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SUMMARY 

 

Polycomb group (PcG) proteins are well known for their function of repressing gene expression 

via repressive chromatin modifications.  In Drosophila and mammals, PcG-mediated silencing 

requires Polycomb repressive complex 1 (PRC1). In plants PRC1-like complexes remain elusive. 

Recent studies suggest that the Arabidopsis protein LHP1 (for LIKE HETEROCHROMATIN 

PROTEIN 1) plays a PRC1-like role to repress gene expression. In this study, using genetic and 

molecular tools I found that a plant-specific protein, EMBRYONIC FLOWER 1 (EMF1), 

functions as part of a PRC1-like complex containing LHP1 to silence gene expression. In 

addition, this EMF1-PRC1 complex also involves other proteins. Furthermore, I found that 

EMF1 controls the expression of FLOWERING LOCUS T (FT; encoding florigen) to regulate 

flowering time in Arabidopsis. 
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Literature Review 
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Polycomb group (PcG) proteins and trithorax group (trxG) proteins act antagonistically to 

regulate gene expression: PcG proteins could repress gene expression while trxG proteins could 

activate their expression (Schuettengruber et al., 2007). This mechanism seems to be 

evolutionarily conserved since it has been reported to be present in from animals to plants 

(Whitcomb et al., 2007; Kohler and Hennig, 2010). PcG proteins were first characterized in 

Drosophila melanogaster for their role in long-term repressing expression of homeotic (Hox) 

genes (Lewis, 1978). With new technology emerging such as genome-wide chromatin 

immunoprecipitation (ChIP), hundreds of target genes of PcG proteins have been identified 

(Boyer et al., 2006; Schwartz et al., 2006; Schuettengruber et al., 2009). Besides the Hox genes, 

many of these PcG targets are transcription factors and signaling components involved in many 

developmental events, which suggest that gene repression by PcG proteins represents a global 

silencing mechanism. 

 

To perform their function of gene silencing, PcG proteins are normally grouped into multi-

protein complexes. Two main complexes have been identified based on their roles in gene 

silencing: Polycomb Repressive Complex 1 (PRC1) and PRC2. The PRC2 complex could 

methylate (di- and tri-) the residue of Lys 27 of histone H3 (H3K27me2/3), which is a central 

feature of PcG targeted chromatin. The PRC1 complex is responsible for the monoubiquitination 

of Lys 119 of histone H2A (H2AK119ub1) (Simon & Kingston 2009). In addition, some PRC1 

complexes may also compact chromatin to repress gene expression (Eskeland, 2010). It is 

suggested that the regulation of chromatin structure and post-translational modification (PTM) of 

histone proteins, which surround DNA to form nucleosome structure, are critical to PcG protein- 

mediated gene silencing (Margueron and Reinberg, 2011). The PRC1 subunit Pc has been 



3 
 

reported to bind to H3K27me3 deposited by PRC2, specifically, indicating that PRC1 may act 

downstream of PRC2. However, evidence that PRC1 may target genes in the absence of PRC2 

challenges this hypothesis (Schoeftner, 2006). But normally, both PRC1 and PRC2 are required 

to repress gene expression. 

 

1.1 Polycomb Repressive Complex 2 (PRC2) 

 

In Drosophila, the core PRC2 complex includes four components: Enhancer of Zeste (E(Z)), 

Suppressor of Zeste 12 (SUZ12), Extra Sex combs and Extra Sex combs-like (ESC/ESCL), and 

Nucleosome remodeling factor 55 (p55 and CAF1). E(Z) is a SET domain containing protein 

serving as the catalytic subunit of PRC2 complex for H3K27 methylation. E(Z) alone does not 

have activity unless it is assembled at least with SUZ12 and ESC (Pasini et al., 2004; Ketel, 

2005). And p55 seems to be related to recognizing and binding to histones, which facilitates 

PRC2 function (Song et al., 2008)(Table 1). 

 

The core components of PRC2 complex are highly conserved from animals to plants (Table 1). 

However, there are different variants for PRC2 components providing multiple choices to 

assemble the PRC2 complex. And these related PRC2 complexes might be adapted for different 

circumstances. For instance, in mammals, there are two homologues of E(Z): Enhancer of Zeste 

homologue 1 (EZH1) and EZH2. Homologues of ESC (EED) have several isoforms due to 

alternative translation start sites. Retinoblastoma-bind protein 48 (RbAp 48) and RbAp 46 are 

homologues of p55 (Table 1).  
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Table 1. Core subunits of PRC2 complex in fly, human and Arabidopsis 

Drosophila  humans Arabidopsis Protein 

domains 

Biochemical 

function(s) 

Enhancer of Zeste (E(Z)) 
EZH1 and 

EZH2 

MEA, CLF, 

and SWN 
SET domain 

Catalyzes H3K27 

methylation 

Suppressor of Zeste 12 

(Su(Z) 12) 

SUZ12 EMF2, FIS2 

and VRN2 

C2–H2 zinc 

finger and VEFS 

domain 

Stimulates 

H3K27 

methylation 

Extra Sex combs (ESC)  

and Extra Sex combs-

like (ESCL) 

EED  FIE WD repeats 
Stimulates 

H3K27 

methylation 

Nucleosome remodeling 

factor 55 (p55 and 

CAF1) 

RbAp48 

and 

RbAp46 

MSI1 WD repeats Histone binding 

Derived from the reviews on PRC2 complex of animals and plants (Margueron and Reinberg, 

2011; Simon and Kingston, 2009; Hennig and Derkacheva, 2009; Holec and Berger, 2012) 
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Interestingly, despite of 65% identical sequence between EZH1 and EZH2 and association with 

almost the same core subunits, the EZH1-PRC2 is quite different from EZH2-PRC2 complex in 

biochemical functions: EZH1-PRC2 could compact chromatin but has much lower 

methyltransferase activity than EZH2-PRC2 (Margueron, 2008). As a consequence, EZH1-PRC2 

could repress in vitro transcription while EZH2-PRC2 could not. These biochemical differences 

between EZH1-PRC2 and EZH2-PRC2 might account for their different distribution during 

development: EZH1 is highly expressed in adult tissues and non-dividing cells while EZH2 is the 

major form in dividing cells (Shen, 2008). 

 

Besides the core components, there are other PcG proteins that can associate with PRC2 complex. 

Polycomb-like protein (PCL) in Drosophila, and its homologues PHF1 (PCL1), MTF2 (PCL2), 

and PHF19 (PCL3) in mammals are found to interact with PRC2 core components (Nekrasov, 

2007; Sarma et al., 2008). PCL (PHF1) may enhance PRC2 enzyme activity for H3K27 tri-

methylation and  facilitate the recruitment of PRC2 to its target genes (Savla et al., 2008). In 

mammals, two more proteins: AEBP2, a zinc-finger protein, and JARID2, a Jumonji family 

protein lacking the enzymatic activity of histone demethylation, are also found to interact with 

PRC2 components. And their colocalization at the target genes with PRC2 suggests that they are 

also associated with the PRC2 complex (Cao and Zhang, 2004; Jung et al., 2005; Kim et al., 

2009). All these non-core components also increase the complexity of PRC2. 

 

To repress gene expression, the PRC2 complex is first recruited to its targets. However, the exact 

mechanism of PRC2 recruitment is not clear yet. The Polycomb response elements (PREs) of the 
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target genes are reported to play an important role in PcG proteins recruitment. PREs are cis-

regulators of PcG targeting genes for the response to PcG proteins. In Drosophila, the PREs are 

identified in Hox genes and other PcG targets (Muller and Kassis, 2006; Ringrose and Paro, 

2007). However, the exact picture of PREs has not been determined although they have been 

refined to several hundred base pairs for certain genes (Mihaly et al., 1998; Kozma et al., 2008). 

It is also noticed that while the elements for PREs function are not uniform for all the PcG target 

genes, they share some common and key features: they all have multiple binding site for the zinc 

finger protein Pleiohomeotic (PHO). PHO and other proteins interact with PREs then bridge 

other PcG proteins to the target genes (Wang et al., 2004). In mammals, the PREs have not been 

identified yet. It is revealed that most of the PRC2 targets are co-related to CpG islands or 

similar CG-rich regions which suggests this feature might be a potential sub-element of 

mammalian PREs (Ku, 2008). Interestingly, the non-coding RNAs (ncRNAs) are also involved 

in the recruitment of  PRC2 complex when studying Hox gene clusters silencing (Rinn, 2007), 

X-chromosome inactivating (Zhao et al., 2008) and paternally imprinting (Pandey, 2008). In 

plants, ncRNA is also reported to contribute to the recruitment of PRC2 (Heo and Sung, 2011). 

 

After PRC2 is recruited to the target genes, it catalyzes histone methylation on H3K27 by adding 

up to three methyl groups. Tri-methylated H3K27 (H3K27me3) seems to be the main form for 

PcG silencing since H3K27me3 is distributed quite restrictively to PcG silencing genes and also 

attracts PcG complexes (Schwartz, 2006; Schuettengruber et al., 2009). The reciprocal relation 

between H3K27me3 and PRC2 complex makes it the central feature of PRC2 target genes. 
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The post-translational modification (PTM) on histone, in general, might function either by 

regulating chromatin structure directly, affecting the interactions between histones and DNA by 

changing the electrostatic charge of histones, or by acting as a docking site to facilitate the 

recruitment of other regulatory complexes. Evidence collected till now indicates that H3K27me3 

acts as the latter role to regulate gene expression. The interaction between H3K27me3 and 

Polycomb (Pc), a subunit of PRC1, and the fact that loss of H3K27me3 also accompanies with 

loss of affinity of PRC1 to its target genes indicate that H3K27me3 could facilitate the 

recruitment of PRC1 to its target genes (Min et al., 2003). 

 

In Arabidopsis thaliana, the core components of PRC2 complex are well characterized because 

of high conservation between animals and plants (Hennig and Derkacheva, 2009). There are 

three homologues of E(Z): MEDEA (MEA), CURLY LEAF (CLF), and SWINGER (SWN). 

Three homologues of Su(Z)12: EMBRYONIC FLOWER 2 (EMF2), FERTILIZATION 

INDEPENDENT SEED 2 (FIS2) and VERNALIZATION 2 (VRN2). One homologue of ESC: 

FERTILIZATION INDEPENDENT ENDOSPERM (FIE). And one homologue of p55: 

MULTICOPY SUPPRESSOR OF IRA1 (MSI1) (Table 1). 

 

The PRC2 complex functions throughout the Arabidopsis life cycle, involved in almost all the 

key events of Arabidopsis development, which indicates a crucial role of PRC2. From a single 

seed to becoming an adult plant and to eventually getting mature reproductive seeds, the 

Arabidopsis encounters several key transitions in development: seed germination to form a 

juvenile plant, transition from juvenile to adult stage, floral transition, gametogenesis, 

fertilization, seeds development (Hennig and Derkacheva, 2009). 
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Genetic and molecular analyses of PcG proteins, especially the studies of PcG mutants reveal 

their roles in plants development. In terms of different SUZ12 homologues, there are at least 

three forms of PRC2 complex in Arabidopsis which function at different stages to regulate plant 

development. The EMF2-PRC2 complex mainly plays role in sporophytic development; the 

VRN-PRC2 complex is mainly involved in the response of vernalization, a prolonged period of 

cold exposure like winter at high latitudes; the FIS-PRC2 complex mainly functions during 

fertilization and seeds development (Holec and Berger, 2012). 

 

Between germination and floral transition, the plant needs a certain period of time for vegetative 

development. During this period, the shoot apical meristem (SAM) keeps on proliferating to 

keep itself renewal and to initiate the leaf primordia to form new leaves (Baurle and Dean, 2006). 

During floral transition, the shoot apical meristem transits to inflorescence meristem and then 

produces floral meristem to form flowers. It has been reported that the H3K27me3 deposited by 

PRC2 complexes is distributed in a tissue-specific manner which leads to the spatial-specific 

expression patterns of target genes. This is especially important for some key regulators whose 

proper expression in the right place triggers normal development. For instance, the leaf-specific 

transcription factors such as TCP, CONSTANS-like and GRAS-transcription factors are 

prevented from meristem with meristem-specific H3K27me3; while HOMEOBOX transcription 

factors and other meristem-specific gene families are restricted at meristem tissues and get 

H3K27me3 in a leaf-specific manner (Lafos et al., 2011).  
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The PRC2 complex is also found to play critical role in meristem determination by regulating the 

floral identity genes LEAFY (LFY), AGAMOUS (AG) and KNUCKLES (KNU) expression to 

allow time for vegetative growth (Sun et al., 2009). The loss of function of PRC2 components 

leads to the mis-expression of LFY, AG and KNU and causes a shorter time of vegetative growth 

comparing to wild type (Kinoshita et al., 2001). The single mutants of clf show an early 

flowering phenotype (Katz et al., 2004); the phenotype of emf2 mutants is more severe: a very 

short period for vegetative growth and flowering soon after two cotyledons formation (Yoshida 

et al., 2001); the clf/swn double mutants show much more severe phenotype: the plant no longer 

maintaining organ identity post-embryonically, producing callus-like tissue, and loss of 

H3K27me3 at the molecular level (Lafos et al., 2011). 

 

After fertilization, the zygote develops into embryo and the central cell into endosperm. This 

transition from gametophyte to sporophyte involves the FIS-PRC2 complex which comprises of 

MEA/SWN, FIS2, FIE and MSI1. Mutants of fis2 show an over-dividing central cell in the 

gametophyte without cellularization which indicates the function of PRC2 to maitain normal 

gametophytic phase (Chaudhury et al., 1997). Mutants of fie exhibit defects in germination, 

enhanced seeds dormancy and unsustainable vegetative development leading to callus-like 

structure formation at last, which suggests that PRC2 also controls the embryo to seedling phase 

transition (Ohad et al 1996). 

 

PRC2 complex is also involved in flowering-time control. Mutants of PRC2 components show 

early-flowering phenotype indicating their roles in preventing flowering. FLOWERING LOCUS 

T (FT), a flowering-pathway integrator to promote flowering, loses H3K27me3 on its chromatin 
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and is derepressed in clf and emf2 mutants (Jiang et al., 2008). Another gene, FLOWERING 

LOCUS C (FLC), which could repress flowering and response to vernalization is also regulated 

by PRC2 (He, 2012). The mechanism of FLC repression by PRC2 is well studied and provides 

an insight into how PRC2 regulates gene expression in plants. 

 

In Arabidopsis, two PRC2 complexes are involved in repressing FLC expression. The EMF2-

PRC2 complex is considered to be a constitutive FLC repressor (He, 2012). Its components such 

as EMF2 and CLF are found to bind to FLC chromatin and defects in these proteins accompany 

with loss of H3K27me3 on FLC locus (Jiang et al., 2008). It is proposed that EMF2-PRC2 

coordinates other repressors such as FLOWERING LOCUS D (FLD) and FVE to establish a 

repressive chromatin environment for FLC repression (Gu et al., 2011; Yu et al., 2011). 

 

In winter annuals, FLC expression is repressed by vernalization in winter, and remains silenced 

after the plants are transferred to warm conditions (Kim et al., 2009). Genetic analysis indicates 

the VRN2-PRC2 complex is required for this process. Cooperated with the PHD domain proteins 

VERNALIZATION INSENSITIVE 3 (VIN3), VRN5, VERNALIZATION LIKE 1 (VEL1), the 

VRN2-PRC2 complex including CLF/SWN, VRN2, FIE and MSI1 deposits H3K27me3 on 

around the first exon region of FLC when in cold treatment (Wood et al., 2006; De Lucia et al., 

2008), which may resemble the PHD protein PCL mediated PRC2 function in Drosophila. After 

changing to the warm conditions, H3K27me3 spreads to the entire FLC chromatin also by 

VRN2-PRC2 catalyzing. The spread H3K27me3 is recognized and bound by LIKE 

HETEROCHROMATIN PROTEIN 1 (LHP1) (Sung et al., 2006). LHP1 associated with other 

repressors leads to the subsequent maintenance of FLC repression state.  
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Recently, it is found that long non coding RNAs are also involved in VRN2-PRC2 mediated 

FLC repression. Vernalization induces transient expression of a non-coding RNA: COLD 

ASSISTED INTRONIC NONCODING RNA (COLDAIR) which is transcribed from the first 

intron of FLC. COLDAIR is associated with the PRC2 component CLF and assists the 

recruitment of VRN2-PRC2 to FLC chromatin (Heo and Sung, 2011), which suggests that the 

mechanism of non-coding RNA mediated PRC2 recruitment may be conserved from animals to 

plants though COLDAIR is the only one found in plants up till now. 

 

1.2 Polycomb Repressive Complex 1 (PRC1) 

 

Another main PcG complex family is PRC1. Unlike the PRC2 complex, PRC1 seems to have 

much more diversity especially in mammals. There are multiple paralogues of the core subunits, 

which substitute for various possible combinations. In some cases, some PRC1 proteins may 

associate with other partners to form complexes which differ from the classic PRC1(Simon and 

Kingston, 2009).  

 

In Drosophila, the core components of PRC1 include four PcG proteins: Polycomb (Pc), 

Polyhomeotic (Ph), Posterior Sex combs (PSC) and RING (also known as Sex comb extra) 

(Table 2). In mammals, the homologues of these four proteins are also identified (Francis et al., 

2001). However, the mechanisms of PRC1 complex repressing target gene expression are not 

fully understood yet. It is believed that PRC1 coordinates with PRC2 to maintain the gene  
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Table 2. Core subunits of PRC1 complex in fly, human and Arabidopsis
1
 

Drosophila  humans Arabidopsis Protein domains Biochemical 

function(s) 

Polycomb (Pc) 

CBX2 (PC1), 

CBX4 (PC2), 

CBX6, CBX7 

and CBX8 (PC3) 

LHP1 
2
 

Chromodomain and 

chromo-shadow 

domain 

Binds H3K27me3 

Polyhomeotic 

(Ph) 

PH1 and PH2 
? 

SAM domain and 

zinc finger 

Higher-order 

interactions 

Posterior Sex 

combs (Psc) 

BMI1, MEL18 

(PCGF2) and 

NSPC1 (PCGF1) 

AtBMI1a/1b RING finger 
Co-factor for E3 

ubiquitin ligase and 

compacts chromatin 

Sex combs 

extra (RING) 

RING1 and 

RING1B (RNF2) 

AtRING1a/1b RING finger E3 ubiquitin ligase 

for H2A 

1. Derived from the reviews on PcG proteins in animals and plants (Simon and Kingston, 2009; 

Whitcomb et al., 2007; Zheng and Chen, 2011; Holec and Berger, 2012). 

2. LHP1 is the homologue of HP1 but functions like Pc to recognize and bind to H3K27me3 

(Turck et al., 2007).  
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silencing states. H3K27me3 deposited by PRC2 on target genes are recognized by the subunit of 

PRC1 Polycomb (Pc) (Fischle, 2003). The recruitment of PRC1 subsequently keeps the gene 

silenced either by direct repression of transcription, regulation of chromatin structure or 

compaction of nucleosomes. 

 

Recent studies show that in human, two core subunits of PRC1: RING1B and B lymphoma Mo-

MLV insertion region 1 (BMI1) could form a stable heterodimer and catalyze H2A 

ubiquitination directly (Cao et al., 2005).This suggests that H2A ubiquitination may be the key 

function of PRC1 (Wang, 2004). However, besides the originally defined PRC1, these two 

proteins are also found to be present in other complexes with different compositions. In 

Drosophila, a RING-associated factor (dRAF) complex has been reported recently, which 

contains two PRC1 subunits RING and PSC and a histone lysine demethylase KDM2. KDM2 

could demethylate H3K36me2 and enhance the activity of H2A ubiquitination by RING and 

PSC. Interestingly, unlike KDM2, the addition of Pc and Ph, two other components of PRC1, has 

no effects on H2A ubiquitination in vitro (Lagarou, 2008). A similar complex named as BCL6 

corepressor (BCOR) complex is found in mammals, which is composed of the RING 

homologues RING1 and RING1B, a PSC homologue nervous system Polycomb 1 (NSPC1), 

BCOR and a KDM2 homologue KDM2B. The BCOR complex could ubiquitylate H2A of its 

target genes in vivo although it is not clear yet whether the association with KDM2B to this 

complex could stimulate the ubiquitination (Gearhart et al., 2006; Sanchez, 2007). These 

findings indicate that in both flies and mammals there exists a complex containing the 

components of PRC1 and a KDM2 subunit which differs from the original PRC1.Considering 

the fact that the dRAF complex has significantly more ubiquitination activities than the original 
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PRC1, it is proposed that the original PRC1 regulates chromatin structure, the dRAF complex 

(BCOR complex in mammals) accounts for H2A ubiquitination, and these two complexes are 

coordinated for the full function of PRC1. However, the scenarios of gene silencing by these 

PRC1 complexes are not clear yet. 

 

Possible mechanisms are speculated to interpret PRC1 silencing. It seems that PRC1 proteins do 

not inhibit transcription initiation by affecting RNA polymerase binding since PRC1 proteins and 

transcription factors are found to be colocalized at target genes, and RNA polymerases could 

bind to some PcG silenced targets (Breiling et al., 2001; Bracken et al., 2006; Zhou, 2008). 

Emerging evidence leads to a hypothesis that PRC1 proteins affect transcription elongation. With 

the studies on normal and engineered mouse ES cells, it is found that RNA polymerase engaged 

in PcG targets is present in an inactive phosphorylation state and paused in the middle of target 

genes. The switch of phosphorylation state from inactive (phosphorylated Ser 5 of C-terminal 

domain) to active (phosphorylated Ser 2) could release the paused elongation (Stock, 2007).  

 

H2A ubiquitination may play key roles in PRC1 silencing. Ubiquitinated H2A by PRC1 may act 

as the docking site for repressive transcription complexes or obstruct the recruitment of 

transcription factors. This is supported by the fact that H2A ubiquitination could inhibit the 

binding of elongation factor FACT (facilitates chromatin transcription complex) to transcription 

sites (Saunders, 2003; Zhou, 2008). The genes in mouse ES cells with paused RNA polymerase 

also possess ubiquitylated H2A (Bernstein, 2006). Removal of H2A ubiquitination in RING1 and 

RING1B mutants accompanies with the PcG target genes activation (Cao et al., 2005). 
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Besides, chromatin compaction may also contribute to the inhibition of transcription by PRC1 

(Francis et al., 2004). When RNA polymerase transcribes through a gene body, a ‘loosen’ 

environment is required where it could get close to DNA sequence. For the nucleosome, the tight 

interaction between histones and DNA has to be loosened, and this process might be obstructed 

by compaction and stabilization of the chromatin of gene body (Lorch et al., 1987). The PRC1 

subunit PSC itself could regulate chromatin structure by its noncovalent effects. The carboxy-

terminal region of PSC (PSC-CTR), which has an intrinsically disordered domain and is poorly 

conserved in protein sequence, is essential to the biochemical function of PSC. Truncations of 

PSC-CTR impair compaction chromatin in vitro and disrupt gene silencing by PRC1 in vivo. 

Nevertheless, hundreds of genes are targeted by PcG complexes and the mechanisms of silencing 

may be varied on different target genes (Beh et al., 2012). 

 

Because of the poor conservation of PRC1 subunits between animals and plants, in the beginning, 

people doubted whether there were PRC1 or PRC1-like complexes in plants or not. However, it 

is speculated that there might be plant unique components that function like PRC1 complex. 

Indeed, the homologues of PRC1 component RING1 and BMI1 are identified recently in 

Arabidopsis and were suggested for the PRC1-like function in plants (Xu and Shen, 2008; 

Bratzel et al., 2010).  

 

In Arabidopsis, AtRING1a and AtRING1b, homologues of mammalian RING1, are 

characterized for the roles in repressing Class I KNOTTED-like homeobox (KNOX) transcription 

factors expression. KNOX genes are expressed specifically in shoot meristems and are key 
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factors for maintaining meristem function. Loss of function of AtRING1a/1b, leads to the de-

repression of KNOX genes expression and ectopic meristem formation in the double mutants (Xu 

and Shen, 2008). AtBMI1a, AtBMI1b and AtBMI1c are homologues of mammalian BMI1. 

Compared to AtBMI1a/1b, the expression level of AtBMI1c is very low, suggesting that 

AtBMI1c might not be involved in the AtBMI1a/1b complex. Like AtRING1a/1b, AtBMI1a/1b 

are involved in meristem cells determination by repressing the embryonic and stem cell 

regulators expression. It is also found that AtBMI1a/1b and AtRING1a/1b could mediate H2A 

monoubiquitination in vitro and in vivo, just as their homologues in animals. Considering the fact 

that H3K27me3 levels are not affected in Atbmi1a/1b double mutants, these findings suggest that 

AtBMI1a/1b function downstream of PRC2 and play a PRC1-like role in gene silencing. The in 

vitro pulldown assay hints that AtBMI1a/1b and AtRING1a/1b might be physically associated 

with LIKE-HETEROCHROMATIN PROTEIN 1 (LHP1) and EMBRYONIC FLOWER 1 

(EMF1) (Bratzel et al., 2010). 

 

LHP1 (also known as TERMINAL FLOWER 2 (TFL2)) is the only homologue in Arabidopsis 

of metazoans HETEROCHROMATIN PROTEIN 1 (HP1) (Gaudin et al., 2001). Most of the 

isoforms of HP1 are enriched in heterochromatic regions to regulate heterochromatin where HP1 

proteins bind to histone H3K9me2 and H3K9me3 (Eskeland et al., 2007). However, unlike HP1, 

LHP1 is distributed predominantly in euchromatin in Arabidopsis. In vitro, LHP1 could bind to 

H3K9me2, H3K9me3 and H3K27me3, whereas it recognizes H3K27me3 specifically in vivo 

(Turck et al., 2007). Mutants of lhp1 show phenotypes of day length independent early flowering, 

terminal flower, and curled leaves, which resemble mutants of PRC2 components (Gaudin et al., 

2001; Kotake et al., 2003). The interactions between LHP1 and AtBMI1a/1b, AtRING1a/1b 
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hinted in the in vitro pulldown assay and the specific association with H3K27me3 in vivo suggest 

that LHP1 functions like the core component of animal PRC1: Pc, which recognizes and binds to 

H3K27me3 although LHP1 is not the homologue of Pc (Table 2). 

 

As its name suggests, EMBRYONIC FLOWER 1 (EMF1) plays a critical role in floral 

repression. The mutants of emf1 skip vegetative development and flowers just after germination 

which is quite similar to the mutants of a PRC2 component EMF2 (Moon et al., 2003). These 

observations imply that both genes are needed for the vegetative development of Arabidopsis. 

Later EMF1 is found to coordinate with EMF2-PRC2 complex to repress AGAMOUS (a flower 

organ identity gene) expression (Calonje et al., 2008). Genome wide investigation reveals that 

EMF1 is involved in the repression of vast of genes expression which are related to key 

processes of Arabidopsis development such as seed, root development, stem cell maintenance, 

flower organ determination, shoot architecture, and hormone synthesis (Kim et al., 2012). The 

biochemical function of EMF1 is characterized with the activities of DNA binding, inhibition of 

in vitro transcription and inhibition of chromatin remodeling which resemble the PRC1 

component PSC (Calonje et al., 2008; Beh et al., 2012).  Like metazoan PSC C-terminal region 

(PSC-CTR), the structure of EMF1 is largely disordered, and has low contiguous negative charge 

which might facilitate DNA binding and inhibit chromatin remodeling in vitro (Beh et al., 2012).  

 

1.3 Other PcG complexes 

 

Besides these two main families of complexes: PRC1 and PRC2, there might be other PcG-

related complexes. Indeed, in Drosophila, a PcG protein Pleiohomeotic (Pho) could form a stable 
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heterodimer with another PcG protein dSfmbt (Scm-related gene containing four mbt domains) 

which is named as Pho repressive complex (Pho-RC) (Klymenko, 2006). Pho and Pho-like (Phol) 

are zinc finger DNA binding proteins which could bind to the PREs of HOX genes specifically 

(Brown et al., 1998; Brown et al., 2003). The protein of dSfmbt has four malignant brain tumor 

(MBT) repeats associated with mono- and di-methylated H3K9 and H4K20 selectively. Loss of 

function of Pho or dSfmbt result in the de-repression of HOX genes, which indicate their 

function as a repressive complex (Wang et al., 2004). Besides, mutants of pho and phol lose the 

association of PRC1 and PRC2 with PREs of HOX genes suggesting Pho may act as the recruiter 

of PRC1 and PRC2. It is proposed that Pho binds to the PREs of target gene, and dSfmbt 

interacts with the methylated histones of PREs flanking chromatin selectively which directs the 

recruitment of PRC1 or PRC2, and then mediates target gene repression (Klymenko, 2006).  

 

Another PcG complex named as Polycomb repressive deubiquitinase (PR-DUB) is characterized 

in Drosophila recently which is comprised of two PcG proteins: Calypso and Additional sex 

combs (ASX) (Scheuermann, 2010). Calypso is the catalytic subunit of PR-DUB while the 

activity of PR-DUB needs the presence of both subunits. PR-DUB complex specifically 

deubiquitylates mono-ubiquitinated H2A, which is critical for PR-DUB mediated gene silencing. 

Disruption of Calypso results in increasing H2A monoubiquitination and de-repression of the 

target genes (Scheuermann, 2010). This is interesting because H2A monoubiquitination by PRC1 

or dRAF complex is also related to gene repression. Thus, it is implied that the balance of H2A 

monoubiquitination in the target gene chromatin may be crucial in PcG directed repression. In 

mammals the homologues of PR-DUB components are identified but the function of this 

complex has not been characterized yet. However, neither Pho-RC like nor PR-DUB like 
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complexes have been identified to date in plants which may indicate a difference between plants 

and animals in PcG repression. 

 

1.4 Flowering-time control 

 

Floral transition is a key event in plant life cycle. It turns the plant from vegetative growth to 

reproductive development. Flowering at the right time is very important for plant to get maximal 

reproductive success. Coordination with the environmental cues such as temperature, day length, 

and hormones is crucial for the plant to determine when to start flowering. Floral genes response 

to the changes of environments and finally induce floral transition. After transition, the shoot 

apex meristem (SAM) no longer produces new leaf primordia but transits into inflorescence 

meristem (IM) which produces floral meristem (FM) to develop into flowers finally (Carles and 

Fletcher, 2003; Irish, 2010). In Arabidopsis thaliana, about 180 genes are implicated to be 

involved in flowering-time control through loss-of-function mutants or transgenic plants analysis 

(Fornara et al., 2010). These genes form a sophisticated but delicate network to sense the signals 

of flowering. Interestingly, a small number of these genes, such as FLOWERING LOCUS C 

(FLC) and FLOWERING LOCUS T (FT), act as the integrator to converge signals from other 

genes(Amasino, 2010). With regards to the signals for flowering, these genes could be roughly 

grouped into several flowering pathways: photoperiod pathway, vernalization pathway, 

autonomous pathway, gibberellin pathway, thermosensory pathway and age pathway (Fornara et 

al., 2010). 
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Vernalization pathway 

 

As mentioned in the previous section, the winter annual of Arabidopsis has to experience the 

long cold winter and get flowered after returning to the warm condition. FLC is the main effector 

of vernalization, which encodes a MADS-box transcription factor to repress flowering (Sheldon 

et al., 2000). Vernalization establishes the repressive state of FLC which is maintained in the 

following spring. Repression of FLC involves the ‘epigenetic’ regulation with modifications on 

histones of FLC. VRN2-PRC2 associated with PHD domain proteins deposits H3K27me3 on 

FLC genome leading to the silence of FLC (He, 2012). LHP1 recognizes and binds to 

H3K27me3 and recruits other proteins, which may account for the maintenance of the repressive 

status of FLC (Zheng and Chen, 2011). Long non-coding RNAs are also involved in FLC 

repression. The antisense transcript COLD INDUCED LONG ANTISENSE INTERGENIC 

RNA (COOLAIR) may mediate FLC silencing by a co-transcriptional mechanism (Swiezewski 

et al., 2009). Another non-coding RNA COLDAIR may act as a recruiter of PRC2 to FLC 

chromatin (Heo and Sung, 2011). 

 

Without vernalization, in winter annuals, FLC expression is activated by FRIGIDA (FRI) which 

acts as a scaffold protein to recruit other regulators (Johanson et al., 2000). FRI interacts with 

four proteins FRL1, FES1, SUF4 and FLX to form a putative transcription activator complex 

(FRIc) to activate FLC expression (Choi et al., 2011). FRIc may recruit multiple complexes to 

mediate histone modification on FLC chromatin such as H2A.Z deposition (Deal et al., 2007), 

histone acetylation (Yu et al., 2011), H3K4me3 (Jiang et al., 2009), H2B monoubiquitination(Gu 



21 
 

et al., 2009) and H3K36 di- and tri-methylation (Xu et al., 2008) which lead to the activation of 

FLC.   

 

Autonomous pathway 

 

For the rapid-cycling accessions, unlike the winter annuals, they do not require vernalization to 

accelerate flowering. Sensing the endogenous signals, the autonomous pathway genes repress 

FLC expression at low level to promote flowering. Mutations of these genes often result in the 

de-repression of FLC expression and delay in floral transition (Amasino, 2010).  

 

Histone modifications on FLC also play important roles in autonomous pathway. A corepressor-

like complex composed of FLOWERING LOCUS D (FLD), HISTONE DEACETYLASE 6 

(HDA6), and FVE or MSI5 is found to repress FLC expression (Amasino, 2010; He, 2012). FLD, 

the homologue of human Lysine-Specific Demethylase1 (LSD1), is a histone H3K4 demethylase. 

HDA6 could catalyze histone deacetylation (Gu et al., 2011; Yu et al., 2011). FVE or MSI5 is 

involved in histone binding (Ausin et al., 2004; Jeon and Kim, 2011). Mutations of these proteins 

result in elevated histone acetylation and H3K4 methylation which lead to FLC derepression.  

Chromatin immunoprecipitation (ChIP) assay analysis indicates H3K27me3 is also presented in 

FLC chromatin. The EMF2-PRC2 complex is involved in H3K27me3 deposition on FLC locus 

which is also required for FLC repression (Jiang et al., 2008).  
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FCA and FPA, two RNA binding proteins, could promote the processing of 3’-end FLC 

antisense transcripts by the CstF 3’-end processing complex which produce antisense long non-

coding RNA to cause FLC repression (Hornyik et al., 2010; Liu et al., 2010). It is also reported 

that FCA and FPA require FLD for FLC downregulation (Liu et al., 2007; Baurle and Dean, 

2008). Altogether, these findings suggest that FLD-HDA6-FVE/MSI5 complex cooperates with 

EMF2-PRC2 and the co-transcription of FLC antisense RNA to repress FLC expression. 

 

Thermosensory pathway 

 

The surrounding temperature also influences flowering. Arabidopsis plants get earlier flowering 

at high temperature than at low temperature (Balasubramanian and Weigel, 2006). FT expression 

is affected in different temperature. Higher expression of FT is observed at high temperature, 

which leads to earlier flowering. A MADS box transcription factor SHORT VEGETATIVE 

PHASE (SVP) seems to be critical for this pathway since the svp mutants shows uninfluenced 

flowering time at different temperature. And FT expression is repressed by SVP at low 

temperature thus causes later flowering (Lee et al., 2007). Histone variant H2A.Z deposited by 

SWR1 complex (SWR1c) on FT chromatin is also involved in this pathway. Lower level H2A.Z 

nucleosomes are detected in high temperature than in low temperature conditions. Impairing 

SWR1c function causes early flowering and temperature insensitive FT activation (March-Diaz 

et al., 2008; Kumar and Wigge, 2010). 
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Age pathway 

 

Accompanying with plants aging, transcription factors SQUAMOSA PROMOTER BINDING 

LIKE (SPLs) are accumulated to promote flowering eventually by activating LEAFY (LFY), 

FRUITFUL (FUL) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) 

expression. MicroRNA mir-156 acts as a repressor of SPLs with high expression levels in young 

plants and decrease progressively during plants aging (Wang et al., 2009). 

 

Gibberellin pathway 

 

The hormone Gibberellin (GA) could promote flowering especially for plants at non inducible 

conditions such as short day conditions for Arabidopsis (Wilson et al., 1992). Any mutants that 

affect the GA biosynthesis or degradation will affect flowering time. The bioactive GA (GA4) is 

detected to be accumulated at SAM before flowering. The petioles appear to be one place for GA 

biosynthesis where the genes involved in GA synthesis are activated in response to 

environmental cues. GA could activate the expression of FT in leaves and SOC1, LFY in SAM 

which leads to floral induction (Mutasa-Gottgens and Hedden, 2009; Fornara et al., 2010). 

 

Photoperiod pathway 

 

Day length changing especially at high latitudes is another major environmental cues for plant 

flowering. Some species such as Arabidopsis thaliana promote flowering under long days (LDs) 

of 16 hours of light, whereas some species such as rice (Oryza sativa) flower earlier under short 
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days (SDs) (8 h light). For a long time, it is noticed that plants could sense day length changing 

in leaves, where plants perceive the signals and transmit to SAM for response (Meacham et al., 

1920; Zeevaart, 2006). However, the ‘florigen’ which is speculated for the signals transmission 

between leaves and SAM is unclear, until recently FT is identified as the candidate of florigen 

(Turck et al., 2008). 

 

Lights are perceived by photoreceptors in leaf which give rise to a signal cascade involving 

GIGANTEA (GI) and CONSTANS (CO). GI with an F-box ubiquitin ligase FLAVIN-BINDING 

KELCH REPEAT F-BOX 1 (FKF1) negatively regulate CO repressors such as CYCLING DOF 

FACTOR 1 (CDF1) expression, which lead to CO activation(Imaizumi et al., 2005; Sawa et al., 

2007). CO expression acts in a diurnal pattern that CO mRNA extends its abundance to light in 

LD conditions, while in SD conditions CO is accumulated only in night(Suarez-Lopez et al., 

2001). However, in LD conditions, CO proteins are stabilized by light with peaking at the end of 

light and degraded quickly in the dark (Valverde et al., 2004). The post-transcriptional regulation 

of CO appears to account for CO function since the presence of CO transcripts in SD does not 

cause flowering. Cryptochromes such as CRYPTOCHROME 2 (CRY2) and PHYTOCHROME 

A (PhyA) are involved in CO proteins stabilization (Valverde et al., 2004), while PhyB and an 

E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) mediate CO 

protein degradation in the dark (Mockler et al., 2003; Wigge et al., 2005; Liu et al., 2008). CO 

proteins activate FT expression that leads to the subsequent promotion of flowering (Wigge et al., 

2005). 
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FT is expressed in the minor veins of leaves, whereas FT proteins are translocated to SAM where 

they interact with a bZIP transcription factor FLOWERING LOCUS D (FD). FT/FD activates 

the expression of the floral meristem identity gene APETALA 1 (AP1) and another floral 

promoter gene SOC1 which in turns promote LFY expression, then leads to flower induction 

(Abe et al., 2005; Wigge et al., 2005; Yoo et al., 2005). This property of FT makes it serve as the 

florigen in Arabidopsis (Corbesier et al., 2007). The mechanism of CO and FT regulate 

flowering in photoperiod pathway seems to be conserved since the functions of their homologues 

are also identified in rice and trees (Bohlenius et al., 2006; Tamaki et al., 2007).  

 

Epigenetic regulation is also critical for the regulation of FT expression. EMF2-PRC2 complex 

could deposit H3K27me3 on FT chromatin leading to FT repression (Farrona et al., 2011). Its 

components CLF and EMF2 are found to bind to FT locus and loss of CLF and EMF2 activities 

results in decrease of H3K27me3 and FT derepression (Jiang et al., 2008). REF6, a JmjC-domain 

H3K27me3 demethylase, could remove H3K27me3 mark and promote FT expression, which 

suggests that H3K27me3 is dynamically regulated on FT chromatin (Lu et al., 2011). LHP1, a 

putative PRC1 component, could bind to FT chromatin directly and disruption of LHP1 leads to 

FT derepression and early flowering (Turck et al., 2007).  

 

H3K4me3 is the active mark for gene expression, and the bivalent state between H3K4me3 and 

H3K27me3 is crucial for FT regulation. PKDM7B (also known as JMJ14 or AtJMJ4) catalyzes 

H3K4 demethylation to repress FT expression. Loss of function of PKDM7B accompanies with 

increasing H3K4me3 and reduction of H3K27me3 which give rise to FT derepression thus early 

flowering (Jeong et al., 2009; Lu et al., 2010; Yang et al., 2010). 
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1.5 Objectives of this study 

 

For a long time there have been doubts on the existence of PRC1 complex in plants due to poor 

conservation of PRC1 components between animals and plants. Recent studies revealed that 

AtBMI1a/1b and AtRING1a/1b, respective homologues of human BMI1 and RING, may 

function in the context of PRC1-like complex (Bratzel et al., 2010). However, additional 

components of this complex remain to be identified.  

 

The severe phenotypes of emf1 mutants indicate the critical roles of EMF1 in Arabidopsis 

growth and development. Indeed, genome-wide studies imply that EMF1 is involved in many 

developmental events including floral repression during the Arabidopsis life cycle. It was 

proposed that EMF1 may function like a PRC1 factor, but whether it acts as part of PRC1 is 

unclear. The objectives of this study include identifying the plant PRC1 components and 

understanding the mechanisms for EMF1-mediated flowering-time regulation. 
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CHAPTER 2 

 

 

 

 

Materials and Methods 
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2.1 Plant materials 

 

Arabidopsis thaliana ecotypes Columbia (Col) and Wassilewskija (Ws) were used as wild type 

plants in this study. Mutants emf1-1, lhp1, co, gi, ft, clf, ebs (cs906904), pFT9:GUS (about 9kb 

promoter) (Takada and Goto, 2003) and PKDM7B:HA (Yang et al., 2010) are in Col 

background. Mutant shl (FLAG546H05) is in Ws backgrounds. To make double mutants of ebs 

shl in a Col-like background, shl was crossed to ebs and the F1 generation plant was 

backcrossed to ebs for three times. The final F1 plants were self-segregated and double mutants 

of ebs shl were genotyped and examined the background by utilizing 24 pairs of Col/Ws 

molecular markers to make sure all these loci are in Col background. All transgenic plants such 

as EMF1-RNAi, SHL:HA, LHP1:HA, EMF1:FLAG are in Col background. 

 

2.2 Plant growth conditions 

 

For plants grown on plates, surface-sterilized seeds were plated on half Murashige and Skoog 

medium. For mutants related to emf1-1 were grown on half Murashige and Skoog agar plates 

plus vitamins and 1.5% sucrose. For soil grown plants, seeds were directly sowed on soil surface. 

Seeds were placed at 4 ºC for 2 d before germination and then seedlings were grown under cool 

white fluorescent light in either long days (LDs) conditions (16 h light/ 8 h dark) or short days 

(SDs) conditions (8 h light/ 16 h dark) at ~22 ºC. 
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2.3 Plant transformation 

 

Floral dip method was used to transform plants (Bent, 2006). Agrobacteria harboring interested 

plasmids were subcultured at 28 ºC overnight and collected by centrifuge at 3500 rpm for 15 min. 

Cell pellets were resuspended in 5% sucrose with 0.05% Silwet L-77 and 0.05% MES, pH 5.7. 

Flower buds were dipped in the Agro suspension for 40 s and the plants were put at a high 

humidity environment overnight, and then transferred to normal growth conditions for seeds 

mature. 

 

2.4 Construction of plasmids 

 

For double stranded RNAi vectors, the SUC2 promoter was amplified from Arabidopsis genome 

and cloned to binary RNAi vector pJawohl8-RNAi (GenBank no. AF408413) at restriction 

enzyme sites of AscI and XhoI to replace the 35S promoter. Then, the RNAi cassette with the 

SUC2 promoter and the NOS terminator was cut off with NheI and PmeI and cloned into binary 

vector pPZP212 (GenBank no. U10462.1) at site XbaI and SmaI. 

 

For EMF1 RNAi vectors, fragments amplified from target regions by PCR were first cloned into 

pENTR4 vector (Invitrogen) at site NcoI and XhoI, and were further introduced into the new 

RNAi binary vector for hairpin RNA production by gateway cloning (Invitrogen). 
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For EMF1 overexpressing, the full length EMF1 coding sequence amplified from Col seedling 

cDNAs was cloned into pENTR4 vector at site NcoI and NotI, and was subsequently cloned into 

an overexpression binary vector pLZB2GW7 by gateway cloning (Invitrogen). 

 

For EMF1:FLAG construction, EMF1 coding sequence (CDS) except the stop codon amplified 

from Col seedling cDNAs was cloned into the modified pENTR4 vector with FLAG (three 

copies) tag (in frame) at site NcoI and NotI first, and then the EMF1 promoter (3.8kb upstream 

translation start site) was inserted just upstream EMF1 CDS at site NcoI. Then, the 

EMF1:EMF1:FLAG fragment was introduced into binary vector pLZBGW via gateway cloning. 

 

For EMF1:GUS vector, the whole genome of EMF1 from 3.8kb promoter upstream translation 

start site to the stop codon (without stop codon) was cloned into pENTR4 vector at site NcoI and 

NotI, and subsequently introduced into the upstream of the GUS reporter gene in the pMDC162 

binary vector via gateway recombination.  

 

For pFT7:GUS construction, FT native promoter from 6.9kb upstream region to the translation 

start site was cloned into pENTR4 vector at site NcoI and XhoI, and then inserted into the 

upstream of the GUS reporter gene in the pMDC162 binary vector via gateway cloning.  

 

For the pFT7:FT:GUS vector, 6.9kb FT native promoter plus the whole FT codon region except 

stop codon was amplified from Col genome and inserted to pENTR4 vector at site NcoI and 
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XhoI, and then cloned to the upstream of the GUS reporter gene in the pMDC162 binary vector 

via gateway cloning. The genomic coding sequence was in frame with GUS. 

 

To construct the SHL:HA vector, SHL cDNA sequence without stop codon was amplified and 

fused with a HA tag in pENTR4 vector at site BamHI and XhoI. Then the SHL:HA fragment was 

introduced into downstream of the 35S promoter in the pMDC32 vector by gateway cloning. 

 

For vectors in yeast two-hybrid assay, the full length of coding sequences of  EMF1, LHP1, SHL, 

EBS, EBSL, PKDM7B, AtBMI1a or coding sequences of EMF1, LHP1, SHL domains were 

amplified and cloned into pGADT7 and/or pGBKT7 vectors (Clontech).  The coding sequences 

were in frame with upstream GAL4 activation domain (AD) or DNA binding domain (BD). 

 

 

2.5 Yeast two-hybrid assay 

 

Yeast experiments were carried out according to the Matchmaker GAL4 Two-Hybrid System 

User Manual using yeast strain AH109 (Clontech). In short, competent yeast cells were made 

freshly and transformed with interest plasmids then grown on SD minus Leu and Trp plates. 

Single colony was picked up to subculture for one day and spotted on selective plates (SD-Trp, -

Leu, -His (SD-3) or SD-Trp, -Leu, -His, -Ade (SD-4)) for growing in 30 ºC. 

 

 



32 
 

2.6 Histochemical β-glucuronidase (GUS) staining 

 

Plants tissues were first treated with 90% acetone on ice for 30 min for fixing prior to staining. 

After washed with the staining buffer (5 mM EDTA pH 8.0, 0.05% Triton X-100, 2 mM 

Potassium ferrocyanide, 2 mM Potassium ferricyanide, 100 mM NaH2PO4 and 100 mM 

Na2HPO4), the plants tissues were incubated in the staining buffer containing 0.005 ‰ 5-bromo-

4-chloro-3-indolyl-b-d-glucuronic acid (X-Gluc) at 37 ºC till clear signal appeared then stopped 

and de-stained with 70% ethanol. 

 

2.7 RNA expression analysis 

 

Total RNAs were extracted by using RNeasy mini plus kit (Qiagen) following the 

manufacturer’s instructions and reverse transcribed into cDNAs with oligo (dT) as primer by 

murine leukemia virus reverse transcriptase (M-MLV) (Promega). For FT analysis at one time 

point, plant seedlings were collected at 8 h after lights on for long day conditions (LDs) and 7 h 

after lights on for short day conditions (SDs). 

For semiquantitative RT-PCR, the cDNAs were first optimized to similar amounts based on 

TUBULIN 2 (TUB) levels. PCR products were viewed on agarose gels after ethidium bromide 

(EB) staining. TUB was used as an internal control. 

 

To perform real time quantitative PCR, PCR amplifications were carried out on an ABI 7900HT 

Fast Real-Time PCR System with three experimental replicas using SYBR Green PCR master 
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mix (Fermentas). Following the amplification, a melting curve was done for verifying the 

specificity of PCR fragments. The relative RNA levels were normalized to at least 2 internal 

controls as TUBULIN 2 (TUB) and At5g15710 (Vandesompele et al., 2002) by the 2
-∆∆Ct

 method. 

Primers for RNA expression analysis are shown in table 3. 

 

2.8 Recombinant protein expression in E.coli 

 

Plasmids of interest were transformed to the E.coli BL21 (DE3) strain for expression. E.coli cells 

with the expression plasmid were cultured at 37 ºC till OD600 reached to ~0.4. IPTG was added 

to the culture to final concentration of 0.5 mM to induce the fusion protein expression. The cells 

were further cultured for one to two hours at 37 ºC for induction. After induction, the cells were 

collected by centrifugation and resuspended in extraction buffer (20 mM Tris-HCl pH 7.5, 150 

mM NaCl, 0.1% Triton X-100, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride (PMSF) and 

1x Roche proteinase inhibitors). Cells were disrupted by sonication. Cell lysate was centrifuged, 

and the supernatant was collected for SDS-PAGE or for further analysis. 

 

2.9 Protein pull-down assay 

 

Cell lysate of induced recombinant protein expression cells was centrifuged. The supernatant 

was collected and mixed with glutathione-linked resins (Sigma). The GST fused proteins were 

precipitated with the resins and washed for three times with extraction buffer then mixed with 

plants proteins extract. 
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About 0.5g Arabidopsis seedlings harboring tag fused proteins were harvested and ground to 

powder in liquid nitrogen. The total proteins were extracted in 1 ml extraction buffer (20 mM 

Tris-HCl pH 7.5, 150 mM NaCl, 0.1% Triton X-100, 10% glycerol, 1 mM phenylmethylsulfonyl 

fluoride (PMSF) and 1x Roche proteinase inhibitors) and mixed with prokaryotic expressed 

proteins precipitated with GST resins at 4 ºC for 4 h. Subsequently, proteins associated with GST 

resins were precipitated with the resins, washed with extraction buffer for three times and boiled 

with 2x SDS PAGE loading buffer. 

 

2.10 Co-immunopreciptation 

 

Co-immunoprecipitation (Co-IP) assay was used for investigating the in vivo interactions 

between EMF1 and its partners. About 0.5g 10-day-old seedlings were harvested and treated 

with 10 μM MG132 (protease inhibitor, Sigma) first and then grinded to powder in liquid 

nitrogen. Total proteins were extracted in 1 ml extraction buffer (50 mM Tris-HCl pH 7.5, 100 

mM NaCl, 0.1% NP-40, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride (PMSF) and 1x 

Roche proteinase inhibitors). Total proteins were mixed and incubated with 50 μl anti-FLAG M2 

affinity gel (Sigma) for at 4 ºC for 4 hr. Subsequently, immunoprecipitated proteins were washed 

for three times with wash buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 10% glycerol, 1 mM 

PMSF and 1x Roche proteinase inhibitors) then mixed and boiled with 2x SDS-PAGE loading 

buffer. Western blotting was performed subsequently with anti-FLAG (Sigma) and anti-HA 

(Sigma) antibodies. 
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2.11 ChIP assay 

 

For Chromatin immunoprecipitation (ChIP) assay, LD-growing 10-day-old seedlings of 

pEMF1:EMF1:FLAG in emf1-1 T3 homozygous at 8 h after light on were harvested and first 

treated with 10 μM MG132 (protease inhibitor, Sigma) and then ground to powder in liquid 

nitrogen. Subsequent operations were conducted following the Magana ChIP A kit (Millipore) 

instructions. Immunoprecipitated DNAs were subsequently quantified by real-time PCR. Of note, 

the ChIP assay in this thesis study was carried out mainly by my lab mate, Dr. Gu Xiaofeng.  
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Table 3. Sequences of primers used for RT-PCR 

Amplified regions Sequences (5’      3’) 

FT GACCTCAGGAACTTCTATACTTTGGTTATG 

CTGTTTGCCTGCCAAGCTG 

EMF1 GCCAAAAGATTGTGGACTGC 

CTCCTAACATTAGAAGCACCCA 

EBS GATGGTATTACCGCCCTGAGGA 

CAACGTTTTCAAGCCTCGTGTAGT 

SHL TTCTGCAAGTGTGAGATGCC 

ACCTGGTCGCTTAGTGTGTTTGTTC 

EBSL GTATAACTCAGATGAACTGATGGAG 

TCATAACTCATAAGAGGCTCTTACATC 

TUB ATCCGTGAAGAGTACCCAGAT 

AAGAACCATGCACTCATCAGC 
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CHAPTER 3 

 

 

 

 

Results 
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3.1 EMF1 is conserved in higher plants 

 

Previous studies show that EMF1 is involved in the repression of AG expression. The embryonic 

flowering phenotype of emf1 mutants indicate the crucial role of EMF1 in flowering repression, 

which stimulated our interests in how EMF1 is involved in flowering-time controlling (Calonje 

et al., 2008). EMF1 is a plant-specific protein, and no obvious homologues have been reported 

other than in plants. Data mining in protein databases showed that EMF1 homologues were only 

present in angiosperms. Considering the function of EMF1 in Arabidopsis, the higher plants 

might evolve a new path for gene regulation. However, little is known in other species about the 

EMF1 homologues since they have not been annotated yet.  

 

Sequence comparison and the phylogenetic tree based on multi-sequence alignments indicated 

that EMF1 in monocots are much closer to Arabidopsis than others (Figure 1B). The EMF1 

proteins showed high divergence while they still shared some conserved regions.  Based on the 

sequence alignments, there were four conserved regions in EMF1 proteins which are located at 

the N-terminal (from 25 to 46aa in AtEMF1), the middle domain (608 to 625aa and 853 to 868aa 

in AtEMF1), and the C-terminal region (1036 to 1056aa in AtEMF1) (Figure 1A). These regions 

may be crucial for the function of EMF1. Indeed, we found the N-terminal domain and the 

Middle domain which contain the conserved regions were required for the interaction with other 

proteins which will be discussed later. 
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  Figure 1. EMF1 is conserved in higher plants. (A) Multi-sequences alignment of the EMF1 

homologues in different species by clustalw (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

Conserved regions of EMF1 proteins were indicated by blue boxes. (B) Phylogenetic tree of 

EMF1 homologues generated by the PHYLIP software program. 
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3.2 EMF1 forms a complex with LHP1 

 

Previous studies indicate that EMF1 participates in vast aspects of Arabidopsis development 

(Kim et al., 2012). We speculate that EMF1 may form a complex with other proteins for its 

function. First, yeast two-hybrid assay was carried out to screen for EMF1 partners. The 

interactions between EMF1 and other chromatin modifiers or related proteins such as the PRC2 

components, and LHP1 were screened. The full length EMF1 protein was fused with the GAL4 

DNA-binding domain (BD) and other proteins were fused with the GAL4 activation domain 

(AD).  The results showed that LHP1 has a strong interaction with EMF1, as indicated with 

growth of yeast on stringent selection medium (SD-Leu, Trp, His, Ade) (Figure 2A).  

 

Co-immunoprecipitation (Co-IP) assay was further performed to confirm the in vivo interaction 

between EMF1 and LHP1 in Arabidopsis. FLAG tagged EMF1 under native EMF1 promoter 

(pEMF1:EMF1:FLAG) was introduced into emf1 heterozygous plants by Agrobacterium-

mediated transformation. Two T1 plants with single T-DNA insertion and in emf1 heterozygous 

backgrounds were selected for segregation to get emf1 homozygous. The T2 plants were 

genotyped and the transgenic plants in emf1 mutant background were identified. These plants 

behaved like wild-type plants, which indicated the EMF1:FLAG fusion protein is fully 

functional. Meanwhile, overexpressing LHP1:HA (p35S:LHP1:HA) was introduced into lhp1 

mutants by Agrobacterium-mediated transformation. 19 out of 27 T1 transgenic plants showed 

rescued phenotype, which indicated the LHP1:HA fusion protein is functional too. The F1 plants 

of pEMF1:EMF1:FLAG in emf1 crossing p35S:LHP1:HA in lhp1 were used for Co-IP. Total 

proteins were extracted from F1 plant seedling. By using FLAG beads, the LHP1:HA proteins 
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were pulled down(Figure 2B), which illustrates the interaction between EMF1 and LHP1 in 

Arabidopsis seedlings. 
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Figure 2. EMF1 and LHP1 form a complex. (A) Interaction of EMF1 with LHP1 in yeast. Full 

length EMF1 and LHP1 proteins were respectively fused with the GAL4 DNA-binding domain 

(BD) and activation domain (AD). Yeast cells harboring these fusions as indicated were grown 

on the highly selective SD media lacking of Trp (W), Leu (L), His (H), Adenine (A) (SD-4). (B) 

Co-immunoprecipitation analysis of EMF1 with LHP1. Total proteins were extracted from 

LHP1:HA (as a negative control) and hemizygous of LHP1:HA and EMF1:FLAG seedlings. 

Protein extracts were immunoprecipitated with anti-FLAG agarose, and the precipitates were 

analyzed by western blot with anti-HA and anti-FLAG. 
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No recognizable domains are present in the  EMF1 protein except the nuclear localization signals, 

a putative ATP/GTP binding motif (P-loop) (from 522 to 528aa) and a putative LXXLL motif 

(from 266 to 270aa) which are present in many transcription factors (Aubert et al., 2001), while 

the actual functions of these motif for EMF1 are still unclear yet. To identify the interaction 

regions of EMF1 with LHP1, I broke EMF1 into several fragments based on the sequence 

alignment results (Figure 1A) and fused them with GAL4 BD domain to check their interactions 

with LHP1 by yeast two-hybrid assay. The results indicated that LHP1 could interact with both 

fragments when EMF1 was divided into two parts (N-terminal from 1aa to 608aa, C-terminal 

from 604aa to the end) (Figure 3A) and with the N-terminal region and the second middle region 

when EMF1 was broken into four parts (N-terminal from 1aa to 336aa, M1 region from 337aa to 

617aa, M2 region from 618aa to 886aa, and C-terminal from 887aa to the end) (Figure 3B). Both 

the N-terminal region and M2 region harbor the conserved regions based on the sequence 

alignment. However, the C-terminal also contained a conserved region without detection of 

interaction with LHP1, which indicated this region at C-terminal might not be involved in 

protein interactions. Then, the N-terminal and M2 regions were further divided to refine the 

interaction region. It was found that as short as 49 amino acids at N-terminal region (N49-EMF1) 

and the first part of M2 (M-EMF1 from 618 to 745 amino acids) that includes the conserved 

region, could interact with LHP1 (Figure 3C). These interactions between N49-EMF1, M-EMF1 

and LHP1 were further verified by pulldown assays. Prokaryotic expressed proteins N49-EMF1 

and M-EMF1 fused with glutathione S-transferase (GST) were extracted and mixed with protein 

extraction of p35S:LHP1:HA in lhp1 T3 seedlings. Both GST fused N49-EMF1 and M-EMF1 

proteins could pull down HA tagged LHP1, which indicates EMF1 interacts with LHP1 through 

these two regions (Figure 3D). 
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Figure 3. Interactions between EMF1 domains and LHP1. (A) Interactions in yeast between 

two parts of EMF1 and LHP1. EMF1 was broken to two parts (numbers indicates the amino 

acids) and fused with the GAL4 BD domain. Yeast cells were grown on SD-4 media. (B) 

Interactions in yeast between four parts of EMF1 and LHP1. EMF1 was separated to four parts: 

N-terminal, M1, M2, C-terminal. (C) Interactions of EMF1 N-terminal and M2 regions with 

LHP1:AD in yeast. EMF1 N-terminal was broken into two parts N159-EMF1 (1-159aa) and the 

rest (160-336aa) and further refined to N49-EMF1 (1-49aa). M2 region was separated to M-

EMF1 (618-745aa) and the rest part. (D) Pulldown analysis of the interactions between the 

EMF1 domains and LHP1. E.coli expressed GST fused N49-EMF1 and M-EMF1 were mixed 

with protein extracts from seedlings of Col (as control) and LHP1:HA. After precipitated with 

GST-beads, the precipitates were analyzed by western blot with anti-HA. 
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On the other hand, we were also interested in the region of LHP1 that interacts with EMF1. 

LHP1 is the only homologue of animal HP1 protein, but functions differently from HP1 in 

Arabidopsis. In plant, LHP1 is proposed to play the role of Pc which is a core component of 

animal PRC1 complex. The HP1 protein has two conserved domains: chromodomain and 

chromo-shadow domain. The chromodomain has been found to mediate the interactions between 

HP1 and di- or tri-methylated lysine 9 of Histone 3 (H3K9me2 or me3), and the chromo-shadow 

domain is linked with the recruitment of other proteins (Jacobs and Khorasanizadeh, 2002; 

Nielsen et al., 2002). Like HP1, LHP1 also contains the chromodomain at the middle region 

(from 104aa to 167aa) and the chromo-shadow domain at C-terminal. The chromodomain has 

been reported to be related to the recognizing and binding of H3K27me3. The chromo-shadow 

domain is speculated to be involved in the recruitment of other repressive proteins (Turck et al., 

2007). To identify the interaction region of LHP1 with EMF1, I fused the chromodomain, the 

chromo-shadow domain, the N-terminal region and the rest part of LHP1 with GAL4 AD 

domain. Their interactions with EMF1-BD were examined and the results suggested that LHP1 

interacts with EMF1 through its chromo-shadow domain. Yeast two-hybrid assay showed that 

the C-terminal (chromo-shadow domain) of LHP1 could interact with both the whole EMF1 

protein (Figure 4A) and the N-terminal (N159-EMF1) and M-EMF1 (Figure 4B). 
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  Figure 4. Interactions between EMF1 and LHP1 domains. (A) Interactions of LHP1 

domains with full length EMF:AD in yeast. LHP1 was separated into four parts (numbers 

indicate the amino acids). The blue colored region represents the chromodomain of LHP1. The 

C-terminal colored with orange indicats the chromo-shadow domain. (B) Interactions between 

LHP1 C-terminal with EMF1 domains N159-EMF1 and M-EMF1 in yeast. 



47 
 

The genetic interaction between LHP1 and EMF1 was also examined. Because the emf1 mutants 

skip vegetative development and are sterile, the lhp1 -/- emf1 +/- plants were genotyped to get 

double mutant plants. The emf1 lhp1 double mutants behaved identically to emf1 single mutants. 

The weak emf1 mutants (emf1-1) could develop to the stage with a short inflorescence which has 

a terminal flower with pistils, stamens, and sepal structures and is sterile. At 8 DAG (days after 

germination), comparing with wild type and lhp1 single mutants with flat, round and long petiole 

cotyledons (Figure 5A and B), the double mutants (Figure 5D) displayed a phenotype like emf1 

single mutants (Figure 5C) to form oval shaped and petioleless cotyledons, and small short leaf. 

By 15 DAG, the double mutants and emf1 single mutants flowered, bypassing rosette growth and 

forming flower structures (Figure 5F and G) while the WT was still at vegetative stage (Figure 

5E). There seemed to be non-additive effects of lhp1 and emf1 on Arabidopsis development. 

Together with the molecular interaction between LHP1 and EMF1, our data indicated that LHP1 

and EMF1 could form a complex for their functions. 

 

Interestingly, overexpression EMF1 could partially rescue the lhp1 mutant phenotypes. The lhp1 

mutants showed phenotypes including dwarf plants, small narrow and curled leaves, in addition 

to early flowering (Figure 6A)(Gaudin et al., 2001). When p35S:EMF1 was introduced into the 

lhp1 mutants by Agrobacterium-mediated transformation, 4 out of 9 transgenic plants showed 

partially rescued phenotypes. We chose 3 single-copy T-DNA insertion lines as the reference 

lines and propagated to get homozygous for further examination. The leaves of the transgenic 

plants exhibited wild type like properties: larger than that of lhp1 mutants and flat (Figure 6A). 

The early flowering phenotype was also partially rescued: though still earlier than wild type 

plants, the EMF1 overexpression lines in lhp1 flowered later than lhp1 mutants (Figure 6A and 
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C). The extent of the rescue of lhp1 corresponded to the EMF1 expression levels: the 

p35S:EMF1 in lhp1-3 line had the lowest EMF1 expression level and flowered the earliest 

among these three reference lines, while the other two lines got higher EMF1 expression level 

and flowered later (Figure 6A, B and C), which suggests that the rescue is due to EMF1 

overexpression. These data show that increased EMF1 expression can compensate for loss of 

LHP1 function. 
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  Figure 5. Genetic interactions between EMF1 and LHP1. (A) to (D) 8-day-old seedlings of 

(A) Col, (B) lhp1, (C) emf1-1, (D) lhp1 emf1-1 double. (E) to (G) 15-day-old seedlings of (E) 

Col, (F) emf1-1, (G) lhp1 emf1-1 double. Scale bar = 1mm. C, cotyledon; L, leaf; Pi, pistil; Se, 

sepal; St, stamen. DAG, days after germination. 
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  Figure 6. Overexpression of EMF1 partially rescues lhp1. (A) Picture of plants Col, three 

independent transgenic lines of p35S:EMF1 in lhp1 background (T3) and lhp1. (B) RT-PCR 

analysis of EMF1 expression in seedlings of Col, lhp1, and three p35S:EMF1 in lhp1 transgenic 

lines. TUBULIN 2 (TUB2) served as an internal control. (C) Flowering time of Col, lhp1, and 

three p35S:EMF1 in lhp1 transgenic lines. The flowering time was measured by the total leaf 

numbers a plant produced prior to flowering. Error bars indicate SD. 
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3.3 EMF1 associates with the plant-specific SHL family proteins 

 

Like EMF1, SHORT LIFE (SHL) family proteins are plant-specific proteins, which include SHL, 

EARLY BOLTING IN SHORT DAYS (EBS) and another protein we named as EBS-Like 

(EBSL) (Figure 7). EBS has been reported to be involved in flowering-time control by repressing 

FT expression (Pineiro et al., 2003). SHL may affect fertility and influence plant proper 

development (Mussig et al., 2000; Mussig and Altmann, 2003), while EBSL has not been 

reported to date. Previous studies indicate that EBS may be involved in chromatin modification 

(Pineiro et al., 2003); hence we explored whether EBS and its homologues could function 

together with EMF1. Therefore I examined their interactions by yeast two-hybrid analysis and 

found that the SHL family proteins could also interact with EMF1. 
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  Figure 7. Sequence alignment of SHL family proteins. The BAH domain and PHD domain 

are indicated above the sequences. Numbers at the right side refer to the amino acid residues. 
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The results of yeast two-hybrid assay showed that EMF1 strongly interacted with SHL: the yeast 

cells harboring SHL-AD and EMF1-BD could grow up on the stringent selective medium (SD-

Leu, Trp, His, Ade) (Figure 8A). To check the in vivo state, the CoIP experiments were further 

performed. The overexpression of HA fused SHL (p35S:SHL:HA) was introduced into Col 

plants by Agrobacterium-mediated transformation. A single copy T-DNA insertion transgenic 

line was select to get homozygous and further investigation. The F1 seedlings that co-expressed 

FLAG tagged EMF1 driven by native EMF1 promoter and overexpressing SHL:HA were used 

for analysis. Using FLAG beads, the SHL:HA proteins were pulled down indicating the in vivo 

interaction between EMF1 and SHL (Figure 8B). 

 

The SHL family proteins harbor two conserved motifs: an N-terminal Bromoadiacent Homology 

(BAH) domain and a C-terminal Plant Homeodomain (PHD) Zn finger domain. The BAH 

domain is present in many transcriptional regulators related to chromatin remodeling such as 

POLYBROMO1 (PB) in vertebrates and ORIGIN OF REPLICATION COMPLEX 1 (Orc1) in 

yeast, which are involved in gene repression (Goodwin and Nicolas, 2001; Noguchi et al., 2006). 

Like BAH domain, the PHD motif is also reported in chromatin remodeling factors like 

Polycomb-like (PCL) in Drosophila, corepressor KAP1 in human (Schultz et al., 2001). It 

appears that both BAH domain and PHD domain could mediate protein-protein interactions in 

protein complexes. Higher conservation was observed in these two domains compared to the rest 

of regions from the sequence alignments (Figure 7). 

 

To investigate which domain of SHL mediates the interaction of SHL with EMF1, the BAH 

domain and PHD domain were fused with GAL4 AD domain and the interactions with EMF1-
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BD were examined by yeast two-hybrid assay. It was found that the BAH domain, but not the 

PHD domain, could interact with EMF1, which indicates that the BAH domain mediates the 

interaction between SHL and EMF1 (Figure 8C). 

 

I further examined the interactions between EMF1 and the other two members of SHL family 

proteins. The interaction between EBS and EMF1 was detected in the yeast two-hybrid assay 

(Figure 9A) with the growth of yeast cells harboring both EMF1-AD and EBS-BD on the 

stringent selective medium (SD-Leu, Trp, His, Ade). And the interaction between EBSL and 

EMF1 was also detected in our yeast two-hybrid experiments: the yeast cells harboring EBSL-

AD and EMF1-BD could grow up on the SD-4 medium (SD-Leu, Trp, His, Ade) (Figure 9B). 

Together, these results show that EMF1 directly interacts with the SHL family proteins. 
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  Figure 8. SHL interacts with EMF1. (A) Interaction of EMF1 with SHL in yeast. Full length 

EMF1 and SHL proteins were respectively fused with the GAL4 BD and AD. Yeast cells 

harboring these fusions as indicated were grown on the highly selective SD-4 media. (B) Co-

immunoprecipitation analysis of the interaction of EMF1 with SHL. Total proteins were 

extracted from SHL:HA (as a negative control) and hemizygous of SHL:HA with EMF1:FLAG 

seedlings. Protein extracts were immunoprecipitated with anti-FLAG agarose, and the 

precipitates were analyzed by western blot with anti-HA and anti-FLAG. (C) Yeast interactions 

of SHL domains with full length EMF:BD. The BAH domain of SHL was indicated with blue 

color. The PHD domain was in red. 
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  Figure 9. Interactions between EMF1 and other SHL family proteins. (A) EMF1 interacts 

with EBS in yeast. Full length EMF1 and EBS proteins were fused respectively with the GAL4 

AD domain and BD domain. Yeast cells harboring fusion proteins indicated in the left side 

were grown on the SD-4 media for selection. (B) EMF1 interacts with EBSL in yeast. EBSL 

was fused with GAL4 AD domain and EMF1 was fused with BD domain. Yeast cells were 

grown on SD-4 media for selection. 
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3.4 SHL family proteins function as part of PRC1 

 

Besides the putative PRC1 component EMF1, the interactions between SHL and other 

components of PRC1 complex were further investigated by yeast two-hybrid assays. It was 

found that SHL could interact with AtBMI1a in yeast: the yeast cells harboring AtBMI1a-AD 

and SHL-BD could grow up on the selective medium (SD-Leu, Trp, His) (Figure 10A). And the 

interaction was further confirmed by the pulldown analysis: E.coli expressed GST-fused 

AtBMI1a was mixed with the protein extraction of p35S:SHL:HA T3 seedlings, after 

immunopreciptation with GST beeds (see Materials and Methods), GST-fused AtBMI1a could 

pull down SHL:HA proteins from Arabidopsis seedlings (Figure 10B). 

 

The SHL gene (At4g39100) contains five exons and encodes a 228 amino acids protein. The gene 

EBS (At4g22140) encodes a 284aa protein, while EBSL (At4g04260) encodes a 211aa protein 

(Figure 11A). However, when comparing to EBS and SHL with high expression level in 

seedlings, we could barely detect EBSL expression in our RT-PCR experiments (Figure 11B). 

 

We searched T-DNA insertion mutants of these genes and identified one for both SHL and EBS, 

but no insertion lines for EBSL available. The T-DNA of FLAG546H05 (named as shl ) inserted 

in the third intron of SHL was in Ws background (Figure 11A).  The insertion of CS906904 

(named as ebs) happened at the first intron of the EBS gene (Figure 11A). Both insertions 

knocked down respective gene expression. Obvious decrease in SHL expression level was 

detected in shl mutants compared to wild type WS (Figure 11D). Although CS906904 was not a 
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null allele, we could not detect EBS expression in CS906904 mutants until up to 40 PCR cycles 

at which a weak band was detected (Figure 11C).  

 

For the FLAG546H05 line in the Ws background, we attempted to create double mutants of ebs 

and shl in a Col-like background, FLAG546H05 was crossed to the ebs mutants, and the F1 plant 

was back crossed to ebs for 3 more times and then self-segregated. The ebs shl double mutants 

with the Col background were identified by genotyping with 24 Col/WS molecular markers (see 

Materials and Methods). The shl single mutants (parent line) in Ws behaved the same as wild-

type (Figure 11E) which may be due to the redundancy with EBS or that sufficient proteins still 

exist for normal plant development although the transcripts of SHL were reduced in the mutants. 

Unlike the shl mutants, the ebs single mutants developed normally except slightly earlier 

flowering than WT (Figure 11E and F) and with reduced fertility (Gomez-Mena et al., 2001; 

Pineiro et al., 2003). Interestingly, the double mutants of ebs shl exhibited much more severe 

phenotypes than ebs single mutants. This suggests that EBS and SHL act redundantly to control 

Arabidopsis development. The ebs shl double mutants showed reduced fertility, developed into 

small and dwarf plants and flowered much earlier, which were similar to the lhp1 mutants 

(Figure 11E and F). The genetic evidence, together with the molecular association with EMF1 

and AtBMI1a, suggest a LHP1-EMF1-SHL/EBS PRC1 complex in Arabidopsis. 



59 
 

 
 

 

  Figure 10. SHL directly interacts with AtBMI1a. (A) Yeast two-hybrid assay on the 

interaction between SHL and AtBMI1a. Full length SHL and AtBMI1a proteins were fused 

respectively with BD domain and GAL4 AD domain. Yeast cells harboring fusion proteins 

indicated in the left side were grown on the SD-3 media (SD-Trp, Leu, His) for selection. (B) 

Pulldown analysis of the interaction between SHL and AtBMI1a. E.coli expressed GST fused 

AtBMI1a were mixed with protein extracts from plants Col (as control) and SHL:HA seedlings. 

After precipitated with GST-beads, the precipitates were analyzed by western blot with anti-HA. 
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  Figure 11. ebs shl double mutant causes early flowering. (A) Diagram of gene structures of 

the SHL family members. Dark boxes represent exons; Orange boxes represent untranslated 

regions (UTR); lines represent introns; and triangles indicate T-DNA insertions. (B) RT-PCR 

analysis of EBS, SHL, EBSL expression in 10-day-old Col seedlings. (C) RT-PCR analysis of 

EBS expression in Col and ebs mutants. TUBULIN 2 (TUB2) served as an internal control. 

Numbers above the gel pictures indicate the PCR cycle numbers. (D) RT-PCR analysis of SHL 

expression in shl mutants. (E) 20-day-old seedlings of ebs shl single, double and lhp1 mutants. 

Col, Ws served as control. The genotypes are indicated at the bottom of picture. The 

background of shl was switched from Ws to Col by backcross of shl to ebs mutants to get ebs 

shl. Bar = 1cm. (F) Flowering time of lhp1, and ebs shl mutants. Error bars indicate SD. 
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3.5 EMF1-PRC1 complex represses FT expression to inhibit the floral transition 

 

LHP1 has been reported to play a role in FT repression, and LHP1 proteins can directly bind to 

FT chromatin (Adrian et al., 2010). FT expression has also been reported to be increased in emf1 

mutants, but it was postulated that EMF1 was not involved in FT regulation (Moon et al., 2003). 

Whether and how EMF1 regulates FT expression is hitherto unknown. To understand the 

mechanism of EMF1 mediated FT repression, I knocked down EMF1 specifically in the 

vasculature tissues where FT is expressed by the RNA interference (RNAi) strategy. To 

construct the double stranded RNAi (dsRNAi) vectors, the promoter of vasculature-specific 

Arabidopsis SUCROSE-PROTON SYMPORTER 2 (SUC2) (Figure 12D) was used to drive the 

RNAi cassette. In addition, EMF1 gene was targeted at different regions: the 5’-UTR (region A), 

3’-UTR (region E), the fifth exon (region C), the sixth exon (region D) and the first intron 

(region B) as a negative control (Figure 12B). The RNAi vectors were introduced into Col plants 

by the Agrobacterium-mediated way and the phenotypes of T1 transgenic plants were scored in 

long day conditions (LDs). Except the T1 plants expressing the RNAi targeting the intron region 

(region B), most of the T1 plants showed early flowering and curly leaf (Figure 12A). According 

to the phenotypes, the transgenic plants were roughly grouped into three categories: severe, the 

plants flowered very early and were very small; moderate, the plants flowered later than the 

severe plants but still much earlier than wild-types and usually had the first two or three pairs of 

leaves curved; Col-like, the plants behaved similar to Col plants with both the flowering time and 

leaf shape (Figure 12A). When the 5’-UTR (n=54) was targeted, half of the T1 plants showed 

moderate phenotype and the other half showed Col-like phenotype. When region C (n=50) was 

targeted, 6% of T1 plants exhibited severe and 40% plants exhibited moderate phenotype. When 
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region D (n=55) was targeted, 5.5% T1 plants behaved severe and 74.5% plant behaved moderate, 

while region E (n=43) was targeted, 2.3% severe and 58.2% moderate. Comparing to these four 

regions, when the intron region (n=32) was targeted, the T1 plants all showed Col-like 

phenotypes (Figure 12C). The curved leaf phenotype may result from ectopic expressing the 

flower homeotic gene AGAMOUS (AG) (Calonje et al., 2008). Three single-copy inserted T-

DNA lines targeting at the last exon of EMF1 (region D and Figure 12B) with a moderate 

phenotype were selected as our reference lines, and were named as EMF1-RNAi-1, EMF1-RNAi-

2, EMF1-RNAi-3, respectively. The seeds of T3 homozygous plants were collected and 

propagated for further analysis.  
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  Figure 12. Specific knockdown of EMF1 expression in the vasculature tissues causes early 

flowering. (A) Three representative phenotypes of EMF1-RNAi transgenic lines. The 

phenotypes were grouped into three categories: severe, moderate and Col-like as indicated 

below the plant photos. Bar = 1 cm. (B) EMF1 structure. Lines above the gene body represent 

the five EMF1-RNAi target regions. Black boxes represent exons, deep yellow boxes represent 

UTR, and lines in gene body represent introns. (C) Proportions of different EMF1-RNAi 

phenotypes. n indicates the number of T1 transgenic plants scored. (D) GUS staining of 

pSUC2:GUS 10-day-old seedling. Bar = 2 mm. 
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All three reference lines showed a curly leaf phenotype and photoperiod-independent early 

flowering (Figure 13A, C and table 4) except a small difference: EMF1-RNAi-1 transgenic plants 

flowered the quickest and made 11.8 leaves on average in LDs (long days) and 13.0 leaves in 

SDs (short days) when they bolted, EMF1-RNAi-2 made 12.1 leaves in LDs and 14.9 in SDs 

while EMF1-RNAi-3 12.0 in LDs and 13.7 in SDs. They made almost the same number of leaves 

at the time of flowering, while the WT plants made 20.0 leaves on average in LDs and 83.9 

leaves in SDs. These data indicate that EMF1 is involved in the photoperiod pathway for 

flowering-time regulation.  

 

The RNAi effects of EMF1 dsRNAi were further investigated. It was found that the level of 

EMF1 proteins was reduced in the RNAi lines. The pEMF1:EMF:FLAG in emf1 T3 line was 

crossed with three EMF1 RNAi lines and the F1 seedlings were used for western bloting. The 

level of EMF1:FLAG proteins was decreased when natively expressed EMF1:FLAG 

(pEMF1:EMF1:FLAG) was introduced into the three reference lines as revealed by western-

blotting analysis  (Figure 13B). 

 



65 
 

 
 

 

  Figure 13. EMF1-RNAi in the vascular tissues results in photoperiod independent early 

flowering. (A) Phenotypes of three reference EMF1-RNAi lines. Bar = 1 cm. (B) EMF1 protein 

levels are decreased in EMF1-RNAi lines. Hemizygous of pEMF:EMF1:FLAG with Col (as a 

control) and three EMF1-RNAi lines were used for protein analysis. Total proteins were 

extracted from 10-day-old seedlings and analyzed by western blot with anti-FLAG. The 

membrane stained with Amido Black served as loading control. (C) Flowering time of EMF1- 

  RNAi lines in long days (LD) and short days (SD). Error bars indicate SD.  
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Table 4. Total leaf number at flowering of Col and EMF1-RNAi lines in long days (LDs) 

and short days (SDs). 

 

 

Growth condition Genotypes Total leaf number 

(Mean ± SD) 

Sample size 

LD Col 19.9 ± 1.1 24 

EMF1-RNAi-1 11.8 ± 0.4 24 

EMF1-RNAi-2 12.1 ± 0.3 24 

EMF1-RNAi-3 12.0 ± 0.6 24 

SD Col 83.9 ± 3.8 15 

EMF1-RNAi-1 13.0 ± 0.4 21 

EMF1-RNAi-2 14.9 ± 0.6 21 

EMF1-RNAi-3 13.7 ± 1.3 21 
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To identify the targets of EMF1, the cross of EMF1-RNAi lines with the mutants of photoperiod 

pathway including co and ft were made. The double mutants of EMF1-RNAi-1 with co or gi 

formed almost the same number leaves as EMF1-RNAi-1 single mutants when flowered, 

although both the co and gi single mutants flowered very late in LDs (Figure 14A). However, 

unlike co or gi, the double mutants of EMF1-RNAi-3 with ft flowered very late (Figure 14B), 

even slightly later than ft single mutants, which may be resulted from the de-repression of other 

flower genes such as FLC (Kim et al., 2010). These genetic data suggest that FT is the target of 

EMF1. 
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  Figure 14 Flowering time of EMF1-RNAi in the photoperiod-pathway mutant background. 

(A) Flowering time of EMF1-RNAi-1 cross with co and gi. Genotypes of the mutants were 

stated below the diagram. Error bars indicate SD. (B) Flowering time of EMF1-RNAi-3 ft.  
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At the molecular level, the expression levels of FT were also measured. As expected, FT was 

highly derepressed in EMF1-RNAi transgenic lines in both LDs and SDs (Figure 15A). The 

extent of FT derepression in the EMF1-RNAi lines was in accordance with their flowering-time 

phenotype: EMF1-RNAi-1 flowered the earliest with the highest FT expression, while EMF1-

RNAi-2 got flowered the latest with the lowest FT expression (Figure 15A). The GUS reporter 

system (GUS: beta-glucuronidase) was also introduced for FT analysis. I introduced the 

pFT9:GUS (about 9kb FT promoter)(Takada and Goto, 2003) into both WT and EMF1-RNAi-1 

backgrounds by crossing pFT9:GUS  line with both WT and EMF1-RNAi-1.  The F1 seedlings 

were used for GUS staining analysis. As expected, in the EMF1-RNAi-1 background, the GUS 

signals were much stronger than WT in the minor veins of leaf vasculature where native FT is 

expressed. Besides, , the GUS signals and were widely spread in the EMF1-RNAi-1 background 

indicating the ectopic expression of FT resulting from EMF1 knockdown in the whole vascular 

tissues (Figure 15C). 

 

We have found that the SHL family proteins appear to function as part of the PRC1-like complex. 

SHL and EBS redundantly regulate plant development, and early flowering phenotype was 

displayed by the shl ebs double mutants. Their effects on FT regulation were further examined 

by measuring the FT transcript levels in shl ebs mutants. FT was highly expressed in the shl ebs 

double mutants when compared to WT or single mutants, which indicates that FT is also 

repressed by SHL family proteins (Figure 15B), consistent with that EBS and SHL function as 

part of the EMF1 complex to repress FT expression 
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  Figure 15 FT expression is repressed by EMF1, SHL and EBS. (A) Relative FT mRNA 

levels in seedlings of Col and EMF-RNAi lines in both long days (LD) and short days (SD) 

determined by real-time quantitative PCR. Relative expression to parental Col was presented. 

Bars indicate SD. (B) Relative FT mRNA levels in seedlings of Col, Ws, ebs and shl mutants. 

Genotypes of the mutants were stated below the diagram. The ebs single mutants and ebs hom 

shl het and ebs shl double mutants were compared to Col, and shl single mutants were 

compared to Ws. (C) GUS staining of 10-day-old seedlings of hemizygous of pFT9:GUS  

(about 9kb FT promoter) with Col and EMF1-RNAi-1. Bar = 1 mm. 
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3.6 FT is a direct target of the EMF1-PRC1 complex 

The promoter of a gene consists of cis-elements for gene regulation such as the binding sites of 

transcription factors.  Previous study implies that a 5.7-kb sequence upstream of the FT 

translation start site is sufficient for FT response to day-length change (Adrian et al., 2010). 

Besides the promoter region, it has also been found that the gene body of FT is also involved in 

FT regulation. CLF, the PRC2 component, binds to the introns of FT (Jiang et al., 2008). LHP1 

is also reported to be directly associated with the introns of FT (Adrian et al., 2010). We 

speculate that the gene body of FT has negative effects on FT expression. To investigate this 

hypothesis, I constructed two GUS plasmids which include essential cis-elements for FT 

expression (Adrian et al., 2010): one with GUS gene directly following 6.9-kb FT promoter 

upstream of the FT translation start site (pFT7:GUS), the other one with GUS following the 

whole genomic FT including 6.9-kb FT promoter and the FT coding region (pFT7:FT:GUS). 

Both GUS constructions were introduced into Col plants by the Agrobacterium-mediated method. 

The GUS staining of T1 transgenic seedlings were compared. As expected, the latter GUS 

construction (pFT7:FT:GUS) gave much weaker GUS signals than the pFT7:GUS, suggesting 

that the coding region of FT contains negative cis-elements for FT regulation (Figure 16A). 

 

The GUS staining of pEMF1:EMF1:GUS including a 3.8-kb sequence upstream of the 

translation start site and the EMF1 coding region, showed that the spatial expression region of 

EMF1 overlaps with that of FT (Figure 16B). This result implies the possibility of FT direct 

regulation by EMF1. The genetic data also indicated that FT is the target of EMF1-PRC1 

complex (Figure 15A and B). We wonder whether EMF1 could directly regulate FT expression. 

Chromatin immunoprecipitation (ChIP) assay was performed using pEMF1:EMF1:FLAG in 
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emf1-1 transgenic T3 homozygous plants. 10-day-old seedlings at 8 h after light on in LDs were 

collected for ChIP analysis (see Materials and Methods). According to the previous studies 

(Adrian et al., 2010), we quantified the FT promoter region and the first intron region by real-

time PCR. Results showed that EMF1 is directly associated with both the FT promoter and the 

first intron (Figure 16 C and D). 
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Figure 16 FT is a direct target of EMF1. (A) GUS staining of 10-day-old seedlings of 

pFT7:GUS and pFT7:FT:GUS (about 7kb FT promoter). Bar = 2 mm. (B) GUS staining of 10-

day-old seedling of pEMF:EMF:GUS. Bar = 1 mm. (C) Diagram of FT structure and the regions 

examined in ChIP. Black boxes represent exons, deep yellow boxes represent UTR, and lines in 

gene body represent introns. (D) Binding of EMF1 to FT chromatin. DNA fragments of FT-P 

and FT-I, immunoprecipitated with anti-FLAG from seedlings of a pEMF1:EMF1:FLAG emf1-1 

transgenic line and Col (served as control), were quantified by real-time PCR and subsequently 

normalized to TUBLIN 2 (TUB2). The fold enrichments of the pEMF1:EMF1:FLAG emf1-1 line 

over the control (Col) are shown. Bars indicate SD. Quantified by Dr. Gu Xiaofeng. 
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Like CO and FT, about 30% of the genes in Arabidopsis are regulated by the circadian clock 

with a periodicity of 24 hours (Fornara et al., 2010). In long days (LDs), the level of FT mRNA 

increases during the day, reaches to the peak at the end of the day and decreases in the following 

night (Suarez-Lopez et al., 2001)(Figure 17A). To investigate the effects of PRC1 complex on 

diurnal expression of FT, we checked FT expression in EMF1-RNAi-1 and Col over a 24 h time 

course. As showed by the results, in WT, FT mRNA was repressed and kept at low expression 

level till 8 hours after light on. After that, it got increase in the following 8 hours and reached the 

peak at 16 h when light off, then gradually decreased in the dark(Figure 17A). In EMF1-RNAi-1, 

for the whole time course, FT expression was highly de-repressed comparing to Col. But like in 

Col, FT mRNA in EMF1-RNAi-1 increased during day time, reached to the highest expression 

level at the end of the day and decreased in the following dark. Different from Col, FT mRNA in 

EMF1-RNAi-1 got a rapid increase in the first 8 hours after light on indicating that EMF1 has a 

much more important role in FT repression for this period (Figure 17A). The different expression 

of FT between Col and EMF1-RNAi-1 suggest that EMF1 be involved in FT diurnal expression 

regulation. To confirm that the EMF1 protein levels were reduced over the 24 h time course, I 

examined two time points (8 h and 16 h after light on). Indeed, EMF1 was stably repressed over 

the 24 h period (Figure 17B). Thus, the different levels of FT expression at different time points 

are not due to the variation in EMF1 suppression.  
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Figure 17. EMF1-PRC1 is involved in the regulation of FT diurnal expression. (A) FT 

expression over a 24 h time course in EMF1-RNAi-1 and Col in LDs. Samples were collected 

every 4 hours. FT expression levels was quantified by real-time PCR and subsequently 

normalized to TUBLIN 2 (TUB). The values shown are means ±SD. Time “0” represents lights 

on. White bar above the diagram indicates light period, Black bar indicates dark period. (B) 

EMF1 protein levels in Col and EMF1-RNAi lines at two time points. Seedlings of hemizygous 

of pEMF:EMF1:FLAG with Col (as a control) and three EMF1-RNAi lines at 8 h and 16 h after 

light on were collected for protein analysis. Total proteins were extracted and analyzed by 

western blot with anti-FLAG. The membrane stained with Amido Black served as loading 

control. 
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3.7 EMF1 directly associates with the H3K4 demethylase PKDM7B 

 

In Drosophila, the PRC1 complex component PSC is associated with a histone lysine 

demethylase KDM2 that catalyzes H3K36 demethylation and stimulates H2A ubiquitination by 

RING and PSC (Lagarou, 2008). PSC, RING and KDM2 form the dRAF complex (BCOR 

complex in human) to mediate gene repression. The findings from this study suggest that EMF1 

plays a PRC1-like role in plants. To test whether there are histone demethylases involved in 

EMF1-PRC1 in Arabidopsis, the interactions between EMF1 and histone demethylases in plants 

were checked by yeast two-hybrid assay. It was found that PKDM7B, a H3K4 demethylase, can 

interact with EMF1.  

 

PKDM7B (also known as Jmj14, AtJmj4) is a plant-specific Jumonj C (JmjC) domain-

containing protein that demethylates H3K4me3 in FT and the FT homologue TWIN SISTER OF 

FT (TSF) to repress their expression, and thus, inhibit floral transition (Lu et al., 2010; Yang et 

al., 2010). In the yeast two-hybrid analysis, I fused PKDM7B with GAL4 AD domain and 

examined the interactions with full length EMF1-BD or domains of EMF1. The results showed 

that PKDM7B had weak interactions with the full length of EMF1 on the SD-3 media (SD-Trp, -

Leu, -His). However, PKDM7B showed strong interactions with the EMF1-M2 (618aa to 886aa) 

region (Figure 18A). Furthermore, PKDM7B also showed interaction with M-EMF1 (618aa to 

745aa) region on the SD-4 media (SD-Trp, -Leu, -Ade, -His) (Figure 18B). And the interaction 

was also verified in the pulldown assay, in which E.coli expressed GST-fused M-EMF1 could 

pulldown PKDM7B:HA (Yang et al., 2010) protein from Arabidopsis seedlings (Figure 18C). 

The in vivo interaction between PKDM7B and EMF1 was also analyzed by CoIP. 10-day-old F1 

seedlings of p35S:PKDM7B:HA crossing with pEMF1:EMF:FLAG in emf1 T3 transgenic line 
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were used for analysis. The result showed the in vivo interaction of PKDM7B with EMF1 since 

PKDM7B:HA was pulled down by EMF1:FLAG when pEMF1:EMF1:FLAG and 

p35S:PKDM7B:HA were coexpressed in plants (Figure 18D). 

 

In Arabidopsis, there are more than 20 JmjC-domain containing proteins which act as histone 

demethylase. We wonder whether other proteins are also involved in the association with EMF1-

PRC1 complex. Then the interactions between PKDM7B homologues and EMF1, EMF1 

domains were checked by yeast two-hybrid assay. Two close homologues of PKDM7B: JMJ15 

(At2g34880) and JMJ18 (At1g30810) which are also H3K4me3 demethylase were fused with 

GAL4 activation domain (AD). Although they did not show interactions with full length EMF1-

BD on SD-3 media (SD-Leu, Trp and His) (data not show), they showed interaction with M-

EMF1 (618aa to 745aa) region on the SD-4 media (SD-Trp, -Leu, -Ade, -His) and the interaction 

of JMJ15 with M-EMF1 was much weaker than that of PKDM7B and JMJ18 (Figure 18B). 

These data suggested that the association with EMF1 complex may not be restricted to PKDM7B. 
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  Figure 18. PKDM7B directly associates with EMF1. (A) Yeast interactions between 

PKDM7B with full length and domains of EMF1. PKDM7B was fused with the GAL4 AD 

domain and the full length EMF1 and domains were fused to the BD domain. Numbers indicate 

the amino acid residues of EMF1. Yeast cells harboring these fusion proteins were grown on 

SD-3 media (SD-Trp, -Leu, -Ade) for selection and SD-2 media (SD-Trp, -Leu) for control. (B) 

Interactions between M-EMF1 with PKDM7B homologous in yeast. Yeast cells were grown on 

SD-4 media (SD-Trp, -Leu, -Ade, -His) for selection and SD-2 media for control. (C) Pulldown 

assay analysis of the interaction between M-EMF1 and PKDM7B. Ecoli expressed GST fused 

M-EMF1 were mixed with protein extracts from plants Col (as control) and PKDM7B:HA. 

After precipitated with GST-beads, the precipitates were analyzed by western blot with anti-HA.  

  (D) Co-immunoprecipitation analysis of EMF1 with PKDM7B. Total proteins were extracted 

from PKDM7B:HA (as a negative control) and hemizygous of PKDM7B:HA with EMF1:FLAG 

seedlings. Protein extracts were immunoprecipitated with anti-FLAG agarose, and the 

precipitates were analyzed by western blot with anti-HA and anti-FLAG.
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PcG proteins are well known for their function of silencing gene expression. The components of 

PRC2 in Arabidopsis have been well characterized because of the high conservation between 

animals and plants. However, unlike PRC2, the PRC1 components are poorly conserved. It was 

speculated that there might be plant-specific proteins that function like PRC1. LHP1 was 

proposed to act as part of PRC1 in Arabidopsis for its role in H3K27me3 recognizing and 

binding. In this study, we demonstrated that EMF1 interacts with LHP1 both in vitro and in vivo, 

suggesting that EMF1 is part of the LHP1-PRC1 complex.  

 

4.1 EMF1 forms a complex with LHP1 

 

EMF1 is a plant-specific protein and conserved in higher plants. We could only find the 

homologues of EMF1 in angiosperms when we searched the online protein databases. It seems 

that the higher plants evolved a new mechanism for precise gene regulation. Although we cannot 

rule out the possible existence of EMF1 homologues in other plants, there might be other 

components playing the role of EMF1 for gene repression. 

 

Though little was known about the structure of EMF1 protein, we identified the interaction 

regions of EMF1. For the interaction with LHP1, the regions have been refined to the N-terminal 

(N159-EMF1) and M domain (618 to 745 aa). Furthermore, the first 49 amino acids of the N-

terminal region also showed strong interaction with LHP1 in the yeast experiments. On the other 

hand, the chromo-shadow domain located at the C-terminal of LHP1 interacts with the two 

domains of EMF1. Together with the interactions between M-EMF1 and PKDM7B, these data 
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suggest that the N-terminal and M-EMF1 region mediate the interactions between EMF1 and the 

LHP1 chromo-shadow domain and other proteins.  

 

The genetic interactions reveal non-additive effects between emf1 and lhp1. The emf1 lhp1 

double mutants behaved identically to emf1 single mutants and overexpression of EMF1 could 

partially rescue lhp1 phenotype, indicating that they function in the same pathway. Considering 

the molecular interaction of EMF1 with LHP1, these data suggest that EMF1 and LHP1 are 

present in the same complex. 

 

4.2 SHL/EBS are part of the EMF1-LHP1 PRC1 complex 

 

Like EMF1, our data have revealed that there are additional components in Arabidopsis PRC1 

complex. The plant-specific SHL family proteins SHL, EBS and EBSL directly interact with 

EMF1. It seems that they interact with EMF1 through their BAH domains. Besides, SHL also 

showed physical interactions with AtBMI1a, a putative component of PRC1. Genetic analysis 

reveals that SHL and EBS act redundantly for plant development regulation. Both shl and ebs 

single mutants exhibited weak phenotypes while the double mutants of ebs shl show severe 

phenotypes resembling to lhp1. We could not determine whether EBSL also acts redundantly 

with EBS and SHL due to the lack of ebsl mutants. But the gene expression analysis suggests 

that EBSL is unlikely to overlap with EBS and SHL. These molecular and genetic data imply that 

SHL family proteins EBS and SHL function as part of the EMF1-LHP1-PRC1 complex. 

 

 



82 
 

4.3 EMF1-PRC1 represses FT expression to inhibit floral transition 

 

To investigate the role of EMF1-PRC1 complex on flowering-time control, we specifically 

knocked down EMF1 expression in the vasculature tissues. We used RNAi strategy to target the 

different regions of EMF1 gene. A majority of the RNAi transgenic plants targeting an EMF1 

region, except for the intron, showed moderate phenotypes of early flowering and curly leaf. A 

small portion exhibited severe phenotypes of much earlier flowering and very small plants, 

which may due to higher RNAi efficiency or positional effects of T-DNA insertion. The 

phenotypes of EMF1-RNAi transgenic plants and the observation of decrease of EMF1 protein in 

EMF1-RNAi lines suggest our RNAi is effective.  

 

The EMF1 RNAi transgenic lines exhibited day length independent early flowering, which 

suggests that EMF1 is involved in the photoperiod pathway for flowering-time control. The 

genetic interactions between EMF1-RNAi lines with the mutants in the photoperiod pathway 

reveal that FT is a target of EMF1. FT is highly de-repressed in the EMF1-RNAi lines, as 

revealed by the gene expression analysis and GUS reporter assays. Besides, FT transcripts are 

also increased in the ebs shl double mutants and lhp1 mutants, which indicates that the EMF1-

LHP1-SHL/EBS PRC1 complex is involved in floral transition regulation through repressing FT 

expression. 

 

Previous studies indicate the coding region of FT may contain cis-elements for FT regulation 

(Jiang et al., 2008; Adrian et al., 2010). Introducing the coding region of FT into the pFT:GUS 

vector could reduce the GUS signals, suggesting a negative role of cis-elements in FT coding 
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region. Consistent with this, we found that EMF1 binds to FT chromatin including the promoter 

and coding region. In addition, LHP1, the EMF1 partner, has been recently shown to bind to FT 

chromatin (Adrian et al., 2010). Taken together, we conclude that the EMF1-LHP1-PRC1 

complex directly regulates FT expression thus flowering time in Arabidopsis.  

 

4.4 PKDM7B is involved in EMF1-mediated FT regulation 

 

The active H3K4me3 mark and the repressive H3K27me3 mark co-exist on FT chromatin (Jiang 

et al., 2008). The bivalent of histone H3K4me3 and H3K27me3 may also play critical roles on 

FT regulation (He, 2012). PKDM7B, a H3K4 demethylase, has been reported to regulate 

flowering by demethylating H3K4me3 at FT chromatin (Yang et al., 2010). We detected the 

physical interactions between PKDM7B and EMF1 both in vitro and in vivo, suggesting that 

PKDM7B may also be involved in the EMF1-mediated FT regulation. In Drosophila, PRC1 

components PSC and RING form the dRAF complex with KDM2, an H3K36me2 demethylase. 

KDM2 stimulates the dRAF activity of ubiquitination. The interaction between EMF1 and 

PKDM7B may resemble to the association of PSC with KDM2. However, the effects of 

PKDM7B on EMF1-PRC1 may differ from that of Drosophila, and this needs to be further 

investigated.  

 

Considering all the data obtained from this study, a model on EMF1-PRC1 complex mediated 

FT repression has been proposed. FT chromatin is in a bivalent state, simultaneously harboring 

the active H3K4me3 and the repressive H3K27me3 marks. PRC2 mediates FT silencing with 

H3K27me3 deposition on FT chromatin without completely eliminating H3K4me3. LHP1 
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recognizes and binds to H3K27me3 on FT chromatin to anchor PRC1 to the FT locus. LHP1 

directly interacts with EMF1 to form a PRC1-like complex. EMF1 directly associates with SHL/ 

EBS, which facilitates AtBMI1a/1b to fit the complex through the interactions with AtBMI1a/1b. 

AtRING1a/1b are also recruited to the complex to catalyze H2A monoubiquitination. Meanwhile, 

EMF1 acts as a scaffold protein to recruit PKDM7B for H3K4 demethylation. Decreased 

H3K4me3 breaks down its balance with H3K27me3. Together, H3K4 demethylation, 

maintenance of H3K27me3 and H2A monoubquitination form a repressive chromatin 

environment to silence FT expression, which leads to floral inhibition (Figure 19).  
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Figure 19. A model for EMF1-PRC1 mediated FT silencing. FT chromatin is in a bivalent 

state with both active H3K4me3 and repressive H3K27me3 marks. LHP1 recognizes and binds 

to H3K27me3 on FT chromatin to anchor PRC1 to FT locus. LHP1 forms a PRC1-like complex 

through the interaction with EMF1. EMF1 binds to FT chromatin and directly associates with 

SHL/EBS which facilitates assembling of AtBMI1a/1b & AtRING1a/1b to catalyze H2A 

monoubquitination on FT chromatin. Meanwhile, PKDM7B is recruited by EMF1 to catalyze 

H3K4 demethylation at the FT locus, which leads to the decrease of H3K4me3 levels. Together, 

H3K4 demethylation, maintenance of H3K27me3 and H2A monoubquitination form a repressive 

chromatin environment to silence FT expression which leads to floral inhibition. 
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