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Thesis summary

Use white color here to extend the page to end

This thesis presents an end-to-end measure-invert-control strategy for a stochas-

tic problem with application to the management of water quality in a reservoir

system. The strategy involves estimating uncertain contaminant source locations

within a reservoir, followed by applying an optimal velocity field control to flush

the contaminant out of the reservoir, while accounting for uncertainty such as

wind velocity and measurement noise. This thesis first develops a finite element

numerical simulation code for a 2D laterally averaged reservoir model. The nu-

merical code is validated through comparisons to various benchmark problems.

Numerical results show that the simulated hydrodynamic processes are in good

agreement with theoretical and experimental data. The determination of the con-

taminant source location is posed as a Bayesian inference problem and solved

using a Markov chain Monte Carlo (MCMC) method. Gaussian mixture mod-

els are used to approximately represent the posterior distribution of estimated

source locations. The stochastic control problem then seeks an optimal velocity

to flush the contaminant out of the reservoir. This control problem is solved

using an adjoint method together with collocation over the space of uncertain

parameters.

For large-scale models, such as for reservoir applications, these computa-

x



tional simulations are expensive and time-consuming. Furthermore, due to the

stochastic nature of the problem, the computational costs and storage require-

ments increase rapidly. Thus, this thesis develops a reduced-order model (ROM)

that approximates the full model but provides computational speedups. The

ROM for the reservoir system is obtained using the proper orthogonal decom-

position (POD) and Galerkin projection techniques. To validate and demon-

strate the efficiency of the ROM, two examples are considered. The first is a

simple 2D transport model with a constant velocity field, andthe second is a

coupled Navier-Stokes and transport model. In both cases, the final purpose is

to flush the contaminant out of the domain with the lowest cost. In the trans-

port example, the ROM decreases the computational time of solution by a factor

of approximately 25, while in the coupled Navier-Stokes/transport model, the

speedup is by a factor of approximately 90. In both cases, thereduced-order

solver is effective for solving the Bayesian inference problem and the stochastic

control problem. The control actions lead to a cleaner body of water as com-

pared to the uncontrolled case. These results suggest that the POD-based ROMs

may be an effective tool for water quality management.
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Chapter 1

Introduction

1.1 Motivation

Lakes and reservoirs are the main places to store rainwater in nature. The stored

water can be used for many purposes such as agriculture, industry, daily ac-

tivities, etc. The stored water is also an important factor in the development

strategies of the government, especially in water-shortage countries. For ex-

ample, Singapore is considered as one of the water-shortagecountries because

of its dependence on imports of water from Malaysia and its limited amount

of land area where rainwater can be stored. In order to reducethe dependence

on external sources, the Government has built up many reservoirs from river

systems to store water. Rainwater, runoff water, etc., are collected and initially

treated by a system of storm drains and storm sewers before entering a reservoir.

However, there can be other unexpected water sources that flow directly into the

reservoir. These unexpected sources may contain contaminant concentrations

that cause pollution of the water body. Hence before the stored water treated for
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consumption, it is important to monitor, determine and remove any (suspected)

contaminants as much as possible out of the water system.

Estimating and locating contaminant sources and then applying the control

to flush them out of the water system are the rudimentary tasksof water qual-

ity management. The tasks require knowledge of physics, hydrodynamics, data

assimilation and optimal control. To understand the behavior of water in reser-

voirs, hydrodynamics models are needed. In general, environmental flows are all

three-dimensional (3D). Modeling the hydrodynamics and water quality in 3D

will require much effort due to their complexity. Two-dimensional (2D) models,

in some cases, may provide predictions of adequate accuracywhile being com-

putationally cheaper than 3D models. Two popular models forsimulating wa-

ter quality in lakes and reservoirs are DYRESM (1981) [3] and CE-QUAL-W2

(1994) [4]. These existing models have been used for simulation and validation

for many studies and applications . For example, Gu and Chung(2003) [5] stud-

ied the transport and fate of toxic chemicals in a stratified reservoir by modeling

the toxic sub-model, then linked to CE-QUAL-W2 model using Microsoft For-

tran Power-station program. However, the existing models are not appropriate

in some cases due to their complexity or their requirements.Furthermore be-

cause of the large-scale reservoirs, these existing modelsmay be expensive with

respect to both computational costs and storage requirements. Thus, developing

an appropriate methodology to study the dynamics of water quality in lakes and

reservoirs directly for our specific purpose is considered.

Considering optimal flow control for reservoir applications, we have to deal

with many uncertain parameters relating to the instrumentations that measure

2



the wind speed, water circulation currents, contaminant species and others. These

uncertain parameters may have undue influence on the system.As such these

need to be properly accounted for as stochastic variables inthe system model.

The objective of control is to flush the contaminant out of thedomain in a short

time. The problem may not be too difficult if we know exactly the location of

the contaminant in the domain. However, complexities ariseif we are only given

spatially sparse measurements of the contaminant concentrations. To apply the

control effectively, we have to first estimate the contaminant locations. In realis-

tic applications, measured data are subject to a degree of uncertainty and noise.

Hence, we pose the parameter estimation problem. We formulate the statistical

inverse problem using a Bayesian approach, which accounts for measurement

noise and represents uncertainty in model parameters usingprobability distribu-

tions [6, 7]. Under the Bayesian framework, the nonlinear equations governing

the system of interest need to be solved repeatedly over the different sample

of input parameters. There are available sampling strategies associated with

Bayesian computation such as the Markov chain Monte Carlo (MCMC) meth-

ods [8, 9, 10, 11].

Finding the solution of the optimal flow control problem can be a computa-

tionally expensive undertaking. For simulations to support real-time decision-

making in applications governed by the partial differential equations (PDEs), the

discretized models may have many thousands or even million degrees of free-

dom. The situation is even more challenging for stochastic control problems in

respect to both storage and computational cost. The computational costs and

storage requirements increase very rapidly due to the stochastic nature of the

3



simulations and optimization formulation. In such situations, the use of tradi-

tional discretization methods, such as finite element or finite volume methods,

to achieve real-time simulations may be infeasible. To address these challenges,

the development of a systematic model reduction technique for the end-to-end

strategy: measure-invert-control for a stochastic problem that minimizes com-

putational costs and storage requirements but retaining accuracy is of particular

interest.

1.2 Background

1.2.1 State of the art in reservoir simulations

Reservoirs are usually constructed at low topographic locations to receive basins

downstream. As a result, reservoirs receive large water inflows from the sur-

rounding watershed. The flushing/flow rates are also rapid inorder to balance

water volume in reservoirs. Thus, although there is large variation in water qual-

ity such as pollution loads entering reservoirs from inflows, reservoirs have the

potential to flush these pollutants out rapidly. This process is called the contam-

inant transport process where water velocities play a key role in the near field

and wind induced water velocity is an important factor in thefar field. In this

process, the inflows push the water towards and outflows pull/push the water

out, while the wind induced flow exerts a drag on the water surface and causes

floating objects to move in the wind direction. Wind induced flow also causes

the circulation of water, mixing the water surface and transferring heat from at-

mosphere to the water column. The mixing water process is another important

4



process where the water is enriched with important gases like dissolved oxygen

and carbon dioxide that are essential for aquatic life. Furthermore, the temper-

ature distribution in the water body, namely the thermal stratification process

which is affected by the heat exchange and water circulation, is important for

aquatic life. A better understanding of these processes is important in managing

water resources effectively.

To simulate such processes, for example the contaminant transport process,

a coupled system of partial differential equations (PDEs) including the Navier-

Stokes equations and transport equations needs to be solvediteratively. The

general system of equations for the reservoir is derived from the three dimen-

sional Navier-Stokes equations, energy equation and transport equation. The 3D

modeling is needed in order to provide detailed solution of the fluid flow. How-

ever 3D models are often too complex to build and have long run-times. For

the lake and reservoir systems, flow variations over the vertical and longitudi-

nal directions are important, so an appropriate 2D model is alaterally averaged

model. There are many textbooks that describe the hydrodynamics models for

lake and reservoirs in more detail, such as Ji [12], Martin [13], Orlob [14], and

Rubin and Atkinson [15]).

1.2.2 Inverse problems

The direct or forward problems compute the distribution of contaminant directly

from given input information such as contaminant location,contaminant prop-

erties, fluid flow properties, boundary conditions, initialconditions, etc. On the

contrary, the inverse problems infer the unknown physical parameters, boundary

5



conditions, initial conditions or geometry given a set of measured data. In re-

cent years, the inverse problems have been studied and applied widely to many

fields, especially in computational fluid dynamics because of their importance

in environmental applications. For example, determining the sources of toxic

chemical released on the subways or airports [16] or the pollutant sources of

the water-bodies [17] or groundwater contaminant [18], etc. There are several

approaches to solve inverse problems such as analytical approach, optimization

approach, and probabilistic approach (for more details, see [19]).

The Bayesian inference approach provides a statistical solution to the inverse

problem. The Bayesian approach provides a general framework for the formu-

lation of a wide variety of inverse problems such as climate modeling [20],

contaminant transport model [21, 22, 23] and heat transfer [24]. However, with

complex systems described by partial differential equations, it usually leads to

very large numerical models that are too expensive to solve with respect to both

storage and computation cost. For Bayesian approach, the outputs of interest

need to be evaluated repeatedly for each possible value of the input parameters,

and each single evaluation can be a computationally expensive undertaking.

1.2.3 Optimal control for reservoir problems

Optimal control can be used as a strategy to treat the polluted water in groundwa-

ter, rivers and reservoirs. For example, Nicklow et al. [25] applied the control on

water discharge to minimize sediment scour and deposition in rivers and reser-

voirs, while Fontane et al. [26] controlled discharge water to obtain a desired

target level of the thermal stratification cycle. In the study by Zeitouni [27],

6



the control applies to the quantity of contaminating chemical on each aquifer

which is described by the two-dimensional advection-diffusion equation. In the

study by Bhat et al. [28], the surface of water in a large river is modeled by an

advection-diffusion partial differential equation. Theyconsidered the chemical

and sediment loading as a point inflow source of contaminant and developed

an optimal control model to determine the optimal pollutantloads at different

influx points along the course of a river in order to reduce theenvironmental

damage costs. In the study by Alvarez-Vazquez et al. [29], the strategy con-

sists of the injection of clean water from a reservoir at a nearby point into the

river in order to dilute the contaminant in the water up to a certain level in a

short period of time. Lenhart [30] has studied an optimal control of a parabolic

differential equation, which is modeling the one-dimensional fluid through a

soil-packed tube in which a contaminant is initially distributed. Lenhart con-

sidered the convective velocity as a control variable. However this framework

deals with the one-dimensional deterministic problem and just stands on the the-

oretical ground. The challenge is for higher dimensional stochastic problems in

practical engineering applications.

Despite these above mentioned works, most of the studies dealt with the one

dimensional deterministic problem and used transport equations as state equa-

tions. It lacks of the generality because the movement of water in reservoir plays

a key role in distributing the polluted species. Thus in the control of fluid dy-

namical system, state equations should be included with momentum equations

or Navier-Stokes equations.

In recent years, interest has increased in optimal control problems that in-
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volved the Navier-Stokes equations. These problems are challenging because

of their complexity in numerical approximations of the Navier-Stokes equations

and in the derivation of the optimal formulations. The numerical methods for

optimal flow control problems have benefited much from the development of

computer/supercomputer together with the development of numerical methods

for flow simulation. Adjoint-based methods are one approachused for the solu-

tion of flow control and optimization problems. This approach has been widely

considered in [31, 32, 33, 34, 35, 36, 37, 38, 39] with respect to both theoretical

results and numerical approximations.

To address the stochastic issue in the optimal flow control, the stochastic

collocation method is a suitable approach. In the collocation framework, candi-

date solutions are computed at sample points in the multi-dimensional stochastic

space. The global solution of the SPDEs is then represented using interpolation

functions [40, 41, 42]. The Smolyak algorithm provides a minimal number

of collocation points to construct the interpolation functions, which for many

problems leads to efficient and accurate representation of the stochastic solu-

tions [43, 40]. The sparse grid collocation method has been widely applied to

stochastic applications, such as natural convection problems [44], source inver-

sion and flow through porous media [45].

For the approaches discussed so far, optimal control problems will be too

expensive to solve with respect to both computational costsand storage require-

ments. This is because each iteration requires to solve at least one non-linear

solver. For stochastic control problems, the situation is worse because we have

to determine multiple realization of the state system at each iteration. Thus,
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reduced order models are studied to reduce the cost.

1.2.4 Model order reduction for reservoir management ap-

plications

Model order reduction techniques aim to reduce the dimension of a state-space

system, while retaining the characteristic dynamics of thesystem and preserv-

ing the input-output relationship [46]. Many large-scale model reduction frame-

works are based on projection approach. The idea is to approximate any so-

lution of the PDEs of interest as a linear combination of solutions that have

been pre-computed and to project the large-scale governingequations onto the

subspace spanned by a reduced-space basis, hence yielding alow-order dy-

namical system. Methods to compute the basis include balanced truncation

[47, 48], Krylov-subspace [49, 50], and proper orthogonal decomposition meth-

ods [51, 52].

The most popular technique to find the basis is the proper orthogonal decom-

position (POD). POD provides an orthogonal basis for a set ofdata, which origin

may be theoretical, experimental or computational data. Sirovich introduced the

method of snapshots, where each snapshot contains spatial data obtained from

numerical simulation at a fixed time, as an efficient way for determining the

POD basis vectors for large-scale problems [52]. POD has been successfully

applied for simulation [53, 54, 55, 56], optimization and optimal control prob-

lems [57, 58, 59].

Since the full dynamic system has variable-dependent functions and nonlin-

ear functions, we must choose a suitable model reduction method. The tradi-
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tional approach is Galerkin method for incompressible flow.In this method, a

set of nonlinear systems is approximated using a finite Galerkin expansion in

term of global modes, obtained the evolution equation for the mode amplitudes,

called the Galerkin system [60]. In the context of optimal control problems, this

approach improves the efficiency of computation by simplifying the full and

complex optimality system, resulting in a set of nonlinear ordinary differential

equations that is simple and easy to solve. This approach hasbeen used success-

fully in optimal flow control problems [59, 61, 62, 63, 64]. Another approach

is the empirical interpolation method (EIM) [65, 66], in which the nonlinear

terms are approximated using linear combination of empirical basis functions

and interpolation points where both basic functions and interpolation points are

computed based on a greedy selection process. Chaturantabut et al. [67, 68] de-

veloped the discrete empirical interpolation method (DEIM) based on the EIM

method in a finite-dimensional setting. This approach was successfully applied

to derive efficient reduced-order models for reacting flow applications [69].

1.3 Thesis Objectives and Outline

The goal of this work is to develop an efficient end-to-end measure-invert-

control approach to solve stochastic problems in the application of water quality

management. The objectives of the thesis are as follows:

1. To develop a numerical simulation of hydrodynamic processes in lakes

and reservoirs.

2. To develop an efficient reduced-order modeling approach to solve an in-
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verse problem to estimate an uncertain contaminant source and then solve

a stochastic control problem to mitigate the effects of the contaminant.

As such, this thesis is structured as follows. In Chapter 2, the problem for-

mulations and numerical simulations for lake and reservoirare given. The 2D

laterally averaged model is derived from the Navier-Stokesequations and trans-

port equations. Finite element methods together with a turbulence model and

stabilization techniques are used to solve the system equations. In Chapter 3,

the computer codes are validated, compared and verified using benchmark prob-

lems. The 2D lid-driven cavity flow with low and high Reynoldsnumbers are

used to validate the code for the 2D Navier-Stokes equations. The backward

facing step flow with higher Reynolds numbers is used to demonstrate the ef-

fect of turbulence models. Test cases for transport equations are described and

compared with other methods. Chapter 4 presents a model order reduction tech-

nique, based on Galerkin projection and POD methods. A general reduction

framework for linear system is firstly presented, the Galerkin method is then de-

rived for nonlinear systems. In Chapter 5, stochastic estimation and stochastic

control are developed for transport problems. A numerical example is presented

to demonstrate how the end-to-end measure-invert-controlstrategy works for a

stochastic problem governed by the transport equations. Chapter 6 concludes

the thesis with recommendations for extensions and future work.
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Chapter 2

Mathematical model and

Numerical methods

This chapter describes the governing equations and numerical models for hy-

drodynamic processes such as fluid flow, thermal stratification and contami-

nant transport in lakes and reservoirs. Section2.1describes a laterally averaged

model, which is a combination of the Navier-Stokes equations and a transport

equation. Section2.2presents the fluid properties and transport properties such

as water density, dynamic viscosity, eddy viscosity, thermal conductivity and

diffusion coefficients. Section2.3 describes the boundary conditions for the

three hydrodynamics processes. Finally, numerical methods for solving the lat-

erally averaged system are presented in Section2.4.
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2.1 Laterally averaged model for lakes and reser-

voirs

We are interested in simulating the hydrodynamic processesand water qual-

ity changes in lakes and reservoirs. Here we consider a 2D laterally averaged

model. The model is obtained by laterally integrating the Navier-Stokes equa-

tion, continuity equation and transport equation, which can be found in many

textbooks (see e.g., Ji [12], Martin [13], Orlob [14], and Rubin and Atkinson

[15]). In this study, we employ the non-hydrostatic model to describe the hy-

drodynamic processes. This model is first used by Karpik and Raithby [70] to

predict the thermal stratification in reservoirs. It has been applied widely in

reservoir models [71, 72].

We consider a set of governing equations as described in the following. In or-

der to simplify the system for general applications, we firstapply dimensionless

analysis to the general governing equations. We define dimensional parameters

as given in Table2.1. Let,

x =
x∗

L0
, z =

z∗

L0
, B =

B∗

B0
, u =

u∗

U0
, w =

w∗

L0
, t =

t∗U0

L0
, g =

g∗

g0
,

ρ =
ρ∗

ρ0
, µx =

µ∗
x

µ0
, µz =

µ∗
z

µ0
, κx =

κ∗
x

κ0
, κz =

κ∗
z

κ0
, λx =

λ∗
x

λ0
, λz =

λ∗
z

λ0
,

p =
p∗

ρ0U
2
0

, τx =
τ ∗
x

1
2
ρ0U2

0

, T =
T ∗

T0

, c =
c∗

c0

, Re =
ρ0U0L0

µ0

, P e =
U0L0

κ0

,

F r =
U0√
g0L0

, P r =
cpµ0

λ0

, RN =
R∗

N

RN0

, Ep =
RN0

ρ0cpU0∆T0

.

where the superscript ‘*’ indicates dimensional quantity while subscript ‘0’ in-

dicates a constant reference value. We then use these reference values to derive
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Table 2.1: The dimensional parameters.

Parameter Description Original dimensions
L0 Length scale {L}
B0 Width averaged scale {L}
U0 Velocity scale {Lt−1}
P0 Pressure {ML−1t−2}
g0 Gravitational acceleration {Lt−2}
ρ0 Density {ML−3}
µ0 Dynamic viscosity {ML−1t−1}
κ0 Diffusivity coefficient {ML−1t−1}
λ0 Thermal conductivity {Mt−3θ−1}
T0 Temperature {θ}
c0 Contaminant {ML−3}

RN0 Radiative heating {Mt−3}

the non-dimensional form of the governing equations.

The continuity equation is

∂(Bu)

∂x
+

∂(Bw)

∂z
= 0, (2.1)

whereB(x, z) is the local width that varies in verticalz and longitudinalx di-

rections,u(x, z, t) andw(x, z, t) are width-averaged velocity components cor-

responding tox andz directions, respectively, andt is time.

The momentum equations are

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+

1

Re ρ B

[

∂

∂x

(

Bµx
∂u

∂x

)

+
∂

∂z

(

Bµz
∂u

∂z

)

]

+τx, (2.2)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − g

Fr2
− 1

ρ

∂p

∂z

+
1

Re ρ B

[

∂

∂x

(

Bµx
∂w

∂x

)

+
∂

∂z

(

Bµz
∂w

∂z

)

]

. (2.3)
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Herep(x, z, t) is pressure,ρ is the width-averaged density,g is the gravitational

acceleration.Re ≡ ρ0U0L0

µ0

is the Reynolds number that expresses the ratio of

inertial forces to viscous forces.Fr ≡ U0√
g0L0

is the Froude number which is a

ratio of inertial forces to gravitational forces.µx andµz are the longitudinal and

vertical viscosity coefficient, respectively.τx is shear stress caused by wind on

water surface.

The concentration of any constituent of water such as dissolved gases, or-

ganic matter, etc., is computed by the width-averaged transport equation as fol-

lows

∂c

∂t
+ u

∂c

∂x
+ w

∂c

∂z
=

1

Pe

1

B

[

∂

∂x

(

Bκx
∂c

∂x

)

+
∂

∂z

(

Bκz
∂c

∂z

)

]

+ S, (2.4)

wherec(x, z, t) is the concentration of the constituent, andκx andκz are the

longitudinal and vertical diffusivity coefficients.Pe ≡ U0L0

κ0

is the Péclet which

is a measure of the relative importance of convection to diffusion.S denotes an

external sources or sinks.

In principle, we can use equation (2.4) for any water quality variables. For

lakes and reservoir study, contaminant transport and thermal stratification pro-

cesses are important. Hence contaminantc and water temperatureT are chosen.

The contaminant transport equation is the same as equation (2.4), but we replace

S by external body sourcefc.

The water temperature equation is written as follows

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
=

1

RePr

1

B

[

∂

∂x

(

Bλx
∂T

∂x

)

+
∂

∂z

(

Bλz
∂T

∂z

)

]

+ Ep
∂RN

∂z
.

(2.5)
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HereT (x, z, t) is temperature,RN the solar radiation penetrating into the water,

andEp ≡ RN0

ρ0cpU0∆T0

is the radiative heating coefficient, withRN0 being the typ-

ical value for radiation heating in temperate latitudes,RN0 = 200− 250W/m2.

∆T0 is the change in water temperature.λx andλz are the longitudinal and verti-

cal thermal conductivity coefficients, which depend strongly on the temperature

and pressure.Pr ≡ cpµ0

λ0

is the Prandtl number which signifies the ratio of heat

transport to momentum transport, wherecp is the specific heat of water.

In order to simplify the system equations (2.1)–(2.5), we make the following

assumptions:

- The velocity distribution in the reservoir is affected by the shape of the

reservoir. Beside the main flow, there are other currents developing attributed

to the specific geometry of the reservoir such as cross section, side walls, etc.

These situations are complicated and specific. Thus, we assume that the local

width B∗(x, z) is wide and unchanged.

- The longitudinal and vertical viscosity coefficients are slightly different. In

this study, they are treated as approximately equal.

- We assumeB ∼ 1, µ∗
x ≈ µ∗

z ∼ µ0, κ∗
x ≈ κ∗

z ∼ κ0, λ∗
x ≈ λ∗

z ∼ λ0 and

ρ ∼ 1.

The dimensionless system of laterally-averaged equations(2.1)–(2.5) governing

16



incompressible viscous flow can be written as follows:

∇ · u = 0, (2.6)

∂u

∂t
+ u · ∇u = −∇p + νv∇2u + f , (2.7)

∂T

∂t
+ u · ∇T = λv∇2T + Ep∇RN , (2.8)

∂c

∂t
+ u · ∇c = κ∇2c + fc. (2.9)

Hereu = [u, w]T , f = [0,− 1
Fr2 g]T , νv = 1

Re
, λv = 1

Re Pr
andκ = 1

Pe
.

2.2 Transport and thermal properties

In this section, we shall briefly describe the fluid properties, transport properties

and thermal properties that appeared in equations (2.6)–(2.9).

2.2.1 Water temperature

Water temperatureT (oC) is an important variation of water quality because of

its direct affect on the aquatic life. There are many factorsthat influence wa-

ter temperature such as mixing water, inflow temperature, heat exchange, etc.

Among them, solar radiation is a factor that directly affects the water body.

Figure2-1, adapted from [1], shows the compilation of solar component rela-

tionships.

Following that the total net heat flux through the water surfaceR∗
N is calculated

by the net all-wave radiation, given by

R∗
N = RSN + RAN − RBR − RC − RL. (2.10)
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Figure 2-1: The relationship of heat exchange at water surface. Adapted from
[1]

Here, RSN is net solar shortwave radiation,RAN is down-welling longwave

radiation,RBR is up-welling longwave radiation,RC is sensible heat flux and

RL is latent heat flux. Details of these radiations can found in AppendixA.1.

2.2.2 Water density

Water density is the mass of water per unit volume. It dependsnonlinearly on

the temperature,ρ = f(T ). Pure water density(kg/m3) can be calculated using

the Thiesen-Scheel-Diesselhorst equation [73].

ρ0 = 1000
[

1 − T + 288.9414

508929.2(T + 68.12963)
(T − 3.9863)2

]

. (2.11)

In this empirical formulation, water density will increaseits density from0oC

to 4oC and decreases its density from4oC onwards. As a result, a reservoir in

tropical region will stratify the water body in layers wherewarm water is above

and colder water is below.
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2.2.3 Dynamic viscosity

Dynamic viscosity is an important water property measuringthe resistance to

motion. For a Newtonian fluid like water, viscosity is a constant at given tem-

perature. Dynamic viscosity values(Nsm−2) are derived from empirical ex-

pressions [73]:

log10

( µ

100

)

=
1301

998.33 + 8.1855(T − 20) + 0.00565(T − 20)2

−1.30233 (2.12)

log10

( µ

µ20

)

=
1.3272(20 − T ) − 0.001053(T − 20)2

T + 105
. (2.13)

Equation (2.12) is applicable forT = 0oC to 20oC, and Equation (2.13)

applicable forT = 20oC to 100oC. Here µ20 is the dynamic viscosity at

20oC = 0.001002Nsm−2.

2.3 Boundary conditions

Boundary conditions are different depending on each hydrodynamic process.

Common boundary conditions for a reservoir system are shownin Figure2-2,

adapted from [2]. For fluid flow problems, it is necessary to introduce kine-

matic and dynamic boundary conditions at a free surface. This information is

determined locally using a one-dimensional form of the linear wave equation

[2]. These boundary conditions will be summarized in this section.

19



2.3.1 Boundary conditions for fluid flow

Inflow/outflow

In lakes and reservoir problems, we sometimes are not able todetermine exactly

the inflow boundary conditions because of stochastic water quantity inputs such

as rainfalls, flood, tides, etc. These situations are complicated and difficult to

deal with. In this study, we shall assume that inflow (or outflow) boundaries are

determined. More specifically, at inflow and outflow boundaries, longitudinal

velocities are assumed as a parabolic function inz, while vertical velocities are

set to zero. That is

ui = fi(z), (2.14)

where subscript ‘i’ denotes “in” or “out”.

Solid surfaces

The bottom and solid-surfaces of reservoir are assumed to beimpermeable to

fluid and the fluid sticks to their surfaces. Hence, the no-slip boundary condition

is applied,

u = w = 0. (2.15)

Free surface

The free surface boundary conditions include the kinematicboundary condition

and dynamic boundary condition.
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The kinematic boundary condition

The kinematic boundary condition relates the motions of thefree interface to

the fluid velocities at the free surface. Let the free surfacebe defined asη(x, t),

velocity fieldu(x, z, t) = ∇φ(x, z, t), the linearized wave kinematic condition

is given by [2],

∂η

∂t
=

∂φ

∂z
, (2.16)

∂φ

∂t
+ gη = 0, (2.17)

which are applicable onz = η. Thus, the complete boundary value problem

(BVP) is to find the potentialφw(x, z, t) that satisfies

∇2φw = 0,

s.t.
∂φ

∂z
=

∂η

∂t
on z = η,

∂φw

∂t
= −gη on z = η,

∂φ

∂z
= 0 on z = −H,

η = η̄ sin(Dt − kx). (2.18)

HereD = 2π/T , k = 2π/λw, λw = g
2π

T 2, whereT is wave period,λw wave

length, η̄ wave amplitude,H total depth. A general solution for deep water

whenη̄/λw ≪ 1, is

uw = us expkz sin(Dt − kx), (2.19)

ww = us expkz cos(Dt − kx). (2.20)
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Hereus = Dη̄ is the velocity amplitude,uw andww are the velocity at free

surface in x and z directions.

The dynamic boundary condition

The dynamic boundary condition requires that the stress to be continuous across

the free surface which separates the air and water. Wind forcing exerts a drag on

water surface is equal and opposite to the traction exerted by water on air. Thus

we have

τx = CdρaU
2
a = Cdρu2

s, (2.21)

whereτx is the wind forcing on water surface,Ua is wind speed at10m above

the surface,ρa density of air andCd the wind stress coefficient. Now,us can be

approximated as

us =

√

ρa

ρ
Ua ≈ 0.03Ua. (2.22)

Figure 2-2: Common boundary conditions for reservoir problems. Adapted
from [2].

22



In this study we assume that the lake and reservoir act like a container, mean-

ing that we have a closed water body. The water surface is usually quiescent.

Only water velocities and wind-induced water velocity influence the water sur-

face. Water velocities play a key role in the near field and wind induced water

velocity is an important factor in the far field. Under these influences, the water

surface may have oscillations but with small amplitudes. Overall, these influ-

ences are small and do not have a large effect on the entire reservoir. Thus we

neglect the kinematic boundary condition.

2.3.2 Boundary conditions for water temperature

Inflow/outflow

Inflow temperature is given as a constant value and outflow temperature satisfy

the homogeneous Neumann conditions:

T = Tin on Γin, (2.23)

∂T

∂n
= 0 on Γout, (2.24)

wheren is the normal outward vector.

Solid surfaces

In a real reservoir system in a tropical region, the water body will be stratified

in layers where warm water is above and colder water is below.In this case,

the walls temperature will have the temperature value at that water layer. Here

we assume that the bottom of reservoir has a temperatureTb and the surface
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water has a temperatureTs. The walls temperature is defined by the temperature

linearly decreasing from the surface temperature to the bottom temperature of

the reservoir. That is

T |wall = Ts atz = 0, (2.25)

T |wall = Tb at z = −H, (2.26)

whereH is average depth of the reservoir.

Free surfaces

Temperature at a free surface is complex because it involvesheat exchange at

the surface between the atmosphere and water in the reservoir. The boundary

temperature at the surface of the water is given by

− ρcpλ
∂T

∂z
= RBR + RL + RC . (2.27)

HereRBR, RL andRC are described in AppendixA.1.

2.3.3 Boundary conditions for contaminant transport

The inflow boundary and other solid boundaries satisfy a homogeneous Dirich-

let condition. The outflow boundaries and free surface boundary satisfy homo-

geneous Neumann condition.

c = 0 on ΓD, (2.28)

∂c

∂n
= 0 on ΓN . (2.29)
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2.4 Numerical methods for lateral reservoir sys-

tem

This section describes the numerical method for solving thesystem of equa-

tions. Here, the mixing length model is briefly described. Then the stabilized

second-order fractional-step method is employed to solve for the Navier-Stokes

equations. Finally, the finite element method is used to discretize the governing

equations in space.

2.4.1 Turbulent models

Many environmental flows are unsteady and turbulent. For large-scale system

such as a reservoir, we only want to capture the main characteristics of the flow.

Hence, the mixing length turbulence model is suitable for that purpose.

The Reynolds-Averaged Equations in dimensionless form of equations (2.6)–

(2.7) are

∇ · u = 0, (2.30)

∂u

∂t
+ u · ∇u = −∇p + ∇ ·

(

(νv + νt)∇u
)

+ f , (2.31)

whereu is the mean solutions of velocity field andp the mean solution of

pressure field.νv = 1/Re with Re is the viscosity Reynolds number, as de-

fined above,νt = 1/Ret with Ret is the eddy Reynolds number, defined as

Ret ≡ ρ0U0L0

µt
. Hereµt is a eddy viscosity. The mixing length model [74] is
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then used to determinesµt. That is,

µt = ρ0l
2
m

∣

∣

∣

∂u

∂z

∣

∣

∣
with lm =















κtz, z
δ
≤ λt

κt

λtδ, z
δ

> λt

κt .

(2.32)

Here ∂u

∂z
is the partial derivative of the stream-wise velocity with respect to the

wall normal directionz, lm is the mixing length,κt = 0.41 andλt = 0.09. δ is

the boundary layer thickness.

A similar formulation is derived for the temperature transport equation. If

the flow is turbulent, the eddy viscosity is added in to diffusion term as follows

∂T

∂t
+ u · ∇T = (λv + λt)∇2T + Ep∇RN , (2.33)

whereλt = 1
Pet

with Pet is eddy Péclet number, defined asPet ≡ U0L0

λT
x

. Here

λT
x is the horizontal eddy viscosity, calculated from the following formula [75]

λT
x = EtρctHU0, (2.34)

whereH is average depth of the reservoir,ct = 2 × 10−5. Et is a constant.

2.4.2 Numerical model for Navier-Stokes equations

As discussed in the boundary section, we wish to solve the fluid flow prob-

lem with all Dirichlet conditions applied for the boundaries. LetD ∈ R
2 be a

physical domain. The Navier-Stokes equations as describedin equations (2.30)–
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(2.31) with boundary conditions and initial condition are given as

∂u

∂t
+ (u · ∇)u = −∇p + ν∇2u + f in D × [t0, tf ], (2.35)

∇ · u = 0 in D × [t0, tf ], (2.36)

u = uD on Γ × [t0, tf ], (2.37)

u(x, 0) = u0(x) in D, (2.38)

whereν = (νv + νt) is the fluid kinematic viscosity,x ∈ D denotes the spatial

coordinates,t ∈ [t0, tf ] denotes time, andu0 the initial condition.

In order to solve problem (2.35)–(2.38) we use the pressure stabilized second-

order fractional-step method formulation based on the pressure projection. For

details discussion and derivation of this method, one may refer to [45, 76]. Here

we present the method for this particular problem. Define thealgorithmic pa-

rameters as follows

τ :=

[

4
ν

h2
e

+ 2
||uh||
he

]−1

(2.39)

wherehe is the local size of elemente, ||uh|| is the local velocity in the element.

Equations (2.35)–(2.38) can be written as follows

∂u

∂t
+ (u · ∇)u = −∇p + ν∇2u + f in D × [t0, tf ], (2.40)

−τ∇2p + τ∇ · π + ∇ · u = 0 in D × [t0, tf ], (2.41)

−∇p + π = 0 in D × [t0, tf ], (2.42)

u = uD on Γ × [t0, tf ], (2.43)

u(x, 0) = u0(x) in D, (2.44)
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whereπ the projection of pressure.

Finite Element Approximations

Finite element method (FEM) [77] is employed to discretize equations in space.

Finite element formulation requires solutions of the weak formulation of (2.40)-

(2.44). The weak formulation is obtained based on the variationalformulation

of the problem. In order to satisfy the Dirichlet boundary condition, for a fixed

t ∈ [t0, tf ], the weak solutions of the velocity spaceV := {u,v,w ∈ H1
0(D)},

pressure spaceQ := {q ∈ L2(D)} are chosen. Introduction of the bilinear

forms is given as follows

a(u,v) := (∇u,∇v), (2.45)

b(q,v) := (q,∇ · v), (2.46)

c(u,v,w) :=
(

u · ∇v,w +
1

2

(

(∇ · u)v,w
)

)

, (2.47)

s(u,v) := (u,v). (2.48)

where(u,v) =
∫

D uv dD denotes the standardL2 inner product.

For finite element spaceVh ∈ V, Qh ∈ Q, the discretization of the weak formu-

lation can be defined as: find the approximation(un+θ
h , πn+θ

h , pn
h) to (un+1

h , πn+1
h , pn+1

h )
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such that

s(
δun

h

δt
,vh) + c(un+θ

h ,un+θ
h ,vh) + νa(un+θ

h ,vh) = b(pn
h,vh)

+s(fn+1,vh),(2.49)

−dts(∇(pn+1
h − pn

h),∇qh) − τs(∇pn+1
h − πn

h ,∇qh) = b(qh,u
n+θ
h ), (2.50)

s(
δun+θ

h

δt
,vh) − b(pn+1

h − pn
h,vh) = 0, (2.51)

νa(πn+1
h , qh) = νa(∇pn+1

h , qh).(2.52)

Here δt is the time step size, superscripts refer to the time step level, θ ∈

[0, 1/2, 1], un+θ
h := θun+1

h + (1 − θ)un
h andδun

h := un+θ
h − un

h.

The second-order fractional-step algorithm

The second-order fractional-step method need three steps to solve the system of

equations (2.49)–(2.52). We introduce the finite element matrices to the form

of the system withθ = 1/2. The fundamental formulation of finite element

method is provided in AppendixA.2.1. The algorithm is,

1. Determine the intermediate velocity fields

M
δun

dt
+
(

C(un) + K(un)
)

un+1/2 = −Gpn + f in D, (2.53)

u = uD on Γ. (2.54)
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2. Update pressure

− Lpn+1 =

Nnel
∑

e=1

1

dt + τk

(

− dtLepe + Ae(un+1/2
e ) − τkD

e(πn
e )
)

,(2.55)

n · (Lpn+1) = 0 on Γ. (2.56)

Equation (2.56) is the homogenous Neumman boundary conditions [78].

In addition, the pressure at given point is fixed. HereNnel is the number

of element. Note that we need to computeτk in each element becauseτk

is discontinuous across the element.

3. Update projected pressure and velocity

Mπn+1 = Gpn+1 in D, (2.57)

Mun+1 = Mun+1/2 − dtG(pn+1 − pn) in D, (2.58)

n · un+1 = n · uD on Γ. (2.59)

These elemental matrices are given in AppendixA.2.2. For computational pro-

cedure, we assemble the matricesM,L,G = [Gx Gz] andf = [fx fz]
T before

the transient analysis. Then we assemble the matricesK,C,A,D at each time

step. The computation will stop when it meets the convergence requirements.

Let εu be the tolerance interior, and the relative error at each time step is given

by

error=
||un+1 − un||2L2

||un+1||2L2

< εu. (2.60)
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2.4.3 Numerical model for transport equations

In general, a transport equation has the form of (2.9). In order to represent

the stochastic processes which appear in realistic applications, we introduce

stochastic variables into the governing equation. Let the diffusivity κ(x, t; ω)

be a function mapping the product spaceD × [t0, tf ] × Ω → R, wherex ∈ D

denotes the spatial coordinates andt ∈ [t0, tf ] denotes time. The randomness of

the diffusivity is contained inω ∈ Ω, whereΩ is the sample space. A contam-

inant concentration which is represented by a functionc :≡ c(x, t; ω) satisfies

the stochastic parabolic differential equation (SPDE), boundary conditions and

initial conditions as follows:

∂c

∂t
+ u · ∇c −∇ ·

(

κ(x, t; ω)∇c
)

= fc(x, t; φ) in D × [t0, tf ], (2.61)

c = cD on ΓD × [t0, tf ],(2.62)

∂c

∂n
= 0 on ΓN × [t0, tf ],(2.63)

c(x, t0; ω) = c0(x; ω) in D. (2.64)

Herefc(x, t; φ) is the external source withφ ∈ R
2 are source locations, andc0

is the given initial condition. The inlet boundaryΓD is subjected to a Dirichlet

conditioncD, while the remainder of the boundaryΓN = Γ\ΓD satisfies homo-

geneous Neumann condition. The velocity fieldu ∈ R
2 in the convective term

can be a function ofx andt or constant.

Next we use the finite element method together with stochastic collocation

approach to discretize this system of equations in space.
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Stochastic Collocation Method

In the collocation framework, the SPDE problem is transformed into a parame-

terized family of deterministic PDEs using an assumption offinite-dimensional

noise [41, 79]. The approximation of the SPDE solution is then computed based

on a weighted combination of the solutions at each sample in the collocation

space.

In order to solve the SPDE problem using collocation method,we assume

that the randomnessω can be modelled by a set of finite number of random

variables. Thus the uncertain diffusivity fieldκ can be written asκ(x, t; ω) ≈

κ
(

x, t;Y(ω)
)

, whereY(ω) = {Yi(ω)}NY

i=1 are independent random variables.

We define a finite dimensional subspace or a collocation spaceas the space of

degreeP − 1 polynomials,PP−1(θ). The collocation space has two attributes:

the collocation points{θk}P
k=1 and the collocation weights{wk}P

k=1. We then

representκ as

κ(x, t;Y) = E

[

κ
]

(x, t) +

NY
∑

i=1

κi(θ)Yi(ω). (2.65)

Here the functionsκi are deterministic functions andθ represents the coor-

dinates in the collocation space. The expansion in Equation(2.65) could be

computed for example using the Karhunen-Loève decomposition [80]. The un-

certain diffusivity fieldκ in Equation (2.65) can be considered as functions of

variableθk if the random vectorY(ω) is given. As a result, the stochastic col-

location requires evaluation of the solutionc(x, t;Y) at each collocation point

{

θk}P
k=1. Hence, the SPDE problem with an uncertain input parameter is now
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written as a deterministic parameterized PDE whereθ is the input parameter.

The solution of the SPDE is a global approximation constructed by linear com-

bination of the solution at collocation points.

cF (x, t;Y) =
P
∑

k=1

ck(x, t;Y)Lk(θ), (2.66)

whereLk(θ) is the Lagrange interpolation function corresponding to the kth

collocation point, andck(x, t;Y), k = 1, · · · , P , are the solutions to:

∂ck

∂t
+ u · ∇ck −∇ ·

(

κ(θk)∇ck

)

= fc(x, t; φ) in D × [t0, tf ], (2.67)

ck = cD on ΓD × [t0, tf ], (2.68)

∂ck

∂n
= 0 on ΓN × [t0, tf ], (2.69)

ck(x, t0; θ
k) = c0(x; θk) in D. (2.70)

Finite Element Approximations

The finite element method (FEM) [77] is employed to obtain a semi-discrete set

of equations with the following form

Mċ +
(

Cc(u) + Kc(t; θ
k)
)

c = fc(t; φ), (2.71)

c(t0;Y) = c0(Y). (2.72)

Here,c(t;Y) ∈ R
N is the discretized approximation ofc(x, t;Y) and contains

N state unknowns.̇c is the derivative ofc with respect to time.M ∈ R
N×N is

the mass matrix,Cc(u) ∈ R
N×N is the convective matrix,Kc(t; θ

k) ∈ R
N×N
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is the stiffness matrix, andfc(t; φ) ∈ R
N is the external source. Here,N is the

number of grid points andθk thekth collocation point.

34



Chapter 3

Code Verification and Validation on

Benchmark Problems

In this chapter, our numerical models are validated, compared and verified us-

ing benchmark problems. In Section3.1, a two-dimensional (2D) lid-driven

cavity flow without gravity in the range of Reynolds numbers from Re = 100

to Re = 5000 is used to validate our codes for the 2D Navier-Stokes equa-

tions. Numerical results are in good agreement with those obtained from the

study of Ghia et al. [81]. In Section3.2, the backward facing step flow with

Re = 132, 000 is used to demonstrate the effect of turbulence model at high-

Reynolds number. Numerical results are compared with the study found in

[82, 83, 84]. In Section3.3, three test cases for transport equations are de-

scribed. Numerical results are compared with the other finite difference methods

in [85, 86, 87]. Finally, numerical simulations of two-dimensional hydrodynam-

ics processes are presented in Section3.4.
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3.1 Cavity flows

We consider the benchmark problem: lid-driven cavity flow atRe = 100, Re =

1000 andRe = 5000 and compared with Ghia et al. [81]. The problem set up

is shown in Figure3-1. Triangular equal-order velocity/pressure elements are

Figure 3-1: Cavity flow set up and boundary.

used to generate the grid. The number of grid points in thex andy directions are

nx = 60 andny = 60, respectively orN = 3721. The Crank-Nicolson method

[88] (with θ = 1/2) is used to discretize the system equations in time, where

t ∈ [t0, tf ] with tf = 100 and time step size∆t = 0.08. The steady solution

is obtained when convergence condition (2.60) is satisfied, where the tolerance

tol = 1.0e−4 is chosen. Figure3-2 shows the convergence of our computations.

We observe that when the Reynolds number is 100, 1000 and 5000, the com-

puted solutions reach the steady solutions but with different computational time.

In caseRe = 100, steady solution reaches very fast while in caseRe = 5000,

the steady solution needs longer time.

Figure3-3 shows the velocity profiles in the centerline of the cavity atvari-

36



Figure 3-2: Convergence rate of the solutions for various Reynolds numbers.

ous Reynolds numbers. Numerical results are matched with Ghia et al. (1982)

results.

3.2 Backward facing step flows

The purpose of this test case is to provide a validation for the mixing length

model (which is described in Chapter2). The fully turbulent flow past a backward-

facing step is set up for the3 : 2 expansion ratio and Reynolds numberRe =

132, 000. We compare with the available results in the literature [82, 83, 84].

The geometry is given as in Figure3-4, with −5 ≤ x ≤ 22 and−1 ≤ y ≤ 2.

Boundary conditions are set as follows:

Inlet :















u = 1

v = 0

if















x = −5

0 ≤ y ≤ 2,

Outlet :















∂u
∂x

= 0

v = 0

if















x = 22

−1 ≤ y ≤ 2.

Walls are set to the no-slip boundary condition. Triangularequal-order veloc-

ity/pressure elements are used to generate the grid withNelem = 9728 elements
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Figure 3-3: Comparison of central profile of velocity.

Figure 3-4: Geometry and mesh of backward step.

andN = 5105 nodes. Computational time is set attf = 100 with time step size

∆t = 0.05. The turbulent viscosityµt is computed based on equation (2.32).

Here, we set the boundary layer thicknessδ = 0.85. The computed results of

streamlines and mean velocity profiles are presented in Figure3-5.
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(a) Streamlines

(b) Mean velocity profiles

Figure 3-5: Computed results from mixing length turbulent model.

Figure3-5 indicates that the mean reattachment point is around6.3, which

is close to the experimental value of about7.0 in Kim et al. [82]. The value in

the study of Thangam and Hur [84] is 5.58 and Speziale et al. [83] is 5.5 to 6.4

corresponding with the specific turbulence model adopted. Note that the results

in [83, 84] are based on the more complexk − ǫ model.

Figure3-6 shows the comparison of the mean velocity profiles with exper-

imental results. In this figure, the solid line is numerical result and the symbol

represents the experimental data;H is the height of step. We observe that the

computed results with the mixing length model have good agreement with ex-

perimental data. When∂u

∂y
= 0 at the boundary, the eddy viscosityµt = 0,

which is why the solid line always starts at value 0. It is a shortcoming of the

mixing length model. However for large-scale problems suchas a lake or reser-

voir, it is not necessary to capture all the small characteristics of flows. Thus,

the mixing length model is suitable for our study purpose.
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(a) (b)

(c) (d)

Figure 3-6: Comparison of mean velocity profiles with experimental results.

3.3 Validation of code for transport equation

In this section, we provide some numerical examples to verify our codes for the

convection-diffusion equations, which are described in Chapter2. We shall con-

sider two test cases. First we present a numerical solutionsof a pure diffusion

equation. Second, a convection-diffusion flow is presented.

3.3.1 Pure diffusion equation

The first test case is equation (2.61) in the unit square domainD = [0, 1]×[0, 1]

with the coefficientsu = 0, fc = 0 andκ = 1. It will result the Péclet number

Pe = 0. The equation is a pure diffusion equation, whose exact solution is given
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by

cexact(x, t) = e−2π2t sin(πx) sin(πy). (3.1)

The initial and Dirichlet conditions can be obtained directly from equation (3.1).

Triangular elements are used to generate the grid. The number of grid points

in the x and y directions arenx = 40 and ny = 40, respectively orN =

1681. Computational time is set attf = 1 with time step size of∆t = 0.001.

Figure3-7 shows the initial and final computed solutions. In the pure diffusion,

the contaminant spreads out and decreases in magnitude gradually.
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Figure 3-7: Contaminant solutions.

To further illustrate the effectiveness and validity of thecodes, we compare

our computed result with the results of other numerical methods (Finite Differ-

ence Method approach) such as the Peaceman-Rachford ADI (P-R ADI) scheme

[87] and Karaa and Zhang ADI (HOC ADI) scheme [85]. In Figure3-8we plot

theL2-norm errors at each time step. The error obtained by the standard FEM

is in the range of the error bounds.
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Figure 3-8: Comparison of theL2-norm errors at each time step.

3.3.2 Convection-diffusion equation

The second test case is based on Noye and Tan [86]. We consider equation

(2.61) in a square domainD = [0, 2] × [0, 2] with coefficientsu = [u v]T =

[0.8 0.8]T , fc = 0 andκ = 0.01 or Pe = 226. An exact solution of the problem

is given by

cexact(x, t) =
1

4t + 1
exp

(

− (x − ut − 0.5)2

κ(4t + 1)
− (x − vt − 0.5)2

κ(4t + 1)

)

. (3.2)

The initial condition of this problem is obtained by settingt = 0 in equation

(3.2). It is the two dimensional Gaussian, pulse located atxc = 0.5 andyc = 0.5,

with a strength of value1. The Dirichlet conditions are set to zero for all sides

of the square. Triangular elements are used to generate the grid. The number

of grid points in thex andy directions arenx = 80 andny = 80, respectively

or N = 6561. Computation time is set attf = 1.25 with time step size of

∆t = 0.00625.
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Figure 3-9: Contaminant solutions. Each peak is equidistant by dt = 0.25.

Figure3-9 shows the computed solutions during the simulation in 3D view-

ing, where Z axis shows the magnitude of contaminant. Contaminant starts at

(xc, yc), then moves away and spreads out due to the convective and diffusive

term. Finally, a small amount of contaminant remains at region [1, 2] × [1, 2]

whent = 1.25. Figure3-10shows contour plots of the exact and computed so-

(a) Exact (b) Computed

Figure 3-10: Contour plots of the pulse in the sub-region1 ≤ x, y ≤ 2 at
t = 1.25.

lutions at the final time. The computed solutions (Figure3-10(b)) show that the

FEM code captures well the moving Gaussian pulse. Contour levels and pulse
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centered at final time match as well as the analytical solution (Figure3-10(a)).

Furthermore, the relativeL2-norm error between the computed and exact solu-

tion is7.535e−4 which is reasonable in comparison with results in [86].

In summary, the verification and validation of codes for solving the Navier-

Stokes equations and convection-diffusion equations had been done. The test

cases show that our codes are reasonable to do the simulations of the real-

systems. In the next section, we will use the codes to simulate 2D hydrody-

namics processes.

3.4 Numerical simulations for 2D hydrodynamic

processes

In this section, a small-scale model of a 2D laterally averaged reservoir is con-

sidered. This model is suitable for the hydrodynamic process study and optimal

control study purposes.

3.4.1 Model set up

The physical domain is illustrated in Figure3-11, which represents a simplified

model of a 2D lateral reservoir system.

The reservoir system includes a main reservoir section stretched in longitudinal

and vertical directions and the river connections or canals. In our model, inflow

boundary is at the top-left corner, while the two outlets with gate-controllers

are located on the right boundary. The remaining are solid-surface boundaries

(i.e. walls and bottom-bed) and free surface. We assume thatthe contaminant
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Figure 3-11: The physical domain of 2D reservoir.

will exist within the main reservoir section and the contaminant transport pro-

cesses are mainly affected by the inflow and wind velocity. Heat radiation is the

main source of heat exchange at the surface. For conveniencein computation,

we assume that averaged water temperature is around200C. Based on equa-

tions (2.12)–(2.13) we can then determine the dynamic viscosityµ and also the

Reynolds number.

The spatial domain is discretized by finite element mesh, as shown in Fig-

ure3-12, with the total number of grid pointsN = 2121 and the total number

of elementsNelem = 4000. The computational time is fromt0 = 0 to tf = 40,

with time-step size∆t = 0.08, so the number of time stepsT = 500. We also

placedNo = 16 sensors located on an4× 4 uniform grid covering the reservoir

section.

3.4.2 Velocity field and pressure field

A time-dependent velocity field is obtained from the 2D lateral averaged system,

which is given in Equations (2.35)–(2.38), where the body forcef = [fx fz]
T =

[0 g]T with g being the gravitational acceleration.

45



Figure 3-12: The computational domain withNo = 16 sensors.

The boundary conditions are set up as follows

(u, w) = (1, 0) on Γ12, (3.3)

(u, w) =
(

− 16 ∗ (2.0 + z) ∗ (1.5 + z), 0
)

on Γ4, (3.4)

(u, w) =
(

− 16 ∗ (1.0 + z) ∗ (0.5 + z), 0
)

on Γ8, (3.5)

(u, w) = (0.03Va, 0) on Γ11, (3.6)

p = 0 on Γ11 (3.7)

The velocity on the remaining boundaries is set to zero. Here, Va is the

wind speed at10m above the water surface. In this example, we assumed that

Va = 2m/s for the whole simulation time. We make an assumption that the

changing of free water surface is small and does not influencethe simulations.

Thus we can ignore the kinematic boundary condition. The Reynolds number is

Re = 1.0 × 106, the turbulence model (the mixing length model in this case)is

used to approximately model the effects of turbulence.

Figure3-13shows the pressure field att = 40. Under the gravitational ef-

46



fect, pressure field has stratification and is good agreementwith the hydrostatic

pressure. Let us take a look at the hydrostatic pressure as a function of depth

(h) [89] and given as

dp = ρgdh. (3.8)

Here densityρ considered to be a constant, the hydrostatic pressure is obtained

by integrating equation (3.8) from h to the free surface, where ath0 = 0 and

p0 = patm pressure in the atmosphere. We have therefore

p = patm + ρgH. (3.9)

In our computation, we assumepatm = 0 (as in equation (3.7)) and with the

total depthH = 2, the bottom hydrostatic pressure isp = 19.62kPa.

Figure 3-13: Pressure field att = 40.

Figure3-14 shows velocity fields of reservoir att = 40. Because of the

long wall after the inflow, the circulation at this corner is large and strong. This

situation will lead to potentially bad water quality because of the agglomeration

of the contaminant concentrations.
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Figure 3-14: Velocity field att = 40.

3.4.3 Temperature field

In water the specific heat iscp
∼= 1J/g0C and the Prandtl number has a fixed

valuePr = 7.0. So the thermal Péclet has a valuePeT = Re · Pr = 7.0 ×

106. It has strong thermal dominance. As such, the thermal-stratification can be

obtained from the water temperature equation (2.33) associated with initial and

boundary conditions as described in the following.

For most environmental flow conditions, water velocities are usually in the

range of1 − 10m/s. Corresponding with this condition, the characteristic tem-

perature change∆T0 is around2.5 × 10−4 to 2.5 × 10−2 Celsius degree [15].

Thus the radiative heating coefficient isEp = RN0

ρ0cpU0∆T0

= (0.8 − 1), corre-

sponding toU0 = 1m/s andRN0 = (200 − 250)W/m2.

We assume that the water surface temperature isTs = 200C, water depth’s

temperatureTb = 100C, and atmosphere temperature isTa = 220C. Water

in the reservoir is initially quiescent and at an initial temperature as given in

Figure3-15.

During the simulation, cold water atTin = 160C flows into the reservoir via

the inlet boundary. The outflow temperature satisfies the homogeneous Neu-
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Figure 3-15: The initial temperature field.

mann conditions. The bottom and walls of the reservoir are assumed perfectly

insulating. The boundary temperature at the surface is as described in Equa-

tion (2.27). The eddy viscosity is calculated from Equation (2.34). Here, depth

averagedH = 2 and we setEt = 1.

Figure3-16shows the process of thermal-stratification in the reservoir from

initial stage to final stage. The water in the reservoir is initially quiescent. The

inflow with cold water will gradually replace the water inside reservoir. This

phenomenon contributes to a decrease in water temperature.The procedure

is continued until cold water is completed mixed into the reservoir. However

due to the radiation heat exchange, water in the reservoir received energy to

maintain an unchanged water temperature. Thus, the surfacewater maintains at

high temperature. The mixing process continues until the amount of cold water

is large enough. At this stage, the remaining part of hot water was pushed to

the end of reservoir and flowed out. At the steady state, thermal stratification is

formed. One thing we can clearly see is that the thermal stratification process

is mainly affected by the main streamline. At bottom left corner of reservoir,

where the streamline has only a small influence, very little mixing has occurred.
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Figure 3-16: The temperature field at different timet.

Figure 3-17 shows the temperature profile at locationsx = 0.5 andx =

1.75. Due to the strong velocity inflow, the temperature profile inthe near field

changed much more than the temperature profile in the far field.

Figure 3-17: The temperature profile at different timet.
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3.4.4 Contaminant field

We assume that within the reservoir section, there exists a source of contam-

inant. In time, the source spreads out and moves around the reservoir. That

contaminant field is simulated and obtained by using equation (2.61) associated

with initial condition and boundary conditions as described in the following. In

this example, we use a source as the superposition of Gaussian sources, each

one active on the time intervalt0k ∈ [t0, toff ] and centered atφk ∈ D, with

strengthhk and widthσsk. That is,

fc(x, t; φ) =
ns
∑

k=1

hk

2πσ2
sk

exp
(

− |φk − x|2
2σ2

sk

)

δ(t − t0k). (3.10)

To consider a simple test case, we choose the number of sources to bens = 1,

located atφ1 = (xc, zc), with the strengthh1 = 0.2 and widthσs1 = 0.05. The

active time of the source ist01 ∈ [0, toff ] with toff = 10.

The inflow boundary and other solid boundaries satisfy a homogeneous Dirich-

let condition,ΓD; the outflow boundaries and free surface boundary satisfy a

homogeneous Neumann condition,ΓN . The diffusivity coefficient is assumed

to be constant,κ = 0.005. Thus the Péclet numberPe = 200. The contaminant

is assumed to be zero at initial timet0 = 0. Figure3-18shows the contaminant

solutionc(x, t) of the forward model withφ1 = (0.5,−0.5) at specific times.

The contaminant field increases while the source is active. After the shutoff

time of the source, the contaminant moves away, spreads out and decreases in

concentration due to convection and diffusion until it flowsout of the domain.

Use white color here to extend the page to end
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Figure 3-18: Contaminant field of at specific times.
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Chapter 4

Reduced-Order Modeling

Reduced-order modeling has been widely used in computational fluid dynamics

for the simulation of large-scale systems. In this chapter we present a model

order reduction (MOR) technique, based on Galerkin projection and proper

orthogonal decomposition (POD) methods. We use these approaches to con-

struct efficient reduced-order models to study properties of dynamical systems

in reservoir applications. A general reduction framework for linear systems is

presented in Section4.1. Then we present our Galerkin projection approach for

nonlinear systems in Section4.2.

4.1 General reduction framework for linear sys-

tem

This section briefly introduces the general reduction framework for linear sys-

tems of equations. The reduced-order model is obtained by the combination of

the Galerkin projection framework and the proper orthogonal decomposition.
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4.1.1 Reduction via Projection

We consider the system of ODEs as they appeared in Eqns. (2.71)–(2.72). For

ease of reference, we repeat the equations here:

Mċ +
(

Cc(u) + Kc(t; θ
k)
)

c = fc(t; φ), (4.1)

c(t0;Y) = c0(Y). (4.2)

Here,c(t;Y) ∈ R
N is the discretized approximation ofc(x, t;Y) and contains

N state unknowns.̇c is the derivative ofc with respect to time.M ∈ R
N×N is

the mass matrix,Cc(u) ∈ R
N×N is the convective matrix,Kc(t; θ

k) ∈ R
N×N

is the stiffness matrix, andfc(t; φ) ∈ R
N is the external source withφ ∈ R

2

are source locations.u are the velocity field.Y(ω) are independent random

variables. Here,N is the number of grid points andθk thekth collocation point.

We are also interested in the output of contaminant solutionat some sensor

locations in the domain, which is given by

yo(t;Y) = Bc(t;Y), (4.3)

where matrixB ∈ R
No×N and vectoryo(t;Y) ∈ R

No contains theNo outputs

of the system. A reduced order model of this system can be derived by ap-

proximating the full state vectorc as a linear combination ofm basis vectors as

follows,

c ≈ V cr, (4.4)
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wherecr ∈ R
m is the reduced order state andV = [v1 · · · vm] ∈ R

N×m is an

orthonormal basis, i.e.,V T V = I. Projecting the system (4.1)–(4.3) onto the

reduced space formed by the column span of basisV yields the reduced-order

model in (4.5)-(4.7)

Mrċr +
(

Cr(u) + Kr(t; θ
k)
)

cr = fcr(t; φ), (4.5)

cr(t0;Y) = c0r(Y), (4.6)

yr(t;Y) = Brcr(t;Y). (4.7)

Here the reduces matrices are given by

Mr = V TMV, (4.8)

Kr(t; θ
k) = V TKc(t; θ

k)V, (4.9)

Cr(u) = V TCc(u)V, (4.10)

fcr(t; φ) = V T fc(t; φ), (4.11)

Br = BV, (4.12)

and the reduction of the given initial condition is

c0r(Y) = V Tc0(Y). (4.13)

The model reduction task is then to find a suitable basisV so thatm ≪ N .

In the literature there exist various methods for the computation of proper basis

in the case of large-scale system, such as balanced truncation, Krylov-subspace
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and POD methods. This study will consider POD as the method tocompute the

basis.

4.1.2 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) provides a method tocompute the

reduced-order basisV and construct the low-order system by projection. Here

we briefly describe the general POD method (more details may be found in

[52]).

Let X = [c1(t1) c1(t2) · · ·c1(tT ) c2(t1) · · · · · · cS(tT )] ∈ R
N×Q be a

collection ofQ snapshot state solutionscs(tj), j = 1, · · · , T, whereT is the

number of time steps, of the system in (4.1) for s = 1, · · · , S input parameters.

The POD basis is optimal in the sense that vectorsV are chosen to maximize

the averaged projection ofc(t) ontoV , suitably normalized

max
V

〈|c, V |2〉
‖V ‖2

, (4.14)

where| · | is the inner product of basis vectorV with the fieldc, 〈 · 〉 the time

averaged operator and‖ · ‖ theL2 norm.

The POD basis vectors are them left singular vectors ofX corresponding

to the largest singular values(m ≤ Q). Let σi, i = 1, 2, · · · , Q be the singular

values ofX in non-increasing order. We determine the number of POD vectors

to retain in the reduced-order model by choosingm ≤ Q vectors such that

m
∑

i=1

σ2
i /

Q
∑

j=1

σ2
j ≥ ǫE , (4.15)
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whereǫE(%) is the required amount of energy, typically taken to be99% or

higher. After obtaining the POD basis vectors, we can rapidly solve the reduced-

order system.

4.1.3 Error quantification

In order to estimate the accuracy of the reduced model relative to the full model,

we use the time-dependent relative norm error of solutionsεF (t) and relative

error of outputsεs(t). These errors are defined as follows

εF (tk) =
‖c(tk) − V cr(t

k)‖L2(D)

‖c(tk)‖L2(D)

, (4.16)

εy(t
k) =

‖y(tk) − yr(t
k)‖L2(D)

‖y(tk)‖L2(D)

. (4.17)

Here,c(tk), cr(t
k), 1 ≤ k ≤ T are the full and reduced solutions.y(tk),yr(t

k), 1 ≤

k ≤ T are the full and reduced outputs of interest. The space-timenorm error

εT
F is then defined as

εT
F =

(

∫ tf

0

εF (t)dt

)1/2

. (4.18)

4.2 Reduced order model for non-linear systems

In this section, we present an approach to reduce the dimension of the fluid flow

equations. The approach uses a combination of Galerkin projection method and

proper orthogonal decomposition directly on the Navier-Stokes equations and

transport equations to yield a set of ordinary differentialequations capturing the

essential dynamics of the system. This approach has been widely used in com-

putational fluid mechanics and optimal control applications. For more details,
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refer to [59, 61, 63, 90].

4.2.1 Galerkin projection method

The dynamical system for consideration is the two dimensional laterally aver-

aged model as described and simulated in Chapter2 and Chapter3. Here, we

re-write the governing equations for ease of discussion:

∂u

∂t
+ (u · ∇)u = −∇p + ν∇2u + f in D × [t0, tf ], (4.19)

∇ · u = 0 in D × [t0, tf ], (4.20)

u = uD on Γ × [t0, tf ], (4.21)

u(x, 0) = u0(x) in D, (4.22)

∂c

∂t
+ u · ∇c = ∇ ·

(

κ(x, t; ω)∇c
)

+ fc(x, t; φ) in D × [t0, tf ],(4.23)

c = cD on ΓD × [t0, tf ], (4.24)

∂c

∂n
= 0 on ΓN × [t0, tf ], (4.25)

c(x, t0; ω) = c0(x; ω) in D. (4.26)

whereν = 1
Re

is the fluid kinematic viscosity. The boundary condition for

the pressure(p) at the water surface is set to zero. The diffusivityκ(x, t; ω) is

assumed to be a constant.

Let
{

u(x, tk)
}Nu

snap

k=1
be the snapshots of velocity and let

{

c(x, tk)
}Nc

snap

k=1
be

the snapshots of contaminant field, whereNu
snap andN c

snap are the number of

velocity and contaminant snapshots, respectively. The velocity field is decom-

posed as follows

u(x, t) = um(x) + u′(x, t), (4.27)
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whereum = 1
nu

snap

∑Nu
snap

k=1 u(x, tk) is the mean flow, andu′(x, t) the fluctuat-

ing velocity field. The fluctuating velocity field is represented by the proper

orthogonal decomposition

u′(x, t) =

Nu
snap
∑

k=1

αk(t)Φk(x), (4.28)

whereΦk(x) is thekth POD basis for the velocity andαk(t) is the corresponding

time dependent amplitude. We now consider the expansion of the velocity field

as follows

u(x, t) = um(x) +

Mu
∑

k=1

αk(t)Φk(x). (4.29)

whereMu ≪ Nu
snap is the number of POD velocity basis vectors used in the

approximation. A similar formulation can be obtained for the contaminant field

c(x, t) = cm(x) +
Mc
∑

k=1

γk(t)Ψk(x), (4.30)

whereΨk(x) is thekth POD basis for the contaminant andγk(t) is the corre-

sponding time dependent amplitude,Mc ≪ N c
snap is the number of POD con-

taminant basis vectors used in the approximation.
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4.2.2 Galerkin system

The Galerkin approximation to equations (4.19) and (4.23) is then

(

Φi,
∂u

∂t
+ (u · ∇)u

)

+ (Φi,∇p) = −ν(∇Φi,∇u) + (Φi, f), (4.31)

(Φi,∇ · u) = 0, (4.32)

(

Ψi,
∂c

∂t

)

+
(

u · ∇c,Ψi

)

= −κ(∇Ψi,∇c) + (Ψi, fc). (4.33)

The Galerkin projection of the first term in (4.31) give us the local acceleration

term

(

Φi(x),
∂

∂t

[

um(x) +

Mu
∑

j=1

αj(t)Φj(x)
]

)

D
=

Mu
∑

j=1

α̇j(Φi,Φj)D = α̇i. (4.34)

The convective term in (4.31) has the form as

−
(

Φi, (u · ∇)u
)

= −
(

Φi,
([

um +

Mu
∑

j=1

αj(t)Φj

]

· ∇
)[

um +

Mu
∑

j=1

αj(t)Φj

]

)

= −
Mu
∑

j=1

[

(

Φi, (Φj · ∇)um

)

+
(

Φi, (um · ∇)Φj

)

]

αj

−
(

Φi, (um · ∇)um

)

−
Mu
∑

j=1

Mu
∑

k=1

(

Φi, (Φj · ∇)Φk

)

αjαk. (4.35)

To derive the Galerkin projection for the pressure term we first construct a so-

lution of the pressure-Poisson equation with respect top then project its solu-

tion of basis space [63]. Neglecting the residual of the Galerkin expansion, the
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Galerkin projection of the pressure term becomes

(Φi,∇p) = [pΦi]. (4.36)

This surface integral vanishes for Dirichlet boundary conditions. In this case,

the pressure-term has no role in the Galerkin projection. The time-dependent

velocity term in (4.33) has the form as

−
(

u · ∇c,Ψi

)

= −
(

[um +
Mu
∑

k=1

αk(t)Φk

]

· ∇[cm +
Mc
∑

j=1

γj(t)Ψj ],Ψi

)

= −
Mc
∑

j=1

(

(

[um · ∇Ψj],Ψi

)

+
(

Mu
∑

k=1

[αkΦk · ∇Ψj],Ψi

)

)

γj

−
(

[um · ∇cm],Ψi

)

−
(

Mu
∑

k=1

[αkΦk · ∇cm],Ψi

)

. (4.37)

Apply the Galerkin projection for the remaining terms, thenre-arrange the co-

efficients, we have

dαi

dt
=
[

ai +

Mu
∑

j=1

bijαj +

Mu
∑

j=1

Mu
∑

k=1

cijkαjαk

]

, (4.38)

αi(0) = αi0, (4.39)

dγi

dt
=
[

āmi +

Mu
∑

k=1

αkāuik

]

+

Mc
∑

j=1

[

b̄mij +

Mu
∑

k=1

αkb̄uijk

]

γj, (4.40)

γi(0) = γi0. (4.41)
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Here the coefficients are computed as

ai = −
(

Φi, (um · ∇)um

)

− ν
(

∇Φi,∇um

)

+
(

Φi, f
)

,

bij = −
(

Φi, (Φj · ∇)um

)

−
(

Φi, (um · ∇)Φj

)

− ν
(

∇Φi,∇Φj

)

,

cijk = −
(

Φi, (Φj · ∇)Φk

)

, (4.42)

āmi = −
(

Ψi,um · ∇cm

)

− κ
(

∇Ψi,∇cm

)

+
(

Ψi, fc

)

,

āuik = −
(

Ψi, Φk · ∇cm

)

,

b̄mij = −
(

Ψi,um · ∇Ψj

)

− κ
(

∇Ψi,∇Ψj

)

, (4.43)

b̄uijk = −
(

Ψi, Φk · ∇Ψj

)

.

The initial values are computed as

αi0 =
(

Φi,u0

)

,

γi0 =
(

Ψi, c0

)

. (4.44)

Solving the above initial value problem (4.38)–(4.41) we can obtain a set of pre-

dicted time histories for the mode amplitude of the POD approximation. Next,

we shall consider a numerical example for the non-linear system.

4.2.3 Numerical example for ROM of non-linear system

We consider the solution of 2D laterally averaged system as described in Section

3.4. The snapshot is obtained at every10∆t with time-step size∆t = 0.08.

The POD method of snapshots as defined above resulted inMu modes on POD

velocity basis vectors andMc modes on POD contaminant basis vectors. The
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nonlinear Galerkin system (4.38)–(4.41) is then solved by a fourth order Runge-

Kutta scheme. We note that solutionγ(t) in equation (4.40) depends on solution

α(t) in equation (4.38) and the number of POD velocity basis vectorsMu. So we

can solve two equations separately to determine which numbers of POD basis

vectors are suitable for our ROMs and to evaluate the online computational time

to solve ODEs of each Galerkin system.

Time-dependent relative norm errors between the full finiteelement and

POD-based ROM solutions withMu = 3, 6, 9, 12, 15 and 18 basis functions

are given in Figure4-1and Table4.1. Here the time-space norm error is defined

as in Eqn. (4.18). With Mu = 18 POD velocity basis vectors, the energy cap-
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Figure 4-1: The time-dependent relative norm errorεu(t) between full FEM
and POD-based ROM solutions with different number of POD velocity basis
vectors.

ture is almost100% and the relative error is around10−3. From Figure4-1 we

observe that there is little improvement in the accuracy when we use more than

12 POD velocity basis functions. However, the computational time for solving

the online stage1 increases from6.5 second forMu = 12 POD to21.4 seconds

1The simulations were performed on a personal computer (PC) with processor Intel(R)
Core(TM)2 Duo CPU E8200 @2.66GHz 2.66GHz, RAM 3.25GB, 32-bit Operating System.
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Table 4.1: Time-space norm error between full FEM and POD-based ROM
solutions corresponding the snapshot energy and the POD velocity basis; and
the online computational time of the Galerkin system.

Mu 3 6 9 12 15 18
ǫE(%) 96.1447 98.8184 99.1643 99.911 99.993 99.999
εT

u 0.457 0.291 0.195 0.072 0.051 0.011
tonlineNS(s) 0.4 0.5 1.2 6.5 12.6 21.4

for Mu = 18 POD as in Table4.1. In this study, we chooseMu = 12 POD

velocity basis vectors.

Figure4-2shows the comparison between the predicted (integrated theGalerkin

system) and projected (from snapshots) temporal amplitudes with the first 6

POD velocity basis vectors. Predicted solutions match verywell the behavior

of projected solutions. The velocity then can be reconstructed using equation

Figure 4-2: Comparison between the predicted and projectedmode amplitudes.

(4.29) with α(t) are obtained in (4.38). Figure4-3 shows the comparison of

velocity profile at specific location between the FEM and ROMssolutions with

Mu = 12 POD velocity basis vectors. We observe that ROMs are able to repre-
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sent the most characteristics of the full velocity profiles.

Figure 4-3: Velocity profile atx = 1. u andw are the FEM solutions whileurom

andwrom are the ROM solutions.

The relative norm errors between the full FEM and POD-based ROM solu-

tions of the transport problems withMc = 8, 12, 16, 20, 24 and30 basis func-

tions corresponding withMu = 12 basis functions are given in Table4.2. When

Table 4.2: Time-space norm error between full FEM and POD-based ROM
solutions corresponding the snapshot energy and the POD basis; and the online
computational time of the Galerkin system.

Mc 8 12 16 20 24 30
ǫE(%) 99.8705 99.9781 99.9975 99.9992 99.9998 99.9999
εT

c 0.257 0.162 0.106 0.074 0.052 0.034
tonlineCD(s) 2.4 3.5 4.8 7.8 12.1 19.6

the number of POD basis vectorsMc ≥ 20, there is little improvement in the

accuracy in the reduced model, but the online computationaltime has a big in-

crease. As suchMc = 20 POD contaminant basis vectors is suitable for our

ROMs. The computational time of the full FEM solutions is approximately

tfullCD ≈ 700 seconds while the computational time of the Galerkin solutions

with Mc = 20 POD contaminant basis istonlineCD ≈ 7.8 seconds. The speed-up

factor is aroundrt =
tfullCD

tonlineCD
≈ 90 times.
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Chapter 5

Optimal control for contaminant

transport

This chapter presents a strategy to manage water quality forreservoir applica-

tions. The strategy is a combination of estimating the contaminant locations

within a reservoir and then applying the optimal control on the velocity field to

flush the contaminant out of the water body. This strategy also takes into account

the uncertainty information such as wind velocity, measurement noise, etc., to

make the problem more realistic. A Bayesian inference approach is applied for

estimating contaminant source locations. Then the one shotor adjoint method is

employed to determine an optimal control velocity. For large-scale models such

as reservoir applications, the computational effort is tooexpensive and time-

consuming. Model-order reduction techniques (as described in Chapter4) are

applied to reduce the cost and storage requirement.

We organize this chapter into two parts. Part I: we set up a simple model for

contaminant transport with constant velocity fields. Section5.1presents a deter-
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ministic control, in which we assume that contaminant source is a point source.

Section5.2presents a stochastic optimal control problem, in which we assume

that the uncertain parameter is presented in the diffusivity coefficients. We move

on to the real applications in Part II: contaminant sources are uncertain. We first

estimate the probable source locations and then apply the stochastic control to

determine an optimal control strategy as described in Section5.3.

5.1 Deterministic control for contaminant transport

This section presents a deterministic optimal control problem for a simple con-

taminant transport model with constant velocity fields. Theoptimal control for-

mulation is based on the adjoint method. Numerical simulations present the

results for a simple problem.

5.1.1 Formulation

Problem Description

Consider the fluid flows through a physical domainD ∈ R
2 as described in

Subsection2.4.3. The contaminant transport with boundary condition and initial

conditions are given in (2.61)–(2.64). This is the general case for stochastic

contaminant transport problems. In this study, however, wewant to explore a

deterministic control problem first. We assume that the diffusivity coefficient

κ(x, t; ω) is a constant. Hence we can ignore all the stochastic variables in the

system of equations.

Suppose that we have determined a location of contaminant source in the
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domain. Our objective is to flush the contaminants out of the domain by con-

trolling the velocity of the fluid pump. This velocityu = [u v]T is the convective

velocity in the transport equations (2.61). The objective functional is given by

J (c,u) =
1

2

∫ tf

t0

∫

D
c2dD dt +

ηw

2

∫ tf

t0

‖u‖2 dt, (5.1)

whereηw is a constant controlling the relative weighting of the components of

the objective function. The optimal control problem is stated as: findc,u such

that the functionalJ defined in (5.1) is minimized subject to the requirements

thatc,u satisfy the model constraints (2.61)–(2.64).

Semi-Discretization

Discretizing the PDEs (2.61)–(2.64) using the finite element method [77], we

obtain an ODE system in the form of (2.71)–(2.72). Here we note that the stiff-

ness matrixKc(t; θ
k) is an invariant matrix, and the contaminant concentration

is function of timec(t). The optimal control problem can now be stated as:

minimize the amount of contaminantc and the cost of the controlu, given by

J (c,u) =
1

2

∫ tf

t0

cT M c dt +
ηw

2

∫ tf

t0

uT u dt. (5.2)
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The optimality system

We introduce the Lagrangian functional with the adjoint state p(t) and adjoint

initial conditionχ ∈ R
N as follows

L(c,u,p, χ) = J (c,u) − χT (c|t=0 − c0)

−
∫ tf

t0

pT
(

Mċ +
(

Cc(u) + Kc(t; θ
k)
)

c − fc(t; φ)
)

.(5.3)

The first-order necessary conditions, also known as the Karush-Kuhn-Tucker

(KKT) optimality conditions [37, 91] yield an optimality system from which

optimal states and control parameters can be determined by taking variations

with respect toc,p andu. That is:

1. State equation

Setting the first variation ofL with respect to the Lagrange multiplierp

to zero, we obtain

δL
δp

= lim
ǫ→0

(L(c,u,p + ǫp̃, χ) −L(c,u,p, χ)

ǫ

)

= 0,

⇐⇒ p̃
(

Mċ +
(

Cc(u) + Kc(t; θ
k)
)

c − fc(t; φ)
)

−χT (c|t=0 − c0) = 0, (5.4)

wherep̃ is an arbitrary variation.

Since the variatioñp in the Lagrange multiplier is arbitrary, we recover

the ODEs (2.71)–(2.72).

2. Adjoint equation
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Setting the first variation ofL with respect to the statec to zero, we obtain

δL
δc

= lim
ǫ→0

(L(c + c̃,p,u, χ) − L(c,u,p, χ)

ǫ

)

=

∫ tf

t0

[

− pTM ˙̃c − pT
(

Cc(u) + K(t; θk)
)

c̃ + c̃Mc
]

dt = 0,(5.5)

where the variatioñc in the statec is arbitrary.

Integrating equation (5.5) by parts with respect to time for term̃̇c and

since the variatioñc is arbitrary, we obtain the adjoint equations as

− MT ṗ +
(

Cc(u) + K(t; θk)
)T

p = Mc, in D × [t0 × tf ] (5.6)

p(tf ) = 0. (5.7)

3. Optimality condition

The first variation ofL with respect to the controlu is given by

δL
δu

= lim
ǫ→0

(L(c(u + ǫh),u + ǫh,p, χ) − L(c,u,p, χ)

ǫ

)

. (5.8)

whereh is an variation in the controlu.

Setting equation (5.8) to zero and manipulating the formulation we can

obtain the optimal control equation given below as

L,u :≡ δL
δu

= ηw

∫ tf

t0

u dt −
∫ tf

t0

cTC(u) p dt. (5.9)

Summarizing, the state equation, adjoint equation, and optimality condition

form the optimality system, solutions of which provide the optimal statec, ad-
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joint statep, and control functionu. To solve the KKT system for deterministic

control, we use Algorithm 1 in AppendixB.

5.1.2 Results

We present the 2D mathematical model to which we apply the deterministic

optimal control with the full model using Algorithm 1. A finite difference test

is first used to validate the numerical algorithm. We comparethe contaminant

field with optimal control actions and without control action.

Model setup

In order to implement the contaminant transport problem, weconsider the com-

putational domain as in Figure5-1. The domain is rectangular withD =

[0, 1] × [0, 0.5]. The inflow boundary, which is defined onx = 0, 0 ≤ y ≤ 0.5,

satisfies a homogeneous Dirichlet condition,ΓD; the remaining boundaries sat-

isfy homogeneous Neumann conditions,ΓN . The velocity vector with x and

y-component is chosen as uniform and constant in time, givenby u = [u v]T . A

velocity ofu = [1 0]T is used as an initial guess for finding an optimal velocity.

The diffusivity coefficient is assumed to be constant and is given asκ = 0.005

corresponding to a Péclet number ofPe = 200.

In this example, we discretize the KKT system on anx ×ny = 61×31 grid,

wherenx andny are the number of grid points in x and y-direction, respectively.

This results inN = 1891 spatially discrete unknowns using the standard finite

element method. The Crank-Nicolson method is employed to discretize the

system in time, wheret ∈ [t0, tf ] with t0 = 0, tf = 1.4 and the time-step size
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Figure 5-1: The computational domain withNo = 9 sensors.

∆t = 0.02 or T = 70 time steps.

The source functionfc(x, t; φ) is described as a Gaussian shape as follows,

fc(x, t; φ) =
ns
∑

k=1

hk

2πσ2
sk

exp
(

− |φk − x|2
2σ2

sk

)

δ(t − t0k). (5.10)

Here, we choose the number of sources to bens = 1, located atφ1 = (xc, yc) =

(0.3, 0.25), with the strengthh1 = 1 and widthσs1 = 0.05. The active time of

the source ist01 ∈ [t0, toff ] with toff = 0.4.

Figure5-2 shows the contaminant solutionc(x, t; κ0) of the full model at

specific time. The contaminant field increases in magnitude while the source is

active. After the shutoff time of the source, the contaminant moves away and

spreads out due to convection and diffusion until it flows outof the domain.

Finite Difference test

The finite difference method is used here to check the sensitivity of the gradient-

based optimization algorithms. The objective functionalJ can be written using
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Figure 5-2: Contaminant field of full model at timest = 0.2, t = 0.6, t = 1.0
andt = 1.4.

a Taylor Series expansion:

J (c,u0 + ǫ) = J (c,u0) + ǫJ ′(c,u0) +
ǫ2

2
J ′′(c,u0) + Oǫ3. (5.11)

Neglecting the second order and higher order terms, we obtain the approxima-

tion of the gradient vector

J,u :≡ J ′(c,u0) ≈
J (c,u0 + ǫ) − J (c,u0)

ǫ
. (5.12)

Equation (5.12) is called the forward difference scheme. We shall use this to

compare with the gradient formulations (5.9) above. The relative error is given

by

error=
L,u −J,u

L,u

. (5.13)

Figure5-3 shows the relative error of the gradient test. Figures5-3(a)and

5-3(b)show the test case with initial velocity fieldsu = [1; 0], while the Figures
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5-3(c)and5-3(d)are results with initial velocity fieldsu = [0; 1]. These figures

validate that the adjoint-based gradient calculation is implemented correctly.
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Figure 5-3: Finite Difference test of the cost function withthe respect to the
controlu.

Optimal velocity control

Once the source location is determined, we want to flush the contaminants out

of the domain rapidly by applying the optimal control algorithm 1. Figure5-4

shows the contaminant fieldc of the forward model at timet = 1.2, for the

example case where the source is positioned atxc = 0.3, yc = 0.25. We can

see the effectiveness of the optimal velocity control to flush the contaminantc

out of the domain. When applying control the contaminant is removed from the

domain faster in comparison with the case without applying the control.
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(a) Applying control (b) Without applying control

Figure 5-4: Contaminant fieldc of the forward model att = 1.2. Note the
difference in contaminant concentration scale between thetwo plots.

5.1.3 Remarks

In this section, we have explored the deterministic optimalcontrol problem for

the transport equations. A gradient-based optimization approach is used to de-

termine the optimal control solution. Applying optimal control gives us an effi-

cient way to achieve water quality management. However, it is just an ideal case

where there is no influence from external uncertain factors.In real applications,

there are factors that impact the system and hence affect thesolution. In the

next section, we shall consider the optimal control problemwith uncertain input

parameters.

5.2 Stochastic control for contaminant transport

This section presents a stochastic optimal control problemfor a contaminant

transport model with a constant velocity field. The stochastic optimal control

formulation is based on a combination of model reduction, anadjoint approach

and a collocation method. Numerical simulation presents the result of this type

of control, and compare the effectiveness of the control based on the full model

with that based on reduced-order model.
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5.2.1 Formulation

Problem Description

Consider the fluid flows through a physical domainD ∈ R
2 as described in

Subsection2.4.3. The stochastic contaminant transport with boundary condi-

tion and initial conditions are given in (2.61)–(2.64). The stochastic collocation

method with the finite element method approximates this a SPDE problem. Sup-

pose that we have already determined a location of contaminant source in the

domain. The goal of our control problem is to flush the contaminant out of the

domain by controlling the velocity of the fluid pump. The objective functional

is to seek a velocity over an admissible control setu ∈ Uad that minimizes a

weighted combination of theL2−norm of the expected contaminant field and

the velocity field:

min
u∈Uad

Ĵ =
1

2

∫ tf

t0

E

[

‖c(x, t; ω)‖2
L2

]

dt +
ηw

2

∫ tf

t0

‖u‖2
L2

dt, (5.14)

subject to the constraints Eqns. (2.61)–(2.64). Here,ηw is a constant control-

ling the relative weighting of the components of the objective function andE[·]

denotes the expectation operator.

Semi-Discretization

The finite element method (FEM) [77] together with collocation method is em-

ployed to obtain a semi-discrete set of equations as given in(2.71)–(2.72).

We now consider optimal control with the cost functional as given in Equa-

tion (5.14). In the collocation framework, the expected value is approximated
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via a quadrature rule (such as Clenshaw–Curtis quadrature [92]) built on the col-

location points. Define
{

wk
}P

k=1
to be the quadrature weights associated with

the collocation points,

wk =

∫

Θ

ρ(Y)L2
k(θ)dθ, for k = 1, · · · , P, (5.15)

whereρ(Y) is the probability density of the random vectorY. The cost func-

tional is replaced by the discretized problem as follows

min
u∈Uad

Ĵ (u) =
1

2

∫ tf

t0

P
∑

k=1

wkcT (t;Y) M c(t;Y) dt

+
ηw

2

∫ tf

t0

‖u‖2
L2

dt. (5.16)

Here, the solutionc(t;Y), k = 1, · · · , P , solves the ordinary differential equa-

tions (ODEs) (2.71)–(2.72).

The Optimality System

We introduce the Lagrangian functional with the adjoint state p(t;Y) and ad-

joint initial conditionχ ∈ R
N as follows

L(c,u,p, χ) = Ĵ (u) − χT
(

c(t0;Y) − c0(Y)
)

− pT
(

Mċ +
(

Cc(u) + Kc(t; θ
k)
)

c − fc(t; φ)
)

. (5.17)

Applying the procedure as similar as in Subsection5.1.1we obtain the KKT

optimality conditions, with the state equations are given in (5.18)–(5.19), adjoint

equations in (5.20)–(5.21) and optimality condition in (5.22).
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1. State equations:

Mċ +
(

Cc(u) + Kc(t; θ
k)
)

c = fc(t; φ), (5.18)

c(t0;Y) = c0(Y). (5.19)

2. Adjoint equations:

− MT ṗ +
(

CT (u) + KT (t; θk)
)

p = Mc, (5.20)

p(tf ;Y) = 0. (5.21)

3. Optimality condition:

δL
δu

= ηw

∫ tf

t0

u dt −
∫ tf

t0

P
∑

k=1

wkcT C(u) p dt = 0. (5.22)

To solve the KKT system for stochastic control with deterministic source loca-

tion, we use Algorithm 1 in AppendixB.

Discretization of the KKT system in space yields a high-dimensional dis-

crete state-space system in the form of ODEs (Equations (5.18)–(5.22)). In

addition, the collocation method and optimal control work require evaluating

repeatedly the solutions of both the state and adjoint equations. Thus, these

simulations are computationally expensive and may not be feasible to perform

in real time. Model order reduction is applied to obtain a reduced-order approx-

imation of the large model, which allows for efficient simulation.
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5.2.2 Results

We present a 2D mathematical model to which we apply stochastic optimal con-

trol with the full model using Algorithm 1. Then we apply the model reduction

to obtain the reduced-order model. We compare the stochastic optimal control

result using the reduced model and the full model. Finally, we compare the

behavior of the stochastic control with a deterministic control strategy.

Model Setup

To implement the stochastic contaminant transport problem, we use the same

model setup as described in Section5.1.2.

The input is a random diffusivity fieldκ. To generate the diffusivity coef-

ficients under the finite dimensional noise assumption, we use the formulation

similar to that in [42]. The random diffusivity coefficient is a nonlinear function

of the random vectorY , namely

κ(x, t;Y) = κ0 + exp
{

[

Y1(ω) cos(πη) + Y3(ω) sin(πη)
]

e−
1

8

+
[

Y2(ω) cos(πξ) + Y4(ω) sin(πξ)
]

e−
1

8

}

/σY . (5.23)

Here,θ = (ξ, η) ∈ P are the coordinates of the collocation points. We choose

κ0 = 1/125, σY = 200. The initial Péclet numberPe0 = ‖u‖L
κ0

= 125, where

the length of the domain is used as the characteristic lengthL = 1. The real

random variablesYn, n = 1, · · · , 4 are independent and identically distributed

with zero mean value and unit variance.
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Full Stochastic Control Model

The stochastic optimal control now can be solved by following Algorithm 1. To

illustrate the behavior of the collocation, we simulate theunbounded random

variablesYn via the Gaussian density function. We employ the Smolyak algo-

rithm [41, 42, 43] to determine the collocation points and collocation weights.
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Figure 5-5: The Smolyak quadrature nodes.

We evaluate the optimal solution with Smolyak nodes which represent ex-

actly polynomials of total degree5 (P = 29), degree7 (P = 65), degree

9 (P = 145) and degree11 (P = 321) as shown in Figure5-5. To estimate the

relative error of the solution, we choose the solution corresponding to the finest

collocation scheme(P = 321) as a “truth” solution. We then set the control

parameterηw = 0.1.
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Table 5.1: Estimated optimal control for different numbersof collocation points.

P u v Ĵ timeFull (hours)
29 1.350 0.0 0.312 0.9
65 1.351 0.0 0.311 2.3
145 1.351 0.0 0.311 5.0
321 1.351 0.0 0.311 9.8

Table5.1shows the results of the optimal control with different numbers of

collocation points. Figure5-6 shows the relative error of the stochastic optimal

control solutions based on the finest solution. When the number of collocation

points increases, the relative error in the estimated optimal solution decreases.

However the computational time to solve the optimal controlproblem also in-

creases when the number of collocation points increases1. We observe that the

computational time is approximately9.8 hours whenP = 321 Smolyak nodes.

20 40 60 80 100 120 140 160
10

−5

10
−4

10
−3

Smolyak nodes

R
el

at
iv

e 
er

ro
r

Figure 5-6: Relative error of the estimated stochastic control solution with num-
ber of collocation points.

1The simulations were performed on a personal computer (PC) with processor Intel(R)
Core(TM)2 Duo CPU E8200 @2.66GHz 2.66GHz, RAM 3.25GB, 32-bit Operating System.
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Reduced Stochastic Control Model

To generate the snapshots needed for the POD basis, we chooseNk evenly-

spaced samples,κt, on the interval[κmin κmax]. In this example,Nk = 10. For

each value ofκ, we generateT/2 snapshots over the considered time horizon,

whereT is the number of time steps. To determine an appropriate number of

POD modes we use the same energy capture as in Equation (4.15).

Table 5.2: Properties of various model reduced-order models.

ǫE(%) POD εstate εadjoint

99.0 18 5.48e-3 1.10e-2
99.5 21 3.45e-3 5.28e-3
99.9 30 6.28e-4 8.11e-4
99.99 46 1.13e-4 1.81e-4
99.999 65 2.05e-5 6.68e-5
99.9999 86 6.85e-6 2.39e-5

Table5.2shows the relative error of the approximation (for a randomly cho-

sen value ofκ not in the snapshot set) for different sizes of the reduced-order

model. In practice, we need both the dimensions of the reduced-order model

and the relative error to be small. Here, we choose the case with ǫE = 99.99%

yielding a POD basis of sizem = 46. The outputs of interest are the values

of contaminant solutionc at selected sensor locations. The outputs of the full

model,y, and reduced model of orderm = 46, yr, are shown in Figure5-7 at

sensor locations. These locations correspond to sensors inFigure5-1. It can be

seen that the magnitude of the sensor reading varies depending on the location

of the sensor relative to the source. In all cases the reduced-order model is able

to capture well the behavior of the full model at the sensor locations.

Applying Algorithm 1 for the reduced-order model, we obtainthe optimal
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Figure 5-7: A comparison of the full model(N = 1891) and reduced model
(m = 46) output of interest at sensor locations.

control result as in Table5.3. The comparison of accuracy and computational

time between the full model and reduced model are given in Table 5.4. The

reduced model of orderm = 46 has a relative error around10−5. The compu-

tational time to solve the reduced control model is decreased by approximately

80 times in comparison with the full control model.

Table 5.3: Optimal control of reduced model.

P u v Ĵ timeMOR (s)
29 1.350 0.0 0.312 40
65 1.350 0.0 0.311 98
145 1.351 0.0 0.311 214
321 1.351 0.0 0.311 460

Stochastic Control vs. Deterministic Control

To make the comparison between the stochastic control and deterministic con-

trol, we choose the solution of the stochastic control at thedegree of polynomial

9 or P = 145 Smolyak nodes. We then choose a subset of Smolyak nodes in
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Table 5.4: Relative error between full control and reduced control solutions and
speedup factor of full model vs. reduced order model corresponding collocation
points.

P εu
timeF ull

timeMOR

29 5.38e-5 81
65 1.41e-5 83
145 2.27e-5 84
321 1.42e-5 76

the collocation spaceP, for example we choosePS ∈ P such that−1 ≤ ξ ≤ 1

andη = −1. For each pairθk = (ξ, η) we compute the diffusivity coefficient

κ(x, t;Y). We then compute the deterministic optimal control for the mean

value ofκ to find the optimal velocity and estimate its cost functional. Fig-

ure5-8shows that the stochastic optimal control always has the value above the

average of the set of deterministic control.
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Figure 5-8: Stochastic control vs. deterministic control.

5.2.3 Remarks

This study has applied the combination of model order reduction techniques

based on POD and an adjoint-based method to solve a stochastic optimal con-
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trol problem. The reduced model with orderm = 46 decreases the computa-

tional time of solution by a factor of about80 while retaining acceptable accu-

racy with a relative error of around10−5 as compared to the full model with

sizeN = 1891. This speedup is important in real-time decision-making appli-

cations because it provides a rapid solution and reduces time cost and storage

requirements. Application of the optimal control strategyshows the potential

effectiveness of this computational modeling approach formanaging flow qual-

ity.

We have already studied stochastic optimal control for a deterministic con-

taminant source. In the next section, we consider the case where the contaminant

source is uncertain.

5.3 Stochastic control for uncertain contaminant

source location

We assume that under the influence of uncertain parameters such as wind speed,

contaminant sources become uncertain. Before we can apply any control to flush

the contaminant out of the domain, we have to determine the source locations

first. In this section, the stochastic estimation problem isfirst considered. The

stochastic optimal control problem is then described. We shall use a numerical

example to demonstrate the solution of stochastic problemsand the reduced-

order model performance.
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5.3.1 Problem Description

Consider the fluid flows through a physical domainD ∈ R
2 with boundary

condition and initial conditions as described in Subsection 2.4.3. The stochas-

tic contaminant transport with boundary condition and initial conditions are

given in (2.61)–(2.64). The stochastic collocation method with the finite ele-

ment method approximates this SPDE problem. Our problem is now stated as:

given a set of contaminant measurementsy = {y1, y2, · · · , yNo
} in the domain,

we want to determine contaminant source locations and applya control to flush

them out of the domain.

5.3.2 Stochastic estimation problems

The relationship between the state of contaminant concentration to be estimated

from the physical model and the measurements is given by

y = G(φ) + ηt, (5.24)

wherey ∈ R
No is the measurement vector (e.g. concentration measurements),

the source locationφ ∈ Φs ⊆ D is the input parameter set, andηt ∈ R
Nq

the vector noise. The input-output in Equations (2.71)–(2.72) is denoted as the

forward modelG(φ), which maps the inputsφ to outputsy.
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Bayesian formulation of the inverse problem

The Bayesian solution to the above problem is to obtain an estimate φ̂ of φ

based on measured data, using Bayes’s rule

p(φ|y) =
p(y|φ)p(φ)

p(y)
. (5.25)

Here the density functionp(φ|y) is known as the posterior density function of

φ. The density functionp(φ) is the prior distribution of the parameter, reflect-

ing our prior knowledge on the possible source location. Thedensity function

p(y|φ) is the likelihood function. If we assume vector noiseηt to be additive

white Gaussian noiseηt ∼ N(0, σ2I), the likelihood function can be written as

p(y|φ) =
1

σ
√

2π
exp(− 1

2σ2
‖y − G(φ; ω)‖2). (5.26)

There are many different ways to incorporate prior information such as Gaussian

Markov random field (MRF) model, beta distribution model, etc. In this work,

we assume that our only prior information on the source location is given by

the bounds on the domain. Thus, using the Principle of Maximum Entropy [93]

we take our prior to be a uniform distribution. If more information were avail-

able, our approach admits other prior distributions. Therefore, Equation (5.25)

becomes

p(φ|y) ∝















∏K
i=1 exp

[

− 1
2σ2

(

yi − G(φ; ω)i

)T (
yi − G(φ; ω)i

)]

, ∀φ ∈ D

0, otherwise,

(5.27)
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whereD is the support the (uniform) prior distribution ofφ. Here,K is the

number of time steps in the collected output data. To performthe Bayesian

computation, we use the Markov chain Monte Carlo method. In the next sub-

section we shall briefly introduce this method.

Markov chain Monte Carlo

The Markov chain Monte Carlo (MCMC) provides a sampling strategy from the

proposal distributionq(φ|y, φ(t−1)) to the target distributionp(φ|y) using the

Markov chain [94]. In this work, the Metropolis-Hastings (MH) algorithm is

used to solve the Bayesian inverse problems. Suppose that our goal is to sample

from the target distributionp(φ|y) with φ ∈ D. The Metropolis sampler gen-

erate a Markov chain with a sequence of values:φ(1) → φ(2) → · · · → φ(t) →

· · · , whereφ(t) is the state of a Markov chain at iterationt. The Metropolis

procedure is to initialize the first stateφ(1), then to use a proposal distribution

q(φ|y, φ(t−1)) to generate a candidate valueφ∗. The next step is either accept

the proposal or reject it. New proposals is then generated and this procedure

continues until the sampler reaches convergence. The samplesφ(t) now reflect

samples from the target distributionp(φ|y). The MH algorithm is summarized

below as follows,

Algorithm 2

1. Initialize the chainφ0 and sett = 0

2. Repeat

• t = t + 1
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• Generate a proposal pointφ∗ ∼ q(φ∗|y, φ)

• Generateua from a Uniform(0,1) distribution

• Update the state toφt+1 as

φt+1 =















φ∗, if βa < ua

φt, otherwise

3. Until t = Nmcmc → stop.

Here,βa is the acceptance-rejection ratio, given by

βa = min
(

1,
p(φ∗|y)q(φt−1|y, φ∗)

p(φt−1|y)q(φ∗|y, φt−1)

)

. (5.28)

Nmcmc is the total number of samples andua is a random number from Uni-

form(0,1) distribution.

Once the samples or the posterior probability density of source location are

determined, we have a characterization of the probable location of the source.

Then we can apply the control stochastic control. However, applying the stochas-

tic control on the probable regions will be extremely expensive even with the

reduced-order model used. Here we explore the Gaussian mixture model (GMM)

to approximate the posterior density function of the sourcebefore applying the

control.

Gaussian mixture model

Given the data setΦ = {φn}Nc

n=1 samples from the posterior density function,

the next step is to approximate this data using Gaussian mixture model (GMM).

A mixture of Gaussians is defined by a superposition ofNG Gaussian densities
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in the form

pG(φ|Ξ) ≡ p(φ|y) ≈
NG
∑

k=1

πm
k N (φ|φ̄k, Σk). (5.29)

Here the parameter listΞ = πm
1 , · · · , πm

NG
, φ̄1, · · · , φ̄NG

, Σ1, · · · , ΣNG
defines a

particular Gaussian mixture probability density function. Each Gaussian density

N (φ|φ̄k, Σk) is called a component of the mixture and has its own meanφ̄k and

covarianceΣk, which has the form

N (φ|φ̄k, Σk) =
1

(2π)d/2

1

|Σk|1/2
exp

{

− 1

2
(φ − φ̄k)

T Σ−1
k (φ − φ̄k)

}

, (5.30)

whered is the dimension of vectorφ and|Σ| denotes the determinant ofΣ. The

coefficientsπm
k are called mixing coefficients, which have two properties:















∑NG

k=1 πm
k = 1,

0 ≤ πm
k ≤ 1,

(5.31)

that satisfy the requirements of probabilities.

The likelihood of the data setΦ = {φn}Nc

n=1 assuming thatφn are indepen-

dently distributed is given by

pG(Φ|Ξ) =
Nc
∏

n=1

pG(φn|Ξ). (5.32)

From (5.29) the log of the likelihood function is given by

ln pG(Φ|Ξ) =
Nc
∑

n=1

ln
{

NG
∑

k=1

πm
k N (φn|φ̄k, Σk)

}

. (5.33)
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Our task is to find the maximum of the likelihood function (5.33) with re-

spect to the parameters of the GMM. The expectation-maximization (EM) al-

gorithm is a general method for finding maximum likelihood estimates with

respect to the parameters (comprising the means and covariances of the compo-

nents and the mixing coefficients). For more details, refer to [95].

5.3.3 Stochastic optimal control problems

Given our approximate representation of the unknown sourceusing our GMM,

the next step is to solve the control. The goal of our control problem is to flush

the contaminant out of the domain by controlling the velocity of the fluid pump.

Objective functional

The objective functional is to seek a velocity over an admissible control setu ∈

Uad that minimizes a weighted combination of theL2−norm of the expected

contaminant field and theL2−norm of the velocity field:

min
u∈Uad

Ĵ (u, c) =
1

2

∫ tf

t0

E

[

‖c(x, t, φ; ω)
∣

∣y‖2
L2

]

dt +
ηw

2

∫ tf

t0

‖u‖2
L2

dt, (5.34)

subject to the constraints Equations (2.61)–(2.64). Here,ηw is a constant con-

trolling the relative weighting of the components of the objective function,E[·]

denotes the expectation operator andy the measurement vector.

In the stochastic estimation framework, the expected valueis simply the

91



mean of the posterior density function [96, 97]. That is,

E[φ|y] =

∫

Φ

φ p(φ|y) dφ. (5.35)

Consider the expected contaminant field in (5.34), a similar manner to (5.35) we

have

E

[

‖c(x, t, φ; ω)
∣

∣y‖2
L2

]

=

∫

Φ

‖c(x, t, φ; ω)‖2
L2

p(c(x, t, φ; ω)|y) dφ. (5.36)

The posterior density function of the contaminant fieldc(x, t, φ; ω) is estimated

implicitly via the contaminant sourceφ. Thus, we can re-write (5.36) as

E

[

‖c(x, t, φ; ω)
∣

∣y‖2
L2

]

≈
∫

Φ

‖c(x, t, φ; ω)‖2
L2

p(φ|y) dφ. (5.37)

Combining Equations (5.29) and (5.37), we get

E

[

‖c(x, t, φ; ω)
∣

∣y‖2
L2

]

≈
NG
∑

j=1

πj E

[

‖c(x, t, φ̄j; ω)‖2
L2

]

. (5.38)

In the collocation framework, the expected value in (5.38) is approximated via

a quadrature rule (such as Clenshaw–Curtis quadrature [92]) built on the collo-

cation points. Define
{

wk
}P

k=1
to be the quadrature weights associated with the

collocation points,

wk =

∫

Θ

ρ(Y) L2
k(θ) dθ, for k = 1, · · · , P, (5.39)

whereρ(Y) is the probability density of the random vectorY. The cost func-
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tional is replaced by the discretized problem as follows

min
u∈Uad

Ĵ (u) ≈ 1

2

∫ tf

t0

[

NG
∑

j=1

πm
j

[

P
∑

k=1

wkcT (t, φ̄j ;Y)Mc(t, φ̄j;Y)
]

]

dt

+
ηw

2

∫ tf

t0

‖u‖2
L2

dt. (5.40)

Here, the solutionc(t, φ̄j;Y), j = 1, · · · , NG; k = 1, · · · , P , solves the ordi-

nary differential equations (ODEs) (2.71)–(2.72).

The Optimality System

The optimality system is derived in a similar manner to Subsection 5.2.1. Only

the optimality condition equation is slightly different, which is given as

δL
δu

= ηw

∫ tf

t0

udt −
∫ tf

t0

NG
∑

j=1

πm
j

P
∑

k=1

wkcTC(u)p dt = 0. (5.41)

In summary, the state equation (5.18)–(5.19), adjoint equation (5.20)–(5.21) and

optimality condition (5.41) form the optimality system, solutions of which pro-

vide the optimal statec, adjoint statep and control variableu. To solve the

stochastic optimal control problem using the collocation method we use Algo-

rithm 1 in AppendixB.

As mentioned in Subsection5.2.1, these simulations in real-time are compu-

tationally expensive and may not be feasible. Model order reduction is applied

to obtain a reduced-order approximation of the large model,which allows for

efficient simulation.

93



5.3.4 Results

We present a 2D mathematical model to evaluate the efficiencyof the proposed

approach to the application of water management. The reduced order models

are first determined to serve as an efficient forward solver inthe stochastic es-

timation problem and stochastic optimal control problem. That solver is then

employed to find the realization of source locations using Algorithm 2 and the

optimal solution of velocity using Algorithm 1. We shall follow the same model

setup from Section5.2.2.

Full order model and reduced order model

To illustrate the behavior of the collocation approach, we employ the Smolyak

algorithm [41, 42, 43] to determine the collocation points
{

θk
}K

k=1
= (ξ, η)k

and collocation weights
{

wk
}K

k=1
. For each pair of(ξ, η)k, the diffusivityκk is

determined and then candidate solutionc(t, φ̄j,Y).

We evaluate the candidate solutions with Smolyak nodes which represent

exactly polynomials of total degree5 (P = 29), degree7 (P = 65), degree

9 (P = 145) and degree11 (P = 321) as shown in Figure5-5. Solution

of the stochastic convection-diffusion equation is globalapproximation of the

candidate solutions at collocation points as given in Equation (2.66).

The POD method is then implemented to generate a POD basis from a set

of snapshots. The snapshot are taken not only at different time instants but

also for different realizations of source locations and fordifferent realizations

of diffusivity coefficients using independent random inputs. In this case, we

chooseNk evenly-spaced samples,κt, on the interval[κmin κmax], and a sample
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set of source locations,Sk. To increase the efficiency of the snapshot collection

we use the following strategy: for each value ofκt we generateSk values of

randomly source locations overD, and for every two time-steps we store one

instantaneous solution. Here,Nk = 10 andSk = 30 samples. The total number

of snapshots isNsnap = Nk × Sk × T/2.

Table 5.5: Properties of various MOR models.

ǫE(%) POD εstate εadjoint

98.5 86 3.64e-3 1.24e-2
99.0 97 2.82e-3 3.78e-3
99.5 118 1.73e-3 1.46e-3
99.9 169 7.28e-4 7.98e-4
99.99 250 2.48e-4 8.96e-5

Table5.5shows the relative error of the approximation (for a randomly cho-

sen value ofκ and source location not in the snapshot set) for different sizes of

the reduced-order model. The size of reduced-order model ischosen based on

the snapshot energy as in Equation (4.15). In practice, we need both the dimen-

sions of the reduced-order model and the relative error to besmall. Here, we

choose the case withǫE = 99.0% yielding a POD basis of sizem = 97. The

solution of SPDEs is evaluated for both full forward model and reduced-order

model with orderm = 97. We observe that the computational time of the full

model is approximately9 minutes whenP = 321 Smolyak nodes2.

To estimate the relative error of the solution, we choose thesolution corre-

sponding to the finest collocation scheme(P = 321) as a “truth” solution. Ta-

ble 5.6shows the relative errors and computational time ratio of the full model

and reduced model ( defined asrt = tF ull

tMOR
) for different Smolyak nodes. We

2The simulations were performed on a personal computer (PC) with processor Intel(R)
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Table 5.6: Estimated solution of SPDEs for different numbers of collocation
points.

P εerror rt

29 2.53e-3 25
65 2.51e-3 25
145 2.51e-3 24
321 2.51e-3 26

observe that the relative errors of estimated solutions aredecreased when the

number of collocation points increases. However, these relative errors do not

change very much. Furthermore, the ratio of computational time is speed-up

with a similar factor —25 times. We choose the second case withP = 65

Smolyak nodes. Next, our reduced model will be utilized as anefficient forward

solver in the stochastic estimation and stochastic optimalcontrol problems.

Stochastic estimation problems

We assumed that at the beginning we are given a set of measureddata as shown

in Figure5-9. These data can be collected by experimentation or simulation.

In this case, we simulate the deterministic model by assuming κ(x, t;Y) = κ0

and source locationφ = (0.3, 0.25). To illustrate the behavior of uncertain

variables such as wind velocity into the model, we add noise into the ideal data.

The noise is assumed to be additive white Gaussian noiseηt ∼ N(0, σ2I) with

σ = 0.2.

The Bayesian formulation and MCMC approach is now used to solve for

variety of source locations using the reduced solver above.We conduct the

MCMC simulation with the starting pointφini = (0.5; 0.2). The total number

Core(TM)2 Duo CPU E8200 @2.66GHz 2.66GHz, RAM 3.25GB, 32-bit Operating System.
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Figure 5-9: A set of synthetic data.

of MCMC samples is set toNmcmc = 5000. The initial burn-in period is set

to Nburnin = 1000. After this stage, data is saved to compute the statistics of

source locations.

Figure5-10(a)shows the trace plot (or history plot) of the parameters versus

the iteration numbers. Based on these plots we can estimate whether the Markov

chain has converged. The Markov chain for both parametersφ1 andφ2 is used

beginning at the starting pointφini = (0.5; 0.2). The acceptance ratio at67.6%

is consistent with the recommended range between30% to 70% as suggested in

[98].

Figure5-10(b)shows the posterior probability density of the source loca-

tion φ. In this figure, both pairwise scatter plot and one-dimensional marginal

distributions are displayed. The dashed-line on each axis shows the probability

density function of each parameter. The contours show the posterior probability

density of source locationφ (the probable regions) while red-dot is the actual

source location for which the measured data are synthesized. The computational
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Figure 5-10: Trace plots and scatter plot of parametersφ1 andφ2.

time to solve the inverse problem is approximately6 hours. (If we use the full

forward solver, with the speed-up factor of around25 times, the computational

time is estimated at around150 hours or approximately6 days.)

Next, we employ the Gaussian mixture models (GMM) to approximate the

posterior density function of the estimated source location before applying the

stochastic optimal control to flush them out of the domain. From the probable

regions, we used the GMM to approximate the mean, covarianceand mixing

coefficients of Gaussian components. Figure5-11 show the Gaussian mixture

models with 1, 2, 3 and 4 Gaussian components, respectively.Table5.7shows

the mean(φ̄) of the components and mixing coefficients, which maximizes the

likelihood of Gaussian mixtures. The covariance is different for each Gaussian

component, for example,Σ1 = 1.0e−3 × [1.5,−0.42;−0.42, 0.91], but Σ4 =

1.0e−3 × [0.79, 0.25; 0.25, 0.59].

Stochastic optimal control problems

The stochastic optimal control now can be solved by following Algorithm 1

as described in AppendixB. In this example, we set the control parameter
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(a) (b)

(c) (d)

Figure 5-11: Gaussian mixture models with 1, 2, 3 and 4 Gaussian components,
respectively.

Table 5.7: Gaussian mixture model with4 Gaussian components.

Parameters GMM1 GMM2 GMM3 GMM4

φ1 0.3061 0.3100 0.3071 0.3048
φ2 0.2530 0.2578 0.2547 0.2600
πm 0.2200 0.3733 0.2467 0.1601

ηw = 0.1. We will perform our control using the Gaussian mixture models with

1, 2, 3 and 4 components. Table5.8shows the results of the optimal control with

Table 5.8: Estimated optimal control for different numbersof mixtures in the
GMM.

NG u v Ĵ time (min)
1 1.38 0.00 0.329 4.5
2 1.39 -0.02 0.331 18.2
3 1.39 0.03 0.334 32.1
4 1.41 0.04 0.345 48.4
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different numbers of Gaussian components. We observe that when the number

of mixtures in the GMM increases the amplitude of the estimated optimal ve-

locity increases and its estimated cost functional increases. The computational

time to solve the stochastic control increases when the number of mixtures in

the GMM increases. We observe that the computational time isapproximately

50 minutes whenNG = 4, using our reduced-solver. If we use the full solver,

the computational time is around 1 day according to the speed-up factor given

in Table5.6.

Figure5-12shows the efficiency of the management when applying the con-

trol. With the determined control strategy, the contaminant is almost flushed out

of the domain at the same final time.
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Figure 5-12: The contaminant field with control and without control for case
NG = 4.

5.3.5 Remarks

This study has applied the combination of model order reduction technique

based on POD and the collocation method to solve a stochasticmeasure-invert-

control problem. A Bayesian formulation for the inverse problem solved us-
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ing MCMC together with a reduced-order solver provides a rapid estimate of

the probability density function of the parameters describing source location.

Gaussian mixture model is then applied to determine a numberof mixtures in

the GMM which is able to cover the probable regions well. Stochastic optimal

control based on collocation and adjoint method provides a rapid solution to the

control problem. The reduced solver with orderm = 97 decreases the com-

putational time of solution by a factor of about25 while retaining acceptable

accuracy. This speed up is important in real-time decision-making applications

because it provides a rapid solution and reduces storage requirements. Appli-

cation of the optimal control strategy shows the potential effectiveness of this

computational modeling approach for managing flow quality.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Understanding of hydrodynamic processes such as contaminant transport, mix-

ing water, and thermal stratification provides knowledge tothe management of

quality in reservoir system. These processes strongly influence water quality un-

der the effect of parameters such as water velocities, wind velocity and heat ex-

change at the air-water interface. Of particular significance is contaminant trans-

port, which may contain many species of pollution, that directly affect the water

quality. Since the contaminant may exist in point-source ornonpoint-source

forms, locating and estimating of the contaminant sources are required before

we can apply the control to ‘clean’ or ‘get rid of’ them. For large-scale and re-

alistic applications such as reservoirs, experiments for these works can be very

costly. Experiments via numerical simulations provide an alternative tool for

detailed analysis and evaluation. To perform the control, we have to deal with

many uncertain parameters relating to the instrumentations which measure the
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wind speed, water circulation currents, contaminant species and others. These

uncertain parameters may have undue influence on the system.As such these

need to be properly accounted for as stochastic variables inthe system model.

In this study, we explored an end-to-end: measure-invert-control strategy for a

stochastic problem with application to the management of quality in reservoir

system. Due to the stochastic nature of the simulations and optimization formu-

lation, the computational costs and storage requirements increase rapidly. An

efficient reduced-order model that approximates the full model can overcome

this computational issue.

With this strategy, we first develop a numerical simulation code for 2D lat-

erally averaged model for lake and reservoir models. The numerical code is

validated through comparisons to benchmark problems. Numerical results show

that the hydrodynamics processes are in good agreement withthe theoretical and

experimental data. The physical phenomena are also investigated and compared

to practice. Data collected is then processed in the measurement step. Here

we used data from numerical simulations and added some noise. The inverse

problem step is then performed using a Bayesian formulationand solved with

a Markov chain Monte Carlo method. After that the Gaussian mixture models

are used to determine a number of mixtures in the GMM. Finallythe stochas-

tic control step using the adjoint method together with a collocation method is

applied to ‘flush’ the contaminant out of the reservoir.

The reduced-order model for the reservoir system is obtained using the proper

orthogonal decomposition and Galerkin projection techniques. For dependent

variable or non-linear problems, we have to use a combination of Galerkin pro-
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jection method and POD directly on the coupled Navier-Stokes equations and

transport equation that yield a set of ordinary differential equations capturing

the essential dynamics of the system. To demonstrate the efficiency of reduced-

order models, two examples are considered. The first is a simple 2D transport

model with constant velocity field and the second is a coupledNavier-Stokes and

transport model. In both cases, the final purpose is to ‘flush’the contaminant

out of the domain with the lowest cost. The first study has applied successfully

the combination of model order reduction technique based onPOD and the col-

location method to solve the stochastic problems. A Bayesian formulation for

the inverse problem solved using MCMC together with a reduced-order solver

provides a rapid estimate of the probability density function of the parameters

describing source location. Gaussian mixture model is thenapplied to determine

a number of mixtures in the GMM which is able to cover the probable regions

well. Stochastic optimal control based on collocation and adjoint method pro-

vides a rapid solution to the control problem. The reduced solver with order

m = 97 decreases the computational time of solution by a factor of about 25

while retaining acceptable accuracy in comparison with thefull model with size

N = 1891. This speedup is important in real-time decision-making applications

because it provides a rapid solution and reduces storage requirements. For cou-

pled Navier-Stokes and transport model, the POD-based ROMshas been studied

and applied successfully for the simulation of fluid flow. This approach provides

an efficient method to deal with nonlinear and coupled systems. In this study,

the speedup factor is approximately90 using reduced models withMu = 12

andMc = 20 POD basis vectors in comparison with the full model with size
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N = 2121. The controlled actions provide a cleaner water body than uncon-

trolled actions. Due to the significant savings in computational costs and stor-

age requirements and the effectiveness of the optimal control, the POD-based

ROMs is able to provide an effective tool for water quality management.

6.2 Future Work

The 2D laterally averaged model is able to provide solutionswith adequate ac-

curacy. However the most environmental flows are three-dimensional models;

they require general solutions. Our numerical code has beendeveloped for 2D

model and it can readily be extended into 3D model. With 3D model we can

explore in great details the movement of water and find out the“dead zones”,

which increase residence time of contaminant and augment the risk of recon-

tamination within the reservoir.

The stochastic optimal control of outflow velocity to clean up the contami-

nant in a reservoir is our next target. We have already developed the approach for

a deterministic control. We need to extend the code to other realistic problems:

the stochastic control of reservoir problems. Presently, we can only control for

all the outflows with the same factor. We have to modify the approach so that

we can control each outflow separately in order to increase flexibility.
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Appendix A

Finite Element Method

A.1 Solar components

We consider the solar component relationships as shown in Figure2-1. The total

net heat flux through the water surface is calculated by the net all-wave radiation

[1], given by

R∗
N = RSN + RAN − RBR − RC − RL. (A.1)

1. The net solar shortwave radiation

RSN = βRS(1 − α), (A.2)

whereRS is the incoming solar shortwave radiation,α ∈ (0, 1) is the water

reflection coefficient,β = 0.65 is the fraction of solar shortwave radiation. The

remaining fraction of the solar shortwave radiation(1 − β)RS is absorbed ex-
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ponentially with depth as follows

Rz = (1 − β)RS exp(−ηH), (A.3)

whereH is water depth andη = 0.5 is the extinction coefficient.

2. The down-welling longwave radiation: is expressed in terms of the Stefan-

Boltzmann Law, for more details refers to [99],

RAN = σεeff(273 + Ta)
4 = σεcsFcs(273 + Ta)

4. (A.4)

HereTa is air temperature,σ = 5.67 × 10−8(Wm−2K−4) is Stefan-Boltzmann

constant,εeff = εcsFcs is referred to as the effective or apparent emissivity,

Fcs ≥ 1 is a cloud factor expressing the increase in clear-sky,εcs is the clear-sky

atmospheric emissivity,

εcs = (1 − ra)(1 + 0.17 ∗ C2)KfT
2
a , (A.5)

wherera = 0.03 is the albedo for long wave radiation,Kf = 9.37×10−6(K−2)

a coefficient and0 ≤ C ≤ 1 is cloud cover fraction.

3. The up-welling longwave radiation: follows the same formulation of the dow-

welling, in which air temperatureTa is replaced by water surface temperature

Ts,

RBR = σεw(273 + Ts)
4, (A.6)
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where the emissivityεw is fixed at0.975.

4. The evaporative loss (latent heat flux) from the water is given as

RL = f(Ua)(es − ea), (A.7)

wherees andea is the saturation vapor pressure above the water surface andthe

vapor pressure of air(hPa), which can be computed from [100],

es = 4.596 exp (
17.27Ta

237.3 + Ta

), (A.8)

ea =
esRh

100
, (A.9)

whereRh is relative humidity. The function ofUa is expressed as follows

f(Ua) = 7.6 × 10−4 × (9.2 + 0.46U2
a ). (A.10)

5. The conduction heat loss (sensible heat flux) from the water

RC = 0.47f(Ua)(Ts − Ta). (A.11)

Note that the dimension of all the radiation fluxes are expressed as energy per

unit area (Wm−2).
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A.2 Finite Element Methods

A.2.1 Linear triangular element

Consider a linear triangular element with three nodal valuesφi = (u, w, p, c, T )i

and nodal coordinate(x, z)i, with i = 1, 2, 3 as shown in FigureA-1. The

variable interpolation within the element is linear inx andz directions, as

φ = α0 + α1x + α2z, (A.12)

whereαi are constants to be determined.

The interpolation function (A.12) should represent the nodal variables at the

three nodal points. Therefore, substitutingx andz values at each nodal point

gives
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Inverting the matrix and rewriting equation (A.13), gives

















α0

α1

α2

















=
1

2A

















a1 a2 a3

b1 b2 b3

c1 c2 c3

































φ1

φ2

φ3

















, (A.14)
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whereA is the area of the triangle and is given by the determinant

A =
1

2
det

















1 x1 z1

1 x2 z2

1 x3 z3

















, (A.15)

and

a1 = x2z3 − x3z2 b1 = z2 − z3 c1 = x3 − x2

a2 = x3z1 − x1z3 b2 = z3 − z1 c2 = x1 − x3

a3 = x1z2 − x2z1 b3 = z1 − z2 c3 = x2 − x1.

(A.16)

Substituting the coefficients into equation (A.12) and rearrange, we have

Figure A-1: Linear triangle element.

φ = H1φ1 + H2φ2 + H3φ3, or φ = Hφ(e). (A.17)

HereN are the shape functions, defined as

H1 = 1
2A

(a1 + b1x + c1z),

H2 = 1
2A

(a2 + b2x + c2z),

H3 = 1
2A

(a3 + b3x + c3z),

(A.18)
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These shape functions satisfy the conditions

Hi(xj , zj) = δij , (A.19)

3
∑

i=1

Hi = 1. (A.20)

Hereδij is is the Kronecker delta function.

A.2.2 Elemental Matrices

The finite element matrices are evaluated on each element as

Me =

∫

De

HTHdDe, (A.21)

Ge
x =

∫

De

HT ∂H

∂x
dDe, (A.22)

Ge
z =

∫

De

HT ∂H

∂z
dDe, (A.23)

Le =

∫

De

∇HT∇HdDe, (A.24)

fe
x =

∫

De

HT fxdDe, (A.25)

fe
z =

∫

De

HT fzdDe, (A.26)

Ce(u) =

∫

De

HT
(

Huh
∂H

∂x
+ Hwh

∂H

∂z

)

dDe +

∫

De

HTH
(∂H

∂x
uh +

∂H

∂z
wh

)

dDe, (A.27)

Ke(u) =

∫

De

ν(u)∇HT∇HdDe, (A.28)

Ae(u) =

∫

De

HT
(∂H

∂x
uh +

∂H

∂z
wh

)

dDe, (A.29)

De(u) =

∫

De

(

Huh
∂HT

∂x
+ Hwh

∂HT

∂z

)

dDe. (A.30)
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Ke
c =

∫

De

κ(θk)∇HT∇HdDe, (A.31)

fe
c =

∫

De

HT fcdDe, (A.32)

Ce
c(u) =

∫

De

HT
(

Huh
∂H

∂x
+ Hwh

∂H

∂z

)

dDe. (A.33)
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Appendix B

Optimization algorithm for control

Algorithm 1 is a general procedure to solve for deterministic control, stochastic

control with deterministic source and stochastic control with uncertain source.

For particular problem, we need to set the input parameter appropriately. For

example, if the deterministic control is considered, we setP = 0, NG = 0;

Θ = 0, etc.

To solve the KKT system, the Crank-Nicolson method [88] is used to dis-

cretize the state, adjoint and optimality condition equations in time. The con-

jugate gradient method [101] is employed to solve the linearized system; the

Armijo line-search [102] is used to ensure convergence.

1. Initial work

1a. GivenP , D, NG, Θ, Φ, initial velocityu0, toleranceε. Setj = 0

1b. Given the FEM basisϕl for l = 1, ..., N , whereN is the number of

grid points

1c. Compute the matricesM,Cc(u)
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1d. Compute collocation point{θk = (ξ, η)}P
k=1 and collocation weights

{wk}P
k=1.

2. Solve for the KKT system

For j = 1 : NG

Use2a. Compute vectorF(t, φj) =
∫

D f(x, t, φj)ϕidx

UseFork = 1 : P

Use for 2b. Compute inputκ(x, t;Y) at eachθk

Use for 2c. ComputeK(t; θk) =
∫

D κ(x, t;Y)∇ϕi(x) · ∇ϕl(x)dx

Use for 2d. Solve the state equations with inputuj

Use for 2e. Solve the adjoint equations

Use for 2f. Store results

Useend

end

3. Compute the optimal control

3.a Compute the cost-functional̂J (uj) and the gradient grad(uj)

3.b If ‖grad(uj)‖ < ǫ → stop.

3.c Perform Armijo line search

• Setsj = −grad(uj)

• Setαj = 1 then evaluatêJ (uj+αjsj), and gtol= 10−4αjs
T
j grad(uj)

• While Ĵ (uj + αjsj) > Ĵ (uj) + gtol

Setαj = αj/2 and evaluateĴ (uj + αjsj).

3.d Setuj+1 = uj + αjsj , andj = j + 1. Go to step2.
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