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Chapter 1 

Introduction 

 

1.1   Motivation for New Nonvolatile Memory 

Nonvolatile memories (NVM) are used in our everyday lives for a wide range of 

applications, such as to store music on MP3 players, photos on digital cameras, text 

messages on mobile phones, and documents on USB thumb drives. This has been 

made possible with Flash memory like NOR and NAND Flash. Flash memory has 

grown in less than three decades to become a $20 billion-dollar-per-year titan in the 

semiconductor industry [1.1]. This has been made possible by the tremendous 

increase in the system functionality that can be delivered in the same package size 

for early portable devices. 

The Flash memory market has grown rapidly due to the relentless scaling of 

devices as predicted by Moore’s Law [1.2]. The concept is based on achieving 

higher densities at a similar cost to realize more functionality, which attracts new 

investment for the additional research and development needed to implement the 

“next size smaller” device. This has been employed for Flash memory with great 

success over the last few decades, and should also be true in the near future. 

However, the long-term scalability of Flash memory device is unclear at the 

moment. This is due to the increased importance of device-to-device variations, and 

the dependence on the continued lithographic innovation, which are also common 

in many portions of the semiconductor industry. In addition, Flash also faces a 

tradeoff between the scaling of lateral device dimension and the reduction of stress-
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induced leakage current (SILC) that is incurred by programming with large voltages 

across ultrathin oxides [1.3-1.5]. There are also challenges to maintain the coupling 

between the control and floating gates, and minimize the cell-to-cell parasitic 

interference between the stored charges when the Flash device dimension 

decreases. To address these issues, alternative cell designs such as silicon-oxide-

nitride-oxide-semiconductor (SONOS) [1.6], and the advanced tantalum nitride-

alumina-nitride-oxide-semiconductor (TANOS) [1.7-1.10] cell structures have been 

employed.  However, the TANOS structures cannot help in further scaling of NOR 

Flash due to the channel hot-electron injection problem [1.11].  

To further increase the device packing density, multi-level cell (MLC) NAND 

Flash was introduced to allow more bits to be stored in multiple levels using the 

same number of transistors. However, the MLC NAND Flash with the TANOS 

structure introduced new problems, such as the device-to-device variations, 

stochastic or “shot-noise” effects, random telegraphic noise, and reduction in the 

number of stored electrons that differentiate one stored level from the next 

[1.4,1.12,1.13]. These problems make MLC Flash difficult to manufacture. These 

few-electron problems escalate with further scaling. To address these problems, 

researchers have employed advanced schemes such as FinFET Flash or 3-D 

stacking of Flash memory [1.14-1.19]. Although these schemes may have better 

device performance or lower cost per unit of storage, they are more difficult to 

fabricate than the conventional Flash. 

It remains very difficult for Flash to continue scaling to sub-10 nm technology 

nodes. Flash researchers are already facing a lot of challenges to maintain device 

specifications, such as the write/erase performance, write endurance, and data 



 

 3 

retention, let alone to improve them. Also, as Flash struggles to maintain the current 

levels of reliability and performance while increasing density, new applications 

created based on these specifications are barely adequate [1.20]. 

Flash has also been employed in solid-state drive (SSD) applications in recent 

years [1.21]. There has been a considerable time lag between the introduction of 

Flash-based SSD, and the widespread use of Flash in consumer applications. This is 

due to the need to build system controllers and computer codes that can avoid the 

unnecessary writes, perform the static/dynamic wear-leveling and pipeline writes, 

and maintain the pre-erased blocks to hide the poor write/erase and endurance 

performance of Flash [1.22,1.23]. Thus, the cost of manufacturing Flash-based SSD 

is high as it typically uses the single-layer cell (SLC) Flash, rather than MLC Flash, 

which has a lower cycle endurance and slower write speed [1.24].  

Hence, there is a need for a new NVM that has a higher scalability than NAND 

Flash to reach the higher densities needed in future technology nodes. There is also 

a need for a NVM that has a better write/erase performance and higher cycle 

endurance than Flash, to reduce the cost of NVM-based SSD. A NVM that 

combines high performance, high density and low cost would bring even greater 

benefits in terms of streamlining or simplifying the memory/storage hierarchy 

throughout the computing platforms, all the way up to high-performance 

computing. The new NVM could replace multiple memories such as SRAM, 

DRAM, Flash, and hard disk drives (HDD), and become a so-called “universal 

memory”. 

For more than a decade, a number of promising NVM candidates have been 

proposed as a possible Flash “replacement” [1.25]. The candidates range from 
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technologies that have reached the market after successful integration in CMOS 

fabs (phase-change, ferroelectric and magnetic RAM), to novel ideas that are at the 

proof-of-concept stage (racetrack memory and organic RAM), to technologies that 

are somewhere in between (resistance RAM, and solid-electrolyte memory). These 

candidates have both strengths and weaknesses. In general, the strengths and 

weaknesses of the NVM candidates are better understood as they progress towards 

real device integration. And as research gives way to development, new weaknesses 

tend to be revealed. In contrast, by avoiding these known pitfalls, fresh new 

technologies are immediately attractive, at least until their own unique weaknesses 

are discovered. 

 

1.2   What is PCRAM? 

Phase-change random access memory (PCRAM) is a nonvolatile memory 

technology that uses the reversible switching of a phase-change (PC) material 

between amorphous and crystalline states for data-storage applications.  

 

 
Fig. 1.1. Diagram of the phase-change alloys and their historical applications 
[1.34]. 
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It possesses near-ideal memory attributes like non-volatility, fast 

programming speed, good scalability and high overwriting cycles [1.20,1.26-1.29]. 

The concept is based on the reversible switching effect of chalcogenide materials 

first discovered by S. R. Ovshinsky in 1968 [1.30]. It was then known as the 

ovonic unified memory (OUM) [1.31], and was made up of semiconductor–like 

chalcogenide alloys containing one or more elements from group VI of the 

periodic table. An example is the commonly used Ge2Sb2Te5 (GST) alloy. PC 

materials were first used in optical disk memory to make re-writable CDs, DVDs 

and Blu-ray discs [1.32-1.35] (Fig. 1.1), before being exploited in the early 2000s 

by semiconductor industries to create solid-state memories known today as 

PCRAM, PCM, CRAM or PRAM [1.36-1.43]. 

 

1.3   Operating Principle of PCRAM 

In general, PC materials can exist in 2 states, either in the crystalline state (low 

resistance) or the amorphous state (high resistance). In a conventional PCRAM 

structure, a small volume of the PC material near the electrode is used as a 

programmable resistor for storing information, as illustrated in Fig. 1.2.  

 

 
Fig. 1.2. Data storage region in a PCRAM cell [1.31]. 
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Fig. 1.3. I-V characteristics of PCRAM. 

 

To program PCRAM, a current pulse applied at a voltage above the switching 

threshold Vth is required to drive the PCRAM from the amorphous state to the 

crystalline state (Set process), or from the crystalline state to the amorphous (Reset 

process), depending on the current magnitude applied (Fig. 1.3). The voltage “snap-

back” at Vth is a unique characteristic of the PCRAM, as a result of the threshold-

switching mechanism. To read the data, a small current is applied to measure the 

resistance level of the crystalline and amorphous states. 

For the Set process, an electrical pulse of low voltage amplitude and long 

duration is required to heat the PC material above the glass-transition temperature 

(~300 ºC) for crystal formation. In contrast, for the Reset process, an electrical 

pulse of high voltage amplitude and short duration is required to heat the PC 

material beyond the melting point (~650 ºC) before it quenches quickly into the 

disordered state, as shown in Fig. 1.4.  
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Fig. 1.4. Reversible electrical phase switching of PCRAM. 

 

1.4   PCRAM Applications 

As mentioned earlier, one of the greater motivations to develop a new NVM is not 

only to have a better device performance than Flash, but also to develop a 

universal memory that can work across multiple layers of the existing memory 

hierarchy in modern computers, as shown in Fig. 1.5.  
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Fig. 1.5. Memory hierarchy in computers. The hierarchy spans orders of 
magnitude in read-write performance, ranging from the small numbers of 
expensive yet high-performance memory devices (on chip) to the large numbers 
of low-cost yet very slow storage devices (off line storage) [1.20].  

 

The memory hierarchy is designed to bridge the performance gap between 

the fast central memory devices and the slower storage devices, while keeping the 

overall system cost down, as depicted in Fig. 1.6. Currently, there is a gap of more 

than 3 orders of magnitude between the access time of the fast memory devices, 

and the write-cycle time of the slow storage devices. This continues to widen 

rapidly. It is thus important to develop a universal memory that can perform the 

functions of both the memory and storage devices, while maintaining low cost. 

This will boost the overall speed of computer systems.  
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Fig. 1.6. Access times for different memory and storage devices, both in 
nanoseconds and in terms of human perspective. For the latter, all times are scaled 
by 109 so that the fundamental unit of a single CPU operation is analogous to a 
human making a one second decision. In this context, writing data to Disk can 
require more than “1 month” and retrieving data from an offline tape cartridge 
takes “1000 years” [1.20]. SCM refers to storage class memory.  

 

PCRAM has the potential to replace the fast memory units such as SRAM 

and DRAM. SRAM and DRAM are typically embedded close to the central 

processor unit (CPU), serving as high-performance level 1 (L1) and level 2 (L2) 

cache memories, and video RAM and level 3 (L3) cache memories, respectively 

[1.44]. A typical SRAM cell has six CMOS transistors, two p-type MOSFETs, 

and four n-type MOSFETs, covering more than 120 F2 (F is the minimum feature 

size, and F = P/2, with P being the minimum pitch allowed by the considered 

lithography) in chip real estate per bit. State-of-the-art DRAM cells occupy 6 F2 

in chip area. PCRAM competes favorably with both SRAM and DRAM in terms 

of the cell size. Such small cell sizes (6 F2) have already been demonstrated in 
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PCRAM using a diode-select device [1.45]. PCRAM also competes favorably 

with DRAM in terms of scaling into future technology nodes. This is because 

DRAM is facing scaling limitations such as write-caused inference (write requests 

interfere with read requests), device leakage, and challenges in the integration of 

high-aspect ratio capacitors in very small spaces. As such, DRAM has already 

fallen behind NAND Flash and standard CMOS logic technologies in terms of 

scaling to the 45 nm node, and is expected to fall even further behind in future 

technology nodes. In terms of endurance, the required write endurance for SRAM 

is about 1018. For DRAM, the required write endurance can be estimated using the 

following equation: 

, (1.1) 

where Ne is the cycle endurance, Tlife is the life span of the system, B is the 

bandwidth,   is the wear-leveling efficiency, and C is the system memory capacity. 

Assuming a typical server with a ten-year life span, 1 GB/s bandwidth, 10 % 

wear-leveling efficiency, and 16 GB capacity, the endurance requirement for 

DRAM is approximately 108, which is within the reach of PCRAM (1012) 

[1.46,1.47]. More recently, researchers have found that lowering the total energy 

delivered in a Reset pulse can increase the PCRAM endurance [1.48]. This reveals 

a possible method for PCRAM to achieve SRAM-like endurance in the future. 

Both SRAM and DRAM have high power consumption. For instance, DRAM 

requires a substantial amount of power to simultaneously address multiple banks 

within a chip (for every bit that passes into or out of the DRAM chip, 8 or even 16 

devices are being internally accessed, read, and then re-written), and to re-write 

Ne = Tlife
B
αC
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after each read access (periodic refresh). Thus, by being nonvolatile, PCRAM is 

already a lower-power alternative to both SRAM and DRAM, despite the 

relatively high power of PCRAM write operations, which can be further reduced 

via structural and material modifications [1.36-1.42]. The most challenging issue 

for PCRAM is to achieve the speed performance of both SRAM and DRAM. 

Embedded SRAM and DRAM devices typically run at the clock speed of a CPU, 

and their access time is less than 10 ns. The performance limiter for PCRAM is 

the Set speed, which in turn depends on the crystallization speed. Although 

researchers have demonstrated the use of Set pulses shorter than 10 ns [1.49-1.52], 

real device applications tend to use Set pulses varying from 50 to 500 ns [1.53]. 

This is mainly due to the emphasis on achieving a high thermal stability of the 

amorphous phase at the expense of crystallization speed. 

PCRAM also has the potential to replace slow storage devices such as Flash, 

SSD, and HDD. NOR Flash is used for embedded logic applications that require 

fast access to data that is modified only occasionally [1.7]. In contrast, NAND 

Flash is used for low-cost mass-storage applications with slower random access 

time, which require high-density and a block-based architecture [1.19]. NOR and 

NAND Flash occupy chip areas of about 10 F2 and 4 F2, respectively [1.19]. 

NAND Flash can employ 2-4 bits per physical memory cell in MLC Flash to 

further increase the effective number of bits per unit area in a chip [1.19]. As 

mentioned earlier, Flash-based SSD is already rapidly replacing the HDD, where 

cost and reliability are important.  PCRAM has already demonstrated small cell 

sizes very close (4-6 F2) to that of NAND Flash. Multi-level storage is also 

possible for PCRAM with the demonstration of both 2 and 4 bits per cell  
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Fig. 1.7. Schematic of cost and performance of different memory and storage 
devices. PCM has the potential to be a storage class memory, bridging the large 
gap in cost and performance between the memory and storage devices [1.20]. 
 

[1.54,1.55]. In terms of speed, NOR Flash has a read time of a few tens of ns, and 

a write time of around 10 µs. In contrast, PCRAM has both fast read and write 

times of several 10 ns. 

Currently, the industry has proposed the use of PCRAM as a storage class 

memory (SCM) [1.22-1.23] to bridge the gap in the access times between the 

memory and storage devices. The idea is to develop a SCM that has both the high 

performance and robustness of a solid-state memory, and the low cost and non-

volatility of conventional hard-disk magnetic storage. Researchers have further 

proposed to divide SCM into two segments: 1. A slower variant, referred to as S-

class SCM, which would operate much like a Flash-based SSD, but with better 

endurance and write performance. 2. A faster variant, referred to as M-class SCM, 

which would operate fast enough to be synchronous with memory operations, and 

has a lower power-per-unit capacity and lower-cost-per-capacity, so that it could 

be connected to the memory controller. Both variants are intermediate stopgap 
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measures to the access time difference problem, as shown in Fig. 1.7. A universal 

memory is still very much desired. 

 

1.5   Challenges in PCRAM 

Overall, the key limitation for PCRAM is the data-transfer speed. A faster 

PCRAM speed is very much required to match or better the speed of existing fast 

memory devices such as SRAM and DRAM. This would enable PCRAM to 

bridge the large gap in the access times between memory and storage devices, and 

function as a universal memory. 

Besides achieving a fast PCRAM speed, it is also important to consider the 

power consumption of PCRAM to fully leverage its good scalability properties, 

and to achieve the high density needed for a universal memory.  The integration 

of PCRAM into an array architecture typically requires the use of an access 

device, which can be a diode [1.56], field-effect transistor [1.57], or a bipolar 

junction transistor [1.55]. These devices are needed to minimize the leakage 

current that would otherwise arise from the non-selected cells in the array. It is 

essential to know whether these access devices can provide sufficient current to 

Reset a PCRAM cell. While a diode can provide a current-to-cell size advantage 

over a planar transistor down to the 16 nm node [1.58], the diode is more prone to 

write disturbs due to the bipolar turn-on of the adjacent cells [1.45]. In terms of 

performance, a 5.8 F2 PCRAM diode cell fabricated using the 90 nm technology 

can be operated with a current of 1.8 mA [1.45]. In contrast, a 90 nm 10 F2 tri-
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gate field-effect transistor can only supply approximately half as much current 

[1.45].  

Another important consideration is the cycle endurance of PCRAM. 

Endurance is one of the strengths of PCRAM, especially in comparison with Flash, 

where the stress-induced leakage current (SILC) limits the Flash endurance to 

104-105 write-erase cycles. Single PCRAM devices can demonstrate up to 1012 

Set-Reset cycles without significant degradation of resistance contrast [1.26]. 

However, large-scale PCRAM integration studies only show endurance numbers 

in the range of 108-109 cycles [1.59,1.60]. This is still far from what is necessary 

for a DRAM replacement without wear-leveling (Equation 1.1).  

 

1.5 Aim of Research  

Material dimensions reduced to the nanoscale can show very different properties 

from the materials in a bulk form. This can be attributed to the high surface area to 

volume ratio of nanoscale materials, which makes it possible to achieve new size-

related effects. One example is the “quantum size effect”, where the electronic 

properties of solids are modified due to the large reduction in the particle size. This 

effect does not come into play by going from the macro to micro dimensions; it 

only becomes pronounced when the nanometer size range is reached. 

In this thesis, the nanoscale effects in PC materials and functional materials are 

studied to increase the PC speed, and to achieve low power consumption and high 

endurance at the same time. In a PCRAM device, the crystallization speed is much 

slower than the amorphization speed due to the trade-off between the crystallization 
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speed and thermal stability of the amorphous phase [1.33]. It is very important to 

increase the crystallization speed, as it determines the overall data transfer speed of 

PCRAM. Also, the power consumption of PCRAM is high due to the high thermal 

energy needed to melt and quench the PC material during the Reset process. A 

lower Reset power is needed to achieve a higher packing density. In addition, 

PCRAM has limited cycle endurance. It has to achieve a higher cycle endurance to 

become a DRAM-replacement. These would pave the way for PCRAM to become 

a broadly applicable memory device. 

 

1.6 Organization of Thesis 

This thesis is organized into 5 main chapters, beginning with the current chapter on 

the introduction of nonvolatile memory, and the emergence of PCRAM. The 

potential applications, and the challenges to be overcome were also presented.  

The aim of Chapter 2 is to provide an overview of the current state of research 

on the speed of PC materials. The chapter also provides a review of the theories, 

mechanisms, and models related to the speed of PC materials, as well as the 

associated power and endurance factors. It motivates the study of nanoscale effects 

in PC materials, as well as the other functional materials, which are employed to 

address the main challenge this thesis is concerned with: How to achieve fast and 

stable PC? 

In Chapter 3, the focus is on the study of the pre-structural ordering 

(incubation) effects of nanostructural units in PC materials, and the exploitation of 

this finding to achieve sub-nanosecond switching in PCRAM. Experimental 
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demonstration of the incubation effect is presented. The microscopic origin of the 

incubation effect is also discussed in this chapter. 

Moving on to Chapter 4, a study of nanostructured PC materials is presented. 

Based on studies and understanding, nanostructured PC materials are employed to 

achieve both fast-speed and high-endurance in PCRAM simultaneously. A detailed 

study on the switching mechanism in nanostructured PC materials is also discussed 

and presented.  

Chapter 5 decribes the study of nanoscale PC materials with superlatticelike 

(SLL) structures to achieve fast switching speeds, while maintaining low-power 

consumption in PCRAM. The device characteristics and performance of PCRAM 

with the SLL structures are presented. Studies of interface and thermal-confinement 

effects in the SLL structures are also provided. 

In Chapter 6, the properties of nanoscale SLL dielectric are studied. This 

understanding is used to achieve fast speed, as well as low power, and high 

endurance in PCRAM. Material and electrical characterization studies are provided. 

The effects of interface and other factors are also discussed.   

At the end of the thesis, the main results are summarized in chapter 7. An 

outlook on possible future research is also presented.  
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Chapter 2 

PCRAM Review 

 

This chapter reviews the speed performance of PC materials and devices. It begins 

with an introduction to the history, limitations, and speed of PCRAM. This is 

followed by a study of the mechanisms, theories, factors, and models for fast 

phase transitions. Towards the end, the power and endurance of PCRAM will also 

be discussed. 

 

2.1   Speed of PCRAM 

Speed is an important factor for PCRAM as it determines the data-transfer rate in 

a computer system. The data-transfer rate, together with the cycle endurance, 

determines the possible applications and markets that could be considered for 

PCRAM. Three processes, known as Set, Reset, and Read, determine the overall 

speed performance of PCRAM. In the early days, PC materials crystallized too 

slowly for them to be technologically competitive with other memory materials. 

They had very slow transitions times, in the microsecond to millisecond 

timescales [2.1]. It was only in the late 1980’s that crystallization times on 

nanosecond timescales were achieved, as a result of the emergence of new PC 

materials from the GeTe-Sb2Te3 pseudobinary system [2.2]. This led to the 

widespread use of PC materials in optical rewriteable disc technology, and later in 

PCRAM devices.  



 

 27 

 
Fig. 2.1. Speed and stability properties of PC materials. 

 

However, it is challenging to increase the speed of PCRAM due to the 

contradictory nature between the crystallization speed and thermal stability of the 

PC materials [2.2] (see Fig. 2.1). In general, PC materials with high crystallization 

speeds have a lower crystallization temperature, causing the data stored in an 

amorphous bit to be easily lost through unintentional crystallization. It is thus very 

important to find new methods to increase the crystallization speed of PC 

materials without compromising the stability of the amorphous phase. 

 

2.1.1   Amorphization Speed 

Amorphization (Reset) involves the transformation of a PC material from the 

crystalline phase to the amorphous phase. It requires Joule heating of the PC 

material above its melting temperature, followed by rapid cooling below the 

crystallization temperature to solidify the material. The amorphization process is 
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generally fast. The shortest electrical pulses achieved for Reset were of a few 

hundred ps [2.3,2.4].  

 

2.1.2 Crystallization Speed 

Crystallization (Set) involves the transition of a PC material from the amorphous 

phase to the crystalline phase. It is much slower than the amorphization process. 

The Set process for a PCRAM device involves threshold switching, Joule heating, 

crystal nucleation, and growth. Since the latter two processes are the slowest, they 

determine the overall speed of PCRAM devices. The shortest electrical pulses 

demonstrated for Set were in the range of 1-10 ns [2.4-2.7]. 

 

2.1.3   Read Speed 

Read operation depends on the speed at which the amorphous and crystalline 

states can be reliably distinguished. It is determined by circuit considerations, 

such as the capacitance of the bit-line being charged up, and leakage from the 

unselected devices. Read operations are generally performed in 1-10 ns [2.8].  

 

2.2   Threshold Switching Mechanism 

While many researchers supported the idea that PC is a thermal effect [2.9-2.10], 

there are also researchers who advocated that PC is an electronic process known as 

threshold switching [2.11]. Although initially suggested by Ovshinsky [2.1], Adler 

was the first to show that the switching of chalcogenides may not be thermal, 
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provided that the carrier generation driven by the field and carrier concentration 

competes with the strong Shockley-Hall-Read recombination via localized states 

[2.11-2.12].  However, his model remains theoretical, and a link between the model 

and the atomic structure of chalcogenides is still lacking. 

Pirovano et al. further developed the threshold switching theory by 

employing semiconductor concepts [2.13]. Figure 2.2 shows the proposed 

bandgap models for crystalline and amorphous Ge2Sb2Te5 (GST) alloys, based on 

their long-range and intermediate-range structural ordering, respectively. In the 

models, they suggest the crystalline and amorphous materials have respective 

bandgaps of 0.5 and 0.7 eV. Threshold switching occurs due to the competing 

roles of impact ionization and recombination via valence alternation pairs. During 

threshold switching, the carrier recombination increases at a slower rate than the 

carrier generation under a strong electric field. The free carriers reside in the 

localized states before they recombine. As a result, the free-carrier concentration 

increases rapidly to induce a high current at the threshold voltage for switching to 

occur. Although the theories and simulation results are in agreement with the I-V 

characteristics of GST, there is a lack of experimental evidence for impact 

ionization in GST. 
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Fig. 2.2.   Schematic band diagram of GST in crystalline and amorphous states 
[2.13]. 

 

2.3   Crystallization Theory 

2.3.1   Homogenous Nucleation  

Nucleation and growth processes govern the crystallization kinetics of PC 

materials [2.14-2.19]. Nucleation involves the formation of small crystalline 

nuclei in the amorphous matrix, and growth involves the subsequent expansion of 

a phase front separating the amorphous and crystalline regions. 

The driving force for crystallization is the gain in free energy below the 

melting temperature. The reversible work for crystal cluster formation ΔG(r) for a 

spherical crystalline cluster of radius r within an undercooled melt is given by 

[2.14-2.16]: 



 

 31 

, 
(2.1) 

 
where V and A are respectively the volume and surface area of the nucleus, Gv is 

the free energy difference between the parent and crystalline phases per unit 

volume, and σ is the interfacial energy per unit surface area. The critical nucleus 

size or radius is: 

 (2.2) 

 
At the critical nucleus size, ΔG(r) is a maximum. This means that only nuclei 

larger than the critical nucleus size can gain sufficient energy and grow. For 

nuclei smaller than the critical nucleus size, the nuclei tend to dissolve the 

interface is removed, reducing the free energy of the system. A steady-state 

distribution of subcritical clusters is formed after an incubation time period [2.20]. 

From the steady-state distribution, the steady-state nucleation rate Iss given by 

[2.15,2.16]: 

 (2.3) 

 
is derived. η is the liquid viscosity, T is the absolute temperature, and kB is the 

Boltzmann constant.  For nuclei larger than the critical nucleus size, the speed of 

growth u in the framework of classical crystallization theory is: 
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2.3.2   Heterogeneous Nucleation 

Heterogeneities such as foreign phases and impurities can promote nucleation, 

and affect the activation energy for crystallization [2.21]. This can be considered 

in the framework of the crystallization theory. The critical work for heterogeneous 

cluster formation is governed by [2.22,2.23]: 

,
 (2.5) 

 
where θ is the wetting angle. The exposed volume fraction 0 ≤ f (θ) ≤ 1 relative to 

a sphere of the same radius r is [2.23]: 

 (2.6) 

 
Impurities and interfaces can both catalyze nucleation, but also impede 

growth. If heterogeneous sites play a dominant role, crystallization shifts from 

being triggered in the whole volume of the material to the vicinity of these 

heterogeneous sites.  

 

2.3.3   Crystallization Factors 

2.3.3.1   Temperature 

The maximum probability of nucleation and growth is known to occur at different 

temperatures. Generally, one of the processes is dominant, leading to the sub-

classification of crystallization mechanisms into nucleation-dominated and 
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σ 3
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growth-dominated. There are 3 temperature regions important in the study of the 

crystallization mechanisms. 

Both liquidus and glass-transition temperatures (see Fig. 2.3) define the three 

temperature regions. The liquidus temperature (Tl) is the maximum temperature at 

which crystals can co-exist with the melt or liquid-phase of a material. Above Tl, 

the material is liquid at equilibrium, while upon-continuous cooling, the liquid 

may crystallize at Tl and show a decrease in specific volume. On the other hand, a 

liquid that survives below Tl without crystallization form an undercooled liquid. 

During further cooling, both viscosity and diffusion of the undercooled liquid may 

become substantially high and small, respectively, such that the time-scales for 

atomic rearrangement (crystallization) become infinitely long. At this point, 

which is known as the glass-transition temperature (Tg), the liquid becomes frozen, 

which results in glass formation. 

 

 
Fig. 2.3. Schematic of specific volume (Vsp) as function of temperature for a 
liquid that can both crystallize and form a glass. Tg and Tl refer to the glass 
transition and liquidus temperatures, respectively. 
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The first region is located below Tl. The small driving force for 

crystallization enables the study of the undercooling of droplets using differential 

thermal analysis. The maximum undercooling can be defined as ΔTu = Tl – Tc, 

where Tc is the temperature at which crystallization occurs upon the application of 

a constant cooling rate. This is combined with measurements of the heat of fusion 

to derive limits for the interfacial energy and steady-state nucleation rate. The 

steady-state nucleation rates of GST and Ge4SbTe5 were found to be higher than 

those of Ge12Sb88 and AgInSbTe [2.24]. For this reason, the former materials were 

classified as nucleation-dominated materials, while the latter were classified as 

growth-dominated materials [2.25].  

The second region is located around Tg. In this region, crystallization occurs 

very slowly. This enables direct observation of nucleation and growth, which 

were demonstrated using transmission electron microscopy and atomic force 

microscopy [2.26-2.29]. These studies showed that the growth velocities of GST, 

Ge4SbTe5, and AgInSbTe have an exponential temperature dependence, which 

relates to their data-retention properties (for example, the stability of the 

amorphous phase for 10 years at 80 °C). 

The third region is located between Tl and Tg. In this region, crystallization 

occurs rapidly. This makes it highly challenging to study the crystallization 

properties of PC materials. Two approaches have been adopted. One approach 

involves the study of PC materials under the operating conditions in an optical or 

electronic PC device. By using specialized equipment to spatially and temporally 

resolve the phase-transition, the performance properties of a PC material, for 

example the minimum crystallization time, minimum power, and degree of 
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change in optical reflectivity, can be obtained [2.3]. The other approach involves 

the study of the morphology of a crystallized bit using transmission electron 

microscopy [2.27,2.30]. This reveals the distribution and shape of the crystallites, 

from which the distribution of nuclei and their growth can be inferred. 

 

2.3.3.2   Growth at Crystalline-Amorphous Rim 

During the amorphization of a bit, a crystalline rim is typically created due to the 

small temperature gradients, and thus spatial differences in cooling rate. This 

prevents amorphization beyond a certain distance from the laser spot or heating 

element in an optical or electronic PC device. Growth at the crystalline rim plays 

an important role in PCRAM devices. 

 

2.3.3.3   Initial Amorphous Configuration 

The initial configuration of the amorphous phase affects the crystallization 

properties of PC materials. Crystallization of an as-deposited phase was observed 

to be different from the re-crystallization of a melt-quenched phase [2.31-2.33]. It 

was also noted that structural units (i.e. of the metastable distorted rocksalt 

structure), such as 4-fold rings, planes and cubes present in the as-deposited phase, 

which are not present in the melt-quenched phase, may vanish after the first PC 

cycle. 
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2.3.3.4  Feature Size 

Nucleation and growth can be observed in large volumes of PC materials in 

optical recording. The crystallization speeds of nucleation-dominated PC 

materials, which recrystallize predominantly by nucleation inside the amorphous 

region and have high nucleation rates, do not show volume dependence; the time 

needed to crystallize an amorphous bit does not depend on the volume of the PC 

material. In contrast, growth-dominated PC materials, which recrystallize by 

growth from rim of the amorphous region and have high growth rates, show 

volume dependence; a faster crystallization time is achieved in PC materials with 

smaller volumes [2.5]. However, the sub-classification of the materials becomes 

less useful for small volumes, where geometries and interfaces play a more 

important role. In small volumes, growth becomes dominant in the crystallization 

process. 

 

2.3.3.5   Material Interfaces 

Interfaces between materials can affect the crystallization process in optical and 

electronic PC devices [2.34-2.36].  PC materials sandwiched between different 

dielectric films can exhibit different nucleation processes, and can have different 

activation energies for crystallization [2.34]. The crystallization process of 

amorphous GST film sandwiched between dielectric films was studied by 

measuring the changes in the transmittance of the samples. Single-layer 

amorphous GST films were observed to crystallize in two stages: nucleation, 

followed by growth. These two processes were distinguished by their exothermal 
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crystallization patterns. Si3N4 and Ta2O5 were found to accelerate nucleation, 

while SiO2 was observed to inhibit it. Also, ZnS and ZnS with 20 mol % SiO2 

were observed to promote nucleation, even in the grain growth process. 

Wettability measurements indicate that surface reactivity and chemical affinity are 

the factors responsible for these effects.  

The choice of electrode materials in PCRAM devices also affects 

crystallization behavior [2.36]. For instance, in PC films less than 5 nm thick, the 

crystallization temperature is strongly influenced by the selection of the interface 

material [2.36]. 

 

2.4 Phase-Change Models 

There have been numerous studies on the material properties of PC materials in 

both crystalline and amorphous phases. However, the switching kinetics of PC 

materials is still not well understood. To improve the understanding of PC 

kinetics, atomistic models such as the umbrella-flip and structural ordering 

models were developed. 

 

2.4.1 The Umbrella-Flip Model 

Kolobov and co-workers proposed a so-called “umbrella-flip” model to explain 

the crystallization of GeSbeTe-based systems [2.37]. They postulate that 

crystallization occurs via a flip of the Ge atom from a tetrahedral site to an 

octahedral site, which explains why the switching of GST is fast and stable. PC 
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may not require the rupture of strong covalent bonds, and the transition can be 

diffusionless. The Te sublattice and the local structure around Sb atoms are 

preserved. It explains why PC can be easily reversed. The material does not have 

to be transformed into a truly liquid state, and bond rupture is due to electronic 

excitation. The amorphous structure is well-defined in the model, enhancing the 

reversibility of the transition. 

Further simulations and experiments were performed to test the model. They 

showed that, while tetrahedrally coordinated Ge atoms are present in the 

amorphous phase, they only make up a third of all the Ge atoms [2.38]. These 

tetrahedral Ge atoms mostly form homopolar Ge-Ge or Ge-Sb bonds, instead of 

the Ge-Te bonds as proposed in the umbrella-flip model. The crystallization 

kinetics are also dependent on the structural configuration of the amorphous 

phase. The results obtained from the as-deposited samples are less relevant, as the 

PC material is crystallized from the melt-quenched state during read/write 

operations. Another problem with this model is that it requires a certain atomic 

order or distortion pattern. Otherwise, the coordination number of Ge would 

exceed four upon flipping from the octahedral site [2.39]. Furthermore, this model 

cannot be applied to PC materials that do not contain Ge.  

 

2.4.2 Structural Ordering Model 

The amorphous and crystalline phases have common structural features such as 

AB-alternation and preferentially octahedral coordination [2.40]. The amorphous 

phase resembles a largely disordered variation of the crystalline phase. It has a 
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pronounced disorder that destroys the medium-range order, and removes the 

resonant behavior of covalent bonds in the crystalline phase.  

The structural evolution of the amorphous phase can be modeled using ring 

statistics. Four-membered rings with ABAB-alternation, resembling those in the 

crystalline structure, can be observed in the amorphous phase. Hegedus and Elliott 

[2.40] have performed ab initio molecular dynamics on GST, simulating the 

complete PC cycle (melt-quenching followed by re-crystallization). From their 

results, a time-resolved evolution of wrong bonds and near-regular fourfold rings 

(i.e. near-planar, near rectangular four-membered rings of atoms) was obtained. 

Crystallization resulted in a decrease in the number of wrong bonds. In contrast, 

the number of near-regular fourfold rings increases. This provides a simple model 

for the phase-transition of GST. This method can also be applied to other PC 

materials to gain valuable insights into their crystallization mechanisms. 

 

2.5   Amorphization Theory 

Understanding amorphization is essential to achieving both fast crystallization and 

amorphization. Amorphous PC materials can be formed via a melt-quench process. 

During the melt process, the PC material is heated and transformed from a solid 

phase to a liquid phase. Subsequent quenching occurs, and the liquid becomes 

increasingly rigid. If the glass-transition temperature is passed, and given that 

crystallization does not occur, the atomic mobility D becomes too small for the 

structural re-arrangement to reach thermal equilibrium. The undercooled liquid is 

“frozen” into a glassy or amorphous phase. The glass-transition temperature is 
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commonly defined as the temperature where the viscosity equals 1 × 1012 Pa s 

[2.41]. The atomic mobility of a liquid is inversely related to the viscosity η via 

the Stokes-Einstein equation: 

 (2.7) 

 
The quenched glass is not in thermal equilibrium, and is subjected to 

relaxation of the structure to an equilibrium state, known as “ageing” effects. 

Glasses can be sub-classified into easy glass formers and poor glass formers. The 

former can be formed under a slow cooling rate, while the latter can only be 

formed by fast quenching.  

The ease of glass formation is linked to the viscosity of the materials 

[2.42,2.43]. A high viscosity results in low atomic mobility and impedes 

crystallization. In contrast, a low viscosity allows for high mobility and promotes 

crystallization. The viscosity of a material is temperature dependent. A material is 

defined as being a strong liquid if its temperature dependence is Arrhenius-like. 

Conversely, a material is defined as being fragile [2.42] if it exhibits a behavior 

empirically described by the Tamann-Vogel-Fulcher ansatz: 

, (2.8) 

 
where η0, A, and T0 are constants. As a measure of the deviation from Arrhenius 

behavior, the fragility m is introduced as a steepness index at Tg: 

 (2.9) 
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Given that viscosity is fixed at both the glass-transition temperature Tg and 

the liquidus temperature Tl, a strong liquid is less likely to crystallize at slower 

cooling rates than is a fragile liquid. Thus, a link between fragility and ease of 

glass formation can be drawn. It should be noted that a fragile liquid appears to be 

a desirable property for a PC material since crystallization speed would increase 

with temperature (above Tg). However, this is only reasonable if the use of a 

fragile liquid does not severely inhibit the amorphization process. 

 

2.6  Power Consumption of PCRAM 

Amorphization affects the power needed to Reset a PCRAM device. Currently, 

the Reset power is high due to the large thermal energy required to melt a PC 

material. The Reset current is much higher than the Set current, and it determines 

the overall power of PCRAM devices. Reducing the Reset current is very 

important. It would enable the integration of PCRAM with small Si transistors. 

In a conventional mushroom-type cell, the PC material and top electrode are 

planar layers deposited on a plug-type bottom heater contact (see Fig. 1.2). The 

region of the PC material involved in the phase transition is a hemispherical 

volume on top of the heater. To reduce the Reset current, it is important to 

improve the thermal properties of the cell. This is typically achieved via two 

methods: 1. Increase Joule heating in the cell, and/or 2. Improve the thermal 

confinement of the cell.  

Joule heating can be increased by injecting current through a smaller cross-

sectional area, via a reduction of the contact area between the PC material and 
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heater, to obtain a higher current density. This was achieved by scaling the 

diameter of the heater plug in the mushroom-type cells [2.44], or by using a 

conductive liner as a heater in edge-contact [2.45], µTrench [2.46], or ring-contact 

cells [2.47].  

Another approach to increasing Joule heating is by structuring the PC 

material into a narrow cross section in bottle-neck [2.48], and self-heating pillar 

cells [2.49]. Further improvements were achieved by increasing the resistivity of 

the PC material through nitrogen or oxygen doping [2.44,2.50]. A highly resistive 

layer, such as TiON, was also inserted between the PC material and the bottom 

heater to increase Joule heating in the resistive layer [2.51].  

To improve the thermal confinement of PCRAM devices, a confined cell 

structure was proposed [2.52]. In this structure, the PC material was deposited in a 

pore etched back in the heater. The confined cell structure not only concentrates 

the active volume, but also surrounds a large part of this volume by a dielectric 

layer with a low thermal conductivity. However, this approach requires conformal 

deposition of the PC material. An alternative method was later developed to 

structure the PC material, rather than the heater, to form the plug- or pillar-type 

cells [2.53].  

Better thermal confinement was also achieved by increasing the thickness of 

the PC material. This can reduce the heat flow from the bottom heater to the top 

electrode heat sink [2.52]. However, this increases the threshold voltage required 

to Set the PCRAM. A lateral-type cell structure was also proposed to improve the 

thermal confinement of the cells [2.54]. It benefits from having a heating zone 
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that is separated from the electrode contacts, and a capping layer comprising of a 

thermally-insulating dielectric. 

Material modifications can also improve the thermal-confinement of the cells. 

Different insulating materials, such as porous dielectric, were employed to reduce 

heat dissipation [2.55].  It should be noted that the improved thermal isolation 

should not prevent the rapid quenching of the melt, and inhibit the amorphization 

process.  

 

2.7  PCRAM Endurance 

The endurance of PCRAM is strongly influenced by the Reset and Set processes. 

Repeated Reset and Set operations can lead to two types of device failure. These 

failures are known as “stuck-Reset” and “stuck-Set” [2.56,2.57]. 

In a stuck-Reset failure, the PCRAM cell shows a sudden increase in its 

resistance to a very high resistance level, which is much more resistive than the 

Reset state. The cell can no longer be switched from this high resistance state to 

the low resistance state. This can occur after degradation in the resistance contrast, 

but also with no prior indication that a failure is imminent. This can be attributed 

to void formation or delamination at the heater-to-GST material interface in the 

cell, which prevents current from passing through the device. 

In a stuck-Set failure, a gradual degradation of the resistance contrast is 

normally observed during a repeated Set-Reset cycling. The resistance level of the 

Reset state decreases, and the Reset pulse becomes less effective at switching the 

cell to a consistent high-resistance level (or creating an amorphous plug in the 
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cell). Eventually, the cell cannot be switched, regardless of the Reset pulse 

applied, and the cell remains in the Set state. 

The factors contributing to the stuck-Set failure were studied. The stuck-Set 

failure was attributed to a change in the Reset conditions [2.58]. The pulse 

amplitude and duration were found to affect the endurance of a PCRAM device, 

with the pulse duration having the stronger impact. By using Reset pulses ranging 

from 10 ns to 10 µs, Goux and co-workers showed that a higher endurance can be 

achieved in Ge-doped SbTe PC bridge devices by reducing the Reset pulse 

duration [2.58]. Their data suggests the endurance of PCRAM scales inversely 

with tm
3/2, where tm is the time spent melting the PC material. The results also 

suggest that the gradual cell degradation associated with the stuck-Set failure is 

strongly correlated with the melting process in the Reset operation. 

The material properties of the failed cells were studied using energy 

dispersion spectroscopy (EDS), secondary ion mass spectrometry (SIMS), and 

energy dispersive x-ray spectrometry (EDX) [2.59-2.70]. The composition of the 

PC material was observed to change during the cycling process. Studies on 

mushroom-type GST cells showed an agglomeration of Sb at the bottom electrode 

at the expense of Te. The behavior of Ge remains unclear.  

The results suggest that a change in the composition of PC materials during 

cycling results in a steady decrease in the dynamic resistance of the active region, 

shifting the required Reset current to larger values. This leads to a stuck-Set 

failure if the Reset pulse is not adaptively increased, or to a stuck-Reset failure if 

the Reset pulse energy is increased to compensate. 
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Chapter 3 

Sub-Nanosecond Switching in Phase-Change Memory 

Incubated with Nanostructural Units  

 

In the preceding Chapter, a review of the speed performance of PCRAM was 

presented. PCRAM operations are generally fast and in the order of nanosecond 

timescales. However, despite efforts to increase the crystallization speed, it has 

been difficult to lower it below 1 nanosecond. 

The study presented in this Chapter aims to overcome this limitation through 

controlling the crystallization kinetics of a PC material by the application of a 

constant low voltage, leading to the incubation of nanostructural units in the PC 

material. The fastest crystallization and reversible switching speeds possible are 

examined. The PC kinetics in PCRAM devices and the structural origin of the 

incubation-assisted increase in crystallization speed are also investigated. This 

will pave the way for achieving a broadly applicable memory device, capable of 

nonvolatile operations beyond GHz data-transfer rates. 

 

3.1 Concept of Incubation 

According to classical nucleation theory, the nucleation of small crystallites and 

their subsequent growth are the two main distinct processes in crystallization [3.1-

3.3]. The nucleation rate is faster at lower temperatures, while rapid growth  
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Fig. 3.1. Schematics of the crystallization probability as a function of temperature 
for PC materials. The nucleation and growth processes are accelerated when there 
is pre-structural ordering (from method 1 to 2). 

 

occurs higher temperatures [3.4]. These processes can be stimulated and altered to 

control the speed of crystallization, as shown in Fig. 3.1. 

The approach is based on the idea of providing a constant, weak electric field 

to induce thermal pre-structural ordering (incubation of ordered clusters in the 

amorphous matrix) via Joule heating, enabling faster nucleation and growth upon 

application of a subsequent stronger electrical pulse, while maintaining the high 

stability of the amorphous phase by controlling the cluster-size distribution (Fig. 

3.2). This thermal-incubation model is very different from the model of Karpov et 

al. [3.5], which assumes a direct electrical-field-induced modification of the 

crystal-nucleation barriers in Ge2Sb2Te5. 
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Fig. 3.2. Pre-structural ordering effects on the crystallization of PC materials.  
Simulated model configurations demonstrating the atomic rearrangements during 
the phase transition, with and without pre-structural ordering. 

 

3.2 Methodology 

3.2.1  Device Fabrication 

Pore-like structured PCRAM cells (with GST as the PC material) were 

experimentally fabricated and used to study the incubation effects on the 

crystallization speed (Fig. 3.3). 4-inch Si wafers with 1 µm thick SiO2 were used 

as the starting material in the PCRAM fabrication. The bottom electrode was first 

patterned and deposited with 200 nm thick TiW, followed by the deposition of 30 

nm dielectric material. Vias were etched in the dielectric material to form the 

active device region, and the diameter of the vias is defined as the cell size.  To  
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Fig. 3.3. Schematic of the PCRAM structure with the pulse signal delivered to 
heat and crystallize the PC material (GST). 
 

study the size-dependent switching speed, PCRAMs with cell sizes varying from 50 

to 300 nm were employed.  The vias were filled with 30 nm of GST. Finally, 200 

nm of TiW was deposited and patterned to form the top electrode. 

 

3.2.2  Electrical Characterization 

To study the ultrafast switching effects, a weak electric field, equivalent to ~0.3 V, 

for tailoring the crystallization kinetics (hereafter referred to as the incubation 

field), was employed to achieve optimal switching properties, without activating 

spontaneous crystallization (Fig. 3.4).  
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Fig. 3.4. Dependence of the resistance on pulse width employed for a cell, at 
different incubation conditions. The resistance decreases abruptly at shorter pulse 
widths as the incubation field increases (0.1-0.3 V). As the field exceeds 0.3 V, a 
low resistance level is obtained, regardless of the pulse width employed, due to 
spontaneous crystallization. The cell size is 300 nm. 

 

Subsequent electrical pulses varying in length from several hundred ps to 

several tens of ns were employed to switch the cells, as shown in Fig. 3.5. The 

full-width half-maximum (FWHM) values of the pulses were used to characterize 

the switching speeds of the cells (Appendix A).  
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Fig. 3.5. Waveform of a small-field incubation voltage and main pulse applied to 
Set the PCRAM. A small voltage is first applied to initiate pre-structural ordering, 
followed by a main pulse to induce crystal nucleation and growth of the PC 
material. 

 

3.3 Device Performance 

3.3.1 Crystallization Behavior 

The incubation field, even with the small amount of thermal energy delivered by 

it, can significantly promote the nucleation and growth of PC materials. The 

nucleation and growth times can be characterized by the minimum electrical pulse 

width needed to switch the cell from the amorphous to crystalline state [3.6], also 

known as the Set process. When the incubation field is applied to a cell (Fig. 3.6), 

much faster nucleation and growth is observed, as evident in the significant 

decrease in pulse width by ~5 ns; calculated from the difference between pulse 

widths required by the cells with and without incubation, at different voltage 

levels (0.7, 0.8, and 0.95 V). For the fastest nucleation and growth, the shortest  
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Fig. 3.6. Dependence of minimum voltage on the pulse width achieved by a 
PCRAM cell (50 nm) under incubation field conditions (0.3 V). The fastest speed 
achieved was 500 ps. 

 

pulse was found to be 500 ps. This is approximately an order of magnitude faster 

than the fastest switching speeds previously achieved in GST/GeTe cells with 

similar cell sizes under full recrystallization conditions, using the voltage-peak 

FWHM as a measure of the pulse duration [3.7,3.8]. 

 

3.2.2 Effect on Amorphization Process 

Fast crystallization speeds facilitated by an incubation field can be achieved 

without affecting the amorphization of PC materials (Reset process). The Reset 

process under an incubation field is also very fast.  Amorphization speeds as fast 

as 500 ps were also achieved, as shown in Fig. 3.7.  
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Fig. 3.7. Dependence of the minimum Reset voltage on pulse width exhibited by a 
cell (50 nm) under an incubation field (0.3 V). The pulse width decreases as the 
voltage increases. The fastest speed achieved was 500 ps. 
 

3.2.3 Reversible Switching Performance 

More importantly, upon applying the incubation field, it was found that a cell can 

be switched reversibly and stably with both Set and Reset pulses of 500 ps for 104 

cycles (Fig. 3.8). Both the resistance of the amorphous state and the Reset/Set 

resistance ratio are relatively constant during the cycling experiment. These 

results show that both fast speed and stability of the amorphous phase can be 

achieved simultaneously. 
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Fig. 3.8. Reversible switching of PCRAM. Fast and stable switching with 500 ps 
pulses for both Set (1 V) and Reset (6.5 V) is observed for 104 cycles. 
 

3.2.4 Interplay between Cell Size and Incubation Field  

Even faster crystallization is observed when the incubation field is applied to cells 

with smaller feature sizes. In general, PC materials are divided into two groups, 

depending on the crystallization mechanism. For nucleation-dominated 

crystallization, a large number of crystalline nuclei are formed in the amorphous 

region. For growth-dominated crystallization, the transformation of the 

amorphous region is dominated by the growth of the crystalline phase from the 

crystalline rim surrounding the amorphous region or the growth at the interface 

between the PC material and dielectric sidewalls in optical or electrical PC 

devices [3.8-3.10].  
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Fig. 3.9. Size-dependent switching speed of PCRAM. Shorter pulse widths were 
achieved when the cell size is decreased for a fixed applied Set voltage pulse (1 
V). The pulse width further decreases when the incubation field (0.3 V) is applied, 
further improving the speed of PCRAM. 
 

Growth-dominated crystallization can be characterized by the strong 

dependence of crystallization time on the size of the amorphous/active region (in 

this case, cell size). This  growth-dominance effect can be seen in Fig. 3.9 where, 

under no incubation field, the pulse width for Set reduces from 70 to 10 ns as the 

cell size decreases (300 to 50 nm). A very different effect is observed when an 

incubation field is applied. It was found that the pulse width decreases even more 

significantly as the cell size decreases (by 28 % at 300 nm and by 95% at 50 nm). 

This suggests a much faster nucleation and growth induced by a combination of 

size and incubation effects. 
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3.3.5 Incubation Field Dependent Crystallization Speed  

One of the key findings of this study is that it is possible to control the 

crystallization speed (nucleation and growth time) by varying the intensity of the 

incubation field. This implies, notably, that nucleation and growth can be further 

accelerated via stronger incubation fields. Figure 3.10 shows the pulse width 

needed to Set a cell (300 nm) at different incubation fields. The pulse width is 

observed to decrease from 70 to 50 ns as the incubation field increases (0 to 0.3 

V), revealing a dependence of crystallization speed on the intensity of the 

incubation field. Previous works on GST [3.11] and AgInSbTe [3.12, 3.13], using 

optical (laser pump-probe) stimulation and direct thermal-annealing treatment, 

have also shown that the crystal-nucleation rate can be manipulated. However, the 

crystallization times achieved in those studies were only of the order of several 

tens of nanoseconds to a few microseconds. There are similarities and differences 

between data obtained for Figs. 3.10 and 3.4.  For instance, both data from Figs. 

3.10 and 3.4 were consistent; they show a decrease in pulse width as the 

incubation voltage is increased. In addition, the pulse widths observed at each 

incubation voltage were similar, as they were obtained from cells with the same 

cell-size (300 nm). But unlike Fig. 3.4, which shows data from a set of switching 

tests more specifically to study the incubation voltage at which spontaneous 

crystallization occurs, Fig. 3.10 shows more data from different sets of switching 

tests in a broader investigation on the correlation between pulse width and 

incubation voltage. 
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Fig. 3.10. Minimum pulse width vs incubation field (voltage) for a PCRAM cell 
(300 nm). The pulse width reduces as the incubation field increases, revealing the 
incubation-dependent crystallization speed of PC materials. Data obtained from 3 
tests on the cell at each incubation voltage. 
 

3.3.6  Power Consumption 

The experimental findings show that ultrafast crystallization can be achieved by 

applying an incubation electrical field. The additional energy needed to apply the 

incubation field is much smaller than that for crystallization as the incubation 

voltage applied is much less than the typical threshold switching voltage (0.5-1V). 

Furthermore, the incubation field can be applied after a Reset process for a 

minimum time. One approach could be to implement a Reset-coupled-with-

incubation pulse that serves to not only Reset but also incubate the cell (see Fig. 

3.11). Another approach is to apply a Reset pulse followed by a separate 

incubation field. The Set process can be applied immediately or subsequent after 

the Reset-coupled-with-incubation pulse or incubation field (it should be noted 

that in real-device operations, the Set process is normally not applied immediately 
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Fig. 3.11. Schematic of a Reset electrical pulse coupled with an incubation field. 

 

 
Fig. 3.12. Resistance versus incubation voltage of a PCRAM cell (1 µm). As the 
high resistance level decreases, a lower bias is required to Set the cell. 
 

after the Reset process). These approaches can reduce the extra energy needed, in 

contrast to applying the incubation field consistently, on waiting for the Set 

process in real device operations. To further reduce the energy required, the 

PCRAM can also be operated from a lower resistance level (Fig. 3.12). 
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3.4 Ab Initio Molecular-Dynamics Simulation 

The microscopic origin of the ultrafast crystallization resulting from the 

application of an incubation field was investigated by performing ab initio 

molecular-dynamics (AIMD) simulations on 180-atom models of GST (See 

Appendix B). To simulate the crystallization process upon the application of 

incubation fields and/or electrical pulses, two temperatures of 420 K and 600 K 

were applied to the GST models to mimic the respective annealing/Joule-heating 

processes (hereafter, annealing at 420 K being referred to as ‘pre-annealing’).  

The detailed procedure for simulating the amorphous-to-crystal phase 

transition is shown in Fig. 3.13. For a more complete (statistical) analysis, three 

amorphous (a-) models (models 1-3), obtained by independently quenching 

different configurations of liquid GST, were studied. The basic structural units of 

crystalline GST (i.e. of the metastable distorted rocksalt structure), such as 4-fold 

rings, planes, and cubes, were used to characterize the local structural order and 

the crystallization process during annealing. 

 

 
Fig. 3.13. Temperature profiles used for the AIMD simulations with or without 
pre-annealing. 
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To investigate the effect of applying an incubation field on the crystallization 

behavior, one of the a-models (3) was first pre-annealed at 420 K for 270 ps and 

subsequently annealed at 600 K. For comparison, the same model was also 

annealed at only 600 K. The crystallization process in both cases was examined 

by studying the evolution of the number of cubes; the onset time (to) of 

crystallization is defined here as the starting point of the increase in size of the 

stable cube cluster, while the end of crystallization was considered to be the time 

when no further growth in the number of cubes is observed.  

 

3.4.1  Structural Evolution 

Much faster crystallization is observed for the pre-annealed model, as shown in 

Fig. 3.14. The to for the pre-annealed model is much shorter (~80 ps) compared to 

that for the non-pre-annealed model (~350 ps). A similar shortening in to is also 

observed for another model that was pre-annealed for a longer time. The 

corresponding changes in atomic structure for these two different annealing routes 

are shown in Fig. 3.2, which explains the origin of the faster crystallization. 

Before to, there were significant thermal fluctuations upon annealing at 600 K that 

resulted in the disruption of the initial cluster in the non-pre-annealed model. 

After a period of repeated generation and annihilation of transient clusters 

(defined here as an incubation time), a stable cluster (having a different 

orientation from the initial one) formed and grew as the model crystallized. This 

was not the case for the pre-annealed models; the initial ordered structure (further 

grown during pre-annealing) maintained its shape and grew along its original  
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Fig. 3.14. Variation of the number of cubes during annealing at 600K with 
different durations of pre-annealing. 
 

symmetry axis throughout the crystallization. Thus, the shortening in to for the 

pre-annealed models can be associated with shorter incubation times for 

nucleation and growth, which is triggered by the structural ordering during pre-

annealing. 

 

3.4.2 Crystallization Mechanism 

The amorphous models (models 1-3) were pre-annealed at 420 K for 270 ps. 

Figure 3.15 shows that these models have initially different degrees of structural 

order; model 3 has the greatest population of more highly connected planes and 

cubes (being the most ordered), while the smallest number of such structural units 

was found in model 1 (being the least ordered). In this sense, our models 

altogether, eventually, describe the structural evolution of an amorphous system 

having various degrees of local structural order. The predominant structural-  
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Fig. 3.15. Population of 4-fold rings and planes, composed of different numbers of 
4-fold rings, in model 1 before and after pre-annealing. The number of planes was 
averaged over the time interval denoted in the figure. A similar change in the 
distribution of the number of planes is seen in model 3. Atoms colored green are in 
planes; red atoms are in cubes. 
 

ordering mechanism was found to be the formation and growth of clusters of 

planes of 4-rings (i.e. a structural feature of the rocksalt structure of the crystalline 

phase of GST), indicative of an overall medium-range ordering in the amorphous 

phase. 

 

3.4.3 Stability of Incubated State 

This pre-structural ordering is stable in nature. Figure 3.16 shows the mean-

squared displacements of atoms during the two-step annealing. The diffusion  



 

 72 

 
Fig. 3.16. Mean-squared displacement data for each type of atom during two 
successive annealing steps at 420 K and then at 600 K (model 3). Diffusion 
coefficients for Te atoms, calculated at each annealing temperature, are shown as 
an example. 
 

coefficient (D) at 420 K is estimated to be about two orders of magnitude smaller  

than at 600 K. The structural ordering in a-GST at 420 K was found to be rather 

diffusionless; the formation and/or growth of a cluster of planes occurs mostly via 

cooperative (bond-rotational) movements (over much less than interatomic 

distances) of a few relevant atoms, which is in direct contrast to the structural 

ordering at 600 K, which is induced by bond-breaking diffusional processes. This 

difference in behavior is most likely due to insufficient thermal energy being 

available at 420 K to overcome the energy barrier for diffusion. Consequently, the 

growth speed and the size of clusters at this low temperature should be kinetically 

limited, in spite of the driving force for nucleation (i.e. free-energy difference) 

being greater than at higher temperatures [3.14]. 
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3.5 Conclusion 

Rapid crystallization times, as well as high amorphous-state stability, can be 

achieved through an electrically-induced incubation process in PCRAM devices, 

which alters the crystallization kinetics of a-GST. This method is, in principle, 

applicable to all types of PC materials and memory-device structures, so that an 

appropriate combination of programming schemes and PC materials opens 

opportunities for optimizing PCRAM device performance. 
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Chapter 4 

Fast-Speed and High-Endurance Switching in PCRAM 

with Nanostructured Phase-Change Materials 

 

Studies on the incubated nanostructural units in PC materials in the preceding 

chapter have enabled us to achieve sub-nanosecond PC speeds in PCRAM. Since 

the ultimate goal is to develop PCRAM for a broad range of memory applications, 

it is equally important for PCRAM to achieve both fast speed and high endurance 

simultaneously. Although fast speed and high endurance can be achieved 

separately, it is still unclear whether PCRAM can demonstrate both of these 

qualities at the same time.  

The present chapter aims to address this issue by controlling the PC 

mechanism using nanostructured PC materials. The change in the PC mechanism 

with device size, and its impact on the PC speed, are studied. The grain size-

dependent PC speed is also investigated. Finally, the nano-thermal and electrical 

effects on the speed, stability, and endurance of PCRAM cells are evaluated. 

These findings lead to a feasible solution to achieve a universal memory. 

 

4.1 Properties of Nanostructured Phase-Change Materials 

It is well known that when materials are reduced to nanoscale dimensions, they 

show very different properties. Nanoscale effects can influence the crystallization 
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temperature, melting temperature, and other material properties vital to PCRAM 

operations [4.1-4.4]. They can have a significant impact on the PC mechanism, 

which may allow the achievement of fast speed and high endurance at the same 

time. 

Nitrogen-doped GST (NGST) is an intrinsically stable PC material and has a 

higher endurance compared to GST, due to the fact that the excess nitrogen atoms 

segregate to the grain boundaries [4.5-4.7]. However, it has a slower 

crystallization speed, in the hundred ns timescales, insufficient to achieve the high 

writing speeds required for DRAM applications. Despite this, the grain-size of 

NGST can be controlled and reduced to form grains with very small sizes 

[4.8,4.9]. In this study, a novel approach to achieve both high speed and high 

endurance via the exploration of the PC mechanisms and grain features of PC 

materials is presented.  

 

4.2 Methodology 

4.2.1 Device Fabrication 

Pore-like structured PCRAM cells with different NGST grain and cell sizes were 

fabricated to study the device performance of PCRAM with nanostructured 

materials, as shown in Fig. 4.1. SiO2-on-Si substrate was used as the starting 

material, on which an electrode comprising of 200 nm thick TiW was formed. A 

30 nm thick SiO2 dielectric layer was subsequently deposited and etched to form 

pores with diameters ranging from 25 to 200 nm, which were used to define the  
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Fig. 4.1. Schematic diagram of a PCRAM cell with NGST. 

 

PCRAM cell sizes. The pore was filled with 40 nm of NGST. Finally, a 200 nm 

thick TiW top electrode was deposited and patterned to complete the structure.  

NGST with grain-sizes of 5 nm and 9 nm were employed to study the effect 

of grain-size on the switching speed of PCRAMs. NGST films with 5 and 9 nm 

grain-sizes were deposited using DC magnetron sputtering of a composite 

Ge2Sb2Te5 target and flowing N2 gas concurrently in a Balzers Cube sputtering 

system, via a reactive sputtering process. The nitrogen concentration in the films 

was kept consistent by using a constant N2/Ar gas flow rate of 0.2. The nitrogen 

and argon flow rates were 3 and 15 SCCM, respectively. The NGST films with 

grain-sizes of 5 and 9 nm were characterized using X-ray photoelectron 

spectroscopy (XPS), and the nitrogen concentration in both the films was found to 

be almost the same at around 3.5 at%. The XPS data for the NGST films with 5 

and 9 nm grain-sizes also showed their compositions to be identical within 

experimental error (Fig. 4.2).  

The sputtering power was varied to obtain NGST films with different grain-

sizes. The grain-size was found to be smaller when a lower sputtering power was 
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(a) 

 
(b) 

Fig. 4.1. X-ray photoelectron spectroscopy of the Ge 2p3, Sb 3d5, Te 3d5, N 1s, 
and Ar 2p spectra for NGST films with grain-sizes of (a) 5 nm and (b) 9 nm, 
respectively. 

 

used. NGST films with a 5 nm grain-size were obtained when a sputtering power 

of 0.1 kW was used, while films with a 9 nm grain -size were obtained with a 

sputtering power of 0.3 kW. The pressure was kept constant at around 10-7 mbar. 

TEM was employed to characterize the average grain-size of the NGST films. The 
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Fig. 4.3. TEM images of the as-deposited amorphous NGST films obtained with a 
sputtering power of (a) 0.1 and (b) 0.3 kW, and the annealed crystalline NGST 
films with grain-sizes of (c) 5 and (d) 9 nm. 

 

NGST films were characterized in their amorphous and crystalline phases, as 

shown in the TEM images in Figs. 4.3 a) and b), and Figs. 4.3 c) and d), 

respectively.  

 

4.2.2 Electrical Characterization 

The PCRAM performance was investigated using an in-house PCRAM testing 

system (see Appendix A). To study the switching speed of the PCRAM cells, 

electrical pulses with durations of several 100 ps to several 10 ns, and voltages 

from 0 to 7 V, were applied from the pulse generator to the PCRAM cells. The 
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waveform of the pulse was measured just before the PCRAM cell, and the full-

width half-maximum (FWHM) time duration of the waveform was used to 

characterize the switching speed of the PCRAM cells (see Appendix A).  

 

4.3 Device Performance 

4.3.1 Grain and Cell Size-Dependent Phase-Change Speed  

The PC speeds of PCRAM cells with different grain and cell sizes were examined 

by finding the shortest electrical pulse required for switching the cells from the 

crystalline state to the amorphous state (Reset), and from the amorphous state to 

the crystalline state (Set), respectively (see Figs. 4.4). The cells were switched 

reversibly between 10 kΩ and 300 kΩ with constant Reset and Set voltages of 5 V 

and 1 V, respectively. Over the entire cell-size range from 200 nm down to 25 nm, 

the PC speed becomes faster as the cell-size is reduced. For a given cell-size, the 

cells with a grain-size of 5 nm have faster PC speeds than those with a grain-size 

of 9 nm. The larger cells, in the range of 100-200 nm, require pulse-widths of a 

few ns to Reset, and several tens of ns to Set. Moving to the smaller cells, in the 

range of 25-100 nm, much shorter pulses were needed for both Reset and Set. The 

grain-size effect on the PC speed is different in these two cell-size regions. In the 

100-200 nm range, although the PC speed is dependent on the grain-size, the 

speed difference between the 5 nm and 9 nm grain-sizes is almost constant. 

However, in the 25-100 nm range, not only the PC speeds, but also the speed 

differences between the two grain-sizes increase significantly as the cell-size 

decreases. Cells with 5 nm grains require much shorter pulses to switch, as 
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compared to cells with 9 nm grains, when the cell-size is reduced. This is more 

clearly observed for the Set process, which determines the speed of PCRAM. The 

speed increase for a grain-size reduction from 9 nm to 5 nm, at a cell-size of 200 

nm, is only about 3 %. In contrast, the increase at a cell-size of 25 nm is as high as 

400 %.  

 

 
Fig. 4.4. Correlation between the minimum pulse-width achieved and cell-size for 
(a) Reset and (b) Set. As the cell-size decreases, the cells with a grain-size of 5 nm 
can be switched with much shorter pulse-widths compared to the cells with a 
grain-size of 9 nm, with a reduction of up to 400 %. 
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4.3.2 Correlation between Voltage and Pulse-Width 

Figure 4.5 shows the dependence of the switching voltage on the pulse width 

achieved to Reset and Set the PCRAM cells with grain and cell sizes of 5 nm and 

25 nm, respectively. As the pulse width decreases, the minimum voltage required 

to switch the cell increases. The shortest Reset and Set pulses achieved were 350 

ps and 3 ns, respectively.  

 

 
Fig. 4.5. Dependence of the minimum voltage on pulse-width required to (a) 
Reset and (b) Set a 25 nm cell with a 5 nm grain-size. The shortest pulse widths 
achieved were 350 ps and 3 ns for Reset and Set, respectively. 
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4.3.3 Cycling Endurance  

The endurance of PCRAM under fast switching conditions was studied for a cell 

with grain/cell sizes of 5/25 nm, respectively (see Fig. 4.6). The cells can be 

switched reversibly and stably for 108 cycles using Reset and Set pulses as short 

as 6 ns and 9 ns, respectively. To the best of our knowledge, this is the first time 

that 108 cycles has been achieved with Set and Reset pulses shorter than 10 ns, 

which is at the level of DRAM speed. This demonstrates that PCRAM can 

achieve both fast speed and high stability at the same time, by reducing both the 

cell and grain sizes simultaneously.  

 

 
Fig. 4.6. Cycling endurance of a cell with grain and cell sizes of 5 nm and 25 nm, 
respectively. Stable and reversible switching for 108 cycles was achieved with 
short Reset and Set pulses of 6 ns and 9 ns, respectively. This demonstrates that 
both high speed and high stability can be achieved at the same time. 
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4.4 Theoretical Study of Interplay between Grain and Cell Sizes 

4.4.1 Numerical Calculations 

In a PCRAM cell, a reduction in the cell-size limits the number of grains and 

increases the ratio of interface areas to volumes. As shown in Fig. 4.7, the NGST 

material in a nanocell has two types of interfaces: a) the cell-interface (CI), which 

exists between dissimilar materials, and b) the grain-interface (GI), which 

separates differently oriented grains of the same material. The CI has a higher 

interface-area-to-volume ratio when the cell-size is smaller. NGST has many 

grains and grain boundaries, and the boundary between the adjacent grains forms 

the GI. The interplay between the two interfaces (CI and GI) at the nanoscale can 

be studied from the perspective of grains in the material-interface system. When 

the diameter of the cell is reduced, there will be a larger decrease in the number of 

grains in the inner cores (interior grain) compared to that at the CI (exterior grain). 

  

 
Fig. 4.7. Schematic diagram showing the higher interface-area-to-volume ratio of 
cells when both the grain and cell sizes decrease. 
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Fig. 4.8. Numerical calculations show that the ratio ΔNg/Δx increases when both 
the grain and cell sizes reduce. As the cell-size falls below 40 nm, the increase in 
ΔNg/Δx was observed to be faster for the cells with smaller grain-sizes. 

 

To investigate the change in PC mechanism, a numerical study was 

conducted on the change in the effective contact-area-to-volume ratio of the PC 

material with decreasing cell-size. The relative change in the fraction of exterior 

grain (ΔNg) with respect to the change in material size (Δx) at different grain and 

material sizes was studied. To simplify the calculations, the grains of the PC 

material were assumed to be identical and spherical in shape. They were packed to 

form cylindrical shapes with varying lateral and vertical material-sizes, both from 

10 to 90 nm. Various grain-sizes from 5 to 10 nm were studied. From these 

numerical calculations, it can be seen that the ratio ΔNg/Δx is small when either or 

both the grain and cell sizes are large (see Fig. 4.8). As both grain and cell sizes 

become smaller, the value of ΔNg/Δx increases sharply. The difference in ΔNg/Δx 

for NGST with various grain-sizes becomes larger as the cell-size decreases, 

meaning that the overall interfacial boundary area increases significantly. 



 

 87 

4.4.2 Finite-Element Simulation 

Thermal simulations, using the ANSYS software (see Appendix C), were carried 

out to study the temperature distribution in PCRAM cells with varying cell and 

grain-sizes during Reset. Figure 4.9 shows the simulated temperature distribution 

in the PCRAM cells after activation by  a constant voltage pulse (30 ns, 0.8 V) 

(also see Appendix C for material parameters). In the simulation, the grains of the 

PC material were assumed to be identical and closely packed. Grains of 5 and 9 

nm were represented by 5×5 and 9×9 nm squares, respectively. Cell-sizes of 30 

and 150 nm were employed. The thermal conductivity of the grain boundary was  

 

 
Fig. 4.9. Simulated temperature distributions in a (a) 30 nm cell with 5 nm grains, 
(b) 30 nm cell with 10 nm grains, (c) 150 nm cell with 5 nm grains, and (d) 150 
nm cell with 10 nm grains. The thermal conductivity of the grain boundary was 
assumed to be two times lower than that of the grains of the phase-change 
material. 
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Fig. 4.10. Calculated temperature profiles of PCRAM cells after constant voltage 
pulse activation. A higher peak temperature is observed in the cells with smaller 
grain and cell sizes.  

 

assumed to be 2 times lower than that of the grain, considering the relative 

thermal conductivity of nitride compounds at the grain boundary compared to that 

of the bulk PC material [4.10-4.12].  

From the calculations, the peak temperature is observed to increase as the 

cell-size decreases, as shown in Fig. 4.10. A further increase in the peak 

temperature was achieved as the grain-size decreases. Such observations indicate 

sharp changes in the thermal properties of the PCRAM cells, which can be related 

to a change in the PC mechanism. 
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4.5 Mechanism Discussion 

4.5.1 Electronic Switching Effect 

It is of interest to study why higher crystallization speeds can be achieved in a PC 

material with an intrinsically stable amorphous phase, through the scaling of the 

cell and grain sizes. Generally, the fractions of CI and GI will increase when the 

cell-size decreases. For an NGST cell with a smaller grain-size, the fractions of CI 

and GI will increase more sharply when the cell-size is reduced, resulting in a 

much higher effective contact-area-to-volume ratio. It is known that imperfections 

exist at interfaces [4.13,4.14]. At both CIs and GIs, such imperfections can 

include broken or loosely bonded atomic structures. The electrons in the atomic 

structures can be excited and become free electrons when energy is supplied. Free 

electrons can also be generated via impact ionization [4.15,4.16]. In a typical 

process, whereby an electrical pulse is applied to a PCRAM cell, there is a 

probability of electrons being excited to the high energy conduction bands.  This 

initiates a series of impact ionization processes, and generates a high 

concentration of free electrons to switch the material [4.17,4.18]. At the same time, 

a large number of ions will be left in the material. These ions can be distorted 

from their original equilibrium positions due to the strong repulsive Coulomb 

force between them [4.19,4.20]. This pronounced displacement of ions can induce 

a permanent structural change [4.21]. Since materials with both smaller grain and 

cell sizes have a larger fraction of interface areas, a higher concentration of free 

electrons can be generated, which can in turn induce more pronounced 

displacement of ions, resulting in a rapid change in the atomic structure [4.22]. 
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4.5.2 Crystallization Theory 

Based on classical crystallization theory, the crystallization of small dimensional 

materials can be classified as either nucleation-dominated or growth-dominated, 

according to the relative contribution of nucleation and growth [4.23-4.25]. In a 

nucleation-dominated material, crystallization occurs mainly via the nucleation of 

crystallites. For a growth-dominated material, crystallization occurs mainly by 

nuclei-growth. NGST is known to be a nucleation-dominated material. Usually, 

heterogeneous nucleation rates are observed to be far higher than the 

homogeneous nucleation rates [4.26,4.27], due to the smaller activation energy at 

the interface. Figures 4.11 and 4.12 show that in a PCRAM cell, hetero-

crystallization, which includes the hetero-nucleation and subsequent growth at the 

boundary between the PC material and other materials, and the interfacial-growth 

at the crystalline (c)- and amorphous (a)- interface of a PC material, occurs in 

addition to the homogeneous nucleation and nuclei growth:  

 

 I homo-nucl. + Igrowth + Hinterfacial-growth + Hhetero-nucl.-growth   , (4.1) 

 

where I homo-nucl. is the inherent homogenous nucleation, I growth is the inherent 

nuclei growth, Hinterfacial-growth is the interfacial-growth at the c- and a- interfaces of 

the PC material, and Hhetero-nucl.-growth is the heterogeneous nucleation and 

subsequent growth at the boundary between the PC material and another material, 

as well as at the grain boundaries. With a decrease in the cell and grain sizes, the  
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Fig. 4.11. Schematic diagram of the phase-change mechanisms in a PCRAM cell 
that contribute to the phase-switching process for different cell-sizes. 
 

 
Fig. 4.12. Schematic diagrams showing the change in phase-change mechanism. 
As the cell-size decreases, the mechanism changes from being nucleation-
dominated to being a growth-dominated crystallization process. 

 

hetero-crystallization rate (3rd and 4th terms in Eq. 1) will increase dramatically, 

and become the dominant mechanism.  
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Fig. 4.13. TEM characterization of an NGST film deposited on SiO2-on Si, and 
capped with sputtered SiO2. The NGST films were annealed at 280 °C for 3 min. 
The crystallization starts from the interface, and the grains have different 
crystalline fringe orientations. 

 

In order to validate this mechanism, a TEM study was conducted. The TEM 

characterization image in Fig. 4.13 shows the crystallization of an NGST film. It 

can be clearly seen that the crystallization occurs mostly at the interface, and the 

grains have different crystalline fringe orientations. 

 

4.5.3 Periodic Bond Chain Theory  

The Periodic Bond Chain (PBC) theory is often used to predict the morphology of 

crystals [4.28]. According to this theory, the crystal morphology is controlled by a 

set of uninterrupted chains of strong bonds formed in the crystal lattice. The 

formation of a crystal is dominated by the relative growth rate of the various faces, 

which is proportional to the attachment energy. By calculating the attachment 

energy, the morphology of a crystal can be derived. The attachment energy is 

defined as the energy released per mole when a new layer is deposited on a crystal 

face. 
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Fig. 4.14. Illustration showing the effect of PBC on the radius of curvature in a 
single crystal. Dependence of the number of strong bonds on the interface 
curvature with (a) a larger radius of curvature, and (b) a smaller radius of 
curvature. 
 

In this study, the relationship between the statistical number of strong bonds 

and the radius of curvature of the boundary between the amorphous and 

crystalline phases is considered. Figure 4.14 shows that the statistical number of 

strong bonds increases as the radius of curvature becomes smaller. Since the 

relative growth rate is proportional to the number of strong bonds, the growth rate 

will increase. In a PCRAM cell, the radius of curvature of the boundary between 

the a- and c-phases becomes smaller as the cell-size reduces. A smaller radius of 

curvature will increase the statistical number of strong bonds, therefore 

facilitating the interfacial-growth Hinterfacial-growth at the c- and a- interface. 

 

4.5.4 Size-Dependent Crystallization Effects 

The effect of grain-size on PC speed can be understood by a combined view of 

thermal, crystallization, and electrical effects. To study these effects, the 

dependence of the resistance on the annealing temperature of NGST films was  
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Fig. 4.15. Dependence of the resistance on the annealing temperature of NGST 
films. A sharper fall in resistance at higher temperatures is observed for NGST 
films with 5 nm grains compared to that of NGST films with 9 nm grains. 

 

investigated (see Fig. 4.15). An in-house film-resistance measurement system was 

used to measure the resistance of NGST films during annealing. The annealing 

temperature was varied from 100 to 300 °C. A sharper fall in the resistance at 

higher temperatures is observed for NGST films with 5 nm grains compared to 

that of NGST films with 9 nm grains. This indicates that the smaller grain-size 

films have a higher “switch-on” temperature, but a faster growth rate.  

The crystallization behavior of PC materials upon 1- to 3-dimensional scaling 

has been well studied [4.1-4.4]. The effect of scaling on the crystallization process 

was studied at the device level. The size-dependent crystallization temperature of 

PCRAM cells was investigated, as shown in Fig. 4.16. The crystallization 

temperature was determined by observing the onset of the resistance drop from 

the Reset state to the Set state. It can be observed that the crystallization 

temperature decreases with the cell-size, which facilitates faster crystallization. It 

should be noted that the scaling effect on the crystallization behavior in 
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Fig. 4.16. Cell-size-dependent crystallization temperature of PCRAM. The 
crystallization temperature becomes lower as the cell-size is decreased. 

 

2-dimensions (film thickness) is different to that in 3-dimensions (PC 

nanoparticles/nanostructures). In 2-dimensions, the crystallization temperature of 

the PC material increases as the thickness decreases [4.2,4.3]. In contrast, in 3-

dimensions, the crystallization temperature of the PC material decreases as the 

diameter decreases [4.4]. This could be due to the fact that heterogeneous 

nucleation occurs easily at non-uniform interfaces, but with difficulty at flat 

interfaces [4.29]. 

 

4.5.5 Size-Dependent Amorphization Effect 

In the amorphization process, the time needed to form the amorphous area is 

proportional to the cell-size. This effect was studied by simulating the size of the 

heating zone upon pulse activation using finite element methods (see Appendix C), 

as shown in Fig. 4.17. Reset pulses with varying durations (10-30 ns) were  



 

 96 

 
Fig. 4.17. Simulated temperature profiles of PCRAM on the time-scale of several 
tens of ns. A shorter time was needed to phase-change a smaller active region. 

 

applied to the cells (also see Appendix C for material parameters). The voltage 

was kept constant at 1.0 V. It is observed the heating zone becomes smaller as the 

pulse duration decreases. For complete amorphization to occur, the cell-size 

should be equal to or smaller than the heating zone. This means that if a smaller 

cell is used, it can be completely amorphized with a shorter pulse. This effect is 

consistent with what is observed in the experiments. Therefore, by reducing the 

cell-size, the amorphization speed will be increased. 
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4.5.6 Grain-Size Distribution 

It should be noted that the statistical grain-size distribution is expected not to 

undergo significant changes during a read/write process. This is mainly due to the 

fact that the PC material in a PCRAM cell can be switched without going through 

the classical melting process [4.30,4.31]. In a related report [4.30], Kolobov and 

co-workers have provided an explanation as to why the switching in Ge2Sb2Te5 is 

fast and stable. This is because the crystallization-amorphization process may not 

necessarily require the rupture of strong covalent bonds. The Te sublattice can be 

partially preserved, as well as the local structure around the Sb atoms, and this is a 

possible reason as to why the transformation is fast and reversible. The material 

does not have to be transformed into a truly liquid state, and bond rupture is 

postulated to be due to electronic excitation. Also, the amorphous structure, at the 

local level, can be well defined, enhancing the reversibility of the transition. 

These indicate that PCRAM can be switched without undergoing a classical 

melting process. Also, the effects of nitrogen-doping in PC optical media have 

been well studied and accepted [4.1]. In NGST, nitrogen atoms are preferentially 

bound to Ge in both amorphous and crystalline GST [4.3,4.32,4.33]. As the 

amount of incorporated nitrogen atoms increases, excess nitrogen atoms can 

segregate to the grain boundaries in the form of nitrides [4.3]. These nitrides are 

known to inhibit crystal growth, and hence maintain a large number of grain 

boundaries. During the write process, the GST microcrystal grains melt at around 

600 °C. However, the interfacial nitrides remain in the solid phase because their 

melting temperature is much higher than that of GST. It is also observed that the  
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Fig. 4.18. TEM image of a PCRAM cell with a grain size of 5 nm that had been 
switched for 5000 cycles. The grain-size of the NGST in the cell is observed to be 
around 5 nm, showing that the grain-size remains practically unchanged after 
cycling. 

 

grain-size is practically unchanged after the PCRAM cell had been switched for 

5000 cycles (see Fig. 4.18). This is the main reason why the overwriting cycle of 

a PC optical disk can be increased from 104 to 106 by doping nitrogen into GST 

[4.1]. The duration of the programming pulses used in this work is less than 10 ns, 

which is much shorter than that used in the optical disk. Thus, it can be inferred 

that the grain-size distribution in this work would be even better preserved than in 

an optical disk. This has been indirectly confirmed by the overwriting of a 

PCRAM cell for 108 cycles (see Fig. 4.5). 
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4.6 Solutions to Making a Universal Memory 

Based on these results, a possible approach to achieving a universal memory is 

proposed as follows: 1. Select a PC material with good stability and endurance; 2. 

Reduce the cell-size to achieve fast speed and high endurance at the same time; 3. 

Further increase the speed by reducing the grain-size, which also facilitates the 

filling of nanoscale pores in the fabrication of the PCRAM; 4. In addition, if the 

manufacturing issues with developing I-shape PCRAM with excellent thermal 

confinement can be overcome, even lower operating powers can be expected. 

 

4.7 Conclusion 

In conclusion, the change in the PC mechanism with scaling has enabled us to 

overcome the fundamental limitations that arise from the trade-off between the 

speed and stability properties of PC materials. As the cell-size is reduced, hetero-

crystallization, which includes the interfacial-growth at the phase boundary 

between the crystalline and amorphous phases, and the heterogenous nucleation 

and subsequent growth at the boundary between the PC material and another 

material, will become the dominant PC mechanism, regardless of the type of PC 

material. Futhermore, higher speeds are achieved as the grain-size decreases. 

These findings allow us to utilize PC materials with a good stability to achieve 

both fast PC speed and high endurance simultaneously. A feasible solution is thus 

proposed to achieve a universal memory. 
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Chapter 5 

Ultrafast-Speed and Low-Power Switching in Nanoscale 

Phase-Change Materials with Superlattice-like Structures 

 

In the preceding two chapters, fast speed and high endurance switching were 

achieved in PCRAM. Furthermore, the material physics and mechanisms behind 

these effects were elucidated through experiments and simulations. For PCRAM 

to become a universal memory, it needs not only a fast switching speed, but also a 

low-power consumption. It is thus important to study how fast speed, as well as 

low-power consumption, can be achieved in PCRAM. 

It is the aim of this chapter to study nanoscale PC materials with superlattice-

like (SLL) structures, in a bid to achieve fast switching speed while maintaining 

low-power consumption in PCRAM cells. In this study, the correlation between the 

size, switching speed, and voltage of PCRAM cells with SLL structures is 

investigated. The crystallization, thermal conductivity, and resistivity effects in the 

SLL structures are also studied. These findings will open up new possibilities for 

fast-speed and low-power PCRAM devices. 

 

5.1 Concept and Theory 

An effective approach to achieving fast switching speed and low operating power is 

to reduce both the size of the PCRAM cell and employ PC materials with a low 
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thermal conductivity and a high crystallization temperature. In a PCRAM cell, the 

size of the active device region plays an important role by defining the volume of 

the PC material involved in the phase transformation. On the other hand, the 

thermal conductivity and crystallization temperature of the PC material influence 

the thermal confinement and data retention properties of PCRAM. Despite their 

importance, few studies have been performed to investigate the effects of both 

device scaling and material modifications on the switching speed and power 

consumption of PCRAM. Only fast switching of sub-100 nm Ge2Sb2Te5 (GST) and 

GeTe PCRAM cells in several nanoseconds has been demonstrated [5.1,5.2]. 

Nanostructured materials have switching properties that are significantly 

different from the bulk materials. In a PCRAM cell, higher heterogeneous 

crystallization rates can be achieved in nanostructured PC materials due to their 

high surface-area-to-volume ratios [5.3]. Nanoscale active device regions or 

volumes of PC materials can also have lower phase-transition temperatures than 

bulk materials due to greater phonon softening effects [5.4-5.6]. Materials with 

superlattice-like (SLL) structures have lower thermal conductivities than bulk 

materials with the same composition [5.7]. They have good thermal confinement 

properties due to phonon-scattering effects at the interfaces [5.8]. PC materials with 

SLL structures can be formed from alternating layers of Sb2Te3 and GeTe, which 

have fast switching speed and good data retention [5.7,5.9], respectively, as shown 

in Fig. 2.1. Considered collectively, a PCRAM cell with both a smaller active 

device region and a SLL Sb2Te3/GeTe structure may have a faster switching speed 

and a lower operating power than a cell with a larger active device region or one 
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with pure GST. In this study, the interplay between the switching speed, operating 

voltage and cell-size of PCRAM cells with SLL structure was investigated. 

 

5.2 Methodology 

Pore-like PCRAM cells with the SLL structure outlined above were fabricated to 

investigate their electrical performances, as shown in Fig. 5.1. For comparison, 

PCRAM cells comprising only GST were also fabricated. SiO2-on-Si substrates 

were used as the starting materials, on which 200 nm of TiW as the bottom 

electrode was formed. An insulating layer (30 nm) comprised of SiO2 was 

subsequently deposited. To study the size-dependent switching speed and operating 

power of the PCRAM cells, pores with diameters (cell size) ranging from 40 nm to 

400 nm were formed in the insulating layer. The pores were filled with 35 nm of 

GST, or the SLL material. The SLL structure was formed by depositing alternating 

layers of GeTe and Sb2Te3, with the mole ratio of GeTe and Sb2Te3 at 2:1, which 

has the same overall composition as Ge2Sb2Te5. Five periods were deposited, each 

comprised of a layer of GeTe (3 nm) and a layer of Sb2Te3 (4 nm). Finally, a TiW 

top electrode (200 nm) was deposited and patterned to complete the PCRAM cell 

structure. 

The electrical properties of the cells were studied using an in-house testing 

system (see Appendix A). Voltages and pulse widths ranging from 0-7 V and 100 

ps-100 ns were employed, respectively. The cells were switched reversibly 

between 10 kΩ to around 300 kΩ. 
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Fig. 5.1. Schematic diagram of a PCRAM cell with SLL structures. The SLL 
structure is formed from alternate nano-layers of Sb2Te3 and GeTe.  

 

5.3 Device Performance 

5.3.1 Size-Dependent Phase-Change Speed  

The size-dependent switching speed of the SLL and GST cells was studied by 

investigating the shortest pulse-width required to switch the cells from the 

crystalline state to the amorphous state (Reset), and from the amorphous state to the 

crystalline state (Set) (see Fig. 5.2). Constant Reset and Set voltages of 5 V and 1 V 

were employed, respectively.  

In this study, shorter Reset and Set pulse-widths were achieved as the cell-size 

of the SLL cells was decreased. At large cell-sizes, from around 400 to 150 nm, 

gradual reductions of the pulse-widths by around 300 ps and 20 ns were observed 

for Reset and Set, respectively. A sharper decrease in the pulse-widths was 

observed as the cell-size decreases. Despite a smaller reduction in the cell-sizes 

from 150 to 40 nm, larger decreases of the pulse-widths by 600 ps and 40 ns were 

achieved for Reset and Set, respectively. This can be attributed to the emergence of 

nanosize effects. The shortest Reset and Set pulse-widths achieved were 300 ps and  
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Fig. 5.2. Size-dependent switching speeds of the SLL and GST cells. Both the SLL 
and GST cells were found to require significantly shorter pulse-widths to (a) Reset 
and (b) Set as the cell sizes were reduced. Shorter pulse-widths were required to 
switch the SLL cells than to switch the GST cells. The shortest Reset and Set pulse-
widths achieved were 300 ps and 1 ns, respectively, which were achieved in the 40 
nm SLL cells. 
 

1 ns, respectively. These were observed in the 40 nm SLL cell. For the GST cells, 

similar trends were also observed. SLL cells were found to require shorter pulse-

widths than the GST cells. The difference between the Reset pulse-widths required 

to switch the SLL and GST cells was about 200 ps, and was relatively consistent for 

the range of cell-sizes studied.  In contrast, a smaller relative difference between the 
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Set pulse-widths of the SLL and GST cells was observed as the cell-size was 

reduced. The difference was about 20 ns for cell-sizes ranging from 400 to 200 nm. 

For cell sizes less than 100 nm, the differences were a few ns, which suggests the 

dominance of different mechanisms for different cell-size regions. 

 

5.3.2 Correlation between Voltage and Pulse Width 

Figure 5.3 shows the dependence of the voltage on the pulse-width applied to the 

SLL and GST cells. It was obtained by studying the minimum voltage required to 

switch the cells between 10 kΩ and 300 kΩ.  

In this investigation, SLL cells with a smaller cell-size were found to have a 

lower operating voltage. Low Reset and Set voltages were achieved in the cells 

with a cell-size of 40 nm, and these were respectively about 1 V and 0.2 V lower 

than those achieved in cells with a cell-size of 150 nm. This was observed for 

Reset and Set pulse-widths ranging from 5 to 10 ns, and 100 to 200 ns, 

respectively. Higher voltages were observed as the Reset and Set pulse-widths 

decrease below 5 and 100 ns, respectively.  Considering a fixed applied voltage, 

this could be due to insufficient energy being delivered by electrical pulses with 

shorter pulse-widths. A similar study was also carried out on the GST cells. 

Compared to the GST cells, the SLL cells can be switched with lower voltages. 

Differences between the Reset voltages of SLL and GST cells were as large as 1 

V for pulse-widths ranging from 5 to 10 ns, and this was greater than the 

differences between the Set voltages of the SLL and GST cells for pulse-widths 

ranging from 100 to 200 ns. The lowest Reset voltage achieved in the 40 nm SLL 
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Fig. 5.3. Dependence of the switching voltage on the pulse-width applied to both 
the SLL and GST cells, with selected cell sizes of 40 nm and 150 nm for (a) Reset 
and (b) Set. 40 nm SLL cells show the best performance; they require lower 
operating voltages than similarly-sized GST cells. 
 

cells was 0.9 V, much lower than the 1.6 V required for the 40 nm GST cells. 

Lower Set voltages were also achieved for the 40 nm SLL cells (0.5 V) compared 

to those obtained for the 40 nm GST cells (0.6 V). 
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5.3.3 Cycle Endurance  

Nanoscale SLL cells are observed to have high cycle endurance, as shown in Fig. 

5.4. In this study, 40 nm SLL cells were found to switch reversibly and stably for 

more than 107 cycles. The cells were switched between 10 kΩ and 300 kΩ with 

Reset and Set voltages of 2.5 V and 0.9 V, respectively. 

 

 
Fig. 5.4. Cycle endurance of a 40 nm SLL cell. Stable and reversible switching of 
the cell was observed for 107 overwriting cycles. 

 

5.3.4 Stability of the Amorphous Phase  

To study the data-retention properties of the SLL cells, the crystallization 

temperatures of the 40 nm SLL and GST cells were investigated (see Fig. 5.5). 

The cells were heated at different temperatures for a fixed period of time and the 

lowest temperature (crystallization temperature) required to switch the cells from 

a high resistance of several MΩ to a low resistance of several tens of kΩ was  
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Fig. 5.5. Correlation between the cell resistance and the applied temperature for 40 
nm SLL and GST cells. The cells have crystallization temperatures of 150 °C and 
170 °C, respectively, which are both higher than room temperature. 

 

recorded. The 40 nm SLL and GST cells were found to have crystallization 

temperatures of 150 °C and 170 °C, respectively, which were both higher than 

room temperature. This observation shows that small SLL cells can have both fast 

switching speeds and good data-retention properties at the same time. 

 

5.4 Finite-Element Simulation 

Finite-elment simulations (see Appendix C) were employed to study the 

temperature distributions in the SLL and GST cells. Figures 5.6 shows the 

simulated temperature distributions in the SLL and GST cells after constant 

voltage-pulse activation (30 ns, 0.5 V) for Reset (also see Appendix C for material 

parameters). In these simulations, the thermal conductivity of the SLL material 

was assumed to be 2 times lower than that of GST, considering the relative  
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Fig. 5.6. Simulated temperature distributions in the SLL and GST cells after 
constant voltage-pulse activation. SLL cells (a) were found to have higher peak 
temperatures than GST cells (b). The thermal conductivity of the SLL material was 
assumed to be 2 times lower than that of the GST.   
 

thermal conductivities of superlattice materials compared to those of bulk 

materials [5.7]. From these calculations, the SLL cells were observed to have a 

higher peak temperature compared to that of the GST cells. Such an observation 

reinforces the experimental findings that the SLL cells require a lower Reset 

voltage than the GST cells. 
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5.5 Mechanism Discussion 

5.5.1 Interface Effects 

The fast switching speed achieved in the SLL cells can be attributed to the higher 

surface-area-to-volume ratios of cells with smaller cell sizes, which leads to a 

greater amount of heterogeneous crystallization than in cells with a larger cell size. 

Assuming the active device region to have a cylindrical geometry with a constant 

height, the relative heterogeneous crystallization rates, Ns/Nl of the PC material in 

the active device regions with small and large cell sizes can be obtained from 

[5.10,5.11]:   

 Ns/Nl = (dl/ds) exp [(Eal – Eas)/kT], (5.1) 

 
where ds/dl and Eas/Eal are the respective diameters and crystallization activation 

energies of the PC material in the small and large active device regions, k is the 

Boltzman constant, and T is the temperature. For a given PC material, the difference 

Eal – Eas would be small regardless of the difference in diameter [5.11], and may be 

ignored. Taking Nl and dl at a fixed reference, a reduction in the diameter ds of the 

cell would thus result in an increase in the crystallization rate Ns at a constant 

temperature. This means that cells with a smaller cell size would be able to 

crystallize with a shorter pulse width compared to cells with a larger cell size, for a 

fixed Set voltage.  Comparing PCRAM cells with different materials, the SLL cells 

require a shorter crystallization pulse-width than the GST cells, which could be due 

to the low crystallization temperature of Sb2Te3 [5.12]. Sb2Te3 has a rhombohedral 

lattice of the tetradymite (Bi2Te2S) type (space group R3m), with a lower  
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crystallization temperature (between 90 °C and 100 °C), which enables it to 

crystallize first. The crystallites in the Sb2Te3 layer at the interface between Sb2Te3 

and GeTe can serve as a crystallization center or nucleus for the crystallization of 

GeTe. Thus, this can significantly reduce the energy barrier for the crystallization of 

GeTe, which has a cubic rocksalt-type structure with a high crystallization 

temperature of 189 °C [5.13].  

In this study, a sharp decrease in the switching pulse-width was observed as 

the cell-size is reduced. To investigate this effect, the percentage decrease in the 

pulse-width required to switch SLL cells, compared to GST cells of the same cell 

size, was plottted, as shown in Fig. 5.7. The percentage decrease was calculated as 

the ratio of the difference between the pulse-widths achieved by the SLL and GST 

cells to the pulse-width achieved by the GST cells for a given cell size shown in 

Fig. 5.2. At large cell sizes, there is a small and relatively constant percentage 

decrease in the pulse-width. This shows that the faster switching speed achieved is 

mainly related to the fast crystallization of the PC materials in the SLL structure. As 

the cell size is reduced, an increasingly larger percentage decrease in the pulse-

widths is observed. Both heterogeneous crystallization at the interface between the 

SLL structure and the surrounding materials, and the presence of crystallization 

centres at the interfaces between the SLL layers, may play important roles in this 

phenomenon. These two interface effects may possibly combine to increase the 

crystallization speed of the SLL cells.  
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Fig. 5.7. Percentage decrease in the required pulse-widths for SLL and GST cells 
with different cell-sizes (tGST – tSLL)/tGST. A sharper drop in the pulse-width is 
observed as the cell-size is reduced.  

 

5.5.2 Thermal-Confinement Effects 

The most likely reason for the reduction in the operating voltage is the lower 

thermal conductivity of the SLL material compared to that of the bulk GST. 

Theoretically, the thermal conductivities of superlattice structures in both the in-

plane and cross-plane directions are significantly different in the bulk materials 

due to interface phonon scattering and phonon-confinement effects [5.14,5.15]. 

Experimentally, a significant reduction in the thermal conductivities of the 

superlattices in both the in-plane and cross-plane directions is also observed 

[5.16,5.17]. The thermal conductivity of SLL materials is related to the SLL 

structure or the thickness of the SLL periods, and can be as low as 30 % of that of 

bulk materials [5.7].   
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Fig. 5.8. Simulated peak temperature vs change in thermal conductivities of the 
SLL in the in-plane and cross-plane directions. Higher peak temperatures are 
observed by reduction of the thermal conductivity of the phase-change layer in the 
cross-plane direction, compared to when it is reduced in the in-plane direction. 
 

In SLL structures, the thermal conductivity is anisotropic in nature. To study 

this effect on the thermal performance of PCRAM, finite element simualtions 

were performed on PCRAM cells with varying thermal conductivities in the in-

plane and cross-plane directions, separately (see Fig. 5.8). Simulations revealed 

that higher peak temperatures were achieved when the thermal conductivity of the 

SLL was reduced in the cross-plane direction compared to that in the in-plane 

direction. Together with a reduction in the cell size, good overall thermal 

confinement in both the horizontal and vertical directions may account for the low 

operating voltage achieved in the SLL cells. Furthermore, the SLL structure has a 

high resistivity, which can generate more heat and increase the heating efficiency 

in the SLL cells. 

 



 

 119 

5.6 Conclusion 

In conclusion, PCRAM cells with fast switching speed and low operating power 

can be achieved by both reducing the size of the active device regions and by the 

use of SLL structures. Fast Reset and Set speeds of 300 ps and 1 ns, respectively, 

were achieved in 40 nm SLL cells, which can be attributed to interface effects at 

the cell boundaries and within the SLL structures. Further research into the use of 

PCRAM cells with smaller dimensions, and also SLL structures with lower 

thermal conductivities and higher crystallization temperatures, would be of great 

importance. It would enable PCRAM to achieve fast speed and low power for 

advanced memory applications. 
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Chapter 6 

Fast-Speed, Low-Power, and High-Endurance Switching 

in PCRAM with Nanoscale Superlattice-like Dielectrics  

  

The fast-speed, high-endurance, and low-power switching demonstrated in the 

preceding chapters suggest that PCRAM could fulfill the main requirements of a 

universal memory. To be a true DRAM-replacement, a fast PCRAM with a higher 

endurance is still needed. It is thus important to study alternative methods to 

achieve fast speed, low power, and high endurance in PCRAM. 

The present chapter aims to study the use of nanoscale superlattice-like 

(SLL) dielectrics as thermal insulators in PCRAM cells. The speed, power, and 

endurance performances of the cells with SLL dielectric are investigated. Thermal 

simulations of the cells with SLL dielectric and other functional materials are 

studied. The effects of interfaces and thermal-confinement arising from the SLL 

dielectric are also discussed. These demonstrate the effectiveness of SLL 

dielectrics for advanced memory applications. 

 

6.1 Concept of Nanoscale Superlattice-like Dielectrics 

To reduce the power and improve the speed of PCRAM, one of the most effective 

methods is to provide better thermal confinement within the cell. This could be 

realized through careful design of the dielectric surrounding the PC material. In a 
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PCRAM device, the dielectric is a key functional material that serves not only to 

define the active device region, but also to provide thermal and electrical 

insulation. In spite of its importance, very few dielectric materials have been 

studied and employed in PCRAM, examples being SiO2 and Al2O3 [6.1,6.2]. This 

is due to difficulties in finding alternative materials with low thermal 

conductivities, as well as compatibility with the other functional materials in 

PCRAM. A nanoscale SLL dielectric with excellent thermal-confinement 

properties may be employed to resolve the above issues. An SLL material 

comprises two alternating nano-layers of non-crystalline materials [6.3]. In this 

study, dielectrics with SLL structures were investigated, and examined for its 

impact on providing better thermal confinement for achieving low-power and 

high-speed PCRAM. 

Most SLL structures have good thermal-confinement properties [6.4]. Similar 

to conventional superlattice structures, they possess lower thermal conductivities 

than bulk materials with the same composition due to interface phonon-scattering 

effects [6.5]. An SLL dielectric may be formed with alternate nano-layers of 

amorphous Ge2Sb2Te5 (α-GST) and SiO2. These materials adhere well to each 

other, and also to the other functional materials in PCRAM devices. α-GST is 

reported to have a low thermal conductivity of 0.2 W/mK, which is about 7 times 

lower than that of SiO2 [6.6-6.8]. However, α-GST has a low electrical resistivity 

of 4.16 × 104 Ωcm, and is thus unsuitable as an electrical insulator. On the other 

hand, SiO2 is an excellent electrical insulator with a high resistivity of 1 × 1016 

Ωcm [6.9]. When α-GST and SiO2 are stacked periodically, a SLL dielectric is 
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formed, which may have thermal and electrical insulating properties superior to 

either α-GST or SiO2 alone. 

 

6.2 Methodology   

PCRAM cells with an SLL dielectric comprising of α-GST and SiO2 were 

fabricated and studied in this work (Fig. 6.1). SiO2-on-Si substrates were used as 

the starting materials, on which a 200 nm of TiW as the bottom electrode was 

formed. An insulating layer (70 nm) comprising either a SLL or SiO2 as the 

dielectric was deposited and patterned by lift-off. To study the dependence of 

device performance on the number N of periods in the SLL structure, 2, 4, and 7 

periods of α-GST/SiO2 were employed to form the SLL dielectric. Each period 

comprises a layer of α-GST (3 nm) and a layer of SiO2 (32, 14, and 7 nm). The 

insulating layer has a via of 1 µm diameter, which exposes a portion of the bottom 

electrode, thus defining the active device region. The via was filled with 50 nm of 

GST, which was employed as the active PC material. A TiW top electrode (200 

nm) was deposited and patterned to complete the PCRAM cell structure. 

The electrical properties of the cells were studied using the in-house testing 

system (see Appendix A). Electrical voltages and pulse widths ranging from 0-7 

V and 5-100 ns were employed, respectively. The cells were switched reversibly 

between the respective low- and high-resistance levels of 10 kΩ and 1 MΩ during 

the measurements. 
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Fig. 6.1. Schematic diagram of the (a) PCRAM cell, and (b) TEM image of a 
GST/SiO2 superlattice-like dielectric structure.  

 

6.3 Device Performance 

6.3.1  Correlation between Current and Pulse Width 

The dependence of current on pulse duration required to switch PCRAM cells 

with a 7-period SLL dielectric and a single layer of SiO2 dielectric were studied 

(see Fig. 6.2). The switching current was investigated by measuring the current 

that passed through a reference resistor (Rload), which was connected in series with 

the PCRAM cell (see Appendix A). Electrical pulses with varying durations were 

employed and the smallest currents required to switch the cells from the high 

resistance state to the low resistance state (Set), and from the low-resistance state 
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Fig. 6.2. Dependence of current on pulse-width required to (a) Reset and (b) Set 
cells with a 7-period SLL dielectric and a single layer of SiO2 dielectric. Cells 
with the SLL dielectric require a lower current and shorter pulse-width to switch. 
Pulse-widths as low as 5 ns can switch the cells with the SLL dielectric. 
 

to the high-resistance state (Reset) were recorded. The cells with the SLL 

dielectric can Set with a shorter pulse-width than the cells with the SiO2 dielectric. 

Interestingly, despite having a large cell dimension of 1 µm, the cells with the 

SLL dielectric can switch with a pulse-width of just 5 ns, closely matching the 

times required to switch sub-100 nm cells with conventional dielectric materials 

[6.10]. When longer pulse-widths were used, both the cells required smaller 
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currents to Reset. Reset currents as low as 1.9 mA can be achieved for the cells 

with the SLL dielectric, which were lower than those required to Reset the cells 

with the SiO2 dielectric. Similar observations were also made when the cells were 

Set.  

 

6.3.2  Size-Dependent Set Speed and Reset Power 

To study the correlation between the pulse duration and current with the number 

of periods in the SLL dielectric, the shortest Set pulse-width and the lowest Reset 

current required to switch the cells with the SLL dielectric with periods ranging 

from 2 to 7 were studied. A constant current of 1.5 mA and a pulse-width of 5 ns 

were applied for Set and Reset, respectively. It was observed that, as the number 

of period increases, the pulse-width required to Set the cell decreases sharply, by 

up to 5 times over the range of periods studied, as shown in Fig. 6.3. The Reset 

current also decreases with the number of periods in the SLL dielectric. Figure 6.4 

shows that the Reset current decreases by 5-10 % as the number of period 

increases from 2 to 7. Overall, Figs. 6.3 and 6.4 show that both set pulse-width 

and reset current decrease with number of periods in the SLL dielectric. This 

indicates that faster crystallization and better-thermal confinement were achieved 

in the cells with higher number of SLL-dielectric periods. The degree of reduction 

for both set pulse-width and reset current was generally high, despite a smaller 

percentage decrease in the reset current, which should further reduce, if needed, 

by increasing the number of SLL-dielectric periods. 
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Fig. 6.3. Correlation between the Set pulse-width and the number of periods in the 
SLL dielectric. A shorter pulse-width was achieved as the number of periods in 
the SLL dielectric is increased. 

 

 
Fig. 6.4. Correlation between the Reset current and the number of periods in the 
SLL dielectric. A lower current was achieved as the number of periods in the SLL 
dielectric is increased. 
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6.3.3  Cycle Endurance 

Cells with SLL dielectric not only have good performance in terms of power and 

speed, but also high cycle-endurance (see Fig. 6.5). Reversible switching of the 

cells with a SLL dielectric was observed, with an excellent contrast maintained for 

109 overwriting cycles. The cells were switched between low- and high-resistance 

states of about 10 kΩ and 2 MΩ, with Reset and Set pulse-widths of 5 ns and 200 

ns, respectively. Since device stability is related to cycle endurance, the high 

number of overwriting cycles achieved shows that PCRAM with SLL dielectric has 

good device stability. Such a demonstration also indicates that the SLL dielectric 

has good electrical-insulation properties, and does not cause early device failure. 

 

 

Fig. 6.5. Endurance performance of a PCRAM cell with a SLL dielectric. The cell 
has good dielectric breakdown properties, which enables it to achieve stable and 
reversible switching for 109 cycles. 
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6.3.4 Property of SLL Dielectric after Cycling 

The SLL dielectric also has good material properties. Figure 6.6 shows that there 

is still a clear separation between the GST and SiO2 layers in a cell that has been 

switched many times between the amorphous and crystalline states. There is also 

no observable delamination of the GST and SiO2 layers. This further shows that 

the SLL dielectric does not cause early device failure, and supports the fact that 

PCRAM cells with SLL dielectric can support high endurance, as demonstrated 

by the cells switching reversibly and stably for 109 cycles. 

 

 
Fig 6.6. Experimental study of the material properties of the SLL dielectric. (a) 
Scanning transmission electron microscopy (STEM) image of the SLL dielectric, 
and energy-dispersive x-ray spectroscopy (EDX) images of (b) Si, (c) O, (d) Ge, 
(e) Sb, and (f) Te. These images show no observable delamination of the GST and 
SiO2 layers. 
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6.4 Finite-Element Simulation 

6.4.1  Effect of Superlattice-like Dielectrics 

The thermal properties of the PCRAM cells were examined using finite-element 

simulations (see Appendix C) to calculate the temperature profiles of cells with a 

SLL dielectric or a SiO2 dielectric after Reset (see Fig. 6.7). In a PCRAM cell, the 

electrode/PC-material interface plays an important role in the heat-generation 

process [6.11,6.12]. To simplify the calculations, the effects of the electrode/PC-

material interface were not considered in this study, in order to better compare the 

effects of the dielectric materials on the cell performance. In the simulations, the 

thermal conductivities of the materials employed were important parameters, with 

values shown in Table 6.1. Considering the low thermal conductivities achieved 

in superlattice structures [6.13], the thermal conductivity of the SLL dielectric 

was assumed to be 20 % of that of the SiO2 dielectric. From the simulations, a 

higher peak temperature (PT) was observed in the active device region of the cell 

with the SLL dielectric compared to that of in the cell with the SiO2 dielectric. For 

a given amount of thermal energy input, the steep temperature gradient in the 

lateral direction of the SLL dielectric is mainly due to its low thermal conductivity. 

A simulation was also performed to study the effects of the heat transport on the 

performance of the cells with SLL dielectrics. The cells were found to have a 

slightly higher PT when the thermal conductivity of the SLL dielectric is reduced 

in the cross-plane direction compared to that in the in-plane direction. This is 

possibly related to the greater amount of heat flow towards the vertical direction 

of the SLL dielectric.  
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Fig. 6.7. Simulation of the temperature profiles in PCRAM cells with (a) a SLL 
dielectric and (b) a SiO2 dielectric. The thermal conductivities of the SLL and 
SiO2 dielectric used were 0.28 W/mK and 1.4 W/mK, respectively. Good thermal 
confinement is observed in the cell with the SLL dielectric. 
 

 Table 6.1. Material thermal parameters. 

Material Thermal conductivity (W/mk) 

c-GST 0.20a 

TiW 60.0b 
SiO2 dielectric 1.40c 

SLL dielectric 0.284 
aReference 6.6. 
bReference 6.7. 
cReference 6.8. 

 

6.4.2 Thermal Conductivity of Phase-Change Materials 

The interplay between the SLL dielectric, functional materials, and cell structures 

was further studied. Understanding the interplay between the materials and 

structures is very important, as it would enable better control of the thermal 

properties of the SLL dielectric, and improve the thermal confinement in a 

PCRAM device.  

A higher PT can be achieved via scaling of the SLL dielectric, which also 

corresponds to a reduction of the SLL layer thickness. The variation of the SLL  
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Fig. 6.8. Simulated peak temperature as a function of the thermal conductivity of 
the SLL dielectric (defined as a percentage of the thermal conductivity of the SiO2 
dielectric), for different PC materials. Higher peak temperatures are observed 
when a PC material with a lower thermal conductivity is used. The cell has a u-
shaped device structure, and a cell size of 100 nm. 

 

layer thickness is known to have a large effect on the thermal conductivity of the 

SLL structure [6.14,6.15]. To study the size-dependent properties of the SLL 

dielectric, the rise in PT as a function of its thermal conductivity was investigated, 

as shown in Fig. 5.8. The rise in PT was calculated as the ratio of the PT in the 

cell with the SLL dielectric to the PT in the cell with the SiO2 dielectric. A higher 

rise in PT is observed as the thermal conductivity of the SLL dielectric is reduced. 

The rise in PT becomes even more significant when the thermal conductivity of 

both the SLL and the PC material is decreased. For instance, the percentage rise in 

PT for a cell with GST is much higher (from 0 to 9.74 %) compared to that for a 

cell with a PC material with a thermal conductivity that is twice that of GST (from 

0 to 6.36 %), as the thermal conductivity of the SLL dielectric is reduced from 

100 to 1 %.  
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6.4.3 Cell-Size Effects 

The PT can also be controlled by varying the PCRAM cell size. Figure 6.9 shows 

that the rise in PT becomes more significant when both the thermal conductivity 

of the SLL structure, and the cell size are decreased. 

 

 
Fig. 6.9. Simulated peak temperature as a function of the thermal conductivity of 
the SLL dielectric (defined as a percentage of the thermal conductivity of the SiO2 
dielectric), for different cell sizes. Higher peak temperatures are observed when 
smaller cell sizes are used. The cell has a u-shaped device structure.  

 

6.4.4 Effects of Device Structure 

Modification of the PCRAM structure can also control the PT. The rise in PT 

becomes more significant when both the low-thermal-conductivity SLL structure, 

and the u-shaped device structures are used (see Fig. 6.10). 
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Fig. 6.10. Simulated peak temperature as a function of the thermal conductivity of 
the SLL dielectric (defined as a percentage of the thermal conductivity of the SiO2 
dielectric), for different device structures. Higher peak temperatures are observed 
when u-shaped structures are used. The cell size is 100 nm. The top and bottom 
insets show the u-shaped and mushroom device structures, respectively. 

 

6.4.5 Substrate Effects 

The PT can also be controlled by varying the substrate used during the PCRAM 

fabrication. Figure 6.11 shows that the rise in PT becomes more significant when 

both the low-thermal-conductivity SLL structure, and a substrate with thermal 

oxide are employed. 
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Fig. 6.11. Simulated peak temperature as a function of the thermal conductivity of 
the SLL dielectric (defined as a percentage of the thermal conductivity of the SiO2 
dielectric), for different substrates. Higher peak temperatures are observed when 
substrates with thermal oxide are used. The cell has a u-shaped device structure, 
and a cell size of 100 nm. 
 

6.5 Mechanism Discussion  

6.5.1 Interface Effects  

Interfaces are known to have atomic-scale defects that act as efficient phonon-

scattering centres. When more interfaces are generated, a greater amount of 

phonon scattering occurs across the dielectric, which reduces the phonon mean 

free path and hence heat flow in the in-plane and cross-plane directions [6.16]. In 

the superlattice system, the net heat flow is inversely related to the number of 

interfaces in the superlattice structure. The heat flow in the cross-plane direction 

is governed by the equation [6.17]: 

, (6.1) ( )cH TT
n

j −=
σ
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where n is the number of interfaces, σ is the interface conductance and TH –TC is 

the temperature difference at the interface. Since σ and TH –TC are constant as all 

the interfaces are found between the α-GST and SiO2, an increase in the number 

of interfaces will lower the heat flow in the cross-plane direction and reduce the 

net heat flow in the SLL dielectric. It is known that no crystallization of α-GST 

occurs when the thickness of the α-GST films is less than around 3 nm [6.18]. As 

α-GST layers with thicknesses of about 2-3 nm were employed in this study, little 

or no crystallization of α-GST should occur in the SLL dielectric.  The resulting 

low thermal conductivity would enable the cells with a SLL dielectric to switch 

with lower currents and shorter pulse-widths than the cells with a SiO2 dielectric. 

 

6.5.2 Thermal-Confinement Effects 

Good thermal confinement of the SLL dielectric can be attributed to the interface-

scattering mechanism. This can be studied via the dependence of the PT on the 

anistropic thermal conductivity of the SLL dielectric, as seen in Fig. 6.12. The PT is 

observed to be slightly higher as the thermal conductivity of the SLL dielectric is 

reduced in the cross-plane direction (580 °C at 75 %, 617 °C at 25 %) compared to 

that in the in-plane direction (577 °C at 75%, 598 °C at 25 %). This indicates an 

overall good thermal confinement in both the in- and cross-plane directions, with a 

slight dominance of the interface-scattering mechanism in the cross-plane direction. 

The PT difference (between the in- and cross-plane directions at low thermal 

conductivity) of the SLL dielectric was also observed to be smaller than that in the  



 

 138 

 
Fig. 6.12. Thermal-confinement properties of SLL dielectrics. Relatively higher 
peak temperatures are observed as the thermal conductivity of the SLL dielectric is 
reduced in the cross-plane direction compared to that in the in-plane direction. The 
overall good thermal confinement in both the in- and cross-plane directions would 
reduce the energy required for Reset. The cell has a pore device structure, and a cell 
size of 100 nm. 
 

GeTe/Sb2Te3 SLL material that was reported previously [6.19]. A smaller PT 

difference indicates a better control of the heat flow within the cell structure.  

 

6.6 Conclusion 

In summary, a SLL dielectric can be employed as a thermal insulator due to its low 

thermal conductivity. This enables PCRAM cells with a SLL dielectric to operate 

with lower currents and shorter electrical pulse-widths than cells with a SiO2 

dielectric. PCRAM technology would benefit greatly from further research on SLL 

dielectrics with lower thermal conductivities, as this would potentially accelerate 

the development of low power and high speed PCRAM devices. 
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Chapter 7 

Summary and Outlook 

 

PCRAM is an exciting and promising nonvolatile memory technology due to its 

high scalability, fast speed, low power, and high endurance. These qualities have 

made PCRAM a potential universal memory that can perform the functions of 

many different classes of memory. Although PCRAM has many outstanding 

qualities, there exists a trade-off between crystallization speed and thermal stability 

of the amorphous phase. This severely limits the speed of PCRAM devices. 

Overcoming this limitation is vital for PCRAM to become a universal memory.  In 

this thesis, nanoscale effects in PC materials, as well as in the other functional 

materials, were exploited to achieve fast-speed, low-power, and high-endurance 

performance. 

Reviews of the current state of PCRAM research, and of the fundamentals and 

theories related to the switching speed of PC materials were presented in Chapter 2. 

These highlighted the complexity of the PC process, and the many factors affecting 

the speed of PCRAM. However, the PC mechanism is still unclear, and the 

proposed models remain inadequate to fully explain the general switching behavior 

of PC materials. These studies also revealed the requirements for fast speed, as well 

as low power and high endurance in PCRAM.  

In Chapter 3, a study of incubated PC materials with nanostructural units was 

presented. The PC speed was found to increase with the applied incubation field. A 
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crystallization speed of 500 ps was achieved, as well as high-speed reversible 

switching using 500 ps pulses. Ab initio molecular dynamics simulations revealed 

the PC kinetics in PCRAM devices, and the structural origin of the incubation-

assisted increase in crystallization speed. 

Studies of nanostructured PC materials were presented in Chapter 4, where this 

understanding was used to achieve both fast speed and high endurance in PCRAM. 

As the device size is reduced, the PC mechanism was found to change from a 

material inherent-crystallization mechanism to a hetero-crystallization mechanism, 

which resulted in a significant increase in switching speed. Reducing the grain-size 

can further increase the PC speed. The effect of grain-size on switching speed 

becomes increasingly significant at smaller device sizes. By exploiting nano-

thermal and electrical effects, fast switching, good stability, and high endurance 

were demonstrated. 

Chapter 5 presented a study of nanoscale PC materials with superlattice-like 

(SLL) structures, and the impact of these materials on achieving fast PC speeds, 

while maintaining low-power consumption in PCRAM devices. The correlation 

between the size, speed, and power of the SLL cells was investigated. Small SLL 

cells were found to switch shorter pulses and lower powers compared to large SLL 

cells. Fast amorphization and crystallization speeds of 300 ps and 1 ns were 

achieved in the SLL cells, respectively. Both speeds were much faster than those 

observed in the GST cells. SLL cells also required lower switching voltage than the 

GST cells. These effects can be attributed to fast heterogeneous crystallization, low 

thermal conductivity, and high resistivity of SLL PC materials.  
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In Chapter 6, nanoscale SLL dielectrics were exploited to achieve fast 

switching, as well as low power and high endurance in PCRAM. In this study, 

PCRAM cells with a SLL dielectric required lower currents and shorter pulses to 

switch compared to cells with a SiO2 dielectric. As the thickness of the SLL 

period is reduced, the power and speed of the cells is improved further, due to 

better thermal-confinement in the SLL dielectric. A fast switching of 5 ns was 

observed even in large 1-µm cells. A high endurance of 109 cycles was also 

achieved. 

Various future research opportunities were highlighted in the respective 

chapters. A particular follow-up project of this thesis is the study of fast switching 

in multilevel PCRAM. It is known that as devices continue to shrink, their ultimate-

scaling limits will be reached eventually. This means that multilevel PCRAM may 

become the next most feasible solution to further increase data-storage capacity. It 

is thus important to investigate fast PC in multilevel PCRAM, for instance, how 

switching speed could be affected by reliability factors, such as: (i) intrinsic-

randomness associated with each write attempt, (ii) resistance drift, (iii) variability 

during lifetime of PCRAM array, and (iv) crystallization of amorphous phase. 

Among them, factors such as resistance-drift and crystallization-of-amorphous-

phase would likely represent fundamental storage-capacity limitations, as in the 

maximum number of bits that can be stored in a cell, which may not be overcome 

but only be mitigated.  

Another follow-up project could be the study of fast switching in 3-

dimensional (3-D) stacked PCRAM, which is another approach to increase data-

storage. This concept is based on the building of multiple layers of PCRAM 
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devices, which are stacked and integrated in 3-dimensions above the silicon wafer. 

It would be interesting to study how fast switching can be achieved in these devices, 

especially the effect of fast switching on Reset current, which is currently too high 

for the integration of PCRAM with poly-silicon diodes or non-silicon access 

devices, thus posing a key limitation for this technology. 

PCRAM continues to be highly promising for next-generation data-storage 

devices. In principle, the methods discussed in this thesis are applicable to all types 

of PC materials and device-structures, such that an appropriate combination of 

materials and structures open opportunities for optimizing device performance. This 

would pave the way for achieving a broadly applicable memory device, capable of 

nonvolatile, fast, stable, and low-power operations. 
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Appendix A 

 

Electrical Characterization  

The PCRAM device performance was investigated using an in-house PCRAM 

testing system [A.1] that comprises mainly of a picosecond pulse generator 

(Picosecond Pulse Labs), a digital oscilloscope (Agilent Technologies), and a 

probe station, as shown in Fig. A.1.  

The picosecond pulse generator has the specifications of pulse durations 

ranging from 100 ps to 10 ns, rise time of 65 ps, and voltage amplitude up to 7.5 

V. The PCRAM is connected to the generator/oscilloscope via low-capacitance 

cables (~0.2-3 pF) and a low resistor of 50 Ω. The upper limit of the time constant 

of the RC circuit is estimated to be ~several 10 ps. To study the ultrafast 

switching effects, the PCRAMs were constantly biased with a small voltage, and  

 

 
Fig. A.1. Schematic of the experimental/measurement setup. To study the 
switching effects of the PCRAM, a pulse generator is programmed to deliver a 
short electrical pulse to the PCRAM cell. The waveforms of the pulses at a point 
before and after the PCRAM cell were measured at V1 and V2, respectively.  
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Fig. A.2. Waveforms of the electrical pulse applied to the PCRAM cells.  
Electrical pulses with pulse widths (full-width, half-maximum) down to 500 ps 
were employed to switch the cells. The pulse waveforms were measured/obtained 
at V1 (Fig. S1). 
 

subsequent electrical pulses were applied to switch the PCRAMs. The full-width, 

half-maximum time duration (FWHM) of the pulse (Fig. A.2) was measured at V1 

(Fig. A.1), and this was used to characterize the speed of the PCRAM switching. 

The waveform of the pulse obtained at V1 also reflects the exact voltage pulse 

that is applied to the PCRAM, taking into account the capacitance/inductance of 

the probe/circuitry/connectors. Figure A.3 further shows the waveforms of the 

pulse signal measured before (V1) and after (V2) the PCRAM. From the 

measurement results, we can clearly see that the FWHMs of the waveforms 

measured at V1 and V2 are almost the same. More specifically, the difference in 

the FWHMs in the case of the 500 ps pulse is only about 4 %, which is within the 

measurement error of the oscilloscope with a frequency of 10 GHz. As the signal 

measured at V2 has passed through the PCRAM, this confirms that the duration of 

the pulse experienced by the PCRAM is almost identical to that of the pulse 
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Fig. A.3. Waveforms of the applied 500 ps pulse signal at a point before (V1) and 
after (V2) the PCRAM cell. The yellow waveform shows the pulse signal 
measured at V1. The purple waveform shows the pulse signal measured at V2. As 
the signal measured at V2 has passed through the PCRAM, this confirms that the 
duration of the pulse experienced by the PCRAM is almost identical to that of the 
pulse entering the PCRAM. 

 

entering the PCRAM. A comparison of the shapes of the pulses measured at V1 

and V2 also confirms that the parasitic-capacitance effects in the circuit/PCRAM 

are negligible. 

 

References: 

[A.1] L. P. Shi, T. C. Chong, R. Zhao, J. M. Li, P. K. Tan, X. S. Miao, W. J. 

Wang, H. K. Lee, X. Q. Wei, H. X. Yang, K. G. Lim, W. D. Song, 

Investigations on nonvolatile and nonrotational phase change random 

access memory, NVMTS, 115 (2005). 

  



 

 149 

Appendix B 

 

Ab initio Molecular-Dynamics Simulations 

1.  Computational Procedures 

Constant-volume ab initio molecular-dynamics (AIMD) simulations were 

performed using the Vienna Ab initio Simulation Package (VASP) [B.1]. The 

180-atom models of Ge2Sb2Te5 were simulated in cubic supercells with periodic 

boundary conditions. The projector augmented-wave (PAW) method [B.2] with 

the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [B.3] was 

used. The energy of the models was calculated at the gamma point with a plane-

wave energy cutoff of 175 eV, and the time step was 3 fs. The temperature was 

controlled by velocity scaling. A density (6.11 g/cm3) intermediate between the 

amorphous and crystalline phases was used, mimicking capped cells. The outer s 

and p electrons for Ge, Sb, and Te atoms were considered as valence electrons. 

An atomic configuration was first mixed at 3000 K for 13 ps and then 

maintained at 1073 K for 60 ps. Three amorphous configurations (models 1, 2, 

and 3) were obtained by quenching three liquid configurations of GST (each 

having different configurations) to room temperature with a quench rate of -15 

K/ps. The calculated pair-correlation functions of the amorphous configurations 

showed overall agreement with experiment, except for the slight overestimation of 

the first pair-correlation peak (~0.1-0.2 Å), presumably due to the well-known 

feature of the PBE functional [B.4]. These amorphous models were then pre-
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annealed at 420 K for 270 ps. The pre-annealed model 3 was further annealed at 

600 K and then compared with the model 3 that was annealed at 600 K without 

pre-annealing. 

 

2.  Definition of Structural Units 

Based on the metastable rocksalt structure of crystalline GST, we defined three 

structural units: 4-fold rings, planes, and cubes. 4-fold rings were defined when 

four atoms form a square, with an average bond angle of 90°. A maximum 

deviation of 20° was allowed in the bond angle and in the plane angle between 

two parallel triangles (consisting of three atoms) that share a diagonal in 4-fold 

rings. Connected 4-fold rings are defined as a plane when at least two parallel 4-

fold rings share an edge. Cubes have six 4-fold rings. Each ring shares its four 

edges with four adjacent 4-fold rings with an average plane angle of 90°. A cut-

off distance of Rcut = 3.5 Å between atoms was used to define these structural 

units. 
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Appendix C 

 

Finite-Element Simulations 

The simulations were performed using the ANSYS-based integrated software 

[C.1] for the analysis and design of PCRAMs (Fig. C.1). The thermal distribution 

of the PCRAM was calculated for different applied voltages (0.1-1.0 V), and 

pulse widths (10-30 ns). The material properties (see Table C.1) were assumed to 

be independent of the temperature. Heat is mainly generated in the PC layers. 

 

 
Fig. C.1. Simulated temperature distributions in a PCRAM cell obtained at: (a) 
low voltage and (b) high voltage. A higher peak temperature is observed in the 
PCRAM as the voltage increases. (c) Schematic of the mesh used to simulate the 
PCRAM structure. Closer mesh lines were drawn in the phase-change region for 
better accuracy in the calculations. 
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 Table C.1. Material parameters. 

Material Thermal 
Conductivity 
(W/mK)  

Density (×103 
kg/m3) 

Specific heat 
(×102 J/kgK)  

GST 0.20 6.15 2.10 
TiW 60.0 14.8 1.37 

SiO2 1.40 2.65 6.70 

 

The thermal transfer obeys the standard heat-conduction equation: 

  (C.1) 

where ∇ is the gradient operator, k, the thermal conductivity, c, the specific heat, 

ρ, the density, t, the time, T, the temperature and Q, the Joule heat per unit volume 

and per unit time, which is called the heat density.  
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