
DESIGN OF ENERGY EFFICIENT WEARABLE

ECG SYSTEM AND LOW POWER

ASYNCHRONOUS MICROCONTROLLER

ZHANG DA REN

NATIONAL UNIVERSITY OF SINGAPORE

2012

i

Acknowledgements

First of all, I would like to thank my supervisors Prof. Lian Yong for his

encouragement and advice during my Master study. His guidance helps me a lot

through this work.

Secondly, I am grateful to my project team members, Mr. Xu Xiao Yuan, Chacko

John Deepu and Yang Tao for their continuous work and help on wearable ECG

system; and Mr. Xue Chao for his explaining of Asynchronous microcontroller part.

Thirdly, I would like to thank Mr. Teo Seow Miang and Ms. Zheng Huan Qun for

their technical support. My appreciation also goes to all my colleagues and friends of

the Signal Processing & VLSI lab. They are Zhang Jinghua, Zou Xiao Dan, Tan Jun,

Liew Wensin, Niu Tian Fang, Zhang Xiao Yang, Wang Lei, Zhang Zhe, Li Yong Fu,

Hong Yi Bin, Chen Xiaolei, Yang Zhenglin, Li Ti, Yu Heng and many others.

Lastly, but most importantly, I would like to dedicate this thesis to my beloved

parents Zhang Bao Chen and Xing Bin Wa. Their continuous encouragement and

support always give me confidence through my life.

ii

Contents

Acknowledgements ... i

Contents .. ii

Summary ... v

List of Tables .. vii

List of Figures ... viii

List of Abbreviations .. xi

Chapter 1 Introduction.. 1

Chapter 2 Background .. 5

2.1 Wearable ECG system... 5

2.1.1 ECG introduction ... 5

2.1.2 ECG monitoring system Literature Review .. 7

2.2 Asynchronous Circuit .. 9

2.2.1 Introduction ... 9

2.2.2 Asynchronous Handshake Protocols ... 11

2.3 Design Tools ... 12

2.3.1 Hardware Development Tool .. 12

2.3.2 Firmware Development Tool ... 13

2.3.3 Balsa for Asynchronous Circuit design ... 14

Chapter 3 Wireless ECG Plaster .. 16

iii

3.1 System Overview .. 16

3.2 Hardware ... 17

 3.2.1 ECG Acquisition chip BMDAV8.. 18

 3.2.2 Microcontroller .. 22

 3.2.3 Zigbee RF transceiver ... 24

 3.2.4 Electrode and PET substrate .. 24

3.3 Firmware ... 26

3.4 Graphical User Interface ... 28

3.5 Design Verification ... 30

 3.5.1 System Accuracy .. 30

 3.5.2 System Reliability .. 33

Chapter 4 Long Playing Cardio Recorder ... 37

4.1 Overview of LPCR system .. 37

4.2 Hardware ... 40

4.2.1 Microcontroller .. 41

4.2.2 BMDAV7 ECG Acquisition Chip ... 44

 4.2.3 NAND Flash…………………………………………………………….46

 4.2.4 Blue Giga WT12..…………………...………………………………….48

4.3 Firmware design .. 49

4.3.1 Microcontroller and BMDAV7 ... 51

4.3.2 Microcontroller and FLASH ... 54

4.4 Graphical user Interface .. 59

4.5 Design verification .. 59

4.5.1 ECG simulator testing ... 60

4.5.2 Volunteer testing .. 62

4.5.3 Long time battery testing ... 64

Chapter 5 Wearable ECG system performance comparison 67

iv

Chapter 6 Asynchronous 8051 design .. 69

6.1 Introduction ... 69

6.1.1 Synchronous 8051 microcontroller ... 70

6.1.2 Asynchronous circuit design flow ... 71

6.2 Architecture of the Asynchronous 8051 .. 72

6.2.1 Overview of Asynchronous 8051 .. 72

6.2.2 8051 Asynchronous core ... 73

6.3 Simulation Result .. 76

Chapter 7 Conclusion .. 78

Bibliography ... 80

Appendix 1 LPCRV1 PCB design .. 83

Appendix 2 Firmware Flash part ... 87

Appendix 3 Asynchronouns 8051 core Balsa code .. 100

v

Summary

This work is about the design and implementation of energy efficient wearable

real time monitoring ECG system and a low power asynchronous 8051

microcontroller for biomedical sensor interface device. It is motivated by the

increasing awareness of Cardiac arrhythmias and coronary heart disease due to

population ageing and stressful modern life.

The hardware, firmware and graphical user interface are developed for energy

efficient wearable ECG system. There are two designs of wearable ECG system in

this work. The first design is a Wireless ECG Plaster prototype device. It is designed

for real-time monitoring of ECG in cardiac patients. The proposed device is light

weight (25 grams), easily wearable and can wirelessly transmit the patient’s ECG

signal to PC using ZigBee. The device has a battery life of around 26 hours while in

continuous operation, owing to a low power BMDAV8 ECG acquisition front end

chip. The prototype has been verified in clinical trials and variation is very low at

0.4% compared to the reference device. The second design is a Long Playing Cardio

Recorder system prototype. It is designed for 48 day long term ECG data recording,

and it is also a wearable device. It receives data from an ultra-low power ECG

acquisition chip. The data is stored into a 16G bit NAND flash. The system current

consumption could be less than 1.7mA from a 3.7V 650mAH Li-ion battery so it can

vi

last for 30 days.

To further reduce the power consumption for wearable ECG system, a new design

of 3.3V to 1.0V voltage-scalable asynchronous 8051 Microcontroller is presented.

The asynchronous core of the proposed design is synthesized in the Balsa framework

using the dual-rail four-phase approach. With the same synchronous 8051

microcontroller instruction set which includes add, jump, and multiply operations

verified in simulation, the proposed AMS 0.35μm technology microcontroller

consumes about 40 µW at 1.0V supply.

vii

List of Tables

3.1 Hardware components………………………………………….................... 18

3.2 Performance Summary………………... 21

3.3 Wireless ECG Plaster summary………………….. 36

4.1 LPCR system Hardware major components... 40

4.2 Comparison between BMDAV7 and BMDAV8... 45

4.3 BMDAV7 control bits........... 53

4.4 BMDAV7 status bits.. 53

4.5 Control bits for FLASH reading and writing. ... 56

4.6 Testing result For Average heart rate........... ... 61

5.1 Comparison between other ECG monitoring systems....................................... 67

6.1 Comparison with other existing designs at 1.1V 0.35μm. 76

viii

List of Figures

2.1 The ECG signal... 6

2.2 The normal ECG signal in one cardiac cycle…….. 6

2.3 José Antonio Gutiérrez Gnecchi’s ECG system....................................... 8

2.4 I – Jane Wang’s device overview... 9

2.5 Synchronous pipeline stages controlled by clock signal [8].................... 10

2.6 Asynchronous pipeline stages controlled by handshake signals............... 11

2.7 Handshake sequence of four-phase dual-rail data protocol............................. 12

2.8 Altium Designer. …….......... 13

2.9 M P L A B I D E . . 14

2.10 B a l s a . 15

3.1 Sys tem Overv iew . 16

3.2 System Architecture . . 17

3.3 Architecture of Proposed ECG Acquisition Chip................. 19

3.4 Circuits for the ECG frond-end. ... 20

3.5 Concept of low power DRL circuit with direct common-mode extraction........ 20

3.6 Chip mic ro photo . . 21

3.7 Microcontroller MSP430F2254 block diagram.. 23

3.8 Configuration for microcontroller and BMDAV8...................................... 23

3.9 CC240 Zigbee RF transceiver.. 24

ix

3.10 Mash structure Electrode…………….... 25

3.11 P las te r subs t ra te …. 25

3.12 Wireless ECG Plaster Top view……...... 26

3.13 System Firmware Flow Chart.. 27

3.14 GUI interface for PC……………….... 29

3.15 ECG data file saved from GUI……………………………………….. 29

3.16 The positions of the wireless ECG plaster and Holter……............................... 31

3.17 ECG Signal: Plaster Device Vs Reference Holter Monit.............................. 32

3.18 RR Interval histograms: ECG plaster Vs Reference Device........................... 33

3.19 SGH Clinical Trial set ……………….................... 34

3.20 Subject 2nd day morning Record ……………….. 35

4.1 Long Playing Cardio Recorder (LPCR) Overview…........................ 38

4.2 LPCR ECG data collecting method .. 39

4.3 Block Diagram of LPCR system……... 40

4.4 P I C 1 8 F 4 6 J 5 0 b l o c k d i a g r a m . 42

4.5 Pin configuration of PIC18F46J50 in LPCR system. 43

4.6 BMDAV7 ECG Acquisit ion Chip . . 45

4.7 Pin configuration between BMDAV7 and PIC....................................... 46

4.8 MT29F16G08DAAWP Flash chip top view.. 47

4.9 MT29F16G08DAAWP [15] Flash chip array organization.......................... 48

4.10 LPCRV1 PCB………... 49

4.11 Firmware state diagram.. 50

4.12 ECG control sinals……………… …... 52

4.13 File structure of FLASH memory …... 55

4.14 MCU control block. 56

x

4.15 F l a s h r e a d s e t t i n g . 58

4.16 Graphical User Interface…….. .. 59

4.17 ECG simulator……………………………………………..... 60

4.18 30bpm, 60bpm, 90bpm ECG signal Simulation result. 61

4.19 The positions of the LPCRV1 and Welch allyn device. 62

4.20 Volunteer test result from Welch Allyn device and LPCR system................. 63

4.21 RR Interval histograms: LPCR system Vs Reference Device................. 64

4.22 Long time battery testing result (Battery voltage VS time)................. 65

6.1 8051 Microcontroller block diagram... 71

6.2 Async 8051 Microcontroller [16] 73

6.3 Async 8051 core……... 74

xi

List of Abbreviations

A/D Analog-to-digital

ADC Analog-to-digital converter

AF Aritrial fibrilation

ALU Arithmetic and Logical Unit

AMS AustriaMicroSystem

BPM Bit per minute

CHD Coronary heart disease

CMOS Complementary metal-oxide-semiconductor

CISC Complex Instruction Set Controller

DAC Digital-to-analog converter

DRL Right-leg driver

DSP Digital signal processor

ECG Electrocardiogram

EDA Electronic design automation

HDL Hardware description laguage

GDS Graphical Database System

IF & ID Instruction Fetch and Instruction Decoding

LEF Libraray exchange file

LHP Left-half-plane

xii

LPCR Long time cardio recording

LPE layout parasitic extraction

MIP Million instruction per second

P&R Placement and routing

ROM Read only memory

S/H Sample-and-hold

SOC Silicaon on chip

SPICE Simulation Program with Integrated Circuit Emphasis

USB Universal Serial Bus

VLSI Very Large Scale Integration

1

Chapter 1

Introduction

Cardiac arrhythmias and coronary heart disease (CHD) constitute significant

public health burdens. Researches show that US$173 billion is spent every year for

treatment of heart related disorders in USA [1]. Atrial fibrillation (AF), a common

arrhythmia, afflicts nearly 9% of persons over 80 years old [2], and is associated with

increased stroke risk. Another arrhythmia, ventricular arrhythmia, can cause sudden

cardiac arrest. For heart related disorders, the chances of a total and fast recovery of

the patient are diminished by the late detection of the symptoms, which may cost

patient’s life. Early diagnosis presents an opportunity for preventive treatment.

However, many patients with cardiac arrhythmia or silent myocardial ischemia

remain undiagnosed and untreated, because abnormal electrocardiogram (ECG)

changes often occur sporadically and are easily missed. Hence, a better ECG

monitoring device is necessary.

In recent years, personal ECG monitoring medical device has attracted increasing

2

attention as it reveals to be a promising solution to the overwhelming demand in

healthcare industry due to population ageing. There are hundreds of portable ECG

monitoring systems in this market. The commonly used solutions like ambulatory

Holter systems are often bulky with many wires stuck on patient’s chest. The

operational life of the Holter is usually limited within 24 hours, and ECG data are

analyzed offline for diagnosis of the problem. One major shortcoming of the existing

ambulatory Holter systems is extremely low diagnostic yield at 10-13% [3]. In

addition, such devices are quite heavy and use traditional ECG electrodes, which are

not comfortable as there are multiple wires hanging over the body. And such devices

usually aren’t waterproof; therefore, the patient is expected to avoid water contact in

the area where the device is fixed. All these compromises patient’s comfort level and

affects his life style.

To avoid the limitations of such a kind of Holter device, the motivation of this

work is to present energy efficient wearable ECG monitoring system. There are two

phases for this work. In the first phase, a wireless ECG plaster prototype device is

designed for real-time monitoring of ECG in cardiac patients. This device, when

placed on patient’s chest, continually records single-lead ECG and wirelessly streams

it to a remote station for diagnosis. The skin contact electrodes have been printed on

flexible substrates with consideration for easy wearability. A highly integrated, low

power chip with low noise amplifier, ADC and low pass filters were developed in-

order to reduce the power consumption and the number of discrete IC components.

In the second phase, another ECG monitoring device, Long Playing Cardio

3

Recording Version 1 (LPCRV1) system is designed. It can store 48 days ECG data. It

is designed for special requirement of long time ECG recording. The system still

keeps the advantage of light weighted and smaller in size from Wireless ECG Plaster.

Its firmware can maintain ultra low power consumption when huge data reading and

writing in order for long term used. The version 1 is the first version of Long Playing

Cardio Recording system. In this version, device uses traditional ECG lead contacts to

collect ECG signal instead of comfortable substrate. The focus of this version is low

power, long time playing and large ECG data recording in NAND Flash.

In addition, the microcontroller is a significant source of power consumption unit.

In order to further reduce the power consumption of the wearable ECG monitoring

system above, a microcontroller which consumes less power is desired. Therefore,

this work also aims to design a new version of low-power asynchronous 8051

microcontroller based on previous work. This microcontroller works as a local

processing and control unit in a bio-medical sensor interface block which is powered

by batteries. It follows the structure of a standard synchronous 8051 microcontroller

invented by Intel, so firmware developer can use it easily. The asynchronous core of the

proposed design is synthesized in the Balsa framework using the dual-rail four-phase

approach. Furthermore, the core’s structure adopts No pipeline structure together with

Multiplication and Division block to improve power performance of asynchronous

8051 microcontroller.

The organization of this dissertation is as follows. In Chapter 1, introduction and

motivation of this work is introduced. Chapter 2 outlines a brief background of the

ECG and asynchronous circuit design. Chapter 3 and 4 elaborates Wireless ECG

4

Plaster and Long Playing Cardio Recording system individually. In Chapters 5, the

wearable ECG system comparison will do some performance analysis here. Chapter 6

details a new design for low power asynchronous 8051 microcontroller which is

designed for further reduce the power consumption of wearable ECG system in the

future. Chapter 7 concludes the work.

The Wireless ECG plaster of this work was accepted by the Biomedical Circuits

and Systems Conference (BioCAS), 2011 [4].

5

Chapter 2

Background

2.1 Wearable ECG system

2.1.1 ECG introduction

Electrocardiography (ECG) is an interpretation of the electricity activity of the

heart over a period of time, as detected by electrodes attached to the outer surface of

the skin and recorded by a device external to the body. Generally speaking, the ECG

signal shown in Figure 2.1 can reflect the electrical activities of a person’s heart over

time. Not only does it reflect his or her heartbeat, but also it provides greater insight to

the detailed biological activities of the heart. Because it can be obtained through

simple and nonintrusive procedures, the ECG signal has been one of the most

sophistically studied and widely used indicators for diagnosing heart diseases.

Based on the early studies on dogs in the 1950s and the latter similar studies on

the human heart in the 1970s, it is commonly accepted that the ECG signal is

essentially generated from the propagation of dipole wave fronts across the heart

tissue that originate from the depolarization and repolarization processes in the heart

6

cells.

Figure 2.1: The ECG signal

Figure 2.2: The normal ECG signal in one cardiac cycle.

7

Figure 2.2 depicts one cycle of the typical ECG signal obtained and recorded on

the standard ECG paper. The deflections are named in alphabetic order as P wave,

QRS complex, T wave and U wave respectively. The various segments and intervals

are defined and used extensively in diagnoses.

The P wave corresponds to the atrial depolarization. The ventricular

depolarization occurs during the QRS complex. The repolarization of the atria also

takes place in this interval but is too small to be observed in the ECG. The T wave

forms when the ventricles repolarize from activation. The formation of the U wave is

not very clear yet, and it is normally seen in 50% to 75% of ECGs [5].

2.1.2 ECG monitoring system Literature Review

ECG monitoring system is for monitoring patient’s ECG status and recording the

data. The basic requirement for telemetric ECG recording system, especially for a

portable/wearable one, is ultra-low power consumption. The ultra slim rechargeable

batteries manufactured for good portability today usually have only a few hundred

mAh of capacity. To operate the ECG device for weeks, the average current

consumption thereby should be strictly controlled within mA range. Because the

majority of the current has to go to the telemetry or storage circuit, the sensor

interface module can only share some tens of µA or even lower. Fortunately, the

sensor interface deals with low frequency and narrow bandwidth signals with medium

dynamic range accuracy, which makes such low current consumption feasible.

There are several researches for portable ECG recording system. José Antonio

8

Gutiérrez Gnecchi proposed an Ambulatory Electrocardiogram Recorder [6], the

ECGITM04. The 3-wire ECG monitoring device complies with several specifications:

low-power consumption (battery operated), on-line graphics display, 7-days

continuous data logger, patient electrical safety, minimal signal processing operations

to facilitate the identification of cardiac arrhythmia patterns and a JTAG

programming port so that the device can be updated without changing the data

acquisition hardware. The system can maintain long time operation, but the size of

this device is quite big. Patient may feel uncomfortable when wearing it.

Figure 2.3: José Antonio Gutiérrez Gnecchi’s ECG system

I – Jane Wang proposed a wearable mobile electrocardiogram monitoring system

[7] for long-term ECG monitoring. The wearable ECG acquisition device integrated

with dry foam electrodes and the ECG acquisition module was designed for long-term

ECG monitoring in daily life. Moreover, the ECG acquisition module is small-volume,

wireless and low-power consumption. And based on SMS communication technology,

patients can monitor their ECG anywhere in the globe if they are under the coverage

9

of GSM cellular network. The system is good in function but has a drawback that it

has to use large capacity battery in order to maintain long time monitoring. In addition,

dry foam electrodes are not weather proof.

Figure 2.4: I – Jane Wang’s device overview

2.2 Asynchronous Circuit

2.2.1 Introduction

The difficulty to find low power consumption is one of the crucial concerns for

portable ECG monitoring system design. Otherwise, the battery cannot last very long

time. The microcontroller, which is a significant source of power consumption for

central control block, should have the desirable characteristic of low-power

consumption. Hence, a technique for low power consumption design is needed.

Nowadays, most of the commercial digital designs are synchronous in nature. In

10

such circuits, there is usually a global clock signal which controls and synchronizes

the data movement from one register to another. However, the power consumption of

the clock tree constitutes a significant amount especially for low-power digital

designs. Consequently, there is an increasing research interest in the field of

asynchronous circuits over the years especially in the academic arena. Asynchronous

circuits are fundamentally different from synchronous circuits in the way that there is

no global clock signal present. Instead, asynchronous circuits make use of

handshaking signals, which acts as local clocks that are not in phase and with varying

period, to perform the controlling and synchronization of data movement as illustrated

by Figure below. In this way, the registers in asynchronous circuits are only clocked

where and when needed by the handshake signals.

Figure 2.5: Synchronous pipeline stages controlled by clock signal [8]

11

Figure 2.6: Asynchronous pipeline stages controlled by handshake signals

The main difference between synchronous circuits and asynchronous circuits lies

in the data synchronization and communication method adopted. Compare to

synchronous circuits, asynchronous circuits have several advantages. Firstly,

asynchronous does not have clock skew problem, the absence of a global clock signal

eliminates the clock skew problem faced in synchronous circuits. Secondly,

asynchronous circuit power consumption for is lower than synchronous circuit.

Absence of the clock tree in asynchronous circuits leads to practically zero stand-by

power consumption when the circuits are idle. For some synchronous circuits with

special sleep mode operation where the clock oscillator is turned off when the sleep

mode is activated, they can also achieve practically zero stand variations in supply

voltages and fabrication process. Timing assumption is based on matched delays for

bundled data protocol, and for asynchronous circuits that adopt the dual-rail protocol,

the insensitive or completely delay insensitive.

2.2.2 Asynchronous Handshake Protocols

In this project, the dual-rail four phase protocol is used to synthesize the

asynchronous core of the 8051 microcontroller. A short brief is introduced here

For a 4-phase dual-rail protocol, there is always an empty state in-between two

valid data. The handshake sequence is illustrated by Fig. 2.7 [8] and goes as follows:

1. The sender issues a valid data on the data bus, 2. the receiver sets the acknowledge

line to logic 1 once it captures the valid data on the data bus, 3. the sender then issues

12

an empty data on the data bus after capturing a logic 1 in the acknowledge line, 4. the

receiver accordingly lowers the acknowledge line upon detecting an empty data on the

data bus, completing one handshake cycle.

.

Figure 2.7: Handshake sequence of four-phase dual-rail data protocol

This protocol is very robust as it is insensitive to the delays involved in the wires

connecting the two communicating parties. As it’s so robust, voltage supply can be scaled

down for the circuit design which use this protocol. Another reason to choose this

protocol is that Balsa system can only support dual-rail four phase protocol in current

version. In this work, asynchronous 8051 microcontroller adopts this protocol.

2.3 Design Tools

There are several design tools for implement Wearable ECG system and

Asynchronous circuit.

2.3.1 Hardware Development Tool

13

Figure 2.8: Altium Designer

This work’s PCB design is using commonly used Altium Designer shown in

Figure 2.8. Altium Designer is an EDA software package for printed circuit board,

circuit and layout design

2.3.2 Firmware Development Tool

In order to design the firmware of Energy efficient wearable ECG system, C

programming development tool is needed. MPLAB Integrated Development Environment

(IDE) is a free and officially supported development environment application, which

could integrate with many third party compilers and fully support ICD2 device. It can

highlight the codes and organize different files in one project. With the help of In-Circuit-

Debugger 2 (ICD2), MPLAB can trace the code line by line. Here, MPLAB IDE V8.60 is

used for developing firmware.

http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Printed_circuit_board

14

Figure 2.9: MPLAB IDE

2.3.3 Balsa for Asynchronous Circuit design

Balsa [9] is software for Asynchronous Circuit design. It provides a fully automatic

approach for synthesizing asynchronous circuits through describing the asynchronous

circuits using a hardware description language – Balsa language. Asynchronous design is

first described in the Balsa language. Through a compilation, the Balsa description is

transformed into the intermediate breeze description which is a netlist composed of

various handshake components. Behavioral simulation can be formed on this handshake

component (HC) netlist using the Balsa behavioral simulation system for initial

verification. After this, it will convert to a HDL file such as verilog and VHDL for

15

Synopsys or Cadence to use.

Figure 2.10: Balsa

16

Chapter 3

Wireless ECG Plaster

3.1 System Overview

The design objective for Wireless ECG Plaster is to conduct a real-time

monitoring of ECG in cardiac patients. This device continually records patient’s

single-lead ECG signal and wirelessly stream it to a remote station for monitoring and

analysis, using a ZigBee transceiver. The proposed device extremely light weight at

25 grams and easy to wear, and therefore is comfortable.

Figure 3.1 System Overview

The overall system includes two parts: (1) a wireless ECG acquisition plaster, and

(2) a personal gateway (or remote station) as shown in Fig 3.2. The ECG plaster

contains a custom designed ECG front-end chip, a microcontroller, and a ZigBee

transceiver. The personal gateway can be either a mobile phone or a PC with a USB

17

ZigBee interface. The plaster records the ECG and wirelessly transfers the data to a

remote data center through the personal gateway.

Figure 3.2 System Architecture

The ECG acquisition chip is designed for low power. The details will be presented

in next part. For wireless communication, ZigBee (TI CC2420) is selected as it offers

sufficient data rate at reasonable power consumption. The MCU (TI MSP430) is used

for ZigBee baseband and for ECG data management. The plaster was designed with

user comfort and ease of use in mind. Hence, it does not affect the daily activities of

users. In addition, the plaster is sealed with splash and water-proof material, so the

patient can take shower with the plaster.

3.2 Hardware

PET Substrate

ECG

Acquisition

Chip

Low Power

μC

Zigbee

Wireless

Transceiver

PCB

Li-Ion Battery

Electrodes

Wireless ECG Plaster

USB Zigbee

Transceiver

GUI

ECG Database

ECG Signal

Analysis

Gateway

18

In order to design Energy efficient wearable ECG system, the power consumption

of each hardware component on the PCB must remain low. The Table 3.1 shows the

major component of Wireless ECG Plaster.

Table 3.1: Hardware components

No. Component Function

1 BMDAV8 ECG Acquisition chip

2 MSP430F2254 Microcontroller

3 TI CC2420

ZigBee wireless

transceiver

4 TPS73615-EP Regulator

5 Hi - Charge Li - ion battery 3.7V 650mAH battery

3.2.1 ECG Acquisition chip BMDAV8

First of all, a NUS ECG Acquisition chip BMDAV8 is selected for this project.

The BMDAV8 is a low-power biological data acquisition device that is targeting

pervasive healthcare and medical apparatus market. Optimized for battery-powered

applications, its core circuit consumes approximately 30 μA of current with 3-V

supply, and promises over 10 bits of effective resolution with up to 25 kS/s of

sampling. The detail of this chip is illustrated in Figure 3.3.

For a low-power weak-signal pickup device, one of the most essential links along

the acquisition chain is its analog processing frontend and analog-to-digital interface.

The required low noise, low distortion analog capabilities always conflict with the

limited power budget. Unfortunately such situation does not scale down with process

technology as well as in digital domain, and in fact usually gets worse with more

19

advanced process nodes. In our proposed ECG plaster, we use a proprietary

biomedical data acquisition frontend chip that employs and extends the solutions we

demonstrated in [10] [11].

Figure 3.3: Architecture of Proposed ECG Acquisition Chip

As shown in the block diagram in Figure 3.3, the chip houses a fully featured bio-

signal acquisition frontend, with all necessary tuning functions to cater for different

input conditions. The front-end amplifier has on-chip high-impedance DC-blocking

inputs that can be directly applied to ECG electrodes. The amplification stage consists

of a low noise front-end amplifier with band-pass function and a programmable gain

amplifier (PGA) employing the flip-over-capacitor technique [10], as shown in

Figure3.4. Both op-amps are biased in subthreshold mode to ensure optimal noise

efficiency against power. During startup or after an input interruption event such as

electrode falloff, a reset signal is asserted to eliminate the large time constant

associated with the high-pass filter, such that the preamplifier can quickly resume

operation. A series of secondary low-pass filters then provides further suppression to

the out-of-band residues such that lower sampling frequency (in this case three times

20

of signal bandwidth for over 20-dB attenuation) that favors lower wireless bit rates

can be used. Following the analog processing modules, a 12-bit charge redistribution

SAR ADC quantizes the conditioned ECG signal based on the sampling speed set by

the microcontroller, and encodes the data into 16-bit SPI frames.

gm vout

C5

C6Cx

Rpseudo

Sx

Sx

CL

vin+

vin−

M1 M2

C1

C3

C2

C4

Preamplifier with adjustable B/W Programmable gain buffer

M3 M4

Figure 3.4 Circuits for the ECG frond-end

DRL

VCM

ECG

Input Input Pair

Main Signal Path

Figure 3.5: Concept of low power DRL circuit with direct common-mode

extraction

21

Alongside the main signal path, supporting circuits help to ensure the signal

integrity, among which two micro-Watt right-leg drivers (DRL) prove to be most

effective in counteracting common-mode interferences (namely power line

interference) and excessive electrode contact resistance. Here DRL1 employs a novel

sensing structure, where the common-mode interferences are directly extracted from

the main signal path without the need of dedicated sensing circuitry, facilitating

further power saving. The concept is illustrated in Figure 3.5.

Figure3.6 Chip micro photo

Table 3.2 Performance Summary

22

With all the innovative power saving measures implemented, the entire chip

consumes less than 18 µW and 50 µW when operates at 1.8 V under ECG mode with

DRL turned off and on, respectively. Some of the key specifications are summarized

in Table 3.2. The chip die photo is shown in Figure 3.6.

3.2.2 Microcontroller

The MSP430F2254 is a commonly used mixed signal microcontroller with two

built-in 16-bit timers, a universal serial communication interface, 10-bit A/D

converter with integrated reference and data transfer controller (DTC), two general-

purpose operational amplifiers in the MSP430x22x4 devices, and 32 I/O pins.

23

Figure 3.7 Microcontroller MSP430F2254 block diagram

The major concern to select MSP430 (Figure 3.7) as central control unit for

Wireless ECG Plaster is below

– The MSP430F2254 3.3V ultra low power microcontroller consists of

several devices featuring different sets of peripherals targeted for various

applications.

– 0.7 μA standby current to save power during idle

– UART & SPI interface for faster data transmit

Figure3.8 Configuration for microcontroller and BMDAV8

The pin configuration between MSP430 microcontroller and BMDAV8 ECG

acquisition chip is shown in Figure 3.8. MSP430 can control the ECG signal gain of

BMDAV8 by 2 outputs P2.0 and P2.1. The outputs P3.0 to P3.4 are used to collect

ECG signal information though SPI interface.

24

3.2.3 Zigbee RF transceiver

The Zigbee RF Modules were used for wireless communication between gateway

and Plaster. It has several features below for us to select this component.

Figure3.9 CC240 Zigbee RF transceiver

– Key feature is that CC2420 is easy to use as it will handle the difficult part like

hand shaking by itself. It is engineered to meet IEEE 802.15.4 standards and

support the unique needs of low-cost, low-power wireless sensor networks.

– The modules operate within the ISM 2.4 GHz frequency band. Its transmitting

and receiving current is around 50mA at 3.3V and its indoor/urban range can

up to 30m.

3.2.4 Electrode and PET substrate

Last but not least, ECG monitoring system needs medical contact to collect ECG

signal. Most market ECG devices use traditional ECG lead contacts, which were not

25

designed with wearability in mind, and have multiple wires hanging around the body.

In this work, an ultra-wide sensory mesh based electrode structure is specially

designed for the proposed device. The electrode is made using a highly conductive

silver ink built on to PET substrate.

Figure3.10 Mash structure Electrode

The plaster comprises of materials from the latest stick-to-skin technologies from

3M. These medical-grade materials have been proven to be biocompatible,

hypoallergenic, breathable, and water-proof for over 7 days, even during adhesion to

human skin.

Figure3.11 Plaster substrate

After integrating all the selected low power components in the above, A PCB

Plaster Substrate

26

board is developed using Altium designer.

Figure 3.12 Wireless ECG Plaster Top view

In short, a prototype of wireless ECG plaster is shown in Figure 3.12. It consists

of: (1) a specially designed skin electrode plaster for acquiring the ECG; (2) a

miniature printed circuit board (2.8cm x 2.4cm) with our proprietary ECG front end

chip; (3) and a high density 650mAH rechargeable Lithium Ion battery. To minimize

power consumption, the data is buffered using MCU internal memory before sending

to the gateway wirelessly. The maximum range of ZigBee transmission is about 15

meters in the room. The operational time is around 26 hours for each charge.

3.3 Firmware

27

The firmware of wireless ECG plaster is written in C code. It performs the

following tasks: ECG front-end and microprocessor initialization, managing ECG

data buffering, and scheduling the ZigBee transceiver. A brief introduction of

firmware is shown in a flow chart below

Figure3.13 System Firmware Flow Chart

In Wireless ECG Plaster, PC is the Gateway (master device) to send control signal

to control ECG plaster’s operation all the time. However, the firmware on the ECG

28

plaster handles the ECG data transmission. After initializing ECG acquisition chip

and ZigBee transceiver, the firmware will keep listening to the RF channel, for any

changes in the control settings, issued by the PC application. Any such modifications

are immediately updated, by making necessary changes in the register settings of the

corresponding chips on the plaster. After that the ECG signal acquisition starts and

the sampled data is temporarily buffered locally. During this time, the ZigBee

transceiver is put in sleep mode in order to save power. Once the amount of data

buffered locally becomes large enough to send a ZigBee packet, an interrupt will be

raised, to switch on the chip and initiate a transmission. ZigBee chip consumes the

most power in our device, and this buffering mechanism helps to reduce the power

consumption. Also the payload size in each packet is selected (as 64bytes) as a trade-

off between “header overhead” and “collision probability”, in order to reduce the

overall system power.

3.4 Graphical User Interface

Figure 3.14 shows a sample application of GUI interface on PC for receiving and

displaying ECG data. This user interface is implemented by LabVIEW. User can

monitor real time ECG signal though this GUI. It receives the ECG data package from

wireless ECG plaster by using a USB ZigBee transceiver. In order to avoid signal

interference from other wireless devices, the GUI interface can switch between 15

wireless channels. This also allows up to 15 patients to be monitored simultaneously.

In addition, there are several function buttons in the GUI interface for changing

29

parameters of the plaster, such as sample rate, overall gain and low-pass filter. These

buttons are located at the right side and bottom part of the GUI.

Figure 3.14 GUI interface for PC.

Figure 3.15 ECG data file saved from GUI

GUI can save the patient’s ECG data into a text format file. For example, In the

30

Figure 3.15 the sample rate is set to 100 which it means there will be one real-time

information (Date, time) and 100 ECG data information saved each second. All these

information will be saved second by second to form a complete ECG information

record. With the help of detailed ECG information saved by wireless ECG Plaster,

doctors can easily diagnosis patient heart disease.

3.5 Design Verification

The objective for Wireless ECG Plaster is to push it into the market. In Singapore,

the standard for ECG monitoring prototype becomes a commercial product is quite

high. A lot of clinical trial data has to be taken in order to prove the system working

accurately and harmless. To verify the accuracy of the system, two clinical trials were

conducted by doctors at two hospitals which are National University Hospital and

Singapore General Hospital. In these two trials, the radio frequency channel is

centered at 2405MHz. The ECG sampling rate is selected as 100Hz. The input signal

gain is 47dB for first trial and 56dB for second trial. An embedded low pass filter is

used in the trial to remove 50Hz noise.

3.5.1 System Accuracy

The first trial was to verify the accuracy of the device. The First clinical trial was

at National University Hospital on February 25th 2011. The objective of this trial was

to test system performance when subject carry out normal daily activities. This

subject was a healthy male candidate. A wireless ECG plaster and a commercial ECG

monitoring product were used to monitor the subject’s health status at the same time.

31

The location of the two devices is shown in Figure 3.16. The lead configuration for

ECG plaster is pseudo-aVL (approximate 2/3 of aVL). A portable PC with our

software application was carried by the patient for ECG recording. At the end, two

sets of continuous one-hour ECG recording were been collected from wireless plaster

and the reference holter.

Figure 3.16: The positions of the wireless ECG plaster and Holter

Figure 3.17 shows two ECG records from the reference commercial Holter

(Channels 1 and 2) and the proposed wireless plaster, respectively. We use several

methods to verify the quality of ECG obtained using our device.

ECG plaster

Holter

32

Figure 3.17: ECG Signal: Plaster Device Vs Reference Holter Monitor

Method 1: Average Heart Rate and QRS peaks.

The data collected from the proposed device and reference Holter are analyzed

using popular QRS detection algorithms [12] in Matlab. From the simulation, it was

observed that the number of QRS peaks detected by the algorithm, in a one hour ECG

data set obtained from a patient using both devices, varies by only 0.4%. A few QRS

peaks were missing in our device due to the error caused in Zigbee wireless

transmission. The average Heart rate estimated using both data sets for the same

patient is 99.05bpm and 99.48bpm, respectively.

Method 2: RR Interval

33

In order to establish the equality of ECG obtained from both devices, we compute

the RR interval for every beat in the ECG signal. The average differences in RR

interval obtained using both devices are found to be less than 1% of the reference

device. The histograms showing the RR interval for both data sets are shown in

Figure 3.18.

Figure3.18: RR Interval histograms: ECG plaster Vs Reference Device

3.5.2 System Reliability

The second trial was to verify the reliability, stability of the device and wireless

link. The second clinical trial was at Singapore General Hospital on March 23
rd

 2011.

34

A healthy male adult subject was monitored by wireless ECG Plaster for more than 40

hours. In order to extend the operational hour, two 650mAh batteries were combined

in this trial. The subject was isolated in a special ward designed for clinical trial. The

plaster was pasted on the position V2 to V4. A laptop with an USB ZigBee

transceiver is used to collect the data.

Figure 3.19: SGH Clinical Trial set

0

20

40

60

80

100

120

140

160

180

200

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253

35

Figure 3.20: Subject 2nd day morning Record

The data recorded for 40 hours in the second trial shows the proposed wireless

ECG plaster works reliably. The plaster can record a clear ECG data as shown in

Figure 3.20 in the second day. The normal daily activities do not have a significant

impact on the plaster. As a result, the PC in the room successfully collected

continuous 40 hours ECG data. The reliability of wireless transmission and stability

during long time operation has been verified.

In short, the Wireless ECG plaster has good system accuracy and reliability. The

device characterization is shown in Table 3.3.

 System accuracy

 Average heart rate and QRS peaks: nearly same

 RR interval difference: less than 1%

 Reliability and stability:

 continuous 40 hours monitoring success,

 Rarely ECG signal drop.

 Wireless transmission range within 15 meters

36

Table 3.3: Wireless ECG Plaster summary

Property Wireless ECG Plaster

PCB Size 2.8cm x 2.4cm

Plaster Yes

Wireless operating range 15 meters Maximum

Gain 47 - 64 dB

Sample rate up to 25K S/s

Battery supply 3.7V 650 mAH Li-ion battery

Current Consumption 25 mA

Continuous running time 26 hours

RR interval difference < 1%

Accuracy > 99 %

In conclusion, Wearable ECG Plaster is designed for real-time cardiac health

monitoring. The proposed device is wearable, light weight, comfortable and can

wirelessly transfer the patient’s ECG signal to a remote monitoring station, where it

can be analyzed in detail. The device has a battery life of around 26 hours while in

continuous operation. However, this system can’t satisfies for the long time recording

purpose. Hence, a new solution is described in next chapter.

37

Chapter 4

Long Playing Cardio Recorder

4.1 Overview of LPCR system

In recent times, Wearable ECG record products like Holter are popular for

Doctors monitoring patient when they are at home. However, due to the limited size

of portable ECG devices, they cannot save very long time data. A short term record

cannot completely represent the patient health status. Doctors prefer longer time data

result for more accurate analysis. Most ECG recoding commercial products in the

market can last for 24 hours. Under some situation, patient’s heart may work as

normal in a certain day. Hence, these ECG recording products cannot save the key

value for heart problem. It’s difficult for doctor to diagnosis what kind of heart

disease patients may have, the treatment will be delayed. On the other hand, a device

can make long time record to solve this problem.

38

Figure 4.1: Long Playing Cardio Recorder (LPCR) Overview

As shown in Figure 4.1, Long Playing Cardio Recorder (LPCR) is specially

developed firmware could make the device continuously recording ECG data for

more than twenty days with a fully charged Li-ion battery (650mA). In addition, the

benefits of light weight, smaller size and long-period operating time are still the

primary objective for hardware design. Hence, LPCR is a good solution for doctors to

track patients‟ heart activities”. LPCRV1 is the first version of LPCR system. The

difference between LPCR and Wearable ECG Plaster is that LPCR uses 3 commercial

ECG wires shown in Figure 4.2 to collect data instead of wearable ECG plaster.

LPCR system has two kinds of data transmission methods from its PCB to computer.

One is for real time monitoring by using Bluetooth communication, and the other is to

transmit big size long time ECG data by using USB port.

39

Figure 4.2: LPCR ECG data collecting method

Figure 4.3 shows the block diagram of LPCR hardware. There are several major

components integrated in this system. A microcontroller PIC18F46J50 as a central

control unit, an ECG acquisition device BMDAV7 for ECG data collection, a 16Gbit

NAND Flash chip MT29F16G08DAAWP to keep a long time results. These three

chips are working together as local data processing part. For communication part, a

Bluetooth module Bluegiga WT12 is selected for wireless communication and a small

USB connector for data transmission. The power supply is coming from a 3.7V

650mAh Hi-Charge Li-ion battery.

40

Figure 4.3: Block Diagram of LPCR system

Lower power consumption is the most important goal for this device. This work

will focus on hardware design concern for microcontroller and Flash chip, and

developing firmware to make local data processing part work very well. In addition,

system reliability and battery life testing will be illustrated at the end of this chapter.

The firmware of communication part will not be explained in detail because its power

consumption is controlled by the computer.

4.2 Hardware

A 5.0cm x 2.7 cm prototype PCB is built for LPCR systems operation (Shown in

Appendix 1). There are around 15 major hardware components in LPCR system

except capacitors, resistors and diodes as shown in Table 4.1. Microcontroller, Flash

Memory, ECG Acquisition chip and blue tooth Module are explained in detail in

section below.

Table 4.1: LPCR system Hardware major components

41

Component Function Value

1 PIC18F46J50 Microcontroller

2 MT29FXG16XXX Flash Memory 8Gb/16Gb

3 BMDAV7 (QRS) ECG Acquisition chip

4 Bluetooth Module Wireless transition

5 TPS61132 Converter 3.3V/1.5V

6 LED Indicate ECG signal

7

Crystal 32.768KHz

 16MHz

8 DIP Switch
Operatiing mode

chage 8-way

9 Slide Switch Power

10 Push Button Reset button

11 USB Connector
Communicate to

computer 5-way

12 Input Connector ECG signal input port 10-way

13 Power Connector 2-way

14 BMDAV8 DRL support

15 Service port
Programming socket

for MCU

16 Li-on Battery 3.7V 650 mAh

4.2.1 Microcontroller

The microcontroller is a crucial part in this work. PIC18F46J50 [13] is a new line

of low-voltage Universal Serial Bus (USB) microcontrollers with the main traditional

advantage of all PIC18 microcontrollers, namely, high computational performance

and a rich feature set at an extremely competitive price point. Figure 4.4 Block

diagram of PIC18F46J50 shows its features.

42

Figure 4.4: PIC18F46J50 block diagram

There are 3 concerns to choose PIC18F46J50 for this project below

 Power Management Features

 USART and SPI port

 Universal Serial Bus (USB) Features

Firstly, PIC18F46J50 has power management features such as it can choose

different operating frequency from internal RC oscillator or external high frequency

crystal. Power consumption can be optimized when doing different work load.

Secondly, SPI port for fast speed data transmission between microcontroller and

NAND Flash. In addition, UART port for wireless communication through Bluetooth

module. Last but not least, compare to other microcontrollers, incorporating a fully-

43

featured USB communications module with a built-in transceiver that is compliant

with the USB Specification Revision 2.0. The module supports both low-speed and

full-speed communication for all supported data transfer types. This function can help

LPCR board to communicate with computer easier and faster.

Figure 4.5: Pin configuration of PIC18F46J50 in LPCR system

In Figure 4.5, the details of the pin configuration show how PIC18F46J50 controls

other components in LPCR system. These 44 pins outside PIC18F46J50

microcontroller are distinguished in different colors for their connection to different

44

components. The red color pins are analog or analog capable components. Light blue

bins are for LED and other digital components. Green pins for interrupt pins from

BMDAV7 ECG acquisition chip. Purple pins are connected to UART Port for

Bluetooth module. Dark blue bins are connected to NAND Flash Memory. Brown

pins are for QRS SPI interface. Lastly, the pink one is for USB port connection.

4.2.2 BMDAV7 ECG Acquisition Chip

In this project, BMDAV7 ECG acquisition chip [14] is used to collect ECG data

instead of BMDAV8. BMDAV8 chip in LPCR system is only for driving support.

The BMDAV7 shown in Figure 4.6 is an ultra-low-power ECG acquisition device

targeting pervasive healthcare and portable medical apparatus market. The device

draws only 1.75 μA from a 1.5-V supply, and offers an energy-efficient MCU

interface that facilitates low-power implementation of ECG systems. The BMDAV7

integrates a fully featured low noise acquisition module that provides band-pass input

filtering, programmable amplification, and 12-bit A/D conversion; and a QRS

detection module that calculates the heartbeat rate. An 8-Kb onchip SRAM buffers

the captured ECG data and the corresponding heartbeat rate, which are periodically

flushed to the external MCU via a standard SPI port.

45

Figure 4.6: BMDAV7 ECG Acquisition Chip

Table 4.2: Comparison between BMDAV7 and BMDAV8

Property BMDAV7 BMDAV8

Supply Voltage 1.5V 1.8 ~ 3.6 V

Technology 0.35µm 0.35µm

Sampling Freq 256 S/s up to 25 kS/s

Interface SPI slave SPI slave

Current 1.75 μA @ 1.5V 18 μA @ 3V

From Table 4.2, the main difference between BMDAV7 and BMDAV8 is that

BMDAV7 has lower sample frequency which is 256 Hz. But its power consumption

is only 2.3 μW lower than BMDAV8. For LPCR system, long time measurement

requires low power consumption. Hence, BMDAV7 chip is selected to collect ECG

data in this project.

46

Figure 4.7: Pin configuration between BMDAV7 and PIC

Figure 4.7 shows how BMDAV7 work with microcontroller. BMDAV7 has 1024-

byte internal FIFO, which could be used to store one second sampling data. The sampling

frequency for BMDAV7 is 512Hz, and each sampling data is 10-bit depth. As same as

BMDAV8 chip, it uses SPI communication port for controlling and transferring data. A

Microcontroller (PIC18F46J50) could control BMDAV7 and receive data through the SPI

port pin SCXB, SCKB, SDXB. An IRQ_QRS pin is used to inform PIC MCU that ECG

data is ready. Lastly, RST_L pin can reset BMDAV7 chip function.

4.2.3 NAND Flash

There are several types of memory devices in the market such as DRAM, NAND

Flash, NOR Flash and so on. In order to select appropriate devices for LPCR system,

a survey is done to compare the advantages of the different memory device. The

power consumption of Flash memory is 10 times less than DRAM. However, the

speed of Flash is much slower than DRAM. NOR Flash can do random access, but

47

typically its capacity is lower than 128MB. As LPCR system needs to record twenty

plus days ECG data, Flash memory with bigger capacity is first choice.

Figure 4.8 MT29F16G08DAAWP Flash chip top view

Lower power MT29F series Flash is select for this project. The reason to choose it

in this project is list below

 Large Capacity : 8G/16G bit

 Low power consumption

 READ performance

– Random READ: 25μs

– Page READ (a special feature to perform read data for entire

page in very high speed): 20ns

 WRITE performance

– PROGRAM PAGE (Page Write, faster speed writing for one

page data): 250μs

– BLOCK ERASE: 1.5ms.

48

Figure 4.9: MT29F16G08DAAWP [15] Flash chip array organization

The NAND Flash used in LPCR is Micron MT29F16G08DAAWP, which has a

capacity of 16Gbits. This NAND Flash has 4096 Blocks; each block contains 64

pages with every page contains 4096 bytes + 218bytes spare area. Because the

sampling frequency for BMDAV7 is 512Hz and each sampling data is 10-bit depth, a 16

Gbit Flash chip can store 48 days patient ECG data.

4.2.4 Blue Giga WT12

The wireless data transmissions part is not the major objective for LPCRV1

version. This is because wireless power consumption is quite high. However, in order

for further development and testing, a WT12 Blue giga module is selected for this

project. Its feature is shown below.

 Bluetooth V2.1

49

 UART Interface for communication with device

 Low voltage supply: 3.3V

 UART: 115200,8n1

Figure 4.10: LPCRV1 PCB

As shown in Figure 4.10, finally, by integrating all the hardware components

above, a 5.0cm x 2.7cm prototype PCB is implemented for LPCRV1 system.

4.3 Firmware design

The major function of LPCR system is divided into 3 parts: Data Recording part,

USB data transfer part and wireless data transfer part. To make the device consume

less power, different operating modes are used. When switch between different

operating modes, the Microcontroller could be configured with different operating

50

frequencies. In LPCR system, we use two frequencies: 31 KHz and 48MHz. Heavy

jobs need to be done at high frequency mode in order to complete it faster. Idle state

will remain at low operating frequency to save more power.

Figure 4.11: Firmware state diagram

The description for Figure above is shown below. In this work, the firmware part

51

related to data recording state will be explained in detail.

State: Idle

 -- System Clock: 31 KHz

 -- Only BMDAV7 collect ECG date

 -- Low power, ~80uA

State: Data Recording

 -- System Clock: 48MHz

 -- Read ECG controller BMDAV7’s data and store to NAND Flash

State: USB data transfer

 -- System Clock: 48MHz

 -- Transfer Flash data to PC

State: Wireless transfer

 -- System Clock: 48MHz

 -- Use Bluetooth module to transfer ECG data to PC

4.3.1 Microcontroller and BMDAV7

In data recording mode, the first objective is to let MCU and BMDAV7

52

communicate with each other for ECG data collection. Previously, ECG sampling rate

was 256 words per second, BMDAV7 has1024-byte internal FIFO, which could be

used to store 2 second sampling data. Hence, V7 will communicate with MCU every

2 seconds. Their communication is set by these control signals. BMDAV7 uses SPI

communication port for controlling and transferring data

As shown in the picture below, the data receiving from BMDAV7 by SPI port is

in two bytes format. The first 10 bits indicate the ECG data. The Q7 down to Q4 are

four MSB data of QRS, Q3 down to Q1 will be received in the next two cycles. F1

and F0 are dummy data.

Figure 4.12: ECG control signals

53

In order to start the communication successfully, there are two steps: initialization

and receiving data. These are done by the control signal set in the firmware; Table 4.1

and Table 4.2 show the detailed setting.

Table 4.3: BMDAV7 control bits

Bit Description

PE Program Enable

HD SRAM Hold (Hold SRAM read pointer)

KS Clock Selection (SPI’s clock or crystal clock)

1: Uses crystal clock

0: Uses SPI clock (for transmitting data)

R1 Amplifier Reset

R2 ADC Reset (Active low)

R3 SPI Reset (Active low)

R4 QRS Reset (Active low)

R5 SRAM Reset (Active low)

G1,G0 Amplifier Gain control bits (45, 49, 53, 60dB)

Table 4.4: BMDAV7 status bits

Bit Description

D9 ~ D0 ECG data value

Q7 ~ Q0 Average Heart Rate value

F1 ~ F0

00 FIFO status is EMPTY

01 FIFO status is READY

10 FIFO status is CRITICAL

11 FIFO status is OVERFLOW

 To initialize V7, Microcontroller sends 0xE0 and 0x00 via SPI port first, the data

means

– Program Enabled

– SRAM pointer hold

54

– Clock: Using Crystal clock for transmitting data

– Resets Amplifier, ADC, SPI, QRS and SRAM

– Amplifier’s gain set to default (00)

Then the next step is receiving ECG data, Microcontroller sends 0x9F and 0x00

this time means: SRAM is un-hold, Use SPI clock to transmitting data and Amplifier,

ADC, SPI, QRS and SRAM do not reset. Based on the setting above, ECG signal can

be transferred to MCU though SPI interface successfully.

4.3.2 Microcontroller and FLASH

The second job in data recording mode is to save ECG record in a memory device.

The firmware code of this part is shown in Appendix 2. In order to write and read data

into Flash memory, file structure is needed to be design first. File structure is how

data arranged in memory. An effective structure can help entire system to save the

time spent on reading and writing data. As introduced in section 4.2.3, FLASH

MT29F has special feature page read and page write function. It can help users to read

the entire page in very high speed. Hence a good file structure with clear page status

information can help system reduce a lot of time. Which also means power

consumption can be reduced.

The Simple File System (SFS) Structure for LPCR system is explained below. As

shown in Figure 4.9, Flash MT29F16G08DAAWP has 2048 blocks. Each block

contains 64 pages. Each page has 4096 bytes + 218 bytes (Extra Bytes Region). The

Figure 4.13 shows the detail of page information. In LPCR system, the first byte 0 to

55

5 of each page is used to store the timing information of patient’s recording. The next

4090 bytes are dedicated for ECG data. Then, Extra bytes area is used for save a clear

page information. With this page information, the feature page read and page write of

MT29F16G08DAAWP flash chip can be activated.

Figure 4.13: File structure of FLASH memory

For each block, only Extra Date Region of page 0 will be used to store special

page information. For example: if data read from byte 1 of extra 218 byes is 0x0F, it

indicates this block has already been used more than half. The data written into the

Flash will start next block. LPCR system will keep on checking this process in order

to prevent overwriting problem. By implementing this quick access to page

information method, PIC microcontroller can read and write ECG data to Flash

memory in very high speed.

56

The communication between microcontroller PIC18F46J50 and Flash

MT29F16G08DAAWP is controlled by the pins in the Figure below. The Table

below shows the detail function’s of each control pins. CLE, ALE, CE#, RE# and

WE# are the most often control signal used in the project. I/O [0~7] are the data bus

between 2 chips, and they can transmit the data simultaneously.

Figure 4.14: MCU control block

Table 4.5: Control bits for FLASH reading and writing

57

After initializing the Flash chip with control pins above, Read and Write to Flash

is able to start. To read one page data from the NAND Flash array, first, write the 00h

command to the command register, then write 5 ADDRESS cycles, and conclude with

the 30h command. To determine the progress of the data transfer from the NAND

Flash array to the data register (tR), monitor the R/B# signal; or alternately, issue a

READ STATUS (70h) command. If the READ STATUS command is used to

monitor the data transfer, the user must re-issue the READ (00h) command to receive

data output from the data register. After the READ command has been re-issued,

pulsing the RE# line will result in outputting data, starting from the initial column

address.

58

Figure 4.15: Flash read setting

A serial page read sequence outputs a complete page of data. After 30h is written,

the page data is transferred to the data register, and R/B# goes LOW during the

transfer. When the transfer to the data register is complete, R/B# returns HIGH. At

this point, data can be read from the device. The process to write data to Flash is more

or less the same.

During ECG data recording, clock switching method is applied. Switch System

Clock is a method to save the Flash data reading and writing power. When the system

clock is set to 31 KHz, LPCR is in Idle mode (low power). On the other hand, when

microcontroller is going to make Flash Data recording, system clock will adjust to

48MHz. The faster the data transmission, the less the power will be cost for reading

and writing. With well optimized algorithm, the firmware could operate the system

with very low current: experiment measurement shows the current consumption is

less than 1.7mA in average.

59

4.4 Graphical user Interface

Figure 4.16: Graphical user interface

The graphical user interface for LPCRV1 system is using hyper terminal on PC.

Its display is simple but the function is completed. GUI of LPCR is for user to collect

ECG data stored in Flash. User can choose the data format to be decimal or hex. In

addition, users can use the function shown in the Figure 4.16 to some basic setting

suck like to Get current date and Time information, set Time information, Display

BMDAV7’s ECG data, Erase all data stored in Flash and so on.

4.5 Design verification

60

LPCRV1 is the first version of this project. The major objective of this version is

to prove that the proposed long time playing idea can work. Hence, there is no

professional clinical trial done for LPCR system in this version. On the other hand, an

ECG simulator testing, volunteering testing and long time battery testing is done here

to prove the system accuracy and reliability.

4.5.1 ECG simulator testing

Figure 4.17: ECG simulator

Firstly, a commercial ECG simulator shown in Figure 4.17 is selected for this

testing. During the three hour testing, ECG simulator will generate 3 different QRS

signals or average heart rate ECG signal in each hour. LPCR system is used to capture

the signal and store it to Flash memory. The testing result is shown in Figure 4.18; the

30Hz, 60Hz and 90Hz ECG signal is very clear from LPCR system.

61

Figure 4.18: 30bpm, 60bpm, 90bpm ECG signal Simulation result

Table 4.4 shows a comparison of ECG simulator hear rate setting and LPCR

testing result. They are almost the same during this 3 hours simulation test.

Table 4.6: Testing result For Average heart rate

62

4.5.2 Volunteer testing

Figure 4.19: The positions of the LPCRV1 and Welch allyn device

Moreover, LPCR device has been verified in lab tests on volunteer. The prototype

63

device and a commercial reference device were simultaneously used to collect 5

minutes ECG from the subjects. We used WelchAllyn cardioperfect ECG

measurement system as reference. To establish the short term equivalence of ECG

obtained from both the devices, the signals from different subjects were plotted and

compared side-by-side as shown in Figure 4.19. Since the ECG signal was collected

from the same lead, both the signals should appear roughly similar. The result is

shown in the Figure below. The signal on the top is from Welch Allyn device and

signal at bottom is from LPCR system.

Figure 4.20 Volunteer test result from Welch Allyn device and LPCR system

It’s obvious that the two ECG signal trends from two devices look the same. The

average heart rate from reference device Welch Allyn cardio perfect device is 93 bpm.

64

LPCR system shows the Avg. Heart rate is 92 bpm. They are almost the same too. In

addition, we also computed the RR interval for every beat in the ECG signal. The

average difference in RR interval obtained using both the devices is found to be less

than 2% of the reference device. The histograms showing the RR interval for both

data sets are shown in Figure below. The LPCR system accuracy has been proven.

Figure 4.21 RR Interval histograms: LPCR system Vs Reference Device

4.5.3 Long time battery testing

To prove the LPCR system’s long time recording reliability, we conduct a 30 days

65

continuous running long time battery testing. The setting is list below

 Testing with single 3.7V 650 mAH Hi-charge Battery without recharge for

30 days

 ECG simulator is used to generate ECG signal. It continuously changes 30,

60, 90 Hz ECG signal every 12 hours to perform as a human being.

 Sample data are collect every 12 hours to prove LPCR system working

correctly

 Average current consumption is 1.7 mA during testing.

Long Time Battery Testing

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 48 96 14
4

19
2

21
6

26
4

31
2

36
0

40
8

45
6

50
4

55
2

60
0

64
8

69
6

Operating time (Hrs)

V
o

lt
a
g

e
 (

V
)

Figure 4.22 Long time battery testing result (Battery voltage VS time)

Figure 4.22 is the long time battery testing result. It’s clear that the battery power

66

can last for 718 hours which is almost 30 days. At the first 696 hours, the voltage

level of battery drops slowly. A sharp discharge is shown when the voltage level

drops to 3.4V. This phenomenon matches Li-ion battery discharge characteristic. As a

result, LPCR system can continue monitor ECG signal for more than 30 days, so long

time reliability has been proven.

In conclusion, Long Playing Cardio Recording system is designed for 48 days

long term ECG data recording, and it is also a wearable device. It receives data from

ultra-low power ECG acquisition chip. The data is stored into to a 16G bit NAND

flash. The system current consumption could be less than 1.7mA from a 3.7V

650mAH Li-ion battery so it can last for 30days.

67

Chapter 5

Wearable ECG system

performance comparison

In previous chapters, two energy efficient wearable ECG monitoring devices are

presented. In order to see the performance of Wireless ECG Plaster and Long Playing

Cardio Recording system, a comparison between this work and two other existing

designs are summarized in the table 5.1

Table 5.1: Comparison between other ECG monitoring systems

Property LPCR system
Wireless ECG

Plaster
I-Jan Wang's
work[7] Jose’s work[6]

PCB Size 5 cm x 2.7cm 2.8cm x 2.4cm 4 cm x 2.5 cm

30cm x 10cm x
3cm (device
dimension)

Electrode Tradition 3 leads Plaster
Dry Polymer

based
Tradition ECG

leads

Memory 16 Gbit (48 days) NA NA 8 Gbit (7 days)

Sample rate 256 S/s up to 25K S/s 500 S/s 500 S/s

Voltage supply 3.7V 650mAH 3.3V 650mAH 3.3V 1100mAH 9V 300mAh

Current
Consumption

1.7 mA for data
recording 25 mA 31 mA 6 mA

Continuous
running time 30 days 26 hours 24 hours 24 hours

Accuracy > 98 % > 99% > 99% >98 %

68

Jose’s work is an Ambulatory Electrocardiogram Recorder. It use 9V power

supply and can continuously record 7 days result. But it’s more like tradition holter

which is heavy and big. I-Jan Wang’s work proposed a wearable mobile

electrocardiogram monitoring system. The feature of this system is to use dry foam

electrodes. However, its power consumption is the highest among all four designs.

Compared to other ECG monitoring systems, Wireless ECG Plaster is the smallest

wearable ECG system (2.8cm x 2.4cm). It uses an ECG electrode embedded with a

Plaster substrate in the design. Patient can feel more comfortable when they are doing

ECG monitoring treatment. Wireless ECG Plaster doesn’t have memory device to

store ECG data, so it has to send data to a gate though Zigbee RF transceiver. Its’

sample rate is the also the highest. Two clinical trials have proved that its system

accuracy is quite good. On the other hand, LPCR system’s power performance is the

best. It can continuously run for 30 days and capable to store 48 days ECG data at one

time. Though its sample rate is lower than others, its system accuracy is not so bad. In

conclusion, the objective of design Energy efficient wearable ECG system has been

reached.

69

Chapter 6

Asynchronous 8051 design

In order to further reduce power consumption of wearable ECG system, certain low

power techniques are needed to implement in the hardware component. In this chapter, a

new version asynchronous 8051 microcontroller is introduced to improve the power

performance of wearable ECG system in the future.

6.1 Introduction

From previous wearable ECG systems chapters, it’s not difficult to find low power

consumption is one of the crucial concerns for portable ECG recording system design.

Otherwise, the battery cannot last very long time. The microcontroller, which is a

significant source of power consumption for central control block, therefore should

have the desirable characteristic of low-power consumption. Also as the

microcontroller may need to operate in different modes through adjusting the supply

voltage level, it should be functional in a wide range of supply voltage. Hence, an

70

asynchronous microcontroller adopting the dual-rail four phase protocols is chosen to

be the desired microcontroller for ECG recording system. In the year 2010, NUS

M.ENG student Xue Chao has done a good research on dual-rail four phase

asynchronous 8051 microcontroller [16]. The low power async 8051 microcontroller

proposed in this chapter is an improved version based on his work in order to save

Wearable ECG system’s power.

6.1.1 Synchronous 8051 microcontroller

The asynchronous microcontroller presented in this chapter follows the structure

of a standard synchronous 8051 microcontroller shown in Figure 6.1.

71

Figure 6.1: 8051 Microcontroller block diagram

The Intel MCS-51 (commonly referred to as 8051) is Harvard architecture, single

chip microcontroller series which was developed by Intel in 1980 for use in embedded

systems. One of the major reasons to use 8051 microcontroller architecture is because

8051 was widely used in the world. Developer can design the firmware on previous

wearable ECG system easily. Its main features are below.

 8-bit data bus

 16-bit address bus

 On-chip 128 byte of internal RAM

 On-chip 4 KB of internal ROM

 Four general purpose I/O ports each of 8 bit wide

 On-chip programmable fully duplex USART serial port

 Two on-chip 16-bit timers

 Two-level priority interrupt handling

 Over 200 instruction set

6.1.2 Asynchronous circuit design flow

The design flow starts from hardware description language (HDL) coding. The

asynchronous 8051 core adopts Balsa and the 8051 peripheral function block is uses

verilog. The Synopsys Design Compiler can optimize and compile these HDL files

into unified Verilog gate-level netlist, which is then imported into the Cadence

Encounter together with the LEF (library exchange format) file for automatic P&R

72

(placement and routing). A GDS (graphical database system) file of the asynchronous

8051 microcontroller is exported from the SOC Encounter into the Cadence Virtuoso

framework. After performing LPE (layout parasitic extraction), the SPICE netlist is

passed to Modelsim for final post-layout simulation verification.

6.2 Architecture of the Asynchronous 8051

6.2.1 Overview of Asynchronous 8051

73

Figure 6.2: Async 8051 Microcontroller [16]

Figure 6.2 is asynchronous 8051 microcontroller’s block diagram. There are five

major blocks in the proposed asynchronous 8051: asynchronous core, synchronous

peripherals, external memory interface, I/O ports and asynchronous internal All the

signals within the asynchronous core are dual-rail in nature. For the communication

between Asynchronous part and the outside part, wrapper blocks are designed around

the asynchronous core to perform the data conversion between dual-rail data and

single-rail data.

In order to perform as same function of as synchronous 8051 microcontroller, it

has to match all kinds of instruction sets which sync 8051 have. Hence, a proper

design of 8051 Asynchronous core is needed.

6.2.2 8051 Asynchronous core

The Asynchronous core designed is the central processing part of Asynchronous

microcontroller. There are four major sub-blocks inside the asynchronous core: the

instructions fetch and decode unit (IF & ID), the execution unit (EXE), the ALU

(ALU), and the register file (REG File) unit as shown in Figure 6.3.

74

Figure 6.3: Async 8051 core

Firstly, the instructions fetch and decode unit is for fetching and decoding of the

instruction bytes and the checking of the current interrupt status coming from the

interrupt controller of the synchronous peripheral. Secondly, the instruction execution

unit is a structure corresponds with all the instruction set. Thirdly, Register File Unit

controls the access to the Special Function Registers (SFR) space and internal RAM

of the 8051. Lastly, ALU unit is a dedicated block for arithmetic and logical

operations. The ALU unit is a case structure with 15 valid sets, such like ADD, SUB,

AND, MUL, DIV and so on. The multiplication (MUL) and division (DIV) operations

blocks are specially designed since the Balsa framework does not have operators that

support integer variable multiplication and division. With these two blocks, the

proposed Async core can fully react as sync 8051 microcontroller.

The objective of previous work is to improve the speed of unit execution. Hence,

its structure is three-stage pipelined design. In this structure, the interrupt checking

block is taking out of the Instruction Fetch and Decode block to form a standalone

75

block which executes in parallel with the other synchronous peripherals block. It can

reduce the time which asynchronous core has to wait one clock period for the valid

incoming interrupt status data. However, this structure too complex and require

insertion of balanced buffer trees. Though the operating speed is significantly

improved, the power consumption is increased and it can’t fully work when an

interrupt is raised. Hence, a simple asynchronous core structure is needed.

This work focus on two changes made within the Balsa framework. The first

change is to add in the Multiplication and Division operations for the ALU. The

second change uses a simple structure to maintain low power.

In wearable ECG system, power consumption is the primary concern. Hence, the

structure for new version async core is Non-pipelined with MUL and DIV structure.

Firstly, as shown in Figure 6.3, Non pipeline structure is used here, Instruction Fetch

and Decode stage, Instruction Execution stage and interrupt checking block pipeline

structure is removed. The design is the simplest design because it doesn’t have

parallel job to cope with. Though the operating speed is slow, the power performance

is better. Secondly, MUL is dedicated to handle the integer multiplication operation. It

is composed of a series of add and shift operations to derive the resultant product

value. The DIV for integer division operation is formed by sub and shift operation.

After integrating DIV and MUL function block into no pipeline structure core, the

new version of low power asynchronous 8051 microcontroller core is completed. The

detail balsa code for this asynchronous core is shown in Appendix 3.

76

6.3 Simulation Result

In order to prove the new asynchronous 8051 microcontroller, a Nanosim post-

layout simulation is conducted in this part. The whole simulation setting is from

previous design. There are two performance indicationg parameter need to be

introduced in this simulation testing. One parameter is called Million Instruction per

Second (MIPS) which represents the number of instruction that can be completed

within one second. The other parameter presents the energy consumption of the

asynchronous core to complete one instruction and it is denoted by “Energy

(pJ)/Instrn” in the tables. These two parameters are widely used in microcontroller

analysis.

After testing, the new version Asynchronous 8051 microcontroller can run at 2.1

MIPS at 3.3V supply and 0.22 MIPS at 1.0V supply. The energy consumed per

instruction is about 165pJ and power consumption is about 40 μW at 1.0V supply.

MUL and DIV block can work properly under different voltage supply.

Table 6.1: Comparison with other existing designs at 1.1V 0.35μm

Design MIPS μW pJ/Instrn

This work 0.34 67 194

Previous design 0.62 121 203

Sync80c51 [17] 1.3 1.480 1100

A8051 [18] 0.6 70 130

Compare this work and previous design, the MIPS drops a lot because of all

pipeline design has been removed. Hence, the speed of unit execution will be reduced.

77

But the good phenomenon is the power consumption of this work is 55.37% of

previous design. As the most important concern for wearable ECG system is the low

power consumption, the direction of this research is correct. Sync80c51 design has the

best MIPS performance, but its power consumption is also the largest among these 4

designs. The “A8051” has the lowest energy consumption per instruction due to its

bundled data approach. But its voltage supply range is fixed. It’s not so robust

compare to this work which uses four-phase dual-rail protocol.

The major objective for this new version asynchronous 8051 microcontroller is to

further reduce the power consumption of wearable ECG system. Compared this work

to PIC and MSP microcontroller in Chapter 3 and 4, its power consumption is the

lowest. The objective has been reached.

78

Chapter 7

Conclusion

This work has presented design and implementation of energy efficient wearable

ECG system. Firstly, a wireless ECG plaster for real-time cardiac health monitoring is

presented. The proposed device is wearable, light weight and can wirelessly transfer

the patient’s ECG signal to a remote monitoring station, where it can be analyzed in

detail. The device has a battery life of around 26 hours using a 650mAH rechargeable

Lithium Ion battery while performing continuous ECG recording. The proposed

device has been compared with a reference ECG Holter for accuracy. The results

show that the accuracy of ECG acquisition using the proposed device is bigger than

99%, and the variation in key ECG parameters obtained from proposed device and the

reference device is acceptable for clinical usage. Also the stability of the device for

long-term operation has been checked from a continuous 40-hour ECG recording trial.

Secondly, a Long Playing Cardio Recording system is designed for 48 days ECG data

recording, and is also a wearable device. It receives data from ECG controller (V7) and

stores the data to a large capacity NAND flash with 98% accuracy. PC could be used to

control the LPCR via Bluetooth and USB interfaces. The whole system current

79

consumption is 1.7mA current draw from a 3.7V 650 mAH Li-ion battery. LPCR system

can continuous record 30 days ECG data.

Last but not least, to further improve the power performance of previous two

wearable ECG systems, a new design of low-power voltage-scalable asynchronous

8051 microcontroller which consumes 40 µW at 1.0V supply is presented in this work.

Integrating this asynchronous microcontroller with wearable ECG system may be one

area of future work.

80

Bibliography

[1] http://www.americanheart.org/downloadable/heart/1200082005246HS_Stats%2

02008.final.pdf

[2] A.S. Go, E.M. Hylek, K.A. Phillips, et al., “Prevalence of diagnosed atrial

fibrillation in adults. National implications for rhythm management and stroke

prevention: the AnTicoagulation and Risk Factors In Atrial Fibrillation (ATRIA)

Study,” JAMA., 285, pp. 2370-2375, 2001.

[3] A. Schuchert, R. Maas, C. Kretzschmar, G. Behrens, I. Kratzman, T. Meinertz,

“Diagnostic yield of external electrocardiographic loop recorders in patients

with recurrent syncope and negative Tilt table test,” PACE, 26, pp.1837-1840,

2003.

[4] Da Ren Zhang; Deepu, C.J.; Xiao Yuan Xu; Yong Lian; , "A wireless ecg

plaster for real-time cardiac health monitoring in body sensor networks,"

Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE , vol., no.,

pp.205-208, 10-12 Nov. 2011

[5] Electrocardiography. Wikipedia, the Free Encyclopedia. 17 Dec. 2009. 02 Jan.

2010. <http://en.wikipedia.org/wiki/Electrocardiography>

http://www.americanheart.org/downloadable/heart/1200082005246HS_Stats%202008.final.pdf
http://www.americanheart.org/downloadable/heart/1200082005246HS_Stats%202008.final.pdf

81

[6] Gnecchi, J.A.G.; Vargas, F.O.; Peregrino, V.H.O.; Espinoza, D.L.; , "Design

and Construction of a Continuous Ambulatory Electrocardiogram Recorder,

Auxiliary in the Detection of Cardiac Arrhythmias," Electronics, Robotics and

Automotive Mechanics Conference (CERMA), 2010 , vol., no., pp.602-606, Sept.

28 2010-Oct. 1 2010

[7] I-Jan Wang; Lun-De Liao; Yu-Te Wang; Chi-Yu Chen; Bor-Shyh Lin; Shao-

Wei Lu; Chin-Teng Lin; , "A Wearable Mobile Electrocardiogram measurement

device with novel dry polymer-based electrodes," TENCON 2010 - 2010 IEEE

Region 10 Conference , vol., no., pp.379-384, 21-24 Nov. 2010

doi: 10.1109/TENCON.2010.5686658

[8] J.SparsØ and S.Furber (eds), Principles of asynchronous circuit design – A

system perspecticve, Kluwer Academic Publishers, 2001 (ISBN 0-7923-7613-7).

[9] D. Adwards, A. Bardsley, L. Janin and W. Toms, Balsa: A Tutorial Guide,

version 3.4.2, Jan 2005.

[10] X.D. Zou, X.Y. Xu, L.B. Yao, and Y. Lian, “A 1-V 450-nW Fully Integrated

Programmable Biomedical Sensor Interface Chip,” IEEE Journal of Solid-State

Circuits, vol. 44, no. 4, pp. 1067-1077, Apr. 2009.

[11] C.J. Deepu, X.Y. Xu, X.D. Zou, L.B. Yao, and Y. Lian, "An ECG-on-Chip for

Wearable Cardiac Monitoring Devices" Fifth IEEE International Symposium on

Electronic Design, Test and Application, 2010, pp 225 – 228, Jan. 2010.

[12] F. Zhang, and Y. Lian, "QRS Detection Based on Multi-Scale Mathematical

82

Morphology for Wearable ECG Device in Body Area Networks," IEEE

Transactions on Biomedical Circuits and Systems, Vol.3, No.4, pp.220-228,

Aug. 2009.

[13] Microchip,PIC18F46J50 Datasheet, USA

http:// ww1.microchip.com/downloads/en/devicedoc/39931b.

[14] NUS VLSI Lab, V7 Datasheet, Singapore

[15] Micron , MT29F16G08FAA Datasheet

[16] Chao Xue, Xiang Cheng, Yang Guo, Yong Lian, “The Design of a Sub-

Nanojoule Asynchronous 8051 with Interface to External Commercial

Memory”, ASICON, p427-430, 2009.

[17] H.V. Gageldonk, K.V. Berkel, A. Peeters, “An Asynchronous low-power

80C51 microcontroller,” in Fourth International Symposium on Advanced

Research in Asynchronous Circuits and Systems, 30 March-2 April 1998, pp.

96-107

[18] Kok-Leong Chang and Bah-Hwee Gwee, “A low-energy low-voltage

asynchronous 8051 microcontroller core” in International Symposium on

Circuits and Systems, pp. 3181-3184, 2006.

83

Appendix 1: LPCRV1 PCB design

84

85

86

87

Appendix 2: Firmware Flash part

#include "p18cxxx.h"

#include "ee5003conf.h"

#include "funflash.h"

#include "myrtcc.h"

extern void rdputchar(unsigned char ucSd);

extern void putcharhex(unsigned char ucSd);

extern void myprint_rom(rom const char *pStr);

extern void myprint_uint32HEX(uint32 u32Data);

extern void putcharhex(unsigned char ucSd);

#define FLASH_READ_READY() while(FLASH_READYBUSY_L_PORT_IN==0)

//Low power mode

void flash_disabled(void)

{

 FLSH_CE1_L_HIGH();

}

/*

Set the read-mode command input

*/

static void __flash_readmode_setcommand(uint8 u8Cmd)

{

 FLSH_CLE_HIGH();

 FLSH_ALE_LOW();

 FLSH_CE1_L_LOW();

 FLSH_RE_L_HIGH();

 FLSH_WE_L_LOW();

 PIC_DATA_BUS_SET_AS_OUTPUT(); /*IO Direction as Output*/

 FLASH_DATABUS_PORT_OUT=u8Cmd;

 Nop();

 FLSH_WE_L_HIGH();

}

/*

Set the write-mode command input

*/

static void __flash_writemode_setcommand(uint8 u8Cmd)

{

 FLSH_WP_L_HIGH();

 __flash_readmode_setcommand(u8Cmd);

}

/*

Set the read-mode address input

*/

static void __flash_readmode_setaddress(uint8 u8Addr8Bits)

{

 FLSH_CLE_LOW();

 FLSH_ALE_HIGH();

 FLSH_CE1_L_LOW();

 FLSH_RE_L_HIGH();

 FLSH_WE_L_LOW();

 PIC_DATA_BUS_SET_AS_OUTPUT(); /*IO Direction as Output*/

 FLASH_DATABUS_PORT_OUT=u8Addr8Bits;

 Nop();

 FLSH_WE_L_HIGH();

}

/*

Set the write-mode address input

*/

static void __flash_writemode_setaddress(uint8 u8Addr8Bits)

{

 FLSH_WP_L_HIGH();

 __flash_readmode_setaddress(u8Addr8Bits);

}

88

/*Write data*/

static void __flash_writedata(uint8 u8Data)

{

 FLSH_WP_L_HIGH();

 FLSH_CLE_LOW();

 FLSH_ALE_LOW();

 FLSH_CE1_L_LOW();

 FLSH_RE_L_HIGH();

 FLSH_WE_L_LOW();

 PIC_DATA_BUS_SET_AS_OUTPUT(); /*IO Direction as Output*/

 FLASH_DATABUS_PORT_OUT=u8Data;

 Nop();

 FLSH_WE_L_HIGH();

}

/*Read Data*/

static uint8 __flash_readdata(void)

{

 uint8 uTmpData;

 FLSH_CLE_LOW();

 FLSH_ALE_LOW();

 FLSH_CE1_L_LOW();

 FLSH_RE_L_HIGH();

 FLSH_WE_L_HIGH();

 PIC_DATA_BUS_SET_AS_INPUT(); /*IO Direction as Input*/

 while(FLASH_READYBUSY_L_PORT_IN==0);

 FLSH_RE_L_LOW();

 Nop(); /*Delay*/

 Nop(); /*Delay*/

 Nop(); /*Delay*/

 uTmpData=FLASH_DATABUS_PORT_IN;

 FLSH_RE_L_HIGH();

 return uTmpData;

}

void hw_flash_init(void)

{

 FLASH_WE_TRIS_L=0; /*Write Enable； PIC's Output*/

 FLASH_WP_TRIS_L=0; /*Write Protect; PIC's Output*/

 FLASH_CLE_TRIS=0; /*PIC's Output*/

 FLASH_ALE_TRIS=0;

 FLASH_CE1_TRIS_L=0;

 FLASH_RE_TRIS_L=0;

 FLASH_READYBUSY_L_TRIS_IN=1; /*Input. Ready=1, Busy=0*/

 /*initialize port*/

 FLASH_WE_PORT_L=1;

 FLASH_WP_PORT_L=1;

 FLASH_CLE_PORT=0;

 FLASH_ALE_PORT=0;

 FLASH_CE1_PORT_L=1;

 FLASH_RE_PORT_L=1;

}

//

//void _set_command_readmode(uint8 uData)

//{

// FLASH_CLE_PORT=1;

// FLASH_ALE_PORT=0;

// FLASH_CE1_PORT_L=0;

// FLASH_RE_PORT_L=1;

// FLASH_WP_PORT_L=0;

// FLASH_WRITE_PORT_L=?;

// FLASH_WRITE_PORT_L=1;

// FLASH_WRITE_PORT_L=0;

//}

//

89

/*

Pre-request:

1. Data bus is Input : call PIC_DATA_BUS_SET_AS_INPUT();

2. FLSH_CLE_LOW(); The CLE must be low

*/

uint8 _flash_read_one_byte(void)

{

 uint8 uTmp;

 //while(FLASH_READYBUSY_L_PORT_IN==0);

 FLASH_READ_READY();

 FLSH_RE_L_LOW();

 Nop(); /*Delay*/

 uTmp=FLASH_DATABUS_PORT_IN;

 FLSH_RE_L_HIGH();

//putcharhex(uTmp);

 return uTmp;

}

uint32 myFlashGetID(void)

{

 uint32 u32ID;

 __flash_readmode_setcommand(0x90);

 __flash_readmode_setaddress(0x00);

 u32ID=0;

 u32ID|=__flash_readdata();

 u32ID<<=8;

 u32ID|=__flash_readdata();

 u32ID<<=8;

 u32ID|=__flash_readdata();

 u32ID<<=8;

 u32ID|=__flash_readdata();

 return u32ID;

}

uint32 oldmyFlashGetID(void)

{

 uint32 u32ID;

 PIC_DATA_BUS_SET_AS_OUTPUT(); /*IO Direction as Output*/

 FLSH_CLE_HIGH();

 FLSH_CE1_L_LOW();

 FLSH_WE_L_LOW();

 FLSH_ALE_LOW();

 FLSH_RE_L_HIGH();

 FLASH_DATABUS_PORT_OUT=CMD_READ_ID;

 FLSH_WE_L_HIGH();

 FLSH_CLE_LOW();

 FLSH_ALE_HIGH();

 FLSH_WE_L_LOW();

 FLASH_DATABUS_PORT_OUT=0x00; /*Address, 1-cycle*/

 FLSH_WE_L_HIGH();

 FLSH_ALE_LOW();

 PIC_DATA_BUS_SET_AS_INPUT(); /*IO Direction as Input*/

 u32ID=0;

 u32ID|=_flash_read_one_byte();

 u32ID<<=8;

 u32ID|=_flash_read_one_byte();

 u32ID<<=8;

 u32ID|=_flash_read_one_byte();

 u32ID<<=8;

 u32ID|=_flash_read_one_byte();

 return u32ID;

90

}

/************Basic Functions****************/

/*

This function just initialize the Read-Page feature.

Parameter(s):

u16CAaddr: 16-bit column address (first and second cycle)

 Value: address value should be <(2048+64)

u32PageBlockAddress: 32-bit block+page address (third to fifth cycle)

*/

void myflash_read_page_init(uint16 u16CAaddr, uint32 u32PageBlockAddress)

{

 uint8 uTmpAddr;

 uint16 uTmpColAddr=u16CAaddr;

 __flash_readmode_setcommand(0x00);

 /*First: column address CA0~CA7*/

 uTmpAddr=uTmpColAddr & 0xFF;

 uTmpColAddr>>=8;

 __flash_readmode_setaddress(uTmpAddr);

 /*Second: column address CA8~CA11*/

 uTmpAddr=uTmpColAddr & 0xFF;

 __flash_readmode_setaddress(uTmpAddr);

 /*Third: Page address (PA0~PA6) + Block address (BA6~BA7)*/

 uTmpAddr=u32PageBlockAddress & 0xFF;

 u32PageBlockAddress>>=8;

 __flash_readmode_setaddress(uTmpAddr);

 /*4th: Block address BA8~BA15*/

 uTmpAddr=u32PageBlockAddress & 0xFF;

 u32PageBlockAddress>>=8;

 __flash_readmode_setaddress(uTmpAddr);

 /*5th: Block address BA16~BA18*/

 uTmpAddr=u32PageBlockAddress & 0xFF;

 __flash_readmode_setaddress(uTmpAddr);

 /*Set the command, 0x30*/

 __flash_readmode_setcommand(0x30);

 FLASH_READ_READY();

 PIC_DATA_BUS_SET_AS_INPUT();

 FLSH_CLE_LOW();

// /*Following set the random data read*/ //ignored,

// __flash_readmode_setcommand(0x05);

// uTmpColAddr==u16CAaddr;

// /*First: column address CA0~CA7*/

// uTmpAddr=uTmpColAddr & 0xFF;

// uTmpColAddr>>=8;

// __flash_readmode_setaddress(uTmpAddr);

// /*Second: column address CA8~CA11*/

// uTmpAddr=uTmpColAddr & 0xFF;

// __flash_readmode_setaddress(uTmpAddr);

//

// __flash_readmode_setcommand(0xE0);

}

uint8 myflash_read_one_byte()

{

 return _flash_read_one_byte();

}

/*

91

This function uses "Program Page Cache Mode" to program data.

Maximum input length is 255

Parameter(s):

 u16CAaddr: 16-bit column address (first and second cycle)

 Value: address value should be <(2048+64)

 u32PageBlockAddress: 32-bit block+page address (third to fifth cycle)

 pDataSrc: buffer pointer in the memory

 u16Len: length of the data

return:

 0: Successfully

 any other values: Status Value, which is not zero

*/

uint8 myfalsh_write_page_string(uint16 u16CAaddr, uint32 u32PageBlockAddress, uint8 *pDataSrc, uint16

u16Len)

{

 uint16 u16Count;

 uint8 u8Status;

 uint8 uTmpAddr;

 uint16 uTmpColAddr=u16CAaddr;

 __flash_writemode_setcommand(0x80);

 /*First: column address CA0~CA7*/

 uTmpAddr=uTmpColAddr & 0xFF;

 uTmpColAddr>>=8;

 __flash_writemode_setaddress(uTmpAddr);

 /*Second: column address CA8~CA11*/

 uTmpAddr=uTmpColAddr & 0xFF;

 __flash_writemode_setaddress(uTmpAddr);

 /*Third: Page address (PA0~PA6) + Block address (BA6~BA7)*/

 uTmpAddr=u32PageBlockAddress & 0xFF;

 u32PageBlockAddress>>=8;

 __flash_writemode_setaddress(uTmpAddr);

 /*4th: Block address BA8~BA15*/

 uTmpAddr=u32PageBlockAddress & 0xFF;

 u32PageBlockAddress>>=8;

 __flash_writemode_setaddress(uTmpAddr);

 /*5th: Block address BA16~BA18*/

 uTmpAddr=u32PageBlockAddress & 0xFF;

 __flash_writemode_setaddress(uTmpAddr);

 /*Preparing writing data*/

 for(u16Count=0;u16Count<u16Len;u16Count++)

 {

 __flash_writedata(pDataSrc[u16Count]);

 }

 /*Set the command, 0x15*/

 __flash_writemode_setcommand(0x15);

 FLASH_READ_READY();

 __flash_readmode_setcommand(0x70);

 u8Status=myflash_read_one_byte();

 if(u8Status&0x3)

 {/*Failed*/

 return u8Status;

 }

 return (0);/*Successfully*/

}

/*

FunctionName: myflash_erase_block

 Requires page+block address. however, the page address is ignored.

Parameter:

92

 u32PageBlockAddress: 32-bit block+page address (third to fifth cycle)

 here, the page address is ignored.

return:

 0: Successfully

 others: failed (status register value)

*/

uint8 myflash_erase_block(uint32 u32PageBlockAddress)

{

 uint8 uTmpAddr,u8Status;

 __flash_writemode_setcommand(0x60);

 /*Third: Page address (PA0~PA6) + Block address (BA6~BA7)*/

 uTmpAddr=u32PageBlockAddress & 0xFF;

 u32PageBlockAddress>>=8;

 __flash_writemode_setaddress(uTmpAddr);

 /*4th: Block address BA8~BA15*/

 uTmpAddr=u32PageBlockAddress & 0xFF;

 u32PageBlockAddress>>=8;

 __flash_writemode_setaddress(uTmpAddr);

 /*5th: Block address BA16~BA18*/

 uTmpAddr=u32PageBlockAddress & 0xFF;

 __flash_writemode_setaddress(uTmpAddr);

 __flash_writemode_setcommand(0xD0);

 FLASH_READ_READY();

 __flash_readmode_setcommand(0x70);

 for(uTmpAddr=0;uTmpAddr<250;uTmpAddr++)

 {/*Check complete or not*/

 u8Status=myflash_read_one_byte();

 if(u8Status&0x40) /*bit 6, 1 means complete*/

 {/*Completed*/

 if(u8Status & 0x1)

 {/*error*/

 return u8Status;

 }

 else /*bit0=0*/

 {/*successfully*/

 return 0;

 }

 }

 }

 return (u8Status);/*Timeout*/

}

/***************************High Level Functions********************************/

/*

FunctionName:

 myflash_check_page_blank

Parameter:

 u32PageBlockAddress: 32-bit block+page address (third to fifth cycle)

 here, the page address is ignored.

Return:

 the index of writable byte-region.

 e.g. 0: means this page is blank

 1: means the first byte (0,1,...2112) (started from index=0) is blank, it is available.

 0xFFFF means: page is full used (including last 64 bytes).

*/

uint16 myflash_check_page_blank(uint32 u32PageBlockAddress)

{

 uint16 u16ColumAddress=0;

93

 uint16 i;

 uint8 u8Tmp1,u8FoundNoneZero=0;

 myflash_read_page_init(u16ColumAddress,u32PageBlockAddress);

 for(i=0;i<SIZE_ONE_PAGE;i++)

 {

 u8Tmp1=myflash_read_one_byte();

 if(u8Tmp1!=0xFF)

 {

 u8FoundNoneZero=1;

 u16ColumAddress=i; /*update the u16ColumnAddress*/

 }

 }

 if(u8FoundNoneZero)

 {

 if(u16ColumAddress>=SIZE_ONE_PAGE)

 {

 return 0xFFFF; /*error!*/

 }

 return u16ColumAddress+1;

 }

 return 0;/*u16ColumAddress; 0 index, page is blank*/

}

//uint8 myflash_set_page_using_used(uint32 u32PageBlockAddress)

///*

//Function: myflash_get_last_using_block_index

// To get the block, which is not full.

// Returned value is the block index.

//Return: 0: failed

// others, OK.

//*/

//uint16 myflash_get_last_using_block_index(void)

//{

// uint16 uTmpBlockAddress=0;

// uint16 i;

// uint8 u8Tmp1;

// stFlashBlockInformation sBlkInfo;

// myflash_read_page_init(0, 0); /*initialize the read page command: try to read page 0*/

// for(i=1;i<SIZE_ONE_PAGE;i++) /*started from 1 to 2047*/

// {

// u8Tmp1=myflash_read_one_byte();

// sBlkInfo.blkinfo.uBlkInfoData=u8Tmp1;

//

// if(sBlkInfo.blkinfo.bits.bBlockIsFull==1)

// {/*bBlockIsFull=0: Full; =1:Not Full*/

// uTmpBlockAddress=i; /*update the u16ColumnAddress*/

// return uTmpBlockAddress;

// }

// }

// return 0;

//}

///*

//Function Name:

// To update and mark the specified block index as full.

//Parameter:

// u16BlockIndex: give the block index, value range is 0~2047

//return:

// 0: Successfully

// others: failed (status register value)

//*/

94

//uint8 myflash_mark_block_as_full(uint16 u16BlockIndex)

//{

// uint16 u8ByteIndex; /*the byte index in the page 0*/

// stFlashBlockInformation stBlkData;

// uint8 uDataBuf[2];

// stBlkData.blkinfo.uBlkInfoData=0xFF;

// stBlkData.blkinfo.bits.bBlockIsFull=0; /*Set bit as low*/

// uDataBuf[0]=stBlkData.blkinfo.uBlkInfoData;

// uDataBuf[1]=0;

// return myfalsh_write_page_string(u16BlockIndex, 0, uDataBuf, 2);

//}

///*

//Function Name:

// To update and mark the specified block index as using.

//Parameter:

// u16BlockIndex: give the block index, value range is 0~2047

//return:

// 0: Successfully

// others: failed (status register value)

//*/

//uint8 myflash_mark_block_as_using(uint16 u16BlockIndex)

//{

// uint16 u8ByteIndex; /*the byte index in the page 0*/

// stFlashBlockInformation stBlkData;

// uint8 uDataBuf[2];

// stBlkData.blkinfo.uBlkInfoData=0xFF;

// stBlkData.blkinfo.bits.bBlockIsUsing=0; /*Set bit as low*/

// uDataBuf[0]=stBlkData.blkinfo.uBlkInfoData;

// uDataBuf[1]=0;

// return myfalsh_write_page_string(u16BlockIndex, 0, uDataBuf, 2);

//}

//

///*

//Function:

// With the given block index, try to find the first blank page, which is not using.

// Information is stored to the last 64-byte.

// (2048,2049: reserved)

//Return:

// 0~63 : Valid page index number

// 0xFFFF: all pages are full.

//*/

//uint16 myflash_get_block_first_blank_page_index(uint16 u16BlockIndex)

//{

// uint8 i=0;

// uint8 u8Data;

// uint32 u32TmpPageBlockAddr=0;

// u32TmpPageBlockAddr=u16BlockIndex;

// u32TmpPageBlockAddr <<= 6; /*Convert it from block index to page-block address*/

//

// for(i=0;i<PAGES_PER_BLOCK;i++)

// {

// myflash_read_page_init(0, u32TmpPageBlockAddr);

// u32TmpPageBlockAddr++;

// u8Data=myflash_read_one_byte();

// if(u8Data==0xFF)

// {/*this page is not used, return this address*/

// return i;

// }

// }

// return 0xFFFF;

//}

95

//

/*

Slow speed operation.

Parameter(s):

 u16CAaddr: 16-bit column address (first and second cycle)

 Value: address value should be <(2048+64)

 u32PageBlockAddress: 32-bit block+page address (third to fifth cycle)

 u8Data: one but to be write to address

return:

 0: Successfully

 any other values: Status Value, which is not zero

*/

uint8 myWriteOneByte(uint16 u16CAaddr, uint32 u32PageBlockAddress, uint8 u8Data)

{

 uint8 uTmpBuf2[2];

 uTmpBuf2[0]=u8Data;

 uTmpBuf2[1]=0;

 return myfalsh_write_page_string(u16CAaddr,u32PageBlockAddress,uTmpBuf2,1);

}

/*

Slow speed operation.

Returned Value:

 read data.

*/

uint8 myReadOneByte(uint16 u16CAaddr, uint32 u32PageBlockAddress)

{

 myflash_read_page_init(u16CAaddr, u32PageBlockAddress);

 return myflash_read_one_byte();

}

/*Simple File System Functions*/

/*

Each block's first page includes the page usage information.

Its last 64byte (in the padding area) shows such informatino.

Return:

0: Page is Blank

1: Page is Using (end of previous record)

2: Page is Used

3: Page is Damaged /try to erase this block, and test again, if still failed, skip this block (unknown

status)

*/

uint8 mySFSCheckPageBlank(uint32 u32PageBlockAddress)

{

 uint16 uTmpCAaddr;

 uint8 u8Ret;

 uTmpCAaddr=2048+(u32PageBlockAddress)&0x3F;

 u8Ret=myReadOneByte(uTmpCAaddr,u32PageBlockAddress);

 switch(u8Ret)

 {

 case FLSH_SFS_PAGE_BLANK:

 return 0;

 case FLSH_SFS_PAGE_USING:

 return 1;

 case FLSH_SFS_PAGE_USED:

 return 2;

 break;

 default:

 return 3;

 }

}

/*

96

Return:

0: Block is Blank

1: Block is partially used. (Not Bland)

2: Block is all used. (Not Blank)

*/

uint8 mySFSCheckBlockBlank(uint32 u32PageBlockAddress)

{

 uint16 uTmpCAaddr=2048;

 uint8 u8Ret,i,iRet=0,iUsedPagesCount=0;

 myflash_read_page_init(uTmpCAaddr,(u32PageBlockAddress & 0xFFFFFFC0));

 for(i=0;i<PAGES_PER_BLOCK;i++)

 {

 u8Ret=myflash_read_one_byte();

 if(u8Ret!=0xFF)

 {

 //putcharhex(u8Ret);

 //putchar(' ');

 iUsedPagesCount++;

 }

 }

 if(iUsedPagesCount==PAGES_PER_BLOCK)

 {

 iRet=2; //fully used

 }

 else if(iUsedPagesCount >0)

 {

 iRet=1; //partially used

 }

 return iRet;

}

uint8 mySFSGetAvailablePageIndexInThisBlock(uint8 *pValidPageIndex, uint32 u32PageBlockAddress)

{

 uint16 uTmpCAaddr=2048;

 uint8 u8Ret,i;

 myflash_read_page_init(uTmpCAaddr,(u32PageBlockAddress & 0xFFFFFFC0));

 *pValidPageIndex=0;

 for(i=0;i<PAGES_PER_BLOCK;i++)

 {

 u8Ret=myflash_read_one_byte();

 if(u8Ret==0xFF)

 {

 *pValidPageIndex=i;

 return 0;

 }

 }

 return 1; //failed

}

/*

This function should only be called once. (During system start-up).

Return:

0: OK

1: Failed, checked all the pages, all full (need erasing the first block. and continue...

*/

uint8 mySFSGetAvailablePageBlockAddress(uint32 *pRetU32PageAddress)

{

 uint32 uPA=0;

 const uint32 uMax=524224;//8G is 524224(8191*64) 131072;

 const uint32 uStep=64;

97

 uint8 u8Ret=0xff,u8PageIndex=0;

myprint_rom("\r\nmySFSGetAvailablePageBlockAddress");//\r\n");

//myprint_uint32HEX(uPA);

myprint_rom("\r\nMaxPageAddr=");

myprint_uint32HEX(uMax);

myprint_rom("\r\nStep=");

myprint_uint32HEX(uStep);

myprint_rom("\r\n");

 for(;uPA<uMax;uPA+=uStep)

 {

 u8Ret=mySFSCheckBlockBlank(uPA);

 if(u8Ret==0)

 {//This block is available

 myprint_rom("\r\nFound Page-Block Address:");

 myprint_uint32HEX(uPA);

 myprint_rom("\r\n");

 *pRetU32PageAddress=uPA;

 return 0; //OK

 }

 else if(u8Ret==1) //This block is partially used

 {//continue get the address

 u8Ret=mySFSGetAvailablePageIndexInThisBlock(&u8PageIndex,uPA);

 if(u8Ret==0)

 {//got it

 myprint_rom("\r\nFound Page-Block Address:");

 myprint_uint32HEX(uPA);

 myprint_rom("\r\n");

 *pRetU32PageAddress=uPA+u8PageIndex; //available page-block address

 return 0;

 }

 }

 else

 {//all blocks' pages are used, move to next block

 //do nothing.

 }

 }

myprint_rom("\r\nFun:Failed,All Pages Full\r\n");

 return 1; //failed, checked all the pages, all full

}

void mySFSUpdatePageIsUsing(uint32 u32PageBlockAddress)

{

 uint16 uCA=u32PageBlockAddress & 0x3F ; //get the page address

 uCA+=2048; //refer to the page's info.

 u32PageBlockAddress &= 0xFFFFFFC0;

 myWriteOneByte(uCA,u32PageBlockAddress,FLSH_SFS_PAGE_USING);

}

void mySFSUpdatePageUsed(uint32 u32PageBlockAddress)

{

 uint16 uCA=u32PageBlockAddress & 0x3F ; //get the page address

 uCA+=2048; //refer to the page's info.

 u32PageBlockAddress &= 0xFFFFFFC0;

 myWriteOneByte(uCA,u32PageBlockAddress,FLSH_SFS_PAGE_USED);

}

/*

To update the string to flash.

Flash next address will also be updated.

1. Check the next block available? If not, erase it. Check again, if still not available, skip and move

to the next one.

98

 Do the same check, if has data, format, and check again. and etc.

2. Update the SFS status in each block's page 0.

3. Before update the last's page status to SFS, always erase the next block.)

4. Update Using/Used for SFS.

*/

uint8 mySFSUpdateDataToFlash(uint8 *pDataSrc, uint16 u16Len, uint16 *p16CAaddr, uint32

*p32PageBlockAddress)

{

 uint32 u32TmpAddr;

 uint8 uTmpPageIndex;

 uint16 uTmpLen;

 uint8 uDateTimeDemo[8];//={0x20,0x11,0x01,0x16,0x23,0x45,0x22,0x00,0x00};

 uDateTimeDemo[0]=0x20;

 rtc_getdatetime(&uDateTimeDemo[1],&uDateTimeDemo[2],&uDateTimeDemo[3],

 &uDateTimeDemo[4],&uDateTimeDemo[5],&uDateTimeDemo[6]);

#ifdef DEBUG_MSG

 myprint_rom("\r\nLen=");

 putcharhex(u16Len>>8);

 putcharhex(u16Len&0xFF);

 myprint_rom("; CA=");

 putcharhex((*p16CAaddr)>>8);

 putcharhex((*p16CAaddr)&0xFF);

 myprint_rom("; PageBlock=");

 myprint_uint32HEX(*p32PageBlockAddress);

 myprint_rom("\r\n");

#endif

 if (*p16CAaddr ==0)

 {

 mySFSUpdatePageIsUsing(*p32PageBlockAddress);

 }

 if (*p16CAaddr >= 2048)

 {//

//putchar('A');

 mySFSUpdatePageUsed(*p32PageBlockAddress);

 *p16CAaddr=0;

 (*p32PageBlockAddress)+=1; //page increase by one

 mySFSUpdatePageIsUsing(*p32PageBlockAddress);

 uTmpPageIndex=(*p32PageBlockAddress)&0x3F;

 u32TmpAddr=(*p32PageBlockAddress) + 32; //move to next block

 if(uTmpPageIndex ==63)

 {//erasing next block

 if(u32TmpAddr >= (524224))

 {//end of 8Gb, move to block 0

 u32TmpAddr=0;

 }

 myflash_erase_block(u32TmpAddr);

//putchar('B');

 }

 }

 while(u16Len>0)

 {

//putchar('C');

 if(*p16CAaddr ==0)

 {//Write date,time, seconds

 myfalsh_write_page_string(*p16CAaddr,*p32PageBlockAddress,uDateTimeDemo,6); //write

temperary date/time

 (*p16CAaddr)+=6;

99

//putchar('D');

 }

 uTmpLen=2048-(*p16CAaddr);

 if(uTmpLen > u16Len)

 {

//putchar('E');

 uTmpLen=u16Len;

 }

 if((*p32PageBlockAddress)>=(524224))

 {

 *p32PageBlockAddress=0; //move back to block 0

 }

 myfalsh_write_page_string(*p16CAaddr,*p32PageBlockAddress,pDataSrc,uTmpLen);

 u16Len-=uTmpLen;

 *p16CAaddr+=uTmpLen;

 pDataSrc+=uTmpLen;

 if((*p16CAaddr)>=2048)

 {

//putchar('G');

 mySFSUpdatePageUsed(*p32PageBlockAddress);

 *p16CAaddr=0;

 (*p32PageBlockAddress)+=1; //page increase by one

 mySFSUpdatePageIsUsing(*p32PageBlockAddress);

 uTmpPageIndex=(*p32PageBlockAddress)&0x3F;

 u32TmpAddr=(*p32PageBlockAddress) + 32; //move to next block

 if(uTmpPageIndex ==63)

 {//erasing next block

 if(u32TmpAddr >= 524224)

 {//end of 8Gb, move to block 0

 u32TmpAddr=0;

 }

 myflash_erase_block(u32TmpAddr);

//putchar('H');

 }

 }

 }

}

100

Appendix 3: Asynchronous 8051 core Balsa code

import [balsa.types.basic]

import [defines]

procedure Balsa_NOPIPE(

input rom_data : byte;

output rom_addr : Imm16;

output rom_rd : bit;

--external RAM and ROM

output xram_addr : Imm16;

output xram_out_data : byte;

input xram_in_data : byte;

output tris_data : bit;

output xram_rd : bit;

output xram_wr : bit;

output xram_e : bit; --xram access

output int_return : bit;

input int_req : Imm3;

input int_mask : Imm2;

output int_lproc : bit;

output int_lend : bit;

(--

--timer and iram access

output cpu_out_data : byte;

input cpu_in_data : byte;

output cpu_rd : bit;

output cpu_wr : bit;

output cpu_addr : byte;

output cpu_is_bit_addr : bit;

output cpu_out_bit_data : bit;

input cpu_in_bit_data : bit;

--)

--Asyn RAM interface

input iram_out_data : byte;

output iram_in_data : byte;

output iram_addr : Imm7;

output iram_rd : bit;

output iram_wr : bit;

--timer interface

output timer_out_data : byte;

output timer_out_bit_data : bit;

output timer_addr : byte;

output timer_bit_addr : bit;

output timer_rd : bit;

output timer_wr : bit;

input timer_in_data : byte;

input timer_in_bit_data : bit;

--parallel port interface

output P0_o : byte;

output P1_o : byte;

output P2_o : byte;

input P0_i : byte;

input P1_i : byte;

input P2_i : byte;

output tris0_o : byte;

output tris1_o : byte;

output tris2_o : byte;

--testing chans

output pc_out : Imm16;

output acc_out : byte;

101

output psw_out : byte;

output debug1 :Imm2;

output sp_out : byte;

output dpl_out : byte;

output dph_out : byte;

output b_out : byte

) is

 variable fetch_op : Imm2

 variable reg_pc_plus : Imm16

 variable exe_opcode : Imm7

 variable data_bit : bit

 variable reg_pc,reg_pc_tmp : Imm16

 variable data_bus : byte

 variable reg_ir : byte

 variable reg_op1,reg_op2,reg_op3 : byte

 variable reg_acc : byte

 variable int_req_int : Imm3

 variable int_mask_int : Imm2

 variable int_hproc_int,int_lproc_int : bit

 variable reg_pcl,reg_pch : byte

 variable reg_pc_11_15 : Imm5

 variable reg_pc_8_10 : Imm3

 variable reg_pc_0_7 : byte

-- variable cpu_state,exe_state : Imm2

 variable reg_f0,reg_cy,reg_ac,reg_ov,reg_rs1,reg_rs0,reg_nu,reg_p : bit

-- variable DEC

 variable op_in_int : byte

 variable op_out_int : array7

 variable rmw_int : bit

-- variable ALU

 variable v1, v16 : Imm16

 variable v2, v : Imm9

 variable alu_des_2, alu_src_1, alu_src_2, alu_src_3 : byte

 variable v4 : Imm5

 variable alu_op_code, v8 : Imm4

 variable vC : Imm2

 variable alu_des_cy, alu_des_ac, alu_des_ov, alu_src_cy, alu_src_ac : bit

 variable alu_des_1 : array8

 variable v4_4, v8_3 : bit

-- variable IRAM

 variable P0,P1,P2,SP,DPL,DPH,ACC,B,PSW : byte

 variable P0_out,P1_out,P2_out,tris0,tris1,tris2 : byte

 variable ram_in_data,ram_out_data,ram_addr,iram_out_data_int : byte

 variable ram_is_bit_addr : bit

 variable ram_in_bit_data,ram_out_bit_data : bit

 variable temp_data,temp_addr : array8

-- final 1st version

 variable ram_out_data_tmp, ram_addr_tmp, xram_out_data_tmp : byte

 variable ram_out_bit_data_tmp : bit

 variable reg_psw : byte

 variable xram_addr_tmp : Imm16

 shared GET_RAM_ADDR_1 is

 begin

 ram_addr_tmp := (#reg_op1[0..2] @ #reg_rs0 @ #reg_rs1 @ {0,0,0} as byte)

 end

 shared GET_RAM_ADDR_2 is

102

 begin

 ram_addr_tmp := (#reg_op1[0..0] @ {0,0} @ #reg_rs0 @ #reg_rs1 @ {0,0,0} as

byte)

 end

 shared GET_PSW is

 begin

 PSW:=(#reg_p@#reg_nu@#reg_ov@#reg_rs0@#reg_rs1@#reg_f0@#reg_ac@#reg_cy as

byte)

 end

(--

shared TO_TIMER is

begin

 cpu_addr <- ram_addr || cpu_is_bit_addr <- ram_is_bit_addr || cpu_rd <- ram_rd

|| cpu_wr <- ram_wr

end

--)

shared READ_TIMER is

begin

 timer_addr <- ram_addr || timer_bit_addr <- 0b0 || timer_rd <- 0b1

end

shared READ_BIT_TIMER is

begin

 timer_addr <- ram_addr || timer_bit_addr <- 0b1 || timer_rd <- 0b1

end

shared WR_TIMER is

begin

 timer_addr <- ram_addr || timer_bit_addr <- 0b0 || timer_wr <- 0b1 ||

 timer_out_data <- ram_out_data

end

shared WR_BIT_TIMER is

begin

 timer_addr <- ram_addr || timer_bit_addr <- 0b1 || timer_wr <- 0b1 ||

 timer_out_bit_data <- ram_out_bit_data

end

shared ReadRAM is

begin

 if (ram_is_bit_addr = 0b0) then

 if (#ram_addr[7] = 0b1) then

 case ram_addr of

 (R_SP as byte) then

 ram_in_data := SP

 |(R_DPL as byte) then

 ram_in_data := DPL

 |(R_DPH as byte) then

 ram_in_data := DPH

 |(R_PSW as byte) then

 ram_in_data := PSW

 |(R_ACC as byte) then

 ram_in_data := ACC

 |(R_B as byte) then

 ram_in_data := B

 |(R_P0 as byte) then

 begin

-- rmw -> rmw_int;

 if (rmw_int = 0b1) then P0:=P0_out

 else P0_i -> P0

 end;

 ram_in_data := P0

 end

 |(R_P1 as byte) then

 begin

-- rmw -> rmw_int;

 if (rmw_int = 0b1) then P1:=P1_out

103

 else P1_i -> P1

 end;

 ram_in_data := P1

 end

 |(R_P2 as byte) then

 begin

-- rmw -> rmw_int;

 if (rmw_int = 0b1) then P2:=P2_out

 else P2_i -> P2

 end;

 ram_in_data := P2

 end

 |(R_TRIS0 as byte) then

 ram_in_data := tris0

 |(R_TRIS1 as byte) then

 ram_in_data := tris1

 |(R_TRIS2 as byte) then

 ram_in_data := tris2

 else

 begin

 READ_TIMER() || timer_in_data -> ram_in_data

 end

 end --end case

 else

 iram_addr<-(ram_addr as Imm7) || iram_rd<-0b1 || iram_wr<-0b0 ||

 iram_out_data->ram_in_data

 end

 else

 begin temp_addr := {0,0,0}@#ram_addr[3..7];

 if (#ram_addr[7] = 0b1) then

 case temp_addr of

 (R_SP as array8) then

 ram_in_bit_data := #SP[(#ram_addr[0..2] as Imm3)]

 |(R_DPL as array8) then

 ram_in_bit_data := #DPL[(#ram_addr[0..2] as Imm3)]

 |(R_DPH as array8) then

 ram_in_bit_data := #DPH[(#ram_addr[0..2] as Imm3)]

 |(R_PSW as array8) then

 ram_in_bit_data := #PSW[(#ram_addr[0..2] as Imm3)]

 |(R_ACC as array8) then

 ram_in_bit_data := #ACC[(#ram_addr[0..2] as Imm3)]

 |(R_B as array8) then

 ram_in_bit_data := #B[(#ram_addr[0..2] as Imm3)]

 |(R_P0 as array8) then

 begin

-- rmw -> rmw_int;

 if (rmw_int = 0b1) then P0:=P0_out

 else P0_i -> P0

 end;

 ram_in_bit_data := #P0[(#ram_addr[0..2] as Imm3)]

 end

 |(R_P1 as array8) then

 begin

-- rmw -> rmw_int;

 if (rmw_int = 0b1) then P1:=P1_out

 else P1_i -> P1

 end;

 ram_in_bit_data := #P1[(#ram_addr[0..2] as Imm3)]

 end

 |(R_P2 as array8) then

 begin

-- rmw -> rmw_int;

 if (rmw_int = 0b1) then P2:=P2_out

 else P2_i -> P2

 end;

 ram_in_bit_data := #P2[(#ram_addr[0..2] as Imm3)]

 end

 |(R_TRIS0 as array8) then

104

 ram_in_bit_data := #tris0[(#ram_addr[0..2] as Imm3)]

 |(R_TRIS1 as array8) then

 ram_in_bit_data := #tris1[(#ram_addr[0..2] as Imm3)]

 |(R_TRIS2 as array8) then

 ram_in_bit_data := #tris2[(#ram_addr[0..2] as Imm3)]

 else

 begin

-- TO_TIMER() || cpu_in_bit_data -> ram_in_bit_data

 READ_BIT_TIMER() || timer_in_bit_data -> ram_in_bit_data

 end

 end --end case

 else

 begin

 iram_addr<-(#ram_addr[3..6]@{0,1,0} as Imm7) || iram_rd<-0b1 ||

iram_wr<-0b0 ||

 iram_out_data -> iram_out_data_int;

 ram_in_bit_data := #iram_out_data_int[(#ram_addr[0..2] as Imm3)]

 end

 end

end

 end --end if

end

 shared START_RD_RAM is

 begin

 ram_is_bit_addr := 0b0 ||

 ram_addr := ram_addr_tmp

 end

 shared START_RD_BIT_RAM is

 begin

 ram_is_bit_addr := 0b1 ||

 ram_addr := ram_addr_tmp

 end

shared WriteRAM is

begin

 if (ram_is_bit_addr = 0b0) then

 if (#ram_addr[7] = 0b1) then

 case ram_addr of

 (R_SP as byte) then

 SP:=ram_out_data

 |(R_DPL as byte) then

 DPL:=ram_out_data

 |(R_DPH as byte) then

 DPH:=ram_out_data

 |(R_PSW as byte) then

 PSW:=ram_out_data

 |(R_ACC as byte) then

 ACC:=ram_out_data

 |(R_B as byte) then

 B:=ram_out_data

 |(R_P0 as byte) then

 begin

 P0_out:=ram_out_data; P0_o <- P0_out

 end

 |(R_P1 as byte) then

 begin

 P1_out:=ram_out_data; P1_o <- P1_out

 end

 |(R_P2 as byte) then

 begin

 P2_out:=ram_out_data; P2_o <- P2_out

 end

105

 |(R_TRIS0 as byte) then

 begin

 tris0:=ram_out_data; tris0_o <- tris0

 end

 |(R_TRIS1 as byte) then

 begin

 tris1:=ram_out_data; tris1_o <- tris1

 end

 |(R_TRIS2 as byte) then

 begin

 tris2:=ram_out_data; tris2_o <- tris2

 end

 else begin

-- TO_TIMER() || cpu_out_data <- ram_out_data

 WR_TIMER()

 end

 end --end case

 else

 iram_addr<-(ram_addr as Imm7) || iram_rd<-0b0 || iram_wr<-0b1 ||

iram_in_data<-ram_out_data

 end

 else

 begin

temp_addr := {0,0,0}@#ram_addr[3..7];

 if (#ram_addr[7] = 0b1) then

 case temp_addr of

-- case (ram_addr as array8) of

 (R_SP as array8) then

 begin

 temp_data := #SP;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

 SP := (temp_data as byte)

 end

 |(R_DPL as array8) then

 begin

 temp_data := #DPL;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

 DPL := (temp_data as byte)

 end

 |(R_DPH as array8) then

 begin

 temp_data := #DPH;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

 DPH := (temp_data as byte)

 end

 |(R_PSW as array8) then

 begin

 temp_data := #PSW;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

 PSW := (temp_data as byte)

 end

 |(R_ACC as array8) then

 begin

 temp_data := #ACC;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

 ACC := (temp_data as byte)

 end

 |(R_B as array8) then

 begin

 temp_data := #B;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

 B := (temp_data as byte)

 end

 |(R_P0 as array8) then

 begin

 temp_data := #P0_out;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

106

 P0_out := (temp_data as byte);

 P0_o <- P0_out

 end

 |(R_P1 as array8) then

 begin

 temp_data := #P1_out;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

 P1_out := (temp_data as byte);

 P1_o <- P1_out

 end

 |(R_P2 as array8) then

 begin

 temp_data := #P2_out;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

 P2_out := (temp_data as byte);

 P2_o <- P2_out

 end

 |(R_TRIS0 as array8) then

 begin

 temp_data := #tris0;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

 tris0 := (temp_data as byte)

 end

 |(R_TRIS1 as array8) then

 begin

 temp_data := #tris1;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

 tris1 := (temp_data as byte)

 end

 |(R_TRIS2 as array8) then

 begin

 temp_data := #tris2;

 temp_data[(#ram_addr[0..2] as Imm3)]:=ram_out_bit_data;

 tris2 := (temp_data as byte)

 end

 else begin

-- TO_TIMER() || cpu_out_bit_data <- ram_out_bit_data

 WR_BIT_TIMER()

 end

 end --end case

 else

 begin

 iram_addr<-(#ram_addr[3..6]@{0,1,0} as Imm7) || iram_rd<-0b1 ||

iram_wr<-0b0 ||

 iram_out_data->iram_out_data_int;

 temp_data := (iram_out_data_int as array8);

 temp_data[(#ram_addr[0..2] as Imm3)] := ram_out_bit_data;

 iram_addr<-(#ram_addr[3..6]@{0,1,0} as Imm7) || iram_wr<-0b0 ||

iram_rd<-0b1 ||

 iram_in_data<-(temp_data as byte)

 end

 end

 end --end if

end

;sp_out <- SP || dpl_out <- DPL || dph_out <- DPH || b_out <- B

end --end WriteRAM

 shared START_WR_RAM is

 begin

 ram_is_bit_addr := 0b0 ||

 ram_addr := ram_addr_tmp ||

 ram_out_data := ram_out_data_tmp

 end

 shared START_WR_BIT_RAM is

 begin

 ram_is_bit_addr := 0b1 ||

 ram_addr := ram_addr_tmp ||

 ram_out_bit_data := ram_out_bit_data_tmp

 end

107

shared mul_add is

begin

 tmp:=(tmp + (tmp_a as Imm16) as Imm16)

end

shared mul is

begin

 if (#m2[0]=0b1) then

 tmp:=(m1 as Imm16)

 else tmp:=0

 end;

 if (#m2[1]=0b1) then

 begin

 tmp_a:={0} @ #m1 @ {0,0,0,0,0,0,0};

 mul_add()

 end

 end;

 if (#m2[2]=0b1) then

 begin

 tmp_a:={0,0} @ #m1 @ {0,0,0,0,0,0};

 mul_add()

 end

 end;

 if (#m2[3]=0b1) then

 begin

 tmp_a:={0,0,0} @ #m1 @ {0,0,0,0,0};

 mul_add()

 end

 end;

 if (#m2[4]=0b1) then

 begin

 tmp_a:={0,0,0,0} @ #m1 @ {0,0,0,0};

 mul_add()

 end

 end;

 if (#m2[5]=0b1) then

 begin

 tmp_a:={0,0,0,0,0} @ #m1 @ {0,0,0};

 mul_add()

 end

 end;

 if (#m2[6]=0b1) then

 begin

 tmp_a:={0,0,0,0,0,0} @ #m1 @ {0,0};

 mul_add()

 end

 end;

 if (#m2[7]=0b1) then

 begin

 tmp_a:={0,0,0,0,0,0,0} @ #m1 @ {0};

 mul_add()

 end

 end;

 if (tmp > 255) then

-- alu_des_ov:=0b1 || alu_des_cy:=0b0

 --reg_ov:=0b1 || reg_cy:=0b0

 PSW[2]:=0b1 || PSW[7]:=0b0

 else

-- alu_des_cy:=0b0

 --reg_cy:=0b0

 PSW[7]:=0b0

 end

end

108

shared div_sub is

begin

 tmp_n:=(tmp_n - (tmp_d as Imm16) as Imm16)

end

shared div_1 is

begin

 dir_d:=0b0 || pos_d:=0b00 || pos_q:=0b001;

 div_sub() || update_q(); -- 2*d is subtracted from tmp_n

 shift_d(); -- tmp_d is the original d

 if (tmp_n < (tmp_d as Imm16)) then

 begin

 r := (tmp_n as byte)

 end

 else

 begin

 pos_q:=0b000;

 update_q() || div_sub();

 r := (tmp_n as byte)

 end

 end

end

shared div_2 is

begin

 pos_q:=0b001;

 update_q() || r:=0

end

shared div_3 is

begin

 dir_d:=0b0 || pos_d:=0b00;

 shift_d(); -- d >> 1 (in total d<<0)

 if (tmp_n < (tmp_d as Imm16)) then --(q=12)

 begin

 r := (tmp_n as byte)

 end

 else --(q=13)

 begin

 pos_q:=0b000;

 update_q() || div_sub();

 r := (tmp_n as byte)

 end

 end

end

shared div_44 is --n<= q < n+4

begin

 if (tmp_n < (tmp_d as Imm16)) then --(4<=q<6)

 begin

 div_3()

 end

 |(tmp_n = (tmp_d as Imm16)) then --(q=6)

 begin

 div_2()

 end

 else --(6<=q<8)

 begin

 div_1()

 end

 end

end

shared div_16 is

begin

 dir_d:=0b0 || pos_d:=0b01;shift_d(); -- d >> 2 (in total << 2)

 if (tmp_n < (tmp_d as Imm16)) then -- (0<= q <4)

109

 begin

 dir_d:=0b0 || pos_d:=0b00;shift_d(); -- d >> 1 (in total << 1

)

 div_44()

 end

 |(tmp_n = (tmp_d as Imm16)) then --(in total d << 2 ,q=4)

 begin

 pos_q:=0b010;

 update_q() || r:=0

 end

 else --(in total d << 2 4 <= q < 16)

 begin

 dir_d:=0b1 || pos_d:=0b00;shift_d(); -- d << 1 (in total d << 3

)

 if (tmp_n < (tmp_d as Imm16)) then --(4<= q <8)

 begin

 dir_d:=0b0 || pos_d:=0b00; shift_d(); -- d >> 1 (in

total d << 2)

 div_sub(); --4*d more is subtracted from tmp_n

 pos_q:=0b010;

 update_q(); -- (q is 4)

 dir_d:=0b0 || pos_d:=0b00; shift_d(); -- d >> 1 (in

total d<<1)

 div_44()

 end --end (4<= q <8)

 |(tmp_n = (tmp_d as Imm16)) then --(q=8)

 begin

 pos_q:=0b011;

 update_q() || r:=0

 end

 else --(8<= q <16)

 begin

 pos_q:=0b011;

 update_q(); --(q is 8)

 div_sub(); --8*d more is subtracted from tmp_n

 dir_d:=0b0 || pos_d:=0b00; shift_d(); -- d >> 1 (in

total d<<2)

 if (tmp_n < (tmp_d as Imm16)) then --(8<=q<12)

 begin

 dir_d:=0b0 || pos_d:=0b00;shift_d(); -- d >> 1

(in total d<<1)

 div_44()

 end

 |(tmp_n = (tmp_d as Imm16)) then --(q=12)

 begin

 pos_q:=0b010;

 update_q() || r:=0

 end

 else --(12<=q<16)

 begin

 pos_q:=0b010;

 update_q(); --(q is 12)

 div_sub(); --4*d more is subtracted from tmp_n

 dir_d:=0b0 || pos_d:=0b00; shift_d(); -- d >> 1

(in total d<<1)

 div_44()

 end

 end

 end

 end

 end

 end

end

shared div_32 is

110

begin

 if (tmp_n < (tmp_d as Imm16)) then --(0<=q<32)

 begin

 div_16()

 end

 |(tmp_n = (tmp_d as Imm16)) then --(inc q=16)

 begin

 pos_q:=0b100;

 update_q() || r:=0

 end

 else --(16<=q<32)

 begin

 div_sub(); --16*d more is subtracted from tmp_n

 pos_q:=0b100;

 update_q(); -- (inc q=16)

 div_16()

 end

 end

end

shared div_u is

begin

 tmp_n:=(n as Imm16) ||

 q:=(0 as array8) ||

 tmp_d:=(#d as array16) || dir_d:=0b1 || pos_d:=0b11;

 shift_d(); -- d << 4

 if (tmp_n < (tmp_d as Imm16)) then --(q<16)

 begin

 div_16()

 end

 |(tmp_n = (tmp_d as Imm16)) then --(q=16)

 begin

 pos_q:=0b100;

 update_q() || r:=0

 end

 else --(16<=q)

 begin

 dir_d:=0b1 || pos_d:=0b01;shift_d(); -- d << 2 (in total d << 6)

 if (tmp_n < (tmp_d as Imm16)) then --(16<= q <64)

 begin

 dir_d:=0b0 || pos_d:=0b00; shift_d(); -- d >> 1 (in total d <<

5)

 if (tmp_n < (tmp_d as Imm16)) then --(16<= q <32)

 begin

 dir_d:=0b0 || pos_d:=0b00; shift_d(); -- d >> 1 (in

total d << 4)

 div_sub(); --16*d more is subtracted from tmp_n

 pos_q:=0b100;

 update_q(); -- (q is 16)

 div_16()

 end

 |(tmp_n = (tmp_d as Imm16)) then --(q = 32)

 begin

 pos_q:=0b101;

 update_q() || r:=0

 end

 else --(32<=q<64)

 begin

 div_sub(); --32*d more is subtracted from tmp_n

 pos_q:=0b101;

 update_q(); -- (q is 32)

 dir_d:=0b0 || pos_d:=0b00; shift_d(); -- d >> 1 (in

total d << 4)

 div_32() --(32<=q<64 -> 0<=q<32)

 end

 end

 end

 |(tmp_n = (tmp_d as Imm16)) then --(q = 64)

 begin

 pos_q:=0b110;

111

 update_q() || r:=0

 end

 else --(64<=q<96 (not 128, in fact

max=255/3=85)

 begin

 div_sub(); --64*d more is subtracted from tmp_n

 pos_q:=0b110;

 update_q(); -- (q is 64)

 dir_d:=0b0 || pos_d:=0b01; shift_d(); -- d >> 2 (in total d <<

4)

 div_32() -- (64<=q<96 -> 0<=q<32)

 end

 end

 end

 end

end

shared div is

begin

-- alu_des_ov:=0b0 || alu_des_cy:=0b0;

 --reg_ov:=0b0 || reg_cy:=0b0;

 PSW[2]:=0b0 || PSW[7]:=0b0;

 if (d=0) then

 PSW[2]:=0b1 || q:=(CD_8 as array8) || r:=(CD_8 as byte)

 |(d=1) then

 q:=(n as array8) || r:=0

 |(n=0) then

 q:=(0 as array8) || r:=0

 |(n<d) then

 q:=(0 as array8) || r:=n

 |(n=d) then

 q:=(1 as array8) || r:=0

 else

 case d of

 2 then q:=(#n[1..7] as array8) || r:=(#n[0] as byte)

 |4 then q:=(#n[2..7] as array8) || r:=(#n[0..1] as byte)

 |8 then q:=(#n[3..7] as array8) || r:=(#n[0..2] as byte)

 |16 then q:=(#n[4..7] as array8) || r:=(#n[0..3] as byte)

 |32 then q:=(#n[5..7] as array8) || r:=(#n[0..4] as byte)

 |64 then q:=(#n[6..7] as array8) || r:=(#n[0..5] as byte)

 |128 then q:=(1 as array8) || r:=(#n[0..6] as byte)

 else div_u()

 end

 end

end

shared ALU is

begin

 case alu_op_code of

 (ALU_OPC_ADD as Imm4) then begin

 v4 := ((#alu_src_1[0..3]@{0} as Imm5) +(#alu_src_2[0..3]@{0} as

Imm5)+(#alu_src_cy@{0,0,0,0} as Imm5) as Imm5);

 v8 := ((#alu_src_1[4..6]@{0} as Imm4) + (#alu_src_2[4..6]@{0} as Imm4)

+ (#v4[4..4]@{0,0,0} as Imm4) as Imm4);

 vC := ((#alu_src_1[7..7]@{0} as Imm2) + (#alu_src_2[7..7]@{0} as Imm2)

+ (#v8[3..3]@{0} as Imm2) as Imm2);

 alu_des_1[7] := #vC[0]||

 alu_des_1[6] := #v8[2]||

 alu_des_1[5] := #v8[1]||

 alu_des_1[4] := #v8[0]||

 alu_des_1[3] := #v4[3]||

 alu_des_1[2] := #v4[2]||

 alu_des_1[1] := #v4[1]||

 alu_des_1[0] := #v4[0]||

112

 alu_des_cy := #vC[1]||

 alu_des_ac := #v4[4]||

 alu_des_ov := #vC[1] xor #v8[3]

 end

 | (ALU_OPC_SUB as Imm4) then begin

 v4 := ((#alu_src_1[0..3]@{1} as Imm5) -(#alu_src_2[0..3]@{0} as Imm5)-

(#alu_src_cy@{0,0,0,0} as Imm5) as Imm5);

 v4_4 := (not #v4[4] as bit);

 v8 := ((#alu_src_1[4..6]@{1} as Imm4)-(#alu_src_2[4..6]@{0} as Imm4) -

(#v4_4@{0,0,0} as Imm4) as Imm4);

 v8_3 := (not #v8[3] as bit);

 vC := ((#alu_src_1[7..7]@{1} as Imm2) - (#alu_src_2[7..7]@{0} as Imm2)

- (#v8_3@{0} as Imm2) as Imm2);

 alu_des_1[7] := #vC[0]||

 alu_des_1[6] := #v8[2]||

 alu_des_1[5] := #v8[1]||

 alu_des_1[4] := #v8[0]||

 alu_des_1[3] := #v4[3]||

 alu_des_1[2] := #v4[2]||

 alu_des_1[1] := #v4[1]||

 alu_des_1[0] := #v4[0]||

 alu_des_cy := (not #vC[1] as bit)||

 alu_des_ac := (not #v4[4] as bit)||

 alu_des_ov := (not #vC[1] as bit) xor (not #v8[3] as bit)

 end

 | (ALU_OPC_DA as Imm4) then begin

 v := (#alu_src_1 @ {0} as Imm9);

 if ((alu_src_ac = 0b1) or ((#v[0..3] as Imm4) > 0b1001)) then

 v := (v + 0b000000110 as Imm9)

 end;

 v := (#v[0..7] @ {#v[8] or alu_src_cy} as Imm9);

 --#v[8] := (#v[8] as bit) or alu_src_cy;

 if((#v[8] = 0b1) or ((#v[4..7] as Imm4) > 0b1001)) then

 v := (v + 0b001100000 as Imm9)

 end;

 alu_des_1 := #v[0..7] ||

 alu_des_cy := #v[8]

 end

 | (ALU_OPC_NOT as Imm4) then begin

 alu_des_1[7] := (not #alu_src_1[7] as bit) ||

 alu_des_1[6] := (not #alu_src_1[6] as bit) ||

 alu_des_1[5] := (not #alu_src_1[5] as bit) ||

 alu_des_1[4] := (not #alu_src_1[4] as bit) ||

 alu_des_1[3] := (not #alu_src_1[3] as bit) ||

 alu_des_1[2] := (not #alu_src_1[2] as bit) ||

 alu_des_1[1] := (not #alu_src_1[1] as bit) ||

 alu_des_1[0] := (not #alu_src_1[0] as bit)

 end

 | (ALU_OPC_AND as Imm4) then begin

 alu_des_1[7] := #alu_src_1[7] and #alu_src_2[7] ||

 alu_des_1[6] := #alu_src_1[6] and #alu_src_2[6] ||

 alu_des_1[5] := #alu_src_1[5] and #alu_src_2[5] ||

 alu_des_1[4] := #alu_src_1[4] and #alu_src_2[4] ||

 alu_des_1[3] := #alu_src_1[3] and #alu_src_2[3] ||

 alu_des_1[2] := #alu_src_1[2] and #alu_src_2[2] ||

 alu_des_1[1] := #alu_src_1[1] and #alu_src_2[1] ||

113

 alu_des_1[0] := #alu_src_1[0] and #alu_src_2[0]

 end

 | (ALU_OPC_XOR as Imm4) then begin

 alu_des_1[7] := #alu_src_1[7] xor #alu_src_2[7] ||

 alu_des_1[6] := #alu_src_1[6] xor #alu_src_2[6] ||

 alu_des_1[5] := #alu_src_1[5] xor #alu_src_2[5] ||

 alu_des_1[4] := #alu_src_1[4] xor #alu_src_2[4] ||

 alu_des_1[3] := #alu_src_1[3] xor #alu_src_2[3] ||

 alu_des_1[2] := #alu_src_1[2] xor #alu_src_2[2] ||

 alu_des_1[1] := #alu_src_1[1] xor #alu_src_2[1] ||

 alu_des_1[0] := #alu_src_1[0] xor #alu_src_2[0]

 end

 | (ALU_OPC_OR as Imm4) then begin

 alu_des_1[7] := #alu_src_1[7] or #alu_src_2[7] ||

 alu_des_1[6] := #alu_src_1[6] or #alu_src_2[6] ||

 alu_des_1[5] := #alu_src_1[5] or #alu_src_2[5] ||

 alu_des_1[4] := #alu_src_1[4] or #alu_src_2[4] ||

 alu_des_1[3] := #alu_src_1[3] or #alu_src_2[3] ||

 alu_des_1[2] := #alu_src_1[2] or #alu_src_2[2] ||

 alu_des_1[1] := #alu_src_1[1] or #alu_src_2[1] ||

 alu_des_1[0] := #alu_src_1[0] or #alu_src_2[0]

 end

 | (ALU_OPC_RL as Imm4) then begin

 alu_des_1 := (#alu_src_1[7..7] @ #alu_src_1[0..6] as array8)

 end

 | (ALU_OPC_RLC as Imm4) then begin

 alu_des_1 := (#alu_src_cy @ #alu_src_1[0..6] as array8) ||

 alu_des_cy := #alu_src_1[7]

 end

 | (ALU_OPC_RR as Imm4) then begin

 alu_des_1 := (#alu_src_1[1..7] @ {#alu_src_1[0]} as array8)

 end

 | (ALU_OPC_RRC as Imm4) then begin

 alu_des_1 := (#alu_src_1[1..7] @ #alu_src_cy as array8) ||

 alu_des_cy := #alu_src_1[0]

 end

 | (ALU_OPC_PCSADD as Imm4) then begin

 if (#alu_src_3[7] = 0b1) then

 v16 :=((#alu_src_1 @ #alu_src_2 as Imm16) + (#alu_src_3 @

{1,1,1,1,1,1,1,1} as Imm16) as Imm16)

 else

 v16 :=((#alu_src_1 @ #alu_src_2 as Imm16) + (#alu_src_3 @

{0,0,0,0,0,0,0,0} as Imm16) as Imm16)

 end;

 alu_des_1 := #v16[0..7] ||

 alu_des_2 := (#v16[8..15] as Imm8)

 end

 | (ALU_OPC_PCUADD as Imm4) then begin

 v16 := ((#alu_src_1 @ #alu_src_2 as Imm16) + alu_src_3 as Imm16);

 alu_des_1 := #v16[0..7] ||

 alu_des_2 := (#v16[8..15] as Imm8)

 end

 else begin

 alu_des_1 := (C0_8 as array8) ||

 alu_des_2 := C0_8 ||

 alu_des_cy := 0b0 ||

114

 alu_des_ac := 0b0 ||

 alu_des_ov := 0b0

 end

 end

end --end alu

--

(--

shared DEC is

begin

 rmw_int_tmp := 0b0;

 if (#op_in_int[0..4] = (ACALL as array5)) then op_out_int :=(#(OPC_ACALL as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (MOV_4 as array8)) then op_out_int :=(#(OPC_MOV_4 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[3..7] = (ADD_1 as array5)) then op_out_int :=(#(OPC_ADD_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (ADD_2 as array8)) then op_out_int :=(#(OPC_ADD_2 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[1..7] = (ADD_3 as array7)) then op_out_int :=(#(OPC_ADD_3 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (ADD_4 as array8)) then op_out_int :=(#(OPC_ADD_4 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[3..7] = (ADDC_1 as array5)) then op_out_int :=(#(OPC_ADDC_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (ADDC_2 as array8)) then op_out_int :=(#(OPC_ADDC_2 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[1..7] = (ADDC_3 as array7)) then op_out_int :=(#(OPC_ADDC_3 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (ADDC_4 as array8)) then op_out_int :=(#(OPC_ADDC_4 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..4] = (AJMP as array5)) then op_out_int :=(#(OPC_AJMP as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[3..7] = (ANL_1 as array5)) then op_out_int :=(#(OPC_ANL_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (ANL_2 as array8)) then op_out_int :=(#(OPC_ANL_2 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[1..7] = (ANL_3 as array7)) then op_out_int :=(#(OPC_ANL_3 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (ANL_4 as array8)) then op_out_int :=(#(OPC_ANL_4 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (ANL_5 as array8)) then op_out_int :=(#(OPC_ANL_5 as

Imm7) as array7) || fetch_op:=0b10 || rmw_int_tmp := 0b1

 | (#op_in_int[0..7] = (ANL_6 as array8)) then op_out_int :=(#(OPC_ANL_6 as

Imm7) as array7) || fetch_op:=0b11 || rmw_int_tmp := 0b1

 | (#op_in_int[0..7] = (ANL_7 as array8)) then op_out_int :=(#(OPC_ANL_7 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (ANL_8 as array8)) then op_out_int :=(#(OPC_ANL_8 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (CJNE_1 as array8)) then op_out_int :=(#(OPC_CJNE_1 as

Imm7) as array7) || fetch_op:=0b11

 | (#op_in_int[0..7] = (CJNE_2 as array8)) then op_out_int :=(#(OPC_CJNE_2 as

Imm7) as array7) || fetch_op:=0b11

 | (#op_in_int[3..7] = (CJNE_3 as array5)) then op_out_int :=(#(OPC_CJNE_3 as

Imm7) as array7) || fetch_op:=0b11

 | (#op_in_int[1..7] = (CJNE_4 as array7)) then op_out_int :=(#(OPC_CJNE_4 as

Imm7) as array7) || fetch_op:=0b11

 | (#op_in_int[0..7] = (CLR_1 as array8)) then op_out_int :=(#(OPC_CLR_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (CLR_2 as array8)) then op_out_int :=(#(OPC_CLR_2 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (CLR_3 as array8)) then op_out_int :=(#(OPC_CLR_3 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (CPL_1 as array8)) then op_out_int :=(#(OPC_CPL_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (CPL_2 as array8)) then op_out_int :=(#(OPC_CPL_2 as

Imm7) as array7) || fetch_op:=0b00

115

 | (#op_in_int[0..7] = (CPL_3 as array8)) then op_out_int :=(#(OPC_CPL_3 as

Imm7) as array7) || fetch_op:=0b10 || rmw_int_tmp := 0b1

 | (#op_in_int[0..7] = (DA as array8)) then op_out_int

:=(#(OPC_DA as Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (DEC_1 as array8)) then op_out_int :=(#(OPC_DEC_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[3..7] = (DEC_2 as array5)) then op_out_int :=(#(OPC_DEC_2 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (DEC_3 as array8)) then op_out_int :=(#(OPC_DEC_3 as

Imm7) as array7) || fetch_op:=0b10 || rmw_int_tmp := 0b1

 | (#op_in_int[1..7] = (DEC_4 as array7)) then op_out_int :=(#(OPC_DEC_4 as

Imm7) as array7) || fetch_op:=0b00 || rmw_int_tmp := 0b1

 | (#op_in_int[0..7] = (DIV as array8)) then op_out_int :=(#(OPC_DIV as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[3..7] = (DJNZ_1 as array5)) then op_out_int :=(#(OPC_DJNZ_1 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (DJNZ_2 as array8)) then op_out_int :=(#(OPC_DJNZ_2 as

Imm7) as array7) || fetch_op:=0b11 || rmw_int_tmp := 0b1

 | (#op_in_int[0..7] = (INC_1 as array8)) then op_out_int :=(#(OPC_INC_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[3..7] = (INC_2 as array5)) then op_out_int :=(#(OPC_INC_2 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (INC_3 as array8)) then op_out_int :=(#(OPC_INC_3 as

Imm7) as array7) || fetch_op:=0b10 || rmw_int_tmp := 0b1

 | (#op_in_int[1..7] = (INC_4 as array7)) then op_out_int :=(#(OPC_INC_4 as

Imm7) as array7) || fetch_op:=0b00 || rmw_int_tmp := 0b1

 | (#op_in_int[0..7] = (INC_5 as array8)) then op_out_int :=(#(OPC_INC_5 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (JB as array8)) then op_out_int

:=(#(OPC_JB as Imm7) as array7) || fetch_op:=0b11

 | (#op_in_int[0..7] = (JBC as array8)) then op_out_int :=(#(OPC_JBC as

Imm7) as array7) || fetch_op:=0b11

 | (#op_in_int[0..7] = (JC as array8)) then op_out_int

:=(#(OPC_JC as Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (JMP as array8)) then op_out_int :=(#(OPC_JMP as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (JNB as array8)) then op_out_int :=(#(OPC_JNB as

Imm7) as array7) || fetch_op:=0b11

 | (#op_in_int[0..7] = (JNC as array8)) then op_out_int :=(#(OPC_JNC as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (JNZ as array8)) then op_out_int :=(#(OPC_JNZ as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (JZ as array8)) then op_out_int

:=(#(OPC_JZ as Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (LCALL as array8)) then op_out_int :=(#(OPC_LCALL as

Imm7) as array7) || fetch_op:=0b11

 | (#op_in_int[0..7] = (LJMP as array8)) then op_out_int :=(#(OPC_LJMP as

Imm7) as array7) || fetch_op:=0b11

 | (#op_in_int[3..7] = (MOV_1 as array5)) then op_out_int :=(#(OPC_MOV_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (MOV_2 as array8)) then op_out_int :=(#(OPC_MOV_2 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[1..7] = (MOV_3 as array7)) then op_out_int :=(#(OPC_MOV_3 as

Imm7) as array7) || fetch_op:=0b00

-- | (#op_in_int[0..7] = (MOV_4 as array8)) then op_out_int :=(#(OPC_MOV_4 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[3..7] = (MOV_5 as array5)) then op_out_int :=(#(OPC_MOV_5 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[3..7] = (MOV_6 as array5)) then op_out_int :=(#(OPC_MOV_6 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[3..7] = (MOV_7 as array5)) then op_out_int :=(#(OPC_MOV_7 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (MOV_8 as array8)) then op_out_int :=(#(OPC_MOV_8 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[3..7] = (MOV_9 as array5)) then op_out_int :=(#(OPC_MOV_9 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (MOV_10 as array8)) then op_out_int :=(#(OPC_MOV_10 as

Imm7) as array7) || fetch_op:=0b11

 | (#op_in_int[1..7] = (MOV_11 as array7)) then op_out_int :=(#(OPC_MOV_11 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (MOV_12 as array8)) then op_out_int :=(#(OPC_MOV_12 as

Imm7) as array7) || fetch_op:=0b11

116

 | (#op_in_int[1..7] = (MOV_13 as array7)) then op_out_int :=(#(OPC_MOV_13 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[1..7] = (MOV_14 as array7)) then op_out_int :=(#(OPC_MOV_14 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[1..7] = (MOV_15 as array7)) then op_out_int :=(#(OPC_MOV_15 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (MOV_16 as array8)) then op_out_int :=(#(OPC_MOV_16 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (MOV_17 as array8)) then op_out_int :=(#(OPC_MOV_17 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (MOV_18 as array8)) then op_out_int :=(#(OPC_MOV_18 as

Imm7) as array7) || fetch_op:=0b11

 | (#op_in_int[0..7] = (MOVC_1 as array8)) then op_out_int :=(#(OPC_MOVC_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (MOVC_2 as array8)) then op_out_int :=(#(OPC_MOVC_2 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[1..7] = (MOVX_1 as array7)) then op_out_int :=(#(OPC_MOVX_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (MOVX_2 as array8)) then op_out_int :=(#(OPC_MOVX_2 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[1..7] = (MOVX_3 as array7)) then op_out_int :=(#(OPC_MOVX_3 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (MOVX_4 as array8)) then op_out_int :=(#(OPC_MOVX_4 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (MUL as array8)) then op_out_int :=(#(OPC_MUL as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (NOP as array8)) then op_out_int :=(#(OPC_NOP as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[3..7] = (ORL_1 as array5)) then op_out_int :=(#(OPC_ORL_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (ORL_2 as array8)) then op_out_int :=(#(OPC_ORL_2 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[1..7] = (ORL_3 as array7)) then op_out_int :=(#(OPC_ORL_3 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (ORL_4 as array8)) then op_out_int :=(#(OPC_ORL_4 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (ORL_5 as array8)) then op_out_int :=(#(OPC_ORL_5 as

Imm7) as array7) || fetch_op:=0b10 || rmw_int_tmp := 0b1

 | (#op_in_int[0..7] = (ORL_6 as array8)) then op_out_int :=(#(OPC_ORL_6 as

Imm7) as array7) || fetch_op:=0b11 || rmw_int_tmp := 0b1

 | (#op_in_int[0..7] = (ORL_7 as array8)) then op_out_int :=(#(OPC_ORL_7 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (ORL_8 as array8)) then op_out_int :=(#(OPC_ORL_8 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (POP as array8)) then op_out_int :=(#(OPC_POP as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (PUSH as array8)) then op_out_int :=(#(OPC_PUSH as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (RET as array8)) then op_out_int :=(#(OPC_RET as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (RETI as array8)) then op_out_int :=(#(OPC_RETI as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (RL as array8)) then op_out_int

:=(#(OPC_RL as Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (RLC as array8)) then op_out_int :=(#(OPC_RLC as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (RR as array8)) then op_out_int

:=(#(OPC_RR as Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (RRC as array8)) then op_out_int :=(#(OPC_RRC as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (SETB_1 as array8)) then op_out_int :=(#(OPC_SETB_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (SETB_2 as array8)) then op_out_int :=(#(OPC_SETB_2 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (SJMP as array8)) then op_out_int :=(#(OPC_SJMP as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[3..7] = (SUBB_1 as array5)) then op_out_int :=(#(OPC_SUBB_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (SUBB_2 as array8)) then op_out_int :=(#(OPC_SUBB_2 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[1..7] = (SUBB_3 as array7)) then op_out_int :=(#(OPC_SUBB_3 as

Imm7) as array7) || fetch_op:=0b00

117

 | (#op_in_int[0..7] = (SUBB_4 as array8)) then op_out_int :=(#(OPC_SUBB_4 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (SWAP as array8)) then op_out_int :=(#(OPC_SWAP as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[3..7] = (XCH_1 as array5)) then op_out_int :=(#(OPC_XCH_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (XCH_2 as array8)) then op_out_int :=(#(OPC_XCH_2 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[1..7] = (XCH_3 as array7)) then op_out_int :=(#(OPC_XCH_3 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[1..7] = (XCHD as array7)) then op_out_int :=(#(OPC_XCHD as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[3..7] = (XRL_1 as array5)) then op_out_int :=(#(OPC_XRL_1 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (XRL_2 as array8)) then op_out_int :=(#(OPC_XRL_2 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[1..7] = (XRL_3 as array7)) then op_out_int :=(#(OPC_XRL_3 as

Imm7) as array7) || fetch_op:=0b00

 | (#op_in_int[0..7] = (XRL_4 as array8)) then op_out_int :=(#(OPC_XRL_4 as

Imm7) as array7) || fetch_op:=0b10

 | (#op_in_int[0..7] = (XRL_5 as array8)) then op_out_int :=(#(OPC_XRL_5 as

Imm7) as array7) || fetch_op:=0b10 || rmw_int_tmp := 0b1

 | (#op_in_int[0..7] = (XRL_6 as array8)) then op_out_int :=(#(OPC_XRL_6 as

Imm7) as array7) || fetch_op:=0b11 || rmw_int_tmp := 0b1

 else op_out_int := (#(OPC_ERROR as Imm7) as array7) || fetch_op:=0b00

 end --end if

end --end X8051_DEC

--)

 shared SET_PSW is

 begin

reg_cy:=#reg_psw[7]||reg_ac:=#reg_psw[6]||reg_f0:=#reg_psw[5]||reg_rs1:=#reg_psw[4]||

reg_rs0:=#reg_psw[3]||reg_ov:=#reg_psw[2]||reg_nu:=#reg_psw[1]||reg_p:=#reg_psw[0]

 end

 shared START_RD_XRAM is

 begin

 xram_rd <- 0b1||

 tris_data <-0b0||

 xram_e <- 0b1 ||

 xram_addr <- xram_addr_tmp

 end

 shared START_WR_XRAM is

 begin

 xram_wr <- 0b1||

 tris_data <-0b1||

 xram_e <- 0b1 ||

 xram_addr <- xram_addr_tmp ||

 xram_out_data <- xram_out_data_tmp

 end

 shared InstrFetch is

 begin

 rom_addr <- reg_pc || rom_rd <-0b1 || rom_data -> reg_ir

 end

 shared PcInc is

 begin

 reg_pc_plus:=(reg_pc+1 as Imm16)

 end

 shared SET_PC is

 begin

 reg_pc:=(#reg_pcl @ #reg_pc_8_10 @ #reg_pc_11_15 as Imm16)

 end

118

 shared X8051_Fetch is

 begin

 exe_opcode := (#op_out_int[0..6] as Imm7) ||

 reg_acc:=ACC || reg_psw := PSW;

 case (fetch_op) of

 0b10 then begin

 InstrFetch() || PcInc();

 reg_op2:=reg_ir || reg_pc:=reg_pc_plus ||

SET_PSW()

 end

 |0b11 then

 begin

 InstrFetch() || PcInc();

 reg_op2:=reg_ir || reg_pc:=reg_pc_plus;

 InstrFetch() || PcInc();

 reg_op3:=reg_ir || reg_pc:=reg_pc_plus ||

SET_PSW()

 end

 else SET_PSW()

 end

 end

--

shared Interrupt is

begin

int_req->int_req_int || int_mask->int_mask_int

--below is for testing only

|| int_lproc<-int_lproc_int

;

 if (int_req_int=0b000 or ((int_mask_int=0b11) and

(int_hproc_int=0b1))

or ((int_mask_int=0b10) and (int_hproc_int=0b1)) or ((int_mask_int=0b01) and

(int_lproc_int=0b1)))

 then int_lproc_int:=0b0 || int_hproc_int:=0b0 --not

required actually

 -- cpu_state:=0b01

 else

 begin

 if (int_mask_int=0b01) then int_lproc_int:=0b1

 else int_hproc_int:=0b1

 end;

 data_bus := SP;

 alu_src_1:= data_bus || alu_op_code:=(ALU_OPC_ADD as Imm4) ||

alu_src_2:=(C0_8 as byte) ||

 alu_src_cy:=0b1; ALU();

 ram_out_data_tmp := (#reg_pc[0..7] as byte) || ram_addr_tmp :=

(alu_des_1 as byte);

 START_WR_RAM(); WriteRAM();

 alu_src_1:=(alu_des_1 as byte) || alu_op_code:=(ALU_OPC_ADD as

Imm4) || alu_src_2:=(C0_8 as byte) || alu_src_cy:=0b1; ALU();

 ram_out_data_tmp := (#reg_pc[8..15] as byte) || ram_addr_tmp :=

(alu_des_1 as byte);

 START_WR_RAM(); WriteRAM();

 SP := (alu_des_1 as byte);

 case (int_req_int) of

 0b001 then

 begin

(-- change to || not working

119

reg_pc:=(#ISR_1 @ #C0_8 as Imm16) ||

ram_addr_tmp :=0b10001001 || ram_out_bit_data_tmp :=0b0;

--)

 reg_pc:=(#ISR_1 @ #C0_8 as Imm16);

 ram_addr_tmp :=0b10001001 || ram_out_bit_data_tmp

:=0b0;

 START_WR_BIT_RAM(); WriteRAM()

 end

 | 0b010 then

 begin

 reg_pc:=(#ISR_2 @ #C0_8 as Imm16);

 ram_addr_tmp :=0b10001101 || ram_out_bit_data_tmp

:=0b0;

 START_WR_BIT_RAM(); WriteRAM()

 end

 | 0b011 then

 begin

 reg_pc:=(#ISR_3 @ #C0_8 as Imm16);

 ram_addr_tmp :=0b10001011 || ram_out_bit_data_tmp

:=0b0;

 START_WR_BIT_RAM(); WriteRAM()

 end

 | 0b100 then

 begin

 reg_pc:=(#ISR_4 @ #C0_8 as Imm16);

 ram_addr_tmp :=0b10001111 || ram_out_bit_data_tmp

:=0b0;

 START_WR_BIT_RAM(); WriteRAM()

 end

 else

 begin

 reg_pc:=(#ISR_5 @ #C0_8 as Imm16)

 end

 end --end case

 -- cpu_state := 0b01

 end

 end --end if

end -- end of interrupt

--

shared EXE is

begin

 case (exe_opcode) of

 --ACALL addr11

 -- sp <- sp + 1

 -- mem(sp) <- pc(7-0)

 -- sp <- sp + 1

 -- mem(sp) <- pc(15-8)

 -- pc(10-0) <- page address

 --

 (OPC_ACALL as Imm7) then

 begin

 data_bus := SP;

 alu_src_1 := data_bus || alu_op_code:=(ALU_OPC_ADD as Imm4) ||

alu_src_2:=(C0_8 as byte) ||

 alu_src_cy:=0b1; ALU();

120

 ram_out_data_tmp := (#reg_pc[0..7] as byte) || ram_addr_tmp :=

(alu_des_1 as byte);

 START_WR_RAM() ||

 alu_src_1 := (alu_des_1 as byte) || alu_op_code:=(ALU_OPC_ADD as

Imm4) || alu_src_2:=(C0_8 as byte) ||

 alu_src_cy:=0b1; ALU() || WriteRAM();

 ram_out_data_tmp := (#reg_pc[8..15] as byte) || ram_addr_tmp :=

(alu_des_1 as byte);

 START_WR_RAM(); WriteRAM();

 SP := (alu_des_1 as byte);

 reg_pc_8_10:=(#reg_op1[5..7] as Imm3) ||

reg_pc_11_15:=(#reg_pc[11..15] as Imm5) || reg_pcl:=reg_op2;

 SET_PC()

-- cpu_state:=0b00

 end

 --ADD A,Rn

 -- acc <- acc + (r)

 --

 | (OPC_ADD_1 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=reg_acc||

alu_src_2:=ram_in_data|| alu_src_cy:=0b0; ALU();

 ACC := (alu_des_1 as byte) || reg_cy:=alu_des_cy ||

reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

 GET_PSW() -- cpu_state:=0b00

 end

 --ADD A,direct

 -- acc <- acc + (direct)

 --

 | (OPC_ADD_2 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=reg_acc ||

alu_src_2:=ram_in_data ||

 alu_src_cy := 0b0; ALU();

 ACC := (alu_des_1 as byte) || reg_cy:=alu_des_cy ||

reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

 GET_PSW() -- cpu_state:=0b00

 end

 --ADD A,((r))

 -- acc <- acc + @Ri

 --

 | (OPC_ADD_3 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=reg_acc ||

alu_src_2:=ram_in_data ||

 alu_src_cy := 0b0; ALU();

 ACC := (alu_des_1 as byte) || reg_cy:=alu_des_cy ||

reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

121

 GET_PSW() -- cpu_state:=0b00

 end

 --ADD A,#data

 -- acc <- acc + #data

 --

 | (OPC_ADD_4 as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=reg_acc ||

alu_src_2:=reg_op2 ||

 alu_src_cy := 0b0; ALU();

 ACC := (alu_des_1 as byte) || reg_cy:=alu_des_cy ||

reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

 GET_PSW() -- cpu_state:=0b00

 end

 --ADDC A,Rn

 -- acc <- acc + cy + (r)

 --

 | (OPC_ADDC_1 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=reg_acc||

alu_src_2:=ram_in_data||

 alu_src_cy:=reg_cy; ALU();

 ACC := (alu_des_1 as byte) || reg_cy:=alu_des_cy ||

reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

 GET_PSW() -- cpu_state:=0b00

 end

 --ADDC A,direct

 -- acc <- acc + cy + (direct)

 --

 | (OPC_ADDC_2 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=reg_acc ||

alu_src_2:=ram_in_data ||

 alu_src_cy := reg_cy; ALU();

 ACC := (alu_des_1 as byte) || reg_cy:=alu_des_cy ||

reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

 GET_PSW() -- cpu_state:=0b00

 end

 --ADDC A,((r))

 -- acc <- acc + cy + @Ri

 --

 | (OPC_ADDC_3 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=reg_acc ||

alu_src_2:=ram_in_data ||

 alu_src_cy := reg_cy; ALU();

 ACC := (alu_des_1 as byte) || reg_cy:=alu_des_cy ||

reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

 GET_PSW() -- cpu_state:=0b00

 end

122

 --ADDC A,#data

 -- acc <- acc + cy + #data

 --

 | (OPC_ADDC_4 as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=reg_acc ||

alu_src_2:=reg_op2 ||

 alu_src_cy := reg_cy; ALU();

 ACC := (alu_des_1 as byte) || reg_cy:=alu_des_cy ||

reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

 GET_PSW() -- cpu_state:=0b00

 end

 --AJMP addr11

 -- pc(10-0) <- page address

 --

 | (OPC_AJMP as Imm7) then

 begin

 reg_pc_8_10:=(#reg_op1[5..7] as Imm3) ||

reg_pc_11_15:=(#reg_pc[11..15] as Imm5) || reg_pcl:=reg_op2;

 SET_PC()

 -- cpu_state:=0b00

 end

 --ANL A,Rn logical &&

 -- acc <- acc && (r)

 --

 | (OPC_ANL_1 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_AND as Imm4) || alu_src_1:=reg_acc||

alu_src_2:=ram_in_data; ALU();

 ACC := (alu_des_1 as byte) -- cpu_state:=0b00

 end

 --

 -- acc <- acc && (direct)

 --

 | (OPC_ANL_2 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_AND as Imm4) || alu_src_1:=reg_acc||

alu_src_2:=ram_in_data; ALU();

 ACC := (alu_des_1 as byte) -- cpu_state:=0b00

 end

 --

 -- acc <- acc && ((r))

 --

 | (OPC_ANL_3 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_AND as Imm4) || alu_src_1:=reg_acc ||

alu_src_2:=ram_in_data; ALU();

 ACC := (alu_des_1 as byte) -- cpu_state:=0b00

123

 end

 --

 -- acc <- acc && #data

 --

 | (OPC_ANL_4 as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_AND as Imm4) || alu_src_1:=reg_acc ||

alu_src_2:=reg_op2; ALU();

 ACC := (alu_des_1 as byte) -- cpu_state:=0b00

 end

 --

 -- (direct) <- (direct) && acc

 --

 | (OPC_ANL_5 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_AND as Imm4) || alu_src_1:=reg_acc||

alu_src_2:=ram_in_data; ALU();

 ram_out_data_tmp := (alu_des_1 as byte) || ram_addr_tmp :=

reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --

 -- (direct) <- (direct) && #data

 --

 | (OPC_ANL_6 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_AND as Imm4) || alu_src_1:=reg_op3 ||

alu_src_2:=ram_in_data; ALU();

 ram_out_data_tmp := (alu_des_1 as byte) || ram_addr_tmp :=

reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --

 -- cy <- cy & (bit)

 --

 | (OPC_ANL_7 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_BIT_RAM(); ReadRAM();

 data_bit:=ram_in_bit_data;

 reg_cy:=(reg_cy and data_bit);

 GET_PSW() -- cpu_state:=0b00

 end

 --

 -- cy <- cy & ~(bit)

 --

 | (OPC_ANL_8 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_BIT_RAM(); ReadRAM();

 data_bit:=ram_in_bit_data;

 reg_cy:=(reg_cy and (not data_bit));

 GET_PSW() -- cpu_state:=0b00

124

 end

 --CJNE A,dir,rel

 -- if(a != (direct))

 -- pc <- pc + rel

 -- if(a < (direct))

 -- cy <- 1

 -- else

 -- cy <- 0

 --

 | (OPC_CJNE_1 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 if (reg_acc /= data_bus) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) || alu_src_1:=

(#reg_pc[0..7] as byte)

 || alu_src_2 := (#reg_pc[8..15] as byte) || alu_src_3 :=

reg_op3; ALU() ||

 if (reg_acc < data_bus) then reg_cy := 0b1

 else reg_cy := 0b0 end;

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC() ||

 GET_PSW()

 end

 --else -- cpu_state:=0b00

 end

 end

 --CJNE A,#data,rel

 -- if(a != #data)

 -- pc <- pc + rel

 -- if(a < #data)

 -- cy <- 1

 -- else

 -- cy <- 0

 --

 | (OPC_CJNE_2 as Imm7) then

 begin

 if (reg_acc /= reg_op2) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) || alu_src_1:=

(#reg_pc[0..7] as byte)

 || alu_src_2 := (#reg_pc[8..15] as byte) || alu_src_3 :=

reg_op3; ALU() ||

 if (reg_acc < reg_op2) then reg_cy := 0b1

 else reg_cy := 0b0 end;

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC() ||

 GET_PSW() end

 --else -- cpu_state:=0b00

 end

 end

 --CJNE Rn,#data,rel

 -- if((r) != #data)

 -- pc <- pc + rel

 -- if((r) < #data)

 -- cy <- 1

 -- else

 -- cy <- 0

125

 --

 | (OPC_CJNE_3 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 if (data_bus /= reg_op2) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) || alu_src_1:=

(#reg_pc[0..7] as byte)

 || alu_src_2 := (#reg_pc[8..15] as byte) || alu_src_3 :=

reg_op3; ALU() ||

 if (data_bus < reg_op2) then reg_cy := 0b1

 else reg_cy := 0b0 end;

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC() ||

 GET_PSW()

 end

 --else -- cpu_state:=0b00

 end

 end

 --CJNE @Ri,#data,rel

 -- if(((r)) != #data)

 -- pc <- pc + rel

 -- if(((r)) < #data)

 -- cy <- 1

 -- else

 -- cy <- 0

 --

 | (OPC_CJNE_4 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_addr_tmp:=data_bus;

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 if (data_bus /= reg_op2) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) || alu_src_1:=

(#reg_pc[0..7] as byte)

 || alu_src_2 := (#reg_pc[8..15] as byte) || alu_src_3 :=

reg_op3; ALU() ||

 if (data_bus < reg_op2) then reg_cy := 0b1

 else reg_cy := 0b0 end;

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC() ||

 GET_PSW()

 end

 --else -- cpu_state:=0b00

 end

 end

 --CLR A

 -- acc <- 0

 --

 | (OPC_CLR_1 as Imm7) then

 begin

126

 ACC := C0_8 -- cpu_state:=0b00

 end

 --CLR C

 -- cy <- 0

 --

 | (OPC_CLR_2 as Imm7) then

 begin

 reg_cy:=0b0;

 GET_PSW() -- cpu_state:=0b00

 end

 --CLR bit

 -- (bit) <- 0

 --

 | (OPC_CLR_3 as Imm7) then

 begin

 ram_out_bit_data_tmp :=0b0 || ram_addr_tmp :=reg_op2;

 START_WR_BIT_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --CPL A logically complements each bit of the Accumulator

 -- acc <- ~acc

 --

 | (OPC_CPL_1 as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_NOT as Imm4) || alu_src_1:=reg_acc;

ALU();

 ACC := (alu_des_1 as byte) -- cpu_state:=0b00

 end

 --CPL C

 -- cy <- ~cy

 --

 | (OPC_CPL_2 as Imm7) then

 begin

 reg_cy:=(not reg_cy);

 GET_PSW() -- cpu_state:=0b00

 end

 --CPL bit

 -- (bit) <- ~(bit)

 --

 | (OPC_CPL_3 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_BIT_RAM(); ReadRAM();

 data_bit:=ram_in_bit_data;

 ram_addr_tmp :=reg_op2 || ram_out_bit_data_tmp := (not

data_bit);

 START_WR_BIT_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --DA A Decimal-adjust Accumulator for Addition

 -- see I8051_ALU

 --

 | (OPC_DA as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_DA as Imm4) || alu_src_1:=reg_acc ||

alu_src_cy:=reg_cy || alu_src_ac:=reg_ac; ALU();

 ACC := (alu_des_1 as byte) || reg_cy:=alu_des_cy;

 GET_PSW() -- cpu_state:=0b00

 end

127

 --DEC A

 -- acc <- acc - 1

 --

 | (OPC_DEC_1 as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_1:=reg_acc ||

alu_src_2:=C0_8 || alu_src_cy:=0b1; ALU();

 ACC := (alu_des_1 as byte) -- cpu_state:=0b00

 end

 --DEC Rn

 -- (r) <- (r) - 1

 --

 | (OPC_DEC_2 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2:=C0_8 || alu_src_cy:=0b1; ALU();

 ram_out_data_tmp :=(alu_des_1 as byte); START_WR_RAM();

WriteRAM() -- cpu_state:=0b00

 end

 --DEC direct

 -- (direct) <- (direct) - 1

 --

 | (OPC_DEC_3 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_2:=C0_8 ||

alu_src_1:=ram_in_data || alu_src_cy:=0b1; ALU();

 ram_out_data_tmp :=(alu_des_1 as byte) || ram_addr_tmp :=

reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 -- DEC @Ri

 -- ((r)) <- ((r)) - 1

 --

 | (OPC_DEC_4 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data; --data_bus contains the content of Ri

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2:=C0_8 || alu_src_cy:=0b1; ALU();

 ram_out_data_tmp := (alu_des_1 as byte) || ram_addr_tmp :=

data_bus;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --DJNZ Rn,rel

 -- (r) <- (r) - 1

 -- if((r) != 0)

 -- pc <- pc + rel

 --

 | (OPC_DJNZ_1 as Imm7) then

 begin

128

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2:=C0_8 || alu_src_cy:=0b1; ALU();

 ram_out_data_tmp :=(alu_des_1 as byte);

 START_WR_RAM() || data_bus:=(alu_des_1 as byte); WriteRAM();

 if (data_bus /= C0_8) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) ||

alu_src_1:=(#reg_pc[0..7] as byte)

 || alu_src_2:=(#reg_pc[8..15] as byte) || alu_src_3:=reg_op2;

ALU();

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC()

 end

 --else -- cpu_state:=0b00

 end

 end

 --DJNZ direct,rel

 -- (direct) <- (direct) - 1

 -- if((direct) != 0)

 -- pc <- pc + rel

 --

 | (OPC_DJNZ_2 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2:=C0_8 || alu_src_cy:=0b1; ALU();

 ram_out_data_tmp := (alu_des_1 as byte) || ram_addr_tmp :=

reg_op2;

 START_WR_RAM() || data_bus:=(alu_des_1 as byte); WriteRAM();

 if (data_bus /= C0_8) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) ||

alu_src_1:=(#reg_pc[0..7] as byte)

 || alu_src_2:=(#reg_pc[8..15] as byte) || alu_src_3:=reg_op3;

ALU();

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC() end

 --else -- cpu_state:=0b00

 end

 end

 --INC A

 -- acc <- acc + 1

 --

 | (OPC_INC_1 as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=reg_acc ||

alu_src_2:=C0_8 || alu_src_cy:=0b1; ALU();

 ACC := (alu_des_1 as byte) -- cpu_state:=0b00

 end

 --INC Rn

 -- (r) <- (r) + 1

 --

129

 | (OPC_INC_2 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2:=C0_8 || alu_src_cy:=0b1; ALU();

 ram_out_data_tmp :=(alu_des_1 as byte); START_WR_RAM();

WriteRAM() -- cpu_state:=0b00

 end

 --INC direct

 -- (direct) <- (direct) + 1

 --

 | (OPC_INC_3 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2:=C0_8 || alu_src_cy:=0b1; ALU();

 ram_out_data_tmp := (alu_des_1 as byte) || ram_addr_tmp :=

reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 -- INC @Ri

 -- ((r)) <- ((r)) + 1

 --

 --

 | (OPC_INC_4 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data; --data_bus contains the content of Ri

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2:=C0_8 || alu_src_cy:=0b1; ALU();

 ram_out_data_tmp := (alu_des_1 as byte) || ram_addr_tmp :=

data_bus;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --INC DPTR

 -- dptr <- dptr + 1

 --

 | (OPC_INC_5 as Imm7) then

 begin

-- ram_addr_tmp := R_DPL;

-- START_RD_RAM(); ReadRAM();

 data_bus := DPL;

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=data_bus ||

alu_src_2:=C0_8 || alu_src_cy:=0b1;

ALU();

-- ram_addr_tmp :=R_DPL || ram_out_data_tmp :=(alu_des_1 as byte);

START_WR_RAM(); WriteRAM();

 DPL := (alu_des_1 as byte);

-- ram_addr_tmp := R_DPH;

-- START_RD_RAM(); ReadRAM();

 data_bus := DPH;

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=data_bus ||

alu_src_2:=C0_8 || alu_src_cy:=alu_des_cy; ALU();

 DPH := (alu_des_1 as byte) -- cpu_state:=0b00

130

 end

 --JB blt,rel

 -- if((bit) == 1)

 -- pc <- pc + rel

 --

 | (OPC_JB as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_BIT_RAM(); ReadRAM();

 data_bit:=ram_in_bit_data;

 if (data_bit = 0b1) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) ||

alu_src_1:=(#reg_pc[0..7] as byte) ||

 alu_src_2:=(#reg_pc[8..15] as byte) || alu_src_3:=reg_op3;

ALU();

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC() end

 --else -- cpu_state:=0b00

 end

 end

 --JBC bit,rel

 -- if((bit) == 1)

 -- pc <- pc + rel

 -- (bit) <- 0

 --

 | (OPC_JBC as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_BIT_RAM(); ReadRAM();

 data_bit:=ram_in_bit_data;

 if (data_bit = 0b1) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) ||

alu_src_1:=(#reg_pc[0..7] as byte) ||

 alu_src_2:=(#reg_pc[8..15] as byte) || alu_src_3:=reg_op3;

ALU() ||

 ram_out_bit_data_tmp :=0b0 || ram_addr_tmp :=reg_op2;

 START_WR_BIT_RAM(); WriteRAM();

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC()

 end

 --else -- cpu_state:=0b00

 end

 end

 --JC rel

 -- if(cy == 1)

 -- pc <- pc + rel

 --

 | (OPC_JC as Imm7) then

 begin

 if (reg_cy = 0b1) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) ||

alu_src_1:=(#reg_pc[0..7] as byte) ||

 alu_src_2:=(#reg_pc[8..15] as byte) || alu_src_3:=reg_op2;

ALU();

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

131

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC()

 end

 --else -- cpu_state:=0b00

 end

 end

 --JMP @A+DPTR

 -- pc <- dptr + acc

 --

 | (OPC_JMP as Imm7) then

 begin

 data_bus:=DPH;

 alu_src_2:=data_bus;

 data_bus:=DPL;

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) || alu_src_1:=data_bus ||

 alu_src_3:=reg_acc; ALU();

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC() -- cpu_state:=0b00

 end

 --JNB bit,rel

 -- if((bit) == 0)

 -- pc <- pc + rel

 --

 | (OPC_JNB as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_BIT_RAM(); ReadRAM();

 data_bit:=ram_in_bit_data;

 if (data_bit = 0b0) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) ||

alu_src_1:=(#reg_pc[0..7] as byte) ||

 alu_src_2:=(#reg_pc[8..15] as byte) || alu_src_3:=reg_op3;

ALU();

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC() end

 --else -- cpu_state:=0b00

 end

 end

 --JNC rel

 -- if(cy == 0)

 -- pc <- pc + rel

 --

 | (OPC_JNC as Imm7) then

 begin

 if (reg_cy = 0b0) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) ||

alu_src_1:=(#reg_pc[0..7] as byte) ||

 alu_src_2:=(#reg_pc[8..15] as byte) || alu_src_3:=reg_op2;

ALU();

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

132

 SET_PC()

 end

 --else -- cpu_state:=0b00

 end

 end

 --JNZ rel

 -- if(acc != 0)

 -- pc <- pc + rel

 --

 | (OPC_JNZ as Imm7) then

 begin

 if (reg_acc /= C0_8) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) ||

alu_src_1:=(#reg_pc[0..7] as byte) ||

 alu_src_2:=(#reg_pc[8..15] as byte) || alu_src_3:=reg_op2;

ALU();

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC()

 end

 --else -- cpu_state:=0b00

 end

 end

 --JZ rel

 -- if(acc == 0)

 -- pc <- pc + rel

 --

 | (OPC_JZ as Imm7) then

 begin

 if (reg_acc = C0_8) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) ||

alu_src_1:=(#reg_pc[0..7] as byte) ||

 alu_src_2:=(#reg_pc[8..15] as byte) || alu_src_3:=reg_op2;

ALU();

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC() end

 --else -- cpu_state:=0b00

 end

 end

 --LCALL addr16

 -- sp <- sp + 1

 -- mem(sp) <- pc(7-0)

 -- sp <- sp + 1

 -- mem(sp) <- pc(15-8)

 -- pc(15-0) <- address

 --

 | (OPC_LCALL as Imm7) then

 begin

 data_bus := SP;

 alu_src_1:= data_bus ||alu_op_code:=(ALU_OPC_ADD as

Imm4)||alu_src_2:=(C0_8 as byte)||

 alu_src_cy:=0b1; ALU();

 ram_out_data_tmp := (#reg_pc[0..7] as byte) || ram_addr_tmp

:=(alu_des_1 as byte);

 START_WR_RAM() ||

133

 alu_src_1:=(alu_des_1 as byte) || alu_op_code:=(ALU_OPC_ADD as

Imm4) || alu_src_2:=(C0_8 as byte) ||

 alu_src_cy:=0b1; ALU() || WriteRAM();

 ram_out_data_tmp := (#reg_pc[8..15] as byte) || ram_addr_tmp

:=(alu_des_1 as byte);

 START_WR_RAM(); WriteRAM();

 SP :=(alu_des_1 as byte);

 reg_pc_8_10:=(#reg_op2[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_op2[3..7] as Imm5) || reg_pcl:=reg_op3;

 SET_PC()

 -- cpu_state:=0b00

 end

 --LJMP addr16

 -- pc(15-0) <- address

 --

 | (OPC_LJMP as Imm7) then

 begin

 reg_pc_8_10:=(#reg_op2[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_op2[3..7] as Imm5) || reg_pcl:=reg_op3;

 SET_PC()

 -- cpu_state:=0b00

 end

 --MOV A,Rn

 -- acc <- (r)

 --

 |(OPC_MOV_1 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 ACC := ram_in_data

-- cpu_state:=0b00

 end

 --MOV A,direct

 -- acc <- (direct)

 --

 | (OPC_MOV_2 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 ACC := ram_in_data

-- cpu_state:=0b00

 end

 --MOV A,@Ri

 -- acc <- ((r))

 --

 | (OPC_MOV_3 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 ACC := ram_in_data

-- cpu_state:=0b00

 end

 --MOV A,#data

 -- acc <- #data

 --

 | (OPC_MOV_4 as Imm7) then

134

 begin

 ACC := reg_op2 -- cpu_state:=0b00

-- || got problem ACC := reg_op2 || -- cpu_state:=0b00

 end

 --MOV Rn,A

 -- (r) <- acc

 --

 | (OPC_MOV_5 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 ram_out_data_tmp := reg_acc; START_WR_RAM(); WriteRAM() --

cpu_state:=0b00

 end

 --MOV Rn,direct

 -- (r) <- (direct)

 --

 | (OPC_MOV_6 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 GET_RAM_ADDR_1();

 ram_out_data_tmp := data_bus; START_WR_RAM(); WriteRAM() --

cpu_state:=0b00

 end

 --MOV Rn,#data

 -- (r) <- #data

 --

 | (OPC_MOV_7 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 ram_out_data_tmp := reg_op2; START_WR_RAM(); WriteRAM() --

cpu_state:=0b00

 end

 --MOV direct,A

 -- (direct) <- acc

 --

 | (OPC_MOV_8 as Imm7) then

 begin

 ram_out_data_tmp := reg_acc || ram_addr_tmp := reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --MOV direct,Rn

 -- (direct) <- (r)

 --

 | (OPC_MOV_9 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_out_data_tmp := data_bus || ram_addr_tmp := reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --MOV direct,direct

 -- (direct) <- (direct)

 --

 | (OPC_MOV_10 as Imm7) then

135

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_out_data_tmp := data_bus || ram_addr_tmp := reg_op3;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --MOV direct,@Ri

 -- (direct) <- ((r))

 --

 | (OPC_MOV_11 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_out_data_tmp := data_bus || ram_addr_tmp := reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --MOV direct,#data

 -- (direct) <- #data

 --

 | (OPC_MOV_12 as Imm7) then

 begin

 ram_out_data_tmp := reg_op3 || ram_addr_tmp := reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --MOV @Ri,A

 -- ((r)) <- acc

 --

 | (OPC_MOV_13 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_out_data_tmp := reg_acc || ram_addr_tmp := data_bus;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --MOV @Ri,direct

 -- ((r)) <- (direct)

 --

 | (OPC_MOV_14 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 ram_addr_tmp := data_bus;

 data_bus:=ram_in_data;

 ram_out_data_tmp := data_bus;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --MOV @Ri,#data

 -- ((r)) <- #data

136

 --

 | (OPC_MOV_15 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_out_data_tmp := reg_op2 || ram_addr_tmp := data_bus;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --MOV C,bit

 -- cy <- (bit)

 --

 | (OPC_MOV_16 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_BIT_RAM(); ReadRAM();

 reg_cy:=ram_in_bit_data;

 GET_PSW() -- cpu_state:=0b00

 end

 --MOV bit,C

 -- (bit) <- cy

 --

 | (OPC_MOV_17 as Imm7) then

 begin

 ram_addr_tmp :=reg_op2 || ram_out_bit_data_tmp :=reg_cy;

 START_WR_BIT_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --MOV DPTR,#data16

 -- dph <- #data-hi

 -- dpl <- #data-lo

 --

 | (OPC_MOV_18 as Imm7) then

 begin

 DPH := reg_op2 || DPL:=reg_op3

 -- cpu_state:=0b00

 end

(--

 --MOVC A,@A+DPTR

 -- acc <- (dptr + acc)

 --

 | (OPC_MOVC_1 as Imm7) then

 begin

 data_bus:=DPH; alu_src_2 := data_bus;

 data_bus:=DPL;

 alu_op_code:=(ALU_OPC_PCUADD as Imm4) || alu_src_1:=data_bus ||

 alu_src_3 := reg_acc || reg_pc_tmp := reg_pc; ALU();

 reg_pc := (#(alu_des_1 as byte) @ #alu_des_2 as Imm16);

 InstrFetch();

 ACC := reg_ir || reg_pc := reg_pc_tmp

 -- cpu_state:=0b00

 end

 --MOVC A,@A+PC

 -- acc <- (pc + acc)

 --

 | (OPC_MOVC_2 as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_PCUADD as Imm4) ||

alu_src_1:=(#reg_pc[0..7] as byte) ||

137

 alu_src_2 := (#reg_pc[8..15] as byte) || alu_src_3 := reg_acc ||

reg_pc_tmp := reg_pc; ALU();

 reg_pc := (#(alu_des_1 as byte) @ #alu_des_2 as Imm16);

 InstrFetch();

 ACC := reg_ir || reg_pc := reg_pc_tmp

 -- cpu_state:=0b00

 end

--)

 --MOVX A,@Ri

 -- acc <- ((r))

 --

 | (OPC_MOVX_1 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

-- data_bus:=ram_in_data;

--assign to data_bus first got problem

 xram_addr_tmp := (#ram_in_data @ {0,0,0,0,0,0,0,0} as Imm16);

 START_RD_XRAM() ||

 xram_in_data->ACC

 -- cpu_state:=0b00

 end

 --MOVX A,@DPTR

 -- acc <- (DPTR)

 --

 | (OPC_MOVX_2 as Imm7) then

 begin

 xram_addr_tmp := (#DPL @ #DPH as Imm16);

 START_RD_XRAM() ||

 xram_in_data->ACC

 -- cpu_state:=0b00

 end

 --MOVX @Ri,A

 -- ((r)) <- acc

 --

 | (OPC_MOVX_3 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 xram_addr_tmp := (#ram_in_data @ {0,0,0,0,0,0,0,0} as Imm16) ||

xram_out_data_tmp := reg_acc;

 START_WR_XRAM()

 -- cpu_state:=0b00

 end

 --MOVX @DPTR,A

 -- (DPTR) <- acc

 --

 | (OPC_MOVX_4 as Imm7) then

 begin

 xram_addr_tmp := (#DPL @ #DPH as Imm16) || xram_out_data_tmp :=

reg_acc;

 START_WR_XRAM()

 -- cpu_state:=0b00

 end

(--

 --NOP

 -- no operation

 --

138

 | (OPC_NOP as Imm7) then

 begin

 -- cpu_state:=0b00

 end

--)

 --ORL A,Rn

 -- acc <- acc || (r)

 --

 | (OPC_ORL_1 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_OR as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2 := reg_acc; ALU();

 ACC := (alu_des_1 as byte)

 -- cpu_state:=0b00

 end

 --ORL A,direct

 -- acc <- acc || (direct)

 --

 | (OPC_ORL_2 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_OR as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2 := reg_acc; ALU();

 ACC := (alu_des_1 as byte)

 -- cpu_state:=0b00

 end

 --ORL A,@Ri

 -- acc <- acc || ((r))

 --

 | (OPC_ORL_3 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_OR as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2 := reg_acc; ALU();

 ACC := (alu_des_1 as byte)

 -- cpu_state:=0b00

 end

 --ORL A,#data

 -- acc <- acc || #data

 --

 | (OPC_ORL_4 as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_OR as Imm4) || alu_src_1 := reg_acc ||

alu_src_2 := reg_op2; ALU();

 ACC := (alu_des_1 as byte)

 -- cpu_state:=0b00

 end

 --ORL direct,A

 -- (direct) <- (direct) || acc

 --

 | (OPC_ORL_5 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

139

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_OR as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2 := reg_acc; ALU();

 ram_out_data_tmp :=(alu_des_1 as byte) || ram_addr_tmp

:=reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --ORL direct,#data

 -- (direct) <- (direct) || #data

 --

 | (OPC_ORL_6 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_OR as Imm4) || alu_src_1:=ram_in_data ||

alu_src_2 := reg_op3; ALU();

 ram_out_data_tmp :=(alu_des_1 as byte) || ram_addr_tmp

:=reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --ORL C,bit

 -- cy <- cy | (bit)

 --

 | (OPC_ORL_7 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_BIT_RAM(); ReadRAM();

 data_bit:=ram_in_bit_data;

 reg_cy := reg_cy or data_bit;

 GET_PSW() -- cpu_state:=0b00

 end

 --ORL C,/bit

 -- cy <- cy | ~(bit)

 --

 | (OPC_ORL_8 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_BIT_RAM(); ReadRAM();

 data_bit:=ram_in_bit_data;

 reg_cy := reg_cy or (not data_bit);

 GET_PSW() -- cpu_state:=0b00

 end

 --POP direct

 -- (direct) <- (sp)

 -- sp <- sp - 1

 --

 | (OPC_POP as Imm7) then

 begin

 data_bus := SP;

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_1:=data_bus ||

alu_src_2 := C0_8 ||

 alu_src_cy := 0b1; ALU() || ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 SP :=(alu_des_1 as byte);

 ram_out_data_tmp :=data_bus || ram_addr_tmp :=reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --PUSH direct

 -- sp <- sp + 1

 -- (sp) <- (direct)

 --

140

 | (OPC_PUSH as Imm7) then

 begin

 data_bus := SP;

 alu_op_code:=(ALU_OPC_ADD as Imm4) || alu_src_1:=data_bus ||

alu_src_2 := C0_8 ||

 alu_src_cy := 0b1 ; ALU() ||

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_out_data_tmp :=data_bus || ram_addr_tmp :=(alu_des_1 as

byte);

 START_WR_RAM(); WriteRAM();

 SP :=(alu_des_1 as byte)

 -- cpu_state:=0b00

 end

 --RET

 -- pc(15-8) <- (sp)

 -- sp <- sp - 1

 -- pc(7-0) <- (sp)

 -- sp <- sp - 1

 --

 | (OPC_RET as Imm7) then

 begin

 data_bus := SP;

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_1:=data_bus ||

 alu_src_2 := C0_8 || alu_src_cy := 0b1;

 ALU() ||

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 reg_pch:=ram_in_data ;

 ram_addr_tmp := (alu_des_1 as byte);

 START_RD_RAM(); ReadRAM();

--

 reg_pcl:=ram_in_data ||

--above OK

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_1:=(alu_des_1 as

byte) ||

 alu_src_2 := C0_8 || alu_src_cy := 0b1;

ALU() ||

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

--above got problem

 SP :=(alu_des_1 as byte);

 SET_PC()

 -- cpu_state:=0b00

;int_return <- 0b0

 end

 --RETI

 -- pc(15-8) <- (sp)

 -- sp <- sp - 1

 -- pc(7-0) <- (sp)

 -- sp <- sp - 1

 --

 | (OPC_RETI as Imm7) then

 begin

 int_return <- 0b1;

 if (int_mask_int = 0b01) then int_lproc_int:=0b0 || int_lend<-

0b1

 else int_hproc_int:=0b0

 end;

141

 data_bus:=SP;

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_1:=data_bus ||

 alu_src_2 := C0_8 || alu_src_cy := 0b1; ALU() ||

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 reg_pch:=ram_in_data ;

 ram_addr_tmp := (alu_des_1 as byte);

 START_RD_RAM(); ReadRAM();

 reg_pcl:=ram_in_data || alu_op_code:=(ALU_OPC_SUB as Imm4) ||

alu_src_1:=(alu_des_1 as byte)||

 alu_src_2 := C0_8 || alu_src_cy := 0b1; ALU() ||

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SP :=(alu_des_1 as byte);

 SET_PC() ; -- cpu_state:=0b00;

 int_return <- 0b0

 end

 --RL A

 -- see I8051_ALU

 --

 | (OPC_RL as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_RL as Imm4) || alu_src_1:=reg_acc; ALU();

 ACC :=(alu_des_1 as byte) -- cpu_state:=0b00

 end

 --RLC A

 -- see I8051_ALU

 --

 | (OPC_RLC as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_RLC as Imm4) || alu_src_1:=reg_acc ||

alu_src_cy:=reg_cy; ALU();

 reg_cy:=alu_des_cy || ACC :=(alu_des_1 as byte);

 GET_PSW() -- cpu_state:=0b00

 end

 --RR A

 -- see I8051_ALU

 --

 | (OPC_RR as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_RR as Imm4) || alu_src_1:=reg_acc; ALU();

 ACC :=(alu_des_1 as byte) -- cpu_state:=0b00

 end

 --RRC A

 -- see I8051_ALU

 --

 | (OPC_RRC as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_RRC as Imm4) || alu_src_1:=reg_acc ||

alu_src_cy:=reg_cy; ALU();

 reg_cy:=alu_des_cy || ACC :=(alu_des_1 as byte);

 GET_PSW() -- cpu_state:=0b00

 end

 --SETB C

 -- cy <- 1

 --

 | (OPC_SETB_1 as Imm7) then

 begin

142

 reg_cy := 0b1;

 GET_PSW() -- cpu_state:=0b00

 end

 --SETB bit

 -- (bit) <- 1

 --

 | (OPC_SETB_2 as Imm7) then

 begin

 ram_out_bit_data_tmp := 0b1 || ram_addr_tmp :=reg_op2;

 START_WR_BIT_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --SJMP rel

 -- pc <- pc + rel

 --

 | (OPC_SJMP as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_PCSADD as Imm4) ||

alu_src_1:=(#reg_pc[0..7] as byte) ||

 alu_src_2:=(#reg_pc[8..15] as byte) || alu_src_3:=reg_op2;

ALU();

 reg_pcl:=(alu_des_1 as byte) || reg_pch:=alu_des_2;

 reg_pc_8_10:=(#reg_pch[0..2] as Imm3) ||

reg_pc_11_15:=(#reg_pch[3..7] as Imm5);

 SET_PC()

 end

 --SUBB A,Rn

 -- acc <- acc - cy - (r)

 --

 | (OPC_SUBB_1 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_2:=ram_in_data ||

alu_src_1:=reg_acc ||

 alu_src_cy:=reg_cy; ALU();

 ACC :=(alu_des_1 as byte) ||

 reg_cy:=alu_des_cy || reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

 GET_PSW() -- cpu_state:=0b00

 end

 --SUBB A,direct

 -- acc <- acc - cy - (direct)

 --

 | (OPC_SUBB_2 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_2:=ram_in_data ||

alu_src_1:=reg_acc ||

 alu_src_cy:=reg_cy; ALU();

 ACC :=(alu_des_1 as byte) ||

 reg_cy:=alu_des_cy || reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

 GET_PSW() -- cpu_state:=0b00

 end

 --SUBB A,@Ri

 -- acc <- acc - cy - ((r))

 --

 | (OPC_SUBB_3 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

143

 data_bus:=ram_in_data;

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_2:=ram_in_data ||

alu_src_1:=reg_acc ||

 alu_src_cy:=reg_cy; ALU();

 ACC :=(alu_des_1 as byte) ||

 reg_cy:=alu_des_cy || reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

 GET_PSW() -- cpu_state:=0b00

 end

 --SUBB A,#data

 -- acc <- acc - cy - #data

 --

 | (OPC_SUBB_4 as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_SUB as Imm4) || alu_src_2:=reg_op2 ||

alu_src_1:=reg_acc ||

 alu_src_cy:=reg_cy; ALU();

 ACC :=(alu_des_1 as byte) ||

 reg_cy:=alu_des_cy || reg_ac:=alu_des_ac || reg_ov:=alu_des_ov;

 GET_PSW() -- cpu_state:=0b00

 end

 --SWAP A

 -- acc(3-0) <-> acc(7-4)

 --

 | (OPC_SWAP as Imm7) then

 begin

 ACC :=(#reg_acc[4..7] @ #reg_acc[0..3] as byte)--

cpu_state:=0b00

 end

 --XRL A,Rn

 -- acc <-> (r)

 --

 | (OPC_XCH_1 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ACC := data_bus;

 ram_out_data_tmp := reg_acc;

 START_WR_RAM(); WriteRAM()-- cpu_state:=0b00

 end

 --

 -- acc <-> (direct)

 --

 | (OPC_XCH_2 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ACC := data_bus;

 ram_out_data_tmp := reg_acc;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --

 -- acc <-> ((r))

 --

 | (OPC_XCH_3 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

144

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ACC := data_bus;

 START_WR_RAM(); WriteRAM();

 ram_out_data_tmp := reg_acc;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --

 -- acc(3-0) <-> ((r))(3-0)

 --

 | (OPC_XCHD as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ACC :=(#data_bus[0..3] @ #reg_acc[4..7] as byte);

 ram_out_data_tmp :=(#reg_acc[0..3] @ #data_bus[4..7] as byte);

 START_WR_RAM(); WriteRAM()-- cpu_state:=0b00

 end

 --

 -- acc <- acc ^ (r)

 --

 | (OPC_XRL_1 as Imm7) then

 begin

 GET_RAM_ADDR_1();

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_XOR as Imm4) || alu_src_2:=ram_in_data ||

alu_src_1:=reg_acc; ALU();

 ACC :=(alu_des_1 as byte) || START_WR_RAM();

 WriteRAM() -- cpu_state:=0b00

 end

 --

 -- acc <- acc ^ (direct)

 --

 | (OPC_XRL_2 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_XOR as Imm4) || alu_src_2:=ram_in_data ||

alu_src_1:=reg_acc; ALU();

 ACC :=(alu_des_1 as byte) || START_WR_RAM();

 WriteRAM() -- cpu_state:=0b00

 end

 --

 -- acc <- acc ^ ((r))

 --

 | (OPC_XRL_3 as Imm7) then

 begin

 GET_RAM_ADDR_2();

 START_RD_RAM(); ReadRAM();

 data_bus:=ram_in_data;

 ram_addr_tmp := data_bus;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_XOR as Imm4) || alu_src_2:=ram_in_data ||

alu_src_1:=reg_acc; ALU();

 ACC :=(alu_des_1 as byte) || START_WR_RAM();

145

 WriteRAM() -- cpu_state:=0b00

 end

 --

 -- acc <- acc ^ #data

 --

 | (OPC_XRL_4 as Imm7) then

 begin

 alu_op_code:=(ALU_OPC_XOR as Imm4) || alu_src_2:=reg_op2 ||

alu_src_1:=reg_acc; ALU();

 ACC :=(alu_des_1 as byte) || START_WR_RAM();

 WriteRAM()-- cpu_state:=0b00

 end

 --

 -- (direct) <- (direct) ^ acc

 --

 | (OPC_XRL_5 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_XOR as Imm4) || alu_src_2:=ram_in_data ||

alu_src_1:=reg_acc; ALU();

 ram_out_data_tmp :=(alu_des_1 as byte) || ram_addr_tmp

:=reg_op2;

 START_WR_RAM(); WriteRAM() -- cpu_state:=0b00

 end

 --

 -- (direct) <- (direct) ^ #data

 --

 | (OPC_XRL_6 as Imm7) then

 begin

 ram_addr_tmp := reg_op2;

 START_RD_RAM(); ReadRAM();

 alu_op_code:=(ALU_OPC_XOR as Imm4) || alu_src_2:=ram_in_data ||

alu_src_1:=reg_op3; ALU();

 ram_out_data_tmp :=(alu_des_1 as byte) || ram_addr_tmp

:=reg_op2;

 START_WR_RAM(); WriteRAM()

 -- cpu_state:=0b00

 end

 else

 begin

 debug1<-0b11

 end

 end --end case op

end -- end of exe

shared Initialise is

begin

--reg_op1_tmp:=0b0 || reg_op2_tmp:=0b0 || reg_op3_tmp:=0b0 || fetch_op:=0b01 ||

op_out_int:=(0 as array7) || reg_pc:=0 ||

int_hproc_int := 0b0 || int_lproc_int := 0b0 ||

P0_out:=(CM_8 as byte) || P1_out:=(CM_8 as byte) || P2_out:=(CM_8 as byte) || SP:=

0x07 || DPL:=0 || DPH:=0 || ACC:=0 ||

B:=0 || PSW:=0

|| tris0:=(CM_8 as byte) || tris1:=(CM_8 as byte) || tris2:=(CM_8 as byte)

;tris0_o <- tris0 ||

tris1_o <- tris1 || tris2_o <- tris2;

P0_o <- P0_out || P1_o <- P1_out || P2_o <- P2_out

end --end of initialise

146

shared DEC is

begin

 rmw_int:= 0b0;

 case (op_in_int) of

 ((ACALL as array5) @ {0bxxx} as byte) then op_out_int :=(#(OPC_ACALL as

Imm7) as array7) || fetch_op:=0b10

 | ((AJMP as array5) @ {0bxxx} as byte) then op_out_int :=(#(OPC_AJMP as

Imm7) as array7) || fetch_op:=0b10

 | (0b00101xxx) then op_out_int :=(#(OPC_ADD_1 as Imm7) as

array7) || fetch_op:=0b00

 | (0b00111xxx) then op_out_int :=(#(OPC_ADDC_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b01011xxx) then op_out_int :=(#(OPC_ANL_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b10111xxx) then op_out_int :=(#(OPC_CJNE_3 as Imm7) as array7) ||

fetch_op:=0b11

 | (0b11011xxx) then op_out_int :=(#(OPC_DJNZ_1 as Imm7) as array7) ||

fetch_op:=0b10

 | (0b00001xxx) then op_out_int :=(#(OPC_INC_2 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b00011xxx) then op_out_int :=(#(OPC_DEC_2 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b11101xxx) then op_out_int :=(#(OPC_MOV_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b11111xxx) then op_out_int :=(#(OPC_MOV_5 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b10101xxx) then op_out_int :=(#(OPC_MOV_6 as Imm7) as array7) ||

fetch_op:=0b10

 | (0b01111xxx) then op_out_int :=(#(OPC_MOV_7 as Imm7) as array7) ||

fetch_op:=0b10

 | (0b10001xxx) then op_out_int :=(#(OPC_MOV_9 as Imm7) as array7) ||

fetch_op:=0b10

 | (0b01001xxx) then op_out_int :=(#(OPC_ORL_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b10011xxx) then op_out_int :=(#(OPC_SUBB_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b11001xxx) then op_out_int :=(#(OPC_XCH_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b01101xxx) then op_out_int :=(#(OPC_XRL_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (ADD_2 as byte) then op_out_int :=(#(OPC_ADD_2 as Imm7) as array7) ||

fetch_op:=0b10

 | (ADD_4 as byte) then op_out_int :=(#(OPC_ADD_4 as Imm7) as array7) ||

fetch_op:=0b10

 | (ADDC_2 as byte) then op_out_int :=(#(OPC_ADDC_2 as Imm7) as array7) ||

fetch_op:=0b10

 | (ADDC_4 as byte) then op_out_int :=(#(OPC_ADDC_4 as Imm7) as array7) ||

fetch_op:=0b10

 | (ANL_2 as byte) then op_out_int :=(#(OPC_ANL_2 as Imm7) as array7) ||

fetch_op:=0b10

 | (ANL_4 as byte) then op_out_int :=(#(OPC_ANL_4 as Imm7) as array7) ||

fetch_op:=0b10

 | (ANL_5 as byte) then op_out_int :=(#(OPC_ANL_5 as Imm7) as array7) ||

fetch_op:=0b10 || rmw_int := 0b1

 | (ANL_6 as byte) then op_out_int :=(#(OPC_ANL_6 as Imm7) as array7) ||

fetch_op:=0b11 || rmw_int := 0b1

 | (ANL_7 as byte) then op_out_int :=(#(OPC_ANL_7 as Imm7) as array7) ||

fetch_op:=0b10

 | (ANL_8 as byte) then op_out_int :=(#(OPC_ANL_8 as Imm7) as array7) ||

fetch_op:=0b10

 | (CJNE_1 as byte) then op_out_int :=(#(OPC_CJNE_1 as Imm7) as array7) ||

fetch_op:=0b11

 | (CJNE_2 as byte) then op_out_int :=(#(OPC_CJNE_2 as Imm7) as array7) ||

fetch_op:=0b11

 | (CLR_1 as byte) then op_out_int :=(#(OPC_CLR_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (CLR_2 as byte) then op_out_int :=(#(OPC_CLR_2 as Imm7) as array7) ||

fetch_op:=0b00

147

 | (CLR_3 as byte) then op_out_int :=(#(OPC_CLR_3 as Imm7) as array7) ||

fetch_op:=0b10

 | (CPL_1 as byte) then op_out_int :=(#(OPC_CPL_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (CPL_2 as byte) then op_out_int :=(#(OPC_CPL_2 as Imm7) as array7) ||

fetch_op:=0b00

 | (CPL_3 as byte) then op_out_int :=(#(OPC_CPL_3 as Imm7) as array7) ||

fetch_op:=0b10 || rmw_int := 0b1

 | (DA as byte) then op_out_int :=(#(OPC_DA as Imm7) as array7)

|| fetch_op:=0b00

 | (DEC_1 as byte) then op_out_int :=(#(OPC_DEC_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (DEC_3 as byte) then op_out_int :=(#(OPC_DEC_3 as Imm7) as array7) ||

fetch_op:=0b10 || rmw_int := 0b1

 | (DIV as byte) then op_out_int :=(#(OPC_DIV as Imm7) as array7) ||

fetch_op:=0b00

 | (DJNZ_2 as byte) then op_out_int :=(#(OPC_DJNZ_2 as Imm7) as array7) ||

fetch_op:=0b11 || rmw_int := 0b1

 | (INC_1 as byte) then op_out_int :=(#(OPC_INC_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (INC_3 as byte) then op_out_int :=(#(OPC_INC_3 as Imm7) as array7) ||

fetch_op:=0b10 || rmw_int := 0b1

 | (INC_5 as byte) then op_out_int :=(#(OPC_INC_5 as Imm7) as array7) ||

fetch_op:=0b00

 | (JB as byte) then op_out_int :=(#(OPC_JB as Imm7) as array7)

|| fetch_op:=0b11

 | (JBC as byte) then op_out_int :=(#(OPC_JBC as Imm7) as array7) ||

fetch_op:=0b11

 | (JC as byte) then op_out_int :=(#(OPC_JC as Imm7) as array7)

|| fetch_op:=0b10

 | (JMP as byte) then op_out_int :=(#(OPC_JMP as Imm7) as array7) ||

fetch_op:=0b00

 | (JNB as byte) then op_out_int :=(#(OPC_JNB as Imm7) as array7) ||

fetch_op:=0b11

 | (JNC as byte) then op_out_int :=(#(OPC_JNC as Imm7) as array7) ||

fetch_op:=0b10

 | (JNZ as byte) then op_out_int :=(#(OPC_JNZ as Imm7) as array7) ||

fetch_op:=0b10

 | (JZ as byte) then op_out_int :=(#(OPC_JZ as Imm7) as array7)

|| fetch_op:=0b10

 | (LCALL as byte) then op_out_int :=(#(OPC_LCALL as Imm7) as array7) ||

fetch_op:=0b11

 | (LJMP as byte) then op_out_int :=(#(OPC_LJMP as Imm7) as array7) ||

fetch_op:=0b11

 | (MOV_2 as byte) then op_out_int :=(#(OPC_MOV_2 as Imm7) as array7) ||

fetch_op:=0b10

 | (MOV_8 as byte) then op_out_int :=(#(OPC_MOV_8 as Imm7) as array7) ||

fetch_op:=0b10

 | (MOV_10 as byte) then op_out_int :=(#(OPC_MOV_10 as Imm7) as array7) ||

fetch_op:=0b11

 | (MOV_12 as byte) then op_out_int :=(#(OPC_MOV_12 as Imm7) as array7) ||

fetch_op:=0b11

 | (MOV_16 as byte) then op_out_int :=(#(OPC_MOV_16 as Imm7) as array7) ||

fetch_op:=0b10

 | (MOV_17 as byte) then op_out_int :=(#(OPC_MOV_17 as Imm7) as array7) ||

fetch_op:=0b10

 | (MOV_18 as byte) then op_out_int :=(#(OPC_MOV_18 as Imm7) as array7) ||

fetch_op:=0b11

 | (MOVC_1 as byte) then op_out_int :=(#(OPC_MOVC_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (MOVC_2 as byte) then op_out_int :=(#(OPC_MOVC_2 as Imm7) as array7) ||

fetch_op:=0b00

 | (ORL_4 as byte) then op_out_int :=(#(OPC_ORL_4 as Imm7) as array7) ||

fetch_op:=0b10

 | (ORL_5 as byte) then op_out_int :=(#(OPC_ORL_5 as Imm7) as array7) ||

fetch_op:=0b10 || rmw_int := 0b1

 | (ORL_6 as byte) then op_out_int :=(#(OPC_ORL_6 as Imm7) as array7) ||

fetch_op:=0b11 || rmw_int := 0b1

 | (ORL_7 as byte) then op_out_int :=(#(OPC_ORL_7 as Imm7) as array7) ||

fetch_op:=0b10

 | (ORL_8 as byte) then op_out_int :=(#(OPC_ORL_8 as Imm7) as array7) ||

fetch_op:=0b10

148

 | (POP as byte) then op_out_int :=(#(OPC_POP as Imm7) as array7) ||

fetch_op:=0b10

 | (PUSH as byte) then op_out_int :=(#(OPC_PUSH as Imm7) as array7) ||

fetch_op:=0b10

 | (RET as byte) then op_out_int :=(#(OPC_RET as Imm7) as array7) ||

fetch_op:=0b00

 | (RETI as byte) then op_out_int :=(#(OPC_RETI as Imm7) as array7) ||

fetch_op:=0b00

 | (RL as byte) then op_out_int :=(#(OPC_RL as Imm7) as array7)

|| fetch_op:=0b00

 | (RLC as byte) then op_out_int :=(#(OPC_RLC as Imm7) as array7) ||

fetch_op:=0b00

 | (RR as byte) then op_out_int :=(#(OPC_RR as Imm7) as array7)

|| fetch_op:=0b00

 | (RRC as byte) then op_out_int :=(#(OPC_RRC as Imm7) as array7) ||

fetch_op:=0b00

 | (SETB_1 as byte) then op_out_int :=(#(OPC_SETB_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (SETB_2 as byte) then op_out_int :=(#(OPC_SETB_2 as Imm7) as array7) ||

fetch_op:=0b10

 | (SJMP as byte) then op_out_int :=(#(OPC_SJMP as Imm7) as array7) ||

fetch_op:=0b10

 | (SUBB_2 as byte) then op_out_int :=(#(OPC_SUBB_2 as Imm7) as array7) ||

fetch_op:=0b10

 | (MOVX_2 as byte) then op_out_int :=(#(OPC_MOVX_2 as Imm7) as array7) ||

fetch_op:=0b00

 | (MOVX_4 as byte) then op_out_int :=(#(OPC_MOVX_4 as Imm7) as array7) ||

fetch_op:=0b00

 | (MUL as byte) then op_out_int :=(#(OPC_MUL as Imm7) as array7) ||

fetch_op:=0b00

 | (NOP as byte) then op_out_int :=(#(OPC_NOP as Imm7) as array7) ||

fetch_op:=0b00

 | (ORL_2 as byte) then op_out_int :=(#(OPC_ORL_2 as Imm7) as array7) ||

fetch_op:=0b10

 | (SUBB_4 as byte) then op_out_int :=(#(OPC_SUBB_4 as Imm7) as array7) ||

fetch_op:=0b10

 | (SWAP as byte) then op_out_int :=(#(OPC_SWAP as Imm7) as array7) ||

fetch_op:=0b00

 | (XCH_2 as byte) then op_out_int :=(#(OPC_XCH_2 as Imm7) as array7) ||

fetch_op:=0b10

 | (XRL_2 as byte) then op_out_int :=(#(OPC_XRL_2 as Imm7) as array7) ||

fetch_op:=0b10

 | (MOV_4 as byte) then op_out_int :=(#(OPC_MOV_4 as Imm7) as array7) ||

fetch_op:=0b10

 | (XRL_4 as byte) then op_out_int :=(#(OPC_XRL_4 as Imm7) as array7) ||

fetch_op:=0b10

 | (XRL_5 as byte) then op_out_int :=(#(OPC_XRL_5 as Imm7) as array7) ||

fetch_op:=0b10 || rmw_int := 0b1

 | (XRL_6 as byte) then op_out_int :=(#(OPC_XRL_6 as Imm7) as array7) ||

fetch_op:=0b11 || rmw_int := 0b1

 | (0b0010011x) then op_out_int :=(#(OPC_ADD_3 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b0011011x) then op_out_int :=(#(OPC_ADDC_3 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b0101011x) then op_out_int :=(#(OPC_ANL_3 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b1011011x) then op_out_int :=(#(OPC_CJNE_4 as Imm7) as array7) ||

fetch_op:=0b11

 | (0b0001011x) then op_out_int :=(#(OPC_DEC_4 as Imm7) as array7) ||

fetch_op:=0b00 || rmw_int := 0b1

 | (0b0000011x) then op_out_int :=(#(OPC_INC_4 as Imm7) as

array7) || fetch_op:=0b00 || rmw_int := 0b1

 | (0b1110011x) then op_out_int :=(#(OPC_MOV_3 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b1000011x) then op_out_int :=(#(OPC_MOV_11 as Imm7) as array7) ||

fetch_op:=0b10

 | (0b1111011x) then op_out_int :=(#(OPC_MOV_13 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b1010011x) then op_out_int :=(#(OPC_MOV_14 as Imm7) as array7) ||

fetch_op:=0b10

 | (0b0111011x) then op_out_int :=(#(OPC_MOV_15 as Imm7) as array7) ||

fetch_op:=0b10

149

 | (0b1110001x) then op_out_int :=(#(OPC_MOVX_1 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b1111001x) then op_out_int :=(#(OPC_MOVX_3 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b0100011x) then op_out_int :=(#(OPC_ORL_3 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b1001011x) then op_out_int :=(#(OPC_SUBB_3 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b1100011x) then op_out_int :=(#(OPC_XCH_3 as Imm7) as array7) ||

fetch_op:=0b00

 | (0b1101011x) then op_out_int :=(#(OPC_XCHD as Imm7) as array7) ||

fetch_op:=0b00

 | (0b0110011x) then op_out_int :=(#(OPC_XRL_3 as Imm7) as array7) ||

fetch_op:=0b00

 else op_out_int := (#(OPC_ERROR as Imm7) as array7) || fetch_op:=0b00

 end --end if

end --end X8051_DEC

shared Fetch is

begin

 --debug1<-0b01 ||

 pc_out <- reg_pc;

 InstrFetch() || PcInc();

 reg_op1:=reg_ir || op_in_int := reg_ir || reg_pc:=reg_pc_plus;

--

---- fetch_op inside DEC causes the 2nd read to come much later-----------------------

 DEC();

 X8051_Fetch()

 --below for testing only

 ;acc_out <- reg_acc || psw_out <- reg_psw

 ||

 -- below for testing only

 debug1<-0b10

end

--------------------------main loop ---

begin

Initialise();

loop

---- cpu_state=0

 -- below for testing only

-- debug1<-0b00;

 Interrupt();

 Fetch();

 EXE()

end

end --end main

