
A TAXONOMY-BASED PERSPECTIVE OF
THE DESIGN TRADE-OFFS FOR
BITTORRENT-LIKE PROTOCOLS

WANG YOUMING

(B.Eng.(Hons.), NUS)

A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48659328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Ben Leong,

who has taught me and guided me in many ways for the past four years.

He taught me in the Facebook class (CS3216), mentored me in the CVWO

project, employed me to work as a research assistant on the TFTTP project and

supervised me to complete this Master thesis in the end. I have learned many

useful lessons from him, not only about research, but also more importantly

about life. His words are insightful, his conduct is a live demonstration of his

core belief. His passion for teaching and spirit of striving for excellence have

deeply affected me. I think I am going to pursue a career in education sector

as well, since to inculcate my knowledge to my students through teaching is

one of the greatest delights of my life. I am deeply grateful to Ben for helping

me to find my calling.

I also owe my gratitude to Prof Teo Yong Meng for guiding me in many

ways in my research work. His strong background and experience of network

system research has broaden my thinking and helped me to conduct my work

in a more systematic ways.

I would like to thank my colleagues Dr. Su Wen and Cristina. Both of them

are more senior than I and have more research experience than I do. They

pointed out my limitation in my thinking and experiment design and suggest

many useful improvements, and helped me to better adapt to the research

environment.

I would like to thank my friends Guo Xiangfa and Liu Xiao who has made

my NUS life more memorable. I also would like to thank Wang Wei, Xu Yin,

Gong Jian, Yu Guoqing, Leong Wai Kay, Daryl Seah and Ali Razeen for being

my wonderful and helpful lab mates.

I owe my deep gratitude to my parents for loving me and praying for me,

especially during my life in Singapore. They are wonderful parents who I

cherish deeply and dearly. I would like to thank my newly married wife Kang

Pei for accompanying me for the past one and half years through my joy and

ii

sorrow, my wellness and sickness. Her presence has brought much delight to

my life. I thank God for His blessing by bringing her into my life.

Last but certainly the most importantly, I would like to thank my Savior

and Lord Jesus Christ. His love to me surpasses knowledge and is everlasting

and ever fresh. I would like to dedicate my whole life to experience His love

and love Him in return.

iii

Table of Contents

1 Introduction 1

1.1 Our Approach . 2

1.2 Contributions . 4

1.3 Report Organization . 4

2 Related Work 6

2.1 Analysis, Simulation and Measurement Studies 6

2.2 Strategic BT Clients . 8

2.3 BT Protocol Design Space . 10

3 Investigating the Protocol Design Space 12

3.1 Overview of BT-like Protocols . 13

3.2 Experimental Setup . 14

3.3 Number of Connections . 16

3.4 Number of Unchokes . 22

3.4.1 Number of Optimistic Unchokes 26

3.5 Peer Selection Strategy . 32

3.5.1 Choice of Peers for Optimistic Unchokes 32

3.5.2 Choice of Peers for Regular Unchokes 35

3.6 Uplink Bandwidth Allocation . 38

3.7 Summary . 39

4 Design Principles 40

4.1 Keep Promise . 40

4.2 Keep Neighbour Information Up-to-date 43

5 Conclusion 44

5.1 Future Work . 45

iv

List of Tables

3.1 Equal-split rate of BTold vs BTnew 26

3.2 regular unchoke strategy and performance result 36

3.3 Utilization of BitTyrant and PropShare 39

4.1 Comparison of experiment results for Azureus and FairTorrent . 41

4.2 Comparison of experiment results with HAVE aggregation turn

on and off . 43

v

List of Figures

1.1 Taxonomy of BT variants. 3

3.1 Plot of finish times against server upload bandwidth. Best client

finish time is the download completion time of the fastest client

in the system. Unique pieces finish time is the time needed by

the server to issue out all pieces of the downloaded file at least

once to some peer in the system. 16

3.2 Average download time of BT peers when varying the number of

connections. 17

3.3 Comparison of upload bandwidth utilization for different num-

bers of connections. 18

3.4 The percentage of matched regular unchokes over time for dif-

ferent peer set size. 19

3.5 The percentage of roughly matching regular unchokes for each

bandwidth groups over time for peer set size = 90. 20

3.6 Average download time of BT peers when varying the fixed num-

ber of unchokes from 4 to 40 with step of 3. Error bars indicate

the standard deviation. The client upload capacities are hetero-

geneous . 23

3.7 Average download time of BT peers when varying the fixed num-

ber of unchokes from 1 to 10, with step of 1. Error bars indicate

the standard deviation. 24

3.8 The matching graph of upload amount vs download amount for

all peers when time = 400s. 25

3.9 Average download time of BT peers when varying the number of

optimistic unchokes for nonseeding case. Error bars indicate the

standard deviation. 27

3.10The matching graph of upload amount vs download amount for

all peers when all nodes run BT clients when time = 400s. 28

3.11Average download time and fairness index of BT peers when

varying the number of optimistic unchokes. 29

vi

3.12Average download time of BT peers when varying the number of

optimistic unchokes for seeding case. Error bars indicate the

standard deviation. 31

3.13The function that Azureus uses to calculate and locate the peer(s)

from the peer list ordered according to descending order of deficit

for optimistic unchokes . 33

3.14The percentage of exactly and roughly matched regular unchokes

over time for random optimistic unchokes and factor of recipro-

cation consideration. 33

3.15The percentage of exactly matched optimistic unchokes over time

for random optimistic unchokes and factor of reciprocation con-

sideration for peers with upload capacity of 100 KB/s and 150 KB/s.

34

3.16The percentage of exactly matched regular unchokes over time

for random optimistic unchokes and factor of reciprocation con-

sideration for peers with upload capacity of 50KB/s. 35

3.17The percentage of exactly matched optimistic unchokes over time

for random optimistic unchokes and factor of reciprocation con-

sideration for peers with upload capacity of 50 KB/s. 36

3.18The matching graph of upload amount vs download amount for

all peers when time = 400s. 37

3.19Comparison of upload bandwidth utilization among peers run-

ning BT, BitTyrant and PropShare. 38

4.1 Number of CANCEL messages received for each 10 secs interval

and the corresponding average upload rate of peers. 42

4.2 Time taken to serve each request. Requests are ordered accord-

ing to service time. 42

vii

Abstract

In recent years, BitTorrent (BT) has become the most popular peer-to-peer file

sharing protocol. However, in spite of its popularity, the protocol has many

vulnerabilities that can be exploited by strategic peers. Some recent work

studied the trade-offs involved in BitTorrent algorithm, but the exploration

of the design space has not been comprehensive. In the dissertation, we

propose a new taxonomy-based approach for analyzing the trade-offs in a

practical implementation of the BT protocol and investigate these trade-offs

in the protocol design space. Finally, we propose two key design principles

we gleaned from our experience working with various BT clients: (i) keeping

promises and (ii) keeping information up-to-date.

viii

Chapter 1

Introduction

BitTorrent (BT) [5] has in recent years become the predominant means for

peer-to-peer (P2P) content distribution on the Internet. A number of BT vari-

ants have also been proposed over the past few years to address various is-

sues like fairness [16] and strategic peers [13, 14]. Given its importance to file

sharing, it is important to understand how different elements in the protocol

will affect performance.

To the best of our knowledge, Fan et al. [6] were the first to propose a math-

ematical model that allows us to tradeoff performance for fairness in BT by

adjusting the ratio of regular unchokes to optimistic unchokes in BT protocol.

We found that in addition to this ratio, there are many other mechanisms that

can affect the trade-offs between performance and fairness that are not cap-

tured in their model. We believe that because the implementation of the BT

protocol is inherently complex, the trade-off between performance and fair-

ness cannot be adequately captured with a limited mathematical framework,

such as the one proposed by Fan et al.

1

1.1 Our Approach

Therefore, we propose a new taxonomy-based approach for analyzing the

trade-offs that takes into consideration the practical implementation of the

BT protocol. To this end, we analyzed a number of the available BT variants,

including BitTyrant [14], BitThief [13], PropShare [11], FairTorrent [16] and

Azureus 3.0.4 [1], and compared them to the default BT protocol [5] to come

up with a taxonomy, based on the following four key decisions made by the

various protocols:

1. Number of connections , i.e. how many peers does each node connect

to?

2. Number of unchokes, i.e. how many peers does a node service simulta-

neously?

3. Peer selection strategy, i.e. how does a node decide which peer(s) to

unchoke?

4. Uplink bandwidth allocation, i.e. how much data is to be uploaded to

each unchoked peer?

The resulting taxonomy is shown in Figure 1.1.

We modified the Azureus BT client to comply with the behaviour of original

BT protocol to act as the baseline comparison and added additional code to

record key activities, like choke messages. We also augmented the client with

additional command-line arguments to allow us easily change various param-

eters and modified the client to support both seeding mode and non-seeding

mode, where nodes leave immediately upon completing a download. We did

the same for the other clients like BitTyrant [14], PropShare [11] and FairTor-

rent [16]. We also modified the choke/unchoke algorithm to include new one,

2

peer selection

unchokes

upload rate
control

connections

unchoke some unchoke all

FairTorrent

unchoke
optimistic

randomprioritized

unchoke
optimistic

upload
none

to be

BitTyrantBitThiefPropShareDefault BT

Azureus 3.0.4

none weighted
average

minimum

unchoked

connect to
some

connect to
all

BitTyrant

Figure 1.1: Taxonomy of BT variants.

like unchoking algorithm that was based on deficit to allow us to compare the

performance of different algorithms for peer selection strategy.

We conducted experiments on PlanetLab using 100 nodes and 3 servers.

We chose a wide range of upload capacity for our nodes in order to mimic the

heterogeneous environment in real world. We looked into the possible options

for each decision by gathering from previous works and our own proposed

ideas. We collected logs from each node of each experiment and wrote scripts

to process them to give us data we like to analyze. We plotted various parame-

ters, like upload rate, client matching, utilization, etc. to help to visualize the

interval mechanics of each option and compare their differences in term of

fairness and performance. We investigated fairness and performance at both

the systematic and at the individual level. Though we realized that some of

the protocol decisions are related to one another, we try to separate them as

3

much as possible so that we can analyze and study them individually to give

us some useful insight.

1.2 Contributions

By systematically studying the differences between the various BT variants

with our taxonomy-based approach, this dissertation makes the following

contributions:

1. Detailed Investigation of Protocol Design Space. Our detailed and

systematic exploration of the design space for the BT protocol reveals

more design knobs than those suggested by Fan et al. [6], including dif-

ferent peer selection strategies and data upload control. In particular, we

show that the peer selection can have significant impact on performance

and fairness.

2. Design Principles. From our experience working with the various BT

variants, we also articulate two key principles that we found are impor-

tant to achieve good performance:

• Keep promises, i.e. requests should be serviced promptly;

• Keep the neighbour information up-to-date.

1.3 Report Organization

The rest of this dissertation is organized as follows: in Chapter 2, we pro-

vide an overview of the related work in the literature. In Chapter 3, we de-

scribe each level of taxonomy framework along with an associated measure-

ment study. In Chapter 4, we present the key principles along and investigate

4

how they can affect practical performance. Finally, we discuss future work

and conclude in Chapter 5.

5

Chapter 2

Related Work

In this chapter, we first present a general overview of previous studies that

reveal some of its key vulnerabilities of the BitTorrent protocol. Next, we

describe several prominent strategic BT clients in chronological order. Finally,

we highlight some studies which focus on a high-level understanding of the

BT protocol design space.

2.1 Analysis, Simulation and Measurement Stud-

ies

There are a large number of analysis, simulation and measurement studies

on BT performance in the literature. Legout et al. [10] claimed that rarest

first and choke algorithm is enough to encourage reciprocation and prevent

free-ridiing and later showed experimentally that clustering and good sharing

incentive in BT systems [9]. The inherent weaknesses of the BT protocol has

also been extensively studied [17, 7, 2, 12].

Thommes et al. found that peer selection and unchoking techniques in de-

fault BT implementation can induce substantial unfairness and proposed the

use of a conditional optimistic unchoke to reduce the altruism introduced in

6

unnecessarily optimistic unchoke [17]. They also suggested multiple connec-

tion chokes and variable number of unchokes to allow more flexibility on how

many peers to unchoke and who to unchoke in order to improve fairness.

Jun et al. modelled the incentives of BT as an iterated Prisoner’s Dilemma

problem and showed with PlanetLab experiments that free riders complete

downloads as early as those who contributes to the swarm [7]. To address

such unfairness, they proposed that a restriction be imposed on the differ-

ences of upload amount and download amount for each link to a certain

bound at all times.

Bharambe et al. found that BT’s rate-based Tit-For-Tat (TFT) policy can

give rise to unfairness across nodes in term of total data served in hetero-

geneous environment [2]. They proposed a pairwise block-level TFT which

reduces unfairness, which is essentially the equivalent to the scheme pro-

posed by Jun et al. [7]. The resulting trade-off is a reduction in utilization,

which is especially severe among faster peers. This is because the faster peers

are more likely to stop uploading to its neighbours whenever the block-level

TFT constraint is not satisfied.

Liogkas et al. studied the effect of selfish BT clients, which attempt to

download more than their fair share [12]. They identified three exploits, down-

loading only from seeds, downloading only from fastest peers and advertising

false pieces. Their experimental results showed that BT proved to be quite

robust against these exploits. However, the paper only studied each exploit

individually, therefore the effect of benefits may be greater if all exploits are

employed at the same time.

7

2.2 Strategic BT Clients

Many different BT clients have been invented to exploit or fix the various

strategic vulnerabilities. BitThief [13] is a free-riding BT client that attempts

to download data without contributing to the swarm by uploading data at

all. BitThief tries to establish much more connections than the official client

which allows it to obtain data from more seeders and get more optimistic

unchokes from leechers. BitThief can achieve a high download rate, which

showed that the basic piece exchange mechanism is ineffective at restraining

free-riding peers.

Piatek et al. studied three different instances of altruism in BT-like pro-

tocols, namely the matching period, regular unchokes and optimistic un-

chokes [14]. To take advantage of the altruism, they propose a BT variant

called BitTyrant that uses greedy peer set size (i.e. number of connections)

which was proposed in BitThief [13] and greedy uplink allocation. Instead

of treating unchoked peers equally, by not limiting on how much data can

be uploaded to unchoked peers, BitTyrant attempts to upload only the min-

imum amount of data to each unchoked peer so as to secure and maintain

the peer’s reciprocation. In other words, the BitTyrant client seeks to max-

imize the total data download rate by actively managing the data uploaded

to each peer. Carra et al. subsequently showed that the performance gain of

BitTorrent over BT is due to the increased number of connections established

by BitTyrant peers, rather than to the alleged active upload management [3].

However, this study was limited to simulation. In our work, we verified that

the performance of BitTyrant is not as good as that claimed in the original

BitTyrant paper [14] through experiments on PlanetLab.

Laoutaris et al. developed an uplink allocation algorithm that can shorten

the download time by improving uplink utilization by dynamically managing

8

the number of unchokes in real-time [8]. While keeping the upload capacity

of the peer is fully utilized, they try to minimize the number of unchokes

by uploading to the nodes with high upload capacity and low availability of

pieces. This minimizes the risk of under-utilization of neighbours. However,

since Laoutaris et al.’s protocol requires the peers to be cooperative, their

scheme may not be realistic in a real-world scenario.

PropShare was proposed to address the loopholes in original BT algorithm

which were exploited by BitThief and BitTyrant [11]. PropShare controls the

rate of data upload by assigning each peer with an upload limit equal to the

weighted average of the data received from the previous few rounds. Levin et

al. showed that PropShare is Sybil-proof and collusion-resistant. However, the

PropShare client needs to know its initially available upload capacity and only

thereafter can it allocate a preset upload quota for each connection. Further-

more, the upload quota of each connection may not be fully utilized, which

would result in wasted bandwidth. Nevertheless, PropShare outperforms Bit-

Tyrant when they are in the same swarm and BitTyrant cannot game Prop-

Share. This is because PropShare clients do not use any upload threshold to

decide who to unchoke, so there is no way for BitTyrant to determine what

minimum value to upload in order to win a bid for reciprocation.

FairTorrent [16] is an innovative algorithm similar to PropShare that tries

to address the problem of unfairness in original BT protocol without the need

of neighbours’ bandwidth estimation, risk of under-utilization and compli-

cated parameter tuning in previous attempts by other works. Basically it

does not choke any connections, but instead prioritizes uploads according to

difference of number of bytes uploaded and downloaded from any peer, which

is called deficit. The general idea is that the request from the peer which

has the least deficit will be served first. This approach can achieve fairness

naturally, however we will show in Section 4.1 that it can result in starvation.

9

2.3 BT Protocol Design Space

Fan et al. proposed a mathematical framework to study the fairness and per-

formance of a P2P file sharing network [6]. They showed that there is a fun-

damental trade-off between performance and fairness. However, they only

investigated performance and fairness from a theoretical perspective, and the

actual algorithm for various BT-variants are not fully explored. For exam-

ple, the paper assumes that each peer divides its uploading capacity equally

among its neighbours. This is certainly not the case for BitTyrant, PropShare

and FairTorrent. The paper presents only one design knob to tune fairness

and performance based on original BT, which is by tuning number of regular

unchokes and optimistic unchokes. In a practical BT implementation, the de-

sign knobs are certainly more complicated that this. Furthermore, Fan et al.

did not seem to understand original purpose of optimistic unchokes. While

an optimistic unchoke is altruistic since it will give to others first, its purpose

is to explore the available peers to identify those that can reciprocate at a

faster rate than current set of peers that are unchoked by regular unchokes.

Optimistic unchokes are therefore not altruistic by design, but rather, the al-

truism is a side-effect. Therefore, the scenario where all the peers use only

optimistic unchokes only to serve other people is not realistic in an actual

real-world environment.

Xia et al. surveyed existing BT performance studies by adopting some gen-

eral approaches in categorizing existing works and summarizing the design

issues, their effectiveness and possible improvements [18]. Their survey in-

cludes works from analysis, measurement and simulation studies. However,

Xia et al. categorized all design issues under either piece exchange and over-

lay topology which is unnecessarily broad. There is no apparent relationship

between the two categories. In contrast, our work considers four factors that

10

correspond directly to the BT protocol implementation, to systematically orga-

nize the design issues in a step-by-step manner, which we believe aids in our

understanding and appreciation of the mechanics involved in the BT protocol

and facilitates future design of new BT-related protocol. In addition, some of

the claims summarized by Xia et al.’s survey paper are mutually contradic-

tory and the authors made no attempt to verify the correctness of the claims.

Furthermore, there is no clear focus of the paper, so the issues covered are

much broader and the resulting discussions on each issue are inevitably very

brief. In our work, we focus mainly on performance and matching among

peers, which allows us to focus on fewer issues but in the process, investigate

each issue in greater depth.

11

Chapter 3

Investigating the Protocol Design

Space

In this chapter, we first describe our framework for the proposed taxonomy of

protocols. We make the following assumptions in our discussion:

• The bandwidth bottleneck is in the uplink instead of the downlink at the

nodes. This assumption is consistent with previous work [6].

• Peers will attempt to fully utilize the upload capacity as long as they can

achieve good download rate.

Next, we investigate how the following parameters affect BT performance by

running experiments on the PlanetLab testbed [15]:

• Number of connections

• Number of Unchokes

• Peer Selection Strategy

• Uplink Bandwith Allocation

12

3.1 Overview of BT-like Protocols

In this section, we give a brief introduction to BT protocol and explain the

terms that are used in this dissertation.

A P2P file sharing network is formed by peers that want to download

and/or upload a common file. The file is divided into fixed size pieces (typi-

cally 256 KB each), and each piece is further divided into sub-pieces which

is called blocks, typically of 16 KB in size. The peers usually simultaneously

download and upload blocks of the file from one another. The peers that

have the complete file are called seeds and they effectively act as servers by

uploading pieces to other peers.

When a peer joins a BT-based file sharing network, it obtains a list of peers

from the tracker and connects to some of them. The peers exchange their

bitfield, a bit map that records what file pieces each peer has. Based on the

bitfield information, the peers can request missing pieces from other peers.

Choking is the mechanism used to limit the number of simultaneous upload.

By unchoking a remote peer, the local peer informs the the remote peer that it

can now request pieces from it and serves the requests accordingly. The set

of unchoked peers can be divided into regular unchoke peers and optimistic

unchoke peers. Nodes record how much data they download from each peer

every ten seconds, which we refer to as a time interval. Regular unchoke

peers are chosen from the remote peers that upload the most data blocks to

the local peer during the latest time interval according to the original protocol

specification. Optimistic unchoke peers usually chosen randomly by a node in

an attempt to find remote peers that can upload data to it at a faster rate than

its current set of unchoked peers. Seeds and the optimistic unchoke help to

bootstrap new peers without any file blocks to exchange with others.

There are basically two major strategies involved in the BT protocol, namely

13

peer selection strategy and piece selection strategy.

The peer selection strategy refers to how a node decides on which peers to

unchoke. In the BT protocol, the owner of the data decides which peers to

unchoke (upload) and will upload blocks according to the requests received

from the peers, while the unchoked peer only decides what piece to request.

The goal of peer selection is (i) to efficiently utilize available upload capacity

and (ii) to obtain maximum reciprocation from other peers. Hence, a node

needs to pick enough peers to fully utilize its upload capacity and also pick

wisely in order to maximize reciprocation from the peers.

The decision on which peer to download data from is usually passive. In the

original BT protocol, a peer can only request up to four pieces from neighbours

when they are unchoke, so the peer does not really have a choice about where

it wants to download data from. In fact, it need not. The more peers that

unchoke a peer, the better off is its situation. Just like in real-life, a person

needs not be concerned when there are many benevolent people around who

want to share their wealth.

Hence, once a node is unchoked, the remaining question is: what piece(s)

should it try to download. The de facto piece selection strategy in original BT

protocol is Local Rarest First (LRF). Since piece requests are usually pipelined,

two requests are often sent initially. More requests can be sent later if the

upload rate is found to be high.

3.2 Experimental Setup

To understand how various parameters affect the performance of the BT al-

gorithm, We conducted measurements on PlanetLab [4, 15] with BT, Azureus

and FairTorrent. We used Azureus version 3.0.4 as the BT client, but we mod-

ified the Azureus client to make it conform to original BT protocol as much

14

as possible. For FairTorrent, we used the implementation provided by Sher-

man et al. [16]. In all our experiments, the size of the file to be downloaded

is 100 MB, which is divided into blocks of 16 kB with 16 blocks forming a

piece. In each experiment, unless specified explicitly, we used 100 nodes to

simultaneously join the system and start downloading the file from the seed.

Peer bandwidth are set to be heterogeneous, we adopt a uniform distribution,

with the same number of peers having bandwidth 50KB/s, 75KB/s, 100KB/s,

125KB/s and 150 KB/s. This allows us to study the basic performance of BT

clients in a heterogeneous swarm which serves as a good starting point for

study of other more complicated distributions in future work. For most ex-

periments, we conduct two variants: a non-seeding round, where the peers

will leave after completion of download, and a seeding round, where the peers

will stay and become seeds after completion of download.

Choice of the Upload Bandwidth for Server: Before presenting the re-

sults from our experiments, we shall explain the methodology used to choose

an appropriate upload bandwidth for the server. In Figure 3.1, we plot the

time taken for the fastest client to complete its download and also the time

taken for the initial seed to give out every single block of the downloaded file.

It is clear that when the server bandwidth is less than 175KB/s, the time re-

quired by the server in issuing out all the fresh blocks imposes a lower bound

on the finish time of the fastest client. As the server bandwidth increases,

the finish time of the client is likely less affected by the server capacity but

more by the bandwidth distribution of peers in the system. We observed that

though unique pieces finish time constantly decreases as server upload band-

width increases, the best client finish time no longer improves with increasing

server capacity when server bandwidth exceeds 270KB/s. Given this obser-

vation, we used 300KB/s as our server bandwidth for all our experiments.

15

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 150 200 250 300 350

T
im

e
(s

)

Server bandwidth (kBps)

Best client finish time
Unique pieces finish time

Difference

Figure 3.1: Plot of finish times against server upload bandwidth. Best client
finish time is the download completion time of the fastest client in the system.
Unique pieces finish time is the time needed by the server to issue out all
pieces of the downloaded file at least once to some peer in the system.

3.3 Number of Connections

Peer set size is defined as number of connections that a peer maintains in

the official BT protocol documentation. Maintaining connections with remote

peers serves two purposes. The first is to exchange useful information regard-

ing current pieces in possession with one another through bitfield and “have”

messages. This allows a peer to calculate the availability of each piece and

request local-rarest-first piece from other peers. The second is that from the

peer set, a node can try to find matching peers and unchoke them. If the

peer set size is too small, there may not be enough peers of compatible upload

bandwidth within the group and the peer may not be able to find matching

ones and will have to work with mismatched peers. Figure 3.2 shows that the

average download time is roughly constant when number of connections is

more than or equal to 30. We plot the upload utilization for different numbers

of connections for seeding case in Figure 3.3. It shows that a small peer set

16

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e
(s

)

Number of connections

Non-seeding
Seeding

Figure 3.2: Average download time of BT peers when varying the number of
connections.

size (as small as ten) can cause peers to become uninteresting to other peers

and consequently result in a drop in the upload utilization. Therefore, we

conclude that the local-rarest-first principle is effective in maintaining high

availability of the local peers to others, and allow BT to utilize upload capacity

efficiently.

In Figure 3.4, we plot the proportion of peer-bandwidth matching for all

the peers’ regular unchokes over time. If a node and its unchoked peer have

the same upload capacity, we consider them to be exactly matched. If the

absolute difference of node’s upload capacity and its unchoked peer differs by

no more than 25KB/s, we consider them to be roughly matched. We plot the

graph only for experiment running time up to 700 s because after this time,

some peers will complete their download and start leaving the system and this

adversely affects the matching among peers of similar bandwidths.

Figure 3.4a shows that for smallest peer set size (i.e. ten), the percentage

of exactly matched regular unchokes only increases slightly initially and stays

constant for the rest of time. It is because the peer set size is too small, and

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Utilization

10 connections
30 connections
50 connections
70 connections
90 connections

Figure 3.3: Comparison of upload bandwidth utilization for different numbers
of connections.

there are limited neighbours for the local peers to explore for better match-

ing, so after a short while, the local peer would have found the best ones

in its peer set and continues to unchoke the same set of peers for the rest

of time. With more connections, the matching percentage generally increases

over time, since nodes have access to a large set of peers and nodes will gradu-

ally find better peers over time. Since the bandwidth used in our experiments

do not differ too much, it is expected some peers will be content to exchange

file blocks with peers of similar bandwidths. For example, a peer with 50KB/s

upload capacity may pair with another peer with 75KB/s and another peer

with 100KB/s upload capacity might pair with one with 75KB/s or 125KB/s

upload capacity. In Figure 3.4b, we see that the results for roughly matched

peers are similar to that for exact matching.

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600 700

M
at

ch
in

g
R

at
io

Time (s)

90 connections
70 connections
50 connections
30 connections
10 connections

(a) Exactly matched.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700

M
at

ch
in

g
R

at
io

Time (s)

90 connections
70 connections
50 connections
30 connections
10 connections

(b) Roughly matched.

Figure 3.4: The percentage of matched regular unchokes over time for differ-
ent peer set size.

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

M
at

ch
in

g
R

at
io

Time (s)

125KB/s
100KB/s
75KB/s

150KB/s
50KB/s

Figure 3.5: The percentage of roughly matching regular unchokes for each
bandwidth groups over time for peer set size = 90.

Current BT protocol implementations usually use 50 connections as the

default. For our experiment setup, this setting is sufficient to include enough

peers of similar bandwidth in the peer set. However, due to the uncertainty

and heterogeniety in real-life swarms, we would not claim that is the one-

fit-all solution for all scenarios. We recommend that the download rate from

each regularly unchoked peers be measured periodically. If there is no im-

provement over the matching after some time, we might want to increase the

peer set size and allow more connections to be established. To investigate

the behaviourial difference of peers for different bandwidth groups, we plot

the matching ratios for the different groups in Figure 3.5, which shows the

matching ratio for a peer set size of 90.

Since we are comparing roughmatchly peers, those with bandwidth 75 KB/s,

100 KB/s, 125 KB/s can roughly match to peers of three bandwidth groups,

but for peer of bandwidth 50 KB/s and 150 KB/s, it can only match to two

bandwidth groups, so it is fair to compare peers of bandwidth 75 KB/s,

100 KB/s, 125 KB/s as one group, and peers of bandwidth 50 KB/s and

20

150 KB/s as another group. From the both groups, we observe that, in gen-

eral, the peer matching ratio increases with higher bandwidth. Peers of band-

width 125 KB/s constantly match better than those of 100KB/s, and peers

of bandwidth 100 KB/s than those of 75 KB/s. It is also true for 150 KB/s

and 50 KB/s. This is due to the fact that the faster peers will gradually

match among themselves first, and slowly give up the slower peers it previ-

ously matched. When the slower peer realize that it has been abandoned by

the faster ones, will try to match itself with other slower ones, and then sta-

bilize. This process will go on until most the peers’ regularly unchoked ones

stabilize. So the faster peers will stabilize first, then the slower ones, and in

the end, the slowest ones.

While we might expect the the matching proportion for the different band-

width groups to eventually converge to a similar value, we found that this is

not true in practice, as shown in the Figure 3.5. The reason is that previously

we only focussed on the regular unchokes. When a fast peer has found its

matching peers and its regularly unchoked peers stabilize, it still uses opti-

mistic unchoke to explore better ones. Doing so is disastrous to slower peers

since they will very likely give up a currently better-matched peer in one of the

regular unchoke slots and replace it with a faster peer. However, when after

a while, the fast peer realizes that the slow peer cannot upload as much data

and will chokes the slow peer and in order to try another peer. So the slow

peer will be abandoned and it has to go and look for other peers to unchoke

and upload to. Similarly, the slower peers are constantly offered optimistic

unchokes by the fast peers, which may not seem like a bad thing, except that

they may disrupt the existing stable matchings of the slow peers.

21

3.4 Number of Unchokes

The active set size is defined as the number of unchokes in official BT protocol

documentation. In the original BT algorithm, it is a fixed value: four regular

unchokes and one optimistic unchoke. In later versions, number of regular

unchokes is changed to a dynamic value that equals to ⌊
√
0.6 ∗ C⌋ where C is

the upload capacity and the number of optimistic unchokes is set to be two.

Later, in Azureus, a popular BT variant implemented using Java, it is still a

fixed number - three regular unchokes and one optimistic unchokes by de-

fault. We expect that a higher upload capacity will require more unchoked

peers in order to fully utilize the available capacity. In BitTyrant, it is a dy-

namic number based on the some calculation of the upload/download ratio

of the neighbours and the local peer’s own upload capacity. PropShare un-

chokes all the neighbors which has been uploaded some data to the local peer

during the last four rounds and also some peers who did not upload to the

local peer recently in order to know new peers.

Therefore, there are basically three classes of unchoke strategies: (i) a fixed

number, (ii) a dynamic number purely based on the local peer’s upload capac-

ity, and (iii) a dynamic number based on the remote peers who uploaded to

the local peer in the recent past (c.f. PropShare) or the ratio of the upload and

download rate of each remote peer (c.f. BitTyrant). Due to the complexity of

last category (since both PropShare and BitTyrant also involve data capping at

the same time), we only study the effect of first two categories in this section.

We ran multiple experiments by varying the fixed number of unchokes for

all nodes from 4 to 40 with step of 3 for both seeding and non-seeding cases.

We plot in Figure 3.6 the average download time of all nodes in each exper-

iment when number of unchokes changes. We found that, in general, when

there are more uploads, the average download time increases. We believe it is

22

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e
(s

)

Number of unchokes

Non-seeding
Seeding

Figure 3.6: Average download time of BT peers when varying the fixed number
of unchokes from 4 to 40 with step of 3. Error bars indicate the standard
deviation. The client upload capacities are heterogeneous

because when there are too many unchokes, the pipe of each established TCP

connection would be rather thin, and that would reduce the efficiency of data

transmission for each connection. Furthermore, more unchokes would mean

that each unchoked peer would get slower download rate, and therefore take

a longer time to receive a complete piece from each peer. That may hurt the

availability of pieces to others. In order to find the best number of unchokes

for our distribution setup, we ran another set of experiments by varying the

fixed number of unchokes for all nodes from 1 to 10 with step of 1 for both

seeding and non-seeding cases. We plot the result in Figure 3.7. It shows that

the value is around 3 to 4 which is very close to the default unchokes (5) in

original BT protocol.

We also ran experiments with the original BT algorithm (denoted with

“BTold”) with a fixed number of unchokes (four in our case) along with the

latest version of the BT algorithm with number of unchokes varying accord-

ing to the upload capacity (denoted with “BTnew”) . We plot the total data

23

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 0 2 4 6 8 10

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e
(s

)

Number of unchokes

Non-seeding
Seeding

Figure 3.7: Average download time of BT peers when varying the fixed number
of unchokes from 1 to 10, with step of 1. Error bars indicate the standard
deviation.

uploaded and downloaded for each peer after 400 s in Figure 3.8. We pick

the time at 400 s because at that point, all the peers are busy exchanging

blocks with one another, yet none of them have completed the download. We

found that for BTold, the peers had equitable upload download ratio for all

bandwidth groups, while for BTnew, the faster peers (who uploaded more)

contribute more than they downloaded, and the slower peers received more

than they uploaded. Therefore, fixed number of unchokes for all peers actu-

ally achieves a better matching than a strategy where the number of unchokes

varies based on upload capacity.

24

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10000 20000 30000 40000 50000 60000 70000

D
at

a
do

w
nl

oa
de

d
(K

B
)

Data uploaded (KB)

y = x

(a) All BTold clients

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10000 20000 30000 40000 50000 60000 70000

D
at

a
do

w
nl

oa
de

d
(K

B
)

Data uploaded (KB)

y = x

(b) All BTnew clients

Figure 3.8: The matching graph of upload amount vs download amount for
all peers when time = 400s.

25

As mentioned, BTnew sets number of regular unchokes to a dynamic value

that equals to ⌊
√
0.6 ∗ C⌋ where C is the upload capacity and the number of

optimistic unchokes is set to be two. We define equal-split to be the average

upload rate for a peer to each unchoked neighbours, which is the total upload

capacity divided by the number of unchokes. Table 3.1 shows a comparison of

number of unchokes and corresponding equal-split rates for BTold and BTnew

clients respectively for different upload capacities from 50KB/s to 150KB/s.

There are many more regular unchokes slots for fastest peers in BTnew (9)

than in BTold (4), so it takes much longer time to find 9 peers with matching

rate than in BTold case. Furthermore, since number of regular unchokes

increases with upload capacity for BTnew protocol, the difference of equal-

split rates for the faster peers and slower peers becomes smaller, so it becomes

even harder to match among the same bandwidth groups.

Table 3.1: Equal-split rate of BTold vs BTnew

Upload Capacity (KB/s) 50 75 100 125 150

BTold (# of unchokes) 5 5 5 5 5

BTold (equal-split rate) 10 15 20 25 30

BTnew (# of unchokes) 7 8 9 10 11

BTnew (equal-split rate) 7.14 9.38 11.11 12.5 13.64

3.4.1 Number of Optimistic Unchokes

The purpose of optimistic unchoke is allow nodes to find better peers with

which to exchange data. It is important to study how we should determine

the number of optimistic unchokes and how to pick peers to be unchoked

wisely.

We plot the average download time of BT peers when fixing the total un-

chokes to be 4 and 6, and varying the number of optimistic unchokes from

0 to the max number for non-seeding case in Figure 3.9. It shows that for

26

 800

 900

 1000

 1100

 1200

 1300

 1400

 0 1 2 3 4 5 6

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e
(s

)

Number of optimistic unchokes

6 total unchokes
4 total unchokes

Figure 3.9: Average download time of BT peers when varying the number of
optimistic unchokes for nonseeding case. Error bars indicate the standard
deviation.

non-seeding case, when the number of optimistic unchokes increases, the

average download time decreases. However, since the standard deviation be-

comes smaller, it suggests that the difference of average download time be-

tween faster nodes and slower nodes become smaller.

We plot in Figure 3.10 a comparison of total data downloaded and uploaded

for each peer when all nodes run default BT clients with 4 total unchokes at

time of 400 s. It shows that when the number of optimistic unchokes is two,

we achieve the best matching among peers. The matching for 4 optimistic un-

chokes is worse than that with no optimistic unchoke since the former treats

all peers equally, and the latter can at least choose the best ones among all

the peers it exchanges data with initially. Though the latter has a very small

set to choose from, it is still better than choosing randomly (four optimistic

unchokes). So the reduction in average download time achieved in Figure 3.9

is due to the sacrifice of faster peers who upload to the other nodes without

demanding reciprocation.

27

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10000 20000 30000 40000 50000 60000

D
at

a
do

w
nl

oa
de

d
(K

B
)

Data uploaded (KB)

y = x

(a) Zero optimistic unchoke

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10000 20000 30000 40000 50000 60000

D
at

a
do

w
nl

oa
de

d
(K

B
)

Data uploaded (KB)

y = x

(b) Two optimistic unchokes

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10000 20000 30000 40000 50000 60000

D
at

a
do

w
nl

oa
de

d
(K

B
)

Data uploaded (KB)

y = x

(c) Four optimistic unchokes.

Figure 3.10: The matching graph of upload amount vs download amount for
all peers when all nodes run BT clients when time = 400s.

28

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5 6 7

F
ai

rn
es

s
In

de
x

Number of optimistic unchokes

6 total unchokes
4 total unchokes

Figure 3.11: Average download time and fairness index of BT peers when
varying the number of optimistic unchokes.

We adopt the fairness index proposed by Fan et al. [6] to quantify the

fairness of our system and plot in Figure 3.11 the average download time

and fairness index when the number of total unchokes is fixed at 4 and 6

respecitively, and the optimistic unchokes is varied. It shows that as the

number of optimistic unchokes is increased, the fairness index increases until

a maximum value, and then it decreases. This agrees with the simulation

results of Fan et al. [6].

It shows the advantage and the drawback of the optimistic unchoke. The

main purpose of an optimistic unchoke is to allow a node to find better peers.

When it is zero, peers can choose from the peers they exchange data with ini-

tially (for a fixed number of unchoke N, they have information for N peers they

upload to and average N peers they download from, and in total they have less

or equal to 2N peers to choose from), so the fairness index is very low. When

number of optimistic unchokes initially increases, the optimistic unchokes

start allowing a node to better peers. Unfortunately, when it increases even

more, we start seeing the drawback of the optimistic unchoke, which is its al-

29

truistic nature in uploading to others first. If number of optimistic unchokes

occupies more than a certain proportion of the total unchokes, a peer will end

up giving out too much upload capacity for nothing.

In addition, we also observe that when we have a larger number of total

unchokes, we will need more optimistic unchokes to achieve better fairness.

That is to be expected since with more unchokes, we need more time to find

the matching peers to fill the unchoke slots, and more optimistic unchoke may

help to achieve that faster. However, too many optimistic unchokes might

cause the peers to be excessively altrustic and affect fairness. Our results

suggest that as a good rule of thumb, the number of optimistic unchokes

should be slightly less than half of the total unchokes (one for four unchokes,

two for six unchokes).

Next, we plot in Figure 3.12 the average download time of BT peers when

the total unchokes is fixed at 4 and 6, and vary the number of optimistic

unchokes from 0 to the max number for seeding case. It shows when number

of optimistic unchokes increases more than half of the total unchokes, the

average download time starts to increase. The reason is that when there are

more optimistic unchokes, the peers tend to be more altruistic and the faster

peers will take longer to finish download and become seeds. Whenever a node

finishes and becomes a seed, there are less peers to share the total upload

capacity, so the average download rate received by each leecher will increase.

So it is generally better to allow faster nodes to finish earlier and become

seeds.

A simple example can help to better illustrate this concept. Assuming there

are 100 fast nodes of upload capacity of 80 KB/s, 100 slow nodes of upload

capacity of 20 KB/s and a server of upload capacity of 100 KB/s in the swarm.

To make our analysis simpler, we ignore the contribution of the server in our

calculation. If all peers use all unchokes for optimistic unchokes, then each

30

 800

 850

 900

 950

 1000

 1050

 1100

 0 1 2 3 4 5 6

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e
(s

)

Number of optimistic unchokes

6 total unchokes
4 total unchokes

Figure 3.12: Average download time of BT peers when varying the number
of optimistic unchokes for seeding case. Error bars indicate the standard
deviation.

one will roughly get 50KB/s download rate. If we assume the file size to be

10000 KB, then it will take 200 s to download the file for each peer. How-

ever, if we allow fast nodes to exchange blocks among themselves through

perfect matching, the fast nodes will roughly take 125 s to download the file

and become seeds. Each slow peer would receive 20 × 125 = 2500 KB dur-

ing the period through data exchange among themselves and have 7500 KB

left to download for the file. The average download rate each slow peer now

receives is 100KB/s since one fast node (a seed) will upload to one slow node

on average, so in total it only takes 125 + 7500 / 100 = 200 s to down-

load the file for the slow nodes. So on average, the download time is only

(125 + 200)/2 = 162.5 s which is much smaller than 200 s in our previous

calculation. Therefore, it is beneficial to keep number of optimistic unchokes

small from a system point of view.

31

3.5 Peer Selection Strategy

Peer selection strategy involves how to choose peers from the neighbours for

optimistic unchokes and regular unchokes respectively.

3.5.1 Choice of Peers for Optimistic Unchokes

The original BT protocol chooses randomly among all the neighbours. Azureus

implements a new strategy which gives higher priority to peers who have recip-

rocated in the past. It ranks all the peers based on deficits (data downloaded

to the local peer - data uploaded by the local peer) in a descending order with

the first peer being the one with the highest deficit. Then it generates a ran-

dom floating point number x from 0 to 1, and calculates a position value using

1
0.2

x
+0.8

∗ peer_size. It uses the position value to pick the peer to unchoke from

the ordered list. We plot the function in Figure 3.13, and it shows that the

strategy favors the peers who are nearer to the end of the peer list (nearer to

1), and thus have lower deficits.

We plot in Figure 3.14 the percentage of exactly and roughly matched reg-

ular unchokes over time for the two peer selection strategies: (i) random opti-

mistic unchokes and (ii) factor of reciprocation consideration. We found that

when we consider factor of reciprocation in choosing peer for optimistic un-

choke, the percent of matched regular unchokes is slightly higher for the du-

ration of the download process. We also plot in Figure 3.15 the percentage of

exactly matched optimistic unchokes over time for the two different strategies

for peers with upload capacity of 100 KB/s and 150 KB/s.

32

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
os

iti
on

 v
al

ue

Input value x

Figure 3.13: The function that Azureus uses to calculate and locate the peer(s)
from the peer list ordered according to descending order of deficit for opti-
mistic unchokes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

M
at

ch
in

g
R

at
io

Time (s)

reciprocation-roughly
random-roughly

reciprocation-exactly
random-exactly

Figure 3.14: The percentage of exactly and roughly matched regular unchokes
over time for random optimistic unchokes and factor of reciprocation consid-
eration.

33

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500 600

M
at

ch
in

g
R

at
io

Time (s)

reciprocation-150KB/s
random-150KB/s

reciprocation-100KB/s
random-100KB/s

Figure 3.15: The percentage of exactly matched optimistic unchokes over time
for random optimistic unchokes and factor of reciprocation consideration for
peers with upload capacity of 100 KB/s and 150 KB/s.

We found that the high (150 KB/s) and middle (100 KB/s) upload capacity

peers are more likely to pick peers from their own bandwidth groups if we use

the factor of reciprocation peer selection strategy. Doing so is helpful because

low bandwidth peers who would less likely be mistakenly unchoked by the

higher bandwidth peers, and thus are more likely to stay matched with peers

in its own group. We plot in Figure 3.16 the percentage of exactly matched

regular unchokes over time for random optimistic unchokes and factor of

reciprocation consideration for peers with upload capacity of 50 KB/s and

found that slow peers (50 KB/s) are more likely to pick peers from its own

groups for regular unchokes.

However, it does not tell the whole story. We plot the percentage of exactly

matched optimistic unchokes over time for random optimistic unchokes and

factor of reciprocation consideration for peers with upload capacity of 50 KB/s

in Figure 3.17. It shows that this strategy does not prevent the slow peers from

choosing faster peers for the optimistic unchokes. This is due to the nature of

34

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500 600

M
at

ch
in

g
R

at
io

Time (s)

reciprocation-50KB/s
random-50KB/s

Figure 3.16: The percentage of exactly matched regular unchokes over time
for random optimistic unchokes and factor of reciprocation consideration for
peers with upload capacity of 50KB/s.

the strategy used, since a peer is more likely to choose peers who have lower

deficit, a slow peer is more likely to choose faster ones who optimistically

unchoke it and upload to it recently.

3.5.2 Choice of Peers for Regular Unchokes

In the original BT algorithm, peers for regular unchokes are chosen from the

remote peers who can upload the most data to the local peer in the past period.

BitTyrant changes it to download/upload ratio to maximize the return it can

get from its upload. Some papers [2, 16] suggest using deficit (difference

between download and upload amount) to find the peers the local peer owes

the most and serve them. In our experiment, we compare selection based on

download rate received and deficit. We ran experiments of all nodes running

BT clients that use download rate and deficit respectively and calculated the

average download time and fairness index for both seeding and non-seeding

cases. The results in Table 3.2 shows that the average download time of

35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500 600

M
at

ch
in

g
R

at
io

Time (s)

random-50KB/s
reciprocation-50KB/s

Figure 3.17: The percentage of exactly matched optimistic unchokes over time
for random optimistic unchokes and factor of reciprocation consideration for
peers with upload capacity of 50 KB/s.

Table 3.2: regular unchoke strategy and performance result

Selection strategy
Average download Fairness

time (s) index

Download rate (Nonseeding) 1067.8 0.948

Deficit (Nonseeding) 1088.9 0.973

Download rate (Seeding) 936.7 0.938

Deficit (Seeding) 917.9 0.976

both strategies does not differ much, however, the peer selection based on

deficit achieves higher fairness index. This is to be expectated because the

deficit-based strategy strives to unchoke the peers with the least deficit (which

the local peer owes the most), it aims to achieve better fairness. We plot in

Figure 3.18 the comparison of the data downloaded and uploaded for all peers

when time = 400 s. It shows that unchoking based on deficit achieves much

better matching at the aggregate data level.

36

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10000 20000 30000 40000 50000 60000 70000

D
at

a
do

w
nl

oa
de

d
(K

B
)

Data uploaded (KB)

y = x

(a) Use of download rate for unchoking.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10000 20000 30000 40000 50000 60000 70000

D
at

a
do

w
nl

oa
de

d
(K

B
)

Data uploaded (KB)

y = x

(b) Use of deficit for unchoking

Figure 3.18: The matching graph of upload amount vs download amount for
all peers when time = 400s.

37

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Utilization

BitTyrant
PropShare

BT

Figure 3.19: Comparison of upload bandwidth utilization among peers run-
ning BT, BitTyrant and PropShare.

3.6 Uplink Bandwidth Allocation

In the original BT protocol, no limit is imposed on data uploaded to each

unchoked neighbour within each round. In fact, it is this vulnerability which

BitTyrant [14] attempted to exploit. In BitTyrant, the upload contribution to

each peer is adjusted to find the minimum upload contribution required for

reciprocation. PropShare [11] proposes to limit the upload data of a client to

different peers in order to ensure that the amount of data uploaded to each

peer is proportional to the data received from it.

We ran experiments for peers running BT, BitTyrant and PropShare re-

spectively in each round and plot the resulting distribution of the bandwidth

utilization at a time after all peers have sufficient blocks to start exchanging

pieces and before the first peer completely downs the file in Figure 3.19 and

average utilization as compared with BT in Table 3.3. It is clear that limiting

uplink allocation reduces efficiency of the utilization of the available upload

bandwidth severely.

38

Table 3.3: Utilization of BitTyrant and PropShare

Utilization compared to BT

BitTyrant 0.217

PropShare 0.559

3.7 Summary

In summary, the following are our key findings:

• The number of connections does not affect the performance beyond a

certain threshold (around 30).

• The number of unchokes should be kept low, preferably around four.

Adjusting the number based on upload capacity would weaken matching.

• The number of optimistic unchokes should be kept slightly less than

half of the total unchokes. More optimistic unchokes would be more

altruistic, thus reducing fairness; less unchokes may cause peers to take

longer time to match with peers of similar bandwidth.

• For selection of peers for optimistic unchokes, it is useful to consider fac-

tor of reciprocation for relatively faster nodes. Slow nodes may indirectly

benefit from it but do not need to adopt it themselves.

• For selection of peers for regular unchokes, using deficit may improve

fairness with little impact on performance when compared with tradi-

tional method of using download rate.

• It is generally detrimental to limit upload bandwidth for each connection

since that may reduce utilization since allocated bandwidths may not be

used up by some connections.

39

Chapter 4

Design Principles

In a society, there are rules and regulations in place to ensure that all res-

idents to live harmoniously together. In a P2P swarm, we also have similar

principles that should be followed if all peers want to benefit mutually from

the swarm. While studying the taxonomy along with various existing proto-

cols, we came up with two key principles which are important for BT protocol

design.

4.1 Keep Promise

In the default BT algorithm [5], Azureus [1], BitThief [13], BitTyrant [14] and

PropShare [11], piece requests are serviced in a FIFO manner. When a re-

quest is received, it is expected to be served within a reasonable period of

time. FairTorrent differs by ordering the requests according to the deficit (dif-

ference between upload amount and download amount) of the sender of the

requests, and serving the requests from the peers with the lowest deficit first.

This priority uploading scheme introduces uncertainty in the request serving

process. Some requests will get delayed for a long time, leaving the sender

of the requests with no idea of whether the requests will be serviced, and if

40

so, when. Eventually the uploading peer may get snubbed by the request-

ing peer after 60 s, and the request may get time-out and cancelled by the

requesting peer after 120 s if the requesting peer follows the default BT proto-

col specification. This priority scheduling of serving requests can often cause

starvation, especially for slow peers who tend to have higher deficit from other

faster peers’ perspective.

We ran experiments of all nodes running FairTorrent [16] and Azureus [1]

clients respectively with the same upload capacity of 128 KB/s and plot the

number of CANCEL messages received for each 10 s interval for the duration

of the experiments and the corresponding average upload rate of all peers

in Figure 4.1. We found that all the FairTorrent peers experienced many

CANCEL message as compared to that of all Azureus peers. The performance

inevitably degrades when there are too many CANCEL messages as shown by

a dip in average upload rate in the graph.

We assigned an ID in an increasing order of service time for the requests

of FairTorrent and Azureus clients and plot the request service time for each

request ID in Figure 4.2. We found that a large number of requests of Fair-

Torrent clents experience a service time that is significantly larger than that

of Azureus, which can cause uncertainty for requesting peers. From the

summary of results in Table 4.1, we find that the average download time

for Azureus is lower than that for FairTorrent. Therefore, it is important to

keep promise by serving requests promptly.

Table 4.1: Comparison of experiment results for Azureus and FairTorrent

Average download time (s)

Azureus 818.0

FairTorrent 976.6

41

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200

A
ve

ra
ge

 u
pl

oa
d

ra
te

 (
kB

ps
)

Time (s)

Azureus
FairTorrent

 0

 200

 400

 600

 800

 1000

N
um

be
r

of
 C

A
N

C
E

L
m

es
sa

ge
s Azureus

FairTorrent

Figure 4.1: Number of CANCEL messages received for each 10 secs interval
and the corresponding average upload rate of peers.

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000 6000 7000

R
eq

ue
st

 s
er

vi
ce

 ti
m

e
(s

)

Request ID

Azureus
FairTorrent

Figure 4.2: Time taken to serve each request. Requests are ordered according
to service time.

42

4.2 Keep Neighbour Information Up-to-date

PropShare [11] clients withhold HAVE messages to prolong other peers’ in-

terest in the client. Azureus [1] clients also implement HAVE message ag-

gregation, which accumulates and combines many HAVE messages into one

message in order to save on bandwidth. We ran experiments of all Azureus

nodes with HAVE message aggregation turn on and off and presented the re-

sult in Table 4.2. It shows that although average download time does not

differ much, it takes a shorter time for the servers to send out all fresh pieces

into the system when HAVE message aggregation is turned off. This is to

be expected because when clients have more up-to-date piece information of

their neighbours, they are less likely to request the pieces that their neigh-

bours already have from the servers, so they are more likely to request fresh

pieces which have not been sent out to any peer from the servers. This, if we

have servers that are not well provisioned, it is important to keep neighbour

information up-to-date in order to reduce the burden on the server side.

Table 4.2: Comparison of experiment results with HAVE aggregation turn on
and off

Average download Time taken for servers to
time (s) send out all fresh pieces (s)

On 836.5 632.5

Off 838.5 591.7

43

Chapter 5

Conclusion

In the dissertation, we propose a new taxonomy-based approach for analyzing

the trade-offs that should be considered in the practical implementation of the

BT protocol. We conducted a detailed investigation of protocol design space

through PlanetLab experiments. Through the study, we come to realize that

good matching is not easily achieved and maintained, careful analysis and

implementation is required to achieve effective, efficient and stable matching

on both the individual level and the system level.

Next, we articulate two key design principles that we gleaned from our ex-

perience working with various BT clients, namely keeping promise and keep-

ing neighbours information up-to-date. BT-like P2P protocols are complicated

systems since it involves interplay of various clients of different behaviour.

However, we believe our work is helpful in guiding future BT protocol design-

ers in implementing their clients to achieve good performance and matching

while fostering a healthy P2P file sharing environment.

44

5.1 Future Work

For regular unchokes, we can look into whether it is better to vary the number

over time or keep it fixed when upload capacity is known. We generally feel

that from a system point of view, a fixed value would improve stability. But

from an individual point of view, varying the number may help it to achieve

better matching. As for the choice of peers, the original protocol favors peers of

highest upload rate, but that may not be stable when peers have very different

equal-split rates. A improved version may be to pick neighbours of similar

equal-split rates.

For optimistic unchokes, we can study whether we should fix the number

or allow it to vary depending on the circumstances. The original BT protocol

fixes it to be one or two, but an improvement may be to use more optimistic

unchokes at start-up phase, and reduce it when more matching is achieved.

When reasonable matching is achieved for all regular unchokes, then opti-

mistic unchoke could reduce to zero or switch to regular unchoke.

45

Bibliography

[1] Azureus p2p file sharing client. Website. http://www.vuze.com.

[2] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing and im-

proving a BitTorrent network’s performance mechanisms. In Proceedings

of IEEE INFOCOM ’06, April 2006.

[3] D. Carra, G. Neglia, P. Michiardi, and F. Albanese. On the robustness

of bittorrent swarms to greedy peers. Parallel and Distributed Systems,

IEEE Transactions on, 22(12):2071–2078, 2011.

[4] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and

M. Bowman. PlanetLab: An overlay testbed for broad-coverage services.

SIGCOMM Comput. Commun. Rev., 33(3):3–12, July 2003.

[5] B. Cohen. Incentives build robustness in BitTorrent. In Proceedings of

the P2P Economics Workshop, 2003.

[6] B. Fan, J. C. S. Lui, and D.-M. Chiu. The design trade-offs of BitTorrent-

like file sharing protocols. IEEE/ACM Transactions on Networks, 17:365–

376, April 2009.

[7] S. Jun and M. Ahamad. Incentives in bittorrent induce free riding. In

Proceedings of the 2005 ACM SIGCOMM workshop on Economics of peer-

to-peer systems, pages 116–121. ACM, 2005.

46

[8] N. Laoutaris, D. Carra, and P. Michiardi. Uplink allocation beyond

choke/unchoke: or how to divide and conquer best. In Proceedings of

the 2008 ACM CoNEXT Conference, page 18. ACM, 2008.

[9] A. Legout, N. Liogkas, E. Kohler, and L. Zhang. Clustering and sharing

incentives in BitTorrent systems. In Proceedings of the ACM SIGMET-

RICS’07, pages 301–312, New York, NY, USA, 2007. ACM.

[10] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest first and choke algo-

rithms are enough. In Proceedings of IMC ’06, October 2006.

[11] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee. BitTorrent is an

auction: Analyzing and improving BitTorrent’s incentives. In Proceedings

of SIGCOMM ’08, August 2008.

[12] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploiting bittorrent for

fun (but not profit). In Proc. of IPTPS, 2006.

[13] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free riding in BitTor-

rent is cheap. In Proceedings of HotNets ’06, November 2006.

[14] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-

mani. Do incentives build robustness in BitTorrent? In Proceedings of

NSDI ’07, April 2007.

[15] PlanetLab. Planetlab - an open platform for developing, deploying, and

accessing planetary-scale services. http://www.planet-lab.org.

[16] A. Sherman, J. Nieh, and C. Stein. Fairtorrent: bringing fairness to peer-

to-peer systems. In Proceedings of the 5th international conference on

Emerging networking experiments and technologies, CoNEXT ’09, pages

133–144, New York, NY, USA, 2009. ACM.

47

[17] R. Thommes and M. Coates. Bittorrent fairness: analysis and improve-

ments. In Proc. Workshop Internet, Telecom. and Signal Proc. Citeseer,

2005.

[18] R. Xia and J. Muppala. A survey of bittorrent performance. Communica-

tions Surveys & Tutorials, IEEE, 12(2):140–158, 2010.

48

	thesis.pdf
	001
	thesis

