runx1/3 regulation of Il23a in mice, 

the clinical significance of this relationship should also be established. This would 

include clinicopathological analysis of human gastric tissues by immunohistochemical 

(IHC) staining to demonstrate the expression of IL23A in the human gastric 

epithelium. Furthermore, as the loss of RUNX3 function has been reported in up to 

80% of gastric cancer cases (section 1.2.4), it will be of clinical relevance to 

investigate if the expression of IL23A in human samples correlates with that of 

RUNX3 expression, in normal and diseases states; and whether it co-occurs with the 

infiltration of leukocytes. Lastly, a comparison between the expression of RUNX3 

and IL23A in H. pyrori-positive and -negative gastric patients would provide further 

evidence for a role of this pathway in host response against this important gastric 

pathogen. 

In conclusion, the findings in this study reveal an immunological aspect of 

RUNX3 function in gastric epithelial cells through the direct regulation of IL23A and 

cooperation with TNF- and H. pylori. It suggests that the loss of RUNX3’s function 

during gastric carcinogenesis may impair the ability of gastric epithelial cells to 

produce IL23A as part of an innate host immune response against pathogen-induced 

inflammation. This would in turn result in ineffectual pathogen immunity, chronic 

inflammation and ultimately gastric neoplasia. As such, a comprehensive 

understanding of biological function of IL23A and the pivotal role of RUNX proteins 
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play may offer a novel therapeutic strategy in preventing H. pylori-induced gastric 

cancer and inflammatory pathologies in the stomach. 
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