
 

 

MICROMECHANICAL BEHAVIOUR OF LEAD-FREE 

SOLDER JOINTS DEVELOPED FOR 3D-IC PACKAGING 

APPLICATIONS 

 

 

 

 

 

 

SIVA SURI CHANDRA RAO BHESETTI 

 

 

 

 

 

 

NATIONAL UNIVERSITY OF SINGAPORE 

2012 

 



 

 

MICROMECHANICAL BEHAVIOUR OF LEAD-FREE 

SOLDER JOINTS DEVELOPED FOR 3D-IC PACKAGING 

APPLICATIONS 

 

 

 

SIVA SURI CHANDRA RAO BHESETTI 

(Master of Engineering, Indian Institute of Science, Bangalore, India) 

(B.Tech, National Institute of technology, Warangal, India) 

 

 

 

 

A THESIS SUBMITTED 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF MECHANICAL ENGINEERING 

NATIONAL UNIVERSITY OF SINGAPORE 

2012



i 

 

 

  



ii 

 

 

PREFACE 

  This thesis is submitted for the degree of Doctor of Philosophy in the 

Department of Mechanical Engineering, National University of Singapore (NUS) under 

the supervision of Associate Professor, Dr. Zeng Kaiyang and Dr.V.Kripesh, Institute of 

Microelectronics (IME), Singapore. To the best of my knowledge, all of the results 
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SUMMARY 

System-in-package (SiP) technology is commonly used for consumer electronic 

products because it has enough space efficiency to stack different functional dies in a 

single package, and lower manufacturing costs that may lead to the development of high-

density interconnections with fine-pitch. However, the reduced interconnect size poses 

some mechanical reliability issues. The microstructural morphology of lead-free solder 

joints at fine-pitch is different from that of the bulk solders, which significantly influences 

the mechanical reliability of microelectronic packages. In fine-pitch microbump regime, 

complete conversion of solder into intermetallic (IMC) is possible due to insufficient 

amount of solder, and IMC change is also associated with the formation of Kirkendall 

voids within IMC layers. Therefore, understanding of the microstructure and its impacts 

on the mechanical behaviour of solder joints at device scale is a significant technological 

issue in advanced packaging applications.  

The objective of this thesis is to understand the micromechanical behaviour of 

lead-free solders, and to that end the thesis covers everything from the conventional 

ASTM-standard techniques to the indentation characterization techniques. The tensile 

properties of SnAgCu and Mo-reinforced SnAgCu composite (hereafter referred to as 

composites) solders are investigated over a range of temperatures and strain rates, to 

obtain the multivariable thermo-mechanical models. These models can be used to predict 

the magnitude of the mechanical properties for given reliability conditions. 

This study also extends to understanding the impact of solder specimen size 

(down to 500 m) on the mechanical properties, using ultra-low load microtensile testing 

equipment. It was found that mechanical properties were reduced by 10–15% for pure Sn 

and Sn-5Pb solders, while for composite solders this variation was within experimental 

error. Nanoindentation experiments were conducted on these micron-sized tensile 
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specimens at the equivalent strain rates (of the microtensile testing) to predict the tensile 

properties using analytical models. The yield strength was measured using the Tabor 

relationship, and microtensile test results were compared with nanoindentation analysis. 

As a further extension of this work, the nanoindentation technique was used to determine 

the mechanical properties of solder joints as small as 100m. 

Time-dependent deformation of the solder joints was studied using 

nanoindentation techniques. Indentation creep analysis based on Garofalo’s model was 

used to obtain the creep parameters and was compared with other analytical models. 

Different types of indenter geometries (the Berkovich and Cylindrical punch) over a 

range of indentation loads were investigated to confirm the creep properties measured 

using the indentation method. The mechanical properties of interfacial IMCs in the solder 

joints, from the ball grid array to the microbump-joint regime, were determined using the 

nanoindentation technique. Taper-sectioning methodology effectively demonstrates the 

determination of interfacial IMC layer thicknesses as low as 500nm. Substrate effects due 

to underlying metallic/intermetallic layers on the measured elastic modulus, and the 

hardness of interfacial IMCs, were separated and eliminated using S-h (Stiffness-

indentation depth) and S
2
-P (Stiffness

2
-Load) analysis.  
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Chapter 1: NTRODUCTION  

1.1. Overview 

Rapid advances in microelectronics challenge the current microelectronic 

packaging technology, as they increase the input/output (I/O) density while lowering the 

cost. In a microelectronic packaging system, the interconnects between the integrated 

circuit (IC) and printed circuit board (PCB) substrate play an increasingly vital role in  the 

functionality and reliability of the system. Reduction in the interconnecting pitch to 

accommodate high-density interconnects (I/O) using lead-free solders is a challenging 

task, as  the lead-free solders are somewhat inferior in terms of physical, electrical and 

mechanical performances, compared with the traditional Sn-Pb solder. This is because 

lead-free solders tend to have a higher interfacial intermetallic compound (IMC) growth 

rate due to their higher reflow temperatures. On the other hand, low reflow temperature 

solders reduce the electromigration resistance due to their high atomic diffusivity at 

normal operating temperatures. 

Recent attempts have been made to use composite solder materials to mitigate 

excessive IMC growth rate with enhanced physical, mechanical, and electrical properties 

without affecting the baseline reflow characteristics of lead-free solders, to achieve 

improved reliability of the packages. However, composite solder bumping cannot extend 

beyond the level-2 (100 to 300 m) interconnection due to the non-availability of flux 

materials and technological limitations. Alternatively, pure Sn and SnAg solders are 

being used for high-density level-1 (microbump) wafer-level interconnections due to their 

base-line advantages of electroplating and process compatibility with standard 

semiconductor process technology. In any advanced packaging system, different volumes 

of solder are inevitable with each level (i.e. level-1 to level 3) of interconnection, which 
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leads to a change in mechanical performance of the same solder materials, from the die to 

the PCB substrate. 

In most of the cases, reliability performance of fine-pitch solder joints is predicted 

based on the mechanical properties of bulk solder, even though mechanical behaviour of 

the solder joints is significantly different with the microbump joints [1, 2]. Therefore, 

determination of mechanical properties of the solder joints with reduction in the joint size 

is a critical issue for the reliability analysis of the advanced packages.  

Elastic modulus and yield strength are the two main mechanical properties which 

are used to predict the thermo-mechanical reliability of packaging systems from the 

elastic-plastic deformation models. Hardness conversion into yield strength is widely 

practised for the solder joints as there is neither enough material for testing, nor standard 

tools available. When the tensile properties of solder joints are needed for accurate 

prediction of system-level reliability, the above reasons may not be acceptable because 

the mechanical properties of solder joints are size-dependent [3–5]. Yield strength and 

elastic modulus of materials are usually determined from the stress-strain curve if it 

adequately represents the complete tensile behaviour. This information is required for the 

defect assessment and finite element-calculations. 

There are several techniques available to measure elastic modulus, but there is no 

standard technique available to measure the yield strength of materials at the device level. 

Most of the thermo-mechanical reliability properties of the level 3 (300 to 760m) and 

level 2 solder interconnections are estimated from the bulk solder mechanical properties 

[6–12]. In reality, the mechanical properties of solder in the solder joints are significantly 

different from the bulk solders; therefore a large error may be included in the reliability 

analysis. This is due to the change in the microstructural morphologies by the processing 

conditions (e.g. reflow temperature, reflow time, solder volume, cooling rate etc.), which 
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vary with reduction in the solder volume in the interconnection. Microstructural 

morphology strongly influences the mechanical behaviour of solder interconnects in the 

packages. 

Reduction in the solder amount to accommodate high-density interconnection 

creates several mechanical-reliability issues. One fundamental issue is the formation of 

intermetallic joints, especially in the fine-pitch regime. IMCs are inherently brittle, 

besides its conversion from Sn-rich to Cu-rich IMC associated with Kirkendall voids 

within IMC interfaces. Brittle IMCs with voids lead to poor impact reliability (drop 

testing). Therefore, understanding the mechanical behaviour of solder in the solder joints 

and its impact on mechanical behaviour from the level-3 (Ball Grid array) to level-1 

(microbump regime) is a serious technological issue with regard to the reliability of 3D 

packages. 

 

1.2. Motivations 

The motivations of this study are therefore summarized below: 

1. To study the effects of solder volume on the mechanical behaviour of 

solder joints from the bulk to device level. 

2. To develop new characterization methodologies for studying the 

mechanical behaviour of ultra-fine pitch solder joints. 

 

1.3. Objectives 

The overall objective of this study is to understand the mechanical behaviour of 

lead-free solder interconnects from the bulk to 5m thicknesses that cover the bulk-to-

device scale interconnection. 

 The more specific objectives are as follows: 
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1. Fabrication and mechanical characterization of bulk lead-free SnAgCu and 

SnAgCu-based composite solders, which include the following: 

i. Macro-mechanical characterization using ASTM standard testing. 

ii. Micro-mechanical characterization using microtensile and 

nanoindentation techniques. 

iii. Application of these analyses to the measurements to determine the 

device-scale property. 

2. Mechanical behaviour of solder joints at device scale: 

i. Creep behaviour of solder joints. 

ii. Mechanical properties of interfacial intermetallic layers from the 

BGA to ultra-fine-pitch microbump joints. 

3.  Morphology and diffusion kinetics of solder joints from the BGA to 

microbump regime. 

i. Composite solder joints 

ii. Effect of Sn volume on diffusion kinetics  

iii. Diffusion kinetics of SnAg microbump joints. 

 

1.4. Outline of the Thesis 

This thesis consists of nine (9) chapters, mainly focused on the micromechanical 

behaviour of solder joints. The fabrication, morphology and diffusion kinetics of lead-free 

solder joints from the BGA to microbump regime are discussed in the Appendix. 

Chapter 1 discusses the introduction, motivation, objective and outline of the 

thesis. Chapter 2 discusses the background and provides a literature review of works 

relating to electronics packaging and different levels of interconnections and their 

mechanical reliability. 
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The tensile behaviour of bulk Sn3.8Ag0.7Cu (SCA387) and SAC387 composites 

are discussed in Chapter 3. Thermo-mechanical models based on the Hollomon model are 

developed in terms of flow stress, strain rate and temperatures, to predict the tensile 

property at given reliability-testing conditions. Chapter 4 discusses the impact of the size 

reduction (down to 500 m) on micromechanical properties of bulk composite solder 

materials. Microtensile experiments with a video extensometer were conducted at 10
-1

 to 

10
-4

 s
-1

 at 25, 50 and 75
o
C. Chapter 5 describes the indentation behaviour of the 

microtensile test specimens at similar strain-rate regimes (as of the bulk tensile testing) to 

predict the tensile properties. Tabor correlations were used to compare the yield strengths, 

which in turn were determined using nanoindentation and microtensile testing methods.  

Chapter 6 focuses on the creep behaviour of solders, ranging from the bulk solder 

to 300 m solder joints using the nanoindentation technique. Chapters 7 and 8 are totally 

devoted to the mechanical behaviour of interfacial IMCs in the solder joints from the 

BGA regime to ultra-fine-pitch microbump joints. The taper-mounting methodology 

effectively demonstrates the determination of the mechanical properties of interfacial 

IMC layers with thickness as low as 500nm. Substrate effects on mechanical properties of 

interfacial IMCs can be reduced using S-h (Stiffness-depth) and S
2
-P (Stiffness

2
-Load) 

analysis.  Chapter 9 concludes with a summary of this thesis, with future 

recommendations. 

The fabrication of wafer-level solder bumping from 300m to the 20 m 

microbump joints is discussed in Appendix A. The morphology and diffusion kinetics of 

IMC layers in the solder joints for level 2 and level 1interconnects are discussed in 

Appendix B and Appendix C, respectively. 

  

  



6 

 

Chapter 2: LITERATURE REVIEW 

The evolution of microprocessors over the past 20 years and the forecast of its 

future show that microprocessor performance continues to fulfil Moore‟s law 

[13].According to Moore‟s law, the number of circuits on a silicon chip doubles every 

year (later revised to every 1.5 years), as shown in Fig. 2.1 [13].  The reality of this “law” 

can be observed as the technology has evolved from having 10 transistors per integrated 

circuit (IC) in the 1960s to 100 million transistors per IC today.  If the trend of Moore‟s 

law continues, 1 billion transistors will exist on a single IC within the next 5 years. 

Similarly, the number of input/output (I/O) interconnects for a given set of ICs will grow 

at the same rate. Rent‟s law (based on observation) dictates this and predicts that I/O 

counts will reach 9000 by 2014 [13]. 

 Figure 2-1: The graph shows the increase in the number of transistors in an Intel 

processor chip over the years, per Moore‟s law [13]. 

 

2.1. Microelectronic Packaging Overview 

Transistors form the “brain” of the ICs, which cannot function without proper 

packaging. Briefly speaking, the functions of IC packaging can be categorized as follows: 
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1. To provide an electrical path for off-chip links with high efficiency and 

signal accuracy. 

2. To promote thermal dissipation among the transistors and 

interconnections. 

3. To provide mechanical support to IC dies for safe handling and transfer. 

4. To protect functional ICs from external contamination and harsh 

conditions. 

 

It may be noted from the description above that microelectronic packaging 

necessitates strong technical knowledge and hybrid technologies in multi-disciplinary 

fields. Conventional IC packaging can be divided into different hierarchies in terms of its 

integration level, as shown in Fig. 2.2 [15].  The hierarchy of interconnect levels is shown 

in Table 2.1. The 0-level interconnects are the metal traces that connect each 

semiconductor module and make the ICs on the active side of a semiconductor chip. The 

first level interconnects are the connections between a semiconductor chip and the next-

level substrate in a microelectronic package.  On this level, the IC die is typically attached 

to a chip carrier, wire-bonded to a lead frame, and then encapsulated. On the second level, 

chips are bonded to a printed circuit board (PCB) by either through-hole or surface mount 

technology.  Conductor traces over the PCB act as communication paths between 

different IC chips and other components.  On the third level, many PCBs are mounted on 

a motherboard through sockets or connectors. 

Miniaturization of portable and hand-held electronic devices has stimulated the 

demand for packages of even smaller size than the usual BGA and chip scale packages 

(CSP). A wafer-level package (WLP) is a chip-sized package, and it occupies when 



8 

 

mounted onto a system-level board is as small as the size of the IC chip itself. 

Consequently, the WLP can be considered the primary IC-packaging option. 

 

 

Figure 2-2: Hierarchy of Electronic Packaging [15]. 
 

Table 2.1: The Hierarchy of Interconnection Levels. 

Level Application Interconnect size 

Zero Gate-to-gate interconnect on a monolithic 

silicon IC chip 

<65nm 

One Packaging the IC chips onto chip carrier or 

next-level Substrate 
10 to 50m 

(Microbump Regime) 

Two Connecting the IC package to the printed 

circuit board (PCB) 
100 to 300m 

(BGA Regime) 

Three Connection between PCB and PCB to 

motherboard. 
300 to 760m 

 

A good illustration of the size benefits of the WLP is shown in Fig 2.3 [16], which 

shows the relationship between the chip size and the assembled package for a 10mm 

square chip.  It can be seen that a typical QFP (Quad Flat Pack) occupies an area of 900 

mm
2
, and a chip directly wire-bonded onto a PWB (Printed wiring board) with Chip-on-

Board (COB) technology occupies 225mm
2
. In contrast, the WLP occupies the same 
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space as the bare die: 100 mm
2
. This clearly offers the minimum size and weight for all 

products having size and/or weight constraints. 

 

2.2 Wafer-level Packaging Technology 

Wafer-level packaging (WLP) is the packaging technology for an IC at wafer-

level. WLP is only a chip-scale package technology, because the resulting package is 

practically of the same size as the die. WLP has the potential to enable true integration of 

Chip fabrication in terms of packaging, tests, and burn-in at wafer-level in order to 

streamline the manufacturing process undergone by a device, from silicon to customer 

shipment. 

 

 

Figure 2-3: Wafer Level packaging as a future trend [16]. 

 

WLP consists of extending the wafer-fabrication processes to include device 

interconnection and device protection processes. Most of the other kinds of packaging 

techniques performing the wafer dicing first, and then put the original die in a plastic 

package and attach the solder bumps. On the other hand, WLP attaches the top and 

bottom outer layers of packaging, and the solder bumps, to the IC while still in the wafer, 



10 

 

and only then performs the wafer dicing. The fabrication process of the solder 

interconnects uses a photolithography and electroplating (UV-LIGA) process, which is 

compatible with the wafer-level IC fabrication. Therefore, the production cost can be 

reduced substantially when the I/O number is high. 

   

2.2.1. Conceptual Design 

The IC industry demands a high-density I/O interconnection, with better 

performance coupled with lower cost and superior reliability. However, increased I/O 

density leads to a reduction in the pitch of interconnection, which creates a plethora of 

fabrication and reliability issues. One of issue is that the dispensing of underfill with a 

decreasing of the pitch becomes more and more difficult. Therefore, the adaptation of 

CTE (coefficient thermal expansion) mismatch materials without underfill would be one 

of the key challenges for improving the thermo-mechanical reliability. The Cu pillar 

interconnect, an underfill free off-chip interconnect, is known for superior reliability, 

which provides reliable electrical and compliant mechanical support between the wafer 

and die, or between dies [17]. 

 

2.2.2. Material Concerns for WLP 

Lead-free solders are widely used for the bonding of the off-chip interconnect in 

WLP applications. The amount of solder in the joint has to be reduced with the increased 

density of I/O so that the solder bridging can be avoided.  This limited amount of solder 

in the interconnects leads to the formation of an intermetallic solder joint, which severely 

affects the thermo-mechanical behaviour of the solder joint. To improve the reliability of 

packages at fine-pitch, the Cu pillar may be identified as the potential interconnect due to 

its inherently low resistivity and better electro-migration stability at high current 
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densities. Therefore, the Cu pillar can be selected as a potential candidate to meet the 

above challenges [18]. In addition, the high-density Cu interconnect fabrication is flexible 

using photolithography and electroplating, which is considered the most cost-effective 

technology compared with other metal-deposition processes, and is also compatible with 

standard IC-fabrication technology. 

 

2.2.3. Cu Pillar Interconnect  

Cu pillar interconnects result in better reliability because of lower electrical 

parasitic losses, as the high aspect ratio obtained is due to the increased stand-off height 

of the copper column. Moreover, the Cu interconnect enjoys better wettability with the 

entire range of commercial lead-free solders, and the resultant solder-joint system shows 

better electromigration resistance [19]. 

 

2.3 Solder-joint Technology 

In a microelectronic system, the solder interconnection between ICs  or  IC and 

substrate plays a vital role for functionality and reliability of the device. The layout of 

footprints in the package has changed gradually from the peripheral array to the area 

array, with an increase of I/O density keeping the solder the only component material to 

connect chips to their packaging [12, 20, 21]. Controlled-collapse chip connection (C4) 

solder joints are one of the solder-joining technologies primarily used at the level 1 and 

level 2 interconnections of the area-arrayed packages, such as the flip chip. A schematic 

picture of C4 solder-joint assembly is shown in Fig. 2.4 [22]. Re-distribution layer (RDL) 

and bond pads are deposited and patterned using sputter deposition and photo 

lithography. An under bump metallization (UBM) layer is electroplated over the Cu/Ti 

bond pads prior to solder deposition. The Ti layer serves as a barrier layer to prevent 
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metal diffusion into the IC, and imparts better adherence to the underlying dielectric 

layers, whereas the Cu layer serves as a seed layer for Cu pillar electroplating. 

Solder deposition over the Cu pillar is carried out by either electroplating or 

screen printing, depending on the pitch of the interconnection. A thermal-reflow process 

treatment is performed to join the dies (also called chips). Because of the lower stiffness 

of solders, solder deforms plastically to accommodate the CTE mismatch between the 

dies, or between the die and substrate. This plastic deformation may be accumulated with 

each thermal cycle, and eventually leads to failure. An effective way to improve the 

reliability of the package is to embed the interconnected package system in the under-fill 

to reduce the stresses/strains. However, the addition of the under-fill step for high-density 

interconnection in the package is a challenge with existing encapsulates, and is also very 

expensive. 

 

 

Figure 2-4: C4 solder-joint fabrication [22]. 

 

2.3.1 Challenges with Current Lead-free Interconnection. 

Sn–Pb solders have long been used due to their advantages of low melting 

properties and excellent wetting properties. However, from an environmental point of 
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view, lead-containing solders are harmful [24, 25]. In response to the concerns over 

replacing Pb in the electronic assemblies, numerous investigations have been on-going for 

the last few years to find an acceptable Pb-free solder for various electronic soldering 

applications [20, 22, 26–29]. Existing lead-free solders are distinctly inferior in the 

reliability performance because of their high reflow temperatures, which activate the 

diffusion process across the solder/UBM interface. This leads to the excessive growth of 

IMCs. Usually, IMC growth takes place at the expense of solder constituents and UBM; 

as the interfacial IMC grows, solder composition changes, which leads to serious  effects 

on reliability [27, 30–33].  

Moreover, IMC growth in the solder joints is also critical to advanced 3D 

packaging as solder joints undergo multiple reflows. The dissolution rate of UBM metal 

can be controlled by selecting an appropriate surface-finish, such as Electroless Nickel 

Immersion Gold (ENIG).  Electroless Ni is widely used as a diffusion barrier layer on the 

Cu pad for flip-chip and BGA solder bumps [12, 21]. Characteristics of the electroless Ni, 

such as reduced stress, excellent corrosion resistance, uniform thickness and selective 

deposition, make the electroless Ni plating more suitable to be a diffusion barrier than 

that of electrodeposited Ni [34]. 

 

2.3.2. Composite Interconnects 

To attain better reliability with standard lead-free solder materials, there is a trade-

off in electrical and mechanical performance, and possibly cost. A combination of lead-

free solder implementation, the constraints of requiring better electrical and thermo-

mechanical performance, and the need to lower costs, has driven the development of 

solder toward a new paradigm. Composite solder can be tailored in such a way that 

reinforced particles stabilize or refine the microstructure of solder to reduce CTE 
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mismatch. Composite solders reduce the magnitude of elastic-plastic deformation during 

the thermal cycles, and are therefore expected to increase the dimensional stability and 

thermo-mechanical reliability without affecting the melting point of the solder matrix. 

These composite solders can be fabricated by careful addition of reinforcement particles 

such as oxides, metallic particles, or IMCs, to the traditional solder alloys [35, 36]. 

Several efforts are made to improve the performance of the lead-bearing solders using the 

composite approach [37–40]. 

Mavoori et al. prepared composite solders by mixing 3 vol.% of 10nm sized Al2O3 

powders and 3 vol.% of 5nm sized TiO2 powders with 35µm-sized eutectic Sn-37Pb 

solder powder [37]. Nano-sized, non-reacting, non-coarsening oxide particles distributed 

uniformly in the solder after repeated plastic deformation. A reduction of three orders of 

magnitude in the steady-state creep rate was achieved by this method. Lin et al. studied 

the effects of nano-particles on the solidification kinetics and microstructure – a decrease 

in both the grain size and the eutectic lamellae spacing in Sn-Pb and Sn-Ag solders was 

found to improve the strength of composite solder [41]. The effects of particle additions 

on the microstructure, wettability and other mechanical properties of the composite solder 

have also been reported in other studies [42, 43]. Kumar et al. extensively studied Sn36Pb 

and SAC387 solder with the addition of a variety of nano-sized metallic particles, and 

proved the possible implementation of level 3 interconnection bumping applications [43]. 

 

2.3.3. Interfacial Intermetallic Compounds in Microbump Joints 

As part of the packaging integration, it is inevitable that microbump joints in each 

component undergo a number of reflows in order to integrate the components with the 

die, or one die with another die. Therefore, reflow treatment in the 3D-package 

fabrication depends on the number of dies to be integrated with the 3D package. The 
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dissolution rate of UBM metal into the solder bump during the reflow processes plays a 

vital role in the formation and growth of interfacial IMC, as the dissolution rate of UBM 

metal into the solder increases with the reflow time at a given reflow temperature. This 

reflow temperature activates the inter-diffusion of Cu and Sn across the interface, which 

promotes the growth of IMCs in the solder bumps. Figure 2.5 shows the full 

transformation of solder to the intermetallic after the 3
rd

 reflow in the 3D-integration 

fabrication process. Figure 2.6 shows the entire conversion of solder to IMC under 

isothermal aging at 175
o
C for 2 hours. 

Several researches reported that the solder volume plays a vital role in the 

formation of Cu-Sn IMCs at the Cu/ solder interface. A change in the solder volume 

would produce different rates of UBM metal dissolution and lead to different 

intermetallic growth rates upon cooling [44–47]. This dissolved UBM metal in the solder 

reacts with the Sn and forms the interfacial IMCs. A limited volume of the solder in 

microbump joints may lead to the complete conversion of solder into IMCs during 

package integration [48]. Moreover, the non-availability of solder at the interface after the 

first reflow assists in the conversion of Si-rich IMC (Cu6Sn5) into Cu-rich IMC (Cu3Sn). 

This Cu-rich IMC change invariably accompanies the changes in volume. This volume 

change leads to the formation of the Kirkendall voids within the IMCs at the interface 

(Fig. 2.7). 

 

Figure 2-5: 3D integration shows complete conversion of IMC with 10m Sn layer [48]. 

10m 



16 

 

 

 

 

 

 

 

 

Figure 2-6: Complete conversion of solder into IMC during isothermal aging at normal 

bonding temperature (175
o
C). 

 

 

In general, IMCs are inherently brittle, and voids within IMCs are more 

susceptible to mechanical failures, which affect the integrity of the 3D packaging system 

[49]. Therefore, an understanding of the mechanical behaviour of interfacial IMCs in 

the microbump solder joints becomes a prominent technological issue in advanced 3D 

packaging applications. 

 

 

Figure 2-7: Effect of electromigration on IMC growth behaviour of microbump joints. 

 

 

 

2.4. Mechanical Properties of Solder Joints 

Mechanical properties are strongly influenced by solder-joint size and 

microstructural morphology, and therefore, knowledge of mechanical properties at the 

device level must be known prior to the design of the packaging. Wiese et al. suggested 
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that the deformation resistance of Ag3Sn and Cu5Sn6
 
is much higher than that of β-Sn 

matrix, as the Ag3Sn and Cu5Sn6
 
phases formed hard particles in the relatively softer β-Sn 

matrix. These particles might slow down or even arrest mobile dislocations. 

Chen et al. reported that in the Sn-Ag-Cu system, binary and ternary eutectic 

phases dispersed at the boundary of β-Sn dendrites, including some large Ag3Sn and 

Cu5Sn6
 
intermetallic compounds [50]. This multi-phase microstructure of SnAgCu solder 

might lead to variations in the localized mechanical properties.  The mechanical 

behaviour of solder joints is a complex function of time, temperature, stress, rate of 

loading and unloading, and distribution of these parameters. Elastic modulus, hardness, 

and creep parameters of the solder joints play a significant role in the reliability and 

design issues of microelectronic packages. 

 

2.4.1. Elastic Modulus and Hardness  

The reported elastic modulus of SnAgCu solder varies from about 10 to 50 GPa 

[51]. Huang et al. observed that these variations can be attributed to differences in the 

specimen microstructure (bulk or solder joint), the specimen geometry (shape, dimension 

ratio, etc.) and test conditions, [52] as indentation experiments are localized tests, and 

multiphase components are always subject to large variations in mechanical deformation 

resistance. When the indentation experiments were conducted on the dendrite (eutectic 

mixture of Cu6Sn5 and Sn), the resultant mechanical properties represent the composite 

properties of two phases. On the other hand, indentation experiments conducted on the -

Sn region were supposed to give lower hardness and modulus than that of the dendritic 

phase. However, occasionally the hardness of the -Sn area is greater than that of the 

dendritic region because of the IMC or dendritic phase underneath the -Sn phase. This 
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might lead to some magnitude of variation in elastic modulus and hardness of the same 

solders [51, 52]. 

 

2.4.2. Time-dependent Behaviour 

Morris et al. reported that solder in the package might eventually fail by creep-

fatigue [53]. Creep behaviour is difficult to quantify because it depends on a number of 

variables. However, for many technological applications it is sufficient to consider the 

steady-state creep of a material. The steady-state creep rate is a function of temperature, 

applied stress and time. Creep deformation is usually associated with elevated 

temperatures for most of the engineering materials; however, creep deformation exists for 

lead-free solder at room temperature due to lower melting temperature (>0.6Tm). Wiese 

and Meusel reported that the Sn-37Pb and Sn-3.5Ag solders give almost identical room 

temperature creep rates at stresses above 15 MPa, while SnAgCu solder attains the same 

amount of creep at 40 MPa [54]. 

In general, every microelectronic component invariably experiences some 

magnitude of mismatch stress because of thermal loading during service. This mismatch 

stress, coupled with the device‟s operating temperature, leads to creep (time-dependent 

deformation) loading conditions. Englemaier et al. reported that an increase in the holding 

time at the mismatch stress reduces the number of thermal cycles to failure [55]. It is also 

mentioned in our earlier report that addition of nano-sized Ni and Mo particles to the 

SAC387 solder reduces the CTE mismatch [56]. Therefore, composite solder joints are 

expected to be more resistant to failure during thermal cycling. 

McDougall et al. studied the creep behaviour of composite solder joints with 20% 

(5-8m) Cu6Sn5 reinforcements, using lap-shear testing on solder joints of one square-

millimetre dimensions [57]. Villain et al. showed that the creep behaviour of the lead-free 
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solder joints is dependent on the size of the solder joint [58]. Furthermore, indentation 

techniques were also used to probe the localized creep properties of solder materials [32]. 

Recently, a constant-load indentation creep method using a sharp indenter tip has 

attracted attention regarding the exploration of the creep properties of thin film materials. 

A sharp indenter tip with constant load reduces stresses and strain rates with the 

increasing contact area during the creep period. Therefore, constant-load creep 

experiments with a sharp indenter offer full creep deformation characteristics of materials 

from a single load. 

 

2.4.3. Mechanical Behaviour of Interfacial IMCs 

Determination of the mechanical properties of interfacial IMCs in microbump 

joints using nanoindentation is always a difficult issue, because of the influences of the 

UBM and solder bump on the indentation-measured properties. Most of the UBMs, such 

as Ni(V)/Au, Au/Sn, and Ni/Cu/Cu, that form the interfacial IMCs layer thicknesses are 

less than 2 to 2.5 m. Therefore, characterization of the ultra-thin IMC layer in a 

microbump solder-joint system is a non-trivial task because the measured properties of 

the IMCs are influenced by the adjacent UBM or solder on either side of the interface. 

The ranges of the elastic modulus values of the Cu-Sn IMCs were reported to be 90~125 

GPa and 115~145 GPa for Cu6Sn5 and Cu3Sn, respectively [59–61]. 

The elastic modulus values of the Cu-Ni-Sn and Ni-Cu-Sn IMCs were reported to 

be 160~205 and 140~170 GPa respectively [1, 2, 61–65].  Discrepancies in the elastic 

modulus or hardness are due to the fabrication conditions for test specimens, such as 

temperature and period of aging, or thermal reflows. These conditions influence the 

interfacial IMC thickness and hence the morphological structure, which in turn alters the 

mechanical properties. There has been an attempt to determine the mechanical properties 
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of only the IMC phase (Cu6Sn5), using the micro-pillar compression technique [66]. 

However, the measured properties are strongly affected by the texture and dimensions of 

the pillar.  

Nanoindentation experiments with a continuous stiffness measurement (CSM) 

technique are commonly used for extraction of mechanical properties of multilayer thin 

films. This approach is developed primarily for homogeneous materials [67]. The 

indentation response for the IMC on UBM, or IMC on IMC, is a complex function of the 

elastic and plastic properties of intermetallic layers and the UBM. In order to determine 

„only-IMC‟ properties, a commonly used rule-of-thumb is to limit the indentation depth 

to less than 10% of the IMC thickness [68]. This rule is experimentally feasible for IMC 

thicknesses greater than 5 to 10 µm, but this method is not suitable for thinner IMCs with 

uneven thicknesses. Therefore, an alternative method needs to be considered to separate 

the substrate effects. 
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Chapter 3: TENSILE PROPERTIES OF BULK LEAD-FREE SOLDERS 

3.1. Introduction 

In many of the advanced applications, microelectronic components will 

experience extreme temperature ranges, such as from −55 to 150
o
C [55]. This induces 

severe strains due to the mismatch of the coefficient of thermal expansion (CTE) during 

the thermal cycles of the electronic device.  Moreover, electronic components may also 

be subjected to impact conditions, such as drop test reliability of the microelectronic 

packages. Therefore, the mechanical properties of the lead-free solders over a wide range 

of strain rates must be known prior to the design testing of chips, to ensure better 

reliability of the device. In order to understand the mechanical behaviour of solder-joint 

systems, solders are usually tested under mechanical or thermal loading conditions to 

generate the stress-strain curves from which the mechanical properties, such as elastic 

modulus, yield strength and strain-hardening properties, can be determined. 

There are many research works on the mechanical behaviour of Sn–Pb eutectic 

solder [56, 67, 69, 70] and lead-free solder alloys [71–73], but there are still many issues 

to be resolved with composite solder materials, such as those reinforced with nano-sized 

metal particles, since their mechanical properties strongly depend on the microstructure 

and reinforcements. It is necessary to examine the mechanical behaviour of newly-

developed composite solders at different strain rates and temperatures to predict thermo-

mechanical reliability performance. 

This chapter therefore focuses on the effects of strain rate and temperature on the 

tensile and fatigue deformation characteristics of the composite solders (SnAgCu 

containing Mo nano-sized particles). Tensile testing conditions are represented by a range 

of strain rates from 10
−5

 to 10
−1

 s
−1

, and selected testing temperatures range from 25 to 

125
o
C. These results are then analysed using Hollomon constitutive equations to describe 
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the true stress-strain behaviour of the solder materials [74]. Parameters in Hollomon 

constitutive equations are used to investigate the underlying mechanisms and changes in 

microstructure that occur during deformation [75]. In general, the plastic-deformation 

behaviour of several metals and alloys can be described by the Hollomon relationship as 

follows: 

n

pK                                                   (3.1) 

 

where  is stress, K and n are fitting constants commonly known as the strain-

strengthening coefficient and strain-hardening exponent respectively, and p is the plastic 

strain. It is well known that the magnitudes of K and n depend on material and 

deformation conditions. The n value is less than unity, and for metals it usually varies 

between 0.1 and 0.6, and increases with decreasing strength. K varies between G/100 and 

G/1000, where G is the shear modulus [58, 76]. 

The exponent n is an important parameter for two reasons. It signifies the strain-

hardening characteristics of a material, i.e. the higher the value of n, the higher the rate at 

which the materials gets work harden. Usually, a material with a high value of n is 

preferred for processes which include the plastic deformation. The second reason is that it 

is a measure of the uniform strain of a material. In other words, a larger n value indicates 

more uniform plastic deformation before instability, since n equals the true strain 

(numerically) at the maximum ultimate tensile strength, which is the limiting value of the 

strain for uniform deformation. Therefore, accumulated plastic strains in solder joints 

over a period of time, either due to CTE mismatch or creep/fatigue/impact loads, should 

not exceed the amount of uniform true-strain, which is equivalent to the strain-hardening 

exponent. In this study, the empirical expressions for measuring dependence of the tensile 
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parameters with respect to strain rate and temperature are analysed, and parametric 

constants in these empirical models are determined using linear regression analysis. 

Most of the temperature-dependent tensile properties of the Sn-Pb solders have 

been presented as linear equations [14, 43, 77]. In other works, Shi et al. have 

investigated the effects of testing temperatures and strain rates on the tensile deformation 

behaviour of the Sn-Pb solders [70]. In recent years, some researchers have attempted to 

understand the plastic deformation characteristics of lead-free solder alloys with reference 

to strain rates and temperatures [19, 56, 67, 71, 73, 78, 79]. However, these studies 

mainly focused on yield strength and ultimate tensile strength, with a wide range of strain 

rates. However, there is no study about understanding the plastic deformation behaviour 

of SAC387 solder in terms of Hollomon parameters. It is not sufficient to use only 

temperature-dependent properties to understand the thermo-mechanical failures of the 

solder joints and the reliability of micropackages. Commercially-available solders might 

appear to have a nearly 50% reduction of tensile strength with increasing testing 

temperature (up to 120°C), or decreasing strain rate (~ from 10
-1

s
-1

 to 10
-5

s
-1

) [56, 71]. 

Since plastic deformation characteristics of solder materials are strongly dependent on 

strain rate and testing temperature, it is necessary to investigate their properties over a 

range of temperatures and strain rates. 

There has been much research about composite solder materials; most of the work 

has been attempted on bulk solder composites with the addition of either metallic or non-

metallic reinforcements. One of the methods is to incorporate the intermetallic (IMC) 

reinforcements by in-situ or mechanical mixing methods [19, 79]. With this method, the 

size of the IMC reinforcements was mostly in the range of 10–20m. However, the size 

of the reinforcement particles may be coarsened during the manufacturing processes and 

the service, and this may ultimately reduce the effectiveness of the reinforcement. A 
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different approach is to incorporate inert particulate reinforcements into the solder matrix 

[80–82]. One of the difficulties with this approach is the agglomeration of the particles 

and lack of coherency between the particles and solder matrix, which make them very 

inefficient in enhancing solder reliability. Another approach is the addition of small 

quantities of Cu or Ni to the lead-free solder to make in-situ composite solders [83, 84]. 

However, Ni and Cu particles are more tend to form Ni-Sn or Cu-Sn IMCs, and therefore 

IMC growth is inevitable during long-term thermal exposure in the service. 

In this study, nano-sized Mo particle reinforcement is proposed as it is chemically 

inert with Sn at reflow temperature, and would thus be expected to act as a thermal 

stabilizer and improve the mechanical strength of the solder-joint system. Solders 

reinforced with nano-sized particles show an improvement in the service performance, in 

particular creep and thermo-mechanical fatigue resistance of solder joints. Nano-sized 

inert metallic reinforcement has been selected for the SAC387 solder, due to its 

effectiveness in improving the creep resistance by being distributed at the grain 

boundaries to limit grain-boundary sliding [43]. 

 

3.2. Materials and Experimental Methodology 

3.2.1. Bulk Composite Solder Fabrication 

The SAC387 solder powders were mixed with a selected percentage of nano-sized 

(15 to 30 nm) Mo particles (1.0 and 2.0 wt.%, respectively). The pre-weighed nano-sized 

Mo particles and solder powders were blended to achieve homogeneity using a V-cone 

blender operated at a speed of 50 rpm. The blended composite solder powders were then 

subjected to ball milling using a planetary mill (Fristch and Restch, Germany). The SAC 

solder powder and milled composite solder powders were consolidated at room 

temperature into cylindrical rods of 35mm diameter, under compaction pressures of 110 
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and 120 bars respectively. The size of the compacted samples was 35 mm in diameter and 

50 mm in height. These cold-compacted solder bars were sintered at 170C for three and 

a half hours in a pure argon atmosphere. These sintered compacts were finally extruded at 

room temperature with an extrusion ratio of 6:1. The compositions of the composite 

solders are listed in Table 3.1. 

 

3.2.2. Tensile Testing 

Dog-bone shape tensile specimens were fabricated from the 7mm extruded bar as 

shown in Fig 3.1, with a gauge diameter and length of 5 mm and 25 mm. Prior to the 

tensile testing, the specimens were annealed for 2h at 75°C to relieve the stresses 

introduced during the fabrication process. The tensile-testing experiments were conducted 

using a universal testing machine (INSTRON 8801) with a range of strain rates of 10
-5

 to 

10
-1

s
-1

 and temperatures of 25, 75 and 125C. The temperature during testing was 

controlled to the accuracy of  1C, and strains were measured via a clip gauge 

extensometer across the gauge length. 

 

Table 3.1: List of solder materials studied in this work. 

Material Code Composition of the Solder 

SAC387 Sn-3.8Ag-0.7Cu 

SAC387+1Mo Sn-3.8Ag-0.7Cu + 1.0 wt.% nano-sized Mo particles 

SAC387+2Mo Sn-3.8Ag-0.7Cu + 2.0 wt.% nano-sized Mo particles 
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Figure 3-1: Schematic diagram showing the tensile specimen geometry. 

 

 

3.2.4. Microstructure of Solders 

The initial microstructure of all solder materials was studied in the wrought 

condition. The grain sizes of bulk solder and composite solder were measured using the 

linear intercept method. Figure 3.2 shows the grain size of the tensile test specimen. The 

average grain sizes of SAC387 and SAC387+1Mo were determined as 80±11m and 

65±17m, respectively. To reveal the morphologies of the fracture surfaces, the failed 

specimens were examined using a scanning electron microscope (FE-SEM). 

 Figure 3-2: Optical Micrograph showing the grain structure of bulk SAC387+1Mo 

solder. 

20m 
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3.3. Analysis Methodology 

The tensile flow properties of material have often been described with a simple 

state equation [80]: 

                                           (3.2) 

 

where  are the strain, strain rate, temperature, electric field, 

magnetic field and radiant field respectively. E, H and R are assumed to be constant at 

testing conditions. If tensile tests are conducted at a constant temperature and strain rate, 

the dependence of flow stress with the strain can be approximated as a constitutive 

equation (Eq. (3.1)) which describes the stress-strain relationship in the plastic region of 

the curve [74]. In this region, K and n are the strengthening coefficient and strain-

hardening exponent, respectively. In Eq. (3.1) K and n are usually evaluated by plotting 

the stress–strain data on a double logarithmic plot and fitting a straight line at the higher 

strain levels. The slope of the line gives the value of n and the intercept at the stress axis 

gives the value of K.  In an ideal case, these flow parameters should describe the shape of 

the true stress-strain curves completely. 

Based on Eq. (3.2), the plastic state equation for tensile deformation carried out at 

constant temperature can be expressed as follows [85]: 

                                                                  (3.3) 

 

Differentiate Eq. (3.3) 

                     (3.4) 

Transforming and rearranging terms in Eq. (3.4) gives 

 ,  ,  ,  ,  ,  T E H R   

, , , , ,T E H R 

 ,     

ln ln
ln ln ln

ln ln

d d
d d d

d d 

 
  

 
 
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                                 (3.5) 

 

and   are generally defined as  the strain-hardening exponent (n) 

and strain-rate sensitivity (m) of materials, respectively. Therefore, n and m of the solders 

can be determined using these equations. In the case of simultaneous variation of strain, 

strain rate and test temperature, the dependence of strain rate and temperature on tensile 

parameters can be described using Hollomon Eq. [29]: 

                                                               (3.6) 

                                                     (3.7) 

 

where K and n are the strengthening coefficient and strain-hardening exponent, 

respectively. This power law was chosen for the sake of simplicity. For this reason, the 

strain-rate dependent constitutive equation can be defined by writing the strengthening 

coefficient (K) and strain-hardening exponent (n) as a function of temperature [86]: 

                                                        (3.8) 

 

Similarly, 

( )

1( , ) ( ) b Tn T n T 
                                        

 (3.9) 

 

The parameters in Eqs (3.8) and (3.9) are determined by fitting the experimental 

flow curves. In addition, a temperature-dependent constitutive equation can also be 

obtained by finding the temperature dependency of constants in Eqs (3.8) and (3.9), in 

accordance with the Zener-Hollomon parameter [83]. Using K and n values with strain 
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rates at different temperatures, the constants of the dependence can be determined using 

linear regression analysis. 

 

3.4. Results and Discussion 

In general, the portion of true stress-strain curve from the onset of yielding to 

maximum load at a constant strain rate can be described empirically using Holloman‟s 

relationship, as shown in Eq. (3.1). This equation is used to define the Holloman 

parameters through the linear regression analysis of the double logarithm of true stress-

true strain data of the metallic materials [29]. The slope of the double logarithm of the 

true stress-true strain curve gives n, whereas the intercept at the true stress axis gives the 

strain-strengthening coefficient (K). The constants n and K are called Holloman 

parameters. In this work, the Holloman parameters of the SAC387 and its composite 

solders are determined with the method described above, over a range of strain rates (10
-1

 

to 10
-5

s
-1)

 and with different testing temperatures (25, 75 and 125
o
C). The results are 

summarized in Table 3.2. 

 

3.4.1. Yield Strength 

The yield strengths of SAC387 and its composite solders are determined as a true-

stress at 0.2% true-strain. Figure.3.3 shows the log-log plot of the yield strength versus 

the strain rates of SAC387 solders at different isothermal temperatures. It was found that 

the slope of the yield strength versus the strain-rate curve is a constant over a range of 

strain rates. Hence, it may be concluded that the dependence of the yield strength on the 

strain rate can be described using Eq. (3.10) at different temperatures, where .Y S  is the 

yield strength, and A and b are constants (Table 3.2): 

.

b

Y S A 
                                                     (3.10) 
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It was found that the slopes of the double logarithmic plots of the yield strength 

versus strain rate increase slightly with an increase in the testing temperature from 25 to 

75
o
C. In general, the parallel lines imply that sensitivity of yield strength to the strain rate 

is stable over a range of testing temperatures. However, it was found that the strain-rate 

dependence on the yield strength is stronger at higher temperatures for SAC387 solder. 

This is because rate-dependent plasticity mechanisms such as dislocation climb are more 

active at higher temperatures. Since the contribution of creep decreases with increasing 

strain rate, the yield strength is more or less insensitive to the temperature at higher strain 

rates. 

At a lower strain rate and high temperature regime, the yield strength strongly 

depends on the strain rate, since the creep contribution increases with an increase in the 

testing temperature [41]. In addition, a high temperature can result in a recovery process 

for which the dislocation climb is diffusion-dependent. On the other hand, a low 

temperature contributes to strain hardening due to dislocation pile-ups. It may also be 

observed that for the composite solders (Table 3.2), the yield-strength exponent increases 

with an increasing testing temperature. Figure 3.4 shows the representative plot for yield 

strength versus testing temperature for SAC387 at different strain rates (10
-1

 to 10
-5

 s
-1

).  

It may also be noted that testing temperature has a crucial effect on the yield 

strength of solders at constant strain rates. It is understood that the yield strength 

decreases linearly with increasing temperature at all strain rates (Fig. 3.4). Therefore, 

linear empirical models can be used to fit the relationship of the yield strength and 

temperature of SAC387 and composites at constant strain rates. In this work, a statistical 

method incorporating bi-linear regression analysis is employed to identify the dependence 

of the yield strength with the temperature and strain rate for SAC387 and composite 

solders. This method is described below. 
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.  

Figure 3-3: Effect of strain rates on yield strength of SAC387 solder at given 

temperatures. 

 

Based on the experimental results, it can be assumed that yield strength is related 

to the temperature and strain rate by the following empirical relation [29]:
 

( )

. ( , ) ( ) T

Y S T T    
                                 

(3.11) 

 

where 
1 2( )T bT b   , and 

3 4( )T b T b   , and b1, b2, b3 and b4 are constants, T is 

temperature in 
o
C, and   is strain rate. The expressions 

1 2( )T bT b  
 
and 

3 4( )T b T b    

represent the temperature dependence of the yield-strength coefficient (A) and yield-

strength exponent (b), respectively. Using linear regression analysis, the constants in Eq. 

(3.11) can be determined for SAC387 and composite solders, and the results are 

summarized in Table 3.4. 
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Figure 3-4: Effect of temperatures on yield strength of SAC387 at constant strain rate. 

 

Table 3.2: Empirical equations for yield strength, in terms of strain rates and temperatures 

of SAC387 and composite solders. 

 

Solders 

3 4( )

. 1 2( , ) ( )
b T b

Y S T bT b   
 

 

b1 b2 b3 b4 

SAC387 -0.11 81 1.4x10
-4

 0.049 

SAC387+1Mo -0.41 110 0 0.057 

SAC387+2Mo -0.19 124 4x10
-4

 0.040 

SAC387 [71] -0.32
 

85.2 5x10
-5

 
0.057 

SAC387 [88] -0.13
 

67.5 5.5x10
-4

 
0.067 

 

These results (Table 3.4) show that the strengthening coefficient more strongly 

depends on the testing temperature than on the strengthening exponent function. These 

findings are in agreement with existing literature [71, 88].
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3.4.2. Strain-hardening Exponent 

Table 3.2 implies that n depends on the strain rate and testing temperatures. Log-log plots 

of n over a range of strain rates (10
-1

 to 10
-5

 s
-1

) at different isothermal testing 

temperatures (25 to 125
o
C) show constant slopes for SAC387 and composite solders (Fig. 

3.5). Therefore, the variation of n versus the strain rates at a constant temperature can be 

written in an exponential expression, as given below [86]: 

1n n                                               (3.12) 

 

where n1 and  are constants. The dependence of n on the strain rate at a given testing 

temperature can be determined using the linear curve fitting of Eq. (3.12) for the 

experimental data presented in Table 3.2 by using Eq. (3.12). The curve-fitting constants 

n1 and   are given in Table 3.2. Figure 3.5 shows that the n value increases with an 

increase in the strain rate, but n is relatively less sensitive to the changes of the testing 

temperature at all strain rates used in this work. 

Figure 3-5: Effect of temperatures and strain rates on strain-hardening exponent for 

SAC387 solder at constant temperatures  
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The strain-hardening exponent (n) increases from 0.034 to 0.107 when the strain 

rate increases from 10
-5

 to 10
-1

 s
-1

 at 25
o
C (Table 3.3). Similar trends have been observed 

for 75 and 125
o
C testing temperatures in the same range of strain rates. On the other hand, 

n values for SAC387 solder decrease from 0.034 to 0.018 with an increase in the testing 

temperature (25 to 125
o
C) at a constant strain rate of 10

-1
s

-1
. Similar trends may also be 

observed for composite solders. The overall dependence of the strain-hardening exponent, 

n, on both the temperatures and strain rates, can therefore be expressed in the general 

form of [86]:  

( )( , ) ( ) Tn T T                                                (3.13) 

 

where 
1 2( )T a T a    

and 
3 4( )T a T a   , where  a1, a2, a3 and a4 are constants, T is 

temperature in ºC, and   is strain rate.  These constants for SAC387 and composite 

solders are obtained using curve fitting of Eq. (3.13), and are summarized in Table 3.5.  

 

Table 3.5 : Empirical equations for the strain-hardening and strain-strengthening 

coefficient, in terms of strain rates and temperatures of SAC387 and composite solders. 
 

 

Solders 

3 4( )

1 2( , ) ( )
a T a

n T a T a  
 

 
3 4( )

1 2( , ) ( )
c T c

K T c T c  
 

 

a1 a2 a3 a4 c1 c2 c3 c4 

SAC387 -0.082 0.11 4x10
-4

 0.09 -0.46 175.8 2x10
-5

 0.12 

SAC387+1Mo -0.062 0.15 2x10
-5

 0.05 -0.38 217.5 9x10
-5

 0.10 

SAC387+2Mo -0.080 0.11 7x10
-5

 0.06 -0.25 243.2 9x10
-5

 0.06 

SAC387 [71] 0 0.16 3x10
-4

 0.064 -0.94 220.9 4x10
-4

 0.130 

 

 

The results in Table 3.5 show that both the strain-hardening coefficient and strain-

strengthening coefficient are strongly dependent on the temperature, whereas the 

exponent functions are insensitive. The study of Long et al. shows that the n and K 
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functions are insensitive over the testing temperature [71]. This discrepancy might be due 

to differences between the starting microstructure and wrought microstructure used in this 

study, while reported literature deals with cast microstructure.  

The variation of n with the weight percentage of the nano-sized Mo particle is 

shown in Fig. 3.6. It shows that the strain-hardening exponent, n, initially increases 

rapidly with an increase in the addition of nano-sized Mo particles up to 1 wt.%, but 

thereafter decreases with a further increase in the Mo particles content.  The strain-

hardening exponent for the SAC387 solder is found to be 0.062, which is in good 

agreement with its value in other literature [84]. 

 

The decreasing strain-hardening exponents of the composite solder at a higher 

percentage of Mo nano-particles may be due to several factors: (i) Incompatible plasticity 

between the SAC387 matrix and the Mo particles at more than 1% Mo; (ii) Higher 

dislocation density in the SAC387 matrix, which makes the matrix stronger; and (iii) The 

SAC387 matrix gets plastically constrained due to the presence of rigid Mo particles. It 

was reported that the dislocation density in the metal matrix increases with the weight 

fraction of nano-particles [89, 90]. The strain-hardening exponent largely depends on the 

microscopic flow behaviour of the alloy, which is strongly dependent on the dislocation 

density.  
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Figure 3-6: Effects of weight percentage of nano-sized Mo particles on strain-hardening 

exponent of SAC387 solder. 

 

 

In the case of Mo-reinforced solders, the dislocation density in the matrix 

increases with the plastic deformation at a lower weight fraction of nano particles, which 

leads to an increase in the uniform strain before the deformation instability (or critical 

dislocation density) is reached. This increase in uniform strain may be directly attributed 

to a rise in the strain-hardening exponent. However, if the addition of Mo particles is 

more than 1%, dislocation density reaches critical density even at lower uniform strain, 

and results in a decrease in the strain-hardening exponent. 

Franetovic et al. reported that the interactions between dislocations and nano-sized 

intermetallic particles, such as Cu6Sn5, Ni3Sn4 and Ag3Sn, could also contribute to the 

strain-hardening effects [91]. During the deformation of the composite solder at room 

temperature, nano-sized Mo particles and grain boundaries often act as dislocation 

sources, and thus as the deformation progresses, the total dislocation densities in the 

solder matrix increase due to dislocation interactions with the nano-sized Mo particles. 

This phenomenon is more intense in composite solders than in the SAC387 solder with 
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micron-sized intermetallic particles. This contributes to the higher strain-hardening 

exponent in nano-particle-reinforced composite solders. However, an increase in the 

nano-sized Mo particle content beyond 1 wt.% leads to a reduction in the strain-hardening 

exponent. The dislocation density at the matrix/particle interfaces may reach its critical 

value; this may lead to shear localization, and hence a reduction of the uniform true-strain 

[89]. 

On the other hand, for SAC387 solder, intermetallic particle size increases with 

temperature, and this leads to an increase in the inter-particle distance. According to the 

Orowan theory, the strength of an alloy or composite material is inversely proportional to 

the inter-particle distance. It is well known that the interfaces between particles act as 

obstacles for dislocation motion [91–93]. This interface area decreases with increasing 

particle size, and hence resistance to dislocation motion and dislocation sources will be 

reduced with increasing particle size. This results in weaker interactions between 

intermetallic particles and dislocations. In addition to this phenomenon, dislocations may 

easily surmount the obstacles by the climb mechanism, which is a diffusion-controlled 

process and is more dominant with an increase in the temperature. Therefore, effective 

dislocation accumulation in the solder matrix is very minimal, and hence the strain-

hardening exponent tends to show a decreasing trend with increasing temperature (Fig. 

3.5). 

 

3.4.3. Strain-strengthening Coefficient 

The variation of the strain-strengthening coefficient (K) with the strain rate for  

SAC387 and composite solders at isothermal testing temperatures (i.e. from 25 to 125ºC) 

can be fitted well with an exponential expression with the form of 
1

cK k  , where K is 

the strain-strengthening coefficient and k1 and c are constants. Figure 3.7 shows a double 
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logarithmic plot of the strengthening coefficient versus the strain rate at different testing 

temperatures. The parametric curve-fitting values of k1 and c are summarized in Table 

3.5. Figure 3.7 shows that the strain-strengthening coefficient (K) increases with an 

increase in strain rate at a given temperature, but K decreases with an increase in the 

testing temperature for the solder materials at a given strain rate. The value of K decreases 

from 124.8MPa to 70.7MPa with an increase in the testing temperature from 25 to 125
0
C 

at a strain rate of 10
-1

 s
-1

.
  
Similar reductions in the K value with the testing temperature 

have also been observed for composite solders (Table 3.2). The value of K increases from 

34.6MPa to 124.8MPa, with the strain rate increments from 10
-5

 to 10
-1

 at 25
o
C. 

 

Figure 3-7: Effect of strain rates on strain-strengthening coefficient for SAC387 solder at 

constant temperatures. 

 

 

The results in Table 3.3 indicate that the dependence of K on the strain rate is 

higher for composite solder compared with that of the SAC387 solder. It increases from 

71.4MPa to 182.9MPa within the same strain-rate range (10
-1

 to 10
-5

 s
-1

) and the same 

temperature. At a high temperature, the K-value‟s dependence on the strain rate is 

stronger for SAC387 solder compared with that for the composite solders. K is also less 

sensitive to the temperature changes at higher strain rates for SAC387 solder. These 



41 

 

results are similar to the results obtained from the work by Long et al. on SAC387 solder 

at somewhat higher strain-rate ranges [71]. Furthermore, the empirical equations for the 

strain-strengthening coefficient in terms of strain rate and temperature can be expressed in 

the form: 

( )( , ) ( ) TK T T                                           (3.14) 

 

where 
1 2( )T c T c    and 

3 4( )T c T c   , with c1, c2, c3 and c4 being constants, T the 

temperature in ºC, and   the strain rate.  The parameters in Eq. (3.14) are determined 

using linear regression analysis for SAC387 and the composite solders, and the results are 

summarized in Table 3.5. It is clear that the K coefficient, (T), strongly depends on the 

temperature; whereas the K exponent, φ(T), is less sensitive with the testing temperature. 

These results again agree with the results of the studies of Long et al. on the SAC 387 

solder [71]. 

 

3.4.4. Fracture-surface Analysis 

The fractography of SAC387 solder specimens tested at room temperature and a 

strain rate of 10
-1

 s
-1

 is shown in Fig. 3.8 (a). The fracture surface shows many dimples, 

which reveals that the fracture mode of the SAC387 solder is ductile at room temperature. 

At room temperature, work hardening is dominant and therefore results in dimples in the 

microstructure. Hence, the ductile fracture is a dominant fracture mode for SAC387 

solder at room temperature. Higher strain rates during room-temperature tensile tests lead 

to ductile fracture with a much larger dimple size.  
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Figure 3-8: Scanning electron micrographs showing the tensile fracture surfaces of solder  

subjected to uniaxial tensile deformation at: (a) 10
-1

 s
-1

 at 25°C for SAC387, (b) 10
-1

 s
-1

 at 

25°C  for SAC387+2Mo   (c) 10
-1

 s
-1

 at 25°C for SAC387+2Mo. 

 

Overall, SAC387 solder fracture surfaces consist of large populations of 

macroscopic and microscopic voids; few of the voids undergo considerable growth and 

their coalescence results in shallow elongated dimples in the tensile load direction. Figure 

3.8 (b) shows the fracture surface of the SAC387+1Mo specimen tested at 25
o
C with a 

strain rate of 10
-1

 s
-1

. The fracture surface consists of predominantly ductile fractures with 

micro-voids in the fracture regions. Figure 3.8 (c) shows the fracture surface of 

SAC387+2Mo; the fracture surface shows fibrous structure with shear lips. This indicates 

predominantly shear localization during tensile testing. These results strongly suggest that 

the addition of Mo nano-sized particles also changed the fracture mode during the failure 

under tensile stresses. 

 

 

(c) 

Shear lips 

10m 
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3.5. Summary 

In this chapter, the tensile deformation behaviours of Sn3.8Ag0.7Cu and its 

composite solder materials were investigated with different strain rates ranging from 10
-5

 

to 10
-1

s
-1

 and temperatures of 25, 75 and 125C. The following conclusions can be made 

based on the results: 

 

1. General empirical expressions can be used to describe the dependence of 

the strain rates and temperatures on the yield strength (0.2% off set yield 

stress) and the Hollomon parameters in a wide range of strain rates and 

temperatures. 

2. The yield strength and the Hollomon parameters increase substantially 

with an increasing strain rate. 

3. It may be observed that the strain-hardening exponent increased with an 

increase in the strain rate for all of the composite solders investigated. 

4. The strain-rate dependence on the strain-hardening exponent is stronger at 

higher temperatures for the base SAC387 solder, while it is weaker for 

composite solders reinforced with the nano-sized Mo particles. 

5. The addition of the Mo nano-sized particles changed the fracture modes of 

the SAC387 solders. 
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Chapter 4: MICROTENSILE BEHAVIOUR OF LEAD-FREE SOLDERS 

4.1. Introduction 

SAC387 solder has been identified as one of the promising candidates for level 3 

and level 2 solder-bumping applications [7, 12].  However for these solder joints, most of 

the thermo-mechanical reliability analyses are predicted using bulk solder mechanical 

properties. In reality, the mechanical properties of solder joints are most likely different 

from those of the bulk solders, and so reliability predictions of solder joints based on the 

bulk solders may not be accurate enough to be used. Possible reasons for this disparity 

have been discussed in Chapter 1. 

 The mechanical properties of bulk SAC387 solder have been extensively studied 

at room temperature and a particular strain rate [94, 95]. However, the effects of strain 

rates and temperatures on the mechanical properties have received only limited attention 

[96–98]. In most applications, solder joints simultaneously experience a range of strain 

rates and temperatures, and therefore it is necessary to understand how the mechanical 

properties of solders are affected by  the strain rate and temperature. Chapter 3 

extensively studied the effects of strain rates and temperatures on the tensile properties of 

SAC387 solder and composites.  However, mechanical properties of bulk solders may not 

be used to predict the reliability analysis at the level 3 solder joints due to possible size 

effects.  To understand the effects of solder volume/specimen gauge thickness on tensile 

properties, microtensile samples were fabricated using solder volumes of 5 to 10% in the 

standard size of an ASTM standard test specimen. 

This chapter focuses on the microtensile characterization of wrought SAC387 

solder and SAC387-based composites at 500m gauge thickness. The fabrication 

procedure for nano-sized Mo particle-reinforced SAC387 solder has been described in 
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Chapter 3. As-cast pure Sn, high-temperature Sn-5Pb solder and SAC387 solders are also 

selected as a reference solders to compare the thickness effect with their bulk counterpart. 

To further understand microtensile behaviour, SWCNT (Single walled carbon 

nano tubes) reinforced SAC387 has been selected and compared with reinforced Mo-SAC 

composites over a range of strain rates and temperatures at the same 500m gauge 

thickness. The bulk tensile properties of the SWCNT-reinforced SAC387 solder have 

been investigated at room temperature and up to 1 wt.% of SWCNT [99]. There was a 

significant improvement in strength for the SWCNT-reinforced SAC alloy up to 0.1 wt.% 

SWCNT addition, although there was a marginal reduction in % elongation. In this work, 

SWCNT reinforcement up to 0.1% has been selected to study the tensile behaviour over a 

range of strain rates and temperatures. The tensile properties of Mo-reinforced SAC387 

solder are limited to room temperature due to the limitations of the test facility. 

 

4.2. Experimental Methodology 

4.2.1. Materials Preparation  

Bulk solder, including Sn, Sn5%Pb and SnAgCu solders, was melted at 300
o
C for 

2h and subsequently cooled to 265
o
C (typical lead-free reflow temperature) at a rate of 

2
o
C/minute in the rectangular stainless-steel moulds. At 265

o
C, liquid solder with 

stainless-steel moulds was allowed to cool in the furnace till it reached room temperature. 

N2 was used as cooling medium to control the cooling rate, which was 25
o
C per minute.  

Another set of samples of SAC387 solder and nano-sized Mo-particle/CNT-reinforced 

composite solders was fabricated through the powder metallurgy route (discussed in 

Section 3.2.1) and subsequently extruded to a 7mm bar. Composite solder strips of 

500m were cold rolled from the 7mm extruded bar of 30mm length in 6 passes [100].  
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Flat tensile specimens with a gauge length of 3.75mm, width of 1mm and 

thickness of 0.2, 0.5 and 1mm were EDM-cut from the rolled strips of composite solder 

(Mo-particle or SWCNT-reinforced SAC387), while the microtensile testing specimens 

of as-cast Sn, Sn5Pb and SAC387 solder were EDM-cut from the furnace-cooled  

6x50x50mm bulk solder blocks. These blocks were pre-shaped, as shown in Fig. 4.1 (a), 

and subsequently sliced using EDM wire cut to microtensile test specimens. All 

fabricated test specimens were aged for 1hr at 75
o
C to stabilize the microstructure and 

relieve the fabrication-induced stresses. 

 

 

Figure 4-1: (a) Schematic representation of the fabrication process, and (b) fabricated 

microtensile specimens. 

 

4.2.1. Microtensile Testing 

 Microtensile experiments were conducted using microtensile testers, such as 

those for high temperature (Walter + Bai Ag make) and  room temperature (MTS Tytron 

250), using a load cell of 500 N. Figure 4.2 shows the typical microtensile experimental 

set-up for room-temperature solder-tensile characterization. For SWCNT-reinforced 

SAC387 solder, the microtensile experiments were conducted over a range of 

temperatures (25 to 75
o
C) with three different strain rates (5×10

-2
 s

-1
, 5×10

-3
 s

-1
 and 5×10

-

4
 s

-1
) at each temperature. Mo particle-reinforced SAC387 solder and other as-casted 
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reference solders, the microtensile tests were conducted only at room temperature; all 

samples were tested to tensile failure. A differential scanning calorimeter (Perkin Elmer 

DSC 7) was used to study the melting characteristics of the SAC387 and composite 

solders. These samples were heated to 300ºC at a heating rate of 10ºC/min in an inert 

atmosphere, and the thermograms were recorded. X-ray diffraction (XRD Philips) was 

also used to identify the various phases present. The microstructural characterization was 

done using a scanning electron microscope (SEM). 

 

 

Figure 4-2: Microtensile experimental set up for room-temperature microtensile testing. 

 

 

4.2.2. Design and Fabrication of the Microtensile Test Specimen 

The dimensions of the microtensile test specimen were designed based on the 

formula by Junghans et al. [97]: 

          √                  (4.1) 

 

where Lo = gauge Length and Ao = cross-sectional area of gauge length portion. 

The microtensile test specimens were fabricated using EDM wire cutting, since this 

process offers freedom of geometry, high accuracy and fast turnaround [101]. 
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Solid Works FE stress analyses were performed to ensure that the elongation mesh 

was confined within the gauge length. Figure 4.3 (a) shows the schematic microtensile 

test specimen dimensions, while Fig. 4.3 (b) and (c) shows the stress pattern distributions. 

Specimens with a uniform gauge thickness of 200 m, 500 m and 1000 m were used 

for the SAC387 solder, while for the rest of the solders only specimens with a 500 m 

gauge thickness were fabricated. 

 

 

Figure 4-3: (a) Schematic diagram of microtensile test specimen (b & c) stress pattern in 

the test specimen, with increase in the load. 

 

 

4.3. Results and Discussion 

4.3.1. Microstructure 

Fig. 4.4 (a & b) shows the microstructures of the SAC387 solder and the SAC387-

0.1wt.% CNT composite, respectively. The SAC387 solder shows the fine Ag3Sn and 

Cu6Sn5 intermetallic particles interspersed in equiaxed grains of Sn matrix, which was 

also confirmed by the XRD results shown in Fig. 4.4 (c). 
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Figure 4-4: SEM micrograph of (a) SAC387 (b) SAC387+0.1%CNT (c) X-Ray 

diffractogram of SAC387 solder (d) EDS analysis of the layer adjacent to the Ag3Sn 

Phase. 

Figure 4.5 shows the microstructure of as-cast Sn, Sn5Pb and SAC387 solder, 

while Fig.4.5 (d) shows the wrought structure of Mo-reinforced SAC solder. The grain 

sizes of furnace-cooled Sn and SAC387 solders are 350 m and 85 m, respectively. The 

SAC387 and Mo-reinforced wrought SAC387 solder are about 10 to 15 m and 25 m, 

respectively (Figure 3.2). 

  

Figure 4-5:  Initial microstructure of (a) pure Sn (b) Sn-5%Pb solder (c) furnace-cooled 

SAC387 (d) SAC387+1%Mo composite solder. 
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4.3.2. Differential Scanning Calorimetry (DSC) 

The DSC trace from the base SAC387 solder is shown in Fig. 4.6 (a). It exhibits a 

well-defined endothermic peak. Based on this, the onset (solidus) and peak (liquidus) 

temperatures of melting for the SAC387 solder were determined to be 216.4ºC and 

220.0ºC, respectively. Figures 4.6 (b & c) shows the DSC traces for the SAC387+0.05 

wt.% SWCNT and SAC+0.1 wt.% SWCNT composites, respectively. It was then 

determined from these plots that the onset and peak temperatures for the SAC387+0.05 

wt.% SWCNT composite were 216.2 and 219.0 ºC, respectively, while for the 

SAC387+0.1 wt.% SWCNT composite, these temperatures were 215.8 and 218.4ºC, 

respectively.   

The microstructure of the SAC387-0.1 wt.% SWCNT shows the finer grain size 

and uniformly-distributed fine IMC particles in the composite. SWCNTs are found to be 

distributed at the edges of the Ag3Sn particles, which can be seen by the change in 

contrast in the SEM micrograph and are also confirmed by the EDS analysis shown in the 

inset of Fig. 4.4 (d). This is similar to the observation of Kumar et al work on bulk 

SWCNT-reinforced solder [99]. It was also observed that both the onset and peak melting 

temperatures decreased with an increase in the wt.% of SWCNT, and these results are 

consistent with what is reported in the literature [99]. This may be attributed to an 

increase in the surface instability because of the higher surface free energy, due to the 

addition of SWCNT. Moreover, the presence of SWCNT significantly alters the grain 

boundary/interfacial characteristics of composites [102–104]. 

It can be seen (Fig. 4.4) that the addition of SWCNT or Mo particles results in 

finer grain sizes and also retards the grain growth, and hence the grain boundary free 

energy and interfacial free energy are not completely consumed for the grain growth. 

Because of the restricted grain growth, the grain boundary free energy values in the CNT-



 

51 

 

reinforced solder composites are higher than that in the matrix or base alloy, and this aids 

the melting process and leads to reduction in both the onset and peak temperatures of the 

composites. 

In the case of Mo-reinforced SAC solder (Fig. 4.7), the melting temperatures 

increased by 5oC from the equilibrium melting temperature of SAC387 solder. Although 

there is only a slight increment in the melting temperature, the existing reflow process 

line for lead-free solder can be used for composite solders without any change in any 

process configuration. A slight rise in temperature, coupled with reinforcing 

strengthening of the composite solders, demonstrated the better thermo-mechanical 

properties , which is about 30 to 40% higher than that of the base alloy [105]. 

 

 

Figure 4-6: DSC scans of (a) SAC387 solder (b) SAC387+0.05% SWCNT and (c) 

SAC387+0.1% SWCNT. 
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Figure 4-7: DSC scans of (a) SAC387 solder (b) SAC387+1% Mo solder and (c) 

SAC387+1% Mo solder. 

 

4.3.3. Microtensile Properties of SAC 387 and SWCNT Composites 

The representative stress-strain curves at room temperature and at a strain rate of 

5×10
-2 

s
-1

 for SAC387 solder and composites containing 0.05 and 0.1 wt.% SWCNT are 

shown in Fig. 4.8. Similarly, representative stress-strain curves at different temperatures 

for a given strain rate (5×10
-4 

s 
-1

), and stress-strain curves for different strain rates at a 

given temperature for SAC387 solder and one of the composites, are shown in Figs 4.9 

and 4.10, respectively. The nature of the stress-strain curves reflects the relative 

dominance of work-hardening and dynamic recovery processes during the deformation. 

At higher temperatures and lower strain rates the dynamic recovery is more dominant, 

whereas at lower temperatures and higher strain rates the work-hardening processes are 

more dominant. 
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Figure 4-8: Stress-strain plots at room temperature and strain rate of 5x10
-4

s
-1

 for SAC387 

solder with 0.05SWCNT variation. 

  

Figure 4-9: Stress strain plots at constant strain rate of 5x10
-4

s
-1

 for different temperatures 

for (a) SAC387 solder (b) SAC387 with 0.05 wt.% SWCNT. 

 

 

Figure 4-10: Stress strain plots at room temperature for different strain rate for (a) 

SAC387 solder (b) SAC387 with 0.05 wt.%  SWCNT. 
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75oC 
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The tensile properties (0.2 % yield strength, ultimate tensile strength, uniform 

elongation and total elongation) at room temperature, 50 and 75C for the SAC387 

solder and SWCNT-based composites are summarized in Tables 4.1 to 4.3. It may be 

observed that the addition of 0.05 wt.% SWCNT to the SAC387 solder results in an 

increase in yield and ultimate tensile strengths at all temperatures and strain rates, 

although the increase in strength values at 75C is marginal. 

 

Table 4.1: Ultimate tensile strength of SWCNT-based composites at different strain rates 

and temperatures. 

 

 

 

 

 

 

 

This can be attributed to the load transfer to the SWCNTs in the composites and 

the refinement of the grain size of the matrix, as well as the sizes of the intermetallic 

particles. Surprisingly, further increase in the SWCNT to 0.1 wt.% does not result in any 

significant improvements in strength, compared with that of the composite containing 

0.05 wt.% SWCNT. Similar results have also been observed by Kumar et al., and all these 

results can be attributed to agglomeration of SWCNTs with an increase in their volume 

fraction [99]. 

The SAC387 alloy, as well as the composites, shows significant total elongation at 

all temperatures and strain rates although the uniform elongation is limited. The low 

uniform elongation values are a reflection of the fact that for tests at room temperature, 

the homologous temperature (T/Tm) is above 0.5, and hence the dynamic recovery 

 ε (sec
-1

) Temperature (   C) SAC SAC+0.05CNT SAC+0.1CNT 

5×10
-4

  

RT 

28.24 36.76 37.13 

5×10
-3

 51.83 55.99 58.01 

5×10
-2

 63.34 66.99 67.16 

5×10
-4

  

50 

25.55 32.77 36.76 

5×10
-3

 47.03 47.55 50.28 

5×10
-2

 51.00 56.16 56.44 

5×10
-4

  

75 

22.16 22.18 22.36 

5×10
-3

 37.67 40.18 42.94 

5×10
-2

 55.14 56.05 59.56 
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processes tend to dominate over the work hardening. The composites also show 

comparable or even marginally higher total elongation than that of the base alloy. 

 

Figure 4-11:  SEM fractographs of (a) SAC387 solder (b) SAC387+0.1%CNT at room 

temperature and strain rate of 5x10
-3

s
-1

. 

 

Representative SEM fractographs of the SAC387 base alloy and SAC387 + 0.1 

wt.% SWCNT tested at room temperature and strain rate of 5 x 10
-3

 s
-1

 are shown in Fig. 

4.11. Dimples can be seen on the fracture surface in the SEM fractographs, which 

confirms that the fracture mechanism remains ductile in SAC387 solder as well as in the 

composites. The higher ductility in the composites could be attributed to the fact that the 

grain sizes, especially of the intermetallic phases, are finer in the composites.   

Table 4.2: Yield strength for the SAC387 solder SWCNT-based composites at different 

strain rates over a range of temperatures. 

 ε (sec-1) 
Temperature  

( ºC) 

Yield Strength (MPa) 

SAC SAC+0.05CNT SAC+0.1CNT 

5×10
-4

  

RT 

27.97 32.44 34.14 

5×10
-3

 43.58 55.15 56.78 

5×10
-2

 61.33 66.15 67.16 

5×10
-4

  

50 

21.85 22.69 26.80 

5×10
-3

 31.02 37.51 38.34 

5×10
-2

 40.37 46.43 47.48 

5×10
-4

  

75 

10.15 12.17 13.26 

5×10
-3

 27.26 27.42 28.26 

5×10
-2

 36.63 44.69 45.30 
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Figure 4.12 (a & b) shows the variation of yield strength and ultimate tensile 

strength of SAC387 and composites with a varying percentage of SWCNT as a function 

of temperature at a constant strain rate of 5×10
-4 

s
-1

, respectively. It can be observed that 

both yield strength and ultimate tensile strength decrease with increasing temperature in 

the SAC387 and the composites, although the decrease seems to be in significant for the 

composites. This is consistent with the fact that dynamic recovery processes in the matrix 

alloy become increasingly more important at higher temperatures at a given strain rate. 

However, the higher softening in the composites suggests that the interface between the 

SWCNTs and the matrix is also affected at higher temperatures, which then affects the 

load transfer to the SWCNTs. 

Figure 4.12 (c & d) shows the representative variations of yield strength and 

ultimate tensile strength, with strain rates for SAC387 and composites with a varying 

percentage of SWCNTs at room temperature, respectively. It can be observed that both 

yield strength and ultimate tensile strength increase with an increasing strain rate for the 

base alloy and composites at all temperatures. This is consistent with the fact that work 

hardening dominates relative to the dynamic recovery processes at higher strain rates and 

a given temperature. By plotting the logarithm of the ultimate tensile strength as a 

function of the logarithm of strain rate, one can obtain strain rate sensitivity (m). The 

values of m for SAC 387 and composites with varying SWCNTs at room temperature, 

50ºC and 75 ºC are tabulated in Table 4.4. 
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Figure 4-12: Variation of yield strength (YS) and ultimate tensile strength (UTS) with the 

increasing SWCNT in SAC387 solder (a & b) with temperature (c & d) with strain rate. 

 

  

Table 4.3: Uniform elongation (UE) and total Elongation (TE) of SAC387 solder and 

SWCNT-based SAC composites with respect to temperature and strain rates. 

 ε (sec
-1

) 
Temp.  

( ºC) 

SAC SAC+0.05CNT SAC+0.1CNT 

UE (mm) TE (mm) UE(mm) TE (mm) UE (mm) TE (mm) 

5×10
-4

  

RT 

0.40 38.65 0.80 46.00 0.70 45.00 

5×10
-3

 0.38 23.00 0.44 30.30 0.60 22.20 

5×10
-2

 0.35 20.50 0.36 20.40 0.46 20.20 

5×10
-4

  

50 

2.37 15.90 2.00 22.50 2.00 25.00 

5×10
-3

 1.80 15.30 1.39 19.50 1.61 17.75 

5×10
-2

 1.70 15.10 1.35 14.30 1.11   9.80 

5×10
-4

  

 

75 

3.48 45.30 3.88 52.00 3.52 50.50 

5×10
-3

 2.65 30.20 1.86 32.00 2.98 28.40 

5×10
-2

 1.82 25.40 1.77 16.56 1.73 23.30 
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The values of m determined in this study at room temperature are similar to the 

values obtained by others with conventional Sn-Pb alloys and other lead-free solder alloys 

[106]. This indicates that lead-free solders show significant strain-rate sensitivity even at 

room temperature and medium strain rates [107, 108]. It may be observed that the strain-

rate sensitivity does not change much with an increase in temperature from room 

temperature to 50ºC, but it increases significantly when the temperature increases from 50 

to 75ºC for the base alloy and the composites. This is consistent with the fact that 

dislocation climb-based processes can start contributing to the deformation at higher 

temperatures. The strain-rate sensitivities for the base alloy and the composites are 

comparable, which indicates that the deformation mechanisms are similar and the 

addition of the SWCNTs does not significantly affect the deformation mechanisms. 

 

Table 4.4: Strain-rate sensitivity (m) in SAC and SWCNT composites with temperatures. 

Solders Strain rate sensitivity (m) 

Temperature (ºC) RT 50 75 

SAC 0.17 0.17 0.19 

SAC+.05CNT 0.13 0.13 0.20 

SAC+0.1CNT 0.12 0.14 0.21 

 

Table 4.3 shows that the uniform strain and total elongations for SAC387 solder 

and the composites increase with temperature at a given strain rate, whereas both decrease 

with an increase in the strain rate at a given temperature. Representative SEM 

fractographs of SAC387 and SAC387 + 0.1 wt.% SWCNT at 75ºC and strain rate of 

5×10
-3

 s
-1

, and at a strain rate of 5 x 10
-2

 at room temperature, are shown in Fig. 4.13. A 

comparison with Fig. 4.11 shows that there is no change in the fracture mechanism 

(which remains ductile) in either SAC387 or the composites at higher temperatures or 

strain rates, even though the percentage of  elongations changes significantly with 

changes in temperature and strain rate. 
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The results of this study show that yield strength and ultimate tensile strength of 

the SAC387 solder alloy can be improved with the addition of 0.05 wt.% SWCNT 

without compromising the uniform or total elongation, irrespective of the temperature or 

strain rate. The deformation and fracture mechanism of the SAC387 alloy also remains 

unaffected by the addition of SWCNT, and hence the effects of strain rate and 

temperature are similar in both the SAC387 alloy and the SWCNT-reinforced SAC387 

solder. It also appears that the mechanical properties of SA387 alloy can be further 

improved by additions of a higher wt. percentage of SWCNT, if the agglomeration can be 

avoided or minimized. 

 

 

Figure 4-13: SEM fractographs of (a) SAC 387 (b) SAC+0.1% SWCNT at 75
o
C with 

strain rate of 5x10
-3

s
-1 

(c) SAC387 (d) SAC+0.1% SWCNT at room temperature and 

strain rate of 5x10
-2

s
-1

. 

 

4.3.4. Microtensile Properties of -Sn and Sn5Pb and SAC387 solders 

For comparison purposes, the microtensile testing experiments were also 

conducted on the as-cast pure Sn, Sn5Pb and SAC387 solders. Typical true stress-strain 
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curves for pure Sn and SAC387 solder are shown in Fig. 4.14. The analysis procedure is 

the same as described in Chapter 3, and a summary of these analyses is presented in Table 

4.5. The yield strength and ultimate tensile strength of these solders are in general 10 to 

15% lower than those of the respective bulk solders [94]. The cast SAC387 is strongly 

dependent on the microstructure, and this shows that strain-rate sensitivity of cast 

SAC387 solder is slightly higher than that of wrought-structured SAC387 solder. 

 

 

Figure 4-14: Representative true stress-strain curves for pure Sn and SAC387 solders. 

 

 

Table 4.5: Room-temperature microtensile properties of the traditional solders. 

Material έ(s
-1

) σy (MPa) UTS 

(MPa) 

σflow 

(MPa) 

m 

Sn-5Pb 

(High 

temp. 

solder) 

10
-4

 13 ± 2 18 ± 3 18 ± 4 0.0903± 0.0001 

10
-3

 22 ± 4 29± 5 29 ± 5 

10
-2

 23 ± 5 33 ± 4 33 ± 2 

Sn 10
-4

 18 ± 5 29 ± 5 29 ± 3 0.0873 ±0.0051 

10
-3

 26 ± 2 39± 3 38 ± 5 

10
-2

 32 ± 7 45 ±8 44 ± 3 

SAC387 10
-4

 27 ± 6 28± 4 25 ± 4 0.1101 ± 0.0043 

10
-3

 43 ± 7 51± 4 49 ± 7 

10
-2

 51 ± 5 63± 7 62 ± 6 
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4.3.5. Microtensile Properties of Mo Composites 

The microtensile properties of Mo-reinforced composite solders were tested at 

room temperature with variations of the strain rate and percentage of the nano-sized Mo 

particles. Figure 4.15 shows that the yield strength and ultimate tensile strength increases 

with addition of the nano-sized Mo particles to the SAC387 solder matrix. The effects of 

the strain rate on the tensile properties of the SAC387 and SAC387composites are 

summarized in Table 4.6. 

 

Figure 4-15: Room-temperature microtensile properties of composite SAC387 solders 

with % wt. fraction of nano-sized Mo-particle addition. 

 

Table 4.6: Room-temperature microtensile properties of Mo-reinforced SAC387 solder. 

Material έ(s
-1

) σy (MPa) UTS (MPa) σflow (MPa) m 

SAC387 

(Wrought 

microstructure) 

10
-4

 39 ± 5 43± 4 25 ± 4 0.15 ± 0.004 

10
-3

 43 ± 7 47± 4 49 ± 7 

10
-2

 53 ± 5 56± 7 62 ± 6 

SAC387+1Mo 10
-4

 51 ± 3 56 ± 8 53 ± 3 0.07±0.003 

10
-3

 54 ± 5 59 ± 4 57 ± 4 

10
-2

 63 ± 4 66 ± 3 62 ± 6 

SAC387+2Mo 10
-4

 62 ± 3 68 ± 4 66 ± 3 0.06±0.001 

10
-3

 68 ± 6 71 ± 6 69 ± 5 

10
-2

 74 ± 5 76 ± 7 75 ± 4 
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It can be seen that both composites showed higher ultimate tensile strength than 

that of the base alloy. The addition of Mo particles of greater than 1% results in no 

change in the percentage of the ductility. The strain-rate sensitivity of composite solder is 

expected to be lower due to its composite strengthening. These nano-sized Mo particles 

serve as a dislocation source during tensile deformation and reach the critical dislocation 

density at the minimum deformation, as the concentration of dislocation sources increases 

with the addition of nano particles. Therefore, strain-rate sensitivity is reduced with the 

addition of Mo particles. 

 

4.3.6. Effect of the Specimen Thickness on the Mechanical Properties  

The effect of the specimen gauge thickness on the yield strength of SAC387 

solder is shown in Fig. 4.16. The yield strength of 200m-thickness SAC387 test 

specimens was found to be 26MPa, and about 53MPa for a 1000m sample. Deformation 

may be less constrained with the lower-thickness specimens because of the larger solder 

surface area. The effective dislocation density (or pile up) will be lower as dislocation can 

be annihilated when reach at the free surface, which lowers the resistance for 

deformation, and hence lowers the yield strength of the solder. In the case of the 1000m-

gauge thickness specimens, the deformation behaviour is similar to that of the bulk 

materials.  Apart from the deformation mechanism, there are several other factors which 

may affect the measurement of the yield strength of the solder specimen of 200m-gauge 

thickness: 

(a) Handling of the microtensile test specimens is difficult due to pre-

deformation of samples during loading at the grips.  

(b) Minimum available load cell is 50N, the maximum load for 200m 

specimens during testing is less than 3N (~5% load cell capacity).   
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(c) Thickness variation in the microtensile test (200m) specimens.  

(d) Surface roughness of specimen in the gauge length due to hard IMC 

particles shearing when being rolled into the thinner strips (200m). 

 

To avoid external experimental issues with the measured yield strength of the 

solders, microtensile testing experiments were conducted on 500m-gauge thickness 

specimens for all the solders, in order to understand their microtensile behaviour. Figure 

4.17 shows that the yield strengths measured from these microtensile specimens are lower 

than those from the bulk samples. In general, yield strength should be higher than bulk 

materials due to finer grain sizes in the microtensile test specimen. This lower yield 

strength may be attributed to the surface roughness and/or localized stress-concentration 

area within the gauge length, due to presence of IMC particles in the microtensile 

specimen. However, in the case of SWCNT-reinforced SAC387 solder (Fig. 4.18), the 

microtensile test specimens showed higher yield strength. 

It was confirmed from the fractured bulk test specimens (with SWCNTs) that 

there was 5 to 8% porosity in the samples and non-uniform distribution of SWCNTs. On 

the other hand, for microtensile test specimens, as they rolled from the SWCNT-

reinforced bulk SCA387 solder, there was a uniform fine-grained and porous-free 

microstructure; therefore the yield strength was increased. Monolithic solders such as Sn 

and Sn-Pb are more sensitive to the thickness than the ternary or composite solders. The 

yield strength measured from these monolithic solders was less than 30% of the yield 

strength of the bulk solders. The reason for this behaviour is that the dislocation motion is 

less restrictive in these solders due to higher Sn with no particle reinforcement. 
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Figure 4-16: Effect of specimen gauge thickness on tensile properties of SAC387 solders. 

  

 

 

Figure 4-17: Comparison of yield strength, measured using microtensile and bulk-tensile 

tests for Mo-reinforced SAC387 solder. 

 

Figure 4-18: Comparison of yield strengths, measured using microtensile and bulk-tensile 

tests for (a) SWCNT-reinforced SAC387 solder (b) Base-reference solders. 
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4.5. Summary 

The addition of 0.05 wt.% SWCNT to the SAC387 alloy resulted in an increase in 

yield and ultimate tensile strengths at all temperatures and strain rates. Further increasing 

the SWCNTs to 0.1 wt.% did not result in any significant improvements in the strengths, 

compared with those of the composite containing 0.05 wt.% SWCNTs. This may be 

attributed to the agglomeration of the SWCNTs when their volume fraction is increased.  

The SAC387 alloy and the composites exhibited significant total elongation at all 

temperatures and strain rates, although the uniform elongation was limited. The low 

uniform elongation values reflect the fact that for tests at room temperature, the 

homologous temperature (T/Tm) is above 0.5, and hence the dynamic recovery processes 

are more dominant compared with the work hardening. The composites also showed 

comparable and, in some cases, even marginally higher total elongation than that of the 

base alloy. This may be attributed to the fracture being dominated by the failure of the 

matrix alloy, and the fact that the grain sizes, especially of the intermetallic phases, 

become finer due to the addition of reinforcements. 

Yield and ultimate tensile strengths were found to decrease with an increase in 

temperature at a given strain rate, and increase with the strain rate at a given temperature, 

for the SAC387 alloy and the composites.  This behaviour may be attributed to the 

competing effects of the work-hardening and dynamic-recovery processes, and the effects 

of temperature and strain rates on these processes. 

The addition of nano-sized Mo to the SA387 solder improves the room-

temperature microtensile tensile properties of the solders; however, there is no significant 

improvement in tensile properties beyond 1% Mo. 

The effects of specimen thickness are more prominent for as-casted monolithic 

Sn, Sn-5Pb and SAC387 solders. It was found that tensile strength (both yield strength 
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and ultimate tensile strength), determined using a microtensile tester, and is 10 to 15% 

lower than that derived from the standard ASTM bulk-materials characterization. 

However, there was little change observed in the composite solders. 
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Chapter 5: INDENTATION BEHAVIOUR OF LEAD-FREE SOLDERS  

5.1. Introduction 

The elastic modulus and yield strength are two important tensile properties used 

for thermo-mechanical modelling, to predict the reliability of the packaging systems. A 

conversion of hardness to yield strength is widely used as there are insufficient materials 

and no standard tools available for mechanical characterization at this scale. When the 

tensile properties of solder joints are needed for better estimation of system-level 

reliability, these reasons are not acceptable, because the mechanical properties of solder 

joints are size-dependent. Tensile properties such as yield strength and modulus of 

elasticity can be estimated from the stress-strain curve, if it adequately represents the 

complete tensile behaviour. Such information is required for defect assessment and finite 

element calculations. The elastic modulus of solder joints can be determined more 

accurately using the indentation technique. However, there is no standard metrology 

technique available to determine the yield strength of solder with the volume at the device 

level. 

 

5.1.1. Hardness Conversion and Issues 

Most investigators have reported the yield strength of solders and IMCs from the 

hardness conversion data, with the reason that enough material is not available for tensile 

testing [11]. However, it is often neglected that the converted hardness provides no 

information about the dependency of the materials‟ intrinsic microstructural 

characteristics. According to testing standards, to obtain an acceptable hardness for pure 

metals within ± 5 % uncertainty, a minimum of 18 successful indentations need to be 

performed and evaluated if the testing load equals 1N or more. If the testing load is 

smaller, indentation size effect is anticipated. In order to obtain a statistically-reliable 
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tensile strength from hardness measurement, an even greater number of indentations 

would be required. It may be understood that for the case of failure analysis of the in-

service structure, materials for standard testing specimens cannot always be 

extracted. One has to consider that the results of conversions may produce significant 

errors (more than 20%) in 10 tests. Finding statistical correlations between hardness and 

“real” tensile strength is not a problem, but generalizing those results is dangerous, 

especially if evidence is inadequate. 

 

5.1.2. Indentation of the Solder Joints 

Nanoindentation is one of the techniques for determining the mechanical 

properties of materials down to a few tens of micrometres [109–111]. The 

nanoindentation technique was first introduced in the early 1980s [110], providing the 

capability to record the load-penetration curves during the loading and unloading 

processes of the indentation. It was recognized by Doerner and Nix that the slope of the 

unloading curve at the initial stage of unloading could be adopted to measure the elastic 

modulus of the materials [111]. This method was later modified by Oliver and Pharr to 

take into account the large elastic recovery during unloading [109]. More recent 

development in this direction is focused on determining the contact area at the maximum 

loading, which is a crucial quantity for deriving Young‟s modulus and hardness. 

It has been reported that the indentor contact area could be evaluated by a 

polynomial function of the indentation depths at the maximum load and at the end of 

unloading [112]. In contrast to the unloading curves, the analyses for the loading 

behaviour started much earlier, at the time of the introduction of the nano-indentation 

technique [113]. It is now well-recognized that the loading curves generated using sharp 

indenters (such as conical, Vickers, and Berkovich) depend on the yielding strength, the 
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strain-hardening property, and the elastic modulus of the materials [113]. These results 

provide fundamental information to deduce the yielding strength and the strain-hardening 

parameter. However, because the shapes of these sharp indenters are self-similar, the 

loading curve can provide only one independent quantity, which is the combination of the 

elastic and the plastic properties of the materials [114]. 

In order to realize the potential application of sharp indentation to the measuring 

of the yield strength, it is necessary to identify the plastic-deformation characteristics in 

the indentation data. The strain-hardening parameter, which can be related to the 

unloading penetration depth ratio or the indentation work ratio [112]. This method‟s 

validity has been verified extensively using finite element (FEM) calculations, but this 

method has not widely used for the determination of mechanical properties. Recently, 

Zeng and Chu proposed a new scheme for using sharp indentation to derive the elastic 

and plastic properties of materials [115]. The key feature of this method is that the 

unloading curve in the indentation can be used to determine both the elastic modulus and 

the strain-hardening parameter. This scheme is an empirical method based on 

experimental observation as well as on the FEM calculations [116]. The yield strength of 

materials can be determined by combining the two properties derived from the unloading 

curve, and adding the loading curve information [117]. 

In order to examine their empirical method, Zeng and Chu conducted extensive 

nanoindentation experiments on different materials, whose elastic modulus ranged from 3 

(epoxy) to 650GPa (Tungsten carbide), while hardness ranged from 0.1 to 30GPa [115]. 

The results of Zeng and Chu‟s study show the consistent with the reported data of other 

literature. In this work, this empirical scheme is therefore used to extract the yield 

strength, elastic modulus and strain-hardening parameter of solder materials from the 

nanoindentation load-penetration data. 
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5.1.3. Indentation Empirical Models 

5.1.3.1. Loading Curve Behaviour 

The loading part of an indentation curve can be expressed as follows: 

2P Ch                                                           (5.1) 

 

where P is the indentation load, h is the penetration depth measured from the surface, and 

C is a constant depending on the geometry of the indenter tip and material properties. 

Many numerical analyses have proved that Eq. (5.1) can be used to extract the yield 

strength of elastic-perfect plastic and elastic-plastic materials [118]. However, deviations 

from the loading-curve behaviour have been observed by several authors. It has also been 

confirmed that this deviation is a distinct characteristic that cannot be attributed to 

uncertainties or tip-shape defects, suggesting that the single fitting parameter, C, in Eq. 

(5.1) is not sufficient to make an approximate estimation of the elastic-plastic properties 

of materials. In addition to this, the quadratic term in Eq. (5.1) implies the supposition of 

a purely plastic deformation, which is not accepted for elastic-plastic materials. 

Kick‟s law in Eq. (5.1) was originally developed based on the energy aspect of 

materials, i.e. the energy required for a given size reduction was proportional to the size-

reduction ratio. The quadratic relation is obtained by integration of the total energy during 

reduction. The apparent compatibility of this law with the micromechanical response of 

indented materials ensured that it was adopted to characterize the load-displacement 

curve behaviour of materials [112]. The relation (Eq. 5.1) has been demonstrated by 

numerical simulation for both elastic-perfect plastic and elastic-plastic materials [112, 

116, 117]. The constant C is defined for a sharp Berkovich indentation on an elastic 
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material obtained by the finite-element analysis, as shown in Eq. (5.2):
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and for the indentation on an elastic-plastic material,
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          (5.3) 

 

where ν is Poisson‟s ratio, E is Young‟s modulus, σYS is the yielding stress, σu is the 

stress at 29% strain, and the ratio σu / σYS  is used to represent the strain-hardening 

property of materials. In this work, Eqs (5.2) and (5.3) are applied for extraction of tensile 

properties from the indentation load versus depth data at larger indentation loads. 

  

5.1.3.2.  Unloading Curve Behaviour 

The unloading curve is used to derive the elastic modulus of the material by the 

following formula: 

 21

E S

A



                                                           (5.4) 

 

where S = dP/dh is the contact stiffness at the initial of unloading process, A is the true 

contact area at the maximum load, and   
 

√ 
 , β is a geometric constant for the 

Berkovich indentation [116, 117]. The contact stiffness S can be determined by two 

fitting methods for the unloading curves. The first is the linear-curve fitting method 
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developed by Doerner and Nix, who based it on the Sneddon‟s flat punch solution, which 

could be used to describe the unloading curve as follows [111, 119]: 

 oP S h h                                                                (5.5) 

 

where ho is the true contact indentation depth. The best-fit results of S and ho depend on 

the portion of the unloading curve, and it is suggested that using the top one-third portion 

of the unloading data gives the best fitting [16]. Eq.uation (5.4) is based on the 

assumption that the contact area remains unchanged during unloading, which is true for 

the case of a punch indenting an elastic-perfect plastic material. Doerner and Nix‟s 

method can describe the unloading behaviour of soft metals such as Sn and lead-based 

solders, but often fails to capture that of hard materials such as intermetallics, ceramics 

etc. 

Oliver and Pharr introduced the second method, which is applicable to the 

nanoindentation of the hard materials, taking into account the large elastic recovery 

during the unloading process [109]. Earlier indentation studies on solder materials were 

merely concerned with the evaluation of the elastic modulus from the slope of the 

unloading curve, and overlooked the shape of the unloading curve and its relationship 

with the other mechanical properties. Zeng et al. extensively studied the relationship 

between the shape of the unloading curve and the mechanical properties of materials 

[115]. Their studies have shown that unloading curves might be adopted to determine the 

modulus and strain-hardening parameter. 

 

5.2. Experimental Methodology 

For this study, indentation experiments were conducted with different strain rates 

to the maximum-defined indentation depths, in order to eliminate creep effects during the 
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indentation loading and unloading stages. Moreover, the maximum depth (>2.5m) was 

defined during the indentation experiments in such a way that deformation under the 

indentation process represented the global deformation. Extrinsic parameters such as the 

strain rate and testing temperature, and intrinsic parameters like the microstructure, were 

kept constant for both the indentation and microtensile methods. CSM measurements 

were conducted at similar strain rates to those of microtensile test experiments, to the 

maximum depth of 2500nm. Beyond this depth, the indentation size effect is at its 

minimum, and hence hardness of the solder is determined at this indentation depth for a 

given strain rate. CSM experiments were then conducted at different strain rates to predict 

the correlation coefficient between the hardness and tensile yield strength of the solders. 

  

5.3. Results 

Table 5.1 summarizes the elastic modulus (E), derived from Doerner & Nix‟s and 

Oliver & Pharr‟s models. Figure 5.1 shows the typical indentation impressions at a 

maximum load of 10mN. Indentation experiments were conducted at a strain rate of 10
-2

 

s
-1

 with different maximum loads, as shown in Fig. 5.2. The loading and unloading rate of 

all experiments was fixed at 10
-2

 s
-1

, to avoid creeping effect during unloading. It may be 

observed that for pure Sn, the two models predicted similar results because the unloading 

curves of Sn were straight lines. Indentation loads ranging from 10 mN to 40 mN were 

used to validate the loading/unloading p-h data for indentation analysis. It may be 

observed (Table 5.1) that an indentation load beyond 20mN shows that the elastic 

modulus is reduced, compared with the theoretical elastic modulus of pure Sn. This may 

be attributed to the creep effect during the indentation process. 
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Table 5.1: Elastic Modulus of Sn measured using linear and power law models. 

Max. Load (mN) Elastic Modulus (GPa) 

 Doerner &  Nix  model Oliver & Pharr model Theoretical  

10 42.6±2.2 41.5±2.2 

41.4  
20 41.7±0.7 40.9±0.5 

30 40.1±2.2 39.1±1.2 

40 38.2±1.1 38.7±1.7 
 

 

 

Figure 5-1: The representative indentation impressions at loads of 10mN and 20mN. 

 

 

Figure 5-2: Schematic flow diagram showing the analysis sequence of solder joints. 

 

Therefore, the maximum load for the indentation creep experiments for lead-free 

solder joints is limited to 20mN, to avoid creep during the indentation experiments. Creep 

deformation during the indentation experiments will affect the indentation depth and, 

therefore, the elastic modulus and hardness of the solder joints. Figure 5.3 shows the 

10mN 

20mN 
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sequence of indentation analysis for determination of the yield strength of the solder 

joints from the indentation p-h data, at a 10
-2

s
-1

 strain rate. 

 

Figure 5-3: Tensile properties analysis flow for indentation and microtensile data. 

 

5.3.1. Indentation-unloading Curve Analysis 

For a perfectly elastic material, the indentation-unloading curve will be identical 

to the loading one as described in Eq. (5.1). The indentation-unloading curve of an elastic 

perfect-plastic material, on the other hand, can be roughly described as a straight line, as 

depicted in Doerner & Nix‟s model. The experimental data presented in Fig. 5.4 clearly 

shows that the unloading curve for pure Sn is close to the indentation of fully-elastic 

perfect-plastic cases, i.e. the strain-hardening parameter of solder materials is close to 

unity. In contrast, for the Cu-Sn intermetallic, the unloading curve will be close to a 

parabolic curve. This suggests that the unloading curve of elastic-plastic materials can be 

written as a linear combination of the results of the two extreme cases, as shown below 

[115]: 

     21 oP f Eh S h h     
                           (5.6) 
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where 
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
                                                  (5.7) 



 is the fitting parameter. Eq. (5.6) is an empirical equation for analysing the unloading 

curve of the Berkovich indentation on a general elastic-plastic material. 

 

Figure 5-4: Indentation load versus depth curves for different materials. 

 

For solder materials, the effects of the first term in Eq. (5.6) are very minimal, 

because the unloading curve for the solders is almost a straight line; hence the linear term 

in Eq. (5.6) gives more weightage to the determination of the elastic modulus and 

parameter (ho). This fitting parameter (ho) has a length (nm), which is defined as a perfect 

plastic depth. The hardness of materials is defined as [115]: 

224.56 o

P
PPH

h
                                                            (5.8) 

Cu3Sn Phase 
-Sn Phase 
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5.3.2. Indentation Loading Curve Analysis 

Numerical analyses of sharp indenters (such as those by Cone, Vickers, and 

Berkovich) indicated that the loading curve follows Eq. (5.1) [112, 116, 117, 119]. Many 

experimental results, however, have shown that the actual relationship between the 

indentation load P and penetration depth h deviates from the theoretical prediction. Figure 

5.5 shows the curve fitting of the loading curve to a power law relation, PCh
n
, where 

the derived exponent n is less than 2. However, n = 1.5 perfectly fits the loading data. 

This discrepancy also has been observed by earlier studies [115]. The discrepancy 

between the experimental and theoretical results poses a problem with understanding the 

loading curves obtained in experiments, as well as the material properties derived from 

interpretation of the curves. 

Therefore, it is necessary to have an insight into the discrepancy before adopting 

Kick‟s law for the indentation curves. The following comparison scheme is adopted to 

have a better understanding of the discrepancy between the experimental and theoretical 

results. In the scheme, the loading curve is contrasted with the two lines, P C1h
3/2

 and 

PC2h
2
, corresponding to the cases of spherical and sharp Berkovich indentation, 

respectively. The constant C1 is determined by fitting the first function to the initial part 

of the loading curve (the first 1/3 of the loading data). On the other hand, the constant C2 

corresponds to the best fit of the second function to the last part of the loading curve (the 

last 30–50 data points from the maximum load). This comparison scheme has been 

applied to a number of materials (fused silica, Al2O3, and ZrO2), and the results have been 

discussed elsewhere [115]. 

Figure 5.5 shows that the loading curve for pure Sn is described by two different 

functions, P C1h
3/2

 and P C2h
2
, at low and high loads, respectively. The transition of 

the characteristics of the loading curve suggests that the initial portion of the indentation 
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curve causes the exponent n in the fitting P Ch
n
 to deviate from 2. The initial deviation 

might be due to the shape of the indenter tip, and high stress at the beginning of the 

indentation tests. 

These effects become insignificant as the load increases, and therefore the loading 

process in the experiments will follow the theoretical prediction closely after the load is 

sufficiently large. The minimum load required to validate this law depends on the 

hardness of materials; for solder materials, the load should be larger than 5 mN for nano-

indentation to be beyond the transition region. Therefore, the indentation loads have been 

selected to be 10 mN for the present study. 

 

Figure 5-5: Schematic curve-fitting of pure Sn indentation data with a different power law 

exponent, according to Kick‟s law. 
 

Table 5.2: Mechanical properties of pure Sn measured from the P-h data.  

Pmax (mN) E (GPa) h0 (nm) σy(MPa) H (GPa) 

5 43.0±2.2 1564±43 44.6±1.6 0.166 ± 0.003 

10 43.0±2.2 1959±23 44.6±1.6 0.106 ± 0.003 

20 41.7±0.7 2813±55 41.0±1.6 0.103 ± 0.004 

30 39.1±2.2 3546±112 38.8±2.0 0.097 ±0.005 

40 38.2±1.1 4123±51 37.3±1.2 0.096±0.002 
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The maximum load requirement is a key requirement for the solder joints because 

solders are low melting materials; creep mechanism is dominant during indentation. It 

may be seen in Table 5.2 that the elastic modulus determined from the slope of unloading 

data (p-h) is decreasing with the load increment. This is because creep deformations 

during indentation are compensating for the recovered elastic strain. In order to avoid the 

creep effect on the loading and unloading curves, all experiments in this work were 

limited to a maximum indentation load of 10 mN and strain rate of 10
-2

s
-1

. 

This maximum load gives a total indentation depth of approximately 2.5 to 3 m, 

which is representative of the global deformation volume. However, this indentation 

depth brings up another issue, namely that the minimum solder thickness should be at 

least 10 times more than the depth of indentation to avoid substrate effect during 

indentation. Therefore, restrictions of maximum indentation load become an issue when 

the solder thickness is too small. Therefore, the determination of the mechanical 

properties of solder-joint sizes lower than 100 m is not possible from this analysis. 

 

5.4. Discussion 

In this study, the mechanical properties of various commercial solder joints such 

as SnAg, SnAgCu, CASTIN and SnZnBiIn lead-free solder joints were determined using 

present analysis and compared with reported data. Eq. (5.6) was used to perform the 

indentation analysis of the unloading p-h data, and to determine the values of E, ho and 

the strain-hardening parameter (). Consequently, using E and  fitting parameters from 

the unloading data, Y was determined from the loading data using Eq. (5.3). The range 

of the indentation load for loading and unloading data analysis was the same for all the 

materials. 
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Based on the analysis of the pure Sn, the indentation maximum load was limited 

to 20mN for all solder joints studied in this work. There were a total of 24 indents (4×6 

matrix) conducted for each condition, and four (4) representative indentation results for 

each solder joint are presented in Table 5.3. It can be observed that the mechanical 

properties determined using the empirical indentation analysis is consistent for all lead-

free solder joints. The average values of the indentation mechanical properties are 

summarized in Table 5.4. The yield strength of lead-free solder joints measured using 

these analyses is higher than that reported in the literature in which the traditional 

techniques (tensile, compression and shear testing) were used. The yield strength of pure 

Sn was determined to be 44 MPa, which was comparable with the yield strength 

determined using an ultra-microtensile tester [120]. 

 

Table 5.3: Mechanical properties of solder joints at an indentation load of 10mN. 

Lead-free Solder ho (nm) PPH (GPa) E (GPa)  Y MPa 

 

SnAg 

1538 0.172 43 0.963 48 

1575 0.164 53 0.950 41 

1605 0.158 53 0.964 46 

1475 0.187 59 0.992 40 

 

SnAgCu 

1149 0.304 53 0.934 67 

1199 0.283 45 0.963 61 

1182 0.291 54 0.964 63 

1147 0.309 52 0.953 57 

 

CASTIN 

1288 0.179 48 0.939 40 

1299 0.184 50 0.987 39 

1306 0.211 50 0.978 36 

1264 0.190 46 0.949 47 

 

SnZnBiIn 

1322 0.201 53 0.948 54 

1290 0.216 62 0.924 42 

1319 0.198 61 0.920 60 

1190 0.207 63 0.930 46 
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The yield strength of the SnAgCu bulk solder materials has been reported as 54 

MPa at a 10
2
 s

-1
 strain rate [96]. However, the yield strength measured using the present 

analysis scheme is 62 MPa. The yield strengths of the CASTIN and SnZnBiIn solder 

joints are comparable to the yield strength values determined using standard tensile 

testing [121]. The strain-hardening parameter () is defined as the ratio of yield strength 

to ultimate tensile strength, which is lower for the SnAg3.5Cu0.5 compared with other 

solder joints. This means that the SAC solder shows higher strain-hardening behaviour 

during deformation before attaining instability. 

 

Table 5.4: Mechanical properties of 500m solder joints from the indentation data. 

Lead-free Solder ho (nm) E GPa) PPH (GPa)  y (MPa) 

Sn 4123 38 0.096 0.981 44 

SnAg 1548 51 0.169 0.973 45 

SnAgCu 1171 55 0.296 0.933 62 

CASTIN 1460 53 0.191 0.963 41 

SnZnBiIn 1408 59 0.205 0.953 51 

 

Tabor approximation has been used to compare the measured indentation tensile 

properties, which is approximately as follows [122]: 

              (  )  
        ( )

        ( )
                                         (5.8) 

 

The yield strength determined based on the Tabor analysis is higher than the 

indentation tensile yield strength of the solder joints (Table 5.5). The reported yield 

strength of all solder joints is lower than that of the yield strength measured using 

nanoindentation. This discrepancy might be due to microstructure differences (cast or 

wrought conditions) and processing conditions. In order to compare the mechanical 

properties measured by various techniques, it is mandatory to ensure that both extrinsic 
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parameters (strain, strain rate, testing temperature) and intrinsic parameters 

(microstructural morphology, grain size etc.) are comparable, preferably the same. 

 

5.4.1. Tabor Analysis 

The hardness (H) variation can be significantly reduced with the indentation load selected 

from the region where the hardness increment approaches a constant with the 

microindentation load. This change in the hardness with the indentation load is known as 

the indentation size effect (ISE) [123, 124].  This  effect may be attributed to the 

evolution of the dislocation beneath the indenter, which gives rise to strain gradients. 

Material deformation in metals enhances the dislocation formation, motion and 

pile up, and hence the hardening mechanisms are dependant on the total dislocation 

density. This is represented by the total coupling between two types of dislocations: 

statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs). 

SSDs are generated by trapping each other, while GNDs are the stored dislocations that 

relieve the plastic-deformation incompatibilities within the polycrystal caused by the non-

uniform dislocation slip. Therefore, the presence of GNDs would cause an additional 

storage of defects and increase the deformation resistance by acting as an obstacle to the 

SSDs [123]. Hence, at a lower mciro-indentation load, there are more GNDs developed to 

cause an increase in the H values. 

As the load increases to approximately 1500mN onwards, there are few GNDs 

present. Hardness completely  depends on the SSDs, and hence the consistent H values 

can be reached at higher loads. Therefore, the micro-indentation load of 1961mN was 

chosen because the indentation size effect is negligible beyond this load for hardness 

measurement in the present study (Fig. 5.6). It may be observed that the Tabor constant 

(C) decreases with an increase in the strain rate. In order to avoid this discrepancy, 
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nanoindentation experiments were conducted at a similar strain range (of the tensile 

testing), up to 2500nm depth, in such a way that the representative indentation stress was 

close to three times the maximum tensile stress during microtensile testing, if verified. 

 

 

Figure 5-6: Effect of indentation load on micro-hardness (HV). 

 

5.4.2. Nanoindentation 

The yield strengths measured from microtensile and CSM hardness, and measured 

with the nanoindentation technique over a similar range of strain rates, are summarized in 

Table 5.5. The Tabor conversion constant changes were from about 3.4 to 3.9, from pure 

Sn to SnAgCu solder, while there was a 50% reduction with a decrease in the strain rate 

from the 10
-2

 to 10
-4

 s
-1

. Table 5.6 shows the conversion of the hardness values of the 

lead-free solder joints based on Tabor constants determined for the bulk materials with 

the same composition. Even though the composition of solder was the same for both the 

bulk and solder joints, the Tabor conversion constant did not give similar yield strengths. 

This might be due to differences in the microstructural morphology. Therefore, accurate 
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conversion may not be possible without knowledge of the materials‟ history or fabrication 

conditions. 

Table 5.5: Effect of strain rate on yield strength, hardness of Sn and SnAgCu solder. 

Material 
Strain rate 

(έ,s
-1

) 

Yield 

Strength 

(MPa) 

CSM 

hardness 

(GPa) 

Tabor 

constant 

Micro- 

hardness 

(HV) 

Conversion 

constant 

Sn 

10
-4

 18.81 ± 0.51 0.061 ± 0.01 3.2 
 

8.70 

4.54 

10
-3

 26.53 ± 0.22 0.079 ± 0.02 3.4 3.22 

10
-2

 32.15 ± 0.79 0.011 ± 0.01 3.42 2.66 

SAC387 

10
-4

 27.97 ± 0.62 0.11 ± 0.02 3.9 
 

10.07 

3.53 

10
-3

 43.58 ± 0.79 0.16 ± 0.01 3.68 2.27 

10
-2

 61.33 ± 0.57 0.24 ± 0.06 3.9 1.61 

 

Table 5.6: Mechanical properties measured using nanoindentation and tensile testing. 

Solder Materials PPH  (GPa) y (MPa) Tabor approximation 

y =PPH/3 (MPa) 
y 

Sn 0.096 44 32 28.5 [121] 

SnAg 0.169 45 56 30.3 [121] 

SnAgCu 0.296 62 98 44.6 [96] 

CASTIN 0.191 41 63 33.3 [121] 

SnZnBiIn 0.205 51 68 ----- 

 

5.5. Summary 

An empirical analysis scheme was used to determine the tensile properties of lead-

free solder joints using the nanoindentation technique. A summary of the results is as 

follows: 

1. The yield strength of pure Sn was found to be 44MPa using this analysis 

scheme, which is close to the value determined using a microtensile tester. 

However, there was significant variation in the yield strength of ternary 

alloy solder (SAC387). 

2. This variation due to the multi-phase microstructure morphology under the 

indentation spot (grain boundaries, IMC phases) varied from indent to 
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indent. These variations largely affected the deformation mechanism 

during indentation.  

3. The Tabor approximation cannot be extended to all materials based on the 

composition results for one material. 

4. The elastic modulus and yield strength measured using the nanoindentation 

technique is marginally comparable with the measured properties derived 

from microtensile testing. 
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Chapter 6: CREEP BEHAVIOUR OF LEAD-FREE SOLDER JOINTS 

6.1. Introduction 

Creep or time-dependent deformation behaviour of the solder or solder joints 

plays an important role in the design and reliability performance of microelectronic 

packages. Creep behaviour is difficult to quantify because it depends on a number of 

variables. However, for many microelectronic applications it is sufficient to describe the 

steady-state creep of the solder. The steady-state creep rate is a function of temperature, 

applied stress and time. Commonly, creep deformation exits in materials only at high 

temperature, but due to the lower melting points of lead-free solders, creep deformation 

does exist at room temperature [125]. This mismatch stress arises from the CTE of 

different materials in the micropackaging, which may act as creep stress during prolonged 

use and hence lead to the creep deformation, and may also cause the failure of the 

microelectronic components. 

Morris et al. reported that solder joints in microelectronic packaging devices 

eventually fail by creep-fatigue interactions [126]. Wiese and Meusel reported that at 

room temperature, conventional solder (Sn-37Pb) and Sn-3.5Ag solders showed almost 

identical absolute creep rates at stresses above 15MPa, while SnAgCu solder attains the 

same level of creep at 40MPa [3]. Englemaier et al. showed that the number of cycles to 

failure may be reduced by increasing the holding time at the mismatch stress during the 

thermal cycling process [4]. This indicates that creep or fatigue failure of the 

microelectronic device can be reduced if the solder materials are developed with a lower 

CTE mismatch for interconnecting applications. 

Previous work has proved that the addition of nano-sized particles to the SAC387 

solder reduces the CTE mismatch [105]. Therefore, composite solders are expected to 

have a high resistance to failure during thermal cycling tests. McDougall et al. reported 
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that for a 1mm
2 

area,
 

lap-shear SnAgCu solder joints with 20% (5–8m) Cu6Sn5 

reinforcements increase the number of cycles to failure because of particle strengthening 

[5]. On the other hand, Villain et al. reported that the creep deformation of solder joints is 

size-dependent [127]. There are also several indentation techniques, such as impression 

creep (constant stress) and indentation creep (constant load), to determine the localized 

creep properties of metallic materials [128]. Recently, nanoindentation creep experiments 

with a sharp indenter tip have been developed to probe the creep properties of bulk and 

thin films. Creep properties such as the stress-exponent can be extracted from a single 

experiment of the slope of the double logarithm of stresses and strain rates. Therefore, the 

present study focuses on the analysis of nanoindentation creep data with the Berkovich 

indenter tip over a wide range of lead-free solder joints, as shown in Table 6.1. 

 

Table 6.1: List of lead-free solder materials studied in this work. 

 

Solder Process conditions Microstructure 

Virgin Sn3.5Ag balls Thermal reflow at 260
o
C for 80s Cast microstructure 

Virgin Sn3.8Ag0.7Cu balls Thermal reflow at 260
o
C for 80s  Cast microstructure 

Pure Sn Bulk Furnace cooled from 300
o
C >150m Grain size 

Pure Indium Bulk Furnace cooled from 175
o
C >100m Grain size 

SnAgCu Bulk Furnace cooled from 300
o
C >75m Grain size 

SnAgCu solder joint Reflowed at 265
o
C for 80s Cast microstructure 

SnAgCu+0.3%Mo joint Reflowed at 265
o
C for 80s Cast microstructure 

 

6.2. Materials and Methods 

6.2.1. Indentation Creep Experiments  

Nanoindentation experiments were conducted to derive the time-dependent 

deformation behaviour of the solder balls. Indentation experiments were performed at the 
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maximum loads of 1.5 to 3.0mN, with an interval of 0.5mN for a 10s holding period to 

define the creep load for solder. This creep period was too short to include any plastic 

deformation due to creep. As such, any significant plastic deformation may not be 

attributed to the creep but to the loading. From the preliminary tests, it can be understood 

that the indentation load of 2.5mN or less does not cause any large plastic deformation in 

the 10-second holding time. The indentation creep experiments were then performed at 

the loading 2.5mN and holding for 1000s, and at least eight (8) successful indents were 

made to generate indentation displacement versus hold-time data for the indentation creep 

analysis. The stress exponent measured under these conditions is close to diffusion creep. 

In order to capture the power-law creep behaviour for the solder joints, 

indentation loads were increased to 70mN to represent the bulk material behaviour. This 

70mN load was limited by instantaneous depth, as a higher load gives a larger indentation 

depth, which is beyond the detection limit of nanoindentation equipment, i.e. if the total 

creep deformation is more than 2.5m in depth, nanoindentation data acquisition cannot 

be made.  Similarly, the maximum loads for cylindrical punch (CP) were limited to 

40mN.  

  In the case of indentation experiments using a cylindrical punch or sharp 

indenter, the equivalent conventional tensile stress can be approximated from the Tabor 

relation: 

                                                       (6.1)  

 

where c is a constant, which was reported as 3~4 for β-Tin [127].  The constant c in this 

study was determined in Section 5.4 as 3.4 for SAC and 3.8 for β-Sn, based on the 

microindentation and microtensile data of the respective solders. 
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6.2.2. Data Analysis 

A typical indentation load for the indentation creep experiments is plotted against 

creep time in Fig. 6.1. The total creep period for all experiments was kept constant at 

2000s. Instantaneous creep depth at time zero was subtracted from the displacement-hold 

time data to compare the experiments at different loads. Figure 6.2 shows the effective 

indentation displacement-holding time data. The average indentation data was calculated 

by fitting the average function of the eight (8) sets of effective indentation displacement 

data to a given creep experiment condition. The indentation creep data of the lead-free 

solders was analysed via non-linear curve fitting, using commercial graphing software 

(Origin Lab Pro 8.5), to determine the properties for time-dependent deformation. 

 

Figure 6-1: Representative indentation load versus holding time curves for pure Sn. 

 

Figure 6-2: Typical indentation load versus holding time (h-t) mean curve generated at  

2.5mN load for 1000s of SnAgCu VSB. 
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6.3. Results  

6.3.1. Solder Microstructure  

Thermally-treated solder joints are used to understand the creep performance of 

the solder joints by microstructural morphology and IMC particle (Ag3Sn, AuSn4 and 

Cu6Sn5) distribution in the solder bump. It is particularly important to compare and 

correlate the mechanical properties of the solder joints with the reliability performance of 

devices [129]. In traditional solder, Sn and Pb solidify in a simple eutectic system with 

limited miscibility. This leads to a solid solution strengthened by Sn and Pb phases, which 

are quite similar in plastic-deformation resistance. However, the binary system of Sn-Ag 

and Sn-Cu solidifies in a system with more complex intermetallic phases such as Ag3Sn 

and Cu5Sn6
 
[129]. 

Wiese et al. suggested that the deformation resistance of the Ag3Sn and Cu5Sn6 

phases is higher than that of β- Sn matrix, and so these phases might slow down or even 

prevent the dislocation motion. Chen et al. reported that for the SnAgCu system, binary 

and ternary eutectic phases are dispersed at the boundary of β-Sn dendrites, including 

some large Ag3Sn and Cu5Sn6
 
IMCs [130]. The Cu6Sn5 IMC particles within the middle 

of the dendrites possibly behave as a heterogeneous nucleation site for the β-Sn dendrites. 

 

 

 

 

 

 

Figure 6-3: Optical microstructure of (a) wrought microstructure of SAC 387 (b) furnace-

cooled SnAgCu solder. 
 

10m 
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Figure 6.3 (a) shows the fine intermetallic particle distribution in the -Sn matrix, 

in which dendrites broke into small particles during the extrusion and rolling operation. 

These particles serve as effective barriers for plastic deformation. Figure 6.3 (b) shows 

the furnace-cooled SAC387 samples with finer dendritic morphology. Figure 6.4 shows 

the microstructure of the SAC387 solder bump with electrolytic Ni and ENIG surface-

finishes. This multiphase microstructure of the SnAgCu solders leads to variation in the 

localized mechanical properties. For example, the elastic modulus of SAC387 solder has 

been reported to be in the range of 10 to 50GPa [131].  Huang et al. observed that this 

discrepancy could be attributed to specimen microstructure (bulk or solder joint), the 

specimen geometry (shape, dimension ratio, etc.), and test conditions [132]. 

 

Figure 6-4: Microstructure of solder bump in (a) SAC387/Au/Ni (b) SAC387/Au/Ni (P) 

joints in as-reflowed condition. 

 

 

 

Figure 6-5: Optical microstructure of pure -Sn (target material for PVD deposition). 

 

 



 

92 

 

Figure 6.5 shows the larger grain size in the as-cast furnace-cooled -Sn. In this 

work, pure -Sn and indium have been selected to understand the creep behaviour of the 

solders without the influence of the multiphase on the measured properties. Figures 6.6 to 

6.8 show the post-indentation impression after the creep experiments. Indentation creep 

experiments were conducted on the pure Sn using the Berkovich and cylindrical punch at 

similar indentation stresses, in order to compare the creep parameters. 

 

 

Figure 6-6: Indentation impressions of -Sn with (a) Berkovich indenter (b) cylindrical 

punch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-7: Indentation impression during creep process at 2.5mN load for (a) SnAgCu 

Virgin Solder Balls (VSB) 

 

 

 

(a) (b) 

Grain boundary sliding 

(a) 

10m 20m 
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Figure 6-8: Indentation impression on bulk SnAgCu solder after indentation creep. 

 

6.3.2. Indentation Creep models  

A number of analytical models have been used to describe the creep behaviour of 

metallurgical materials since Andrade‟s pioneering work in 1914. In this study, an 

attempt has first been made to determine the best model for indentation time-dependent 

deformation behaviour of the lead-free solders. 

The time-dependence of the creep strain in the primary and secondary stages may 

be described by an equation based on Andrade‟s law [133]: 

 
1

( t)3
o   =  (1 + t ) e                                    (6.2)   

 

  is the strain in time while   and   are time-dependent constants. o  holds the 

definition of instantaneous strain on loading and t is time. This model proposes that creep 

strain varies with a time exponent factor of 1/3. As discussed by Bernasconi and Piatti, 

having t
1/3 

will not produce a steady-state creep; the primary creep rate is higher [133].  

A modified Andrade‟s creep model is proposed as follows, to address the large 

primary creep deformation: 

( t)

o   =  (1 + t ) e                                          (6.3)   

30mN 

5mN 

10mN
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The only difference in the modified Andrade model is that the time exponent (γ)  

is varied instead of fixed at 1/3. Furthermore, considerable success has been achieved in 

describing the strain, o , obtained through the primary and secondary creep stages by 

using the Garofalo model. In this model, t  is the limit for transient creep, and r is the 

time-constant for the primary stage: 

(-rt)

0 t  =   +   (1 - e ) + tssd

dt


  

                
            (6.4)  

 

ɛo represents instantaneous creep,
(-rt)

t   (1 - e )  represents transient creep and 

    

  
 represents steady-state creep. Garofalo‟s model was used successfully to describe the 

creep deformation behaviour of austenitic stainless steels, cadmium, tungsten, nickel, zinc 

and iron [134]. However, the primary creep deformation using Garofalo model varies 

over 10–15%, in such way that the actual creep rates are more than predicted. There is 

another model called Kraus‟s model [133, 135, 136]: 

(- (  ) ( )) (- ( ) ( ))   ( )(1 -     ( )(1 -   )  q t s t ssd
A e B e t

dt

  
  

 
   

 
    (6.5)  

 

( ),  (  ),  (  ) and ( ) A B q s    etc. are parameters with a function of stress. This 

model resembles Garofalo‟s model, which is the basis for further refining of Garofalo‟s 

creep model. It can be understood from the experimental data that the individual transient 

creep term (1 )rt

t e   in Eq. (6.4) does not capture the behaviour of transient creep. A 

modified Garofalo model based on Eqs. (6.4) and (6.5) is therefore proposed, and is given 

as:   

1

1

(-r t)(-rt)

0 t t  =   +   (1 - e ) +  (1 - e )+ ssd
t

dt


       (6.6)         
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An additional transient creep term was added to Garofalo model, based on Kraus‟s 

model as shown in Eq. (6.5). This extra transient creep term in the modified Garofalo‟s 

model is expected to capture the creep deformation in metals and alloys. 

  

6.3.3. Adaptation of Creep model  

By definition, strain, L L   , is the ratio of elongation to the original gauge 

length of the specimen. Applied stress, σ = P/A, is defined as the ratio of the load to the 

area exposed to the load. In the case of the indentation, P is the indentation load while 

contact area (A) is defined as the projected contact area under the indenter tip 

(A=24.56h
2
). Analogous to the definition of ε = ΔL/L, the strain during the 

nanoindentation creep is defined as oh h   ,
 

Δh being the creep displacement at 

constant load, while h
 
is the creep displacement.  The modified Garofalo‟s model is 

analogous to the Kelvin-Vigot model, and therefore Eq. (6.6) may be adapted to 

indentation creep in the form: 

    / /t t1 2
0h h 1 e 1 e t

    
                              (6.7)            

 

with 1 2, , ,    and     as unknown constants to be found [137]. The term 0h
 
is analogous 

to 0  , which is used to characterize instantaneous displacement at time zero. However, 

this term does not change the shape of the creep curve; hence ho is subtracted from the 

data to enable a comparison of the materials studied. 

 

6.3.4. Indentation Creep on Virgin SAC387 Balls 

Indentation creep experiments were conducted on virgin solder balls (VSB) in an 

as-cast microstructure condition. Standard lead-free thermal treatment was performed on 
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the VSB before the creep experiments (Appendix A.4.4). VSB was used for the creep 

study in order to understand the indentation creep deformation of the solder matrix, 

without the influence of under bump metallization (UBM). These creep experiments were 

conducted on the reflowed SAC387 solder joints with Cu and Ni (P) UBMs, in order to 

study the effects of the UBM on creep performance. Based on the preliminary creep 

analyses with the existing creep models, the Andrade and Garofalo-based models were 

selected for analysing the SAC387 data. 

 

 
 

Figure 6-9: Curve-fitting behaviour of SnAgCu VSB using  different creep models  

 

Figure 6.9 shows the prediction of the creep behaviour of SnAgCu solders with 

the Andrade and Garofalo-based models. Table 6.2 shows the fitting parameters of these 

models. The Chi
2
/Degree of freedom values are statistically very close to the ideal value 

of zero. The R
2
 values are also quite close to the ideal value of one (1) for a perfect curve 
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fit when using the modified Garofalo model. It can be observed from Fig. 6.9 (a) that the 

modified Andrade model gives a better fit for the initial part of the creep curve but a 

poorer fit as time increases. Figure 6.9 (b) shows the curve-fitting representative of 

SAC387 VSB with Garofalo‟s and the Modified Garofalo‟s Creep (MGC) model. 

Garofalo‟s model is not very effective in characterizing transient creep, and slightly over-

estimates the creep rate of SAC387 solder. 

 

6.3.5. Graphical Analysis of SnAgCu Solder Balls 

Based on the statistics of the MGC model on SnAgCu VSB, the R
2
 value and 

Chi
2
/Degree of freedom were found to be 0.99655 and 2.26 x10

-06
, respectively. This 

model shows better accuracy in creep characterization relative to the other models. It is 

not surprising that Andrade‟s creep model ranks the last among the models due to a fixed 

time-exponent of 1/3. The actual time exponent obtained from analysis for the SnAgCu 

solder material is 0.42 (Table 6.2). The time-exponent value plays a crucial role in the 

curve-fitting. 

Table 6.2: Curve-fitting analysis of individual creep models for SnAgCu VSBs. 

 

Parameter Andrade Modified Andrade  Garofalo Modified 

Garofalo 

ho 0.84 0.84 0.84 0.84 

 0.02723 0.01773 0.12807 0.0588 

 -0.00007 -0.00013 0.01442 0.0040 

 0.3333 0.42969 ------ 0.0912 

τ2 ------ -------- --------- 0.0214 

 ------ -------- 0.00003 3.471x10
-6

 

Chi
2
/Degree 

of Freedom 

0.00003 0.00002 6.503 x10
-6

 2.264x10
-6

 

R
2
 0.95411 0.96883 0.99007 0.99655 
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6.3.5.1. Significance of Modified Garofalo’s Model Terms 

As the time increases, there is a transition from the primary creep region to the 

steady-state secondary creep. This is clearly shown when the steady-state viscous term, 

 , in Eq. (6.7) becomes more prominent as time progresses. The parameter 
 
in Eq. 

(6.7) is analogous to the term of ssd dt
 
in Eq. (6.4).   is a displacement rate, which is 

used for the determination of the indentation strain rate. 

 

6.3.5.2. Analysis of Time Constants, τ1
 
and τ2

 
 

Keeping the other parameters constant, the graph of indentation h-t data was re-

plotted using Eq. (6.7), with a selected time exponent, τ1
 
as 16, 48 and 96, to analyse the 

effects of the time constants on the predicted creep curve. Although the curve with the 

lowest value of τ1
 
=16 shows a steeper gradient at the initial stage of the creep compared 

with the other curves, all 3 curves eventually merge at 700s with the experimental data. 

Different time exponent values (τ1)
,
 have no effect on the period of primary creep. 

 

 

Figure 6-10: Indentation creep data fitted using the modified Garofalo‟s model with 

different time constants τ1 and τ2 
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This in turn suggests that the time exponent τ1
 
has a larger influence on the initial 

stages of the primary creep, and in particular determines the gradient of the initial creep 

curve, or the initial creep rate. A smaller τ1
 
will give rise to a steeper gradient on the 

initial creep curve – in other words, the smaller the time constant, τ1, higher the initial 

creep rate. Similarly, an analysis of τ2 was performed by holding the other parameters 

constant and re-plotting the indentation creep data with selected time exponents, such as 

222, 666 and 1332, to analyse the effects on the predicted creep curve (Fig. 6.10 (b)). 

The time exponent (τ2) shows a distinct effect on the initial stages of the primary 

creep curve compared with τ1, as the curves are along the same gradient and subsequently 

diverge from one another at about 50s. The figure shows a possible trend of the larger 

time exponent, τ2
 
, leading to a longer period of primary creep. The curve with the 

smallest time exponent, τ2 , reaches the end of the primary creep at 750s, which is earliest 

of all the curves. The curves will converge eventually after 1000s during the transient, 

steady-state stage, and τ2 has no influence on the initial creep rate. It can also be observed 

that at a fixed time, for example, 100s, the modified Garofalo model with smaller τ2 value 

shows higher deformation. 

 

Table 6.3: Summary of normalized indentation displacement rate of virgin solder balls 

(VSBs). 

Solder Normalized  

Indentation rate 

Condition 

Sn36Pb 2.9×10
-3

 Virgin solder balls (VSB cast  

microstructure condition 

Sn3.5Ag 1.47×10
-4

 VSBs- cast  microstructure condition 

Sn3.8Ag0.7Cu 3.47×10
-6

 VSBs -cast  microstructure condition 

Sn3.8Ag0.7Cu 2.47×10
-5

 As-reflowed SAC387/ENIG 
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From these analyses, it can be deduced that τ1
 
has a stronger influence on the 

initial creep rate of the primary creep, while τ2 has a stronger effect on the later stages of 

the primary creep. Similar analysis was conducted on the creep data of the Sn-36Pb and 

Sn-3.5Ag VSB, and the results are summarized in Table 6.3. The SAC387 solder shows 

better creep resistance compared with that of the traditional Sn-36Pb solder (Table 6.3). 

This analysis methodology is most suitable for a qualitative comparison of the newly-

developed solder materials before they are selected for in-depth creep assessment. 

6.3.6. Indentation Creep Behaviour  

6.3.6.1. Analysis of Time-dependent Deformation 

Figure 6.11 shows the average of the indentation displacement (h)-holding time (t) 

curves from the eight (8) data sets for pure Sn (β-Sn) at different maximum loads. Figure 

6.12 shows the h-t curve generated at a constant creep load (30mN) using the Berkovich 

indenter. Traditionally, displacement rates are determined using linear regression from the 

steady-state region of the indentation creep data [138]. However, this method may not be 

used to differentiate the primary and secondary stages of the creep if the curve-fitting 

period is short. Usually, the primary creep region also gives a perfect fit with the linear 

models, provided the period of creep data considered is short. 

An empirical creep model recently proposed by Li and Ngan is widely used to 

determine the indentation creep behaviour of thin and thicker films, as given below [139]: 

1

( ) ( )m
i ih t h t t kt                                            (6.8) 

where , m, k are fitting parameters. This model fits indentation creep data with R
2
> 0.99.  

5
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Figure 6-11: Average indentation displacement versus holding time for -Sn. 

 

 

Figure 6-12: Representative non-linear curve-fitting plots using modified Garofalo and Li 

& Ngan creep models for creep data for SAC387 solder joints. 

 

However, among the creep rates determined from Eq. (6.8), primary creep and 

steady-state creep rates cannot be distinguished. Goodall and Clyne critiqued the source 

of errors associated with the fact that most of the material under stress was likely to be in 

the primary creep regime [140]. Therefore, the measured strain rates will tend to be 

higher than those assumed for steady-state creep. The MGC model has been demonstrated 
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to be one of the most suitable creep models for analysis of indentation creep data for the 

softer materials [141, 142]. 

The parameters in Eq. (6.7) are defined as a function of applied load and 

indentation displacements based on the generalized Kelvin model [141]. The physical 

meanings of the terms and parameters in Eq. (6.7) are discussed elsewhere [142]. This 

model demonstrates both experimental and FEM simulations on polymeric materials, and 

could well describe the indentation creep data generated with the Berkovich tip [143, 

144]. An attempt being made to apply this model to describe the indentation creep 

behaviour of composite solder joints. 

The indentation creep data was analysed using the Levenberg-Marquardt least-

square method with the fitting parameters as unknowns. Figure 6.12 describes the 

representative curve-fitting using the Li and Ngam and MGC models for the SAC387 

solder, in an as-reflowed condition at the maximum indentation load of 2.5mN. Both 

models fit accurately with a correlation coefficient of R
2 

= 0.99. The indentation 

displacement rate can be found by differentiating Eqs (6.8) and (6.7): 

   
 

1
1

m
o

dh
t t kt

dt m

 
  

                                               (6.9)       

1 2

1 2

t t
dh

e e
dt

  


 

 

                                                  (6.10)     

6.3.6.2. Representative Strain Rate and Stress 

Mulhearn and Tabor studied the hot-hardness of indium and lead using a spherical 

indenter, and indicated that the hardness as a function of time correlated closely with the 

creep characteristics of the materials [145]. They assumed that the strain rate at any stage 

in the indentation process could be written as   ̇  
 

 

  

  
, where a is the radius of contact 

and D is the diameter of the spherical indenter. Atkins and Tabor extended this analysis to 
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the indentation data generated on a range of materials using spherical, conical, and 

Vickers indenters [122]. They determined that the creep process was not dependent on the 

indenter shape, and the deformed zone resembled that predicted by the radial compression 

model for the indentation [146]. The representative strain is defined as I a a 
  where a 

is the radius of contact at a given time. Pollack et al. defined the indentation strain rate for 

conical indentation as follows:  
 

 

  

  
, where K is a dimensionless constant [147]. Mayo 

and Nix proposed a generalized equation for the representative strain rate and stress of a 

pyramidal indentation, which was [138]: 

          

1 dh

h dt
                                      (6.11)    

and                                       

max

224.56

P

h
                                          (6.12)                                                                                                         

 

where h is the indentation displacement at a given time. 

This proposed representative strain rate and stress was supported by the 

theoretical calculations of Bower et al. [148], and also by Cheng and Cheng, who used 

scaling and dimensional analysis [149]. In the present study, representative strain rates 

and stresses were calculated using Eqs (6.11) and (6.12) for the entire indentation 

displacement. For the purpose of comparing the creep rates of different solder joints, the 

representative strain rates were determined at 1000s holding time. Because of a higher 

indentation displacement (ho) at time zero (t = 0), the representative strain-rate solder was 

lower than that of composite solder joints. Therefore, an effective creep displacement (h-

ho) was used in the calculation of the representative strain rate, in order to compare the 

representative strain rates of the different solders. 
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Table 6.4: Representative strain rate (s
-1

) and stress (GPa) at 1000s holding. 

 

Solder Joint Representative  strain  rate (s
-1

) 

at 1000s holding 

Representative  stress (GPa) 

at 1000s holding 

SAC387 1.80×10
-4

 0.08 

SAC387+0.3Ni 1.04×10
-4

 0.14 

SAC387+0.3Mo 7.10×10
-5

 0.23 

 

Table 6.4 shows a summary of the representative stresses and strains for the 

composite solder joints at a 1000s hold period.  The representative stress for SAC387 

solder is 0.08GPa, which is lower than that of the composite solder (0.23GPa) at the 

1000s holding time. This shows that composite solders have better creep resistance at 

room temperature. In order to prove these analyses further, low-melting metals such as 

pure Tin and Indium were selected as room-temperature indentation creep exponents.  

6.3.6.3. Indentation Behaviour of Pure Sn 

Figure 6.5 shows the initial grain size of the pure Sn that was studied for the 

indentation creep experiments. The average grain size of β-Sn is ~300 to 350µm, and 

therefore the nanoindentation experiments were conducted within the β-Sn grains. Total 

indentation depths during the nanoindentation experiments exceeded 2.5m for all of the 

loads used in this study. These larger depths ensured that the indentation impression 

covered a considerable volume, so that it represented the global mechanical properties of 

the specimen during the nanoindentation experiments. Figure 6.8 shows that the size of 

the indentation impression increases with the maximum holding load. At higher 

indentation loads, the indentation properties represent the global properties. The effective 

indentation creep displacements increase from 1µm to 3µm with increase of the 

maximum load increment from 5mN to 70mN. 

The experimental indentation data follows two stages of the transient creep stage, 

i.e. a faster decay primary creep region followed by a slower decay primary creep region 
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before attaining the steady-state region. This transient creep stage extended to ~300 to 

~700 seconds as the load increased from 5mN to 70mN. Most of the indentation creep 

parameters reported by the data were obtained within 300s creep time. In this study, 

indentation creep experiments extended up to 2000s, with the effects of the stress 

exponent studied over a range of indentation depths. 

 

6.3.6.4. Li and Ngan Empirical Model 

This model fits accurately the experimental indentation creep data for most of the 

materials, with a correlation coefficient (R
2
) of more than 0.99. The non-linear curve 

fitting parameters for Eq. (6.8) are summarized in Table 6.5. At lower maximum loads, 

the parameter (k) is negative and then becomes positive at higher maximum loads. 

Therefore, individual parameters in Eq. (6.8) do not show any physical significance. 

 

Table 6.5: Curve-fitting parameters of the -Sn holding segment with Li and Ngan model. 

 

Holding Force (mN) Β t0 m k R
2
 

5.0 90.4 4.851 4.075 -0.00196 0.9988 

15 164.4 4.287 3.858 -0.00247 0.9991 

30 210.3 3.441 3.515 -0.02141 0.9995 

50 315.0 4.442 3.680 0.08535 0.9993 

70 341.4 3.867 3.658 0.13083 0.9994 

 

The indentation size effect (ISE) is dominant at lower holding periods in the 

solder materials, which are widely studied using Eq. (6.8). Indentation displacement rates 

were calculated using Eq. (6.8) for the entire creep data. The representative strain rate and 

stresses were then calculated using Eqs (6.11) and (6.12), respectively. Figure 6.13 (a) 

describes the representative strain rate versus holding time for -Sn. There is a significant 

change in the creep strain rate at 500 seconds. Similar trends were observed for the 
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indentation stress, which was reduced with the holding time at the maximum creep loads. 

This is because of the initial high displacement rate, which consists of the ISE. 

Conversely, the magnitudes of the representative strain rates decrease with an increasing 

maximum hold load because of higher instantaneous indentation displacement. 

Figure 6.14 (a) shows the representative curve-fitting using the Li and Ngan creep 

model for the indentation creep data generated at 30mN load. Figure. 6.14 (b) shows the 

representative log ()-log (  ) plots for different indentation loads. The stress exponents 

were determined for different periods of creep time, and the results are summarized in 

Table 6.6. The change in the stress exponent is from 6 to 5 for a 5mN load, and from 3.5 

to 2.5 for a 70mN load after a 500s holding period, which is almost insensitive to the 

indentation creep loads. Representative strain rates and stresses were reduced 

significantly to a minimum value as the creep time progressed at the maximum load; this 

phenomenon may be attributed to the ISE. A similar study also reported using this 

empirical model on the nanoindentation creep data of SAC387 solder [150]. 

 

Table 6.6: Stress exponent (n) determined using Li & Ngan Model. 

Load (mN) 1500- 2000s 1000- 1500s 500- 1000s 100s - 500s 

2.5 1.029 1.175 1.655 3.367 

5 5.068 5.392 6.125 7.046 

15 4.412 4.831 5.362 6.402 

30 4.080 4.527 4.865 5.590 

50 2.797 3.177 3.970 5.049 

70 2.565 3.013 3.760 5.120 
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Figure 6-13:(a) Representative strain rate versus holding time data generated using (a) Li 

and Ngan model (b) Garofalo model. 

 

 

Figure 6-14: (a) Representative stress exponent measurement at 30mN maximum (b) 

comparison of stress exponent data at all maximum loads fitted with Li and Ngan model. 

6.3.6.5. Modified Garofalo Creep (MGC) Model 

Similar to the Li and Ngan model, the MGC fits accurately with the experimental 

indentation creep data for all the maximum holding loads (see Fig. 6.12 and Table 6.7). 

The representative indentation strain rates and stresses were calculated using Eqs (6.11) 

and (6.12). The insert of Figure 6.13 (b) shows that the representative strain rate is 

parallel to the time axis at the later stage of the creep data. Figure. 6.15 (a) shows the log-

log plots of representative strain rates versus indentation stress, which give the stress 

exponent at 30mN maximum indentation load. These logarithmic plots show three 

distinct stages, which correspond to each term in the MGC model. 

(a) (b) 
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Figure 6-15: (a) Representative stress exponent measurement at 30mN maximum (b) 

Stress exponent over a range of maximum loads fitted with the MGC. 

 

 

Table 6.7: Non-linear curve-fitting parameters of -Sn fitted using the MGC. 

Holding Force (mN) α τ1 β τ2 ζ R
2
 

5.0 194.0 14.5 204.0 258.3 0.094 0.99875 

15 389.9 16.8 403.7 281.4 0.196 0.99921 

30 634.4 15.0 547.5 282.5 0.310 0.99939 

50 844.7 16.0 774.2 262.9 0.532 0.99935 

70 930.2 15.2 838.2 259.2 0.626 0.99938 

 

Figure 6.16 shows the super-imposition of three models between creep times of 

1200 to 2000s. The MGC and linear models have a parallel trend after a creep period of 

1500s. However, the Li and Ngan model shows continuous change in the slope of the log 

strain rate and log stresses. At larger creep displacements (depths), indentation stresses 

underneath the indenter were reduced to a minimum value, and therefore the slope of this 

curve is virtually constant. Moreover, at lower stresses, the possible creep mechanism is 

diffusion creep. But the Li and Ngan model predicts that the stress exponent is equivalent 

to the power law creep at a lower stress regime. These results suggest that the MGC 

model predicts the stress exponent values more accurately for the load-free solder 

materials. 
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Figure 6-16: Superimposition of different creep models on pure Sn creep data at 30mN. 

 

6.3.6.6. Cylindrical Punch Data 

The MGC model was further validated using cylindrical punch indentation creep 

experiments. Unlike the Berkovich indentor, the cylindrical punch experiences a constant 

stress during the creep experiments. Figure 6.17 (a) shows the h-t curves generated at 

different maximum hold loads for -Sn. The steady-state indentation displacement rate 

was calculated using the MGC and linear models. Both these models yielded the same 

results. The indentation strain rate and stress are defined for the cylindrical punch as 

follows [128]: 

1 dh
=        

D dt
                                                  (6.13)                

max

2

4 P
=

D






                                                   
 (6.14)                 

 

where D is the diameter of the indenter. Figure 6.17 (b) shows the log ()-log (  ) 

plots of data generated using the cylindrical punch; the slope of the log ()-log (  ) curve 

is 0.88, which is close to one (1). This indicates that the dominant creep mechanism at 

larger indentation depths (or lower stress) is a diffusion creep. Based on the cylindrical 
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punch creep data, it can be concluded that the MGC model is more rational for extracting 

the creep properties of lead-free solder materials. 

 

 

Figure 6-17: (a) Representative Indentation creep (h-t) curves generated under cylindrical 

punch (b) Stress exponent of pure Sn under cylindrical punch tests. 

 

6.4. Discussion 

6.4.1. Stress Exponent 

Goodall and Clyne reported that a major source of errors in indentation 

displacement rates measurements has to do with the fact that much of the material under 

stress is likely in the primary creep regime [140]. The measured displacement rates or 

strain rates will tend to be higher than those assumed for steady-state creep. Most of the 

nanoindentation experiments are conducted over a shorter duration, and the high gradients 

of stresses and strain rates in the vicinity of the indenter, and the continuously increasing 

size of the deformation zone, contribute to the ISE. Therefore, indentation displacement 

rates measured over the short period of creep experiments will affect creep parameters 

such as the stress exponent and activation energy. 

May and Nix determined the stress exponent of coarse-grain -Sn using the 

indentation creep method and found that the value was about 11.4, which is higher than 

that reported by conventional tensile creep tests [138]. Similar studies have also been 
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conducted on polycrystalline Sn at room temperature, and the stress exponent obtained 

was about 6 to 8. Nai et al. found that the room-temperature tensile stress exponents for 

SAC387 and SAC-reinforced with 0.04% CNT were 8.8 and 11.3 at a high stress regime, 

while at a low stress regime it was about 4.5 for both SAC387 and composite solder 

[151]. 

Han et al. studied the effects of indentation maximum load on the stress exponent 

of the SnAgCu solder, and found the stress exponent to be in the range of 6 to 8 [152, 

153]. Purisotham et al. determined that the stress exponent for Sn3.5Ag0.5Cu/Cu solder 

joints using impression creep techniques is about 4.6 [154]. The creep stress-exponent 

variation might be due to differences in materials preparation, microstructure, data 

acquisition and analysis methodology. 

Table 6.8: Stress exponent obtained from the Li and Ngan Model. 

Load (mN) (1500s < t < 2000s) (1000s < t < 1500s) (500s < t < 1000s) 

5.0 5.068 5.392 6.125 

15 4.412 4.831 5.362 

30 4.080 4.527 4.865 

50 2.797 3.177 3.970 

70 2.565 3.013 3.760 

 

Table 6.9: Stress-exponent of -Sn obtained using Garofalo‟s model. 

Load (mN) Stage-III  Stage-II Stage-I 

5.0 0.982 8.251 16.55 

15 0.988 6.842 12.64 

30 0.998 6.221 13.03 

50 0.997 5.502 11.48 

70 0.933 5.518 12.79 

 

Tables 6.8 and 6.9 summarise the stress exponents derived using the Li and Ngan 

and MGC models, for three time segments. The experimental data shows that the stress 

exponent decreases with the stress at a longer holding time (see Fig. 6.14). Unlike in the 

modified Garofalo model, there are no abrupt changes in the gradients (stress-exponents) 
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in the log-log plots when using the Li and Ngan model. The stress exponent shows the 

power law creep regime (Table 6.8) that is not supposed to operate at a low stress regime 

and high temperature. On the contrary, the stress exponent measured using the Garofalo 

model was close to one (1), which represents the diffusion creep. The representative 

equivalent tensile stresses determined using Eq. (6.1) under the indenter at a longer 

holding period (i.e. 1500 to 2000s), are summarized in Table 6.10. The possible creep 

mechanism at lower stress and 0.65 homologous temperatures is diffusion-controlled. 

Therefore, the stress exponent measured using the Garofalo creep model is more 

acceptable than that of any other model, for lead-free solder materials. 

  

Table 6.10: Typical indentation presentation stress with increased maximum load during 

indentation creep of -Sn. 

Load 

(mN) 

Instantaneous 

depth (ho ,nm) 

Creep depth 

(hc , nm) 

Total depth 

(ho+hc , nm) 
i 

(MPa) 
t (MPa) 

5.0 1095.8 400.0 1495.8 91.0 28.3 

15.0 2062.8 600.0 2662.8 86.1 26.8 

30.0 2957.2 1200.0 4157.2 70.7 22.0 

50.0 3899.9 2400.0 6299.9 51.3 15.9 

70.0 4648.9 2950.0 7598.9 49.4 15.3 

 

A similar creep analysis was conducted using the MGC on furnace-cooled 

SAC387 solder indentation creep data. A summary of the stress exponents at different 

maximum loads is given in Table 6.11. The ISE is very significant in SAC387 solder 

within Stage I (Table 6.11). 

 

Table 6.11: Stress exponent over a range of depths for the furnace-cooled SAC387 solder. 

 

Load (mN) Stage-III Stage-II Stage-I 

2.5 0.635 3.135 12.44 

5 0.988 8.272 16.44 
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15 0.994 6.997 13.38 

30 0.998 6.469 13.29 

50 0.939 5.636 11.72 

70 0.832 5.654 12.90 

 

 

 

Figure 6.18 shows the ISE on the pure polycrystalline -Sn, indium and furnace-

cooled SAC387 solders. These experiment results show that the ISE is more prevalent in 

-Sn compared with indium and SAC387 solder at a creep period of 1000s. This may be 

because of the anisotropy of -Sn compared with the SAC387 or indium. 

 

6.4.2. Stress Exponent of Composite Solder Joints 

The room-temperature stress exponent for as-reflowed SAC387 solder joints was 

found to be 7.6, while for SAC387+0.3Ni and SAC387+0.3Mo solder joints, it was 6.2 

and 6.7 at a high stress regime, respectively, and 6.0 and 5.5 at a low stress regime, 

respectively (see Fig. 6.19 and Table 6.12). Therefore, the stress exponent determined 

Figure 6-18: Indentation size effect (ISE) on (a) polycrystalline -Sn (b) indium (c) SAC387 

solder. 
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from the MGC model (n = 7 to 8) is comparable with that reported by existing literature 

[151–153]. 

 

 

Figure 6-19: Log-log plots of strain rate versus stress for composite solder joints. 
 

 

6.4.3. Effect of Nano-sized Ni and Mo Particles 

Figure 6.20 shows that the additions of nano-sized Ni or Mo particles to the 

SAC387 solder reduce the indentation displacement rates at a given holding period. The 

representative strain rates of the SAC387+0.3Ni and SAC387+0.3Mo solder joints were 

found to be 1.04x10
-4

 s
-1

 and 7.1x10
-5

 s
-1

, respectively, whereas the representative strain 

rate was about 1.8 10
-4

 s
-1

for SAC387 solder, which is almost one order of magnitude 

higher than that of the SAC387+0.3Mo composite solder. 

Table 6.12: Stress exponent of composite solders measured using conventional 

compression creep experiments at room temperature. 

Solder Low stress range High stress range 

SAC387 4.8 11.5 

SAC387+1Mo 7.9 17.2 

SAC387+2Mo 8.7 19.8 
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The addition of nano-sized Mo particles to the SAC387 solder was found to be more 

effective in terms of improving creep resistance of the SnAgCu solder joints than the 

addition of nano-sized Ni particles. 

 

 

Figure 6-20: Effects of multiple reflows on steady-state representative strain rates at the 

1000s hold time of SAC387 composite joints. 

 

6.4.4. Effect of Reflows 

During the thermal reflow processes, the solder bump experiences a temperature 

increase from room temperature to a temperature about 45°C above the melting point of 

the solder, for about 80 seconds. The fabrication process of the microelectronic packages 

involves at least two thermal reflows. The first reflow forms an area array of solder 

bumps on the chip surface, and the second reflow bonds the chip to the substrate. In the 

multi-chip integration, multiple reflows are needed depending on the number of chips to 

be integrated in a package. 

The primary effect of early reflows is to strengthen the solder by microstructural 

refinement and formation of fine IMC particles during the cooling of the solder joints 

[155]. Levis et al. reported that the shear strength of the solder bumps increases in 



 

116 

 

proportion to the reflow times [156]. Figure 6.21 shows that the microstructure changes 

of the SAC387 solder bumps are up to five (5) times of the reflows. Similar changes 

in microstructural features with multiple reflows were observed in Sn-3.8Ag [157] and 

SAC387 solder joints with the ENIG surface-finish [158]. 

 

Figure 6-21: Microstructure changes of the SAC387 ((a) and (b)) SAC387+0.3Ni ((c) and 

(d)) and SAC387+0.3Mo ((e) and (f)) with reference to multiple reflows. 

In this work, it was found that the β-Sn dendrites (the white regions in Fig. 6.21) 

coarsen with the thermal reflows at the same reflow temperature; and the representative 

strain rate increases from the 3rd reflow onwards. The size of the β-Sn dendrites in the 

microstructure during thermal reflow may affect the secondary creep behaviour of the 

SAC387 and SAC387 +0.3Ni solder bumps. The solder bumps are in a molten state 

during reflow, which helps the individual constituent elements inter-diffuse within the 

solder bump and form IMCs during solidification. Subsequent multiple reflows further 

increase the size of the existing IMC particles within the solder bump, as well as at the 

a).SAC387: As-reflowed 

c).SAC387 +0.3Ni: As-reflowed 

b).SAC387: 5
th

 Reflow 

d).SAC387 +0.3Ni: 5
th
 Reflow 

f).SAC387 +0.3Mo: 5
th

 Reflow e).SAC387 +0.3Mo: As-reflowed 

50m   
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interfacial intermetallic thickness. This phenomenon is aggravated further by the multiple 

reflow processes. 

Therefore, it can be deduced that the microstructure changes in the SAC387 

during reflows may have significant effects on the mechanical behaviour of the solder 

joints. Figure 6.20 shows the effect of thermal reflows on the representative strain rate at 

a specified stress for the SAC387 and composite solder joints. The representative strain 

rate decreased up to three reflows, and then increased with additional reflows. Similar 

effects were also observed on the SAC387 solder with an addition of nano-sized Ni 

particles. 

During initial reflows, the Ni-Sn IMCs were precipitated from the solder matrix 

due to the limited solubility of Ni in the Sn. These fine Ni-Sn IMCs improve creep 

resistance of solder through the particle-strengthening mechanism. However, these 

precipitates are not stable in the solder matrix, and subsequent reflows facilitate growth of 

the IMC particles at the expense of other IMC precipitate in the solder. Therefore, after 

the 10th reflow, the creep resistance of the SAC387+0.3Ni solder was similar to that of 

the SAC387 solder during the indentation creep experiments. 

For the SAC387+0.3Mo solder joints, the magnitude of representative strain rates 

is about one order lower than for the SAC387 and SAC387+0.3Ni solder joints. Mo nano-

particles are thermally stable in the Sn matrix because the self-diffusion coefficient at 

25
o
C is negligible (in the order of 10

-37
cm/s), and the chemical segregation of Mo in the 

Sn matrix due to diffusion is rarely possible. Moreover, these nano-sized Mo particles in 

the solder matrix may serve as effective barriers for dislocation motion during indentation 

creep testing. 



 

118 

 

 

6.4.5. Creep Mechanisms 

During an indentation process in very small indents, the deformation zone is very 

close to the free surface, so the characteristic diffusion lengths from underneath 

the indenter and the nearby free surface become short. For large indentations, the room-

temperature diffusion may become inadequate as diffusion paths are longer and 

deformation is expected to approach the bulk behaviour. Mavoori et.al. reported that 

grain-boundary sliding, dislocation glides and climbs are the most active deformation 

mechanisms in the solders [125]. Figure. 6.6 shows an indented impression for SAC387 

VSB solder at 1000s of creep time, and a grain boundary may be observed sliding in the 

indented impression. It is evident that the solder joint undergoes grain-boundary sliding 

during the creep process at room temperature. A similar observation was observed in bulk 

SAC387 solder during room-temperature indentation creep (see Fig. 6.7). 

It was found that the stress exponent is close to unity at greater depths. This 

suggests that the mechanism is likely to be diffusion-controlled.  From Table 6.10, 

representative stress (i) and equivalent tensile stress (t) under the indenter are reduced 

by three orders of magnitude (i.e. to 20MPa from 2GPa). Moreover, at greater depths, the 

volume of the plastically-deformed region is relatively high, i.e. there is a high dislocation 

density structure under the indenter that may cause diffusion flow to occur more easily. 

This is because dislocation channels may act as effective short-circuiting diffusion paths 

for the transport of atoms from the highly-stressed indent core to the stress-free specimen 

surface. 

At lower indentation depths, indentation stress was in the order of 1 to 2GPa, and 

the stress exponent was found to be more than 9, which is the power law break down the 

regime, this is due to dynamic plastic deformation. Wiese et.al. reported that a high stress 
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regime for SAC387 solders predominantly causes particle shearing and bowing between 

particles, which does not depend much on temperature [3]. This accounts for the higher 

stress exponents at a high-stress regime. 

As indentation depth progressed, the stress exponent in the -Sn was reduced 

from 6 to 1. This indicates that the creep mechanism changed from dislocation creep to 

diffusion creep. As illustrated in Tables 6.9 and 6.10, the steady-state stress exponent was 

reduced to 1 as indentation depth increased during the creep process for both the -Sn and 

SAC387 solders. For coarse crystalline metals, dislocation is often the dominant creep 

mechanism, whereas for fine-grain materials, grain-boundary diffusion or grain-boundary 

sliding dominates [3, 150]. It has also been reported that grain-boundary sliding is 

predominant at low stress and moderately high temperatures [150]. 

 These results are contrary to the findings of other investigators, which state that 

the room-temperature stress exponent increases with an increase in Pmax. There are two 

reasons for this: (1) A lower indentation creep period, i.e. the ISE is higher during the 

initial period of creep testing; and (2) The strain-hardening effect of metallic materials. 

The homologous temperature is more than 0.65 for Sn, where diffusion flow is more 

prominent. When nanoindentation experiments were conducted on β-Sn with different 

maximum loads, the stress exponent measured for the entire range of maximum loads 

after 300s was close to one (1). The equivalent tensile stress (Eq. 6.1) after 300nm depth 

may be compared to the low-stress regime in conventional tensile creep. Therefore, the 

MGC model is more capable of characterizing the nanoindentation creep behaviour of 

solder joints. 

 

6.5. Summary 
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1. The MGC model is the best model to characterize the indentation creep 

behaviour of lead-free solders. 

2. The MGC model may be used successfully to analyze the time-

dependent deformation behaviour during the nanoindentation creep 

experiments for the SAC387 and composite solders.  

3. The addition of the nano-sized Ni particles to the SAC387 solder 

lowers the indentation creep rate to a minimum at the third reflow, and 

subsequently increases the indentation creep rate with additional 

multiple reflows.  

4. There are no effects on time-dependent deformation from multiple 

reflows in the SAC387+0.3Mo solder joints. 
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Chapter 7: MECHANICAL PROPERTIES OF IMCs IN SOLDER JOINTS 

7.1. Introduction 

The mechanical characterization of interfacial intermetallic compounds (IMCs) in 

the lead-free solder joints is a challenging task because of lower IMC thicknesses. The 

hardness and elastic modulus of these thin IMC layers can be influenced by the adjacent 

under-bump metallurgy (UBM) and solder bump. Most of the thin-film UBM 

applications, such as Ni(V)/Au, Au/Sn and Ni/Cu/Cu joints, approximate IMC 

thicknesses of not more than 2 to 2.5m. Therefore, characterization of the ultra-thin IMC 

layer in a micro-sized solder joint system is difficult because the measured properties of 

the IMCs are influenced by the adjacent UBM or solder on either side of the interface. 

The ranges of the elastic modulus of the Cu-Sn IMCs have been reported as 90~125GPa 

and 115~145GPa for Cu6Sn5 and Cu3Sn, respectively [62–64, 161]. The elastic modulus 

of the Cu-Ni-Sn and Ni-Cu-Sn IMCs have been reported as 160~205 and 140~170GPa 

respectively [65]. 

The discrepancy in the elastic modulus and hardness is due to the solder-joint 

specimen fabrication conditions, such as the time and temperatures during the aging or 

reflow process. The longer aging period or higher temperatures cause thicker IMC layers 

for nanoindentation experiments [63–66, 161–163], but also alter the microstructure of 

the IMC, which strongly influences the mechanical properties. There has been an attempt 

to determine the mechanical properties of only the IMC phase (Cu6Sn5) using a micro-

pillar compression technique [66]. However, the measured properties were strongly 

affected by the texture and dimensions of the pillar. Table 7.1 shows the typical range of 

mechanical properties for various IMCs in lead-free solder joints [1, 59, 62, 65, 66, 161, 

163–169]. 
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Nanoindentation with CSM attachment is used for extraction of the mechanical 

properties of multilayer thin films. This method was developed especially for 

homogeneous materials [170]. Nevertheless, the nanoindentation method is usually 

applied to solder-joint systems to determine the IMC‟s mechanical properties without 

explicit consideration of the effects of the UBM or solder bump. The indentation response 

for IMC on UBM, or IMC on IMC, is a complex function of the elastic and plastic 

properties of intermetallic layers and the UBM (Fig 7.1). 

 

Table 7.1: Mechanical properties of individual phases in the lead-free solder joints. 

Material Elastic Modulus (GPa) Hardness (GPa) 

Cu 110 ~128 1.5 ~ 2 

Ni 185~210 5 ~7 

Cu6Sn5 85 ~110 4 ~ 6 

Cu3Sn 130 ~150 5 ~ 7 

(CuxNi1-x)6Sn5 150 ~210 5 ~ 7 

(NiyCu1-y)3Sn4 130 ~150 5 ~ 8 

Ni3Sn4 130 ~150 3.5 ~ 7 

 

In order to determine „only IMC‟ properties, a commonly-used rule-of-thumb is to 

limit the maximum indentation depth to less than 10% of the total IMC thickness [171]. 

This rule is experimentally suitable for a uniform IMC with thicknesses between 5 and 

10µm, but this method is not suitable for thin IMC layers with irregular thicknesses. 

Therefore, an alternative method is required to take into consideration the effects of the 

UBM or solder bump, as well as the thin and irregular thicknesses of the IMCs.  
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Figure 7-1: Schematic graph showing substrate effects during nanoindentation 

experiments of multi-layer IMCs in the solder joints. 

 

The objective of this work is to determine the hardness and elastic modulus of the 

interfacial intermetallic layers from ball grid array (BGA) solder joints and microbump 

solder joints. Initially, the nanoindentation experiments were conducted on the BGA 

solder-joint systems with different surface finishes. A 300m-sized SAC387 solder joint 

was selected to determine the baseline mechanical properties. Indentation experiments 

were conducted in different solder joint orientations, such as top, standard and taper 

cross-section solder joints, in order to verify the dependence of the mechanical properties 

on the texture of the interfacial IMC layers. Due to the polycrystalline nature of IMCs, the 

IMCs measured on the standard cross-sectioning (Fig. 7.2), top view sectioning (Fig. 7.3) 

and taper cross-sectioning (Fig. 7.4) were more or less similar [61]. 

For the taper samples, solder-bumped dies were first mounted in a taper position 

using epoxy resin, following which the bumped dies were sectioned and polished 

horizontally (Fig. 7.4). Söderlund et al. used this approach in their study of the 

indentations of multilayer structures, and these samples were termed taper samples [172]. 

Owing to the slanted nature of the IMC layers in the taper position, the thickness of IMC 

layers usually varies from zero at the UBM side to the actual thickness at the solder side 
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(Fig. 7.5). Therefore, depending on the locations of the indents on the IMC layer, i.e. 

whether the indent is close to the solder or UBM side or in the middle of the IMC layer, 

the materials underneath may or may not affect the indentation properties. At both sides 

of the IMC layer, the effects of the underlying layer on the measured hardness and elastic 

modulus need to be separated. 

Therefore, the analysis of nanoindentation for thin films can be adopted in such 

cases [173–180]. If the indents are located in the middle of the layer, the layer may be 

considered to represent the near-true properties of the IMC. On the other hand, if the 

indents are made near the sides of the IMC layers, Joslin and Oliver‟s approach [177], 

which was developed for extracting the thin-film properties from nanoindentation of 

film/substrate systems (hard-film-on-soft-substrate or soft-film-on-hard-substrate), can be 

used to remove the substrate effect caused by the underlying UBM or solder on the 

measured IMC properties. Depending on the position of the indentations on the IMC 

layers, substrate can be considered either hard-film-on-soft-substrate, i.e. Sn-Cu IMC 

layer on Cu UBM substrate, or soft-film-on-hard-substrate, i.e. Ni-Cu-Sn IMC layer on 

Ni substrate [65, 165]. 

In particular, two kinds of film configurations in the lead-free solder joints were 

studied, i.e. Cu6Sn5 and Cu3Sn IMC layers on Cu substrate (hard-film-on-soft-substrate), 

and Ni-Cu-Sn IMC layers on Ni substrate (UBM) (soft-substrate-on-hard-film). This 

approach was also extended to the determination of the mechanical properties of ultra-

fine-pitch thin-film solder-joint systems, including In/Sn/Cu, Sn/Cu, SnAg/Cu, 

SnAgCu/Cu,Sn3.5Ag/ENIG, SnAgCu/ENIG and SnAgCu/Ni (V) microbump joints. The 

test results were compared with the reported values for IMC layers in the lead-free solder 

joints [1, 62, 65, 161, 164–169, 181–187]. 
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7.2. Experimental Methodology 

7.2.1. Standard Cross-sectioning 

The standard method of cross-sectioning is suitable for larger solder joints with 

interfacial IMC thicknesses of more than 5m. Under standard microelectronic 

fabrication conditions (Fig. 7.2 (a)), the maximum thickness of the IMC is usually less 

than 5m. Figure 7.2 (b) shows multiple reflows (three times) of Sn/Cu microbump 

solder joints (10m thickness and 40um diameter). The total thickness of the IMC layers 

in these solder joints is not more than 4m. Determination of the mechanical properties 

over the standard cross-sectioned solder joints is difficult without the influence of 

adjacent layers. This is because the plastic zone underneath the indenter is usually a 

spherical shape; the size of the plastic region is proportional to the depth of indentation 

[188]. 

 

 

Figure 7-2: Standard cross-sectioning (90
o
) of microbump solder joint. 

 

 Under the standard indentation testing conditions, the plastic zone volume can be 

extended to the adjacent UBM or solder layers, which have different elastic-plastic 

properties. Therefore, the slope of the unloading curve is affected by the elastic recovery 

of the adjacent layers. To overcome this, a top-sectioned approach is proposed, which 

allows assessment of the mechanical properties of ultra-thin film IMCs. 

u 

Cu3Sn 

Cu6Sn5 

n 

(b) 
(a) 
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7.2.2. Top Sectioning  

There have been some attempts to characterize the interfacial IMCs in the top 

sectioned solder joints using nanoindentation. This approach has its own challenges as 

IMC layers are usually thin and not consistent. Moreover, sample preparation is tedious 

and there is a need to prepare different samples for each IMC layer [59, 65]. Figure 7.3 

describes the typical top-sectioned joints for indentation experiments. 

  

 

Figure 7-3: Top cross-sectioning (0
o
) of microbump solder joint. 

 

7.2.3. Taper Section 

Taper cross-sectioning involves mounting the solder die at an angle using epoxy 

resin cold casting as described schematically in Fig. 7.4. The standard metallographic 

procedure is used to grind and polish the mounted samples to make a planar view of the 

surface. 

 

     

Figure 7-4: Schematic diagram describing the taper sectioning of the solder joint for 

nanoindentation testing. 
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Figure 7-5: Taper-sectioned die shows the Cu UBM, IMCs and solder in a single die. 

 

Since these samples are sectioned at an angle, the exposed IMC layers reveal a 

wider interfacial IMC area for microbump solder joints (Fig. 7.5), enabling the 

indentation tests to be conducted at the planar-view surface [61, 172]. 

 

7.2.4. Nanoindentation 

In this study, the maximum depth of indentation is about 500nm for larger-

thickness IMCs (solder joint sizes > 200m), and with thinner IMCs the depth of 

indentation is limited to 300nm (solder join size < 100m). The Poisson ratio of the 

material being tested is assumed to be 0.32 [189]. 

 

Figure 7-6: Schematic flow describing the differences between the traditional and S-h/S
2
-

P methodologies for nanoindentation analysis. 

CSM 

Taper 

Cu 

IMC 



 

128 

 

The taper-sectioned microbump joints increase the chances of indentation on the 

right IMC regions. The depth of indentation space between the adjacent indents was fixed 

at 10 to 30μm, to ensure that these results were not affected by neighbouring indents. The 

indentation data was analysed using commercial software (Origin Pro 8.0) for 

determination of the gradients of the S-h (stiffness-displacement) and S
2
-P (stiffness

2
-

load) curves. A typical analysis approach was used to determine the mechanical 

properties of intermetallic films in the ultra-fine pitch solder joints described in Fig. 7.6.  

 

7.3. Analysis Methodology   

7.3.1. CSM Approach 

The continuous stiffness measurement (CSM) approach has significantly 

improved the capabilities of nanoindentation systems. A small sinusoidal signal is 

imposed on a DC signal to drive the motion of the indenter, and the response of the 

system is analysed using a frequency-specific amplifier. As a result, a harmonic force is 

imposed and adds to the normal load which acts on the indenter. The phase angle between 

the two forces and indentation displacement at corresponding excitation frequency is 

continuously measured as a function of depth. The contact stiffness can be expressed as a 

function of depth by solving for the in-phase and out-of-phase segments of the response. 

Figure 7.7 shows how the indentation system can be expressed as a simplified 

dynamic indentation model, and the overall response is dependent on the mass of the 

indenter (m), the compliance of the load frame (Cf), stiffness of the indenter frame (Kf), 

the spring constant of the leaf springs supporting the indenter (Ks), the damping 

coefficient due to the air in the gaps of the capacitor system (C), and the contact system. 

The imposed driving force can be expressed as   

          
exp( )osP P i t                                               (7.1)   
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The displacement response of the indenter is  

      
( ) exp( )oh w h i t                                                 (7.2)        

 

The displacement signal can be expressed as  

2
1

2 2 21 1

( )

os
s

P
K m C

h w S K
 

   
      

   

                      (7.3)     

 

The phase difference can be expressed as   

 
1
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s
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
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                                  (7.4)           

 

Therefore, the contact stiffness can be determined from the displacement signal or phase 

difference as  

 
 

1

1

2

1

cos
f

os
s

S K
P

K m
h w

 





 
 
  
  
 
 

                   (7.5)          

 

where Pos is the magnitude of oscillation load, h(w) is the magnitude of the resulting 

displacement conciliation, ω is the frequency of the oscillation and φ is the phase angle. 
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Figure 7-7: Schematic of the dynamic indentation model [190]. 

 

 

The CSM method usually generates contact stiffness (S), indentation displacement 

(h) and indentation load (P) at a given frequency. Amit and Zeng have developed analysis 

methodology to determined mechanical properties of multilayer films using CSM data, 

and their method was successfully demonstrated on several thin-films and multi-layer 

thin-films [191, 192]. 

 

7.3.2. S-h and S
2
-P Analysis 

Careful attention has to be paid to the analysis of the nanoindentation data 

obtained from the solder-joint system. The most crucial thing is to ensure the indents are 

on the correct regions, so these indents can be located after indentation tests. Moreover, 

due to the slanted nature of the sample, there is a need to ensure sufficient depth of the 

IMC under the indentation sites. Several researchers have focused on extracting the 

elastic modulus and hardness directly from the portion of the graphs where the elastic 

modulus and hardness are independent of depth [59, 65, 166, 169]. Such an approach 

minimises the contributions from sink-in brittle materials and pile-up from plasticity, 

which may cause the contact area to be either overestimated or underestimated 

respectively. This would therefore improve the accuracy of the results. However, the 
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approach fails to take into account the effects of the underlying substrate layer, which 

may affect the results adversely. As the depth of indentation increases, the effects from 

the underlying materials may also increase, and thus the measured mechanical properties 

become composite values of the underlying and top-layer materials.  

In this study, the calculation of the elastic modulus and hardness is based on Joslin 

and Oliver‟s approach [177], in which the mechanical properties of the IMC layers are 

analysed using the parameter P/S
2
 as a function of the indentation depth to minimise the 

effects of the underlying materials. For a perfect contact indenter tip, the contact area is  

                                                        (7.6)               
 

 

and                                                                               (7.7)                             

 

where hc is the contact depth and  = 0.75 is a constant. For a homogeneous material, the 

elastic modulus (E) is a constant and S is the linear proportion to the indentation contact 

depth according to Eq. (5.4). Combining Eq. (5.4) with Eqs. (7.6) and (7.7), and then 

rearranging the equation gives 

                        (7.8)   

            

 

 

By plotting the harmonic contact stiffness S against displacement h for each of the 

indentation tests – namely, the S-h curve – the gradient of the linear portion of the graph 

can be equated to 2 24.56rE   and the value of Er can be determined (where 

    
 

    
   is the reduced modulus and   

 

√ 
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curve). In addition, if the hardness relationship cH P A is substituted into Eq. (5.4) and 

the terms are rearranged, a new equation is obtained [177]: 

                                            (7.9)                   

 

This equation suggests that for a homogeneous material with constant elastic 

modulus and hardness, PS 2
 is a constant and independent of indentation depth, h. By 

plotting S
2
 against P – namely, the S

2
-P curve – the gradient of the linear portion of the 

graph can be equated to  2 24 1rE H  , and the value of H can be determined if Er is 

known. It may be observed that the ranges for the linear portion of the S-h curves and the 

S
2
-P curves may not correspond. In this case, the range of h for which Er is a constant 

should first be determined, and this range would be mirrored onto a range of indentation 

loads, P. Within this range of P, the linear segment for which hardness is a constant 

would then be determined. The “reduced modulus” Er takes indenter deformation into 

consideration. To find the elastic modulus of the sample, the following equation is used: 

                                      (7.10)                              

 

where E and  are the elastic modulus and Poisson ratio respectively, and the subscripts i 

and m refer to the indenter and sample, respectively. For the commonly-used diamond 

indenter tip, Ei = 1141GPa and i = 0.07. 

 

7.4. Results  

7.4.1. Oliver and Pharr Method 

Fig. 7.8 shows the typical load (P) displacement (h) curves of different phases of 

the SnAg/Cu microbump solder joint. It can be understood from the P-h curve that the 
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hardness of the Cu3Sn phase is higher than that of the Cu6Sn5 phase, since the former 

takes a higher load to reach 500nm indentation depths. The stiffness of the IMCs in the 

solder joint was determined from the slope of the unloading curve using the Oliver and 

Pharr method. However, elastic recovery of indentation displacement (he) during the 

unloading curve strongly depends on the elastic modulus of the indented materials. 

For homogeneous and bulk material, the elastic recovery during unloading is the 

true representation of the indented material. However, for multilayer material, the elastic 

recovery is a composite effect of the indented underlying layers, since the indenter passes 

through the different distinct layers of materials, which gives a composite elastic 

recovery. Sometimes, cracking of the IMC layer may take place during the indentation. 

This cracking process releases the elastic energy to create new surfaces in the IMC layer. 

This phenomenon affects the elastic recovery of materials during the unloading 

indentation process. 

The indentation behaviour of the IMC phases also depends on the rate of 

loading/unloading during the indentation process. Fig. 7.9 shows the effects of the 

indentation strain rate on the loading/unloading behaviour of the P-h curves. At lower 

strain rates, elastic recovery is offset by creep deformation, which thus lowers stiffness, 

while at higher strain rates with no creep effects, the measured stiffness will be higher. 

 

Figure 7-8: Representative P-h curves for SnAg/Cu microbump solder joint. 
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Figure 7-9: Effect of strain rate on indentation of behaviour of (a) Cu6Sn5 (b) Cu3Sn IMC. 

 

7.4.2. Continuous Stiffness Measurement Method 

Figure 7.10 depicts the typical indents made on the interfacial IMC layer in a 

planar view of the SnAgCu/Cu solder joints. After selective etching, the IMCs were 

slightly polished until a flat IMC surface was obtained. The polishing process was 

conducted meticulously to ensure that too much IMC was not removed. For the tests on 

the planar surface, a test array of 2x4m was conducted with a distance of 5m between 

the measurements. Figure 7.11 shows the hardness and elastic modulus variation with 

indentation depth for indentations made on Cu6Sn5 and Cu3Sn IMCs in the reflowed and 

500h-aged solder joints. For Cu3Sn, the study was conducted on the aged solder joints 

because the Cu3Sn IMC layer thickness did not exist in the as-reflowed condition. The 

elastic modulus as a function of depth is shown in Fig. 7.11(a). The value of the modulus 

becomes independent of the depth when the displacement increases to 80–100nm. 

 

(a) (b) 
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Figure 7-10: Representative indentation impressions at 300nm depth (a) Cu3Sn (dark 

phase) and (b) Cu6Sn5 (bright phase) 

 

The hardness described in Fig. 7.11 (b) is a function of the applied indentation 

load on the surface and the corresponding projected contact area. The value of hardness 

decreases with the increment of the indentation depth. For multilayer structures, where 

the underlying Cu layer (hardness of the Cu is 1.4GPa) acts as soft substrate, and the 

indenter tip penetrates the top IMC layer, the elastic-plastic deformation in the underlying 

Cu substrate generates more elastic deformation, and hence the resultant measured 

hardness is lower than expected. Moreover, when the indenter penetrates to the 

underlying layer, the indenter contact area and indentation load are shared between the 

top and underlying layers. This situation leads to a substrate effect on the measured 

mechanical properties. 
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Figure 7-11: (a) CSM modulus and (b) hardness of IMCs in SnAgCu/Cu Solder joints 

 

 

7.4.3. S-h and S
2
-P Analysis 

7.4.3.1. Elastic Modulus 

Preliminary studies showed that the taper approach exposed a wide area of IMC 

phases and ensured an increase in the area available for indentation (Figs 7.4 and 7.5). 

This method of sectioning increases the overall effective indent area for a given IMC 

layer and reduces the impact of the neighbouring layers on the indentation results. 

Indentation experiments can be carried out simultaneously over the different layers in the 

solder joints from the single specimen. However, as shown in Fig. 7.5, it was still not 

possible to eliminate the uneven layered structure of the IMC by using taper samples. 

Therefore, it was crucial to establish the indentation site to ensure that the indents were 

made on the right region of the IMC phase.  

Figure 7.12 shows typical SnAgCu/Au/Ni solder joints fabricated at 260
o
C and 

aged at 150
0
C for 500hrs, which gives an IMC thickness of less than 2.5m. On the other 

hand, taper-sectioned solder joints were used to provide a wider area for the mechanical 

property measurements using the nanoindentation. Figure 7.13 describes the taper cross-
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sectioned SnAgCu/Cu and SnAgCu/Au/Ni solder joints. The contrast between the Cu-Ni-

Sn and Ni-Cu-Sn phases was too low to be distinguished under microscopy (Fig. 7.13 

(b)). The thickness and composition of the IMC layers changed from the UBM to the 

solder side, and therefore the indent location on the solder joints needs to be separated 

from the post-indentation analysis, because of the significant variations between the 

hardness and modulus. Therefore, post-indentation analysis was conducted to separate the 

indentation data of these IMC phases based on their P-h curves. 

For the Cu/SnAgCu solder joints, two distinct layers can be clearly identified at 

the solder-joint interface after isothermal aging at 150
o
C for 500hrs, as shown in 

Appendix B [Fig. B.2 (a–f)]. However, for the Ni/Au surface (see Fig. 7.12), the contrast 

between the two intermetallic layers is low, and therefore the assessment of individual 

IMC layer‟s hardness and modulus is requiring special attention.  

For homogeneous or single-layer materials, the gradient of stiffness versus 

indentation displacement is a constant.  The gradient will be positive for soft-film-on-the-

hard-substrate conditions, whereas for hard-film-on-the-soft-substrate, the gradient will 

be negative. Therefore, using S-h or S
2
-P post-indentation analysis, the actual properties 

of interfacial IMCs can be determined. The effects of the substrate on the measured S-h 

and S
2
-P curves are described in Fig. 7.14 and Fig. 7.15, respectively. 

Some of the S-h curves deviate from the linearity as the depth of indentation 

increases, which indicates a change in the elastic modulus (Eq. (7.8), Fig. 7.14). In 

general, the S-h curves could deviate from linearity for the following reasons: 

(a) Substrate effects, i.e. soft substrate or hard substrate in comparison with 

the film. 

(b) Changes of the elastic modulus as a result of strain hardening or softening;  
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(c) Neighboring layers where an indent has been made at the interface of 

different layers; and 

(d) Free-surface effects – residual stresses at the interface and indenter-tip 

imperfections. 

 

 
 

Figure 7-12: Cross-sectional view of taper-sectioned as reflowed SAC387/OSP/Cu joints 

  
 

 

Figure 7-13: Representative micrographs showing the location of indents for (a) 

SAC387/OSP/Cu (b) SAC387/Au/Ni solder joints. 

 

Upon subsequent examination, it can be concluded that not all the S-h curves 

show the same change as indentation depth increases. Therefore, a second postulation 

indicates a difference in the elastic modulus of the IMC with depth does not hold. 

Apropos to the third reason, even for the indents which are solely on a IMC layer, the 

  

 

Cu3Sn 

Cu6Sn5 

SnAgCu 

Copper 

(a) (b) 

SAC387 

Standard sectioned Taper sectioned 
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curves indicate the non-linearity, even the impact from the neighbouring far from their 

influence. Therefore, the most likely explanation, which affects the linearity of the curves, 

is that it is due to the substrate effects. 

 

 

Figure 7-14: Representative S-h curve for nanoindentation on Sn-Cu IMC in SAC387/Cu 

solder joints in as-reflowed condition. 
 

 

For the indents made over the intermetallic region, the S-h curve deviates 

downwards with an increase in depth, as shown in Fig. 7.14. The decrease in gradient can 

be attributed to the effects of the underlying substrate, since both the modulus and 

hardness of the Cu substrate beneath the IMC layer are lower than those of the IMC layer 

[165]. This situation is similar to the case of indentation of hard-film-on-soft-substrate 

[177]. 

In fact, some of the S-h curves also exhibit non-linearity at the beginning. This 

initial non-linearity cannot be explained by the effects of the substrate alone; some other 

possible reasons could be indenter shape and size. Table 7.2 summarizes the gradients 

measured using Eq. (7.8), as well as the corresponding reduced modulus and 

intermetallic-layer modulus. The changes in the gradients of the S-h curves in different 

indentation sites are due to the thickness of the intermetallic layer beneath the indentation 
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site. Figure 7.13 (b) describes indentation site 1, which is closer to the UBM; therefore 

the underlying IMC thickness will be thinner in the order of a few 10s of nanometres. For 

indentation site 2, which is closer to the solder side, the IMC thickness will be greater 

(close to the actual thickness of the IMC layer). In addition to the IMC thickness 

variation, there is also composition within the intermetallic layer from the UBM side  

towards the solder. 

 

Figure 7-15: Representative S
2
-P curve for nanoindentation on Sn-Ni-Cu IMC in 

SnAgCu/Au/Ni solder joints in as-reflowed condition 

 

7.4.3.2. Hardness  

The square of contact stiffness (S
2
) is linearly proportional to the indentation load  

(P) for homogeneous material or single layers of constant modulus (Er) (Eq. (7.9)). Using 

the smaller range of P corresponding to the linear portion of the S-h curves, the resulting 

S
2
-P curves are mostly not linear throughout the entire S-h segment. The curve can be 

considered as a case of hard-film-on-soft-substrate (Fig. 7.15). This also can be explained 

by the underlying UBM layer effect, which causes a deviation in the linearity of the 

graphs. Table 7.2 summarizes the gradients measured from Eq. (7.9), as well as the 

corresponding indentation hardness. 
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7.4.4. Effects of Multiple Reflows and Isothermal Aging  

The mechanical properties of interfacial IMC in SAC387 solder joints were 

studied using a similar analysis. The elastic modulus and hardness of the Cu-Sn IMCs did 

not change with multiple reflows and isothermal aging. The effects of multiple reflows 

and isothermal aging on mechanical properties are summarized in Tables 7.3 and 7.4, 

respectively. 

 

7.5 Discussion 

There was little contrast and composition difference between the interfacial IMCs 

formed in SAC387/Au/Ni solder joints. It was hard to distinguish between the indents on 

(Ni1-y,Cuy)3Sn4 or (Cu1-x,Nix)6Sn5. Based on the post-indentation analysis, the  indentation  

properties  of  the (Ni1-y,Cuy)3Sn4  and (Cu1-x,Nix)6Sn5 layers can be separated due to 

significant differences in the hardness of the IMC phases. Therefore, the mechanical 

properties of the IMCs reported in this study are of Cu6Sn5 and Cu3Sn from the Cu/OSP 

surface-finish, and of (Ni1-y,Cuy)3Sn4 and the (Cu1-x,Nix)6Sn5 ternary layer from the Ni/Au 

surface-finish. The modulus and hardness for (Ni1-y,Cuy)3Sn4 and (Cu1-x,Nix)6Sn5 were 

highest, followed by Cu3Sn, and then Cu6Sn5. 

The results of this work are comparable with reported data from existing literature 

(Table 7.5). This reported data was obtained from the larger IMC thicknesses of the 

casted or high-temperature annealed solder joints; thus the reported elastic modulus 

ranges between 97~123.3 and 114.8~135GPa for Cu6Sn5 and Cu3Sn respectively [1, 59, 

62, 65, 161, 163–169, 182, 183, 186, 187]. For the Ni-Cu-Sn ternary layers, an 

independent analysis was conducted, and the modulus values were 164.9~206GPa for 

(Cu1-x,Nix)6Sn5 and 130~145GPa for (Ni1-y,Cuy)3Sn4 [59, 65]. For the Cu-Sn IMCs, 

Cu6Sn5 showed a stable trend (no variation) of modulus and hardness with aging time 
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(Table 7.5). The hardness and modulus of Cu3Sn are higher than those of Cu6Sn5. This 

could be due to the higher Cu content in Cu3Sn than in Cu6Sn5. However, the Ni-Cu-Sn 

layer shows a decreasing trend of hardness and modulus with aging time. This may be 

due to the dynamic changes in the composition of the IMC during the solid-state diffusion 

process, when the morphology and crystal structure of the Ni-Cu-Sn IMC layers is 

changing, which results in changes to the mechanical properties.  While both (Cux,Ni1-

x)6Sn5 and (Niy,Cu1-y)3Sn4 are ternary IMCs, their moduli are significantly different due to 

their different crystal structures. Initially, after the reflow process, (Cux,Ni1-x)6Sn5 IMC is 

formed at the expense of Cu atoms from the solder. Therefore, the indents made on these 

IMCs are likely the properties of (Cux,Ni1-x)6Sn5, which has higher modulus and hardness 

values than those of the (Niy,Cu1-y)3Sn4. 

After subsequent aging, the Cu from the solder gets depleted, causing a decrease 

in the amount of Cu diffusing into the interface during the aging, and resulting in the 

growth of (Niy,Cu1-y)3Sn4 between the Ni layer and (Cux,Ni1-x)6Sn5 layer. After further 

aging, there is considerable expansion of the (Niy,Cu1-y)3Sn4 layer, caused by the expense 

of the (Cux,Ni1-x)6Sn5 layer from the interface and supply of Ni atoms from the substrate. 

The indents made on these samples are likely to be the average mechanical properties of 

both the (Cux,Ni1-x)6Sn5 and (Niy,Cu1-y)3Sn4. As the percentage of Cu from solder is only 

0.5%, (Cux,Ni1-x)6Sn5 gets transformed to (Niy,Cu1-y)3Sn4 at the interface with consistent 

teeming of Ni atoms from the substrate. This results after aging for 500h. 
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Table 7.4: Elastic modulus and hardness of interfacial IMCs with isothermal aging. 

IMC type 
Aging time (h) 

0 100 200 300 500 

E of Cu6Sn5 (GPa) 110.5 114.7 108.5 112.3 112.8 

E of Cu3Sn (GPa) - - 130.9 120.0 135.6 

H of Cu6Sn5 (GPa) 6.8 6.5 6.2 7.3 5.5 

H of Cu3Sn (GPa) - - 7.6 7.7 6.6 

 

A thick layer of (Niy,Cu1-y)3Sn4 is formed close to the pad side, with a extremely 

thin layer of (Cux,Ni1-x)6Sn5 close to the solder side. The indentations made on this longer 

aging sample are likely to be the measurement of the mechanical properties of (Niy,Cu1-

y)3Sn4, which has a much lower modulus and hardness. These results indicate that there is 

a gradual reduction of the elastic modulus for the Cu-Ni-Sn IMC to a lower modulus and 

hardness (Ni-Cu-Sn IMCs) with aging time, as the IMC composition and crystal structure 

change with aging time. 

  

Table 7.5: Mechanical properties of intermetallic layers measured using nanoindentation. 

Lead free Joint Intermetallic 
S-h & S

2
-P Analysis 

Condition 
E (GPa) H GPa) 

 

Ni/Au/SAC305 

(Cux,Ni1-x)6Sn5 165±11.6 8.2±1.0 As reflowed at 265
o
C 

(Niy,Cu1-y)3Sn4 137 ±5.9 7.2±0.9 Aging at 150
o
C for 500h 

 

Cu/OSP/SAC305 

 

Cu6Sn5 110 ±2.6 6.8±0.4 As reflowed at 265
o
C 

Cu6Sn5 102 ±5.7 5.5±0.6 Aging at 150
o
C for 500h 

Cu3Sn 136 ±4.3 6.6±0.5 Aging at 150
o
C for 500h 

Ni(V)/Au/SAC305 Ni-Cu-Sn 143 ±6 8.2±0.3 Aging at 150
o
C for 500h 

Cu/Sn-Ag-Bi Cu6Sn5 102 ± 7 6.7±0.3 Aging at 150
o
C for 500h 

 Cu3Sn 138 ± 5 5.7±0.2 

As reflowed at 265
o
C 

subsequently Aged at 150
o
C for 

500h 

Cu/SnAg Cu6Sn5 112 ± 5 6.7±0.5 

 Cu3Sn 134 ± 5 5.7±0.7 

Cu/Sn Cu6Sn5 109 ± 4 6.7±0.3 

 Cu3Sn 135 ± 6 5.7±0.5 

Cu/ Sn–3.5Ag 
Cu6Sn5 112 ± 5 6.7±0.7 

Aging at 175
o
C for 1000 h  [186] 

Cu3Sn 134± 6.7 5.7±0.4 

Cu /Sn-3.5Ag Cu6Sn5 123 ± 6 5.9±0.2 As reflowed at 240°C   [166] 
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Ni/Sn-3.5Ag Ni3Sn4 140 ±7 8.1± .3 As reflowed at 240°C  [166] 

Cu /Composite 

solder 

Cu6Sn5 108 5.9 Indent in Cu6Sn5          [168]          

Cu3Sn 136 6.5 Indent in Cu3Sn layer   [168]          

Cu/OSP/SnAgCu 
Cu6Sn5 97 ±3 ---- As reflowed condition [65] 

Cu3Sn 114 ± 1 ---- As reflowed condition    [59, 65] 

Ni/Au/SnAgCu (Cu0.78Ni0.22)6Sn5 206± 5 ---- As reflowed condition    [59, 65] 

 (Ni0.51Cu0.49)3Sn4 145 ± 3 ---- Aging at 125°C & 500h  [59, 65] 

 

However, similar reductions in mechanical properties were not observes in the 

Cu-Sn IMCs, because the degree of change in composition and structure with aging time 

was unaltered. Comparing the modulus and hardness values of the Cu6Sn5 (hexagonal 

structure)-based IMCs, the modulus of the (Cu1-x,Nix)6Sn5 with Ni substitution was higher 

than that of the Cu6Sn5. Similarly, with the Ni3Sn4-based IMCs, the Cu substitution did 

not show any significant change in the elastic modulus. The elastic modulus of (Niy,Cu1-

y)3Sn4 is comparable with the reported values of Ni3Sn4 (130~140GPa) [166]. Therefore, 

it may be suggested that (Cux,Ni1-x)6Sn5 with Ni substitution is a significant improvement 

over the elastic modulus of Cu6Sn5. 

 

7.6. Summary 

1. Nanoindentation measurements were conducted on “taper” sections of 

actual BGA SAC305 solder joints with OSP and an electrolytic Ni/Au 

surface finish. The “taper” approach produces consistent results for 

modulus and hardness for Cu-Sn, and Ni-Cu-Sn IMC layer thicknesses as 

thin as 2.33μm, and 2.30μm in as-reflowed conditions.  

2. UBM layer effects were identified and eliminated by fitting the linear 

portion of the S
2
-P and S-h curves. The elastic moduli of Cu6Sn5 and 

Cu3Sn after 500h aging were found to be 102 and 136GPa respectively, 

while hardness values were found to 5.5 and 6.8GPa, respectively.  
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3. There were no significant changes to the mechanical properties of Cu-Sn 

IMCs after isothermal aging. Changes in the modulus and hardness of the 

Ni-Cu-Sn IMC layer were observed with aging at 150
o
C for 500h.  

4. Changes in the elastic modulus and hardness of the Ni-Cu-Sn IMC were 

observed due to the dynamic changes in composition, morphology and 

crystal structure of the IMCs during the solid-state diffusion process. 
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Chapter 8: MECHANICAL PROPERTIES OF IMCs IN MICROBUMP JOINTS 

8.1 Introduction 

Microbump solder joints with a through silicon via (TSV) interconnection provide 

electrical connectivity between different functional dies and other potential benefits, such 

as high density interconnection with fine-pitch, less thermo-mechanical strain due to the 

coefficient of thermal expansion (CTE) mismatch with silicon chips, and excellent 

thermal conductivity [159, 160]. However, the reduced interconnect size poses associated 

mechanical reliability issues. This is because the formation and growth of intermetallics 

in solder joints increases during 3D IC-package fabrication. 

These intermetallics are inherently brittle, and moreover the formation of a Cu-

rich intermetallic compound (IMC) invariably accompanies the formation of Kirkendall 

voids within the IMC layer interface. This lead to a change in the microstructural 

morphology (grain size, Kirkendall voids, grain boundary orientation etc.) of the IMC 

layers, from bulk joints to microbump joints. This greatly influences the electrical and 

mechanical reliability performance of the microelectronic packages. Therefore, 

knowledge of the mechanical behaviour of microbump solder joints is an important 

technological issue in advanced 3D-microelectronic packaging applications. 

The fabrication, and a detailed study, of diffusion kinetics of the Sn/Cu solder 

joint is discussed in Appendices A, B and C. Unlike the bulk solder joints, the IMC layers 

in the microbump joints are extremely irregular and thinner, i.e. 1.5 and 5.5m for as-

reflowed and isothermal aging at 150°C for 500 hours, respectively (see Figs 8.1 and 8.2). 

It is therefore necessary to separate the effects of underlying layers, which was discussed 

in Chapter 7. Figure 8.3 shows the representative taper-sectioned Sn/Cu microbump 

solder joints used in this chapter (Chapter 8). 

 



 

148 

 

Figure 8-1 Morphology of Sn/Cu joints with reference to multiple reflows at 260
o
C. 

 

  

Figure 8-2: Morphology of Sn/Cu joints with isothermal aging at 150
o
C. 

 

 

 

 

 

 

 

 

 

 

As reflow 150h 

300h 500h 
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Figure 8-3: Indented impressions on the taper-sectioned Sn/Cu microbump solder joints.   

 

 

8.1.1. Subtract Effects from S-h Analysis 

It may be observed that some of the S-h curves deviate from the linearity as the 

depth of indentation increases, and this indicates the change of the elastic modulus with 

the indentation depth [Eq. (7.8) and Fig. 8.4]. The most likely reason the S-h curves‟ 

linearity was affected is the substrate effects [172]. For the indents made on the Cu3Sn 

IMC, the S-h curve deviates downwards with an increase in depth, as shown in Fig. 8.4. 

 

 

Figure 8-4: Contact stiffness versus indentation displacement of Cu3Sn. 

 

 

Table 8.1: S-h curve-fitting parameters based on Joslin and Oliver‟s method. 

Gradient Reduced Modulus  (GPa)  Sample Modulus (GPa) Location of  the indent spot 

779.29 134.75 133.9 Cu3Sn Layer 

781.44 135.12 134.4 Cu3Sn Layer 

632.46 109.36 106.08 Cu6Sn5 Layer 

588.62 101.78 98.01 Cu6Sn5 Layer 
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The decrease in gradient is likely to be due to the effects of the underlying Cu 

under bump metallurgy (UBM), since both the elastic modulus and hardness of the Cu 

substrate beneath the Cu3Sn IMC are lower than those of the IMC layer [61]. This 

phenomenon is similar to the case of hard-film-on-soft-substrate [177]. Table 8.1 

summarizes the gradients of the S-h curve, as well as the corresponding reduced modulus 

and the elastic modulus of the IMC layers. 

 Figure 8-5: Square of Contact stiffness versus indentation load of Cu3Sn. 

 

 

From Fig. 8.3, indentation sites located closer to the UBM side experience the effects of 

UBM, since IMC thickness is extremely superficial. For indentation sites closer to the 

solder, IMC thickness in the order of microns gives more representative IMC properties. 

 

8.1.2. Subtract Effect from S
2
-P Analysis 

The S
2
-P behaviour of IMC layers can again be understood by the characteristics 

of the indentation of hard-film-on-soft-substrate (Fig. 8.5), due to the effects of the 

underlying UBM, which causes the deviation in the linearity of the curves. Table 8.2 also 

summarizes the average hardness of Cu-Sn IMCs. 
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Table 8.2: S
2
-P curve-fitting parameters based on Joslin and Oliver‟s method. 

Gradient (x10-9) Hardness (GPa) Location of the  indent spot 

3.42 7.0 Cu3Sn Layer 

3.69 6.7 Cu3Sn Layer 

2.75 5.9 Cu6Sn5 Layer 

2.80 5.0 Cu6Sn5 Layer 

 

Figure 8.6 shows the differences in the grain sizes in the interfacial IMCs between 

the macro-sized and microbump Sn/Cu solder joints. Microbump joints contain at least 3 

to 10% Kirkendall voids, depending on the aging conditions and solder volume. 

Therefore, the hardness and elastic modulus may be expected to show higher scatter for 

the microbump solder joints than for the bulk solder joints. 

 

 
 

Figure 8-6 : Effects of interfacial IMC grain size with volume of Sn over the Cu substrate. 

 

 

8.2. Sn 2.7Ag Microbump Solder Joints 

The fabrication of electroplated Sn-Ag solder joints is discussed in Appendix A. 

Figure 8.7 shows the Sn2.7Ag/Cu microbump solder joints used for indentation 

experiments to study the interfacial Cu-Sn IMC‟s mechanical properties. Typical taper 

Microbump joint 

Kirkendall voids 

100m Sn/Cu joint 
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cross-sectioned SnAg/Cu microbump solder joints were used for the indentation 

experiments described in Figs 8.3 and 8.8. The gradients of the S-h and S
2
-P plots include 

a depth range of 20 to 100. The initial 20nm depth data was removed from the analysis to 

avoid the influence of surface roughness and strain hardening (caused by polishing), and 

to minimize indenter-tip roundness. Besides the IMCs, the mechanical properties of the 

solder region and UBM were also determined.  

Figure 8.9 shows a representative graph for the Cu3Sn from the SnAg/Cu solder 

joint. The blue data points were obtained directly from the readings of the continuous 

stiffness measurement (CSM). It may be observed that the slope of the S/h deviates from 

the initial linearity as indentation depth increases, illustrating the substrate effects. It was 

found that the linear portion of the S-h curve coincides with the linear or near-linear 

portion in the S
2
-P plot. Table 8.3 summarizes some of the test results for SnAg/Cu. 

 

 

Figure 8-7: Typical SnAg/Cu microbump solder joints used for the measurement of 

mechanical properties. 
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Figure 8-8: Taper cross-sectioned SnAg/Cu solder joint for indentation experiments. 

 

 

Figure 8-9: Representative S-h and S
2
-P curve for Cu3Sn IMC phase. 

 

 

Table 8.3: S-h and S
2
-P analysis of 50m SnAg/Cu solder Joints. 

Test 

No. 

S-h analysis S
2
-P analysis CSM Oliver & Pharr 

method 

Remarks Depth 

Range 

(nm) 

E 

(GPa) 

Load range 

(mN) 

H 

(GPa) 

E 

(GPa) 

H 

(GPa

) 

E 

(GPa) 

H 

(GPa) 

54 60-140 59.4 0.018-0.13 0.37 39.8 0.17 46.4 0.21 Solder 

67 90-140 64.2 0.036-0.10 0.52 27.5 0.13 36.2 0.16 Solder 

51 30-70 130.3 0.099-0.69 8.15 83.9 3.60 90.7 1.46 Cu3Sn 

92 25-80 135.3 0.16-1.23 7.67 121.5 6.62 87.9 1.82 Cu3Sn 

11 25-90 113.6 0.16-1.62 6.70 121.7 7.33 89.5 2.98 Cu6Sn5 

4 30-90 115.7 0.27-1.53 6.74 119.9 7.62 88.1 2.77 Cu6Sn5 

15 70-240 98.5 0.10-0.87 3.49 24.3 0.30 78.7 1.83 Ag3Sn 

71 40-110 103.9 0.35-1.17 2.40 121.2 4.65 111.6 1.50 Ag3Sn 
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It may be noted that results from Table 8.3 were derived using the Oliver & Pharr 

method, i.e. stiffness calculated from the slope of the unloading curve gives inconsistent 

results compared with the results from the S-h and S
2
-P curve analysis. For the CSM, 

stiffness was measured continuously at every 2nm, or every cycle of unloading during the 

loading phase. The final modulus value can be obtained from the linear slope of the 

stiffness-indentation depth. Therefore, the mechanical properties of interfacial IMCs 

measured using S-h and S
2
-P analysis the CSM method are more precise, with a minimum 

standard deviation. 

 

8.3. SnAgCu/Au/Ni (V)/Cu Microbump Solder System 

SnAgCu/Au/Ni (V) is another microbump joint using chip-level interconnection 

in advanced packaging applications. A typical 40m bond pad with Au (100nm)/500nm 

(Ni (V)/500nm (Cu) surface finish is used for the fabrication of microbump solder joints.  

The total interfacial IMC layer thickness formed at the interface is less than 1.5m after 

the standard fabrication process. The determination of the mechanical properties of these 

microbump solder joints is a challenging task. A typical taper cross-sectioned 

SnAgCu/Au/Ni (V) microbump is described in Fig. 8.10, which gives a wider area of Cu-

Ni-Sn IMC for indentation testing. 

The reported values of the Cu-Ni-Sn IMCs are in the order of 160 to 205GPa [59, 

65]. The indentation spot on the Cu-Ni-Sn IMC that is close to the solder side shows no 

substrate effect because of the higher thickness of the Cu-Ni-Sn at the indentation spot. A 

similar analysis was also applied to the Ni-Cu-Sn IMC phase. A complete analysis for the 

indentation matrix may be found in Appendix D. The average elastic modulus and 

hardness of the Cu-Ni-Sn layers were found to be 165±4 and 8±1.0GPa, respectively. 
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These analyses are in agreement with that of the 300m-sized SnAgCu/Ni solder joint 

discussed in Chapter 7 [61]. 

 

 

Figure 8-10: Taper-sectioned SAC387/Au /Ni (V)/Cu solder joint. 

 

 

8.4. SnAgCu/Cu Microbump Solder System 

The mechanical properties of the 50m-sized SnAgCu/Cu solder joints used in 

wafer-level packaging Fan-Out/Fan-In applications were determined using the 

nanoindentation technique. The indents close to the solder side, such as test7, test11, 

test14 and test15, gave a lower elastic modulus due to the underlying soft solder layer. 

The rest of the locations represent the Cu6Sn5 and Cu3Sn IMC phases. From Table 8-4, it 

may be understood that the mechanical properties measured using the S
2
-P and S-h 

analysis are more consistent than those derived by the CSM method, which averages over 

a selected depth indentation data, without considering the substrate effect. 

 

8.5. SnAgCu/ENIG Microbump Solder System 

SnAgCu microbump joints with an ENIG surface finish were fabricated using the 

ball drop method (solder balls dropped over the predefined UBM pad with the help of an 

UBM is completely consumed 

during the reflow process 
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automated stencil). Solder balls with a size of about 40±1m were used to fabricate these 

solder joints. The mechanical properties of the IMCs in solder joints are tabulated in 

Table 8.5. 

 

Table 8.4:  S-h and S
2
-P analysis of 50m SnAgCu/Cu solder joints. 

S-h Analysis S
2
-P analysis 

CSM (20 to 150nm 

depth range) 
Annotations 

Gradient 
Reduced  

Modulus(GPa) 

Modulus  

(GPa) 

Gradient  

(x10
12, 

N/m
2
) 

Hardness  

(GPa) 

Modulus  

(GPa) 

Hardness  

(GPa 

indent spot  

(Fig 8.10) 

490 85.96 77.16 2.47 4.08 90.653 4.2426 Test 1 

764 134.03 120.30 4.54  5.40 95.351 2.6772 test2 

681 119.47 107.23 2.01  9.68 96.702 5.8573 test4 

560 98.24 88.18 1.70 7.74 98.146 6.7249 test6 

555* 97.36 87.39 7.01 1.84 63.312 0.93 test7 

550 96.49 86.61 1.74 7.30 96.298 6.7218 test8 

660 115.78 103.93 1.95 9.38 107.19 7.0453 test9 

524* 91.92 82.51 1.92 6.00 89.888 5.6161 test11 

650 114.03 102.35 3.03 5.85 88.966 4.0334 test12 

661 117.78 104.13 1.96 9.33 103.9 6.8434 test13 

550* 96.49 86.61 8.78 1.45 70.278 0.8319 test14 

495* 86.84 76.24 8.87 4.08 61.292 0.7962 test15 

 

 

Table 8.5: Average E and H  for Ni-Cu-Sn IMC in SnAgCu/ENIG. 

IMC Phase Modulus (GPa) Hardness (GPa) 

(Ni,Cu)3Sn4 142.9 6.46 

(Cu,Ni)6Sn5 153.4 7.24 

Sn–Ni–Cu 168.4 7.85 

Ni3P 145.2 6.04 

P rich Ni(P) 192.3 6.93 

 

 

8.6. Cu/In/Sn Thin-film Solder Joints 

The taper cross-sectioning methodology was further extended to the measurement 

of the mechanical properties of the ultra-thin IMC layers formed in fine-pitch thin-film 
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solder joints. Nanoindentation experiments were conducted on the taper-sectioned solder 

joints to determine the mechanical properties of Cu-In-Sn IMC in Cu/In/Sn/Cu film joints 

(see Fig. 8.11). These thin-film joints were bonded at room temperature and annealed at 

200
o
C for 4h. There were two types of Cu-In-Sn IMCs at the interface, i.e. the Cu6(In,Sn)5 

and Cu6(In,Sn)2 IMCs [193]. 

 

 

Figure 8-11: Typical In/Cu/Sn thin-film joints used for mechanical properties study 
 

 

Using the analysis approach as described in Chapter 7, the elastic moduli of the 

Cu6(In,Sn)5 and Cu6(In,Sn)2 IMCs were determined to be 104.0±2.0 and 87.0±3.0GPa, 

respectively, whereas the hardnesses of the Cu6(In,Sn)5 and Cu6(In,Sn)2 IMCs were 

determined to be 8.0±0.5 and 5.0±0.8GPa, respectively. Typical indentation impressions 

for In/Cu/Sn thin-film solder joints are described in Fig. 8.12. 
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Figure 8-12: Indentation impression on the taper-sectioned In/Sn/Cu thin-film UBM. 

 

8.7. Discussion 

Table 7.1 shows the typical discrepancy in the measured elastic modulus and 

hardness of interfacial IMCs in the lead-free solder joints. These ranges of variation 

further increased with the reduction in the size of the solder joints due to the substrate 

effect or influence of adjacent layers. The reported elastic moduli of Cu-Ni-Sn IMCs are 

in the order of 140 to 205GPa [59, 65]. 

 

Table 8.6: Summary of mechanical properties of lead-free microbump solder joints. 

 

Solder Joint IMC Type E (GPa) H  (GPa) Condition 

1.5m Cu/In/Sn/Cu 

Cu6(In, Sn)5 102.0 ± 2.0 8.0±0.5 

Bonded at 25°C followed 

by aging  at 200°C for 2h Cu6(In, Sn)2 87.0 ± 3.0 5.0±0.8 

10m Sn /Cu 

Cu6Sn5 109.0 ± 3.0 5.0±0.8 

3
rd

  reflow at 265°C for 

80s for each reflow cycle Cu3Sn 135.0 ± 8.0 6.0±1.4 

15m Sn-2.7Ag/Cu 

Cu6Sn5 113.0 ± 3.0 6.0±0.2 

5
th

 reflow @285°C for 

80s for each reflow cycle Cu3Sn 134.0 ± 7.0 7.0±0.4 

50m SnAgCu/Au/Ni (Cu,Ni)6Sn5 165.0 ± 4.0 8.0±1.0 Reflowed at 255°C and 

followed by aging 
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(Ni,Cu)3Sn4 137.0 ± 2.0 7.0±0.9 at150°C for 500h  

70m SnAgCu/Cu 

Cu6Sn5 110.0 ± 3.0 7.0±0.4 

As reflowed at 265°C for 

80s Cu3Sn 135.0 ± 8.0 7.0±0.5 

 

Ni/SnAgCu 

(Cux,Ni1-x)6Sn5  165.0 ± 4.1  8.2±1.0  As reflowed at 265°C  

(Niy,Cu1-y)3Sn4  136.8 ± 1.8  7.2±0.9  Aging at 150°C & 500h  

 

Cu/SnAgCu 

Cu
6
Sn

5
  110.5 ± 2.6  6.8±0.4  As reflowed at 265°C  

Cu
3
Sn 135.6 ± 2.3  6.6±0.5  Aging at 150°C & 500h  

 

Cu/ SnAg 

Cu
6
Sn

5
  112.3 ± 5.0 6.7  

Aging at 175°C & 1000 h 
Cu

3
Sn 134.2 ± 8.7 5.7  

 

 

The taper-approach technique enabled the measurement of the true properties of 

IMC layers as thin as 500nm without much substrate influence. The elastic modulus and 

hardness of the Cu-Ni-Sn IMC were found to be 165±4 and 8±1.0GPa, respectively. The 

elastic modulus and hardness of Ni-Cu-Sn IMC were 137±2 and 7±0.9GPa, respectively. 

These findings are in agreement with the results presented in Chapter 7 regarding the 

300m-sized SnAgCu/Ni joint [61]. 

The average mechanical properties of the Sn, SnAg and SnAgCu microbump 

joints, along with their processing conditions, are summarized in Table 8.6. The hardness 

and modulus of the Cu3Sn are higher than those of the Cu6Sn5 for the Sn/Cu and SnAg/Cu 

microbump solder joints. It may also be observed that the hardness and modulus of Cu-Sn 

intermetallics are consistent with multiple reflows. However, the mechanical properties of 

Cu3Sn layers show scatter in the measured quantities. This may be attributed to the 

microporosity at the Cu/Cu3Sn interface. 
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The elastic moduli of the Cu6 (In, Sn)5 and Cu6 (In, Sn)2 IMCs were found to be 

104 and 87GPa, respectively. The hardnesses of the Cu6 (In, Sn)5 and Cu6 (In, Sn)2 IMCs 

were determined to be 8±0.5 and 5±0.8GPa, respectively. The elastic modulus and 

hardness of the Cu-In-Sn IMCs were slightly lower than those of the Cu-Sn IMC. This 

might be due to the substitution of In for Sn. 

 

8.8. Summary  

1. The taper approach for the S-h / S
2
-P indentation analysis proved an 

effective method to probe the mechanical properties of fine-pitch 

microbump joints. 

2. There was no significant variation in the mechanical properties of the Cu-

Sn IMCs in the Sn/Cu, SnAg/Cu and SnAgCu/Cu microbump joints.  

3. There was a significant variation in the modulus and hardness for the Ni-

Cu-Sn IMC layers in the SnAg/Au/Ni, Sn/ENIG and SnAgCu/Au/Ni 

microbump joints with isothermal aging.  

4. The elastic modulus and hardness of the Cu-In-Sn IMCs were slightly 

lower than those of the Cu-Sn IMC, because of an In substitution for Sn.
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Chapter 9: CONCLUSION AND FUTURE RECOMMENDATIONS 

9.1. Conclusions 

This study focuses on the mechanical behaviour of SnAgCu, SnAg, Sn and other 

solder systems used in advanced 3D-IC packaging applications. The following general 

conclusions may be made from this study: 

 

1. The tensile deformation behaviour of Sn3.8Ag0.7Cu and its composite solder 

materials was investigated with different strain rates ranging from 10
-5

 to 10
-1

s
-1

, 

and temperatures of 25, 75 and 125C. The yield strength and Hollomon 

parameters were found to increase substantially with the strain rate and addition of 

nano-sized Mo particles. The strain rate‟s dependence on the strain-hardening 

exponent is stronger at higher temperatures for the base SAC387 solder, and 

weaker for composite solders reinforced with the nano-sized Mo particles. 

Analytical thermo-mechanical models can be used to predict the high temperature 

tensile performance of the solder. 

 

2. The microtensile behaviour of the composite solder (Mo and SWCNT-reinforced) 

solders was investigated to understand the deformation behaviour with limited 

solder volume. The addition of 0.05 wt.% SWCNT to SAC387 alloy resulted in an 

increase in yield and ultimate tensile strengths at all temperatures and strain rates. 

This may be attributed to the load transfer to the SWCNTs in the composites, the 

refinement of the grain size of the matrix, and the sizes of the intermetallic 

particles (IMCs) as a result of the SWCNT‟s addition. Further increasing the 

SWCNT to 0.1 wt.% did not cause an improvement in strength, compared with the 
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composite containing 0.05 wt.% SWCNT. This may be attributed to the 

agglomeration of the SWCNTs, with their resultant increase in volume fraction. 

 

3. The SAC387 alloy and its composite solder exhibited significant total elongation 

at all temperatures and strain rates, although the uniform elongation was limited. 

The lower uniform elongation is a reflection of the fact that the higher 

homologous temperature (T/Tm) is above 0.5 at room temperature, and hence the 

dynamic recovery processes are more dominant compared with work hardening. 

The composites are also comparable, and in some cases even have a marginally 

higher total elongation than that of the base alloy. This may be attributed to the 

fracture being dominated by the failure of the matrix alloy, and the fact that the 

grain sizes, especially of the intermetallic phases, become finer with the addition 

of reinforcements. 

 

4. Temperature and strain rates were found to have significant effects on the 

strengths of both the SAC387 solder and the composites. Both the yield and 

ultimate tensile strengths were found to decrease with temperature at a given 

strain rate and increase with strain rate at a given temperature. This behavior may 

be attributed to the competing effects of the work hardening and dynamic-

recovery processes, and the effects of temperature and strain rates on these 

processes. 

 

5. The addition of nano-sized Mo to the SA387 solder improved the room-

temperature tensile properties. The effects of the strain rate on the room-
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temperature tensile properties of Mo-reinforced solders are more dominant than 

with SWCNT-reinforced SAC387solder. 

 

6. The effect of specimen thickness is more prominent for as-cast Sn and SnPb 

solders. The tensile strength (yield strength and ultimate tensile strength) of these 

solders was found to be 10 to 15% lower than that of the ASTM bulk materials 

characterization. However, there was no change observed for the composite 

solders. 

 

7. An empirical analysis scheme was used to determine the tensile properties of lead-

free solder joints using the nanoindentation technique. The elastic modulus and 

yield strength measured using the nanoindentation technique are comparable with 

the tensile properties determined using a tensile tester. 

 

8. A modified Garofalo creep model was identified as the best model to characterize 

the lead-free solder materials. This model was successfully used to analyze the 

time-dependent deformation behaviour of the SAC387 and its composite, using 

the nanoindentation creep experiments. The stress exponent of coarse-grained β-

Sn was determined by the room-temperature nanoindentation creep experiments 

conducted over a range of indentation maximum loads. Addition of Ni nano-sized 

particles to the solder joints caused the creep rate to decline to the minimum at the 

first few reflows, and subsequently increase with additional multiple 

reflows. There were no effects on time-dependent deformation from multiple 

reflows in the SAC387+0.3Mo solder joints. 
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9. Nanoindentation measurements were conducted on “taper” samples of actual 

BGA SAC305 solder joints with OSP and an electrolytic Ni/Au surface finish. 

The “taper” approach produced stable results for the modulus and hardness of the 

Cu-Sn, and the Ni-Cu-Sn layer thicknesses were as thin as 2.33μm and 2.30μm in 

as-reflowed conditions. The effects of underlying under ball metallurgy (UBM) 

layer were identified and eliminated by analysis of the linear portion of the P-S
2
 

and S-h curves. The elastic moduli of Cu6Sn5 and Cu3Sn after 500h aging were 

found to be 102 and 136GPa, and the hardness values to be 6.8 and 7.6GPa 

respectively. 

 

10. The elastic modulus and hardness for the Ni-Cu-Sn IMC layer were found to 

change with aging. The change in modulus and hardness of the Ni-Cu-Sn IMC 

was due to the dynamic changes in composition of the IMCs during the solid-state 

diffusion process. There were no changes in the mechanical properties of the Cu-

Sn IMCs after multiple reflows and isothermal aging. 

 

11. The taper approach and nanoindentation S-h / S
2
-P analysis proved to be effective 

procedures to probe the mechanical properties of fine-pitch solder joints.  

 

9.2. Future Recommendations: 

Based on the experimental findings throughout this dissertation, the following 

recommendations may be made: 

 

1. The tensile properties measured using nanoindentation technique should be 

verified using modeling and simulation studies. 
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2. The analytical models should be developed based on the experimental data 

presented in Appendices B and C of this dissertation. The interfacial 

intermetallic compound (IMC) thickness as a function of solder volume, 

reflow time, temperature and bonding force may be used to predict exact 

process kinetics during 3D-package fabrication. This would be useful in the 

automation of flip-chip equipment to control the reflow temperature, reflow 

time, tacking force etc. 

 

3. The validity of Garofalo‟s creep model in the context of lead-free solder needs 

to be verified using modeling and simulation studies. 

 

4. The interfacial mechanical properties and Kirkendall void volume need to be 

statistically correlated for a better understanding of mechanical reliability in 

the microbump solder joints.  
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APPENDIX A: FABRICATION OF WAFER-LEVEL BUMPING 

A.1. Mask and Test Vehicle Design 

A test chip of 10 X 10 mm
2
 size designed with area populated I/O off-chip 

throughout the wafer with a unique pitch for each wafer. The mask design for different 

pitches described in the Figure A.1 whereas microbump height, diameter and pitches are 

shown in the schematic diagram (Fig A.2). 

  

  

Figure B.1: UBM and solder mask design for different sizes of solder joints fabricated 

using screen printing (>100m). 

 

Test vehicle designed for microbump according to the current test chip design as 

shown in Figure A.1.The Current design consists of 20 daisy chains on Cu/Ti/Si3N4 test 

chip at RDL layers to assess the level 1 interconnect reliability.  
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Table A.2: Typical design parameters used in solder bumping by Screen Printing 

 

Diameter of the pad, 

m) 

Square length of PR 

via(m) 
B, Pitch(m) 

80 80 200 

160 220 300 

240 400 600 

 

  

Figure A.3 Typical Test vehicle design used in the wafer-level solder microbumping. 

 

A.2. Materials and Methods 

The p-type silicon (100) wafers of 200mm diameter with thin electrical insulating 

layer of 1000A° SiO2 used for the fabrication of test chip demonstrator. Sputtered Ti/Ni 

(v)/Au layers served as pads with daisy chains. The Ni(V) Au layer  also acts as the seed 

layer for electrical contact during the electroplating of copper interconnects. 

Benzocyclobutene (BCB) dielectric passivates daisy chains and to define the pads for 

copper interconnects. Dry film photo resist used to make the patterned thick UBM layer 

for selective plating of copper interconnects. A part from the solder paste screen printing, 

electroplated Sn and eutectic Sn-Ag also used as a solder bumping materials. Developer 

and stripper solutions for the above resist materials. Piranha solution (H2SO4 + H2O2) is 

for wafer cleaning. Ratio of H2SO4 to H2O2 was 5:1. Acetone and PI for cleaning of 

wafers to reclaim the PR coated wafers. 
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A.3. UBM Fabrication 

A.3.1. Thermal Oxide Deposition 

SiO2 is an excellent electrical insulator (1x10
20
-cm) with high breakdown 

voltage (10MV/cm). In micro-fabrication process, a thin layer SiO2 deposited over the 

bare Si by thermal oxidation process. The procedure involves diffusion of an oxidizing 

agent into the Si at high temperature and reacts with it. The rate of oxide growth is 

predicted by the Deal-Grove model. Thermal oxidation of silicon is carried out at a 

temperature between 1000 and 1200°C, resulting in so called high temperature oxide 

layer (HTO). Thickness of SiO2 and nitride layer thicknesses used in this work for all 

wafers is about 2.4 and 1m, respectively. KLA SFX200 metrology is used to determine 

the oxide and low temperature nitride film thicknesses, statistical quantities are shown in 

the Fig B.4. 

      

Figure B.4 Typical thicknesses of dielectric films (a) oxide (b) nitride used for wafer-

level solder bumping applications. 

 

A.3.2. Seed Layer Deposition 

The seed layers for electroplating deposited using sputtering system (Balzers LLS 

502, load lock). Ti layer coated on the wafer prior to deposition of Cu seed layer films to 

promote the adhesion. The 99.9999% purity Cu target used as the cathode for seed layer 

(a) (b) 
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Cu deposition. The sputtering conditions such as  4 x 10
-6

 base pressure; 3 x 10
-1

 working 

pressure; 4KW, 6KW and 1KW sputter power for Ti, Cu and Au respectively. The 

sputtering chamber seasoned for 20hrs to remove the chamber wall moisture efficiently. 

High Purity Argon gas used to maintain inert atmosphere. Seed layers deposited by DC 

magnetron sputtering on the Si (100) substrate. The substrate maintained at a distance of 

70mm from the target and the deposition rate of the film estimated to be 2.15nm/s. 

A.3.3. RDL patterning 

Sputtered Ti/Ni (V)/Au layer used for daisy chains  and UBM pads. This also used 

as a seed layer for electrical contact during the electroplating of copper interconnects.  

A.3.4. Dry-Film Lamination and Spin Coating 

Dry film laminator (Western Magnum 
TM 

- XRL 240) used for lamination of 

photo-resist lamination of 20 µm and 50 µm dry films (MX5050 -50 µm thickness DP) 

over the 8´´ Si –wafer. Top roll temperature of laminator is optimized to 105°C whereas 

for lower roller is 65°C and speed of both roll is about 0.9rpm. Thicknesses of dry-film 

other than 20 and 50um, a combination of these thicknesses are being laminated. For 

positive masks and fine-pitch pattern, a thin layer of dielectric coated  to define the mask 

pattern over the Si-wafer. SVG 90 series spin-coater used to coat, soft bake, post 

exposure bake and to develop PR material. 

A.3.5. Photo Resist Exposure and Development 

EVG 640 mask aligner used to expose the photo sensitive layers through plastic 

masks or chrome masks in the contact mode. Subsequent mask layers aligned using 

alignment marks in the lithography processes. A UV-light with wave length range 365-

405nm used to expose the photo-resist films/coat and corresponding optimized exposure 

energies are summarized in the Table B.2.  
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 Table A.2: Photolithography parameters for wafer-level UBM fabrication process. 

Dry-film(DP) 

thickness (m) 

Exposure 

Energy(mJcm
-

2
) 

Developing 

time (Min) 

Targeted 

feature 

Pre-exposure 

baking (PEB) 

200 2500 10~12 > 200 m via 1 min at 95°C 

100 240 7~8 100 ~200m 1 min at 95°C 

50 120 4.5~5 50 ~100m 1 min at 95°C 

40 65 3 min 30s 50m 30s at 95°C 

20 45 2min 20s 25~40m 30s at 95°C 

 

 

Figure A.5: Typical PR pattern for Cu UBM for Composite solder bumping (a) partial 

developed UBM pattern (b) developed PR pattern for solder screen printing. 

 

A.3.6. Oxygen Plasma Cleaning 

Photo-resist Descum conducted using Advanced
TM

 Vacuum (VISION320-RIE) at 

30sccm flow rate O2 plasma (Descum version1.08 recipe), 400 watts RF power and 

50mtorr pressure for 10 minutes. High power selected to remove dry film remains in the 

deep vias. However, at higher RF power, there is possibility of the dry film etching up to 

1 to 1.5um during O2 plasma. One has to take care of thickness reduction during this 

process as the thickness of electroplated post is precision. Apart from the cleaning dry 

film residue, also activates the PR surface to increase the wettability with electrolyte 

during Cu electroplating. 
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A.3.7. Electroplating of Copper 

Copper electroplating conducted using Moto 8” wafer electroplating tool, which 

was fountain type (Cup type) in which Sperolyte CuSO4 based solution (Atotech Pte. Ltd) 

used as electrolyte solution. The principle of plating involves that the wafer loaded in 

chuck as cathode placed upside down at the top of the plating tool and the soluble copper 

anode was positioned at the bottom in cup shaped electrolyte chamber. The electrolyte 

fountainhead from the bottom to the wafer surface through the diffusers. The 

concentration polarization easily controlled this fountain type electrolyte flow and thereby 

improved the uniformity and plating efficiency. 

 

Figure A.6: Typical Electroplated Cu for 50 m UBM (a) High (b) lower current density.  

 

 Table A.3: Typical plating parameters used for Cu plating. 

UBM dia. 

(m) 

Cu pillar 

hieght (m) 
Current density 

Plating 

time 

(Min) 

Remarks 

25 25 0.15A/plated area 60 Planar surface 

45 25 0.15A/Plated area 180 Planar surface 

100 25 0.45A/plated Area 30 0.5m roughness 

200 15 0.6A/ plated Area 45 1.5m roughness 

400 15  0.6A/ plated Area 120 2 m  roughness 
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The plating process carried out in two steps, in first step, apply pre-wetting agent 

(PW-1000) over the pattern wafer for 20 seconds and afterwards rinse with DI water for 

40 to 50 seconds. Pre-wetting agent diluted prior to use on the wafer in the ratio of 1:10 

for PW-1000: Di H2O, purpose of Pre-wetting agent is to improve the wettability during 

plating. In the second step, the flow rate maintained at constant with the rotating speed of 

the chuck being manipulate  to achieve uniform copper plating in the entire wafer. Hence 

the plating thickness could be controlled by optimizing the current density and platting 

time and uniformity could be controlled by optimizing the flow rate of electrolyte. The 

plating process carried out at room temperature.  Plating current used for 25um, 50, and 

100 via is about 0.15, 0.2 and 2.5A, respectively. Lower current density maintained for all 

wafers in order to achieve the uniform Cu pillar height. Time of plating for 25umx25um 

sized Cu pillar optimized about 60 min. Table B.3 shows the summary of optimized Cu 

platting conditions. 

A.4. Solder Bump fabrication 

A.4.1. Solder Paste Preparation and Screen Printing 

The solder powders (Type 7, supplied by Heraeus Materials Ltd) and nano-sized 

particles of Mo (30-50nm range) weighed according to their weight percentage ratios. The 

pre-weighed nano-particles and solder powders blended homogeneously using a V-cone 

blender operated at a rate of 50 rpm.  The nano composite solder powder and Customized 

no-clean halogen-free flux, Supplied by Heraeus Materials Ltd, Singapore)  have weighed 

in the ratio of 88:12 and placed together in the container of a Thinky Mixer (AR-100 

table-top model, Japan). The Thinky mixer operates on a non-contact mixing system 

where the material container rotates and revolves at 400G acceleration, resulting in fast 

and highest-grade mixing without air bubbles. This method offers repeatable and 

reproducible composite solder paste up to 0.3 wt. % of nano-particle additions. 
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A.4.2. Electroplating of Tin 

The tin deposited at the tip of the copper interconnects using RENA 8 inch wafer 

electroplating tool, which was a rack type in which spherolyte solution (Atotech Pte. Ltd) 

electrolyte solution whereas  tin pellets serves as anode. Principle of plating involves that 

the wafer loaded in the chuck and the chuck positioned parallel to the anode as shown in 

the Fig.B.6. Solder thickness, uniformity and solder shape at the tip of the Cu pillar  

controlled by optimizing the current density, flow rate of electrolyte and plating time as 

shown in the table B.4. 

Table A.4: Sn plating variable for microbumping. 

Sn dia. Solder 

thickness 

Current density Plating time Remarks 

25m 5, 10, 20 0.3A/plated Area 20, 40, 80 min Fine grain size & uniform plating 

45m 5, 10  20 0.4A/plated Area 15,30, 60 min Fine grain size & uniform plating 

100m 5, 10, 20 0.7A/Plated Area 12, 24, 40 min Larger grain size & rough surface 

Figure B.7: (a) Schematic diagram of principle of electroplating. 

 

The Surface roughness of plated solder increase with an increase in the plating 

current density, which described in the Fig B.8 that lower roughness at 03A/plated area 

comparatively higher current density (0.7A/plated area).  
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Figure A.8: typical electroplated Sn (a) high current density (0.7A/ plated Area) (b) low 

current density (0.3A/ plated Area). 

A.4.3. Thermal Reflow Process 

After stripping the photoresist and seed layer etching, electroplated solder bumps 

reflowed in 6-zone reflow oven in N2 atmosphere using reflow profile as described in 

Fig.A.9. Lead-free solder bumps reflowed at 25 to 50
o
C above it's liquids temperature of 

Sn and SnAg solder for about 80seconds, to form the solder bump at the tip of Cu UBM. 

Different reflow times at the peak of the reflow temperature achieved using different 

conveyer speeds i.e. 10 inch per minute, 15
 
inch per minute and 21 inch per minute give 

60, 80 and 120s, respectively.  Figure A.10 shows the planar view of Cu UBM with 

solder cap before reflow. To obtain a good spherical bump shape, the wafer reflowed 

twice at the same profile. Reason for the improper bump shape during the first reflow was 

because the solder was not fully melted.  When these solder joints reflowed again with 

additional flux,  this makes the solder bump melt entirely and resulting in spherical bump.  

A.4.4. Dry Film Photoresist-Resist Stripping 

Dry-film stripper (CST-161) heated to 65°C temperature and wafer gradual 

development for 10 to 15 minutes depending on DP thickness and subsequently cleaned 

by DI H2O Rinse. Dry film thickness 40m, or less, heating not required to strip the 

photoresist. Dry fill stripper diluted at the ratio of 1CST-161:10H2O. However, care need 

to be taken when stripping the shallow Sn thickness microbump as Sn possibly etched 

20m 
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away during stripping. In this case, more diluted CST-161 need to be used to control Sn 

dissolution in to the stripper. 

Table A.5: Typical reflow condition studied Sn/Cu microbump solder joints. 

Sn/Cu Joint 

m) 

Reflow 

Temperature(
o
C) 

Multiple Reflows 

(80 seconds at each reflow) 

Reflow time at the peak of 

the reflow , seconds 

10/50* 245, 265 & 285 1
st
 , 2

nd
 ,3

rd
 ,5

th
 ,7

th 
 and 10

th
 80,110 and 170 

80/110* 245, 265 & 285 1
st
 , 2

nd
 ,3

rd
 ,5

th
 ,7

th 
 and 10

th
 80,110 and 170 

160/200* 245, 265 & 285 1
st
 , 2

nd
 ,3

rd
 ,5

th
 ,7

th 
 and 10

th
 80,110 and 170 

Sn Solder thickness/ bump height; Cu UBM diameter; Cu thicknesses for all UBM is 14m 

 

Figure A.9: Typical thermal reflow cycle in lead-free solder bumping. 
 

 

.  

Figure A.10:  Shows the solder bump after reflow and PR strip (a) microbump over the 

Cu pillar (b) SnAgCu/Cu solder joints. 

 

Composite solders Microbump joints 
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A.4.5. Wafer dicing 

After stripping of PR from the fabricated of Cu UBM with solder cap, the wafer 

diced into individual dies (10X10 mm
2
) using dicing machine (DAGE

TM
). Diamond tip 

wheel used for cutting. Once the Cu pillars fabricated on the wafer, they were ready for 

bonding to the next level substrate. Hence, the wafer with Cu pillar diced into individual 

dies using a dicing machine.  

A.6. Characterization of solder bumps 

A.6.1. X-ray system 

Dage-XD 6500 X-ray system performed on the reflowed bumped dies to examine 

the voids in the bonded solder and to see whether there any bumps bridged or not. The 

minimum feature size identification in this system was 2µm. X-ray tube voltage of 30-

160KV used. After reflows, solder bumped wafers examined before dicing. If there are 

any small voids (<2m) in the solder joints present at this stage, bumped wafer sent back 

to another reflow.      

 

Figure A.11: X-Ray pattern showing voids in the composite solder for different flux A. 

Flux B and Flux C chemistries used in the solder paste. 

A.6.2. Cross-sectioning and Metallography 

JEOL 5600LV scanning electron microscope (SEM) used to view the cross-

section of the vias in the photo-resist thick layers, electroplated copper interconnects and 

as well as to analyze the failure mechanisms of the packaged interconnects after thermal 

cycle testing. The samples mounted on the sample stud by means of double–sided 
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adhesive tapes. The SEM assessment performed at an accelerating voltage of 15kV. 

Sn/Cu solder joints mounted in the Epoxy resign and subsequently cross-sectioned using 

mechanical polishing methods down to 0.05m diamond suspension. For the purpose of 

revealing grain size of solder joints, these specimens polished with 0.05 m Silica Gel for 

10 minutes with controlled flow of silica gel at 5N holding pressure against the polishing 

cloth at 50rpm.  

     

Figure A.12: X-Ray pattern showing (a) voids in microbump joint (b) without voids. 

 

 

 

 

 

 

 

 

Figure A.13: (a-b) shows the typical IMC assessment technique for BGA solder joints (c) 

IMC measurements for microbump solder joints.  
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Grain size and Interfacial intermetallic compound (IMC) film  are  visible under 

the optical microscope. However, this approach strongly depends on dexterity of operator. 

IMC layer imaged using optical microscopy (OLYMPUS-DD72) at 500X magnification 

and elemental analyses of different IMCs determined using SEM-EDAX analysis (JEOL, 

JAPAN). Thickness of combined intermetallic thickness measured using imaging 

software (AnalySIS
 TM

), which based on the total IMC area in solder bump divided by the 

diameter of the UBM. Figure A.13 shows the approach for total interfacial IMC and 

Cu3Sn thickness, whereas Cu6Sn5 is difference between the total and Cu3Sn thickness. 

IMC measurements conducted three different locations for larger solder joints and 

average 4 solder bumps reported. In case of microbump joints, IMC data reported average 

of   9 microbump joints. 

A.7. Wafer-level Bumping Fabrication Process 

The fabrication process of solder interconnects based on standard 

photolithography and electroplating (UV-LIGA) process, which is compatible to the 

wafer-level IC fabrication. The fabrication process of the typical wafer-level single layer 

Cu pillar interconnects schematically illustrated step-by-step in Fig. B.14. Minimum of 

two masks required to fabricate the Cu UBM and solder bump using screen printing. In 

case of microbumping process, only one mask is enough to fabricate Cu pillar and solder 

electroplating. Different sizes of the solder joints, from the 300 m size to microbump 

solder joints fabricated using a different process methods for system level mechanical 

property characterization. 

A.7.1.  Fabrication of Different sized Sn/Cu Solder Joints 

Different sizes of Sn/Cu solder joints fabricated using solder printing and 

electroplating technology.  Typical process flow described in the Fig A.14. Thermal 

deposited P-type Si sputtered with Ti/Ni/Au metal layers using magnetron sputtering 



 

191 

system (Balzer LLS). Negative toned JSR photoresist materials  spin coated and patterned 

to form bond pads with daisy chains. Ti/Ni/Au layers wet etched one by one and finally 

photoresist stripped. Secondly, BCB dielectric polyimide spun to passivate the daisy 

chains and pattern the dielectric layer using UV lithography to open the pads. Negative 

photo resist thickness of 20m laminated and patterned. Different  sizes of Cu UBM (30, 

50, 100, 200m diameter) with 20m thickness of Cu pillar electroplated using 

Cuprabase 50 electrolyte at a current density of (0.6A / plated area) for 10, 25 and 40 

minutes, respectively. Sn thickness (5, 10 and 20m electroplated over the UBM Cu 

pillar using microfabSn-200 electrolyte at a current density of (0.3A/plated area) for 24 

min. 

Figure A.14: Typical process flow for the fabrication of wafer-level microbumping. 

 

Larger solder joint sizes such as 80 and 200 m diameter solder joints are screen 

printed using tin solder paste (Spplied by Heraeus Materials Singapore Pte. Ltd, 

Singapore). Electrodeposited as well as screen printed wafers subjected to reflow 

treatments at different peak reflow temperature in N2 protected reflow oven (BTU-
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SSA70). After 1
st
 reflow process, the photo resist stripped out using photo resist stripper 

(RR3 Resist strip) and Ti/Cu film selectively etched out using etchants (A96 and Ti890). 

Wafer-level SnAg/Cu (15m thickness Sn-2.7Ag over the 20x20 m Cu pillar) 

microbumping fabricated using standard photo-lithography and electroplating techniques. 

Wafer-level Cu/Ni/Au/SnAgCu (50m SnAgCu bump screen printed over the 1 m Cu/ 

0.5m Ni (V) /100nmAu thin film UBM) microbumping fabricated using Sputtering, 

photolithography and screen printing techniques. Figure A.14 shows the sequence of the 

major steps in the wafer-level microbumping process. Process recipe for wafer-level 

microbumping described in the Table A.6. 

 

Figure A.15: Schematic representation of typical Sn/Cu microbump fabrication process. 

 

A.7.2.  Fabrication of Wafer-level Composite bumping 

UBM structures fabricated using conventional lithography methods. The substrate 

used in this study was an electro-less Cu/Ni (P)/Au substrate with a Ni (P) layer of 5–7μm 

thickness. The SAC387 and SAC387+0.3Mo solder paste screen printed on the ENIG 

substrate and then subjected to multiple reflow treatment. Figure A.16 shows the typical 

solder bumping steps using screen printing methodology for BGA array wafer-level 

SnAgCu 305 solder bumping. A Typical lead free reflow profile with a peak temperature 
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of 260°C and 60 s used for this work. Composite solder bumping is not successful with 

available fluxes for SAC305 solder paste. Commercial TACflux023 is good enough for 

SAC and Ni reinforced SAC composite solders flux, however, whereas addition of Mo 

particles severely reduced the wettability of the composite solder  with both Cu and 

ENIG.  Different customized fluxes developed at Heraeus Materials Singapore Pte Ltd, 

which used for composite bumping. Finally grade C flux is perfectly suitable for Mo-

reinforced composite solder joints up to 150m.   

 

Figure A.16: Typical steps involved during 300m sized SnAgCu solder bumps. 

 

Composite solder cannot be extended  to level 1 interconnection because of  

process limitations such as screen printing capability and reduced flux quantity in the 

solder paste with increased amount of  fine-particle in the solder paste (Type 7  and 

above). If apply more squeezing pressure to fill the PR via with type 7 solder paste, there 

will be a higher chances to flux squeeze out from the PR via, In other words, more 

squeezing of solder particles with less amount of entrapped flux in the PR via as shown in 

the figure B.17. 
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Figure A.17: Schematic representation of via filling with type 7 and type 5 solder pastes.  
 

It is shown clearly that the void space between solder particles is high in the type 

6 solder pastes comparatively in type 7 solder pastes. Up on subsequent reflow, 

insufficient amount of flux leads to inappropriate melting of the solder paste. Figure A.17 

describes the effect of different type of fluxes on the bumping quality. Flux C gives sound 

solder joints without voids in it. Figure A.18 shows the process flow of wafer-level 

composite bumping. 

 

Figure A.18: Mo particle reinforced SnAgCu solder bumping with three fluxes. 

 

A.7.3.  Fabrication of Thin-film Interconnects 

Indium, Pure Sn, In-Sn and Sn-Au have been identified as alternate lead-free 

solder materials for ultra-fine-pitch thin-film solder joints for chip side bumping 

applications because of its baseline advantages of vapor deposited and better wettability 

at lead-free reflow temperature.  
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Figure A.19: Typical process flow for the fabrication of thicker Cu UBM and followed by 

composite solder screen printing. 

Figure A.20 shows the typical lift-off technique for thin-film solder joints. 

Cu/In/Sn/Cu (with the thickness of multilayer deposited In and Sn is about 1.5m) thin-

film microbump joints fabricated using evaporation, lift-off and flip-chip techniques [22]. 

Process recipe and run-sheet for wafer-level microbumping is given in the Table A.6 

 

Figure A.20: Typical Lift-off fabrication process for thin film interconnects. 

 



 

196 

 

Figure A.21: Cu/Sn thin film microbump developed using lift-off technique. 

 
 

 

 

 

Table A.6 Process runsheet for the fabrication of wafer-level Cu/In/Sn/Cu thin film joints 

Process Step Materials Equipment Parameters 

Spin-coat lift-

off 

photoresist 

MA-N-1440 

negative PR  

SVG track Pre-bake: 150
o
C / 5 min; Final spin 

at 1200 rpm / 30 sec ;Soft bake: 

120
o
C / 60 sec 

UV exposure  EVG aligner 700 mJ/cm
2
 ; Contact mode 

Developing  MA-D 533/S Manual  5 min in Developer; Observe for 

undercut profile under a microscope 

O2 Descum  RIE O2 plasma Descum  

Acetic acid 

clean 

Acetic acid Wet bench Immersion in acetic acid at room 

temperature for 5 min ; Blow dry in 

N2 

Ar sputtering  RIE  Argon sputtering for 30 sec 

E-beam 

evaporation  

 E-beam evaporator E-beam evaporate metallization in 

the following order 

Ti 100 nm / Au 1 m / Sn 1 m / In 3 

m / Au 50 nm  

Lift-off MR-Rem 660 Ultrasonic bath Lift-off in stripper solution in an 

ultrasonic bath 
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APPENDIX B: DIFFUSION KINETICS OF INTERRACIAL IMCs 

B.1. Introduction 

Effect of solder volume on the interfacial IMC formation shows that lower volume 

solder joints shows thicker interfacial IMC than higher volume solder joint [1]. It is an 

interesting to note that the dissolution rate of Cu reduced with shrinking solder volume. 

However, an apparent Cu concentration in the solder joint increasing with thermal 

reflows. Solder joints undergoes solid-state growth and transformation of interfacial IMC 

under the influence of temperature, stress and current density. In most of the Sn-based 

solder alloys, diffusion-driven processes are relatively fast at room temperature since 

homologous temperature is above 0.5Tm. In addition to this, microelectronic device 

undergoes numerous thermal fluctuations during it's service, which promotes the 

thickening of the interfacial IMC layer. There two types diffusion processes such as  

volume diffusion and grain boundary diffusion. Grain boundary process is dominant at a 

lower temperature and fine grain microstructure. However, IMC grain size in the existing 

solder joints are more than 5m, and reliability conditions are above 0.7 of homologous 

temperature. These conditions are most favorable for volume diffusion. 

Thickness of interfacial IMC layers in the diffusion couples usually expressed by 

a simple power-law:  

n
o Dt                                                         (B.1) 

Where,  is the thickness of the IMC layer,  is the thickness of IMC at a time is zero, D 

is the growth rate constant, n is the time-exponent and t is the reaction time. The time-

exponent evaluated using non-linear regression analysis. The following Arrhenius 

relationship used to determine activation energies for the total IMCs, Cu6Sn5 and Cu3Sn 

growth as: 

expo

Q
D D

RT

 
  

 

                                                (B.2) 
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where  D is the growth rate constant, 
oD   is the frequency factor, Q the activation energy, 

R the gas constant (8.314 J/mol K) and T the aging temperature (K). Combining Eq.(B.1) 

and Eq.(B.2) gives the following model. 

expn
o o

Q
D t

RT
 

 
   

 
                           (B.3) 

Eq.(B.3) can be used to determine the time exponent, Activation Energy using non-linear 

curve regression analysis. 

B.2. Experimental Methodology  

Fabrication and preparation of SnAgCu, SnAg, Sn solder joints for interfacial 

diffusion study discussed in the Appendix A. A total of nine (9) Sn/Cu bumped wafers 

subjected to reflow treatment at three different reflow and then diced into 10x10mm. 

These dies also subjected to multiple reflows as shown in Table A.5. These reflowed dies 

subjected for isothermal aging, aging condition as the conditions  summarized in the 

Table B-1. 

Table B.1: Isothermal aging conditions for Pb-free solder joints from BGA to microbump.  

Solder Joint m) Aging 

Temperature (
o
C) 

Aging 

Time ( h) 

SAC387/OSP/Cu 125, 150 and 175 0  - 500 

SAC387/Au/Ni 125, 150 and 175 0  - 500 

SAC387/ENIG 125, 150 and 175 0 - 1000 

Composite/ENIG 125, 150 and 175 0 - 1000 

Sn/Cu Joints 
150 and 175 0-500 

200 0-25 

 

B.3.  Interfacial IMC Diffusion Kinetics  in SnAgCu Solder Joints 

B.3.1. Effect of Ni/Au Surface-Finish 

Figures B.1 (a-c) shows the morphology and growth of the IMC layer for the 

Ni/Au substrate after aging at 150
o
C for 500 h aging time.  For the Cu substrate with 

Ni/Au surface-finish, immediately after the reflow process, the thin Au layer dissolves 
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quickly into the solder and precipitated as AuSn4 particles in the solder while exposing 

the Ni layer to the solder. The Ni layer acts as a diffusion barrier, which prevent the Cu 

diffusion into the solder. Cu from the solder migrates to the interface and form a ternary 

phase, (Cu,Ni)6Sn5 with 24.66%Ni, 29.54% Cu, and 37.42% Sn [Fig B.1(a)]. The growth 

of the IMC layer is highly irregular, and the average thickness found to be 2.30m. Upon 

further aging, another ternary phase (Ni,Cu)3Sn4 with 34.94% Ni, 10.48% Cu and 48.11% 

Sn started to form under the (Cu,Ni)6Sn5 IMC layer [2]. 

 

Figure B.1: SEM micrographs of Ni/Au/SAC305 solder aged at 125 and 150°C : (a) 100 

h, (b) 300h (c) 500h at 150°C and, (d) 150h  (e) 300h  (f) 500h at 125°C. 

 

There is a weak contrast between (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 IMC layers and  it 

is hard to distinguish as the Cu3Sn and Cu6Sn5 layer.  The formation of the (Ni,Cu)3Sn4 

IMC is likely caused by a decrease in the amount of Cu diffusing into the interface during 

aging. In other words, the upper (Cu,Ni)6Sn5 IMC grew at the expanse of the available Cu 
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in the solder bump. However, this growth soon  limited due to limited  Cu in the solder 

bump. Therefore, during the growth of the (Cu,Ni)6Sn5 IMC at the interface, the 

concentration of Cu in the solder bump will gradually reduce. As a result, with an 

abundance of Ni diffusing from the pad side, the (Cu,Ni)6Sn5 IMC gradually transformed 

to (Ni,Cu)3Sn4. This process lead to a thick (Ni,Cu)3Sn4 layer closer to the pad side with a 

thin (Cu,Ni)6Sn5  layer closer to the solder side after 500h aging. The interfacial 

microstructure of the Ni-Cu-Sn grows and changes dramatically in morphology as shown 

in Figures B.1 (a-c). For as-reflowed specimen, the IMC on the solder/ nickel interface 

was irregular and needle-like in feature. After 300 h of aging, coalescence of the IMC 

needles leads to lateral thickening and ripening. After 500 h of aging, the IMC layer 

growth is in a planar or layer-like manner. The change in the morphology or structure of 

the IMC expected to the change of Gibbs free energy in order to lower the surface energy. 

B.3.2. Effect of Cu/OSP Surface-Finish 

Figures B.2 describe the morphology and growth of the IMC layer for the Cu-OSP 

substrate after aging at 150
o
C up to 500 hrs. During reflow, OSP passivated film in the 

Cu/OSP surface-finish removed by the flux, leaving the copper pad exposed to the molten 

solder. Immediately after the reflow process, scallop-like shaped IMCs formed at the 

solder joint interface and identified under EDX as Cu6Sn5 with 56.67% Cu and 42.94% 

Sn (η phase). This scallop shaped IMC layers undergoes, to the lateral ripening and 

thickening at 500 h for 125
o
C and 200 h for 150

o
C.  This also observed that another IMC 

film formed between the Cu pad and the Cu6Sn5 layer by solid-state reaction to satisfying 

the requirement of local equilibrium, and this layer identified under EDX as Cu3Sn with 

79.60% Cu and 17.60% Sn. 



 

202 

 

Figure B.2: Cu6Sn5 (η) and Cu3Sn (ε) at the solder/Cu interface for aged: (a) 100h, 150°C, 

(b) 300h, 150°C, (c) 500h, 150°C, (d) 145h, 125°C, (e) 300h, 125°C, and (f) 500h, 125°C. 

 

The formation of Cu3Sn is a result of the changing morphology of the Cu6Sn5 

scallops during aging. As the Cu6Sn5 layer evolved during aging to a thicker and more 

layer-like structure, the inter-scallop diffusion channels closed during aging. 

Consequently, Sn diffusion to the copper layer restricted, resulting in the formation of the 

copper-rich Cu3Sn IMC layer underneath the Cu6Sn5 layer, which has a higher Cu to Sn 

ratio. Upon further aging, both the Cu6Sn5 and Cu3Sn thicken with time as a result of 

increasing inter-diffusion. The morphology of the layers becomes flatter and more 
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uniform as this lowers the surface energy. It observed from Figure B.2 the Cu3Sn layer 

grows much faster than the Cu6Sn5 layer upon aging. This is because the Cu3Sn layer 

grows in both directions towards the Cu pad and the solder as compared to the Cu6Sn5 

which grows only in a single direction towards the solder. The Cu3Sn layer grows 

towards the Cu pad due to the diffusion of Sn from the solder to the Cu pad side and 

grows towards the solder due to the conversion of Cu6Sn5 at the Cu3Sn/Cu6Sn5 interface. 

After the Cu atoms arrive at the interface of Cu3Sn/Cu6Sn5 by diffusion through the grain 

boundaries of the Cu3Sn layer, the following interfacial reaction happens: 

Cu6Sn5 + 9Cu → 5Cu3Sn 

By this reaction, Cu6Sn5 converted to Cu3Sn at the interface and hence the amount 

of Cu atoms that can diffuse to the interface of Cu6Sn5/solder significantly reduced. As a 

result, Cu3Sn grows rapidly with temperature and time by consuming Cu6Sn5 at the 

interface of Cu3Sn/Cu6Sn5. The growth of Cu6Sn5 on the solder side largely depends on 

the availability of Cu atoms in the solder. Since most of the Cu atoms in the bulk solder 

used up to create Cu6Sn5 particles within the eutectic phase immediately after reflow, the 

amount of free Cu atoms that can diffuse to the solder/Cu6Sn5 interface under aging is 

very little, greatly limiting the growth of Cu6Sn5 on the solder side. Therefore, during 

isothermal aging, the Cu3Sn layer appears to grow faster as it expanded on both sides, 

resulting in the shifting of the Cu/Cu3Sn interface towards Cu pad and Cu6Sn5. This lead 

to decrease in the thickness of Cu6Sn5 after prolonged isothermal aging [3]. 

 

B.3.3. Effect of Isothermal Aging Temperature and Time 

Effects of aging temperature and time on the intermetallic growth and morphology 

also studied. It observed that higher aging temperature facilitates the formation of the 

Cu3Sn intermetallic layer in a much shorter aging time for Cu-OSP substrate (Fig B.2). 
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This is because a higher temperature provides the necessary thermal energy to overcome 

the activation energy to initiate the formation of Cu3Sn; thus the Cu3Sn layer formed at a 

much shorter time at a higher temperature, for example, at 150
o
C needs 200 hours 

whereas at 125
o
C, 500h aging time required. The effective thickness of the intermetallic 

layer measured for the Cu3Sn, Cu6Sn5 and Ni-Cu-Sn are higher at a higher temperature of 

150
o
C than those at 125

o
C for the same aging time (Fig B.2). It can be seen that high 

temperatures will accelerate the growth of the intermetallics as the growth of the 

intermetallics is diffusion-controlled and temperature-dependent. The effective growth of 

Ni-Cu-Sn IMC layer thickness after solid-state aging at 150°C for 500h found to be 

140nm whereas Cu-Sn IMC layer thickness i.e. 3.37m at the same aging condition. 

 

Figure B.3: Effect of aging conditions on IMC growth in 300m sized SnAgCu joints. 

 

Figure B.3 shows that growth behaviour of Cu3Sn and Cu6Sn5 intermetallic layers 

is much thicker after aging at the same temperature and time. This implies that the growth 

of Cu3Sn is much faster than Cu6Sn5 and Ni-Cu-Sn. From Fig B.3, it is also depicting that 

growth of Cu6Sn5 intermetallic layers retarding as time increases at 150°C due to 

formation Cu3Sn is at the expense of Cu6Sn5 layer. Once formation of Cu3Sn initiated at 

Cu/ Cu6Sn5 interface, the growth rate of Cu6Sn5 entirely controlled by the limited amount 

of Cu in the solder bump.  Therefore, growth rate of Cu6Sn5 almost comes to an end. On 

the other hand, diffusion Cu from the UBM assists the formation of Cu3Sn at the expense 
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of Cu6Sn5. It observed that the Ni-Cu-Sn IMC layer served as a diffusion barrier to 

prevent the growth of brittle Cu-Ni-Sn IMC layer. 

B.4. Interfacial IMC in Composite Solder Joints 

Effect of nano-sized Mo particle reinforcement on diffusion kinetics of SAC 

composite solder joints studied in this section. As-reflowed composite solder joints 

subjected isothermal aging (High temperature storage) treatment at 125, 150 and 175
o
C 

aging temperatures. Figure B.4 shows the cross-sectional SEM images of the interfaces 

between the SAC and SAC+0.3Mo composite solders with ENIG surface-finish aged at 

150°C for 1000h. During reflow, the uppermost Au layer entirely dissolved into the 

molten solder, leaving the Ni–P layer exposed to the molten solder. At the same time, the 

Sn, Cu atoms in the solder reacted with the Ni atoms at the interface, to form a Cu-Ni-Sn 

reaction layer. The thickness of these interfacial intermetallic layers increased with 

increasing aging time. The needle-like morphology of the (Cu,Ni)6Sn5 phase gradually 

evolved into a planar-type after solid-state aging. There are two different intermetallic 

phases formed, when SAC387 and SAC+0.3%Mo composite solders reflowed on ENIG 

substrate. The (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 phases identified using EDX analysis. The 

(Cu,Ni)6Sn5 formed towards solder side, whereas  (Ni,Cu)3Sn4  formed towards ENIG. 

However, individual layers cannot measure as the contrast between them is unusually 

low. The reported IMC is total interfacial IMC for the composite solder joints. There is no 

traces of Mo within the (Cu,Ni)6Sn5 phase in the composite solder joints. However, Mo 

reinforced SAC387 solder shows lower IMC growth than that of SAC387 solder. 

Therefore, it is an indication that Mo is not involving in diffusion couple and instead 

creates resistance for IMC growth. 
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) 

nm

 

 

 

B.4.1. IMC Growth Rate and Activation Energy 

Figure B.5 (a) shows that the thickness of the (Cu,Ni)6Sn5 layer as a function of 

the square root of aging times for different temperatures. The mean thickness of the 

interfacial IMC layer found to be increasing linearly with the square root of aging time. 

The thickness of (Cu,Ni)6Sn5 intermetallic layer was 3μm after aging at 150°C for 1000 

hours. However, it can be found from Figure B.5 (b) that the thickness of the (Cu,Ni)6Sn5 

intermetallic layer reached about 2μm after 1000 hours of aging at 150°C. This implies 

that addition of nano-sized Mo particles can effectively act as a good diffusion barrier for 

the eutectic SAC387 solder. These slow kinetics is beneficial for the long-term reliability 

of the solder joint by limiting the formation of potentially brittle interfacial intermetallics 

and limiting consumption of the substrate by the solder. It can be seen from Fig.B.5 that 

the growth of the IMCs followed a parabolic law, implying that the growth of the 

intermetallic layer was diffusion-controlled. Also, several authors reported that the 

Figure B.4: EM images of cross sections of SAC composite solder joints  with different 

aging times at 150°C  for SAC (a, b & c) and SAC+0.3Mo (d, e & f). 
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growth of intermetallic layer in the Sn base solder/Cu (or Ni) interface followed the 

diffusion controlled mechanism [4,5 ]. 

Table B.2 : IMC growth rate and activation energies for IME layers formed at the 

interface between SAC based composite solders and Immersion Au/Ni-P/Cu pad. 

Solder Joint Surface-Finish Temperature  

(K) 

K
2
 (m

2
 s

-1
) Q (kJ/mol) 

SAC387 OSP/Cu 

398 2.11×10
-14

 

33 423 3.37×10
-14

 

448 5.37×10
-14

 

SAC387 Au/Ni 

398 1.65×10
-16

 

59 423 4.27×10
-16

 

448 12.1×10
-16

 

 

 

SAC387 

 

 

ENIG 

398 1.06×10
-15

  

 

64 
423 5.64

1510  

448 7.05
1510  

 

 

SAC387+0.3Mo 

 

 

ENIG 

398 3.64x 10
-16

  

 

73 

423 4.4 x 10
-15

 

448 1.00 x 10
-14

 

 

Thickness of a reaction layer in the diffusion couples expressed by the classic 

parabolic Eq (B.1). The growth rate constant calculated from a linear regression analysis 

of d versus 5.0t , where the slope is k. Growth rate constants calculated for Cu-Ni-Sn 

intermetallic layers at different aging temperatures as summarized in Table B.2.  

Arrhenius relationship used to determine the apparent activation energies for intermetallic 

compound growth at the interface (Eq. (B.2)): The activation energies calculated from the 

slope of the Arrhenius plot using a linear regression model. Figure C.6 shows the 

Arrhenius plot for the growth of (Cu,Ni)6Sn5 IMC layers formed at the interface between 

SAC387/ENIG solder joint and the apparent activation energy calculated for the growth 

of the (Cu,Ni)6Sn5  phase  was 64  and 89kJ/mol for SAC and SAC+0.3Mo , respectively. 
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Although, there is a variation of the solder composition, present results are in good 

agreement with the results of previous researchers [4,5].  

 

Figure B.5: Plots of IMC thickness as a function of the square root of time t, at aging 

temperatures of 398, 423, and 448K 

 

B.4.2. Discussion 

The effects of nano-particle addition on the intermetallic reactions are significant 

in the SnAgCu joints. Reinforcing elements influences on the interfacial reactions 

between the base metals and Sn: Firstly, they can alter the reaction/growth rate; secondly, 

additives can change the physical properties of the phases formed; and thirdly they can 

form additional phases or replace the equilibrium phases by forming other reaction phases 

instead. The change in the reaction layer thickness to be related to changes in the 

intermetallic composition. It can be proposed that the addition of nano-particle effects on 

the concentration of structural vacancies existing in the intermetallic [6]. Highly ordered 

alloys or compounds random motion of vacancy is not possible as it would disrupt the 

equilibrium ordered arrangement of atoms on lattice sites, all changes in atomic 

environment expected to influence the diffusion of elements in the interfacial IMC. 

Kumar has studied the impact of nano-sized Ni particles on IMC growth of SAC387 

solder and observed  that  nano-sized Ni particles within the solder bump converts to fine 

sized intermetallic particles and acts has barrier for solid state diffusion flow. Belova and 

Murch have developed several theoretical models for diffusion in stoichiometric and non-

(a) (b) 
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stoichiometric intermetallic compounds that predict strong composition dependence on 

diffusion [7,8]. This explanation clearly accounts for the decrease in the growth rate after 

the addition of nano-particles to the solder. A recent study carried out by Takemoto and 

Yamamoto [10] indicated that metallic elements (Ti, Cr, Fe, Mg, Cu and Ni)  effectively 

suppress the formation of Cu3Sn and Cu6Sn5 during isothermal annealing at temperatures 

between 110 and 150 °C. 

Figure B.6 Arrhenius plot for the formation of IMC layers formed at the interface 

between SAC, and different surface-finishes. 

 

Table B.3 Activation energies of SAC387 joints with different surface-finishes 

Solder joint Aging temp. 

range 

Aging time Activation 

energy 

Reference 

SAC387/OSP/Cu 125-175 0-500h 33 Present study 

SAC387/Au/Ni 125-175 0-500h 59 Present study 

SAC387/ENIG 125-175 0-1000h 64 Present study 

Composite/ENIG 125-175 0-1000h 73 Present study 

SAC387/OSP/Cu 80-175 0-300h 42 228. 

SAC387/ENIG 80-175 0-1080h 57 229 

SAC387/Au/Ni 100-150 0-300h 73 228 
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B.4.3. Summary of Bulk Solder Joints 

1. The interfacial microstructure of the Ni-Cu-Sn intermetallic thickness 

grows and changes its morphology from irregular and needle-like to 

lateral thickening and ripening and composition of intermetallic 

changes from (Cu,Ni)6Sn5 to (Ni,Cu)3Sn4 up on isothermal aging for 

500hrs. 

2. Aging temperature has an effect on the growth of the Cu-Sn IMCs 

layers but does not alter the structure of  IMCs formed. For the 

Cu/OSP substrate, Cu3Sn intermetallic layer formed in solder joint 

after aging isothermally at 125
o
C for 300hrs where as it is forming in 

solder joints in 100hrs at 150°.  

3. The growth of Cu3Sn is much faster than Cu6Sn5 and Ni-Cu-Sn at 

150°C. 

4. Linear relationship between the growth of the IMC thickness and the 

square root of the aging time indicates that the formation IMC is a 

diffusion-controlled process. 

5. Two kinds of intermetallic compounds, (Cu,Ni)6Sn5  and (Cu,Ni)3Sn4  

for  SAC387 and SAC387+0.3Mo solder with ENIG substrate. 

6. Apparent activation energy for the growth of the Cu-Ni-Sn in SAC387 

and SAC387+0.3Mo solders found to be 64, and 89 kJ/mol  

7. Nano-sized Mo reinforced composite solders can effectively suppress 

the IMC growth  
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APPENDIX C: DIFFUSION KINETICS of IMCs IN BUMP JOINTS 

Effects of Sn volume on morphology, IMC growth and diffusion kinetics of 

interfacial Cu-Sn intermetallic compounds (IMC) with reference to the reflow and 

isothermal conditions studied in this chapter.  

C.1.  Effect of Multiple Reflows on IMC Morphology 

Figure C.1 (a-d) describe the morphology of the interfacial IMC layer of 50 m  

Sn/Cu solder joints reflowed for 60s holding period at the peak of 265
0
C reflow 

temperature.  During reflow process, copper substrate (UBM) exposed to the molten 

solder. Immediately, after the reflow process, scallop-like shaped IMCs formed at the 

solder joint interface (Fig.(C.1.(a)) and identified under EDX as Cu6Sn5 with 56.67% Cu 

and 42.94% Sn (η phase). As the number of reflows increases, the morphology of Cu6Sn5 

changing from scallop to planar shape. Multiple reflows helps mutual inter-diffusion of 

Cu and Sn atoms across the interface during reflow process, which reduces interfacial free 

energy of IMC by changing scallop shape to more stable planar shape. There is another 

Cu rich IMC phase i.e. Cu3Sn appears underneath Cu6Sn5 IMC during multiple reflows. 

Figure C.1: Morphology of Sn/Cu joints with reference to multiple reflows at 265
o
C 
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C.1.2. Effect of Multiple Reflows on IMC Growth 

Figure C.1 shows the optical images of the interfacial IMC between the Sn solder 

bump and Cu UBM of 50m solder joints during multiple reflows at 265
o
C. After one,  

reflow, the interfacial reactions between the Sn and Cu UBM formed Cu6Sn5 phase. 

During reflow, the Cu and Sn atoms inter-diffuse at the solder/Cu interface, causing the 

formation Cu6Sn5 phase. After three reflows, two different IMC layers, consisting of a 

scallop-shaped Cu6Sn5 phase (solder side) and a planar Cu3Sn phase, as shown in Fig. C.1 

(b).  It observed from Fig. C.1 (d), nearly 6m of the total deposited Sn (12 m) thickness 

consumed during multiple reflows (10 times). There is no Cu3Sn IMC observed for the 

first two reflows. However, it also observed after 3
rd

 reflow onwards small layer 500nm 

thickness of Cu3Sn along with thick Cu6Sn5 layer observed. The Cu3Sn layer thickness 

increased to 1.7 m at the 10
th

 reflow.  Solder joints reflowed at 245°C reflow 

temperature, only after 7
th

  reflow the Cu3Sn layer is seen underneath the Cu6Sn5. 

 

Figure C.2: Effect of multiple reflows on the total IMC thickness in (a) 10/50mSn/Cu 

(b) 160/200 m Sn/Cu  solder joints 

 

In case of microbump solder joints reflowed at 285
o
C, Cu3Sn layer found right 

from the 1
st
 reflow onwards. Similar observation also observed in other sizes of solder 

joints. Fig.C.2 shows the effect of solder volume (or size) on total effective IMC growth 

behaviour in solder joints with reference to multiple reflow at 265
o
C temperature. 
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Formation of early thickness of Cu6Sn5 plays an important role in the subsequent growth 

of interfacial total IMC during multiple reflows.  

 

Figure C.3: Effect of solder volume on interfacial IMC in the Sn/Cu joints 

 

In the case of 240m  solder joints reflowed at 265 and 285
o
C, Initial IMC 

thickness after 1
st
  reflow is about 3.4 and 3.8 m, whereas  IMC thicknesses  is  about 

6.1 and 7.4 m respectively. IMC thickness in 50m solder joints increases from 0.8m 

to 4.98 m from the first reflow to the 10
th

 reflow at 285°C. The effective IMC growth 

thickness is 4.19m that is higher than the effective increase in IMC for 240 m solder 

joint undergone similar reflowed conditions. In other words, effective growth of IMC 

thickness during multiple reflows (10 times) is higher for 50m solder joints (4.18m) 

than 240m solder joint (3.6m). Based on the experimental observation, it might be  

concluded that the early thicker IMC acts as a barrier for inter-diffusion of Cu and Sn 

atoms across the interface during reflow process than the thinner IMC. Therefore, first 

thinner IMC solder joints shows higher IMC growth during multiple reflows. In other 

words, smaller solder joints show higher growth rate of IMC during multiple reflows.  
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Figure C.2 shows IMC growth behaviour of different sizes of solder joints at 245 

and 285°C reflow temperatures. Growth of individual IMC layers such as Cu6Sn5 and 

Cu3Sn studied with multiple reflows at 265°C reflow temperature. The thickness of the 

Cu3Sn layer is much smaller than that of the Cu6Sn5 layer after 2
nd

 reflow at 265
o
C. 

Thickness of Cu6Sn5 and Cu3Sn increasing with multiple reflows, after 7
th

 reflow onwards 

the Cu3Sn is more rapid than growth of Cu6Sn5. The retardation of Cu6Sn5 growth is due 

to diffusion of Cu in to the solder region limited due to increased IMC layer thickness 

since IMC layer acts as a barrier for Cu diffusion across the interface. UBM Cu,  which 

migrate towards the interface reacts with Cu6Sn5 and form stable Cu3Sn phase. This leads 

to increase in thickness of Cu3Sn. The total IMC thickness of the 50m Sn/Cu joint 

increased from about 0.9 m after one reflow to about 5.2m after 10 reflows.  

Table C.4: Interfacial IMC growth kinetics parameter during multiple reflows 

Reflow 

temperature,(°C) 

Sn/Cu 

joint (m) 

Time-

exponent 

Growth rate 

Constant (m
2
s

-1
) 

Correlation 

Coefficient 

 

245 

10/50 0.28 0.39 0.96 

80/110 0.22 0.31 0.93 

160/200 0.18 1.18 0.93 

 

265 

10/50 0.31 0.36 0.95 

80/110 0.26 1.04 0.99 

160/200 0.28 1.01 0.99 

 

285 

10/50 0.29 0.68 0.98 

80/110 0.29 0.97 0.91 

160/200 0.41 0.61 0.97 

 

The thickness of the Cu3Sn IMCs layers increased to 1.7m linearly with reflow 

numbers. The Cu3Sn growth is about 1.1 m 3.4m after 10
th

 reflow for solder joints 

reflowed at 245 and 285
o
C respectively. Summary of growth rate fitting parameters 

tabulated in Table C-4.  It is shown   that time-exponent is close to the 0.3, indicates that 

diffusion mechanism dominated by bulk grain boundary diffusion.  Tables C.5 describe 

the summary of average growth rates and activation energy of interfacial IMC in different 
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sized Sn/Co solder joints. It is observed that the activation energy of total IMC layer 

decreases with the reduction in the solder volume in the solder joints. 

C.1.3. Effect of Reflow Dwell Time on IMC Growth 

Figure C.4 shows that effect of reflow dwell time at the peak of the different 

reflow temperatures. It observed that  microbump solder joint shows higher growth of 

IMC in 90s continuous reflow comparatively 110 and 240 m solder joints. Reason for 

this discrepancy is due to the formation of early Cu6Sn5 layer during reflow. In the case of 

240 m pad diameter, more Cu will go into the solder bump due to the high volume of 

solder. 

Table C.5: Growth rate constants and activation energy of different size of Sn/Cu solder 

joints with continuous reflow 

Solder joint 

 (m) 

Reflow 

Temperature(K) 

Growth rate 

Constant(m
2
s

-1
) 

Activation 

Energy(kJmol
-1

) 

10/50 518 3.61 x10
-15

  

25±4 538 5.32 x10
-15

 

558 9.63 x10
-15

 

80/110 518 6.56 x10
-15

  

37±9 538 1.82 x10
-14

 

558 2.68 x10
-14

 

160/200 518 1.29 x10
-14

  

44±2 538 2.92 x10
-14

 

558 6.9 x10
-14

 
 

However, this dissolved Cu rapidly forming Cu6Sn5 phase during reflow process 

itself. This phase also acts as a barrier for further dissolution. It observed from the 

experimental data that total IMC growth rate constants are in the order of 10
-13

 m
2
s

-1
 for 

all solder joints at 285°C reflow temperature whereas for 245°C, in the order of 10
-14 

to 

10
-15

m
2
s

-1
 depending on the size of solder joint. Increase in the growth rate constant 

indicates that IMC growth is accelerates with an increase in reflow temperature. In the 

case of microbump solder joints, total IMC growth rate constant increase two orders  

from the 10
-15 

to 10
-13

 m
2
s

-1
, when the reflow temperature rises from 245 to 285°C. 
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However, for 240m joints, it increases only one order of magnitude with similar reflow 

temperature range. This means microbump solder joints more sensitive to the reflow 

temperature and peak reflow time than bulk solder joints.  

  

Figure C.4: IMC growth behaviour of different sizes of solder joint at reflow temperature 

of (a) 245
o
C (b) 285

o
C. 

 

 Table C.6: Growth rate constants and activation energy of different size of Sn/Cu solder 

joints with continuous reflow time. 

Reflow 

temperature, (°C) 

Sn/Cu 

joint(m) 

Time 

exponent  

Growth rate 

Constant  

Correlation 

Coefficient  

 

245 

10/50 0.21 5.1 x10
-7

 0.95 

80/110 0.07 2.51 x10
-6

 0.93 

160/200 0.218 1.48 x10
-6

 0.97 

 

265 

10/50 0.31 0.44 x10
-7

 0.95 

80/110 0.26 2.48 x10
-7

 0.97 

160/200 0.28 1.22 x10
-7

 0.98 

 

285 

10/50 0.29 6.65 x10
-8

 0.99 

80/110 0.29 2.97 x10
-8

 0.99 

160/200 0.41 7.13 x10
-8

 0.89 

 

C.1.4. Effects of Solder Volume on Activation Energy of IMCs 

Activation energy for total interfacial IMC calculated from the slope of Log 

(growth rate constant) versus 1/t reflow temperature using Eq. (B.2) as shown in Fig. C.5. 

Total IMC growth constants and their activation energies for different sizes of Sn/Cu 

solder joints summarized in table C-6. It understood that the activation energy is higher 

for microbump (50m) solder joints comparatively 240 m solder joints. 



 

217 

Table C.7: Interfacial IMC growth kinetics parameters during continuous peak reflow. 

Sn/Cu joint size 

(m) 

Reflow  

Temperature (K) 

Growth rate  

constant ( m
2
s

-1
) 

Activation  

energy (kJmol
-1

) 

10/50 518 7.5 x10
-15

  

79±18 538 2.11 x10
-14

 

558 1.57 x10
-13

 

80/110 518 1.83 x10
-14

  

68±23 538 1.53 x10
-13

 

558 2.43 x10
-13

 

160/200 518 6.56 x10
-14

  

48±13 538 2.65 x10
-13

 

558 4.14 x10
-13

 

 

                        

Figure C.6: IMC growth rate versus inverse reflow temperature (T
-1

, K
-1

) 
 

 

C.2. Effects of Isothermal Aging on IMC Morphology 

Solder joints reflowed at 265°C, subjected to isothermal aging with different 

temperatures and aging periods. Figure C.6 (a-d) shows interfacial IMC growth of 

10/50m Sn/Cu solder joint (reflowed at 265
o
C) with aging period at 150

o
C aging. It is 

evident from the experimental data; a higher isothermal aging temperature facilitates the 

formation of thicker total IMC (Cu3Sn+Cu6Sn5) layer in a much shorter aging time.  
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Figure C.6: Morphology of Sn/Cu joints with aging time at 150
0
C 

 

Higher aging temperature provides the necessary thermal energy to overcome the 

activation energy for inter-diffusion of constituent elements. Therefore, Cu3Sn phase 

formed at a much shorter time at a higher temperature (for example, at 150
o
C, it needs 

100 hours and at 200
o
C, 3 h needed). The change in the morphology of the Cu6Sn5 phase 

expected to decrease in the Gibbs free energy of the interfacial layer. However, 

morphology of Cu3Sn layer is planar right from its formation. This might be abundant 

availability of Cu at Cu/Cu6Sn5. Fig.C.6 (d) shows that Cu3Sn layer is much thicker than 

Cu6Sn5 after aging at longer periods.  

This implies that the growth of Cu3Sn is much faster than that of Cu6Sn5.  Figure 

C.7 shows the relative growth rates of total IMC, Cu6Sn5 and Cu3Sn layers. Growth rate 

of Cu6Sn5 retards as time increases, because of formation Cu3Sn phase is at the expense of 

Cu6Sn5. Once formation of Cu3Sn initiates at Cu/Cu6Sn5 interface, the growth rate of 

Cu6Sn5 only controlled by the diffusion of Cu through the interfacial IMC grain 

boundaries. This is evident from the data in the table C.8, the time-exponent is close to 

0.3. Therefore, during isothermal aging, Cu3Sn layer appears to grow faster as it expanded 

on both sides, resulting in shifting of Cu/Cu3Sn interface towards Cu pad and Cu6Sn5. 

This leads to a reduction in thickness of Cu6Sn5 after prolonged isothermal aging. 
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Figure C.6: Relative Cu6Sn5 and Cu3Sn IMC growth behaviour during isothermal aging at 

150
0
C in microbump joints 

Table C.8: Interfacial IMC growth kinetics parameters during isothermal aging 

Aging 

temperatu

re 

Solder joint Size  

m) 

Time exponent 

Total IMC Cu3Sn Cu6Sn5 

 

150 

10/50 0.28 0.42 0.12 

80/110 0.34 0.29 0.38 

160/200 0.44 0.31 0.15 

175 10/50 0.34 0.43 0.09 

80/110 0.56 0.39 0.72 

160/200 0.72 0.72 0.71 

200 10/50 0.28 0.50 0.06 

80/110 0.22 0.23 0.22 

160/200 0.18 0.08 0.12 

 

C.2.1. Growth Rates and Activation Energy of Sn/Cu Joints  

Thickness of interfacial IMC layers in the diffusion couples usually expressed by 

using Eq. (B.1) where  is the thickness of the IMC layer  is the thickness of IMC after 

first reflow or at aging time zero, D is the growth rate constant, n is the time-exponent 

and t is the aging time. The time-exponent evaluated using non-linear regression analysis. 

Figure B-14 shows the typical non-linear curve fitting analysis-using Eq. (B.1) for 

10/50m Sn/Cu joint aged at 150°C up to 450h. The observed linear correlation 

coefficient is more than 0.97 for IMC thickness-aging time data. Time exponents for total 

IMC, Cu6Sn5 and Cu3Sn for all sizes of Sn/Cu joints summarized in the table D-8. 
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Arrhenius relationship (Eq.B.2) used for calculation of activation energies for the total 

IMCs, Cu6Sn5 and Cu3Sn intermetallic growth. Activation energy for total interfacial IMC 

calculated from the slope of ln (growth rate constant) versus 1/ reflow temperature as 

shown in Fig.C.8. 

   

   

Figure C.14: IMC growth behaviour of different sizes of Sn/Cu joints during aging  

 

The Total IMC growth constants and their activation energies for different sizes of 

Sn/Cu solder joints summarized in Table C.9.  Activation energy found to be higher for 

microbump (10/50m) Sn/Cu joints comparatively 160/200m Sn/Cu solder joints during 

aging. Activation energy of Cu3Sn  found to be lower than Cu6Sn5 irrespective of size of 

the solder joint.  

 

Figure C:15 Log (growth rate) versus inverse isothermal aging temperature for different 

sized Sn/Cu solder joint during isothermal aging conditions 



 

221 

Table C.9: Interfacial IMC growth kinetics parameters during isothermal aging 

Aging 

temperature 

Solder joint Size 

m) 

Time-exponent 

Total IMC Cu3Sn Cu6Sn5 

 

150 

10/50 0.28 0.42 0.12 

80/110 0.34 0.29 0.38 

160/200 0.44 0.31 0.15 

175 10/50 0.34 0.43 0.09 

80/110 0.56 0.39 0.72 

160/200 0.72 0.72 0.71 

200 10/50 0.28 0.50 0.06 

80/110 0.22 0.23 0.22 

160/200 0.18 0.08 0.12 
 

 

Table C.10: Growth rate constants and activation energy of different size of Sn/Cu solder 

joints with isothermal aging conditions 

temp. 

(
o
C) 

Sn/Cu 

(m) 

Total IMC                                      

k
2
, (m

2
s

-1
) 

Q, 

KJ/mol 

Cu3Sn                              

k
2
,(m

2
s

-1
) 

Q, 

KJ/mo

l 

Cu6Sn5          

k
2

,(m
2
s

-1
 ) 

Q, 

KJ/mol 

150  

10/50 

2.06 x10
-17

  

41 

7.78x10
-18

  

45 

2.35 x10
-18

  

---- 175 7.17 x10
-16

 1.57 x10
-17

 (-) growth 

200 3.42 x10
-16

 1.82x10
-16

 1.04 x10
-17

 

150  

80/110 

 

3.83 x10
-16

  

33 

8.51x10
-18

  

24 

1.09 x10
-17

  

38 175 2.26 x10
-16

 3.76x10
-17

 7.84 x10
-17

 

200 3.66 x10
-16

 4.43 x10
-17

 1.55 x10
-16

 

150  

160/20

0 

6.27 x10
-17

  

26 

1.24 x10
-17

  

20 

1.97 x10
-17

  

25 175 1.45 x10
-16

 2.54 x10
-17

 5.21 x10
-17

 

200 4.05 x10
-16

 4.94 x10
-17

 1.22 x10
-16

 

 

C.3. Summary of Microbump Joints 

1. Effects of solder volume on Morphology and interfacial IMC diffusion 

kinetics have been studied. 

2. Growth rate constants decrease with reduction in the size of solder joint 

during multiple reflows for a given reflow temperature. 

3. Activation energy of solder joints during reflow process increases with a 

decrease in solder joint size. 
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