
 

 

DOWNWARD APPROACH FOR STREAMFLOW ESTIMATION, 

FORECASTING FOR SMALL-SCALE TO LARGE-SCALE 

CATCHMENTS: LEARNING FROM DATA 

 

 

 

 

BASNAYAKE MUDIYANSELAGE LEKHANGANI ARUNODA BASNAYAKE 

(B. Sc. Eng. (Hons), University of Peradeniya, Sri Lanka) 

 

 

 

 

 

 

 

A THESIS SUBMITTED  

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING  

NATIONAL UNIVERSITY OF SINGAPORE  

2012 



i 

 

ACKNOWLEDGEMENTS 

 

First and foremost, I wish to express my sincere gratitude to my supervisor, 

Associate Prof. Vladan Babovic for his guidance, valuable advices, and constant 

support, which lead to the completion of my doctoral study. He has been an excellent 

advisor for me during my years in National University of Singapore.  

I express my sincere appreciation to Dr. Rao Raghuraj, for his guidance, 

encouragements, and helpful suggestions during the initial stage of my research. I am 

also grateful to the other members of my dissertation committee, Prof. Cheong Hin 

Fatt, and Assistant Prof. Chui Ting Fong May, whose suggestions and constructive 

comments guided me through the research.  

I am grateful to all my laboratory mates and my friends who have helped 

during my doctoral study at National University of Singapore. Heartfelt gratitude is 

extended for the entire family members of Civil Engineering Department. Very special 

thank goes for the entire family members of Singapore-Delft Water Alliances 

(SDWA). I would like to express my sincere thanks to all who, directly or indirectly, 

contributed in many ways to the success of my research. 

I thankfully acknowledge the National University of Singapore for granting me 

research scholarship to pursue the degree of Doctor of Philosophy. I gratefully 

acknowledge the financial support of the Singapore-Delft Water Alliance (SDWA).  

Last but not least, I would like to thank my parents and my husband for their 

love, inspirations and constant support during this intensive learning period and in 

every step of my life. 

 



ii 

 

TABLE OF CONTENTS 

Page No. 

ACKNOWLEDGEMENTS i 

TABLE OF CONTENTS ii 

SUMMARY vi 

LIST OF TABLES ix 

LIST OF FIGURES x 

LIST OF SYMBOLS xiii 

  

CHAPTER 1: INTRODUCTION 1 

1.1 Rainfall-runoff (R-R) process modelling 1 

1.1.1 Process-based models 2 

1.1.2 Data driven models (DDMs) 2 

1.2 Problem statement 3 

1.3 Objectives of the study 5 

1.4 Organization of the thesis 6 

 
 

CHAPTER 2: LITERATURE REVIEW 8 

2.1 Runoff generating processes 8 

2.1.1 Process scale 10 

2.1.2 Hydrological process scales 9 

2.1.3 Observation (Measurement) scale 12 

2.2 Rainfall-runoff (R-R) process conceptualization approaches 13 



iii 

 

2.2.1 Upward approach 13 

2.2.2 Downward approach 13 

2.3 Rainfall-runoff (R-R) modelling with data driven techniques 15 

2.4 Streamflow forecasting with data driven techniques 19 

2.4.1 Distributed and lumped flow routing 21 

2.4.2 Global and cluster-based flow routing 23 

2.5 Effect of data resolution on rainfall-runoff (R-R) process 

approximation 

 

26 

2.6 Accuracy of multi-step-ahead forecasts 28 

2.7 Artificial neural networks (ANNs) 29 

2.7.1 Input determination 30 

2.7.2 Training neural nets 32 

2.7.3 Extrapolation capability 33 

2.7.4 Optimal model complexity 33 

2.8 Summary 37 

 
 

CHAPTER 3: EFFECT OF DATA TIME INTERVAL ON 

RAINFALL-RUNOFF (R-R) MODELLING 

 

38 

3.1 Introduction 38 

3.2 Case study 38 

3.3 Input determination 39 

3.4 Forecasting models 41 

3.5 Performances of rainfall-runoff (R-R) models 42 

3.5.1 Effect of data time interval on forecasting accuracy 44 

3.5.2 Iterative and direct forecasting 48 



iv 

 

3.6 Conclusions 50 

 
 

CHAPTER 4: MODULAR DATA DRIVEN APPROACH FOR 

RAINFALL-RUNOFF (R-R) MODELLING 

 

52 

4.1 Introduction 52 

4.2 Case study 53 

4.3 Identification of hydrological regimes: Self-Organizing Maps 

(SOMs) 

 

53 

4.4 Forecasting models 54 

4.4.1 Linear forecasting models 54 

4.4.2 Nonlinear forecasting model: Artificial Neural Networks (ANNs) 55 

4.5 Performances of global and modular rainfall-runoff (R-R) models 55 

4.5.1 Model performance in rainfall-runoff (R-R) process representation 55 

4.5.2 Linear and nonlinear model performances in global and modular 

model representations 

 

65 

4.5.3 Model performance in multi-step-ahead forecasts 69 

 4.5.4 Extrapolation capability of global and modular models 73 

4.6 Conclusions 75 

 
 

CHAPTER 5: FLOW ROUTING WITH DATA DRIVEN MODELS 77 

5.1 Introduction 77 

5.2 Description of the White river catchment  77 

5.3 Input determination 78 

5.4 Sequential flow routing method  81 

5.5 Cluster-based flow routing 86 



v 

 

5.5 Conclusions 90 

 
 

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 92 

REFERENCES 95 

LIST OF PUBLICATIONS 103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

SUMMARY 

Data driven models (DDMs) are recognized as models that offer 

computationally fast yet sufficiently accurate solutions for modelling complex 

dynamical systems. In so doing, DDMs are used in operational management systems. 

Current applications of DDMs on rainfall-runoff (R-R) process modelling are limited 

to finding a function for all runoff generating instances. These studies are rather 

general and not specific enough to capture the temporal and spatial variation of R-R 

processes. Therefore, from the operational perspective, it is highly imperative to find 

out the means of improving R-R process representation of DDMs and other influential 

factors on forecasting accuracy. The objectives of this research were: (1) to review the 

data driven streamflow estimation applications to understand the reasons for the 

model-attributed estimation errors, (2) to investigate the effect of data time interval 

and model complexities on streamflow estimation and forecasting, (3) to classify 

temporally dominant runoff generating processes, (4) to develop and evaluate a 

modular data driven model for estimating streamflow of lump catchments, (5) to 

develop and evaluate a sequential flow routing method, and (6) to investigate the 

applicability of cluster-based modelling for distributed flow routing. Artificial neural 

networks (ANNs) was the data driven modelling method in this research. 

Orgeval catchment of France was chosen to illustrate the problems associated 

with lumped catchment R-R models. First, the effect of data time interval was 

investigated using 1 hour (hr), 2 hr, and 3 hr sampled data. Two analyses were 

performed using absolute discharge data (Q) and differenced discharge (dQ) data. Both 

analyses showed that accuracy improved with refined data and results were 

comparable. However, errors of ANN model trained with Q data were much higher in 

multi-step-ahead forecasts and in out-of-range forecasts. Models trained with dQ data 
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tend to generate more accurate forecasts. It was found that both improvements in 

runoff estimation, i.e., at one-step-ahead forecasts, and error accumulation property 

have significant impact on multi-step-ahead forecasts. The range of data time interval 

is not continuous and fine sampled data can deteriorate the model estimations due to 

the noise in data. This needs further investigation. 

This thesis also presents a systematic approach for streamflow estimation in 

lump catchments; firstly to identify the temporally dominant processes and secondly to 

represent each local region by separate models; in an attempt to obtain improved 

estimation. Classification results showed that dQ and rainfall model inputs 

successfully identified the temporally dominant processes. Application of classified 

inputs to locally specialized models showed that the proposed modular model 

approach is feasible and effective. Improvement in predictability with modular model 

approach will depend on the degree of complexity of R-R process.  

Finally, possibility of extending the research basis of lump catchment models 

into large-scale catchments was examined. A sequential flow routing model was 

developed for the West Fork of the White river, Indiana. In the first part of the study, 

single-station models were developed, firstly using the nearest upstream station data 

and secondly with all existing upstream flow data. Then, single-station models were 

sequentially applied to estimate the downstream flows. The model performance was 

evaluated with different data time intervals. Comparison of model results indicated that 

single river reach model performance could be improved with temporally refined data. 

In the second part of this study, cluster-based modelling was applied to improve the 

flow estimations. Simulation results of this analysis indicated that cluster-based 

modelling was a promising method to improve the streamflow forecasts. The proposed 
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approach was found to improve the forecasts over longer prediction horizon. This can 

be coupled with hydrological information to improve intra-catchment process 

variations. 

It is believed that this research contribution will provide the basis for 

subsequent studies on data driven R-R process modelling and for other related data 

driven applications.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Rainfall-runoff (R-R) process modelling    

Streamflow estimations are required over a wide range of discharge states, for 

example, for the design and operation of hydraulic structures, for real time 

management of the water resource systems, for the prediction of the effect of land-use 

and climate change, and as model inputs for other interacting process models like 

water quality models. The streamflow estimation models attempt to emulate the 

complex hydrological processes that transform rainfall into streamflow (runoff), with 

varying degrees of abstraction. Then, these rainfall-runoff (R-R) process models can 

be used to compute the streamflows, mainly at non-measurement stations and into the 

future. The decisions on planning and management of water resources are made based 

on the model forecasts and therefore depend on the accuracy and reliability of 

forecasts. Hydrological processes are nonlinear and complex processes. As a result, 

model approximations cannot reproduce the behaviour of those processes exactly. 

Error due to this process-model mismatch is known as bias error or model structure 

uncertainty. In addition to bias error, parameter errors and measurement errors 

collectively contribute for the uncertainties in hydrological predictions (Liu and Gupta, 

2007). Model structure uncertainty is more likely to be dominant than other two types 

of errors and thereby identification and reduction are vital for operational modelling.  

R-R process models are basically derived from the general principles of 

physical processes or measurement data itself. These modelling approaches are 

generally known as process-based models and data driven models (DDMs), 

respectively. The next two subsections will outline these approaches highlighting their 

merits and demerits. 
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1.1.1 Process-based models 

Process-based models are derived from the descriptive equations of the 

hydrological processes. These equations that describe the temporal and spatial 

evolution of the sub-processes, are in general partial differential equations form that 

cannot be solved analytically. Therefore, solutions are found by finite difference 

representations, which involve form of discretization in space and time ordinates. This 

introduces errors which depends on the numerical method. Any model definition is an 

abstraction of knowledge what we have on hydrology. If some hydrological processes 

are not well understood those are represented by empricial generalizations. On the 

other hand, process-based models require large number of parameters that describe the 

physical characteristics of the catchment on a spatially distributed basis. Uncertainties 

in these parameters also contribute to the model error. Based on these, we can confirm 

that the incomplete understanding of the runoff generation processes and their 

representation lead to bias errors in process-based models. However, process-based 

models are distributed as equations involved space coordinates. Those are of great 

importance in understanding of the hydrological processes. Model simulations at short 

time steps are required to incorporate the nonlinearirites and to maintain stable 

solutions. This makes computationally expensive model runs and limits their 

application in operational management systems. 

 

1.1.2 Data driven models (DDMs) 

In DDMs, like artificial neural networks (ANNs), regression equations, and 

genetic programming, a function is approximated using the system inputs and output 

without imposing a functional relationship. It is determined in the training process by 

optimising the number of possible functions. 
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Unlike process-based models, DDMs are computationally fast and therefore 

applicable for real-time applications (Proano et al., 1998). Those are widely applied to 

various hydrological problems (ASCE, 2000a, b; Babovic and Abbott, 1997a, b; 

Babovic and Keijzer, 2002; Babovic, 2005; Solomatine and Ostfeld, 2008). Most of 

these applications in R-R process modelling have been confined to identification of 

single input-output relation (Solomatine and Price, 2004) and therefore attempts 

should be made on improving the data driven representations to enhance their 

predictive capability. The primary focus of this research is given to reduction of 

model-attributed errors of DDMs.  

The next section provides a brief review of the data driven streamflow 

estimation methods highlighting their limitations. A more detailed review is presented 

in Chapter 2. Finally, the objectives and the structure of the thesis are presented. 

 

1.2 Problem statement 

All models seek to simplify the complexity of the real world by presenting an 

approximated view of the reality; however, it should be complex enough to represent 

the system dynamics. More emphasis has been placed for identification of the major 

contributing processes to the runoff generation and their representation (Klemes, 1983; 

Sivapalan et. al., 2003), followed by progressive refinements.  

Most primitive simplification made in R-R process modelling is lumping or 

spatial averaging. It is assumed that the variations in catchment properties and rainfall 

over the catchment are negligible. This type of conceptualization tends to be accurate, 

if the concentration time of the catchment is dominated by the hydrologic response 

time of the catchment, which holds for the small catchments (Anderson and Burt, 
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1985; Butts et. al., 2004). In such a situation, streamflow forecast can be based on 

catchment average rainfall and runoff data. Therefore, this approach is referred to as R-

R modelling. It has been usual to approximate a function for streamflow estimation 

based on the antecedent rainfall and runoff values. However, hydrological rules are not 

similar for all runoff generating instances. Supervised classification of input-output 

data based on the magnitude of runoff as low, medium, and high runoff and 

approximating a function for each data cluster may not be applicable due to the 

presence of increases and decreases in flow. Instead, classification could be achieved 

with an unsupervised classifier. This is because the antecedent conditions are 

important in governing the subsequent processes. A few attempts have been made to 

classify the data, however, those studies failed to identify the different parts of the 

hydrograph effectively (Furundzic, 1998; Toth, 2009). Effective identification of the 

temporally dominant hydrological processes is one of the objectives in this research. 

Research basis of small-scale catchments should be extended when it is applied 

for large-scale catchments. If the rainfall is not spatially uniform over the catchment, 

often in large catchments and in smaller catchments during intense convective storms, 

forecasts based on R-R models are inaccurate. For these applications streamflow 

forecasts can be based on the flow routing models as the total time of concentration is 

dominated by the flow travel time through the channel system (Anderson and Burt, 

1985; Butts et. al., 2004). This is referred to as streamflow forecasting in the context of 

time series forecasting. Most of the data driven applications of streamflow forecasting 

are limited to point forecasts, where streamflow measurements at upstream gauging 

stations and/or at forecasting point are used to estimate streamflow at a downstream 

location (Khatibi et al., 2011; Kisi, 2008). Further refinement can be made by dividing 

the catchment into sub-catchments based on the spatially dominant processes. Studies 
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on this basis combined the sub-catchment runoff using a DDM (Chen and Adams, 

2006; Corzo et al., 2009). A global model is not appropriate for flow routing, as it 

cannot capture local variations of flow. In addition, stage-discharge relationship is not 

similar for flow rising and flow recession. Several attempts have been made on cluster-

based flow routing; however, those are limited to single stations (Abrahart and See, 

2000; See and Openshaw, 1999; Wang et al., 2006). Therefore, there is a need to 

extend the cluster-based method for distributed flow routing. 

From the above review, we can see that considerable errors in current data 

driven streamflow estimation procedures are model-attributed errors, which are due to 

the undefined process responses not included in the modelling procedure. Apart from 

the undefined processes, data resolution, both spatial and temporal, also introduces 

model error. Characteristic time and space scales of a process are threshold scales and 

these can only provide a partial picture of the process. To learn the process that occurs 

at characteristic space and time scales, data should be sampled at a fine resolution. 

This does not necessarily mean that data resolution can be chosen arbitrarily. This is 

because; fine sampled data can appear as a noise, deteriorating the models' 

predictability. Search for an optimal data resolution is difficult given that comparison 

has to be made at different time steps. This underlies the importance of interplay of 

data resolution and error accumulation of models, which has not been addressed so far.  

 

1.3 Objectives of the study 

Majority of data driven R-R process models are often insufficient to describe 

the inherently complex R-R processes. The overall objective of this research is to 

develop and evaluate techniques to improve the data driven estimation of catchment 

runoff. The specific objectives of the research are: 
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(1) To review the data driven streamflow estimation applications to understand the 

reasons for the model-attributed estimation errors. 

(2) To investigate the effect of data time interval and model complexities on 

streamflow estimation and forecasting. 

(3) To classify temporally dominant runoff generating processes. 

(4) To develop and evaluate a modular data driven model for estimating 

streamflow of lump catchments. 

(5) To develop and evaluate a sequential flow routing method. 

(6) To investigate the applicability of cluster-based modelling for distributed flow 

routing. 

This research is expected to accomplish the above listed objectives with 

following limitations. This study illustrates the application of the approaches using 

available rainfall and runoff data. It is also understood that several nonlinear data 

driven methods are available and the focus here is not to compare the accuracy of the 

methods available, but to improve the R-R process representation. Therefore, ANN is 

considered as the modelling method in this research. 

 

1.4 Organization of the thesis 

Chapter 2 introduces the subject of this research: stream flow estimation 

with DDMs. It provides a detailed review of the data driven flow estimation 

methods and addresses their issues that limit the accuracy of flow estimations. 

Based on the review, methodologies are outlined to represent the runoff generation 

processes in a better way for small to large-scale catchments. 

Chapter 3 considers issues of R-R modelling based on DDMs. An example 

is chosen to illustrate the problems associated with data based R-R modelling. It 
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serves as a basis for highlighting particular constraints and implementation issues 

associated with R-R modelling. 

Chapter 4 implements an input-output domain partition method using self-

organizing maps (SOMs). Independent R-R relationships attached to each local 

region are approximated with ANNs and linear stochastic approach. Model results 

are compared to assess the improvement in nonlinear model approximations with 

input space decomposition. 

Chapter 5 demonstrates the application of ANN in flow routing. A 

sequential flow routing method is then proposed and demonstrated. Applicability of 

cluster-based approach in distributed flow routing is also examined. 

Chapter 6 presents a summary of the most important conclusions made in this 

thesis and gives a number of recommendations for further research. 
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CHAPTER 2 

LITERATURE REVIEW 
 

This chapter provides an overview of the developments in rainfall-runoff (R-R) 

process modelling with data driven techniques. More emphasis will be given to the 

methodologies that provide possible avenues for reducing the streamflow estimation 

errors.  

The first section discusses the streamflow generating mechanisms together with 

some basic information on their process scales. The second section discusses relevance 

of model conceptualization approaches in process-based models to data driven models 

(DDMs). Then it reviews data driven applications in R-R process modelling and 

highlights their present limitations. Finally, artificial neural network (ANN), a machine 

learning technique used in this research is introduced with its implementation steps.  

 

2.1 Runoff generating processes 

Runoff integrates all hydrological processes upstream of the preferred point. 

The hydrological processes involved in the transfer of rainfall into runoff are shown in 

Figure 2.1. The water that eventually becomes streamflow comprises (1) baseflow 

(return flow from groundwater), (2) interflow (subsurface flow), (3) surface runoff or 

overland flow (Hortonian or infiltration-excess overland flow, saturated overland flow 

and throughflow), and (4) direct precipitation (Anderson and Burt, 1985; Maidment, 

1993; Mays, 2005). These runoff generating mechanisms present arbitrary, spatially 

and temporally, depending on the significance of their major controls.  
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Figure 2.1: Runoff generating processes (Maidment, 1993). 

Note: width of the arrows indicates the average relative magnitudes of water transfer 

 

 2.1.1 Process scale 

The process scale refers to the time (or length/area) required for a process to 

occur which is also referred to as characteristic time (space) scale. Characteristic time 

scale of a hydrological process is described using the process duration (for intermittent 

processes), the period or cycle (e.g., seasonal variation) and the correlation time (for a 

stochastic process). These are shown in Figure 2.2 a, b, and c, respectively. Similarly, 

characteristic space scales can be defined. 
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Figure 2.2: Process scale in time. (a) Duration (temporal extent of the process); (b) Temporal 

cycle; (c) Correlation time (Bloschl and Sivapalan, 1995). 
 

2.1.2 Hydrological process scales 

Dunne (1983) schematically represented the different environmental controls, 

i.e., climate, vegetation, land use, topography, and soils, on the runoff generation 

components (Figure 2.3).  
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Figure 2.3: Major controls on runoff generation mechanisms (Dunne, 1983). 
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In addition, these sub-processes occur at different scales. Blosch and Sivapalan 

(1995) provided a more detailed classification of hydrological processes on possible 

spatial and temporal scales in their review paper on scale issues (Figure 2.4).  

 
Figure 2.4:  Characteristic space-time scales of hydrological processes (Bloschl and 

Sivapalan, 1995). 

 

The rainfall mainly governs streamflow. The hydrological processes occur in 

response to rainfall and their time delays are clearly observable in Figure 2.4. For 

example, Hortonian overland flow adds to the streamflow quickly. It depends on the 

infiltration rate and the rainfall intensity, and can be defined at a small length scale. 

Saturation overland flow occurs subsequent to the Hortonian overland flow when soil 

is saturated. Subsurface and ground water flow components response slowly, which 

are operative over an area. We can also observe that the characteristic time scales of 
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sub-processes increase with the catchment scale. It indicates interplay of space and 

time scales, which needs to consider in model conceptualization.  

 

2.1.3 Observation (Measurement) scale 

The models are developed based on the observations made on the process 

variables. The observation scale is defined using the temporal extent of data set, the 

integration time of a sample, and the data time interval (Bloschl and Sivapalan, 1995). 

This is shown in Figure 2.5.  
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Figure 2.5: Observation scale in time. (a) Temporal extent; (b) Integration time; (c) Data time 

interval (Bloschl and Sivapalan, 1995). 
 

 

Perfect match of the process scale and the observation scale is preferred to 

extract relevant information from data. If we observe a process at a larger scale, it can 

appear as a trend in data. On the other hand, a smaller scale can appear as a noise 

(Figure 2.6). The time and length scale that is considered in the modelling depends on 

the application. For real time control, we are interested in short-term forecasts. In that 

situation, event scales, which are typically order of days or less, are considered. 

Hydrological processes occur over a range of scales and whether to consider a 

combined scale or individual scales will depend on the model conceptualization. 
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Figure 2.6: Dependency of observation scale and process scale (Bloschl and Sivapalan, 1995). 

 

2.2 Rainfall-runoff (R-R) process conceptualization approaches 

There are two ways to achieve a meaningful conceptualization, namely upward 

approach and downward approach (Klemes, 1983; Sivapalan et. al., 2003).  

 

2.2.1 Upward approach 

Upward approach is the conventional modelling approach in which the overall 

catchment response is estimated based on the knowledge on individual process 

components (Klemes, 1983; Sivapalan et. al., 2003). This is a theoretically perfect 

route, which advances our understanding of processes; however, for real time 

applications their usefulness will remain limited. Substantial amount of data needed for 

calibration and the excessive model complexity are other associated problems of the 

upward method. Unlike with process-based models, this type of formulation is 

unattainable with DDMs.  

 

2.2.2 Downward approach 

The model development from dominant processes to smaller scale processes is 

an alternative approach to upward approach. This is applied in a systematic way 
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starting from the first order controls of the overall catchment response and then further 

refinements are made in response to the deficiencies of the primary model. This is 

referred to as downward approach (Klemes, 1983). Simpler models that consider only 

the most important factors to the response are more appropriate for the management 

decisions.  

Preliminary step of the downward approach will be to approximate a function 

based on past records of rainfall and runoff data. Transformation of rainfall into runoff 

is a result of many hydrological processes and it is shown that these occur at a wide 

range of spatial and temporal scales. The scales for the combined hydrological 

response are commonly determined using the time of concentration of the catchment 

and the spatial coverage of the rainfall. Catchment concentration time comprises the 

hydrologic and hydraulic response times. These are defined as the travel time of water 

from the most remote part of the catchment to the catchment outlet and flow travel 

time through the river system, respectively. Spatial scale is the ratio of the spatial 

coverage of the rainfall to the area of the catchment (Anderson and Burt, 1985). In 

small-scale catchments, generally less than 100 km
2
, spatially uniform rainfall is 

assumed. In such situations, hydrologic response time of the catchment is significantly 

greater than the channel flow travel time. Then, forecasts are estimated based on the 

rainfall-runoff (R-R) models (Anderson and Burt, 1985; Butts et. al., 2004). However, 

in large catchments (spatial scale < ~0.7) flow travel time is much larger compared to 

the hydrologic response time. The streamflow forecasts are typically based on flow 

routing models in such situations (Anderson and Burt, 1985; Butts et. al., 2004). 

Further refinements can be made by dividing the catchment into sub-catchment areas.  
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In the present state, DDMs on R-R process consider how inputs and outputs are 

closely related without describing the internal processes and their interactions in a 

physical sense (Figure 2.7). This views the process externally and, thus the term 

‘black-box’ is commonly used. 

Input Data Real System

Data Driven

Model

Observed

Output

Model

Output

Minimize the difference

in training

 
 

Figure 2.7: The representation of a process in data driven models (Solomatine and Ostfeld, 

2008). 

 

Through a better representation of the R-R process with further modifications 

models will improve the process approximation. This requires efforts to represent the 

basic processes in a way that can be applied in real time.The next two sections will 

discuss these possibilities according to research areas.  

 

2.3 Rainfall-runoff (R-R) modelling with data driven techniques 

In time series forecasting, historical observations of the same variable and 

forcing terms are considered to develop a model, which describes the underlying 

relationship. Then the developed model is used to compute the future time series 

values. The R-R model approximation can be presented as; 

 )()1()()()1()()1( ,,.........,,,........,, ntttmtttt RRRQQQfQ                                                  (2.1)                   

Where, Q and R represent the discharge and rainfall values; m and n represent 

number of time lagged components of Q and R, respectively. The above function can 

be approximated with any DDM like ANNs, regression equations, and genetic 

programming (ASCE 2000a, b; Babovic and Keijzer, 2002; Liong et al., 2002; 

Solomatine and Ostfeld, 2008; Yu et al., 2004). Most of these applications in R-R 
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modelling have been confined to identification of single input-output relationship 

(Solomatine and Price, 2004). This type of model can be viewed as a global model that 

represents the whole domain. However, a global model might be adequate for 

approximating a distinct relationship for the entire input-output domain, which is not 

acceptable for the R-R process.  

Due to inability of the exact model representation for the nonlinear complex R-

R process, there is no single best model and only possibility is to have most likely 

outcomes. For this reason, many versions of independent model outputs can be 

combined together to reduce the approximation error. Example combination methods 

are simple averaging, weighted averaging, nonlinear combination, Bayesian model 

averaging, and generalized likelihood uncertainty estimation (Acar and Rais-Rohani, 

2009; Baker and Ellison, 2008; Diks and Vrugt, 2010; Hashim, 1997; Kim et al., 

2006). It was shown in literature that combined model performance is superior to that 

of single best model performance (Liu and Gupta, 2007; Sharkey, 1999). This type of 

model combinations falls into the static structure category of the committee machines 

(Haykin, 1999; Solomatine and Price, 2004). However, member models of ensemble 

model are global models that represent entire modelling domain and are incapable of 

capturing local variations of flow.     

It is identified with the principle of divide and conquer, that a complex task can 

be solved by partitioning it into number of simpler tasks whose solutions then can be 

combined to obtain an overall solution to the complex problem (Haykin, 1999). The 

overall model comprising the simpler local models is referred to as a modular model in 

the literature (Jacobs and Jordan, 1993). Modular models have some advantages over 

global models, like simplicity and computational efficiency. Identification of the 
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simpler tasks or functionally different sub-processes is the main challenge in the 

application of this principle to physical processes. For example, in case of R-R 

process, interactions of sub-processes makes it difficult to identify the simpler tasks 

based on input-output data relations and thereby to separate corresponding inputs and 

outputs in a supervised manner. Depending on the feature of nonlinearity, usually a 

process could be divided, for example using thresholds, into a number of regimes and a 

model can be fitted to each regime (Sivapragasam and Liong, 2005; Zhang and 

Govindaraju, 2000; Solomatine et al., 2007). For example, Zhang and Govindaraju 

(2000) considered that hydrologic rules for generating runoff are different for low, 

medium, and high streamflows. They employed three different trained networks to 

represent each runoff subclass. Their results showed improvement over single global 

model. Modular models can be predictive than the global model. The question is 

whether we get improvement in forecasts for right reasons. In threshold-based 

approach, a local model learns rules for generating both increase in and decrease in 

flows, which is not justifiable. R-R models assume the lumped catchment concept; 

therefore, attempts should be made on identifying the temporal variation of dominant 

processes.  

Runoff processes occur at different times during the progress of a rainfall event 

(Figures 2.8 and 2.9). As a result, depending on the main process that governs the 

runoff generation, the functional relationship is more likely to be different at different 

parts of the hydrograph.    
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Figure 2.8: (a) Separation of sources of streamflow on an idealized hydrograph, (b) Sources of 

streamflow during a dry period, and (c) during a rainfall event. (Maidment, 1993). 

 

 

Figure 2.9: Relative importance of the sub-processes at different times (Mays, 2005). 

 

Corzo and Solomatine (2007) applied the constant slope method (McCuen, 

1998) and the filtering algorithm of Eckhardt (2005) to separate the baseflow and 

direct runoff (excess flow). Separate models were trained to learn the direct runoff and 
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the base flow relationships. They used the soft combination method to compute the 

final model output. The main drawback of this method is the use of constant weighting 

coefficients. Instead, time varying weights are more appropriate since the contribution 

of base flow and direct runoff varies from time to time. Successively, few studies 

considered unsupervised classifiers to partition the input space (Furundzic, 1998; Toth, 

2009). Their idea was innovative for two reasons; (1) the antecedent conditions govern 

the catchment response, (2) possible partitions are not known for a particular 

catchment. In the hydrological context, the input pattern consists of rainfall depths and 

the output discharges at the catchment outlet. However, use of rainfall and runoff 

(cumulative) input patterns in domain classification seems to restrict the identification 

of rising limb and falling limb of a hydrograph. This can be a result of presenting the 

input pattern in a form that the classifier unable to identify. It is also known that the 

functional relationships are more likely to be different for decrease in and increase in 

flows. This is with the understanding that increases in flow are governed by the 

magnitude of rainfall. Conversely, previous discharge values or change in discharge 

values significantly affect the flow recession. Therefore, identification of rising limb 

and falling limb of a hydrograph may have significant effect on bias error. As a result, 

efforts should be made first to identify the change in discharge. 

 

2.4 Streamflow forecasting with data driven techniques 

Muskingum method is the conventional flow routing approach, which relates 

the inflow and outflow discharges of a river reach and water stored within it by the 

continuity equation and by an empirical storage equation (O’Donnel, 1985). 

dt

dS
QI 

                                                                                                                  (2.2) 
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 QxxIKS )1(                                                                                                        (2.3) 

Equations (2.2) and (2.3) can be expressed in finite difference form for an 

interval of time, ΔT, which results; 

tttt QCICICQ 31211                                                                                               (2.4) 
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Where; C1+C2+C3 =1; I represents the inflow; Q stands for the outflow; S is the 

storage; K symbolizes flow travel time of the reach; and x is the weighting factor 

specifying relative importance of both the inflow to and the outflow from the reach in 

determining the storage. The two parameters, K and x are calculated by a trial-and-

error graphical technique (Singh and McCann, 1980). If there are (n+1) number of 

data, above equation can be applied simultaneously, which is represented in the matrix 

form; 

njQCICICQ jjjj ,.......2,1;31211                                                              (2.5)                            

This equation resembles to the linear ARX (Auto-Regressive with eXogenous) 

type of model with constraint coefficients (Masters, 1995). This method considers one 

time-lagged component of the inflow and outflow. However, if the data time interval 

(ΔT) is less than the flow travel time of the reach, the conventional approach will not 

extract the relevant information. Generally, ΔT should be less than the flow travel time 

in order to capture the essential dynamics of the process. The Muskingum method also 

assumes a linear relationship, which is not acceptable for nonlinear processes. Without 

imposing a relationship, it can be learned from the data itself using the machine 
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learning techniques, which are able to learn linear as well as nonlinear functions. If the 

flow travel time of the river reach is n+1, the formulation given in Equation (2.5) can 

be modified as; 

 )()1()()()()1()1( ,......,,,,......,, ntttntttt QQQIIIfQ                                                        (2.6) 

Data driven applications on flow routing can be grouped into two categories as; 

(i) distributed and lumped flow routing, and (ii) global and cluster-based flow routing. 

This differentiation is based on whether spatial and temporal variability of the process 

is considered in the modelling or not. 

 

2.4.1 Distributed and lumped flow routing 

Most of the data driven applications on flow routing have been confined to a 

single river reach, where discharge at a downstream location is estimated using the 

discharge data of an upstream location and streamflow data of the same location 

(Khatibi et al., 2011; Parasuraman and Elshorbagy, 2007; Wu et al., 2005). In this 

situation, predictability of the model deteriorates significantly when the forecasting 

horizon increases the flow travel time of the river reach. If the upstream location is 

distant from the downstream location, it will not provide useful information. This is 

because; there is an upstream characteristic length (similar to the temporal 

dependency) that affects the variations of the flow at a downstream location. Some 

other studies used only the auto-regressive streamflow data (Abrahart and See, 2000; 

Kisi, 2008; Wang et al., 2006). This will be the only possibility if the upstream data are 

not available.  
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The predictive capability of DDMs will be greatly enhanced if they are 

developed to learn the intra-catchment variation of the processes. For this purpose, the 

basin can be partitioned into sub-basins. Several spatial descretization methods are 

available in the literature. Some of early spatial descretization methods were based on 

stream order (Horton, 1945; Strahler, 1957), contours generated from digital elevation 

maps, and isochrones. These methods did not consider the spatial variability of the 

characteristics that govern the runoff generation. To overcome this limitation, 

researches attempted to develop indices for hydrological similarity (Wagener et al., 

2007). Kirkby (1975) introduced the topographic index, which is the ratio of the 

upslope contributing area and the local surface topographic slope. Some other 

researchers used climatic classification schemes using the precipitation, potential 

evaporation, and the runoff variables. The Budyko curve is an example of climatic 

classification scheme, which represents wet, medium, and dry areas of the United 

States (Budyko, 1974). Some of other catchment discretization methods represented 

land-use heterogeneity. The existing spatial discretization methods can be integrated in 

a way to identify the distribution of the dominant runoff processes within a catchment. 

The next step will be to estimate the upstream channel inflows, i.e., small scale sub-

catchment outflows, using the R-R models described in the section 2.3.  

Few studies considered data at few upstream locations; however, a single 

model is not effective in identifying local variations of flow (Diamantopoulou et al., 

2006; Liong et al., 2000; Liong and Sivapragasam, 2002). Chen and Adams (2006) 

applied semi-distributed form of conceptual models in estimating sub-catchment 

runoff and the estimated flows were used as ANN model inputs to predict the total 

runoff. In their study, entire catchment (8506 km
2
) was divided into three sub-

catchments based on the river network characteristics. Corzo et al. (2009) followed a 
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similar approach except that the few sub-catchment models were replaced by DDMs. 

In these applications sub-catchment model outflows were nonlinearly combined to 

produce the catchment outflow. This type of global model will identify the most 

influential sub-catchment (s). More recently, Nourani and Kalantari (2010) proposed 

an integrated modelling approach for forecasting daily suspended sediment discharge 

at several locations. The inputs of the ANN model were the antecedent rainfall and 

runoff values of six gauging stations. The number of output neurons has been set to 

six. That was to provide the suspended sediment forecasts at the gauging stations. This 

type of model formulation has several drawbacks. First, the number of hidden neurons 

is determined based on the overall forecasting capability of the model. However, 

complexity of the process will differ from one location to another location. For this 

reason, a single integrated model will provide general solutions. Second, inclusion of 

inputs at all stations may provide superfluous information. Thus, potentially more 

reliable method will be the sequential application of the flow routing in which the 

outflow from one sub-reach becomes the inflow to the next sub-reach. Specifically, 

this flow routing method provides forecasts at number of locations.  

 

2.4.2 Global and cluster-based flow routing 

If we approximate a function for the wave propagation from one point to 

another, it follows that similar rules exist for increases or decreases in flow. In so 

doing, we assume a unique stage-discharge relationship for flow rising and flow 

recession. However, it is a loop-shaped curve during the passing of a wave as shown in 

Figure 2.10 (Wu et al., 2011). In addition, functionally different regions may exist like 

baseflow. For this reason, clustering of functionally similar input-output data and 

function approximation to those local regions may improve the forecasts.  
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Figure 2.10: (a) Propagation of a flood wave, (b) Storage-discharge relationship. 

 

 Threshold-based models, which are based on the magnitude of the 

streamflows, are not logically correct, however, may provide improved forecasts due 

to the fact that they are trained on part of the data set. Instead, supervised classification 

of data can be applied to classify the input space. Parasuraman et al. (2006) integrated 

self-organizing maps (SOMs) and modular neural networks, and named the integrated 

model as spiking modular neural networks (SMNNs). They applied SMNN for 

monthly streamflow forecasting at Siox Lookout of English river, Canada using the 

upstream flow data at Umfreville. Similarly, Parasuraman and Elshorbagy (2007) 

applied k-means algorithm to cluster the streamflow data. In this approach, monthly 

streamflow data of the Little river were used to predict the flows at Reed Creek. 

However, this research considers short term forecasting.  

Wang et al. (2006) developed cluster-based ANN model to forecast daily 

discharges at Tangnaihai, Yellow river, China. They classified the model input data 

into three clusters based on Fuzzy C-means clustering technique and found that those 

represent low flow, medium flow, and high flow. A possible reason for this may be the 
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use of absolute discharge (Q) data. Abrahart and See (2000) considered three single 

stations, one in Upper river Wye, Central Wales and two stations in river Ouse, 

Yorkshire. Classifier input variables of each station consisted of two seasonal factors, 

six antecedent Q data, six antecedent differenced discharge  (dQ) data, and either Q or 

dQ value at time t. They found that use of all input variables classified data according 

to season, which might be a result of using seasonal factors in classifier inputs. They 

obtained reasonable differentiation with 64 SOM clusters using six antecedent Q 

values. In another study, See and Openshaw (1999) used hourly sampled water level 

data of Skelton and five other stations in the river Ouse, Yorkshire to forecast the 

water level at Skelton. Firstly, they classified the combined preceding water levels of 

six stations using SOMs. Initially, sixteen clusters were identified as suitable in 

identifying different events and those were manually classified into five main clusters: 

falling, rising, peaks, low-level flat, and medium level, based on their similarities. 

Secondly, fuzzy logic model was developed to identify the five clusters based on their 

inputs. Finally, specialized models were developed for each cluster. Application results 

were shown to improve the forecasts with cluster-based approach.   

In summary, the studies on cluster-based flow routing are limited to single 

stations. Cluster-based flow routing models have been shown to improve the 

streamflow estimation and it is thus attempted to extend the cluster-based approach for 

streamflow estimation at multiple stations.  

The next two sections will discuss effect of data resolution on R-R process 

approximation and factors affecting the accuracy of multi-step-ahead forecasts which 

are generally applicable to both R-R modeling and streamflow forecasting. 
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2.5 Effect of data resolution on rainfall-runoff (R-R) process 

approximation 

 
As outlined in section 2.1, processes need threshold scales to occur. However, 

perfect selection of scales does not necessarily imply accurate representation of R-R 

process. This is because DDMs learn the R-R process dynamics based on past records 

of rainfall and runoff data. Reduction or magnification of data resolution have an effect 

on predictive capability of models. Characteristic time scale and space scale provide an 

upper bound to the data resolution. Data driven model applications on R-R modelling 

have been more commonly carried out using the existing sampled data. Model 

formulation at given data resolution may not be applicable. As temporal (spatial) 

variations are characteristic features of the process, an approach to improve the 

prediction accuracy will be enlarging the observation sample. However, the range of 

data resolution is not continuous.  

Some attempts have been made to improve the forecasting capability by 

removing the noise in data (Elshorbagy et al., 2002; Jayawardena and Gurung, 2000; 

Karunasinghe and Liong, 2006; Porporato and Ridolfi, 1997; Sivakumar et al., 1999). 

The effectiveness of this approach is questionable in two aspects. Firstly, this is a 

subjective approach since the true signal is unknown. Secondly, the effect of noise 

depends on the data time interval (ΔT). Decrease in ΔT will improve the extraction of 

relevant information from data, while it also increases the possibility of capturing 

noise in data. As a result, unless the ΔT is too fine noise, removal will not improve the 

forecasts. It is also to be noted that training forces the network response to be smoother 

rather than fitting exactly to the training data. 

Improvement in predictability with decrease in data sampling gap also reflects 

that models learn the nonlinear process dynamics. For example, some of the studies 
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suggested that ANNs perform well compared to linear models (Hsu et al., 1995; 

Sajikumar and Thandaveswara, 1999; Thirumalaiah and Deo, 2000), while few other 

studies reported that performance of ANN and linear models are comparable 

(Elshorbagy et al., 2000; Han et al., 2007). These studies considered one ΔT. 

Shamseldin (1997) applied linear models and nonlinear models to six catchments and 

analysis of his results showed that ANNs performed well for some catchments, while it 

was a linear model for some other catchments. In some instances, performances of 

both models were comparable. It is also to be noted that complexity and nonlinearity in 

the R-R process differ from one catchment to another. Nonlinear and linear models 

formulated for a process, which exhibits highly nonlinear dynamics, can perform 

comparably, if sparse data are considered in the model development. These 

considerations imply that nonlinear DDMs perform as good as or better than linear 

models depending on the degree of complexity of the process. 

In some other studies, real world systems are assumed as rarely linear or 

nonlinear and proposed two-step hybrid procedure; firstly to capture the linear effects 

with a linear model and secondly to approximate a nonlinear relationship with the 

residuals of the linear model (Jain and Kumar, 2007; Khashei and Bijari, 2011; 

Sallehuddin and Shamsuddin, 2009; Díaz-Robles et al., 2008; Zhang, 2003). This 

hybrid method was inspired by the little difference in predictability of linear and 

nonlinear models observed by some of the researchers (Elshorbagy et al., 2000; 

Gaume and Gosset, 2003; Han et al., 2007; Shamseldin 1997). Another reason may be 

the inadequate representation of the process to learn the nonlinear variations of the 

process. We can argue that it is inappropriate to use a linear model to approximate a 

nonlinear process. The above hybrid approach also can be viewed as a type of error 

correction method.  The error correction models were applied in number of studies 
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(Babovic et al., 2001; Lekkas et al., 2001; Shamseldin and O’Connor, 2001; 

Solomatine et al., 2007).  

Moreover, nonlinear models generally outperform linear models in 

approximating nonlinear processes, if those are strictly unique relationships and not a 

result of several sub-processes. R-R process is a result of several sub-processes and 

this might be a reason for satisfactory results with global linear model approximations. 

These suggest that more efforts have to be made to fully utilize the nonlinear models' 

predictive skill. This research focuses on the model-attributed errors due to improper 

representation of the R-R process. 

 

2.6 Accuracy of multi-step-ahead forecasts 

The iterative method and the direct method are the two ways of computing 

multi-step-ahead forecasts. The iterative approach iteratively uses immediate preceding 

data including the forecasted values, while the other method employs only past rainfall 

and runoff data. Theoretically, former method is more appropriate as state at any time 

depends on the immediate preceding values and therefore improved predictions are 

expected with iterative forecasting. Several researchers have applied iterative 

forecasting procedure (Van den Boogard et al., 1998; Khondker et. al., 1998; Babovic, 

1998; Daimantopoulou et al., 2006). Study carried out by Khondker et. al., (1998) 

compared direct forecasting with iterative forecasting. However, their results showed 

no improvements to the forecasting accuracy.  

The forecasting accuracy deteriorates with the forecasting horizon. Even a 

small runoff estimation error at the beginning can accumulate deteriorating the quality 

of forecasts. This effect can be significant for complex and nonlinear systems which 
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are poorly understood. Accurate representation of the R-R process will reduce the 

error accumulation caused by the previous forecasts. In addition, response of the 

model to errors may depend on the complexity of the function, which has not received 

the attention of researchers.  

 

2.7 Artificial neural networks (ANN) 

ANNs are designed to model the way in which the brain performs a particular 

task or function of interest (McCulloch and Pitts, 1943; Rosenblatt, 1958; Haykin, 1999). 

ANNs ability to learn a nonlinear complex relationships and their capability to produce 

reasonable outputs for unseen data make it as a sophisticated tool to solve 

classification as well as regression problems. There are numerous time series 

forecasting applications of ANN in the field of water resources management. Several 

ANN based models have been proposed to forecast runoff including Multi-layer 

perceptron (MLP), Support vector machines, Generalized regression neural networks, 

and Radial basis functions. From all the available neural network types, MLP has been 

most widely used in the water resources field (Minns and Hall, 1996; Van den 

Boogaard et al., 1998; Thirumalaiah and Deo, 2000 ASCE 2000a,b) and MLP with a 

single hidden layer have the ability to approximate any bounded continuous function 

(Universal approximation theorem).  

     MLP is characterized by its architecture and the direction of information 

flow. It can be classified by the number of layers as single layer, bilayer, three layer, 

and multilayer. In Figure 2.11, schematic diagram of the three-layered network is 

shown. Typically, nodes are arranged in layers. As such, ANN has an input layer, from 

which input vector is fed to the network, output layer and one or more intermediate 

layers (hidden layers)   comprised with computational nodes. In each layer (except in 
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output layer), inputs are weighted by corresponding connection weights and sum up 

together which is then transformed by an activation function. ANN is trained adjusting 

the parameters to bring the output of a network to the desired output. 

Another way is to classify by the direction of information flow as feed-

foreward neural networks (FFNN) or recurrent neural networks (RNN). In FFNN, 

information flow from input layer to the output layer without feeding back to the 

precedent layers, whereas, in RNN direction of flow can be in both directions. Several 

feedback architectures considered in the literature. However, in the context of the 

water resources, FFNNs are more widely used.  

Input Layer Hidden Layer Output Layer

Model

Inputs

Model

Outputs

 
Figure 2.11: Three-layered multi-layer perceptron (MLP). 

      

     Several steps should be considered in implementing the ANN. These are 

discussed in the following subsections.  

 

2.7.1 Input determination 

The first step is to determine the appropriate inputs. Good physical 

understanding of the process being modelled can help in selecting the input vector. 

Selection of appropriate inputs is primarily based on the system knowledge (ASCE, 

2000a). Then analytical techniques like correlation analysis, average mutual 
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information can be used to find the number of lags for each input variable (ASCE, 

2000a; Bowden et al., 2005; Maier and Dandy, 1997; Masters, 1995).  

       The significance of input variables to output variables may differ to each other. 

However, ANNs treat all the input variables equally. Therefore, it is important to 

normalize the selected input variables such that they have similar ranges. That is to 

bring all the variables into similar ranges. There are several approaches. One approach 

is to standardize the data using the mean and standard deviation of the training set. 

Another approach is to normalize the input variables to the range of either to [0, 1] or 

to [-1, 1]. However, normalizing the inputs to the range of [0, 1] is not efficient for 

updating the weights. That is because updates of the weights will have the same 

algebraic sign resulting decrease or increase in weights. In general, any shift of the 

average input away from the zero will bias the updates in a particular direction and 

thus slow down the training. This strategy is much helpful in choosing the activation 

function for the hidden layers. As output of the hidden layers are inputs to the next 

layer, choosing a activation function that gives normalized output will automatically 

provide normalized inputs. With relevant to the above discussion, hyperbolic tangent 

function is preferable from the available continuous activation functions. In some 

situations, the dimension of the input vector is large, but the components of the vectors 

are highly correlated. It is useful in this situation to reduce the dimension of the input 

vectors. An effective procedure for performing this operation is principal component 

analysis (Hu et al., 2007).  

     The data set, which is used to build the neural network model, is partitioned into 

three categories as training data, cross-validation data, and testing data. The training 

data set is used to find the optimal weights and bias values. The data allocated for 
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training should be sufficient to learn the underlying relationship between inputs and 

outputs (ASCE, 2000a). In other words, training data should be representative.  

 

2.7.2 Training neural nets 

     The main objective of training is to reduce the process approximation error by 

adjusting the model parameters. With the breakthrough finding of the back-

propagation algorithm (Gradient descent method) by Rumelhart in 1986, it has been 

the most commonly used method for training the multi-layer FFNNs in many fields. 

This standard back propagation algorithm updates the network weights and biases in 

the direction in which the negative gradient of the performance function decreases 

most rapidly. Summary of this algorithm is given in Haykin (1999). A Momentum 

constant (forgetting factor) was introduced to this method to avoid instability. These 

methods are often too slow for practical problems. As a result, several high 

performance algorithms have been developed such as conjugate gradient methods, 

Levenberg-Marquardt algorithm. All those are upgrade to the standard back 

propagation algorithm to provide faster convergence. In many cases, Levenberg-

Marquardt algorithm is able to obtain lower mean square errors. In addition, learning 

rate also makes an impact on learning speed. Small learning rate is desirable to avoid 

instability. However, it imposes a slow learning.  

     After appropriate training, ANN is able to generate satisfactory results within few 

seconds. The generalization capability of ANNs depends on the strategies used in the 

training procedure. 
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2.7.3 Extrapolation capability 

ANN is one of the machine learning tools that has been successfully applied in 

time series forecasting providing potentially better results (ASCE, 2000a, b). However, 

it is a well-known fact that ANN is not a good extrapolator (ASCE, 2000b). The 

extreme events may be encountered in real world systems and forecasts provided by 

ANN models are not reliable in such situations. Few attempts have been made to 

improve the extrapolation capability of ANNs. As highlighted by Karunanithi et al. 

(1994) use of linear transfer function in the outer layer helps to improve the 

extrapolation ability, however, bounds of the hidden neuron transfer function (sigmoid 

function or hyperbolic function) undermine extrapolation level. Minns and Hall (1996) 

suggested scaling the input data to 0.2 to 0.8 rather than to -1 to 1. In a later study by 

Varoonchotikul (2003), modification to standardization function was proposed in 

which maximum value of the raw data was multiplied by a factor, greater than one, to 

provide a room for larger values. However, this method might distort the relationship 

of input and output data as increase in all parameters is not expected in the same order 

of magnitude. Hettiarachchi et al. (2003) applied another approach in which the 

estimated maximum flood in the river basin was computed to train the ANN model. 

However, this approach has limited application, as it required long period of record 

data to estimate the maximum value. In addition, there is an uncertainty in the 

estimation. Besides the above approaches, model complexity reduction might add 

value to the extrapolation ability.  

 

2.7.4 Optimal model complexity 

A simple model would not be able to capture the process behaviour. On the 

other hand, a model should not be too complex. This is because fitting a function that 
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passes through all the training data points, or smaller bias, does not always guarantee 

that it learns the underlying relationship. This causes large errors for new data sets, 

which is referred to as overfitting. A network that is just large enough to provide an 

adequate fit provides better results. In this respect, it is necessary to determine the 

optimal model complexity. This can be better explained with bias-variance trade-off 

(Breiman, 1998; Nelles, 2001). The cost function, which used to define the model 

error, can be decomposed into bias and variance as;  

                                          Model error = Variance + Bias 
2
                                      (2.7) 

Variance and bias refer to the variance of the model estimate and deviation of 

the mean model estimate from the desired response, respectively. Bias describes the 

systematic deviation of the process and the model that exists due to the model 

structure. In other words, it represents the structural instability of the model. Models 

are not exact representations of the physical processes. As a result, individual 

forecasting models may be subject to deviation from the exact. A nonlinear process 

usually cannot be modelled without a bias error due to process complexity. Generally, 

bias error approaches to zero with increasing the model complexity as shown in Figure 

2.12. On the other hand, error due to the deviation of the estimated parameters from 

their optimal values is known as variance error. Model parameters are found using 

finite and noisy data set. In reality, it is not possible to have a representative data set 

and it is just a realization. As a result, it is expected to deviate from their optimal 

values. Increase in model complexity allows the model to fit training data perfectly and 

it precisely represents the noise contained in training data. This results poor 

generalization and variance error increases with model complexity as in Figure 2.12. 
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Figure 2.12: Illustration of the bias/variance trade-off (Nelles, 2001). 

 

Our goal in modelling is to get close to the optimal model complexity or in 

other words to have a model with low bias and low variance. Generally, growing and 

pruning techniques are used to determine the number of hidden nodes (ASCE, 2000 a). 

An alternative yet effective approach has been proposed based on the bias variance 

trade-off. In this method, part of the training data set is used for estimating the model 

parameters. The training error does not contain the variance part of the error 

decomposition. As a result, error on the training data decreases with the model 

complexity. The rest of the training data, data set with different noise realization, is 

used to detect the variance error. The optimal model complexity is the one that gives 

minimum error on that testing data (Figure 2.13).  
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Figure 2.13: Training and testing error variation with the model complexity. 

 

The other effective techniques include cross-validation and regularization. 

Cross-validation prevents overfitting during the training. In the beginning of the 

training, errors of the both training and the cross-validation data sets decrease. After 

parameters reached to the optimal values, training data set error continues to decrease, 

while the cross-validation data set error starts rising. This gives an indication that 

overfitting is occurred. Cross-validation stops training once it starts to over train. On 

the other hand, regularization is a smoothing approach, which can be explained, based 

on the study of Xiang et al. (2005). According to their geometrical interpretation of 

MLP network, the approximated function is a superposition of piecewise linear 

functions with a bias. Its geometrical shape is similar to the piecewise linear activation 

function (Figure 2.14).  
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Figure 2.14: Basic building block of MLP (Xiang et al., 2005). 

 

It is shown that the number of hidden neurons corresponds to the number of 

piecewise linear functions. The slope of the basic building block depends on the 

product of weights connecting the input neuron to the hidden neurons and the weights 

connecting the hidden neurons to the output neurons. Minimization of the slope will 

reduce the overfitting. The cost function can be modified by adding cost on weights.  

 

2.8 Summary 

This chapter reviewed the data driven applications in R-R process modelling of 

small-scale to large-scale catchments. It appears that the considerable errors in current 

DDM applications are due to the insufficient representation of the runoff generating 

processes. Global representation of temporally and spatially dominant processes is 

identified as the major problem preventing the improvement in runoff estimation. Data 

resolution and model complexity are other basic factors that have an effect on 

streamflow estimation and multi-step-ahead forecasting. This research will address the 

number of approaches to reduce these model-attributed errors. 

 



38 

 

CHAPTER 3 

EFFECT OF DATA TIME INTERVAL ON RAINFALL-RUNOFF 

(R-R) MODELLING 

 

3.1 Introduction 

Data driven models (DDMs) are widely recognized as an important tool for 

decision support systems. Nonlinear time series techniques are therefore widely 

applied for rainfall-runoff (R-R) modelling. Data driven models are primarily based on 

observations. Therefore, time series data should be sufficiently refined to capture the 

essential dynamics of the process. This will provide accurate forecasts at one-step 

lead-time. Besides, in practice, we would prefer accurate forecasts in the longer 

forecast lead-time. Accuracy of multi-step-ahead forecasts, i.e., forecasts several time 

steps into the future, mainly depends on the models' predictability in one-step-ahead 

forecasts and on their error accumulation properties. This chapter examines the effect 

of data time interval (ΔT) on forecasting accuracy. This study also discusses the 

importance of rainfall and corresponding change in runoff as model inputs compared 

to commonly applied rainfall and runoff inputs. All the methods and procedures are 

tested with the artificial neural network (ANN) models.  

 

3.2 Case study 

Hourly sampled rainfall and runoff data of the Orgeval catchment, France 

(Figure 3.1) were considered in this study. The Orgeval is a secondary tributary of the 

Marne river. It has a drainage area of 104 km
2
. The basin is relatively flat and there is a 

sharp drop near to the river mouth. It is located entirely in rural areas where agriculture 

takes place on 80% of area and remain is forested (shaded areas in the Figure 3.1). The 

annual average rainfall is 706 mm. 
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Figure 3.1: The Orgeval catchment (Anctil et al., 2009).  

 

 

Three years of hourly rainfall and runoff data were used in this study: 80% for 

training and 20% for testing the models. Two analyses were performed with absolute 

discharge (Q) and differenced discharge (dQ) values. The statistical measures, mean, 

standard deviation, minimum, and maximum of the discharge time series are 0.7 m
3
/s, 

1.5 m
3
/s, 0.03 m/

3
, and 28.8 m

3
/s, respectively. Testing data were within the range, i.e. 

in between the minimum and maximum values of the training data. This is to avoid 

any misinterpretation with under-predictability of ANN models for out-of-range data. 

 

3.3 Input determination 

The preferred approach for determining appropriate inputs and time lags of 

inputs involves a combination of prior knowledge and analytical approaches. In case 

of R-R process, dynamics vary within the catchment concentration time and necessary 

hydrologic information can be extracted from the data if the data time interval is less 

than the catchment concentration time. Correlation analysis is the most commonly 

applied analytical technique for selecting the appropriate inputs. Figures 3.2 and 3.3 

show the correlation coefficient variation with the time lag for Q and dQ data, 

respectively. 
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Figure 3.2: Autocorrelation coefficient variation of absolute discharge (Q) data, and cross-

correlation coefficient variation of absolute discharge (Q) and rainfall data for 1hr, 2hr, and 

3hr sampled data. 

  

Figure 3.3: Autocorrelation coefficient variation of differenced discharge (dQ) data, and 

cross-correlation coefficient variation of differenced discharge (dQ) and rainfall data for 1hr, 

2hr, and 3hr sampled data. 

Magnitude of correlation coefficient determines the strength of the linear 

relationship. Cross-correlation function gives its maximum when peak rainfall 

coincides with peak absolute discharge (Figure 3.2) or peak positive change in 

discharge (Figure 3.3). Correlation analysis showed that the concentration time of the 

catchment is around 6 hours. Thus, in addition to 1 hr sampled data, 2 hr, and 3 hr 

sampled data were considered for the analysis. Correlation analysis indicated that 6, 3, 
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and 2 time lagged components of rainfall and runoff would be sufficient for 1 hr, 2 hr, 

and 3 hr sampled data, respectively.   

As can be observed from Figure 3.3, autocorrelation coefficient of dQ data 

drops to zero after a few numbers of time lags (< 9); however, it is still greater than 

0.65 for Q data (Figure 3.2). In addition, immediate cross-correlation coefficients are 

slightly increased with adjacent differencing. These suggest that the linear 

dependencies were significantly reduced with adjacent differencing.   

 

3.4 Forecasting models 

R-R relationship was approximated with ANNs. Three-layered multilayer 

perceptron (MLP) network, the most commonly applied ANN architecture in function 

approximation (ASCE 2000a, b), was used to approximate the R-R relationship 

(Equation 3.1).  

 )()1()()()()1()1( ,......,,,,......,, ntttntttt QQQRRRfQ                                                  (3.1) 

Where Q and R represent discharge and rainfall values and n represents number of 

time-lagged components. 

The activation function of the hidden neurons was hyperbolic tangent function. 

The number of hidden layer neurons was determined for different ΔTs, and for Q and 

dQ data. In addition, cross-validation was used to prevent the over-fitting problem. 

The iterative approach was utilized to compute the forecasts at different forecasting 

horizons. Forecasting horizon was 12 hours. 
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3.5 Performances of rainfall-runoff (R-R) models  

Mean absolute error (MAE) and correlation coefficient (r) were used in this 

study to evaluate the model performance.  

n
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                                                                                     (3.3) 

Where Qo is the observed discharge, Qp is the predicted discharge, oQ  is the 

mean observed discharge, pQ is the mean predicted discharge, and n is the number of 

data samples. The notation Q-ANN stands for ANN model trained with Q and rainfall 

data. Symbol Q is replaced with dQ if the model was trained dQ data. 

Figure 3.4a, b, and c show the forecasting performances of Q-ANN and dQ-

ANN models for 1 hr, 2 hr, and 3 hr sampled data, respectively. Dashed line represents 

the model accuracy without the accumulated error.  

Comparison of one-step-ahead forecasts shows that dQ-ANN model performs 

slightly better for hourly data, while it is Q-ANN model for 2 hr and 3 hr sampled data. 

However, MAEs of dQ-ANN models are much lower than the corresponding MAEs of 

Q-ANN models at extended forecasting horizons. This is because of the simplicity of 

the function approximated with the dQ data. This means that models trained with dQ 

data can issue more reliable forecasts. 
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Figure 3.4a: Performances of ANN models for hourly data. 

 
Figure 3.4b: Performances of ANN models for 2 hr sampled data. 

 
Figure 3.4c: Performances of ANN models for 3 hr sampled data. 
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The approximated models are global representations of the R-R process. 

Complexity of the R-R process is not similar over the model domain. Thus, global 

model errors are expected to be large with the process complexity. This is clear from 

Figure 3.5, which represents the scaled errors for a particular section of the discharge 

time series. For this reason, same data samples were considered in order to compare 

the forecasting performance for 1 hr, 2 hr, and 3 hr sampled data.  

 
Figure 3.5: Absolute error (scaled) produced by Q-ANN and dQ-ANN models. 

 

3.5.1 Effect of data time interval on forecasting accuracy 

Q-ANN and dQ-ANN model performances for the same data samples are 

presented in Table 3.1 and 3.2, respectively. Comparison of Q-ANN model results of 1 

hr and 2 hr sampled data shows that 2 hr sampled data improve the predictions slightly 

and this is more prominent at extended forecasting horizons (Table 3.1). In case of 1 hr 

and 3 hr sampled data, 3 hr sampled data perform slightly better at 3 hr ahead forecasts 

(Table 3.2). On the contrary, dQ data produce improved predictions at fine sampled 

data over the prediction horizon. This inconsistency could be due to two possible 

reasons.  
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(1)  Error accumulation properties of the models 

The R-R process approximation error accumulates during the iterative steps 

and it can be quite significant when the number of steps is large. For example, 6 hr 

ahead forecast is composed of 1×6 hr, 2×3 hr or 3×2 hr forecast. Similarly, 12 hr ahead 

forecast can be based on 1×12 hr, 2×6 hr or 3×4 hr forecast. As can be seen in Figure 

3.4, Q-ANN model error increases at a rate greater than the dQ-ANN model in 

subsequent iterative steps. This is observable even if the Q-ANN model performs well 

in one-step-ahead forecasts. This indicates that the Q-ANN model’s sensitivity to 

model approximation error is higher compared to the dQ-ANN model and it affects the 

prediction accuracy at extended forecasting horizons.  

 

(2)  Linear dependencies and noise in time series data                                                                                       

Small ΔT might capture random effects, including the noise effect. Thus, it 

affects overall prediction accuracy. This approximation error is accumulated during the 

iterative steps. In addition, we expect that the linear dependencies of the autoregressive 

components would dominate the nonlinear variations, which affect the effective 

extraction of the information relevant to nonlinear dynamics. Adjacent differencing 

reduces the linear dependencies and noise in data, and this might be a possible reason 

for improved predictions at fine sampled data. It is known that ANN can learn linear as 

well as nonlinear relationships.  

If we compare the Q-ANN and dQ-ANN models R-R process approximation 

errors, it can be observed from the Figure 3.4 and Table 3.1 that the Q-ANN model 

performs well for 3 hr and 2 hr sample data, while it is comparable for 1 hr sampled 

data. Improvement in predictability with differenced data increases with decrease in 
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ΔT. Moreover, rainfall measured over a period of time results an increase in runoff. As 

a result, the functional relationship is more likely to exist between rainfall and dQ data. 

Table 3.1: Q-ANN model performance with data time interval. 

Mean absolute error (MAE) ×10
-3 

(m
3
/s) 

∆T 

(Hours) 

Forecasting horizon (Hours) 

2 3 4 6 8 9 10 12 

1 23  55 95 140  186 232 

2 19  42 67 91  112 130 

1  37  97  164  231 

3  32  69  103  129 

1    91    226 

2    70    129 

3    73    132 

 

Correlation coefficient (r) 

∆T 

(Hours) 

Forecasting horizon (Hours) 

2 3 4 6 8 9 10 12 

1 1.00  0.99 0.97 0.95  0.92 0.91 

2 1.00  0.99 0.98 0.96  0.95 0.94 

1  0.99  0.97  0.93  0.91 

3  0.99  0.97  0.94  0.92 

1    0.98    0.91 

2    0.98    0.95 

3    0.96    0.92 

 

Table 3.2: dQ-ANN model performance with data time interval. 

Mean absolute error (MAE) ×10
-3

 (m
3
/s) 

∆T 

(Hours) 

Forecasting horizon (Hours) 

2 3 4 6 8 9 10 12 

1 12  17 20 21  22 22 

2 21  34 40 42  43 45 

1  15  20  22  23 

3  38  53  59  63 

1    20    22 

2    40    45 

3    53    64 

 

Correlation coefficient (r) 

∆T 

(Hours) 

Forecasting horizon (Hours) 

2 3 4 6 8 9 10 12 

1 1.00  1.00 1.00 1.00  1.00 1.00 

2 1.00  0.99 0.99 0.99  0.99 0.99 

1  1.00  1.00  1.00  1.00 

3  0.99  0.98  0.97  0.97 

1    1.00    1.00 

2    0.99    0.99 

3    0.97    0.97 
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The results showed that the decrease in ΔT improves the R-R process 

approximation. However, this property is beneficial if models generate improved 

forecasts at extended forecasting horizon, which is not true for Q-ANN models. 

Remesan et al. (2010) also studied the effect of ΔT on forecasting accuracy using 15 

min, 30 min, 60 min, and 120 min sampled rainfall and Q data of Brue catchment, 

England. Forecasting lead times were 2 hr, 4 hr, and 6 hr. Four time-delayed 

components of rainfall and runoff were considered for the 15 min data sampling rate. 

This suggests that the concentration time of the catchment is around 1 hr. Their results 

showed that the 30 min sampled data provided the lowest error.  

The R-R process is a result of several sub-processes with dynamics varying 

over a range of temporal scales. For this reason, decrease in ΔT less than the 

concentration time of the catchment will improve the learning of the process dynamics 

(Figure 3.6). However, optimum time scale, which captures essential dynamics of the 

process, is not known. Further discretization of time series into finer steps is not 

advantageous and models trained with such data are more susceptible to capture the 

noise in data. From this point of view, we can conclude that the hourly rainfall and 

runoff data are not too fine to capture the noise. It might be possible to improve the 

model predictability with dQ data, if more refined data are available. Prior information 

on future flows at small intervals is very useful to operational forecasting systems.  
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Figure 3.6: Effect of data time interval (ΔT) on model error. 

ΔTc: Catchment concentration 

 

The above forecasting approach iteratively used the previous forecasted values 

in successive time steps. This can be considered as more suitable as the future state 

depends on the immediate preceding values. Direct forecasts, which use only past 

information to forecast multi-step-ahead forecasts, might be predictive, if the error 

accumulation in iterative forecasting is significant. This depends on the predictive 

capability of the models and their sensitivity to the errors. The next sub-section will 

discuss the iterative and direct forecasting performance for hourly sampled data. 

 

3.5.2 Iterative and direct forecasting 

Figures 3.7 and 3.8 show the performances of iterative forecasts (IF) and direct 

forecasts (DF) of Q-ANN and dQ-ANN models, respectively. Direct forecasting 

performance is slightly better in short term predictions, especially at forecasting 

horizons less than the catchment concentration time. As forecasting horizon increases 

information is not given by the immediate precedence values as those are left one by 

one. In simply, this is because initial conditions are washed out after 6 hrs. As a result, 

direct forecasting accuracy deteriorates. This is clearly observable in Figures 3.7 and 
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3.8. Moreover, one trained network can be used for all time steps with iterative 

forecasting, while individual trained networks are required in direct forecasting. The 

results also show that direct forecasting does not reduce the forecasting error 

significantly in Q-ANN models and the dQ-ANN models perform well over the 

forecasting horizon compared to Q-ANN models. 

 

Figure 3.7:  Iterative and direct forecasting performances of Q-ANN models. 
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Figure 3.8:  Iterative and direct forecasting performances of dQ-ANN models. 
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capability of R-R model were successfully established offering a basis for further 

evaluations.  

Identification of change in functional relationship for different magnitudes of 

runoff will further improve the R-R process approximation. The next chapter will look 

into the possibility of applying modular model approach for R-R process 

approximation.  
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CHAPTER 4 

MODULAR DATA DRIVEN APPROACH FOR RAINFALL-

RUNOFF (R-R) MODELLING 

 

4.1 Introduction 

Data driven models (DDMs) are widely used to approximate the rainfall-runoff 

(R-R) relationship (ASCE 2000). Most of these studies considered single input-output 

relationship. However, the functional relationship is not similar for all runoff 

generation instances over the modelling domain (Solomatine and Price, 2004; Zhang 

and Govindaraju, 2000). Incorporation of R-R process knowledge into the modelling 

process may improve the model accuracy. This chapter presents an input-output 

domain partition method using self-organizing maps (SOMs).  

The first step involves the search of modularity-associated features of hydro-

meteorological input data. In the second step, functional relationship of each local 

region is approximated with artificial neural networks (ANNs). In this way, for a 

particular forecasting instance, classifier determines the local domain and ANN model 

assigned for that local domain provides the forecast. In this study, results of single 

neural nets (SNN) and the modular models (MM) are compared to assess the 

improvement in nonlinear model approximations with input space decomposition. 

Further, classifying input variables into number of hydrological regimes and fitting a 

function for each regime might improve the ability of identifying nonlinearity. 

Performances of ANN and linear model representations are therefore compared. 

Finally, extrapolation capabilities of all models are discussed. 
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4.2 Case study 

This study also used the hourly sampled rainfall and runoff data of the Orgeval 

catchment. The R-R model approximation can be presented as; 

 )()1()()()()1()1( ,......,,,,......,, ntttntttt QQQRRRfQ                                                  (4.1)    

       

Where Q and R represent the discharge and rainfall, n represents the time-

lagged components of discharge and rainfall. Six lagged components were considered 

based on the correlation analysis. Similar to the study presented in Chapter 3, this 

study also considered two analyses with absolute discharge (Q) data and differenced 

discharge (dQ) data. Next section briefly discusses the SOM classification approach 

used in this study. 

 

4.3 Identification of hydrological regimes: Self-Organizing Maps (SOMs) 

In SOM approach, developed by Kohonen (1982), input variables are mapped 

into a discrete map space, consisting of map neurons, grouping similar patterns 

together. Architecture of SOM comprises two layers, an input layer, and an output 

(map) layer. These two layers are completely connected. Initial weight vectors of the 

map neurons are randomly selected. In each iteration step, best matching map unit is 

chosen for the selected input vector. The best matching map unit is the one with the 

weight vector that most closely matches the training example. Then, weight vectors of 

all map neurons in the neighbourhood of the wining neuron are updated. The above 

procedure is repeated until there are no noticeable changes in the weight vectors. 

Detail explanation of the algorithm is given in Haykin (1999).  

Generally, the number of map neurons should be greater than or equal to the 

number of clusters. However, this is not known. The number of classes was varied by 



54 

 

setting the number of map neurons to 2,3,4,6 and, 8. Each map neuron was considered 

to represent a hydrological regime. Modular neural networks (MNNs) were then 

trained in a supervised mode using the hard classification rule. Schematic diagram of 

the modular approach is presented in Figure 4.1.   

 

 

 

 

 

 

 

 Figure 4.1: Schematic representation of the proposed modelling approach. 

 

4.4 Forecasting models 

This section describes the linear and nonlinear modelling approaches used in 

the study to approximate the R-R relationship. 

 

4.4.1 Linear forecasting model 

The model input consists of exogenous inputs, i.e., time lagged components of 

rainfall and runoff. Thus, it resembles to the ARX (Auto Regressive with eXogenous) 

type of linear stochastic model (Equation 4.2). Coefficients of the model are 

determined using linear least square method. 
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4.4.2 Nonlinear forecasting model: Artificial Neural Networks (ANNs) 

Three-layered MLPs were trained with normalized inputs. The activation 

function of the hidden neurons was hyperbolic tangent function. The number of hidden 

layer neurons was determined for global and local models. Cross-validation was also 

used to prevent the over-fitting problem. ANN is an unstable predictor, which provides 

different forecasts when trained with different intial parameters. Hence, ensemble of 

fifty model forecasts was considered in each case. Simple average method was used to 

combine the model outputs. This improves the generalization error unlike in SNNs 

(Sharkey, 1999). The iterative approach was utilized to compute the forecasts at 

different forecasting horizons.  

 

4.5 Performances of global and modular rainfall-runoff (R-R) models 

Performances of the forecasting models were evaluated based on mean absolute 

error (MAE) and correlation coefficient (R). 

The following notation was used to refer models. First symbol indicates the use 

of either Q or dQ inputs. The second symbol is to differentiate the global model (S) 

from modular model (M) followed by type of model, i.e., NN for neural network and 

ARX for linear model. Final symbolization is to identify the number of local models in 

a modular model. 

 

4.5.1 Model performance in rainfall-runoff (R-R) process representation 

The statistical performances of the Q-MNN models in one-step-ahead forecasts 

are presented in Figure 4.2. Plotting class positions in the discharge time series offers a 

fast way to get insight of the models' predictability. Figure 4.3 represents the 

visualization of classes in 2-class, 3-class, 4-class, and 6-class classifications.  
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Figure 4.2:  Performances of the Q-MNN models.  

 

It can be observed from Figure 4.3 that classification based on Q and rainfall 
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however, Q-MNN models produced lower MAEs than Q-SNN model (Figure 4.2). 

This is attributed to the different runoff generation processes for the high flows and 

low flows. We can speculate that threshold based MNN models representing low, 

medium, and high absolute discharges (Zhang and Govindaraju, 2000) would also 
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Figure 4.3a: Position of classes in (a) 2-class, and (b) 3-class classifications.  

Note: classifier inputs: Q and rainfall data 
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data and rainfall data is not effective in identifying the similar flow generating 

instances.  

 
Figure 4.3b: Position of classes in; (a) 4-class, and (b) 6-class classifications.  

Note: classifier inputs: Q and rainfall data 

Measured rainfall over a specified time interval corresponds to increase in 

runoff over same time interval. Therefore, adjacent differencing can be used to 

differentiate the change in flow, which introduces the ‘plus’ and ‘minus’ values to the 

dQ. With this understanding, unsupervised classification of dQ(t+1) data was tested 

using rainfall and dQ inputs. Figure 4.4 presents the statistical performances of the dQ-

MNN models in estimating runoff.  
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 Figure 4.4:  Performances of the dQ-MNN models.  

 

The results show that the MNN models produced better testing accuracy 

compared to SNN model. Increase in number of hydrological regimes was lead to 
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Figure 4.5a:  Position of classes in; (a) 2-class, (b) 3-class, and (c) 4-class classifications.  

Note: classifier inputs: dQ and rainfall data 
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Figure 4.5b:  Position of classes in; (a) 6-class and (b) 8-class classifications.  

Note: classifier inputs: dQ and rainfall data 
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noted that the SOM classifier determines the class for a particular forecasting instance. 
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It is not possible to provide the threshold discharge values for the classes as these 

values differ for different storm events.  

Table 4.1: Parts of the hydrograph represented by each classification. 

Classification 
Parts of the 

hydrograph 

Two-class 

 

Three-class 

 

Four-class 

 

Six-class 

 

Eight-class 

 

 

Additionally, Figure 4.6 shows the past rainfall and dQ patterns of classes, in 

order of their occurrences in 8-class classification. This shows that time evolution of 

rainfall pattern resembles to the Q (or dQ) variation.  
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Figure 4.6: (a) Rainfall pattern. (b) dQ pattern. 

 

For a quantitative evaluation, performances of local models and performances 
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global model representation. We can observe that the LD2, LD3, LD3, and LD7 in 2-

class, 3-class, 6-class, and 8-class representation, respectively failed to contribute to 

the forecast improvement. Those domains represent the rising limb of the hydrograph. 

Modular model results show that the improvement is considerable in 4-class and 8-

class classifications (Figure 4.4). This is attributed to the improvement in forecast 

accuracy of local models (Figure 4.7). Those two classifications subdivide the rising 

limb into two or more local regions.  
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Figure 4.7: Improvement in forecasts of local models compared to global models. 

 

Based on above discussion, dQ-MNN models appear to be good candidates. 
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of discharge time series. Some of these functionally different regions might be better 

approximated with nonlinear functions, while others might be represented by linear 

functions. Next section will discuss the performances of linear and nonlinear models. 

 

4.5.2 Linear and nonlinear model performances in global and modular model 

representations 

 
Performances of dQ-ARX and dQ-ANN models are shown in Figure 4.8. 

Global neural network model performs well compared to ARX model. MAEs of 

MARX models are much higher than the ANN models. This is because of the higher 

errors introduced by fitting linear functions for nonlinear variations.   

 
Figure 4.8: Performances of ARX and ANN models in global model (GM) and modular model 

(MM) representations. 
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For a quantitative evaluation, we compared the performances of local linear 

and nonlinear models. Figure 4.9 presents the improvement of forecasts in local 

domains with ANN.  

 
Figure 4.9: Improvement of forecasts in nonlinear local models compared to linear local 

models. 
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of ANN in learning linear as well as nonlinear functions. Improvement in forecasts 

depends on the degree of complexity in the flow generating processes. 

Analysis of runoff data shows that low flows exist for long period. Figure 4.10a 

shows the flow duration curve, which summarizes the chances of exceeding a given 

streamflow. Similar curve was produced for dQ data (Figure 4.10b). Continuous flow 

records were available for two-year period and only those were used for this analysis.  

 

 
Figure 4.10: Flow duration curve for Orgeval catchment.  
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data correspond to the flow recession. Flow recession is described by mathematical 

expressions, which are derived from theoretical equations of the drainage aquifer flow, 

i.e., linearized Depuit-Boussinesq equation and its variants (Thallaksen, 1995). These 

equations, which are exponential functions, have the time as a variable. Instead, rate of 

change in flow is expressed as a function of Q eliminating the variable t as, -dQ/dt = 

a.Q
b
, where a and b are constants. A curve is fitted to the observed recession curves to 

find the coefficients of the mean curve. It has been found that the hydraulics of flow 

and heterogeneity in catchment characteristics can give rise to nonlinear recession 

curves (Clark et al., 2009; Harman et al., 2009). The recession rates and shape of 

recession curves depend on the catchment geology, distance from catchment boundary 

to its outlet, infiltration characteristics of soils, river and aquifer hydraulic 

characteristics, frequency and amount of recharge, vegetation characteristics, 

topography, and climate (Clark et al., 2009; Harman et al., 2009; Thallaksen, 1995). 

These factors collectively contribute to the losses and gains of flow during the 

recession. Clark et al. (2009) showed that shape of the recession curve varies with the 

catchment scale from a linear reservoir type, i.e., exponent with 1, for individual 

hillslope (0.001 km
2
) to nonlinear situations at larger scales (0.1 km

2
 and 0.41 km

2
). 

The values of exponent b will be different for various antecedent conditions. For 

example, higher peak discharge leads to a steeper recession slope. The time variability 

in recessions can be handled with the modular model approach. As quickflow leaves 

the catchment, a sharp drop in flow is observable. This will flatten out with delayed 

supply of subsurface stores. Then flow will become nearly constant if it is sustained by 

groundwater storage. Recession behaviour varies in these three segments of the 

recession curve.  
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The complexity of hydrological processes varies considerably among 

catchments and effectiveness of modular model approach is thereby subjective. 

The above sub-section mainly considers the representation of the R-R process. 

The next section will analyse the model performance at different forecasting horizons.  

 

4.5.3 Model performance in multi-step-ahead forecasts 

Multi-step-ahead forecast errors are due to the process approximation errors 

and the sensitivity of model for errors. In Chapter 3, it was shown that Q-ANN model 

error accumulates at a greater rate than the dQ-ANN models. This section focuses on 

the error accumulation properties of the dQ-MNN models compared to dQ-SNN 

model.  

Figure 4.11 shows the MAE and correlation coefficient variation of dQ-ANN 

models with the forecasting horizon. Modular models perform well compared to the 

global model in multi-step-ahead forecasts. This is attributed to the improvement in R-

R process approximation and model complexity reduction with modular models. 

Improvement is significant in dQ-MNN-C4 and dQ-MNN-C8 models.  
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Figure 4.11:  Performances of the dQ-MNN models.  
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much higher for lead times greater than the catchment concentration time. It can be 

observed that it is much higher in dQ-MNN-C4 and dQ-MNN-C8 models.  

Table 4.2: Error accumulated due to the classification error in dQ-MNN models. 

 

(MAE of actual model- MAE with correctly classified inputs)×10
-3

 

Model 
Forecasting horizon (Hours) 

2 3 4 5 6 7 8 9 

dQ-MNN-C2 -0.001 -0.014 -0.018 -0.015 -0.007 -0.002 0.007 0.016 

dQ-MNN-C3 -0.018 -0.007 -0.030 -0.049 -0.025 -0.005 0.043 0.073 

dQ-MNN-C4 0.057 0.023 0.073 0.230 0.377 0.609 0.817 1.137 

dQ-MNN-C6 0.007 0.034 0.018 0.049 0.029 0.069 0.047 0.053 

dQ-MNN-C8 -0.023 0.044 0.088 0.087 0.186 0.363 0.287 0.296 

 

(Corr. coeff. of actual model- Corr. coeff. with correctly classified inputs)×10
-3

 

Model 
Forecasting horizon (Hours) 

2 3 4 5 6 7 8 9 

dQ-MNN-C2 0.000 0.001 0.000 0.001 0.002 0.006 0.009 0.011 

dQ-MNN-C3 -0.001 -0.002 -0.008 -0.009 -0.010 0.006 0.013 0.015 

dQ-MNN-C4 0.004 0.004 0.027 0.058 0.159 0.210 0.327 0.422 

dQ-MNN-C6 0.001 0.000 -0.002 0.000 -0.003 0.000 -0.004 0.001 

dQ-MNN-C8 0.030 0.058 0.070 0.062 0.052 0.032 -0.008 -0.070 

 

Classification based on dQ and rainfall model inputs divides the functionally 

different regions of the modelling domain. Therefore, approximated functions for 

different sub-classes have different complexities; thereby the changeover of exemplar 

classification can have a negative or positive effect on the forecasting accuracy of local 

models. More complex local models will response negatively for the misclassified 

data. Depending on these local model error fluctuations, overall modular model will 

have fluctuations. For example, errors are much higher in subclasses correspond to the 

increases in flow (Table 4.2 and Figure 4.2). 
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Figure 4.12a: Error accumulated due to the classification error in individual classes of (a) dQ-

MNN-C2, (b) dQ-MNN-C3, and (c) dQ-MNN-C4 models. 
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Figure 4.12b: Error accumulated due to the classification error in individual classes of (a) dQ-

MNN-C6, and (b) dQ-MNN-C8 models. 
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Figure 4.13:  Performances of models for out-of range data. 
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of ARX models are due to the linear dependencies of autoregressive components of 

Q/dQ time series data. 

Overall, class locations in discharge time series and local model MAEs suggest 

that input data classification mainly categorizes input-output domain based on 

complexity of the runoff generation process. Runoff generation processes are different 

for rising limb, falling limb, and base flow. In addition, it varies for different 

magnitudes. Based on this discussion, local model approximations, like locally 

weighted regression (Cleveland, 1979), would reduce the bias error (i.e. error due to 

process/model mismatch). This is the reason for improved forecasting performance.  

 

4.6 Conclusions 

This chapter considered approximation of R-R process with DDMs, which was 

based on modularity. The first step involved search of modularity-associated features 

of hydro-meteorological input data. Rainfall and dQ inputs clearly recognized the parts 

of the hydrograph. In addition, adjacent differencing was useful for improving 

forecasting accuracy. It wass also shown that by applying modular based approach 

forecasting error could be reduced. This indicates modular models are more robust to 

temporal evolution of rainfall-runoff process than global model. It is to be noted that 

the number of hydrological regimes is subjective. This might depend on the range of 

the change in discharge. The higher the range, the more hydrological regimes may 

persist. One limitation of the modular model approach is that the large amount of data 

is required for training phase to avoid the use of same data set twice. Modular models 

are comprised of specialized modules performing individual specialized tasks. Instead, 

a nonlinear function approximation method that can capture temporal variation of 
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rainfall-runoff process would be the promising modelling approach. Implementation of 

this type of modelling approach is challenging.  
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CHAPTER 5 

FLOW ROUTING WITH DATA DRIVEN MODELS 

 

5.1 Introduction 

The earlier two chapters were on prediction related issues of lump catchment 

models. Possible extension of the research basis of lump catchment into large-scale 

catchments was discussed in Chapter 2. This chapter considers the flow routing 

with data driven models. Prediction improvement methods are illustrated using the 

streamflow data of the White river catchment, Indiana. 

 

5.2 Description of the White river catchment 

The White river has two tributaries namely, the West Fork and the East Fork. 

The West Fork is the main and the longest tributary (583 km), which originates from 

north-western Indiana. The East Fork, 309 km in length, starts at Columbus. The two 

tributaries join very near to the end of the watershed at Petersburg, Indiana. The White 

river basin has an area of 14,880 km
2
. Figure 5.1 shows the river map with 

approximate locations of the measurement stations. 

 
Figure 5:1: White river catchment. 

Centerton 

Newberry 
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5.3 Input determination 

Thirty-five years (1957-1992) of daily data were obtained from the United 

States Geological Survey (USGS) website. Flow travel times of each river reach were 

determined using the cross-correlation analysis. The flow travel times suggested that 

the temporal resolution of flow data was large to consider all the measurement points 

for modelling. For this reason, West Fork tributary was considered for the analysis and 

measurement points at Anderson (A), Indianapolis (I), Centerton (C), and Newberry 

(N) were included. The statistics of the streamflow time series data are given in Table 

5.1.  

Table 5.1: Statistics of the streamflow time series data (m
3
/s). 

Measurement  

station 
Minimum Maximum Mean 

Standard  

deviation 

Anderson 1 704 18 31 

Indianapolis 2 1551 64 103 

Centerton 10 1985 109 153 

Newberry 15 3093 216 265 

Figure 5.2 shows the flow time series of the year 1992. We can observe that the 

flow is accumulated with increasing the distance from the source of the West Fork. 

The flow at a particular point includes flows from upstream measurement stations and 

that from the intermediate area. 

Discharge fluctuations at a downstream location are a result of changes in 

upstream flows. Moreover, adjacent differencing reduces linear dependencies and 

noise in data (Babovic and Keijzer, 2002). Therefore, model applications were 

demonstrated with differenced discharge (dQ) data. However, both absolute discharge 

(Q) data and dQ data were used for the analysis. Comparison will only be made to 

justify the advantages of dQ data for brevity.  
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Figure 5.2: Streamflow time series of the year 1992. 

 

 

Figure 5.3 presents the cross-correlation coefficient and autocorrelation 

coefficient variation for Q and dQ data. We can observe that the flow travel times of 
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Figure 5.3a: Cross-correlation coefficient and autocorrelation coefficient variation for Q data.  
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Figure 5.3b: Cross-correlation coefficient and autocorrelation coefficient variation for dQ 

data.  
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using the auto-regressive components. Antecedent flow components of the adjacent 

upstream station were added successively to the model inputs. Figures 5.4 a, b, and c 

present the MAEs of the models in estimating flows at Newberry, Centerton, and 

Indianapolis, respectively.  

 

  

 
Figure 5.4: Contribution of upstream points on the streamflow estimations at Newberry (N), 

Centerton (C), and Indianapolis (I). 
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Results show that inclusion of one upstream location would be sufficient for 

estimating flows at downstream locations. It can be observed that the spatial 

dependency gets worse with the distance. This is because more information is given by 

the nearby flow data. However, flow travel times are higher for the distant upstream 

stations; thereby provide the means of improving forecasts to a longer time horizon. 

For this reason, flow routing was performed sequentially from Anderson to Newberry 

using the method outlined in Figure 5.5. 

Anderson  Indianapolis  Centerton  Newberry 

Q(t-1) Q(t-1) Q(t-1) Q(t-1) 

Q(t) Q(t) Q(t) Q(t) 

QF(t+1) 

… 

QF(t+12) 

 

Assumed 

forecast with a 

rainfall-runoff 

model 

QF(t+1) QF(t+1) QF(t+1) 

QF(t+2) QF(t+2) QF(t+2) 

…. 

…. 

…. 

…. 

…. 

…. 

…. 

…. 

…. 

…. 

…. 

…. 

…. 

…. 

…. 

QF(t+12) QF(t+12) QF(t+12) 
Figure 5.5: Streamflow estimation at downstream stations. 

Note: Subscript F denotes forecasted discharge 

Two methods were used to estimate the flows at downstream stations. In the 

first approach, single river reaches were considered. That is streamflow at a 

downstream location was estimated using the streamflow data of adjacent upstream 

location and streamflow data of the same location. Q-ANN and dQ-ANN model results 

of this approach are shown in Figure 5.6. Comparison of model results shows that the 

accuracy of one-step-ahead forecasts is comparable; however, MAEs of the Q-ANN 

models were much higher in multi-step-ahead forecasts. This is attributed to the 

sensitivity of the Q-ANN models for errors.  
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Figure 5.6: Performances of Q-ANN and dQ-ANN models in estimating flows at Newberry. 

 

In the second method, all the upstream points were considered in estimating the 

future flows at a downstream location. In both methods, a function was approximated 

for the whole domain, which can be viewed as a global model (GM). As such, the 

notation GMSS and GMMS will be used to refer global single-station models developed 

with first and second methods, respectively. Table 5.2 shows the performances of the 

sequentially applied GMSS and GMMS models developed for Centerton and Newberry.  
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Table 5.2: Performances of single-station models of Centerton and Newberry. 

 

Mean absolute error (MAE) (m
3
/s) 

Single-station 

Model 

Station 

Centerton Newberry 

GMSS 14.80 21.68 

GMMS 14.09 20.47 

Correlation coefficient 

GMSS 0.970 0.986 

GMMS 0.973 0.988 

                       Comparison of results indicates that the GMMS model formulation 

provides slightly better forecasts than the GMSS model formulation. This can be 

attributed to the limited data and the inadequate process representation. Process scale 

and the observation scale should be matched for a better process conceptualization 

(Bloschl and Sivapalan, 1995). If the observation scale is too fine, the model might 

capture the noise in data. On the other hand, sparse data may not provide process 

dynamics. In this case study, data were not refined enough, spatially and temporally, to 

capture the process dynamics. Data time interval is one day, equivalent to the flow 

travel time of river reaches. Therefore, the original discrete time series was enlarged to 

demonstrate the effect of data time interval. Similar to the model formulations with 

daily flow data, models were implemented with 12 hr and 6 hr sampled streamflow 

data. Table 5.3 presents the difference of MAEs and correlation coefficients of GMSS 

and GMMS models with data time interval. It can be observed that the difference in 

MAE and correlation coefficient could be effectively reduced with refined data. This is 

a result of improved extraction of process dynamics. Similarly, spatially refined data 

will improve the data driven process approximation. This implies that GMSS models 

developed with sufficiently refined data will perform well. This finding provides the 

possible avenues for coupling the hydrologic and hydraulic information. 
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Table 5.3: Difference of statistical measures of GMSS and GMMS models with data time 

interval. 

 

MAE of GMSS-MAE of GMMS 

Data time interval 
Station 

Centerton Newberry 

Daily 0.71 1.21 

12 hr 0.45 0.58 

6 hr 0.16 0.41 

(Corr. coeff. of GMSS-Corr. coeff. of GMMS) x 10
-2

 

Daily 0.35 0.17 

12 hr 0.11 0.04 

6 hr 0.02 0.01 

 

Above models were applied to approximating a function for all streamflow 

generation instances, i.e., to the global domain. Single ANN model may be biased on 

the most occurring instances. For example, Sajikumar and Thandaveswara (1999) 

found that errors are small for the low flows. In the next step, cluster-based flow 

routing models were developed to enhance the process approximation accuracy.  

 

5.5 Cluster-based flow routing  
 

First step involved the classification of GMSS model input data using SOMs. 

Figure 5.7 shows the class positions in Centerton flow time series data for 2-class and 

4-class classifications. Use of Q classifier inputs mainly identified low flows and high 

flows. However, we expected to classify the flow data as flow rising and flow 

recession. This could be achieved with dQ data. Then further classification subdivided 

those two regions. Similar classification results were obtained for stations, Indianapolis 

and Newberry (results are not shown). 
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Figure 5.7a: Class positions in Centerton discharge time series for 2-class classification. 

 

 

Abrahart and See (2000) reported that dQ model inputs added little to the 
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their approach, which might limit the identification of functionally different regions. 
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large number of classes (Abrahart and See, 2000; See and Openshaw, 1999). This 
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Figure 5.7b: Class positions in Centerton discharge time series for 4-class classification. 
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Figure 5.8: Performances of global model (GM) and modular neural network (MNN) models 

at Indianapolis (I), Centerton (C), and Newberry (N). 

 

At all stations, MNNs with two local modes (MNN-C2) provided lower MAEs 

than the corresponding global models. The improvement in MAEs for the 2-classes 
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were 0.120 m
3
/s, 0.346 m

3
/s for Indianapolis; 0.694 m

3
/s,-0.093 m

3
/s for Centerton; 

and 0.321 m
3
/s, 0.367 m

3
/s for Newberry station. At Indianapolis, further increase in 

number of classes results in decrease in MAE. Comparison of local model 

performance and global model performance in local domains shows that local models 

improved the forecasts accuracy except one local model in 4-class classification and 

two local models in 6-class classification. Class positions indicate that those represent 

baseflow and rising flow. On the other hand, significant improvement in MAEs was 

not observed with number of classes at Centerton. At further downstream location, 

Newberry, increase in MAE is observed. MAEs of local models were higher than the 

global model MAEs in corresponding local domains. The possible reasons for this can 

be explained as follows. Two-class classification mainly identified the rising limb and 

falling limb, while 4-class and 6-class classifications subdivided the rising and falling 

limb into two or more classes. A wave is generally subjected to translation and 

attenuation conserving the volume of flow. However, streamflow at a particular point 

includes flow from the upstream as well as that from the intermediate area. In this 

study, contributions of rainfall and lateral flows were not considered due to the lack of 

data. As a result, local models might not improve the approximation. It was also 

observed that few numbers of data were available for the high flows (Figure 5.7). 

Moreover, accuracy of flow forecasts at downstream locations depends on the 

accuracy of upstream flow estimations. 

 

5.5 Conclusions 

This study applied MLP neural networks for estimating the future flows at 

multiple stations of White river, Indiana. Single-station models were first developed 

using the upstream streamflow data. Single-station models were also implemented 
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with all available upstream data. These models were sequentially applied to find the 

streamflows at downstream locations. It was found that single river reach models 

performed well for sufficiently refined data. The study was extended to examine the 

applicability of cluster-based modelling for distributed flow routing. The modelling 

was not entirely successful. Data were not refined enough, spatially and temporally, to 

capture the variations. Further, contribution of rainfall in generating runoff was not 

included. Therefore, performance of the distributed cluster-based flow routing method 

can be further improved by coupling the hydraulic and hydrologic information. The 

findings and research basis of this study will provide the possible avenues for 

extending the distributed cluster-based modelling.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

Data driven rainfall-runoff (R-R) process models in their current form provide 

fair results despite their practical significance. This study has identified the means of 

extracting relevant information from data and thereby to improve the prediction 

accuracy of data driven models (DDMs).  

Lump catchment models were first developed to study the effect of data time 

interval on streamflow estimation using 1 hr, 2 hr, and 3 hr sampled rainfall and runoff 

data of the Orgeval catchment, France. Two analyses were performed using absolute 

discharge (Q) data and differenced discharge (dQ) data. Forecasts were iteratively 

computed at different time horizons, 2 hr ahead to 12 hr ahead. It was found that the 

fine sampled data improved the streamflow estimation and results were comparable in 

both analyses. However, significantly higher MAEs were observed in multi-step-ahead 

forecasts for Q data than for dQ data. This is because sensitivity of the Q-models is 

high, which results higher errors at subsequent iterative steps. An important feature of 

the dQ-models is that a significant increase in error was not observed even after the 

lead-time greater than the catchment concentration time. Error accumulation property 

was found to have significant impact on the multi-step-ahead forecasts' accuracy, 

which made the prediction improvement with refined data, unsupportive in Q- models. 

These results provide valuable information on the multi-step-ahead forecasts' accuracy, 

since those indicate that in addition to the improvement in streamflow estimation, i.e., 

accuracy of one-step-ahead forecasts, error accumulation property of the model is an 

important factor. Due to the fact that accumulated error in iterative forecasting is 

significant, direct forecasting approach was employed to compute the multi-step-ahead 

forecasts. It was found that direct forecasts were slightly better than the iterative 
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forecasts, when forecasting horizon is less than the catchment concentration time. This 

is expected, because direct forecasting uses only past information. This study was not 

able to describe the effect of noise due to the fact that fine sampled data were not 

available. Further research is therefore needed to evaluate the effect of noise and its 

removal with data time interval.  

This study also examined the possibility of identifying temporally dominant 

processes of the lump catchment concept by classifying the antecedent conditions, i.e, 

model inputs. The number of classes varied from 2 to 8. For each situation, modular 

model was developed to compare the accuracy of forecasts. Local domain for a 

forecasting instance was found with the SOM classifier and the inputs were presented 

to corresponding local domain model to produce the final model output. The analysis 

was first performed on rainfall and Q model inputs. The classification results showed 

that the change in discharge could not be successfully identified with the Q data. 

Consequently, increase in number of classes did not result any improvement in 

predictability. Secondly, the same procedure was applied for rainfall and dQ model 

inputs. It was shown that the use of dQ data effectively identified the different parts of 

the discharge time series. Modular models also performed well compared to global 

model. Improvement in model representation also has an effect on identifying 

nonlinear dynamics of the process. To investigate this, performances of modular ANN 

models were compared with linear modular model results. Linear models did not 

perform well in all local domains. This is because of the different complexities 

associated with each local domain. As a result, local linear model errors were much 

higher compared to ANN models. However, the overall improvement in predictability 

with nonlinear models depends on the complexity of the R-R process. Application of 
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modular model approach for catchments with different complexities will be an 

interesting research topic.  

It was also found that dQ-models have the greatest tendency to yield lower 

errors for out-of-range data compared to Q-models. In case of modular models, slightly 

higher errors were observed. This effect is unavoidable due the fact that approximating 

a function to a particular data range tends to produce higher errors for out-of-range 

data.  

Lump catchment concept is not valid for large-scale catchments and urban 

catchments. It can be extended to capture the spatial variation of hydrological 

processes. This research demonstrated a sequential data driven approach for flow 

routing, which can be used in distributed R-R process models. Use of upstream 

information to predict flows at downstream could improve the forecasts to a possibly 

longer horizon. In the second part of this study, cluster-based modelling was applied to 

improve the flow estimations. Simulation results of this analysis indicated that it is a 

promising method to improve the streamflow forecasts. Inclusion of contribution of 

rainfall will improve the predictive capability further.  

The results of this research suggested that estimation errors could be effectively 

reduced by more detailed representation of the R-R process. This research will provide 

a basis for subsequent studies on data driven R-R models and for other relevant data 

driven applications. 
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