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Thesis summary

This thesis presents an end-to-end measure-invert-dsitategy for a stochas-
tic problem with application to the management of water iqpah a reservoir
system. The strategy involves estimating uncertain coimam source locations
within a reservoir, followed by applying an optimal velgditeld control to flush
the contaminant out of the reservoir, while accounting flocartainty such as
wind velocity and measurement noise. This thesis first dg@gh finite element
numerical simulation code for a 2D laterally averaged nesemodel. The nu-
merical code is validated through comparisons to varioust@ark problems.
Numerical results show that the simulated hydrodynamicgsses are in good
agreement with theoretical and experimental data. Themetation of the con-
taminant source location is posed as a Bayesian inferemdx#egon and solved
using a Markov chain Monte Carlo (MCMC) method. Gaussiantamexmod-
els are used to approximately represent the posterioiliistn of estimated
source locations. The stochastic control problem thenssaeloptimal velocity
to flush the contaminant out of the reservoir. This contralybem is solved
using an adjoint method together with collocation over thace of uncertain
parameters.

For large-scale models, such as for reservoir applicatihese computa-



tional simulations are expensive and time-consuming.heunore, due to the
stochastic nature of the problem, the computational coslsstorage require-
ments increase rapidly. Thus, this thesis develops a redoicker model (ROM)
that approximates the full model but provides computaliegpeedups. The
ROM for the reservoir system is obtained using the propdrogwnal decom-
position (POD) and Galerkin projection techniques. Todate and demon-
strate the efficiency of the ROM, two examples are considefidw first is a
simple 2D transport model with a constant velocity field, #mel second is a
coupled Navier-Stokes and transport model. In both cakedjnal purpose is
to flush the contaminant out of the domain with the lowest.ctstthe trans-
port example, the ROM decreases the computational timdwiico by a factor
of approximately 25, while in the coupled Navier-Stokesisport model, the
speedup is by a factor of approximately 90. In both casesretieced-order
solver is effective for solving the Bayesian inference peaband the stochastic
control problem. The control actions lead to a cleaner bddyader as com-
pared to the uncontrolled case. These results suggeshéhBQD-based ROMs

may be an effective tool for water quality management.
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Chapter 1

Introduction

1.1 Motivation

Lakes and reservoirs are the main places to store rainwabature. The stored
water can be used for many purposes such as agriculturestmgddaily ac-
tivities, etc. The stored water is also an important factothie development
strategies of the government, especially in water-shertaguntries. For ex-
ample, Singapore is considered as one of the water-shartageries because
of its dependence on imports of water from Malaysia and istéd amount
of land area where rainwater can be stored. In order to retthécdependence
on external sources, the Government has built up many m@serfvom river
systems to store water. Rainwater, runoff water, etc., aiteated and initially
treated by a system of storm drains and storm sewers beftaerena reservoir.
However, there can be other unexpected water sources tadifiectly into the
reservoir. These unexpected sources may contain contatrinacentrations

that cause pollution of the water body. Hence before thedtaater treated for



consumption, it is important to monitor, determine and reenany (suspected)
contaminants as much as possible out of the water system.

Estimating and locating contaminant sources and then aqaptite control
to flush them out of the water system are the rudimentary taSister qual-
ity management. The tasks require knowledge of physicgdaythamics, data
assimilation and optimal control. To understand the bedravi water in reser-
voirs, hydrodynamics models are needed. In general, enviental flows are all
three-dimensional (3D). Modeling the hydrodynamics antewgquality in 3D
will require much effort due to their complexity. Two-dimsanal (2D) models,
in some cases, may provide predictions of adequate accutaity being com-
putationally cheaper than 3D models. Two popular modelsifoulating wa-
ter quality in lakes and reservoirs are DYRESM (1983)dnd CE-QUAL-W2
(1994) H]. These existing models have been used for simulation aldbw@n
for many studies and applications . For example, Gu and C(R0@) p] stud-
ied the transport and fate of toxic chemicals in a stratifesgervoir by modeling
the toxic sub-model, then linked to CE-QUAL-W2 model using:Msoft For-
tran Power-station program. However, the existing modedshat appropriate
in some cases due to their complexity or their requiremelRtsthermore be-
cause of the large-scale reservoirs, these existing mauslde expensive with
respect to both computational costs and storage requitsmiEmus, developing
an appropriate methodology to study the dynamics of watalitgun lakes and
reservoirs directly for our specific purpose is considered.

Considering optimal flow control for reservoir applicatsome have to deal

with many uncertain parameters relating to the instruntems that measure



the wind speed, water circulation currents, contaminagtigs and others. These
uncertain parameters may have undue influence on the sygtersuch these
need to be properly accounted for as stochastic variablggeigystem model.
The objective of control is to flush the contaminant out ofdlbenain in a short
time. The problem may not be too difficult if we know exactletlocation of
the contaminant in the domain. However, complexities afise are only given
spatially sparse measurements of the contaminant coatiens. To apply the
control effectively, we have to first estimate the contamthacations. In realis-
tic applications, measured data are subject to a degreeceftamty and noise.
Hence, we pose the parameter estimation problem. We fotentlla statistical
inverse problem using a Bayesian approach, which accoantaéasurement
noise and represents uncertainty in model parameters pabgbility distribu-
tions [6, 7]. Under the Bayesian framework, the nonlinear equationvegong
the system of interest need to be solved repeatedly overitieeetht sample
of input parameters. There are available sampling stregeggsociated with
Bayesian computation such as the Markov chain Monte CarloNIZ) meth-
ods B, 9, 10, 11].

Finding the solution of the optimal flow control problem candcomputa-
tionally expensive undertaking. For simulations to suppeal-time decision-
making in applications governed by the partial differergguations (PDES), the
discretized models may have many thousands or even milegnegs of free-
dom. The situation is even more challenging for stochastintrol problems in
respect to both storage and computational cost. The commahcosts and

storage requirements increase very rapidly due to the astichnature of the



simulations and optimization formulation. In such sitoas, the use of tradi-
tional discretization methods, such as finite element otefimolume methods,
to achieve real-time simulations may be infeasible. To eslthese challenges,
the development of a systematic model reduction techniquéhé end-to-end
strategy: measure-invert-control for a stochastic probileat minimizes com-
putational costs and storage requirements but retainicigracy is of particular

interest.

1.2 Background

1.2.1 State of the art in reservoir simulations

Reservoirs are usually constructed at low topographidioesto receive basins
downstream. As a result, reservoirs receive large watesvisfifrom the sur-
rounding watershed. The flushing/flow rates are also rapatder to balance
water volume in reservoirs. Thus, although there is largetran in water qual-
ity such as pollution loads entering reservoirs from infloreservoirs have the
potential to flush these pollutants out rapidly. This predesalled the contam-
inant transport process where water velocities play a keyirothe near field
and wind induced water velocity is an important factor in tiefield. In this
process, the inflows push the water towards and outflowsposhy the water
out, while the wind induced flow exerts a drag on the waterag@fand causes
floating objects to move in the wind direction. Wind inducemlflalso causes
the circulation of water, mixing the water surface and tfamsg heat from at-

mosphere to the water column. The mixing water process ighananportant



process where the water is enriched with important gaseslldsolved oxygen
and carbon dioxide that are essential for aquatic life. tfaxrhore, the temper-
ature distribution in the water body, namely the thermaltgftcation process
which is affected by the heat exchange and water circulatomportant for
aquatic life. A better understanding of these processespsitant in managing
water resources effectively.

To simulate such processes, for example the contaminarsjioat process,
a coupled system of partial differential equations (PDEsluding the Navier-
Stokes equations and transport equations needs to be stdvatively. The
general system of equations for the reservoir is derivenh fiioe three dimen-
sional Navier-Stokes equations, energy equation andgoathequation. The 3D
modeling is needed in order to provide detailed solutiornefftuid flow. How-
ever 3D models are often too complex to build and have longtimmas. For
the lake and reservoir systems, flow variations over theocarand longitudi-
nal directions are important, so an appropriate 2D modelasesally averaged
model. There are many textbooks that describe the hydradigsamodels for
lake and reservoirs in more detail, such asl®,[Martin [13], Orlob [14], and

Rubin and Atkinson159]).

1.2.2 Inverse problems

The direct or forward problems compute the distribution@ftaminant directly
from given input information such as contaminant locaticontaminant prop-
erties, fluid flow properties, boundary conditions, inigahditions, etc. On the

contrary, the inverse problems infer the unknown physiasameters, boundary



conditions, initial conditions or geometry given a set ofasered data. In re-
cent years, the inverse problems have been studied aneédpytiely to many

fields, especially in computational fluid dynamics becaust@r importance

in environmental applications. For example, determinimg $ources of toxic
chemical released on the subways or airpot} pr the pollutant sources of
the water-bodiesl[7] or groundwater contaminani@], etc. There are several
approaches to solve inverse problems such as analyticedagp optimization

approach, and probabilistic approach (for more detaiks[54).

The Bayesian inference approach provides a statistiaatisolto the inverse
problem. The Bayesian approach provides a general frankdaothe formu-
lation of a wide variety of inverse problems such as climatedeling 0],
contaminant transport modél], 22, 23] and heat transfei2d]. However, with
complex systems described by partial differential equatiat usually leads to
very large numerical models that are too expensive to soitrerespect to both
storage and computation cost. For Bayesian approach, tipeitewof interest
need to be evaluated repeatedly for each possible value afipluit parameters,

and each single evaluation can be a computationally exypensdertaking.

1.2.3 Optimal control for reservoir problems

Optimal control can be used as a strategy to treat the pdiudger in groundwa-
ter, rivers and reservoirs. For example, Nicklow et 28] ppplied the control on
water discharge to minimize sediment scour and depositigivers and reser-
voirs, while Fontane et al.2p] controlled discharge water to obtain a desired

target level of the thermal stratification cycle. In the stiny Zeitouni R7],



the control applies to the quantity of contaminating chexinan each aquifer
which is described by the two-dimensional advection-dithn equation. In the
study by Bhat et al. 28], the surface of water in a large river is modeled by an
advection-diffusion partial differential equation. Theynsidered the chemical
and sediment loading as a point inflow source of contaminadtdeveloped
an optimal control model to determine the optimal polluteatds at different
influx points along the course of a river in order to reduceeheironmental
damage costs. In the study by Alvarez-Vazquez et 29|, the strategy con-
sists of the injection of clean water from a reservoir at a'lmg@oint into the
river in order to dilute the contaminant in the water up to gaie level in a
short period of time. LenharB8p] has studied an optimal control of a parabolic
differential equation, which is modeling the one-dimensiofluid through a
soil-packed tube in which a contaminant is initially distried. Lenhart con-
sidered the convective velocity as a control variable. Hewehis framework
deals with the one-dimensional deterministic problem astigtands on the the-
oretical ground. The challenge is for higher dimensionatisastic problems in
practical engineering applications.

Despite these above mentioned works, most of the studidisrdéathe one
dimensional deterministic problem and used transporttemsas state equa-
tions. It lacks of the generality because the movement aémmateservoir plays
a key role in distributing the polluted species. Thus in thetool of fluid dy-
namical system, state equations should be included withentum equations
or Navier-Stokes equations.

In recent years, interest has increased in optimal contaidlpms that in-



volved the Navier-Stokes equations. These problems atléengang because
of their complexity in numerical approximations of the NewvEStokes equations
and in the derivation of the optimal formulations. The nuicedrmethods for
optimal flow control problems have benefited much from theettgyment of
computer/supercomputer together with the developmentiofanical methods
for flow simulation. Adjoint-based methods are one apprasssd for the solu-
tion of flow control and optimization problems. This approdas been widely
considered in31, 32, 33, 34, 35, 36, 37, 38, 39| with respect to both theoretical
results and numerical approximations.

To address the stochastic issue in the optimal flow contnel,stochastic
collocation method is a suitable approach. In the collocefiamework, candi-
date solutions are computed at sample points in the muttedsional stochastic
space. The global solution of the SPDEs is then represestad interpolation
functions B0, 41, 42]. The Smolyak algorithm provides a minimal number
of collocation points to construct the interpolation fuoos, which for many
problems leads to efficient and accurate representationeo$tiochastic solu-
tions [43, 40]. The sparse grid collocation method has been widely agppbe
stochastic applications, such as natural convection pradi4], source inver-
sion and flow through porous medidq.

For the approaches discussed so far, optimal control prabieill be too
expensive to solve with respect to both computational Gstisstorage require-
ments. This is because each iteration requires to solveast tee non-linear
solver. For stochastic control problems, the situationasse because we have

to determine multiple realization of the state system ahetration. Thus,



reduced order models are studied to reduce the cost.

1.2.4 Model order reduction for reservoir management ap-
plications

Model order reduction techniques aim to reduce the dimensi@ state-space
system, while retaining the characteristic dynamics ofsygem and preserv-
ing the input-output relationshigf]. Many large-scale model reduction frame-
works are based on projection approach. The idea is to ajppatx any so-
lution of the PDEs of interest as a linear combination of Bohs that have
been pre-computed and to project the large-scale goveatjngtions onto the
subspace spanned by a reduced-space basis, hence yieltingoader dy-
namical system. Methods to compute the basis include badatrancation
[47, 48], Krylov-subspace49, 50], and proper orthogonal decomposition meth-
ods b1, 52].

The most popular technique to find the basis is the propeogahal decom-
position (POD). POD provides an orthogonal basis for a seats, which origin
may be theoretical, experimental or computational dataviih introduced the
method of snapshots, where each snapshot contains spathablotained from
numerical simulation at a fixed time, as an efficient way fotredmining the
POD basis vectors for large-scale problersg[ POD has been successfully
applied for simulation$3, 54, 55, 56], optimization and optimal control prob-
lems b7, 58, 59.

Since the full dynamic system has variable-dependentfmmetnd nonlin-

ear functions, we must choose a suitable model reductiohadetThe tradi-



tional approach is Galerkin method for incompressible flowthis method, a
set of nonlinear systems is approximated using a finite Galexpansion in
term of global modes, obtained the evolution equation femtode amplitudes,
called the Galerkin systen®()]. In the context of optimal control problems, this
approach improves the efficiency of computation by simpidythe full and
complex optimality system, resulting in a set of nonlineatimary differential
equations that is simple and easy to solve. This approacdbdesused success-
fully in optimal flow control problemsH9, 61, 62, 63, 64]. Another approach
is the empirical interpolation method (EIM®%, 66|, in which the nonlinear
terms are approximated using linear combination of emgiti@sis functions
and interpolation points where both basic functions anerpulation points are
computed based on a greedy selection process. Chaturaetabut7, 68] de-
veloped the discrete empirical interpolation method (DEbBdsed on the EIM
method in a finite-dimensional setting. This approach wasessfully applied

to derive efficient reduced-order models for reacting flopliEations B9].

1.3 Thesis Objectives and Outline

The goal of this work is to develop an efficient end-to-end snea-invert-
control approach to solve stochastic problems in the agpdio of water quality

management. The objectives of the thesis are as follows:

1. To develop a numerical simulation of hydrodynamic preessin lakes

and reservoirs.

2. To develop an efficient reduced-order modeling approacolve an in-
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verse problem to estimate an uncertain contaminant soactthan solve

a stochastic control problem to mitigate the effects of ivetaminant.

As such, this thesis is structured as follows. In Chapteh@,gdroblem for-
mulations and numerical simulations for lake and reseram@rgiven. The 2D
laterally averaged model is derived from the Navier-Staepgations and trans-
port equations. Finite element methods together with autartte model and
stabilization techniques are used to solve the system iegsatin Chapter 3,
the computer codes are validated, compared and verified bsimchmark prob-
lems. The 2D lid-driven cavity flow with low and high Reynoldesmbers are
used to validate the code for the 2D Navier-Stokes equatidine backward
facing step flow with higher Reynolds numbers is used to destnate the ef-
fect of turbulence models. Test cases for transport equatce described and
compared with other methods. Chapter 4 presents a modelrexdiection tech-
nique, based on Galerkin projection and POD methods. A gémeduction
framework for linear system is firstly presented, the Garenkethod is then de-
rived for nonlinear systems. In Chapter 5, stochastic egton and stochastic
control are developed for transport problems. A numerigahgle is presented
to demonstrate how the end-to-end measure-invert-costiiategy works for a
stochastic problem governed by the transport equationgp@h 6 concludes

the thesis with recommendations for extensions and futoré.w
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Chapter 2

Mathematical model and

Numerical methods

This chapter describes the governing equations and nuah@niadels for hy-
drodynamic processes such as fluid flow, thermal stratifinaéind contami-
nant transport in lakes and reservoirs. SecBdrdescribes a laterally averaged
model, which is a combination of the Navier-Stokes equatiamd a transport
equation. Sectiof.2 presents the fluid properties and transport properties such
as water density, dynamic viscosity, eddy viscosity, treroonductivity and
diffusion coefficients. Sectiof.3 describes the boundary conditions for the
three hydrodynamics processes. Finally, numerical metfadsolving the lat-

erally averaged system are presented in Se&idn
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2.1 Laterally averaged model for lakes and reser-

VOIrs

We are interested in simulating the hydrodynamic proceaseswater qual-
ity changes in lakes and reservoirs. Here we consider a Zpalat averaged
model. The model is obtained by laterally integrating theiBlaStokes equa-
tion, continuity equation and transport equation, which ba found in many
textbooks (see e.g., J12], Martin [13], Orlob [14], and Rubin and Atkinson
[15]). In this study, we employ the non-hydrostatic model toade the hy-
drodynamic processes. This model is first used by Karpik aathBy [70] to
predict the thermal stratification in reservoirs. It hasrbeeplied widely in
reservoir models{l, 72.

We consider a set of governing equations as described inlioe/fng. In or-
der to simplify the system for general applications, we agtly dimensionless
analysis to the general governing equations. We define diioeal parameters

as given in Tabl.1 Let,

rT= -, 2= ) =75, =7, W= —, = y 9= —,
LO LO BO UO LO LO gdo
p:P_’ ,ux:&’ z—& 512&7 "12227 )\x_ m’ )\z__za
Po Ho Ho Ko Ko Ao Ao
* * T * Uy L Uy L
p:p—27 Tﬂ?: 17—1. 5 j—‘:—7 C:C_7 RQ:M7 Pe: 0 0’
pols 2r0U5 Th Co Ho Ko
Uo Cplto Ry Ry
Fr=-——"_ pr=20 p.="N p __"TNO__
vV 90Lo Ao Rno ! poc,Ug ATy

where the superscript **’ indicates dimensional quantityiles subscript ‘0’ in-

dicates a constant reference value. We then use thesenederalues to derive
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Table 2.1: The dimensional parameters.

Parameter| Description Original dimensions

Ly Length scale {L}
By Width averaged scale {L}
Uo Velocity scale {Lt71}
Py Pressure {ML 2%}
9o Gravitational acceleration {Lt72}
00 Density {ML3}
Lo Dynamic viscosity {ML7't71}
Ko Diffusivity coefficient {ML 1}
Ao Thermal conductivity {Mt=36-1}
To Temperature {6}
Co Contaminant {ML3}

Rno Radiative heating {Mt=3}

the non-dimensional form of the governing equations.

The continuity equation is

Jd(Bw)
0z

J(Bu) N

0
or ’

(2.1)

whereB(z, z) is the local width that varies in verticaland longitudinak: di-
rections,u(z, z,t) andw(z, z,t) are width-averaged velocity components cor-
responding ta: andz directions, respectively, ands time.

The momentum equations are

ou Ou  Ju
ot uax w@z
ow  Ow,  0Ow
ot " "or Tz

_ 1op 1 0 Ju 0 ou
= o " T |0 (P +&(BM@)]
+7y, (2.2)
_ 9 1op
- Fr2 poz
1 0 ow 0 ow
e | (Peg) &(B”z@]' =9
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Herep(x, z, t) is pressurep is the width-averaged densityjs the gravitational
acceleration.Re = POZ—ELO is the Reynolds number that expresses the ratio of

inertial forces to viscous forcedi'r = VUL is the Froude number which is a
goLo

ratio of inertial forces to gravitational forceg, andy.. are the longitudinal and
vertical viscosity coefficient, respectively, is shear stress caused by wind on
water surface.

The concentration of any constituent of water such as disglojjases, or-
ganic matter, etc., is computed by the width-averaged p@mh&quation as fol-

lows

st a8 (o) 2 (5e )

ox ox 0z 0z +5 (24

wherec(z, z,t) is the concentration of the constituent, andand«, are the
longitudinal and vertical diffusivity coefficientg?e = Ug—OLO is the Péclet which
is a measure of the relative importance of convection tasifn..S denotes an
external sources or sinks.

In principle, we can use equatioB.q) for any water quality variables. For
lakes and reservoir study, contaminant transport and tiestratification pro-
cesses are important. Hence contamiraarid water temperatufg are chosen.
The contaminant transport equation is the same as equat#®)nl{ut we replace
S by external body sourceg..

The water temperature equation is written as follows

oT oT oT 1 110 oT 0 oT ORN
o e TV T RePr B @(B%a—x) 9 (BA@) tEy
(2.5)
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HereT'(x, z, t) is temperatureR v the solar radiation penetrating into the water,
andfk, = ponRU% is the radiative heating coefficient, witky, being the typ-
ical value for radiation heating in temperate latitudgs, = 200 — 2500 /m?.
ATy is the change in water temperatuig.and), are the longitudinal and verti-
cal thermal conductivity coefficients, which depend stigrog the temperature
and pressurePr = % is the Prandtl number which signifies the ratio of heat
transport to momentum transport, whegas the specific heat of water.

In order to simplify the system equatioris 1)—(2.5), we make the following
assumptions:

- The velocity distribution in the reservoir is affected hetshape of the
reservoir. Beside the main flow, there are other currentgldping attributed
to the specific geometry of the reservoir such as cross sedide walls, etc.
These situations are complicated and specific. Thus, weresthat the local
width B*(z, z) is wide and unchanged.

- The longitudinal and vertical viscosity coefficients diglgly different. In
this study, they are treated as approximately equal.

-We assumeB ~ 1, pi ~ pr ~ po, ki =~ KL ~ Ko, Af & A\ ~ )¢ and
p~ 1.

The dimensionless system of laterally-averaged equatihis-(2.5) governing
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incompressible viscous flow can be written as follows:

V-u =0, (2.6)

Ju 9
E-Fu-Vu:—Vp—H/vVu—Ff, (2.7)
aT 5
n +u-VT = \, VT + E,VRy, (2.8)

Oc 5

a—ku-Vc:/ch%—fc. (2.9)

Hereu = [u,w]", f = [0, —5=9]", vo = 72, A\ = 725 andk = &-.

2.2 Transport and thermal properties

In this section, we shall briefly describe the fluid propesitteansport properties

and thermal properties that appeared in equati2rg«(2.9).

2.2.1 Water temperature

Water temperatur@'(°C') is an important variation of water quality because of
its direct affect on the aquatic life. There are many factbed influence wa-
ter temperature such as mixing water, inflow temperaturat &echange, etc.
Among them, solar radiation is a factor that directly affettte water body.
Figure2-1, adapted fromJ], shows the compilation of solar component rela-
tionships.

Following that the total net heat flux through the water stef&, is calculated

by the net all-wave radiation, given by

R}k\f = Rgy + Ray — Rgr — Rc — Ry, (210)
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Figure 2-1: The relationship of heat exchange at water serfAdapted from

[1]
Here, Rsy is net solar shortwave radiatio® 4 is down-welling longwave
radiation, Rpr is up-welling longwave radiationz is sensible heat flux and

Ry is latent heat flux. Details of these radiations can foundppéndixA.1.

2.2.2 \Water density

Water density is the mass of water per unit volume. It dep&adinearly on
the temperaturey = f(7'). Pure water densitykg/m?) can be calculated using

the Thiesen-Scheel-Diesselhorst equatids).|

T + 288.9414
508929.2(T" + 68.12963)

po = 1000 [1 - (T — 3.9863)°|. (2.11)

In this empirical formulation, water density will increage density from0°C'
to 4°C and decreases its density fraltC' onwards. As a result, a reservoir in
tropical region will stratify the water body in layers whevarm water is above

and colder water is below.
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2.2.3 Dynamic viscosity

Dynamic viscosity is an important water property measuthegresistance to
motion. For a Newtonian fluid like water, viscosity is a camitat given tem-
perature. Dynamic viscosity valuéd/sm—2) are derived from empirical ex-

pressions{3]:

logy () — 1301
5100700/ T 998.33 + 8.1855(T — 20) + 0.00565(T — 20)2
—1.30233 (2.12)
m 1.3272(20 — T) — 0.001053(T — 20)?
1 ) = . 2.13
0810 (Mzo) T 1105 ( )

Equation 2.12 is applicable forT" = 0°C to 20°C, and EquationZ.13
applicable forT" = 20°C' to 100°C. Here uy is the dynamic viscosity at

20°C' = 0.001002N sm. 2.

2.3 Boundary conditions

Boundary conditions are different depending on each hydrahic process.
Common boundary conditions for a reservoir system are showigure 2-2,
adapted fromZ]. For fluid flow problems, it is necessary to introduce kine-
matic and dynamic boundary conditions at a free surfaces iffiormation is
determined locally using a one-dimensional form of thedm&ave equation

[2]. These boundary conditions will be summarized in thisisect

19



2.3.1 Boundary conditions for fluid flow
Inflow/outflow

In lakes and reservoir problems, we sometimes are not abletéomine exactly
the inflow boundary conditions because of stochastic watantity inputs such
as rainfalls, flood, tides, etc. These situations are caraf@d and difficult to
deal with. In this study, we shall assume that inflow (or outflooundaries are
determined. More specifically, at inflow and outflow bounésyilongitudinal
velocities are assumed as a parabolic function, while vertical velocities are

set to zero. That is

w = £(2), 2.14)

where subscript ‘i’ denotes “in” or “out”.

Solid surfaces

The bottom and solid-surfaces of reservoir are assumed mpermeable to
fluid and the fluid sticks to their surfaces. Hence, the npistiundary condition
is applied,

u=w=0. (2.15)

Free surface

The free surface boundary conditions include the kinentatihdary condition

and dynamic boundary condition.
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The kinematic boundary condition

The kinematic boundary condition relates the motions offtee interface to
the fluid velocities at the free surface. Let the free surfaedefined ag(z,t),

velocity fieldu(z, z,t) = Vo(z, 2,t), the linearized wave kinematic condition

is given by P],
on  0¢
% = 25 (2.16)
0
—¢ +gn =0, (2.17)

ot

which are applicable on = 7. Thus, the complete boundary value problem

(BVP) is to find the potentiab,,(z, z, t) that satisfies

Vi, = 0,
d¢ _ I _
s.t. 2% - ot onz=mn,
Obw -
o 9 onz=mn,
99
= ——H
R onz ,
n = nsin(Dt — kx). (2.18)

HereD = 27 /T, k = 27/ Ay, Ay = %T% whereT is wave period),, wave
length, 7 wave amplitude H total depth. A general solution for deep water

whenn/\, < 1,is

Uy = g exp®® sin(Dt — kx), (2.19)

Wy, = usexp”® cos(Dt — kx). (2.20)
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Hereu, = D7 is the velocity amplitudey,, andw,, are the velocity at free

surface in x and z directions.

The dynamic boundary condition

The dynamic boundary condition requires that the strese tmhtinuous across
the free surface which separates the air and water. Windhfipexerts a drag on
water surface is equal and opposite to the traction exestedhlter on air. Thus

we have

Ty = Cdanf = Cdﬂ“ia (221)

wherer, is the wind forcing on water surfac#, is wind speed at0m above

the surfacep, density of air and”; the wind stress coefficient. Now, can be

Uy = /%Ua ~ 0.030,. (2.22)

approximated as

Wind e
—-
i
free surface n=2z(x1)
T TN < N, X
L \__/ ~—— 4 SN—"
H Wall be
Inflow bc
—_—
Rigid impermeable stationdary + M

Figure 2-2: Common boundary conditions for reservoir pead. Adapted
from [2].
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In this study we assume that the lake and reservoir act liketaer, mean-
ing that we have a closed water body. The water surface idlyspaescent.
Only water velocities and wind-induced water velocity iefiice the water sur-
face. Water velocities play a key role in the near field anddwiduced water
velocity is an important factor in the far field. Under thestiuences, the water
surface may have oscillations but with small amplitudeser@N, these influ-
ences are small and do not have a large effect on the entee/oés Thus we

neglect the kinematic boundary condition.

2.3.2 Boundary conditions for water temperature
Inflow/outflow

Inflow temperature is given as a constant value and outflovpéeature satisfy

the homogeneous Neumann conditions:

T="1T,, only, (2.23)
T
8— =0 onl,., (2.24)
on

wheren is the normal outward vector.

Solid surfaces

In a real reservoir system in a tropical region, the waterybeill be stratified
in layers where warm water is above and colder water is belowthis case,
the walls temperature will have the temperature value dtvager layer. Here

we assume that the bottom of reservoir has a temperdiuaad the surface
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water has a temperatufé. The walls temperature is defined by the temperature
linearly decreasing from the surface temperature to theywtemperature of

the reservoir. That is

T|wa|| =T, atz =0, (225)

T|wa|| =1, atz= —H, (226)

whereH is average depth of the reservoir.

Free surfaces

Temperature at a free surface is complex because it invbleasexchange at
the surface between the atmosphere and water in the reseila boundary

temperature at the surface of the water is given by

oT
= Run+ Ru+ Re. (2.27)

— pCpA 3

HereRgr, R, and R are described in Appendi.1.

2.3.3 Boundary conditions for contaminant transport

The inflow boundary and other solid boundaries satisfy a lggneous Dirich-
let condition. The outflow boundaries and free surface banndatisfy homo-

geneous Neumann condition.

c=0 onlp, (2.28)
@ =0 only. (2.29)
on
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2.4 Numerical methods for lateral reservoir sys-

tem

This section describes the numerical method for solvingsifstem of equa-
tions. Here, the mixing length model is briefly described efithe stabilized
second-order fractional-step method is employed to salvéhke Navier-Stokes
equations. Finally, the finite element method is used tardise the governing

equations in space.

2.4.1 Turbulent models

Many environmental flows are unsteady and turbulent. Fgelsicale system
such as a reservoir, we only want to capture the main chaistats of the flow.
Hence, the mixing length turbulence model is suitable fat gurpose.

The Reynolds-Averaged Equations in dimensionless formqoégons 2.6)—

(2.7) are

V-u=0, (2.30)

5 +u-Vu=-Vp+V- ((l/v + yt)Vu> +f, (2.31)

whereu is the mean solutions of velocity field andthe mean solution of
pressure field.v, = 1/Re with Re is the viscosity Reynolds number, as de-
fined abovey, = 1/Re; with Re, is the eddy Reynolds number, defined as

Re, = % Here ., is a eddy viscosity. The mixing length mod@¥ is
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then used to determings. That is,

IN
<

Kz,
[y = poz;’g—‘;’ with 1,,, — (2.32)
6,

STIRN

[SEIRN

Hereg—‘zl is the partial derivative of the stream-wise velocity widispect to the
wall normal directior, 1,,, is the mixing lengths! = 0.41 and ! = 0.09. ¢ is
the boundary layer thickness.

A similar formulation is derived for the temperature tramdgequation. If

the flow is turbulent, the eddy viscosity is added in to diumsterm as follows

T
%—t +u-VT = (A + MNV?T + E,VRy, (2.33)

where), = P%t with Pe, is eddy Péclet number, defined Bs, = “2f¢. Here

A is the horizontal eddy viscosity, calculated from the fafilog formula [75]

M = E,pe, HU,, (2.34)

whereH is average depth of the reserveir= 2 x 107°. E, is a constant.

2.4.2 Numerical model for Navier-Stokes equations

As discussed in the boundary section, we wish to solve thd flaw prob-
lem with all Dirichlet conditions applied for the boundarieLetD ¢ R? be a

physical domain. The Navier-Stokes equations as desdrbegliations2.30—
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(2.37) with boundary conditions and initial condition are given a

88_1; +(u-V)u = -Vp+vV2u+f inDx[ty,tg], (2.35)
V-ou-=0 inD x [ty,t],  (2.36)

u = up onT' X [tg, ], (2.37)

u(x,0) = ug(x) in D, (2.38)

whererv = (v, + 1) is the fluid kinematic viscosity € D denotes the spatial
coordinatest € [ty, t] denotes time, and, the initial condition.

In order to solve problen®(35—(2.38 we use the pressure stabilized second-
order fractional-step method formulation based on thespresprojection. For
details discussion and derivation of this method, one mizy te [45, 76]. Here
we present the method for this particular problem. Defineallgerithmic pa-
rameters as follows

1
45+2Mﬂq (2.39)

h? e

e

whereh, is the local size of elemet ||u,|| is the local velocity in the element.

Equations 2.35-(2.38 can be written as follows

aa—ltl +(u-Viu = -Vp+vVu-+f inDx[t,ts], (2.40)
—Vp4+1V-14+V-u=0 inD x [to, t¢], (2.41)
—Vp+m =0 inD x [to, t], (2.42)

u = up onT' X [ty,ts], (2.43)

u(x,0) = up(x) in D, (2.44)
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wherer the projection of pressure.

Finite Element Approximations

Finite element method (FEMYT/] is employed to discretize equations in space.
Finite element formulation requires solutions of the weakfulation of €.40)-
(2.44). The weak formulation is obtained based on the variatitorahulation
of the problem. In order to satisfy the Dirichlet boundarydiion, for a fixed
t € [to, ts], the weak solutions of the velocity spake= {u,v,w € H (D)},
pressure spac® := {q € L?(D)} are chosen. Introduction of the bilinear

forms is given as follows

a(u,v) == (Vu, Vv), (2.45)
b(q,v) == (¢,V V), (2.46)
c(u, v, w) == <u~VV,W+ %((v : u)v,w)), (2.47)
s(u,v) == (u,v). (2.48)

where(u, v) = [, uv dD denotes the standaid inner product.
For finite element space, € V, 9, € Q, the discretization of the weak formu-

lation can be defined as: find the approximatiafi*?, 777, pr) to (u*!, 77+t prtt)
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such that

5 n
3(%, vi) 4+ c(up ™ urt? vy + va(urt? vy) = b}, vi)
Fs(E v,)(2.49)
—dts(V(pptt —pi), V) — ms(Vpptt — 72, V) = b(gn, up ™), (2.50)

5un+6
s( 5’; Vi) — b(pZJrl —pp,vp) = 0, (2.51)

va(mi™ qn) = va(Vpi, ¢2.52)

Here 6t is the time step size, superscripts refer to the time stegl,lév €

[0,1/2,1], wpt? := u*! + (1 — O)u} anddu} := u ™ — ul.

The second-order fractional-step algorithm

The second-order fractional-step method need three siesmivte the system of
equations 2.49—-(2.52. We introduce the finite element matrices to the form
of the system witt = 1/2. The fundamental formulation of finite element

method is provided in AppendiX.2.1. The algorithm is,

1. Determine the intermediate velocity fields

ou” -
M+ (O + K () Ju™? = ~Gp 4 inD, (253)

u=up onl'. (2.54)
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2. Update pressure

Nner 1

— Lyt = D o (L AT ) - nDe (). (2.55)
e=1

n-(Lp"™) =0 onT. (2.56)

Equation R.56) is the homogenous Neumman boundary conditidi& [
In addition, the pressure at given point is fixed. Hafg, is the number
of element. Note that we need to computen each element becausg

is discontinuous across the element.

3. Update projected pressure and velocity

Mzt = Gp™t! inD, (2.57)
Mu"tt = Mu"*V2 — ¢tG(p"tt —p") in D, (2.58)
n-u" =n-up onT. (2.59)

These elemental matrices are given in ApperAl.2. For computational pro-
cedure, we assemble the matriddsL, G = [G, G.] andf = [f, .| before

the transient analysis. Then we assemble the matiKc&s, A, D at each time
step. The computation will stop when it meets the convergeaquirements.

Let e, be the tolerance interior, and the relative error at eack stap is given

by

unJrl —u® 2
error= ! Iz, < &g (2.60)

a1,
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2.4.3 Numerical model for transport equations

In general, a transport equation has the formz®)( In order to represent
the stochastic processes which appear in realistic applitsa we introduce
stochastic variables into the governing equation. Let iffagivity x(x,;w)

be a function mapping the product spdeex [ty,t;] x & — R, wherex € D
denotes the spatial coordinates ar& [, ¢ ;] denotes time. The randomness of
the diffusivity is contained iv € €, wheref2 is the sample space. A contam-
inant concentration which is represented by a functios ¢(x, t; w) satisfies
the stochastic parabolic differential equation (SPDEyrmtary conditions and

initial conditions as follows:

% +u-Ve— V- (k(x,t;w)Ve) = fo(x,t;¢) inD x [to, ty], (2.61)
cC = Cp onl'p x [to,tf],(262)
oc
a—n =0 onl'y X [to,tf],(263)
c(x,ty;w) = co(x;w)  IND. (2.64)

Here f.(x, t; ¢) is the external source witth € R? are source locations, angl
is the given initial condition. The inlet boundali is subjected to a Dirichlet
conditioncp, while the remainder of the bounddry, = I'\ ', satisfies homo-
geneous Neumann condition. The velocity fieldc R? in the convective term
can be a function ok andt¢ or constant.

Next we use the finite element method together with stoahasetlocation

approach to discretize this system of equations in space.
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Stochastic Collocation Method

In the collocation framework, the SPDE problem is transfedrinto a parame-
terized family of deterministic PDEs using an assumptiofirofe-dimensional
noise @1, 79). The approximation of the SPDE solution is then computestda
on a weighted combination of the solutions at each sampliedrcollocation
space.

In order to solve the SPDE problem using collocation metheglassume
that the randomness can be modelled by a set of finite number of random
variables. Thus the uncertain diffusivity fiekdcan be written as(x, t;w) ~
k(x, 6 Y (w)), whereY (w) = {Y;(w)}.; are independent random variables.
We define a finite dimensional subspace or a collocation sasitkee space of
degreeP — 1 polynomials,P”~1(6). The collocation space has two attributes:
the collocation point§6”*}£_, and the collocation weightsw*}£_,. We then

represenk as
k(x, 1Y) =E [K](x,t) + Z k:(0)Yi(w). (2.65)

Here the functions:; are deterministic functions ané represents the coor-
dinates in the collocation space. The expansion in EqudBdb could be
computed for example using the Karhunen-Loeve decomripogB0]. The un-
certain diffusivity fieldx in Equation 2.65 can be considered as functions of
variable@” if the random vectolY (w) is given. As a result, the stochastic col-
location requires evaluation of the solutiefx, ¢; Y') at each collocation point

{0’“}521. Hence, the SPDE problem with an uncertain input paramsteow
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written as a deterministic parameterized PDE whlis the input parameter.
The solution of the SPDE is a global approximation cons&ditty linear com-

bination of the solution at collocation points.
P
P, 5Y) = (x5 Y) Li(6), (2.66)
k=1

where L, (0) is the Lagrange interpolation function corresponding t® it

collocation point, andy(x,t;Y), k= 1,--- , P, are the solutions to:
aCk k .
a5 +u-V¢, — V- (/@(0 )Vck) = fx,t; ) InD x [ty, ts], (2.67)
Cr. = Cp onI'p x [to,tf],(2.68)
8ck
a—n =0 onl'y x [to,tf],(269)
cr(x,t0:0%) = co(x;0%)  inD. (2.70)

Finite Element Approximations

The finite element method (FEMJT] is employed to obtain a semi-discrete set

of equations with the following form

Me + (Cc(u) Kt Hk)>c — £.(t; ), (2.71)

Here,c(t;Y) € RY is the discretized approximation ofx, ¢; Y) and contains
N state unknownse is the derivative ot with respect to timeM € RY*¥ is

the mass matrixC.(u) € RV* is the convective matrixi.(t; 0*) ¢ RV*N
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is the stiffness matrix, anfi(t; ¢) € R is the external source. Her#, is the

number of grid points ané"* the k™ collocation point.
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Chapter 3

Code Verification and Validation on

Benchmark Problems

In this chapter, our numerical models are validated, coegand verified us-

ing benchmark problems. In Secti@l, a two-dimensional (2D) lid-driven
cavity flow without gravity in the range of Reynolds numbei Re = 100

to Re = 5000 is used to validate our codes for the 2D Navier-Stokes equa-
tions. Numerical results are in good agreement with thoseitodd from the
study of Ghia et al. §1]. In Section3.2, the backward facing step flow with
Re = 132,000 is used to demonstrate the effect of turbulence model at high
Reynolds number. Numerical results are compared with théystound in

[82, 83 84]. In Section3.3, three test cases for transport equations are de-
scribed. Numerical results are compared with the othegefdifference methods

in [85, 86, 87]. Finally, numerical simulations of two-dimensional hgdynam-

ics processes are presented in Sec8dhn
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3.1 Cavity flows

We consider the benchmark problem: lid-driven cavity flowgat= 100, Re =
1000 and Re = 5000 and compared with Ghia et al8]]. The problem set up

is shown in Figure3-1. Triangular equal-order velocitpressure elements are

Dirichlet
1 u=U,v=0
Dirichlet Dirichlet
u=v=_0 u=v=0
0 Dirichlet 1
u=v=>0

Figure 3-1: Cavity flow set up and boundary.

used to generate the grid. The number of grid points incthedy directions are

n, = 60 andn, = 60, respectively ofN = 3721. The Crank-Nicolson method
[88] (with & = 1/2) is used to discretize the system equations in time, where
t € [to,ty] with t; = 100 and time step sizé&\¢t = 0.08. The steady solution

is obtained when convergence conditi@g0) is satisfied, where the tolerance
tol = 1.0e~* is chosen. Figur8-2 shows the convergence of our computations.
We observe that when the Reynolds number is 100, 1000 and 8@®@om-
puted solutions reach the steady solutions but with diffecemputational time.

In caseRe = 100, steady solution reaches very fast while in cage= 5000,

the steady solution needs longer time.

Figure3-3 shows the velocity profiles in the centerline of the cavityaat-
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Figure 3-2: Convergence rate of the solutions for variougmiBkls numbers.

ous Reynolds numbers. Numerical results are matched with &lal. (1982)

results.

3.2 Backward facing step flows

The purpose of this test case is to provide a validation ferrttixing length
model (which is described in Chap®t The fully turbulent flow past a backward-
facing step is set up for the : 2 expansion ratio and Reynolds number =
132,000. We compare with the available results in the literat@2 B3, 84).
The geometry is given as in FiguBe4, with —5 < x < 22and—1 < y < 2.

Boundary conditions are set as follows:

Inlet : if Outlet:

Walls are set to the no-slip boundary condition. Triangelgual-order veloc-

ity/pressure elements are used to generate the gridMVijth, = 9728 elements
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Figure 3-3: Comparison of central profile of velocity.

T3 finite element subdivision

Figure 3-4: Geometry and mesh of backward step.

and/N = 5105 nodes. Computational time is settat= 100 with time step size
At = 0.05. The turbulent viscosity;, is computed based on equatich32.
Here, we set the boundary layer thicknéss 0.85. The computed results of

streamlines and mean velocity profiles are presented inr&gy6.
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Figure 3-5: Computed results from mixing length turbulemidal.

Figure3-5indicates that the mean reattachment point is argusdwhich
is close to the experimental value of ab@ut in Kim et al. [82]. The value in
the study of Thangam and Hu84] is 5.58 and Speziale et al8[] is 5.5 t0 6.4
corresponding with the specific turbulence model adoptexde that the results
in [83, 84] are based on the more complex- ¢ model.

Figure 3-6 shows the comparison of the mean velocity profiles with exper
imental results. In this figure, the solid line is numeriedult and the symbol
represents the experimental data;is the height of step. We observe that the
computed results with the mixing length model have goodexgent with ex-
perimental data. Whe@g = 0 at the boundary, the eddy viscosjty = 0,
which is why the solid line always starts at value 0. It is arttwming of the
mixing length model. However for large-scale problems sagh lake or reser-
Voir, it is not necessary to capture all the small charasties of flows. Thus,

the mixing length model is suitable for our study purpose.
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Figure 3-6: Comparison of mean velocity profiles with expenntal results.

3.3 Validation of code for transport equation

In this section, we provide some numerical examples toyent codes for the
convection-diffusion equations, which are described iaftar2. We shall con-
sider two test cases. First we present a numerical solutibagure diffusion

equation. Second, a convection-diffusion flow is presented

3.3.1 Pure diffusion equation

The first test case is equatidh§1) in the unit square domaib = [0, 1]x[0, 1]
with the coefficientar = 0, f. = 0 andx = 1. It will result the Péclet number

Pe = 0. The equation is a pure diffusion equation, whose exactisolis given
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Cezact (X7 t) = €727T2t Sin(ﬂ'l') Sin(ﬂ'y). (31)

The initial and Dirichlet conditions can be obtained dikg@tom equation 8.1).
Triangular elements are used to generate the grid. The nuoflggid points
in the z and y directions aren, = 40 andn, = 40, respectively orN =
1681. Computational time is set af = 1 with time step size ofA¢t = 0.001.
Figure3-7 shows the initial and final computed solutions. In the puftsiion,

the contaminant spreads out and decreases in magnitudeagyad

1 x10~°
2.5

. 1
; 0.5
; 0.6

o 15

2 0.4 1
1
0.2 0.5 0.5
1
0.5 0 Y axis 0.5

0 X axis 0o X axis

N

(a) Initial time (b) Final time

Figure 3-7: Contaminant solutions.

To further illustrate the effectiveness and validity of to&les, we compare
our computed result with the results of other numerical m@sh(Finite Differ-
ence Method approach) such as the Peaceman-Rachford ADAPH scheme
[87] and Karaa and Zhang ADI (HOC ADI) schen®H]. In Figure3-8 we plot
the L,-norm errors at each time step. The error obtained by thelatdrFEM

is in the range of the error bounds.
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Figure 3-8: Comparison of the,-norm errors at each time step.

3.3.2 Convection-diffusion equation

The second test case is based on Noye and 8@ [We consider equation
(2.61) in a square domai® = [0, 2] x [0, 2] with coefficientsu = [u v]T =
(0.8 0.8]T, f. = 0 andx = 0.01 or Pe = 226. An exact solution of the problem
is given by

1
4t + 1

exp < — — (3.2)

B (x —ut—05)? (z—ovt—0.5)?
Cea:act(x7 t) - :‘i(4t + 1) H(4t + 1) )

The initial condition of this problem is obtained by setting= 0 in equation
(3.2. Itis the two dimensional Gaussian, pulse located.at 0.5 andy. = 0.5,
with a strength of valué. The Dirichlet conditions are set to zero for all sides
of the square. Triangular elements are used to generataitheTde number
of grid points in thexr andy directions arex, = 80 andn, = 80, respectively
or N = 6561. Computation time is set a&; = 1.25 with time step size of

At = 0.00625.
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Figure 3-9: Contaminant solutions. Each peak is equidistant = 0.25.

Figure3-9 shows the computed solutions during the simulation in 3bvvie
ing, where Z axis shows the magnitude of contaminant. Cointam starts at
(x¢, ye), then moves away and spreads out due to the convective dndif
term. Finally, a small amount of contaminant remains ataedi, 2] x [1, 2]

whent = 1.25. Figure3-10shows contour plots of the exact and computed so-

2 2
1.8 1.8
1.6 1.6

> > -
1.4 1.4
1.2 1.2

1 15 1 2

X
(a) Exact (b) Computed

Figure 3-10: Contour plots of the pulse in the sub-regiork =,y < 2 at
= 1.25.

lutions at the final time. The computed solutions (Fig8+&0(b) show that the

FEM code captures well the moving Gaussian pulse. Conteetdand pulse
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centered at final time match as well as the analytical soluftagure3-10(a).
Furthermore, the relativé,-norm error between the computed and exact solu-
tion is 7.535¢~* which is reasonable in comparison with results8f]]

In summary, the verification and validation of codes for swthe Navier-
Stokes equations and convection-diffusion equations legah llone. The test
cases show that our codes are reasonable to do the simslatiche real-
systems. In the next section, we will use the codes to sim@Bx hydrody-

namics processes.

3.4 Numerical simulations for 2D hydrodynamic

Processes

In this section, a small-scale model of a 2D laterally avedageservoir is con-
sidered. This model is suitable for the hydrodynamic prestsdy and optimal

control study purposes.

3.4.1 Model setup

The physical domain is illustrated in Figusell, which represents a simplified
model of a 2D lateral reservoir system.

The reservoir system includes a main reservoir sectiotcsied in longitudinal
and vertical directions and the river connections or caralsur model, inflow
boundary is at the top-left corner, while the two outletshwgiate-controllers
are located on the right boundary. The remaining are saolithse boundaries

(i.e. walls and bottom-bed) and free surface. We assumdhbatontaminant
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Figure 3-11: The physical domain of 2D reservaoir.

will exist within the main reservoir section and the contaamt transport pro-
cesses are mainly affected by the inflow and wind velocityatHiadiation is the
main source of heat exchange at the surface. For conveniemoenputation,

we assume that averaged water temperature is arpififc. Based on equa-
tions 2.12—(2.13 we can then determine the dynamic viscogitgnd also the
Reynolds number.

The spatial domain is discretized by finite element meshhaw/s in Fig-
ure 3-12 with the total number of grid pointy = 2121 and the total number
of elementsV,,.,, = 4000. The computational time is froy = 0 tot; = 40,
with time-step sizeAt = 0.08, so the number of time stegs= 500. We also
placedN, = 16 sensors located on anx 4 uniform grid covering the reservoir

section.

3.4.2 \Velocity field and pressure field

A time-dependent velocity field is obtained from the 2D latewveraged system,
which is given in Equation2(35—(2.38), where the body forcé = [f, f.]7 =

[0 g]T with g being the gravitational acceleration.
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Figure 3-12: The computational domain with = 16 sensors.

The boundary conditions are set up as follows

(u, w) = (1,0) onTyy, (3.3)
(u, w) = (—16% (2.0 +2) * (1.5+2), 0) onTy, (3.4)
(u, w) = (—16% (1.0+2) * (0.5+2), 0) onTs, (3.5)
(u, w) = (0.03V,, 0) onTyy, (3.6)

p=0 onTy 3.7)

The velocity on the remaining boundaries is set to zero. Heras the
wind speed at0m above the water surface. In this example, we assumed that
V., = 2m/s for the whole simulation time. We make an assumption that the
changing of free water surface is small and does not infludmesimulations.
Thus we can ignore the kinematic boundary condition. ThenBkels number is
Re = 1.0 x 10°, the turbulence model (the mixing length model in this cése)
used to approximately model the effects of turbulence.

Figure3-13shows the pressure field at= 40. Under the gravitational ef-
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fect, pressure field has stratification and is good agreemigmthe hydrostatic
pressure. Let us take a look at the hydrostatic pressure asctidn of depth
(h) [89] and given as

dp = pgdh. (3.8)

Here density considered to be a constant, the hydrostatic pressureamedbit
by integrating equation3(8) from £ to the free surface, where & = 0 and

Do = Patm Pressure in the atmosphere. We have therefore

P = Datm + pgH. (3.9)

In our computation, we assume;,,, = 0 (as in equation3.7)) and with the

total depthH = 2, the bottom hydrostatic pressurepis= 19.62k Pa.

[ Ol 3] ]

P:. 123 456789101 1213141.516171819

Figure 3-13: Pressure field at= 40.

Figure 3-14 shows velocity fields of reservoir at= 40. Because of the
long wall after the inflow, the circulation at this cornerasde and strong. This
situation will lead to potentially bad water quality becaws the agglomeration

of the contaminant concentrations.

47



s
2 i
i

A .
A "//'////,,—.———

Figure 3-14: Velocity field at = 40.

3.4.3 Temperature field

In water the specific heat is, = 1.J/¢°C and the Prandtl number has a fixed
value Pr = 7.0. So the thermal Péclet has a valder = Re - Pr = 7.0 x
106. It has strong thermal dominance. As such, the thermaiifatedion can be
obtained from the water temperature equat@®38 associated with initial and
boundary conditions as described in the following.

For most environmental flow conditions, water velocities asually in the
range ofl — 10m/s. Corresponding with this condition, the characteristinte
perature chang&Ty is around2.5 x 107* to 2.5 x 102 Celsius degreelf).
Thus the radiative heating coefficienti$, = mcf&% = (0.8 — 1), corre-
sponding td/y = 1m/s and Ry = (200 — 250)W/m?.

We assume that the water surface temperature is 20°C, water depth’s
temperaturel, = 10°C, and atmosphere temperaturelis = 22°C. Water
in the reservoir is initially quiescent and at an initial f@enature as given in
Figure3-15

During the simulation, cold water &, = 16°C flows into the reservoir via

the inlet boundary. The outflow temperature satisfies thedgemeous Neu-
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Figure 3-15: The initial temperature field.

mann conditions. The bottom and walls of the reservoir aseragd perfectly
insulating. The boundary temperature at the surface is ssrided in Equa-
tion (2.27). The eddy viscosity is calculated from Equati@34). Here, depth
averaged? = 2 and we sef; = 1.

Figure3-16shows the process of thermal-stratification in the resef@mn
initial stage to final stage. The water in the reservoir igafly quiescent. The
inflow with cold water will gradually replace the water ingideservoir. This
phenomenon contributes to a decrease in water temperaiure.procedure
is continued until cold water is completed mixed into theergsir. However
due to the radiation heat exchange, water in the reservogived energy to
maintain an unchanged water temperature. Thus, the suwiiee maintains at
high temperature. The mixing process continues until theuarhof cold water
is large enough. At this stage, the remaining part of hot mwates pushed to
the end of reservoir and flowed out. At the steady state, thlestratification is
formed. One thing we can clearly see is that the thermalifstedton process
is mainly affected by the main streamline. At bottom leftrear of reservoir,

where the streamline has only a small influence, very litibamg has occurred.
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Figure 3-16: The temperature field at different time

Figure 3-17 shows the temperature profile at locatians= 0.5 andx =
1.75. Due to the strong velocity inflow, the temperature profiléhe near field

changed much more than the temperature profile in the far field

Temperature at x = 0.50 Temperature at x = 1.75

——t=8 ——t=8
——t=16 ——t=16
-0.5 ——t=24 0.5 ——t=24
w —t=32 W —t=32
g » ——t=40 g il t=40
N N
-1.5 -1.5
Y ) ‘ . ) N i L . .
92 14 16 18 20 22 92 14 16 18 20 22
1°%) 1°C)

Figure 3-17: The temperature profile at different titne
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3.4.4 Contaminant field

We assume that within the reservoir section, there existsuece of contam-
inant. In time, the source spreads out and moves around sleever. That
contaminant field is simulated and obtained by using eqnd#®1) associated
with initial condition and boundary conditions as desadili@the following. In
this example, we use a source as the superposition of Gaussigces, each
one active on the time interval, < [to,%,s¢] and centered ap, € D, with

strengthh,, and widtho,.. That is,

Ens: hy |¢k: X|2
. [b X L — . 3.10
]c(x7 tv ) p 2 gk €xXp ( 9 gk )5(t tOk) ( )

To consider a simple test case, we choose the number of saiorben, = 1,
located aip, = (z., 2.), with the strengtth, = 0.2 and widtho,; = 0.05. The
active time of the source ig; € [0, t,] with ¢,7; = 10.

The inflow boundary and other solid boundaries satisfy a lggneous Dirich-
let condition,I"p; the outflow boundaries and free surface boundary satisfy a
homogeneous Neumann conditidhy. The diffusivity coefficient is assumed
to be constant; = 0.005. Thus the Péclet numbéte = 200. The contaminant
is assumed to be zero at initial timg= 0. Figure3-18shows the contaminant
solution¢(x, t) of the forward model withp, = (0.5, —0.5) at specific times.
The contaminant field increases while the source is activiter Ahe shutoff
time of the source, the contaminant moves away, spreadshduiecreases in

concentration due to convection and diffusion until it floovg of the domain.
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Figure 3-18: Contaminant field of at specific times.
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Chapter 4

Reduced-Order Modeling

Reduced-order modeling has been widely used in computdtilind dynamics
for the simulation of large-scale systems. In this chapterpresent a model
order reduction (MOR) technique, based on Galerkin prmacand proper
orthogonal decomposition (POD) methods. We use these agipes to con-
struct efficient reduced-order models to study propertfeynamical systems
in reservoir applications. A general reduction framewaklinear systems is
presented in Sectioh.L Then we present our Galerkin projection approach for

nonlinear systems in Secti@gn2

4.1 General reduction framework for linear sys-

tem

This section briefly introduces the general reduction fraor& for linear sys-
tems of equations. The reduced-order model is obtaineddgdmbination of

the Galerkin projection framework and the proper orthoggdeaomposition.
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4.1.1 Reduction via Projection

We consider the system of ODEs as they appeared in Egd)€(2.72. For

ease of reference, we repeat the equations here:

Me + (Cc(u) Kt Ok))c — £.(t; ), (4.1)

c(to; Y) = co(Y). (4.2)

Here,c(t;Y) € RY is the discretized approximation ofx, ¢; Y') and contains
N state unknownse is the derivative ot with respect to timeM € RV is
the mass matrixC,.(u) € RV*V is the convective matrixiK, (¢; 8%) € RV*V

is the stiffness matrix, anfl(¢; ) € RY is the external source withh € R>
are source locationsu are the velocity field.Y (w) are independent random
variables. Here)N is the number of grid points ar@f the* collocation point.
We are also interested in the output of contaminant soluitbeome sensor

locations in the domain, which is given by
Yo(t; Y) = Be(t;Y), (4.3)

where matrixB € R>*" and vectoly,(t; Y) € R contains theV, outputs
of the system. A reduced order model of this system can beeteby ap-
proximating the full state vectaras a linear combination of. basis vectors as
follows,

c~ Ve, (4.4)
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wherec, € R™ is the reduced order state aid= [v; ---v,,] € RY*™ is an
orthonormal basis, i.e}/7V = I. Projecting the systen#(1)—(4.3) onto the

reduced space formed by the column span of bEsyselds the reduced-order

model in @.5)-(4.7)

M, &, + (Cp(u) + K, (t;0%)) ¢, = £.(t; 9), (4.5)
CT(tO;Y> = COT(Y), (46)
y:(tY) = Bre (1;Y). (4.7)

Here the reduces matrices are given by

M, = VIMYV, (4.8)
K, (;0) = VTK(t;6")V, (4.9)
C,(u) = VIC.(u)V, (4.10)
f..(t;¢) = V1t 9), (4.11)
B, = BV, (4.12)

and the reduction of the given initial condition is

cor(Y) = V¥iey(Y). (4.13)

The model reduction task is then to find a suitable b&siso thatm < N.
In the literature there exist various methods for the corafpan of proper basis

in the case of large-scale system, such as balanced troncktylov-subspace
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and POD methods. This study will consider POD as the methodripute the

basis.

4.1.2 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) provides a methodotapute the
reduced-order basis and construct the low-order system by projection. Here

we briefly describe the general POD method (more details neafobnd in

[52).

Let X = [c!(t1) c'(ta) ---cl(tp) c2(ty) -+ - cS(tr)] € RV*? be a
collection of Q snapshot state solutiors(t;),j = 1,---,7, whereT is the
number of time steps, of the system th1) for s = 1,--- , S input parameters.

The POD basis is optimal in the sense that vectorare chosen to maximize

the averaged projection oft) ontoV/, suitably normalized

(le, V%)
max , (4.14)
v v
where| - | is the inner product of basis vectbrwith the fieldc, (-) the time

averaged operator ard || the L, norm.

The POD basis vectors are theleft singular vectors ofX corresponding
to the largest singular valués: < Q). Leto;,7 = 1,2,--- , Q) be the singular
values ofX in non-increasing order. We determine the number of PODovect

to retain in the reduced-order model by choosimg< ) vectors such that
m Q
AT (4.15)
i=1 j=1
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whereeg (%) is the required amount of energy, typically taken to99&; or
higher. After obtaining the POD basis vectors, we can rgdlve the reduced-

order system.

4.1.3 Error quantification

In order to estimate the accuracy of the reduced modelvelgdithe full model,
we use the time-dependent relative norm error of solutigrig) and relative

error of outputs(¢). These errors are defined as follows

le(*) = Ve, (t*) | Lo

") = 4.16

er () e I 20) (4.16)
o Y @) =y ()| o)

) = T e (4.17)

Here,c(t*), c,(t*),1 < k < T are the full and reduced solutions(t*), y, (t*), 1 <
k < T are the full and reduced outputs of interest. The space-tione error

eL is then defined as
1/2

4.2 Reduced order model for non-linear systems

In this section, we present an approach to reduce the digrensthe fluid flow
equations. The approach uses a combination of Galerkiegtrop method and
proper orthogonal decomposition directly on the NavierxkBs equations and
transport equations to yield a set of ordinary differergigliations capturing the
essential dynamics of the system. This approach has beatywisled in com-

putational fluid mechanics and optimal control applicagioRor more details,
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refer to B9, 61, 63, 90.

4.2.1 Galerkin projection method

The dynamical system for consideration is the two dimeraditaterally aver-
aged model as described and simulated in Chaptard ChapteB. Here, we

re-write the governing equations for ease of discussion:

aa—ltl +(u-V)u = —Vp+vVu+f inDx[ty,ty], (4.19)
V-u=0 in D X [tg, ty], (4.20)

u = up onT' x [to,t], (4.21)

u(x,0) = up(x) in D, (4.22)

% +u-Ve=V- (/@(x, t; w)Vc) + fo(x,t; @) InD x [to, tf],(4.23)
c=cp onI'p x [to, tg], (4.24)

g—rcl =0 onI'y X [tg,ty], (4.25)

c(x,ty;w) = co(x;w) in D. (4.26)

whererv = ﬁ is the fluid kinematic viscosity. The boundary condition for
the pressurép) at the water surface is set to zero. The diffusivitx, t; w) is
assumed to be a constant.

Let {u(x, tk)}]kvjq” be the snapshots of velocity and let(x, tk)}fﬁ“” be
the snapshots of contaminant field, whévg,,, and N¢,,, are the number of
velocity and contaminant snapshots, respectively. Thecitglfield is decom-

posed as follows

u(x,t) = u,(x) + u'(x,1), (4.27)
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whereu,, = —— kN:’;” u(x, t*) is the mean flow, and’(x, t) the fluctuat-
snap

ing velocity field. The fluctuating velocity field is represed by the proper

orthogonal decomposition

w(x,t) = > ap(t)Pk(x), (4.28)

where®, (x) is thek POD basis for the velocity andg, (¢) is the corresponding
time dependent amplitude. We now consider the expansidmeofelocity field

as follows

u(x,t) = u,(x) + Z ag(t)®r(x). (4.29)

whereM, < N*

snap

is the number of POD velocity basis vectors used in the

approximation. A similar formulation can be obtained fog tontaminant field

c(x,t) = cp(x) + Z Ve (6) W (x), (4.30)

where ¥, (x) is the k' POD basis for the contaminant ang(t) is the corre-
sponding time dependent amplitudd, < N, is the number of POD con-

taminant basis vectors used in the approximation.
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4.2.2 Galerkin system

The Galerkin approximation to equatiodsX9 and @.23 is then

(®;,,V-u) = 0, (4.32)

(\pi,%> +(u-Ve, W) = —k(V®,,Ve) + (U, f.). (4.33)

The Galerkin projection of the first term id4.31) give us the local acceleration

term
(:x). % [, (x) + iaj(t)cbj(x)})?) — Zu:ozj(cbi, ®)p = . (4.34)

The convective term in4(31) has the form as

(@ (0 V)u) = (@0 ([un + Mz a;(1)®;] - V) [wn + MZ oL}
— _Z{ i (@5 V)u,) + (<I>¢,(um'V)‘I’j)]ij
—(<I>Z~, (w,, - V)um)

—Zuzu Z, q) V q)k)C(JOék (435)

7=1 k=1

To derive the Galerkin projection for the pressure term wst fionstruct a so-
lution of the pressure-Poisson equation with respegt ttoen project its solu-

tion of basis spacesfd]. Neglecting the residual of the Galerkin expansion, the
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Galerkin projection of the pressure term becomes
(@i, Vp) = [pP4]. (4.36)

This surface integral vanishes for Dirichlet boundary gtiads. In this case,
the pressure-term has no role in the Galerkin projectiore fline-dependent

velocity term in .33 has the form as

- (u . Ve, \IIZ> = —([um +%%(U‘I’k] - Viem +§7j(t)wj]vmi>

= — 2 (([um -V, \IIZ) + (Zu[@kq)k V], ‘I’i))”yj
_([um ’ vcm]v \IIZ) - <Zu[@k(1)k : vcm], ‘I’Z> (437)

Apply the Galerkin projection for the remaining terms, thherarrange the co-

efficients, we have

da~ M., My, My
dtz = |:CLZ‘ + Z bz‘jO(j + Z Z Cijkajak] > (438)
j=1 j=1 k=1
CKZ(O) = &, (439)
d; < SR
dtz = [C_lmz' + Z @kauik] + Z |:bmij + Z C“kbuijk] v, (4.40)
k=1 j=1 k=1
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Here the coefficients are computed as

a; = — (@i, (wy - V)uy,) — v(VE;, Vu,) + (&5, 1),

bij = — (@4, (®; - V)uy,) — (Pi, (W, - V)®,) —v(VE, V),
cijk = — (@i, (@, - V)®y), (4.42)
ami = — (¥, 0, - Ven,) — 6(VE,, V) + (2, f),
Qi = — (Wi, @k - V),

= —(¥;,u, - V¥,;) - k(VE, V), (4.43)

bmij -

buijk - —(‘I’Z, q)k . V\Ilj)

The initial values are computed as

Q0 = (¢i7 u0)7

Yio = (U5, ¢0). (4.44)

Solving the above initial value problem.88—(4.41) we can obtain a set of pre-
dicted time histories for the mode amplitude of the POD axpipnation. Next,

we shall consider a numerical example for the non-lineaiesys

4.2.3 Numerical example for ROM of non-linear system

We consider the solution of 2D laterally averaged systeneasribed in Section
3.4. The snapshot is obtained at eveiyAt with time-step sizeAt = 0.08.
The POD method of snapshots as defined above resultef iméodes on POD

velocity basis vectors anél/. modes on POD contaminant basis vectors. The
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nonlinear Galerkin systerd (38—(4.41) is then solved by a fourth order Runge-
Kutta scheme. We note that solutio(t) in equation 4.40 depends on solution
a(t) in equation 4.38 and the number of POD velocity basis vectdfs. So we
can solve two equations separately to determine which nisvddePOD basis
vectors are suitable for our ROMs and to evaluate the onbngpuitational time
to solve ODEs of each Galerkin system.

Time-dependent relative norm errors between the full fieiement and
POD-based ROM solutions with7, = 3,6,9, 12,15 and 18 basis functions
are given in Figurd-1and Tablet.1 Here the time-space norm error is defined

asin Eqn. 4.18. With M, = 18 POD velocity basis vectors, the energy cap-

—M =3

u
—M =6

u
—M =9

L2—norm error

0 10 20 30 40
time

Figure 4-1: The time-dependent relative norm ewg(t) between full FEM
and POD-based ROM solutions with different number of PODei&y basis
vectors.

ture is almosti00% and the relative error is arouri®—3. From Figure4-1 we
observe that there is little improvement in the accuracynwie use more than
12 POD velocity basis functions. However, the computatiomaétfor solving

the online stageincreases front.5 second forM, = 12 POD to21.4 seconds

The simulations were performed on a personal computer (Fi®) pvocessor Intel(R)
Core(TM)2 Duo CPU E8200 @2.66GHz 2.66GHz, RAM 3.25GB, 323gerating System.
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Table 4.1: Time-space norm error between full FEM and POfetdaROM
solutions corresponding the snapshot energy and the PQigityebasis; and
the online computational time of the Galerkin system.

M, 3 6 9 12 15 18
ex(%) 96.1447 98.8184 99.1643 99.911 99.993 99.999
el 0.457 0291 0195 0.072 0.051 0.011
tontinens(s) | 0.4 0.5 1.2 65 126 214

for M, = 18 POD as in Tablet.1 In this study, we choosé&/, = 12 POD
velocity basis vectors.

Figure4-2shows the comparison between the predicted (integratesdtezkin
system) and projected (from snhapshots) temporal ampbtudéh the first 6
POD velocity basis vectors. Predicted solutions match vwezly the behavior

of projected solutions. The velocity then can be recongtdiasing equation

1 ‘ ‘ : 0.5 .
5‘_ 0 s - 5N 0 /\~
5 —— projected
1 ‘ ‘ ----predicted 05 . . ‘
"o 10 20 30 40 o 10 20 30 40
time time
2 ; ! ; 1 ; .
a8 OL* o OW
B . . . A . . i
0 10 20 30 40 0 10 20 30 40
0.5 - hme ; 0.2 . tlme
4 0 V\,' 5 0
5 10 20 30 20 % 10 20 30 20
time time

Figure 4-2: Comparison between the predicted and projentete amplitudes.

(4.29 with «(t) are obtained in4.38. Figure4-3 shows the comparison of
velocity profile at specific location between the FEM and RQidlitions with

M, = 12 POD velocity basis vectors. We observe that ROMs are ablepi@¥
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sent the most characteristics of the full velocity profiles.

u profile at x = 1 w profile at x = 1
0
-0.5
N1

I FY | S T [

""wrnm
; ——w
5 0 0.5 1 %3 02 01 0 0.1
u-velocity w-velocity

Figure 4-3: Velocity profile at = 1. v andw are the FEM solutions while,,,
andw,.,, are the ROM solutions.

The relative norm errors between the full FEM and POD-bageRolu-
tions of the transport problems with/, = 8,12, 16, 20, 24 and 30 basis func-

tions corresponding with/,, = 12 basis functions are given in Table2 When

Table 4.2: Time-space norm error between full FEM and POgeteROM
solutions corresponding the snapshot energy and the PQ§) had the online
computational time of the Galerkin system.

M., 8 12 16 20 24 30
ex(%) 99.8705 99.9781 99.9975 99.9992 99.9998 99.9999
el 0.257 0162 0.106 0.074 0.052  0.034
tominecn(s) | 2.4 3.5 4.8 7.8 12.1 19.6

the number of POD basis vectak$. > 20, there is little improvement in the
accuracy in the reduced model, but the online computatiimal has a big in-
crease. As suchi/, = 20 POD contaminant basis vectors is suitable for our
ROMs. The computational time of the full FEM solutions is eppmately
truicp = 700 seconds while the computational time of the Galerkin sohsi
with M. = 20 POD contaminant basists,;;,.cp ~ 7.8 seconds. The speed-up

factor is around; = -Z“€2_ ~ 90 times.

tonlineCD
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Chapter 5

Optimal control for contaminant

transport

This chapter presents a strategy to manage water qualitg$ervoir applica-
tions. The strategy is a combination of estimating the aoimant locations
within a reservoir and then applying the optimal control be velocity field to
flush the contaminant out of the water body. This strategytalses into account
the uncertainty information such as wind velocity, measw®et noise, etc., to
make the problem more realistic. A Bayesian inference agurdas applied for
estimating contaminant source locations. Then the oneostaatjoint method is
employed to determine an optimal control velocity. For éasgale models such
as reservoir applications, the computational effort is égpensive and time-
consuming. Model-order reduction techniques (as destiibb€hapterd) are
applied to reduce the cost and storage requirement.

We organize this chapter into two parts. Part |: we set up alsimmodel for

contaminant transport with constant velocity fields. Setch.1presents a deter-
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ministic control, in which we assume that contaminant seus@ point source.
Sectionb5.2 presents a stochastic optimal control problem, in which ssime
that the uncertain parameter is presented in the diffyspaéfficients. We move
on to the real applications in Part II: contaminant sourcesiacertain. We first
estimate the probable source locations and then apply dlcbastic control to

determine an optimal control strategy as described in @&5tB.

5.1 Deterministic control for contaminant transport

This section presents a deterministic optimal control fgwbfor a simple con-
taminant transport model with constant velocity fields. dp&mal control for-
mulation is based on the adjoint method. Numerical simohetipresent the

results for a simple problem.

5.1.1 Formulation
Problem Description

Consider the fluid flows through a physical domd@nc R? as described in
Subsectior2.4.3 The contaminant transport with boundary condition anikhi
conditions are given in2,61)—(2.64). This is the general case for stochastic
contaminant transport problems. In this study, howeverwagat to explore a
deterministic control problem first. We assume that theudiffity coefficient
k(x,t;w) is a constant. Hence we can ignore all the stochastic vasablthe
system of equations.

Suppose that we have determined a location of contaminamteaon the
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domain. Our objective is to flush the contaminants out of theain by con-
trolling the velocity of the fluid pump. This velocity = [u v]T is the convective

velocity in the transport equation®.61). The objective functional is given by

L[ Mo Y
T(eu) = —/ / capdt+ ™ [ ja)? dat, (5.1)
2 to D 2 to

wheren,, is a constant controlling the relative weighting of the cam@nts of
the objective function. The optimal control problem is sthas: find:, u such
that the functional7 defined in b.1) is minimized subject to the requirements

thatc, u satisfy the model constraint?.61)—(2.64).

Semi-Discretization

Discretizing the PDEs2.61)—(2.64) using the finite element method{], we
obtain an ODE system in the form &.71)—(2.72. Here we note that the stiff-
ness matri¥K.(¢; %) is an invariant matrix, and the contaminant concentration
is function of timec(¢). The optimal control problem can now be stated as:

minimize the amount of contaminantind the cost of the contral, given by

1 [t Ly
j(c,u):i/ cTMcdt—F%U/ u’u dt. (5.2)

to to
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The optimality system

We introduce the Lagrangian functional with the adjointesi®(¢) and adjoint

initial conditiony € R” as follows

E(C, u, p, X) = j(C, u) - XT(C‘t=0 - CO)

_ / tf p! (Mc + (Ce(u) + Ko(t:0%))c — £.(t; ¢)) (5-3)

to

The first-order necessary conditions, also known as the dkakiwhn-Tucker
(KKT) optimality conditions B7, 91] yield an optimality system from which
optimal states and control parameters can be determinedkinygtvariations

with respect tac, p andu. That is:

1. State equation
Setting the first variation of with respect to the Lagrange multipligr

to zero, we obtain

% — lim <£(C7 u7p+€an) - E(C7u7p7X)> _ O,
(5p e—0 €

= p(Me+ (Colw) + K. (t:6")e —£(t:9))

—XT(C|t:0 — C()) = O, (54)

wherep is an arbitrary variation.
Since the variatiorp in the Lagrange multiplier is arbitrary, we recover

the ODEs2.7)—(2.72.

2. Adjoint equation
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Setting the first variation of with respect to the stateto zero, we obtain

% — lim <£(C+C7p7u7 X) B E(Q‘LP;X))
oc e—0 €

_ /tf [ p"Mé— p! (Cu(w) + K(t; 6))7 + AMe] dt = 0(5.5)

to

where the variatio@ in the statec is arbitrary.
Integrating equation5(5) by parts with respect to time for termand

since the variatio is arbitrary, we obtain the adjoint equations as

—M"p + (C.(u) + K(£;0") ' p = Mc, inD x [ty x t/] (5.6)

3. Optimality condition

The first variation ofC with respect to the contral is given by

oL (E(C(queh),queh,p,x) —E(c>u,p,x))

€

(5.8)

whereh is an variation in the contrai.
Setting equationq.8) to zero and manipulating the formulation we can

obtain the optimal control equation given below as

ty ty
0L = nw/ udt — / c'C(u) p dt. (5.9)

u to to

Ly:

Summarizing, the state equation, adjoint equation, anidnafity condition

form the optimality system, solutions of which provide thgimal statec, ad-
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joint statep, and control functiom. To solve the KKT system for deterministic

control, we use Algorithm 1 in Appendi.

5.1.2 Results

We present the 2D mathematical model to which we apply therahtistic
optimal control with the full model using Algorithm 1. A firtdifference test
is first used to validate the numerical algorithm. We complaeecontaminant

field with optimal control actions and without control actio

Model setup

In order to implement the contaminant transport problem¢aresider the com-
putational domain as in Figurg-1. The domain is rectangular with =

[0, 1] x [0, 0.5]. The inflow boundary, which is defined an= 0,0 < y < 0.5,
satisfies a homogeneous Dirichlet conditibp, the remaining boundaries sat-
isfy homogeneous Neumann conditioms;. The velocity vector with x and
y-component is chosen as uniform and constant in time, diyan= [u v]". A
velocity ofu = [1 0] is used as an initial guess for finding an optimal velocity.
The diffusivity coefficient is assumed to be constant andvsrgasx = 0.005
corresponding to a Péclet numberid = 200.

In this example, we discretize the KKT system om,ax n,, = 61 x 31 grid,
wheren, andn, are the number of grid points in x and y-direction, respetyiv
This results inV = 1891 spatially discrete unknowns using the standard finite
element method. The Crank-Nicolson method is employed sorelize the

system in time, where € [y, t;] with ¢, = 0,¢; = 1.4 and the time-step size
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Computational domain and sensor locations

0.5 T T T T T T T
O1
0.4 202 .6 X 3;
+ 4
0.3+ A s5h
> #* A %x * 6
L o 7|
0.2 e
X 9
0.1t (0] + ] g

Figure 5-1: The computational domain witf), = 9 sensors.

At =0.02 or T = 70 time steps.

The source functiorf.(x, ¢; ¢) is described as a Gaussian shape as follows,

Ns

ot =Y gt (P N5 ). (5.00)

2
k=1 204

Here, we choose the number of sources ta pe- 1, located atp, = (z.,y.) =
(0.3,0.25), with the strengtth; = 1 and widtho,; = 0.05. The active time of
the source gy € [to, toss] With t,;; = 0.4.

Figure 5-2 shows the contaminant solutieiix, ¢; x¢) of the full model at
specific time. The contaminant field increases in magnituiié&whe source is
active. After the shutoff time of the source, the contamimanves away and

spreads out due to convection and diffusion until it flowsafithe domain.

Finite Difference test

The finite difference method is used here to check the semgibif the gradient-

based optimization algorithms. The objective functiaffatan be written using
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Figure 5-2: Contaminant field of full model at times= 0.2,¢t = 0.6,t = 1.0
andt = 1.4.

a Taylor Series expansion:

2
J(c,uy+e¢)=T(c,uy) +eJ'(c,uy) + 65\7”(@ u,) + O (5.11)

Neglecting the second order and higher order terms, werotitaiapproxima-

tion of the gradient vector

Tu = J'(cuy) ~ L (&M 6 = J(eUg) (5.12)

€

Equation b.12 is called the forward difference scheme. We shall use this t

compare with the gradient formulatiors.9) above. The relative error is given

by

error = # (5.13)

,ua

Figure5-3 shows the relative error of the gradient test. Figlrea)and

5-3(b)show the test case with initial velocity fields= [1; 0], while the Figures
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5-3(c)and5-3(d)are results with initial velocity fielda = [0; 1]. These figures

validate that the adjoint-based gradient calculation isl@mented correctly.

4 -2 -10 4

107° 10° 10° 107 10 10 10° 10° 107 107
FD step size FD step size
(a) gradient of7 with respectto u (b) gradient of7 with respect to v
10° 10°

10

S
T
107
1076710 ‘78 ‘76 ‘74 -2 10_ -10 -8 -6 -4 -2
10 10 10 10 10 10 10 10 10 10
FD step size FD step size
(c) gradient of7 with respectto u (d) gradient of7 with respect to v

Figure 5-3: Finite Difference test of the cost function wilklie respect to the
controlu.

Optimal velocity control

Once the source location is determined, we want to flush theaaanants out
of the domain rapidly by applying the optimal control algbom 1. Figure5-4
shows the contaminant field of the forward model at time = 1.2, for the
example case where the source is positioneg.at 0.3,y. = 0.25. We can
see the effectiveness of the optimal velocity control totflttee contaminant
out of the domain. When applying control the contaminanémaved from the

domain faster in comparison with the case without applyimggdontrol.
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(a) Applying control (b) Without applying control

Figure 5-4: Contaminant field of the forward model at = 1.2. Note the
difference in contaminant concentration scale betweeivibelots.

5.1.3 Remarks

In this section, we have explored the deterministic opticaaitrol problem for
the transport equations. A gradient-based optimizatigmaaxh is used to de-
termine the optimal control solution. Applying optimal ¢ooi gives us an effi-
cient way to achieve water quality management. Howevesjitst an ideal case
where there is no influence from external uncertain factorseal applications,
there are factors that impact the system and hence affecoinéon. In the
next section, we shall consider the optimal control problath uncertain input

parameters.

5.2 Stochastic control for contaminant transport

This section presents a stochastic optimal control prolftlana contaminant
transport model with a constant velocity field. The stodagptimal control
formulation is based on a combination of model reductiomadjoint approach
and a collocation method. Numerical simulation preserggéisult of this type
of control, and compare the effectiveness of the contratthas the full model

with that based on reduced-order model.
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5.2.1 Formulation
Problem Description

Consider the fluid flows through a physical domd@nc R? as described in
Subsectior?.4.3 The stochastic contaminant transport with boundary condi
tion and initial conditions are given ir2(61)—(2.64). The stochastic collocation
method with the finite element method approximates this aESpoblem. Sup-
pose that we have already determined a location of contarngswurce in the
domain. The goal of our control problem is to flush the contemt out of the
domain by controlling the velocity of the fluid pump. The atijee functional

is to seek a velocity over an admissible controlset U,,; that minimizes a
weighted combination of thé,—norm of the expected contaminant field and
the velocity field:

N 1 [ T ty
win 7 =5 [ [letxtw)l] dee % [l d 619

u€clU,g to to

subject to the constraints Eqn2.¢1)—(2.64. Here,n,, is a constant control-
ling the relative weighting of the components of the objeefunction andg |-

denotes the expectation operator.

Semi-Discretization

The finite element method (FEMJT] together with collocation method is em-
ployed to obtain a semi-discrete set of equations as givéh l)—(2.72.
We now consider optimal control with the cost functional agg in Equa-

tion (5.14). In the collocation framework, the expected value is appnated
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via a quadrature rule (such as Clenshaw—Curtis quadr&gpeiuilt on the col-
location points. Defing w* } kpzl to be the quadrature weights associated with

the collocation points,
wh = / p(Y)L2(0)dd, fork=1,--- P, (5.15)
e

wherep(Y) is the probability density of the random vectgr The cost func-

tional is replaced by the discretized problem as follows

P

- LY kT
min J(u) = = w’c’ (t;Y)Mc(t;Y) dt
200 = 5 ], Lo MeteY)
Mo [
+ = Jul|7, dt. (5.16)
2 tO
Here, the solutior(¢;Y),k = 1,--- , P, solves the ordinary differential equa-

tions (ODEs) 2.7)—(2.72.

The Optimality System

We introduce the Lagrangian functional with the adjointesia(¢; Y') and ad-

joint initial conditiony € RY as follows

Lieup,x) = T = x" (elto: Y) = eo(Y))

-~ (Mc + (Co(u) + K. (t; 09))c — £.(t; ¢)). (5.17)

Applying the procedure as similar as in Subsectioh.1we obtain the KKT
optimality conditions, with the state equations are givefbi18—(5.19, adjoint

equations in%.20—(5.21) and optimality condition ing.22).
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1. State equations:

Me + (Cc(u) Kt Ok)>c — £.(t; ), (5.18)

2. Adjoint equations:

—M"p+ (C"(u) + K" (t;6"))p = M, (5.20)

p(t;;Y) = 0. (5.21)

3. Optimality condition:

5L b b &

Su :nw/ udt—/ Zwch C(u) pdt =0. (5.22)
to o g=1

To solve the KKT system for stochastic control with deteristioc source loca-

tion, we use Algorithm 1 in AppendiB.

Discretization of the KKT system in space yields a high-disienal dis-
crete state-space system in the form of ODEs (Equatibrif¢(5.22). In
addition, the collocation method and optimal control woekjuire evaluating
repeatedly the solutions of both the state and adjoint @t Thus, these
simulations are computationally expensive and may not asilbée to perform

in real time. Model order reduction is applied to obtain auet-order approx-

imation of the large model, which allows for efficient simiia.
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5.2.2 Results

We present a 2D mathematical model to which we apply stoichastimal con-
trol with the full model using Algorithm 1. Then we apply theodel reduction
to obtain the reduced-order model. We compare the stochgstimal control
result using the reduced model and the full model. Finallg, sc@mpare the

behavior of the stochastic control with a deterministictcolrstrategy.

Model Setup

To implement the stochastic contaminant transport propleenuse the same
model setup as described in Sectm.2

The input is a random diffusivity field. To generate the diffusivity coef-
ficients under the finite dimensional noise assumption, veetlus formulation
similar to that in #2]. The random diffusivity coefficient is a nonlinear functio

of the random vectaY’, namely

ool

K(x,t;Y) = Ko+ exp { [Vi(w) cos(mn) + Y3(w) sin(mn)|e”

+[Ya(w) cos(m€) + Ya(w) sin(n§)] e s }/O’y. (5.23)

Here,0 = (¢,n) € P are the coordinates of the collocation points. We choose

Ko = 1/125,0y = 200. The initial Péclet numbePe, = 1L — 125, where
the length of the domain is used as the characteristic lehgth 1. The real
random variable§,,,n = 1,--- ,4 are independent and identically distributed

with zero mean value and unit variance.
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Full Stochastic Control Model

The stochastic optimal control now can be solved by follawigorithm 1. To
illustrate the behavior of the collocation, we simulate tindounded random
variablesY,, via the Gaussian density function. We employ the Smolya&-alg

rithm [41, 42, 43] to determine the collocation points and collocation wésgh

Figure 5-5: The Smolyak quadrature nodes.

We evaluate the optimal solution with Smolyak nodes whigiresent ex-
actly polynomials of total degreg (P = 29), degree7 (P = 65), degree
9 (P = 145) and degreé1 (P = 321) as shown in Figur&é-5. To estimate the
relative error of the solution, we choose the solution gpoading to the finest
collocation schem¢P = 321) as a “truth” solution. We then set the control

parameter),, = 0.1.
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Table 5.1: Estimated optimal control for different numbefrsollocation points.

P u \Y j timerpu (hOUfS)
29 || 1.350 0.0 0.312 0.9
65 | 1.351 0.0 0.311 2.3
145\ 1.351 0.0 0.311 5.0
321 1.351 0.0 0.311 9.8

Table5.1 shows the results of the optimal control with different nuargof
collocation points. Figur&-6 shows the relative error of the stochastic optimal
control solutions based on the finest solution. When the rmurabcollocation
points increases, the relative error in the estimated @dtsolution decreases.
However the computational time to solve the optimal conpralblem also in-
creases when the number of collocation points increaséé& observe that the

computational time is approximatedy8 hours whenP = 321 Smolyak nodes.

10°

107

Relative error

20 40 60 80 100 120 140 160
Smolyak nodes

Figure 5-6: Relative error of the estimated stochasticrobsblution with num-
ber of collocation points.

The simulations were performed on a personal computer (Fi®) pvocessor Intel(R)
Core(TM)2 Duo CPU E8200 @2.66GHz 2.66GHz, RAM 3.25GB, 323gerating System.
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Reduced Stochastic Control Model

To generate the snapshots needed for the POD basis, we chposenly-
spaced samples,, on the intervalx, i, £maz)- IN this example)N, = 10. For
each value of, we generatd’/2 snapshots over the considered time horizon,
whereT is the number of time steps. To determine an appropriate suwib

POD modes we use the same energy capture as in Equati). (

Table 5.2: Properties of various model reduced-order nsodel

€E((%J) POD Estate gadjoint

99.0 18 5.48e-3 1.10e-2
99.5 21 3.45e-3 5.28e-3
99.9 30 6.28e-4 8.11e-4

99.99 46 1.13e-4 1.81e-4
99.999 65 2.05e-5 6.68e-5
99.9999| 86 6.85e-6 2.39e-5

Table5.2shows the relative error of the approximation (for a randochio-
sen value of not in the snapshot set) for different sizes of the reduceé+o
model. In practice, we need both the dimensions of the retioocgder model
and the relative error to be small. Here, we choose the cabe wi= 99.99%
yielding a POD basis of size: = 46. The outputs of interest are the values
of contaminant solutiom at selected sensor locations. The outputs of the full
model,y, and reduced model of ordet = 46, y,, are shown in Figur®-7 at
sensor locations. These locations correspond to sensbrgure5-1. It can be
seen that the magnitude of the sensor reading varies deyeodithe location
of the sensor relative to the source. In all cases the redoigkzi model is able
to capture well the behavior of the full model at the sensoations.

Applying Algorithm 1 for the reduced-order model, we obt#ie optimal
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Figure 5-7: A comparison of the full modéN = 1891) and reduced model
(m = 46) output of interest at sensor locations.

control result as in Tabl.3. The comparison of accuracy and computational
time between the full model and reduced model are given ineTald. The
reduced model of order. = 46 has a relative error arounid—°. The compu-
tational time to solve the reduced control model is deci@ayeapproximately

80 times in comparison with the full control model.

Table 5.3: Optimal control of reduced model.

P u % J  timeyor (S)
29 || 1.350 0.0 0.312 40
65 || 1.350 0.0 0.311 98
145\ 1.351 0.0 0.311 214
321 1.351 0.0 0.311 460

Stochastic Control vs. Deterministic Control

To make the comparison between the stochastic control aedndi@istic con-
trol, we choose the solution of the stochastic control atidggree of polynomial

9 or P = 145 Smolyak nodes. We then choose a subset of Smolyak nodes in
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Table 5.4: Relative error between full control and reduaatiol solutions and
speedup factor of full model vs. reduced order model comedimg collocation

points.
P £ mepull
u timenoOR
29 | 5.38e-5 81
65 | 1.41e-5 83
145 2.27e-5 84
321 | 1.42e-5 76

the collocation spack, for example we choosBs € P such that-1 < ¢ <1

andn = —1. For each paip* =

(&,m) we compute the diffusivity coefficient

k(x,t;Y). We then compute the deterministic optimal control for theam

value of x to find the optimal velocity and estimate its cost functiongig-

ure5-8shows that the stochastic optimal control always has thesvabove the

average of the set of deterministic control.

0.33

Stochastic vs. Deterministic control

0.3

0.31r

Cost value

—w—det (n =-1) ||
—e—det (n =0)
——det(n=1) ||

@ stochastic

MO

0.5 1

Figure 5-8: Stochastic control vs. deterministic control.

5.2.3 Remarks

This study has applied the combination of model order redndechniques

based on POD and an adjoint-based method to solve a stacbpstnhal con-
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trol problem. The reduced model with order = 46 decreases the computa-
tional time of solution by a factor of abo8i while retaining acceptable accu-
racy with a relative error of arount)— as compared to the full model with
size N = 1891. This speedup is important in real-time decision-makingliap
cations because it provides a rapid solution and reducesdost and storage
requirements. Application of the optimal control stratepows the potential
effectiveness of this computational modeling approachrfanaging flow qual-
ity.

We have already studied stochastic optimal control for arda@nistic con-
taminant source. In the next section, we consider the caseatthe contaminant

source is uncertain.

5.3 Stochastic control for uncertain contaminant

source location

We assume that under the influence of uncertain parametiaswind speed,
contaminant sources become uncertain. Before we can appboatrol to flush

the contaminant out of the domain, we have to determine thecedocations
first. In this section, the stochastic estimation probleffirss considered. The
stochastic optimal control problem is then described. Wl sise a numerical
example to demonstrate the solution of stochastic probkmaisthe reduced-

order model performance.
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5.3.1 Problem Description

Consider the fluid flows through a physical dom@n< R? with boundary
condition and initial conditions as described in Subsec#a@.3 The stochas-
tic contaminant transport with boundary condition andiahitonditions are
given in 2.61)—(2.64. The stochastic collocation method with the finite ele-
ment method approximates this SPDE problem. Our problerovsstated as:
given a set of contaminant measurements {yi, y2, - - - , yn, } in the domain,
we want to determine contaminant source locations and appbntrol to flush

them out of the domain.

5.3.2 Stochastic estimation problems

The relationship between the state of contaminant corafgmtrto be estimated

from the physical model and the measurements is given by

y = G() +ny, (5.24)

wherey € R is the measurement vector (e.g. concentration measurg)nent
the source locatiop € ®° C D is the input parameter set, amg € R
the vector noise. The input-output in Equatio@s/)—(2.72) is denoted as the

forward modelG(¢), which maps the input$ to outputsy.
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Bayesian formulation of the inverse problem

The Bayesian solution to the above problem is to obtain amatt ¢ of ¢

based on measured data, using Bayes'’s rule

p(y|®)p(o)

p(Ply) = o)

(5.25)

Here the density functiop(¢|y) is known as the posterior density function of
¢. The density functiom(¢) is the prior distribution of the parameter, reflect-
ing our prior knowledge on the possible source location. déesity function
p(y|®) is the likelihood function. If we assume vector noigeto be additive

white Gaussian noisg, ~ N (0, o21), the likelihood function can be written as

Y1) = — = exp(—g5ly — Gl (5.2

There are many different ways to incorporate prior infoliorasuch as Gaussian
Markov random field (MRF) model, beta distribution modet. dn this work,
we assume that our only prior information on the source lonas given by
the bounds on the domain. Thus, using the Principle of Marir&untropy P3|
we take our prior to be a uniform distribution. If more infaxtion were avail-
able, our approach admits other prior distributions. Tioees Equation .25
becomes

15, exp [ = 52 (vi — G(#30),) " (vi — G w):)], Vb € D
p(oly)

0, otherwise
(5.27)
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whereD is the support the (uniform) prior distribution gf. Here, K is the
number of time steps in the collected output data. To perftirenBayesian
computation, we use the Markov chain Monte Carlo method hénrtext sub-

section we shall briefly introduce this method.

Markov chain Monte Carlo

The Markov chain Monte Carlo (MCMC) provides a samplingteigg from the
proposal distributiony(¢|y, ¢'"~V) to the target distributiop(¢|y) using the
Markov chain P4]. In this work, the Metropolis-Hastings (MH) algorithm is
used to solve the Bayesian inverse problems. Suppose thgbalis to sample
from the target distributiop(¢|y) with ¢ € D. The Metropolis sampler gen-
erate a Markov chain with a sequence of valugs! — ¢ — ... — ¢ —
..., where¢” is the state of a Markov chain at iteration The Metropolis
procedure is to initialize the first stagg?, then to use a proposal distribution
q(¢ly, ") to generate a candidate valgé. The next step is either accept
the proposal or reject it. New proposals is then generatédtlzna procedure
continues until the sampler reaches convergence. The sagl now reflect
samples from the target distributipii¢|y). The MH algorithm is summarized

below as follows,

Algorithm 2

1. Initialize the chainp® and set = 0
2. Repeat
e l=t+1
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e Generate a proposal poipt ~ q(¢*|y, ¢)
e Generate:, from a Uniform(0,1) distribution

e Update the state tp' ™ as

", if Bu < g
ql)tJrl —

¢', otherwise

3. Untilt = N,,eme — StOp.

Here,(, is the acceptance-rejection ratio, given by

6, = min (1 p(o"y)a(e" |y, ¢7) ) (5.28)
a ) . .

(9 y)a(9tly, 9!
Npeme 1S the total number of samples and is a random number from Uni-
form(0,1) distribution.

Once the samples or the posterior probability density of@location are
determined, we have a characterization of the probablditocaf the source.
Then we can apply the control stochastic control. Howeygaiyang the stochas-
tic control on the probable regions will be extremely expengven with the
reduced-order model used. Here we explore the Gaussiannaixtodel (GMM)
to approximate the posterior density function of the solbe®re applying the

control.

Gaussian mixture model

Given the data seb = {¢,}", samples from the posterior density function,
the next step is to approximate this data using Gaussiammirtodel (GMM).

A mixture of Gaussians is defined by a superpositioivgfGaussian densities
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in the form

pa(B|E) = p(Bly) ~ Zwk (Bl Sn). (5.29)

Here the parameter li& = 7{", -+ , 7%, @y, -+, Py, X1, -, L, definesa
particular Gaussian mixture probability density functi@ach Gaussian density
N (¢p|,., 1) is called a component of the mixture and has its own nygaand

covariance_;, which has the form

1 1 1 - -
G P 50~ B0 (0~ B} (5:30)

whered is the dimension of vectap and|X| denotes the determinantBf The

coefficientst;” are called mixing coefficients, which have two properties:

Ng _
1 T =1

Y

(5.31)
0<m*<1

— - 9

that satisfy the requirements of probabilities.
The likelihood of the data sé = {¢, }., assuming tha#,, are indepen-

dently distributed is given by

Ne
E) = [[rc(¢.2). (5.32)
n=1

From (.29 the log of the likelihood function is given by

In pe(® ZIH{ZW (¢, \ék,zk)}. (5.33)

n=1
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Our task is to find the maximum of the likelihood functidn33 with re-
spect to the parameters of the GMM. The expectation-maxitioz (EM) al-
gorithm is a general method for finding maximum likelihoodirestes with
respect to the parameters (comprising the means and covesiaf the compo-

nents and the mixing coefficients). For more details, ref¢®%|.

5.3.3 Stochastic optimal control problems

Given our approximate representation of the unknown sousoeg our GMM,
the next step is to solve the control. The goal of our controbfem is to flush

the contaminant out of the domain by controlling the velpoitthe fluid pump.

Objective functional

The objective functional is to seek a velocity over an adibissontrol sefu €
U.q that minimizes a weighted combination of tthe—norm of the expected
contaminant field and the,—norm of the velocity field:

. 1Y 2 Do [ 2
win Jw0) =5 [ B [t gyl Jae+ [l 6.3

ucl,q to 2 to

subject to the constraints Equatiorzsgql)—(2.64). Here,n,, is a constant con-
trolling the relative weighting of the components of theastive functionE|:|
denotes the expectation operator gnithe measurement vector.

In the stochastic estimation framework, the expected veugmply the
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mean of the posterior density functiodq 97]. That is,

E[ély] = [P @ p(Ply) do. (5.35)

Consider the expected contaminant field5r84), a similar manner tdy.35 we

have

B[t g lvIE] = [ et gslf, pletx.t. gily) do. (6.36)

The posterior density function of the contaminant field, ¢, ¢; w) is estimated

implicitly via the contaminant sourag. Thus, we can re-write5(36) as
[l t, i)yl = [ et g, @) ds. (637)
Lo
Combining Equationsy(29 and 6.37), we get
Na
E|letx gyl ~ Y mE |lext giw)li,].  (5.38)
j=1

In the collocation framework, the expected value5tB8@) is approximated via
a quadrature rule (such as Clenshaw—Curtis quadra@@feuilt on the collo-
cation points. Define{w’“};1 to be the quadrature weights associated with the

collocation points,
wh = / p(Y) L (0)do, fork=1,--- P, (5.39)
©

wherep(Y) is the probability density of the random vectdr The cost func-
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tional is replaced by the discretized problem as follows

. 1 e & _ _
uréllljildj(u) A 5/1? [ZWj [Zwch(t, ¢;; Y )Mc(t, ¢j;Y)]] dt
o Lj=1 k=1
Tho & 2
+ = ual|7, dt. (5.40)

Here, the solutiore(t, gEj;Y),j =1,---,Ng;k =1,---, P, solves the ordi-

nary differential equations (ODES2.f1)—(2.72).

The Optimality System

The optimality system is derived in a similar manner to Sabea5.2.1 Only

the optimality condition equation is slightly differenthweh is given as

5L ts nde I,
—an/ udt—/ 7"y w'c C(u)p dt = 0. (5.41)
ou o Z J ; (u)

to j=1

In summary, the state equatidn18—-(5.19, adjoint equation.20—(5.21) and
optimality condition 6.41) form the optimality system, solutions of which pro-
vide the optimal state, adjoint statep and control variablax. To solve the
stochastic optimal control problem using the collocaticetimod we use Algo-
rithm 1 in AppendixB.

As mentioned in Subsectidn2.], these simulations in real-time are compu-
tationally expensive and may not be feasible. Model ordéucgon is applied
to obtain a reduced-order approximation of the large maalkich allows for

efficient simulation.
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5.3.4 Results

We present a 2D mathematical model to evaluate the efficiehttye proposed
approach to the application of water management. The redoier models
are first determined to serve as an efficient forward solvénaénstochastic es-
timation problem and stochastic optimal control problenhafTsolver is then
employed to find the realization of source locations usingofithm 2 and the
optimal solution of velocity using Algorithm 1. We shall folv the same model

setup from Sectioh.2.2

Full order model and reduced order model

To illustrate the behavior of the collocation approach, weky the Smolyak
algorithm B1, 42, 43] to determine the collocation poin{sﬂ’“}f:1 = (&,n)F
and collocation weight§w’“}kK:1. For each pair of¢, )", the diffusivity x* is
determined and then candidate solutign gEj, Y).

We evaluate the candidate solutions with Smolyak nodeshwi@present
exactly polynomials of total degree (P = 29), degre€7? (P = 65), degree
9 (P = 145) and degredl (P = 321) as shown in Figuré-5. Solution
of the stochastic convection-diffusion equation is glodaproximation of the
candidate solutions at collocation points as given in EQudR.66).

The POD method is then implemented to generate a POD basisareet
of snapshots. The snapshot are taken not only at differerd imstants but
also for different realizations of source locations anddiferent realizations
of diffusivity coefficients using independent random irgutn this case, we

chooseV, evenly-spaced samples, on the intervalx, i, fma:), @and a sample
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set of source locationsy.. To increase the efficiency of the snapshot collection
we use the following strategy: for each valuergfwe generates, values of
randomly source locations ovér, and for every two time-steps we store one
instantaneous solution. Her&, = 10 andS, = 30 samples. The total number

of snapshots i&Vy,,,, = Ny x S, x T'/2.

Table 5.5: Properties of various MOR models.

€E (%) POD Estate Eadjoint

98.5 86 3.64e-3 1.24e-2
99.0 97 2.82e-3 3.78e-3
99.5 118 1.73e-3 1.46e-3
99.9 169 7.28e-4 7.98e-4
99.99 250 2.48e-4 8.96e-5

Table5.5shows the relative error of the approximation (for a randochio-
sen value ok and source location not in the snapshot set) for differergssof
the reduced-order model. The size of reduced-order moaldsen based on
the snapshot energy as in Equatidril§. In practice, we need both the dimen-
sions of the reduced-order model and the relative error tenb@l. Here, we
choose the case wilty; = 99.0% yielding a POD basis of sizew = 97. The
solution of SPDEs is evaluated for both full forwward modedl aeaduced-order
model with ordern = 97. We observe that the computational time of the full
model is approximately minutes when? = 321 Smolyak nodes.

To estimate the relative error of the solution, we choosesthetion corre-
sponding to the finest collocation schefife = 321) as a “truth” solution. Ta-
ble 5.6 shows the relative errors and computational time ratio efftii model

and reduced model ( defined as= f;—g};) for different Smolyak nodes. We

2The simulations were performed on a personal computer (A@) processor Intel(R)
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Table 5.6: Estimated solution of SPDEs for different numsbhafr collocation
points.

P Eerror Tt

29 || 2.53e-3 25
65 | 2.51e-3 25
145 2.51e-3 24
321 2.51e-3 26

observe that the relative errors of estimated solutionglaoeeased when the
number of collocation points increases. However, thesdivel errors do not
change very much. Furthermore, the ratio of computatiana is speed-up
with a similar factor —25 times. We choose the second case with= 65
Smolyak nodes. Next, our reduced model will be utilized asféoient forward

solver in the stochastic estimation and stochastic optooadrol problems.

Stochastic estimation problems

We assumed that at the beginning we are given a set of measai@ds shown
in Figure5-9. These data can be collected by experimentation or sinoulati
In this case, we simulate the deterministic model by assgmi®r, ¢; Y) = xg
and source locatiogp = (0.3, 0.25). To illustrate the behavior of uncertain
variables such as wind velocity into the model, we add naigethe ideal data.
The noise is assumed to be additive white Gaussian mgise N (0, 1) with
o=0.2.

The Bayesian formulation and MCMC approach is now used teesfar
variety of source locations using the reduced solver abd¥e. conduct the

MCMC simulation with the starting poinp;,,; = (0.5; 0.2). The total number

Core(TM)2 Duo CPU E8200 @2.66GHz 2.66GHz, RAM 3.25GB, 3X3gerating System.
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Figure 5-9: A set of synthetic data.

of MCMC samples is set tdV,,,..,. = 5000. The initial burn-in period is set
to Nyurnin = 1000. After this stage, data is saved to compute the statistics of
source locations.

Figure5-10(a)shows the trace plot (or history plot) of the parametersugers
the iteration numbers. Based on these plots we can estinmatiner the Markov
chain has converged. The Markov chain for both parameteesd ¢, is used
beginning at the starting poiwt;,.; = (0.5; 0.2). The acceptance ratio é1.6%
is consistent with the recommended range betw®éhto 70% as suggested in
[98].

Figure 5-10(b) shows the posterior probability density of the source loca-
tion ¢. In this figure, both pairwise scatter plot and one-dimemaionarginal
distributions are displayed. The dashed-line on each &a®s the probability
density function of each parameter. The contours show teegor probability
density of source locatiog (the probable regions) while red-dot is the actual

source location for which the measured data are synthesitexlcomputational
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Figure 5-10: Trace plots and scatter plot of paramete@dg,.

time to solve the inverse problem is approximatelyours. (If we use the full
forward solver, with the speed-up factor of aroidtimes, the computational
time is estimated at arourid0 hours or approximatel§ days.)

Next, we employ the Gaussian mixture models (GMM) to apprate the
posterior density function of the estimated source localtiefore applying the
stochastic optimal control to flush them out of the domaironkthe probable
regions, we used the GMM to approximate the mean, covariandemixing
coefficients of Gaussian components. Figbrgl show the Gaussian mixture
models with 1, 2, 3 and 4 Gaussian components, respectiVahte5.7 shows
the mean(¢) of the components and mixing coefficients, which maximibes t
likelihood of Gaussian mixtures. The covariance is diff¢rfer each Gaussian
component, for example;; = 1.0e¢7® x [1.5, —0.42; —0.42,0.91], but 2, =

1.0e=3 x [0.79,0.25;0.25, 0.59)].

Stochastic optimal control problems

The stochastic optimal control now can be solved by foll@gwvAigorithm 1

as described in AppendiB. In this example, we set the control parameter
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Figure 5-11: Gaussian mixture models with 1, 2, 3 and 4 Gaasimponents,
respectively.

Table 5.7: Gaussian mixture model witfGaussian components.

Parametery GMM, GMM, GMM; GMDM,
01 0.3061 0.3100 0.3071 0.3048
o)) 0.2530 0.2578 0.2547 0.2600
T 0.2200 0.3733 0.2467 0.1601

nw = 0.1. We will perform our control using the Gaussian mixture meddath

1, 2, 3and 4 components. Talld8shows the results of the optimal control with

Table 5.8: Estimated optimal control for different numbefsnixtures in the
GMM.

N¢ u % J  time (min)
1 1.38 0.00 0.329 4.5
2 1.39 -0.02 0.331 18.2
3 1.39 0.03 0.334 32.1
4 1.41 0.04 0.345 48.4
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different numbers of Gaussian components. We observe thah the number
of mixtures in the GMM increases the amplitude of the estadaiptimal ve-
locity increases and its estimated cost functional in@ea3he computational
time to solve the stochastic control increases when the pumibmixtures in
the GMM increases. We observe that the computational tirappsoximately
50 minutes whenV; = 4, using our reduced-solver. If we use the full solver,
the computational time is around 1 day according to the speefctor given
in Table5.6.

Figure5-12shows the efficiency of the management when applying the con-
trol. With the determined control strategy, the contaminsalmost flushed out
of the domain at the same final time.

t=1.40 t=1.40
0.1

: 0.08 0.08
0.06 0.06
0.04 0.4 0.04
0.02 02 0.02
1
0.5 0 Y axis 0.5 0

0o X axis 0o X axis

onN B O

(a) With Control (b) Without Control

Figure 5-12: The contaminant field with control and withoahtol for case
Ng = 4.

5.3.5 Remarks

This study has applied the combination of model order redndiechnique
based on POD and the collocation method to solve a stochmstisure-invert-

control problem. A Bayesian formulation for the inverselgem solved us-
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ing MCMC together with a reduced-order solver provides adgstimate of
the probability density function of the parameters deseglsource location.
Gaussian mixture model is then applied to determine a nuwierxtures in
the GMM which is able to cover the probable regions well. S&stic optimal
control based on collocation and adjoint method providegpalrsolution to the
control problem. The reduced solver with order= 97 decreases the com-
putational time of solution by a factor of abo2i while retaining acceptable
accuracy. This speed up is important in real-time decisiaking applications
because it provides a rapid solution and reduces storag&reetents. Appli-
cation of the optimal control strategy shows the potentif@otiveness of this

computational modeling approach for managing flow quality.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Understanding of hydrodynamic processes such as contahtmaasport, mix-
ing water, and thermal stratification provides knowledgthtomanagement of
quality in reservoir system. These processes stronglyenéla water quality un-
der the effect of parameters such as water velocities, wahatity and heat ex-
change at the air-water interface. Of particular signifogaiis contaminant trans-
port, which may contain many species of pollution, thatctiseaffect the water
guality. Since the contaminant may exist in point-sourcenamnpoint-source
forms, locating and estimating of the contaminant sourcegequired before
we can apply the control to ‘clean’ or ‘get rid of’ them. Forda-scale and re-
alistic applications such as reservoirs, experimentsifies¢ works can be very
costly. Experiments via numerical simulations provide Haraative tool for
detailed analysis and evaluation. To perform the contrelhave to deal with

many uncertain parameters relating to the instrumentatidnich measure the
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wind speed, water circulation currents, contaminant g§seand others. These
uncertain parameters may have undue influence on the sygtersuch these
need to be properly accounted for as stochastic variablggeigystem model.
In this study, we explored an end-to-end: measure-invantrol strategy for a
stochastic problem with application to the management afityuin reservoir
system. Due to the stochastic nature of the simulations ptichization formu-
lation, the computational costs and storage requirementgase rapidly. An
efficient reduced-order model that approximates the fuldleh@an overcome
this computational issue.

With this strategy, we first develop a numerical simulatiode for 2D lat-
erally averaged model for lake and reservoir models. Theemnigal code is
validated through comparisons to benchmark problems. Noaieesults show
that the hydrodynamics processes are in good agreemerttwitheoretical and
experimental data. The physical phenomena are also ige¢sti and compared
to practice. Data collected is then processed in the measuntestep. Here
we used data from numerical simulations and added some.nofs® inverse
problem step is then performed using a Bayesian formulaimhsolved with
a Markov chain Monte Carlo method. After that the Gaussiaxtuné models
are used to determine a number of mixtures in the GMM. Firthkystochas-
tic control step using the adjoint method together with dowaltion method is
applied to ‘flush’ the contaminant out of the reservoir.

The reduced-order model for the reservoir system is obdaiseng the proper
orthogonal decomposition and Galerkin projection techegy For dependent

variable or non-linear problems, we have to use a combinati&alerkin pro-
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jection method and POD directly on the coupled Navier-Statguations and
transport equation that yield a set of ordinary differdngiguations capturing
the essential dynamics of the system. To demonstrate tloeeatfy of reduced-
order models, two examples are considered. The first is alsigip transport
model with constant velocity field and the second is a coulNliader-Stokes and
transport model. In both cases, the final purpose is to ‘fltis’contaminant
out of the domain with the lowest cost. The first study hasiagmuccessfully
the combination of model order reduction technique base@®@b and the col-
location method to solve the stochastic problems. A Bayefiamulation for
the inverse problem solved using MCMC together with a redta@er solver
provides a rapid estimate of the probability density fumctof the parameters
describing source location. Gaussian mixture model is épghied to determine
a number of mixtures in the GMM which is able to cover the pldeaegions
well. Stochastic optimal control based on collocation adgiat method pro-
vides a rapid solution to the control problem. The reducddesavith order
m = 97 decreases the computational time of solution by a fasftabout 25
while retaining acceptable accuracy in comparison wittfulenodel with size
N = 1891. This speedup is important in real-time decision-makingjiaptions
because it provides a rapid solution and reduces storageeetents. For cou-
pled Navier-Stokes and transport model, the POD-based R@®lbeen studied
and applied successfully for the simulation of fluid flow. approach provides
an efficient method to deal with nonlinear and coupled systelm this study,
the speedup factor is approximatély using reduced models with/, = 12

and M, = 20 POD basis vectors in comparison with the full model with size
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N = 2121. The controlled actions provide a cleaner water body thaionn
trolled actions. Due to the significant savings in compotal costs and stor-
age requirements and the effectiveness of the optimal @pnire POD-based

ROMs is able to provide an effective tool for water qualitymagement.

6.2 Future Work

The 2D laterally averaged model is able to provide solutisitls adequate ac-
curacy. However the most environmental flows are three-dso@al models;
they require general solutions. Our numerical code has deesloped for 2D
model and it can readily be extended into 3D model. With 3D ehogk can
explore in great details the movement of water and find outdlead zones”,
which increase residence time of contaminant and augmenighk of recon-
tamination within the reservoir.

The stochastic optimal control of outflow velocity to clegmthe contami-
nantin areservoir is our next target. We have already dpeelthe approach for
a deterministic control. We need to extend the code to otradistic problems:
the stochastic control of reservoir problems. Presentycan only control for
all the outflows with the same factor. We have to modify therapph so that

we can control each outflow separately in order to increagility.
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Appendix A

Finite Element Method

A.1 Solar components

We consider the solar component relationships as showmgiuré2-1. The total
net heat flux through the water surface is calculated by thalkheave radiation
[1], given by

R}k\; = Rony + Ray — Rgr — Rc — Ry,. (Al)

1. The net solar shortwave radiation
Rsy = BRs(1 — ), (A.2)

where Rg is the incoming solar shortwave radiatiom,c (0, 1) is the water
reflection coefficientg = 0.65 is the fraction of solar shortwave radiation. The

remaining fraction of the solar shortwave radiatidn— ()R is absorbed ex-
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ponentially with depth as follows

R, = (1= B)Rsexp(—nH), (A.3)

whereH is water depth ang = 0.5 is the extinction coefficient.
2. The down-welling longwave radiation: is expressed imgepof the Stefan-

Boltzmann Law, for more details refers @9,

Ran = 0e57(273 + T,)* = 0. Fos (273 + T,)™. (A.4)

HereT, is air temperaturer = 5.67 x 10~8(Wm 2K *) is Stefan-Boltzmann
constante.r; = e..F,, is referred to as the effective or apparent emissivity,
F., > 1is acloud factor expressing the increase in clear<kys the clear-sky

atmospheric emissivity,

s = (1 —74)(1 +0.17 % C*)K T2, (A.5)

wherer, = 0.03 is the albedo for long wave radiatioR; = 9.37 x 107%(K 2)

a coefficient and < C' < 1 is cloud cover fraction.

3. The up-welling longwave radiation: follows the same fafation of the dow-
welling, in which air temperaturé, is replaced by water surface temperature
T,

Rpr = 05,(273 + T))*, (A.6)
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where the emissivity,, is fixed at0.975.

4. The evaporative loss (latent heat flux) from the watervemgias

RL - f(Ua)<€s - €a), (A7)

wheree, ande, is the saturation vapor pressure above the water surfactand

vapor pressure of a{hPa), which can be computed fromd(qQ],

17.27T

. = 4.596 exp (——2ta_y A8

c XP(5am 5 Ta) (A-8)
R

eq = (A.9)
100

whereR, is relative humidity. The function df, is expressed as follows

f(U,) =76 x 107 x (9.2 4 0.46U2). (A.10)

5. The conduction heat loss (sensible heat flux) from themwate

Re = 0ATF(U T, — T,). (A.11)

Note that the dimension of all the radiation fluxes are exqgésas energy per

unit area (Vm—2).
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A.2 Finite Element Methods

A.2.1 Linear triangular element

Consider a linear triangular element with three nodal v@fye= (u, w, p, ¢, T);
and nodal coordinatér, z);, with i = 1,2,3 as shown in FiguréA-1. The

variable interpolation within the element is linearimndz directions, as

¢ =ap+ a1 + gz, (A.12)

whereq; are constants to be determined.
The interpolation functionA.12) should represent the nodal variables at the

three nodal points. Therefore, substitutingnd z values at each nodal point

gives i i
1l x5 o %) 01
L ag 2 ar | = | ¢2 |- (A.13)
_1 Ty 2|\ Q2 ¢3

Inverting the matrix and rewriting equatioA.(L3), gives

Qp ay az as o1

1
(0%} = ﬂ b1 by bg ¢2 ) (A14)
Qo €1 C2 C3 ®3
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whereA is the area of the triangle and is given by the determinant

1[L‘1 21

1

1[L‘3 zZ3

and

a1 = ToZ3 — L3229 b1222—Z3 Cl = T3 — X2
A9 — 321 — L1123 b2 — 23 — 21 Co =T1 — XT3 (A16)
a3 = T129 — X227 b3221—22 C3 = T2 — T1.

Substituting the coefficients into equatioh12) and rearrange, we have

F 3
z U3, W3, P3,

X, Z
T (Xar 2a)

Uz, Wy, P,
Cu Ty
(x4, 24)

Figure A-1: Linear triangle element.

¢ = H\pr + Hopo + H3p3, OF ¢ = H¢(e)- (A.17)

HereN are the shape functions, defined as

Hl = ﬁ(al +b13§'+€12’),
HQ = i(ag +b2l‘+022), (A18)

H3 = i(ag, -+ b3$ -+ 032),
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These shape functions satisfy the conditions

Hi(wj,z5) = 0i5,

3
ZHZ- = 1.
=1

HereJ,; is is the Kronecker delta function.

A.2.2 Elemental Matrices

The finite element matrices are evaluated on each element as

M = H'HJIDe,
'De
GS = HTa—HdDe
De 3:1:‘
G = HTa—HdDe
De 82
Le = VHIVHdID?,
De
o = H' f,dD°,
De
fe = | H'f.dD",
'De
OH OH
e o T e
Ce(u) = /H <H 5 + Huy, S~ )dD n
OH oH
T e
/ H H(ax“” 9% wh>dD

/ u)VH” VHdD®,

8H OH
/e —uh + a—wh> dDe

T T

)dDe.
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(A.19)

(A.20)

(A.21)
(A.22)
(A.23)
(A.24)
(A.25)

(A.26)

(A.27)
(A.28)
(A.29)

(A.30)



Cc

K¢ = / x(0") VAT VHAID®, (A.31)

fo = HT f.dDe, (A.32)
De

OH

OH
Ce(u) = / 4HT(Huh% +Hwha)dpe. (A.33)

126



Appendix B

Optimization algorithm for control

Algorithm 1 is a general procedure to solve for deterministintrol, stochastic
control with deterministic source and stochastic contribhwncertain source.
For particular problem, we need to set the input parameterogpiately. For
example, if the deterministic control is considered, we Bet 0, Ng = 0;
© =0, etc.

To solve the KKT system, the Crank-Nicolson meth88][is used to dis-
cretize the state, adjoint and optimality condition equadiin time. The con-
jugate gradient methodlQ]] is employed to solve the linearized system; the

Armijo line-search 102 is used to ensure convergence.
1. Initial work

la. GivenP, D, Ng, ©, ®, initial velocity ug, tolerance:. Setj = 0

1b. Given the FEM basig, for [ = 1, ..., N, whereN is the number of

grid points

1c. Compute the matric@el, C.(u)
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1d. Compute collocation poigt* = (£, 71)}1_, and collocation weights

{wk}kpzr

2. Solve for the KKT system
Forj=1: Ng

2a. Compute vectdr (t, ¢;) = [, f(x, 1, @;)pidx

Fork=1:P
2b. Compute inpuk(x, ¢; Y) at eachg”
2c. ComputeK (t; 0) = [, k(x, 1Y) V() - Vi (x)dx
2d. Solve the state equations with inpyt
2e. Solve the adjoint equations
2f. Store results

end

end
3. Compute the optimal control

3.a Compute the cost-functiondl(u;) and the gradient grad;)

3.b If |gradu;)|| < € — stop.

3.c Perform Armijo line search
e Sets; = —gradu,)
e Seta; = 1then evaluate/ (u;+a;s;), and gtol= 10~%a;sTgrad u;)
e While 7 (u; + a;s;) > J(u;) + gtol

Seta; = a;/2 and evaluate/ (u; + a;s;).

3.d Setu;;; = u; + a;s;, andj = j + 1. Go to ste.
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