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Summary

In this thesis, we introduce several routing and planning algorithms for a small Mobil-

ity on Demand system. This system aims to provide “to-door” service which connects

customers between transportation hub (MRT, bus terminal...) and their desired des-

tinations (workplace, home ...). Initially, we consider a single period model of the

problem. We first consider the case where there are only Last Mile customers who

want to go from transportation hub to their destinations. The problem is modeled as

a special instance of the Vehicle Routing Problem with Time Windows, and a tabu

search algorithm is proposed. We then extend our algorithm to take into account the

First Mile customers who want to go from their current place (workplace, home ...)

to the transportation hub. This extension also brings along a rule to schedule the

vehicles: the vehicle might stop and wait for the customers under certain conditions.

We complement the single period problem by studying the heterogeneous fleet prob-

lem with a heterogeneous tabu search and pre-, post-processing procedure. Next, we

study the multi-period problem which is more relevant to the real life implementation

of the problem. In this setup, the single period algorithm is used in each period to

find the best routing for that particular period’s demand. For this problem, we relax

the schedule for the vehicle and use the heterogeneous fleet tabu search algorithm.

We demonstrate the capability of our algorithm by using a real life demand taken

from the Singapore public transport data. Finally, we consider the last mile problem

under uncertain travelling time. We propose the lateness index, which evaluates the

possibility of serving the customers on time. We show that the lateness index solution

is a promising approach to solve the problem with uncertain travelling time.
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1 Introduction

1.1 Motivation

Mobility on Demand (MOD) becomes increasingly important in the current social and

economic context. Although the transportation network is not scalable, there has been

a boom in the number of private vehicles during the last decade, which in turn results

in traffic jam, noise, stress and health problem. The current public transport system,

including buses and underground, is inefficient and cannot deal with the problem of

aging societies where old or disabled people need a to-door service. Governments

and enterprises are also facing problems regarding how to reduce road footprint and

carbon footprint. Thus, a convenient, reliable and profitable MOD system is the

future of urban transportation. Nevertheless, in order to implement such a system

successfully in the practical context, it is essential to have a good operation planning

system which routes and schedules the fleet in a reasonable manner.

In this project, we study a routing and scheduling algorithm for a MOD system

which connects passengers from big transportation hubs (MRT stations, railway sta-

tions) to their desired final destinations. A simplistic geographical layout of the MOD

system is shown in Figure 1.1. The idea of such system is inspired by the famous Last

Mile Problem (LMP) in which a commuter’s hardest and most time consuming part

in his whole trajectory is actually the last mile portion.

Figure 1.1: Geographical layout of the Last Mile Problem
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1.1.1 Real life scenario

Our system consits of one central server and a fleet of vehicles (shuttle buses). A pas-

senger will send an SMS to our server, stating his desired pickup point, destination and

their time windows. After receiving the request, our server will assign the passenger

to a suitable shuttle bus, and reply to the passenger the relevant information about

the service. A good IT platform is crucial for the implementation of this transport on

demand system. This platform should be able to:

• Receive and reply passengers’ demands via SMS.

• Schedule the operation of each vehicle up to passengers’ demands.

• Route the vehicle with the best possible route.

Among the three attributes above, the receiving and replying SMS involves the

information technology (IT) system, while the scheduling and routing are operations

management problems. For this reason, this thesis concentrates only on the scheduling

and routing capabilities of the system.

1.1.2 Challenges

The LMP is a real world problem, so there are major challenges we need to overcome

so as to achieve a pragmatic, efficient and implementable solution:

• The computational time must be low. In the real world, for a reasonable dispatch

of the vehicles to serve passengers’ demand throughout the day, the computa-

tional time can only be around a few minutes. Furthermore, it must provide

good solutions even if the calculation time is restricted.

• The system must withstand high load due to passengers’ demands during rush

hours.
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• The system should provide a good balance between the computational time of

the algorithm and the quality of the solution.

• The system should be flexible, so that new features such as real time traffic data

can be easily incorporated in the calculation.

1.2 Literature review

The problem, as described in the introduction, is a generalization of the vehicle routing

problem with time windows (VRPTW), the multiple vehicle routing with pickup and

delivery with time windows (VRPPDTW) and the Dial-A-Ride problem (DARP).

1.2.1 Studies on VRPTW

The VRPTW, which can be modeled as a multi-commodity network flow problem,

attracts many exact algorithms and heuristics. Desrochers et al. (1992) proposed a

column generation algorithm which managed to solve some 100 customer instances.

Chen and Xu (2006) also proposed a dynamic column generation, and claimed that the

algorithm outperforms other insertion heuristics. He reported a CPU computational

time between 17 seconds and 5422 seconds. Nevertheless, since the solution space

grows exponentially, it is unlikely that these exact algorithms will work for bigger

instances.

In term of heuristics algorithm, Solomon (1987) and Potvin and Rousseau (1993)

are fundamental work on the heuristics construction of VRPTW. Some other im-

portant heuristics include Chiang and Russell (1996) (simulated annealing), Russell

(1995) (reactive tabu search). Lau et al. (2003) proposed a tabu search algorithm for

the m-VRPTW where there is a limited number of vehicles.

3



1.2.2 Studies on VRPPDTW

There have been several proposed algorithms for the dynamic pickup and delivery

problem with time windows. Nanry and Barnes (2000) proposed a reactive tabu

search algorithm with soft constraints on the time windows and the vehicle capacity.

They considered three move neighborhoods including single insertion, pair swapping

between routes and within route insertion. The algorithm has been tested with their

own instances involving 25, 50 and 100 customers. Lau and Liang (2001) used a similar

set of neighborhood, and they also generated test cases from the Solomon (1987) test

cases.

Ropke and Pisinger (2006) has proposed an adaptive large neighborhood search

algorithm with several removal and insertion heuristics. He considered Shaw removal,

random and worst removal heuristics. Two insertion heuristics are greedy insertion

or regret insertion. The selection of heuristics is randomly done by considering a

probability distribution whose weights are adjusted dynamically during the search.

The algorithm has been tested with the test cases from Li and Lim (2001) which

have from 50 to 500 requests. The author asserted that the algorithm outperformed

previously proposed algorithms.

Cordeau et al. (2007) provided a survey on VRPPD with static or dynamic setup,

as well as with time windows options and different assumptions on the size and capacity

of the fleet.

1.2.3 Studies on DARP

A DARP is more passenger oriented which characterizes in a tighter time windows,

stricter capacity constraint and a new customer ride time constraint.

For the dynamic DARP, Teodorovic and Radivojevic (2000) proposed a scheduling

algorithm using fuzzy logic and fuzzy arithmetic. Their motivation comes from the fact

that users (passengers, drivers etc.) have a fuzzy notion of time. They constructed
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a list of rules in order to perform insert or removal heuristics. The authors have

generated their own test instances and the algorithm managed to solve an instance of

900 requests.

Mitrovic-Minic and Laporte (2004) studied the DARP under different scheduling

strategies: drive-first, wait-first or dynamic waiting strategies. Berbeglia et al. (2010b)

has recently proposed a hybrid tabu search and constraint programming routine to

solve the dynamic DARP. The authors also considered four scheduling policies: basic,

lazy, eager and hybrid scheduling.

A thorough survey on the DARP can be found in Cordeau and Laporte (2007) or

Berbeglia et al. (2010a).

1.2.4 Studies on the VRP with heterogeneous fleet

An important variant of the VRP is the VRP with heterogeneous fleet, where the

vehicles may have different capacity, different fixed or variable cost. When the number

of vehicles is unlimited, we have the fleet size and mixed vehicle routing problem

(FSMVRP), and when the number of vehicles is limited, we have the heterogeneous

fixed fleet vehicle routing problem (HFFVRP). In this thesis, we are interested in

the case where the fleet size is limited, thus the literature review considers only the

HFFVRP instance. A comprehensive classification of this variant can be found in

Paraskevopoulos et al. (2008).

The first method for the HFFVRP is proposed by Taillard (1996). At first, he used

adaptive memory procedure to generate a large number of possible routes, and then

column generation techniques were used to choose the best route among all the routes

generated. Tarantilis et al. (2004) introduced a metaheuristics with 3 types of moves:

2-opt, 1-1 exchange and 1-0 exchange. His algorithm belongs to the stochastic search

method, where in each iteration, the type of moves and the customers to be moved are

randomly chosen using threshold accepting based methods. Li et al. (2007) proposed
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a record-to-record travel algorithm for the HFFVRP, with 4 types of move: 2-opt,

or-opt, one point and two points. Brandão (2011) introduced a tabu search algorithm

which use the GENI and US moves proposed by Gendreau et al. (1992), and a large

neighborhood search in order to escape the local optimal solution.

1.2.5 Studies on VRP with uncertain travelling time

Uncertainty can come from different sources in the VRP: stochastic customers, stochas-

tic demand or stochastic travelling time. A detailed review on the stochastic VRP can

be found in Gendreau et al. (1996). In this thesis, we are interested in the VRP under

uncertain travelling time.

Using stochastic programming and branch-and-cut, Laporte et al. (1992) proposed

three different formulations for the VRP with stochastic travelling time and service

time. Another approach using branch-and-cut with Monte Carlo simulation was de-

veloped by Kenyon and Morton (2003).

The stochastic VRP with soft time windows has been introduced more recently.

Different heuristics algorithms were proposed instead of exact methods in order to

solve mid to large scale instances. Among these algorithms, the most notable are

genetic algorithm used by Ando and Taniguchi (2006) and tabu search used by Li

et al. (2010).

1.3 Necessary attributes of a heuristic algorithm

Heuristic algorithms have been used widely for optimization problems where an ex-

haustive search is inefficient or impractical. However, when a heuristic algorithm is

proposed in the literature, it is often the case that the algorithm is not reported objec-

tively and evaluated scientifically. For this reason, it is usually difficult to assess the

performance of the algorithm, and to compare one heuristic algorithm to the other.

In this part, we survey different criteria to assess whether a heuristic algorithm makes
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a substantial contribution or not.

1.3.1 Speed

Speed is the main reason why researchers resort to heuristic algorithms instead of exact

solution methods. However, according to Silberholz and Golden (2010), it is difficult

to fairly compare the speed between algorithms due to the difference in computer

hardware, programming languages, compilers and testing environments (multiple run,

or run on distributed system). Apparently, the best way to compare two algorithms

is to have the source codes, compile them on the same computer using the same

compiler, and run them on the same computer. Nevertheless, this method is not always

applicable due to several reasons. Firstly, two codes may use different programming

languages. Secondly, the author may not want to divulge the code to the public. If

the author can publish a Windows executable file of the algorithm, it will make the

comparison easier and more reliable.

1.3.2 Accuracy

One important attribute of heuristic algorithm is that it should give satisfactory solu-

tions. Above all, the solutions have to be feasible, that is the solutions have to satisfy

all constraints of the problem. Another measure of the accuracy is the gap between the

heuristic solution and the exact optimal solution or a good bound. However, for hard

combinatorial problem, good bounds or exact optimal solution is not always ready;

thus, most of the comparisons have been made with the best result found so far. Yet,

Barr et al. (1995) stated that comparing solution quality between two algorithms is

also a troublesome task. Very often, the author reports only the best solution found

by tuning their parameters, or by running with different starting points. For this rea-

son, it is desirable that the computational result is obtained in only one run, and the

number of parameters is small.
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1.3.3 Robustness

Robustness is the characteristic that an algorithm performs well on a large set of

instances. According to Cordeau et al. (2002), users prefer an algorithm which gives a

reasonably good result to all instance to another algorithm which performs extremely

well on certain instances but poorly on the others. The deterioration in the solution

quality is partly because of the probabilistic nature in the parameter or in the searching

routine. Authors usually report the best result found by their algorithm, which gives

a false idea on how well the algorithm really performs. To this extent, the algorithm

has to be tested thoroughly using a large test set. Furthermore, if the quality of the

solution does not differ too much, a deterministic algorithm should be preferred to a

probabilistic algorithm.

1.3.4 Stability

Under real life scenarios, there are situations where the problem is over-constrained.

For example, in vehicle routing, we may have limited number of vehicles, and these

vehicles may not be able to serve all the customers. To handle this issue, Lau et al.

(2003) proposed that under over-constrainedness, when the number of vehicles is re-

duced, the average number of customers served by each vehicle should be monotonically

increasing.

1.3.5 Flexibility

As heuristic algorithm is used to solve real life problems, flexibility is a critical factor.

Braysy and Gendreau (2005) suggested that a good heuristic algorithm should be able

to handle changes in the objective function as well as in the constraints. Although,

modifications to the algorithm are sometimes trivial, it is less evident how the per-

formance of the algorithm will be affected by these changes. To show the flexibility

of the algorithm, it is recommended that the algorithm should be tested with several
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variants of the problem, along with a clarification of the changes made.

1.3.6 Simplicity

The reason why a heuristic algorithm is not widely used in real life is that the algorithm

is too complicated, or too hard to implement. An algorithm should be simple enough to

be understood, with the exemplary case is the Clarke and Wright algorithm proposed

by Clarke and Wright (1964). Another measure of the simplicity is the number of

parameters involved. In fact, Silberholz and Golden (2010) indicated that the space

of possible parameter combinations increases exponentially along with the number of

parameters in the algorithm, and this makes tuning for a good set of parameters a

tedious task. Furthermore, it is inevitable that there is a certain correlation among

parameters, which makes understanding and analyzing the algorithm more difficult.

1.3.7 Reproducibility

Reproducibility is indeed another criterion for a good algorithm. To achieve this point,

the algorithm should be well documented so that a reader can successfully construct

a similar algorithm from the report. To this extent, Barr et al. (1995) suggested that

the source code, the executable files and the solution to the test cases should be made

publicly available. Furthermore, the source code should also be well documented and

straightforward to be compiled.

Not all of the algorithms found in the literature survey are implemented and re-

ported following the above criteria: most of them concentrate on reporting the accu-

racy and speed of the algorithms. By taking these criteria into account in both the

development as well as the testing phase of the algorithm, we will demonstrate that

our algorithm satisfies the desired criteria.
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1.4 Contributions of the thesis

This thesis makes both practical and scientific contributions. Firstly, this thesis in-

troduces a new variant of vehicle routing problems: the Last Mile Problem. The

LMP is inspired by a real life problem encountered by transportation planners in big

cities, and the solution to a LMP is a promising approach to future urban mobility.

The importance of the LMP is further emphasized by its positive impact on societal,

economic and environmental issues for future cities.

Secondly, using operations research techniques, this thesis demonstrates that the

Last Mile mobility system can be reliable and profitable. In fact, from the practition-

ers’ perspective, this thesis proposes a decision support system which assists the service

provider to make both strategic and operational decisions. This system is tested using

real life data taken from the public transportation data of Singapore. This system is

essential in encouraging the urban transportation planners, enterprises and relevant

parties to provide the Last Mile service to the passengers.

Finally, this thesis makes scientific contributions to the vehicle routing problems.

This thesis proposes a tabu search heuristics for the LMP. This tabu search heuristics

can handle various constraints including the heterogeneous fleet and different schedul-

ing rules for passengers. In addition, this thesis also uses the tabu search heuristics

to solve the LMP with uncertain travelling time by using a new index to assess the

uncertainty called the lateness index. The main advantage of this lateness index ap-

proach is that it works even when the distributions of the travelling time are unknown

or contain mixed distributions.

1.5 Structure of the thesis

• Chapter 2: Algorithm for the single period problem We start by describ-

ing our formulation for the basic LMP. The problem, which is initially modeled

as a VRPPDTW, is then simplified as a special instance of the VRPTW with the
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time windows at the depot. After introducing an MIP formulation for the basic

LMP, we propose a tabu search heuristics which is capable of solving the large

instance of the problem. We then modify the algorithm to take into account the

First Mile Problem (FMP) customers. Different scheduling rules are discussed,

along with the parallel implementation of the algorithm which succeeds in reduc-

ing the computational time. We complete the single period problem by solving

the heterogeneous fleet problem with a heterogeneous fleet tabu search routine

and the pre-, post-processing procedure.

• Chapter 3: Algorithm for the multi-period problem In this chapter,

we adapt the single period algorithm to solve the multi-period problem. First,

in the multi-period setup, we can relax the scheduling rule without worsening

any service quality. Secondly, we will use the heterogeneous fleet algorithm

developed in the previous chapter to allow flexible fleet compositions for the

service provider. Using rolling horizon, we solve a real life problem where real

service demand is taken from the Singapore public transport database.

• Chapter 4: Algorithm for the LMP under uncertain travelling time

In this chapter, we consider the Last Mile Problem with uncertain travelling

time, where the travelling time between two nodes becomes a random variable.

After characterizing the travelling time, we introduce the lateness index, a cri-

teria to evaluate the quality of solution subject to meeting the customers’ time

windows. The tabu search heuristics is modified with the index, which is fi-

nally benchmarked with the static approach using mean travelling time and the

90th-percentile approach using the 90th-percentile travelling time.

• Chapter 5: Conclusions This chapter presents concluding remarks, and sug-

gests future direction for research.
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2 Algorithm for the single period problem

In this chapter, we first formulate the basic LMP as a VRPPDTW, and with a critical

observation, we simplify the problem to a special instance of VRPTW. We then in-

troduce a mixed integer programming model of the problem. A tabu search heuristics

algorithm is also proposed to solve this basic formulation of the Last Mile problem.

We continue by integrating the FMP customers in the algorithms along with different

scheduling rules to meet the FMP customers’ pickup time windows. The introduc-

tion of the scheduling makes the computation more extensive, so we propose to use

parallel computing which exploit the modern computer structure to reduce the compu-

tational time. Finally, we will consider the heterogeneous fleet problem, where vehicles

can have different capacities, fixed costs and variables costs. By modifying our tabu

search routine, we propose a heterogeneous fleet tabu search routine as well as a pre-,

post-processing process to solve the heterogeneous fleet problem.

2.1 The Last Mile Problem

2.1.1 Problem formulation

Customer definition

Each customer is characterized by his Pickup and Delivery location (p and d) and

his time windows for pickup and delivery. Each time windows consists of two values:

Ready Time and Due Time with the relationship: Ready Time < Due Time. The

customer is available for pickup or delivery within the interval from Ready Time to

Due Time.

A customer is satisfied if: 1) The pickup is done before the delivery. 2) The

actual pickup and delivery time must be in the time windows. 3) There is no capacity

violation in the pickup, delivery as well as in the nodes in between.

12



System specification and simplification

Our system works under the following rules:

1. For every request i, the actual pickup time (APT) has to be between the Pickup

Ready Time (PRT) and Pickup Due Time (PDT): PRTi ≤ APTi ≤ PDTi.

2. We assume that the customer can be delivered early, the delivery ready time is

hence relaxed.

3. For every request i, the actual delivery time (ADT) has to be before the Delivery

Due Time (DDT): ADTi ≤ DDTi.

4. The fleet is homogenous: all vehicles have the same capacity.

5. The vehicle returns to the depot after serving the last customer.

6. The vehicle departs right after all customers are onboard. This means the de-

parture time of the vehicle is the maximum of the pickup ready time of its

customers.

The general problem as described can only be modeled as a VRPPDTW, however,

in a LMP, all the customers have the pickup locations positioned at the transportation

hub, and hence the customers’ pickup locations can be omitted. This is a critical ob-

servation since it helps simplifying the Last Mile Problem to a vehicle routing problem.

Each customer is now characterized only by the more important delivery location, and

without loss of generality, the fleet’s depot can be set to coincide with the transporta-

tion hub and the customers’ pickup locations. The LMP is thus considered as a special

instance of the VRPTW with time windows in both the depot and the delivery nodes.

Mixed Integer Linear Programming Model

The LMP can be solved as a mixed integer programming problem. A detailed

discussion on how to construct the mathematical problem for the general LMP as a
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VRPPDTW is given in the appendix. Here, we present the MIP model for the basic

LMP after simplification.

Let n be the total number of customers. Let D denote the delivery nodes with

customer i is represented by a delivery node i ∈ D. Each node i has a time window

[li, ui] and a demand qi < 0 since it is always the delivery node. The pickup time

windows for customer i is [Li, Ui]. Let N = D ∪ {0, 2n+ 1} where {0, 2n+ 1} denote

the starting and the ending depot of the vehicles. The service time at node i is si,

and the travel time between node i and node j is tij. Let V be the set of the available

vehicles, every vehicle v ∈ V has a finite capacity Qv and is available during a period

[lv, uv].

xv
ij is the decision variable, it equals 1 if the vehicle v travels from node i to node

j, and 0 otherwise. Sv
i denotes the time the vehicle v reaches node i. yi is the binary

variable, yi = 0 if the customer i is served, yi = 1 otherwise. Qv
i denote the current

number of customers in vehicle v after the vehicle v visits node i. Sv
i denotes the time

the vehicle v reaches node i.
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The mathematical model is:

minimize α
∑
i∈D

yi + β
∑
v∈V

∑
i,j∈N

tijx
v
ij

subject to:∑
v∈v

∑
j∈N

xv
ij + yi = 1 ∀i ∈ D (2.1)

∑
j∈N

xv
0j = 1 ∀v ∈ V (2.2)

∑
j∈N

xv
j(2n+1) = 1 ∀v ∈ V (2.3)

∑
j∈N

xv
ji −

∑
j∈N

xv
ij = 0 ∀i ∈ P,∀v ∈ V (2.4)

xv
ij(S

v
i + si + tij) ≤ Sv

j ∀i, j ∈ N, i, j are assigned to v (2.5)

lv ≤ Sv
0 ≤ uv ∀v ∈ V (2.6)

lv ≤ Sv
2n+1 ≤ uv ∀v ∈ V (2.7)

Li ≤ Sv
0 ≤ Ui ∀v ∈ V, i is assigned to v (2.8)

li ≤ Sv
i ≤ ui ∀i ∈ D, i is assigned to v (2.9)

0 ≤ Qv
i ≤ Qv ∀i ∈ D, i is assigned to v (2.10)

Qv
0 = −

∑
i

qi ∀v ∈ V ; i is assigned to v (2.11)

Qv
j = (Qv

i + qj)x
v
ij ∀v ∈ V ; i, j are assigned to v (2.12)

xv
ij ∈ {0, 1} ∀i ∈ N, ∀j ∈ N, ∀v ∈ V (2.13)

yi ∈ {0, 1} ∀i ∈ D (2.14)

The objective function is to minimize the weighted sum with parameters α and

β of the number of unserved customers and the total distance travelled respectively.

Constraint (2.1) ensures that the customer is either accepted or rejected. Constraint

(2.2) and (2.3) ensure that the route for each vehicle starts and ends at the depot.

Constraint (2.4) and (2.5) ensure the continuity of the route. Constraint (2.6) and
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(2.7) ensure the vehicle is active within its own time windows. Constraint (2.8) and

(2.9) ensures that the pickup and delivery is done within the time windows. Constraint

(2.10) ensures the capacity is valid for each vehicle. Constraint (2.11) and (2.12) ensure

the capacity continuity of the route.

The model, unfortunately, is not linear because of the bilinear constraint (2.12). We

might linearize the nonlinear constraints (see, for example, Chang (2000)), and then

advanced techniques in solving large scale optimization problem (column generation,

Benders decomposition) may be utilized to get an exact solution. However, since

linearization creates a plethora of intermediate variables, and since the original model

has already been exponentially hard, exact solution algorithm might not work well in

this case. Furthermore, the running time constraint is also very critical. For these

reasons, the traditional approach is not really applicable for this project.

2.1.2 Tabu search algorithm

Tabu search is a metaheuristic which uses local search with a wise memory manage-

ment in order to avoid visiting the same solutions. More information about tabu search

can be found in Glover and Laguna (1997). For the representation of the solution, a

vehicle’s route starts with node 0 which is the depot, follows by nodes representing

the customers served by the vehicle, and ends with node 0 since the vehicle returns to

the depot. In each iteration of the tabu search algorithm, we use neighborhood moves

to explore the neighbors of the current solution in order to find a better solution. It is

important to note that the tabu search can only find a local optimal to the problem.

Holding list

The holding list contains the list of requests which are not served by the current

solution. The idea of the holding list was first proposed by Lau et al. (2003). At ini-

tialization, all customers are put in the holding list. A tabu search routine will then be
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called in order to insert the customers into the routes. A feasible solution exists when

the routine manages to drive all customers out of the holding list. At intermediate

steps, the routine might as well take out the customer from the route and insert it

to the hold list. This action helps enlarge the neighborhood of the solution, and thus

increase the quality of the solution.

Neighborhood moves

The single insertion from holding list (IH) move attempts to insert one request into

the existing route. Each request in the holding list will be sequentially chosen; the

algorithm then tries to insert the delivery node into any possible position in the route

(remind that the pickup nodes coincide with the depot). Similarly, a single removal

to the holding list (RH) move attempts to remove a request from the route and put it

into the holding list. A switch with holding list (SH) move tries to switch one customer

from one of the routes with one customer from the holding list.

Figure 2.1: Example of possible insertion move

A transfer (T) move transfers request from one route to another route. A switch

(S) move attempts to switch customer from one route with another customer in an-

other route. An exchange (E) move will exchange subsequent customers between two

routes. A flip (F) move will switch the order of two adjacent nodes in a route, which

is meant to eliminate zigzag cross in the trajectory of the vehicle.
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Figure 2.2: Example of an exchange move

Figure 2.3: Example of a flip move

The hierachical cost

Normally, in a VRP, we use an objective function which is the weighted sum of

individual criteria (eg. total distance, number of customers served etc.) to assess the

quality of the solution. However, it is often challenging to determine a reasonable

weight for each of the criteria. In order to handle this issue, a hierarchical cost is used

to assess the quality of the solutions. The evaluating function will have the priorities

given below:

1. Maximize the satisfied customers

2. Minimize the number of vehicles used

3. Minimize the distance travelled by the fleet

With this hierarchical cost, between two solutions, the solution which serves more

customers is always better regardless of the number of vehicles used. With the same

number of satisfied customers, a solution which uses less number of vehicles is always

better regardless of the distance travelled. This hierarchical cost is supported by the

fact that the satisfaction of the customers is the most important purpose of the Last
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Mile mobility system. Furthermore, minimizing the number of vehicles used is ad-

vantageous if the algorithm is executed in real life environments since it will save the

initial capital investments in the system.

Optimization routine

The optimization routine for the LMP is implemented as in Lau et al. (2003):

let numV eh be the current number of vehicles used, N be the maximum number of

vehicles available, CountLimit be the maximum number of iterations without im-

provement. The Tabu search routine is described in Algorithm 1 with the standard

tabu search TS being described in the Appendix.

Algorithm 1 Tabu search routine

1: while holding list is empty or numV eh ≤ m do
2: count = 0
3: while count ≤ CountLimit do
4: perform TS
5: if better solution found then
6: count = 0
7: else
8: count = count+ 1
9: end if
10: end while
11: numV eh = min(numV eh+ 1, N)
12: end while

2.1.3 Experimental results

In this section, all tests are carried out on a desktop with Core 2 Duo E6750 @2.66GHz,

4.00GB RAM running on Windows Vista SP2 32-bit.

Performance on VRP test cases

There is no VRPTW, VRPPDTW or DARP test case which is applicable to our

basic LMP algorithm. Instead, we use the test cases for the Vehicle Routing Problem
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Table 2.1: Result with Christofides
test cases

Best Our result
Distance Distance

vrpnc1 524.61 530.86
vrpnc2 835.26 833.4
vrpnc3 826.14 871.43
vrpnc4 1028.42 1039.22
vrpnc5 1291.29 1302.07
vrpnc11 1042.11 1118.05
vrpnc12 819.56 878.76

Table 2.2: Result with Taillard test
cases

Best Our result
Distance Distance

tai75a 1618.36 1507.01
tai75b 1344.62 1311.29
tai75c 1291.01 1234.3
tai75d 1365.42 1259.57
tai100a 2041.34 1936.31
tai100b 1940.61 1887.81
tai100c 1406.22 1717.7
tai100d 1581.25 1565.76
tai150a 3055.23 2769.96
tai150b 2656.47 2720.14
tai150c 2341.84 2339.82
tai150d 2645.39 2500.02

(VRP). A very large time windows is added to each customer so that our basic LMP

will solve the VRP test cases. We use Christofides et al. (1979) and Taillard (1993) test

cases and the best solution reported is taken from Diaz (2012). The detailed results for

the two sets of test cases are given in Table 2.1 and Table 2.2. The results show that

our heuristics manages to get very good results on these test cases. This demonstrates

the power of our algorithm, and more specifically our neighborhood definition as well

as our tabu search routine.

LMP test cases

Although the Solomon test cases have become the standard test for VRPTW al-

gorithms, they are not applicable to our algorithm since they do not take into account

the pickup time windows at the depot. For this reason, we generate 50 test cases for

the basic LMP algorithm. The test cases are generated with the following parameters:

• Each test case has 100 customers, each has demand of 1.

• Fleet consists of 30 vehicles of capacity 9.
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• 70% of customers are ready for pickup at time 0, 30% are ready for pickup at

time 100.

• The time windows’ width for each customer (from ready time to due time) is

150.

• Delivery ready time is relaxed, it equals the pickup ready time.

• Delivery due time equals the pickup due time plus the distance between the

pickup location (the depot) and the delivery location.

LMP versus mVRPTW

It is previously shown that the basic LMP is a special instance of the VRPTW

with additional constraints on the time windows at the depot. Thus, we would like to

compare the performance of our basic LMP with the m-VRPTW algorithm proposed

by Lau et al. (2003). We use the test cases generated for the basic LMP, and relax the

pickup time windows: every customer is now available at from time 0. The result of this

test indicates the complexity introduced by incorporating the pickup time windows.

The detail results are given in the appendix.

The frequency of the computational time for the two algorithms on the LMP test

cases with relaxed time windows is shown in Figure 2.4. Adding the time windows at

the depot creates a significant increase in the computational time of the basic LMP

with respect to the mVRPTW algorithm. However, it should be noted that the case

where all the passengers have the same pickup ready time corresponds to the worst

case of the basic LMP algorithm. Furthermore, from the detailed results from the

Appendix D.1 show that the objective values achieved by our LMP problem are very

close to the values of the mVRPTW.
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Figure 2.4: Frequency of computational time for relaxed LMP test cases

2.2 The Last and First Mile Problem

In this section, we are interested in solving a complementary problem to the LMP:

the First Mile Problem (FMP). In the FMP, FMP customers request travel from their

pickup location and they would like to go to the transportation hub. This problem

arises when people want to travel from home to the MRT station in the morning,

or from the workplace to the MRT station in the afternoon. By serving the FMP

customers, the algorithm becomes complete and robust. Furthermore, since both

LMP and FMP customers can be served at the same time, the daily operation cost (in

term of distance travelled, number of vehicles used) is reduced, which in turn increases

the profit to the service provider and reduce the cost to customers. This makes the

system more attractive to both users and enterprises. For this reason, the extension

of the algorithm is of great importance.

The FMP customers will have the same time windows structure as the LMP cus-

tomers: the pickup has to be made between the Pickup Ready Time and the Pickup

Due Time. The delivery ready time for FMP customers is again relaxed: the vehicle

has to deliver customers before the Delivery Due Time, but it can deliver them earlier
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than the Delivery Ready Time. Similarly, the LMP customers are characterized by

their pickup locations since their delivery locations are the depot, and hence can be

omitted. For this reason, the integration of the FMP into the existing system does

not destroy the special VRPTW structure.

2.2.1 Scheduling of the vehicles

Although the combination of the FMP does not pose any problem to the structure

of the algorithm, it brings a big issue to the schedule of the routes. In the case of

the basic LMP, we have assumed that the vehicle will not wait in its route. However,

when we have FMP customers, some situations might arise:

• The vehicle may arrive at the FMP customer earlier than the customer’s pickup

ready time.

• If the vehicle serves only the FMP customers, there is difficulty in determining

a reasonable departure time for the vehicle.

To address this issue, we propose the following scheduling principles for the problem:

The vehicle should not wait when there is a passenger onboard. This scheduling

principle is very practical since it guarantees the satisfaction of customers on the

vehicle. With this scheduling, a vehicle might wait either at the depot, or at the first

LMP customer in route assuming that it is not carrying any other customer.

In the following example, we assume that the vehicle serves 3 LMP customers and

1 FMP customers. In the first situation as depicted in Figure 2.5, the vehicle arrives

at FMP1 early, and there is still LMP3 in the vehicle, so it is not allowed to wait.

In this situation, we can schedule the vehicle to leave the depot later, so that it will

arrive at FMP1 on time. In the second situation illustrated in Figure 2.6, the vehicle

arrives at FMP1 early, but there is no customer onboard, so the vehicle can simply

wait until FMP1 shows up. In the situation where all customers are LMP customers,

23



the departure time of the vehicle is calculated in similar manner as in the first situation

mentioned above.

Figure 2.5: Wait at depot scenario Figure 2.6: Wait at FMP scenario

Furthermore, with the FMP customers in route, it is important to check the time

the vehicle returns to the depot. We need to assure that this return time is before the

delivery due time of all FMP customers served by the vehicle.

2.2.2 Parallel version of the algorithm

Parallel computing is one of modern techniques in High Performance Computing which

helps reduce the runtime needed to solve a problem, or increase the size of the problem

that can be solved. Parallel computing is accomplished by dividing a complex and

large task into smaller and easier to solve subproblems, these subproblems will be

solved concurrently by using either many computers (grid computing), or a processor

with multiple cores (MPI, OpenMP), or the graphic cards (GPGPU). As it has been

indicated before, the computational time of our program has to be very low in order

to be implemented dynamically. For this reason, we need to implement the algorithm

in parallel to reduce the runtime of the system. Furthermore, the nature of our tabu
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search routine, which involves many evaluations of the neighborhood per iteration, is

also a good case to apply parallelization.

More information and the technical terms of parallel computing can be found in

Kumar et al. (1994).

Parallelization techniques

There are different strategies to parallelize an heuristic algorithm, the two most

popular are: 1) at the same time, run several independent searches, and at the end,

compare and take the best solutions; 2) run only one search routine, but in each

iteration, divide the neighborhood into smaller neighborhoods, and evaluate these

neighborhoods concurrently to find the best neighborhood solution. Clearly to see, the

first strategy is meant to increase the quality of the solution, while the latter reduces

the computational time. In this project, since the runtime constraint is important,

the second approach is utilized.

In this project, parallel computing is implemented on one computer with multi-

cores. As our tabu search standard procedure (as describe in the Appendix) consists of

many for-loops, it is advisable to divide these for-loops so that they will be evaluated

in parallel in different cores. The solution from each core will then be compared to

choose the best neighborhood move available.

In parallel computing, the foremost issue is to eliminate the data dependency and

the race condition. In brief, these situations arise when a variable is read/written by

different cores, which results in the inconsistency in the value of the variable and the

errors in the final solution. This issue is tackled by:

• Separating local and global variables: Each evaluation value is stored in local

variable, and only when all the neighborhoods are evaluated, the local variables

are then compared and the global variables are assigned accordingly.

• Eliminating the ’implicit’ pointers which can be changed by other cores.
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Scheduling is also an important issue of parallel computing. The schedule deter-

mines when and how the work is divided among cores. Typical scheduling strategies

are:

• Static: the work is assigned with a developer defined parameter.

• Guided: the work is assigned with a decreasing amount of work among cores.

• Runtime: the work is assigned according to user input at runtime.

• Dynamic: the work is assigned dynamically to cores which are free.

For our tabu search procedure, the amount of work among iterations is highly volatile

due to changes in the number of customers in each vehicle, as well as changes in the

number of vehicles used. For this reason, it is challenging to determine the optimal

chunk size for the whole program; the Static schedule is hence impractical. Similarly,

it is hard to require the end user to specify a correct chunk size at runtime, thus

the Runtime schedule will not be considered. Furthermore, we observe that even the

amount of work in one iteration is not symmetrical: a vehicle with more customers

requires more work than a vehicle with less customers, so the Guided schedule will

not work efficiently. The Dynamic schedule stands out to be the most appropriate

schedule to use for parallelization since it works well when there is high variability in

the amount of work to assign.

In addition, the option “nowait” is also used. With this option, each core, after

finishing its given work, directly receives new work to evaluate without waiting for

other cores.

Parallelization implementation

The parallelization is implemented in each tabu search procedure, with the pseu-

docode described in Algorithm 2.

26



The parallel environment is created in line 2, and all variables declared afterwards

are local (private) variables. In line 4, the ’for’ loops are instructed to be run in parallel

with nowait option and dynamic schedule. In line 6, a critical point is created to avoid

any data dependency or race condition while comparing and writting the variables.

Algorithm 2 Parallelized tabu search routine

1: Declare global variables
2: Start the parallel computing environment (function call: #pragma omp parallel )
3: Declare local (private) variables
4: Set schedule to dynamic (function call: #pragma omp for nowait sched-

ule(dynamic) )
5: Evaluate the neighborhood
6: Synchronization (function call: #pragma omp critical )
7: Compare and choose the best move

2.2.3 Experimental result

Tests are carried out on a desktop with Core 2 Duo E6750 @2.66GHz, 4.00GB RAM

running on Windows Vista SP2 32-bit. We concentrate on finding the computational

time frequency the test cases, rather than finding the computational time average.

Results with LMP test cases

We test the basic LMP test cases on all three algorithms: the basic LMP, the

LMP and FMP with waiting time, and the LMP and FMP with waiting time under

OpenMP. The purpose behind this test is to see the increase in the complexity when we

take into account the FMP customers, and also to see the performance improvements

by using parallel computing. Since the basic LMP algorithm is the most suitable to

handle these test cases, we predict that the basic LMP algorithm will dominate the

two others. The detail result on each test case can be found in the appendix.

The computational time of three algorithms on the LMP test cases is shown in

Figure 2.7. As being predicted, the basic LMP has the best performance. There is a
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big gap in the computational time between the basic LMP and the LMP+FMP with

waiting time, which suggests that the scheduling has caused a significant increase in the

complexity of the algorithm. The parallel version manages to reduce the computational

time by 1.8 times of the original, which reduces the computational time to less than

30 seconds in all test cases.
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Figure 2.7: Frequency of computational time for LMP test cases

New test cases for LMP+FMP

We generate 50 test cases for the LMP + FMP algorithm:

• Each test case has 80 LMP customers and 20 FMP customers.

• Every customer has a demand of 1. The FMP customer is represented by demand

of “-1”, while LMP is represented as “1”.

• Time windows and fleet is determined in the same way as for the LMP test cases.

Results with LMP+FMP test cases

Since the basic LMP does not handle FMP customers, and the LMP+FMP with

waiting time runs slower than the parallel version, in this section, we test only the

LMP + FMP with waiting time under OpenMP. The purpose of this test is to evaluate
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the real-life performance of the algorithm, thus we use the extension test cases which

have both LMP and FMP customers.
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Figure 2.8: Frequency of computational time for LMP+FMP test cases

Figure 2.8 depicts the computational time of the algorithm on LMP+FMP test

cases. The real life performance with the LMP+FMP test cases gives an average time

of 28 seconds, and the maximum computational time is 40 seconds. This performance

is regarded as satisfactory for real life implementation, however, there will be certain

difficulties if this algorithm is used to solve larger instances, or if we would like to

reduce the available computational time.

In conclusion, it is arguable that the scheduling of waiting for customers imposes

a certain burden to the tabu search heuristics in terms of computational time. In real

life implementation, it is highly recommended that the service provider simplify the

waiting times. It can be achieved by considering the dynamic vehicle routing problem

which will be introduced in Chapter 3. For the rest of this chapter, we will study the

problem without scheduling of the vehicles.
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2.3 The Last and First Mile Problem with heterogeneous fleet

Another important variant of the vehicle routing problem is the heterogeneous fleet

VRP. Since the heterogeneous fleet is necessary for real life implementation, in this

section, we extend our algorithm to handle the heterogeneous fleet. More specifically,

we consider two types of heterogeneity:

1. Different capacity

2. Different cost (both fixed cost and variable cost, where fixed cost is charged any

time we use the vehicle, while the variable cost is charged with the distance

travelled)

Two methods are used in order to handle the heterogeneous fleet: the pre- and

post-processing, and the modifications in the tabu search routine

2.3.1 The heterogeneous tabu search procedure

The tabu search procedure described in the last section does not account for the

different cost of the vehicles. For the heterogeneous tabu search procedure, for every

move, when the penalty of the move is calculated, it is necessary to find the best

vehicle to serve the route.

The algorithm to find the best vehicle if the move involves only one route is de-

scribed in Algorithm 3, and the algorithm to find the best pair of vehicles if the move

involves two routes is described in Algorithm(4).

Nevertheless, the practice of finding the lowest cost vehicles is computationally

intensive. In the algorithm, we will run the standard tabu search first to construct

a reasonably good initial solution, and then we use the heterogeneous tabu search

to further improve the solution. The detail algorithm for the heterogeneous fleet is

described in the Appendix C.
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Algorithm 3 Heterogeneous fleet penalty for moves involving one route

1: Calculate the number of customers served by route A and the distance of route A
2: Let Υ be the set of available vehicle, let υA be the vehicle currently used to serve

route A
3: for Every vehicle in {Υ, υA} do
4: Calculate the fixed cost and the variable cost of using this vehicle to serve route

A
5: if This vehicle has the lowest total cost then
6: Choose this vehicle to serve route A
7: end if
8: end for

Algorithm 4 Heterogeneous fleet penalty for moves involving two routes

1: Calculate the number of customers served by route A, B and the distance of route
A, B

2: Let Υ be the set of available vehicle, let υA, υB be the vehicle currently used to
serve route A,B

3: for Every pair of vehicles in {Υ, υA, υB} do
4: Calculate the fixed cost and the variable cost of using this pair of vehicles to

serve route A and B
5: if This pair of vehicles has the lowest total cost then
6: Choose this pair of vehicles to serve route A and B
7: end if
8: end for
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2.3.2 The preprocessing and postprocessing procedures

The use of pre- and post-processing is a simple idea to take into account the different

capacity and cost for each vehicle. For the heterogeneous fleet, the order of the vehicles

which are sequentially used in the standard tabu search procedure is critical. It is then

beneficial to have a good order of vehicles to be use, and we may consider two ways

of sorting the vehicles for the preprocessing:

1. Sort the vehicles in increasing fixed cost: for this rule, the vehicles with lower

fixed cost will be used first. By using this rule, the manager expects to use low

fixed cost vehicles, which results in a lower cost planning. A more complicated

rule, for example, using weighted sum of the fixed cost and variable cost, can

also be used.

2. Sort the vehicles in decreasing capacity: for this rule, the vehicles with higher

capacity will be used first. By using high capacity vehicles first, the manager

expects to use less number of vehicles, which results in more compact planning.

This sorting is important in real life implementation where the service provider

has only a fixed number of vehicles in the fleet.

Furthermore, we after running the tabu search heuristics, we can run a simple post-

processing which might detect improvement over the routing plan as in Algorithm 5.

Our complete algorithm can be summarized in the flow chart shown in Figure 2.9.

Algorithm 5 Post processing procedure

1: Sort all the route in increasing number of customers served
2: for Every route in the ordered list do
3: Let Υ be the set of all unused vehicles
4: Let υ be the vehicle currently used to serve this route
5: Find a vehicle in the set {Υ, υ} which has the lowest cost
6: Use the found vehicle to serve this route
7: end for
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Figure 2.9: The optimization procedure for the heterogeneous fleet Last Mile Problem

2.3.3 Experimental results

We benchmark our heterogeneous fleet algorithm using two data sets which are taken

from Taillard (1996). Both test sets contain 8 problems numbered from 13 to 20

with customers’ position and demand taken from Christofides and Eilon (1969). The

number of customers in each test case is from 50 to 100.

1. The first test set (VFM): the vehicles have different fixed cost and variable cost.

2. The second test set (VFMHE): the vehicles have different variable cost. The

fixed cost is 0.

We report the total cost and the computational time reported by each paper, as

well as the total cost and computational time of our algorithm running on a desktop

computer with Core 2 Duo 2.67Ghz, 4GB RAM. For comparison purposes where
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Table 2.3: Test result for VFM test cases

Pr Size Taillard (1996) Gendreau et al. (1999) Renaud et al. (2002) Choi & Tcha (2007) LMP
Total cost Time(s) Total cost Time(s) Total cost Time(s) Total cost Time(s) Total cost Time(s)

13 50 2413.78 470 2408.41 724 2406.43 50 2406.36 8 2467.67 20.5
14 50 9119.03 570 9119.03 1033 9122.01 160 9119.03 36 9145.02 20.5
15 50 2586.37 334 2586.37 901 2618.03 45 2586.37 8 2640 16.15
16 50 2741.5 349 2741.5 815 2761.96 28 2720.43 7 2780.72 24.63
17 75 1747.24 2072 1749.5 1022 1757.21 652 1744.83 160 1807.33 42.84
18 75 2373.63 2744 2381.43 691 2413.39 1037 2371.49 46 2432.5 96.1
19 100 8661.81 12528 8675.16 1687 8687.31 1110 8664.29 890 8703.64 97.2
20 100 4047.55 2117 4086.76 1421 4094.54 307 4039.49 161 4175.5 85

Avg. 4211.36 2648 4218.52 1037 4232.61 423.6 4206.54 164 4269.0475 50.365

the total cost is important, we use the pre-processing rule of sorting the vehicles

in increasing fixed cost.

For the VFM test cases, we compare our algorithms with those proposed by Taillard

(1996), Gendreau et al. (1999), Renaud and Boctor (2002) and Choi and Tcha (2007).

The result is reported in Table 2.3. The average deviation from the best solution found

in the literature is only 1.5%, this can be due to low deviation in test case 14 and test

case 19 where the total cost is very high which in turn results in deviations of only

0.2% and 0.4%. For the last three test cases, the computational time is around 90

seconds, but it is still reasonable when we compare with other algorithms, especially

for the test case 19.

For the VFMHE test cases, we compare our algorithm with four algorithms solving

the heterogeneous fixed fleet vehicle routing problem: Taillard (1996), Tarantilis et al.

(2004), Li et al. (2007) and Brandão (2011). The results are reported in Table 2.4.

We can see that our algorithm gives very fast computational time with competitive

total cost: the computational time is kept at below 1 minute while the deviation of

our cost from the best solution found is on average 2%. Our algorithm only has some

problems with test case 19 where the deviation from the best solution found is 5%.

Our algorithm has very good computational time with all 4 test cases of 50 customers.
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Table 2.4: Test result for VFMHE test cases

Pr Size Taillard (1996) Tarantilis et al.(2004) Li et al. (2007) Brandao (2011) LMP
Total cost Time(s) Total cost Time(s) Total cost Time(s) Total cost Total cost Time(s)

13 50 1518.05 473 1519.96 843 1517.84 358 1517.84 56 1541.05 8.88
14 50 615.64 575 611.39 387 607.53 141 607.53 55 609.856 8.19
15 50 1016.86 335 1015.29 368 1015.29 166 1015.29 59 1030.965 10
16 50 1154.05 350 1145.52 341 1144.94 188 1144.94 94 1155.4 7.15
17 75 1071.79 2245 1071.01 363 1061.96 216 1061.96 206 1070.942 26.3
18 75 1870.16 2876 1846.35 971 1823.58 366 1831.36 198 1846.053 45.01
19 100 1117.51 5833 1123.83 428 1120.34 404 1120.34 243 1189.73 58.02
20 100 1559.77 3402 1556.35 1156 1534.17 447 1534.17 302 1591.648 59.16

Avg. 1240.48 2011 1236.21 607 1228.21 285 1229.18 151 1254.4555 28.67125

2.4 Conclusions

In this chapter, we propose various algorithms for the last mile mobility system. The

algorithm is based on a tabu search heuristics for limited number of vehicles proposed

in Lau et al. (2003). Our first algorithm serves only the last mile customers, with

customers wanting to travel from the transportation hub to their desired destinations.

We extend the algorithm to take into account the first mile customers. Next, we

consider a schedule rule for the vehicle to meet the first mile customers’ pickup time

windows. The algorithms are then parallelized using OpenMP. Our algorithms are

applicable because of their practical utilities and low computational times.

We also study the problem with heterogeneous fleet where vehicles can have differ-

ent capacity, fixed cost and variable cost. This extension is very important when we

consider the real life last mile mobility system. Along with the pre-, post-processing,

we modify our existing tabu search routine into a heterogeneous fleet tabu search al-

gorithm. Experimental results show that our algorithm performs well with existing

test cases for the heterogeneous fleet with very good computational time.
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3 The multi-period vehicle routing problem

In this chapter, we consider a real life implementation of the last mile mobility system.

In practice, the last mile mobility system is a multi-period vehicle routing problem

where customers’ requests are revealed along the day and the decisions of assigning

the customers to the vehicles as well as routing the vehicles have to be made according

to the requests received so far. The planning horizon is divided into periods, and the

vehicles will start to leave the depot at the beginning of each period. The vehicle,

after serving all the customers assigned to it, returns to the depot and is available

for the next period. The tabu search heuristics developed in the previous chapter can

be utilized for the multi-period setup: at the beginning of each period, we use one

of the algorithms to solve for the unserved requests revealed up to that period to get

the assignment and the routing plan for the period, and we can continue the same

practice for each period in the planning horizon. Nevertheless, major improvements

are necessary to make the algorithms more robust: the schedule can be relaxed without

deteriorating the service quality; furthermore, the algorithms need to be modified to

make use of the heterogeneous fleet.

This chapter is motivated by the service provider’s needs. Every company who

wants to implement the last mile mobility system will have to face the profitability

questions about the systems. Profitability can be ensured by good decisions made at

the strategic and the operational level. In the strategic level, the service provider will

have to decide how many vehicles they need to buy or rent, what is the capacity of each

vehicle. In the operational level, the service provider needs to guarantee an efficient

daily business, including good routing plans. For these reasons, the service provider

requires a good decision support to assist them in making these hard decisions, and

the aim of this chapter is to propose such decision support system.

The contributions of this chapter are, then, two-fold. First, we construct a system

which, given a heterogeneous fleet and a multi-period demand, generates the assign-
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ment and routing plan for each period. In addition, the system is also a fleet sizing

tool to be employed by the service provider: given the demand, the service provider

may try different combinations of the fleet and determine which fleet composition is

the most efficient and profitable to invest in. Using data from real life public trans-

port system in Singapore, we demonstrate the capability of the system in assisting the

service provider for a last mile mobility system based on Clementi area.

3.1 Relaxation of the schedule

3.1.1 Relaxation of the waiting time

In the last chapter, due to the time windows of the first mile customers, we propose

a scheduling rule for the vehicle: it can wait if there is no passenger onboard. This

scheduling rule is practical for a static problem: schedule the fleet for daily or weekly

operations. However, in the multi-period vehicle routing setup, we are going to solve

one problem instance for each period, so instead of waiting for the passenger, the

vehicle should just go back to the depot as early as possible so that the vehicle is

available for serving the next period. Furthermore, when we decompose the planning

horizon into periods, the length of each period can be small enough so that we can

assume that all first mile customers are ready to be served in this period. This, in turn,

means the first mile customers should be at their pickup location at the beginning of

the period. Further real life negotiations between customers and the service providers

on the time windows at the point of making the requests also facilitate this practice.

3.1.2 Relaxation of the time windows at the depot

We relax further the time windows at the depot of both types of customers; more

specifically, we relax the pickup time windows of the LMP customers, along with the

delivery time windows of the FMP customers. Intuitively, it is equivalent to keeping

the time windows only for the more important nodes of each type: delivery nodes for
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LMP and pickup nodes for FMP. In real life, it is reasonable to consider that the LMP

customers should reach their desired final destination on time, and the FMP customers

are picked up within their available time windows. Furthermore, we observe that the

LMP customers normally arrive in batch, so we can assume that they will have the

same pickup time windows, and by carefully solve the new problem at a reasonable

time frame, we can easily account for the pickup time windows of the LMP customers.

Thus, for the multi-period problem, we consider a LMP+FMP routing algorithm

without waiting, time windows relaxed: if the vehicle arrives at the first mile customer

early, it will not wait for that customer; furthermore, the time windows at the depot

are relaxed.

3.2 Use of the heterogeneous fleet

For the multi-period problem, one of the most challenging problems is how to handle

the fluctuation in demand at different time of the day: the demand is low during

early morning or late evening, but we may experience very high demand during rush

hours. Indeed, we may use vehicles of small capacity to serve the early morning or late

evening customers, or to serve a small group of customers which is geographically close;

while big capacity vehicles becomes profitable during rush hours when there are a large

number of customers travelling together. The service provider may consider employing

external, part-time fleet, for example, by using vacant school bus, or taxis, in order to

meet the high peak demand. These ideas necessitate the use of a heterogeneous fleet.

3.3 Experimental result

3.3.1 Description of the real life data

We acquire a real data set from the Land Transport Authority of Singapore and the

Singapore-MIT Alliance for Research and Technology. The data keep track of the trips
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of passengers each day from the ez-link card for both MRT and bus system. From

this data set, we can easily recognize the travel pattern of the public transport in

Singapore.

For the scope of this thesis, we study an example of a Last Mile Mobility System

which can be implemented in the Clementi area with the transportation hub is the

Clementi MRT station / Bus terminal. The services being considered include two main

types 4 feeder bus services which run around the Clementi area: bus 96, 282, 284, and

285. The routes for these buses are described in the Figure 3.1. These four buses

cover a substantial area in the Clementi region, including the National University of

Singapore, several industrial zones as well as residences. We consider in this part both

last mile passengers and first mile passengers in order to reflect truely the real life

problem.

The demand frequency of the last and first mile passengers over a period of one

week can be plotted as in Figure 3.2 and in Figure 3.3. From these figures, we can

see that there is high demand during the morning and afternoon rush hours for week

days. Furthermore, the peak for last mile passengers is higher in the morning, and the

peak for first mile passengers is higher in the afternoon.

We concentrate, then, on the morning demand for day 2, since day 2 has the

highest peaks for both last mile and first mile customers. We extract the data for each

5 minute time slot from 6.45am to 10am. The detail about the demand can be found

in Table 3.1 and Figure 3.4.

We use the rolling horizon method to solve this multi-period problem: in each

period, we solve the problem with the demand extracted from the real life data, under

the assumption that all the passengers of each period have to be served (or equivalently,

we cannot delay the passenger to the time slot after). For this problem of 40 periods,

the rolling horizon method indicates that we solve 40 deterministic problems, one

problem for each period. We use the word deterministic to differentiate the method

39



Figure 3.1: Map of feeder bus services in Clementi (Map taken from Google Maps)

from other dynamic/probabilistic methods where the demand arrives and is taken into

account dynamically.

Furthermore, by using the real life data, we can extract the average speed of the

vehicles and make the problem even more realistic. The average speed used in this

part is 13.32km/h. We also require that each vehicle, after coming back to the depot,

needs to rest for 5 minutes before it is available for another trip. This 5 minute buffer

has several real life implications: it can represent the working condition constraint

where the drivers need to rest after a certain duration of work, and it can also be used

to offset possible adverse conditions such as traffic jams, bad weather which may affect

the time the vehicles return to the depot.
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Demand From Clementi for the week, bin width = 10 min
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Figure 3.2: Demand frequency of last mile passengers from Clementi Bus interchange
during one week

3.3.2 Test using internal fleet

In this section, we consider the situation where the service provider uses only their

own fleet: the service provider buys or signs a full time contract to use the fleet for

the last mile mobility system. In order to reduce the maintenance cost, it is suggested

that the service provider use a homogeneous fleet. Here, we assume that the service

provider has three choices on the capacity of the vehicles: 10, 20 or 30. The number

of vehicles required for each fleet is depicted in Table 3.2, and the details about the
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Demand To Clementi for the week, bin width = 10 min
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Figure 3.3: Demand frequency of first mile passengers to Clementi Bus interchange
during one week

routing for each period are shown in the Table 3.3 and Table 3.4.

We can see that the fleet of capacity 20 and 30 outperforms the fleet of capacity 10

on both the number of vehicles required, as well as on the routing for each period. By

increasing the size of the vehicles from 10 to 20, we manage to reduce more than 30

vehicles; however, further increasing the size from 20 to 30 only reduces 10 vehicles.

The fleet of 30 gives better or equal distance travelled each period to the fleet of 20.

From these results, we recommend that the service provider choose the fleet of capacity

20 or 30, and disregard the choice of the fleet of capacity 10.
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Table 3.1: Demand for each 5 minute time slot of day 2

Period Time LMP FMP Period Time LMP FMP Period Time LMP FMP
1 6:45 53 32 14 7:50 102 17 27 8:55 48 5
2 6:50 44 58 15 7:55 91 53 28 9:0 36 8
3 6:55 18 43 16 8:0 66 29 29 9:5 60 7
4 7:0 45 47 17 8:5 55 27 30 9:10 9 11
5 7:5 60 22 18 8:10 125 12 31 9:15 82 15
6 7:10 52 22 19 8:15 133 24 32 9:20 25 6
7 7:15 43 9 20 8:20 72 12 33 9:25 26 2
8 7:20 27 67 21 8:25 75 0 34 9:30 64 8
9 7:25 52 18 22 8:30 39 30 35 9:35 61 29
10 7:30 113 12 23 8:35 100 5 36 9:40 72 19
11 7:35 88 11 24 8:40 71 16 37 9:45 17 7
12 7:40 57 21 25 8:45 117 8 38 9:50 21 9
13 7:45 75 55 26 8:50 40 45 39 9:55 76 15

40 10:0 43 6

Table 3.2: Number of vehicles required for each capacity

Capacity 10 Capacity 20 Capacity 30
Number of Vehicles Required 85 51 41

Table 3.3: Test result for internal fleet, period 1-20

Capacity 10 Capacity 20 Capacity 30
Period Vehicles Used Distance Vehicles Used Distance Vehicles used Distance

1 7 44.5 4 31.65 3 21.9
2 7 43.65 4 28.1 3 22.2
3 6 28.45 4 22.7 3 20.39
4 6 43.1 4 29.2 4 23.65
5 8 53.85 5 31.45 4 28.1
6 6 43.3 5 34.9 3 20.5
7 6 38.4 4 26.4 3 18.7
8 7 38.7 4 23.9 3 16.2
9 6 41.35 4 25.3 3 22.4
10 13 85.8 7 50.6 6 37.2
11 9 63.6 5 34.79 5 34.79
12 7 44 4 27.1 4 27.1
13 11 67.09 6 40.75 4 26.45
14 11 75 7 47.5 5 33.9
15 11 70.95 6 43.8 5 34.79
16 7 51.2 5 35.79 4 28.2
17 9 56.7 6 34.5 4 30.4
18 13 92.5 7 49.4 5 35
19 15 102.65 8 58.75 6 45
20 9 60.6 6 40.5 5 33.9
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Figure 3.4: Number of Customers over time

3.3.3 Test using internal and external fleet

In this section, we consider the case where the service provider has the possibility to

sign a contract to use the external fleet. The external fleet may include school bus,

private bus, or taxis. The external will relieve the initial investment for the service

provider; however, the fixed cost and variable cost for the external fleet are higher

than the internal fleet.

Due to the results in the last part, we assume that the service provider will choose to

buy the internal fleet of capacity 20. The external fleet consists of vehicles of capacity

20 and 10 as well as of taxis of capacity 4. Table 3.5 presents two fleet compositions

which are used in the test. The fixed cost is charged whenever the vehicle is used, while

the variable cost is charged per km distance travelled by the vehicle. The external

vehicles with capacity 4 are taxis.

The results with two types of fleet composition are shown in Table 3.6 and Table

3.7. We can see that the fleet composition 2, which uses five more external vehicles

of capacity 10, does not need to employ any taxi for the period routing. Due to this

fact, the fleet composition 2 manages to perform better than the fleet composition 1

in both the fixed and variable costs.
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Table 3.4: Test result for internal fleet, period 21-40

Capacity 10 Capacity 20 Capacity 30
Period Vehicles Used Distance Vehicles Used Distance Vehicles used Distance

21 9 59.65 5 36.2 4 29.5
22 7 45.85 5 27.1 4 27.1
23 11 78.4 6 43.9 4 29.5
24 9 63.3 6 41.2 5 34.5
25 13 93.3 8 55.9 6 41.5
26 8 46.1 5 25.25 3 21.8
27 6 41.5 4 27.1 3 20.39
28 5 32.79 4 26.1 3 19.39
29 8 49.35 5 29.25 4 22.55
30 2 13.1 2 13 2 13
31 10 65.59 6 38.79 5 32.1
32 4 27.8 3 21.1 2 14.4
33 4 25.2 3 18.5 2 11.8
34 7 47.9 4 27.8 3 21.1
35 10 62.2 6 38.04 4 27.8
36 9 57.05 5 33.4 4 26.7
37 2 14.4 2 14.4 2 14.4
38 4 26.2 3 19.5 3 19.5
39 10 61.95 5 33.4 4 26.7
40 5 34.5 3 21.1 3 21.1

Table 3.5: External Fleet Composition

Fleet 1 Fleet 2
Capacity No of Vehicles Fixed cost Variable cost Capacity No of vehicles Fixed cost Variable cost

Internal 20 30 100 10.0 20 30 100 10.0
External 20 5 200 15.0 20 10 200 15.0
External 10 10 175 12.5 10 10 175 12.5
External 4 19 250 25.0 4 0 250 25.0
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Table 3.6: Test result for internal and external fleet, period 1-20

Fleet 1 Fleet 2

Period Fixed cost Variable cost Fixed cost Variable cost

1 400 316.5 400 316.5

2 400 281 400 281

3 400 227 400 227

4 400 292 400 292

5 500 314.5 500 314.5

6 500 349 500 349

7 400 264 400 264

8 675 324.8 675 324.8

9 475 275.3 475 264.1

10 700 506 700 506

11 575 362.9 575 362.9

12 400 271 400 271

13 775 450.8 775 450.5

14 1300 685.9 1150 603

15 700 471 700 435.7

16 1250 678.7 850 466.5

17 2700 1493.5 875 468

18 700 494 700 494

19 1125 710.6 1075 711.2

20 1800 1063 1000 455.9
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Table 3.7: Test result for internal and external fleet, period 21-40

Fleet 1 Fleet 2

Period Fixed cost Variable cost Fixed cost Variable cost

21 1650 1114 575 381.2

22 650 372.5 850 380.2

23 675 458.2 600 439

24 950 510.7 1150 582

25 2450 1606.5 1250 694

26 400 295 500 252.4

27 400 271 400 271

28 400 261 400 261

29 500 292.5 500 292.5

30 200 130 200 153

31 600 387.9 600 387.9

32 300 211 300 211

33 300 185 300 185

34 400 278 400 278

35 750 406.1 750 406.1

36 500 334 500 334

37 200 144 200 144

38 300 195 300 195

39 500 334 500 334

40 300 211 300 211

The output of the system is a detailed planning for the morning rush hour which

is decomposed into 40 periods of 5 minutes. Such a planning is given in the Figure

3.5. For each vehicle, the red horizontal stripe indicates that the vehicle is used for

planning during these periods.

47



Figure 3.5: Morning rush hour planning for Fleet 2

3.4 Conclusions

In this chapter, we propose the multi-period algorithm for the last mile mobility sys-

tem. We employ the heterogeneous fleet algorithm developed in the last chapter to

solve the multi horizon using rolling horizon method. In the multi-period settings,

we can relax the scheduling rule without deteriorating the quality of the service. The

goal of this multi-period routing algorithm is two-fold: the service provider can use

the algorithm for their daily operations, or they can use it for planning the fleet size,

capacity and external resources. Our algorithm is tested using real life public trans-

port data taken from the Land Transport Authority of Singapore. The algorithm is
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tested under two scenarios: an internal fleet and an internal-external fleet. The re-

sults suggest that the service provider should invest in an internal fleet of capacity

20 or 30 instead of 10. Furthermore, we also suggest the service provider to sign an

external fleet contract in order to reduce the initial capital investments. By carefully

configuring the fleet compositions, the service provider will find an efficient fleet size

for the system. A good fleet composition and a reasonable daily routing will better

ensure the profitability and the viability of the last mile mobility system, which is the

critical factor for the service provider to decide whether to enter the market.
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4 The Last Mile Problem with uncertain travelling

time

The stochastic VRP has been an active field of research during the last few years. The

problem is highly important as the travelling time is always subject to uncertainty due

to possible congestion on the route. In the Last Mile mobility system, the problem

is even more critical since the system is implemented in high density region (city

center, etc.) which may experience tremendous fluctuations in the travelling time.

Furthermore, in the multi-period setup, uncertain travelling time may cause the vehicle

to return late to the depot, which in turns results in further negative changes in

the multi-period planning. In this chapter, we consider a satisficing approach to the

stochastic VRP. After characterizing the travelling time and the lateness index, we

demonstrate changes to the tabu search, and then test the satisficing approach against

the static mean travelling time approach.

4.1 Problem formulation

In this chapter, we consider a last mile mobility system where there are only last mile

customers. When the travelling time is certain, we have imposed a strict time windows

in order to satisfy a certain level of service quality to the customers. In the case of

uncertain travelling time, we assume that the time windows are soft, and there is a

penalty if the time windows are violated. The late time windows become a time target

to achieve: we want the travelling time to meet the target as high as possible. In this

chapter, we use the satisficing measure approach introduced by Brown and Sim (2009).

4.1.1 Modeling travelling time

Our model of uncertainty is defined by a state space Ω and a σ-algebra F of events

in Ω. We model the travelling time between node i and node j as a random variable,
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more specifically, as an affine function of independently distributed factors z̃1, . . . , z̃K ,

i.e

t̃ij = t0ij +
K∑
k=1

tkij z̃k

We define the set T of all attainable travelling time as:

T = {t̃ | ∃(t0, t) ∈ RK+1 : t̃(ω) = t0 +
K∑
k=1

tkz̃k(ω)}

The definition of z̃k is general, that is, the probability distribution of z̃k belongs

to some family of distributions Fk. Fk can be well defined distributions (normal dis-

tribution, gamma distribution), or it can take some ambiguous distributions. For an

example of ambiguous distributions, we can assume that Fk contains all possible distri-

butions with bounded support z̃k ∈ [zk, zk] and with mean support [µ
k
, µk] ∈ [zk, zk].

Fk =

{
Pk

∣∣∣∣Pk

(
z̃k ∈ [zk, zk]

)
= 1,EPk

(
z̃k
)
∈ [µ

k
, µk]

}
(4.1)

4.1.2 Lateness index

Definition 1 Given a time target, τ ∈ R, the lateness index (LI), ρτ : T → [0,+∞)

is defined by

ρτ (t̃) = sup{a > 0 : Ca(t̃) ≤ τ}

where the function Ca(t̃) : T → R is defined by

Ca(t̃) = sup
P∈F

(
1

a
logEP[exp(at̃)]

)
=

1

a
log sup

P∈F

(
EP[exp(at̃)]

)
It is important to note that the lateness index is similar to the entropic satisficing

measure proposed by Brown and Sim Brown and Sim (2009). Furthermore, we assume
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that

t̃ = t0 +
K∑
k=1

tkz̃k

Since each z̃1, . . . , z̃
K are independent, Ca(t̃) can be simplified as:

Ca(t̃) = Ca(t
0 +

K∑
k=1

tkz̃k) = t0 +
1

a

K∑
k=1

log sup
Pk∈Fk

(
EPk

[exp(atkz̃k)]
)
= t0 +

K∑
k=1

Ca(t
kz̃k)

Lemma 1 Ca(t̃) is a non-decreasing function of a > 0.

Proof: For a1 > a2 > 0,

Ca1(t̃) = sup
P∈F

1

a1
logEP[exp(a1t̃))]

= sup
P∈F

1

a1
logEP

[
(exp(a2t̃))

a1
a2

]
≥ sup

P∈F

1

a1
log

(
EP

[
exp(a2t̃)

])a1
a2

= sup
P∈F

1

a2
logEP[exp(a2t̃))]

= Ca2(t̃)

where the inequality comes from the Jensen’s inequality.

Next, we characterize the function Ca(t
kzk) for different family of distributions Fk:
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Theorem 2 • If Fk contains a single normal distribution with mean µk and stan-

dard deviation σk, then

Ca(t
kz̃k) = tkµk +

1

2
(tk)2σ2

ka

• If Fk contains a single uniform distribution in [zk, zk], then

Ca(t
kz̃k) =

1

a
log[

exp(atkzk)− exp(atkzk)

atk(zk − zk)
]

• If Fk contains a single gamma distribution with shape α and scale θ, and tk > 0,

then

Ca(t
kz̃k) = −αtk

a
log(1− aθ)

• If Fk contains all possible distribution with bounded support and bounded mean

support as in (4.1), then

Ca(t
kz̃k) =


1
a
log

(zk−µk)exp(atkzk)+(µk−zk)exp(atkzk
)

zk−zk
when tk < 0

1
a
log

(zk−µk
)exp(atkzk)+(µk−zk)exp(atkzk

)

zk−zk
when tk ≥ 0

Proof: The first three equations are derived from the moment generating func-

tions of the normal and gamma distribution. For the third equation, let λ = atk, we

first determine the expressions for supP∈F EP
(
exp(λz̃k)

)
. First we formulate it as a

convex optimization problem:
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maxP EP
(
exp(λz̃k)

)
s.t. EP(1) = 1

EP(z̃
k) ≤ µk

EP(z̃
k) ≥ µk

P
(
{zk ∈ [zk, zk]}

)
= 1

By weak duality, we have:

max
P∈F

EP
(
exp(λz̃k)

)
≤min y0 + µky1 − µky2

s.t. y0 + zky1 − zky2 ≥ exp(λzk) ∀zk ∈ [zk, zk]

y1, y2 ≥ 0

(4.2)

Since exp(λzk) + (y2 − y1)z
k is a convex function in zk, we note that

y0 ≥ max
zk∈[zk,zk]

(
exp(λzk) + (y2 − y1)z

k
)

= max
{
exp(λzk) + (y2 − y1)z

k, exp(λzk) + (y2 − y1)z
k
} (4.3)

Thus,

max
P∈F

EP
(
exp(λz̃k)

)
≤ min

y1,y2≥0
max

 exp(λzk) + (µk − zk)y1 + (zk − µk)y2,

exp(λzk) + (µk − zk)y1 + (zk − µk)y2


(4.4)

The optimal value of y1 and y2 should equate the two terms in (4.4), so

y1 − y2 =
exp(λzk)− exp(λzk)

zk − zk

When λ < 0, substitute y2 in terms of y1 in (4.4) we have:
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max
P∈F

EP
(
exp(λz̃k)

)
≤min

y1≥0

{
exp(λzk) + (µk − zk)y1 + (zk − µk)

(
y1 −

exp(λzk)− exp(λzk)

zk − zk

)}
=min

y1≥0

{
exp(λzk) + (µk − µk)y1 + (zk − µk)

(
−exp(λzk)− exp(λzk)

zk − zk

)}
=
(zk − µk)exp(λzk) + (µk − zk)exp(λzk)

zk − zk

When λ ≥ 0, substitute y1 in terms of y2 in (4.4) we have:

max
P∈F

EP
(
exp(λz̃k)

)
≤min

y1≥0

{
exp(λzk) + (µk − zk)

(
y2 +

exp(λzk)− exp(λzk)

zk − zk

)
+ (zk − µk)y2

}
=min

y1≥0

{
exp(λzk) + (µk − µk)y2 + (µk − zk)

(
exp(λzk)− exp(λzk)

zk − zk

)}
=
(zk − µk)exp(λzk) + (µk − zk)exp(λzk)

zk − zk

The optimal distribution can be achieved under a two point distribution:


P(z̃k = zk) = zk−µk

zk−zk
,P(z̃k = zk) = µk−zk

zk−zk
, when λ ≥ 0

P(z̃k = zk) =
zk−µk

zk−zk
,P(z̃k = zk) =

µk−zk

zk−zk
, when λ < 0

This completes the proof.

Definition 2 For a routing plan of N customers, for each customers i, i = 1, . . . , N ,

there is a time target τi, the overall lateness index of the routing plan is defined as:

ϱ =
N∑
i=1

ρτi(t̃i)

where t̃i denotes the travelling time to customer i.
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The travelling time t̃i to customer i is difficult to defined if we use linear mixed

integer formulation. Nevertheless, when we use heuristics algorithm, t̃i can be easily

computed based on the routing plan, in fact, it equals to the sum of the travelling time

of all previous arcs connecting the depot to the customers. For example, consider the

following plan, where one of the routes has the vehicle travelling from the depot (node

0) to customer 1, customer 2, customer 3 and back to the depot.

Figure 4.1: Example of a vehicle route serving customer 1, 2 and 3

t̃01 = t001 +
K∑
k=1

tk01z̃k

t̃12 = t012 +
K∑
k=1

tk12z̃k

t̃23 = t023 +
K∑
k=1

tk23z̃k

Thus, the travelling times to the three customers are:

t̃1 = t001 +
K∑
k=1

tk01z̃k

t̃2 = t001 + t012 +
K∑
k=1

(tk01 + tk12)z̃k

t̃3 = t001 + t012 + t023 +
K∑
k=1

(tk01 + tk12 + tk23)z̃k

According to Lemma (1), when we know t̃i, we can bisect on a to find ρτi(t̃i), and

thus, ϱ can also be computed. The bisection algorithm to find the lateness index for

Customer i with target τi and travelling time t̃i is described in Algorithm 6, where M

is a very large number.
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Algorithm 6 Bisection algorithm to find lateness index

1: upper = M, lower = 0
2: while upper − lower > ϵ do
3: a = (upper + lower)/2
4: if Ca(t̃i) ≤ τi then
5: lower = a
6: else
7: upper = a
8: end if
9: end while
10: return (upper + lower)/2

4.2 The tabu search heuristics

The lateness index introduced in the last section can be easily implemented within the

tabu search heuristics introduced in the first chapter. The lateness index becomes one

of the costs in the hierarchical cost, and the order will be:

1. Maximize the satisfied customers

2. Minimize the number of vehicles used

3. Maximize the overall lateness index

4. Minimize the distance travelled by the fleet

4.3 Experimental result

Since there is no testing standard for the vehicle routing problem under uncertain or

stochastic travelling time, for the experiments, we will use randomly generated test

cases which consist of only last mile customers. Without loss of generality, we assume

that the service time is known with certainty. For any two customer i and j whose

mutual distance is dij, we model the travelling time from i to j, t̃ij, as an independent

random variable with normal and gamma distribution.
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1. Normal distribution: t̃ij follows a normal distribution with

E(t̃ij) = dij, σ(t̃ij) =
√

dij

2. Gamma distribution: t̃ij follows a gamma distribution of shape αij and scale θij

with

αij = dij, θij = θ = 1

This gamma distribution will have mean dij and standard deviation
√
dij, which

is of the same magnitude as the above normal distribution.

It is important to note that, in the case of normal distribution, the arrival time to

each customer follows a normal distribution as the sum of normal random variables

is again a normal random variable. Furthermore, in the case of gamma distribution,

the arrival time to each customer follows a gamma distribution as the sum of gamma

random variables with the same scale parameter is again a gamma random variable. As

all the travelling time is model with θ = 1, the arrival time to each customer follows a

gamma distribution with scale θ. Even though the normal distribution is more popular

and easier to understand, gamma distribution is a better way of modeling stochastic

travelling time for two main reasons: first, gamma distribution is nonnegative, and

second, practitioners may want to model the arrival process of vehicles at each road

junctions as a Poisson process, which results to the fact the travelling time between

two junctions is a gamma distribution.

To benchmark the solution of the lateness index algorithm, we compare the solution

of the lateness index algorithm with the solutions of two algorithms originating from

the deterministic basic last mile algorithms introduced in chapter 2:

1. Deterministic Mean algorithm: where we use the mean value dij for the distance

between customer i and j.
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Table 4.1: Distance results by each algorithm

Normal distribution Gamma distribution
Test case Mean 90th-percentile Lateness index Mean 90th-percentile Lateness index

101 1397.87 1489.78 1646.02 1397.87 1482.9 1538.99
102 1407.48 1515.78 1647.66 1407.48 1554.84 1626.25
103 1427.87 1478.37 1583.87 1427.87 1537.49 1656.96

2. Deterministic 90th-percentile algorithm: where we use, with the abuse of nota-

tion:

dij = inf{d | Pij(t̃ij < d) ≥ 0.90}

In fact, in the mean algorithm, we use only the information about the mean of t̃ij

and disregard any other information about the distribution of t̃ij. On the other hand,

the 90th-percentile algorithm is equivalent to the chance constrained formulation of

the problem: for any feasible solution of the 90th-percentile algorithm, each customer

will be served with the probability of being in time at least 90%.

We use three basic last mile test cases to test the three algorithms. For each test

case, every algorithm uses 12 vehicles to carry all the customers. The distance travelled

is reported in the Table 4.1. The mean algorithm gives the lowest distance travelled

while the lateness index algorithm gives the highest distance travelled for all three test

cases. We can see that in order to satisfy the chance constraints, the 90th-percentile

results in a higher cost of the distance travelled than the mean algorithm.

Next, we assess the quality of the solution subject to the stochastic travelling time.

Since the probability that the time windows are violated can be very close to zero,

we compare the natural logarithm of the probability of violating the time windows

for each customer of each test case. We plot the empirical cumulative distribution

instead of reporting statistical values to have a full perspective on the quality of the

solution. Furthermore, we use first order stochastic dominance to assess whether the

one solution is better than another: if the empirical cumulative distribution plot of

solution A is above that of solution B, we say that A is (first-order) stochastically
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dominant to B or equivalently, solution A is better than solution B.

For both normal and gamma distribution, the lateness index solution has better

quality than the mean solution for all test cases. However, neither the lateness index

solution nor the 90th-percentile solution is better than the other. In fact, the 90th-

percentile solution ensures that all the violation probability of each customer is less

than 10%, however, for lateness index and mean solution, there is no upper bound for

the violation probability. Despite the fact that the lateness index solution may have

high violation probability customers, it is worthy to note that the number of these

customers is always less than 10.
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Figure 4.2: Empirical cumulative distribution of the natural logarithm of violation
probability for each customer with normal distribution, test case 101

In spite the fact that the lateness index algorithm cannot perform better than

the 90th-percentile algorithm, the lateness index is still a promising approach. The

strength of the lateness index algorithm lies in its analytical foundation, which make

the lateness index a practical algorithm for real life implementation, especially in the

following cases:
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Figure 4.3: Empirical cumulative distribution of the natural logarithm of violation
probability for each customer with normal distribution, test case 102
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Figure 4.4: Empirical cumulative distribution of the natural logarithm of violation
probability for each customer with normal distribution, test case 103
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Figure 4.5: Empirical cumulative distribution of the natural logarithm of violation
probability for each customer with gamma distribution, test case 101

• Each travelling time t̃ij follows a different type of distribution. In this case, it is

very hard to think of a naive algorithm which can work well in all cases due to

the complexity of the sum of probability distributions. However, if we can factor

each t̃ij into an affine combination of primitive random variable as in (4.1.1), we

can use the lateness index algorithm without any problem.

• Each travelling time t̃ij follows an unknown distribution. In this case, we can

use the lateness index algorithm along with Theorem 2.

Furthermore, in the chance constrained formulation, it is tricky to define a good

value for the percentile. A too high number may make the problem become infeasible

since there is no possible route which can satisfy the passenger’s time windows to that

probability level. On the other hand, the lateness index does not require the users

to input the probability parameter, which makes the lateness index algorithm a more

applicable algorithm when we need to deal with the complex real life scenarios.
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Figure 4.6: Empirical cumulative distribution of the natural logarithm of violation
probability for each customer with gamma distribution, test case 102
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Figure 4.7: Empirical cumulative distribution of the natural logarithm of violation
probability for each customer with normal distribution, test case 103
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4.4 Conclusions

In this chapter, we have studied the last mile problem under uncertain travelling time.

We propose, based on the satisficing measure, the lateness index with the delivery

time of the passenger becomes the target. We give the analytical solution of the

lateness index under several important distributions such as the normal distribution

and the gamma distribution. We also consider the situation where the travelling time

can admit an ambiguous distribution. The lateness index can be easily integrated in

the tabu search routine as one of the hierarchical cost. We test the lateness index

algorithm with Mean and 90th-percentile algorithm where the travelling time follows

a normal and gamma distribution. The experimental result demonstrates that the

lateness index is very promising in solving the problem under uncertain travelling

time. The lateness index is also practical for real life implementation, where there are

more complications over the travelling time.
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5 Conclusions

In this thesis, we introduce a new instance of the vehicle routing problem: the last

mile problem. Numerous contributions are made to the routing and planning of the

last mile system. First, we consider the problem for a single period setup. Using an

existing limited vehicle tabu search algorithm for the vehicle routing problem with

time windows, we propose a new algorithm for the basic last mile problem. We then

extend the algorithm so as to handle the first mile customers as well. The algorithm

is also implemented using parallel computing under the OpenMP framework. We

complete the single period problem by studying a heterogeneous fleet algorithm. The

heterogeneous fleet is handled by using a heterogeneous tabu search routine and a

preprocessing, postprocessing procedure.

In addition, we also study the multi-period problem, which is more relevant to

the real life implementation of the last mile mobility system. Besides relaxing the

scheduling for the vehicles, we use the heterogeneous fleet algorithm with a rolling

horizon policy to solve the multi-period problem. Using real life public transport data

in Singapore, we demonstrate the usefulness of our algorithm in assisting the service

provider in making both strategic and operational level decisions. In strategic level,

the service provider needs to determine a good fleet composition to run the service,

while in the operational level, the service provider has to give reasonable routing plan

for daily business. Good strategic and operational decisions ensure the profitability

of the last mile mobility system, which is of critical factor to involve companies in

providing the service. Our study also suggests that the service provider should seek

flexibility in the system by involving external fleet such as school buses or taxi in order

to handle fluctuating demand and reduce initial cost.

Finally, we introduce a tabu search heuristics for the last mile problem under

uncertain travelling time. After characterizing the travelling time as an affine function

of random variables, we use the lateness index to evaluate the possibility that a solution
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meet the customers’ time windows. The lateness index can be incorporated as one of

the cost in the tabu search heuristics. The experimental results show that the lateness

index method gives better protection under uncertainty than the mean method. The

lateness index approach is also practical for real life implementation since it can solve

instances where the travelling time distribution is ambiguous, or where each travelling

time follows a different type of distribution.

Although the research has reached its aims, there are some unavoidable limita-

tions. Firstly, the fleet composition for the multi period last mile problem is currently

implemented as service provider’s inputs. Ideally, an optimization routine, possibly

by searching algorithms, can be implemented to suggest the best fleet compositions to

the service provider. Secondly, the current implementation of the satisficing measure

approach cannot deal with the early time windows of the customers. Finally, because

of the time limit, the research cannot test and compare different satisficing measures.

A thorough comparison of the solutions under other measures such as the Conditional

Value-at-Risk based, or the Bernstein based satisficing measures may uncover subtle

criteria to choose the most appropriate measure for real life implementation.

5.1 Areas for future studies

5.1.1 The multi-period problem with uncertain travelling time

A natural extension to this thesis is to use the lateness index algorithm developed

in chapter 4 for the multi-period problem in chapter 3. This would constitute an

ideal decision support platform for the service provider. The integration is straight-

forward, however, due to many complicating factors such as the multi-period settings,

heterogeneous fleet and uncertain travelling time, analyzing the solution requires a

comprehensive framework which is out of the scope of this thesis.
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5.1.2 Dynamic last mile problem

The multi-period problem is currently solved by dividing the demand into separate

periods using the rolling horizon policy. A better solution might involve dynamic

vehicle routing techniques where the demand is revealed stochastically: given the

service region, we assume that the passenger will show up and demand a service at a

random position following a certain distribution. The routing and scheduling of the

vehicles at a period will have to take into account the stochastic demand in the future

so as to better utilize the vehicles.

5.1.3 VRP with uncertain travelling time under stricter time windows

The last mile problem under uncertainty considers the time windows to be soft, fur-

thermore, the time windows contain only the late delivery time. A more general case

will impose a time windows with early time: the delivery has to be made after a certain

time. This case arises more frequently under the logistics - supply chain setup, and

it corresponds to a more general case of vehicle routing problem with time windows.

The extension of the lateness index to this more general case is an interesting problem

for further studies.
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A Mathematical formulation for VRPPDTW

Let n be the total number of customers. Let P and D denote the pickup and delivery

nodes: the i-th customer is represented by a pickup node i ∈ P and a delivery node

(i + n) ∈ D. Each node i has a time window [li, ui] and a demand qi, with qi > 0 for

i ∈ P , and qi = −qi+n. Let N = P ∪ D ∪ {0, 2n + 1} where {0, 2n + 1} denote the

starting and the ending depot of the vehicles. The service time at node i is si, and

the travel time between node i and node j is tij.

Let v be the set of the available vehicles, every vehicle k ∈ K has a finite capacity

Qv and is available during a period [lv, uv]. Q
v
i denote the current number of customers

in vehicle v after the vehicle v visits node i.

xv
ij is the decision variable, it equals 1 if the vehicle v travels from node i to node

j, and 0 otherwise. yi is the binary variable, yi = 0 if the customer i is served, yi = 1

otherwise. Sv
i denotes the time the vehicle v reaches node i.

Several costs can be computed:

The travel time is:
∑
v∈V

∑
i∈N

∑
j∈N

tijx
v
ij.

If node i is assigned to vehicle v, the time windows violation for each node i, whose

time windows is [li, ui], is computed as: CTW
i = max{0, li − Sv

i , S
v
i − ui}

If node i is assigned to vehicle v, the capacity violation at i is computed as: CCap
i =

max{0, Qv
i −Qv}

The total time windows and capacity violation for the solution will be: CTW =∑
i∈N

CTW
i , CCap =

∑
i∈N

CCap
i
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The mathematical model is:

minimize
∑
i∈P

yi

subject to:∑
v∈V

∑
j∈N

xv
ij + yi = 1 ∀i ∈ P (A.1)

∑
j∈N

xv
ij −

∑
j∈N

xv
(i+n)j = 0 ∀i ∈ P, ∀v ∈ V (A.2)

∑
j∈N

xv
0j = 1 ∀v ∈ V (A.3)

∑
j∈N

xv
j(2n+1) = 1 ∀v ∈ V (A.4)

∑
j∈N

xv
ji −

∑
j∈N

xv
ij = 0 ∀i ∈ P, ∀v ∈ V (A.5)

xv
ij(S

v
i + si + tij) ≤ Sv

j ∀i, j ∈ N, i, j are assigned to v (A.6)

lv ≤ Sv
0 ≤ uv ∀v ∈ V (A.7)

lv ≤ Sv
2n+1 ≤ uv ∀v ∈ V (A.8)

li ≤ Sv
i ≤ ui ∀i ∈ P ∪D, i is assigned to v (A.9)

Sv
i + ti(i+n) ≤ Sv

(i+n) ∀i ∈ P, i is assigned to v (A.10)

0 ≤ Qv
i ≤ Qv ∀i ∈ P ∪D, i is assigned to v (A.11)

Qv
j = (Qv

i + qj)x
v
ij ∀v ∈ V ; i, j are assigned to v (A.12)

xv
ij ∈ {0, 1} ∀i ∈ N, ∀j ∈ N, ∀v ∈ V (A.13)

yi ∈ {0, 1} ∀i ∈ P (A.14)

The objective function is to minimize the number of customers which are not

served. Constraint (A.1) ensures that the customer is either accepted or rejected.

Constraint (A.2) ensures that the pickup and delivery is served by the same vehicle.

Constraint (A.3) and (A.4) ensure that the route for each vehicle starts and ends at

the depot. Constraint (A.5) and (A.6) ensure the continuity of the route. Constraint
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(A.7) and (A.8) ensure the vehicle is active within its own time windows. Constraint

(A.9) ensures that the pickup and delivery is done in the time windows. Constraint

(A.10) ensures that the pickup node is visited before the delivery node. Constraint

(A.11) ensures the capacity is valid for each vehicle. Constraint (A.12) ensures the

capacity continuity of the route.
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B Standard Tabu search procedure

1: for every route A do
2: for every route B do
3: for every customer in A do
4: for every customer in B do
5: for every of the 4 moves: T, S, E do
6: Check the feasibility of the move
7: if feasible then
8: Find the penalty
9: if this move is the best up to now then
10: Choose this move as the next move
11: end if
12: end if
13: end for
14: end for
15: end for
16: end for
17: for every customer in A do
18: Check the flip feasibility
19: if feasible then
20: Find penalty
21: if this move is the best up to now then
22: Choose the flip move as the next move
23: end if
24: end if
25: for every customer in the holding list do
26: for every of the 3 moves: IH, RH, SH do
27: Check the move feasibility
28: if feasible then
29: Find penalty
30: if this move is the best up to now then
31: Choose this move as the next move
32: end if
33: end if
34: end for
35: end for
36: end for
37: end for
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C Tabu search procedure for heterogeneous fleet

1: for every route A do
2: for every route B do
3: for every customer in A do
4: for every customer in B do
5: for every of the 4 moves: T, S, E do
6: Check the feasibility of the move
7: if feasible then
8: Find the two best vehicles to serve two routes A and B
9: Find the penalty with respect to the two best vehicles found.
10: if this move is the best up to now then
11: Choose this move as the next move
12: end if
13: end if
14: end for
15: end for
16: end for
17: end for
18: for every customer in A do
19: Check the flip feasibility
20: if feasible then
21: Find the best vehicle to serve the route
22: Find penalty with respect to the best vehicle found
23: if this move is the best up to now then
24: Choose the flip move as the next move
25: end if
26: end if
27: for every customer in the holding list do
28: for every of the 3 moves: IH, RH, SH do
29: Check the move feasibility
30: if feasible then
31: Find the best vehicle to serve the route
32: Find penalty with respect to the best vehicle found
33: if this move is the best up to now then
34: Choose this move as the next move
35: end if
36: end if
37: end for
38: end for
39: end for
40: end for
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D Test result

D.1 Test results of basic LMP and m-VRPTW with relaxed
LMP test cases

mVRPTW LMP
No. Vehicle Distance Computation Vehicle Distance Computation

Time Time
1 12 1708.94 10.76 12 1694.36 17.72
2 12 1680.72 13.46 12 1698.63 17.03
3 12 1637.31 9.84 12 1613.16 16.08
4 12 1664.17 9.64 12 1694.29 16.91
5 12 1709.08 8.72 12 1679.09 16.62
6 12 1638.69 9.53 12 1646.12 22.45
7 12 1691.07 11.04 12 1700.78 17.18
8 12 1655.78 10.83 12 1700.28 15.96
9 12 1666.56 9.38 12 1679.44 18.56
10 12 1585.36 10.02 12 1621.09 16.55
11 12 1598.83 11.12 12 1637.42 16.61
12 12 1644.58 9.45 12 1650.37 19.56
13 12 1609.53 11.08 12 1578.59 19.78
14 12 1677.06 10.81 12 1698.83 18.36
15 12 1711.53 8.42 12 1726.19 16.58
16 12 1698.77 12.9 12 1758.41 15.16
17 12 1618.91 10.53 12 1630.41 19.58
18 12 1718.36 9.35 12 1716.48 15.16
19 12 1662.09 10.11 12 1624.97 24.99
20 12 1697.01 8.05 12 1672.02 21.12
21 12 1684.62 9.8 12 1704.18 16.08
22 12 1692.45 9.77 12 1711.05 16.57
23 12 1775.46 8.19 12 1761.88 16.32
24 12 1643.95 11.37 12 1654.79 20.16
25 12 1647.9 10.3 12 1671.56 15.66
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mVRPTW LMP
No. Vehicle Distance Computation Vehicle Distance Computation

Time Time
26 12 1701.06 10.47 12 1668.63 18.19
27 12 1691.1 8.89 12 1699 16.13
28 12 1733.5 9.88 12 1746.72 15.65
29 12 1630.86 8.8 12 1655.2 18.38
30 12 1673.73 9.63 12 1667.49 16.83
31 12 1702.72 8.78 12 1735.23 14.21
32 12 1624.65 8.02 12 1620.02 15.12
33 12 1655.65 12 12 1629.05 22.1
34 12 1668.58 11.03 12 1680.67 23.03
35 12 1652.12 10.39 12 1667.37 17.28
36 12 1739.04 9.86 12 1753.32 15.24
37 12 1699.02 9.02 12 1701.99 15.79
38 12 1641.37 8.77 12 1634.18 22.65
39 12 1645.76 8.97 12 1636.56 15.68
40 12 1653.93 9.55 12 1656.22 17.3
41 12 1623.43 10.83 12 1618.5 21.12
42 12 1703.75 10.3 12 1721.11 14.91
43 12 1691.64 9.38 12 1684.55 18.38
44 12 1631.91 12.03 12 1641.55 16.38
45 12 1589.78 11 12 1632.74 17.36
46 12 1640.48 10.09 12 1649.37 16.65
47 12 1775.1 8.25 12 1764.95 17.19
48 12 1690.75 7.75 12 1666.59 16.4
49 12 1729.32 11.28 12 1720.11 15.13
50 12 1701.92 9.61 12 1703.32 17.96

Average 12 1672.198 9.981 12 1677.577 17.6362
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D.2 Test results of basic LMP, LMP+FMP with waiting, and
LMP+FMP with waiting under OpenMP with LMP test
cases

LMP LMP+FMP OMP dynamic
No. Vehicle Distance Time Vehicle Distance Time Vehicle Distance Time

1 12 1789.45 18.01 12 1789.45 49.99 12 1791.56 17.68
2 12 1797.26 18.23 12 1797.26 49.56 12 1794.26 21.64
3 12 1724.32 12.98 12 1724.32 34.81 12 1677.23 20.15
4 12 1750.46 11.74 12 1750.46 30.83 12 1741.77 23.75
5 12 1813.34 17.31 12 1813.34 46.76 12 1810.25 21.86
6 12 1732.33 12.76 12 1732.33 32.83 12 1732.33 17.76
7 12 1808.42 15.91 12 1808.42 42.41 12 1808.42 22.58
8 12 1787.84 13.42 12 1787.84 36.59 12 1787.84 22.45
9 12 1778.28 14.79 12 1778.28 38.25 12 1794.89 17.48
10 12 1677.71 13.41 12 1677.71 35.43 12 1677.71 18.97
11 12 1685.08 16.35 12 1685.08 43.08 12 1685.08 22.71
12 12 1786.04 11.31 12 1786.04 30.03 12 1786.04 16.73
13 12 1717.98 15.99 12 1717.98 42.75 12 1729.02 19.94
14 12 1791.97 16.77 12 1791.97 44.57 12 1756.39 23.51
15 12 1830.89 10.61 12 1830.89 28.55 12 1830.89 18.29
16 12 1800.14 16.59 12 1800.14 44.43 12 1833.24 24.02
17 12 1742.33 12.77 12 1742.33 33.21 12 1742.33 20.4
18 12 1832.99 14.63 12 1832.99 39.09 12 1818.65 23.27
19 12 1734.03 13.54 12 1734.03 34.39 12 1734.03 18.37
20 12 1748.41 13.75 12 1748.41 36.54 12 1749.09 20.2
21 12 1810.01 13.38 12 1810.01 35.59 12 1849.95 21.37
22 12 1795.05 12.77 12 1795.05 34.16 12 1795.05 18.12
23 12 1913.03 13.9 12 1913.03 35.24 12 1913.03 18.74
24 12 1727.57 13.83 12 1727.57 36.71 12 1730.12 23.31
25 12 1748.11 15.53 12 1748.11 40.81 12 1748.11 21.67

80



LMP LMP+FMP OMP dynamic
No. Vehicle Distance Time Vehicle Distance Time Vehicle Distance Time
26 12 1804.52 14.19 12 1804.52 37.6 12 1804.52 19.99
27 12 1824.98 12.84 12 1824.98 32.89 12 1824.98 17.82
28 12 1828.41 18.36 12 1828.41 49.8 12 1828.41 26
29 12 1709.99 13.95 12 1709.99 36.87 12 1717.71 21.16
30 12 1777.63 15.06 12 1777.63 38.81 12 1795.56 20.61
31 12 1769.94 15 12 1769.94 37.61 12 1769.94 20.12
32 12 1718.11 13.25 12 1718.11 33.66 12 1701.14 23.9
33 12 1667.84 16.19 12 1667.84 41.07 12 1685.67 20.05
34 12 1783.2 16.06 12 1783.2 41.76 12 1774.61 22.73
35 12 1779.47 13.64 12 1779.47 35.5 12 1779.47 21.45
36 12 1795.68 15.46 12 1795.68 39.37 12 1789.91 19.36
37 12 1734.47 13.65 12 1734.47 34.99 12 1734.47 21.65
38 12 1725.86 15.05 12 1725.86 37.66 12 1725.86 20.18
39 12 1769.71 14.08 12 1769.71 35.12 12 1769.71 18.94
40 12 1699.1 12.11 12 1699.1 30.54 12 1689.49 18.24
41 12 1720.71 13.9 12 1720.71 34.96 12 1720.71 18.67
42 12 1800.87 12.79 12 1800.87 33.67 12 1800.87 19.77
43 12 1812.12 13.47 12 1812.12 35.25 12 1812.12 21.24
44 12 1704.66 15.38 12 1704.66 40.27 12 1704.3 21.99
45 12 1736.33 14.16 12 1736.33 35.54 12 1736.33 18.87
46 12 1743.86 16.1 12 1743.86 42.22 12 1740.93 24.86
47 12 1826.01 14.67 12 1826.01 38.28 12 1801.7 16.4
48 12 1750.23 15.71 12 1750.23 39.34 12 1750.23 20.84
49 12 1801.44 12.45 12 1801.44 31.07 12 1801.44 19.25
50 12 1727.83 15.41 12 1727.83 38.53 12 1727.83 20.17

Avg 12 1766.72 14.46 12 1766.72 37.78 12 1766.104 20.58
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D.3 Test results of LMP+FMP with waiting under OpenMP
with LMP+FMP test cases

LMP Only FMP Only Combined LMP+FMP
No. Vehicle Distance Time Vehicle Distance Time Vehicle Distance Time

1 9 1511.95 9.93 4 719.81 0.36 10 1832.48 27.82
2 9 1696.89 10.07 4 619.11 0.33 10 1696.66 30.19
3 9 1648.41 6.95 4 731.07 0.34 9 1699.44 27.7
4 9 1517.67 8.05 4 637.6 0.32 10 1662.16 23.11
5 9 1517.85 9.49 4 650.85 0.25 11 1819.28 27.05
6 9 1532.93 8.54 4 712.99 0.39 10 1746.08 21.11
7 9 1690.11 8.93 4 671.47 0.29 11 1810.17 34.3
8 9 1512.33 13.67 4 628 0.47 10 1666.48 31.42
9 9 1505.91 9.09 4 712.36 0.35 11 1744.16 24.59
10 9 1515.36 8.45 4 840.27 0.51 10 1701.83 20.57
11 9 1499.79 8.75 4 608.21 0.41 10 1598.66 21.95
12 9 1571.59 7.09 4 653.74 0.43 10 1701.83 20.55
13 9 1551.46 12.84 4 687.55 0.29 10 1791.89 22.28
14 9 1408.9 9.48 4 724.26 0.31 10 1618.75 30
15 9 1631.72 9.47 4 628.53 0.33 10 1727.7 22.64
16 9 1529.71 7.84 4 609.62 0.35 10 1719.06 28.87
17 9 1460.96 10.11 5 837.51 0.32 10 1708.16 25.57
18 9 1493.15 8.94 4 736.12 0.52 10 1670.41 28.08
19 9 1556.98 8.73 4 587.46 0.48 10 1740.79 29.03
20 9 1488.64 10.66 4 609.19 0.32 11 1783.61 23.98
21 9 1549.71 10.66 4 673.31 0.34 10 1688.2 27.62
22 9 1429.41 9.13 4 742.41 0.48 10 1696.15 25.11
23 9 1475.5 7.7 4 571.42 0.39 11 1746.28 28.6
24 9 1577.33 10.8 4 686.31 0.32 9 1780.79 21.65
25 9 1539.88 8.09 4 712.6 0.47 10 1723.95 22.7
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LMP Only FMP Only Combined LMP+FMP
No. Vehicle Distance Time Vehicle Distance Time Vehicle Distance Time
26 9 1418.29 9.32 4 549.02 0.41 9 1612.28 23.7
27 9 1553.02 9.88 4 609.68 0.4 10 1660.67 27.75
28 9 1534.98 9.78 4 590.41 0.43 10 1707.2 25.61
29 9 1538.36 10.83 4 684.45 0.45 10 1641.09 28.3
30 9 1523.41 9.18 4 627.81 0.36 9 1853.25 23.95
31 9 1563.06 7.93 4 730.84 0.39 10 1736.55 24.93
32 9 1480.74 8.46 4 705.05 0.4 10 1746.44 23.75
33 9 1612.05 7.44 4 713.01 0.3 11 1754.42 22.5
34 9 1528.11 7.76 4 661.76 0.5 10 1664.33 24.9
35 9 1518.8 7.74 4 647.7 0.4 10 1680.04 24.94
36 9 1527.51 11.03 4 647.16 0.3 10 1705.59 30.99
37 9 1544.96 9.63 4 698.76 0.79 11 1795.33 26.45
38 9 1536.97 8.87 4 634.17 0.32 10 1708.17 23.38
39 9 1468.64 10.43 4 683.31 0.35 10 1687.93 24.73
40 9 1386.58 10.42 4 637.33 0.29 10 1633.28 28
41 9 1539.18 9.54 4 535.72 0.5 11 1679.58 32.09
42 9 1573.97 11 3 516.06 0.74 10 1679.98 22.26
43 9 1548.94 8.26 4 645.58 0.29 10 1677.26 24.19
44 9 1466.61 8.57 4 614.71 0.42 10 1643.47 30.05
45 9 1430.34 9.97 4 604.94 0.35 10 1669.37 26.03
46 9 1649.86 8.15 4 707.62 0.57 10 1711.71 28.34
47 9 1607.27 9.18 4 716.89 0.46 10 1813.86 22.11
48 9 1594.46 10.44 4 587.61 0.3 10 1754.09 23.72
49 9 1425.53 9.01 5 797.71 0.35 9 1657.93 25.86
50 9 1477.65 8.47 4 730.81 0.29 10 1680.75 27.88

Avg 9 1529.27 9.30 4.02 665.40 0.39 10.06 1712.59 25.86
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D.4 Target, Mean and Standard deviation values of each cus-
tomer for test case 101 with normal distribution

Mean solution 90th percentile solution Lateness Index solution
Customer Target Mean Std Target Mean Std Target Mean Std

1 117.000 46.660 6.557 117.000 50.830 6.557 117.000 50.360 6.000
2 75.000 29.180 5.000 75.000 29.180 5.000 75.000 29.180 4.690
3 125.000 59.310 7.000 125.000 78.290 8.062 125.000 63.490 6.856
4 55.000 21.930 4.000 55.000 21.930 4.000 55.000 21.930 4.000
5 125.000 60.020 6.856 125.000 49.770 6.708 125.000 50.540 6.164
6 42.000 16.470 3.742 42.000 16.120 4.000 42.000 16.420 3.162
7 95.000 54.190 5.916 95.000 46.900 6.403 95.000 38.380 4.796
8 125.000 79.880 7.746 125.000 58.940 7.071 125.000 50.420 5.657
9 145.000 74.430 7.810 145.000 103.860 8.775 145.000 65.860 6.928
10 55.000 21.210 4.472 55.000 21.190 4.000 55.000 21.500 4.243
11 135.000 88.720 8.602 135.000 67.500 6.633 135.000 63.220 6.403
12 140.000 76.990 7.416 140.000 79.100 7.937 140.000 76.250 7.000
13 105.000 44.140 6.000 105.000 70.310 7.348 105.000 68.380 6.928
14 155.000 71.800 7.810 155.000 76.040 6.928 155.000 83.640 7.810
15 130.000 61.180 6.856 130.000 98.980 8.660 130.000 62.600 6.557
16 110.000 45.070 6.000 110.000 49.960 6.164 110.000 86.580 7.746
17 120.000 88.010 8.426 120.000 90.280 8.185 120.000 52.280 6.164
18 150.000 64.350 7.416 150.000 69.240 7.550 150.000 67.050 6.245
19 110.000 101.300 8.888 110.000 48.660 5.745 110.000 47.280 5.916
20 112.000 99.500 8.888 112.000 56.720 6.245 112.000 52.440 6.000
21 20.000 7.070 2.000 20.000 13.540 3.000 20.000 7.070 2.000
22 102.000 41.310 6.000 102.000 75.740 7.071 102.000 59.580 6.245
23 122.000 60.880 6.325 122.000 85.190 8.185 122.000 59.500 7.071
24 87.000 77.740 7.874 87.000 34.790 5.000 87.000 35.100 5.196
25 100.000 80.820 7.810 100.000 73.370 7.616 100.000 40.990 5.099
26 67.000 30.350 4.583 67.000 26.990 4.899 67.000 26.840 4.472
27 47.000 25.000 4.000 47.000 18.380 4.000 47.000 20.280 3.606
28 97.000 47.240 5.477 97.000 69.120 7.348 97.000 38.960 5.099
29 157.000 84.350 8.426 157.000 103.080 8.775 157.000 87.050 7.416
30 127.000 58.430 7.000 127.000 62.600 7.000 127.000 62.130 6.481
31 122.000 58.640 6.245 122.000 87.430 8.246 122.000 57.260 7.000
32 80.000 40.240 5.099 80.000 31.960 4.690 80.000 31.960 4.690
33 32.000 12.730 2.828 32.000 19.200 3.606 32.000 12.080 3.000
34 132.000 54.290 6.708 132.000 59.180 6.856 132.000 77.360 7.141
35 137.000 63.820 7.280 137.000 77.490 7.810 137.000 57.990 5.831
36 87.000 64.320 6.557 87.000 38.040 5.745 87.000 34.890 5.000
37 47.000 18.360 4.000 47.000 18.360 4.000 47.000 18.360 3.606
38 92.000 68.300 7.000 92.000 36.410 5.000 92.000 39.730 5.385
39 122.000 62.710 7.280 122.000 60.060 6.481 122.000 75.260 6.856
40 35.000 21.700 3.606 35.000 13.420 3.000 35.000 13.420 3.000
41 70.000 36.120 4.690 70.000 27.840 4.243 70.000 27.840 4.243
42 127.000 51.660 6.856 127.000 55.830 6.856 127.000 55.360 6.325
43 90.000 84.690 8.185 90.000 37.770 5.292 90.000 37.720 5.385
44 65.000 25.960 5.000 65.000 42.840 5.745 65.000 26.780 4.123
45 105.000 45.430 6.325 105.000 51.990 6.403 105.000 82.850 8.367
46 40.000 16.750 3.464 40.000 15.030 3.000 40.000 15.030 3.000
47 35.000 13.150 3.000 35.000 22.850 3.873 35.000 13.780 2.828
48 117.000 71.880 7.550 117.000 85.550 8.062 117.000 49.930 5.477
49 12.000 4.120 2.000 12.000 4.410 1.414 12.000 4.410 1.414
50 112.000 47.760 6.403 112.000 46.420 6.403 112.000 59.600 6.403
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Mean solution 90th percentile solution Lateness Index solution
Customer Target Mean Std Target Mean Std Target Mean Std

51 120.000 68.390 7.141 120.000 91.770 8.426 120.000 55.390 6.245
52 7.000 2.000 1.000 7.000 2.000 1.000 7.000 2.000 1.000
53 110.000 94.090 8.660 110.000 84.200 7.937 110.000 54.490 6.245
54 87.000 36.470 5.477 87.000 46.580 6.083 87.000 47.270 6.325
55 132.000 54.820 6.928 132.000 58.990 6.928 132.000 58.520 6.403
56 30.000 11.750 2.828 30.000 11.750 2.828 30.000 11.700 3.000
57 130.000 83.700 7.681 130.000 72.390 7.681 130.000 63.870 6.403
58 102.000 40.920 5.831 102.000 70.270 7.416 102.000 82.860 7.483
59 95.000 77.850 7.280 95.000 61.840 7.071 95.000 46.240 5.477
60 45.000 17.200 4.000 45.000 18.460 3.464 45.000 18.410 3.606
61 12.000 4.470 2.000 12.000 4.470 2.000 12.000 4.470 2.000
62 87.000 34.960 5.831 87.000 51.840 6.481 87.000 38.660 5.196
63 120.000 88.800 7.937 120.000 86.380 8.185 120.000 68.970 6.708
64 87.000 38.050 5.657 87.000 55.800 6.708 87.000 38.050 5.657
65 90.000 43.150 6.000 90.000 50.700 6.403 90.000 43.150 6.000
66 77.000 30.180 5.099 77.000 30.180 5.099 77.000 30.180 4.796
67 120.000 96.340 8.832 120.000 59.880 6.325 120.000 55.600 6.083
68 127.000 55.780 6.557 127.000 64.600 7.280 127.000 54.780 6.481
69 70.000 27.660 5.000 70.000 34.100 5.000 70.000 35.180 5.099
70 142.000 67.230 7.141 142.000 56.980 7.000 142.000 107.490 8.602
71 17.000 6.470 2.236 17.000 6.470 2.236 17.000 6.320 2.000
72 120.000 54.650 7.000 120.000 68.120 6.782 120.000 67.200 6.557
73 147.000 81.650 8.367 147.000 85.890 7.550 147.000 140.430 10.630
74 110.000 85.330 8.185 110.000 75.070 7.937 110.000 92.830 8.124
75 97.000 39.040 5.657 97.000 65.210 7.071 97.000 73.480 7.211
76 115.000 46.310 6.164 115.000 64.880 7.141 115.000 77.470 7.211
77 150.000 63.350 7.348 150.000 68.240 7.483 150.000 66.050 6.164
78 77.000 31.180 5.196 77.000 31.180 5.196 77.000 31.180 4.899
79 122.000 86.600 8.367 122.000 91.690 8.246 122.000 53.690 6.245
80 115.000 56.490 6.403 115.000 65.890 7.348 115.000 51.540 6.083
81 90.000 81.860 8.124 90.000 40.600 5.385 90.000 39.220 5.568
82 92.000 43.350 5.477 92.000 36.060 6.000 92.000 41.250 5.477
83 57.000 25.880 4.123 57.000 22.520 4.472 57.000 22.820 3.742
84 10.000 3.000 1.000 10.000 3.000 1.000 10.000 3.000 1.000
85 117.000 67.950 6.633 117.000 78.120 7.937 117.000 66.570 7.348
86 125.000 62.470 7.071 125.000 81.450 8.124 125.000 61.590 7.000
87 120.000 67.570 7.348 120.000 86.550 8.367 120.000 75.040 7.550
88 97.000 59.850 6.245 97.000 38.590 6.000 97.000 39.360 5.385
89 102.000 64.300 6.708 102.000 73.700 7.616 102.000 43.730 5.745
90 122.000 50.680 6.245 122.000 69.700 7.550 122.000 59.880 6.782
91 92.000 45.590 5.568 92.000 38.300 6.083 92.000 39.010 5.385
92 35.000 13.890 3.000 35.000 17.750 3.317 35.000 13.890 3.000
93 60.000 23.920 4.243 60.000 33.620 4.899 60.000 24.450 4.243
94 112.000 76.110 7.616 112.000 65.850 7.348 112.000 83.580 7.810
95 122.000 54.080 6.708 122.000 52.740 6.708 122.000 65.920 6.708
96 117.000 56.180 6.708 117.000 54.770 6.403 117.000 84.110 8.000
97 85.000 73.300 7.280 85.000 34.380 5.657 85.000 34.730 5.000
98 107.000 101.500 8.944 107.000 54.720 6.164 107.000 50.440 5.916
99 70.000 34.900 5.000 70.000 39.100 5.385 70.000 30.180 4.690
100 112.000 55.190 6.708 112.000 74.170 7.810 112.000 66.980 7.280
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D.5 Target, Mean and Standard deviation values of each
customer for test case 102 with normal distribution

Mean solution 90th percentile solution Lateness Index solution
Customer Target Mean Std Target Mean Std Target Mean Std

1 150.000 70.860 7.483 150.000 84.810 8.185 150.000 74.870 7.280
2 117.000 67.860 7.000 117.000 68.370 7.211 117.000 53.570 5.745
3 120.000 52.360 5.916 120.000 84.760 8.544 120.000 115.770 9.110
4 40.000 15.030 3.000 40.000 15.030 3.000 40.000 15.030 3.000
5 102.000 83.570 7.681 102.000 59.660 6.856 102.000 48.880 5.477
6 80.000 31.910 5.000 80.000 34.180 4.899 80.000 33.740 4.690
7 102.000 79.330 7.416 102.000 53.780 6.481 102.000 53.120 5.831
8 70.000 47.910 6.083 70.000 31.780 5.292 70.000 31.780 5.292
9 80.000 36.020 4.899 80.000 44.390 5.916 80.000 35.210 5.099
10 92.000 41.130 5.831 92.000 36.070 6.000 92.000 44.270 5.916
11 102.000 49.690 6.000 102.000 71.170 7.550 102.000 88.160 8.367
12 60.000 23.020 4.000 60.000 33.400 5.385 60.000 23.020 4.000
13 72.000 49.070 5.745 72.000 29.870 4.472 72.000 31.090 4.690
14 102.000 59.600 6.164 102.000 53.610 6.633 102.000 43.130 5.099
15 145.000 100.130 8.888 145.000 103.630 9.110 145.000 71.220 6.481
16 72.000 55.470 7.000 72.000 37.370 5.657 72.000 28.760 4.243
17 67.000 27.890 4.243 67.000 45.910 5.831 67.000 27.890 4.243
18 77.000 51.600 6.245 77.000 44.820 5.831 77.000 34.440 4.583
19 72.000 30.680 5.000 72.000 28.280 5.000 72.000 38.940 5.831
20 92.000 37.680 5.477 92.000 56.060 6.325 92.000 37.400 4.796
21 87.000 47.130 5.916 87.000 44.780 5.745 87.000 42.170 5.099
22 42.000 16.120 4.000 42.000 16.120 4.000 42.000 16.120 4.000
23 132.000 64.400 6.633 132.000 72.720 8.000 132.000 55.290 6.245
24 75.000 29.180 5.385 75.000 29.300 5.196 75.000 45.510 5.657
25 127.000 71.890 6.928 127.000 65.900 7.348 127.000 60.390 5.916
26 57.000 23.980 3.873 57.000 23.980 3.873 57.000 23.540 3.606
27 40.000 15.270 3.162 40.000 15.270 3.162 40.000 15.000 3.000
28 105.000 77.920 7.348 105.000 55.190 6.557 105.000 54.530 5.916
29 145.000 124.430 9.950 145.000 79.000 8.124 145.000 94.540 8.888
30 77.000 32.890 4.690 77.000 50.910 6.164 77.000 32.890 4.690
31 87.000 37.360 5.099 87.000 55.380 6.481 87.000 37.360 5.099
32 57.000 24.250 4.243 57.000 24.250 4.243 57.000 24.250 4.243
33 85.000 83.780 7.810 85.000 36.420 5.000 85.000 35.980 4.796
34 125.000 59.160 6.856 125.000 73.110 7.616 125.000 53.180 5.568
35 95.000 38.910 5.000 95.000 71.450 7.141 95.000 83.650 7.141
36 30.000 11.660 3.000 30.000 11.660 3.000 30.000 11.660 3.000
37 127.000 80.630 7.681 127.000 61.790 7.071 127.000 88.270 8.124
38 65.000 64.270 7.000 65.000 25.340 5.000 65.000 25.340 5.000
39 55.000 38.080 5.385 55.000 21.950 4.472 55.000 21.950 4.472
40 10.000 3.610 1.000 10.000 3.610 1.000 10.000 3.610 1.000
41 87.000 83.590 7.483 87.000 38.720 5.385 87.000 52.340 6.083
42 37.000 14.000 3.000 37.000 17.320 3.162 37.000 14.000 3.000
43 125.000 110.410 9.110 125.000 59.300 6.325 125.000 59.300 6.325
44 75.000 30.180 5.477 75.000 30.300 5.292 75.000 46.510 5.745
45 62.000 54.900 6.083 62.000 24.040 4.000 62.000 24.040 4.000
46 75.000 29.180 5.385 75.000 29.300 5.196 75.000 45.510 5.657
47 117.000 117.010 9.165 117.000 84.630 7.681 117.000 57.230 5.916
48 77.000 55.210 6.325 77.000 41.210 5.745 77.000 30.830 4.472
49 7.000 6.610 1.414 7.000 2.000 1.000 7.000 2.000 1.000
50 137.000 68.750 7.348 137.000 100.960 8.307 137.000 113.590 9.539
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Mean solution 90th percentile solution Lateness Index solution
Customer Target Mean Std Target Mean Std Target Mean Std

51 127.000 55.130 6.325 127.000 81.100 7.810 127.000 66.520 6.782
52 122.000 91.190 8.660 122.000 94.690 8.888 122.000 62.280 6.164
53 127.000 67.190 6.856 127.000 54.370 6.083 127.000 56.560 5.657
54 132.000 80.890 8.124 132.000 84.390 8.367 132.000 89.150 8.660
55 62.000 24.040 4.000 62.000 24.230 4.123 62.000 24.040 4.000
56 92.000 39.920 5.568 92.000 53.820 6.245 92.000 39.640 4.899
57 120.000 69.860 7.071 120.000 66.370 7.141 120.000 55.570 5.831
58 115.000 104.510 8.832 115.000 50.560 7.000 115.000 55.450 6.325
59 87.000 35.440 5.385 87.000 58.300 6.403 87.000 35.160 4.690
60 75.000 29.430 5.099 75.000 36.280 5.196 75.000 29.450 4.243
61 107.000 61.840 6.245 107.000 55.850 6.708 107.000 45.370 5.196
62 100.000 43.810 6.325 100.000 73.040 7.000 100.000 68.270 7.071
63 117.000 58.750 6.708 117.000 62.110 6.928 117.000 97.220 8.888
64 42.000 17.270 3.317 42.000 17.270 3.317 42.000 17.050 3.606
65 95.000 39.250 5.196 95.000 46.260 5.568 95.000 46.260 5.568
66 57.000 42.080 5.745 57.000 25.950 4.899 57.000 25.950 4.899
67 105.000 76.880 7.211 105.000 45.430 5.745 105.000 59.050 6.403
68 72.000 28.430 5.000 72.000 35.280 5.099 72.000 28.450 4.123
69 125.000 88.010 8.000 125.000 58.450 6.481 125.000 86.230 7.416
70 102.000 41.810 6.245 102.000 71.040 6.928 102.000 44.010 5.196
71 155.000 84.050 7.937 155.000 85.660 7.746 155.000 85.660 7.746
72 115.000 48.140 6.403 115.000 45.740 6.403 115.000 56.400 7.071
73 72.000 31.560 4.472 72.000 36.240 5.385 72.000 29.080 4.243
74 85.000 34.180 5.831 85.000 33.620 5.000 85.000 36.380 4.690
75 15.000 5.830 2.000 15.000 5.830 2.000 15.000 5.830 2.000
76 37.000 14.320 3.000 37.000 14.320 3.000 37.000 14.320 3.000
77 107.000 43.760 5.831 107.000 50.610 5.916 107.000 43.780 5.099
78 77.000 30.440 5.000 77.000 30.410 5.000 77.000 45.420 5.477
79 92.000 54.210 5.831 92.000 40.420 5.099 92.000 37.740 4.690
80 165.000 107.940 9.110 165.000 111.440 9.327 165.000 77.960 7.141
81 112.000 50.620 6.557 112.000 45.560 6.708 112.000 60.450 6.633
82 130.000 65.400 6.708 130.000 71.720 7.937 130.000 56.290 6.325
83 97.000 38.650 6.164 97.000 67.880 6.856 97.000 40.850 5.099
84 132.000 110.010 8.944 132.000 77.630 7.416 132.000 64.230 6.245
85 57.000 23.320 4.472 57.000 30.960 4.690 57.000 30.960 4.690
86 130.000 97.440 8.602 130.000 59.510 7.348 130.000 68.500 7.000
87 82.000 36.030 4.899 82.000 48.430 5.916 82.000 38.050 4.690
88 112.000 106.750 8.888 112.000 52.800 7.071 112.000 53.210 6.245
89 85.000 41.680 5.292 85.000 37.260 5.000 85.000 34.580 4.583
90 137.000 103.700 8.888 137.000 66.010 6.633 137.000 66.010 6.633
91 102.000 90.680 8.246 102.000 71.840 7.681 102.000 50.710 6.403
92 120.000 70.800 6.928 120.000 57.980 6.164 120.000 52.950 5.568
93 80.000 56.400 6.403 80.000 40.270 5.657 80.000 40.270 5.657
94 90.000 36.140 5.477 90.000 42.990 5.568 90.000 36.160 4.690
95 132.000 68.360 7.550 132.000 65.960 7.550 132.000 76.620 8.124
96 12.000 4.120 2.000 12.000 4.240 1.414 12.000 4.240 1.414
97 165.000 83.230 8.062 165.000 97.180 8.718 165.000 82.710 7.616
98 95.000 67.030 7.071 95.000 48.190 6.403 95.000 56.540 6.708
99 127.000 51.570 6.164 127.000 58.420 6.245 127.000 72.180 6.403
100 82.000 43.680 5.385 82.000 35.260 4.899 82.000 32.580 4.472
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D.6 Target, Mean and Standard deviation values of each
customer for test case 103 with normal distribution

Mean solution 90th percentile solution Lateness Index solution
Customer Target Mean Std Target Mean Std Target Mean Std

1 42.000 18.400 3.606 42.000 18.710 3.464 42.000 18.400 3.606
2 50.000 19.100 4.000 50.000 24.410 4.472 50.000 19.100 4.000
3 107.000 106.860 9.165 107.000 42.490 6.000 107.000 55.600 5.916
4 127.000 50.240 6.557 127.000 50.360 6.557 127.000 74.590 7.141
5 17.000 6.710 2.000 17.000 6.710 2.000 17.000 6.710 2.000
6 112.000 66.930 7.071 112.000 56.850 6.708 112.000 60.900 6.481
7 75.000 36.210 5.292 75.000 31.070 4.796 75.000 31.070 4.796
8 97.000 61.160 7.141 97.000 63.280 6.928 97.000 43.680 5.745
9 127.000 52.980 6.481 127.000 81.770 7.746 127.000 55.890 6.083
10 120.000 50.080 6.325 120.000 67.120 7.280 120.000 95.480 8.185
11 137.000 74.280 7.483 137.000 60.470 6.782 137.000 64.140 6.403
12 102.000 48.530 5.831 102.000 43.390 5.385 102.000 43.390 5.385
13 30.000 11.660 3.000 30.000 11.710 2.828 30.000 11.710 2.828
14 10.000 3.000 1.000 10.000 3.000 1.000 10.000 3.000 1.000
15 140.000 76.090 7.681 140.000 103.070 8.775 140.000 57.980 7.000
16 115.000 58.820 6.782 115.000 45.850 6.403 115.000 47.680 6.325
17 42.000 16.120 4.000 42.000 16.600 3.162 42.000 16.600 3.162
18 130.000 71.370 7.141 130.000 71.390 7.000 130.000 64.180 7.071
19 152.000 87.430 8.062 152.000 86.990 8.367 152.000 79.120 7.550
20 90.000 74.090 7.416 90.000 62.170 6.856 90.000 67.930 7.483
21 85.000 41.820 5.477 85.000 36.680 5.000 85.000 36.680 5.000
22 155.000 64.380 7.141 155.000 70.370 7.141 155.000 74.040 6.782
23 100.000 74.140 7.348 100.000 70.210 7.280 100.000 44.770 5.745
24 125.000 60.320 6.403 125.000 82.440 7.681 125.000 54.180 6.403
25 52.000 20.590 4.472 52.000 21.070 3.742 52.000 21.070 3.742
26 110.000 53.890 6.403 110.000 43.810 6.000 110.000 47.860 5.745
27 112.000 44.690 6.000 112.000 61.730 7.000 112.000 51.300 6.083
28 127.000 65.890 7.071 127.000 52.920 6.708 127.000 90.300 8.602
29 125.000 59.930 6.928 125.000 60.050 6.928 125.000 64.900 6.782
30 122.000 65.950 7.141 122.000 89.390 8.000 122.000 48.270 5.745
31 37.000 24.400 4.123 37.000 24.710 4.000 37.000 14.320 3.000
32 105.000 41.900 6.083 105.000 71.220 6.856 105.000 44.560 5.292
33 112.000 57.490 6.481 112.000 45.570 5.831 112.000 51.330 6.557
34 117.000 64.400 7.211 117.000 64.520 7.211 117.000 60.430 6.481
35 95.000 80.220 7.616 95.000 64.130 7.000 95.000 38.690 5.385
36 137.000 101.300 8.485 137.000 85.730 8.185 137.000 88.180 8.485
37 57.000 31.100 5.000 57.000 33.220 4.690 57.000 33.640 4.690
38 80.000 38.210 5.385 80.000 33.070 4.899 80.000 33.070 4.899
39 130.000 57.080 6.633 130.000 74.120 7.550 130.000 58.370 6.403
40 157.000 82.040 7.810 157.000 70.500 7.616 157.000 65.380 7.348
41 130.000 57.080 6.633 130.000 74.120 7.550 130.000 58.370 6.403
42 120.000 72.650 7.483 120.000 80.190 7.746 120.000 52.180 6.164
43 140.000 77.090 7.746 140.000 64.100 7.348 140.000 58.980 7.071
44 72.000 34.120 5.099 72.000 46.610 5.657 72.000 29.160 5.000
45 67.000 26.590 4.472 67.000 26.840 4.123 67.000 26.840 4.123
46 165.000 71.210 7.280 165.000 81.330 8.124 165.000 91.120 8.062
47 110.000 63.320 6.782 110.000 51.400 6.164 110.000 57.160 6.856
48 117.000 95.680 8.660 117.000 53.670 6.708 117.000 66.780 6.633
49 60.000 23.870 4.123 60.000 23.870 4.123 60.000 23.870 4.123
50 147.000 64.150 6.928 147.000 81.190 7.810 147.000 65.440 6.708
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Mean solution 90th percentile solution Lateness Index solution
Customer Target Mean Std Target Mean Std Target Mean Std

51 105.000 75.800 7.348 105.000 70.660 7.000 105.000 70.660 7.000
52 145.000 71.450 7.416 145.000 63.300 6.856 145.000 66.970 6.481
53 102.000 40.660 5.831 102.000 42.220 5.385 102.000 79.310 8.124
54 112.000 75.650 7.550 112.000 83.190 7.810 112.000 49.180 6.083
55 97.000 69.220 7.416 97.000 71.340 7.211 97.000 82.830 7.616
56 100.000 82.930 7.810 100.000 71.590 7.483 100.000 41.900 5.745
57 47.000 28.520 4.583 47.000 18.440 4.000 47.000 18.440 3.606
58 132.000 83.170 8.000 132.000 96.750 8.544 132.000 71.310 7.280
59 75.000 31.560 4.899 75.000 29.730 5.000 75.000 31.560 4.899
60 155.000 64.210 7.000 155.000 91.990 8.602 155.000 84.120 7.810
61 110.000 85.680 8.062 110.000 43.870 5.745 110.000 89.610 8.660
62 42.000 16.160 4.000 42.000 16.160 4.000 42.000 16.160 4.000
63 100.000 39.740 5.385 100.000 41.730 5.196 100.000 41.730 5.196
64 117.000 58.710 6.782 117.000 54.410 6.164 117.000 67.220 7.483
65 122.000 53.850 6.633 122.000 53.970 6.633 122.000 70.980 7.071
66 100.000 39.060 5.831 100.000 39.180 5.831 100.000 39.250 5.831
67 115.000 60.950 6.856 115.000 52.170 6.083 115.000 69.460 7.550
68 112.000 46.660 6.164 112.000 49.700 6.083 112.000 91.070 7.874
69 127.000 51.500 6.481 127.000 61.620 6.481 127.000 60.010 7.211
70 55.000 21.630 4.000 55.000 21.630 4.000 55.000 21.630 4.000
71 160.000 73.640 7.550 160.000 90.680 8.367 160.000 74.930 7.348
72 90.000 45.640 6.083 90.000 35.560 5.657 90.000 39.610 5.385
73 107.000 71.340 7.416 107.000 46.340 5.745 107.000 42.880 5.385
74 110.000 46.900 5.657 110.000 47.720 5.385 110.000 51.720 5.568
75 132.000 70.370 7.071 132.000 72.390 7.071 132.000 65.180 7.141
76 30.000 11.400 3.000 30.000 11.710 2.828 30.000 11.400 3.000
77 75.000 46.990 6.164 75.000 49.110 5.916 75.000 29.510 4.472
78 125.000 50.500 6.403 125.000 62.620 6.557 125.000 59.010 7.141
79 127.000 99.130 8.602 127.000 90.430 8.307 127.000 64.990 7.000
80 145.000 83.640 8.124 145.000 100.680 8.888 145.000 78.820 7.280
81 105.000 42.900 5.477 105.000 44.890 5.292 105.000 47.720 5.385
82 15.000 5.000 2.000 15.000 5.000 2.000 15.000 5.000 2.000
83 77.000 31.290 5.000 77.000 49.440 5.745 77.000 31.990 5.099
84 95.000 77.000 7.681 95.000 37.220 5.000 95.000 37.220 5.000
85 147.000 97.690 8.426 147.000 89.340 8.246 147.000 91.790 8.544
86 62.000 28.860 4.899 62.000 30.980 4.583 62.000 31.400 4.583
87 122.000 108.370 8.718 122.000 78.660 7.937 122.000 102.230 9.055
88 90.000 57.040 6.856 90.000 59.160 6.633 90.000 39.560 5.385
89 65.000 26.170 4.472 65.000 31.480 4.899 65.000 26.170 4.472
90 105.000 44.900 5.568 105.000 49.720 5.477 105.000 49.720 5.477
91 57.000 23.470 4.472 57.000 25.590 4.123 57.000 22.090 4.000
92 122.000 56.150 6.164 122.000 51.010 5.745 122.000 51.010 5.745
93 72.000 37.500 5.385 72.000 39.620 5.099 72.000 40.040 5.099
94 57.000 22.970 4.243 57.000 22.800 4.000 57.000 22.800 4.000
95 170.000 77.040 7.550 170.000 75.500 7.874 170.000 70.380 7.616
96 60.000 28.400 4.899 60.000 23.350 4.000 60.000 24.330 4.123
97 72.000 39.130 5.099 72.000 28.000 5.000 72.000 28.070 5.000
98 97.000 38.900 6.000 97.000 39.490 5.099 97.000 39.490 5.099
99 32.000 12.040 3.000 32.000 12.040 3.000 32.000 12.040 3.000
100 77.000 42.180 5.477 77.000 38.550 5.292 77.000 30.410 5.000
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D.7 Target and Mean values of each customer for test case
101 with gamma distribution of scale parameter θ = 1

Mean solution 90th percentile solution Lateness index solution
Customer Target Mean Target Mean Target Mean

1 117.000 46.660 117.000 61.950 117.000 50.000
2 75.000 29.180 75.000 42.730 75.000 29.180
3 125.000 59.310 125.000 78.880 125.000 65.090
4 55.000 21.930 55.000 22.120 55.000 22.120
5 125.000 60.020 125.000 81.790 125.000 62.530
6 42.000 16.470 42.000 16.320 42.000 16.120
7 95.000 54.190 95.000 45.240 95.000 48.170
8 125.000 79.880 125.000 57.280 125.000 72.530
9 145.000 74.430 145.000 94.710 145.000 69.980
10 55.000 21.210 55.000 22.720 55.000 21.210
11 135.000 88.720 135.000 85.010 135.000 61.320
12 140.000 76.990 140.000 63.050 140.000 92.690
13 105.000 44.140 105.000 70.080 105.000 45.350
14 155.000 71.800 155.000 93.550 155.000 84.130
15 130.000 61.180 130.000 82.930 130.000 66.860
16 110.000 45.070 110.000 71.140 110.000 74.310
17 120.000 88.010 120.000 81.130 120.000 56.400
18 150.000 64.350 150.000 97.260 150.000 76.220
19 110.000 101.300 110.000 59.910 110.000 52.410
20 112.000 99.500 112.000 74.230 112.000 50.540
21 20.000 7.070 20.000 7.070 20.000 7.070
22 102.000 41.310 102.000 65.590 102.000 51.820
23 122.000 60.880 122.000 54.190 122.000 55.430
24 87.000 77.740 87.000 36.320 87.000 34.810
25 100.000 80.820 100.000 54.140 100.000 41.180
26 67.000 30.350 67.000 26.670 67.000 26.990
27 47.000 25.000 47.000 18.380 47.000 18.380
28 97.000 47.240 97.000 38.120 97.000 39.360
29 157.000 84.350 157.000 72.080 157.000 75.250
30 127.000 58.430 127.000 82.570 127.000 61.770
31 122.000 58.640 122.000 56.430 122.000 57.670
32 80.000 40.240 80.000 40.220 80.000 32.360
33 32.000 12.730 32.000 12.080 32.000 12.080
34 132.000 54.290 132.000 87.210 132.000 60.120
35 137.000 63.820 137.000 77.180 137.000 67.160
36 87.000 64.320 87.000 35.110 87.000 38.040
37 47.000 18.360 47.000 20.970 47.000 18.360
38 92.000 68.300 92.000 51.480 92.000 40.220
39 122.000 62.710 122.000 71.310 122.000 67.500
40 35.000 21.700 35.000 13.420 35.000 13.820
41 70.000 36.120 70.000 36.100 70.000 28.240
42 127.000 51.660 127.000 66.950 127.000 55.000
43 90.000 84.690 90.000 43.270 90.000 41.520
44 65.000 25.960 65.000 33.670 65.000 26.780
45 105.000 45.430 105.000 61.470 105.000 47.700
46 40.000 16.750 40.000 16.700 40.000 15.520
47 35.000 13.150 35.000 13.150 35.000 13.780
48 117.000 71.880 117.000 63.080 117.000 50.120
49 12.000 4.120 12.000 4.410 12.000 4.120
50 112.000 47.760 112.000 71.350 112.000 60.090
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Mean solution 90th percentile solution Lateness index solution
Customer Target Mean Target Mean Target Mean

51 120.000 68.390 120.000 75.720 120.000 74.070
52 7.000 2.000 7.000 2.000 7.000 2.000
53 110.000 94.090 110.000 52.700 110.000 59.620
54 87.000 36.470 87.000 34.930 87.000 39.510
55 132.000 54.820 132.000 70.110 132.000 58.160
56 30.000 11.750 30.000 11.700 30.000 11.700
57 130.000 83.700 130.000 56.340 130.000 85.980
58 102.000 40.920 102.000 45.560 102.000 46.600
59 95.000 77.850 95.000 51.620 95.000 37.850
60 45.000 17.200 45.000 25.760 45.000 18.410
61 12.000 4.470 12.000 4.470 12.000 4.470
62 87.000 34.960 87.000 34.740 87.000 35.780
63 120.000 88.800 120.000 70.330 120.000 79.460
64 87.000 38.050 87.000 44.150 87.000 38.240
65 90.000 43.150 90.000 39.050 90.000 35.390
66 77.000 30.180 77.000 41.730 77.000 30.180
67 120.000 96.340 120.000 77.390 120.000 53.700
68 127.000 55.780 127.000 77.550 127.000 73.150
69 70.000 27.660 70.000 30.080 70.000 33.280
70 142.000 67.230 142.000 69.930 142.000 80.770
71 17.000 6.470 17.000 6.320 17.000 6.320
72 120.000 54.650 120.000 79.370 120.000 59.440
73 147.000 81.650 147.000 103.400 147.000 68.390
74 110.000 85.330 110.000 44.210 110.000 96.410
75 97.000 39.040 97.000 47.600 97.000 40.250
76 115.000 46.310 115.000 50.950 115.000 51.990
77 150.000 63.350 150.000 98.260 150.000 75.220
78 77.000 31.180 77.000 44.140 77.000 31.180
79 122.000 86.600 122.000 82.540 122.000 57.810
80 115.000 56.490 115.000 63.290 115.000 52.030
81 90.000 81.860 90.000 40.440 90.000 44.350
82 92.000 43.350 92.000 41.080 92.000 59.010
83 57.000 25.880 57.000 22.200 57.000 22.520
84 10.000 3.000 10.000 3.000 10.000 3.000
85 117.000 67.950 117.000 47.120 117.000 48.360
86 125.000 62.470 125.000 82.040 125.000 61.930
87 120.000 67.570 120.000 62.740 120.000 56.830
88 97.000 59.850 97.000 39.580 97.000 42.510
89 102.000 64.300 102.000 55.480 102.000 44.220
90 122.000 50.680 122.000 75.270 122.000 54.280
91 92.000 45.590 92.000 38.840 92.000 56.770
92 35.000 13.890 35.000 16.500 35.000 13.890
93 60.000 23.920 60.000 24.450 60.000 24.450
94 112.000 76.110 112.000 54.200 112.000 48.290
95 122.000 54.080 122.000 77.670 122.000 66.410
96 117.000 56.180 117.000 58.040 117.000 88.230
97 85.000 73.300 85.000 46.480 85.000 35.220
98 107.000 101.500 107.000 72.230 107.000 48.540
99 70.000 34.900 70.000 35.080 70.000 28.280
100 112.000 55.190 112.000 70.800 112.000 49.810
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D.8 Target and Mean values of each customer for test case
102 with gamma distribution of scale parameter θ = 1

Mean solution 90th percentile solution Lateness index solution
Customer Target Mean Target Mean Target Mean

1 150.000 70.860 150.000 103.230 150.000 78.700
2 117.000 67.860 117.000 65.870 117.000 58.990
3 120.000 52.360 120.000 51.400 120.000 63.380
4 40.000 15.030 40.000 15.030 40.000 15.030
5 102.000 83.570 102.000 44.440 102.000 50.280
6 80.000 31.910 80.000 33.910 80.000 39.620
7 102.000 79.330 102.000 48.680 102.000 44.400
8 70.000 47.910 70.000 34.190 70.000 31.780
9 80.000 36.020 80.000 32.760 80.000 39.910
10 92.000 41.130 92.000 46.920 92.000 48.970
11 102.000 49.690 102.000 56.700 102.000 62.470
12 60.000 23.020 60.000 25.500 60.000 23.020
13 72.000 49.070 72.000 28.640 72.000 35.790
14 102.000 59.600 102.000 46.970 102.000 43.790
15 145.000 100.130 145.000 104.220 145.000 96.540
16 72.000 55.470 72.000 28.640 72.000 28.640
17 67.000 27.890 67.000 26.930 67.000 27.890
18 77.000 51.600 77.000 30.530 77.000 30.640
19 72.000 30.680 72.000 30.680 72.000 38.140
20 92.000 37.680 92.000 43.470 92.000 46.860
21 87.000 47.130 87.000 55.220 87.000 35.110
22 42.000 16.120 42.000 16.120 42.000 16.120
23 132.000 64.400 132.000 63.440 132.000 75.420
24 75.000 29.180 75.000 36.710 75.000 29.070
25 127.000 71.890 127.000 64.230 127.000 56.080
26 57.000 23.980 57.000 23.710 57.000 23.710
27 40.000 15.270 40.000 15.000 40.000 15.000
28 105.000 77.920 105.000 50.090 105.000 45.810
29 145.000 124.430 145.000 79.920 145.000 81.670
30 77.000 32.890 77.000 31.930 77.000 43.910
31 87.000 37.360 87.000 36.400 87.000 48.380
32 57.000 24.250 57.000 24.250 57.000 24.250
33 85.000 83.780 85.000 36.150 85.000 37.380
34 125.000 59.160 125.000 57.020 125.000 67.000
35 95.000 38.910 95.000 50.630 95.000 81.780
36 30.000 11.660 30.000 15.630 30.000 11.660
37 127.000 80.630 127.000 69.190 127.000 73.810
38 65.000 64.270 65.000 33.560 65.000 25.340
39 55.000 38.080 55.000 24.360 55.000 21.950
40 10.000 3.610 10.000 5.000 10.000 3.610
41 87.000 83.590 87.000 46.810 87.000 35.900
42 37.000 14.000 37.000 14.000 37.000 14.000
43 125.000 110.410 125.000 66.170 125.000 51.970
44 75.000 30.180 75.000 35.710 75.000 30.070
45 62.000 54.900 62.000 28.670 62.000 24.700
46 75.000 29.180 75.000 36.710 75.000 29.070
47 117.000 117.010 117.000 78.440 117.000 64.060
48 77.000 55.210 77.000 34.140 77.000 34.400
49 7.000 6.610 7.000 2.000 7.000 2.000
50 137.000 68.750 137.000 75.760 137.000 81.530
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Mean solution 90th percentile solution Lateness index solution
Customer Target Mean Target Mean Target Mean

51 127.000 55.130 127.000 78.600 127.000 65.650
52 122.000 91.190 122.000 57.160 122.000 67.530
53 127.000 67.190 127.000 77.990 127.000 52.300
54 132.000 80.890 132.000 74.530 132.000 76.280
55 62.000 24.040 62.000 24.040 62.000 24.230
56 92.000 39.920 92.000 45.710 92.000 44.620
57 120.000 69.860 120.000 63.870 120.000 56.990
58 115.000 104.510 115.000 61.410 115.000 56.180
59 87.000 35.440 87.000 41.230 87.000 49.100
60 75.000 29.430 75.000 36.090 75.000 36.280
61 107.000 61.840 107.000 49.210 107.000 46.030
62 100.000 43.810 100.000 63.440 100.000 45.890
63 117.000 58.750 117.000 65.760 117.000 71.530
64 42.000 17.270 42.000 17.000 42.000 17.000
65 95.000 39.250 95.000 46.260 95.000 38.930
66 57.000 42.080 57.000 28.360 57.000 25.950
67 105.000 76.880 105.000 53.120 105.000 42.610
68 72.000 28.430 72.000 35.090 72.000 35.280
69 125.000 88.010 125.000 80.350 125.000 72.200
70 102.000 41.810 102.000 65.440 102.000 43.890
71 155.000 84.050 155.000 91.060 155.000 96.830
72 115.000 48.140 115.000 48.140 115.000 83.010
73 72.000 31.560 72.000 30.400 72.000 29.080
74 85.000 34.180 85.000 41.710 85.000 36.260
75 15.000 5.830 15.000 8.240 15.000 5.830
76 37.000 14.320 37.000 14.320 37.000 14.320
77 107.000 43.760 107.000 63.030 107.000 50.610
78 77.000 30.440 77.000 36.230 77.000 34.910
79 92.000 54.210 92.000 41.580 92.000 38.400
80 165.000 107.940 165.000 96.410 165.000 92.670
81 112.000 50.620 112.000 56.410 112.000 58.460
82 130.000 65.400 130.000 64.440 130.000 76.420
83 97.000 38.650 97.000 59.200 97.000 40.730
84 132.000 110.010 132.000 71.440 132.000 87.130
85 57.000 23.320 57.000 30.960 57.000 23.630
86 130.000 97.440 130.000 76.650 130.000 63.250
87 82.000 36.030 82.000 51.100 82.000 39.230
88 112.000 106.750 112.000 63.650 112.000 53.940
89 85.000 41.680 85.000 38.420 85.000 35.240
90 137.000 103.700 137.000 72.880 137.000 58.680
91 102.000 90.680 102.000 59.140 102.000 63.760
92 120.000 70.800 120.000 74.380 120.000 48.690
93 80.000 56.400 80.000 42.680 80.000 40.270
94 90.000 36.140 90.000 55.410 90.000 42.990
95 132.000 68.360 132.000 62.000 132.000 63.750
96 12.000 4.120 12.000 4.120 12.000 4.120
97 165.000 83.230 165.000 90.860 165.000 77.460
98 95.000 67.030 95.000 53.310 95.000 57.930
99 127.000 51.570 127.000 70.840 127.000 67.920
100 82.000 43.680 82.000 37.210 82.000 33.240
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D.9 Target and Mean values of each customer for test case
103 with gamma distribution of scale parameter θ = 1

Mean solution 90th percentile solution Lateness index solution
Customer Target Mean Target Mean Target Mean

1 42.000 18.400 42.000 19.240 42.000 18.710
2 50.000 19.100 50.000 19.100 50.000 19.100
3 107.000 106.860 107.000 64.760 107.000 86.050
4 127.000 50.240 127.000 50.430 127.000 65.920
5 17.000 6.710 17.000 7.240 17.000 6.710
6 112.000 66.930 112.000 45.970 112.000 58.070
7 75.000 36.210 75.000 31.160 75.000 32.140
8 97.000 61.160 97.000 43.580 97.000 54.090
9 127.000 52.980 127.000 67.200 127.000 60.050
10 120.000 50.080 120.000 56.590 120.000 53.200
11 137.000 74.280 137.000 75.450 137.000 81.340
12 102.000 48.530 102.000 43.480 102.000 44.460
13 30.000 11.660 30.000 11.710 30.000 11.710
14 10.000 3.000 10.000 3.000 10.000 3.000
15 140.000 76.090 140.000 86.800 140.000 65.980
16 115.000 58.820 115.000 47.680 115.000 48.710
17 42.000 16.120 42.000 16.120 42.000 16.600
18 130.000 71.370 130.000 70.500 130.000 90.160
19 152.000 87.430 152.000 81.660 152.000 95.560
20 90.000 74.090 90.000 41.590 90.000 42.070
21 85.000 41.820 85.000 36.770 85.000 37.750
22 155.000 64.380 155.000 85.350 155.000 91.240
23 100.000 74.140 100.000 53.180 100.000 50.860
24 125.000 60.320 125.000 60.500 125.000 74.790
25 52.000 20.590 52.000 20.590 52.000 21.070
26 110.000 53.890 110.000 48.700 110.000 71.110
27 112.000 44.690 112.000 51.200 112.000 61.710
28 127.000 65.890 127.000 85.390 127.000 55.780
29 125.000 59.930 125.000 60.120 125.000 71.960
30 122.000 65.950 122.000 51.950 122.000 65.530
31 37.000 24.400 37.000 14.320 37.000 14.320
32 105.000 41.900 105.000 43.970 105.000 52.710
33 112.000 57.490 112.000 58.190 112.000 76.740
34 117.000 64.400 117.000 64.590 117.000 67.490
35 95.000 80.220 95.000 38.690 95.000 44.780
36 137.000 101.300 137.000 89.340 137.000 72.610
37 57.000 31.100 57.000 29.720 57.000 22.360
38 80.000 38.210 80.000 33.160 80.000 34.140
39 130.000 57.080 130.000 63.590 130.000 78.990
40 157.000 82.040 157.000 65.170 157.000 73.190
41 130.000 57.080 130.000 63.590 130.000 60.200
42 120.000 72.650 120.000 77.020 120.000 51.820
43 140.000 77.090 140.000 85.800 140.000 64.460
44 72.000 34.120 72.000 38.640 72.000 29.160
45 67.000 26.590 67.000 26.250 67.000 26.840
46 165.000 71.210 165.000 76.000 165.000 123.460
47 110.000 63.320 110.000 52.360 110.000 82.570
48 117.000 95.680 117.000 72.810 117.000 69.770
49 60.000 23.870 60.000 23.870 60.000 26.810
50 147.000 64.150 147.000 99.870 147.000 67.270
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Mean solution 90th percentile solution Lateness index solution
Customer Target Mean Target Mean Target Mean

51 105.000 75.800 105.000 50.440 105.000 71.730
52 145.000 71.450 145.000 78.280 145.000 84.170
53 102.000 40.660 102.000 42.440 102.000 46.710
54 112.000 75.650 112.000 74.020 112.000 48.820
55 97.000 69.220 97.000 59.330 97.000 40.550
56 100.000 82.930 100.000 41.900 100.000 60.420
57 47.000 28.520 47.000 18.440 47.000 18.440
58 132.000 83.170 132.000 79.720 132.000 58.380
59 75.000 31.560 75.000 31.560 75.000 29.920
60 155.000 64.210 155.000 86.660 155.000 90.560
61 110.000 85.680 110.000 55.050 110.000 72.200
62 42.000 16.160 42.000 16.160 42.000 16.160
63 100.000 39.740 100.000 41.140 100.000 55.540
64 117.000 58.710 117.000 59.190 117.000 58.290
65 122.000 53.850 122.000 54.040 122.000 62.310
66 100.000 39.060 100.000 39.250 100.000 53.250
67 115.000 60.950 115.000 56.950 115.000 60.530
68 112.000 46.660 112.000 60.880 112.000 66.370
69 127.000 51.500 127.000 53.190 127.000 51.080
70 55.000 21.630 55.000 21.630 55.000 24.570
71 160.000 73.640 160.000 90.380 160.000 76.760
72 90.000 45.640 90.000 40.450 90.000 35.560
73 107.000 71.340 107.000 46.560 107.000 50.830
74 110.000 46.900 110.000 68.190 110.000 61.370
75 132.000 70.370 132.000 71.500 132.000 89.160
76 30.000 11.400 30.000 12.240 30.000 11.710
77 75.000 46.990 75.000 29.410 75.000 39.920
78 125.000 50.500 125.000 54.190 125.000 50.080
79 127.000 99.130 127.000 73.400 127.000 52.060
80 145.000 83.640 145.000 80.380 145.000 86.760
81 105.000 42.900 105.000 64.190 105.000 49.550
82 15.000 5.000 15.000 5.000 15.000 5.000
83 77.000 31.290 77.000 41.470 77.000 31.990
84 95.000 77.000 95.000 37.440 95.000 41.710
85 147.000 97.690 147.000 85.730 147.000 69.000
86 62.000 28.860 62.000 27.480 62.000 24.600
87 122.000 108.370 122.000 75.290 122.000 58.560
88 90.000 57.040 90.000 39.460 90.000 49.970
89 65.000 26.170 65.000 26.170 65.000 25.000
90 105.000 44.900 105.000 66.190 105.000 47.550
91 57.000 23.470 57.000 22.090 57.000 22.090
92 122.000 56.150 122.000 51.100 122.000 52.080
93 72.000 37.500 72.000 36.120 72.000 30.430
94 57.000 22.970 57.000 23.020 57.000 22.800
95 170.000 77.040 170.000 70.170 170.000 78.190
96 60.000 28.400 60.000 23.350 60.000 24.330
97 72.000 39.130 72.000 28.070 72.000 42.070
98 97.000 38.900 97.000 38.900 97.000 38.900
99 32.000 12.040 32.000 12.040 32.000 12.040
100 77.000 42.180 77.000 30.580 77.000 32.070
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