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Summary  

miRNAs have been implicated as post-transcriptional regulators of central nervous 

system (CNS) development and function. miR-124 is an evolutionarily ancient, CNS-

specific miRNA. On the basis of the evolutionary conservation of its nucleotide 

sequence and CNS-specific expression in the CNS, miR-124 is expected to have an 

ancient conserved functional role in the nervous system across phyla. This thesis 

describes the context-dependent roles of miR-124 in the control of neural 

development and function in Drosophila melanogaster.  

 

First I report on the investigation of miR-124 function using a targeted knockout 

mutant and present evidence for a role during larval central brain neurogenesis in 

Drosophila melanogaster. I show that miR-124 activity in the larval central brain 

neuroblast lineage is required to support levels of neural progenitor proliferation by 

limiting the expression of anachronism, which encodes for a secreted inhibitor of 

neuroblast proliferation, in the neuroblast lineage.  

 

The second session of this thesis describes the role of miR-124 in adult function and 

present evidence for a role in conferring sexual identity and reproductive fitness, 

apparently acting in both the CNS and the peripheral tissues to influences male 

pheromone production. I show evidence that miR-124 acts in the sex determination 

pathway to control leaky transformer expression. In miR-124 loss-of-function, mutant 

males express elevated level of traF, which leads to aberrant production of a subset of 

male-specific pheromones. As a result, chemical communications are impaired, 

leading to abnormal courtship and aggression behaviors.   



List of Tables 
 

 

List of Tables 

Table 1.1 List of individual miRNAs with a characterized biological function at 
various stages of neural development or neural functions. ......................................... 13	  

Table 1.2 Classes of pheromones and their roles in courtship behavior in Drosophila 
melanogaster ............................................................................................................... 35	  

Table 2.1 Sequences (5’->3’) of primer pairs used in pW25-Gal4-attB2 composite 
cloning. ........................................................................................................................ 49	  

Table 2.2 Sequences (5’->3’) of primer pairs used for miR-124 KO constructs 
generation. ................................................................................................................... 50	  

Table 2.3 Sequences (5’->3’) of primers used in cloning of UTR reporters. ............. 51	  

Table 2.4 Sequences (5’->3’) of primer pairs used in qRT-PCR. .............................. 56	  

Table 2.5 Transgenic flies generated in this work. ..................................................... 57	  

Table 2.6 Fly strains used in gene targeting ............................................................... 60	  

Table 2.7 Fly strains used in MARCM clonal analysis .............................................. 68	  

  



List of Figures 
 

 

List of Figures 

Figure 1.1 Schematics of ends-out gene targeting by homologous recombination. ..... 3	  

Figure 1.2 Site-specific integration by φC31-mediated RMCE. .................................. 5	  

Figure 1.3 Cartoon diagrams showing the biogenesis of miRNAs. .............................. 8	  

Figure 1.4 Alignment of Drosophila miR-124 mature sequence with homologues in 
representative species. ................................................................................................. 19	  

Figure 1.5 Asymmetric division of Drosophila NBs. ................................................. 27	  

Figure 1.6 Type I and Type II NB lineages in Drosophila melanogaster. ................. 31	  

Figure 1.7 Drosophila melanogaster courtship behavior. .......................................... 32	  

Figure 1.8 The sex determination pathway in Drosophila melanogaster. .................. 40	  

Figure 2.1 Illustration of primer design in molecular verification of heterozygous 
mutants. ....................................................................................................................... 53	  

Figure 2.2 Illustration of primer design in molecular verification of viable 
homozygous targeted mutants. .................................................................................... 54	  

Figure 2.3 Illustration of genetic crosses in ends-out gene targeting for a gene on 
chromosome 3. ............................................................................................................ 62	  

Figure 2.4 Illustration of cassette exchange strategy by RMCE. ................................ 64	  

Figure 2.5 Illustration of a genetic cross for the removal of mini-white in miRNA KO 
flies by Cre recombinase. ........................................................................................... 66	  

Figure 3.1 Overview of global miRNA KO project. .................................................. 78	  

Figure 3.2 Schematic showing the pW25-RMCE ends-out gene-targeting vector. .... 80	  

Figure 3.3 Site-specific integration via φC31 integrase-mediated RMCE. ................ 82	  

Figure 3.4 The ‘curing’ of a gene trap by the use of RMCE. ..................................... 84	  

Figure 3.5 Schematics showing pW25-attB and pW25-Gal4-attB1 and pW25-Gal4-
attB2 ends-out gene targeting vectors. ........................................................................ 87	  

Figure 3.6 Expression of miR-124-GFP reporter in the developing CNS. ................. 90	  

Figure 3.7 miR-124 expression in larval central brain using fluorescent in situ 
hybridization. .............................................................................................................. 92	  

Figure 3.8 miR-124 expression in the larval CNS using miR-124 nuclear GFP sensor.
 ..................................................................................................................................... 94	  

Figure 3.9 Expression of miR-124-GFP reporter in the adult brain. .......................... 95	  

Figure 3.10 Expression of miR-124-GFP reporter in the male reproductive system. 97	  



List of Figures 
 

 

Figure 3.11 Schematics showing the genomic loci of various miR-124 alleles used in 
this study. .................................................................................................................. 100	  

Figure 3.12 Verification of loss of miR-124 in miR-124 alleles by single fly PCR and 
qRT-PCR experiments. ............................................................................................. 101	  

Figure 3.13 Viability of miR-124 mutants. ............................................................... 103	  

Figure 3.14 Fertility of miR-124 mutants. ................................................................ 105	  

Figure 3.15 Gross morphology of the embryonic nervous system is not affected in 
miR-124 LOF. ........................................................................................................... 106	  

Figure 3.16 Cell types in the NB lineages are not altered in miR-124 mutant clones.
 ................................................................................................................................... 108	  

Figure 3.17 miR-124 LOF leads to reduction in size of central brain NB lineages. . 110	  

Figure 3.18 Proliferative status of miR-124 mutant type I NB clones. ..................... 112	  

Figure 3.19 Blocking cell death does not rescue reduction in miR-124 clone size. .. 113	  

Figure 3.20 miR-124 regulates anachronism expression. ......................................... 116	  

Figure 3.21 miR-124 target sites on ana 3’UTR are functional. ............................... 118	  

Figure 3.22 anachronism expression miR-124-expressing neuronal lineages. ......... 121	  

Figure 3.23 ANA functions in miR-124 expressing neuronal lineages. ................... 123	  

Figure 3.24 miR-124 limits ana expression in NB lineages to optimal level. .......... 125	  

Figure 3.25 Performance of miR-124 mutants in classical male courtship assay. .... 127	  

Figure 3.26 Performance of miR-124 mutant males in courtship initiation. ............. 128	  

Figure 3.27 Performance of miR-124 mutant males in maintaining courtship drive.129	  

Figure 3.28 Effect of wing removal on copulation success. ..................................... 130	  

Figure 3.29 Performance of miR-124 males in male-male courtship assay. ............. 132	  

Figure 3.30 Courtship choice assay. ......................................................................... 133	  

Figre 3.31 Aberrant pheromone production in miR-124 mutant males. ................... 135	  

Figure 3.32: Effects of cVA perfuming on miR-124 mutant phenotypes. ................ 138	  

Figure 3.33 ana knockdown failed to rescue miR-124 copulation defect. ................ 139	  

Figure 3.34 miR-124 acts in the sex-determination pathway. ................................... 141	  

Figure 3.35 miR-124 sites on tra 3’UTR are functional. .......................................... 143	  

Figure 3.36 Upregulation of tra transcript in miR-124 mutant males. ...................... 145	  

Figure 3.37 Functional rescue of miR-124 mutant phenotypes by tra depletion. ..... 147	  



List of Figures 
 

 

Figure 3.38 Performance of miR-124 males in female mate choice assay. .............. 148	  

Figure 3.39 miR-124 males are less aggressive than control males. ......................... 150	  

Figure 3.40 Performance of miR-124 mutant males in locomotion assay. ............... 151	  

  



List of Abbreviations and Symbols 
 

 

List of Abbreviations and Symbols 

Chemicals and reagents 

dNTP    Deoxynucleoside triphosphate 
EDTA    Ethylene-diamine-tetra-acetate 

HCl    Hydrochloric acid 
LiCl    Lithium chloride 

Gly    Glycine 
MgCl2   Magnesium chloride 

NaCl    Sodium chloride 
PBS    Phosphate buffered saline 

PMSF    Phenylmethylsulfonylfluoride 
SDS    Sodium dodecylsulphate 

Tris   Tris (hydroxymethyl)-aminomethane 
ALH   After larval hatching  

Units and measurements 

°C    Degree Celsius 
µg    Microgram(s) 

µl    Microlitre(s) 
µM    Micromolar 

Ct    Threshold cycle 
bp    Base pair(s) 

g    Gram(s) 
h    Hour(s) 

kb    Kilo base-pairs 
kDa    Lilo Dalton(s) 

M    Molar 
min    Minute(s) 

ml    Mililitre(s) 
mM    Milimolar 

ng    Nanogram(s) 
OD600nm   Absorbance at wavelength 600 nm 

rpm    Revolution per minute 
sec    Second(s) 

U    Unit(s) 



List of Abbreviations and Symbols 
 

 

v/v    Volume per volume 
w/v    Weight per volume 

Others 

ALH   After larval hatching  
Ase   Asence 

BrdU   5-bromo-2’deoxyuridine 
CDS   Coding sequence 

CNS   Central nervous system  
DNA   Deoxyribonucleic acid 

Dpn   Deadpan  
Elav   Embryonic Lethal Abnormal Vision 

et al.    Et alii (and others) 
i.e.    That is 

GMC   Ganglion mother cell 
Insc   Inscuteable  

MARCM  Mosaic analysis of a repressible marker  
Mira   Mirdanda 

miRNA  MiRNA 
mRNA   Messenger RNA 

NB   Neuroblast 
nt   Nucleotide(s) 

ORF   Open reading frame 
PCR    Polymerase chain reaction 

PH3   Phospho-histone H3 
PON   Partner of Numb 

pre-miRNA  Precursor miRNA 
pri-miRNA  Primary miRNA 

Pros   Prospero  
RMCE   Recombinase-mediated cassette exchange  

RNA   Ribonucleic acid 
RNAi   RNA interference 

RT   Reverse transcription 
RT-qPCR  RT-based quantitative polymerase chain reaction  

SD   Standard deviation of the sample  
SDS-PAGE   SDS Polyacrylamide Gel Electrophoresis 



List of Abbreviations and Symbols 
 

 

UAS   Upstream activating sequence  
UTR   Untranslated region  

w   White 
WT   Wild-type  



Introduction 
 

 1 

1 Introduction  

1.1 Gene targeting in Drosophila melanogaster 

Almost a century on since the birth of classical genetics, when Thomas Hunt Morgan 

began using Drosophila melanogaster to establish the chromosome theory of heredity 

[1], this tiny insect has remained one of the most popular model organisms for 

genetic studies. This is partly due to the availability of a wide variety of genetic tools 

for genome manipulations.  

 

Over the last few decades, biological research in Drosophila has been greatly 

facilitated by our ability to manipulate DNA sequences in vivo, thanks to the 

explorations of novel techniques in fly genetics. In particular, the introduction of 

homologous recombination-based gene targeting in 2000 has greatly enhanced the 

repertoire of tools available for genome manipulation in this model organism [2-4]. 

Prior to this, gene deletions relied mainly on conventional chemical mutagenesis or 

the flanking deletion strategy based on imprecise P-element excision or male 

recombination [2-7]. While often effective, the strategy based on chemical 

mutagenesis is relatively inefficient. By contrast, the flanking deletion strategy 

suffers from its strict dependence on the proximity of a P-element to the gene of 

interest. It is, therefore, of limited usefulness in cases where no nearby P-element 

insertions are available or when the gene of interest is close to another gene. The 

advent of gene targeting by ends-out homologous recombination has provided a 

direct way to target specific loci, by creating precise user-defined deletions [8-13].  
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The ends-out homologous recombination strategy is a multi-generation process 

involving the contribution of several enzymatic reactions. A routine ends-out 

targeting experiment typically consists of three major steps. These include the cloning 

of a gene-targeting construct; the generation of a so-called donor fly containing the 

targeting construct and the induction of homologous recombination in vivo to initiate 

gene targeting. This strategy allows the generation of a specific knockout of the gene 

of interest. The steps involved in generating a targeted allele based on this strategy 

are outlined by the schematic overview provided in Figure 1.1.  

 

Using this method, gene specific targeting events can be made in about 4-5 months 

with reported efficiencies ranging from 1 in 200 to 1 in 350,000, depending on the 

size and chromosomal location of the targeted loci [15-16]. However, bearing in mind 

the time and effort needed for the entire gene targeting procedure, improvements 

should be implemented to enhance its efficiency for use in global gene targeting 

projects. 

 

In addition, the current homologous recombination-based gene targeting vectors do 

not allow repeated targeting of a single locus to create the variant alleles of target 

gene. Each variant requires starting from the beginning with a new targeting vector.  
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Figure 1.1 Schematics of ends-out gene targeting by homologous recombination.  

3kb to 4kb homology sequences flanking the target gene are cloned into the targeting 
vector (shown here is the pW25 vector developed by Rong and Golic [11]. P-
element-mediated transformation gives rise to transgenic donor containing the 
targeting cassette. Induction of FLP recombinase is used to excise a circular DNA 
molecule containing the targeting vector, which is then linearized by cleavage with 
the I-SceI endonuclease. The linearized targeting vector can then recombine with the 
chromosomal target locus, replacing the endogenous gene with mini-white and 
generating a mutant heterozygous for the targeted gene. 
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Recently, an integration strategy called recombinase mediated cassette exchange 

(RMCE) has been developed for site-specific recombination [14, 15]. In this system, 

the donor and target sequences are each flanked by inverted recognition sites for the 

bacteriophage φC31 integrase. Double crossover events occurring on both sides of the 

donor and target sequences result in a clean exchange of the target sequence cassette 

with the donor cassette, as illustrated in Figure 1.2. 

 

To this end, the bacteriophage φC31 integrase-mediated RMCE has been shown to 

facilitate directional site-specific transformation, which leads to a clean exchange of 

target cassette with a donor cassette with reasonable efficiency [15]. First developed 

for use in cell culture, RMCE has since been demonstrated in several model 

organisms, including fission yeast, flies and mice [19-22]. Therefore, the RMCE 

strategy may provide a means to overcome some of the limitations of the current gene 

targeting strategy. This would then allow repeated genomic manipulation once an 

initial gene-targeting event has been created at the locus of interest.  
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Figure 1.2 Site-specific integration by φC31-mediated RMCE.  

The target mini-white cassette is flanked by inverted attP sites within a genomic P- 
element, and the donor gfp cassette is flanked by inverted attB sites on a plasmid. 
Crossovers at both ends of the two aligned cassettes result in an exchange of mini-
white for gfp. Alternatively, a single crossover at one end of the aligned cassettes 
creates an intermediate that integrates the entire donor plasmid, resulting in the carry 
over of both mini-white and gfp (intermediate #1). Similarly, a single crossover may 
occur at the other attP/attB pair, resulting in a similar structure in which mini-white is 
inserted to the left of gfp (intermediate #2). Either of the two intermediates may then 
resolve into an RMCE event by a subsequent crossover between the remaining 
attP/attB pair within the intermediate structure. Thick solid line, transcription unit; 
small arrowheads, P-element ends; triangles, att sites (features not drawn to scale).  
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1.2 Biogenesis and Functions of animal miRNAs 

1.2.1 Biogenesis of animal microRNAs  

MicroRNAs (miRNAs) are endogenous non-coding RNAs of ~22 nucleotides (nt) in 

length that regulate gene expression in animals and plants. Animal miRNAs were 

first discovered in 1993 when the small RNA, lin-4, was found to regulate C. elegans 

larval developmental timing through its control on the expression of the lin-14 

messenger RNA (mRNA) [23-24]. Since then, computational predictions and deep 

sequencing efforts have identified hundreds of miRNAs in many multicellular 

organisms, including mammals (Reviewed in [16]).  

 

In Drosophila, transcription of most miRNA genes is carried out by RNA 

polymersase II, resulting in the production of the primary miRNAs (pri-miRNA) with 

a length varying from several hundreds nt to several kilobases (kb). Most pri-

miRNAs exist as autonomous transcript units with a polyadenylated 3’ end and a 5’ 

7-methylguanosine cap [17, 18]. In some other cases, such as intronic miRNA genes, 

the pri-miRNA can be located in another transcript (e.g. [19]).  

 

For the pri-miRNAs that exist as independent transcripts, a stable hairpin structure 

formed by the folding back of the pri-miRNAs is endonucleolytically cleaved by the 

nuclear RNase III enzyme, Drosha, and the double-stranded RNA-binding domain 

(dsRBD) protein, Partner of Drosha (Pasha). Cleavage of the pri-miRNA by the 

Drosha/Pasha complex occurs co-transcriptionally [20], leading to the formation of a 

~70 nt long hairpin precursor miRNA (pre-miRNA). In cases where pri-miRNAs are 

derived from short intronic hairpins, the so-called mirtrons, the nuclear biogenesis by 

Drosha cleavage is bypassed. Instead, the splicing machinery that releases pre-
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miRNA-like hairpins from the host transcripts results in the generation of these 

intron-derived miRNAs [21, 22]. 

 

Regardless of the nature of the molecular processing of the pri-miRNAs, the pre-

miRNAs formed are then exported into the cytoplasm by the combined efforts of 

Ran-GTP and the export receptor Exportin-5 [23]. This allows the cleavage of the 

precursor miRNA by the cytoplasmic Dicer-1/Loquacious complex [24, 25]. This 

then gives rise to the mature miRNA:miRNA* duplex of ~22 nucleotides, where 

miRNA* denotes the passenger strand that is degraded, in most cases, in the final step 

of miRNA processing. Finally, the mature single-stranded miRNA is incorporated 

into an Argonaute (Ago) protein-containing RNA-induced silencing complex (RISC) 

[26-28] (Figure 1.3).  
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Figure 1.3 Cartoon diagrams showing the biogenesis of miRNAs.  

Transcription of the miRNA locus by RNA polymerase II results in the primary 
miRNA (pri-miRNA), which is processed by the Drosha/Pasha complex into 
precursor miRNA (pre-miRNA). Followed by exportation from the nucleus to the 
cytoplasm by Exportin-5, the pre-miRNA is further processed by Dicer and 
Loquacious into a miRNA:miRNA* duplex (where miRNA* duplex denotes 
passenger strand). Only the mature miRNA is loaded on the Agronaute-containing 
complex called the RNA-induced silencing complex (RISC). 
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1.2.2 Regulation of miRNA biogenesis  

Similar to protein-coding genes, production of miRNAs can be regulated at both 

transcriptional and post-transcriptional levels.  

 

The transcriptional regulation of pri-miRNA genes is largely similar to that of 

protein-coding genes. These involve recognition of enhancer and terminator elements 

by the RNA polymerase-containing transcription machinery [17, 18], and motif-

specific recognition of transcription factors [29].  

 

By contrast, post-transcriptional control of miRNA biosynthesis depends mainly on 

the mechanisms that regulate the cleavage of the pri-miRNA by the Drosha/Pasha 

complex. One well-characterized example is negative regulation of the mouse 

miRNA, let-7, by its target LIN-28. Competitive binding of LIN-28 to let-7 prevents 

binding of let-7 to Drosha, therefore inhibiting Dicer-mediated cleavage of let-7 [30-

32]. In addition, LIN-28 induces the uridylation of pre-let-7 at its 3’ end, blocking its 

processing by Dicer and leading to destabilization of uridylated pre-let-7. 

Suppression of pre-let-7 by LIN-28 has been shown to be important for mouse 

embryonic stem cell programming [33-35].  

1.2.3 Mechanisms of actions of animal miRNAs 

miRNAs act as post-transcriptional regulators of gene expression. In animals, 

miRNAs generally interact with target mRNAs via imperfect complementary base 

pairing to target sites in the mRNA 3’ untranslated region (3’UTR).  
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Over the last 10 years or so, computational algorithms have been developed for the 

prediction of miRNA targets. In general, factors such as the sequence determinants of 

the target sites, the thermodynamic stability of the miRNA:mRNA duplex and 

evolutionary conservation of the site within the 3’UTR sequences form the basis of 

such prediction programs [31, 45-46]. Based on these criteria, most miRNAs have 

been predicted to target hundreds of protein-coding genes, while an estimated 30 – 

50% of all animal protein-coding transcripts are targeted by at least one miRNA.  

 

While factors such as the thermodynamic stability of the miRNA:mRNA duplex and 

evolutionary conservation of the site are more straightforward, sequence determinants 

of miRNA target sites in animals are a bit more complex. In fact, there are three 

different categories of animal miRNA target sites, namely the ‘canonical’, the 

‘marginal’ and the ‘atypical’ sites (reviewed in [36]). The so-called ‘seed’ region, 

which refers to nt 2-7, 2-8 or 1-7 of the miRNA, is thought to provide the most 

specificity in miRNA:mRNA pairing [37]. In fact, the 5’ region is the most highly 

conserved portion of metazoan miRNAs [38].  In canonical miRNA target sites, a 7-

mer perfect complementary pairing is formed between the target sequence and 

sequences within the seed region of miRNA molecule. By contrast, the so-called 

marginal miRNA sites refer to 6-mer complementary matches to nt 2-7 or 3-8 of the 

miRNA seed region, which typically have reduced efficiency. In atypical sites, 

different forms of 3’ pairings, including 3’ supplementary sites in which 

complementary pairing at nt 13-16 supplements an existing 5’ seed match, and 3’ 

compensatory sites in which 3’ pairing compensates a mismatch in the seed region, 

are thought to contribute positively to miRNA:mRNA interaction [37, 39].  
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In most cases, formation of miRNA:mRNA duplex within the ribonucleoprotein 

(RNP) complex, the RNA-induced silencing complex (RISC), results in repression of 

mRNA expression through destabilization of the target mRNA through deadenylation 

or cleavage by Argonaute, the core effector protein of RISC, RNase activity, and/or 

translational repression (reviewed in [36, 40, 41]).  

1.2.4 Biological functions of animal miRNAs 

miRNA functions have been identified in many biological phenomena; particularly 

those associated with dynamic cellular and/or developmental processes such as 

embryonic development and stem cell differentiation. Studies have shown that 

animals lacking the functions of all miRNA show severe defects at early stages. In C. 

elegans, while dicer-1 mutants shows defects in germline development [42][51-52], 

loss of both maternal and zygotic dicer-1 leads to embryonic lethality. Since Dicer is 

one of the core proteins required for the biosynthesis of most miRNAs, these studies 

suggest that, at least, some miRNAs are essential for basic animal survival [43]. 

Similarly, in Drosophila, dicer-1 mutant germline stem cells display cell division 

defects and fail to maintain stem cell fate [42, 44]. In zebrafish, dicer-1 mutants 

display a general growth arrest and die by 2–3 weeks of age [45]. Conditional 

knockout of the mouse dicer leads to impairment in the ability of embryonic stem 

cells to proliferate [46], and failures of both embryonic stem cell and T-cell lineages 

to differentiate [58-59]. Together, these studies demonstrate the importance of 

miRNAs during animal development.  
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1.3 Roles of miRNAs in neurogenesis and beyond 

Given the complexity of the nervous system and the vast number of genes and 

signaling molecules required for the proper architecture and wiring of the nervous 

system, the central nervous system (CNS) development and function are likely to be 

important targets of miRNA action [60-61]. In addition, the brain is a rich source of 

miRNAs expression. Recent miRNA expression profiling experiments have revealed 

that a significant fraction of miRNAs are highly enriched or specifically expressed in 

the nervous system [31, 62-63]. Furthermore, expression of miRNAs is tightly 

regulated during brain development [65-66]. Together with the fact that a given 

miRNA is capable of targeting hundreds of target mRNAs, these initial observations 

suggest that the neuronal miRNA pathways could provide an additional layer of 

complexity in the regulation of neuronal gene expression and in the fine tuning of 

neuronal functions.  

 

Numerous studies reported over the last decade have provided many examples of 

miRNA functions at various stages of neural development, ranging from the early 

differentiation of neurons, the development of dendritic spines and dendrites to 

plasticity in the control of neuronal functions and animal behaviors. Key examples of 

individual miRNAs with specific roles in the different stages of regulation are listed 

in Table 1.1.  
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Table 1.1 List of individual miRNAs with a characterized biological function at 
various stages of neural development or neural functions.   

miRNA Neuronal function Target Organism Reference 

miR-7 Photoreceptor 
differentiation 

Yan fly [47] 

miR-8 neurodegeneration Atrophin-1 fly [48] 
miR-9a SOP specification Seneseless fly [49] 
miR-9 Neuronal differentiation Foxg1 rodent [50] 
miR-9 Neuroadaptation to alcohol Bk rodent [51] 
miR-9 neurogenesis Fgf signalling Zebrafish [52] 
miR-124 Neuronal differentiation PTBP1 rodent [53] 
miR-124 Adult neurogenesis Sox9 rodent [54] 
miR-124 Neuronal differentiation REST, 

Ephrin-B1 
rodent [55] 

miR-124 Neurite growth RhoA P19 cells [56] 
miR-124 Neuronal differntiation SCP1 chick [55] 
miR-124 Dendritic branching ? fly [57, 58] 
miR-124 LTF CREB Aplysia [59] 
miR-124 Cocaine-induced plasticity CREB, 

BDNF 
rodent [60] 

miR-132 Dendrite development Pp250GAp rodent [61] 
miR-132 homeostasis MeCP2 rodent [62] 
miR-132 Circadian clock RFX4 Rodent [63] 
miR-134 Spine development Limk1 rodent [64] 
miR-134 Dendrite development Pum2 rodent [65] 
miR-200 Olfactory neurogenesis ? Rodent/ze

brafish 
[66] 

miR-219 Circadian clock SCOP rodent [67] 
miR-273 Chemosensory neuron 

differentiation 
Die-1 worm [68] 

miR-279 Olfactory neuron 
specification 

Nerfin-1 fly [69] 

miR-279 Circadian clock Upd fly [70] 
miR-430 Neuronal morphogenesis Zygotic 

transcript  
zebrafish [71] 

LTF: long term facilitation 
?: unknown 

SOP: sensory organ precursor 
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1.3.1 miRNAs and neural differentiation 

The first experimental evidence supporting the roles of miRNAs in the nervous 

system comes from studies involving the genomic ablation of dicer, which results in 

an ablation of almost all miRNAs. For example, in zebrafish, despite the ability to 

initiate early neuronal differentiation, dicer-1 mutants display severe defects in 

terminal differentiation of neuronal subtypes. Interestingly, these early 

morphogenesis defects can be largely rescued by re-introduction of a single miRNA 

family, miR-430 [72]. Similar early embryonic depletion of miRNAs in mouse 

neocortical progenitors through Dicer ablation has no effect on neuronal progenitor 

proliferation, but results in impaired differentiation of newborn neurons, leading to 

defective postnatal cortical layering [73]. Specific depletion of Dicer in mouse 

olfactory progenitors gives rise to abnormal terminal differentiation of developing 

olfactory progenitors in both zebrafish and mouse. Strikingly, this phenotype is 

phenocopied when a single miRNA family, the miR-200 family, is inhibited [66]. 

These studies point towards a role of Dicer, and therefore, miRNAs as a whole, in 

early development of nervous systems in the model organisms studied.  

 

However, interpretation of dicer mutant phenotypes is complicated by two major 

caveats. Firstly, multiple studies have suggested that loss of dicer function, especially 

at later embryonic stages, results in increased apoptosis [74, 75]. Furthermore, the 

spectrum of dicer mutant phenotypes does not overlap completely with those 

associated with mutants of other components of the miRNA biosynthetic pathway, 

such as dgcr8, suggesting that there are probably other biological functions of Dicer 

[76].  
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While the vertebrate dicer mutant studies, such as those mentioned previously, seem 

to suggest that miRNAs are critically involved in the proper control of differentiation 

for subpopulations of neurons, they are largely dispensable for early neural cell fate 

decisions. By contrast, in invertebrates such as Drosophila and C. elegans, individual 

miRNAs have been shown to play instructive roles in neuronal specifications [68, 69, 

77]. For example, the Drosophila miR-9 gene has been shown to have an early 

instructive role in neural patterning by inducing sensory organ precursor formation 

[78]. However, its mouse counterpart is required in the differentiation of a 

subpopulation of neuronal cells, called the Cajal-Retzius cells, but not for the 

induction of its neural progenitors [79].  

 

Another miRNA that is well characterized for its role in differentiation is the miRNA, 

miR-124, which will be discussed in a separate section later on.  

1.3.2 miRNAs and dendrite growth 

In both vertebrates and invertebrates, a highly organized network of synaptic contacts 

forms the structural basis for neuronal connectivity. The formation of synaptic 

contacts involves the outgrowth of axons and dendrites as neurons start to explore 

their environment for contact information with prospective partner neurons. In 

particular, the development of dendrites is a highly orchestrated event achieved by the 

coordination of activity-dependent gene expression. This process is controlled 

transcriptionally, through new protein synthesis, and post-transcriptionally, through 

modulations on the local translation of mRNAs stored within neural processes, such 

as the dendritic shaft and spines [80, 81].  
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Recent studies have reported the detection of both miRNAs and pre-miRNAs in 

synaptoneurosomes, which are biochemical preparations of synaptic membranes, 

indicating a potential role of miRNAs in the post-transcriptional control of 

dendritically localized mRNAs [82-84]. In addition, a number of miRNA promoter 

regions were found to be occupied by a master regulator of dendritic growth, the 

activity-dependent transcription factor CREB [85]. More recently, evidence 

supporting the significance of miRNAs in the control of dendritogenesis was 

provided by genetic studies of mutants of the miRNA biogenesis pathway in both 

vertebrates and invertebrates [74, 86]. In Drosophila, a strong genetic interaction was 

found between components of the miRNA biosynthesis pathway and the fragile X 

mental retardation protein (FMRP), an RNA binding protein acting as a suppressor of 

local mRNA translation in the synapto-dendritic compartment [87-89]. For example, 

several studies reported that the interaction between FMRP and Ago1, a key protein 

in the miRNA RISC complex, is crucial for synaptogenesis [87].  

 

The first example of a miRNA-mediated local regulation on protein synthesis at the 

synapse was provided by studies on the roles of a mammalian brain-specific miRNA, 

miR-134. In rat cultured hippocampal neurons, miR-134 is found to be co-localized 

with a protein kinase called Limk1, the Lim-domain containing protein kinase 1, in 

the synapto-dendritic compartment. Limk1 is a positive regulator of actin cytoskeletal 

dynamics in the dendritic spines, and is involved in control of dendritic spine 

morphology. miR-134 acts negatively on the translation of limk1 mRNA, repressing 

Limk1 local synthesis. In turn, downregulation of Limk1 leads to reduction in the size 

of dendritic spines. Since dendritic spines are the postsynaptic sites of excitatory 

synaptic transmission, this results in a restriction on the development of excitatory 
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synapse formation. By contrast, extracellular stimuli such as the brain-derived 

neurotrophic factor, BDNF are released in response to synaptic stimulations. These 

factors act upon neurons and relieve miR-134 inhibition on Limk1 translation [64]. 

This provides a bidirectional switch in the regulation of synaptic plasticity by miR-

134 activity.  

 

Other miRNAs that have been linked to the control of dendritic spine morphology are 

listed in Table 1.1.  

1.3.3 miRNAs and animal behavior 

miRNAs has been implicated in the fine-tuning of animal behavior, especially those 

involving neuroadaptive responses of post-mitotic neurons. The types of animal 

behaviors shown to be regulated by miRNAs include learning and memory [90], 

circadian behavior [70, 91, 92] and ethanol tolerance [51]. However, our current 

knowledge about the roles of individual miRNA in the control of animal behaviors 

has been largely based on what I would call ‘nomination’ studies. For example, based 

on in silico correlation analyses on the differential expression pattern of mouse 

hippocampal miRNA observed in four mouse inbred strains with phenotypic data and 

mRNA expression obtained in the various strains, the authors in one study postulated 

potential roles of specific miRNAs in learning and memory, exploration and anxiety 

behavior [90].  

 

Nevertheless, a handful of in vivo studies have provided detailed characterization of 

the roles of specific miRNAs in various behavior controls. For example, 

intraventricular infusion of an antagomir against miR-219, one of the brain-specific 

miRNAs found in mammals, results in significant lengthening of circadian period in 
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mouse, based on wheel-running behavioral rhythm measurements [91]. In 

Drosophila, miR-279 has been shown to control rest:activity rhythms of the animal 

by targeting a component of the JAK/STAT signaling pathway, Unpaired (Upd) [70]. 

With the identification of a set of conserved miRNAs with cyclical expression pattern 

in the Drosophila brain [93], it is likely that many other miRNAs might be involved 

in circadian rhythms. However, behavioral and physiological analysis of genetic 

mutants of these miRNAs will be required for a comprehensive understanding of their 

physiological functions.  
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1.4 The conserved miR-124 gene in animals  

1.4.1 Sequence of miR-124 across species 

Among the animal miRNAs implicated in CNS development miR-124 has been the 

focus of considerable interest. In Drosophila and C. elegans, miR-124 is transcribed 

from a single genetic locus, whereas in humans (Homo sapiens) and mouse (Mus 

musculus), it is encoded by three distinct genes and by six in zebrafish [94-96]. 

Despite the differences in gene numbers, the mature sequence of miR-124 is deeply 

conserved across species, with almost exactly the same nucleotide sequences found 

from C. elegans to Drosophila to mouse, and to humans [97] (Figure 1.4).  

 

In addition, unlike many other miRNAs, which share the same or similar seed 

sequence, the seed sequence (shown in red in Figure 1.4) of miR-124 is unique among 

all the known miRNAs in animals.  

 

 

Figure 1.4 Alignment of Drosophila miR-124 mature sequence with homologues 

in representative species.  

The 21-, 23-, 20- and 20-nt mature transcript sequences of C. elgans (cel), 
Drosophila melanogaster (dme), Mus musculus (mms) and Homo sapiens (hsa), 
respectively are aligned from 5’ to 3’. The 5’ nt-2-8 representing miR-124 seed 
sequences are highlighted in red. Sequences were obtained from the miRBase website 
[97].  
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1.4.2 Expression of miR-124 across species  

Expression of miR-124 across phyla has been highly conserved. To date, most, if not 

all, studies on miR-124 expression suggest that miR-124 is specifically expressed in 

the CNS of all animal models examined [37, 53, 55, 98-101].  

 

In addition, in all organisms in which it has been studied, miR-124 is the most 

abundant miRNA in the CNS, accounting for 25-48 % of all brain-expressed 

miRNAs in mouse [102, 103], and about 30-40% in Drosophila [22].  

 

The subtypes of cells that express miR-124 are similar across the different organisms. 

Studies in mouse have reported the expression of miR-124 in neurons but not in 

astrocytes, and that the level of miR-124 increases over time in the developing NS 

[104-106]. It continues to be expressed into mouse adulthood. Similarly, in 

Drosophila, this miRNA was also reported to be specifically expressed in the neurons 

but not in glia cells [37]. Additionally, the level of miR-124 expression increases as 

neurogenesis proceeds in the developing Drosophila embryonic and larval CNS [22]. 

While the subtypes of neurons expressing miR-124 have not been identified in most 

organisms, in Aplysia californica and in C. elegans, its expression is restricted to 

sensory neurons [59, 107].  

 

1.4.3 Roles of miR-124 during NS development and in adult functions 

Over the past few years, there have been several reports on the roles of miR-124 in 

different model organisms, and depending on the model organism studied, miR-124 

functions have been implicated in various stages of neural development, ranging from 
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the early differentiation of neurons, the development of dendrites to plasticity in the 

control of neuronal functions and animal behaviors.  

 

Most studies on miR-124 functions have been based, largely, on miRNA 

overexpression or depletion using anti-sense oligonucleotides. They have reached 

different conclusions, particularly pertaining to the roles of this miRNA in 

neurogenesis and in the control of dendrite growth and morphology [73-75, 77-78, 

119, 124-129].  

1.4.3.1 miR-124 in neurogenesis 

To date, analysis of miR-124 in vertebrates mainly point towards its roles as a 

positive regulator of neural differentiation and a negative regulator for neural 

progenitor differentiation via repressing several negative regulators of the neuronal 

differentiation pathway.  

 

This conclusion has been supported by evidence from several independent studies 

using both in vitro and in vivo differentiation models. These studies have identified 

various molecular targets of miR-124, including the RNA splicing regulator PTB1, 

the SCP1 phosphatase, the transcription factor SOX9 and the EphrinB1 receptor. 

While the different targets have been shown to be functionally relevant in the various 

contexts of studies, their underlying molecular and cellular mechanisms diverge on 

the inhibition of neuronal differentiation [73-75, 115, 125, 130]. However, an 

independent study using the chick spinal cord as an in vitro differentiation model 

failed to observe consistent findings [99]. Details of these experiments will be re-

visited again in Chapter four of this thesis. Nevertheless, whether mammalian miR-

124 promotes neuronal differentiation remains unambiguous at the moment. Studies 
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performed in vivo using genetic mutants that completely remove individual miRNA 

function may provide the means to further resolve the current ambiguity.  

 

No studies have been reported on the role of miR-124 in Drosophila neurogenesis 

until the last quartile of the total duration of this thesis work.  Again, these will be 

discussed in the next two chapters of this thesis.  

1.4.3.2 miR-124 in dendrite growth and morphology control  

In addition to its role in neurogenesis, miR-124 has been shown to be involved in 

neurite and dendrite growth in Drosophila. However, results from the literature have 

been largely inconsistent. In one study, it was demonstrated that ectopic expression of 

miR-124 in Drosophila sensory neurons led to reduction in dendritic branching [58]. 

However, the reverse was not observed in miR-124 loss-of-function analysis. From 

extensive analysis of a genetic null miR-124 mutant, Sun et al. reported increased 

dendrite variations instead of increased dendritic branching, as would have been 

expected from the ectopic expression study [57].  

 

Consistent with the second report, studies in the mouse using model cell lines have 

demonstrated a growth-promoting role for miR-124. The authors have shown that in 

both differentiating embryonic cell P19 cells and in primary cortical neurons, miR-

124 targets the cell division cycle 42 (Cdc42) mRNA and deactivating ras-related C3 

botulinum toxin substrate 1 (Rac1) of the Rho GTPase family. Downregulation of the 

Rho GTPase family led to reduction in F-actin density and a positive stimulation on 

tubulin acetylation and cytoskeletal reorganization. The overall effect was positive 

stimulations on neurite outgrowth [56].  
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Again, further examination of genetic null mutants in the various model organisms 

would be required for a better understanding of the reasons behind the apparently 

conflicting results reported in the literature. 

1.4.3.3 miR-124 and animal behavior 

Despite the conservation of high-level neuronal-specific expression across phyla, 

very few gross behavioral defects related to NS functions have been observed in null 

mutants from multiple species ([57, 108] and this thesis). 

 

Nevertheless, recently, a role of miR-124 in activity-driven plasticity has been 

reported in the marine snail, Aplysia californica [59], Similar to its expression in C. 

elegans, miR-124 expression in Aplysia californica is also restricted to sensory 

neurons. More specifically, Aplysia miR-124 was found exclusively presynaptically 

in the sensory-motor synapse where it targets CREB, an important activity-dependent 

transcription factor implicated in synaptic plasticity and in learning and memory in 

many animals. Downregulation of CREB led to reduction in serotonin release, thus 

constraining serotonin-induced long-term facilitation at the synapse. Strikingly, a 

coherent feedforward loop appears to exist since the authors have also found an 

inhibition of serotonin on miR-124 biogenesis. Repression of miR-124 production by 

serotonin would in turn relieve the repression of this miRNA on CREB, leading to an 

increase in the specificity of the synaptic response. This is the first demonstration of a 

functional role of miR-124 in mature neurons physiology across phyla.  

 

A more recent study has identified a role of miR-124 in learning behavior and social 

interactions in mouse [109]. In this study, the authors characterized the behavior 

phenotypes of genetic null mutants for the mouse EPAC proteins, which are guanine 
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nucleotide exchange factors and intracellular receptors for cyclic AMP, and found 

that miR-124 expression was restricted by the expression of EPAC proteins. This was 

mediated through an activation of mouse miR-124 promoter by EPAC-induced 

activation of the Rap1 protein. In epac null mice, miR-124 expression was elevated, 

which in turn repressed the translation of one of its target, Zif268, an EGF-family 

transcription factor, leading to severe defects in synaptic transmission, spatial 

learning and social interactions in these animals. All the phenotypes associated with 

epac null mice were rescued when miR-124 was depleted simultaneously, 

demonstrating a role of the mouse miR-124 in the regulation of these processes. 

 

Given the high level of expression of miR-124 in the adult NS, it is likely that this 

miRNA is involved in the control of potentially many other types of behaviors. 

Careful analysis of genetic null mutants or spatial and temporal-specific in vivo 

manipulations of miRNA level would be required to address such possibilities.  
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1.5 Neurogenesis in Drosophila melanogaster 

In Drosophila, the cells in the CNS are produced by neural progenitor cells known as 

neuroblasts (NBs). There are two separate phases of neurogenesis during Drosophila 

development. The first phase takes place during stage 9-14 of embryogenesis. This 

involves the specification and delamination of NBs from specialized regions called 

the neuroectoderm, which subsequently divides in a stem cell-like fashion to generate 

primary neurons [110]. During late embryogenesis, most of the NBs enter a transient 

quiescent stage. They re-enter proliferation during the second stage of neurogenesis, 

which begins at late first instar larval (L1) /early second instar larval (L2) stage and 

lasts throughout larval stage till early pupal stage. In the second phase, re-activated 

NBs continues to divide in a stem cell-like manner to generate secondary neurons that 

make up the bulk of mature neurons in the pupal and adult NS [111] [112].  

1.5.1 Asymmetric division of Drosophila NBs 

Both embryonic and larval NBs utilize the same core mechanisms of asymmetric cell 

division during proliferation. In both cases, NBs undergo repeated rounds of self-

renewing divisions in a stem cell-like manner. Each division generates a larger 

daughter cell that retains the NB identity and a smaller daughter cell, called the 

ganglion mother cell (GMC), which divides once to generate two post-mitotic 

daughter cells that subsequently differentiate into two neurons and/or glia.  

 

As shown in Figure 1.5, the asymmetric division of NBs involves the asymmetric 

localization of mitotic spindles and cell fate determinants. During late interphase, a 

molecular complex consisting of the proteins Inscuteable (Insc), the Partition 

defective (Par) – Bazooka (Baz) - Drosophila atypical protein kinase C (DaPKC) 

signaling cassete and the Partner of Insc (Pins)-containing signaling cassette is 
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formed at the apical cortex of the dividing NB [113-117]. The maintenance of the 

apical protein complex leads to displacement of mitotic spindle towards the basal 

cortex and the establishment of an asymmetric spindle during anaphase-telophase, 

where the apical half is longer than the basal half. Together, these result in a cell size 

asymmetry between the larger apical NB and the smaller basal GMC [118-120]. In 

addition, components of the apical protein complex together with two coiled-coil 

adaptor proteins, Partner of Numb (Pon, an adaptor for Numb) and Miranda (Mira, an 

adaptor for Prospero and Brat) are also responsible for the basal localization of cell 

fate determinants, including Numb, Prospero and Brain tumor (Brat). In addition, 

basal localization of the RNA binding protein, Staufen (Stau) also results in the basal 

segregation of prospero mRNA [121-127]. As a result, at the end of NB division, 

these cell determinants are preferentially segregated into the smaller GMC daughter 

cell.  
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Figure 1.5 Asymmetric division of Drosophila NBs.  

NBs undergo asymmetric division to generate a larger daughter cell that retains its 
own identity and a smaller daughter cell, called the ganglion mother cell (GMC). The 
GMC then divides terminally to produce two smaller post-mitotic cells, which 
subsequently differentiate into two neurons and/or glia. The asymmetric division of 
NB is the combined effect of the establishment of a multi-protein complex, including 
the proteins Inscuteable, the Bazooka-Par6-aPKC complex and Pins; the localization 
of neural cell fate determinants, including Brat, Prospero and Numb and their adaptor 
proteins Miranda and Partner-of-Number (Pon). NBs can be identified by the 
expression of transcription factors such as Deadpan (Dpn) and Worniu (Wor), while 
GMCs by Prospero, Numb or Pon, mature neurons by ELAV and glia cells by Repo.  
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1.5.2 The first phase of neurogenesis in Drosophila 

The early development of insect nervous system is different from that in the 

vertebrates. In the latter, the primordium of the nervous system, the neural tube, is 

formed by the centerwards folding of the entire neurectoderm. In Drosophila, neural 

progenitors are scattered, individual cells that segregate from the neurectodermal 

layer by a process called delamination. This is a feature shared by neurogenesis in all 

insects. Delamination refers to a morphogenetic movement in which the presumptive 

neuroblasts constrict apically and lose contact with the neighboring cells before 

sliding into the interior of the embryos. Neurectodermal cells that remain at the 

surface do not contribute to the insect CNS, but form the epidermis instead.  

 

The decision to adopt an epidermal or neuronal fate is controlled by two classes of 

genes, the neurogenic genes and the proneural genes, each with opposing activities. 

Mutations in the neurogenic genes, such as Notch, Delta, big brain, shaggy and 

components of the Enhancer of split gene complex [E(SPL)-C], result in the 

formation of a highly hyperplastic CNS with the transformation of ectodermal cells 

into NBs. Death of the mutant embryos is the eventual outcome [111]. By contrast, 

mutations in the proneural genes, such as daughterless, ventral nervous system 

condensation defective (vnd) and components of the achaete-scute complex (AS-C), 

including achaete, scute, lethal of scute and asense, lead to a hypoplastic CNS with 

supernumerary epidermoblasts at the expense of functional NBs. The degree of 

severity of the mutant phenotype varies, depending on the genes that are affected 

[128, 129].  
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In addition, equivalence cells within the neurectoderm are clustered in groups of 5-6 

cells to form discrete cell populations called pronerual clusters. During delamination, 

another mechanism known as lateral inhibition ensures that only one cell from each 

proneural cluster will eventually become a NB. At the initial stage of cell fate 

acquisition, all the cells in the proneural clusters express both neurogenic and 

proneural genes. However, positive feedback resulting from the interactions between 

the neurogenic and proneural genes leads to the reinforcement of proneural gene 

production in the prospective NB that has initiated neurogenesis. As a result, the 

increasing concentration of proneural proteins within the prospective NB triggers the 

transcription of Delta. Delta encodes the epidermalizing-signaling molecule, which 

binds to and activates its receptor Notch that is expressed on its adjacent cells. The 

activation of the Notch pathway in the surrounding cells suppresses transcription of 

proneural genes in these cells. This reinforces the epidermal cell fate within the cells 

surrounding the presumptive NBs.  Interestingly, despite initial uniform levels of AS-

C, Notch or Delta among all the cells within the neurectoderm, the selection of a NB 

from a proneural cluster is not random and there is always a specific position within 

the cluster where a NB will arise [130]. Recent studies have suggested possible 

contributions by the expression of regional specific factors such as the Wingless and 

the epidermal growth factor receptor (EGFR) pathways in the modulation of 

neurogenic and proneural protein activities [131].  

1.5.3 The second phase of neurogenesis in Drosophila 

As mentioned earlier on, majority of the embryonic NBs become quiescent at the end 

of embryogenesis and proliferation is reinstated at the onset of larval development.  

Similar to embryonic NBs, central brain larval NBs undergo repeated rounds of 

asymmetric division to maintain the stem cell-like NBs and to generate the 
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intermediate progenitors, the GMCs. Multiple rounds of NB division produce 

clonally related populations of neurons and glia. Unlike embryonic NBs, which have 

a limited self-renewing capacity and become progressively smaller with each round 

of division, larval central brain NBs grow to their original size at the end of each 

division and is therefore capable of generating hundreds of daughter cells  [136, 156]. 

This second phase of NB proliferation generates the neurons that make up the bulk of 

the adult CNS [132]. Larval brain NBs are classified as type I or type II depending on 

their proliferative characteristics (Figure 1.6). Type I NBs divide repeatedly to 

produce a series of GMCs that each divides once more to produce two post-mitotic 

progeny, which differentiate subsequently to two neurons and/or glia cells. Type II 

NB lineages differ in that the intermediate GMC progenitors, the so-called 

intermediate neural progenitors (INPs), undergo multiple rounds of asymmetric 

division to self-renew and produce GMCs that will typically generate two neurons. 

This transit amplification process produces larger clones from type II NB. Type I 

NBs are more prevalent in larval central brain while only 8 type II NB lineages per 

brain lobe, mainly located at the dorsal-medial-posterior region of the central brain, 

have been identified [133-135]. The difference in type I and type II identities is 

determined by the differential expression of a subset of transcription factors, which 

regulate proliferation potential during neurogenesis in these neural progenitor cells 

[136-138].  
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Figure 1.6 Type I and Type II NB lineages in Drosophila melanogaster. 

During each asymmetric division, a type I NBs divides to produce a larger cell that 
retains its own identity and one GMC that divides once more to produce two post-
mitotic progeny, while a type II NB divides to generate one intermediate neural 
progenitor (INPs), which divides asymmetrically to self-renew and produce one 
GMC that generates two neurons. This transit amplification process produces larger 
clones from type II NB.  
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1.6 Drosophila courtship behavior  

Drosophila courtship behavior consists of a series of stereotypical sequence of 

behavioral steps performed by the males (Figure 1.7). Once a conspecific female is 

detected, the male quickly orientates towards her abdomen and chases after her as she 

runs away, extending and vibrating the wing that is nearer to her to generate the so-

called courtship song while tapping and licking her genital before curling his 

abdomen to attempt copulation. Once courtship is initiated, whether to mate or not 

depends on the female. By contrast, a typical wild-type female makes her decision 

based on two major factors, whether the male is presenting the species-specific 

courtship song and whether the male is presenting the proper cocktail of pheromone 

compounds. If the female is receptive, she will slow down and allow the male to 

mount (reviewed in [164-165]).  

 

 

Figure 1.7 Drosophila melanogaster courtship behavior.  

Video snapshots showing the stereotypical courtship behaviors of the male fly. (A) 
Abrupt turning of male towards courtship target and circling of male around the 
target; (B) Unilateral vibration of wing nearest towards the target to generate the 
species-specific courtship song; (C) Tapping of the target and licking of the target 
genitalia; (D) Abdominal curling of male to attempt copulation with the target; (E) 
Mounting of male onto the target to copulate.  
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1.6.1 Roles of chemical communications in Drosophila courtship behavior 

Chemical communication between individual Drosophila is important for social 

behaviors required for reproduction and survival, such as courtship and aggression.  

 

With respect to courtship behavior, while it has been shown that Drosophila males 

rely on several chemosensory cues, such as vision, olfaction and gustation, for the 

initial identification of a potential courtship target, a large body of evidence has 

suggested pheromonal communication as the forefront signal that induce male 

courtship behavior [139-142]. Defects in gustatory or olfactory signaling have been 

shown to hinder male courtship behavior [143, 144]. For examples, males of the pox 

neuro mutants fail to develop gustatory hairs, and as a result, do not court wild-type 

females in the absence of visual stimuli [145].  

 

Emerging technologies used to characterize chemical signatures have identified key 

molecules that serve as important chemical cues mediating efficient courtship 

behavior. Pheromones in Drosophila melanogaster are strikingly sexually dimorphic 

in expression and their effects on male behavior [141, 146]. The vast majority of the 

cuticular compounds are the hydrocarbons that are synthesized by a set of specialized, 

segmentally repeated, cells called oenocytes [147] and are presented on the cuticular 

surface of the abdomen. The pheromone profiles of female flies are largely comprised 

of cis, cis-7, 11-heptacosadiene and cis, cis-7, 11-nonacosadiene, both of which are 

known to serve as aphrodisiacs for male [148]. The cuticular profiles of males consist 

primarily of hydrocarbons bearing a single double bond (e.g., cis-7-tricosene , cis-7-

pentacosene,  and cis-9-pentacosene), although these compounds are also produced 
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by females  [149, 150]. Members of the oenocyte-produced pentacosene family can 

also act as male aphrodisiacs [142, 151]. 

 

In addition, Drosophila males also produce pheromones in the ejaculatory bulb that 

are transferred during mating and mediate chemical communication [152, 153].  11-

cis-Vaccenyl-Acetate (cVA), an oxygenated lipid is thought to have an aphrodisiac 

effect on females, stimulating receptivity towards copulation, and acting as an anti-

aphrodisiac on males [141, 143, 154]. CH503 (3-acetoxy-11, 19-octacosadien-1-ol), a 

second lipid made in the male ejaculatory bulb, also acts as an anti-aphrodisiac for 

males after being transferred to the female during mating [153, 154].  

 

The blend of chemical signatures present on Drosophila melanogaster can be grossly 

divided into three major functional categories according to their roles in Drosophila 

courtship behavior, namely the ones that confer female appeal, male appeal or male 

repulsion. Table 1.2 lists the major pheromonal compounds with characterized roles 

in Drosophila courtship behavior.  
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Table 1.2 Classes of pheromones and their roles in courtship behavior in 
Drosophila melanogaster 

Pheromone Site of 
Production 

Male -> Male 
Interaction 

Male -> 
Female 

Interaction 

Female -> 
Male 

Interaction 

7,11-HD oenocytes - - induces male 
courtship 

7,11-ND oenocytes - - induces male 
courtship 

7-T oenocytes inhibit male-
male courtship 

promotes 
female mating 

- 

7-P oenocytes inhibits male-
male courtship 

unknown - 

9-P oenocytes inhibits male-
male courtship 

unknown - 

cVA ejaculatory 
bulb 

inhibits male-
male courtship 

promotes 
female mating 

inhibits 
courtship * 

CH503 ejaculatory 
bulb 

promotes female 
mating 

- inhibits 
courtship * 

7,11-HD: cis, cis-7, 11-heptacosadiene; 7,11-ND: cis, cis-7, 11-nonacosadiene; 
7-T: cis-7-tricosene; 7-P: cis-7-pentacosene; 9-P: cis-9-pentacosene; 

cVA: 11-cis-Vaccenyl-Acetate; CH503: 3-acetoxy-11,19-octacosadien-1-ol; 
*: compound transferred from male to female during courtship and mating; 

-: no known effect  
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1.6.1.1 The Female Appeal 

It has been well believed that the cuticular content of sexually mature virgin female 

can induce amorous male courtship behavior towards any object that resembles a fly 

[141]. While Drosophila males do not court other mature males, a dummy male that 

has been stripped off its own cuticular content and ‘pasted’ with that of a sexually 

mature virgin female is able to induce courtship behavior from another mature male. 

Indeed, cuticular hydrocarbon profiling experiments have identified female-specific 

hydrocarbons, two of the most prominent being cis, cis-7, 11-heptacosadiene and cis, 

cis-7, 11-nonacosadiene [148]. Behavior and chemical manipulation experiments 

have led to the suggestion of these two compounds being the female appeals that act 

as male aphrodisiacs to turn on male amorous behavior.  

 

However, very recently, it has been shown that females lacking oenocytes, and 

therefore do not produce any hydrocarbons, are courted upon by wild-type males as 

much as the latter would towards wild-type females. In fact, such females exhibits a 

significantly shorter time-to-mating once courtship has been initiated, suggesting that 

the hydrocarbons present on the females might act as a barrier for mating [147].  

1.6.1.2 The Male Appeal 

In Drosophila melanogaster, once courtship is initiated, whether to mate or not 

depends on the female. The female makes her decision based on her internal 

physiological state and the qualities of two major sensory cues she receives from the 

courting males, that is, the quality of the song made by the wing vibration of the male 

and the pheromone status of the courtee. Males lacking oenocytes, and therefore do 

not make any hydrocarbons, take significantly longer time to achieve copulation with 
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the wild-type females [147], demonstrating the importance of cuticular hydrocarbons 

for efficient courtship and mating by the males.  

 

A few hydrocarbons have been suggested as male appeals that act as aphrodisiacs for 

Drosophila females. Among them is cis-7-tricosene, which has been shown to 

increase female receptivity. For example, oenocyte-less males that do not express any 

hydrocarbons are significantly more efficient in achieving copulation when they are 

painted with synthetic cis-7-tricosene [147].  

 

Another chemical that has been implicated as a female aphrodisiac is cVA, a long-

chain lipid synthesized by the male ejaculatory bulb. Females that are mutant for 

Or67d, one of the receptors for cVA, are less receptive compared to wild-type 

females, indicating that activation of the cVA downstream signaling pathway in 

females is required for female receptivity [154].  

1.6.1.3 The Male-Male Repulsion 

Sexually mature Drosophila males normally do not court other mature males, and this 

phenomenon is mediated by a group of chemicals that inhibit male-male courtship 

[155]. Among the compounds implicated in this process are the long-chain 

hydrocarbons, cis-7-tricosene, cis-7-pentacosene, and cis-9-pentacosene. Males 

devoid of oenocytes, the cells that make all cuticular hydrocarbons, are courted upon 

vigorously by other males; and such courtship induction is significantly suppressed 

when synthetic cis-7-tricosene is painted to the target oenocyte-less males, 

demonstrating the role of cis-7-tricosene as a potent male-male courtship inhibitor 

[147]. By contrast, it has been shown that males of the Drosophila subspecies that has 

higher level of cis-7- or 9-pentacosene court males of the subspecies that express 
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lower of these compounds, indicating a role of these hydrocarbons as potential male 

courtship inhibitors [142, 151].  

 

Another compound that has been strongly suggested to be potent male-male courtship 

inhibitor is male-specific lipid, cVA. It has been shown that activation of Or67d, the 

receptor for cVA, in males reduces courtship behavior towards other males. Males 

that do not express this receptor show a significantly higher level of courtship 

towards wild-type males [154]. The observation that the amount of cVA produced by 

newly born males is negligible and that its production increases as the fly reaches 

sexual maturity has been suggested to be one of the underlying reasons for the 

differential level of courtship induction by young and mature males [142].  

 

More recently, using a more sensitive detection method, a novel compound called 

CH503 has been identified and current studies suggest its role as yet another male 

anti-aphrodisiac. Similar to cVA, CH503 is made exclusively by the male ejaculatory 

bulb and transferred to the female during mating and the presence of these 

compounds in the mated female renders her less attractive to other males. Sexually 

mature female virgins that have been painted with increasing level of CH503 induce 

reduced level of courtship activity from wild-type males in a dose-dependent manner 

as compared to control females. However, unlike cVA which is very highly volatile 

and therefore do not persist on the mated females for more than 3hrs post mating, 

CH503 has a higher molecular weight and it remains associated with the mated 

females up to 10hrs post mating, making it a more potent inhibitor of subsequent 

mating by other males [153].  
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1.6.2 Control of courtship behavior and pheromone production by the sex 

determination pathway 

1.6.2.1 Drosophila sex determination pathway 

In Drosophila, somatic sex determination is primarily dependent on the number of 

sex chromosomes (reviewed in [156]). As shown in Figure 1.8, in diploid XX 

females, the higher concentration of X-linker signal elements (XSE) activates the 

early Sexlethal (Sxl) promoter, giving rise to a spliced form that encodes for a 

functional early Sxl protein [157]. This early Sxl protein in turn enables the 

production of a functional late Sxl protein [158]. Positive autoregulation by the late 

Sxl protein on its own production leads to the maintenance of the female-specific Sxl 

splicing in the late Sxl promoter. Expression of the splicing factor Sex-lethal (SxlF) in 

genetically female animals promotes sex specific splicing of the sexually dimorphic 

transformer transcript to produce the female splice form (TraF) [159-161]. TraF in 

turn interacts with the non-sex-specific transformer 2 protein (Tra2) which promotes 

splicing of another sexually dimorphic gene, doublesex (dsx), resulting in the 

production of the female form of Doublesex (DsxF) [162-165].  

 

In XY male, the low dose of XSE is not sufficient to activate transcription from the 

early Sxl promoter and no early Sxl protein is made. This prevents the establishment 

of autoregulatory loop for functional late Sxl splicing. As a result, the male-specific 

splicing of Sxl mRNA from its late promoter is formed by default, giving rise to a 

truncated non-functional Sxl protein (SxlM). The absence of functional SxlF leads to 

the ‘default’ splicing of the tra mRNA and production of nonfunctional Tra protein, 

which is expressed non-sex-specifically. In the absence of TraF, the default male form 

of Dsx (DsxM) is produced, along with the male form of Fruitless (FruM).   
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Figure 1.8 The sex determination pathway in Drosophila melanogaster.  

Shown here are the key components of the sexual differentiation system. Dark grey 
transcripts are full-lengthed and yield a functional protein. Light grey transcripts 
contain early in-frame stop condos and give rise to truncated proteins that are 
nonfunctional. Female-specific functional proteins are in red; male-specific functional 
proteins are in blue; functional protein that is expressed in both male and female is in 
green. sxlPe indicates sxl transcript from its early promoter; Sxle: early Sxl protein.  
  



Introduction 
 

 41 

1.6.2.2 Control of pheromone production and courtship behavior 

Studies in Drosophila have shown that sexually dimorphic behavior, including 

courtship and aggression, and chemical communication is under the control of the sex 

determination pathway [166-173].  

 

In Drosophila melanogaster, genetic experiments have demonstrated the roles of the 

Dsx proteins, DsxM and DsxF, in directing male versus female sexual differentiation, 

including pheromone production [173-176]. Genetic ablation of the dsx locus in XX 

females resulted in failure in the production of all female-specific hydrocarbons, 

whereas ectopic expression of DsxF in XY males caused ectopic production of 

female-specific diene-hydrocarbons such as cis, cis-7,11-heptacosadiene and cis, cis-

7,11-nonacosadiene, suggesting that DsxF is required in females to ensure the 

production of female-specific hydrocarbons while suppressing the production of 

male-specific hydrocarbons and other male-specific pheromones such as cVA [156, 

174]. By contrast, genetic ablation that resulted in the loss of the entire dsx locus did 

not affect the production of male-specific pheromones in XY males. However these 

males express some of the otherwise female-specific hydrocarbons such as cis, cis-

7,11-heptacosadiene. Together, these observations suggest that the dsx locus is not 

required for male pheromone production, but the presence of DsxM protein in males 

ensures that synthesis of female-specific hydrocarbons is suppressed in males [156, 

174, 176].  

 

By contrast, the male-specific FruM protein is implicated in the control of male sexual 

behavior but not pheromone production [173, 177, 178]. In the male CNS, FruM 

proteins are expressed from metamorphosis to adult stage [179]. XY males that do 
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not express the FruM proteins perform little to no courtship towards females, generate 

aberrant courtship song with no pulse song component and never attempt copulation 

with wild-type females. On the contrary, such males exhibit increased inter-male 

courtship among their siblings [168, 180]. In contrary, ectopic expression of FruM in 

XX females leads to male-specific courtship behaviors, such as unilateral wing 

vibration [178]. Together, these observations suggest that FruM is necessary for the 

control of male courtship behavior.  

 

However, the amount of courtship vigor displayed by females with ectopic expression 

of FruM is significantly less than that of wild-type males [204, 207] and the courtship 

song generated is aberrant, suggesting that FruM expression is not sufficient to specify 

normal male courtship behavior. Other genes are required for a complete male 

courtship repertoire.  

 

Strikingly, while most research on the functional characterization of the Dsx proteins 

have been focused on their respective roles in regulating male versus female 

differentiation including sexually dimorphic pheromone production, an early study 

examining the courtship behavior of XY males whose dsx locus has been genetically 

ablated, i.e. XY dsx males, suggest that the DsxM protein could be a potential 

candidate here. XY dsx males are similarly impaired in their courtship vigor and the 

courtship song generated by those who court is defective [181]. This leads to the 

hypothesis that DsxM is required, in addition to the requirement for the FruM proteins, 

for controlling the full range of male courtship behaviors. Stronger genetics and 

behavioral evidences have been provided by the recent report by Rideout et al. [175]. 

The authors showed that blocking neuronal function in the cells that endogenously 
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express the dsx transcripts by tetanus neurotoxin light chain expression caused 

disruptions in the early steps of male courtship behaviors such as orientation and 

following, and the loss of the later courtship steps such as wing extension, courtship 

song and attempted copulation. Therefore, there appears to exist a direct and specific 

contribution of the dsx neurons in the control of male courtship behaviors.  

 

Since both Dsx and Fru are under the control of genes more upstream on the sex 

determination pathway, manipulation of such components of the pathway have also 

been shown to affect pheromone production and courtship behaviors. For example, 

genetic feminization of males either by ubiquitous expression of TraF or its targeted 

expression in the adult oenocytes caused feminization of the pheromone compounds 

produced by otherwise XY males. Such genetically manipulated males displayed 

abnormal heterosexual courtship behaviors and induced male courtship from other 

males [182]. Similarly, diploid XX females with hypomorphic alleles for SxlF 

produce high amount of inhibitory, male-specific pheromones and fail to produce the 

aphrodisiac, female-predominant pheromones. As a result, these females elicit less 

courtship from mature wild-type males. In addition, a small proportion of these 

females perform courtship towards other female virgins, suggesting that SxlF is 

required for production of female pheromones and the inhibition of male pheromones 

production and male courtship behavior [183].  

1.7 Outlook – aims and significance of this study 

1. While compelling evidence has accumulated that miRNAs are crucial for the 

various aspects of animal development and function, only a handful of individual 

miRNAs have been studied functionally in vivo. This is largely due to the lack of 

specific mutants for each miRNA. Therefore, the aim of the global miRNA knockout 
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project is to generate a miRNA mutant library in Drosophila melanogaster so that 

systematic characterization of each miRNA can be performed in vivo. 

 

2. The miRNA, miR-124, has attracted considerable interest in the field of miRNA 

and neurobiology due to its broad conservation and abundant expression in the 

nervous system throughout the animal kingdom. However, despite an increasing 

number of reports on its roles in various model organisms, its in vivo and 

physiological roles remain elusive. The aim of the second phase of this thesis is to 

shed light on the molecular, and ultimately, developmental and functional aspects of 

the nervous system regulated by miR-124, through unbiased and unambiguous 

characterizations of genetic null mutants of this miRNA.  

 

In the first phase of this thesis, I have made significant improvements to the existing 

gene targeting strategy in the global Drosophila miRNA knockout project, utilizing 

molecular strategies that increased versatility, scalability and throughput of the 

method. 

 

In the second phase of the study, I have characterized several phenotypes associated 

with the miR-124 genetic null mutants generated using the improved gene targeting 

strategy. I have used bioinformatics, genetic and molecular biology tools to identity 

and validate targets of miR-124 that are functionally important for the roles of this 

miRNA in neurogenesis and male pheromone production control.  
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2 Materials and methods 

2.1 Molecular work 

2.1.1 Recombinant DNA methods 

2.1.1.1 Bacterial strains and culture conditions 

The Escherichia coli strain XL-1 Blue (Agilent) was used for all recombinant DNA 

procedures unless otherwise stated. For TOPO-TA cloning, TOP10 E. coli 

(Invitrogen) was used. For protein expression in E. coli, BL21 Gold chemical 

competent cell (GE Healthcare) was used. Bacterial strains were cultured in standard 

Luria-Bertani [LB; 1% (w/v) bacto-tryptone, 0.5% (w/v) yeast extract, 1% (w/v) 

sodium chloride (NaCl)] broth or grown on agar plates at 37°C. For drug resistance 

selection in the expression of recombinant plasmids, the culture media was 

supplemented with the antibiotics ampicillin (100 µg/ml), kanamycin (50µg/ml), or 

chloroamphenicol (37µg/ml). 

2.1.1.2 Preparation of plasmid DNA  

QIAprep Miniprep kit (Qiagen) and Plasmid Maxi Kit (Qiagen) were used for small-

scale and large-scale preparation of plasmid DNA, according to the manufacturer’s 

instructions, respectively. Plasmid DNA concentration was measured using 

NanoDrop ND-1000 Spectrophotometer (BioFrontier Technology).  

2.1.1.3 Polymerase chain reaction (PCR) 

Standard PCR for cloning was performed using the Phusion high-fidelity DNA 

polymerase (NEB) on a thermocycler (BioRad) according to the manufacturer’s 

protocols, unless otherwise stated. PCR for all the other applications was done with 

Taq polymerase (TLL home-made).  
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2.1.1.4 Restriction digestion 

Restriction digestion of plasmid DNA was performed using restriction endonucleases 

(NEB) in accordance with the manufacturer’s protocols.  

2.1.1.5 Sequencing 

Double-stranded DNA sequencing was performed with automatic PCR-based Big-

Dye sequencing method. PCR cycling reaction was carried out using the BigDye 

Terminator v3.1Cycle sequencing kit (Applied Biosystems) in the presence of 100ng 

of template DNA and 200uM of oligo with the following cycling conditions: 25 

cycles of 94°C for 2min,50°C for 30 sec,60°C for 4 min, 60°C for 10min. The 

reactions were subsequently analyzed using the 3730x1 DNA Analyser (Applied 

Biosystems; in-house service provided by TLL or IMCB). 

2.1.2 Bacterial transformation 

Standard chemical transformation by heatshock was used in all bacterial 

transformations. Briefly, competent cells were thawed on ice and mixed with an 

appropriate volume of plasmid DNA and incubated on ice for 15min. The mixture 

was then heatshocked at 42°C using a waterbath for 45sec and placed immediately on 

ice for 2min. The cells were allowed to recover for 1h in the presence of 1ml of LB 

without antibiotics in a 37°C shaker at 250rpm. The cells were then plated on LB agar 

supplemented with the appropriate antibiotics at 37°C overnight.  

2.1.3 General cloning strategy 

2.1.3.1 Conventional cloning  

All DNA fragments, including PCR and restriction digestion products, used in all 

cloning reaction were isolated using standard agarose gel electrophoresis and 

recovered from the gel using QIAquick gel extraction kit according to the 



Materials and methods 
 

 47 

manufacturer’s protocol (Qiagen). Where necessary, vectors were treated with Calf 

intestinal phosphatase (NEB) prior to gel electrophoresis, following the 

manufacturer’s instructions. Ligation reaction was set up with a vector:insert molar 

ratio of 3:1 in the presence of 2U T4 DNA ligase (NEB) and incubated at room 

temperature for 30min. Typically, half of the ligation volume was used for 

subsequent bacterial transformation.  

2.1.3.2 TOPO TA cloning 

Since the Phusion DNA polymerase produces blunt-end PCR products, A-tailing was 

performed by incubating the purified PCR product with 0.1nM dATP and 3U of Taq 

polymerase (TLL home-made) at 72°C for 20min.  

 

For TA cloning, the TOPO TA pCRII vector (Invitrogen) and A-tailed insert DNA 

fragment were mixed in the molar ratio of 1:3 and incubated in the presence of TOPO 

salt solution for 5min at room temperature.  About half of the ligation reaction was 

used for bacterial transformation. Positive recombinant clones were identified using 

blue-white selection on LB plate supplemented with 5-bromo-4-chloro-3-indolyl-β-

D-galactoside (X-Gal) at 80 µg/ml.  

2.1.4 Cloning of constructs used in this study  

2.1.4.1 Gene-targeting vectors 

Modifications to the existing gene-targeting vector, pW25, were made to incorporate 

different genetic manipulation elements.  
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2.1.4.1.1 pW25-RMCE 

For the generation of pW25-RMCE targeting vector, a 221-bp fragment for the phage 

attachment site (attP) was PCR amplified from the pTA-attP plasmid using primer 

pair 5’ GGTACCTCGCGCTCGCGCGACTGACG 3’ and 5’ GGCGCGCCTGCAG 

GTACTGACGGACACACCGAA 3’, and inverted attP fragments were cloned into 

KpnI and AscI sites upstream and downstream of the mini-white sequence, 

respectively, in pW25 vector.  

2.1.4.1.2 pW25-attB and pW25-Gal4-attB1 

For the generation of pW25-attB and pW25-Gal4-attB1 vectors, a 285-bp fragment 

containing the bacterial phage attachment site (attB) was PCR amplified from the 

pAT-attB plasmid using primer pair 5’ CATATGGTCGACGATGTAGGTCACG 3’ 

and 5’ CATATGGTCGACATGCCCGCCGTG 3’, and cloned into the NdeI site in 

pW25 and pW25-Gal4 vector backbones respectively.  

2.1.4.1.3 pW25-Gal4-attB2 

For the generation of the pW25-Gal4-atttB2 vector, the Gal4 coding sequence was 

cloned between the 5’ loxP site and mini-white sequence by composite cloning using 

pW25-attB as the vector backbone. The primer pairs used in the composite cloning 

were listed in Table 2.1. The primer pairs used were designed to introduce the 

restriction enzyme sites for PacI and FseI to the multiple cloning sites at the 5’ and 

3’-end respectively to facilitate directional cloning of ‘homology arms’. 
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Table 2.1 Sequences (5’->3’) of primer pairs used in pW25-Gal4-attB2 
composite cloning.  

Primer Sequence 

p[KpnI_loxP_6bp 
linker_GAL4(22bp)_F] 

GGTACCCATAACTTCGTATAATGTATG
CTATACGAAGTTATCATGCCATGAAGC
TACTGTCTTCTATC 

p[7bplinker_GAL4(22bp)_R] GTCATGACGGATCCACCAAATAATAA
GAC 

p[GAL4(11bp)_7bp 
linker_HSP70(20bp)_F] 

TGGTGGATCCGTCATGACCCGTTATTC
TCTATTCGTTT 

p[AflII_mini-white_R] CTTAAGATGTATGCACATGTACTACTC
A 

 

2.1.4.2 Gene-targeting constructs for KO generation  

2.1.4.2.1 Gene-targeting constructs for global miRNA KO project 

For the generation of most of the gene-targeting constructs in the global miRNA 

knockout project, about 2.5-4kb homology sequences flanking the miRNA of interest 

were cloned into the selected vector using one of the multiple cloning sites depicted 

in the vector maps.  

 

DNA for the homology arms was amplified from wild-type Oregon R genomic DNA 

by PCR using Phusion High-Fidelity DNA Polymerase. PCR products were run on 

agarose gels to confirm their sizes and DNA recovered by standard gel extraction 

procedures. The PCR fragments were cloned by the TOPO TA cloning strategy 

depicted in 2.1.3.2. Positive TOPO clones were then sequenced to check for 

mutations that might have occurred during the PCR amplification step and the clone 

without any mutations was then selected for subsequent cloning. Single nucleotide 

polymorphisms that might have been present in the lab strain used as template 

genomic DNA was differentiated from PCR-induced mutation errors by comparing 

the sequences of independent PCR reaction using batches of wild-type genomic DNA. 
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Nucleotide deviations from the reference genome that were consistent among 

independent PCR sequences were regarded as true polymorphisms in the lab strain 

and clones with such deviations accepted for subsequent cloning.  

 

Flanking homology fragments were cloned into the selected targeting vector using 

standard cloning strategy depicted in 2.1.3.1. The ends of both flanking homology 

arms in the final gene-targeting construct were sequenced using oligos that recognize 

the vector ends of the multiple cloning sites to confirm the orientation of the 

insertions.  

2.1.4.2.2 Gene-targeting constructs for miR-124 

Three independent gene-targeting constructs were made for miR-124, using the 

pW25, pW25-Gal4 and pW25-RMCE vectors. The sets of flanking homology 

fragments used in the three constructs were similar but not identical and the 

sequences of the primers used for PCR amplifications of these fragments were listed 

in Table 2.2.  

 
Table 2.2 Sequences (5’->3’) of primer pairs used for miR-124 KO constructs 
generation.  

Primer Sequence 

miR-124_5’_NotI_F GCGGCCGCAGAGGACAGATGGGTTTTTGAA 
miR-124_5’_NotI_R GCGGCCGCCGAGAATATCCTTGACCGAATC 
miR-124_3’_SbfI_F CCTGCAGGGTGGAATCATTGTAACCAACAAA

AA 
miR-124_3’_SbfI_R2 CCTGCAGGGCCGTTCATTAAGATAAAAGGAG

A 
miR-124_3’_AscI_F GGCGCGCCGTGGAATCATTGTAACCAACAAA

AA 
miR-124_3’_AscI_R GGCGCGCCGCCGTTCATTAAGATAAAAGGAG

A 
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2.1.4.3 UAS constructs 

The UAS-miR-124 lines were made by cloning a 250 base pair genomic fragment 

containing the miRNA hairpin into the 3’UTR of dsRed in pUAST, as described in 

[184]. 

2.1.4.4 UTR reporter constructs 

The ana 3’UTR and tra 3’ UTR luciferase reporters were made by cloning, 

respectively, the 900bp ana 3’UTR, 989bp tra-RB 3’UTR and 320bp tra-RA 3’UTR 

after luciferase, under the control of the tubulin promoter [185]. ana 3’ UTR reporter 

with mutated miR-124 sites was generated by PCR using primers designed to change 

the seed region from GTGCCTT into GTACATG. The tra 3’UTR reporter mutant 

was generated by overlapping PCR that deleted a 20nt sequence, 5’ 

UAUUUACAUUCGUGUGUUUU 3’, containing the first miR-124 target site. PCR 

products were verified by sequencing. The primers used to amplify all the other UTR 

reporters used in this study were listed in Table 2.3.  

 
Table 2.3 Sequences (5’->3’) of primers used in cloning of UTR reporters.  

Primer Sequence 

ana_3'UTR_XbaI_wt GATCGCGTGGTAATTCTAGAAAGCAGGA
ATAGATGCCACAAT 

ana_3'UTR_XhoI_wt GTGGTATGGCTGATTATGATCTAGCTCGA
GAGGTTGCCAATCGTAATTCTGT 

ana_3'UTR_mut_up_R AGATTTAGCAGACATGTACTTTAAACCTA
G 

ana_3'UTR_mut_dn_F AATAAGTCACTAGGTTTAAAGTACATGTC
TG 

tra_RB-3'UTR_XbaI_wt ACCGTCTAGAGAAGCTAGGACAATAGGA
CTCTCAA 

tra_RB-3'UTR_XhoI_wt ACCGCTCGAGACCATGAGTGTATGTGTA
AATGTGC 

tra_RA-3'UTR_XbaI_wt ACCGTCTAGACATATTGAACATACTCCAT
TCGACA 

tra_RA-3'UTR_XhoI_wt ACCGCTCGAGCTCGAAACCATGAGTGTA
TGTGTAA 



Materials and methods 
 

 52 

2.1.4.5 RMCE-related constructs 

The piB-miR-124 plasmid was generated by replacing the GFP reporter in piB-GFP 

[15] with a 430bp genomic fragment containing the miRNA hairpin in the center, 

using the SalI and BamHI restriction enzyme sites. The primer pair used to amplify 

the genomic fragment was p[piB-miR-124_F_SalI]: 5’ 

ACCGTCGACAGGATATTCTCGCCATTGGATA 3’ and p[piB-miR-

124_R_BamHI]: 5’ ACCGGATCCTGAAAGCTTTTACGGTTTAGCA 3’.  

2.1.5 Genomic DNA preparation from fly tissues 

2.1.5.1 Small-scale genomic DNA extraction 

Small-scale genomic DNA was prepared by mashing 1-10 flies in 50µl of ice-cold 

squishing buffer [10	  mM	  Tris	  pH8.0,	   25	  mM	  NaCl,	   1	  mM	  EDTA,	   and	  200	  μg/ml	  

freshly	  diluted	  proteinase	  K	   (Sigma)]	   for	  5-‐10sec	  with	  a	  pipette	   tip.	  The buffer 

containing fly debris was incubated at 37°C for 30min, followed by inactivation at 

95°C for 2min and stored at 4°C or -20°C for further use.  

2.1.5.2 Large-scale genomic DNA extraction  

Large-scale genomic DNA extraction was performed using the DNaeasy blood and 

tissue kit (Qiagen) following the manufacturer’s protocols. Approximately 20 flies, 

snap-frozen in liquid nitrogen, were used in each extraction unless otherwise stated.   

2.1.6 Molecular verification of loss of miRNA in knockout mutants 

2.1.6.1 PCR verification of heterozygous mutants  

Verification of heterozygous mutants was done through the molecular confirmation 

of the presence of the mini-white reporter at the targeted locus. Genomic DNA was 

extracted from about 15-20 heterozygous adult flies following the method depicted in 
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section 2.1.5.2. PCR was performed using the oligo Pflank, which recognizes the 

flanking genomic region located outside the homology arm, and another oligo 

Pwhite, which recognizes the mini-white marker, as depicted in Figure 2.1. The pair 

of oligos was designed to amplify a fragment of about 4kb. Two sets of oligos were 

designed for each locus so that amplification at both ends of the mini-white gene was 

confirmed.  

 

 

 

Figure 2.1 Illustration of primer design in molecular verification of heterozygous 

mutants.  

A forward primer (Pflank_F) in the flanking region located outside the homology arm 
is paired with a reverse primer (Pwhite_R) in the mini-white sequence for 
amplification of left homology arm. Similarly for the right arm, a forward primer 
(Pwhite_F) in the mini-white sequence and a reverse primer (Pflank_R) in the 
flanking region located outside the homology region are used for amplification.  
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2.1.6.2 PCR verification of homozygous mutants  

Viable homozygous mutants were verified molecularly by the absence of the targeted 

miRNA loci. Single fly genomic DNA was extracted following the protocol of small-

scale genomic DNA extraction protocol depicted in section 2.1.5.1. PCR was 

performed using a pair of oligos that recognize sequences within the targeted locus, 

as illustrated in Figure 2.2. 

 
 

 

Figure 2.2 Illustration of primer design in molecular verification of viable 

homozygous targeted mutants.  

A pair of primers (PmiR_F and PmiR_R) recognizing sequences in the deleted region 
results in a small amplicon in wild-type or heterozygous mutants but not in 
homozygous mutant flies.  

  

2.1.7 RNA extraction 

Total RNA was extracted using TRlzol® Reagent with Phase Lock Gel Heavy 

(Qiagen). Briefly, fly tissues used for total RNA extraction were snap frozen in liquid 

nitrogen and homogenized in 0.2ml TRIzol reagent using a pellet pestle with a 

cordless motor (Sigma-Aldrich). After homogenization, 0.8ml of TRIzol Reagent was 

added to top up the total volume of the TRIzol to 1ml and the total cell lysate added 

to eppendorf tubes containing pre-spun Phase Lock Gel-Heavy. After a 5min room 

temperature incubation, 0.2ml of chloroform per 1ml TRIzol Reagent was added and 

the mixture shaken vigorously for 15sec before being centrifuged at 12,000g for 

10min at 4°C. The aqueous phase containing total RNA was then decanted into fresh 



Materials and methods 
 

 55 

eppendorf tubes and total RNA precipitated by adding 0.5ml isopropyl alcohol per 

1ml of TRIzole Reagent used. The mixture was then mixed thoroughly by repeated 

inversions and allowed to incubate at room temperature for 10min, after which, the 

sample was centrifuged at 12,000g for 10min at 4°C. The RNA pellets obtained were 

then washed twice in 1ml of 75% ethanol and allowed to air dry at room temperature 

for about 5min and dissolved in appropriate volume of DEPC-treated water.  

 

For RNA extracted for subsequent reverse transcription and quantification using real-

time rtPCR, the total RNA sample extracted was further purified using the RNeasy kit 

and treated with on-column DNase treatment for 60min (Qiagen) to eliminate DNA 

contamination, following the manufacturer’s protocols. RNA concentration was 

estimated using a NanoDrop ND-1000 Spectrophotometer (BioFrontier Technology) 

and standardized by adjusting with DEPC-treated water.   

2.1.8 Reverse transcription (RT) 

Reverse transcription was done with 1-10µg of DNase-treated total RNA using 

oligo(dT)15 and Superscript III reverse transcriptase (Invitrogen) following the 

manufacturer’s protocol. A negative control reaction without reverse transcriptase 

was prepared for each RNA sample. The newly synthesized first strand DNA was 

normalized and checked for genomic DNA contamination by performing PCR with 

actin42A and rp49 primers. 

2.1.9 Quantitative PCR 

2.1.9.1 mRNA RT-qPCR  

Quantitative real-time PCR was performed using the SYBR green system (Applied 

Biosystems) in an ABI7500 real time thermal cycler (Applied Biosystems) following 
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the manufacturer’s protocol. Measurements were normalized to actin42A or rp49 

mRNA.  

 

All RT-qPCR primers were designed using the web-based Primer3 program 

(http://frodo.wi.mit.edu/primer3). The optimal parameters were set as follows: primer 

length 24nt, product length 80-250nt, annealing temperature 60°C, GC content 50%, 

no predicted primer dimers. The sequences of the primer pairs used are listed in Table 

2.4. 

 
Table 2.4 Sequences (5’->3’) of primer pairs used in qRT-PCR.  

Primer Sequence 

rp49_F AATTATGCATTAGTGGGACACCTT 
rp49_R CATCAGATACTGTCCCTTGAAGC 

actin 42A_F GCTTCGCTGTCTACTTTCCA 
actin 42A_R CAGCCCGACTACTGCTTAGA 

ana_F ATGGAGCGTTTACCGAACAG 
ana_R ATCGTGGGTGAGTTGGATGT 
traF_F GGAACCCAGCATCGAGATTC 
traF_R ATCGCCCATGGTATTCTCTTTC 
traM_F GCGCCAAACACTATGCGTTA 
traM_R GAGCCACGGGAATCTATGTGA 
dsxF_F TCAACACGTTCGCATCACAAA 
dsxF_R TAGACTGTGATTAGCCCAAT 

 

2.1.9.2 miRNA RT-qPCR 

For miRNA qRT-PCR, 20ng of total RNA extracted directly by TRlzol® Reagent 

with Phase Lock Gel Heavy (Qiagen) was used for reverse transcription. Primer sets 

designed to amplify mature miR-124 were obtained from Applied Biosystems. 

Mature miR-124 levels were calculated relative to reference genes snoR442 and 2S 

rRNA (Applied Biosystems), after having confirmed that the levels of these two 

small RNAs remain constant in the relevant fly strains. 
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2.2 Fly genetics 

2.2.1 Fly husbandry and stocks 

Drosophila melanogaster stocks were maintained on standard yeast-cornmeal-agar 

medium (1.2% agar, 1.8% dry yeast, 1% soy flour, 2.2% turnip syrup, 8% malt 

extract, 8% corn powder, 0.24% methyl-4-hydroxybenzoate) at 25°C unless 

otherwise stated. Canton-S (CS) flies were used as the wild-type control, unless 

otherwise specified. w1118  flies were used cases when w- control flies were required. 

Balancer flies used for general fly genetic crosses were FM6, If/CyO and TM2/TM6B 

for first, second and third chromosome respectively. Fly stocks generated/used for 

different purposes were listed in tables or descriptions under each section.  

 

2.2.2 Generation of transgenic flies 

All transgenic flies generated in this study were listed in Table 2.5.  

 

Table 2.5 Transgenic flies generated in this work.  

Strain Source/Creator Description 

miR-124Δ
4 J.S. Karres miR-124 knock-out allele 

miR-124Δ
177 R. Weng miR-124 knock-out allele (RMCE) 

miR-124Δ
177-RMCE R. Weng miR-124 RMCE-rescued allele 

UAS-miR-124 N. Bushati Transgene expressing miR-124 
miR-124-Gal4 N. Bushati Gal4 under control of miR-124 

promoter 
Fluc-ana 3’UTR R. Weng Fluc reporter transgene 

Fluc-ana 3’UTR mut R. Weng Fluc reporter transgene 
GFP-ana 3’UTR R. Weng GFP reporter transgene 

GFP-ana 3’UTR mut R. Weng GFP reporter transgene 
Fluc-tra 3’UTR-1 R. Weng Fluc reporter transgene 

Fluc-tra 3’UTR-1 mut R. Weng Fluc reporter transgene 
Fluc-tra 3’UTR-2 R. Weng Fluc reporter transgene 
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2.2.2.1 Strategies used for transgenesis  

Transgenes were inserted into the Drosophila genome using either the P transposable 

element system or the φC31 integrase.  

 

For P-element-based transformation, the P-element ends present in the respective 

(pCaSpeR4, pW25 and pUAST plasmids) vectors flank the transgene and its 

regulatory regions. Plasmids were injected into blastoderm embryos expressing the P-

element transposase, delta 2-3, (Kah-Junn Tan, TLL, and Genetic Services, Inc.), 

which lead to a random but stable integration of the transgene into the germline 

genome.  

 

For φC31 integrase-mediated transformation, transgenic constructs were injected into 

blastoderm embryos expressing germ cell-specific φC31 integrase and the bacterial 

phage-landing site, the attP site, on desired chromosomal position. The following 

landing sites were used in this study. Landing site on chromosome 2 with φC31 

integrase on X chromosome: y1, M{vas-int.Dm}[186]ZH-2A, w*; M{3xP3-

RFP.attP’}ZH-22A, landing site on chromosome 2: y1, w67c23; P{y+t7.7 = 

CaryP}attP16, landing site on chromosome 3 with φC31 integrase on chromosome 4: 

y1, w*; M{3xP3-RFP.attP}ZH-86Fb; M{vas-int.B}ZH-102D, and landing site on 

chromosome 3: y1, w67c23; P{y+t7.7 = CaryP}attP2.  

 

The mini-white reporter gene was used as a selection marker in both strategies. 

Emerging injected animals were crossed to appropriate balancer flies and their 

progeny screened for the presence of the transgene based on the expression of the 

mini-white gene in the eyes. For P-element-based transposition, red-eyed flies were 
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crossed to balancer flies and the transgene mapped to a specific chromosome. For 

φC31 integrase-based transposition, red-eyed progeny was stocked by crossing to 

balancers to the targeted chromosome.  

2.2.2.2 Generation of fly mutants by ends-out homologous recombination 

Gene targeting by ends-out homologous recombination was carried out as previously 

described. The constructs used for gene targeting were made as depicted in 2.1.4.2. 

The fly strains used in the general gene targeting strategy were obtained from 

Bloomington Stock Centre and are listed in Table 2.6.  
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Table 2.6 Fly strains used in gene targeting  

Strain Description 

w1118 Mutant strain for white locus for detecting 
transgenes with the mini-white reporter by 
eye color 

y1, w*, lethal/FM6 Balancer stock for chromosome X 
w*; Kr If −1, Slbo-lacZ(1310)/CyO Balancer stock for chromosome 2 
w*; TM3, Sb, Ser/TM6B, Tb Balancer stock for chromosome 3 
w*; Bl/CyO; TM2, Ubx/TM6B, 
Tb 

Double-balancer stock used for chromosome 
mapping 

y1, M{vas-int.Dm}ZH-2A, w*; 
M{3xP3-RFP.attP’}ZH-22A 

Site-specific landing strain used for integrase-
mediated transformation with landing site on 
chromosome 2 and φC31 integrase on X 
chromosome 

y1, w*; M{3xP3-RFP.attP}ZH-
86Fb; M{vas-int.B}ZH-102D 

Site-specific landing strain used for integrase-
mediated transformation with landing site on 
chromosome 3 and φC31 integrase on 
chromosome 4 

y1, w67c23; P{y+t7.7 = CaryP}attP2 landing site on chromosome 3 
y1,w67c23; P{y+t7.7 = CaryP}attP16 landing site on chromosome 2 
y1, w*; P{ry+t7.2 = 70FLP}11, 
P{v+t1.8 = 70I-SceI}2B, 
nocSco/CyO, S2 

Strain providing expression of FLP 
recombinase and I-SceI endonuclease with 
FLP and I-SceI on chromosome 2 

y1, w*; P{ry+t7.2 = 70FLP}23, 
P{v+t1.8 = 70I-SceI}4A/TM6, Ubx 

Strain providing expression of FLP 
recombinase and I-SceI endonuclease: FLP 
and I-SceI on chromosome 3 

w*; KrIf−1, Slbo-lacZ(1310)/CyO; 
hs-Crew+/TM3, Ser 

Strain providing expression of Cre 
recombinase: Cre on chromosome 3 

w*, hs- Crew+/FM6; Sb/TM3, Ser Strain providing expression of Cre 
recombinase: Cre on chromosome X 

y1, M{3xP3-RFP.attP}ZH-2A, 
w*; +; +; M{eGFP.vas-int.B} 
ZH-102D 

φC31 integrase on chromosome 4 which is 
used for RMCE 
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2.2.2.2.1 Generation of transgenic donor lines 

The introduction of the gene-targeting construct into the fly genome was the first step 

in a typical gene targeting strategy. As depicted in 2.2.2, different approaches can be 

used to get these transgenic “donor” flies, depending on the choice of vector. For the 

constructs generated using gene-targeting vectors that do not carry the attB site, 

conventional P-element-mediated transgenesis was used. In such cases, the insertions 

were mapped, using the strategy depicted in 2.2.2, to determine on which 

chromosome they were located before the crosses for the targeting event. A balanced 

stock for each insertion was then established and one to two independent insertions, 

preferentially not on the same chromosome as the targeted miRNA, were then 

selected for subsequent homologous recombination.  

2.2.2.2.2 Gene targeting by homologous recombination 

Several genetic crosses were involved in a typical gene-targeting strategy adopted in 

this study and an example of crossing scheme is provided in Figure 2.3  

 

The donor construct was mobilized from its integration site by crossing 3–5 males  of 

the ‘donor’ transgenic flies to 15–20 virgin females of the transgenic flies that 

express the FLP recombinase and the I-SceI endonuclease, under the control of a 

heatshock promoter. Concurrent induction of both enzymes was done by 

heatshocking the 24hr AEL embryos of this cross at 38°C for 1hr. The cross was 

flipped every 24hrs for 1 week to collect sufficient embryos for heatshock induction.  

 

Emerging female adult flies carrying mosaic pattern of white and pigmented 

ommatidia in the eyes, depicting the excision of the ‘donor’ DNA carrying the white 

marker, were crossed to males from a suitable balancer stock, with a white− 
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background. Typically, 400 independent crosses were set up to ensure a reasonable 

likelihood of success for homologous recombination.  

 

Candidates carrying the expected targeting event were then selected as progeny with 

white+ eyes in the next generation. Normally only male progeny was selected in this 

step, and typically, only one male was selected from each cross unless males with 

different eye colors were found in the same vial. In such cases, independent crosses 

were set up for each male. The candidates were then crossed to female virgins of 

chromosome balancer stock. Chromosomal mapping for the white+ transgene was 

performed to ensure that targeting event has taken place at the expected chromosome.  

 

 

 

Figure 2.3 Illustration of genetic crosses in ends-out gene targeting for a gene on 

chromosome 3.  

Donor flies are crossed to hs-FLP,hs-I-SceI flies. Set up 10 crosses and flip them 
every day to a new tube for 5 consecutive days. Heat shock tubes on the third day at 
38°C for 1 hour. Next generation, set up 400 crosses of individual female with mosaic 
eyes to balancer males. Screen for red eye males at G2 generation. Red eye flies are 
further crossed to balancer flies to determine which chromosome it is on by marker 
segregation.  
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2.2.2.3 Cassette exchange by RMCE  

The steps involved in the induction of cassette exchange by RMCE are outlined in 

Figure 2.4. Briefly, flies carrying the locus to be retargeted by RMCE were crossed to 

flies expressing φC31 integrase in the germ line. Microinjection was done to 

introduce the donor attB plasmid into the resulting embryos containing the integrase. 

The adult flies that have emerged from these injected embryos were crossed 

individually to a white mutant strain, w1118 to allow identification of flies from which 

the mini-white marker was successfully excised. Putative RMCE candidates were 

screened by the loss of eye pigment. Individual candidate RMCE event was crossed 

to appropriate balancer flies to establish balanced stocks. The RMCE candidates were 

then verified individually by PCR. Candidates with the RMCE cassette inserted in the 

expected orientation were kept for subsequent experiments while at least one 

candidate with the reverse orientation of cassette integration was kept as a control. 

PCR design to screen for orientation for cassette integration is illustrated in Figure 

2.4.  
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Figure 2.4 Illustration of cassette exchange strategy by RMCE.  

Flies carrying the targeted locus, marked by mini-white, are crossed to transgenic flies 
expressing φC31 integrase. Embryos obtained from this cross are injected with a 
donor plasmid expressing genetic sequence of interest flanked by inverted attB sites, 
such as piB-GFP donor plasmid, which expresses GFP. Double crossover between 
the two attP and attB sites would lead to a clean exchange of mini-white by GFP. 
Emerging adults are mated individually with w1118 partners and putative RMCE 
events were identified by the loss of mini-white expression in the eyes. Molecular 
genotyping by PCR is used to determine the orientation of GFP insertion. 
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2.2.2.4 Removal of mini-white marker by Cre recombinase 

There are two scenarios in which removal of the mini-white marker in the targeted 

mutants is essential. The first case involves mutants for miRNAs located in the 

introns of protein-coding genes while the second concerns miRNA mutants used in 

behavioral analysis. In both cases, the mini-white marker was removed by the 

expression of the Cre recombinase following the scheme depicted in Figure 2.5. 

 

Briefly, flies carrying the targeted allele were crossed to transgenic flies expressing 

the cre recombinase, whose expression was controlled by an upstream heat shock 

promoter. Induction of Cre expression was done by a 10 minutes heat shock of the 

first instar larvae from this cross at 37°C(i.e. at 24-48 hours AEL).  

 

Male mosaic flies with partial to complete loss of eye pigmentation indicating the 

excision of mini-white marker were collected and crossed with balancer flies. A 

balanced stock for the desired progeny with white eyes from this cross was 

established by backcrossing to an appropriately marked balancer strain.  

 

The excision of the complete cassette and the loss of the miRNA sequences were 

confirmed by molecular verification using the PCR strategy described in section 

2.1.6.  
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Figure 2.5 Illustration of a genetic cross for the removal of mini-white in miRNA 

KO flies by Cre recombinase.  

Shown here is an example of miRNA knockout mutant (miRKO w+) on chromosome 3, 
using an X chromosome source of hs-Cre. Knockout flies are crossed to flies carrying 
hs-Crew+, which is also marked by red eye. Next generation, select males with mosaic 
eyes on an orange background, and cross them to balancer flies individually. In G2 
generation, white-eye males are selected for crosses and stocking. 
 

2.3 Viability test  

F0 adult flies were collected and aged in groups of 20-30 flies per vial for 3 days. 60 

F0 female virgins and 40 males were crossed on apple juice plate with fresh yeast 

paste. The cages and apple juice plate were changed every day for 3 days. Embryos 

used for viability test were collected at 4hrs interval on the 4th day and newly hatched 

L1 larvae were collected about 24hrs later and seeded on the surface of food vial in 

groups of 20. Multiple vials were prepared to ensure sufficient number of progeny 

could be scored. The total number of progeny for each genotype, identified by the 

presence or absence of GFP, reaching the late L3, early pupae, pupae and adult stage 

was recorded and the percentage of each genotype at each stage was calculated.  
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2.4 Fertility test  

Single 5-day old CS or miR-124 mutant male was paired with two 5-day old CS 

female virgins overnight with the adults being transferred to a fresh vial 24hrs post 

pairing. The first vials with the eggs laid on the surface were kept under standard fly 

culture conditions. The cross that resulted in viable progeny was scored as fertile and 

the number of such crosses was recorded. The total number of pupae obtained from 

each fertile cross was recorded.  

2.5 Cell Transfection And Luciferase Assays 

S2 cells were transfected in 24-well plates with 250ng of miRNA expression plasmid 

or empty vector, 25ng of firefly luciferase reporter plasmid, and 25ng of Renilla 

luciferase DNA as a transfection control. Transfections were performed in triplicate 

in at least three independent experiments. At 60hrs after transfection, Dual luciferase 

assays (Promega) were performed according to the manufacturer’s instruction. For 

luciferase assays on larval CNS, tissues were dissected and immediately lysed in 

passive lysis buffer (Promega). Luciferase activity was normalized to total protein 

content, measured on the same sample using the Bradford method (Bio-Rad). 

2.6 TU tagging 

TU tagging was performed as described [187], with the following modification. 

Larvae of the indicated genotypes were collected in groups of 20 at 72hrs ALH, 

transferred to food vials with 4-TU containing yeast paste at 29°C for 16hrs before 

CNS dissection.  
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2.7 MARCM analysis 

MARCM clonal analysis was done according to the general strategy reported 

previously [188] with the following modifications. Embryos were collected over a 

4hrs time window, and subjected to a 60min heat shock treatment at 37°C at 0hr ALH 

and a second heat shock treatment of 60min at 37°C at 24hr ALH for all experiments 

unless otherwise specified. The treated L1 larvae were cultured on fresh yeast paste 

added to the surface of standard food vial at 18°C until dissection. Unless otherwise 

stated, all larvae were dissected and processed for immuno-histology analysis at late 

wandering third larval stage. The genotypes of the stocks used for the clonal analysis 

were listed in Table 2.7. 

 
Table 2.7 Fly strains used in MARCM clonal analysis 

Strain Description 

hsFLP, elav-Gal4, UAS-mCD8::GFP; FRT40A, 
tubP-Gal80/Cyo 

MARCM ready stock 

w*; P[ry+ neo FRT]40A / w*; P[ry+ neo FRT]40A Stock for wild-type clone 
generation 

w*; P[ry+ neo FRT]40A, miR-124Δ
177,w+ /Cyo Stock for miR-124 mutant clone 

generation 
w*; P[ry+ neo FRT]40A, miR-124Δ

177,w+ /Cyo; 
UAS-miR-124 

Stock for miR-124 clonal rescue 

w*; P[ry+ neo FRT]40A, miR-124Δ
177,w+ , ana1 / 

Cyo  
Stock for ana functional rescue; 
ana1: Bloomington Stock 8926 

w*; P[ry+ neo FRT]40A, miR-124Δ
177,w+ /Cyo; 

UAS-ana[RNAi] 
Stock for ana functional rescue; 
UAS-ana[RNAi]:Bloomington 
Stock 27515 

w*; P[ry+ neo FRT]40A / w*; P[ry+ neo 
FRT]40A; UAS-ana / TM6B 

Stock for clonal ana 
overexpression; UAS-ana: 
Bloomington Stock 22173 
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2.8 Immunocytochemistry and imaging 

Larval CNS tissues were dissected and fixed in 4% formaldehyde in PBS with 0.1% 

Triton-X100 for 20min on ice. DNA stain used was DAPI (Sigma). Samples were 

mounted in Vectashield (Vector Laboratories). Quantification of mitotic neuroblasts 

was done using projections of confocal sections.  

 

Primary antibodies used were rat anti-ELAV (Developmental Studies Hybridoma 

Bank), 1:50; mouse anti-Pros (Developmental Studies Hybridoma Bank), 1:50; 

mouse anti-Repo (Developmental Studies Hybridoma Bank), 1:50; mouse anti-Mira 

(Developmental Studies Hybridoma Bank), 1:20; guinea pig anti-Deadpan (J. Skeath), 

1:2000; chicken anti-GFP (Abcam), 1:3000; rabbit anti-Pon (Y.N. Jan), 1:500; rabbit 

anti-Ase (Y.N. Jan), 1:1000; rabbit anti-Phospho-histone H3 (Cell Signalling), 1:300; 

chicken anti-β-gal (Abcam), 1:2000.  

 

Secondary antibodies were conjugated to either Alexa Fluor 405, Alexa Fluor 488, 

Alexa Fluor 555, or Alexa Fluor 633 (Invitrogen), and used at 1:500, 1:1000 and 

1:300 respectively. DNA stain used was DAPI  (Sigma), 1:2000 and samples were 

mounted in Vectashield (Vectashield, Innovative Biotech Pte Ltd).  

2.9 Fluorescent in situ hybridization 

The miR-124 locked nucleic acid probe was from Exiqon. Anti-DIG-POD primary 

antibody (1:200) was used and detected using the Tyramide Signal Amplification kit 

(cyanine 3) from Perkin Elmer following standard protocols.  

2.10 Behavior Assays 

In all courtship assays performed, test flies were collected at late pupal stage and aged 

individually to 5-day-old in standard food vial; target flies were collected at late pupal 
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stage and aged to 5-day-old in groups of 20 flies per vial. Flies used for aggression 

assay were collected at late pupal stage and aged individually to 5-day-old in standard 

food vial. All behavioral assays were performed between 2-4hrs before lights off, at 

25°C, 60% relative humidity under normal ambient light, unless otherwise stated. All 

fly behavior movies were recorded using a Sony Camcorder, unless otherwise 

mentioned. 

2.10.1 Male-female courtship assay 

The male-female courtship assay was carried out in a round chamber of 10mm 

diameter and 4mm height as described previously [178]. 5-day-old Canton-S virgin 

females served as mating targets. 5-day-old socially naïve males of Canton-S, miR-

124 mutants or miR-124RMCE rescue flies serve as test flies. Courtship behavior was 

videotaped for 45 min after a virgin female and a test male were introduced into the 

courtship chamber by gentle aspiration.  

2.10.2 Female Receptivity Assay 

Male-female courtship assays were carried out in a round chamber of 10mm diameter 

and 4mm height as described previously [178]. 5-day-old socially naïve Canton-S 

males were paired individually with either 5-day-old Canton-S or 5-day-old miR-124 

virgin females. Courtship behavior was videotaped for 45 min after fly pairing. The 

percentage of females that accepted copulation by CS males was recorded for each 

genotype.  

2.10.3 Male-male courtship assay  

Test and target males were collected and aged as above. On the day of the experiment, 

target males were briefly anesthetized on ice and decapitated with a razor blade 

before being introduced into round chambers of 10mm diameter and 4mm height. 
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Individual intact test male was gently aspirated into the chamber containing a 

decapitated target and the courtship behavior, if any, of the test males recorded for 

45min.  

2.10.4 Female choice assay  

Round chambers of 10mm diameter and 4mm height were used for the mating 

competition assay. Mutants and wild-type male flies were collected at late pupal stage 

and isolated in standard food vials. On the fourth day post eclosion, mutants and 

controls were anaesthetized briefly and marked with acrylic paint at the back of the 

thorax. On the fifth day, a mutant and a wild type with different colors were 

introduced into a courtship chamber containing a Canton-S virgin female and were 

videotaped for 70min. The percentage of copulation success for both mutants and 

controls was measured.  

2.10.5 Aggression assay  

The size of the fighting chamber was 14mm in diameter and 10mm in height. A food 

patch was introduced by pipetting 50ul of melted standard fly food in the center of 

the chamber and allowed to solidified at RT.  

 

In the aggression assay, pairs of socially naïve 5-day-old male flies were aspirated 

gently into the fighting chamber. Behaviors were recorded for the next 45min. 

Experimental and control groups were taped simultaneously under the same camera. 

 

Fighting behavior of male flies was measured using two indices: latency and 

frequency. Latency measures the number of encounters between the fly pair from 

introduction of the males into the chambers until the initiation of the first agonistic 
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encounter. Frequency describes the number of fighting behaviors, including lunging 

and fencing, over the first 30 minutes of observation.  

 

2.10.6 Locomotion assay 

5-day-old socially naïve CS or miR-124 mutant males were individually aspirated 

into the courtship chamber used for the male-female courtship assay as described 

above. The activity of the fly was videotaped for 15min by a Sony Camcorder and 

analyzed by ImageJ  (Rasband WS. ImageJ, U.S. National Institutes of Health, 

Bethesda, Maryland, USA, imagej.nih.gov/ij/, 1997—2012). Locomotion was defined 

as the velocity of the fly in the first 10min of observation.  

2.11 Cuticular hydrocarbon extraction  

Flies used for CHC extraction were raised in the same conditions as the ones used for 

behavior assays. Flies were aged in groups of 15-20 flies per vial. Three replicates of 

15 five-day-old male flies were briefly anaesthetized on ice and placed into 1.8mL 

glass microvials with Teflon caps (s/n 224740; Wheaton). 120µl of hexane containing 

10µg/mL of hexacosane (Sigma-Aldrich) standard was added into each vial and 

incubated at room temperature for 20min. 100µl of the solvent was then transferred 

into a new vial and evaporated under a gentle stream of nitrogen under a chemical 

hood, leaving the compounds coating the surface of the bottom. Extracts were stored 

at –20°C and redissolved in 30µL of heptane prior to GC/MS analysis.  
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2.12 Analysis of cuticular hydrocarbon profiles  

2.12.1 Gas chromatography–mass spectrometry (GC-MS) analysis of cuticular 

hydrocarbon profiles 

Extracts were redissolved in 60µL of hexane and transferred into GC-MS vials 

(Supelco). Analysis was run in a 5% phenyl-methylpolysiloxane (DB-5, 30m length, 

0.32 i.d., 0.25µm film thickness, Agilent) column and GCMS QP2010 system 

(Shimadzu) with an initial column temperature of 50°C for 2min and increased to 

300°C at a rate of 15°C/min in splitless mode. The relative signal intensity for each 

hydrocarbon species was calculated by dividing the area under the chromatography 

peak by the total area under all of the peaks. The values from 3-6 replicate 

measurements were averaged.   

2.12.2 Analysis of perfumed flies using Direct Analysis in Real Time Mass 

Spectrometry (DART MS) 

The atmospheric pressure ionization time-of-flight mass spectrometer (AccuTOF-

DART™, JEOL USA, Inc.) was equipped with a DART interface and operated in 

positive-ion mode at a resolving power of 6000 (FWHM definition). Mass accuracy 

is within ±15ppm. The DART interface was operated using the following settings: the 

gas heater was set to 200°C, the glow discharge needle was set at 3.5kV. Electrode 1 

was set to +150 V and electrode 2 was set to +250 V. He2 gas flow was set to 2.5 

L/min. Under these conditions, mostly protonated ([M+H]+) molecules are observed.  

Using clean forceps, an anaesthetized fly was picked up by both wings, making sure 

not to damage the fly. The fly was placed in a stream of charged helium gas until 

peaks of triacylglycerides start to appear. All fly samples were placed approximately 

in the same location in the DART source for the same amount of time in order to 

obtain reproducible spectra. 6 flies of each genotype were measured. Polyethylene 
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glycol (Sigma-Aldrich) was used as the calibrant. Relative quantification of 

compound abundance was performed by normalizing the areas under the signals 

corresponding to cVA ([M+H]+ 311.29) and CH503 ([M+H]+ 465.43) to the tricosene 

signal ([M+H]+ 323.36). DART MS is unable to differentiate isoforms of tricosene 

therefore the tricosene signal represents the summed signal intensity from 5, 7, and 9-

Tricosene. Tricosene was selected as the normalization peak due to the unaltered 

levels in mutants compared to CS controls in GC-MS.  

2.12.3 Analysis of cuticular hydrocarbon extracts using DART MS 

CHC extractions from groups of 15 flies were performed as described above and 

stored on ice. Immediately before DART anaylsis, 30µl of hexane was added into 

prepared extracts and vortexed briefly and gently. Vials were placed on ice before 

sampling. Borosilate glass capillaries (World Precision Instruments, Inc) were used 

for sampling, placing a finger over the end of the capillary to prevent uptake of 

solvent. The capillary was placed in the DART stream for 5secs. Six technical 

replicates from the same vial were performed using new capillaries and placing the 

capillaries in approximately the same position each time. Relative quantification of 

compound abundance was performed as mentioned in the above section. 

2.13 Pheromone perfuming 

For application of synthetic compounds to target flies, 9µg of synthetic cVA (Cayman 

Chemical Company Ann Arbor, Michigan, USA) was diluted in 200µL of hexane and 

introduced into a 1.8-mL glass microvial. The hexane was evaporated under a gentle 

flow of nitrogen, leaving the compound as a residue coating the bottom of the vial. 

Flies were briefly anaesthetized on ice, transferred to coated vials in groups of seven, 

and subjected to three vortex pulses lasting 20secs each, with 10secs pauses between 

each pulse. The perfumed flies were allowed to recover for about 1hr in fresh vials 
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with standard food. Six flies from each group were used for behavioral tests and the 

remaining fly was subjected to hydrocarbon analysis by Direct Analysis in Real Time 

mass spectrometry (DART-MS) to monitor effective transfer of the test compound to 

the flies.  

2.14 Statistics 

Statistical analysis of experimental data was done using either paired or unpaired 2-

tailed Student t-test, unless otherwise stated. Statistical analysis for behavior assays 

and hydrocarbon quantification was done using Prism 4 (GraphPad Software). For 

behavioral data, a nonparametric Mann-Whitney test was used to compare two 

samples while Kruskal-Wallis test followed by Dunn’s post-test was used to compare 

multiple samples. For hydrocarbon analysis, a multi-way ANOVA followed by 

Tukey HSD post-test was performed.  
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3 RESULTS 

3.1 Establishment of a Drosophila miRNA mutant library  

Rigorous investigation in the past 10 years or so has shown that the miRNA 

machinery is involved in many biological phenomena, particularly those associated 

with dynamic cellular and/or developmental processes such as embryonic 

development. To perform a global study of the in vivo functions of miRNAs in 

Drosophila melanogastor, a few members of the lab and I have initiated a global 

knockout project targeting many of the Drosophila miRNAs. The aim was to 

establish a comprehensive Drosophila miRNA mutant library, which would allow a 

global survey of miRNA functions using assays specific to biological processes of 

interest in the lab. 

 

At the time when I joined the project, there were all together 152 miRNAs discovered 

in Drosophila melanogaster by a combined effort of deep sequencing and 

computational prediction. Of these 152, no Northern blot evidence was obtained for 

four miRNAs while the sequences of 21 miRNA genes were not conserved among 

the 12 Drosophila species. Therefore, the initial phase of the global miRNA project 

aimed to create a mutant library for the remaining 127 miRNAs that are conserved at 

least among the different Drosophila species. Of the 127 miRNAs chosen, mutants 

covering 33 miRNAs had already been made in the lab or by others. Therefore, the 

remaining 94 miRNAs were targeted for the first phase of the global miRNA project 

(overviewed in Figure 3.1).  
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During the course of this study, the number of miRNAs in Drosophila melanogaster, 

together with many other model organisms, has expanded tremendously thanks to 

improvements in the methods used in miRNA identification. At the time of writing of 

this thesis, miRBase [189] has reported a total of 426 mature miRNAs. Some miRNA 

genes are clustered on a single genetic locus and transcribed as one pre-miRNA 

transcript. Additionally, some miRNAs can make two distinct gene products if 

transcripts from both the 5’ and 3’ strands are produced. Therefore, these 426 mature 

miRNAs are processed from 238 pre-miRNAs, representing 238 individual genetic 

loci encoding miRNAs. Some of these have been incorporated into the mutant library 

project subsequently.  Nevertheless, these will not be mentioned in this thesis.  

 

A strategy using ends-out gene targeting via homologous recombination was used for 

the generation of targeted miRNA null mutants, as outlined in Figure 1.2. This gene 

targeting strategy allows the production of targeted deletions to make loss of function 

mutations. More specifically, straightforward sequence replacement with modified 

variants, for example epitope-tagged coding sequence, can be achieved using the 

“ends-out” homologous recombination approach [10, 12].  

 

As the project progressed, improvements were made to the ends-out gene targeting 

strategy to increase the efficiency of the method. As a result, different gene-targeting 

vectors were used for the generation of the miRNA mutants at different stages of the 

project. This will be highlighted again in the next section when results from the 

improved gene targeting strategy are presented.  
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Figure 3.1 Overview of global miRNA KO project.  

At the time when I joined the KO project, 152 miRNAs have been discovered in 
Drosophila melanogaster. Among these, deep sequencing findings for 4 miRNAs 
were not confirmed by Northern Blot while the sequences of 21 miRNAs were not 
even conserved among the 12 Drosophila species. Therefore, only the remaining 127 
miRNAs were included for the first phase of the project. Of these 127, mutants for 33 
miRNAs have either been published or were available. Thus, this phase of the KO 
project aimed to generate mutants for the remaining 94 miRNAs.  
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3.1.1 Improvements of the existing ends-out gene targeting vectors  

As the global mutagenesis project demands a great deal of time and effort, it is 

important to optimize the mutant generation pipeline, particularly the gene targeting 

strategy used in the generation of the miRNA mutants. Furthermore, since the 

ultimate aim of the project was to perform a systematic study of miRNA functions in 

vivo, it is also crucial that the strategy should also allow flexible genetic manipulation 

of the mutants for phenotypic characterization. Therefore, my initial goal was to 

optimize the existing gene targeting strategy used in the miRNA knockout project.   

 

A major drawback of the existing homologous recombination-based gene targeting 

vectors was that none of these vectors has the capacity to allow repeated targeting of 

a single locus for the creation of variant alleles. Each targeted genetic variant requires 

starting with a new targeting vector. In addition, the frequency of successful gene 

targeting events varies, ranging from 1 in 200 to 1 in 350,000, depending on factors 

such as the size of the deletion or the targeting locus [177, 190]. Therefore, my aim 

was to design a series of gene-targeting vectors to improve the versatility, scalability 

and throughput of the current gene targeting strategy. 

 

3.1.1.1 Adopting the RMCE strategy to improve versatility of gene targeting  

To improve the versatility of the gene-targeting vector, I made use of the 

bacteriophage φC31 integrase-mediated cassette exchange strategy. Recombinase-

mediated cassette exchange (RMCE) allows directional site-specific recombination 

between a plasmid ‘donor cassette’ and a chromosomal ‘acceptor cassette’, resulting 

in the replacement of the target cassette at frequencies of 5-20% [15]. To add this 

capability to the gene-targeting repertoire, I introduced an acceptor cassette into 
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pW25 by flanking mini-white with inverted attP sites (pW25-RMCE; Figure 3.2). 

Successful gene targeting with this vector would lead to the specific replacement of 

the targeted locus by the mini-white marker. The inverted attP sites flanking the mini-

white gene in the pW25-RMCE vector would then serve as chromosomal ‘acceptor’ 

sites to allow for subsequent RMCE events. Exchange of the acceptor cassette would 

allow replacement of the mini-white marker at the targeted locus with any desired 

sequence.  

 

          

Figure 3.2 Schematic showing the pW25-RMCE ends-out gene-targeting vector.  

A 221-bp fragment for the phage attachment site (attP, denoted by black triangles,) 
was PCR amplified from the pTA-attP plasmid and inverted attP fragments were 
cloned into KpnI and AscI site upstream and downstream of the mini-white sequence 
respectively. 
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3.1.1.1.1 Demonstration of site-specific integration via RMCE 

To test the versatility of the RMCE system for subsequent genetic manipulation on 

the mutant, I knocked out the Drosophila miRNA miR-31b by ends-out homologous 

recombination with a construct based on pW25-RMCE. miR-31b is located in the 

second intron of the protein coding gene CG01962. Targeted knockout of miR-31b 

introduced the mini-white reporter into the intron of CG01962 (Figure 3.3A). I 

verified the replacement both by the gain of mini-white expression in the eyes and by 

the use of quantitative RT-PCR, which confirmed the loss of the miRNA mature 

transcript in the mutant (Figure 3.3B).  

 

To enable cassette exchange, I injected embryos obtained from a cross between flies 

carrying the targeted miR-31b locus and those expressing φC31 integrase [191] with 

the piB-GFP donor plasmid, in which GFP is flanked by inverted attB sites [15]. 

When the injected animals reached adulthood, I crossed them individually with w1118 

partners and identified putative RMCE events by the loss of mini-white expression in 

the eyes. To determine the orientation of GFP insertion, I performed molecular 

genotyping by standard PCR (Figure 3.3C). In two separate trials, I observed an 

efficiency of ~25% of injected embryos with successful RMCE events, with 50% of 

events having the GFP reporter inserted in the same transcriptional orientation as 

miR-31b.  
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Figure 3.3 Site-specific integration via φC31 integrase-mediated RMCE.  

(A) Schematic representation of the targeting event replacing miR-31b with mini-
white, flanked by attP and loxP, in the intron of CG10962. Exchange of mini-white 
with GFP by cross-over between the two inverted attP and attB sites leads to clean 
exchange of mini-white by GFP, resulting in new attR site, denoted by checkered 
triangles. RMCE can occur in both orientations. Primer pairs (arrows) were designed 
to distinguish the two outcomes. (B) Quantitative miRNA PCR to measure the level 
of miR-31b in total RNA from control flies (w1118), mutants carrying the mini-white 
targeted allele (miR-31w+) and mutants carrying the GFP replacement allele (miR-
31GFP). (C) Determination of orientation of GFP insertion by PCR genotyping. 
Absence of GFP in orientation 2 (lane 1 and 2: failure to amplify with primer pairs 
p5/p6 and p7/p8); presence of GFP in orientation 1 (lanes 3 and 4: the product 
amplified by primer pairs p1/p2 and p3/p4); demonstration of the specificity of 
primer pairs p1/p2 and p3/p4 using initial mini-white-containing mutant genomic 
DNA as the template. 
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3.1.1.1.2 Demonstration of other utilities of RMCE 

Another problem with the existing ends-out gene-targeting vectors was the potential 

for disruption of proper splicing of the targeted locus. This can occur because the 

mini-white reporter is a shortened genomic version of the white gene that contains 

introns [192]. As a result, mini-white can serve as a ‘gene trap’ when located in an 

intron (illustrated in Figure 3.4A).  The potential for mis-splicing is a concern in the 

generation of mutants for intronic miRNAs. However, this could be resolved by 

replacing the mini-white sequence with an intronless reporter such as coding sequence 

of the GFP reporter using the RMCE strategy.  

 

To demonstrate the utility of the RMCE strategy in the ‘curing’ of such a gene trap 

generated by the mini-white marker, I checked the splicing pattern of the host gene of 

miR-31b. The Drosophila miR-31b gene is located in the second intron of the gene 

CG10962. In the wild-type chromosome, endogenous splicing of the four exons of 

CG10962 results in a functional transcript (Figure 3.4A, A’ and D). However, flies 

homozygous for the miR-31b allele with the mini-white cassette showed reduced 

levels of correctly spliced CG01962 transcript (Figure 3.4B, B’ and D). Exchanging 

the mini-white locus with intron-less GFP restored CG01962 mRNA levels (Figure 

3.4C, C’ and D). This example illustrates the utility of RMCE to produce an intronic 

mutant with minimal disruption of the flanking locus. 
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Figure 3.4 The ‘curing’ of a gene trap by the use of RMCE.  

(A-C’) Illustration of possible splicing patterns of CG10962 in various miR-31b 
mutants. (A) CG10962-RA has 4 exons, denoted by grey boxes 1-4. miR-31b is 
present in the second intron. (A’) Endogenous splicing of CG10962 results in a 
functional transcript consists of exon 1 to 4. (B) The mini-white marker in the 
targeting vector contains introns and exons of the white locus and could interfere with 
splicing of CG10962, resulting in mis-splicing of this host gene (B’). (C) 
Replacement of mini-white with an intron-less GFP cassette restores the endogenous 
splicing of CG10962 (C’). Primers p9/p10 amplify a product spanning the exon2 and 
exon3 junction (A’ and C’) and can be used in quantitative RT-PCR to measure the 
efficiency of removal of intron 2 using total RNA from flies with the respective 
genotypes (D).   
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3.1.1.2 Improvements to increase scalability and throughput of gene-targeting 

Yet another problem associated with the existing ends-out gene targeting vectors was 

that the production of the initial donor fly relies on conventional P-element mediated 

transformation. The use of two 2.5-3.5kb homology fragments in the generation of a 

gene-targeting construct unavoidably results in a relatively large plasmid, usually 

about 17-18kb. This reduces the efficiency of genetic transformation by 

microinjection of the KO plasmid. In addition, since the conventional P-element 

mediated transformation results in random insertion of the KO plasmid, additional 

genetic crosses are required to map the chromosomal insertion site, lengthening the 

gene targeting procedure. Therefore, one of the bottlenecks was to obtain a suitable 

donor fly to initiate gene targeting.  

 

To improve the efficiency of donor transgenic strain generation, I again made use of 

the φC31 integrase-mediated site-specific transformation. To implement this 

modification, I cloned the attB site into the backbone of pW25 (pW25-attB, Figure 

3.5A). Injection of targeting constructs in this vector into embryos expressing φC31 

integrase and containing the bacterial phage-landing site, attP, at a known genomic 

location (e.g. [191]) would result in the insertion of the transgene at the desired 

chromosomal locus, which would greatly facilitate the crossing schemes needed for 

targeting.  

 

One point worth mentioning, though, is that the use of φC31 integrase-mediated site-

specific transformation to obtain the initial donor flies means that the RMCE strategy 

could not be used to allow cassette exchange at the targeted locus. Therefore, use of 
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the pW25-attB vector increases the overall throughput of the gene targeting strategy, 

at the cost of forgoing the versatility provided by RMCE retargeting. 

 

To optimize for both scalability and versatility, I decided to incorporate the 

UAS/GAL4 system to the pw25-attB vector. This would allow the use of Gal4 at the 

targeted locus as a driver for miRNA expression study or for genetic manipulations.  

 

Two versions were made. In the first case, I cloned the attB site into the backbone of 

pW25-Gal4 vector generated by Dr. Natascha Bushati, a former member of the lab. 

In this vector, the Gal4-VP16 sequence was upstream of the loxP site in pW25-attB 

(pW25-Gal4-attB1, Figure 3.5B). Targeting with this vector would produce alleles 

that direct Gal4 expression from the endogenous regulatory elements at the targeted 

locus. However, since Gal4 is upstream of the loxP site, it would not be possible to 

remove the Gal4 sequence once the initial KO mutant was generated. Again, this 

would create some kind of the ‘gene trapping’ problem similar to mini-white should 

the targeted miRNA locus was located in the intron of some host gene. To overcome 

this problem, I made a second modification by introducing the Gal4 sequence in 

between the 5’-loxP site and mini-white gene (pW25-Gal4-attB2, Figure 3.5C). This 

would then allow removal of Gal4 with mini-white by the Cre-loxP recombinase 

system, resulting in a ‘clean’ knock out. 
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Figure 3.5 Schematics showing pW25-attB and pW25-Gal4-attB1 and pW25-

Gal4-attB2 ends-out gene targeting vectors.  

(A) pW25-attB and (B) pW25-Gal4-attB1 vector. A 285-bp fragment containing the 
bacterial phage attachment site (attB, denoted by gray triangles) was cloned into 
pW25 and pW25-Gal4 vector backbones at the NdeI site. (C) pW25-Gal4-attB2 
vector. The Gal4 coding sequence was cloned between the 5’ loxP site and mini-
white by composite cloning using pW25-attB as the vector backbone. This allows 
removal of Gal4 driver together with mini-white marker using the Cre-LoxP 
recombinase system. Restriction enzyme sites for PacI and FseI were introduced to 
the multiple cloning sites at the 5’ and 3’-end respectively to facilitate directional 
cloning of ‘homology arms’. 
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3.2 Characterization of Drosophila miR-124 functions 

3.2.1 Characterization of miR-124 expression 

3.2.1.1 miR-124 expression in the developing nervous system 

Previous studies using in situ hybridization and tissue-specific sequencing approaches 

have shown that miR-124 is expressed in the CNS from early embryonic stages to 

adulthood in Drosophila melanogaster [37, 193]. To further characterize the neuronal 

expression pattern of miR-124, I have used several genetic and molecular means, 

including the use of a miR-124 promoter-driven GFP reporter, fluorescent in situ 

hybridization analysis and miR-124 nuclear GFP sensor characterization in this study.  

3.2.1.1.1 miR-124 expression following miR-124-GFP reporter expression 

As a first approach, I used a 4.7 kb genomic region upstream of the miR-124 locus, 

likely covering the promoter region for miR-124 expression, to drive expression of a 

GFP reporter using the GAL4/UAS system [194]. (Figure 3.6A). In the developing 

embryonic CNS, this reporter showed GFP expression in both the embryonic brain 

and ventral nerve cord (VNC) (Figure 3.6B, C as reported earlier [37]. Using markers 

for the various cell types within the CNS, I observed co-expression of miR-124-GFP 

with neuroblast (NB) markers, such as the transcription factor Worniu (Wor), and 

with the post-mitotic neuronal marker, Embryonic Lethal Abnormal Vision (Elav) 

(Figure 3.6D, E) in the embryonic CNS. This suggested that miR-124 is expressed in 

both the neuronal precursors and the mature post-mitotic neurons.   

 

Furthermore, in mature third instar larvae, GFP expression was high in the central 

brain, and ventral nerve cord, and detectable but somewhat lower in the optic lobes 

(Figure 3.6F). Similar to its expression at the embryonic CNS, miR-124-GFP was co-
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expressed with NB markers, Deadpan (Dpn), and with the post-mitotic neuronal 

marker, Elav (Figure 3.6G) in mature larval CNS. In addition, projection from a 

series of optical sections shows miR-124 GFP in most Dpn-positive cells (Figure 

3.6H) in the larval CNS and this has led me to the conclusion that miR-124 is 

expressed in most of the neuronal precursors of the developing larval brain.  

 

By contrast, when I used an antibody against the transcription factor, Reverse Polarity 

(Repo), which labeled most of the larval brain glia cells, I did not observe co-

expression of miR-124-GFP in these cells (Figure 3.6I, J), suggesting the absence of 

miR-124 expression in the glia population within the CNS.  
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Figure 3.6 Expression of miR-124-GFP reporter in the developing CNS. 

(A) Schematics showing design of miR-124-GFP reporter. GFP expression 
expression is driven by a 4.7kb cis-regulatory element from the miR-124 locus. (B, C 
and F) Dorsal (B) and lateral (C) view, respectively, of GFP expression (green) in 
stage 16 embryos, and ventral view of 3rd instar larval brain (F), from a projection of 
optical sections. Central brains (CB), optic lobes (OL) and ventral nerve cord (VNC). 
(D and E) Single optical section showing many neuroblasts labeled with anti-Wor 
(red) near the surface of the VNC (D) and mature neurons deeper into the cortex 
labeled with anti-Elav (megenda) (E). (G) Single optical section near the surface of 
the cortex, showing several neuroblasts labeled with anti-Dpn(red) and neurons 
labeled with anti-Elav (blue/gray). (H) Dorsal view showing a projection of optical 
sections for one brain hemisphere. Most central brain NB (identified by Dpn 
expression, red) express miR-124 GFP (green). miR-124-GFP was detected at lower 
levels in the NB of the optic proliferation center (upper right). (I) Single optical 
section near the surface of the ventral cortex showing glia cells labeled with anti-
Repo (red). (J) Single optical section at higher magnification (40x) showing the non-
overlapping pattern of miR-124-GFP and Repo staining in I. 
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3.2.1.1.2 miR-124 expression by fluorescent in situ hybridization 

The caveat of using a promoter construct to study the expression of a gene was that 

this reporter might not fully recapitulate the endogenous expression pattern of the 

gene. This is because distal enhancer element might have been lost in the artificial 

promoter construct. In addition, there could be positional effect on expression due to 

the site of insertion of the promoter construct.  

 

Therefore, as an independent means to visualize miR-124 expression I used 

fluorescent in situ hybridization (FISH). I made use of the MARCM strategy [188, 

195] to compare clones of genetically marked miR-124 mutant cells with control 

clones. As a control for the specificity of the protocol, I performed the FISH 

experiment on brain samples containing miR-124 mutant clones. Since no signal was 

detected in the miR-124 mutant tissue, I was confident about the specificity of the 

probe (Figure 3.7A). In the wild-type control clones, I observed the presence of 

mature miR-124 in post-mitotic neurons but extremely low levels in NB (Figure 

3.7B).  

 

To increase the sensitivity of the FISH method, I used a longer probe directed against 

the primary transcript of miR-124. Primary transcript FISH detected	  pairs	  of	  dots	  in	  

the	  nuclei	  of	  NB	  in	  the	  central	  brain	  of	  wild-‐type	  3rd	  instar	  larvae	  (Figure	  3.7C).	  

Such	  dots	  correspond	  to	  sites	  of	  transcriptional	  activity,	  confirming	  that	  nascent	  

miR-‐124	   transcripts	   are	   being	   generated	   in	   the	   NB	   of	   the	   larval	   brain. These 

observations confirmed that miR-124 is expressed in proliferating neuronal 

progenitors as well as in differentiating post-mitotic neurons.  

 



RESULTS 
 

 92 

 

Figure 3.7 miR-124 expression in larval central brain using fluorescent in situ 

hybridization.  

(A and B) miR-124 mutant MARCM clone (A, green) and wild-type MARCM clone 
(B, green) showing a single NB lineage. Expression of mature miR-124 miRNA 
transcript detected by a in situ hybridization probe against sequence of mature miR-
124(red); DNA is stained with DAPI (blue). Upper panel: superficial optical section. 
Lower panel: deeper optical section showing differentiating neurons. (C) Wild-type 
central brain showing the presence of miR-124 primary transcript as pairs of nuclear 
dots on the DNA. NB are labeled with anti-Dpn (green) and DNA is stained with 
DAPI (blue).  NB are marked with * in all panels.  
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3.2.1.1.3 miR-124 expression following miR-124 nuclear GFP sensor expression 

As an independent means of visualizing miR-124 activity, I have created a transgenic 

fly expressing a nuclear GFP sensor for miR-124. In this sensor fly, nuclear GFP was 

driven by a constitutive promoter, tubulin. One copy of perfect recognition site for 

miR-124 was introduced to the 3’UTR of the GFP reporter (Figure 3.8A). As a result, 

cells that express miR-124 would express low level of GFP whereas cells with low or 

no miR-124 expression would show high level of GFP expression. Therefore, miR-

124 activity would be inversely correlated with the expression of the GFP sensor. 

 

As shown in Figure 3.8, in 3rd instar larval brain, GFP expression was almost 

undetectable in large apical cells in the central brain and VNC. These cells are the NB 

of the brain based on their apical position and the smooth, round cellular morphology. 

Similarly, no GFP expression was detected in the cluster of small mature neurons 

residing deeper into the cortex in the central brain, optic lobes and VNC. However, 

strong GFP expression was readily detectable in cells scattered around the cortex as 

well as the surface of the entire brain and VNC, with monopolar, bipolar or 

multipolar morphologies. Based on the location and morphology, these are the glia 

cells in the larval CNS. Since the level of GFP expression is inversely proportional to 

the level of miRNA expression, these observations confirm the results obtained from 

the miR-124-GFP reporter study described above, and further support the conclusion 

that miR-124 expression is neuron specific.  

  



RESULTS 
 

 94 

 

Figure 3.8 miR-124 expression in the larval CNS using miR-124 nuclear GFP 

sensor.  

(A) Schematics showing the design of the miR-124 nuclear GFP sensor. Nuclear GFP 
expression is driven by a constitutive tubulin promoter. A copy of complementary 
mature miR-124 sequence (sequence shown in red characters) is cloned into the 3’ 
UTR of GFP using the XbaI and XhoI restriction enzyme sites. (B-C) Single optical 
section showing the expression of nuclear GFP, costained with DAPI for the nuclei, 
in 3rd instar larval brain from apical (B, at 40x magnification) and ventral view (C, at 
20x magnification). The NBs, indicated by white arrowheads, are identified by their 
apical position, the large size and the smooth, round morphology. Post-mitotic 
neurons, labeled with asterisk, are identified based on their cortical position and the 
small round morphology. Glia cells, indicated by white arrow, are identified by their 
scattered position within the larval brain and surrounding the brain surface.  
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3.2.1.2 miR-124 expression in the adults 

Having established that the miR-124-GFP reporter construct mostly recapitulated the 

endogenous expression pattern of miR-124, as validated by both FISH and miR-124 

sensor expression analysis, I continued to characterize the expression of miR-124 in 

the adult flies using this reporter construct.  

3.2.1.2.1 miR-124 expression in the adult brain  

Similar to the high level of expression of miR-124 in the larval CNS, results from 

deep sequencing effort shows extremely high number of sequencing reads for the 

mature sequence of this miRNA in the adult head [22]. To confirm this, I analyzed 

expression of miR-124-GFP reporter in the adult brain. High level of GFP expression 

was readily detectable in the adult central brain, particularly in the mushroom bodies, 

regions of the central complex and the periesophageal neuropils centre (Figure 3.9). 

 

 

Figure 3.9 Expression of miR-124-GFP reporter in the adult brain. 

(A) GFP expression following the miR-124-GFP reporter in 5day-old adult brain. 
High level of GFP expression in adult mushroom bodies (white asterisks), regions of 
the central complex (red asterisks) and perioesophageal neuropils centre (white arrow 
head) (B). DNA is labeled with DAPI (C). Images taken at 20x magnification.  
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3.2.1.2.2 miR-124 expression in the male reproductive system 

Interestingly, while all past studies on miR-124 studies have reported a nervous 

system specific expression pattern of this miRNA in all the model organisms, 

including C. elegans [107], Drosophila Melanogaster [45, 77] and mice [53, 54, 

196], I observed notable miR-124-GFP reporter expression in the reproductive 

system in the male flies.  

 

As shown in Figure 3.10, within the male reproductive system, GFP was readily 

detectable in the anterior ejaculatory duct (eda), the base of the accessory gland (ag), 

at the tip of the testis as well as the ejactulatory bulb. To ask if the cells that express 

GFP are part of the peripheral nervous system, I co-stained the tissues with the 

antibody against neurons, anti-ELAV. GFP expression was found to partially overlap 

with ant-ELAV staining, indicating that miR-124-GFP reporter is expressed in both 

cells of the peripheral nervous system that innervate the male reproductive system as 

well as some other cell types within these tissues. More detailed characterization 

using antibodies to recognize the other cell types of the male reproductive system will 

be required to determine the nature of these GFP-expressing cells.  
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Figure 3.10 Expression of miR-124-GFP reporter in the male reproductive 

system. 

GFP expression following the miR-124-GFP reporter at the anterior ejaculatory duct 
(eda), the base of the accessory gland (ag), at the tip of the testis (A, at 20x 
magnification) and the ejaculatory bulb (B, at 40x magnification). DNA is labeled 
with DAPI (blue) and neurons labeled with anti-ELAV (red).  
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3.2.2 Generation of miR-124 knock-out mutants 

I am interested in the functions of miRNAs in the development and functions of the 

nervous system in the fly. Since miR-124 has been the focus of considerable interest 

among the animal miRNAs implicated in CNS development, I focused on the 

analysis of miR-124 function(s) in the second phase of my study.  

 

In order to explore miR-124 function in vivo, a previous graduate student in the lab 

had generated a miR-124 mutant via homologous recombination using the standard 

ends-out gene-targeting vector, pW25. In this mutant, named miR-124Δ4, the miR-124 

locus of 300bp was replaced with a mini-white reporter. (Figure 3.11 Δ4).  

 

To facilitate further genetic analysis, I decided to generate an independent mutant 

allele using an RMCE vector [197]. In this mutant, which I named miR-124Δ177, I 

deleted 264 bp encompassing the miR-124 hairpin and introduced the mini-white 

reporter flanked by inverted attP sites at the locus of the miRNA to permit 

subsequent genetic rescue by RMCE (Figure 3.11 Δ177). 

 

I confirmed that the targeted miR-124 loci were deleted in both mutant alleles by 

using a pair of primers that amplify the genomic region spanning the overlapping 

region of the two independent targeted loci. As shown by Figure 3.12A, single fly 

PCR amplifies a PCR product at the expected size of about 150bp using genomic 

DNA from control flies but not from homozygous of miR-124Δ177 / miR-124Δ4.  

 

Together with the other co-workers in the generation of the global knockout library, I 

have observed a low frequency of re-insertion of the targeted genomic fragment into 
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some other random genomic loci after it was deleted from its endogenous locus [198]. 

Therefore, it is possible that mutants that have been verified to be deficient for the 

targeted loci using the single PCR method mentioned above might not be a true 

genetic null for the miRNA hairpin.  Therefore, quantitative microRNA-PCR was 

used to test for the loss of miR-124 production in both knockout alleles. As shown in 

Figure 3.12B, a pair of qRT-PCR oligos designed to amplify the mature sequence of 

miR-124 detected the presence of the miRNA mature transcript in WT and 

heterozygous, miR-124Δ4 / WT or miR-124Δ177 / WT control flies but not from trans-

heterozygous miR-124Δ177 / miR-124Δ4, demonstrating the complete genomic ablation 

of miR-124 mature transcript from the KO alleles created.  

 

To create a genetic rescue animal that expresses miR-124 under its endogenous 

promoter, a 350bp DNA fragment containing miR-124 hairpin was re-introduced into 

the targeted locus in the Δ177 allele using the RMCE strategy depicted in the 

previous section. As shown in Figure 3.12B, quantitative RT-PCR has verified that 

the expression of mature miR-124 transcript in this rescue animal, miR-124RMCE / miR-

124RMCE, was restored to almost its wild-type level. The rescue fly thus created this 

way would be useful for the confirmation of the specificities of miR-124 loss-of-

function phenotypes in the characterization of the miR-124 mutants.  
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Figure 3.11 Schematics showing the genomic loci of various miR-124 alleles used 

in this study. 

miR-124 is located on Chr 2L in the WT flies, relatively distant, about 10kb and 8kb 
away respectively, from the neighboring genes, CG7094 and miR-287. The miR-124Δ4 
allele has a 300-bp genomic fragment covering the miRNA mature transcript 
sequence replaced by the loxP-mini-white-loxP cassette from the pW25 gene-
targeting vector. The miR-124Δ177 allele has a 264-bp genomic fragment covering the 
miRNA mature transcript replaced by the attP-loxP-mini-white-loxP-attP RMCE 
cassette from the pW25-RMCE gene-targeting vector. In the miR-124RMCE allele, the 
attP-loxP-mini-white-loxP-attP RMCE cassette from the initial miR-124Δ177 allele has 
been replaced with an attL-350bp mature miR-124 sequence-attL fragment using the 
RMCE strategy. Inner dotted square represents genomic region deleted in the miR-
124Δ4 allele; outer dotted square represents genomic region deleted in the miR-124Δ177 

allele; red hairpin represents miR-124 and nearby miR-287 hairpin structures as 
indicated; red square represents the mini-white reporter used in the gene-targeting 
vector; bar represents loxP sites; green bar represents attP or attL sites.  
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Figure 3.12 Verification of loss of miR-124 in miR-124 alleles by single fly PCR 

and qRT-PCR experiments.  

(A) Detection of PCR fragment covering the targeted miR-124 hairpin sequences in 
wild-type and heterozygous mutant of either KO allele over wild-type but not in 
trans-heterozygote of both alleles; (B) miRNA qRT-PCR using oligos directed 
against the mature transcript of miR-124 detected ~ 40-50% wild-type level of its 
mature transcript in heterozygous mutant of either KO allele over wild-type and 
transgenic flies with a single copy of the rescue allele, close to 0% in trans-
heterozygote of both alleles and close to 100% wild-type level in transgenic flies 
containing two copies of the rescue alleles.  
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3.2.3 miR-124 is not required for basic survival of the fly.  

3.2.3.1 Presence of background lethality mutation(s) in miR-124 KO alleles 

No homozygous adults were obtained in stocks of either knockout allele of miR-124 

balanced with chromosome balancer, CyO, suggesting that the miR-124 LOF mutants 

were homozygous lethal. However, when crossed over a deficiency (Df) strain 

containing a genomic deletion uncovering the miR-124 locus, adults trans-

heterozygous for the Df and each of the KO alleles were obtained. This suggested that 

the lethality observed in the two KO stocks were due to other lethal mutation(s) on 

the chromosomes that were not located at the miR-124 locus.  

 

I was unable to remove the background lethality in these alleles after six generations 

of backcrossing with the Canton-S (CS) wild-type strain, suggesting that the lethal 

mutations associated were in close proximity with the targeted miR-124 loci 

(although not included in the Df used). However, trans-heterozygous mutant for these 

two alleles was viable, suggesting that the lethal genetic background associated with 

two KO alleles are independent. Consequently, only trans-heterozygotes between the 

two independent KO alleles or between either allele and the genomic deficiency line 

were used for further characterization of the mutant phenotypes; and in the following 

discussion, the term ‘miR-124 mutant’ always refers to the trans-heterozygous 

combination of miR-124Δ177 / miR-124Δ4.  
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3.2.3.2 miR-124 is not required for viability of the fly 

Results from whole genome deep sequencing analysis have shown that miR-124 is 

expressed at a high level from early embryonic stages of the fly development [22], 

suggesting that it might play an important role in early fly development. 

 

As a first approach to address this question, I asked if miR-124 is required for the 

viability of the fly during development. To do this, I scored the percentage of trans-

heterozygous miR-124Δ177 / miR-124Δ4 adult flies emerging from the progeny obtained 

from a cross between these two independent knockout alleles. Progeny from the 

crosses, regardless of their genotypes, were raised in groups of 20 per standard food 

vial from early embryonic stages onwards. Under such controlled culturing 

conditions, trans-heterozygotes of miR-124Δ177/miR-124Δ4 flies emerged as adults at 

the expected Mendelian genetics ratio (Figure 3.13). This suggests that miR-124 is 

not required for the survival of the animal when growth conditions were optimal.  

 

Figure 3.13 Viability of miR-124 mutants.  

Percentage of emerging adult flies with the indicated genotypes, as observed in 
viability test and as expected from the Mendelian ratio.  
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3.2.3.3 miR-124 is not required for reproduction of the fly  

To ask if miR-124 is required for reproduction, I carried out single pairing fertility 

tests crossing sexually mature males or females of miR-124 mutants to flies of the 

opposite sex and quantified the fertility of the mutant using two scoring parameters. 

The first parameter compared the percentage of individual fly pairings that resulted in 

viable progeny and the second parameter measured the number of progeny produced 

in each reproductive pairing. As shown in Figure 3.14, no significant changes in 

either parameter were observed for male or female mutants of miR-124.  

 

When individual mutant males were paired with two CS female virgins for 48hrs, 

close to 95% of the crosses resulted in viable progeny. This was very similar to the 

percentages of fertile single pairings between CS or miR-124 heterozygous control 

males and CS female virgins (95% and 100% respectively, Figure 3.14 A). This 

indicated that miR-124 LOF did not compromise the reproduction capability of the 

male fly. The same was true when individual mutant females were paired with two 

CS males (Figure 3.13B). Similarly, the total number of progeny obtained from the 

single pairing fertility tests did not deviate significantly between crosses of mutant 

male with CS females and of control males and CS females, and vice versa (median 

number of progeny = 75 vs 74 in the male test, P>0.05 and 45 vs 50, P>0.05, in the 

female test, Figure 3.14C and D). This suggested that miR-124 LOF did not affect the 

reproductive capacity of young sexually mature flies of either sex. Together, these 

results indicated that miR-124 was not required for reproduction of the fly.  



RESULTS 
 

 105 

 

Figure 3.14 Fertility of miR-124 mutants.   

(A-B) The percent of fertile crosses was scored. Control CS or miR-124 mutant males 
were paired with CS female virgins (A) and Control CS or miR-124 mutant female 
virgins were paired with CS male overnight (B). The presence of progeny in the vial 
was later scored. Data represent average of 3 independent experiments (n= 20 single 
pair matings per experiment). Error bars represent SEM. There was no significant 
significance. (C-D) The total number of progeny resulting from each fertile cross 
between control CS or miR-124 males with control CS female virgins (C), and 
between control CS or miR-124 female virgins with control CS male (D). Pupae were 
counted. Box plot showing median, upper and lower quartiles. There was no 
significant difference between the samples.  
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3.2.4 miR-124 function in CNS development 

3.2.4.1 miR-124 is not required for gross CNS early development  

Since miR-124 is expressed at a high level in the developing embryonic and larval 

CNS, I asked if this miRNA played a role in development of the fly CNS.  

 

To ask if miR-124 LOF affects the development of the embryonic nervous system, I 

analyzed homozygous mutants at late embryonic stage, stage 16 using a subset of 

neuronal markers. I did not observe gross morphological changes in miR-124 LOF 

embryos at stage 16. For example, anti-Eve antibody, which labels the neuronal 

progeny of four embryonic NB, revealed a similar pattern and number of labeled 

neurons in the miR-124 LOF mutant embryos (Figure 3.15 A and B). This suggested 

that miR-124 LOF unlikely affects the specification of cell fate in the embryonic 

nervous system. In addition, staining with the anti-BP102 antibody, which labels 

embryonic CNS axons revealed no gross morphological defects with axon scaffolding 

in the stage 16 miR-124 mutant embryos compared to that of the wild-type. 

 

Figure 3.15 Gross morphology of the embryonic nervous system is not affected 

in miR-124 LOF.  

Anti-BP102 (brown) shows no gross morphological defects with axon scaffolding in 
the stage 16 miR-124 mutant embryos compared to that of the wild-type. Anti-Eve 
antibody (black) labels a subset of 9-12 neurons per hemisphere in stage 16 wild-type 
embryos, which does not seem to deviate significantly in miR-124 mutant embryo.  
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3.2.4.2 miR-124 is not required for asymmetric division of larval NBs 

Since miR-124 is expressed in NB lineages of the larval central brain, I wondered if 

its presence is important for the development of these central brain NB lineages. To 

test this, I made use of the mosaic analysis of a repressible marker (MARCM) 

technique and compared genetically marked NB clones that were normal or mutant 

for miR-124.  

 

More specifically, I induced randomly positioned MARCM clones in early first instar 

larvae when the NBs start to reenter proliferation and analyzed these clones in late 

third instar larval brains. All labeled control and miR-124 mutant type I NB lineages 

contained one large cell, the NB, which expressed Deadpan (Dpn; Figure 3.16 A and 

B) as well as many smaller cells. GMC were identified by expression of the 

differentiation marker, Prospero (Pros, Figure 3.16C and D) and by Partner of Numb 

(Pon, Figure 3.16E and F), which is segregated to the GMCs during asymmetric NB 

division. Pros and Pon were detected in wild type and mutant GMCs. GMC were 

found clustered directly adjacent to the large apical NB in both control and mutant 

clones (Figure 3.16C and F). In addition to the NB and GMC precursors, control and 

miR-124 clones contained many smaller cells that expressed Elav, representing the 

neuronal progeny of the GMCs (Figure 3.16A and F). The presence of the labeled NB 

and GMC together with many post-mitotic progeny in each clone reflects the 

successive rounds of asymmetric NB division to produce many GMC.  

 

To visualize mitotic cells, I made use of an antibody specific for the phosphorylated 

form of histone-H3 (pH3). Histone-H3 Ser-10 phosphorylation is known to coincide 

with chromosome condensation [199]. Therefore, the presence of pH3 indicates that 
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the cell has entered mitosis. As shown in Figure 3.16 G and H, a subset of NB and 

GMC were labeled with anti-pH3 in control and miR-124 mutant clones, indicating 

that NB and GMC were mitotically active. Comparable observations were made for 

marked miR-124 mutant type II NB clones. Therefore, miR-124 is not required for 

neuronal cell fates in type I nor type II larval brain NB lineages.  

 

 

 

Figure 3.16 Cell types in the NB lineages are not altered in miR-124 mutant 

clones.  

(A-F) Single optical sections showing GFP labeled MARCM clones of the indicated 
genotypes. MARCM clones (GFP: grey); (A, B) NB labeled with anti-Dpn (red). 
Postmitotic neurons were labeled with anti-Elav (green). (C, D) GMC (arrows) were 
identified by labeling with anti-Pros (red) and by the absence of the postmitotic 
marker anti-Elav (green). Arrowheads indicate Elav-positive postmitotic neurons.  (E, 
F) NB and GMC labeled anti-Pon (red) and neurons labeled with anti-Elav (green). 
(G, H) NB labeled with anti-Dpn (red) and with anti-phospho-Histone H3 (green).   
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3.2.4.3 miR-124 is required for NB proliferation in larval central brain 

3.2.4.3.1 miR-124 LOF led to reduction in the size of central brain NB lineages 

Although loss of miR-124 did not compromise the ability of type I NB to undergo 

asymmetric division, upon closer examination, I observed a reduction in the number 

of post-mitotic neurons in the NB clones that are mutant for miR-124 (Figure 3.17).  

 

As part of the MARCM analysis, I determined the average number of GFP-labeled, 

Elav-positive cells for control and mutant type I NB clones by counting the total 

number of these cells in the confocal images obtained.  Control clones contained an 

average of 85 cells (±5), while miR-124 mutant clones contained an average of 66 

cells (±9), cells per clone (Figure 3.17, * P<0.05). To confirm that this difference was 

due to the absence of miR-124, I carried out a clonal rescue experiment. In the 

MARCM experiment, I have made use of Elav-Gal4 to direct UAS-GFP expression 

to positively label clones. It is worth noting that the Elav-Gal4 driver is expressed in 

all cells of the NB lineage, in contrast to Elav protein, which is limited to post-mitotic 

neurons. To perform clonal genetic rescue, I co-expressed a UAS-miR-124 transgene 

along with UAS-GFP in control and miR-124 mutant MARCM clones. This restored 

mutant type I NB clone size to normal control levels (Figure 3.17, P=0.44 for control 

vs rescued mutant). These findings indicate that miR-124 is required in the NB 

lineage to generate the normal number of post-mitotic neurons.  
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Figure 3.17 miR-124 LOF leads to reduction in size of central brain NB lineages. 

Average cell number in wild-type control type I NB MARCM clones, compared with 
miR-124 mutant and rescued miR-124 clones.  SD = 5 (control), 9 (miR-124) and 8 
(clonal rescue). One asterisk: P<0.05; two asterisks P<0.01 using two-tailed unpaired 
Student’s t-test (n > 100 for each genotype).  
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3.2.4.3.2 miR-124 LOF led to reduced proliferation of NB in larval central brain 

The reduction in cell number observed in miR-124 mutant NB clones suggests that 

mutant cells either divide less or that some of them die during postembryonic 

development.  

 

To explore the possibility that the reduction in clone size in miR-124 mutant as a 

consequence of alteration in NB proliferative capacity, I scored the number of 

MARCM clones containing type I NB labeled with the mitotic marker pH3. I 

observed that only 35% of NB in miR-124 mutant clones was pH3-positive while 

46% of control clones had pH3-positive NB (Figure 3.18, ** P<0.01). Performing the 

genetic clonal rescue experiment described above, I observed restoration of the 

mitotic index to its normal level in the rescued UAS-miR-124 clones (Figure 3.18, 

P=0.28 for control vs rescued mutant; * P<0.05 for mutant vs rescued mutant). Since 

post-mitotic neurons within a NB lineage are generated by successive rounds of NB 

asymmetric cell divisions, the reduction in the progenitor NB proliferation could 

contribute to the overall reduction in size of the miR-124 mutant clones.  
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Figure 3.18 Proliferative status of miR-124 mutant type I NB clones.  

Mitotic index of type I NB in wild-type, miR-124 mutant and rescued miR-124 
MARCM clones, shown as the percentage of NB that expressed phospho-histone H3 
in late wandering third instar larval brains. SD = 12% (control), 4% (miR-124) and 
13% (clonal rescue). One asterisk: P<0.05; two asterisks P<0.01 using two-tailed 
unpaired Student’s t-test (n > 100 for each genotype). 
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3.2.4.3.3 Blocking cell death did not rescue reduction in miR-124 clone size 

As mentioned earlier, a second possible mechanism for the reduction in overall clone 

size is cell death in the postembryonic larval brain. To test this, I performed a similar 

experiment using targeted mis-expression of the pan-caspase inhibitor, P35, to block 

apoptosis in the miR-124 mutant MARCM clones. Blocking cell death by p35 

overexpression did not restore the mitotic index of the mutant NB (Figure 3.19), 

indicating that the reduction in miR-124 clone size could not have been due to 

elevated cell death within the NB lineages.  

 

Taken together, these experiments suggest that reduced proliferative activity could 

account for the reduction in mutant clone size, and suggests that miR-124 is required 

for the proliferation of neuronal progenitors in the developing CNS.  

 

 

Figure 3.19 Blocking cell death does not rescue reduction in miR-124 clone size. 

Average cell number in wild-type control type I NB MARCM clones, compared with 
miR-124 mutant and miR-124 mutant clones expressing UAS-p35.  SD = 5 (control), 
9 (miR-124) and 4 (miR-124; UAS-p35).  
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3.2.4.4 Elevated ana level contributes to the miR-124 NB proliferation 

phenotype 

Computational predictions have suggested that miR-124 targets mainly epithelial-

specific or non-neuronal genes, including the glial-specific genes repo and gliotactin 

[37]. Intriguingly, the list of predicted targets of miR-124 includes anachronism 

(ana), which has been reported to encode a negative regulator of NB proliferation that 

is expressed specifically in a subset of glial cells [200]. As a first step to determine 

whether ana might be a functionally important target of miR-124, I examined ana 

transcript levels by quantitative RT-PCR in RNA samples from dissected third instar 

brains of control and miR-124 mutants. I observed an elevated level of ana transcript 

in the mutant brains, which were restored to normal level in the RMCE rescued 

mutant (Figure 3.20A, ** P<0.01). This indicates that the endogenous ana transcript 

is affected in a manner consistent with regulation by miR-124.  

 

If ana over-expression was the cause of miR-124 mutant clone phenotype, increasing 

ana level in cells of the NB lineages should phenocopy miR-124 mutant phenotypes. 

As a first step to assess whether elevated ana expression contributes to the miR-124 

mutant phenotype, I made use of the MARCM system to generate clones of cells 

overexpressing ana in the neuronal lineage. This resulted in a reduced proliferative 

index (Figure 3.20B, * P<0.05). This experiment shows that upregulation of ana is 

sufficient to mimic the effects of miR-124 LOF on NB proliferation. 

 

As a more direct and rigorous functional test of whether ana overexpression 

contributes to the reduced NB proliferation observed in miR-124 mutants, I asked if 

limiting ana levels could suppress the mutant phenotype. As a first approach, I 
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examined proliferation of miR-124 mutant clones in flies heterozygous for a null 

allele of ana [201]. Limiting the capacity to overexpress ana in this way restored the 

proliferative activity of miR-124 mutant NB to near normal levels (Figure 3.20C, * 

P<0.05). Together these experiments suggest that the elevated level of ana transcript 

in the miR-124 mutant brain contributes to miR-124 clonal phenotypes.   
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Figure 3.20 miR-124 regulates anachronism expression.  

(A) Normalized ana mRNA levels measured by qRT-PCR in RNA from late 
wandering third instar larval brains of the indicated genotypes. Data are presented as 
mean ± SD based on six independent biological replicates. Two Asterisks: P<0.01 
using the Wilcoxon two-sample test. (B and C) Genetic evidence that miR-124 acts 
via regulation of anachronism. Histograms showing the percentage of type I NB 
MARCM clones that expressed phospho-histone H3 in late wandering third instar 
larval brains. One asterisk: P<0.05 using two-tailed unpaired Student’s t-test (n > 100 
for each genotype). (A) Genotypes: control denotes Canton S, miR-124 mutant and 
Canton S flies that coexpressed the UAS-ana transgene to over-express ana mRNA 
selectively in the marked NB clones. SD = 11% (control), 6% (miR-124) and 5% 
(UAS-ana). (B) Genotypes: control denotes Canton S, miR-124 mutant, miR-124 
mutant clones that carrying 1 copy of the ana1 mutant allele. SD = 7% (control), 7% 
(miR-124) and 2% (miR-124, UAS-ana1).  
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3.2.4.5 miR-124 negatively regulates the expression of anachronism 

As a first approach to address if miR-124 regulates ana directly, I scanned through 

the 3’UTR of ana and found two potential miR-124 binding sites (Figure 3.21A). To 

validate the functionality of the miR-124 binding sites on ana 3’UTR, I generated 

luciferase reporter constructs carrying the full length ana 3’UTR or a mutant version 

in which 3 nucleotides of one of the predicted miR-124 sites were mutated to 

compromise pairing to the miRNA seed region (grey, Figure3.21B).  When I co-

expressed the UTR reporters with miR-124 in S2 cells, I observed a significant 

reduction in luciferase activity from the reporter carrying the intact target site but not 

on the mutant form of the ana reporter (Figure 3.21C, ** P<0.01). This suggests that 

miR-124 can act directly via this target site to repress ana expression. 

 

To further assess the functionality of the miR-124 target site in vivo, I generated 

transgenic flies expressing the ana 3’UTR luciferase reporter. I then compared 

luciferase activity levels in brains dissected from late third instar control larvae to that 

from miR-124 mutant, and observed elevated luciferase activity in miR-124 mutant 

brains carrying the intact ana reporter transgene, compared to the level of expression 

of this transgene in the control brains (Figure 3.21D, * P<0.05). I did not observe 

statistically significant upregulation of the UTR reporter carrying the mutated version 

of miR-124 site in miR-124 mutant brains.  

 

Based on these observations, I concluded that miR-124 can act directly via the site 

identified in the 3’UTR to regulate ana mRNA levels in vivo. 
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Figure 3.21 miR-124 target sites on ana 3’UTR are functional.  

(A) Predicted miR-124 target sites in the ana 3’UTR. Arrows indicated residues 
changed in the site 1 mutant. (B, C) Luciferase assays showing regulation of a firefly 
luciferase reporter containing the ana 3’UTR or a version of the ana UTR with site 1 
mutated as indicated in panel B. Data show the ratio of firefly to Renilla luciferase 
activity and represent mean ± SD based on three independent biological replicates. 
One asterisk: P<0.05; two asterisks: P<0.01 using two-tailed unpaired Student’s t-
test. (B) S2 cells were transfected to express the ana 3’UTR reporter or the site 1 
mutant version of the reporter. Cells were cotransfected to express miR-124 or a 
vector-only control, and a Renilla luciferase reporter as a control for transfection 
efficiency. (C) Normalized luciferase activity from the ana 3’UTR reporter transgene 
in control or miR-124 mutant larval brain lysates.  
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3.2.4.6 miR-124 controls ana level in NB lineages 

3.2.4.6.1 Low level of ana expression in the NB lineages of the larval brain 

What I have observed suggested that ana is a functionally significant target of miR-

124 in vivo. However, this conclusion would result in an apparent conundrum in that 

miR-124 is neuronal specific in its expression whereas earlier reports have suggested 

that ana is expressed only in glia [200].  

 

To explore the possibility that the ana transcript might in fact be present at low levels 

in the neuronal lineage, I made use of the TU-tagging method [187] to selectively 

label and purify RNA from neuronal cells of the NB lineage. The method is based on 

cell-type specific expression of the uracil phosphoribosyltransferase (UPRT) enzyme, 

which permits incorporation of a 4-thiouracil base into newly synthesized mRNA. I 

made use of the elav-Gal4 driver to direct expression of UAS-UPRT in all neuronal 

cells of the larval brain. As a positive control for neuronal mRNA, I performed RT-

PCR for elav mRNA. The glial-specific transcript repo was used as a control for glial 

cell mRNA. elav mRNA was recovered in the elav-Gal4 samples, whereas repo 

transcript was not detectably recovered (Figure 3.22A). ana mRNA was detected 

using primers specific for the mature spliced form of its transcript, indicating that ana 

was synthesized in the elav-Gal4 expressing cells of wild-type neuronal lineages 

(Figure 3.22A).  

 

Next, I used quantitative RT-PCR to measure ana transcript levels by TU tagging 

RNA from miR-124 expressing cells, using miR-124-Gal4 to direct UAS-UPRT 

expression. Samples were prepared from control brains and miR-124 mutant brains 

and PCR was normalized to the level of actin mRNA. The level of elav transcript was 
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unchanged, but ana transcript was increased by ~2 fold in the miR-124 mutant cells 

(Figure 3.22B). Again, repo transcript was not detected, confirming the absence of 

glial cells in this population. Based on these findings, I concluded that (1) that ana 

transcript is, in fact, expressed in neuronal cells and (2) that the level of ana transcript 

increased in miR-124-expressing cells in miR-124 mutant.  
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Figure 3.22 anachronism expression miR-124-expressing neuronal lineages.  

(A) Normalized mRNA levels of the indicated genes measured by qRT-PCR in 
neuronal RNA isolated from elav (c155)-Gal4 driving UAS-UPRT. Data are 
presented as mean ± SD based on three independent biological replicates. Two 
Asterisks: P<0.01 using the student t-test. (B) Changes in mRNA level of the 
indicated genes measured by qRT-PCR in neuronal RNA isolated from miR-124-
Gal4 driving UAS-UPRT in miR-124 mutant background, normalized to RNA sample 
isolated from wild-type larvae. Data are presented as mean ± SD based on three 
independent biological replicates. Two Asterisks: P<0.01 using the student t-test. (C) 
Quantitative PCR to assess the efficacy of the RNAi transgene at depletion of ana 
transcript in miR-124-expressing cells. Genotypes: control denotes Canton S, miR-
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124 mutant, miR-124 mutant expressing miR-124-Gal4 and UAS-ana-RNAi transgene 
to deplete ana mRNA selectively in miR-124-expressing cells.  

3.2.4.6.2 Upregulation of ana within NB lineages contributes to miR-124 NB 

phenotype 

Seeing that ana transcript levels were elevated in the miR-124 expressing cells in the 

miR-124 mutant, I then asked if the elevated ana level in these cells contributed to the 

miR-124 mutant clone phenotype. To do this, I used the MARCM system to 

selectively reduce ana levels in these cells. I first monitored the efficacy of depletion 

of ana transcript in miR-124 expressing cells. The level of ana transcript was 

compared by quantitative RT-PCR in RNA from miR-124 mutant brains expressing 

miR-124-Gal4 alone or together with a UAS-ana-RNAi transgene. ana transcript 

levels in the mutant were reduced to near normal control levels by the RNAi 

treatment (Figure 3.23A, ** P<0.01), indicating ana depletion by ana RNAi was 

efficient. 

 

Next, as a functional test for the effect of ana depletion in miR-124 mutant clones, I 

induced miR-124 mutant MARCM clones in the presence or absence of the anaRNAi 

transgene, and assayed for NB proliferative capacity. I found that selectively lowering 

ana levels in the miR-124 mutant NB clones was sufficient to restore proliferation to 

near normal levels (Figure 3.23B, * P<0.05). This provides the direct evidence that 

the upregulation of ana transcript due to the loss of miR-124 suppression contributes 

to the miR-124 NB proliferation phetnoypes.  



RESULTS 
 

 123 

     

Figure 3.23 ANA functions in miR-124 expressing neuronal lineages.  

(A) Efficiency of ana knockdown by UAS-ana-RNAi driven by miR-124-Gal4 
activity. Normalized mRNA levels of ana measured by qRT-PCR in total RNA 
samples of 3rd instar larval brain of the indicated genotypes. Data are presented as 
mean ± SD based on three independent biological replicates. Two Asterisks: P<0.01 
using the student t-test. (B) Functional test for the effect of ana depletion in miR-124 
mutant clones. Genotypes: control denotes Canton S, miR-124 mutant, miR-124 
mutant clones that carrying 1 copy of the UAS-ana-RNAi allele. SD = 7% (control), 7% 
(miR-124) and 3% (miR-124;UAS-ana -RNAi). 
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3.2.4.6.3 miR-124 limits ana expression in the NB lineages to functionally 

inconsequential level 

Given that ana and miR-124 are coexpressed in the NB lineage, I next asked whether 

the role of miR-124 was to tune ana expression to optimal levels in the NB.  Tuning 

relationships have been shown previously: in miR-430 regulation of nodal activity 

[202]; in miR-8 regulation of Atrophin in the CNS [48] and in miR-14 regulation of 

Sugarbabe in the insulin-producing neurosecretory cells [203]. In the latter two cases, 

it was shown that the level of target expression that remained after miRNA-mediated 

downregulation was functionally significant in the miRNA-expressing cells. To 

address this issue I performed an experiment similar to that in Figure 3.23, except that 

the MARCM system was used to express the UAS-ana-RNAi transgene along with the 

UAS-GFP marker in wild-type control NB clones that expressed miR-124 at normal 

levels. RNAi-mediated depletion of ana in these clones did not alter NB clone size 

(Figure 3.24). Thus, further reduction of ana levels below that achieved by miR-124 

appears to be without consequence on NB proliferation. On this basis I dismiss the 

possibility of a tuning relationship between miR-124 and ana expression in the NB 

lineages. Instead, I propose that at least one of the roles of miR-124 in the developing 

larval central brain was to limit the expression of ana to functionally insignificant 

levels in the NB lineage.  

  



RESULTS 
 

 125 

 

    

Figure 3.24 miR-124 limits ana expression in NB lineages to optimal level.  

Type I NB mitotic index for clones with the following genotypes: Canton S control, 
and Canton S flies that coexpressed the UAS-ana-RNAi transgene to deplete ana 
mRNA selectively in the marked NB clones. SD = 11% (control) and 5% (UAS-ana - 
RNAi). 
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3.2.5 miR-124 function in adult fly behavior 

3.2.5.1 miR-124 loss of function reduces male courtship success 

miR-‐124	  is	  abundantly	  expressed	  in	  the	  adult	  brain	  of	  Drosophila.	  To	  explore	  the	  

potential	   functions	   of	   miR-‐124	   in	   the	   adult	   brain,	   I	   examined	   a	   set	   of	   adult	  

behaviors	   and	   observed	   a	   defect	   in	   the	   mating	   behavior	   of	   miR-‐124	  mutant	  

males.	  

	  

As	  mentioned	   in	   the	   introduction,	  Drosophila	  males	  engage	   in	  a	  complex	  set	  of	  

courtship	   behaviors	   to	   induce	   receptiveness	   of	   females	   to	   mating.	   To	   ask	   if	  

mating	  behavior	  is	  affected	  by	  miR-‐124	  loss	  of	  function,	  I	  used	  the	  classical	  male-‐

female	   courtship	  assay.	  A	   sexually	  mature	  wild-‐type	  Canton	  S	   (CS)	  or	  miR-‐124	  

mutant	  male	  was	  paired	  with	   a	  mature	  wild-‐type	  CS	   female	   virgin	   in	   a	   10mm	  

observation	   chamber.	   Behavior	   was	   quantified	   using	   a	   series	   of	   courtship	  

parameters.	  miR-‐124	  mutant	  males	  exhibited	  a	  normal	  repertoire	  of	  behaviors,	  

including	   orientation	   toward	   the	   female,	   courtship	   song,	   tapping,	   licking,	  

abdomen	   curling,	   and	   attempted	   copulation.	   However,	  miR-‐124	  mutant	   males	  

showed	   significantly	   lower	   levels	   of	   successful	   copulation	   than	   CS	   controls	  

during	   the	   30-‐minute	   observation	   period.	  While	   almost	   90%	   of	   control	  males	  

achieved	  copulation,	  less	  than	  20%	  of	  miR-‐124	  males	  managed	  to	  do	  so	  (Figure	  

3.25A,	   **	   P<0.01).	   This	   defect	   was	   rescued	   when	   miR-‐124	   expression	   was	  

restored	  in	  the	  miRNA	  expressing	  cells	  of	  the	  mutant	  using	  the	  RMCE	  strategy.	  	  

By	  contrast,	  when	  I	  paired	  5-‐day	  old	  socially	  naïve	  CS	  males	  individually	  with	  5-‐

day	   old	   CS	   or	  miR-‐124	   virgin	   females	   and	   scored	   the	   number	   of	   females	   that	  

accepted	  copulation	  over	  an	  observation	  period	  of	  20	  minutes,	  I	  did	  not	  observe	  
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a	  significant	  difference	   in	   the	   receptiveness	  of	  miR-‐124	  mutant	   females	  and	  CS	  

females	   to	   courtship	   (Figure	   3.25B),	   suggesting	   that	   the	   defect	  was	   specific	   to	  

males.	  	  

	  

	  	   	  

Figure 3.25 Performance of miR-124 mutants in classical male courtship assay. 

(A) Percentage of males achieving copulation in a 30 min observation period. 
Genotypes as indicated. Control males were CS. Rescue indicates the miR-124 
RMCE allele with miR-124 reintegrated at the endogenous locus (34). Data represent 
the average of 5 independent experiments ±	   SEM. ** = P<0.01 compared to 
heterozygous control. (B) Percentage of females that accepted copulation over an 
observation period of 20 minutes was scored. No significant difference was observed 
in receptivity of 5-day old control (CS) or miR-124 virgin females towards 5-day old 
socially naïve CS males. 
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Reduced	  success	  at	  mating	  could	  be	  due	  to	  an	  inability	  to	  initiate	  courtship	  or	  to	  

perform	   courtship	   behavior	   at	   all.	   To	   examine	   if	   there	   was	   a	   problem	   with	  

courtship	   initiation,	   I	   scored	   for	   the	   initiation	   latency,	   which	   measures	   the	  

amount	  of	  time	  taken	  by	  the	  male	  to	  recognize	  the	  female	  and	  begin	  courtship.	  

As	   shown	   in	   Figure	   3.26,	   I	   did	   not	   observe	   significant	   difference	   in	   initiation	  

latency	   between	   mutant	   and	   control	   males,	   suggesting	   that	   the	   reduced	  

copulation	  of	  the	  mutant	  is	  not	  due	  to	  an	  inability	  to	  initiate	  courtship.	  	  

	  

	  

Figure 3.26 Performance of miR-124 mutant males in courtship initiation.  

Courtship initiation latency measures time (in min) to initiate copulation for CS 
control and miR-124 flies. Data represent the average of 4 independent experiments ±	  
SEM. ns: no significant difference. 
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Similarly,	   a	   possible	   contribution	   of	   reduced	   vigor	   of	   miR-‐124	  males	   in	   the	  

courtship	   performance	   was	   ruled	   out	   when	   I	   scored	   for	   the	   courtship	   index,	  

which	   measures	   the	   amount	   of	   time	   a	   male	   spends	   courting	   a	   target	   female.	  

Since	  progression	   from	  courtship	   to	  copulation	   involves	  behavioral	   input	   from	  

female	  flies	  [22,	  204],	  I	  used	  decapitated	  female	  virgins	  as	  target	  flies	  to	  remove	  

female	   behavioral	   response	   from	   the	   assay.	   Under	   these	   conditions,	  miR-‐124	  

males	   showed	   levels	   of	   courtship	   activity	   comparable	   to	   the	   CS	   control	  males	  

(Figure	   3.27,	   the	   difference	   was	   not	   statistically	   significant).	   Therefore,	   the	  

reduced	  mating	  success	  of	  mutant	  males	  is	  unlikely	  due	  to	  a	  reduced	  effort	  of	  the	  

mutant	  in	  courtship	  performance.	  	  

	  

	  	  	  	  	  	  	   	  

Figure 3.27 Performance of miR-124 mutant males in maintaining courtship 

drive.  

Courtship index compares the proportion of the measurement period males spent 
courting. CS control and miR-124 mutant males were tested using decapitated CS 
females as targets. Data represent the average of 4 independent experiments ±	  SEM. 
ns: no significant difference. 
	  

 	  



RESULTS 
 

 130 

Drosophila	  males	  use	  a	  courtship	  song	  produced	  by	  wing	  vibration	  as	  one	  means	  

of	  communication	  to	  elicit	  receptivity	  in	  female	  flies.	  Therefore,	  another	  possible	  

cause	  of	  the	  poor	  mating	  success	  of	  miR-‐124	  mutant	  males	  could	  be	  a	  defective	  

courtship	  song	  generated	  by	  miR-‐124	  mutant	  males.	  If	  this	  was	  the	  cause,	  taking	  

away	   the	   contribution	   of	   the	   courtship	   song	   from	   both	   genotypes	   should	  

eliminate	  the	  difference	  in	  receptivity	  of	  females	  to	  control	  and	  mutant	  males.	  To	  

investigate	   this	   possibility,	   I	   surgically	   removed	   the	   wings	   from	   control	   and	  

mutant	  males	  and	  compared	  their	  performance	  with	  that	  of	  their	  intact	  siblings.	  

Under	   these	   conditions,	  miR-‐124	  mutants	   were	   also	   less	   successful	   in	   mating	  

than	  control	  males	  (Figure	  3.28).	  	  Thus,	  courtship	  song	  does	  not	  appear	  to	  be	  an	  

important	  contributor	  to	  the	  difference	  between	  control	  and	  mutant	  males.	  	  

	  

Based	  on	  the	  detailed	  analysis	  of	  the	  courtship	  performance	  of	  miR-‐124	  mutant	  

males,	  I	  conclude	  that	  the	  observed	  delayed	  onset	  of	  copulation	  therefore	  likely	  

reflects	  rejection	  of	  the	  miR-‐124	  mutant	  male’s	  advances	  by	  the	  female.	  	  

	  

	  

Figure 3.28 Effect of wing removal on copulation success.  

Percentage of males achieving copulation in 30 min, comparing CS control and miR-
124 mutant flies before and after removal of the wings. Data represent the mean of 
more than 20 movies per genotype ±	  SD.*= P<0.05, **= P<0.01 compared to control. 
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3.2.5.2 miR-124 mutant males induce aberrant behavior in other males 

Very interestingly, I have occasionally observed males of miR-124 mutants following 

each other in a chain-like manner when groups of males were housed together in a 

vial. It is known that Drosophila males normally pay little sexual attention to other 

sexually mature males. However, males with altered sexual orientation elicit a 

behavior called chaining, in which groups of males follow each other while 

attempting courtship [22, 155], which is very similar to what I have observed among 

groups of mature miR-124 males. This indicates that there is abnormal courtship 

behavior among miR-124 mutant males.  

 

Male-male courtship among Drosophila males can result from a change in the 

expression of inhibitory or stimulatory cues, from an inability to recognize inhibitory 

courtship cues, or both. To examine the mutant behavior more closely and to 

distinguish between these possibilities, I quantified the courtship behavior of mutant 

and control males when placed with mutant or control male targets. In these assay, I 

used decapitated targets to ensure that target behavior did not influence the behavior 

of the test subject. There was no difference in the amount of time that miR-124 

mutant or CS control males devoted to courtship of CS target males, suggesting that 

the sexual orientation of the miR-124 male was not altered (Figure 3.29A). By 

contrast, when decapitated miR-124 mutant males were used as targets, both CS 

control and miR-124 males were induced to perform significantly more courtship 

activity towards them (Figure 3.29A, ** P<0.01). This effect was suppressed when 

miR-124 expression was restored in its endogenous domain (Figure 3.29B; ** 

P<0.01).  
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Figure 3.29 Performance of miR-124 males in male-male courtship assay.  

(A) Courtship index comparing CS control and miR-124 mutant flies using 
decapitated CS or miR-124 mutant males as targets. ** = P<0.01. (B) Courtship index 
for CS control males toward decapitated targets. The target genotypes used are CS 
control, miR-124 mutant and rescued mutant. ** = P<0.01. 
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As an independent test for the higher level of male courtship elicited by miR-124 

mutant males, I performed a courtship choice assay. In this assay, I placed a wild-type 

CS male in a 20mm petri dish in the presence of a decapitated wild-type male on one 

end and a decapitated miR-124 mutant male on the other, and recorded the amount of 

time the CS male spent courting either target within an observation window of 30 

minutes. While wild-type CS males devoted about 10% of their time courting the 

wild type target, a level that is near the basal courtship elicitation by wild type males, 

males devoted more than twice as much time to courting the miR-124 target  (Figure 

3.30; ** P<0.01). Thus, when presented with a choice of decapitated control or miR-

124 target males, CS males appeared to be more attracted by miR-124 males than by 

CS males, and the effect did not depend on the behavior of the courtship target. 

 

Based on these observations, I conclude that miR-124 LOF does not affect sexual 

orientation of the males per se. The increased courtship induced by miR-124 mutant 

males is more likely due to a change in chemical cues provided by miR-124 males. 

 

             

Figure 3.30 Courtship choice assay. 

Courtship index (CI) using CS test males and miR-124 mutant target males perfumed 
with hexane solvent alone as a control, or with hexane containing cVA. No 
significant difference was observed between CI of CS males towards miR-124 target 
males perfumed with hexane (average CI = 0.320) or with cVA (average CI = 0.315).    
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3.2.5.3 Aberrant pheromone production by miR-124 mutant males 

Drosophila males produce several types of cuticular hydrocarbons that mediate 

chemical communication between males and females and among males [141, 148, 

205, 206]. The observation that immobilized miR-124 mutant males were sufficient to 

elicit an abnormal response in other males led me to postulate that the basis of the 

defect in the male-male courtship assay likely lay in chemical communications.  

 

To test this hypothesis, I examined the pheromone profiles of the mutants. With the 

help of Dr. Joanne Yew and her student Ms. Jacquiline Chin from the Temasek 

LifeSciences Laboratory, I generated comprehensive cuticular hydrocarbon (CHC) 

profiles of sexually mature miR-124 mutant and control male flies using gas 

chromatography/mass spectrometry (GC-MS). Interestingly, GC-MS analysis showed 

that the level of cVA was significantly reduced in miR-124 mutant males (Figure 

3.31A,  ***P<0.001; Appendix 6.1), and was partially restored in rescued mutants 

(Figure 3.31A, ***P<0.001; Appendix 6.1). Conversely, pentacosenes were 

recovered at elevated levels from miR-124 mutant males by GC-MS (Figure 3.31B, 

*P<0.05; Appendix 6.2) and were found at near normal levels in the rescue mutants 

(Figure 3.31B, **P<0.01; Appendix 6.2).  

 

These results suggest that miR-124 mutant males produce elevated levels of 

compounds that behave as male aphrodisiacs, and lower levels of compounds that 

have anti-aphrodisiac activity on males, leading to increased male-male courtship.  
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Figre 3.31 Aberrant pheromone production in miR-124 mutant males.  

(A) Normalized cVA level measured by GC-MS in extracts from control, miR-124 
mutant, and rescued mutant males. Data represent the average of 6 independent 
preparations ±	  SEM.  *** = P<0.001. (B) Normalized 9-pentacosene level measured 
by GC-MS from from control, miR-124 mutant, and rescued mutant males. Data 
represent the average of 6 independent preparations ±	  SEM. * = P<0.05, ** = P<0.01. 
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3.2.5.4 Aberrant pheromone level contributes to miR-124 courtship phenotypes 

The observation that miR-124 mutant males show elevated levels of cuticular 

hydrocarbons, which behave as male aphrodisiacs, and lower levels of compounds 

that have male anti-aphrodisiac activity strongly support my initial hypothesis that the 

male-male behavioral abnormalities induced by miR-124 mutant was due to aberrant 

chemical communications.  

 

To ask whether these changes might be sufficient to account for the reduced mating 

success of miR-124 mutant males, I carried out perfuming experiments. In these 

experiments, I perfumed control and miR-124 mutant males either cVA or hexane as 

a solvent control and tested their copulation latency with mature CS female virgins in 

the classical male courtship assay. Strikingly, Mutant males perfumed with cVA 

showed a significant improvement in their ability to achieve copulation with control 

females (Figure 3.32A, * P<0.05). This indicates that the reduction in cVA level was 

at least partially responsible for the reduced mating success of miR-124 mutant males 

 

Since cVA has also been implicated as an inhibitor of male-male courtship, the 

reduction in cVA level in miR-124 mutant males might contribute to the increased 

courtship induction by the mutant. To test this possibility, I also examined the effects 

of cVA perfuming on male courtship behavior. In this case, miR-124 mutant males 

were similarly perfumed with cVA or hexane as a solvent control, decapitated and 

used as targets in the male-male courtship assay. However, I did not observe any 

significant difference between courtship of targets perfumed with cVA or with the 

hexane solvent alone (Figure 3.32B).  
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To measure the efficiency of the perfuming procedures, I measured the level of cVA 

on siblings of perfumed flies using mass spectrometry. The results indicated that the 

perfuming protocol restored cVA to <50% the level on control flies (Figure 3.32C). 

While this level of perfuming efficiency seemed to restore the mating success of miR-

124 mutant males, it failed to rescue the increased male courtship induction by the 

mutant males. Since the cVA-perfumed miR-124 mutant target males also have 

elevated levels of one of the male aphrodisiacs, the pentacosene phenomones, the 

perfumed mutant males are expected to give mixed excitatory and inhibitory 

courtship signals. In this context, the level of cVA reached by perfuming may be 

insufficient to fully rescue male-male courtship, while being sufficient to restore 

male-female courtship. Another possibility is that cVA might be more effective at 

inhibiting male courtship if presented at a higher local concentration. While cVA is 

normally concentrated on the tip of the male ejaculatory apparatus, the perfuming 

experiment distributes cVA over the entire body.   

 

Together, the perfuming experiments suggest that the changes in some of the 

pheromone compounds in miR-124 mutant males contribute, at least partially, to the 

behavior abnormalities of the mutant.  
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Figure 3.32: Effects of cVA perfuming on miR-124 mutant phenotypes.  

(A) Percentage of males achieving copulation in 30 min, comparing miR-124 mutant 
flies with or without cVA perfuming. Hexane perfuming was used as a control. Data 
represent the mean of more than 20 movies per genotype ± SD.  * = P<0.05, ** = 
P<0.01 (B) Courtship index (CI) using CS test males and miR-124 mutant target 
males perfumed with hexane solvent alone as a control, or with hexane containing 
cVA. No significant difference was observed between CI of CS males towards miR-
124 target males perfumed with hexane (average CI = 0.320) or with cVA (average 
CI = 0.315). (C) DART mass spectometry was used to assess the efficiency of the 
perfuming method. miR-124 mutant males perfumed with cVA exhibited more cVA 
than solvent-perfumed miR-124 mutant males and approximately 50% the amount of 
cVA found on control flies. 
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3.2.5.5 miR-124 courtship phenotype is probably not due to mis-regulation of 

ana 

Since mis-regulation of ana in miR-124 loss-of-function during development caused a 

reduction in the total number of neurons, it is possible that this might have a 

consequence on adult behavior. To test this possibility, using the same RNAi line that 

has been used in the developmental study, I selectively knocked down ana in the cells 

that endogenously express miR-124 in miR-124 mutant background, and measured 

the copulation efficiency of these males. However, even though limiting the 

expression of ana this way has restored the reduction in MARCM clone size, it did 

not rescue the reduction in copulation efficiency of miR-124 males (Figure 3.33). 

This suggests that the adult courtship defect is unlikely due to the mis-regulation of 

ana during development.  

 

 

Figure 3.33 ana knockdown failed to rescue miR-124 copulation defect.  

Percentages of fly-pairs of the indicated genotypes in copulation at 10min post 
pairing. ns: not significant, comparing miR-124 mutants and flies expressing a 
anaRNAi driven by miR-124p-Gal4 in miR-124 mutant background. Error bar 
srepresent SEM.  
 
  



RESULTS 
 

 140 

3.2.5.6 miR-124 acts in the sex determination pathway 

It is know that sexually dimorphic behavior and chemical communication are under 

the control of the sex determination pathway. In particular, the Dsx proteins have 

been shown to direct male vs female sexual differentiation, including pheromone 

production, as well as sexual behavior [174, 175, 206], whereas FruM controls male 

sexual behavior but not pheromone production [177, 178, 206]. Therefore, my next 

question was to ask whether miR-124 might act in the sex determination pathway in 

its control on courtship behavior and pheromone level.  

 

To selectively manipulate miR-124 within the endogenous expression domain of the 

sex determination pathway, I made use of a miRNA sponge to deplete miR-124 in 

doublesex-expressing cells and asked if manipulating miR-124 level in these cells 

contributes to the male courtship elicitation phenotype. The miR-124 sponge is a 

construct in which 10 copies of miR-124 complementary sequences have been 

introduced in tandem at the 3’UTR of a UAS-dsRED reporter (Figure 3.34A). 

Induced expression of dsRED reporter under the effect of a Gal4 driver will lead to 

depletion of miR-124 in the Gal4-expressing tissues, due to binding between the 

miRNA mature sequence and the miRNA sites in the 3’UTR of the reporter.   

 

In Drosopihla, doublesex expression is sexually dimorphic in the brains of males and 

females [175, 206, 207]. In the male, DsxM is required for differentiation of FruM-

expressing neurons [175, 206]. To increase efficacy, I expressed the sponge in males 

lacking one copy of the endogenous miR-124 gene. Interestingly, while the miR-124 

heterozygous mutants did not elicit increased male courtship, further depletion of 

miR-124 in dsx-expressing cells elicited male courtship at a level comparable to that 
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elicited by homozygous miR-124 null mutant target males (Figure 3.34B). This 

indicates that miR-124 expression within the sex determination pathway could 

account for this phenotype. 

 

 

Figure 3.34 miR-124 acts in the sex-determination pathway.  

(A) Schematics showing the design of the UAS-dsRED-miR-124 sponge for tissues-
specific depletion of miR-124 in combination with the use a tissue-specific Gal4 
driver (insert). (B) Courtship index comparing miR-124 mutants and flies expressing 
a miR-124 sponge under dsx-Gal4 control with CS controls. ** = P<0.01 comparing 
flies expressing the miR-124 sponge and CS control. ns: not significant, comparing 
miR-124 mutants and flies expressing a miR-124 sponge.  
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3.2.5.7 miR-124 acts directly on transformer to regulate pheromone production 

I next sought to identify the target(s) of miR-124, which might be responsible for this 

phenotype. I thought that the most likely candidates in this context would be 

components and/or target(s) of the sex determination pathway since manipulations of 

this pathway have been shown to result in pheromone production errors and/or 

courtship behavior abnormalities.  

 

Computational target prediction datasets do not list any of the known components of 

the sex determination pathway among predicted miR-124 targets. To allow for the 

possibility that the prediction algorithms might miss sites with specific features, I 

scanned sex determination pathway transcripts using the RNAhybrid prediction tool 

([22, 208]; bibiserv.techfak.uni-bielefeld.de/rnahybrid/) and found two potential sites 

for miR-124 in the 3’ UTR of transformer (Figure 3.35A). The transformer transcript 

is spliced in a sexually dimorphic manner, giving rise to a female-specific and a male-

specific form. The first miR-124 site is present in the 3’ UTR region common to both 

the female-specific and non-sex-specific tra transcripts, while the second one is 

located in sequences unique to the non-sex-specific form. Pairing to residues 2-8 of 

the miRNA, called the seed region, is important in miRNA target identification [22, 

184]. Each of the sites in tra would require 3 G:U base pairs with the miR-124 seed. 

G:U base pairs in the seed region are compatible with miRNA function, but reduce 

the efficiency of target regulation [22, 184].  

 

To ask if these miR-124 sites on tra 3’UTR are functional, I carried out a luciferase 

reporter assay as described earlier on. Interestingly, co-expression of miR-124 with a 

luciferase reporter carrying the 3’UTR sequence of the non-sex-specific tra transcript 
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showed repression of luciferase activity, showing that these sites can mediate 

regulation by miR-124 (Figure 3.35B).  

 

      

 

Figure 3.35 miR-124 sites on tra 3’UTR are functional.  

(A) Predicted pairing of miR-124 to two sites in the traF transcript. (B) Luciferase 
reporter assay showing regulation of miR-124 target sites on tra UTR by miR-124. 
Data show the mean ratio of firefly to Renilla luciferase activity based on three 
independent biological replicates. Error bars represent SEM. P<0.05 using two-tailed 
unpaired Student’s t-test. 
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As a first step to determine whether tra might be a functionally important target of 

miR-124 in vivo, I measured tra transcript levels by quantitative RT-PCR in RNA 

samples from control and miR-124 mutant male heads. The tra primary transcript 

undergoes sex-specific splicing in females to produce traF, which encodes a splicing 

factor. In males an alternate splice form is produced, traM, which is thought to 

produce a non-functional protein (Figure 3.36A).  

 

Using primers that recognize both splice forms, I observed that tra mRNA increased 

~1.5 fold in the mutant and was restored to near normal levels in the rescued mutant 

(Figure 3.36B, * P<0.05).  

 

Very interestingly, the use of a pair of primers that detects only the female-sepcific 

traF transcript showed a significant elevation of this isoform in RNA from miR-124 

mutant males (Figure 3.36C). This was intriguing since earlier studies on the sex 

determination pathway reported that the female-sepcific traF transcript is not present 

in males due to the absence of a functional Sxl protein expression (reviewed in 

[156]). Strikingly, the same primer pair detected low levels of this female-specific 

splice form in control males, albeit at a few percent of the level in females (Figure 

3.36D). To confirm that the amplification signal obtained reflects the specificity of 

the primer pair from processed mRNA transcript of tra, rather than from 

contaminated genomic DNA, I performed the qRT-PCR measurement with this 

primer pair using nonRT RNA sample from the same experiment as the template. 

Under this condition, no specific qRT-PCR amplification curve was obtained (Figure 

3.35E), confirming that the detection of traF mRNA in control males indeed reflects 

low level leaky traF expression in wild-type males.  
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Figure 3.36 Upregulation of tra transcript in miR-124 mutant males. 

(A) Schematics showing female-specific traF isoform and non-sex-specific isoform 
traM. Exons are represented by black boxes, 5’ UTR and 3’ UTR by grey boxes. Sites 
for the primer-pairs used for detection of both isoforms (p1 and p2) and of the traF –
specific isoform (p3 and p4) are indicated. The positions of the 2 miR-124 target sites 
are indicated. (B) Elevated expression of tra transcript measured by quantitative real-
time PCR using RNA isolated from male flies of the indicated genotypes. Data 
represent the average of 5 independent experiments ±	   SEM.* = P<0.05. (C) 
Normalized traF mRNA levels measured by quantitative RT-PCR in RNA from heads 
of 5-day old socially naïve males of the indicated genotypes. Actin42A was used as 
the internal control. Data are presented as the mean based on 6 independent biological 
replicates and error bars represent SD. * P<0.05, ** P<0.01 using the Wilcoxon two-
sample test, comparing mutant to control or to rescue. (D) Detection of traF transcript 
in heads from 5-day old control females  (purple line) and 5-day old males (orange 
line) was shown by the amplification curves from real-time quantitative RT-PCR 
experiments. The difference was ~4 cycles, or 32 fold. (E) No amplification was 
observed in controls not treated with reverse transcriptase (nonRT). 
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The observations from the measure of tra transcript level in miR-124 mutant male 

samples indicate that tra is being regulated in a manner that is consistent with a 

regulation by miR-124. Therefore, the next step to take was to ask if the regulation of 

tra by miR-124 contributes functionally to the mutant phenotypes.  

 

To assess whether elevated tra expression contributes to the miR-124 mutant 

phenotype, I asked if reducing tra levels would be sufficient to suppress the mutant 

phenotypes. For these experiments, I expressed a UAS-traRNAi transgene under miR-

124-Gal4 control in the miR-124 mutant background. The transgene targets a region 

common to both female and non-sex-specific splice forms. As shown in Figure 3.36, 

lowering tra levels in the miR-124 expressing cells was sufficient to rescue a range of 

miR-124 mutant phenotypes, including restoration of normal male-female courtship 

behavior in miR-124 mutant males (Figure 3.37A), suppression of the elevated male-

male courtship (Figure 3.37B) and rescue of cVA production by several fold (Figure 

3.37C; Appendix 2). In addition, depletion of tra lowered 9-pentacosene levels to 

within control levels, even though the change was not statistically significant. This 

could be due to the small sample size used for this experiment (Figure 3.37D; 

Appendix 2). These findings indicate that upregulation of transformer in the miR-124 

mutant is causally linked to both the pheromone production and behavioral 

abnormalities in the mutant males.  
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Figure 3.37 Functional rescue of miR-124 mutant phenotypes by tra depletion.  

(A) Percentage of males achieving copulation with CS females during the 30 min 
measurement period. Data represent the mean of more than 20 movies per genotype ± 
SD. Genotypes: CS: canton S control; miR-124: miR-124 mutant; 124>traRNAi: miR-
124KO/miR-124Gal4; UAS-traRNAi. Depletion of tra significantly improved 
performance of the miR-124 mutant males. * = P<0.05, ** = P<0.01. (B) Proportion 
of time CS males spent courting decapitated males of genotypes indicated in A. Data 
represent the mean of more than 35 movies per genotype ± SD. Depletion of tra 
significantly reduced the attractiveness of the miR-124 mutant males to normal levels. 
* = P<0.05, ** = P<0.01. (C) Quantification of cVA levels in males of the indicated 
genotypes by GC-MS. Knocking down of tra in using miR-124Gal4 driver 
significantly rescued the changes cVA levels in miR-124 mutant males. Data 
represent the average of 2 (for miR-124>traRNAi) or 3 replicates (CS and miR-124) ± 
SEM * = P<0.05, *** = P<0.001. (D) Quantification of 9-pentacosene levels in males 
of the indicated genotypes by GC-MS. Depletion of tra lowered 9-pentacosene levels 
to within control levels. Data represent the average of 2 (for miR-124>traRNAi) or 3 
replicates (CS and miR-124) ± SEM. * = P<0.05, ns: not significant. 
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3.2.5.8 miR-124 is important for pre-mating reproductive fitness of the fly 

Although miR-124 mutant males showed less mating success in the courtship assay, 

they are fertile in laboratory conditions, as I have shown above. However, the 

reduced mating success might be expected to confer a disadvantage in a competitive 

situation, where the female has a choice of mates.  

 

To test this, I performed a female mate-choice assay. In this assay, I placed single CS 

female virgins in mating chambers with one CS control male and one miR-124 

mutant or rescued mutant male and scored the choice of mate made by the female in 

each grouping. miR-124 mutant males were rarely selected in the presence of a wild 

type male. Females did not distinguish between wild-type and rescued mutant males, 

with the rescued male achieving copulation at almost the equal chance as the wild-

type male (Figure 3.38). This suggests that mutant males would likely be at a 

disadvantage in a natural competitive setting, whereby males normally have to 

compete with other males for successful mating with female flies.  

 

        

Figure 3.38 Performance of miR-124 males in female mate choice assay.  

Female mate choice was monitored by videotaping in chambers containing single 
females and two males of the indicated genotypes. The genotype of the male that 
succeeded in copulating was recorded. More than 95% of control male achieved 
copulation, in the presence of miR-124 mutant males (left bar) compared with ~50% 
in the presence of rescued mutant males (right bar). 
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The result of the female choice assay described above led me to wonder if miR-124 

might be important for the reproductive fitness of male flies. In flies, mating success 

was found to be correlated with the aggressiveness of wild-type males in flies. More 

specifically, males that are less aggressive are often less successful in competing for 

the females [209]. Aggression is another social behavior commonly observed among 

Drosophila males, and is promoted by chemical cues such as cVA [209, 210]. The 

observation that miR-124 mutant males are defective in its pheromone profile, 

particularly with respect to cVA, led me to ask if loss of miR-124 influences 

aggressiveness of the males.  

 

To do this, I analyzed the fighting behavior between pairs of mutant or wild-type 

male. In this setting, wild-type males typically fight for sole occupancy of the food 

patch, resulting in the establishment of a hierarchy [209, 211]. Interesting, miR-124 

mutant males exhibited overall lower levels of aggression based on several 

parameters. First, mutant males experienced more encounters before any fighting 

took place (latency, Figure 3.39A, ** P<0.01). In addition, mutant males exhibited 

lower frequency of fighting behaviors, including lunging and fencing (Figure 3.39B, 

** P<0.01) and were often observed sharing the food patch after a few encounters.  
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Figure 3.39 miR-124 males are less aggressive than control males.  

(A) Fighting latency was monitored by videotaping encounters between pairs of 
males in chambers containing a patch of food.  Latency is the number of encounters 
that do not elicit aggressive behavior prior to the first fight. Data represent the mean 
of more than 16 movies per genotype ± SD.  ** = P<0.01. (B) Fighting frequency 
was monitored by videotaping encounters between pairs of males in chambers 
containing a patch of food. Frequency records the number of aggressive encounters in 
30 min.  Data represent the mean of more than 16 movies per genotype ± SD.  ** = 
P<0.01. 
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A reduction in fighting behavior overall could be due to reduced locomotion of the 

male. To rule out this possibility, I quantified the locomotion activity of control and 

miR-124 mutant males by tracking the locomotion of single 5-day old control or 

mutant males placed in a 10mm courtship chamber. Quantification of the velocities of 

both genotypes showed no obvious difference in overall activity level between 

control and miR-124 males (Figure 3.40). In addition, no obvious locomotor defects 

were observed during the aggression assay. These observations confirm that the 

reduced fighting behavior was not due to a reduction in overall mobility of miR-124 

mutant males.  

 

Lower cVA production in the miR-124 mutant may contribute to the lowered 

intensity of aggressive behaviors observed in these flies.  By contrast, cVA has been 

reported to be the pheromone that promotes aggression in Drosophila melanogaster 

[212]. Therefore, this observation that miR-124 mutant males are less aggressive is 

consistent with the observation that cVA production was significantly impaired by 

miR-124 loss of function mutant males.  

      

Figure 3.40 Performance of miR-124 mutant males in locomotion assay. 

The total distance travelled by single 5-day old males of the indicated genotypes in a 
10mm courtship chamber was traced and measured for 10min. The velocity of each 
genotype was calculated and normalized to control level. 14 flies were recorded per 
genotype.  There was no significant difference between the control and mutant flies. 
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4 Discussion  

4.1 Advantages of modified ends-out gene targeting vectors  

4.1.1 The pW25-RMCE vector 

I have shown how incorporation of the recombinase-mediated cassette exchange 

(RMCE) strategy into the existing ends-out vector could increase the versatility of 

current gene targeting strategies by allowing repeated manipulations of a mutant 

genome after an initial targeting event.  

 

An important genetic test for the specificity of any mutant phenotype is to ask if the 

phenotype is caused specifically by the loss of the targeted gene by re-introducing the 

gene of interest to the animal genome. However, the outcome of these experiments is, 

very often, dependent on the level of expression of the transgene. It is therefore 

difficult to interpret the results of such experiments when the genetic approach 

adopted either fails to achieve sufficient expression required for a particular 

biological process or when it results in overexpression or misexpression of the gene 

of interest. The advantage of using the knocked-in RMCE cassette at the targeted 

locus for ‘genetic rescue’ experiments is the wild-type sequence for the gene of 

interest can be re-introduced into its endogenous locus with just a few genetic 

crosses. Since expression of the replaced fragment will be driven under its 

endogenous promoter, this approach allows the ‘rescue’ gene to be expressed at more 

or less its wild-type level and perhaps more importantly, in its normal spatial and 

temporal expression pattern. 

 

Similarly, combinations of protein-coding exons can be replaced using the knocked-

in RMCE cassette to allow direct comparison of protein sequence variants at the 
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endogenous locus. This would be very useful in functional studies of protein domains 

and/or sequences.  

 

During the course of this thesis work, two other independent groups have reported the 

use of RMCE strategies in gene targeting in flies. While Choi et al. [213] 

demonstrated use of RMCE for gene replacement at the atonal locus. Huang et al. 

[214] demonstrated the use of single attP and loxP sites in the generation of knockout 

flies that can serve as a docking site for recombinase-mediated integration for later 

manipulation. Compared to our system, the vectors generated by both groups have 

utilized shorter attP sequence of 54bp as compared to the 242bp sequence of the attP 

site in our vector. At the end of each gene-targeting event, the sequences between the 

homology arms and the mini-white marker are inserted at the targeted locus together 

with mini-white. This fragment, consisting of the FRT, the loxP and attP site might 

sometimes disrupt the endogenous locus. Therefore, the use of shorter attP sequence 

should result in even less disruptions to the flanking genomic sequence of the 

targeted locus. The functionality of the shorter, 54bp, attP site was not tested at the 

time when I was modifying the gene-targeting vector, thus not used in my 

modifications. By contrast, our RMCE system is faster and more efficient than the 

method described by Huang et al. [214].  

4.1.2 The attB series of vectors 

I have also shown how the use of φC31-mediated site-specific transformation can 

improve overall efficiency of the gene targeting strategy. Compared to the 

conventional P-element-mediated transformation, bacteriophage φC31 integrase-

mediated transformation can improve the efficiency of generating the transgenic stain 

carrying the targeting vector [216, 239]. In addition, it ensures that the donor 
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transgene is located on the desired chromosome, which eliminates two generations of 

crosses that would otherwise be needed to map donor transgenes generated by 

conventional P-element integration strategies to the desired chromosome. 

 

The series of vectors modified in this study can provide useful flexibility to the 

current ends-out gene targeting strategy. The efficiency and high throughput provided 

by the attB series of vectors makes these the vectors of choice in large-scale 

mutagenesis studies. By contrast, the versatility provided by the pW25-RMCE vector 

makes it the vector of choice for in-depth genetic and functional characterization of 

the targeted gene/locus. 
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4.2 Functions and significance of miR-124 in Drosophila melanogaster 

The second half of this thesis aimed to elucidate the functions of a highly conserved 

miRNA, miR-124, in Drosophila melanogaster, focusing on its roles in the 

development and functions of the fly nervous system. I have presented evidence that 

miR-124 is crucial in both development and in the control of adult functions.  

4.2.1 Role of miR-124 in Drosophila neurogenesis  

In the first part of this analysis, I show that miR-124 is required for larval 

neurogenesis in the central brain of the developing larvae. Two interesting and 

significant points from this part of the study are worth mentioning. The first point 

concerns the roles of this miRNA in invertebrate vs vertebrate neurogenesis. The 

second point is about the new insights provided by this study on the regulation and 

function of its functionally relevant target, anachronism, in the larval brain.  

4.2.1.1 Roles of miR-124 in invertebrate and vertebrate neurogenesis 

In this part of the thesis work, I have provided evidence that the activity of miR-124 

in the larval neuroblast lineage is required to support proliferation, and that loss of 

miR-124 activity in these cells results in under-proliferation of the neuronal 

progenitors and subsequently a reduction in total number of progeny, the mature 

neurons. This is in contrast with most results from various vertebrate systems, which 

were published prior to and during the course of this work. Despite some 

discrepancies, analysis of miR-124 in vertebrates mainly point towards its roles as a 

positive regulator of neural differentiation and a negative regulator for neural 

progenitor proliferation.  

 

In mammals, miR-124 was first thought to behave like a determinant factor for 

neuronal cell fate by suppressing non-neuronal transcripts while promoting neuronal 
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transcripts expression. This was supported by evidence obtained from manipulation 

of miR-124 levels in cultured cell lines using over-expression and antisense inhibition 

[95, 215, 216]. In one study, the authors showed that miR-124, in combination with 

another NS-specific miRNA, miR-9, stimulates neuronal and represses glial 

differentiation of cultured ES cells [215]. Consistently, expression of miR-124 in the 

non-neuronal HeLa cells led to downregulation of non-neuronal mRNAs, changing 

its transcriptome profile significantly more similar to that of the brain [216]. 

Conversely, antisense inhibition of miR-124 using 2’-OMe-RNA in primary cortical 

neurons led to increases in non-neuronal transcripts expression [95]. These initial 

analyses has led to the first notion of miR-124 function in promoting neuronal cell 

fate while suppressing non-neuronal cell fate in the mammalian systems.  

 

This notion that miR-124 is both necessary and sufficient for mammalian 

neurogenesis was further supported by studies using in vitro neural differentiation 

models [55] [53]. In the first study, miR-124 was shown to stimulate neuronal 

differentiation in the developing chick spinal cord and in a pluripotent embryonic 

carcinoma cell line, P19, through its repression on its target, SCP1. SCP1 is a small 

phosphatase that is specific for phosphoserines in the C-terminal domain of RNA 

polymerase II. It is involved in the function of the NRSF/REST complex, a global 

repressor of NS-specific transcription in non-neuronal cells. Similarly, 

overexpression of miR-124 in two different mouse neuroblastoma cell lines induced 

neuronal differentiation by targeting a global repressor of alternative pre-mRNA 

splicing, PTBP1. PTBP1 is a repressor of alternative splicing, and suppression of 

PTBP1 led to the alternative splicing of another splicing regulator, PTBP2, resulting 

in correctly spliced and functional PTBP2. Increased level of PTBP2 in the 
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neuroblastoma cells caused a switch from non-neuronal to neuronal alternative 

splicing patterns and promotes neuronal differentiation. Together, these studies 

provide support to the idea that miR-124 is acting in the neurons, where it is 

endogenously expressed, to repress NS-specific gene transcription globally [55].   

 

The in vitro analysis mentioned above was further supported by subsequent in vivo 

experiments conducted by Chang et al. [54]. These authors have shown that miR-124 

depletion using antisense oligonucleotides in neuronal progenitors isolated from the 

subventricular zone (SVZ) of the mouse embryonic CNS has resulted in enhanced 

proliferation and reduced differentiation of these isolated neuronal progenitors. What 

is more interesting was that the authors were able to obtain similar results in in vivo 

experiments when they injected a pump to deliver antisense oligonucleotides against 

this miRNA to deplete endogenous miR-124 in the SVZ of the mouse brain [54]. 

Therefore, it was concluded that mammalian miR-124 functions by limiting neuronal 

progenitor proliferation while promoting neuronal differentiation.  

 

However, this conclusion was at odds with another in vivo study performed in the 

chicken neural tube [99]. This study was reported contemporaneously with a study by 

Visvanatha et al [217]. Both studies were performed using similar experimental 

approaches. Visvanatha et al showed that depletion of miR-124 by antisense injection 

resulted in reduced neuronal differentiation and ectopic proliferation. The study by 

Cao et al. reported that neither overexpression nor inhibition of miR-124 by antisense 

injection significantly changed the acquisition of neuronal fate of chicken spinal cord 

neurons. Therefore, whether miR-124 inhibits neuronal precursor proliferation and/or 

promotes neuronal differentiation in mammals remains ambiguous.  
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Overall, analysis of miR-124 in vertebrates mainly point towards its roles as a 

positive regulator of neural differentiation and a negative regulator for neural 

progenitor differentiation through its negative regulation on several negative 

regulators of the neuronal differentiation pathway.  

 

Given that miR-124 has been 100% conserved in nucleotide sequence in all the 

animal models, including Drosophila melanogaster and all the vertebrates, I was 

initially surprised by the apparently contradictory roles revealed by my study in 

Drosophila melanogaster and reports in the vertebrate systems. Nevertheless, more 

in-depth comparisons and analysis suggest a few possibilities for this difference.  

 

Could the phenotypic difference observed be due to methodological differences used 

in my study and the vertebrate studies? All of my analysis has been based on a 

genetic null mutant whereas the vertebrate studies have been based on either artificial 

over-expression or depletion of the miRNA using injected or transfected antisense 

oligonucleotides to reduce miRNA activity. Antisense depletion might not be 

efficient in reducing miRNA level to a functionally insufficient level, thus it allows 

only partial reduction of function. In addition, the possibility of off-target effects by 

antisense oligonucleotides means that antisense methods may introduce a certain 

degree of experimental variability. For example, conclusions based on miRNA 

depletion by antisense injection in Drosophila embryos [218] have been inconsistent 

with studies based on phenotypic analysis of genetic null mutants [219]. The 

availability of mouse knockouts of miR-124 would allow one to ask if the analysis of 
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genetic null mutant animal support the findings reported using antisense methods, and 

thus would provide the means to address this possibility.  

 

Perhaps a more biological basis for the discrepancy in function could be due to the 

subtle differences in the expression pattern of miR-124 in the various systems. While 

miR-124 expression has been thought to be broadly specific in the CNS of the various 

animal models, I have observed some level of differences in the characterizations of 

miR-124 expression in Drosophila melanogaster. The observation of miR-124 being 

expressed in both neural progenitors and mature neurons in my hand is consistent 

with only one report in the vertebrate system, which showed detection of miR-124 

activity in mouse neural progenitor cells using an in vivo GFP sensor for miRNA 

activity [220]. By contrast, most other vertebrate studies have reported the expression 

of miR-124 in differentiating neurons but not in the neural progenitors. These 

conclusions were made based on results of in situ hybridization experiments using 

RNA probes directed against the mature and/or primary transcript of miR-124 [53, 54, 

99, 217, 221]. Therefore, there remains a possibility that there might be a 

corresponding function of miR-124 in the neural progenitors of the vertebrate CNS, 

which might have been overlooked due to low-level expression of the mature 

miRNA.  

 

Last but not least, yet another interesting possibility is that the different effects of 

miR-124 of neuronal progenitor proliferation might reflect evolutionary divergence of 

miR-124 function. This would be addressed in an independent session at the end of 

this chapter.   
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4.2.1.2 Expression of anachronism and its function 

I present evidence that miR-124 positively controls neural progenitor proliferation in 

the larval central brain by acting directly on its target anachronism. Sequence 

analysis suggests that ana encodes a secreted glycoprotein and a previous study has 

provided evidence that Ana protein acts as a negative regulator of neuroblast 

proliferation by acting on quiescent larval NB to prevent their premature entry into 

the proliferative phase [200]. The authors have shown that loss of ana function 

resulted in premature onset of NB proliferation. However, the authors have suggested 

that ana expression was specific to a subset of glial cells and proposed that Ana 

protein acts non-autonomously from glia to regulate NB proliferation. Unexpectedly, 

results of my analysis show that miR-124 reduces ana to functionally inconsequential 

levels in the central brain NB lineage, and that failure to do so results in elevated ana 

level in these cells, leading to impaired NB proliferation. Contrary to the earlier 

report that ana expression was glia-specific, I have provided direct molecular 

evidence of presence of ana transcript in central brain NBs. In addition, I have 

presented evidence of function of elevated Ana in these cells.  

 

Again, the lack of detection for the low level of ana in the NB lineages in the original 

study could be due to technical difficulties in the detection of a low abundance 

transcript using in situ hybridization, the main method used by these authors in the 

characterization of ana expression. I have used a more quantitative biochemical 

approach whereby the detection of the transcript was performed directly on an 

enriched pool of neuronal lineage cells, which was technically more sensitive in the 

identification of low abundance transcript.  
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Based on observations from this work, I hypothesize that the absence of miR-124 in 

the glia cells in the larval brain allows a detectable level of ana expression in the 

cortex glia, as was proposed by the original study on ana. Expression of ana in the 

glia cells may serve as the functional source of Ana protein in early larval brains to 

control of the timing of onset of NB proliferation. By contrast, expression of ana in 

the NB lineage is limited by the presence of miR-124 and failure to do so, as in the 

case where miR-124 has been genetically deleted from these cells, results in 

impairment of NB proliferation. 

 

Another point of note is that the UAS-ana RNAi MARCM clonal analysis affect ana 

levels in the NB, in the GMC cells as well as in their post-mitotic progeny since the 

driver used in this experiment, the Elav-Gal4 driver, is expressed in all the cells in the 

NB lineages. Therefore, it is possible that Ana protein produced by any or all of the 

cells in the NB clonal lineage could act on the NB and GMC to affect their 

proliferation. As a result, it remains to be explored whether the effect of Ana protein 

within the NB lineages is a result of a non-autonomous activity of this secreted 

protein or a more local cellular interaction.  
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4.2.2 Role of miR-124 in the adult 

In the second part, I show that miR-124 contributes to the regulation of adult fly 

social behaviors, such as courtship and aggression, by controlling the level of 

important fly pheromones.  

4.2.2.1 Reinforcement of male sexual identity by suppressing leaky expression 

in the sex determination pathway 

In this study, I have presented evidence that miR-124 may be required for the 

reinforcement of male sexual identity by suppressing the consequences of leaky 

splicing in the sex determination pathway. I have also identified the sex-specific 

splicing factor transformer as the functionally significant target of miR-124 in this 

process.  I suggest a role for miR-124 in the control of male sexual differentiation and 

behavior, by limiting inappropriate expression of the female form of transformer. 

 

It is generally thought that the sex determination pathway acts in a binary fashion, 

with particular spliced forms of the pathway being turned on or off, depending on the 

genetic sex of the cells [222, 223]. However, I was able to detect low-levels of the 

female-specific transcripts, traF and dsxF in adult males. This has also been supported 

by observations made in another study in the literature [223, 224]. In the case of traF, 

this presumably reflects low-level leaky expression of Sxl in males. Inappropriate 

splicing to produce traF transcript in males would then lead to inappropriate splicing 

to produce dsxF. Under normal conditions, the levels of these transcripts found in 

males are probably far below their respective functional threashold, although the 

kinetics of these molecules have yet to be studied. Indeed, quantification made in this 

study suggests that the level of traF in females are almost 30-fold higher than that 

amount detectable in males, suggesting that the leaky expression of traF is probably 
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far below its functional threshold. However, such leaky expression should be limited 

as higher levels of traF or dsxF have been shown to compromise male sexual 

differentiation and behavior [181, 223, 225].  

 

Findings from this work provide evidence that a modest elevation in the expression of 

traF in miR-124 expressing cells interferes with male pheromone production. In this 

scenario, miR-124-mediated regulation ensures that leakiness in the production of 

traF is kept at levels that are functionally insignificant in the male. A modest increase 

in traF is not expected to have much effect in females, where the endogenous level is 

higher, which explains the lack of female phenotypes in this aspect. In this case, miR-

124 provides a secondary means of controlling the cascade of sex-specific splicing 

events that controls sexual differentiation in Drosophila. In this way, miR-124 

ensures the establishments of sexual identities, particularly male identities, which are 

crucial for the reproductive fitness of its species.  

 

4.2.2.2 miR-124 is required for proper male-specific pheromone production 

I have presented evidence that miR-124 is required to ensure fidelity of gender-

appropriate pheromone production in males, which is an important element of male 

sexual identity.  

 

Drosophila pheromones are sexually dimorphic in expression. The sex-specific 

biosynthesis of pheromone is controlled by the sex determination pathway. Genetic 

experiments have demonstrated the role of the Dsx protein in the regulation of male 

and female specific pheromone profiles. Genetic ablation of dsx locus in 

chromosomal females led to the loss of female-specific pheromones. Instead, they 
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produced pheromones that are normally made by the males. This suggests that 

expression of DsxF in females ensures the production of female-specific 

hydrocarbons while suppressing the production of male-specific hydrocarbons and 

other male-specific pheromones such as cVA. By contrast, such genetic ablation of 

the dsx locus in chromosomal males did not affect production of male-specific 

hydrocarbons. However, these ‘males’ expressed traces of female-specific 

hydrocarbons such as the cis-cis, 7-11-hetocosadiene, and a reduced amount of the 

males-specific lipid cVA. These observations have led to a few interesting 

conclusions. Firstly, it indicates the dsx locus is not required for production of male 

hydrocarbons, suggesting that male compounds represents the ‘default state’ of 

hydrocarbon production in Drosophila melanogaster. However, the presence of DsxM 

protein in males is probably required for biosynthesis of cVA, hinting at a possible 

differential genetic regulation for cVA and the hydrocarbons. Additionally, this 

observation shows that DsxM protein is required in males to ensure that synthesis of 

female-specific hydrocarbons is suppressed [174, 176, 223].  

 

In this study, I have observed elevated level of tra transcripts in animals lacking miR-

124. Although constitutive over-expression of TraF has been shown to masculinize 

the pheromone profile of chromosomal female Drosophila [176], a modest increase 

of TraF has not resulted in obvious phenotypes. By contrast, the presence of TraF is 

expected to affect sexual differentiation in males. For example, it has been shown that 

ectopic expression of TraF in males led to overall feminization of gender-specific 

traits in Drosophila. Similarly, tissue-specific expression of TraF in the oenocytes of 

chromosomally male flies caused the ectopic over-production of female-specific 

pheromones in these males. The molecular effect of TraF over-expression was 
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mediated through its regulation on gender-specific splicing of the downstream 

components of the sex-determination pathway. Likewise, Gal4-directed expression of 

DsxF in an otherwise wild-type male (also expressing DsxM) has been reported to 

reduce cVA levels, whereas DsxF expression in dsx mutant males abolished cVA 

production completely [174, 223]. This is consistent with the observation of low cVA 

production in miR-124 mutant males, where an increase in expression of the traF 

isoform is expected to affect the downstream splicing of dsx.  

 

Ectopic expression of DsxF in XY males has also been shown to cause production in 

female-specific diene-hydrocarbons such as 7,11-heptacosadiene and 7,11-

nonacosadiene [174, 176]. If the effect of miR-124-mediated regulation on traF is 

consistent, we would then expect to observe these compounds in cuticular extracts 

from miR-124 mutant males. However, this was not the case. None of the female-

specific pheromones were detected in samples obtained from miR-124 males. This is 

likely due to the absence of miR-124 expression in the oenocytes where the TraF -

DsxF cascade is thought to exert its effect on female hydrocarbon production.  

 

By contrast, regulation of male-specific hydrocarbons is probably more complex. The 

male-specific hydrocarbons are also synthesized by the abdominal epidermal 

oenocytes, since genetic ablation of these cells abolished all male hydrocarbon 

production, but does not affect levels of cVA, which is made in the male ejaculatory 

bulb instead [147, 176]. Interestingly, while the site of hydrocarbons synthesis is 

generally thought to be oenocytes, manipulation of the sex determination cascade in 

the nervous system has affected production of subset of pheromones. For example, 

feminization of the nervous system in XY males by directing ectopic traF expression 
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using the pan-neuronal elav-gal4 driver has led to significant elevations of the male 

hydrocarbons such as cis-7-tricosene and cis-9-pentacosene, although no gain of 

female hydrocarbons was observed [150, 176]. Additionally, brain specific RNAi-

mediated depletion of a desaturase enzyme involved in pheromone biosynthesis was 

shown to alter pheromone production [176, 226], suggesting that the genetic sex of 

the central nervous system might indirectly modulate pheromone production in 

peripheral tissues. While miR-124 is highly enriched in the Drosophila nervous 

system, particularly in the brain, I have also observed expression of this miRNA in 

the male reproductive organs, including the ejaculatory bulb. Therefore, it is likely 

that the regulation of pheromone production by miR-124 could be mediated through 

its local expression in the ejaculatory bulb as well as its expression from the adult 

nervous system. However, exactly how the brain or its peripheral branches might 

affect pheromone production remains to be studied. In moth, the neuropeptide PBAN 

has been linked to control pheromone production, hinting that miR-124 regulation of 

transformer could potentially act in the context of neuroendocrine control of male 

pheromone production.  Further analysis would be required to address such 

possibilities.  

 

4.2.2.3  Combinatorial code of action of pheromones on fly courtship behavior 

While most studies on the roles of pheromones on social behaviors such as courtship 

and aggression have focused on the effect of a given class of compounds in isolation, 

observations made in this work leads to the hypothesis that a cocktail of several 

pheromonal compounds, each at its appropriate level, is used to control aspects of 

courtship behavior.  
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First of all, this hypothesis can be supported by the studies on the effects of cVA on 

mating behaviors in Drosophila melanogaster. The literature on cVA may appear 

rather controversial on a first glance. Some studies show that cVA mediates the 

classical male-female courtship behavior by promoting mating behavior in females, 

while inhibiting male-male courtship behavior [154]. Other studies report the lack of 

such observations [174, 234]. The differences probably could have arisen from the 

varied experimental context used in the different studies.  

 

The study by Kurtovic et al. shows that female mutants of Or67d which encodes for 

one of the cVA receptors, are far less receptive than wild-type females. Mutant males 

of Or67d engage in vigorous male-male courtship. These observations suggest that 

activation of the cVA response pathway is necessary for both the induction of female 

receptivity and the inhibition of male-male courtship behavior.  

 

By contrast, Billeter et al. shows that, despite the presence of wild-type level of cVA, 

male flies with their oenocytes genetically ablated and therefore do not express any 

hydrocarbons take much longer to copulate with wild-type females. These males also 

induce vigorous male-male courtship from sibling or wild-type males, suggesting that 

in the absence of the other courtship-mediating pheromones, cVA alone is not 

sufficient to induce female receptivity or to prevent male-male courtship.  

 

The presence of multiple pheromones, with the corresponding response pathways, 

probably provide contextual information about the specific situation facing the fly, 

allowing it to make a particular behavior decision based on the combinatorial output 

of pathway activation. For example, when cVA is detected in the absence of nearby 
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flies, a scenario similar to the presence of oenocyteless males, a male fly might 

respond by moving toward this odor source. By contrast, if cVA is detected in 

combination with a close encounter with male cuticular hydrocarbons, the male fly 

might curb courtship behavior.  

 

Evidence from this thesis work provides further support to this hypothesis. The 

observation that addition of cVA, while restoring mating success of miR-124 mutant 

males with females in the classical mating assay, failed to suppress the high level of 

male courtship induced by mutant males could probably due to the elevated level of a 

male aphrodisiac, the cis-9-pentacosene, present on miR-124 males. While further 

genetic tests and pheromone manipulation experiments are required to address this, I 

think that this study provides an interesting case to demonstrate the importance of 

understanding the combinatory output of several pheromones on animal behaviors. 
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4.3 Context-depending roles of miRNAs 

I have presented evidence on how miR-124 regulates 1) Drosophila neurogenesis by 

controlling neural progenitor proliferation; and 2) Drosophila adult functions by 

regulating male pheromone production. Results of these characterizations provide an 

example on the context-depending roles of animal miRNAs. In this case, depending 

on the developmental and biological contexts, miR-124 may regulate vastly different 

targets.   

 

Even though most vertebrate studies on miR-124 have converged on its roles in 

limiting neuronal proliferation while promoting neural differentiation, there has been 

little overlap in the relevant targets identified in each report. In mouse studies alone, 

miR-124 has been shown to regulate multiple targets, such as the high mobility group 

box transcription factor Sox9 in the subventricular zone of the adult mouse cortex, 

ephrin-B1 in the developing mouse cortex and the polypyridine tract-binding protein 

1 (PTBP1) in non-neuronal cells [73, 74, 128, 248]. Evidently, miR-124 regulates 

different targets during neuronal differentiation in a cellular context-dependent 

manner.  

 

In addition, studies on the role of miR-124 in the development of Xenopus eyes have 

presented evidences for a developmental stage-dependent role of miR-124. The 

authors first showed that overexpression of miR-124 repressed cell proliferation and 

induced neurogenesis in the Xenopus optic cup. Using similar approaches, the same 

authors showed evidence for an opposite, anti-neural role for miR-124 at the earlier 

optic vesicle stage [227, 228]. 
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4.4 Evolution of miRNAs and their targets 

It has been suggested that at least a third of miRNA families are highly conserved 

across species [229], and that more than 60% of miRNA loci are conserved from 

mouse to human [97]. In addition, among the highly conserved animal miRNAs, 

many have been broadly conserved in expression pattern. However, very few 

functional conserved miRNA:target relationships have been reported so far. Global 

analysis of miRNAs and their respective targets based on computational prediction 

suggested that conservation of predicted miRNA targets among nematodes, flies and 

vertebrates is close to what would be expected from chance [230]. One proposed 

underlying mechanism for this is that the miRNA regulatory networks have been 

substantially modulated during the course of animal evolution. One well-studied 

example is the highly conserve miRNA let-7. While let-7 functions in the regulation 

of developmental timing in both worms and flies, the functional targets mediating 

such regulation by the miRNA differ in the two organisms [231-233]. Similar 

observations have been made in studies of another highly conserved miRNA in the 

nervous system, the miRNA miR-9. miR-9 appears to be critical in early neural 

development in both mouse and zebrafish models, by controlling the expression of 

completely different subsets of targets [79, 234]. Furthermore, while miR-9 appears to 

be grossly nervous system-specific in its expression, differs subtly in the specific 

region of expression in the nervous system of different organisms. As a result, the 

role of miR-9 in Drosophila development is entirely unrelated to its known roles in 

the vertebrates [49, 78].  

 

In the case of miR-124, the conclusion resulting from this work that miR-124 activity 

is required in the neuroblast lineage to support proliferation seems to contradict with 
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findings from vertebrate systems, which have, mainly, suggested a role for miR-124 

in limiting neuronal progenitor proliferation and in promoting neuronal 

differentiation. The different effects of miR-124 of neuronal progenitor proliferation 

in the different animal models could reflect evolutionary divergence of miR-124 

function. miR-124 is predicted to target hundreds of genes according to computational 

prediction, expression profilings of miRNA overexpression and/or depletion, and 

biochemical experiments involving immunopurification of miRNA containing RNPs 

[124, 125, 128, 255-257]. However, there is little evidence of conservation of the 

identified or predicted targets between insects, nematodes and vertebrates. In this 

study, I have identified the anachronism gene as a functionally relevant target of 

Drosophila miR-124 in vivo, and provided direct genetic evidence that 

downregulation of ana expression in neuronal progenitors is required to support a 

normal level of proliferation within the larval central brain. The observation that the 

ana gene is not conserved beyond the Drosophila family suggests that the miR-124 

regulatory network could have been substantially altered during animal evolution. It 

is likely that the acquisition of this novel target in Drosophila that results from the 

parallel evolution of miR-124 and its targets across animal kingdoms has led to an 

entirely distinct function in control of CNS proliferation in Drosophila.  

 

Nevertheless, this leaves us with the puzzle of why miR-124 is so strongly conserved. 

Perhaps some yet uncharacterized ancient functions of its role in neuronal 

development and/or functions await discovering, despite considerable diversification 

in gene regulatory networks. Similar observations have been made in highly 

conserved protein-coding genes, such as the bHLH-O family of protein, Hey (eg. 

[186]).  
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6 Appendices 

Appendix 1. GC-MS analysis of cuticular hydrocarbon extracts from control, 
mir-124 mutant, and rescued mutant males.  

Compound and elemental 
composition1 

Control2 
(n=6) 

mir-124 mutant2 
(n=6) 

Rescued mutant2 
(n=6) 

C21:0 (nC21) 0.46±0.08 0.32±0.05 0.76±0.11 

C22:1 0.24±0.01 0.27±0.02 0.35±0.02 

cVA (cis-vaccenyl acetate) 9.36±3.40 1.75±0.57*** 6.60±2.17*** 

C22:0 0.74±0.06 0.62±0.02 0.95±0.05 

7,11-C23:2 0.13±0.01 0.07±0.001 0.12±0.02 

9-C23:1 (9-tricosene) 1.39±0.13 1.76±0.25 1.84±0.14 

7-C23:1 (7-tricosene) 23.52±1.17 24.92±1.74 32.80±2.03*** 

5-C23:1 (5-tricosene) 2.71±0.11 3.06±0.20 3.01±0.18 

C23:0 (nC23) 10.57±0.40 11.21±0.25 12.66±0.63** 

C24:1 0.32±0.11 0.37±0.09 0.30±0.07 

C24:0 0.36±0.02 0.43±0.04 0.35±0.03 

2-MeC24 1.44±0.08 1.58±0.15 2.03±0.12 

C25:2 0.52±0.06 0.71±0.07 0.70±0.04 

9-C25:1 (9-pentacosene) 4.80±0.61 6.33±0.65* 4.11±0.74 

7-C25:1 (7-pentacosene) 22.99±1.55 25.62±0.63*** 11.61±1.16*** 

5-C25:1 (5-pentacosene) 1.10±0.33 0.79±0.02 2.38±0.01 

C25:0 (nc25) 2.34±0.15 3.13±0.03 2.52±0.15 

2-MeC26 6.75±0.49 5.37±0.08 6.55±0.13 

9-C27:1 0.16±0.02 0.19±0.03 0.12±0.04 

7-C27:1 0.97±0.10 0.77±0.07 0.29±0.06** 

C27:0 (nC27) 1.66±0.33 2.42±0.60 1.86±0.39 

2-MeC28 5.90±0.81 5.95±0.71 6.18±0.77 

C29:0 0.37±0.11 0.78±0.26 0.54±0.17 

2-MeC30 0.64±0.16 0.99±0.27 0.87±0.25 
1The elemental composition is listed as the carbon chain length followed by the 
number of double bonds; 2-Me indicates the position of methyl branched compounds. 
2The normalized signal intensity for each compound and SEM is indicated; * P<0.05, 
**P<0.01, ***P<0.001 when compared to control (ANOVA followed by post-hoc 
Tukey HSD test). 
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Appendix 2. GC-MS analysis of cuticular hydrocarbon extracts from control, 
mir-124 mutant, rescued mutants, and mir-124>tra-RNAi males.  

Compound and elemental 
composition1 

Control2 
(n=3) 

mir-124 mutant2 
(n=3) 

Rescued 
mutant2 

(n=3) 

mir-124> tra-
RNAi2 

(n=2) 
C21:0 (nC21) 0.28±0.1 0.21±0.01 0.51±0.03 0.35±0.04 

C22:1 0.22±0.02 0.24±0.01 0.31±0.02 0.34±0.03 

cVA (cis-vaccenyl acetate) 3.86±0.43 0.48±0.04*** 2.57±0.47* 2.09±0.23* 

C22:0 0.61±0.03 0.60±0.01 0.87±0.05 0.70±0.05 

7,11-C23:2 0.14±0.01 0.07±0.001 0.17±0.02 0.11±0.02 

9-C23:1 (9-tricosene) 1.10±0.05 1.20±0.02 1.57±0.12 1.94±0.07 

7-C23:1 (7-tricosene) 21.68±1.14 21.04±0.29 29.07±2.12*** 28.95±2.20*** 

5-C23:1 (5-tricosene) 2.56±0.05 2.62±0.05 2.71±0.25 3.11±0.40 

C23:0 (nC23) 9.84±0.15 10.66±0.06 11.33±0.2* 10.35±0.33 

C24:1 0.09±0.05 0.19±0.01 0.16±0.02 0.22±0.01 

C24:0 0.41±0.01 0.52±0.01 0.40±0.03 0.44±0.01 

2-MeC24 1.52±0.13 1.24±0.02 1.81±0.15 1.78±0.09 

C25:2 0.41±0.02 0.54±0.02 0.74±0.01 0.76±0.06 

9-C25:1 (9-pentacosene) 6.13±0.12 7.78±0.05** 5.74±0.21 6.86±1.02 

7-C25:1 (7-pentacosene) 26.01±0.69 26.97±0.25 14.09±0.46*** 23.23±1.15*** 

5-C25:1 (5-pentacosene) 1.41±0.68 0.75±0.01 023±0.02 0.59±0.03 

C25:0 (nc25) 2.65±0.06 3.79±0.05 2.85±0.07 2.68±0.26 

2-MeC26 7.72±0.28 5.22±0.01*** 6.64±0.27 5.23±0.21*** 

9-C27:1 0.20±0.01 0.25±0.01 0.20±0.02 0.18±0.05 

7-C27:1 1.15±0.09 0.92±0.02 0.41±0.01 0.60±0.08 

C27:0 (nC27) 2.38±0.12 3.77±0.08* 2.72±0.16 1.92±0.21 

2-MeC28 7.66±0.13 7.53±0.05 7.85±0.37 5.76±0.33** 

C29:0 0.62±0.06 1.37±0.01 0.92±0.1 0.52±0.05 

2-MeC30 0.98±0.06 1.59±0.03 1.41±0.13 0.66±0.02 
1The elemental composition is listed as the carbon chain length followed by the 
number of double bonds; 2-Me indicates the position of methyl branched compounds. 
2The normalized signal intensity for each compound and SEM is indicated; * P<0.05, 
**P<0.01, ***P<0.001 when compared to control (ANOVA followed by post-hoc 
Tukey HSD test). 

 


