
 

 

 
 

PROBABILISTIC MODELS FOR RELIABILITY 

ASSESSMENT OF AGEING EQUIPMENT AND 

MAINTENANCE OPTIMIZATION 

 

 

 

SARANGA KUMUDU ABEYGUNAWARDANE  

(B.SC., UNIVERSITY OF PERADENIYA, SRI LANKA) 

 

 

A THESIS SUBMITTED 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF  

ELECTRICAL AND COMPUTER ENGINEERING 

NATIONAL UNIVERSITY OF SINGAPORE 

 

2013 

  



 

 

 

DECLARATION 

 

I hereby declare that this thesis is my original  

work and it has been written by me in its entirety.  

I have duly acknowledged all the sources of  

information which have been used in the thesis. 

 

This thesis has also not been submitted for any  

degree in any university previously. 

 

 

 
———————————– 

Saranga Kumudu Abeygunawardane 

24 December 2012 

 

 

 

 

 



i 

Acknowledgements 

I wish to thank everyone who helped me during my doctoral studies.  

First, I express my sincere gratitude to my supervisor, Asst. Prof. Panida Jirutitijaroen for 

giving me an opportunity to pursue my doctoral studies in National University of Singapore. 

Her constant guidance and sincere advice greatly helped me to overcome difficulties that I 

encountered in my research. I truly appreciate the efforts that she made to develop my 

research and communication skills and to revise my papers. I am also thankful to her for 

giving friendly advice when I faced hard times in my personal life. Her kind and friendly 

behavior greatly helped to reduce the greatest sorrow that I have ever experienced in my life 

due to the loss of my beloved father.  

Next, I would like to thank Asst. Prof. Huan Xu for his valuable ideas, suggestions and 

support given towards my research. I am also grateful to my thesis committee members for 

their time, constructive comments and suggestions. 

I would like to acknowledge National University of Singapore and the Department of 

Electrical and Computer Engineering for providing academic and financial support during my 

doctoral studies. 

I also want to thank Thillainathan Logenthiran, Xiong Peng, Bordin Bordeerath, Shu 

Zhen, Bai Hong, Bi Yunrui, Sumith Madampath and all my colleagues in the power systems 

laboratory and the lab officer, Mr. H. C. Seow for the tremendous support given at the lab. I 

appreciate the valuable friendship of Arunoda Basnayake, Supunmali Ahangama, Chamila 

Liyanage, Thanuja Kulathunga and Rupika Swarnamala. I think I am fortunate to have such 

friends and colleagues during my stay in Singapore.  

I should not miss to convey my gratitude to all my teachers who strengthened me and 

supported me, when I was a student at Ferguson High School and University of Peradeniya. I 

would especially like to mention the names of two teachers whom I adore most; Mrs. Lilani 

Jayasinghe (FHS) and Prof. Janaka Ekanayake (UOP). I should not forget to thank Ass. Prof. 



ii 

Saman Abeysekara (NTU), who motivated me to apply for doctoral scholarships in 

Singapore. 

Last but not least, I would like to thank my beloved family members for their love, 

admiration and encouragement. I wish my father was alive to share the pleasure of completing 

this PhD thesis. I dedicate this thesis to my late father.  

 

  



iii 

Table of Contents 

Abstract ................................................................................................................................... vii 

 
List of Tables ......................................................................................................................... viii 

 
List of Figures ........................................................................................................................... x 

 
List of Abbreviations ............................................................................................................ xiii 

 
List of Symbols ...................................................................................................................... xiv 

 
Chapter 1 : Introduction ......................................................................................................... 1 

 
1.1 The Background ....................................................................................................... 1 

 
1.1.1 Ageing of Equipment .................................................................................. 1 

 
1.1.2 Maintenance ................................................................................................ 2 

 
1.2 Literature Review..................................................................................................... 4 

 
1.3 Research Objectives ................................................................................................. 6 

 
1.4 Thesis Outline and Organization ............................................................................. 8 

 
Chapter 2 : A New Probabilistic Model for Scheduled Maintenance ................................. 9 

 
2.1 Introduction .............................................................................................................. 9 

 
2.2 Classical State Diagrams in Maintenance Modeling ............................................. 10 

 
2.2.1 A Generalized Classical State Diagram .................................................... 10 

 
2.2.2 An Idealistic Modeling Property of Classical State Diagrams .................. 10 

 
2.3 The Proposed Scheduled Maintenance Model ....................................................... 11 

 
2.3.1 The Proposed State Diagram ..................................................................... 11 

 
2.3.2 Mathematical Realization of Maintenance Models ................................... 15 

 
2.4 A Numerical Example............................................................................................ 18 

 
2.5 Summary ................................................................................................................ 22 

 
Chapter 3 : Applications of Markov Maintenance Models to Power Systems ................. 25 

 
3.1 Introduction ............................................................................................................ 25 

 

3.2 Reliability and Cost Analysis of Circuit Breakers ................................................. 26 



iv 

3.2.1 Reliability and Cost Assessments ............................................................. 26 

 
3.2.2 Effect of Inspection and Maintenance on Reliability ................................ 29 

 
3.3 State Prediction of Transformers ........................................................................... 41 

 
3.3.1 Deterioration and Condition Monitoring of Transformers ........................ 42 

 
3.3.2 Classification of Transformers and Hypothesis Testing ........................... 44 

 
3.3.3 Results and Analysis of Hypothesis Testing ............................................. 46 

 
3.3.4 State Prediction Model .............................................................................. 49 

 
3.3.5 Results and Analysis of State Prediction .................................................. 50 

 
3.4 Effects of Subcomponent Characteristics on Reliability of a Wind Energy 

Conversion System ................................................................................................ 53 

 
3.4.1 A Wind Energy Conversion System ......................................................... 54 

 
3.4.2 A Markov Model for a Wind Energy Conversion System ........................ 57 

 
3.4.3 A Test System ........................................................................................... 60 

 
3.4.4 A Sensitivity Analysis of Sub Component Characteristics on the System 

Reliability .................................................................................................. 62 

 
3.5 Summary ................................................................................................................ 69 

 
Chapter 4 : Reliability and Cost Trade-off in Maintenance Strategies Using Probabilistic 

Models ..................................................................................................................................... 71 

 
4.1 Introduction ............................................................................................................ 71 

 
4.2 Maintenance Models, Performance Measures and Decision Variables ................. 72 

 
4.2.1 Maintenance Models ................................................................................. 73 

 
4.2.2 Performance Measures .............................................................................. 74 

 
4.2.3 Decision Variables .................................................................................... 76 

 
4.3 Selection of Optimal Inspection Rates ................................................................... 77 

 
4.3.1 Relationships among Different Performance Measures ............................ 77 

 
4.3.2 Sensitivity Analyses of Inspection Rate on First Passage Time and Total 

Cost ........................................................................................................... 79 

 
4.3.3 Problem Definition .................................................................................... 82 

 



v 

4.3.4 A Grid Search Algorithm .......................................................................... 82 

 
4.4 Case Studies ........................................................................................................... 83 

 
4.4.1 Results of Case Studies with the Constraint FPT ≥ 30 Years ................................ 85 

 
4.4.2 Results of Case Studies with the Constraint FPT ≥ 50 Years or FPT ≥ 100 Years.

 ............................................................................................................................... 86 

 
4.5 Discussion .............................................................................................................. 88 

 
4.6 Summary ................................................................................................................ 90 

 
Chapter 5 : Adaptive Maintenance Policies Using a Markov Decision Process ............... 91 

 
5.1 Introduction ............................................................................................................ 91 

 
5.2 Background ............................................................................................................ 92 

 
5.2.1 Markov Decision Processes in Power Systems ......................................... 92 

 
5.2.2 The Framework of a Markov Decision Process ........................................ 93 

 
5.2.3 Inspection and Maintenance Decision Making in Actual Practice............ 95 

 
5.2.4 Modeling the Process of Decision Making ............................................... 97 

 
5.3 Problem Formulation ............................................................................................. 98 

 
5.3.1 Decision epochs ........................................................................................ 99 

 
5.3.2 States and Actions ..................................................................................... 99 

 
5.3.3 Transition Probabilities and Rewards ..................................................... 103 

 
5.3.4 Incorporating the Effects of Aging ......................................................... 104 

 
5.4 Solution Procedure ............................................................................................... 105 

 
5.5 Case Study ........................................................................................................... 107 

 
5.5.1 Condition Based Maintenance of Oil Insulated Transformers ................ 107 

 
5.5.2 The Markov Decision Process Model of Transformers .......................... 108 

 
5.5.3 Results and Discussion ............................................................................ 111 

 
5.6 Using Markov Decision Process Models in System-level Maintenance Planning

 ............................................................................................................................. 116 

 
5.7 Summary .............................................................................................................. 119 

 



vi 

Chapter 6 : Conclusions and Future Work ....................................................................... 121 

 
6.1 Conclusions .......................................................................................................... 121 

 
6.2 Future Research Work ......................................................................................... 123 

 
6.2.1 Model Development and Applications .................................................... 123 

 
6.2.2 Maintenance Optimization ...................................................................... 124 

 
6.2.3 System-level Maintenance Planning ....................................................... 124 

 
Bibliography ......................................................................................................................... 126 

 
List of Publications .............................................................................................................. 135 

 
Appendix A : The Proposed Markov Decision Process Model for Transformers ......... 136 

 
Appendix B : Deterioration Probabilities for the Markov Decision Process Model of 

Transformers ........................................................................................................................ 143 
  



vii 

Abstract 

Many electrical devices with considerable life spans are subjected to deterioration 

throughout their useful lives. Catastrophic failures of such devices in power systems can 

result in substantial social and economic losses. Maintenance is commonly performed to 

reduce the occurrence of such catastrophic failures and extend the equipment’s lifetime. 

Probabilistic maintenance models are widely used to quantify the benefits of maintenance in 

terms of reliability and costs and to determine optimal maintenance policies. This thesis aims 

to propose analytically solvable probabilistic models to obtain accurate results in power 

system reliability assessments and maintenance optimization. 

The thesis first proposes a new Markov model for scheduled maintenance. This proposed 

model can accurately assess reliability and costs, while the existing Markov maintenance 

models provide accurate results only for periodic inspections. The proposed and existing 

models are applied to assess reliability and costs of circuit breakers. In two other application 

studies, Markov models are utilized for state prediction of transformers and for analyzing the 

effects of sub-component characteristics on reliability of a wind energy conversion system. A 

maintenance optimization problem is formulated to find optimal inspection rates using a grid 

search algorithm. Optimization results show that practical solutions can be obtained with the 

careful selection of maintenance models. To obtain adaptive optimal inspection and 

maintenance policies, a Markov decision process (MDP) model is proposed. This model can 

explicitly incorporate inspection and maintenance delay times and combine the long term 

ageing process with frequently observed short term changes in equipment’s condition. The 

applicability of the model is demonstrated using historical condition monitoring and 

maintenance data of local transformers. System-level maintenance planning is investigated 

using a system-wide MDP model and through the coordination of MDP models of individual 

equipment. The proposed models are valuable for reliability evaluation, maintenance-related 

cost assessments, maintenance decision making and maintenance planning.  
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Chapter 1 : Introduction 

Most equipment in electrical transmission and distribution networks has been in use for 

several decades [1]. Catastrophic failures of such aging equipment can reduce system 

reliability, while causing substantial economic losses. However, replacing this aging 

equipment in bulk will be unbearable due to financial constraints. Therefore, electrical 

utilities adopt different maintenance strategies to minimize the occurrence of catastrophic 

failures. Too frequent inspection and maintenance would increase the cost of performing 

inspection and maintenance. On the other hand, lesser inspection and maintenance would 

result in a lower reliability level. Thus, it is desirable to perform maintenance in an optimal 

manner. In order to determine optimal maintenance policies, the benefits of maintenance 

should be quantified in terms of reliability and costs using maintenance models. This chapter 

reviews the literature on maintenance models after providing some background information 

related to ageing and maintenance. 

1.1 The Background 

1.1.1 Ageing of Equipment 

In power systems, most electrical equipment is continuously in operation and is 

subjected to wear out over time. Equipment’s physical and electrical strengths gradually 

deteriorate, until a failure occurs at some point of time causing a termination of equipment’s 

operation. This process is called the deterioration process [2] or the ageing process [3] of 

equipment. The term “ageing” refers to the deterioration of equipment’s physical and 

electrical strengths as a function of chronological time in operation [4]. There are two main 

types of equipment failures, namely, random failures and deterioration failures. Random 

failures which occur at a constant rate are independent of the equipment’s deterioration 

condition. Deterioration failures are the failures that occur due to deterioration of equipment’s 

condition.  

The failure rate of equipment is not uniform with the age. In reliability theory, the 

variation of the failure rate with the equipment’s age is given by the bathtub curve which is 
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shown in Figure 1.1 [5]. The bathtub curve is a combination of early failures, wear out 

failures and random failures of the equipment. Since failures in the early life of the equipment 

are mostly due to defects in manufacturing and problems in installation, the failure rate 

decreases in the infant mortality region. In the useful life region, failures occur at random and 

thus the failure rate is constant. In the wear out region, failure rate increases, as the ageing 

progresses. 

Typically, the design life of equipment spans across the infant mortality and useful life 

regions. Equipment which is in operation beyond its design lifetime is called aging equipment 

[3]. 

Age

Failure

rate

Early

failures

Useful life

Wearout

failures

Random

failures

Infant

mortality Wearout

Overall

curve

 

Figure 1.1: Bathtub curve [5] 

1.1.2 Maintenance 

Many costly electrical devices such as transformers, generators and circuit breakers are 

usually not replaced at the end of their useful life specified by the manufacturer. Utilities 

prefer to use them in operation as long as possible. However, in every year, such electrical 

equipment in power systems gets older and their deterioration mechanisms get accelerated. In 

order to improve the condition of ageing equipment, maintenance activities are performed. By 

performing maintenance regularly, the deterioration of the equipment is arrested, reduced or 

eliminated [2]. It is noteworthy that maintenance is different from the repair activity which is 

performed on a failed equipment to improve its condition from the failed condition to an 
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operable condition [2].  

Utilities adopt different maintenance strategies. According to the classification in [2], an 

overview of maintenance approaches is shown in Figure 2.1. Basic maintenance approaches 

described in [2] are maintenance as per manufacturer’s specifications, replacement, scheduled 

maintenance and predictive maintenance. The simplest maintenance approach is to perform 

maintenance based on the long term experience or according to manufacturers’ 

recommendations given in manuals [2]. Replacement schemes ignore the possible small scale 

improvements in the equipment’s condition which can be performed at a lower cost. 

Scheduled maintenance is carried out at regular intervals according to a fixed schedule [2]. 

Predictive maintenance activities are performed when periodic inspections or condition 

monitoring reveals that it is necessary to perform maintenance [2].  

Maintenance

Age, bulk

Manufacturer’s

specifications
Replacement Scheduled

maintenance
Predictive

maintenance

Condition

monitoring

Analysis of needs

and priorities

Reliability centered

maintenance

Mathematical

models

Empirical

approaches

 

Figure 1.2: Overview of maintenance approaches [2] 

Maintenance is beneficial to both electrical utilities and power consumers. Through 

maintenance strategies, utilities can reduce costly equipment replacements by extending 

equipment’s lifetime. Maintenance also ensures a more reliable power supply. In addition, the 

social and economic losses experienced by power consumers due to sudden power failures 

can be minimized through timely inspection and maintenance. However, too frequent 

inspection and maintenance would unnecessarily increase the cost of inspection and 
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maintenance. It would also increase the number of planned outages, and cause economic 

losses to consumers [6], especially to industries that consume power in a large scale. During 

outages, utilities too will experience economic losses due to loss of profit that they generate 

by selling electricity. Thus, optimal maintenance strategies should be determined considering 

the trade-off between reliability and costs.   

1.2 Literature Review 

In order to determine optimal maintenance policies, the effect of inspection and 

maintenance should be quantified in terms of reliability and costs. Probabilistic maintenance 

models [7-24] are preferably used for this purpose in preventive maintenance studies as well 

as in reliability centered maintenance approaches, due to their simplicity and the ability to 

incorporate uncertainties associated with the deterioration of equipment and the outcomes of 

inspection and maintenance. Many probabilistic maintenance models are based on state 

diagrams due to two main advantages. Firstly, state diagrams can combine deterioration, 

inspection and maintenance processes of a device to form simple and straightforward 

graphical models which indicate connections between different states of the device. Secondly, 

state diagrams can be directly converted into mathematical models called Markov models 

which can be easily solved using standard methods and analytical equations.  

Markov maintenance models are firstly used to model scheduled maintenance when 

inspection rates are periodic [8, 9, 25]. Later, with the change in the maintenance practice to 

increase the inspection frequency based on the knowledge of the increased deterioration level 

of the device, non-periodic inspection rates are introduced to state diagrams in maintenance 

modeling [10-15, 26]. In [7], a non periodic inspection and maintenance model is proposed 

for the maintenance of high voltage air blast circuit breakers. It is discussed further in [10] 

and utilized in an asset management planner which can be used to decide the best 

maintenance option which maximizes reliability with a minimum cost. In [12], a maintenance 

model is proposed for the inspection and maintenance of oil immersed transformers and it is 

later used in [13] to analyze the effect of different inspection rates on reliability and all 

associated costs. Based on the results in [13], it has been suggested to increase the inspection 
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rate with the deterioration for effective maintenance in terms of cost and reliability. A similar 

probabilistic model has been introduced in [14] for the inspection and maintenance of circuit 

breakers. This model is utilized in [15] to carry out a sensitivity analysis and this analysis has 

shown that the probability of failure and the total cost can be reduced by conducting 

inspections at a higher rate when the device is more deteriorated. Based on the model in [7], a 

decision varying Markov model is proposed in [27] to occupy different transition probabilities 

depending on the maintenance decisions made at different time intervals. This model is 

applied in [27] for optimization of substation maintenance. In [28], the same model is applied 

for composite power systems to optimize maintenance schedules. However, the above 

mentioned Markov maintenance models are unable to represent the actual maintenance 

situation of equipment [29]. 

Reaching a major milestone, unrealistic properties of the basis of above maintenance 

models are first discussed in [29]. Some interesting results are provided in [29] by comparing 

the results of a Markov model with Monte Carlo simulation results. These results prove that 

existing Markov maintenance models provide accurate results for periodic inspections, but 

they do not provide accurate results when inspection rates are non-periodic [29]. The author 

of this paper concludes that any Markov maintenance model based on state diagrams do not 

provide accurate results.  

In view of this, an alternative model is proposed in [29] to obtain accurate results. This 

model proposed in [29] assumes that the deterioration process and inspection and 

maintenance process are two independent processes, which are only connected at inspection 

and maintenance or failures. Due to this assumption, an effort has been made to eliminate 

direct connections between the two processes. This effort finally led to a complicated state 

diagram for a probabilistic maintenance model. The main drawback of this graphical model in 

[29] is the difficulty of finding analytical solutions. To solve this model, Monte Carlo 

simulation is required. One of the intentions of the work presented in this thesis is to propose 

scheduled maintenance models based on new state diagrams which can be analytically solved 

using Markov techniques to obtain accurate results.  
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In addition, this thesis highlights two main issues which are still not addressed in 

previously proposed maintenance models. Firstly, time delays in making decisions regarding 

inspection and maintenance are not included in most previous models [7, 8, 13, 15, 19, 21, 22, 

30-41]. Since optimal inspection and maintenance actions may depend on delay times in 

making decisions regarding inspection and maintenance, these delays should be considered 

when determining optimal policies. Secondly, time based maintenance models represent 

equipment’s deterioration by the overall condition based on the age [7, 8, 13, 15, 19, 21, 22, 

30-35], while condition based maintenance models represent the deterioration of the 

equipment by some observable measurements [36-43]. However, the deterioration of the 

equipment’s measureable conditions may get accelerated with the ageing. Thus, it is more 

accurate if models can integrate the deterioration of equipment’s measurable conditions with 

effects of ageing on deterioration. If a model can address the two aforementioned issues, such 

a model would be able to provide more adaptive inspection and maintenance policies. This 

thesis intends to propose a Markov decision process model to address the abovementioned 

two issues. 

1.3 Research Objectives 

In view of the review in section 1.2, there is a need to propose new maintenance models 

which address the limitations of maintenance models in the literature. The main objective of 

this thesis is to propose analytically solvable maintenance models to obtain accurate results in 

power system reliability assessments and maintenance optimization. The specific objectives 

within this general objective and the significance of the work are discussed below. 

 To propose a new probabilistic model for scheduled maintenance 

As reviewed in section 1.2, existing scheduled maintenance models based on state 

diagrams do not provide accurate results for non periodic inspections, when they are solved 

using Markov techniques [29]. Although accurate results can be obtained using Monte Carlo 

simulation, it consumes more time and requires more computational power to run the 

simulation until convergence. Therefore one of the objectives of this thesis is to develop 

analytically solvable, more accurate scheduled maintenance models. 
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 To apply Markov maintenance models to analyse the effect of maintenance on power 

system equipment 

This thesis aims to apply the newly proposed scheduled maintenance model into circuit 

breakers using real data obtained from the literature. With the use of this circuit breaker 

maintenance model, several analyses will be performed to study the effect of maintenance on 

reliability and costs. Considering reliability and cost trade-off, this maintenance model will be 

further utilized in maintenance optimization. In two other studies, Markov models will be 

applied for state prediction of transformers and for analyzing the effects of sub-component 

characteristics on reliability of a wind energy conversion system. 

 To propose a Markov decision process model to obtain more adaptive optimal 

maintenance policies 

From the discussion in section 1.2, previous maintenance models do not account for time 

delays in making decisions regarding inspection and maintenance. In addition, they are unable 

to integrate the deterioration of equipment’s measurable conditions with the effects of ageing 

on deterioration. In order to address the above mentioned two issues, this thesis aims to 

propose a maintenance model based on a Markov decision process. This thesis also intends to 

apply the proposed Markov decision process model to determine optimal inspection and 

maintenance policies for transformers. The proposed Markov decision process model will be 

able to provide more adaptive optimal maintenance policies. 

This thesis will mainly focus on the two established maintenance strategies in electrical 

utilities; scheduled maintenance and predictive maintenance [26]. Since random failures 

cannot be avoided by performing inspection and maintenance activities, such failures will not 

be considered in the models proposed in this thesis. This thesis only intends to demonstrate 

the use of maintenance models in finding optimal maintenance policies. Developing efficient 

algorithms and asset management tools for maintenance scheduling and optimization is 

beyond the scope of this thesis. It may be required to set several assumptions when the 

models are developed and those assumptions will be discussed in detail, in coming chapters.  



8 

 

1.4 Thesis Outline and Organization 

The organization of this thesis is given below. 

Chapter 2: In chapter 2, a new probabilistic maintenance model is proposed for 

scheduled maintenance, after identifying unrealistic properties of classical maintenance 

models. The accuracy of the proposed model is proved through a numerical example and a 

theoretical discussion. In this chapter the first objective of the thesis is met. 

Chapter 3: In chapter 3, Markov maintenance models are applied into power systems. 

First, the scheduled maintenance model proposed in chapter 2 is applied for reliability and 

cost assessments of circuit breakers using real data. Secondly, this chapter investigates the 

application of Markov models for state prediction of transformers. Thirdly, with the 

application of a Markov model developed for a wind energy conversion system, this chapter 

investigates the effects of subcomponent characteristics on system reliability. The application 

studies presented in this chapter can be counted towards meeting the second objective of the 

thesis.  

Chapter 4: In chapter 4, circuit breaker maintenance models in chapter 3 are further 

utilized in maintenance optimization. The optimization problem is formulated by considering 

the trade-off between six reliability and cost measures. Using a grid search algorithm, optimal 

inspection and maintenance rates are determined. With the maintenance optimization work 

presented in this chapter and the application studies presented in chapter 3, the second 

objective of the thesis is met. 

Chapter 5: In chapter 5, a Markov decision process model is proposed to obtain 

adaptive optimal maintenance policies. The proposed model is applied to transformers using 

real data. The possibility of extending the MDP model for system level maintenance planning 

is discussed. In this chapter, the third objective of the thesis is met. 

Chapter 6: In chapter 6 conclusions and suggestions for future work are provided.  
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Chapter 2 : A New Probabilistic Model for Scheduled 

Maintenance 

2.1 Introduction 

As stated in chapter 1, previously proposed scheduled maintenance models based on 

state diagrams provide accurate results only for periodic inspections, and do not provide 

accurate results for non-periodic inspections [29]. Although a graphical model has been 

proposed in [29] to obtain accurate results even for non-periodic inspections, it is difficult or 

impossible to solve this graphical model using analytical equations [29]. This chapter aims to 

propose a scheduled maintenance model based on a new state diagram, after correctly 

identifying an impractical property of state diagrams which provide the basis for previously 

proposed scheduled maintenance models. In addition, this chapter intends to verify the 

accuracy of the proposed maintenance model through a theoretical discussion and a numerical 

example. The focus of this chapter is limited to maintenance which assumes that the present 

condition of the device is improved due to maintenance by one stage. However, in real 

practice, maintenance is imperfect and may not always improve the present deterioration 

condition of the device by only one stage. In the forthcoming chapter, the concept behind the 

scheduled maintenance model proposed in this chapter is applied into imperfect maintenance 

as well.  

This chapter is organized according to the following structure. In section 2.2, a 

generalized classical state diagram is compared with the practical maintenance situation and 

an idealistic model property is discussed. In section 2.3, a new state diagram is proposed to 

eliminate the unwanted idealistic model property discussed in section 2.2. This section also 

provides a general theoretical discussion to prove the accuracy of the Markov model based on 

proposed state diagram. In section 2.4, a numerical example is used to validate the results of 

the Markov maintenance model based on the proposed state diagram. Finally, a short 

summary is given in section 2.5. 
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2.2 Classical State Diagrams in Maintenance Modeling 

2.2.1 A Generalized Classical State Diagram 

Figure 2.1 shows a generalized classical state diagram which provides the basis for 

previously proposed scheduled maintenance models. As shown in Figure 2.1, the 

deterioration process of the device is modeled using n deterioration states; S1, S2 , … ,  Sn. If 

no inspection and maintenance is performed, the deterioration process will be ended up at the 

failure state F. Model parameters, λ1, λ2, … , λn-1 are deterioration rates and λn is the transition 

rate from the last deterioration state to the failure state. If a failure is occurred, the device is 

replaced to the original state S1 and μF is the repair rate.  

In order to minimize catastrophic failures, non-periodic inspection and maintenance 

activities are carried out. State dependent inspection rates for states S1, S2, … and Sn are γ1, γ2, 

… and γn, respectively. Inspections at I1 would reveal that the device is still in good condition 

and no maintenance is required. Hence, the device is returned to as good as new state S1. For 

any i=1 to (n-1), at inspection state Ii+1, it is identified that the device is deteriorated to Si+1 

and maintenance is carried out at Mi+1. Since maintenance improves the present condition of 

the device by one stage [13], due to maintenance activities at Mi+1 the state of the device is 

improved to Si. μi+1 is the maintenance rate and δi+1 is the transition rate from Ii+1 to Mi+1. 

 

Figure 2.1: A generalized classical state diagram 

2.2.2 An Idealistic Modeling Property of Classical State Diagrams 

According to the classification of maintenance models, the maintenance models based on 

classical state diagrams belong to the category of inspection models [44]. The definition of 

inspection models given in [44] is “Inspection models usually assume that the state of the 

system is completely unknown unless an inspection is performed. Every inspection is normally 
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assumed to be perfect in the sense that it reveals the true state of the system without error. In 

the absence of repair or replacement actions, the system evolves as a non-decreasing 

stochastic process. In general, at every decision epoch there are two decisions that have to be 

made. One decision is to determine what maintenance action to take, whether the system 

should be replaced or repaired to a certain state or whether the system should be left as it is. 

The other decision is to determine when the next inspection epoch is to occur”. The 

assumptions in this definition reasonably agree with the inspection and maintenance situation 

in the real world.  

Assumptions of classical state diagrams do not agree with the above definition which 

describes the actual maintenance practice [29]. Classical state diagrams assume that the 

present state of the device is always known to the operator [29]. However, in practice, the 

present state of the device is known to the operator only after an inspection or a maintenance 

activity [29], and this fact is not properly captured in classical state diagrams. 

For example, in the classical state diagram in Figure 2.1, whenever there is a transition to 

deterioration state Si, inspection rate is set to a fixed inspection rate γi. Inspection rate of Si 

should be set to γi, only if no maintenance is carried out after inspections at Ii or the condition 

of the device is graded as Si after maintenance. If the device is deteriorated from Sk to Si prior 

to any inspection, the operator does not know that the current condition is Si.  Therefore, 

inspections are not carried out at a rate of γi. Though the device is at Si, the operator conducts 

inspections at a rate of γk, assuming that the device is still at Sk, where i =2, 3, …, n and k =1, 

2, …, (i-1). Therefore, the inspection rate at Si would vary from γ1 to γi, and such variations in 

the inspection rate of each deterioration state are not included in classical state diagrams. 

2.3 The Proposed Scheduled Maintenance Model  

2.3.1 The Proposed State Diagram  

The state diagram shown in Figure 2.2 is proposed to better represent the actual 

maintenance practice. The advantage of this new state diagram is its ability of combining the 

deterioration process and the inspection and maintenance process using direct connections, 

while eliminating impractical modeling properties of the classical state diagram in Figure 2.1. 
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Combining these two processes to obtain a single process is acceptable due to two reasons. 

Firstly, they are not independent processes, because maintenance activities affect the 

deterioration status, the deterioration status affects inspection rates, and maintenance 

activities are done according to the requirements of the present deterioration status of the 

device. Secondly, operations of the device would be stopped in order to carry out scheduled 

inspection and maintenance. Therefore, during the deterioration process, maintenance and 

inspection process is stopped and vice versa. This provides the facility to combine the two 

processes into a single process in a single state diagram.  

In the proposed state diagram in Figure 2.2, the deterioration process of the device is 

modeled as a combination of (n-1) parallel sub deterioration processes which are ended up at 

the failure state F. Sub deterioration process i has (n-i+1) deterioration states at which 

inspections are carried out at a rate of γi. Deterioration state Si in the classical state diagram is 

represented using i sub states (Si,1, Si,2, Si,3, … , Si,i) in the proposed state diagram. When the 

device is at the sub deterioration state Si,k, the inspection rate is γk. All other states except for 

the deterioration states remain the same as in the classical state diagram in Figure 2.1.  

In this proposed state diagram in Figure 2.2, sub deterioration states are used to vary the 

inspection rate of each deterioration state depending on the knowledge about the system. For 

example, consider the sub deterioration states in the proposed state diagram which are 

corresponding to Si in classical state diagram. If the device is at S1,1 (that is the device is new 

or the state of the device is decided as good as new after inspections at I1 or inspection and 

maintenance at I2 and M2) and deteriorates to the i
th
 deterioration state Si prior to any other 

inspection, the current deterioration state is unknown to the operator and hence at Si,1 

inspections are carried out at a rate of γ1 assuming that the device is still at the first 

deterioration state S1. If the device is at S2,2 (that is the state of the device is upgraded to S2, 

after inspection and maintenance at I3 and M3) and deteriorates to the i
th
 deterioration state Si 

prior to any other inspection, the inspection rate at Si,2  is γ2, because the operator conducts 

inspections assuming that the device is still at the second deterioration state S2. Likewise, the 

sub deterioration state k of the deterioration state i (Si,k   has the inspection rate γk. At last, if 
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the device is at Si,i (that is if the condition of the device is upgraded to Si, after inspection at 

Ii+1 and maintenance at Mi+1), the operator knows that the device is in Si and conducts 

inspections at a rate of γi. Therefore, in this model, the inspection rate of Si can be varied from 

γ1 to γi, depending on the knowledge about the device, with the aid of the sub deterioration 

states. 

As discussed in [29], one of the key points which demonstrate beneficial property of the 

proposed model is the utilization of γn. Since there is no transition from In, Mn or F to Sn in the 

classical state diagram in Figure 2.1, γn should be neglected, and by doing so, the classical 

state diagram will be incomplete. On the other hand, in the proposed state diagram, sub states 

of the last deterioration state Sn has inspection rates varying from γ1 to γn-1, and γn is not 

utilized in the proposed state diagram. This illustrates the useful model property of the 

proposed state diagram. 

 



 

 

1
4

 

 

Figure 2.2: The proposed state diagram for probabilistic maintenance models 
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When comparing the two state diagrams in Figures 2.1 and 2.2, it can be clearly seen that 

the proposed state diagram has a large number of states compared to the classical state 

diagram. The number of additional states in the proposed state diagram in Figure 2.2 is found 

to be  n-2   n 1 2⁄ . The increase in number of states can be considered as a disadvantage of 

the proposed model, especially when the number of deterioration levels is high. However, the 

proposed state diagram in Figure 2.2 can be reduced to the state diagram shown in Figure 2.3, 

after computing state probabilities. The only difference between the two state diagrams in 

Figures 2.1 and 2.3 is their different inspection rates other than the first inspection rate. New 

inspection rate for the deterioration state i  γi,new) in Figure 2.3 can be calculated using (2.1) 

which is derived using the frequency balance technique [45]. Pi,k is the probability of being in 

the sub state Si,k. 

       
∑ (       )
 
   

∑     
 
   

 (2.1) 

This state diagram in Figure 2.3 reduces the complexity of the proposed state diagram in 

Figure 2.2 and hence, it is advantageous to use this for any other extended analysis beyond 

the optimization of inspection intervals. 

 

 

Figure 2.3: The reduced state diagram of the proposed state diagram in Figure 2.2 

2.3.2 Mathematical Realization of Maintenance Models  

Maintenance models are mathematically solved to compute reliability indices and other 

performance measures. There are two main methods for mathematical realization of 

maintenance models based on state diagrams, namely, Markov methods and Monte Carlo 

simulation techniques.  
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If the maintenance model is based on a state diagram, it is converted into a Markov 

model and reliability calculation is easily performed using analytical equations. In a Markov 

process, next transition only depends on the current state and it is independent from past 

behavior of the device. If all transition times are exponentially distributed, the Markov model 

has constant transition rates. On the other hand, if the time spent in a state is random, semi 

Markov models can be used to solve state diagrams with such non-exponential distributions 

[19, 45, 46]. Device of stages method is another method which is used to represent non-

exponentially distributed states in non-Markovian models with a combination of 

exponentially distributed states [45, 47, 48]. 

Monte Carlo simulation is used, if the basis of the maintenance model is not a state 

diagram, but a complicated graph as suggested in [29]. There are two concepts of conducting 

Monte Carlo simulation [29]. One concept is redrawing both the next deterioration time and 

the next inspection time after each state transition due to deterioration, inspection and 

maintenance and this concept is termed as redrawing (RD) concept [29]. It is found in [29] 

that the simulation results based on RD concept are as same as the results obtained using 

Markov models based on classical state diagrams for non-periodic inspections. The other 

concept is drawing the next deterioration time only after a change in the deterioration state 

due to deterioration or maintenance and drawing the next inspection time based on the 

decisions after an inspection or maintenance. This second concept, which better represents the 

scheduled maintenance practice, is termed as non-redrawing (NRD) concept in [29]. 

For the following discussion, consider the two Markov processes based on the classical 

state diagram in Figure 2.1 and the corresponding proposed state diagram in Figure 2.2. As 

stated in [29], these Markov processes behave according to RD concept and redraw both the 

time to next deterioration and the time to next inspection after each state transition from Si to 

Si+1 or Ii to Si. However, due to the memory less property of Markov process, redrawing does 

not affect the results, if the state diagram is suitably constructed.  

The following discussion shows that the results of the Markov process based on the 

proposed state diagram are as same as that of NRD concept, although the results of the 
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Markov process based on the classical state diagram are different from that of NRD concept. 

Due to the memory less property of Markov processes, the next transition only depends on the 

current state and it is not affected by past transitions. Therefore, the focus of this discussion is 

on the time to next inspection and the time to next deterioration. If Monte Carlo simulation is 

used for mathematical realization, two random numbers are drawn. One random number with 

rate λ1 is for the sojourn time in S1 (time to next deterioration) and the other random number 

with rate γ1 is for the time to next inspection. The next transition from S1 is determined by 

these two random numbers which are denoted by s1 and τ1, respectively.  

Consider the first case when τ1<s1. Since the time to next inspection is less than the time 

to next deterioration, the system transits from S1 to I1. The inspection at I1 reveals that the 

current deterioration state of the system is S1. Hence, no maintenance is required and the 

system transits from I1 to S1. If we realize any of the two state diagrams according to the 

previously mentioned RD concept, now at S1, two numbers are redrawn for the time to next 

inspection and for the time to next deterioration with the rates γ1 and λ1, which are denoted by 

τ1
*
and s1

*
, respectively. On the other hand, in NRD concept, only the time to next inspection 

is redrawn with a rate of γ1, and therefore the time to next inspection is τ1
*
. The time to next 

deterioration remains unchanged as s1. Since s1 and s1
*
 are randomly drawn from the same 

exponential distribution, time to next deterioration also can be considered as the same for both 

concepts. This shows that the time to next deterioration and the time to next inspection 

obtained using both classical and proposed state diagrams are not affected by redrawing, and 

when τ1<s1, they are as same as those obtained using NRD concept. 

Next, consider the second case where s1<τ1. Since next deterioration time is less than the 

next inspection time, the system transits from S1 to the next deterioration state. In the classical 

state diagram this transition is from S1 to S2 and therefore, the inspection rate is set to γ2. 

However, in the proposed state diagram, the system transits from S1 (S1,1) to S2,1 and the 

inspection rate remains unchanged at γ1. Now, we realize the two state diagrams according to 

the RD concept, and compare with the NRD concept. For this case, both concepts redraw the 

time to next deterioration and the difference is in handling the time to next inspection. 
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According to the concept of redrawing, the classical state diagram redraws the time to next 

inspection with a rate of γ2 and let it to be denoted by τ2
*
.  The proposed state diagram 

redraws the time to next inspection with a rate of γ1, which is denoted by τ1
*
. On the other 

hand, the time to next inspection is not redrawn in NRD concept, and it remains unchanged at 

τ1. The time to next deterioration can be considered as the same for NRD concept and the 

proposed state diagram, since τ1 and τ1
*
 are randomly drawn from the same exponential 

distribution. Since τ2
*
 is drawn from a different distribution, the time to next deterioration in 

the classical state diagram is different from that of NRD concept. It is also clear that this 

difference does not appear in periodic inspections, because inspection rate does not vary with 

the deterioration state. This is the reason behind the accurate results provided by classical 

state diagrams with periodic inspection rates. 

Based on the above discussion, it can be concluded that both the Markov process based 

on the proposed state diagram and Monte Carlo simulation based on NRD concept give 

accurate results. Whereas, the Markov process based on the classical state diagram gives 

accurate results only for periodic inspections. The difference in reliability indices between 

classical model and proposed model is illustrated in a numerical example in the following 

section. 

2.4 A Numerical Example 

In this section, a numerical example is used to check the accuracy of the classical model 

and the proposed model. This example is based on the classical and proposed state diagrams 

in Figures 2.4 and 2.5. Please note that Figures 2.4 and 2.5 are as same as Figures 2.1 and 2.2, 

respectively, when the number of deterioration stages (n) of Figures 2.1 and 2.2 is set to three.  
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Figure 2.4: Example of a classical state diagram [29] 
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Figure 2.5: The proposed state diagram  
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Table 2.1: Transition Rates (1/years) [29] 

 

Rate Value 

1 0.33 

2 0.29 

3 0.5 

1 0.5 

2 1 

3 1 

1 360 

2 360 

3 360 

1 12 

2 360 

3 180 

Using the transition rates given in Table 2.1, the models based on the classical state 

diagram and the proposed state diagram are realized using standard Markov methods to find 

state probabilities, visit frequencies and mean durations. Some reliability indices such as 

mean time between failures (MTBF) and mean time to first failure (MTTFF) are also 

computed. The results for the two models are tabulated in corresponding columns of Tables 

2.2, 2.3, 2.4 and 2.5.   

The transition rates given in Table 2.1 are as same as the transition rates used in [29]. 

Therefore the results obtained in [29] by conducting Monte Carlo simulation for a graphical 

model which represents the real world maintenance situation can be used to verify the 

accuracy of using Markov methods for the two models based on the classical state diagram 

and the proposed state diagram. The last columns of Tables 2.2 to 2.5 show the results 

obtained in [29] by conducting Monte Carlo simulation using NRD concept. 
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Table 2.2: State Probabilities 

 

State Classical Model Proposed Model Monte Carlo Simulation [29] 

S1 0.7326 

 

0.6197 0.61711 

S2 0.2204 0.2931 0.29641 

S3 0.0426 

 

0.0817 0.08097 

I1 0.0010 0.0009 0.00086 

M2 0.0006 0.0005 0.00046 

I2 0.0006 0.0005 0.00046 

M3 0.0002 

 

0.0002 0.00024 

I3 

 

0.0001 0.0001 0.00012 

F 0.0018 0.0034 

 

0.00336 

 
Table 2.3: Visit Frequencies (1/years) 

 

State Classical Model Proposed Model Monte Carlo Simulation [29] 

S1 0.6080 0.5143 0.514 

S2 0.2844 0.2486 0.250 

S3 0.0639 0.0850 0.084 

I1 0.3663 0.3098 0.308 

M2 0.2204 0.1637 0.166 

I2 0.2204 0.1637 0.166 

M3 0.0426 0.0442 0.044 

I3 

 

0.0426 0.0442 0.044 

F 0.0213 0.0408 0.041 

Table 2.4: Mean Durations (years) 

 

State Classical Model Proposed Model Monte Carlo Simulation [29] 

S1 1.2048 1.2048 1.200 

S2 0.7752 1.1787 1.185 

S3 0.6667 0.9611 0.958 

I1 0.0028 0.0028 0.003 

M2 0.0028 0.0028 0.003 

I2 0.0028 0.0028 0.003 

M3 0.0056 0.0056 0.006 

I3 

 

0.0028 0.0028 0.003 

F 0.0833 0.0833 0.083 
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Table 2.5: Reliability Indices (years) 

 

 Classical Model Proposed Model Monte Carlo Simulation [29] 

MTBF 46.9283 24.4841 24.7 

MTTFF from S1 46.8450 24.4008 24.5 

MTTFF from S2 43.8105 21.3662 23.5 

Table 2.6: Percentage Deviations of Reliability Indices 

 

 Classical Model Proposed Model 

Percentage  deviation of MTBF (%)  -89.99 0.87 

Percentage  deviation of  MTTFF from S1 (%) -91.20 0.40 

Percentage  deviation of  MTTFF from S2 (%) -86.43 9.08 

As can be seen from Tables 2.2 to 2.5, the results obtained by solving the maintenance 

model based on the classical state diagram in Figure 2.4 significantly differ from the results 

obtained by conducting Monte Carlo simulation. Whereas, the results obtained by the 

maintenance model based on the proposed state diagram in Figure 2.5 are very much closer to 

the Monte Carlo simulation results.  

Monte Carlo simulation results are considered to be highly accurate, because they are 

obtained by solving the graphical model in [29] based on NRD concept which is in 

accordance with the actual maintenance situation. For both models, percentage deviations of 

reliability indices are calculated with respect to Monte Carlo Simulation results and those 

percentage deviations are tabulated in Table 2.6. The proposed model has low percentage 

deviations. Negative percentage differences indicate the overestimation of reliability indices. 

The reliability indices of the classical model have very high negative percentage deviations 

due to the misrepresentation of actual maintenance practice. This numerical example verifies 

the accuracy of the proposed scheduled maintenance model, supporting the theoretical 

discussion in the previous section.  

2.5 Summary 

State diagrams are commonly used in maintenance modeling. Classical state diagrams 

possess an unwanted modeling property that may not be able to represent the maintenance 
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situation well. Inspection rate is typically set based on the knowledge about the deterioration 

of the device which is only available after inspection and maintenance. Classical state 

diagrams fail to represent this characteristic, because the inspection rate is changed whenever 

there is a change in the deterioration state. However, this change in deterioration is unknown 

to the operator before conducting inspections and in this situation the inspection rate should 

not be changed. This unwanted model property of classical state diagrams is analyzed in this 

chapter. 

Due to this property, maintenance models based on classical state diagrams provide 

accurate results only for periodic inspection and do not provide accurate results when 

inspections are non-periodic. In this chapter, a new state diagram is proposed to eliminate this 

modeling error from a generalized classical state diagram. The only disadvantage of this 

proposed state diagram is the increase in number of states. A reduced version for the proposed 

state diagram is also presented for further extended analyses. 

Standard Markov methods and Monte Carlo simulation techniques are used for 

mathematical realization of probabilistic maintenance models. The two concepts to carry out 

Monte Carlo simulations are RD and NRD concepts [29]. It is theoretically shown that the 

results of Markov models based on classical state diagrams are similar to that of unrealistic 

RD concept, while Markov models based on proposed sate diagrams give similar results as in 

more realistic NRD concept. In a numerical example, classical and proposed maintenance 

models are solved using Markov techniques and the results are compared with Monte Carlo 

simulation results. It is shown that the results of the maintenance model based on the classical 

state diagram are significantly different from Monte Carlo simulation results, but the results 

of the maintenance model based on the proposed state diagram are very similar to Monte 

Carlo simulation results. This numerical example validates that the scheduled maintenance 

model based on the proposed state diagram represents the real world maintenance situation 

and can be solved using standard Markov methods to get accurate results. 

In the next chapter, we apply this proposed scheduled maintenance model to perform 

reliability and cost assessments of circuit breakers. The next chapter also applies Markov 
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maintenance models for state prediction of transformers and for analyzing the effect of sub-

components’ characteristics on the reliability of a wind energy conversion system.  
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Chapter 3 : Applications of Markov Maintenance Models to 

Power Systems 

3.1 Introduction 

This chapter presents three different applications of Markov maintenance models related 

to power systems. In the first study the scheduled maintenance model proposed in chapter 2 is 

applied for reliability and cost assessments of circuit breakers. This study utilizes real data [7] 

which reflects that maintenance is imperfect in actual practice. This application study aims to 

evaluate the performance of the proposed scheduled maintenance model while relaxing the 

assumption made in chapter 2 (i.e. maintenance improves the present condition of the 

equipment by only one stage). The second application study aims to investigate the possibility 

of utilizing Markov models to predict the states of vulnerable power system equipment. This 

study is conducted on local transformers. After investigating the effect of loading and 

operating years on deterioration of transformers using field data, the study utilizes a simple 

Markov model for state prediction. In the third application of Markov models, the thesis 

intends to explore the effect of failure and repair characteristics of sub components on the 

reliability of a system. The Markov model utilized in this study is developed for a wind 

energy conversion system. 

This chapter is organized as follows. In section 3.2, Markov maintenance models 

discussed in chapter 2 are applied to reliability and cost assessments of circuit breakers using 

actual data obtained from the literature. In addition, sensitivity analyses are conducted to 

observe the effect of inspection rate on reliability measures. In section 3.3, a Markov 

maintenance model is applied to state prediction of different transformer groups which are 

classified according to the operational age and loading conditions. In section 3.4, a Markov 

model is applied to conduct a sensitivity analysis to assess which characteristics of the 

components are critical to the reliability of a wind energy conversion system. Finally, a short 

summary is given in section 3.5. 
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3.2 Reliability and Cost Analysis of Circuit Breakers 

In section 2.4 of the previous chapter, a numerical example is provided. In this numerical 

example, it is assumed that maintenance always improves the present condition of the 

equipment by one stage. However, real maintenance activities are imperfect and may not 

always improve the present deterioration condition of the device by one stage. This imperfect 

maintenance may not change the present condition of the device and may in fact degrade its 

condition. This section aims to show the applicability of the concept behind the maintenance 

model proposed in chapter 2 into imperfect maintenance of circuit breakers. In addition, the 

results of the proposed circuit breaker maintenance model are compared with the results of a 

classical circuit breaker maintenance model.  

3.2.1 Reliability and Cost Assessments 

Figure 3.1 shows a classical state diagram proposed in [7] for an imperfect maintenance 

model of circuit breakers. This state diagram is similar to the state diagram in Figure 2.4 

except that this diagram models different possible levels of performing maintenance and 

different possible outcomes of maintenance. As can be seen in this state diagram, inspections 

are followed by either minor maintenance (M), major maintenance (MM) or no maintenance. 

There is a possibility to conduct major maintenance after minor maintenance and maintenance 

may improve or degrade the condition of the device or may not be able to affect the present 

condition of the device. Based on the concept behind the proposed state diagram in chapter 2, 

the state diagram shown in Figure 3.2 is proposed for a more realistic imperfect maintenance 

model.  
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Figure 3.1: Example of a classical state diagram for imperfect maintenance [7] 
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Figure 3.2: The proposed state diagram for imperfect maintenance 

The classical and proposed state diagrams in Figures 3.1 and 3.2 are converted into semi 

Markov models and solved using well-known procedures to compute mean time between 

failures (MTBF), mean time to first failure (MTTFF), inspection cost, maintenance cost, 

repair cost and total cost [45, 49]. All data is actual data obtained from [7] for air blast circuit 

breakers and utilized in this example to solve both classical and proposed models. The 

transition rates and mean durations are shown in Figures 3.1 and 3.2. Choice and outcome 
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probabilities after inspection and maintenance are also indicated in same figures. In addition 

to this, the cost details are tabulated in Table 3.1.  

Table 3.1: Costs ($) [7] 

 

  Average Cost per Activity ($) 

Inspection  200 

Minor maintenance  1200 

Major maintenance  14400 

Repair  144000 

The results obtained using the two imperfect maintenance models are shown in Table 

3.2. Reliability indices and cost measures of the classical model significantly deviate from 

those of the proposed model and the percentage deviations are given in Table 3.3. As can be 

seen in Table 3.3, due to the idealistic model property, the model based on the classical state 

diagram greatly overestimates reliability and inspection and maintenance costs, while 

significantly underestimating repair cost and total cost.  

Table 3.2: Reliability Indices and Costs for Imperfect Maintenance Models [30] 

 

Reliability/ Cost Measure 
Model Based on the 

Classical State Diagram 

Model Based on the 

Modified State Diagram 

MTBF (years) 36.90 23.04 

MTTFF from S1 (years) 36.8 22.9 

MTTFF from S2  (years) 33.8 19.9 

MTTFF from S3  (years) 24.9 12.4 

Annual Inspection Cost ($/year) 132 108 

Annual Maintenance Cost ($/year) 1288 1101 

Annual Repair Cost ($/year) 3903 6251 

Annual Total Cost ($/year) 5323 7460 
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Table 3.3: Percentage Deviations of Reliability Indices and Cost Measures 

 

Reliability Index/ Cost Measure Percentage Deviation (%) 

MTBF (years) -60.2 

MTTFF from S1 (years) -60.7 

MTTFF from S2  (years) -69.8 

MTTFF from S3  (years) -100.8 

Annual Inspection Cost ($/year) -22.2 

Annual Maintenance Cost ($/year) -17.0 

Annual Repair Cost ($/year) 37.6 

Annual Total Cost ($/year) 28.6 

3.2.2 Effect of Inspection and Maintenance on Reliability 

The objective of this section is to investigate the effect of inspection rate on two 

reliability measures namely, MTBF and availability. This analysis also utilizes the two 

scheduled maintenance models discussed in section 3.2.1.  

3.2.2.1 Sensitivity Analysis of Inspection Rate on MTBF 

This section aims to utilize the two maintenance models to observe the sensitivity of 

different inspection rates on MTBF. In order to check the accuracy of the model, this section 

especially intends to observe the behavior of MTBF, when γ1 goes to zero.  

Sensitivity Analysis of γ1 on MTBF  

Figures 3.3 and 3.4 are used to discuss different model properties between the two 

models shown in Figures 3.1 and 3.2. Figure 3.3 shows the variation of MTBF with γ1, when 

γ3 is fixed at 1 and γ2 is fixed at different values (0.25, 0.5, 1 and 4). It can be seen from this 

figure that MTBF of the proposed model increases when γ1 increases and the sensitivity of γ1 

increases with increasing γ2. On the other hand, the sensitivity of γ1 on MTBF is negligible for 

the classical model compared to that of the proposed model. 

Figure 3.4 shows the variation of MTBF with γ1, when γ2 is fixed at 1 and γ3 is fixed at 

different values (0.25, 0.5, 1 and 4). This figure also shows the less sensitivity of γ1 on MTBF 
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of the classical model. Whereas, γ1 of the proposed model is more sensitive to MTBF and the 

effect of γ3 on this sensitivity is less. 

 

Figure 3.3: The variation of mean time between failures with γ1, given different values for γ2 

 

Figure 3.4: The variation of mean time between failures with γ1, given different values for γ3 

In addition, from Figure 3.3 and 3.4, it can be observed that all curves which are 

obtained using the proposed model converge to a single value, while the curves which are 

obtained using the classical model converge to different values. This observation is further 

discussed in section 3.2.2.3 to verify the accuracy of the proposed model. 
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Sensitivity Analysis of γ2 on MTBF  

Figure 3.5 shows the variation of MTBF with γ2, when γ3 is fixed at 1 and γ1 is fixed at 

different values  0.25, 0.5, 1 and 4 . MTBF of the classical model increases with γ2, but the 

effect of γ1 on this sensitivity is negligible. In the proposed model, MTBF increases when γ2 

increases, and the sensitivity of γ2 on MTBF of the proposed model also increases with 

increasing γ1.  

Figure 3.6 shows the variation of MTBF with γ2, when γ1 is fixed at 0.5 and γ3 is fixed at 

different values (0.25, 0.5, 1 and 4). According to this figure, MTBF of the classical model 

rapidly increases when γ2 increases, and sensitivity of γ2 on MTBF further increases for 

higher values of γ3. Whereas, MTBF of the proposed model increases slightly when γ2 

increases and then remains constant and the effect of γ3 on this behavior is negligible. 

 

Figure 3.5: The variation of mean time between failures with γ2, given different values for γ1 
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Figure 3.6: The variation of mean time between failures with γ2, given different values for γ3 

Sensitivity Analysis of γ3 on MTBF 

Figure 3.7 shows the variation of MTBF with γ3, when γ2 is fixed at 1 and γ1 is fixed at 

different values  0.25, 0.5, 1 and 4 . MTBF of the classical model is highly sensitive to γ3, and 

this sensitivity is not greatly affected by γ1. Therefore, this figure confirms that MTBF of the 

classical model has a negligible effect from γ1 and a significant effect from γ3. On the other 
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Figure 3.7: The variation of mean time between failures with γ3, given different values for γ1 

 

Figure 3.8: The variation of mean time between failures with γ3, given different values for γ2 
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Sensitivity Analysis of γ1 on Availability  

Figure 3.9 shows the variation of availability with γ1, when γ3 is fixed at 1 and γ2 is fixed 

at different values (0.25, 0.5, 1 and 4). Availability of the proposed model shows a high 

sensitivity to γ1 and this sensitivity slightly increases with increasing γ2. Most importantly, an 

optimum value can be seen for γ1 of the proposed model to achieve maximum availability. 

For the classical model, availability decreases with increasing γ1 and the sensitivity of γ1 on 

availability increases with increasing γ2. The results of the classical model show a possibility 

of maximizing availability by minimizing γ1 as much as possible.  

Figure 3.10 shows the variation of availability with γ1, when γ2 is fixed at 1 and γ3 is 

fixed at different values (0.25, 0.5, 1 and 4). For both classical and proposed models, the 

variation of availability with γ1 is almost similar to that in Figure 3.9. In addition, this figure 

shows that sensitivity of γ1 on availability increases with increasing γ3 of the classical model. 

However, the sensitivity of γ1 on availability is not much affected by γ3 of the proposed 

model. 

 

Figure 3.9: The variation of availability with γ1, given different values for γ2 
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Figure 3.10: The variation of availability with γ1, given different values for γ3 
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Figure 3.11: The variation of availability with γ2, given different values for γ1 

 

Figure 3.12: The variation of availability with γ2, given different values for γ3 
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classical model. However, this sensitivity decreases when γ2 increases. This figure also shows 

an insignificant effect from γ2 and γ3 on availability of the proposed model. 

 

Figure 3.13: The variation of availability with γ3, given different values for γ1 

 

Figure 3.14: The variation of availability with γ3, given different values for γ2 
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The Behavior of MTBF of the Model When γ1 Goes to Zero 

 The behavior of MTBF of the model when γ1 goes to zero is very useful to validate the 

accuracy of the models [29]. When γ1 goes to zero, no maintenance will be carried out before 

the device fails, because the first inspection interval is very large. Therefore, when γ1 is zero, 

MTBF is the sum of the expected sojourn times in deterioration states, which is 

1/λ1 1/λ2 1/λ3 equal to 8.5 years for these circuit breakers. MTBF should not be affected by 

γ2 or γ3, if γ1 is zero, because the system fails even before the first inspection is carried out.  If 

these models are correct, for any value of γ2 and γ3, MTBF should converge to 8.5 years, 

when γ1 goes to zero. As can be seen in Figure 3.3, the proposed model based on the new state 

diagram converges to 8.5 years and this behavior is independent from γ2. In Figure 3.4, all 

curves which are obtained using the proposed model for different values of γ3 converge to 8.5 

years, further proving the accuracy of the proposed model. This behavior of the proposed 

model is as same as the realistic behavior according to NRD concept which is discussed in 

[29] and in chapter 2. However, as can be seen in Figures 3.3 and 3.4, when γ1 goes to zero, 

MTBF of the classical model converges to different values depending on γ2 and γ3. This 

confirms the inaccuracy of the maintenance model based on the classical state diagram. This 

behavior of the two models based on classical and proposed state diagrams proves that the 

modeling errors only occur at the point of developing state diagrams and they do not occur 

when realizing state diagrams using Markov techniques. Although Markov processes are 

similar to RD concept [29], due to their memory less property they can give the same accurate 

results as NRD concept, if the state diagrams are drawn properly to represent actual 

maintenance situation. 

It should be noted that when all inspection rates (i.e. γ1, γ2 and γ3) are set to zero MTBF 

is equal to 8.5 years for both classical and proposed models. This is obvious, because setting 

all inspection rates to zero means that we do not intend to perform any inspection and 

maintenance and therefore, MTBF should be the sum of the expected sojourn times in 

deterioration states (which is equal to 8.5 years). 
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Effects of Inspection Rates on MTBF 

MTBF is an average time between the occurrences of two consecutive failures which can 

be calculated using (3.1), where MTTF is the mean time to failure and MTTR is the mean 

time to repair. Since inspection and maintenance will increase both MTTF and MTTR of a 

device, theoretically an increase in any inspection rate will increase MTBF of the device. 

Results of sensitivity analysis on both models also show this behavior. However, it is 

impractical to increase inspection rates infinitely and therefore, sensitivity of different 

inspection rates on MTBF is important to identify better maintenance policies.  

MTBF MTTF MTTR (3.1) 

Results of sensitivity analysis conducted on the classical model show that MTBF is 

highly sensitive to γ2 and γ3, but not much sensitive to γ1. In contrast, results of sensitivity 

analysis conducted on the proposed model show that MTBF is highly sensitive to γ1 and it 

cannot be increased considerably by increasing γ2 and γ3, while having a low γ1.  

Effects of Inspection Rates on Availability 

Availability is the probability that a device is in working condition, which can be 

calculated using (3.2). This is also a function of MTTF and MTTR, which is influenced by 

inspection, maintenance and repair. Since operation of a device is stopped during inspection 

and maintenance activities, higher inspection rates will increase MTTR and an increase in any 

inspection rate will decrease availability. On the other hand, inspection and maintenance on a 

deteriorated device will most probably improve condition of the device. Thus, an increase in 

any inspection rate will also increase availability by increasing MTTF. Due to these 

increasing behaviors of both MTTF and MTTR with inspection rates, behavior of availability 

with different inspection rates obtained from sensitivity analysis is difficult to predict by 

merely observing (3.2).  

 vailability 
MTTF

MTTF MTTR
 (3.2) 

According to results given by the classical maintenance model, availability significantly 

decreases with increasing γ1, but significantly increases with increasing γ2 and γ3. It can also 
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be seen that the highest availability can be achieved with the lowest value of γ1. However, 

results of the proposed model show an optimum value for γ1 that maximizes availability. It is 

also shown that availability increases considerably with increasing γ2, provided that γ1 is high. 

Furthermore, γ3 of the proposed model does not show high sensitivity to availability, when γ1 

or γ2 is low. 

Effect of Model Discrepancies on Results and Implications 

As previously mentioned, classical models assume that the condition of a device is 

known even prior to inspection. Due to this assumption, the classical model allows to set the 

inspection rate as a device deteriorates, even when the deterioration condition is actually not 

revealed through inspections. Thus, the results of classical models imply the following. 

1) MTBF can be greatly increased by increasing the inspection rate at latter deterioration 

stages of a device, even though inspection rate is very low at the early stage of 

deterioration. 

2) Availability can be significantly increased by setting the inspection rate with higher 

values at latter deterioration stages and with a very low value at the early deterioration 

stage. 

When condition of a device is known only after inspection and maintenance, setting the 

inspection rate to another value depends on the present inspection rate. This assumption is 

modeled in the proposed state diagram in Figure 3.2. Due to this assumption, inspections must 

be performed in early deterioration stages at a considerable rate, if it is required to perform 

more inspections and maintenance in latter deterioration stages. Otherwise, the device would 

fail without providing any opportunity to conduct inspection and maintenance. This is 

reflected in the results of the proposed model and the implications of the results are given 

below. 

1) MTBF cannot be increased significantly by increasing the inspection rate at latter 

deterioration stages, while having a low inspection rate at the early stage of deterioration. 

2) Less frequent inspections and maintenance may increase failures and cause a low 

availability. Too frequent inspection and maintenance could increase the idle time of the 
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device and hence, availability will be again low. Thus, there is an optimal rate to perform 

inspections, when a device is at its early deterioration stage. However, when a device is at 

latter deterioration stages, the risk of failure is higher and therefore, availability can be 

improved through more frequent inspection and maintenance. 

The assumption in classical models which infers that the state of the device is always 

known is valid only when the inspection rate is very high. Thus, classical models are more 

suitable to stand for equipment with on-line condition monitoring, where the condition is 

continuously or more frequently monitored while the equipment is in operation. Since the 

operation of the device is not disturbed in on-line monitoring, it would be more appropriate to 

modify classical models by eliminating inspection states.  Such application of a modified 

classical model developed for on-line monitoring of transformers is presented in the next 

section, section 3.3. The assumption of proposed models is in accordance with the practices in 

off-line monitoring. Thus, the proposed models could better represent the inspection based 

scheduled maintenance.  

These circuit breaker maintenance models are further utilized in coming chapters with 

the following terminology. The term “condition monitoring based inspection and maintenance 

model  CBM model ” is assigned for the model in Figure 3.1, since its assumption is valid 

only if the deterioration condition of the equipment is always known as in continuous online 

condition monitoring. The term “inspection based maintenance model  IBM model ” is 

assigned for the proposed model in Figure 3.2, since its model assumption represents the 

actual practice of scheduled inspection based maintenance. 

3.3 State Prediction of Transformers 

Transformers are often the most valuable and indispensible asset in a substation and 

failures would result in undesirable disturbances to operating systems such as outages and 

power delivery problems. Therefore transformers are subjected to condition based 

maintenance. Currently in the industry, condition monitoring is done uniformly and routinely 

irrespective of the vulnerability of an individual transformer. Insufficient condition 

monitoring could be done on some transformers, leading to unexpected failures, while more-
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than-sufficient condition monitoring could be done, in which resources are unnecessarily 

used.  

Condition monitoring activities of transformers can be effectively scheduled by 

considering the factors which affect the deterioration rate of transformers. Transformers 

deteriorate with the age and therefore, the failure rates and replacement costs are slowly but 

definitely steadily increasing with the age [50]. In addition, an increase in loading decreases 

the strength of the fibrous insulation and the potential of transformer failure is higher. 

Therefore, there should be a significant effect from the loading pattern of a transformer on its 

deterioration.  

This section investigates the effect of loading and operating years on deterioration 

conditions of transformers using field data obtained from the local utility. Then, a state 

prediction tool is proposed using a maintenance model based on a state diagram. Such a tool 

can be useful for the industry to forecast the condition of transformers and to decide when and 

how to alter the present maintenance policy.  

The approach of this work includes data collection from a large group of transformers in 

the local utility and data classification according to loading conditions and age. The average 

of various parameters determining the characteristics of each group of transformers are 

calculated and statistical hypothesis testing is used to determine if there is a difference in 

these parameters among the groups. Based on the effects of loading and age on the 

deterioration of the transformers, a guideline to perform maintenance of an individual 

transformer is provided. Then, a state prediction model is used to predict the deterioration 

condition of transformers. Model parameters are obtained from historical data of transformers 

in different groups. Predicted states obtained by solving the state prediction model are 

compared with the states in actual data, to verify model predictions.  

3.3.1 Deterioration and Condition Monitoring of Transformers 

Effects of Loading on Deterioration of Transformers 

The winding hottest-spot temperature, which is the most important factor in determining 

the lifespan and the need for maintenance of a transformer due to loading, increases with the 
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loading of a transformer. The hottest-spot temperature could be obtained from tests done in 

the laboratory, mathematical models as well as from direct measurement of the top or center 

of the primary or secondary winding [51].  

The two impacts of loading on the transformers are loss of life and dielectric failure. The 

loss of life of a transformer is related to the deterioration of transformer insulation as a 

function of time and temperature [52]. The useful life of the paper insulation is 7.42 years at a 

continuous winding hottest spot temperature of 110°C and up to 50 years with a continuous 

winding hottest spot temperature of 92°C [53]. Under rated load, the normal loss of life for a 

transformer is about 0.0369% per day [53]. However, if a transformer is operated within rated 

capacity, it could be reasonably expected to last in excess of 30 years if routine maintenance 

and testing is conducted [52]. 

Dissolved Gas Analysis (DGA) 

Deterioration of a transformer can be detected by examining the condition of the 

transformer oil. The oil in a transformer acts as a dielectric media, an insulator and as a heat 

transfer agent [54]. There is typically a gradual degradation of the mineral oil, yielding gases 

that collect in the oil when the transformer is under normal use. However, when an electrical 

fault arises in the transformer, these gases are generated more rapidly. There are three major 

types of electrical faults, the least severe being partial discharge and the most severe being 

arcing. By determining the various gases present and their amounts in the Dissolved Gas 

Analysis (DGA), one can infer the nature of the fault giving rise to them [54]. DGA is usually 

performed in accordance with IEEE C57.104 standards or IEC 60599 standards [55]. 

Local Utility Practices 

The utility widely employs DGA to monitor the condition of a transformer. Condition 

monitoring is conducted at regular intervals which are predetermined for different conditions 

of the transformer. Based on the DGA of the oil samples, the condition of the transformers 

will be coded as 1, 2 or 3 according to the total amount of total dissolved combustible gases 

(TDCG), which is the sum of the concentrations in ppm of hydrogen, methane, ethane, 

ethylene, acetylene and carbon monoxide in a DGA oil sample [56]. 
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The condition monitoring or maintenance cycle would be shorter for a transformer in 

condition 3 as compared to a transformer in condition 1 or 2. A transformer may also be 

replaced if its DGA consistently yields unsatisfactory results. 

3.3.2 Classification of Transformers and Hypothesis Testing 

Classification of Transformers 

In this section, k-means clustering is used to classify transformers. k-means clustering 

aims to partition the observations into k clusters while minimizing the within-cluster sum of 

squares. Selected transformers are grouped according to their loading profile and the first year 

of operation respectively. For example, Figure 3.15 shows three different groups of 

transformers, formed by k-means clustering, each characterized with a unique loading pattern. 

Then, these different groups of transformers are analyzed using hypothesis testing, in order to 

identify differences in deterioration among groups. 

 

Figure 3.15: Loading profiles of transformers grouped using k-means clustering 

Transformer Parameters 

This section describes some parameters which are considered in hypothesis testing. One 

of the parameters under consideration is the probability of being found in each condition 

which is an indicator of the vulnerability of a transformer. Using the historical data of the 

DGA of a transformer, the probability of being found in each condition can be calculated as 
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given in (3.3). Where Pc is the probability of being found in deterioration condition c, tc is the 

duration of the transformer in condition c and To is the total time of observation. 

   
  
  

 (3.3) 

The inspection rate of transformers is also considered as it differs with the condition of 

the transformer. In utility practices, transformers with a greater deterioration are inspected 

more frequently than less deteriorated transformers. Given the history of DGA, γc, the 

inspection rate of a transformer in condition c, can be determined using (3.4). Where nc is the 

number of inspections conducted when the condition is c. 

   
  
  

 (3.4) 

Besides these parameters, the field measurements of concentration levels of different 

gases analyzed in the DGA can also indicate the condition and deterioration in transformers. 

Thus, such measurements of different groups of transformers are also analyzed in hypothesis 

testing. 

Hypothesis Testing 

In hypothesis testing, two groups, Group X and Group Y are compared. The difference 

between the means of a parameter of two groups, µx and µy is tested with the following one-

tailed hypothesis test at level of significance, α = 5%. 

H0: µx = µy 

H1: µx > µy 

Test statistic:  
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 ̅ and  ̅ are the sample means of groups X and Y, respectively.   
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 are the 

population variance of groups X and Y, respectively.    and    are the number of 

transformers in groups X and Y, respectively.  

Since   
 

 and   
  are unknown, their estimators   

 
 and   

  are used in the test statistic as 



 

46 

 

given below. As the sample size is large, the central limit theorem allows doing so, because it 

guarantees that ( ̅   ̅) has approximately a normal distribution. 

 

Test statistic:  

  
( ̅   ̅)  (     )

√
  
 

  
 
  
 

  

  (   ) 

For each group of transformers, the mean, µ, and standard deviation, s, of the relevant 

parameters are estimated. Then, values are calculated for the test statistic. 

If the value of the test statistic does not fall within the critical region (z < 1.645) as 

shown in Figure 3.16, H0 is not rejected as there is insufficient evidence at 5% level of 

significance to support the claim that µx > µy. If the value of the test statistic falls within the 

critical region (z > 1.645), H0 is rejected and H1 is accepted as there is sufficient evidence at 

5% level of significance to support the claim that µx > µy. Hypothesis testing results which 

show the differences in deterioration among different transformer groups are provided in 

section 3.3.3. 

 

Figure 3.16: Critical region 

3.3.3 Results and Analysis of Hypothesis Testing 

Effects of Maximum Loading on DGA Gases 

Selected results of the hypothesis testing carried out for 2 groups of transformers are 

shown in Table 3.3. 

Group X: Transformers with high maximum loading 

Group Y: Transformers with low maximum loading 
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Table 3.4: Test Statistics for Transformers Grouped by Maximum Loading 

 

Parameter CH4 CO CO2 C2H4 

z 0.084 5.129 7.737 4.937 

There is sufficient evidence (z > 1.645) to show that the amount of carbon monoxide 

(CO), carbon dioxide (CO2) and ethylene (C2H4) is larger in the group of transformers with 

high maximum loading than in the group with low maximum loading at 5% level of 

significance. Carbon monoxide and carbon dioxide are the only two gases which indicate the 

deterioration of the paper insulation of the transformer while ethylene, together with other 

gases, may indicate the deteriorating thermal condition of the transformer oil. As there is no 

substantial evidence to prove that the amount of methane (CH4) also increases with increasing 

maximum loading, it cannot be concluded that thermal fault may arise at a higher probability 

as maximum loading increases. However, it can be concluded that paper insulation 

deteriorates with an increased maximum loading, as indicated by the increased amounts in 

carbon monoxide and carbon dioxide. 

This is an important factor for the utility to consider as from the results, the amount of 

paper insulation degradation essentially increases with maximum loading. This is crucial 

especially when comparing transformers which have extreme differences in maximum 

loading as the results indicate that the deterioration of paper insulation is more significant 

between these groups. 

Effects of Age on Deterioration 

Selected results of the hypothesis testing carried out for 2 groups of transformers are 

shown in Table 3.4. 

Group X: Transformers with an earlier first year of operation  

Group Y: Transformers with a later first year of operation 

Table 3.5: Test Statistics for Transformers K-Means Clustered by First Year of Operation 

 

Parameter P3 λ2 

z 3.133 5.380 
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The probability of being in condition 3 and the deterioration rate from condition 2 to 

condition 3 of a transformer with an earlier year of operation are higher than that of a 

transformer with a later first year of operation (z > 1.645). A transformer which has been in 

operation for a long time is more prone to the deterioration of its paper insulation, thus giving 

rise to the deterioration of the transformer. 

The utility should factor in the number of years of operation when monitoring 

transformers, as it is shown that amount of deterioration of a transformer increases with its 

age. 

Effects of Loading on Deterioration 

Selected results of the hypothesis testing carried out for 2 groups of transformers are 

shown in Table 3.5. 

Group X: Transformers with high loading 

Group Y: Transformers with low loading 

Table 3.6: Test Statistics for Transformers K-Means Clustered by Loading 

 

Parameter P2 

z 3.067 

The probability of a transformer being in condition 2 is higher for a transformer which is 

subjected to a high loading than for a transformer with a low or mid load (z > 1.645). There is 

a greater deterioration in transformers which belong to the former category as a higher load 

deteriorates the paper insulation at a faster rate due to the larger winding hottest-spot 

temperature it generates. In addition, higher loading increases the stresses on a transformer 

which may result in gassing in the solid insulation and oil, leading to the deterioration of a 

transformer. 

Combined Effects of Age and Loading on Deterioration 

Selected results of the hypothesis testing carried out for the 2 groups of transformers are 

shown in Table 3.6. 

Group X: Transformers with a high loading and an earlier first year of operation 
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Group Y: Transformers with a low loading and a later first year of operation 

This hypothesis test combines the effects of loading and age on transformer. It can be 

concluded that transformers which have a high loading and have been in operation for a long 

time have a higher probability of being in a deteriorated condition 2 or amber condition as 

compared to transformers which are lowly loaded and are newly-introduced into operation (z 

> 1.645).  

Table 3.7: Test Statistics for Transformers K-Means Clustered by Loading and Age 

 

Parameter P2 

z 1.885 

3.3.4 State Prediction Model 

The state prediction could be useful for utilities to forecast the state or the condition of 

transformers. When the state of a transformer is predicted to be in a higher deterioration state, 

the utility can increase the rate of condition monitoring of the transformer. 

Figure 3.17 shows a simple state diagram of a Markov model which represents the 

deterioration and maintenance of transformers. This state diagram provides the basis for state 

prediction model.  In this state diagram, states S1, S2 and S3 represent deterioration conditions 

corresponding to condition 1, 2 and 3, respectively. F is the failure state. When the device is 

deteriorated or failed, it is repaired or replaced back to S1. λ1 and λ2 are deterioration rates, and  

λ3 is the transition rate from S3 to F. µ1 , µ2 and µ3 are repair rates. These model parameters 

are calculated by analyzing historical data of transformers. Using the data of each 

transformer, λ1, λ2 and λ3 are calculated using (3.5), when c= 1, 2 and 3, respectively. Where 

    is the average time spent in the deterioration state Sc. µ1 , µ2 and µ3 are the reciprocal of 

the average repair time which is equal to one week. 

   
 

   
 (3.5) 
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Figure 3.17: The state diagram of the state prediction model 

This state diagram can be mathematically represented by a Markov process. Using the 

transition rate matrix of this Markov process, transition probability matrix is computed. 

According to these transition probabilities, deterioration states are enumerated in MATLAB 

10.  The average of 10 enumerations is considered as the predicted state of the transformer. 

The predicted states are then compared with actual states for verification and results are 

provided in section 3.3.5. 

3.3.5 Results and Analysis of State Prediction 

State Prediction for Transformer with Low Loading and an Earlier First Year of Operation 

Results obtained for Transformer A with low loading and an earlier first year of 

operation are shown in Table 3.7.  

As can be seen in Table 3.7, the predicted states slightly tally with the actual states. The 

deterioration of the transformer from condition 1 to 2 and from condition 1 to 3 cannot be 

simulated very accurately. When a transformer is fairly new, the probability of deterioration 

from condition 1 to condition 2 and from condition 2 to condition 3 is very low. Due to this 

reason, it may be difficult to use simulation tools to capture such changes in recently installed 

transformers. 
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Table 3.8: Actual and Predicted States of Transformer A  

 

Month Actual State Predicted State 

1 S1 S1 

27 S2 S1 

30 S1 S1 

33 S1 S1 

39 S3 S2 

40 S1 S1 

50 S1 S1 

62 S1 S1 

78 S1 S1 

103 S2 S1 

104 S1 S1 

State Prediction for Transformers with High Loading and a Later First Year of Operation 

Results obtained for Transformers B, C and D with high loading and a later first year of 

operation are shown in Tables 3.8, 3.9 and 3.10. Results show that predicted states almost 

tally with the actual states. It should be noted that the simulation tool is now able to capture 

the deterioration of older transformers from condition 1 to 2 and 2 to 3.  When the 

transformers are aged and highly loaded, the actual state data collected from these 

transformers are dynamic and varied. As such, there is a greater probability of deterioration. 

The transition probability from state 1 to state 2 and state 2 to state 3 in the model are now 

slightly higher than case A. The model is now able to produce more accurate predictions for 

state 2 and state 3.  

This proposed tool may be useful for utilities to predict the deterioration condition of 

transformers. The performance of this simulation tool is better when it is used for state 

prediction of older transformers. The ability to simulate the state of a transformer is a useful 

tool for utilities to forecast the amount of deterioration of the transformer and the time to next 

stage of deterioration. Preventive measures could be taken by the utilities before an eminent 

failure if the states of the transformer can be predicted. Although results are verified using 

historical data, it should be noted that the proposed state prediction tool has not been 
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implemented in real time. 

Table 3.9: Actual and Predicted States of Transformer B 

  

Month Actual State Predicted State 

1 S1 S1 

27 S1 S1 

28 S2 S2 

29 S2 S2 

38 S2 S2 

42 S2 S1 

46 S1 S1 

48 S1 S1 

50 S1 S1 

74 S1 S1 

77 S1 S1 

87 S2 S2 

90 S3 S3 

110 S1 S1 

Table 3.10: Actual and Predicted States of Transformer C 

  

Month Actual State Predicted State 

1 S1 S1 

28 S2 S2 

29 S2 S2 

38 S2 S2 

42 S2 S2 

46 S2 S2 

48 S2 S2 

50 S1 S2 

74 S1 S2 

77 S3 S2 

87 S3 S3 

90 S1 S1 

95 S1 S1 

114 S1 S1 
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Table 3.11: Actual and Predicted States of Transformer D  

 

Month Actual State Predicted State 

1 S1 S1 

15 S2 S1 

30 S2 S2 

31 S2 S2 

33 S3 S2 

34 S3 S3 

40 S1 S1 

43 S2 S2 

46 S1 S1 

51 S1 S1 

55 S2 S2 

60 S3 S2 

63 S1 S1 

67 S1 S1 

75 S1 S1 

3.4 Effects of Subcomponent Characteristics on Reliability of a Wind Energy 

Conversion System 

Most technical systems are complicated in construction and consist of several sub 

components. In such complicated systems, a failure of one sub component may lead the 

system to fail and cause unavailability. Therefore, in order to ensure reliable operation, 

maintenance activities are conducted to preserve good working conditions of a device. Even 

though frequent maintenance can improve reliability, at the same time it may cause 

catastrophic failure if not properly done. It may also not be the optimal or cost effective 

solution. Therefore, some sub components have condition monitoring to predict failures. 

Some components do not have condition monitoring and random failures of such components 

can also cause system failures. Some components fail more frequently and some components 

require more time to repair. These failure and repair characteristics of several sub components 

of a system can affect the reliability of the system in different ways. This section aims to 

apply a Markov model which is developed for a wind energy conversion system (WECS) to 
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study the effect of the characteristics of sub components on the overall system reliability.  

3.4.1 A Wind Energy Conversion System 

Components of a Wind Energy Conversion System 

A typical horizontal-axis geared wind turbine shown in Figure 3.18 has three composite 

blades (1). These blades which are joined to the rotor hub (2) drive the rotor. The main 

bearing (4) is positioned to absorb static and dynamic loads and also to support the rotor shaft 

(5). The rotor drives the gearbox (6), and the generator coupling (8) couples the gearbox to 

the induction generator (9). The gearbox converts a low speed of the blades to the rated speed 

of the generator. The safety brake (7) is located between the gearbox and the generator. The 

gearbox, the generator cooler (10), the control unit (12) and the hydraulic system (13) are also 

placed in the nacelle. After positioning all these components in the nacelle frame (3), the 

complete nacelle covered by its cover (16), is mounted on top of the tower (17) with the aid of 

the yaw bearing (15). The yaw drive (14) aligns the nacelle according to the direction of the 

wind, sensed by wind sensors (11), in order to harvest maximum energy. 

 

Figure 3.18: Nacelle of a typical geared wind turbine [57] 

1. Rotor blade 7. Safety brake 13. Hydraulic system 

2. Rotor hub 8. Generator coupling 14. Yaw drive 

3. Nacelle frame 9. Induction generator 15. Yaw bearing 

4. Main bearing 10. Generator and gearbox cooler 16. Nacelle cover 

5. Rotor shaft 11. Wind sensors 17. Tower 

6. Gearbox 12. Nacelle control  
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Reliability Block Diagram of a Wind Energy Conversion System 

When all of the above mentioned sub-components are taken into consideration, a 

reliability block diagram of the complete WECS [58] can be rather complex. The reliability 

block diagram of a typical WECS, shown in Figure 3.19, has six major sub-systems that 

significantly affect the system reliability. The block diagram is connected in series even 

though all sub-components of a WECS are not physically connected in series. This is due to 

the fact that failure of each sub-component causes the WECS to fail.  

 

Figure 3.19: Reliability block diagram of a typical wind energy conversion system [58] 

Failure Statistics 

The critical components of WECS are identified by observing the failure statistics of 

individual sub-components [57, 59-62]. Figures 3.20 and 3.21 show percentage of failures 

and percentage of downtime per component respectively in Swedish wind power plants 

during 2000 to 2004 [60]. From Figure 3.20, it can be seen that most failures are related to the 

electric system followed by sensors and blades/pitch. 
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Figure 3.20: Distribution of number of failures 

Figure  3.21 shows that the gearbox has the highest downtime. This is closely followed 

by the control system and the electric system. 

 

Figure 3.21: Percentage of downtime per component 

Condition Monitoring of Wind Energy Conversion System 

Most modern WECS are incorporated with condition monitoring (CM) systems. Blades, 

generator and gearbox and drive train are the three main sub-components with CM techniques 

in most wind turbines [63]. In addition, CM of yaw system and mechanical brake is newly 

proposed considering their high downtime and failure frequency [64].  
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3.4.2 A Markov Model for a Wind Energy Conversion System 

A WECS comprises of several devices that make it challenging to incorporate all sub-

components in the reliability model. Therefore, selecting and modeling sub-components are 

major issues in modeling a WECS.  

In reliability models, only a few sub-components (generator, gearbox, electronics and 

blades) have been selected to represent the entire WECS [61, 62, 65]. These selections are 

based on the previous attempts for identifying crucial components of a WECS using historical 

data. In [59], electrical system, rotor and converter are found as the most unreliable sub-

assemblies due to their high failure frequencies. A recently conducted survey on failures of 

WECS in Sweden stated that the gearbox is the most crucial component due to its high down 

time per failure [60]. Therefore, in addition to the failure frequency, downtime is also 

considered as a selection criterion. This is reasonable, because some components with a very 

high downtime and a low failure rate may disturb the system operation, more than those with 

a very short downtime but a high failure frequency. In order to analytically investigate effects 

of sensitive components to the WECS reliability, a proper model for a WECS with CM is 

needed.  

A probabilistic model was developed for a WECS with CM in [61, 62] considering 

published data, reliability data and opinions of industry experts. This model accounts for 

failures related to generator, gearbox, blades and electronics of a WECS. Sub-component 

selection criteria are downtime distributions, failure rates and the presence of CM [61, 62]. 

Instead of modeling a few selected sub-components, in this section a new model for a WECS 

is proposed to incorporate CM effects and failure data of all sub-components. To reduce the 

complexity of the model, sub-components with similar characteristics are grouped together.  

The Proposed Markov Model for a Wind Energy Conversion System 

The complexity and number of states of the model depend on the number of sub-

components and the selected reliability models to represent each sub-component. In this 

proposed model, all sub components are grouped into four categories. Gearbox, generator and 
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blades/pitch are considered as separate groups as they are having CM, and all other 

components without CM are considered as one group. 

 Gearbox: This group includes gears and drive train. 

 Generator 

 Electronics and others: This group represents all other components that are not included 

in other three groups. 

 Blades/pitch 

There are two basic models available to model sub components. They are the two-state 

model and the intermediate states model. The two-state model is used to model all sub 

components which do not have CM. As can be seen in Figure 3.24, this model has only two 

states; the up state and the down state. Due to simplicity, this model is widely used in 

reliability studies [61, 62, 66]. Intermediate states model which is shown in Figure 3.23 

introduces a better representation for devices with CM. This model is ideal for a single 

component having up, down and intermediate state(s). This is widely used to model the 

deterioration process of a component. In this work, this model is used to represent a 

component under continuous condition monitoring. Transition between states depends on 

failure characteristics of the sub-component and the maintenance activities.  

In the proposed Markov model, sub component 1, 2 and 4 are represented using a three-

state model in order to include the intermediate state at which the CM system detects faults. 

Sub-component 3 is modeled using the two-state model as it has only up and down states to 

consider. Then the WECS is modeled by combining the states of sub components.  

State Space Diagram 

The state space diagram of the proposed WECS model is shown in Figure 3.22. 

Theoretically, the developed Markov model for a WECS has 54 (33 2) states. As in most 

reliability models, using following assumptions, the number of system states are reduced to 

28. Failure states are drawn with grey color in Figure 3.22. 

 Simultaneous failures or degradations of two components are negligible. 
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 System must transit to a failure states via a de-rated state. 

 All failure states are considered as absorbing states. 
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Figure 3.22: State space diagram of the proposed wind energy conversion system 

Transition Rate Matrix 

The deterioration and failure characteristics of each sub component are incorporated into 

the developed model using the transition rate matrix, the parameters of which can be 

calculated from historical data collected over a long period of time. For this study, transition 

rate parameters are computed using average number of failures and average downtimes 

available in the literature for the test system. This calculation procedure is explained in detail 

under section 3.4.3. Following transition rates are employed in the developed model. 

   
  is the transition rate from up state to de-rated state of sub-component i, i=1,2,4 

   
  is the transition rate from de-rated state to down state of sub-component i, i=1,2,4 

 λ
3
 is the transition rate from up state to down state of sub-component 3 

 μ
i
 is the transition rate from down state to up state of sub-component i, i=1,2,3,4 
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3.4.3 A Test System 

The above Markov model is incorporated into a test system with failure rates and repair 

rates obtained from [60]. The data is based on a recent survey conducted for more than 600 

Swedish wind turbines over a period of five years. Equivalent failure rates and repair rates are 

calculated for each group of sub components of the selected test system.  

Calculation of Equivalent Rates 

For a series system with frequency of failure approximation, equivalent failure rate (λeq ) 

and equivalent repair rate (μeq) can be calculated using following equations. 

    ∑   (3.6) 

       
∑(        )

∑  
 (3.7) 

    
 

      
 (3.8) 

Where λ
i
 is the failure rate of sub-component i, MTTRi is the average time required to 

repair component i and MTTReq is the average down time of the WECS. 

Table 3.12: Equivalent Failure Rates and Repair Rates of Sub-groups 

 

Component 
Equivalent Failure Rate, λeq 

(per year) 

Equivalent Repair Rate, μeq 

(per day) 

Gearbox (1) 0.000134 0.0925 

Generator (2) 0.000058 0.1139 

Electronics and other (3) 0.000740 0.2183 

Blades/pitch (4) 0.000142 0.2620 

Since components of each group are in a series, equivalent failure and repair rates in Table 

3.11 are calculated using individual failure rates and mean down times (MDTs).  

Determining the Transition Rates for Intermediate State Model 

Intermediate states model for gearbox, generator and blades/pitch is shown in Figure 

3.23. For gearbox, generator and blades/pitch that have an intermediate state, it is needed to 

calculate the transition rate from up state to de-rated state (λUD) and the transition rate from 
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de-rated state to down state (λDD). The procedure of calculating λUD and λDD is briefly 

described in this section.   

UP DERATED DOWN

eq

 

Figure 3.23: Intermediate states model 

The following equations are obtained by applying the frequency balancing technique to the 

model shown in Figure 3.23.  

              (3.9) 

               (3.10) 

               (3.11) 

            (3.12) 

Where
 
PU, PDR and PD are probabilities of being staying in up, de-rated and down states 

of the intermediate states model, respectively.  

From (3.9), (3.10), (3.11) and (3.12), 

       (
 

   
 

 

   
  )    (3.13) 

UP DOWN
eq

eq

 

Figure 3.24: Two-state model 

Similarly, using frequency balancing technique for the equivalent two-state model in 

Figure 3.24, (3.14) and (3.15) are obtained. 

                (3.14) 
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          (3.15) 

 

Where PU* 
and PD* are probabilities of being staying in up and down states of the two-

state model, respectively.  

From (3.14) and (3.15), 

        (
 

   
  )    (3.16) 

Since PD=PD*, 

 

   
 

 

   
 
 

   
 (3.17) 

To determine λUD and λDD using (3.17), one of them must be known. Since historical data 

is unavailable for λUD and λDD, considering fast transitions from de-rated state to down state, 

λDD is assumed to be equal to the repair rate; μeq. With this approximation, λUD can be 

calculated using (3.17) and the values for λUD and λDD are tabulated in Table 3.12. 

Table 3.13: Transition rates from up state to de-rated state and from de-rated state to down 

state 

 

Component 
Transition rate from up state to 

de-rated state, λUD (per day 10
-4

) 

Transition rate from de-rated state to 

down state, λDD (per day) 

Gearbox 1.3444 0.0925 

Generator 0.57563 0.1139 

Blades/pitch 1.4254 0.2620 

3.4.4 A Sensitivity Analysis of Sub Component Characteristics on the System 

Reliability 

Maintaining high availability with minimum maintenance cost is important to minimize 

operation cost of WECS. CM of sub-components can predict the failures in advance and 

hence maintenance scheduling can be effectively conducted. To conduct CM in a cost 

effective manner, identifying the more sensitive sub-components to the availability of a 

WECS is required.  
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The system availability, given by (3.18), shows that a high availability can be achieved 

either by a high mean time to failure (MTTF) or a low mean time to repair (MTTR) or a 

combination of both.  

             
    

         
 (3.18) 

Failure statistics show that 20 percent of downtime of a wind turbine is due to gearbox 

failures and hence gearbox is identified as the most critical component to the availability of a 

WECS [60]. Since the availability depends on both MTTF and MTTR, high downtime of a 

component may or may not contribute to low system availability. It is therefore important to 

analytically identify critical components through a sensitivity analysis. The test system in 

section 3.4.3 is used for this analysis. It is also expected that the sensitivity analysis provide 

insightful information on the effects of failure rates and repair rates of sub-assemblies to the 

overall WECS reliability.  

Three sensitivity analyses are carried out to observe the effects of failure rates and repair 

rates of each sub component on the reliability measures of the WECS namely MTTF, MTTR, 

and system availability. By observing the sensitivity of the sub-components to MTTF, MTTR 

and the availability, the components that mostly affect the system availability can be 

identified. In this analysis, failure rate and repair rate of each group of sub-components are 

varied from 0 to 0.001 and 0.05 to 0.3 respectively. These ranges are selected by adding a 

margin to the ranges of actual failure and repair rates.  
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Sensitivity Analysis of Failure/Repair Rates on Mean Time to Failure 

 

Figure 3.25: The variation of mean time to failure with failure rates 

As can be seen from Figure 3.25, MTTF decreases when failure rate increases. Gearbox, 

generator and blades/pitch with comparatively low failure rates are not highly sensitive to 

MTTF of a WECS. On the other hand, electronics and other sub components with high failure 

rates are very sensitive to MTTF. By reducing the failure rate of this category, MTTF can be 

decreased. Theoretically, this trend can be well explained using (3.20). 

For a WECS, MTTF can be computed using (3.19). 

     
 

   
 (3.19) 

From (3.6) and (3.19), for a series system with frequency of failure approximation, 

     
 

∑  
 (3.20) 

According to (3.20), MTTF is inversely proportional to the failure rates and hence, as 

can be seen from Figure 3.25, MTTF decreases with increasing failure rates.  

In the reliability model of a WECS, all sub components of a WECS are connected in 

series. For this series system MTTF is a function of failure rates of all components and not a 

function of repair rates (3.20). Therefore, MTTF remains constant with varying repair rates. 
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Sensitivity Analysis of Failure/Repair Rates on Mean Time to Repair 

As can be seen from Figure 3.26, there are two major trends in the variation of MTTR 

with failure rates. For sub components with high average down times such as gearbox and 

generator, MTTR increases, when failure rate increases. It is due to the fact that the system 

MDT increases as components with high average down times fail frequently than the others. 

On the other hand, for sub-components with low average down times, MTTR decreases, when 

failure rate increases. This implies that the quick repairable failures are more desirable than 

the failures that take a long time to repair. 

 

Figure 3.26: The variation of mean time to repair with failure rates 

The above trends can be theoretically explained using following mathematical 

expressions. 

For a component i, 

      
 

  
 (3.21) 

From (3.7) and (3.21), 

       

∑(   
 
  
)

∑  
 

(3.22) 
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As given in (3.22), MTTR of a WECS is a function of repair rates and failure rates of its 

sub components. To discuss the trends in Figure 3.26, the first derivative of eqMTTR  with 

respect to 
i  can be computed as given in (3.23).  

 (      )

   
 
 
∑ (  )    

  
 ∑ (

  

  
)    

(    ∑       ) 
 

(3.23) 

The numerator that decides the sign of the derivative can be rearranged as 

follows. 

∑ (   (
 

  
 
 

  
))

    

 

For a component having a comparatively small repair rate, this term is 

positive and leads to an increasing trend, as for the gearbox and generator in 

Figure 3.26. On the other hand, for a component with a high repair rate, this term 

is negative and leads to a decreasing trend. 

 

 

Figure 3.27: The variation of mean time to repair with repair rates 

MTTR of the system is inversely proportional to the repair rates of individual sub 

components (3.22). Figure 3.27 shows that MTTR decreases when repair rate increases.  By 

increasing the repair rate of the components that fail frequently, MTTR of the system can be 
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dramatically reduced. Therefore by increasing the repair rate of the components with high 

failure rates such as electronics and blades, MTTR can be decreased. 

Sensitivity Analysis of Failure/Repair Rates on Availability 

Figure 3.28 shows that the failure rates of generator and gearbox are more sensitive to 

the availability than the failure rates of others.  The gearbox has the most sensitive failure rate 

to the availability of the WECS. Although failure rate of electronics is comparatively less 

sensitive to the availability, its small failure rate is also important to guarantee a significantly 

high availability of the system. 

 

 

Figure 3.28: The variation of availability with failure rates 

Figure 3.29 shows that the repair rate of electronics is highly sensitive to the availability 

of a WECS, than the repair rates of other components. However this high sensitivity 

decreases when repair rate increases. 
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Figure 3.29: The variation of availability with repair rates 

Discussion 

The availability of a WECS depends on both the MTTF and MTTR. This sensitivity 

analysis examines the effect of failure rates and repair rates of three major components with 

CM techniques to the overall reliability of a WECS. Combined effect of all other components 

without CM techniques is also examined. Although some components are lumped together in 

the model, there exist significant differences in failure and repair rates among sub-groups 

(Table 3.11). For example, generator and gearbox have low failure rates and high repair rates, 

while electronics and other components considered as group 3 is having a high failure rate 

and a low repair rate. These different characteristics of sub-groups are useful to generalize the 

results for any sub component with known failure and repair rates, to predict the sensitivity to 

the availability of a WECS. 

Results show that MTTF decreases rapidly with the failure rates of the components that 

typically have high failure rates. Therefore, a decrease in failure rates of the components with 

high failure frequency can significantly increase MTTF of the system. MTTR can be reduced 

significantly by reducing failure rates of sub-components with high MDTs or by increasing 

repair rate of sub-components with high failure frequency.  

The results of this analysis emphasize the importance of minimizing sudden failures of 

the components with high MDTs such as gearbox and generator using CM techniques. Most 
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unreliable components such as electronics are also critical and investigating new techniques 

to minimize failures of these components or to replace them with highly reliable components 

is also favorable for a higher availability of WECSs. Another possibility is to further increase 

the repair rates of the components that fail frequently. 

Since this study is conducted by only using failure and repair rates in the literature [60], 

in section 3.4.3, when λUD and λDD are determined using (3.17), an assumption is made that 

λDD is equal to the repair rate; μeq. This assumption is highly speculative and therefore, 

numerical results should be treated with caution. However, if condition monitoring and failure 

data is available, we can find the average duration that a sub component takes to transit from 

up state to derated state and from derated state to down state. Thus, λUD and λDD can be 

determined using more detailed data in the future.   

3.5 Summary 

This chapter presents three possible applications of Markov maintenance models in 

power systems. First, two scheduled maintenance models are applied into reliability and cost 

assessments of circuit breakers using actual data obtained from [7]. It is shown that the results 

of the classical model are significantly different from that of the proposed model. Sensitivity 

analyses are conducted to provide a better insight for effect of inspection rates on MTBF and 

availability. The behavior of MTBF of proposed and classical models when γ1 goes to zero, 

further validates the accuracy of the proposed state diagram. From the results of sensitivity 

analysis, it is concluded that the proposed model is more applicable to devices with off-line 

monitoring where the classical model is more applicable to those with on-line monitoring.  

Secondly, a Markov model is applied for state prediction of transformers. First 

transformers are classified according to the operational age and loading conditions. The effect 

of ageing and loading on transformer deterioration is investigated. Then states are predicted 

for different groups of transformers and predicted states are compared with actual states. 

Results show that the state of transformers can be predicted rather accurately, especially for 

old transformers which have a higher loading. This is crucial as highly-loaded transformers 
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are more vulnerable to deterioration and it would be useful if the state of such transformers 

can be predicted so that preventive action can be taken.  

Thirdly, a Markov model is utilized for a preliminary study to identify sensitive 

components of a WECS by conducting several sensitivity analyses. Results show that the 

components with high mean down times and high failure frequencies are more critical to the 

availability of a WECS than the others. 

In the next chapter, the circuit breaker maintenance models utilized in the section 3.2 of 

this chapter are further utilized to perform maintenance optimization. 
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Chapter 4 : Reliability and Cost Trade-off in Maintenance 

Strategies Using Probabilistic Models 

4.1 Introduction 

This chapter aims to formulate a maintenance optimization problem considering the 

trade-off between reliability and cost, and obtain optimal maintenance policies using the two 

scheduled maintenance models described in section 3.2. 

The effect of inspection and maintenance on reliability and costs is expressed by means 

of various performance measures. These measures include cost of performing inspection, 

maintenance and repair [13, 15, 16, 19-22, 24, 27, 67-70], unavailability (or availability) [19-

22], frequency of failure [68], first passage time (FPT) [13, 18, 20], cost of interruption (cost 

of consequences of power interruptions) [68] and cost of lost energy (revenue loss due to 

energy not served) [20, 68].  

Typically, optimizing the performance measures becomes the objective of maintenance 

optimization. Single-objective optimization formulations usually aim to minimize the cost 

[24, 70, 71]. The objective of the optimization problem presented in [20] is to maximize 

substation availability. The work in [21, 22] has two objectives, i.e. to maximize the 

availability and to minimize the cost. The optimization model in [19] attempts to maximize 

FPT, while minimizing life cycle cost and unavailability. In the formulation in [19], the 

objective function has been defined by assigning different weighting factors for FPT, 

unavailability and life cycle cost. However, the optimal policies become subjective, when 

these factors are assigned for different measures under consideration. Although there are 

several performance measures to be considered in the objective of maintenance optimization, 

relationships may exist among some of these performance measures. One of the goals in this 

chapter is to identify such relationships which may lead to a simple yet more accurate 

problem formulation.  
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Maintenance optimization is generally performed either through sensitivity analyses or 

by using optimization algorithms. In [13, 15], sensitivity analyses have been performed to 

analyze the behavior of reliability and cost measures by varying inspection rates. 

Optimization tasks in [19] and [21, 22] are based on a simulated annealing algorithm and 

Markov decision processes, respectively. In [16], the best maintenance scenario has been 

chosen with the aid of a computer tool based on a probabilistic model. The optimum 

maintenance rates that maximize substation availability are obtained in [20]  by using particle 

swarm optimization. In [24], a genetic algorithm is utilized to determine optimal maintenance 

policies. In this chapter, a grid search algorithm is used to find optimal policies. 

There are two main contributions of the work presented in this chapter. First, this chapter 

analyzes commonly used reliability and cost measures and proposes a maintenance 

optimization formulation in a simple manner to describe the trade-off between reliability and 

cost. Secondly, this chapter presents a comparative study between two probabilistic models 

which has different model assumptions. This study investigates to which extent the selection 

of the underlying maintenance model affects the results of a maintenance optimization 

problem.   

This chapter is organized as follows. Section 4.2 provides the background information. 

Section 4.3 describes the optimization formulation and the procedure of finding optimal 

inspection rates. In section 4.4, results of several case studies are presented. In section 4.5, 

results and findings are discussed. Finally, a short summary is given in section 4.6. 

4.2 Maintenance Models, Performance Measures and Decision Variables 

In this section, the maintenance models utilized in maintenance optimization are first 

presented. Then, some reliability and cost measures are described. These measures are 

considered in this study to evaluate the effect of inspection and maintenance on both the 

utilities and power consumers. Finally, the decision variables that affect reliability and cost 

measures are discussed. 
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4.2.1 Maintenance Models 

In this chapter, we utilize the same scheduled maintenance models described in section 

3.1. These models are again shown in Figures 4.1 and 4.2 of this chapter. In this chapter, the 

following terminology is used for the two maintenance models, based on the discussions in 

section 3.1. The term “inspection based maintenance model  IBM model ” is assigned for the 

model in Figure 4.1, since its model assumption represents the actual practice of scheduled 

inspection based maintenance. The term “condition monitoring based inspection and 

maintenance model  CBM model ” is assigned for the model in Figure 4.2, since its 

assumption is valid only if the deterioration condition of the equipment is always known as in 

continuous online condition monitoring. 
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Figure 4.1: The state diagram of the condition monitoring based inspection and maintenance 

model 
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Figure 4.2: The state diagram of the inspection based maintenance model [7] 

4.2.2 Performance Measures 

In order to quantify the effect of maintenance on reliability and costs, several 

performance measures can be computed with the use of probabilistic maintenance models. 

For the analyses in this chapter, we choose the following measures.  

1) FPT: FPT is the average time taken to reach the failure state for the first time, and this can 

be calculated using Markov equations [45]. 

2) Life cycle cost: This includes inspection, maintenance and repair costs of the equipment 

[19]. Annual life cycle cost (LCC) can be calculated using (4.1), where CI, CM, CMM and 

CF are costs of performing an activity of inspection, minor maintenance, major 

maintenance and repair, respectively. P(S) and d(S) are the steady state probability of 

state S and the mean duration in state S, respectively. 

       ∑
 (  )

 (  )

 

   

    ∑
 (  )

 (  )

 

   

        ∑  
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 (   )

 

   

    
 ( )

 ( )
 (4.1) 

3) Unavailability (U): Unavailability is the probability that the equipment is not in operation. 

As shown in (4.2), unavailability can be calculated by simply adding the state 

probabilities of inspection, maintenance and failure states. 
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  ∑ (  ) 

 

   

  ∑ (  ) 

 

   

 ∑ (   ) 

 

   

   ( ) (4.2) 

4) Frequency of interruption (FI): FI is the average number of interruptions occurred within 

a year. As in (4.3), this can be calculated by adding the frequencies of inspection and the 

failure frequency. f(S) denotes the frequency of entering or leaving state S. 

   ∑ (  )

 

   

  ( ) (4.3) 

5) Interruption cost: Interruption cost is the economic loss experienced by power consumers 

due to interruptions caused by inspection, maintenance and failures. When interruption 

cost is evaluated, several factors such as the load curtailed, the type of power consumers 

involved and the duration of the outage are taken into account [72, 73]. Depending on 

factors such as the structure of the power system, the location of the equipment in the 

power system and redundancy, the load curtailed can be zero, even though the operation 

of some equipment is interrupted. For such equipment, interruption cost will be zero. 

However, in many power systems, equipment operates closer to its limits and therefore, 

interrupting the operation of equipment will likely to cause load curtailment.  

Annual interruption cost (IC) can be calculated using (4.4), where CIC is the hourly 

interruption cost experienced by consumers. It should be noted that this hourly 

interruption cost, CIC is a function of the amount of load curtailed and the type of affected 

consumers. In this thesis we consider a device which contributes to supply 1 MW to 

average consumers. If the operation of such equipment is interrupted, the hourly 

interruption cost during the peak is $ 29000 / hour [6].  
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 (4.4) 

6) Loss of profit: During interruptions, utilities fail to generate revenue by selling electricity 

and as a result, they lose some profit. Annual loss of profit (LP) due to interruptions can 



 

76 

 

be calculated using (4.5). CLP is the average profit which is lost by not operating the 

equipment for 1 hour and it is a function of the amount of load affected by not operating 

the equipment for 1 hour. For equipment which contributes to supply 1 MW to 

consumers, the average loss of profit is $70 / hour [68].  
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 (4.5) 

4.2.3 Decision Variables 

Since every inspection is associated with a cost and off line inspections temporarily stop 

the operation of the device, inspection rate directly affects reliability and cost measures. Thus, 

inspection rate is considered as a variable parameter in many maintenance optimization tasks 

[13, 15, 19-22]. Similarly, we consider the inspection rate (i.e. 1, 2 and 3) as our decision 

variables. 

Performance measures are related to steady state probability of state S, P(S), and steady 

state frequency of entering or leaving state S, f(S). The process is semi-Markov and P(S) can 

be found using (4.6), where      is the steady state probability that the embedded Markov 

chain is in state S [45].  

        
d        

∑ d          
 (4.6) 

     , which is an element of the steady state probability vector   can be found using 

(4.7) and (4.8).  

     (4.7) 

∑     

  

 1 (4.8) 

where A is the transition probability matrix and can be constructed based on the state 

transition diagrams shown in Figures 4.1 and 4.2.  
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Elements of A contain 1, 2 and 3 and therefore, P(S) can have nonlinear relationships 

with 1, 2 and 3. Frequency of being in state S, i.e. f(S) is computed using (4.9) [45], where, 

 out    is the summation of the transition rates from state S to other neighboring states. As can 

be seen in (4.9), f(S) is related to P(S) and transition rates, thus f(S) also has a nonlinear 

relationship with 1, 2 and 3. 

  ( )       ( )  out    (4.9) 

It is clear that the functions of performance measures are nonlinear with respect to 

decision variables 1, 2 and 3. Due to such non-linear relationships, it is difficult to 

mathematically describe the behavior of performance measures with 1, 2 and 3 by simply 

observing the equations. We perform sensitivity analysis in the following section to observe 

such behavior of some performance measures with respect to 1, 2 and 3. 

4.3 Selection of Optimal Inspection Rates 

In this section, we formulate the maintenance optimization problem, after analyzing the 

relationships among performance measures and results of two sensitivity analyses. Then, we 

describe the grid search algorithm which is used to find the optimal policies.  

4.3.1 Relationships among Different Performance Measures 

Two relationships can be observed in the performance measures mentioned in section 

4.2.2. First, from (4.1) and (4.2), a relationship is observed between life cycle cost and 

unavailability. In order to show this relationship more clearly, (4.10) is obtained by rewriting 

(4.1) using the notations related to unavailability. In (4.10), U(S) is the unavailability caused 

by the activities in state S. CS is the cost of performing an activity in state S and   ( )  

    ( ). Since CS and d(S) are constants for state S, K1(S) is also a constant for state S. Thus, 

according to (4.10), life cycle cost can be expressed as a function of unavailability caused by 

different inspection, maintenance and repair activities. K1(S) in the LCC function can be 

considered as the weightage assigned for the unavailability caused by the activities in state S. 
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Secondly, from (4.3) and (4.4), another relationship can be observed between the 

frequency of interruption and the interruption cost. We rewrite (4.4) to obtain (4.11). FI(S) is 

the frequency of interruption due to activities in state S and   ( )       ( ) for any 

inspection or failure state S. Since K2(S) is a constant for state S, it can be considered as a 

weight assigned for the frequency of interruption due to activities in state S. 
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(4.11) 

Above relationships show that unavailability and frequency of interruption are implicitly 

included in the objective of maintenance optimization, if the objective function includes life 

cycle cost and interruption cost, respectively. Thus, we omit unavailability and frequency of 

interruption from the objective function and consider the corresponding cost components. If it 

is required to guarantee a minimum reliability level, it is possible to impose constraints on 

these reliability measures. 

Further, as given in (4.12), we add all cost components, i.e. LCC, IC and LP to compute 

annual total cost (TC). The addition of all cost components does not require any weighting 

factors because all terms are expressed as cost functions. Weighting factors can be introduced, 

if the significances of cost terms are different. 

              (4.12) 

Now, the performance measures that should be considered in the objective function of 

the maintenance optimization problem are FPT and total cost. 
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4.3.2 Sensitivity Analyses of Inspection Rate on First Passage Time and Total Cost 

Through sensitivity analyses, this section investigates the possibilities of further 

simplifying the maintenance optimization problem. In these analyses, the model parameters 

γ1, γ2 and γ3 are varied to find the behaviors of FPT and total cost. When one parameter is 

varied from 0.01 per year to 45 per year, the other two parameters are kept constant at their 

original values.  

4.3.2.1 Sensitivity Analysis of Inspection Rate on First Passage Time 

Figures 4.3, 4.4 and 4.5 show the variation of FPT with γ1, γ2 and γ3 of the two 

maintenance models. According to the results of the IBM model, FPT can be greatly 

increased by increasing γ1 and the effect of γ2 and γ3 on FPT is less, when γ1 is kept at its 

original low value. On the other hand, the results of the CBM model show that the effect of γ1 

on FPT is negligible, but FPT can be greatly increased by increasing γ2 and γ3. Although γ1, γ2 

and γ3 of the two models show more or less effects on FPT, in overall both models show that 

FPT increases with increasing γ1, γ2 and γ3.  

 

Figure 4.3: The variation of first passage time with 1 
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Figure 4.4: The variation of first passage time with 2 

However, it is practically impossible to infinitely increase the inspection rate. Thus, 

maintaining the FPT above a required level by imposing a constraint would be more 

meaningful than trying to maximize the FPT by including it in the objective function. 

 

Figure 4.5: The variation of first passage time with 3 
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4.3.2.2 Sensitivity Analysis of Inspection Rate on Total Cost 

 

Figure 4.6: The variation of total cost with 1 

 

Figure 4.7: The variation of total cost with 2 

Figures 4.6, 4.7 and 4.8 show the variation of total cost with γ1, γ2 and γ3 of the two 

maintenance models. As can be seen in these figures, results of the two models are 

contradictory. Results of the IBM model show the possibility of selecting optimal values for 

γ1, γ2 and γ3, which minimize the total cost. In contrast, results of the CBM model suggests 

that total cost can be minimized by minimizing γ1 and maximizing γ2 and γ3.  

Since the results of the IBM model show the existance of optimal values for γ1, γ2 and γ3 

which minimize the total cost, total cost is considered in the objective of optimization. 
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Figure 4.8: The variation of total cost with 3 

4.3.3 Problem Definition 

Objective Function: Based on the analyses in sections 4.3.1 and 4.3.2, the objective of the 

maintenance optimization problem is simplified to minimizing the total cost. 

Minimize{  }  

Decision Variables: 1, 2 and 3. 

Constraints: As discussed in sections 4.3.1 and 4.3.2, constraints can be imposed on 

reliability measures. In this formulation, a constraint is imposed on FPT. 

4.3.4 A Grid Search Algorithm 

As discussed in section 4.2.3, total cost function is a highly nonlinear function of γ1, γ2 

and γ3. Thus, it would be difficult to find the optimal values of γ1, γ2 and γ3 that minimize total 

cost through the use of mathematical programming tools. Some alternative methods would be 

heuristic algorithms such as simulated annealing [21, 22], partical swam optimization [20], or 

genetic algorithms [24], to name a few. As the focus of the chapter is to analyze the 

performance of two maintenance models (IBM and CBM models), we apply a simple grid 

search algorithm to find the optimal inspection rates.  

The following grid search algorithm is implemented in MATLAB to solve the 

optimization problem defined in section 4.3.3. Through a discrete grid search, this algorithm 

provides optimal values for the inspection rate. The steps of the algorithm are given below. 
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1) A discrete set of values is defined for the inspection rate considering practical constraints.  

2) Then, the defined discrete set of values for the inspection rate is assigned for grids of 

values of γ1, γ2 and γ3. Let G1=the grid of values of γ1, G2=the grid of values of γ2 and 

G3=the grid of values of γ3. 

3) Cartesian product of grids of values of γ1, γ2 and γ3 are computed as shown below.  

   1  2  3 

Each element set       consists of the values of γ1, γ2 and γ3 corresponding to one 

possible maintenance policy. 

4) Probabilistic maintenance model is analytically solved using Markov equations for each 

    to compute total cost. 

5) By comparing total cost of each    , k corresponding to the minimum total cost (kopt) is 

obtained. kopt represents the optimal maintenance policy and consists of the optimal 

values of γ1, γ2 and γ3. The two reliability measures, FPT and unavailability corresponding 

to the optimal γ1, γ2 and γ3 are also computed. 

It should be noted that the efficiency of a grid search algorithm decreases with the size of 

 . A device usually has three or less deterioration stages and therefore, for a single equipment 

the size of   is small. Hence, this grid search algorithm performs favorably for finding 

optimal inspection rates for a single device. However, this algorithm may not perform well in 

system level maintenance optimization. In the system level, there exist system constraints on 

the budget and reliability and hence, it is not accurate to consider each equipment seperately 

and decompose the problem into sub problems. It is required to find optimal inspection rates 

for every equipment in the system considering system constraints. This will increase the 

numer of decision variables in the problem and the size of   and decrease the performance of 

the algorithm.  

4.4 Case Studies 

In this section, case studies are conducted on both maintenance models, using the grid 

search algorithm presented in section 4.3.4. In these case studies, the parameters γ1, γ2 and γ3 
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are varied from 0 to the maximum inspection rate (γmax) with a step size of 0.2 per year. Thus, 

the set of values assigned for the inspection rate is {0, 0.2, 0.4, 0.6, …, γmax}. For each of the 

following three constraints on FPT, eight case studies are conducted by setting γmax and CIC 

according to Table 4.1.  

1. FPT  ≥ 30 years 

2. FPT  ≥ 50 years 

3. FPT  ≥ 100 years 

Table 4.1: Constraints on γmax and Hourly Interruption Costs 

 

Case Study γmax (per year) CIC ($ per hour) 

1 1 29000 

2 3 29000 

3 4 29000 

4 6 29000 

5 10 29000 

6 12 29000 

7 12 200 

8 12 0 

As shown in Table 4.1, from case study 1 to 6, γmax is increased. Hence, the results of 

these case studies together show how the optimal policy varies depending on the maximum 

possible inspection rate, γmax.  

According to Table 4.1, from case studies 6-8, different values are set for CIC i.e. for the 

hourly interruption cost experienced by consumers. Since different power consumers 

experience different hourly interruption costs [6], this hourly interruption cost depends on the 

type of consumers that the equipment serves. Thus, case studies 6-8 show how the optimal 

policy varies depending on the type of consumers that the equipment serves. 

In each case study, the optimal policy (i.e. the optimal values of γ1, γ2 and γ3) and total 

cost, FPT and unavailability corresponding to the optimal policy are determined. These 

results obtained using the IBM model and the CBM model are tabulated in Tables 4.2 to 4.5. 



 

85 

 

4.4.1 Results of Case Studies with the Constraint FPT ≥ 30 Years 

Tables 4.2 and 4.3 show the results obtained using the IBM model and the CBM model, 

with the constraint, FPT ≥ 30 years. The followings are revealed from the results of case 

studies 1-6: 

1) As can be seen in the results of the IBM model, the optimal values of γ1, γ2 and γ3 (in the 

selected range i.e. from 0 to 12 per year) are 4, 8.6 and 12 per year, respectively. These 

optimal values of the inspection rate confirms that it is beneficial to increase the 

inspection rate with the deterioration as in the common practice of inspection based 

maintenance.  

2) The optimal policy suggested by the IBM model is to conduct inspections at the optimal 

values of γ1, γ2 and γ3. However, if the maximum inspection rate is less than the optimal 

values, the results suggest conducting inspections at the maximum inspection rate.  

3) According to the results of the CBM model, the optimal value of γ1 is zero and the 

optimal values of γ2 and γ3 are the maximum possible inspection rate.  

4) The optimal policy suggested by the CBM model is to conduct no inspections at the early 

stage and to conduct inspections at the maximum rate at latter deterioration stages.  

5) When γmax is increased, optimal policies of both models show an increase in benefits i.e. 

an increase in FPT and a reduction in total cost and unavailability (due to the increase in 

one or more out of optimal γ1, γ2 and γ3). However, the CBM model shows an impossible 

increase in benefits, especially in FPT. In contrast, the IBM model shows a comparatively 

less yet reasonable increase in benefits.   

The results of case studies 6 to 8 suggest the followings:  

1) When the hourly interruption cost is low, the IBM model provides a slightly low value for 

the optimal γ1 and a higher value for the optimal γ2. However, the optimal γ3 remains the 

same at the maximum possible inspection rate. As the hourly interruption cost decreases, 

a great reduction can be observed in total cost corresponding to the optimal policy of the 

IBM model. This reduction could be mainly due to the reduction in interruption cost 

which is a component of total cost. Since the optimal values of γ1 and γ2 change with the 
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changes in the hourly interruption cost, a change can be observed in FPT, however the 

change in unavailability is insignificant. 

2) Optimal values of γ1, γ2 and γ3 of the CBM model do not change with the changes in 

hourly interruption cost. Thus, no changes are observed in FPT and unavailability, but 

total cost is high, when the hourly interruption cost is high. 

Table 4.2: Results Obtained Using the Inspection Based Maintenance Model for FPT ≥ 30 

Years 

Case 

Study 

Optimal γ1 

(per year) 

Optimal γ2 

(per year) 

Optimal γ3 

(per year) 

FPT 

(years) 
Unavailability 

Total 

Cost 

(k$) 1 1 1 1 37 0.0049 1264 

2 3 3 3 151 0.0033 833 

3 4 4 4 233 0.0031 804 

4 4 6 6 297 0.0031 786 

5 4 8.4 10 347 0.0030 780 

6 4 8.6 12 353 0.0030 780 

7 3.8 10 12 339 0.0030 9.80 

8 3.8 12 12 348 0.0030 4.44 

Table 4.3: Results Obtained Using the Condition Monitoring Based Inspection and 

Maintenance Model for FPT ≥ 30 Years 

 

Case 

Study 

Optimal γ1 

(per year) 

Optimal γ2 

(per year) 

Optimal γ3 

(per year) 

FPT 

(years) 
Unavailability 

Total 

Cost 

(k$) 1 0 1 1 34 0.0049 1244 

2 0 3 3 138 0.0030 760 

3 0 4 4 212 0.0027 702 

4 0 6 6 400 0.0025 650 

5 0 10 10 904 0.0024 616 

6 0 12 12 1208 0.0024 609 

7 0 12 12 1208 0.0024 7.16 

8 0 12 12 1208 0.0024 2.99 

 

4.4.2 Results of Case Studies with the Constraint FPT ≥ 50 Years or FPT ≥ 100 Years 

Tables 4.4 and 4.5 show the results obtained using the IBM model and the CBM model, 
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when the constraint on FPT is FPT ≥ 50 years or FPT ≥ 100 years.  

These results of case studies 2 to 8 are as same as the results of case studies 2 to 8  in 

section 4.4.1, which are for the constraint FPT ≥ 30 years. In case study 1, when γmax is 1 per 

year, solution is infeasible when the constraint on FPT is FPT ≥ 50 years or FPT ≥ 100 years. 

This is beacause when γmax is 1 per year, for any combination of γ1, γ2 and γ3, FPT that can be 

achieved is less than 30 years.  

Table 4.4: Results Obtained Using the Inspection Based Maintenance Model for FPT ≥ 50 

Years or for FPT ≥ 100 Years 

 

Case 

Study 

Optimal γ1 

(per year) 

Optimal γ2 

(per year) 

Optimal γ3 

(per year) 

FPT 

(years) 
Unavailability 

Total 

Cost (k$) 

1 Infeasible 

2 3 3 3 151 0.0033 833 

3 4 4 4 233 0.0031 804 

4 4 6 6 297 0.0031 786 

5 4 8.4 10 347 0.0030 780 

6 4 8.6 12 353 0.0030 780 

7 3.8 10 12 339 0.0030 9.80 

8 3.8 12 12 348 0.0030 4.44 

Table 4.5: Results Obtained Using the Condition Monitoring Based Inspection and 

Maintenance Model for FPT ≥ 50 Years or for FPT ≥ 100 Years 

 

Case 

Study 

Optimal γ1 

(per year) 

Optimal γ2 

(per year) 

Optimal γ3 

(per year) 

FPT 

(years) 
Unavailability 

Total 

Cost (k$) 

1 Infeasible 

2 0 3 3 138 0.0030 760 

3 0 4 4 212 0.0027 702 

4 0 6 6 400 0.0025 650 

5 0 10 10 904 0.0024 616 

6 0 12 12 1208 0.0024 609 

7 0 12 12 1208 0.0024 7.16 

8 0 12 12 1208 0.0024 2.99 
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4.5 Discussion 

Section 4.3 investigate the reliability and cost measures that should be essentially 

included in the objective of maintenance optimization. In section 4.3.1, it is shown that the 

two reliability measures, unavailability and the frequency of interruption are implicitly 

included within the calculations of life cycle cost and cost of interruption, respectively. Thus, 

we conclude that it is not necessary to consider unavailability and frequency of failure in the 

objective function, if life cycle cost and cost of interruption are considered in the objective of 

maintenance optimization. In section 4.3.2, it is shown that the reliability measure FPT can be 

maximized by maximizing the inspection rate. However, it is impossible to infinitely increase 

the inspection rate. Thus, it is more suitable to impose a constraint on the minimum FPT, 

rather than trying to maximize FPT. From the results of studies in sections 4.3.1 and 4.3.2 it 

can be concluded that it is more appropriate to consider cost measures in the objective 

function, while imposing constraints on the minimum required reliability level.  

Based on the results of sensitivity analyses in section 4.3.2 and the results of case studies 

in section 4.4, the CBM model shows that the benefits of inspection and maintenance can be 

increased by minimizing γ1, and maximizing γ2 and γ3. In contrast, the IBM model suggests 

optimal values for γ1, γ2 and γ3 that maximize the benefits of inspection and maintenance. The 

optimal inspection rates suggested by the IBM model appear more practical, when results are 

analyzed considering the behaviors of different cost components. If the inspection rate is very 

low, due to high repair cost and interruption cost associated with the increased number of 

failures, the total cost should increase. If the inspection rate is very high, the total cost should 

again increase due to high inspection and maintenance cost as well as high interruption cost 

associated with the increased number of inspection and maintenance activities. Therefore, in 

between the minimum and maximum possible values of the inspection rate (i.e. in between 

zero and highest possible γmax), optimal values that minimize the total cost should exist for γ1, 

γ2 and γ3. Such optimal values suggested by the IBM model seem more reasonable.  

Results of the last three case studies in section 4 also show that the policies suggested by 

the IBM model are more reasonable than the policy suggested by the CBM model. As shown 
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in the results, the IBM model provides different optimal maintenance policies, when the 

hourly interruption cost experienced by the consumers is different. On the other hand, the 

CBM model suggests adopting the same optimal maintenace policy irrespective of the hourly 

interruption cost experienced by the consumers. However, when power consumers experience 

different hourly interruption costs [6], power interruptions should affect them differently. 

Therefore, maintenance policy of equipment should depend on the type of consumers that it 

serves. For example, households experience a lower or nil hourly interruption cost. Thus, the 

annual interruption cost that they experience would be very less compared to the replacement 

cost of the equipment. Hence, it should be cost effective to perform frequent inspection and 

maintenance in order to avoid costly replacements. If the equipment serves to an industrial 

zone, the hourly interruption cost is higher and frequent power interuptions are undesirable. 

Thus, only an adequate amount of inspection and maintenance should be performed, in order 

to tolerate with the interruptions due to failures.  

The reasons for contraditions in the results provided by the two models can be explained 

considering different underlying model assumptions of the two models. The assumption of the 

CBM model (i.e. the deterioration condition of the equipment is always known) is true for 

some maintenance strategies such as continuous online condition monitoring. Thus, the 

optimal policies suggested by the CBM model would be suitable for maintenance strategies 

which continuously reveal the condition of the equipment. However, in inspection based 

maintenance, the condition of the equipment is known only after inspection and maintenance. 

Thus, inspecting the equipment is vital to get the  nowledge about the equipment’s 

deterioration condition that requires for the decision making regarding maintenance and the 

next inspection. As discussed in section 3.1, if γ1 is zero, the equipment would fail even 

before any inspection and maintenance is performed. Unlike the CBM model, the IBM model 

assumes that the condition is known only after inspection and maintenance. Thus, its results 

show the need of performing inspections even at the early stage of deterioration, in order to 

get the knowledge about the deterioration status of the equipment. 
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4.6 Summary 

This chapter applies probabilistic models developed for scheduled maintenance of ageing 

equipment to find optimal maintenance policies. First, the study investigates how reliability 

and cost can be traded-off in maintenance optimization tasks. Initially, six reliability and cost 

measures are considered in the objective of the optimization problem. Analytical equations 

show that it is redundant to consider the two reliability measures, unavailability and the 

frequency of interruption in the objective function, when life cycle cost and cost of 

interruption are considered. After eliminating unavailability and the frequency of interruption 

and combining all cost components together, the measures considered in the objective 

function are reduced to FPT and total cost. Sensitivity analyses show that it is more 

appropriate to impose a constraint on FPT. Therefore, the objective of the maintenance 

optimization problem is set to minimizing total cost. 

A discrete grid search algorithm is used to find optimal inspection rates that minimize 

total cost. Several case studies are conducted using two probabilistic models, the IBM model 

and the CBM model. It is shown that the IBM model is capable of providing optimal 

inspection rates for each deterioration stage. The results of the IBM model are in accordance 

with the common practice of scheduled maintenance. In addition, the IBM model suggests 

different optimal inspection rates for equipment that serves different type of consumers. 

Results of the CBM model seem less applicable for scheduled maintenance. The reasons for 

differences in results of the two models are explained. It is concluded that the IBM model is 

well applicable for the selection of optimal scheduled maintenance policies. The optimal 

policies provided by the CBM model would be applicable for maintenance strategies which 

continuously monitor the condition of equipment. 

In the next chapter, a maintenance optimization model is proposed based on a Markov 

decision process. The model proposed in the next chapter can provide more adaptive optimal 

inspection and maintenance policies than the optimal policies obtained in this chapter by 

using scheduled maintenance models. 
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Chapter 5 : Adaptive Maintenance Policies Using a Markov 

Decision Process 

5.1 Introduction 

Asset management is essential for reliable and economic operation of power systems. 

With deregulation, asset management procedures became more complicated [74]. In such 

environments, an asset owner can perform preventive maintenance only after the independent 

system operator schedules a planned outage upon the request of the asset owner. In some 

situations, the operator may delay certain requested outages, in order to fulfill the overall aim 

of serving the power consumers [74]. Such situations require equipment owners to adjust their 

asset management plans accordingly. This highlights the need for adaptive asset management 

policies which can deal with maintenance delays. 

Adaptive asset management policies would also be more economical than fixed policies. 

When the equipment is new and in good condition, too frequent inspection or condition 

monitoring (CM) would not reveal any additional information about the equipment’s 

condition, and thus, unnecessarily increases the operational cost. On the other hand, when the 

equipment is aged or its condition is more deteriorated, delaying inspection and maintenance 

may cause huge economic losses through unexpected failures. Hence, it would be more 

economical to perform inspection and maintenance, considering the equipment’s age, 

condition and delay times in making decisions regarding inspection and maintenance.  

In this chapter, a new maintenance optimization model is proposed based on a Markov 

decision process (MDP) for inspection and maintenance of ageing equipment. The proposed 

decision making model additionally considers time delays in making decisions regarding 

inspection and maintenance. Moreover, this model represents the deterioration of equipment 

using a quantifiable condition, while allowing the parameters of the deterioration process to 

vary with the operational age. Due to the above features of the model, it can provide more 

adaptive inspection and maintenance policies which allow the asset owners to choose the 
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optimal action, based on the  nowledge about the equipment’s condition, the operational age 

and time delays in making decisions regarding inspection and maintenance. 

The structure of this chapter is as follows. In section 5.2, the background theories and 

information are provided. In section 5.3, the formulation of the maintenance optimization 

model is presented. In section 5.4, the solution procedure is explained. In section 5.5, a case 

study demonstrates a model application. Section 5.6 investigates the accuracy of using 

individual MDP models for coordinating maintenance in power systems. Finally, a short 

summary is given in section 5.7. 

5.2 Background 

This section first reviews some applications of MDPs to power system decision making 

problems. Next, the framework of a finite horizon discrete time MDP is reviewed with 

reference to [75]. Then, the decision making process regarding inspection and maintenance of 

equipment is discussed. Lastly, this section describes how inspection and maintenance 

decision making process is modeled in the framework of a finite horizon discrete time MDP. 

5.2.1 Markov Decision Processes in Power Systems 

MDPs have been widely applied to electricity markets in order to perform dynamic 

decision making while considering uncertainties in energy demand and energy prices. In [76], 

an MDP has been proposed for generation expansion planning. MDPs proposed in [77, 78] 

provide optimal electricity supply bidding decisions over a planning horizon considering 

uncertainties associated with price and load. In [79], a competitive MDP is proposed to assess 

market powers associated with the electricity bidding prices. The reinforcement learning 

algorithm presented in [80] for dynamic load allocation in automatic generation control 

systems is also formulated as an MDP. In [81], another reinforcement learning approach is 

proposed based on an MDP to find dynamic optimal generation command dispatch for 

automatic generation control.  

In addition to the above applications of MDPs, some MDP models have been proposed 

for power system maintenance decision making problems [21, 22, 33, 42, 43]. A partially 

observed MDP is proposed in [43] to find static optimal strategies for season dependent 
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maintenance of wind turbines. By using time varying model parameters which depend on 

weather conditions, this model is further improved in [42] to obtain season dependent 

dynamic maintenance strategies. This partially observed MDP suits well for wind turbine 

maintenance, where the information is mainly gathered using unreliable remote sensors. 

However, this model may be unnecessarily complex for maintenance of some other 

components equipped with more reliable online CM facilities.  

In [21], optimal preventive maintenance policies for power equipment are found in two 

stages. First, a Markov model is solved to find the optimal maintenance rate which maximizes 

the availability. Then, at this availability, cost effective maintenance actions are found by 

solving an MDP using policy iteration method. The same method is applied in [22] to find 

optimal maintenance policies using a semi Markov model and a semi MDP. The semi MDP 

proposed in [33] is also solved using the policy iteration method to find optimal condition 

based maintenance (CBM) policies for transformers. 

As mentioned in section 1.2, some of the above mentioned maintenance decision making 

models are unable to incorporate time delays in making decisions regarding inspection and 

maintenance [21, 22, 33]. The models in [42, 43] represent the deterioration of the equipment 

by some observable measurements and are unable to incorporate the effect of ageing on the 

deterioration of equipment’s observable condition. The new MDP model which will be 

presented in section 5.3 addresses the above limitations of previous MDP models which are 

proposed for power system maintenance decision making. 

5.2.2 The Framework of a Markov Decision Process  

An MDP is a sequential decision making model which considers uncertainties in 

outcomes of current and future decision making opportunities. At each decision making time, 

the system/equipment occupies a state. Based on this state, a decision is made on choosing an 

action from the set of actions associated with this state. Upon choosing an action, a reward is 

received and a state transition occurs from the present state to a new state which is determined 

by a transition probability distribution. Since the process holds the Markov property, both 

transition probabilities and rewards only depend on the present state and the action chosen in 
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the present state. As the process evolves, the decision maker receives a sequence of rewards. 

When choosing actions, the decision maker intends to maximize the total expected reward 

received over the total decision making period. If the total decision making period of an MDP 

is finite and the decisions are made in discrete time, the MDP is called a finite horizon 

discrete time MDP.  

In standard practice, decisions regarding inspection and maintenance of equipment are 

made in discrete time. In addition, no equipment can be used over an infinitely long period 

and therefore, decisions regarding inspection and maintenance of equipment are made over a 

finite time horizon. Due to these reasons, we represent the decision making process of 

equipment’s inspection and maintenance using a finite horizon discrete time MDP. 

The five basic components of a finite horizon discrete time MDP are as follows. 

1) Decision epochs: Decision epochs are the point of times at which decisions are made. In a 

discrete time MDP, the total decision making period (decision horizon) is divided into 

intervals which are called decision intervals, and at the beginning of each decision 

interval, a decision epoch occurs. The set of decision epochs is given by   

{         }. In a finite horizon MDP, N is finite and according to the convention, 

decisions are not made at the N
th
 decision epoch. Decision horizon, decision intervals and 

decision epochs of a discrete time finite horizon MDP are shown in Figure 5.1. 

Decision

epoch

Decision horizon

1st

decision

interval

. . .

1 2 3 N
. . .

0

2nd

decision

interval

N-1th

decision

interval

N-1

 

Figure 5.1: Decision horizon, decision intervals and decision epochs 

2) States: Different statuses of a system/equipment are modeled using a finite number of 

states.  

3) Actions: Each state is connected with a finite number of actions.    
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4) Transition probabilities: As a result of choosing any action a connected with state i at the 

t
th 

decision epoch, a state transition occurs. The new state at the decision epoch t+1 is 

determined by the probabilities of transiting from state i to possible states in the state 

space S. The probability of transiting from state i to any state k   S, upon choosing action 

a in state i at the t
th
 decision epoch is denoted by P (      ). It should be noted that 

∑   (      )
 
     . 

5) Rewards: At each decision epoch   <N, the decision maker receives a reward, as a result 

of choosing an action. The reward received upon choosing action   in state i at the t
th
 

decision epoch is denoted by r (    ). The reward received at the N
th
 decision epoch is 

assigned based on the state that the equipment is being found at the N
th
 decision epoch. 

This is called the boundary value, and the boundary value of state i is denoted by   ( ). 

An MDP can be symbolically represented using a state transition diagram. A simple state 

transition diagram is given in Figure 5.2 to provide a better understanding about some of the 

aforementioned basic components. This model in Figure 5.2 has two states namely S1 and S2, 

and three actions namely a1, a2 and a3. The state S1 is connected with actions a1 and a3, while 

the state S2 is connected with actions a2 and a3. Rewards and transition probabilities 

associated with actions and states at any decision epoch   <N are also given in Figure 5.2. 
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Figure 5.2: The simple state transition diagram of a Markov decision process model 

5.2.3 Inspection and Maintenance Decision Making in Actual Practice 

In practice, the condition of equipment is assessed through online or offline inspections. 

These inspections are usually performed at scheduled intervals as specified in the standards or 

by the manufacturer. Based on the results of inspections, the condition of equipment can be 

interpreted using one of the finite number of deterioration stages i.e. C1, C2, …, Cj, where C1 
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and Cj represent the best and the worst conditions, respectively. In order to improve the 

present condition Ci of the equipment, maintenance is performed. If no maintenance is 

performed, the condition gradually deteriorates from Ci to Cj. However, maintenance may 

also degrade the present condition Ci or may not change Ci. When the equipment is at any 

deterioration stage, there is a certain probability of failure, which usually increases with the 

deterioration. 

Condition is revealed

through inspection, a

decision is made on

maintenance

t t+τ
I

t
M

A decision  is

made on time to

next inspection

Time

t
I

τ
I

t+

Next condition will be

revealed, a decision

will be made on

maintenance

0

 

Figure 5.3: Decision making process regarding inspection and maintenance 

Two consecutive decisions are made repeatedly throughout the equipment’s operational 

life; one on maintenance and the other on time to next inspection. As shown in Figure 5.3, 

when the condition is revealed through inspection at time t, the first decision is made 

regarding the required maintenance action. Followed by this decision, the second decision is 

made at time t
+
 regarding the time to perform next inspection i.e. tI.  In Figure 5.3, tM denotes 

the time taken to perform maintenance, and τI is the time interval between two consecutive 

inspections. Since tM << tI, whether maintenance is performed or not, the time gap between t 

and t
+
 is considered small and thus, τI≈ tI.   

Generally, asset owners tend to decrease the time to next inspection with the 

deterioration of the equipment’s condition. Therefore, the value of tI depends on the 

equipment’s condition Ci. We denote this time interval corresponding to the last known 

condition Ci by tI,i. In order to achieve more cost effective inspection and maintenance 

policies, it is possible to vary tI,i within a range tmin,i≤ tI,i≤ tmax,i, depending on other 

considerations such as the equipment’s age and time delays in making decisions regarding 

inspection and maintenance. tmin,i and tmax,i refer to the minimum and the maximum allowable 
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time between two consecutive inspections in stage Ci. These parameters can be determined 

based on inspection histories and experts’ opinion. 

5.2.4 Modeling the Process of Decision Making 

In the MDP framework, it is required that the decisions are made at constant intervals. 

When modeling the decision making process of inspection and maintenance, a common time 

slot (τ) is first determined to perform decision making on inspection and maintenance. It 

would be more accurate to choose a small duration for τ and let the model make decisions 

regarding inspection and maintenance in each τ. However, in practice, when the equipment is 

in good condition, inspections are performed at a lower frequency. A large data set is required 

to accurately calculate deterioration probabilities for each interval τ, especially when the 

equipment’s deterioration condition is good. As shown in (5.1 , τ is set to the greatest 

common divisor of all tmin,i values suggested by industry experts. 

       (                      ) (5.1) 

Within the interval  , two decisions are made. The first decision is regarding 

maintenance activities, whereas the second decision is regarding the next inspection. Decision 

making regarding inspection and maintenance within each interval τ is modeled similar to the 

actual situation shown in Figure 5.3. That is, if a decision is made regarding maintenance at 

time t and if this decision is implemented within a time interval tM, the decision regarding the 

next inspection is made at time t
+
 (or t+tM). Then, the time to next decision making on 

maintenance is τ-tM. It is worth to note that MDP theory does not require tM (the time from the 

maintenance decision to the inspection decision) and τ-tM (the time from the inspection 

decision to the maintenance decision) to be equal. However, it is required to keep these time 

intervals consistent for different inspection and maintenance trajectories. In the proposed 

MDP model, tM is the same for each inspection and maintenance trajectory. Since τ is kept 

constant for each inspection and maintenance trajectory, τ-tM is also the same for each 

trajectory. Moreover, in each and every possible trajectory, the decision maker makes the 

maintenance decisions on odd decision stages only and the decisions of next inspection on 



 

98 

 

even decision stages only. Thus, the time intervals tM and (τ-tM) are kept consistent for 

different inspection and maintenance trajectories.  

In the MDP framework, the second decision is not regarding time to next inspection, but 

regarding whether to perform the next inspection at the end of the current interval τ or to wait 

till the next interval τ to make a decision on the next inspection. However, time to next 

inspection (      is related to the number of the next consecutive intervals of τ in which the 

inspection is postponed (    ). For example, assume that inspection was performed in the 

previous interval τ. If it is decided to perform inspection again at the end of the current 

interval τ  i.e. if inspection is not postponed to the next interval τ ,      is zero and      is τ. If 

the next inspection is postponed by      consecutive times,      is given using (5.2).  

     τ  (      ) (5.2) 

Although the decision making interval regarding inspection and maintenance is 

considered to be  , inspection and maintenance can be practically performed only once in 

each       . Thus, the MDP model should allow choosing inspection and maintenance actions 

only once in each       . When         , this property is incorporated into the model by 

eliminating inspection and maintenance actions connected with some states of the equipment.  

This will be further explained in section 5.3.2, using the state transition diagram of the 

proposed MDP model. 

5.3 Problem Formulation 

This section describes the concept of the proposed MDP model for inspection and 

maintenance decision making of ageing equipment. In subsections 5.3.1, 5.3.2 and 5.3.3, 

components of the proposed MDP model are described using the state diagram of the 

proposed model in Figure 5.4. This description is based on a simplified model developed for 

equipment having two deterioration stages, C1 and C2 with tmin,1, tmax,1 tmin,2, and tmax,2 of 3τ, 6τ, 

τ, and 2τ, respectively. However, the proposed model can be applied to equipment with any 

number of deterioration stages. Subsection 5.3.4 discusses how the proposed MDP model 

combines the effect of ageing with the deterioration process of the equipment’s measurable 
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condition. 

5.3.1 Decision epochs 

These are the points of time at which decisions are made regarding equipment’s 

inspection or maintenance. The number of decision epochs (N) of the proposed MDP is given 

by (5.3), where T is the decision horizon. Since inspection and maintenance decisions are 

made throughout the equipment’s total operational period, the expected operational life of the 

equipment is set for T. T/τ in this equation gives the number of inspection and maintenance 

decision making intervals in the decision horizon T. It should be noted that two decision 

epochs occur within each inspection and maintenance decision ma ing interval τ. If the 

decision epoch is odd, decisions are made only regarding inspection. Otherwise, decisions are 

made only regarding maintenance.  

  (
 

 
)      (5.3) 

5.3.2 States and Actions 

Different statuses of the equipment at time points of inspection and maintenance decision 

making are modeled using different states. In order to decouple decision making on 

inspection and decision making on maintenance, two types of equipment states are defined, 

namely main states and intermediate states. This decoupling is essential, to model the 

practical scenario, where a decision is made on inspection prior to decision making on 

maintenance and the decision regarding maintenance is made depending on the outcomes of 

the inspection. At main states, decisions are made only regarding maintenance and at 

intermediate states, decisions are made only regarding the next inspection. (For example, with 

respect to Figure 5.3, the possible states of the equipment at t and t+τI are called main states 

and the possible states at t
+
 are called intermediate states.) These main and intermediate states 

of the proposed model are shown in Figure 5.4 using solid and dashed rectangles, 

respectively. The set of actions includes doing nothing (a0), inspection (a1), minor 

maintenance (a2), major maintenance (a3), replacement (a4) and repair (a5). 
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Figure 5.4 (a): The state transition diagram of the proposed Markov decision process model for maintenance decision making 
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Figure 5.4 (b): The state transition diagram of the proposed Markov decision process model for maintenance decision making 
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In the MDP model, we describe a deterioration state by Ci/tM,i/tI,i. Ci denotes the 

deterioration stage of the equipment where i = 1, 2. tM,i is the time spent in Ci, which can also 

be called as the  maintenance delay time in stage Ci. tI,i is the time from the most recent 

inspection i.e. the inspection delay time in stage Ci. According to this state convention, the 

status of newly installed equipment is represented by the state C1/0/0. The failure state is 

denoted by F. This failure state F only stands for the deterioration failures of the equipment. 

Since random failures cannot be avoided by performing inspection and maintenance 

activities, such failures are not considered in the model. 

States are connected with associated actions, as shown in the state transition diagram in 

Figure 5.4. This diagram also shows how possible state transitions occur upon choosing each 

action at each state. Since the decisions made at intermediate states are about postponing the 

next inspection, intermediate states are connected only with actions a0 and a1. If the equipment 

does not fail (i.e. if the next state is not the state F), the two actions a0 and a1 lead to different 

main states. If action a0 is chosen at an intermediate state, these next possible main states are 

connected only with action a0. If action a1 is chosen at an intermediate state, next possible 

main states are connected with actions a0, a2, a3 and a4. However, the following exceptions 

can be noted in Figure 5.4.   

 When equipment is newly installed, it is not required to perform maintenance, 

replacement or repair. Therefore, the main state C1/0/0 is only connected with action a0.  

 Once the equipment fails, it must be replaced or repaired and hence the main state F is 

connected with a4 and a5.   

 The minimum possible time between two consecutive inspections in stage C1, tmin,1 is 3τ. 

Due to this reason, when the condition is C1, the model permits to choose inspection only 

if the inspection delay time tI,1 ≥ 2τ. Otherwise, inspection is not allowed and therefore, 

action a1 is not connected to the grey colored intermediate states in Figure 5.4. 

 The maximum time that the inspection can be delayed at C1 and C2 (i.e. tmax,1 and tmax,2) 

are 6τ and 2τ, respectively. Therefore, decisions must be made to perform inspection, 
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when tI,1 is 5τ or tI,2 is τ, at an intermediate state. As Figure 5.4 shows, such intermediate 

states are connected only with a1. 

 There is a maximum time period that the equipment spends in each condition, before it 

deteriorates further or fails. This maximum time period spent in condition Ci (ti) can be 

determined from inspection and failure history. With the use of ti, the maximum number 

of decision intervals that the equipment spends in Ci (nmax,i) can be determined as shown 

in (5.4).  

          
  
 
   (5.4) 

The MDP model assumes that inspections must be performed, when the time spent in 

stage Ci is nmax,iτ. Thus, if tM,i of an intermediate state is nmax,iτ, decisions are  made to 

perform inspection. As can be seen in Figure 5.4, such intermediate states are connected 

only with a1. However, if Ci is the last deterioration stage, at the end of the interval nmax,iτ, 

the equipment fails whether inspection is performed or not. Therefore, as shown in Figure 

5.4, corresponding intermediate states are connected only with action a0. 

5.3.3 Transition Probabilities and Rewards 

Some notations given in Figure 5.4 (i.e. transition probabilities p1-p8) are used to 

illustrate the calculation procedure of transition probabilities for the proposed MDP model. 

Transition probabilities corresponding to action a1 are the deterioration/failure probabilities of 

the equipment. Deterioration/failure probabilities associated with the zero inspection delay 

time (e.g. p1-p4 in Figure 5.4) can be directly calculated using inspection and failure history. 

For example, let us denote the number of transformers found to be in condition C2 for a period 

of τ by n1, the number of transformers found to be in condition C2 for a period of 2τ by n2. 

From this data, p
3
 n2/n1 and p

4
  n1- n2  /n1. 

When the inspection delay time is greater than zero, deterioration/failure probabilities 

can be calculated with the use of deterioration/failure probabilities corresponding to zero 

inspection delay time. For example, consider the calculation of p5 and p6, which are the 

probabilities of being found in C2 for a period of 2τ and being found in the failure state F, if 
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the inspection is delayed by an interval τ. Let the events, 

  { quipment being found in C2 for a period τ}  

B  { quipment being in C2 for a period 2τ}  

B   {
 quipment being found in C2 for a period 2τ 
 quipment being found in C2 for a period τ

}  

Using the conditional probability rule, 

P B    P   B /P    P B /P    

 P B  P    P B     

By substituting values, 

p
5
 p

1
 p

3
 (5.5) 

Similarly, p6 can also be computed as follows.  

p
6
 p

1
 p

4
 p

2
 (5.6) 

Since failures can occur whether inspection is performed or not, failure probability is the 

same for both actions a0 and a1. When the condition is Ci, if the equipment does not fail upon 

choosing action a0, the model assumes that the condition would remain same as Ci. Thus, 

probabilities corresponding to a0 can be simply calculated using the failure probabilities 

calculated for a1. For example,       and    1-  . 

Transition probabilities corresponding to maintenance and repair actions (i.e. a2, a3 and 

a5) can be calculated using maintenance/repair records and the above method of calculation 

which is used to find deterioration probabilities. When equipment is replaced (i.e. action a4 is 

chosen), the probability of transiting to state C1/0
+
/0 is considered to be 1.  

For each action a reward is allocated equal to the negative of the cost of performing that 

particular action. Boundary value of each state is set to zero, assuming that the value of the 

equipment at the end of the expected operational life is zero. 

5.3.4 Incorporating the Effects of Aging 

 eterioration of equipment’s condition generally gets accelerated with the ageing. In 

addition, when equipment is aged, it would be less possible to improve the condition through 
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maintenance. These effects of ageing on deterioration of equipment’s measurable condition 

should be reflected in inspection and maintenance history. Thus, deterioration probabilities 

and the probabilities of improving the condition after maintenance/repair would be different 

for different age levels of the equipment. Since the transition probabilities (i.e.   (      )) of 

an MDP model can vary with time t, the proposed MDP model can easily incorporate the 

effects of ageing.  

Incorporating the effects of ageing can be done as follows, given that data is available 

over the equipment’s expected life. First, the expected life is divided into an appropriate 

number of age levels (j), as shown in Figure 5.5.  Then, inspection and maintenance data 

collected over the expected life of the equipment is categorized into different groups 

corresponding to these age levels. Next, the classified data is used to compute deterioration 

probabilities and maintenance/repair outcome probabilities for each age level. These 

probabilities calculated for a particular age level are set for transition probabilities of the 

decision epochs which belong to that particular age level. For example, with reference to 

Figure 5.5, the probabilities calculated using the data corresponding to the 2
nd

 age level are set 

for all   (      ), where t   {             }. 

Decision

epoch

Expected life of the equipment

Operational

age

1st age level 2 nd age level

. . .

j th age level

1 2 3 N. . .

0

x x+1 . . . . . .y

 

Figure 5.5: Decision epochs at different age levels of the equipment 

5.4 Solution Procedure 

The combinations of states and actions of the proposed MDP model result in a large 

number of possible maintenance policies. In order to solve this model efficiently, backward 

induction (i.e. dynamic programming) is used [75]. This technique can provide the optimal 

policies without analyzing every possible policy. In backward induction, the final stage of 



 

106 

 

decision making at t=N is first attended and the decisions on optimal actions are made by 

moving one step backward at each decision epoch in the desired time horizon. Intuitively, 

backward induction works because an action of an intermediate state s is optimal only if it is 

optimal for a reduced MDP starting from s [75].   

When solving an MDP, the objective is to decide the optimal set of actions which 

maximizes the total expected reward. In backward induction method, when t=N, for any 

state  , the maximum total expected reward U 
 ( ) is set to the boundary value of state  . Then, 

when t<N, the maximum total expected reward for state i at time t, (i.e.   
 ( )) is found as 

follows.  

 Using (5.7), U (   ) i.e. the total expected reward received upon choosing action a in state 

  at time   is calculated. In (5.7), r (   ) is the immediate reward received upon choosing 

action a, which is basically the reward assigned for action a in state   at time  . The 

term ∑   (      ) 
n
  1 U  1

 ( ) is the expected terminal reward, where n is the total number 

of states,   (      ) is the probability of transiting to state  , if action   is chosen in state   

at the epoch t and U  1
 ( ) is the maximum total expected reward in state  , at the epoch 

t+1.  

U (   ) r (   ) ∑{P (      ) U  1
 ( )}

n

  1

 (5.7) 

 Once the total expected reward is found for every possible action in state i, the maximum 

total expected reward in state  , at the t
th
 epoch is found using the criterion in (5.8). 

  
 ( )     {  (   )} (5.8) 

The optimal action in state i at the decision epoch t can be obtained using (5.9). 

  
 ( )         {  (   )} (5.9) 

Likewise, at each decision epoch t, an optimal action which maximizes the expected total 

reward can be found for all relevant states. As mentioned before in section 5.3.1, at odd 

decision epochs optimal actions are found for all intermediate states where decisions are made 

regarding inspection. At even epochs, optimal actions are found for all main states, where 
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decisions are made regarding maintenance. The set of optimal actions of all relevant states at 

the decision epoch t is called the solution of MDP at time t. 

To find optimal maintenance policies by solving our proposed MDP model, the 

following backward induction algorithm is implemented in MATLAB 10. 

Step 1: Set t=N and   
 ( )    ( ) for all i (1,n) 

Step 2: Set t = t-1 

Step 3: Set i =1 

Step 4: Continue only if, t is odd and i is an intermediate state, or t is even and i is a main 

state. Otherwise, it is not required to find   
 ( ) and thus, skip steps 5 and 6 and set 

U 
 ( ) U  1

 ( ). 

Step 5: Compute U (   ) for each action a available in state   using (5.7).  

Step 6: Find the optimal action for state i, using (5.8) and (5.9). 

Step 7: If   n, stop. Otherwise, set     1 and go to step 4. 

Step 8: If   1, stop. Otherwise repeat from step 2. 

5.5 Case Study 

This section presents a case study in which the proposed MDP model is applied to CBM 

of oil insulated distribution transformers.  

5.5.1 Condition Based Maintenance of Oil Insulated Transformers 

Utilities basically assess the condition of oil insulated transformers through dissolved gas 

analysis (DGA) [82, 83]. In DGA, insulation oil is sampled at scheduled intervals, while the 

transformer is in operation, and the amounts of dissolved gases are measured and analyzed. 

Then, the condition is determined using the total amount of dissolved combustible gases 

(TDCG) according to the criterion specified in the IEEE standards [56]. Next, based on the 

revealed condition, maintenance decisions are made considering recommendations in the 

standards [56].  
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5.5.2 The Markov Decision Process Model of Transformers  

The data required for the MDP model of transformers include DGA results, maintenance, 

repair and replacement records of transformers and costs of performing CM, maintenance, 

repair and replacement actions. DGA results are only available over past 7 years, as DGA is 

recently introduced for distribution transformers in the local utility. However, in order to 

demonstrate the model applicability, the case study is conducted with these DGA results and 

maintenance records which belong to the transformers’ age range of 20 to 30 years. CM, 

maintenance and replacement costs are assumed based on [7]. Using this data and considering 

current CM and maintenance practices and experts’ opinion, model parameters are 

determined. 

Table 5.1 (a): Deterioration/Failure Probabilities 

 

Ci 
tM,i / 

(years) 

Probability of transition to condition C1, C2, C3 or F 

0≤ age <20 years 20≤ age <30 years 30≤ age <40 years 

C1 C2 C3 F C1 C2 C3 F C1 C2 C3 F 

C1 

0 1 0 0 0 1 0 0 0 1 0 0 0 

0.33 1 0 0 0 1 0 0 0 1 0 0 0 

0.67 1 0 0 0 1 0 0 0 1 0 0 0 

1 1 0 0 0 1 0 0 0 0.94 0.06 0 0 

1.33 1 0 0 0 1 0 0 0 0.94 0.06 0 0 

1.67 1 0 0 0 1 0 0 0 0.94 0.06 0 0 

2 1 0 0 0 0.94 0.06 0 0 0.90 0.10 0 0 

2.33 1 0 0 0 0.94 0.06 0 0 0.89 0.11 0 0 

2.67 1 0 0 0 0.94 0.06 0 0 0.88 0.12 0 0 

3 1 0 0 0 0.90 0.10 0 0 0.67 0.33 0 0 

3.33 1 0 0 0 0.89 0.11 0 0 0.50 0.50 0 0 

3.67 1 0 0 0 0.88 0.12 0 0 0 1 0 0 

4 0.94 0.06 0 0 0.67 0.33 0 0 - - - - 

4.33 0.94 0.06 0 0 0.50 0.50 0 0 - - - - 

4.67 0.94 0.06 0 0 0 1 0 0 - - - - 

5 0.90 0.10 0 0 - - - - - - - - 

5.33 0.89 0.11 0 0 - - - - - - - - 
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Table 5.1 (b): Deterioration/Failure Probabilities 

 

Ci 
tM,i / 

(years) 

Probability of transition to condition C1, C2, C3 or F 

0≤ age <20 years 20≤ age <30 years 30≤ age <40 years 

C1 C2 C3 F C1 C2 C3 F C1 C2 C3 F 

 5.67 0.88 0.12 0 0 - - - - - - - - 

C1 

6 0.67 0.33 0 0 - - - - - - - - 

6.33 0.50 0.50 0 0 - - - - - - - - 

6.67 0 1 0 0 - - - - - - - - 

C2 

0 0 1 0 0 0 1 0 0 0 1 0 0 

0.33 0 1 0 0 0 1 0 0 0 0.89 0.11 0 

0.67 0 1 0 0 0 1 0 0 0 0.75 0.25 0 

1 0 1 0 0 0 0.89 0.11 0 0 0.67 0.33 0 

1.33 0 1 0 0 0 0.75 0.25 0 0 0 1 0 

1.67 0 1 0 0 0 0.67 0.33 0 - - - - 

2 0 0.89 0.11 0 0 0 1 0 - - - - 

2.33 0 0.75 0.25 0 - - - - - - - - 

2.67 0 0.67 0.33 0 - - - - - - - - 

3 0 0 1 0 - - - - - - - - 

C3 

0 0 0 1 0 0 0 1 0 0 0 1 0 

0.33 0 0 1 0 0 0 1 0 0 0 0.8 0.2 

0.67 0 0 1 0 0 0 0.8 0.2 0 0 0.6 0.4 

1 0 0 0.8 0.2 0 0 0.6 0.4 0 0 0 1 

1.33 0 0 0.6 0.4 0 0 0 1 - - - - 

1.67 0 0 0 1 - - - - - - - - 

 

  



 

110 

 

Table 5.2: Transition Probabilities upon Choosing Maintenance Actions at C3 

 

Action 
tM,i / 

(years) 

Probability of transition from C3 to other conditions 

0≤ age <20 years 20≤ age <30 years 30≤ age <40 years 

C1 C2 C3 F C1 C2 C3 F C1 C2 C3 F 

a2 

0 0 1 0 0 0 1 0 0 0 0.7 0.3 0 

0.33 0 1 0 0 0 0.7 0.3 0 0 0.4 0.6 0 

0.67 0 0.7 0.3 0 0 0.4 0.6 0 0 0.2 0.8 0 

1 0 0.4 0.6 0 0 0.2 0.8 0 0 0 0.5 0.5 

1.33 0 0.2 0.8 0 0 0 0.5 0.5 - - - - 

1.67 0 0 0.5 0.5 - - - - - - - - 

a3 

0 1 0 0 0 1 0 0 0 0.9 0.1 0 0 

0.33 1 0 0 0 0.9 0.1 0 0 0.8 0.2 0 0 

0.67 0.9 0.1 0 0 0.8 0.2 0 0 0.6 0.4 0 0 

1 0.8 0.2 0 0 0.6 0.4 0 0 0.5 0.5 0 0 

1.33 0.6 0.4 0 0 0.5 0.5 0 0 - - - - 

1.67 0.5 0.5 0 0 - - - - - - - - 

Based on TDCG, IEEE standards specify four deterioration conditions of transformers 

[56]. This model considers them as three conditions i.e. by separately considering the first two 

conditions and by combining the third and fourth conditions. According to the degree of 

deterioration, we denote the three conditions by C1, C2 and C3. The minimum and maximum 

CM intervals, tmin,1, tmax,1, tmin,2, tmax,2, tmin,3, and tmax,3 in years are 1, 3, 0.33, 1.33, 0.33 and 1, 

respectively. Using (5.1), inspection and maintenance decision making interval is chosen as 

0.33 years. Data shows that the maximum time spent in C1, C2 and C3 are 5, 2.33 and 1.67 

years, and therefore, nmax,1, nmax,2 and nmax,3 are 14, 6 and 4, respectively. According to these 

model parameters, the state diagram was developed and given in Appendix A. This state 

diagram consists of 369 states. The set of actions that are performed on local transformers 

includes doing nothing (a0), CM (a1), minor maintenance (a2), major maintenance (a3) and 

replacement (a4), respectively.  

Assuming that the total expected life of a transformer is 40 years, T is set to 40 years. 

Then, from (5.3), N = 241. In this case study, three sets of transition probabilities are utilized 
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for three age levels, i.e. 0 to 20 years, 20 to 30 years and 30 to 40 years. Deterioration/failure 

probabilities for these three age levels are given in Table 5.1. For the age range of 20 to 30 

years, these deterioration probabilities are computed using the available DGA results. As 

there are no occurrences of failures, failure probabilities are interpolated. Probabilities 

corresponding to the age range of 20 to 30 years are appropriately amended to obtain other 

deterioration/failure probabilities in Table 5.1 which are corresponding to the other two age 

ranges. When the inspection delay time is greater than zero, the probability of deterioration is 

calculated according to the procedure mentioned in section 5.3.3. These probabilities are 

given as Appendix B. Using these deterioration probabilities in Appendix B, transition 

probabilities corresponding to actions a1 and a0 are calculated. Maintenance history shows 

that, actions a2, a3 and a4 are not performed, when the condition is C1. By performing a2 or a3, 

the condition is improved from C2 to C1. Upon choosing a2 or a3 in C3, transitions occur 

according to the probabilities given in Table 5.2. If action a4 is chosen at any state, the 

condition is improved to C1. Rewards assigned for actions a0, a1, a2, a3 and a4 are 0, -200, -

1200, -14400 and -144000, respectively [7]. Boundary values are set to zero.  

The MDP model with these parameters is solved using the backward induction algorithm 

to find optimal actions. 

5.5.3 Results and Discussion 

Although it is possible to select optimal actions directly from the solution of the MDP, 

for easy reference, the solution is converted into look up tables which are given in Tables 5.3 

to 5.6. 

Based on the current condition, the time spent in this condition, the CM delay time, and 

the operational age, the optimal decision regarding CM can be chosen from Tables 5.3 to 5.5. 

According to the model, these decisions are to be implemented at the end of the next 4 

months. In Tables 5.3 to 5.5, CM actions which are pre-specified during the modeling of the 

state diagram are mentioned in bold. Apart from these pre-specified CM actions, the results in 

Tables 5.3 to 5.5 suggest performing some additional CM. The overall implications of the 

results in Tables 5.3 to 5.5 are explained below.  
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1) With the ageing of a transformer, the probability of deterioration and failure increases. 

Therefore, it is not cost effective to delay CM too much, if the equipment is old.  

2) Similarly, when the equipment is more deteriorated, the equipment is at a higher risk of 

failure. Thus, it would be cost effective to perform CM with a less delay.  

3) With the increase in time that the equipment spends in a condition, the probability of 

deterioration increases. If CM is delayed too much, the transformer may further 

deteriorate unknown to the maintenance staff and require more maintenance to improve 

the condition or it may fail unexpectedly. Thus, it would be more cost effective to 

perform CM without any delay, if the time spent in a condition (or maintenance delay 

time) is high. 

Table 5.3 (a): Optimal Actions to Perform Condition Monitoring at C1 

 

tM,i / (years) tC,i / (years) 

Optimal action 

0≤ age <20 

years 

20≤ age <30 

years 

30≤ age <40 

years 

0 0 a0 a0 a0 

0.33 0.33 a0 a0 a0 

0.67 0.67 a0 a0 a0 

1 0, 1 a0 a0 a0 

1.33 0, 0.33, 1.33 a0 a0 a0 

1.67 0, 0.33, 0.67, 1.67 a0 a0 a0 

2 0, 0.33, 0.67, 1, 2 a0 a0 a0 

2.33 
0, 0.33, 0.67, 1 a0 a0 a0 

1.33, 2.33 a0 a0 a1 

2.67 

0, 0.33, 0.67, 1 a0 a0 a0 

1.33, 1.67 a0 a0 a1 

2.67 a1 a1 a1 

3 
0, 0.33, 0.67, 1 a0 a0 a0 

1.33, 1.67, 2 a0 a0 a1 

3.33 
0, 0.33, 0.67, 1 a0 a0 a0 

1.33, 1.67, 2, 2.33 a0 a0 a1 
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Table 5.3 (b): Optimal Actions to Perform Condition Monitoring at C1 

 

tM,i / (years) tC,i / (years) 

Optimal action 

0≤ age <20 

years 

20≤ age <30 

years 

30≤ age <40 

years 

3.67 

0, 0.33, 0.67, 1, 1.33, 

1.67, 2, 2.33 
a0 a0 a1 

2.67 a1 a1 a1 

4 

0, 0.33, 0.67, 1, 1.33, 

1.67, 2, 2.33 
a0 a0 - 

2.67 a1 a1 - 

4.33 

0, 0.33, 0.67, 1, 1.33, 

1.67, 2 
a0 a0 - 

2.33 a0 a1 - 

2.67 a1 a1 - 

4.67 

0, 0.33, 0.67, 1, 1.33, 

1.67, 2, 2.33 
a0 a1 - 

2.67 a1 a1 - 

5, 5.33, 

5.67, 6, 

6.33 

0, 0.33, 0.67, 1, 1.33, 

1.67, 2, 2.33 
a0 - - 

2.67 a1 - - 

6.67 
0, 0.33, 0.67, 1, 1.33, 

1.67, 2, 2.33, 2.67 
a1 - - 

Based on the condition, the maintenance delay time, and the operational age of a 

transformer, the optimal decision regarding maintenance can be chosen from Table 5.6. These 

maintenance decisions are for immediate implementation. Implications of the results in Table 

5.6 are given below. 

1) With the ageing of the equipment, the failure probability would increase and therefore, 

the time that the maintenance can be delayed decreases.  

2) It is not cost effective to delay maintenance, when the equipment is more deteriorated and 

at a higher risk. 

3) Cost effective maintenance actions would change with the maintenance delay time. For 

example, as the time spent in C3 increases, the probability of improving the condition by 
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performing minor maintenance decreases and thus, it will be more cost effective to 

perform major maintenance. 

Table 5.4 (a): Optimal Actions to Perform Condition Monitoring at C2 

 

tM,i / (years) tC,i / (years) 
Optimal action 

0≤ age <20 

years 

20≤ age <30 

years 

30≤ age <40 

years 0 0 a0 a0 a0 

0.33 
0 a0 a0 a0 

0.33 a0 a0 a0 

0.67 

0 a0 a0 a0 

0.33 a0 a0 a1 

0.67 a0 a0 a1 

1 

0 a0 a0 a1 

0.33 a0 a0 a1 

0.67 a0 a0 a1 

1 a1 a1 a1 

1.33 

0 a0 a0 a1 

0.33 a0 a0 a1 

0.67 a0 a0 a1 

1 a1 a1 a1 

1.67 

0 a0 a0 - 

0.33 a0 a0 - 

- 0.67 a0 a1 

1 a1 a1 - 

2 

0 a0 a1 - 

0.33 a0 a1 - 

0.67 a0 a1 - 

1 a1 a1 - 

2.33 

0 a0 - - 

0.33 a0 - - 

0.67 a0 - - 

1 a1 - - 
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Table 5.4 (b): Optimal Actions to Perform Condition Monitoring at C2 

 

tM,i / (years) tC,i / (years) 
Optimal action 

0≤ age <20 

years 

20≤ age <30 

years 

30≤ age <40 

years 

2.67 

0 a0 - - 

0.33 a0 - - 

0.67 a0 - - 

1 a1 - - 

3 

0 a1 - - 

0.33 a1 - - 

0.67 a1 - - 

1 a1 - - 

Table 5.5: Optimal Actions to Perform Condition Monitoring at C3 

 

tM,i / (years) tC,i / (years) 
Optimal action 

0≤ age <20 

years 

20≤ age <30 

years 

30≤ age <40 

years 0 0 a0 a0 a1 

0.33 
0 a0 a1 a1 

0.33 a0 a1 a1 

0.67 

0 a1 a1 a1 

0.33 a1 a1 a1 

0.67 a1 a1 a1 

1 

0 a1 a1 - 

0.33 a1 a1 - 

0.67 a1 a1 - 

1.33 

0 a1 - - 

0.33 a1 - - 

0.67 a1 - - 
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Table 5.6: Optimal Actions to Perform Maintenance 

 

Condition tM,i / (years) 
Optimal action 

0≤ age <20 

years 

20≤ age <30 

years 

30≤ age <40 

years 

C2 

0 a0 a0 a0 

0.33 a0 a0 a0 

0.67 a0 a0 a2* 

1 a0 a0 a2 

1.33 a0 a0 a2 

1.67 a0 a2 - 

2 a0 a2 - 

2.33 a0 - - 

2.67 a0 - - 

3 a0 - - 

C3 

0 a0 a2 a2 

0.33 a0 a2* a2 

0.67 a2* a2 a2 

1 a2 a2 a3 

1.33 a2 a3 - 

1.67 a3 - - 

Since CM must be performed before maintenance, some of the suggested maintenance 

actions are not implementable.  Such actions in Table 5.6 are denoted using an additional “*”. 

In order to guarantee that CM is performed before each maintenance activity, the equipment 

operators should first refer Tables 5.3 to 5.5 for the optimal CM action, and only if Tables 5.3 

to 5.5 suggest performing CM, they should refer Table 5.6 for the optimal maintenance 

action. 

5.6 Using Markov Decision Process Models in System-level Maintenance Planning 

Through a numerical example, this section investigates the possibility of utilizing the 

individual MDP models in system-level maintenance planning.  

In this numerical example, a simple system with two equipment i.e. equipment A and B 

is considered. Three-state MDP models of equipment A and B are shown in Figures 5.6 and 

5.7 respectively. As can be seen in these figures, equipment A and B have two actions, i.e. a0 
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and a1. Upon choosing an action, state transitions occur as shown in Figures 5.6 and 5.7. 

Transition probabilities and rewards are different for equipment A and equipment B. These 

transition probabilities and rewards are also mentioned in the figures. The system model 

consists of 3
2
 system states and 2

2
 action combinations. The system states are (SA,1, SB,1), 

(SA,1, SB,2), (SA,1, SB,3), (SA,2, SB,1), (SA,2, SB,2), (SA,2, SB,3), (SA,3, SB,1), (SA,3, SB,2) and (SA,3, 

SB,3). Action combinations include (a0, a0), (a0, a1), (a1, a0) and (a1, a1). Transition probabilities 

and rewards for the system model are calculated using the values of those parameters of the 

individual MDP models.  
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Figure 5.6: The Markov decision process model of equipment A 
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Figure 5.7: The Markov decision process model of equipment B 

According to the solution procedure given in section 5.4, optimal actions are obtained by 

separately solving the MDP models of equipment A and B and by solving the system model. 

Decision horizon and boundary values are set to 30 years and zero, respectively. Three case 

studies are conducted, under the budget constraints in Table 5.7. Results of case studies are 

tabulated in Tables 5.8 to 5.10.  
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Table 5.7: Budget Constraints 

 

Case study Budget Constraints 

1 No budget constraints 

2 Budget ≤ 95 

3 Budget ≤ 85 

Table 5.8: Optimal Actions for Case Study 1 

 

Equipment states Optimal action 

Equipment A Equipment B 
System 

model 

Model of 

equipment A 

Model of 

equipment B 

SA,1 

 

SB,1 

 

(a0, a0) a0 a0 

SA,1 

 

SB,2 

 

(a0, a0) a0 a0 

SA,1 

 

SB,3 

 

(a0, a1) a0 a1 

SA,2 

 

SB,1 

 

(a1, a0) a1 a0 

SA,2 

 

SB,2 

 

(a1, a0) a1 a0 

SA,2 

 

SB,3 

 

(a1, a1) a1 a1 

SA,3 

 

SB,1 

 

(a1, a0) a1 a0 

SA,3 

 

SB,2 

 

(a1, a0) a1 a0 

SA,3 

 

SB,3 

 

(a1, a1) a1 a1 

Table 5.9: Optimal Actions for Case Study 2 

 

Equipment states Optimal action 

Equipment A Equipment B 
System 

model 

Model of 

equipment A 

Model of 

equipment B 

SA,1 

 

SB,1 

 

(a0, a0) a0 a0 

SA,1 

 

SB,2 

 

(a0, a0) a0 a0 

SA,1 

 

SB,3 

 

(a0, a1) a0 a1 

SA,2 

 

SB,1 

 

(a1, a0) a1 a0 

SA,2 

 

SB,2 

 

(a1, a0) a1 a0 

SA,2 

 

SB,3 

 

(a0, a1) a0 a1 

SA,3 

 

SB,1 

 

(a1, a0) a1 a0 

SA,3 

 

SB,2 

 

(a1, a0) a1 a0 

SA,3 

 

SB,3 

 

(a0, a1) a0 a1 

 

  



 

119 

 

Table 5.10: Optimal Actions for Case Study 3 

 

Equipment states Optimal action 

Equipment A Equipment B 
System 

model 

Model of 

Equipment A 

Model of 

Equipment B 

SA,1 

 

SB,1 

 

(a1, a0) a0 a0 

SA,1 

 

SB,2 

 

(a0, a1) a0 a0 

SA,1 

 

SB,3 

 

(a0, a1) a0 a1 

SA,2 

 

SB,1 

 

(a1, a0) a1 a0 

SA,2 

 

SB,2 

 

(a1, a0) a1 a0 

SA,2 

 

SB,3 

 

(a0, a1) a0 a1 

SA,3 

 

SB,1 

 

(a1, a0) a1 a0 

SA,3 

 

SB,2 

 

(a1, a0) a1 a0 

SA,3 

 

SB,3 

 

(a0, a0) a0 a0 

Tables 5.8 to 5.10 show that the optimal actions vary with the budget constraints. When 

the budget limit is low, the optimal action given by the system model can be different from 

the optimal action suggested by the individual MDP models. This can be observed in case 

study 3 and the different optimal actions given by the individual models and the system model 

are shown in Table 5.10 in bold. 

This numerical example shows that the individual MDP models may not be capable of 

representing the system, when there are system constraints. Thus, it is concluded that the 

individual MDP models of transformers cannot be considered in system level maintenance 

planning.  

However, the MDP model proposed for transformers in section 5.5 consists of 370 states 

and 5 actions. If a system has ntf number of transformers, the MDP model of the system of 

transformers consists of 370ntf number of states and 5ntf number of action combinations. Such 

a system may not be computationally tractable. To solve the curse of dimensionality, methods 

should be applied such as approximate dynamic programming [84].  

5.7 Summary 

With the power system deregulation, asset owners would prefer to adopt more adaptive 

and cost effective maintenance policies. In this chapter, a maintenance optimization model 
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based on an MDP is proposed to find such maintenance policies for ageing electrical 

equipment. Deterioration states of this proposed MDP model are more detailed. Thus, this 

model is capable of incorporating the effect of delay times in making decisions regarding 

inspection and maintenance on equipment’s deterioration and failure. In addition, this model 

integrates the deterioration of equipment’s measurable conditions with effects of ageing on 

deterioration. The proposed model is solved using backward induction to obtain adaptive 

optimal policies with a less computational effort.  

Using the solution of the proposed model, asset owners can perform inspection more cost 

effectively considering the knowledge about the current deterioration condition, the time that 

the equipment spent in that condition, the inspection delay time and the equipment’s age. The 

solution also helps to perform maintenance more cost effectively considering the age, last 

known condition and the maintenance delay time. These adaptive policies are more useful, 

when maintenance has to be delayed in order to satisfy system requirements. 

In a case study, we use CM and maintenance histories of transformers to demonstrate the 

model applicability. It is shown that the optimal CM actions vary with the equipment’s 

condition, the time spent in the condition, CM delay time and the age of the equipment. The 

optimal maintenance actions vary with the equipment’s condition, maintenance delay time 

and the equipment’s age. A numerical example showed that it is not accurate to perform 

system-level maintenance planning by coordinating the optimization results provided by the 

MDP models of individual equipment.  
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Chapter 6 : Conclusions and Future Work 

In this final chapter, major findings of this research are summarized, and some areas for 

future research are suggested. 

6.1 Conclusions 

Many electrical utilities adopt maintenance strategies to improve the system reliability, 

while extending the equipment’s life time. In order to maximize benefits of maintenance, 

maintenance models are utilized. In this thesis, new probabilistic maintenance models are 

proposed for reliability assessment and maintenance optimization of power system 

equipment. The proposed models are applied to circuit breakers and transformers using real 

data. In addition, this thesis discusses the application of Markov maintenance models for state 

prediction and for analyzing the effects of sub component characteristics on system reliability. 

In chapter 2, a probabilistic scheduled maintenance model is proposed based on a new 

state diagram. The advantage of this model is its capability of accurately assessing reliability 

and costs using analytical equations. In a numerical example, the results of this new model are 

compared with the results of existing Markov maintenance models and Monte Carlo 

simulation. This comparison verifies the accuracy of the proposed scheduled maintenance 

model. A theoretical discussion is also provided to prove the accuracy of the proposed model. 

The work presented in this chapter shows that maintenance models based on state diagrams 

are capable of modeling the scheduled maintenance practice accurately. 

In chapter 3, three applications of Markov maintenance models are presented. First, the 

scheduled maintenance model proposed in chapter 2 is applied to reliability and cost 

assessment of circuit breakers using real data obtained from the literature. For comparison 

purposes, an existing maintenance model is also utilized in this application study. It is shown 

that the results of the two models are significantly different due to their different model 

assumptions. In addition, sensitivity analyses are conducted on both models to investigate the 

effect of inspection rate on reliability. Based on the results, the study concludes that the 

proposed model is well applicable for scheduled maintenance of equipment where inspections 
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are performed off-line, whereas the existing models are more applicable to equipment with 

continuous on-line condition monitoring. In the second application study, a simple Markov 

model is utilized for state prediction of transformers. The results show that the state of 

transformers can be predicted rather accurately, especially for old transformers which are 

operated under high loading conditions. In the third study, a Markov model is applied to a 

wind energy conversion system to observe the effect of failure and repair rates of different 

sub components on system reliability. The results show that the components with high failure 

rates and high mean down times are equally important for the reliability of a system. 

In chapter 4, a maintenance optimization problem is formulated to obtain optimal 

inspection and maintenance rates using scheduled maintenance models. The significance of 

this formulation is its simplified objective function which is set after conducting pre-analyses 

on six reliability and cost measures. The considered reliability and cost measures are FPT, 

unavailability, frequency of interruption, cost of inspection, maintenance and repair, 

interruption cost and loss of profit due to interruptions.  Through analytical equations, it is 

shown that unavailability and frequency of interruption are implicitly included when the 

objective function considers the cost of inspection, maintenance and repair and the cost of 

interruption, respectively. A sensitivity analysis shows that it is more appropriate to 

incorporate FPT as a constraint. The objective of the optimization problem is then simplified 

to minimizing the total cost which is the sum of all considered cost measures. A grid search 

algorithm is employed to find optimal inspection rates using newly proposed and existing 

maintenance models of circuit breakers. Results show that practical solutions can be obtained 

for the optimal inspection rates with the selection of appropriate probabilistic maintenance 

models. 

In chapter 5, a maintenance optimization model is proposed based on an MDP. The 

significance of this model is that it is capable of integrating the deterioration of equipment’s 

measurable conditions with effects of ageing on deterioration. In addition, this model is 

capable of incorporating the effect of delay times in making decisions regarding inspection 

and maintenance on equipment’s deterioration and failure.  ue to the aforementioned added 
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features, this model can provide more adaptive and cost effective maintenance policies. This 

proposed model is particularly applied to transformers using real historical condition 

monitoring and maintenance data obtained from the local utility. The adaptive optimal 

maintenance policies provided by this model may aid planning engineers to conduct condition 

monitoring and maintenance activities effectively and efficiently. With small modifications, 

this model can be generalized to represent any other aging equipment. 

In conclusion, chapter 2 and chapter 5 of this thesis have proposed new probabilistic 

models for reliability assessment and maintenance optimization. The proposed scheduled 

maintenance model in chapter 2 can assess reliability and costs more accurately than the 

existing Markov maintenance models in the literature. The MDP model proposed in chapter 5 

addresses several issues which are not addressed in existing maintenance models. Hence, this 

model is capable of providing more adaptive optimal maintenance policies. The application 

studies in chapter 3, chapter 4 and chapter 5 have shown the applicability and usefulness of 

the proposed models for maintenance scheduling and maintenance related decision making in 

power systems. The models proposed in this thesis can be implemented in future to perform 

maintenance of power system equipment in an optimal manner.  

6.2 Future Research Work 

The work presented in this thesis may provide a basis for further research work in model 

development and applications, maintenance optimization and system-level maintenance 

planning. 

6.2.1 Model Development and Applications 

 In this thesis, the proposed scheduled maintenance model is only applied to circuit 

breakers and the proposed MDP model is only applied to transformers. These models are 

very generic and in future, similar models can be developed with the application to other 

ageing equipment as well.  

 Since condition monitoring techniques are fairly new, the case study in chapter 5 is 

conducted with data obtained from transformers over a limited operational period of 7 

years. Once data is available over an extended period of time, the transition probabilities 
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of different age ranges can be updated in future to obtain more accurate results.  

 If required, the MDP model proposed in chapter 5 can easily incorporate the present value 

of money, when the model is solved using the backward induction method. 

6.2.2 Maintenance Optimization  

 The grid search algorithm used in chapter 4 may not perform efficiently for systems with 

a large number of deterioration stages. In future, more efficient algorithms can be applied 

in extended studies.  

 As discussed in [85], outcome probabilities may vary with the maintenance effort, but 

such model parameter adjustments are not considered in the scope of the optimization 

task presented in chapter 4. Such studies greatly need the inputs from experienced 

maintenance engineers. In future, with their help the optimization work in chapter 4 can 

be further improved to incorporate more decision variables such as money allocated for 

each maintenance action and the duration of performing each maintenance action [85].  

6.2.3 System-level Maintenance Planning  

 The proposed scheduled maintenance model in chapter 4 consists of additional states. 

However, the thesis has discussed the possibility of reducing the model complexity, when 

the model is used in system level studies. In future, the reduced version of the proposed 

scheduled maintenance model can be utilized to prioritize/coordinate scheduled 

maintenance activities in power systems.  

 The MDP model proposed in chapter 5 of this thesis can be efficiently solved to find 

optimal adaptive maintenance policies for single equipment. The thesis shows that a 

system-wide MDP model should be employed to obtain optimal adaptive maintenance 

policies for a system with more equipment. A system-wide MDP model may have a large 

number of system states and action combinations. In order to tackle the curse of 

dimensionality associated with a system-wide MDP model, techniques such as 

approximate dynamic programming can be investigated [84]. If the curse of 

dimensionality can be tackled with the use of some technique, a system-wide MDP model 
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can be used to conduct system-level maintenance planning.  

 In further work, the probabilistic maintenance models proposed in this thesis can be used 

to develop an asset management tool for optimizing and prioritizing maintenance 

activities in power systems. Such a tool may be very useful for electrical utilities to make 

effective decisions more efficiently on managing costly electrical assets. 
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Appendix A : The Proposed Markov Decision Process Model 

for Transformers 
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Figure A.1 (a): The proposed Markov decision process model for transformers 
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Figure A.1 (b): The proposed Markov decision process model for transformers 
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Figure A.1 (c): The proposed Markov decision process model for transformers 
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Figure A.1 (d): The proposed Markov decision process model for transformers 
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Figure A.1 (e): The proposed Markov decision process model for transformers 

 



 

141 

 

C
2
/0+/0

C
2
/τ/0

C
2
/τ+/0

a
1

a
0

C
2
/τ/τ

a
0

C
2
/τ+/τ

a
0

C
2
/2τ/0

C
2
/2τ+/0

a
1

a
0

C
2
/2τ/τ

a
0

C
2
/2τ+/τ

a
0

a
1

a
0

C
2
/3τ/0

C
2
/3τ+/0

C
2
/3τ/τ

a
0

C
2
/3τ+/τ

a
0

C
2
/4τ/0

C
2
/4τ/τ

a
0

a
0

C
3
/0/0

C
2
/0/0

a
0

C
2
/2τ/2τ

a
0

C
2
/2τ+/2τ

C
2
/3τ/3τ

a
0

C
2
/3τ+/3τ

a
1

C
2
/3τ/2τ

a
0

C
2
/3τ+/2τ

a
1

a
0

C
2
/4τ/3τ

a
0

C
2
/4τ/2τ

a
0

C
3
/0/0

F

C
2
/4τ/0

C
3
/0/0

F
a

1

a
0

a
1

a
0

C
3
/0/0

F

a
1

a
0

C
3
/0/0

F

C
2
/3τ/0

a
1

a
0

a
1

a
0

C
3
/0/0

F

C
2
/5τ+/0

C
2
/5τ+/τ

C
2
/6τ/0

C
2
/6τ/τ

a
0

a
0

C
2
/5τ+/3τ

a
1

C
2
/5τ+/2τ

a
1

a
0

C
2
/6τ/3τ

a
0

C
2
/6τ/2τ

a
0

C
3
/0/0

F

C
2
/6τ/0

a
1

a
0

a
1

a
0

C
3
/0/0

F C
2
/6τ+/0

C
2
/6τ+/τ

C
2
/7τ/0

C
2
/7τ/τ

a
0

a
0

C
2
/6τ+/3τ

a
1

C
2
/6τ+/2τ

a
1

a
0

C
2
/7τ/3τ

a
0

C
2
/7τ/2τ

a
0

C
3
/0/0

F

C
2
/7τ/0

a
1

a
0

a
1

a
0

C
3
/0/0

F C
2
/7τ+/0

C
2
/7τ+/τ

C
2
/8τ/0

C
2
/8τ/τ

a
0

a
0

C
2
/7τ+/3τ

a
1

C
2
/7τ+/2τ

a
1

a
0

C
2
/8τ/3τ

a
0

C
2
/8τ/2τ

a
0

C
3
/0/0

F

C
2
/8τ/0

a
1

a
0

a
1

a
0

C
3
/0/0

F C
2
/8τ+/0

C
2
/8τ+/τ

C
2
/9τ/0

C
2
/9τ/τ

a
0

a
0

C
2
/8τ+/3τ

a
1

C
2
/8τ+/2τ

a
1

a
0

C
2
/9τ/3τ

a
0

C
2
/9τ/2τ

a
0

C
3
/0/0

F

C
2
/9τ/0

a
1

a
0

a
1

a
0

C
3
/0/0

F C
2
/9τ+/0

C
2
/9τ+/τ

C
2
/9τ+/3τ

C
2
/9τ+/2τ

a
1

a
1

C
3
/0/0

F

a
1

a
1

C
3
/0/0

F

a
2

C
1
/0+/0

1

a
3

C
1
/0+/0

a
4

C
1
/0+/0

1

1

a
2

C
1
/0+/0

1

a
3

C
1
/0+/0

a
4

C
1
/0+/0

1

1

a
2

C
1
/0+/0

1

a
3

C
1
/0+/0

a
4

C
1
/0+/0

1

1

a
2

C
1
/0+/0

1

a
3

C
1
/0+/0

a
4

C
1
/0+/0

1

1

a
2

C
1
/0+/0

1

a
3

C
1
/0+/0

a
4

C
1
/0+/0

1

1

a
2

C
1
/0+/0

1

a
3

C
1
/0+/0

a
4

C
1
/0+/0

1

1

a
2

C
1
/0+/0

1

a
3

C
1
/0+/0

a
4

C
1
/0+/0

1

1

a
2

C
1
/0+/0

1

a
3

C
1
/0+/0

a
4

C
1
/0+/0

1

1

a
2

C
1
/0+/0

1

a
3

C
1
/0+/0

a
4

C
1
/0+/0

1

1

F C
2
/4τ+/0

C
2
/4τ+/τ

C
2
/5τ/0

C
2
/5τ/τ

a
0

a
0

C
2
/4τ+/3τ

a
1

C
2
/4τ+/2τ

a
1

a
0

C
2
/5τ/3τ

a
0

C
2
/5τ/2τ

a
0

C
3
/0/0

F

C
2
/5τ/0

a
1

a
0

a
1

a
0

C
3
/0/0

F

a
2

C
1
/0+/0

1

a
3

C
1
/0+/0

a
4

C
1
/0+/0

1

1

C
2
/5τ+/0

C
2
/5τ+/τ

C
2
/5τ+/2τ

C
2
/5τ+/3τ

 

Figure A.1 (f): The proposed Markov decision process model for transformers 
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Figure A.1 (g): The proposed Markov decision process model for transformers 
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Appendix B : Deterioration Probabilities for the Markov 

Decision Process Model of Transformers 

Table B.1 (a): Deterioration Probabilities for the Markov Decision Process Model of 

Transformers 

 

From To 

State 

Time spent 

in the  

condition/ 

(years) 

Time 

from last 

CM 

0≤ age <20 years 20≤ age <30 years 30≤ age <40 years 

S1 S2 S3 F S1 S2 S3 F S1 S2 S3 F 

S1 

0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

0.33 
0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

0.33 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

0.67 

0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

0.33 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

0.67 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

1.00 

0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 

0.33 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 

0.67 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 

1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 

1.33 

0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 

0.33 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 

0.67 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 

1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 

1.33 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 

1.67 

0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 

0.33 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 

0.67 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.83 0.16 0.01 0.00 

1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.83 0.16 0.01 0.00 

1.33 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.83 0.16 0.01 0.00 

1.67 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.83 0.16 0.01 0.00 
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Table B.1 (b): Deterioration Probabilities for the Markov Decision Process Model of 

Transformers 

 

From To 

State 

Time spent 

in the  

condition/ 

(years) 

Time 

from last 

CM 

0≤ age <20 years 20≤ age <30 years 30≤ age <40 years 

S1 S2 S3 F S1 S2 S3 F S1 S2 S3 F 

S1 

2.00 

0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 0.90 0.10 0.00 0.00 

0.33 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 0.85 0.15 0.00 0.00 

0.67 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 0.79 0.20 0.01 0.00 

1.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 0.75 0.23 0.02 0.00 

1.33 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 0.75 0.23 0.02 0.00 

1.67 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 0.75 0.23 0.02 0.00 

2.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 0.75 0.23 0.02 0.00 

2.33 

0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 0.89 0.11 0.00 0.00 

0.33 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.80 0.20 0.00 0.00 

0.67 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.75 0.24 0.01 0.00 

1.00 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.71 0.26 0.03 0.00 

1.33 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.66 0.28 0.06 0.00 

1.67 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.66 0.28 0.06 0.00 

2.00 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.66 0.28 0.06 0.00 

2.33 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.66 0.28 0.06 0.00 

2.67 

0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 0.88 0.12 0.00 0.00 

0.33 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.78 0.22 0.00 0.00 

0.67 1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.71 0.28 0.01 0.00 

1.00 1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.66 0.31 0.03 0.00 

1.33 1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.62 0.32 0.06 0.00 

1.67 1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.58 0.30 0.11 0.01 

2.00 1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.58 0.30 0.11 0.01 

2.33 1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.58 0.30 0.11 0.01 

2.67 1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.58 0.30 0.11 0.01 
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Table B.1 (c): Deterioration Probabilities for the Markov Decision Process Model of 

Transformers 

 

From To 

State 

Time spent 

in the  

condition/ 

(years) 

Time 

from last 

CM 

0≤ age <20 years 20≤ age <30 years 30≤ age <40 years 

S1 S2 S3 F S1 S2 S3 F S1 S2 S3 F 

S1 

3.00 

0.00 1.00 0.00 0.00 0.00 0.90 0.10 0.00 0.00 0.67 0.33 0.00 0.00 

0.33 1.00 0.00 0.00 0.00 0.85 0.15 0.00 0.00 0.59 0.41 0.00 0.00 

0.67 1.00 0.00 0.00 0.00 0.80 0.20 0.00 0.00 0.53 0.46 0.01 0.00 

1.00 1.00 0.00 0.00 0.00 0.75 0.25 0.00 0.00 0.47 0.48 0.05 0.00 

1.33 1.00 0.00 0.00 0.00 0.75 0.25 0.00 0.00 0.45 0.48 0.07 0.00 

1.67 1.00 0.00 0.00 0.00 0.75 0.25 0.00 0.00 0.42 0.45 0.12 0.01 

2.00 1.00 0.00 0.00 0.00 0.75 0.25 0.00 0.00 0.39 0.43 0.16 0.02 

2.33 1.00 0.00 0.00 0.00 0.75 0.25 0.00 0.00 0.39 0.43 0.16 0.02 

2.67 1.00 0.00 0.00 0.00 0.75 0.25 0.00 0.00 0.39 0.43 0.16 0.02 

3.33 

0.00 1.00 0.00 0.00 0.00 0.89 0.11 0.00 0.00 0.50 0.50 0.00 0.00 

0.33 1.00 0.00 0.00 0.00 0.75 0.25 0.00 0.00 0.34 0.66 0.00 0.00 

0.67 1.00 0.00 0.00 0.00 0.71 0.29 0.00 0.00 0.30 0.69 0.01 0.00 

1.00 1.00 0.00 0.00 0.00 0.66 0.33 0.01 0.00 0.26 0.69 0.05 0.00 

1.33 1.00 0.00 0.00 0.00 0.66 0.33 0.01 0.00 0.24 0.66 0.10 0.00 

1.67 1.00 0.00 0.00 0.00 0.66 0.33 0.01 0.00 0.22 0.63 0.14 0.01 

2.00 1.00 0.00 0.00 0.00 0.66 0.33 0.01 0.00 0.21 0.59 0.18 0.02 

2.33 1.00 0.00 0.00 0.00 0.66 0.33 0.01 0.00 0.20 0.55 0.20 0.05 

2.67 1.00 0.00 0.00 0.00 0.66 0.33 0.01 0.00 0.20 0.55 0.20 0.05 

3.67 

0.00 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.00 1.00 0.00 0.00 

0.33 1.00 0.00 0.00 0.00 0.78 0.22 0.00 0.00 0.00 1.00 0.00 0.00 

0.67 1.00 0.00 0.00 0.00 0.70 0.30 0.00 0.00 0.00 0.96 0.04 0.00 

1.00 1.00 0.00 0.00 0.00 0.66 0.34 0.00 0.00 0.00 0.93 0.07 0.00 

1.33 1.00 0.00 0.00 0.00 0.62 0.37 0.01 0.00 0.00 0.88 0.12 0.00 

1.67 1.00 0.00 0.00 0.00 0.58 0.39 0.03 0.00 0.00 0.79 0.20 0.01 

2.00 1.00 0.00 0.00 0.00 0.58 0.39 0.03 0.00 0.00 0.74 0.23 0.03 

2.33 1.00 0.00 0.00 0.00 0.58 0.39 0.03 0.00 0.00 0.70 0.24 0.06 

2.67 1.00 0.00 0.00 0.00 0.58 0.39 0.03 0.00 0.00 0.66 0.24 0.10 
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Table B.1 (d): Deterioration Probabilities for the Markov Decision Process Model of 

Transformers 

 

 

From 

To 

State 

Time spent 

in the  

condition/ 

(years) 

Time 

from last 

CM 

0≤ age <20 years 20≤ age <30 years 30≤ age <40 years 

S1 S2 S3 F S1 S2 S3 F S1 S2 S3 F 

S1 

4.00 

0.00 0.94 0.06 0.00 0.00 0.67 0.33 0.00 0.00 - - - - 

0.33 0.94 0.06 0.00 0.00 0.59 0.41 0.00 0.00 - - - - 

0.67 0.94 0.06 0.00 0.00 0.52 0.48 0.00 0.00 - - - - 

1.00 0.94 0.06 0.00 0.00 0.47 0.53 0.00 0.00 - - - - 

1.33 0.94 0.06 0.00 0.00 0.44 0.55 0.01 0.00 - - - - 

1.67 0.94 0.06 0.00 0.00 0.41 0.56 0.03 0.00 - - - - 

2.00 0.94 0.06 0.00 0.00 0.39 0.55 0.06 0.00 - - - - 

2.33 0.94 0.06 0.00 0.00 0.39 0.55 0.06 0.00 - - - - 

2.67 0.94 0.06 0.00 0.00 0.39 0.55 0.06 0.00 - - - - 

4.33 

0.00 0.94 0.06 0.00 0.00 0.50 0.50 0.00 0.00 - - - - 

0.33 0.88 0.12 0.00 0.00 0.34 0.66 0.00 0.00 - - - - 

0.67 0.88 0.12 0.00 0.00 0.30 0.70 0.00 0.00 - - - - 

1.00 0.88 0.12 0.00 0.00 0.26 0.74 0.00 0.00 - - - - 

1.33 0.88 0.12 0.00 0.00 0.24 0.75 0.01 0.00 - - - - 

1.67 0.88 0.12 0.00 0.00 0.22 0.75 0.03 0.00 - - - - 

2.00 0.88 0.12 0.00 0.00 0.21 0.73 0.06 0.00 - - - - 

2.33 0.88 0.12 0.00 0.00 0.20 0.68 0.12 0.00 - - - - 

2.67 0.88 0.12 0.00 0.00 0.20 0.68 0.12 0.00 - - - - 

4.67 

0.00 0.94 0.06 0.00 0.00 0.00 1.00 0.00 0.00 - - - - 

0.33 0.88 0.12 0.00 0.00 0.00 1.00 0.00 0.00 - - - - 

0.67 0.83 0.17 0.00 0.00 0.00 1.00 0.00 0.00 - - - - 

1.00 0.83 0.17 0.00 0.00 0.00 1.00 0.00 0.00 - - - - 

1.33 0.83 0.17 0.00 0.00 0.00 0.99 0.01 0.00 - - - - 

1.67 0.83 0.17 0.00 0.00 0.00 0.96 0.04 0.00 - - - - 

2.00 0.83 0.17 0.00 0.00 0.00 0.92 0.08 0.00 - - - - 

2.33 0.83 0.17 0.00 0.00 0.00 0.87 0.13 0.00 - - - - 

2.67 0.83 0.17 0.00 0.00 0.00 0.82 0.17 0.01 - - - - 
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Table B.1 (e): Deterioration Probabilities for the Markov Decision Process Model of 

Transformers 

 

From To 

State 

Time spent 

in the  

condition/ 

(years) 

Time 

from last 

CM 

0≤ age <20 years 20≤ age <30 years 30≤ age <40 years 

S1 S2 S3 F S1 S2 S3 F S1 S2 S3 F 

S1 

5.00 

0.00 0.90 0.10 0.00 0.00 - - - - - - - - 

0.33 0.85 0.15 0.00 0.00 - - - - - - - - 

0.67 0.80 0.20 0.00 0.00 - - - - - - - - 

1.00 0.75 0.25 0.00 0.00 - - - - - - - - 

1.33 0.75 0.25 0.00 0.00 - - - - - - - - 

1.67 0.75 0.25 0.00 0.00 - - - - - - - - 

2.00 0.75 0.25 0.00 0.00 - - - - - - - - 

2.33 0.75 0.25 0.00 0.00 - - - - - - - - 

2.67 0.75 0.25 0.00 0.00 - - - - - - - - 

5.33 

0.00 0.89 0.11 0.00 0.00 - - - - - - - - 

0.33 0.80 0.20 0.00 0.00 - - - - - - - - 

0.67 0.75 0.25 0.00 0.00 - - - - - - - - 

1.00 0.71 0.29 0.00 0.00 - - - - - - - - 

1.33 0.67 0.33 0.00 0.00 - - - - - - - - 

1.67 0.67 0.33 0.00 0.00 - - - - - - - - 

2.00 0.67 0.33 0.00 0.00 - - - - - - - - 

2.33 0.67 0.33 0.00 0.00 - - - - - - - - 

2.67 0.67 0.33 0.00 0.00 - - - - - - - - 

5.67 

0.00 0.88 0.12 0.00 0.00 - - - - - - - - 

0.33 0.78 0.22 0.00 0.00 - - - - - - - - 

0.67 0.70 0.30 0.00 0.00 - - - - - - - - 

1.00 0.66 0.34 0.00 0.00 - - - - - - - - 

1.33 0.62 0.38 0.00 0.00 - - - - - - - - 

1.67 0.59 0.41 0.00 0.00 - - - - - - - - 

2.00 0.59 0.41 0.00 0.00 - - - - - - - - 

2.33 0.59 0.41 0.00 0.00 - - - - - - - - 

2.67 0.59 0.41 0.00 0.00 - - - - - - - - 
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Table B.1 (f): Deterioration Probabilities for the Markov Decision Process Model of 

Transformers 

 

From To 

State 

Time spent 

in the  

condition/ 

(years) 

Time 

from last 

CM 

0≤ age <20 years 20≤ age <30 years 30≤ age <40 years 

S1 S2 S3 F S1 S2 S3 F S1 S2 S3 F 

S1 

6.00 

0.00 0.67 0.33 0.00 0.00 - - - - - - - - 

0.33 0.59 0.41 0.00 0.00 - - - - - - - - 

0.67 0.52 0.48 0.00 0.00 - - - - - - - - 

1.00 0.47 0.53 0.00 0.00 - - - - - - - - 

1.33 0.44 0.56 0.00 0.00 - - - - - - - - 

1.67 0.42 0.58 0.00 0.00 - - - - - - - - 

2.00 0.39 0.61 0.00 0.00 - - - - - - - - 

2.33 0.39 0.61 0.00 0.00 - - - - - - - - 

2.67 0.39 0.61 0.00 0.00 - - - - - - - - 

6.33 

0.00 0.50 0.50 0.00 0.00 - - - - - - - - 

0.33 0.34 0.66 0.00 0.00 - - - - - - - - 

0.67 0.30 0.70 0.00 0.00 - - - - - - - - 

1.00 0.26 0.74 0.00 0.00 - - - - - - - - 

1.33 0.24 0.76 0.00 0.00 - - - - - - - - 

1.67 0.22 0.78 0.00 0.00 - - - - - - - - 

2.00 0.21 0.79 0.00 0.00 - - - - - - - - 

2.33 0.19 0.80 0.01 0.00 - - - - - - - - 

2.67 0.19 0.80 0.01 0.00 - - - - - - - - 

6.67 

0.00 0.00 1.00 0.00 0.00 - - - - - - - - 

0.33 0.00 1.00 0.00 0.00 - - - - - - - - 

0.67 0.00 1.00 0.00 0.00 - - - - - - - - 

1.00 0.00 1.00 0.00 0.00 - - - - - - - - 

1.33 0.00 1.00 0.00 0.00 - - - - - - - - 

1.67 0.00 1.00 0.00 0.00 - - - - - - - - 

2.00 0.00 1.00 0.00 0.00 - - - - - - - - 

2.33 0.00 0.99 0.01 0.00 - - - - - - - - 

2.67 0.00 0.97 0.03 0.00 - - - - - - - - 
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Table B.1: (g): Deterioration Probabilities for the Markov Decision Process Model of 

Transformers 

 

From To 

State 

Time spent 

in the  

condition/ 

(years) 

Time 

from last 

CM 

0≤ age <20 years 20≤ age <30 years 30≤ age <40 years 

S1 S2 S3 F S1 S2 S3 F S1 S2 S3 F 

S2 

0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 

0.33 
0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.89 0.11 0.00 

0.33 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.89 0.11 0.00 

0.67 

0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.75 0.25 0.00 

0.33 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.67 0.33 0.00 

0.67 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.67 0.33 0.00 

1.00 

0.00 0.00 1.00 0.00 0.00 0.00 0.89 0.11 0.00 0.00 0.67 0.33 0.00 

0.33 0.00 1.00 0.00 0.00 0.00 0.89 0.11 0.00 0.00 0.50 0.50 0.00 

0.67 0.00 1.00 0.00 0.00 0.00 0.89 0.11 0.00 0.00 0.45 0.53 0.02 

1.00 0.00 1.00 0.00 0.00 0.00 0.89 0.11 0.00 0.00 0.45 0.53 0.02 

1.33 

0.00 0.00 1.00 0.00 0.00 0.00 0.75 0.25 0.00 0.00 0.00 1.00 0.00 

0.33 0.00 1.00 0.00 0.00 0.00 0.67 0.33 0.00 0.00 0.00 1.00 0.00 

0.67 0.00 1.00 0.00 0.00 0.00 0.67 0.33 0.00 0.00 0.00 0.95 0.05 

1.00 0.00 1.00 0.00 0.00 0.00 0.67 0.33 0.00 0.00 0.00 0.90 0.10 

1.67 

0.00 0.00 1.00 0.00 0.00 0.00 0.67 0.33 0.00 - - - - 

0.33 0.00 1.00 0.00 0.00 0.00 0.50 0.50 0.00 - - - - 

0.67 0.00 1.00 0.00 0.00 0.00 0.45 0.55 0.00 - - - - 

1.00 0.00 1.00 0.00 0.00 0.00 0.45 0.55 0.00 - - - - 

2.00 

0.00 0.00 0.89 0.11 0.00 0.00 0.00 1.00 0.00 - - - - 

0.33 0.00 0.89 0.11 0.00 0.00 0.00 1.00 0.00 - - - - 

0.67 0.00 0.89 0.11 0.00 0.00 0.00 1.00 0.00 - - - - 

1.00 0.00 0.89 0.11 0.00 0.00 0.00 0.98 0.02 - - - - 

2.33 

0.00 0.00 0.75 0.25 0.00 - - - - - - - - 

0.33 0.00 0.67 0.33 0.00 - - - - - - - - 

0.67 0.00 0.67 0.33 0.00 - - - - - - - - 

1.00 0.00 0.67 0.33 0.00 - - - - - - - - 
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Table B.1 (h): Deterioration Probabilities for the Markov Decision Process Model of 

Transformers 

 

From To 

State 

Time spent 

in the  

condition/ 

(years) 

Time 

from last 

CM 

0≤ age <20 years 20≤ age <30 years 30≤ age <40 years 

S1 S2 S3 F S1 S2 S3 F S1 S2 S3 F 

S2 

2.67 

0.00 0.00 0.67 0.33 0.00 - - - - - - - - 

0.33 0.00 0.50 0.50 0.00 - - - - - - - - 

0.67 0.00 0.45 0.55 0.00 - - - - - - - - 

1.00 0.00 0.45 0.55 0.00 - - - - - - - - 

3.00 

0.00 0.00 0.00 1.00 0.00 - - - - - - - - 

0.33 0.00 0.00 1.00 0.00 - - - - - - - - 

0.67 0.00 0.00 1.00 0.00 - - - - - - - - 

1.00 0.00 0.00 1.00 0.00 - - - - - - - - 

S3 

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 

0.33 
0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.80 0.20 

0.33 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.80 0.20 

0.67 

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.80 0.20 0.00 0.00 0.60 0.40 

0.33 0.00 0.00 1.00 0.00 0.00 0.00 0.80 0.20 0.00 0.00 0.48 0.52 

0.67 0.00 0.00 1.00 0.00 0.00 0.00 0.80 0.20 0.00 0.00 0.48 0.52 

1.00 

0.00 0.00 0.00 0.80 0.20 0.00 0.00 0.60 0.40 0.00 0.00 0.00 1.00 

0.33 0.00 0.00 0.80 0.20 0.00 0.00 0.48 0.52 0.00 0.00 0.00 1.00 

0.67 0.00 0.00 0.80 0.20 0.00 0.00 0.48 0.52 0.00 0.00 0.00 1.00 

1.33 

0.00 0.00 0.00 0.60 0.40 0.00 0.00 0.00 1.00 - - - - 

0.33 0.00 0.00 0.48 0.52 0.00 0.00 0.00 1.00 - - - - 

0.67 0.00 0.00 0.48 0.52 0.00 0.00 0.00 1.00 - - - - 

1.67 

0.00 0.00 0.00 0.00 1.00 - - - - - - - - 

0.33 0.00 0.00 0.00 1.00 - - - - - - - - 

0.67 0.00 0.00 0.00 1.00 - - - - -- - - - 

 

 

 

 


