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Summary

With the demand for fossil fuels increasing over the years, the exploration and ex-

ploitation of these energy sources have been moving from land to the deep sea. This

results in an increased focus on the marine control systems which are essential to

guarantee that the sea operations such as deep sea oil drilling, oil production, stor-

age and offloading, and cable/pipe laying are performed as planned. To increase the

safety and efficiency of the sea operations, more advanced marine control systems are

needed for dynamic positioning (DP) and trajectory tracking control of marine ves-

sels. The main purpose of the research in this thesis is to develop advanced strategies

for DP and tracking control of marine vessels in the harsh marine environment and

alleviate some of the challenges of dealing with complex hydrodynamic disturbances.

DP is an essential system for floating vessels such as drilling rigs, floating pro-

duction, storage and offloading systems, crane vessels and multi-purpose vessels.

For DP of floating vessels under time-varying hydrodynamic disturbances, this the-

sis presents an indirect adaptive interval type-2 (IT2) fuzzy logic controller (FLC).

Approximation-based adaptive control technique in combination with IT2 fuzzy logic

system (FLS) is employed in the design of the controller to reject the hydrodynamic

disturbances without the need for exact information. The stability of the design is

demonstrated through passive and Lyapunov analyses where the sufficient condition,
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under which the semiglobally asymptotic convergence of the regulation errors is guar-

anteed, is proposed. Rigorous analysis shows that the resultant closed-loop system is

passive. Comparative simulations with linear proportional derivative controller and

adaptive type-1 FLC are carried out. The proposed technique is found to be effective,

robust, and has better performance. In a DP system, filtering and state estimation

are important features, as the position and heading measurements are corrupted by

oscillatory motion due to first-order wave disturbances. Moreover, in most cases the

measurements of the vessel velocities are not available. This thesis then presents a

passive adaptive IT2 fuzzy observer for DP of floating vessels under time-varying hy-

drodynamic disturbances. The approximation-based adaptive technique is also used

to handle the time-varying hydrodynamic disturbances. The stability of the observer

error dynamics is explored through passive and Lyapunov analyses. It shows that the

estimation errors of the observer error dynamics are semiglobally uniformly ultimately

bounded. The adaptive observer includes features like estimations of both the low

frequency displacements and velocities of the vessels from noisy displacement mea-

surements and wave filtering. Simulation studies with a container ship demonstrate

the satisfactory performance of the proposed observer. A comparative study of the

proposed observer against a passive nonlinear observer shows the proposed observer

has better disturbance rejection property.

Another major application of automatic control technique in the offshore and

marine industry is trajectory tracking. Trajectory tracking control is very impor-

tant for surface vessels which perform operations such as dredging, towing, and cable

and pipe laying. For tracking control of surface vessels under time-varying hydro-
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dynamic disturbances, the thesis first presents an indirect adaptive IT2 FLC as well

as a direct adaptive IT2 FLC. In the tracking control problem, the approximation-

based adaptive control technique again shows its efficiency in handling time-varying

hydrodynamic disturbances. Although designed from different points of view, both

indirect and direct adaptive IT2 FLC yield similar and passive closed-loop systems.

The semiglobal asymptotic convergence of the tracking errors in the closed-loop sys-

tems is shown through Passive and Lyapunov analyses. A comparative study of the

proposed techniques against their adaptive type-1 counterparts was conducted. The

proposed adaptive IT2 fuzzy techniques are found to be effective, robust, and re-

duce the integral of time-weighted absolute tracking errors for the indirect adaptive

FLC by at least 21.9% and 18.0% for the direct adaptive case compared to type-1

FLCs. However, the indirect and direct adaptive IT2 FLCs require the velocities of

the vessels measurable. To relax this requirement and improve the reliability of the

control systems, a fault-tolerant adaptive backstepping IT2 FLC is designed. The

combination of backstepping control and approximation-based adaptive technique al-

lows the proposed controller to be able to accommodate certain faults in the plant

and the controller itself. These faults could be the changes of the loading conditions

and trimming of the vessels, and failure of some parts of the control law. In the

output feedback controller, the unmeasurable velocities are estimated by a high-gain

observer to get a stable output feedback closed-loop system. Using backstepping and

Lyapunov synthesis, semiglobal uniform boundedness of the output feedback closed-

loop signals is guaranteed. Simulation results demonstrate that the output feedback

controller is effective in reducing the tracking errors, and able to accommodate the

ix



faults in the plant and the controller.
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Chapter 1

Introduction

As the major source of energy powering the world, fossil fuels have been contributing

to the growth of the global economy. With the demand for fossil fuels increasing

over the years, the exploration and exploitation of these energy sources have been

moving from land to the deep sea. This has brought about an era of offshore oil and

gas industry. Offshore oil and gas industry involves different kinds of equipments

to perform various missions. One crucial equipment is marine vessels, which include

drilling rigs, shuttle tankers, cable/pipe layers, floating production, storage, and of-

floading systems (FPSOs), crane and heavy lift vessels, and multi-purpose vessels. A

marine vessel may comprise sub-systems such as the main structure, marine control

system, power system, propulsion system, measurement system, equipment system

and auxiliary system. Among all these systems, the marine control system is essen-

tial to guarantee that sea operations such as deep sea oil drilling, installation and

intervention, oil production, storage and offloading, and cable/pipe laying are per-

formed as planned. To increase the safety and efficiency of the sea operations, more

advanced marine control systems are necessary. One main factor that impedes the

performance of marine control systems is the hydrodynamic disturbances generated

by wind-induced waves and associated uncertainties. To handle the complex hydro-

dynamic disturbances and the uncertainties, advanced control algorithm is applied
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to marine control system design in dynamic positioning (DP) and tracking control of

these marine vessels.

In the remainder of this chapter, a detailed exposition of the background and

motivation, as well as the objectives and scope, and organization of this thesis are

provided. For clarity of presentation, the background and motivation is separated

into two parts, namely Marine Control Systems and Interval Type-2 Fuzzy Logic. In

each part, the related works and background knowledge that motivate the research

in this thesis are discussed in detail.

1.1 Marine Control Systems

The history of vessel control starts with the invention of the gyrocompass in 1908.

The gyrocompass was the basic instrument in the first feedback control system for

heading control of vessels, and today these devices are known as autopilots. In 1970s,

local area vessel positioning systems like hydro acoustic reference systems, hyperbolic

radio navigation systems, and local electromagnetic distance measuring systems were

introduced. These systems together with new results in feedback control resulted in

new applications like DP systems for vessels. In 1994, Navstar GPS was declared fully

operational although the first satellite was launched in 1974. Today, GPS receivers

are standard component in tracking control systems. Marine control systems and

their applications to marine vessels have become more and more popular due to the

developments in computer science, propulsion systems and modern sensor technol-

ogy. Other examples of commercially available systems are: attitude control systems

2



for underwater vehicles, fin and rudder-roll stabilization systems, buoyancy control

systems including trim and heel correction systems, propeller and thruster control

systems, and energy and power managements systems. In the following subsections

autopilots, DP systems and tracking control systems are described in details. After

that, a basic configuration of marine control systems for different control objectives

is introduced.

1.1.1 Autopilots

The autopilot or automatic pilot is a device which is used to control an aircraft, ship

or other vehicles without constant human intervention. The earliest autopilots could

do no more than maintain a fixed heading (course-keeping) and they are still in use

by smaller boats during routine cruising nowadays. For vessels, course-keeping is the

first application. However, modern autopilots can conduct more complex maneuvers

like turning, docking operations and even control inherently unstable vessels, e.g.

submarines and some large oil tankers.

The history of autopilot for vessel started with Elmer Sperry (1860-1930), who

constructed the first automatic ship steering mechanism for course keeping in 1911

[1]. This device, which is referred to as the “Metal Mike”, was a gyroscope-guided

autopilot or a mechanical helmsman. Later in 1922, Nicholas Minorsky (1885-1970)

presented a detailed analysis of a position feedback control system where he formu-

lated a three-term control law which today is known as Proportional Integral Deriva-

tive (PID) control [2]. These three different behaviors were motivated by observing

3



the way in which a helmsman steered a ship. The autopilot systems of Sperry and

Minorsky are both single-input single-output control systems, where they compare

the desired heading with the measured heading and compute the rudder command.

In 1960-1961 the Kalman filter was publised by Kalman [3] and Kalman and Bucy

[4]. Two years later in 1963, the theory of Linear Quadratic Regulator controller was

developed, which motivated the application of Linear Quadratic Gaussian (LQG) in

autopilot design [5–7]. With the help of LQG control technique, the autopilot sys-

tem became multi-input multi-output system, and the heading and position of a ship

could be controlled simultaneously. In addition to LQG and H∞ control, other de-

sign techniques have been applied to ship autopilot design to obtain better control

performance, for instance nonlinear control theory [8].

1.1.2 Dynamic Positioning Systems

A DP system is defined by the class societies e.g. Det Norske Veritas (DNV), Amer-

ican Bureau of Shipping (ABS) and Lloyd’s Register (LRS or Lloyd’s), as a sys-

tem that maintains a vessels’s position and heading exclusively by means of active

thrusters. This is obtained either by installing tunnel thrusters in addition to the

main propellers, or by using azimuth thrusters, which can produce thrust in different

directions. In offshore oil and gas industry, dynamic positioning finds very wide ap-

plications. It is almost applicable to all the service vessels. Besides, it is also widely

applied to merchant vessels, cruise ships, yachts and fisheries to assist their docking

and driving operations.
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The great success of PID-based autopilots, and the development of local area

positioning systems suggested that three decoupled PID controllers could be used to

control the motion of a ship in the surge, sway and yaw axes exclusively by means

of thrusters and propellers. The idea was tested in the 1960s, and the invention was

referred to as a DP system. The first DP system was designed using conventional

PID controller in cascade with low pass and notch filters to suppress the wave-induced

motion components [9]. The drawback of the PID controller in cascade with low pass

and notch filters is that additional phase lag and nonlinearities are introduced in the

closed-loop system. In 1976, a new model-based control concept utilizing stochastic

optimal control theory and Kalman filtering techniques was employed to reduce these

problems by Balchen et al. [10]. The Kalman filter is used to separate the low fre-

quency and wave frequency motion components such that only low frequency motion

is fed back. The reason behind this is that the vessel motion is in the low frequency

spectrum, and the high frequency wave motion due to first order wave would cause

wear and tear of the actuators if it enters the feedback loop. Later extensions and

modifications of this work have been reported by many authors such as Balchen et

al. [11], Fung and Grimble [12], Fossen et al. [13], Sørensen et al. [14], Volovodov

et al [15] and Perez and Donaire [16]. The major drawback of Kalman filter is that

the kinematic equations must be linearized about a set of yaw angles, typically 36

operating points in steps of 10◦. As a result, it is very difficult and time consum-

ing to tune the parameters of the Kalman filter. In the 1990s nonlinear controls for

DP were proposed by several research groups. Stephens et al [17] proposed fuzzy

controllers. Aarset et al. [18], Fossen and Grøvlen [19] and Bertin et al. [20] pro-
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posed backstepping and nonlinear feedback linearization for DP. As nonlinear control

techniques were actively developed in 1990s [21]– [24], the linear Kalman filter be-

came an obstacle in the research community. To surmount this obstacle, a passive

nonlinear observer was proposed by Fossen and Strand [25]. One of the motivations

for using nonlinear passivity theory was that the passivity theory allows the control

algorithms to be decomposed into several simpler subsystems. Correspondingly the

number of observer tuning parameters were significantly reduced. As DP technology

became more mature, research efforts were put into the integration of vessel con-

trol systems and missions by including operational requirements into the design of

both the guidance systems and the controllers. Sørensen et al. recommended the

concept of optimal setpoint following for DP of deep-water drilling and intervention

vessel [26]. Leira et al. extended this work and proposed to use structural reliability

criteria of the drilling risers for the setpoint following [27]. Fossen and Strand pre-

sented the nonlinear passive weather optimal positioning control systems for ships and

rigs [28]. The importance of the DP control system for the closed-loop performance

of the station keeping operation is clearly demonstrated in several studies. Mor-

ishita and Cornet [29], Morishita et al. [30] and Tannuri et al. [31] have conducted

detailed performance studies of the DP operations for shuttle tanker and FPSOs.

More recently, Sørensen et al. [32], Nguyen [33]– [35], and Nguyen and Sørensen [36]

proposed the design of supervisory switched hybrid controllers for DP that automat-

ically switch controllers according to whether the sea conditions is clam or choppy,

and from transit to station keeping operations. The main objective of the supervisory

switched control is to integrate a bunch of controllers into a hybrid DP system being
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able to control a vessel to operate in varying environmental and operational condi-

tions. When there are time-varying hydrodynamic disturbances in marine vessels as

shown in [37, 38], the existing DP controllers may not be able to provide satisfac-

tory performance, and the passive nonlinear observer [25] which models time-varying

hydrodynamic disturbances as a first order Markov process may only handle slowly

varying component of the time-varying hydrodynamic disturbances. In this thesis,

to handle the time-varying hydrodynamic disturbances that are present in marine

vessels during DP controller and observer design, adaptive technique is applied. Tra-

ditional model-based adaptive control technique is not suitable since it is generally

useful only when dealing with systems in which the dynamics are linear in the pa-

rameters, the regressors are exactly known, and the uncertainties are parametric and

time-invariant [39,40]. Hence, approximation-based adaptive control [41]– [48], which

does not require parametric or functional certainty, is adopted to compensate for the

disturbances from environment. The approximators in approximation-based adaptive

technique utilize a standard regressor function whose configuration is independent of

the dynamic characteristics of the vessel model.

1.1.3 Tracking Control Systems

A tracking control system is a system that controls a vessel to track a reference

trajectory which is computed from the old to the new position or heading set point.

The transformation of the way points to a feasible path or trajectory is generally a

nonlinear optimization problem. In order to guide a vessel through a busy water way
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or to perform sea operations like dredging operations, towing operations, cable/pipe

laying operations, tracking control is necessary.

The successful application of LQG controllers to vessel autopilots and DP systems,

and the availability of global navigation systems like GPS and GLONASS resulted

in a growing interest for trajectory tracking control [49]– [53]. The controller design

problem can be treated as a nonlinear control problem or solved by means of linear

theory [52]. When there are time-varying hydrodynamic disturbances presented in

marine vessels [37, 38], the trajectory tracking problem with these models for both

state feedback and output feedback control is challenging. Faults in automated pro-

cesses often cause undesired reactions of a controlled plant, and the consequences

could be damaging to the plant, to personnel or the environments. In order to im-

prove the reliability of automated processes, fault-tolerant control has been proposed

and studied as illustrated in [54] and [55]. As a passive fault-tolerant approach, back-

stepping control has been applied in vessel control problems as shown in [51] and [56].

Augmentation of active fault-tolerant components to the backstepping control would

improve its performance. In this thesis, to accommodate faults such as changes of

the loading conditions and trimming of the vessels, and failure of some parts of the

control law in the controller, fault-tolerant tracking control of vessels is investigated.

1.1.4 Basic Configuration

Various methods have been proposed for designing marine control systems used for

DP and trajectory tracking. While the design methodologies may differ, the basic
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configurations are more or less based on the same principles [57], as exemplified in

Fig. 1.1. The functions of the main components are described below.S i g n a lP r o c e s s i n gT h r u s tA l l o c a t i o nT h r u s t e rs e t p o i n t s M e a s u r e m e n t s
ldP o w e rM a n a g e m e n tS y s t e m P o w e rl i m i t s V e s s e lO b s e r v e rV e s s e lA d a p t i v eL a wC o m m a n d e d t h r u s t e rf o r c e s V e s s e l m o t i o n sV e s s e lC o n t r o l l e rf o r c e s G u i d a n c e a n dR e f e r e n c e S y s t e mR e f e r e n c e S y s t e m

Figure 1.1: Basic configuration of marine control systems.

• Signal processing. All signals from the sensors should be analyzed and checked

by a separate signal processing module. This includes testing of the individual

signals and signal voting and weighting when redundant measurements are

available. The individual signal quality verification should comprise tests for

frozen signals, signal range and variance, and signal wild points. If an erroneous

signal is detected, the signal is rejected and not used. The resultant signals

from each sensor group should not contain any steps or discontinuities when

utilized in the system in order to ensure a safe operation.

• Vessel observer. When measurements of parts of the vessel states are not

available, estimates of these vessel states must be computed from available
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measurements through a state observer. In accurate DP control, the influence

of first order wave would be significant. The oscillatory motion due to the first

order wave should not enter the feedback loop, because the wave frequency

motion will cause wear and tear in the propulsion system and there is no

need to reject the oscillatory wave frequency motion. In this case, the so

called wave filtering techniques are used to separates the position and heading

measurements into a low frequency and a wave frequency position and heading

part. For vessels which are not traveling in low speed, the influence of first

order wave would not be so significant.

• Vessel controller. The controller is a set of algorithms that determine the nec-

essary control forces and moments to be provided by the propulsion system

in order to satisfy a certain control objective. The desired control objective

is usually in conjunction with the guidance and reference system. Examples

of control objectives are DP, trajectory tracking, path following, maneuvering

etc. The inputs of the feedback controller are the outputs from the measure-

ment system or state observer. The outputs of the feedback controller are the

commands of the actuation system.

• Guidance and reference system. This system computes the reference position,

velocity and acceleration of a vessel to be used by the control system. These

data are usually provided to the human operator. The basic components of

a guidance system are motion sensors, weather sensors and a computer. The

computer collects and processes the data, and then feeds the results to the
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control system. In many cases, optimization techniques are used to compute

the optimal trajectory for the vessel to follow. This might include features

like fuel optimization, minimum time navigation, weather routing, collision

avoidance, formation control and schedule meeting.

• Thrust allocation. The high-level feedback controller computes the commanded

forces and moments. The thrust allocation module the calculates the corre-

sponding force and direction commands to each thrust device. The low-level

thruster controllers will then control the propeller pitch, speed, torque, and

power to satisfy the desired thrust demands. This module is also the main link

between the control system and the power management system. In any case,

the thrust allocation must handle power limitation of the thrusters in order to

avoid power system overload or blackout.

• Adaptive law. The parameters in the mathematical model describing the vessel

dynamics will change with different environmental and operational conditions.

In a model based observer and controller design, the control system should

be able to automatically provide necessary corrections of the vessel model and

controller gains subject to variations in vessel draught, vessel loading condition,

wind area, and sea state. This can be obtained either by nonlinear and adaptive

formulations or by other techniques such as gain-scheduling.

This thesis mainly focuses on the modules of vessel observer, vessel controller and

adaptive law. The control objective will mainly be DP and trajectory tracking.
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1.2 Interval Type-2 Fuzzy Logic

Uncertainty is ubiquitous in the real world to make things different from one another.

When dealing with real-world problems, uncertainty can be rarely avoided. There

are many sources of uncertainty facing the marine control systems in the real world.

Some of them are as follows.

• Uncertainties in inputs to the control systems. Since the sensor measurements

are always corrupted with colored noise, caused by a combination of inevitable

measurement errors and resolution limits of measuring instruments as well as

wind, waves and ocean currents.

• Uncertainties in control actions. They often result from the lack of sufficient

power for desired control actions or the changes of the actuator characteristics.

• Uncertainties in control algorithms. The control algorithms may be designed

based on mathematical models of vessels, and these models likely contain un-

certainties resulting from unmodelled dynamics and changes of operational

conditions.

In addition, marine applications are characterized by time-varying environmental dis-

turbances and widely changing sea conditions, which brings about extra unavoidable

uncertainties.

Type-1 fuzzy sets, the foundation of fuzzy theory, were introduced as a way of

expressing non-probabilistic uncertainties by Zadeh [58] in 1965. Since then, fuzzy

theory has been applied to construct different kinds of type-1 fuzzy logic controllers
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(FLCs) to control systems where tradition methods may not have good results. After

decades of development, the type-1 FLC is now credited with being an adequate

methodology for designing robust controllers that are able to deliver a satisfactory

performance in face of uncertainty and imprecision [59]– [63]. However, type-1 fuzzy

sets are not sufficient for coping with the uncertainties described above. A primary

reason is that the membership grade of a type-1 fuzzy set is a crisp value so that the

membership function is limited in modeling the shape and position of a fuzzy set. The

introduction of type-2 fuzzy sets overcomes this limitation, since for any value of the

variables, the membership grades of type-2 fuzzy sets are type-1 fuzzy sets instead of

a crisp value. The architecture of type-2 fuzzy sets allows more design freedoms for

modeling and coping with uncertainties.

Type-2 fuzzy sets were first defined and discussed by Zadeh [64]. Later, the

logical connectives enabling AND and OR in particular were studied by Mizumoto and

Tanaka [65] and Dubois and Prade [66]. Gorzalczany [67], Türkşen [68], Schwartz [69]

and Klir and Folger [70] promoted the use of interval type-2 (IT2) fuzzy sets, which

were referred to as interval-valued fuzzy sets. Gorzalczany may be acknowledged as

a pioneer in the development of interval-valued fuzzy sets. For IT2 fuzzy sets to

be applied to real applications in rule-based systems, the output signal needs to be

a crisp value. Karnik and Mendel [71] proposed a type-reduction algorithm as the

first stage for defuzzifing type-2 fuzzy sets by applying the extension principle to a

variety of type-1 defuzzifiers. After the notion of an output processing stage of a

type-2 fuzzy system was developed, the IT2 fuzzy logic systems (FLSs) were fully

defined [72]. After the definitions, the IT2 FLSs have attracted much attention in

13



the research community [73]– [77]. Research has shown that IT2 FLSs outperforms

its type-1 counterparts in several engineering problems [48], [77]– [84]. To better

handle the uncertainties in marine control systems, the IT2 FLSs are combined with

approximation-based adaptive technique in this thesis.

Type-1 FLSs have been found to be able to approximate continuous nonlinear

functions to any desired accuracy over a compact set [85]– [88], thus could be universal

approximators in approximation-based adaptive technique. Research by Hao Ying

[89]– [91] has shed light on the universal approximation property of IT2 FLSs, but

more comprehensive analysis and verification are necessary. As the performance of

the control systems designed in this thesis is guaranteed only when the IT2 FLSs

adequately approximate the underlying functions, another objective of this thesis is

to verify universal approximation property of IT2 FLSs via engineering applications.

1.3 Objectives and Scope of the Thesis

In view of the above review, research gaps for the current study of marine control

systems are summarized below. As the marine environment is characterized by time-

varying environmental disturbances and widely changing sea conditions, the marine

control systems face challenges of complex disturbances and uncertainties. In order

to enhance safety and efficiency, and conduct all-year marine operations in harsh

environment, more advanced control techniques are required for DP and tracking

control. Specifically the active research issues are as follows.

• As accurate modeling of vessels can increase the probability that a control
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system, designed based on mathematical vessel model, achieves similar perfor-

mance in reality, more and more realistic dynamic models for marine vessels

have been developed [92]. With the help of new strip theory in hydrodynamics,

one of the latest vessel models was presented in [37, 38]. Environmental con-

ditions such as wave, current, and other hydrodynamic forces are taken into

consideration by treating them as time-varying hydrodynamic disturbances act-

ing on the vessels. Due to the time-varying hydrodynamic disturbances, few

control systems have been designed based on it.

• Based on International Maritime Organization publication, the Classification

Societies have issued rules for DP vessels, which shows the fast development

and wide applications of DP systems. However, as the new vessel models were

presented, available DP systems show their limitation. New controller and

observer for the new vessel models are necessary.

• As the development of new vessel models, tracking control of these models for

both state feedback and output feedback control is challenging.

• Fault-tolerant control has been widely used in the control of aircrafts, and

gained great successes. In order to improve the reliability of marine control

systems, fault-tolerant marine control systems are need to be explored.

• As extensions of type-1 FLCs, IT2 FLCs were reported to outperform its coun-

terparts in many applications. But it is not clear yet whether adaptive IT2

FLCs will maintain their better performance when dealing with multi-input

multi-output plant like marine vessels.
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• The fact that type-1 FLSs are universal approximators has been proved and

used in their early research stage. But the similar property for IT2 FLSs is still

under study and more effort is required.

In view of the above gaps, the main aim of this study is to apply the combination

of approximation-based adaptive technique and IT2 FLSs to marine control systems

to handle the time-varying hydrodynamic disturbances and uncertainties in DP and

tracking control of marine vessels. The specific objectives of the research are to

• combine approximation-based adaptive technique and IT2 FLSs to handle time-

varying hydrodynamic disturbances and uncertainties,

• design stable adaptive IT2 FLC and observer for DP of floating vessels,

• design stable state feedback and output feedback adaptive IT2 FLC for tracking

control of surface vessels,

• explore fault-tolerant control of marine vessels,

• investigate the universal approximation property of IT2 FLSs via engineering

applications.

The results of this present study may lay the foundation for the application of

adaptive IT2 FLC to marine control system. The combination of approximation-based

adaptive technique and IT2 FLSs would be a new method to handle time-varying

disturbances and uncertainties. The comparative simulations between adaptive IT2

FLCs and its counterparts may contribute to a better understanding of adaptive IT2

FLCs and the approximation property of IT2 FLSs. As a matter of fact, the phrase
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“marine control system” has a very broad meaning. It could be divided into low level

thrust location and high level plant control. And this study is restricted to high level

plant control. As mentioned in Section 1.1, even in high level plant control, marine

control system could have different control objectives. This study mainly focuses

on DP and trajectory tracking control. Based on the implication method, the IT2

FLSs could be divided into Madani IT2 and TSK IT2. This study concentrates on

Madani IT2 FLSs. As simplified forms of type-2 FLSs, IT2 FLSs are central to this

study. General type-2 FLSs are excluded from this study due to its computational

complexity.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 presents the mathe-

matical models of marine vessels for DP and tracking control. The IT2 fuzzy set and

singleton IT2 FLS, which is constructed in the linear in the parameters form, are also

introduced in this chapter. Chapter 3 delineates the design and stability analysis of

the indirect adaptive IT2 FLC for DP of floating vessels. In Chapter 4, a passive

adaptive IT2 fuzzy observer for DP is proposed. The stability property and perfor-

mance of the observer are explored as well. After that, Chapter 5 presents an indirect

as well as a direct adaptive IT2 FLC for tracking control of surface vessels. Although

designed from different points of view, both indirect and direct adaptive IT2 FLC

yield similar and passive closed-loop systems. A comparative study of the proposed

controller against their type-1 counterparts was also conducted in this chapter. Next,
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the design and stability analysis of an output feedback fault-tolerant adaptive back-

stepping IT2 FLC are shown in Chapter 6. Finally, Chapter 7 gives the conclusion

remarks of the thesis and suggestions for future work.
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Chapter 2

Preliminaries and Design Tools

In this chapter, the modeling of marine vessels and IT2 fuzzy set and system is

described in detail. These mathematical preliminaries and design tools will be used

throughout this thesis. Firstly, the mathematical models of marine vessels for DP

and tracking control are introduced. Then, the type-1 FLS is described to provide a

baseline of FLSs. After that, the singleton IT2 FLS is delineated and constructed in

the linear in the parameters form.

2.1 Modeling of Marine Vessels

In this section, the process plant models of marine vessels for DP and tracking control

are introduced. These models are used to conduct the simulation studies throughout

this thesis. The classical model for marine vessel is motivated by Newton’s law and

represented in component form using the Society of Naval Architects and Marine

Engineers (SNAME) notation [93]. After applying nonlinear theory to marine vessel

modeling, hundreds of components were included to describe the dynamics of a vessel

[94]. Hence, model-based control design became relatively complicated due to large

number of hydrodynamic coefficients. These coefficients were difficult to determine

accurately. Consequently, it would be beneficial to reduce the number of coefficients
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by means of physical properties of marine vessels. In 1991, Fossen derived a compact

marine vessel model in 6 degrees of freedom (DOF) using a vectorial setting [95]. This

result was further refined by Sagatun and Fossen [96], Fossen [7], and Berge and Fossen

[97]. It is highly advantageous to use vectorial setting instead of component form when

designing control systems, as system properties like symmetry, skew-symmetry and

positiveness of matrices can be incorporated into the stability analysis. In addition,

these properties are related to passivity of the rigid-body and hydrodynamic models.

Nowadays, the vectorial representation model of marine vessels has been adopted by

the international community as a standard model for marine control systems design,

whereas the component form model is mostly used in hydrodynamic modeling where

isolated effects can be investigated. The modeling of marine vessels can be divided

into two parts: kinematics and dynamics. Kinematics treats only geometrical aspects

of motion, whereas dynamics is the analysis of the forces causing the motion.

2.1.1 Kinematics

For a marine vessel moving in six DOF, six independent coordinates are defined to

determine the position and orientation. The first three coordinates corresponding to

position and translational motion are surge, sway and heave, whereas the last three

coordinates describing orientation and rotational motion are roll, pitch and yaw. The

detailed definition and notation of these coordinates are described in Table. 2.1 and

Fig. 2.1. The motions of a marine vessel are conventionally defined and measured

with respect to two coordinate frames as shown in Fig. 2.1, namely an earth-fixed
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frame and a body-fixed frame.

Table 2.1: The notation of SNAME for marine vessels.

Positions and Linear and

DOF Euler angles angular velocities

1 motion in the x direction (surge) x u

2 motion in the y direction (sway) y v

3 motion in the z direction (heave) z w

4 rotation about the x axis (roll) φ p

5 rotation about the y axis (pitch) θ q

6 rotation about the z axis (yaw) ψ r

X

Y

Z

O

p  (roll) 

u  (surge)

q  (pitch) 

v  (sway) 

w  (heave) 

r  (yaw) 

XE

YE

ZE

OE

Figure 2.1: Earth-fixed and body-fixed coordinate frames.

The earth-fixed frame, denoted as XEYEZE, is defined relative to the Earth’s

reference ellipsoid. For this frame, the XE axis points towards the north, the YE axis

points towards the east, and the ZE axis points downwards normal to the earth’s

surface. It is mainly used for local guidance and navigation. The body-fixed frame,
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denoted as XYZ, is fixed to the hull of the vessel, with X axis pointing to the bow, the

Y axis pointing to the starboard, and the Z axis pointing downward. The origin of this

frame is normally located at the vessel’s center of gravity. Define η′ = [x, y, z, φ, θ, ψ]T

be the vector representing the position and orientation of the vessel with respect to

an earth-fixed frame, and let ν ′ = [u, v, w, p, q, r]T denote the translation and rotation

velocities of the vessel decomposed in the body-fixed frame. Then, the transformation

between the earth-fixed and body-fixed velocity vectors is

η̇′ = J′(η′)ν ′. (2.1)

where J′(η′) is a state dependent transformation matrix, whose detailed definition

can be found in [92].

2.1.2 Dynamics

The 6 DOF model of a marine vessel with fluid memory effects introduced in this

subsection is based on [37] and [38]. Since the hydrodynamic forces are different for

low-speed vessels and non-zero forward speed vessels, the equations of motion for low-

speed applications like DP and non-zero forward speed applications like trajectory

tracking are different. The equation of motion for DP, which is in body-fixed frame,

is given by

M′ν̇ ′ + B̄′ν ′

r + G′η′ = τ ′ + τ ′

H, (2.2)

whereas the equation of motion for tracking control is expressed as

M′ν̇ ′ + C′

RBν ′ + C′

Aν ′

r + B̄′ν ′

r + G′η′ = τ ′ + τ ′

H, (2.3)

22



where M′ = M′

RB + Ā′ ∈ R6×6 is the sum of the system inertia matrix and the

added mass matrix. C′

RB ∈ R6×6 is the Coriolis-Centripetal matrix. C′

A ∈ R6×6 is

the induced matrix of added mass. ν ′

r = ν ′ − ν ′

c ∈ R6 is the relative velocity vector

between vessel velocity vector ν ′ and sea current velocity vector ν ′

c. B̄′ ∈ R6×6 is

the constant infinite frequency potential damping matrix. G′ ∈ R6×6 is the restoring

matrix. τ ′ ∈ R6 is the control force vector produced by the propeller system. τ ′

H ∈ R6

is a vector of time-varying hydrodynamic forces and moment, and can be expressed

by

τ ′

H = τ ′

CFD + τ ′

Wave − µ′ (2.4)

where τ ′

CFD ∈ R6 is the cross-flow drag and surge resistance vector. τ ′

Wave ∈ R6 is

the wave load vector, which is computed according to Response Amplitude Operator

tables. µ′ ∈ R6 is computed as follows using a state space model to represent the

fluid memory effects.

χ̇ = Arχ + Brν
′

r (2.5)

µ′ = Crχ + Drν
′

r (2.6)

where (Ar,Br,Cr,Dr) are constant matrices of appropriate dimensions. All the

detailed definition and computation of the above matrices and vectors can be found

in [92] and [37] and references therein.

2.1.3 Marine System Simulator

The marine system simulator (MSS) [98] is a Simulink-based software package that

provides the resources for quick implementation of mathematical models of marine
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systems with focus on control system design. It is developed in Norwegian University

of Science and Technology with the help of other research groups. Although it is still

a undergoing project and requires contribution from marine researchers and profes-

sionals all over the world, it has already gained the capability of integrating with the

output files of different commercial hydrodynamic codes, so that it could simulate the

real situation as closely as possible. The proposed algorithms in this thesis are tested

on the MSS platform. The main organization of the software package is [99]:

• Marine GNC Toolbox

• Add-in libraries

• Marine Visualization Toolbox

• Matlab support function

The Marine GNC (guidance navigation and control) Toolbox is the core compo-

nent of MSS, and most of the other components make use of it. The add-in libraries in-

corporate further functionality to MSS. At this stage, there are three add-ins, namely

Marine Hydro, Marine Propulsion and Marine Systems. The Marine Hydro add-in

provides Matlab functions that read the output files of commercial hydrodynamic

software such as ShipX-VERES, SEAWAY and WAMIT to make the vessel model

more accurate. The Marine Propulsion add-in targets simulation and control design

for propellers, rudders and thrusters. The Marine Systems add-in is a Simulink li-

brary with complex system ready to simulate. The Marine Visualization Toolbox

displays data from simulation, experiments or measurements of marine systems as

3D animations. With further benchmark with model testing of vessels, the MSS has
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the potential to outperform the commercial aNySIM software developed by MARIN.

2.2 Type-1 Fuzzy Logic System

2.2.1 Basic Structure

A type-1 fuzzy set A, for a single variable x ∈ X, is defined as

A = {(x, µA(x)) | x ∈ X} , (2.7)

where type-1 membership function, µA(x) is constrained to be between 0 and 1 for all

x ∈ X , and is a two-dimensional function. A type-1 FLS is constructed completely by

type-1 fuzzy sets. It contains four components, namely fuzzifier, rule base, inference

engine and defuzzifier, as shown in Fig. 2.2.

Fuzzifier Rules

Inferenc e

Crisp

inputs

Fuzzy

input sets

Defuzzifier

Fuzzy

output sets

Crisp

outputs

Figure 2.2: A type-1 FLS.

The fuzzifier maps a crisp point x = (x1, . . . , xn)
T ∈ X1 × X2 × . . . × Xn ≡ X

into a fuzzy set Ax in X. The most widely used fuzzifier is the singleton fuzzifier,

i.e., Ax is a fuzzy singleton with support x′. In other words, µAx
(x) = 1 for x = x′

and µAx
(x) = 0 for all other x ∈ X with x 6= x′. Nonsingleton fuzzifier, on the other

hand, maps xi = x′i into a fuzzy number where a membership function is associated
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with it. In particular, µXi
(x′i) = 1 (i = 1, . . . , n) and µXi

(x′i) decreases from unity as

xi moves away from x′i. Rule base is the heart of a FLS and they can be expressed as

a collection of IF-THEN statements. The IF-part of a rule is its antecedent, and the

THEN-part of a rule is its consequent. The terms that appear in the antecedents or

consequents of rules are associated with type-1 fuzzy sets. Next, the inference engine

maps fuzzy input sets to fuzzy output sets according to rule base. It handles the way

in which rules are activated and combined. Finally, the defuzzifier transforms the

output fuzzy sets into crisp outputs.

2.2.2 Universal Approximation Property

How well does a FLS approximate an unknown function? This is an important

question that is asked about all types of function appproximators in the application

of approximation-based adaptive control. By using the Stone-Weirstrass theorem,

it was firstly proven that a singleton FLS that uses product composition, product

implication, Gaussian membership functions, and height defuzzification can uniformly

approximate any real continuous nonlinear function to arbitrary degree of accuracy

[85]. There is now a very large literature about different kinds of FLSs that are

universal approximators, all of which are summarized very well by Kreinovich et al.

[100].

Basically, a universal approximation theorem is an existence theorem. It helps to

explain why a FLS is so successful in engineering application. However, it does not

tell us how to specify a FLS. Currently, the research on the universal approximation
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property of FLSs can be classified into two aspects, the qualitative aspect and the

quantitative aspect. On the qualitative aspect, the major concerns are to identify var-

ious classes of FLSs which have the universal approximation property and to analyze

the mechanism as to why such a property is valid [88]. On the quantitative aspect,

the main concern is to establish approximation error bounds and to analyze the ap-

proximation accuracy for various classes of FLSs [87]. The design degrees of freedom

that control the approximation accuracy of a FLS are: number of inputs, number

of rules, and number of fuzzy sets for each input variable. Although increasing the

number of fuzzy sets for each input could improve the approximation accuracy, it

could also result in rule explosion. If there are p inputs, each of which is divided

into r overlapping regions, then a complete FLS must contain rp rules. As resolution

parameter r increase, the size of the FLS becomes enormous. So there is a practical

tradeoff between resolution and complexity. One way to achieve high resolution and

low complexity is to design the FLS using representative data that are collected for

a specific application. Another way is to make use of uncertainty. As explained in

Section 1.2, this can be done within the framework of IT2 FLSs [74].

Remark 2.1 It is noted that the universal approximation property of FLSs holds only

for compact set. Thus, whenever the universal approximation property is used in this

thesis, the signals involved are already assumed to be bounded by a compact set, which

could be made as large as deemed necessary in practical applications.
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2.3 Interval Type-2 Fuzzy Set and System

An IT2 FLS is a fuzzy system that uses IT2 fuzzy set and/or IT2 fuzzy logic and

inference.

2.3.1 Interval Type-2 Fuzzy Set

A type-2 fuzzy set on a universe of discourse X, denoted as Ã, is characterized by a

type-2 membership function µÃ(x) as in

Ã = {(x, µÃ(x))|∀x ∈ X} = {((x, u), fx(u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]}, (2.8)

where µÃ(x), which can also be referred to as a secondary membership function or

a secondary set, is a type-1 fuzzy set. fx(u) is a secondary grade such that 0 ≤

fx(u) ≤ 1. Jx is called primary membership of x. The uncertainty in the primary

memberships of a type-2 fuzzy set Ã, consists of a bounded region that is called

the footprint of uncertainty (FOU). It is the union of all primary memberships [74].

Fig. 2.3 shows the membership function of a type-2 fuzzy set where relevant definitions

are demonstrated. Many choices are possible for the secondary membership functions,

and the name that is used to describe the type-2 membership function is associated

with the name of the secondary membership function. When fx(u) = 1, ∀u ∈ Jx ⊆

[0, 1], then the secondary membership functions are interval sets, and an interval

type-2 fuzzy sets may be defined as

Ã = {(x, µÃ(x))|∀x ∈ X} = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]}. (2.9)
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Figure 2.3: Vertical-slice of a type-2 fuzzy set.

Interval secondary membership functions reflect a uniform uncertainty at the primary

memberships of x. The secondary membership function of an interval type-2 fuzzy

set can be represented just by its domain interval, which is bounded by an upper and

a lower membership function. The upper membership function is the upper bound of

FOU(Ã) and is denoted by µÃ(x), ∀x ∈ X, whereas the lower membership function

is the lower bound of FOU(Ã) and is denoted by µ
Ã
(x), ∀x ∈ X. Hence, the interval

type-2 fuzzy set (2.9) can be re-expressed by

Ã = {((x, u), 1)|∀x ∈ X, ∀u ∈ [µ
Ã
(x), µÃ(x)]}. (2.10)

Fig. 2.4 shows the membership function of an IT2 fuzzy set. When compared to

the type-1 fuzzy sets, using interval type-2 fuzzy sets has many advantages. Some

of these advantages are as follows. As the interval type-2 fuzzy sets include FOUs,

they can model and handle the linguistic and numerical uncertainties associated with

the inputs and outputs of the FLSs, and hence can handle the difficulty associated

with determining the exact membership functions for the fuzzy sets [78, 101]. Using
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Figure 2.4: Vertical-slice of an interval type-2 fuzzy set.

interval type-2 fuzzy sets to represent inputs and outputs of the FLSs will result in

the reduction of the fuzzy rules as the uncertainty in FOU of the interval type-2

fuzzy sets covers the same range as type-1 fuzzy sets with smaller number of labels.

The rule reduction will be greater when the number of the inputs increases [79]. An

interval type-2 fuzzy set can be interpreted as a combination of numerous embedded

type-1 fuzzy sets [75,102]. Using such a large number of type-1 fuzzy sets to describe

the inputs or outputs allows for a detailed description of the control surface.

2.3.2 Interval Type-2 Fuzzy Logic System

In this thesis, a singleton IT2 FLS whose general configuration is depicted in Fig. 2.5

is considered. The main structural difference between an IT2 FLS and a type-1 FLS

lies in that the defuzzifier block of a type-1 FLS is replaced by the output porcess-

ing block in an IT2 FLS, which consists of a type-reducer followed by a defuzzifier.

Consequently, there are five components in an IT2 FLS, namely fuzzifier, rule base,

fuzzy inference engine, type-reducer, and defuzzifier.
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Figure 2.5: A singleton interval type-2 FLS.

2.3.2.1 Fuzzification

The fuzzifier maps a crisp point x = (x1, . . . , xn) ∈ U ⊂ Rn into a set of IT2 fuzzy

sets Ãxi
(i = 1, 2, . . . , n) in U. In the singleton fuzzification, the input fuzzy set Ãxi

has only a single point of nonzero membership as follows.

µÃxi
(xi) =







1; xi = x′i

0; xi 6= x′i

(2.11)

2.3.2.2 Rule Base

The fuzzy rule base in IT2 FLSs remains the same as in type-1 FLSs and consists of

a group of fuzzy IF-THEN rules. The rules can be extracted from numerical data

or provided by experts. Consider an IT2 FLS having n inputs and one output, then

the lth rule in the rule base can be written as

Rl : IF x1 is F̃ l
1 and · · · and xn is F̃ l

n THEN y is G̃l, (2.12)

where l = 1, 2, . . . ,M , xi (i = 1, 2, . . . , n) and y are the inputs and output to the IT2

FLS respectively, F̃ l
i and G̃l are labels of antecedent and consequent fuzzy sets in Ui

and R, respectively. This rule represents a type-2 relation between the input space
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U and output space R.

2.3.2.3 Fuzzy Inference Engine

The fuzzy inference engine combines fuzzy IF-THEN rules and provides a mapping

from input IT2 fuzzy sets in U to output IT2 fuzzy set in R. Each rule is interpreted

as a fuzzy implication. Using the extended sup-star compositional rule of inference,

the output consequent set corresponding to rule Rl of a singleton IT2 FLS can be

expressed as

µB̃l(y) = µG̃l(y) ⊓
[

⊓ni=1µF̃ l
i
(x′i)

]

, (2.13)

where the firing set ⊓ni=1µF̃ l
i
(x′i) ≡ F l(x′) is an interval type-1 fuzzy set, i.e.,

F l(x′) =
[

f l(x′), f
l
(x′)

]

(2.14)

f l(x′) = µ
F̃ l

1

(x′1)⋆ · · ·⋆µ
F̃ l

n

(x′n) (2.15)

f
l
(x′) = µF̃ l

1

(x′1)⋆ · · ·⋆µF̃ l
n
(x′n), (2.16)

where µ
F̃ l

i

(x′i) and µF̃ l
i
(x′i) are the lower and upper membership grade of IT2 fuzzy

set F̃ l
i , respectively, symbol ⋆ denotes the t-norm corresponding to the conjunction

”and” in (2.12). Fig. 2.6 describes the input and antecedent operation for a singleton

IT2 FLS that has two inputs. The fired output consequent set µB̃l(y) for the lth rule

can be written as

µB̃l(y) = {(bl, 1)|bl ∈
[

f l⋆µ
G̃l

(y), f
l
⋆µG̃l(y)

]

}, (2.17)

where µ
G̃l

and µG̃l are the lower and upper membership grades of consequent fuzzy

set, G̃l.
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Figure 2.6: Pictorial description of input and antecedent operation for a singleton

interval type-2 fuzzy logic system.

2.3.2.4 Type-reduction and Defuzzification

The type-reduction operator acts on the IT2 fuzzy set representing the output of

the inference engine to generate a type-1 fuzzy set. This type-1 fuzzy set is then

defuzzified to obtain crisp output. Many kinds of type-reduction methods are avail-

able, such as centroid, center of sums, height and center of sets type-reduction. In

this thesis, center of sets type-reduction is used, as it has reasonable computational

complexity. Assume maximum t-conorm, product t-norm, and product implication

are used. Then the result of the type-reduction process is an interval type-1 fuzzy

set [y′l, y
′

r], whose left end point y′l and right end point y′r can be computed using the

Karnik-Mendel iterative procedure [74]. Under the assumption that the consequent
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sets are singletons yi (i = 1, . . . ,M), y′l and y′r can be expressed as

y′l =

∑L
i=1 f

i
yi +

∑M
i=L+1 f

iyi

∑L
i=1 f

i
+

∑M
i=L+1 f

i
(2.18)

y′r =

∑R
i=1 f

iyi +
∑M

i=R+1 f
i
yi

∑R
i=1 f

i +
∑M

i=R+1 f
i
. (2.19)

where L denotes the left switch point, and R denotes the right switch point. It

is noted that the yi (i = 1, . . . ,M) in (2.18) and (2.19) are arranged in ascending

order and [f i, f
i
] are the corresponding weights of yi. The standard Karnik-Mendel

algorithm is an efficient algorithm that searches for the switch points L and R. The

detailed procedure of the Karnik-Mendel iterative algorithm may be stated as

• Step 1: Arrange yi (i = 1, . . . ,M) in ascending order and relabel them as

y1 < y2 < · · · < yM . Let [f i, f
i
] be the corresponding weight of yi;

• Step 2: Set

f i =
f i + f

i

2

for i = 1, . . . ,M and then compute

yc =

∑M

i=1 y
if i

∑M

i=1 f
i

;

• Step 3: Find the switch point k ∈ [1,M − 1] such that

yk ≤ yc ≤ yk+1;

• Step 4: Set f i as

– for y′l computation:

f i =







f
i
; for i ≤ k

f i; for i > k
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– for y′r computation:

f i =







f i; for i ≤ k

f
i
; for i > k

and compute

y′c =

∑M
i=1 y

if i
∑M

i=1 f
i

;

• Step 5: if y′c = yc, stop. k is the actual switch point L (R) and y′l = yc (y′r = yc).

Otherwise, set yc = y′c and go to Step 3.

According to [103,104], the standard Karnik-Mendel algorithm can be represented in

vector form. Let y = (y1, . . . , yM)T represent the original consequent values, and let

ŷ = (ŷ1, . . . , ŷM)T denote the reordered sequences, where ŷ1 ≤ ŷ2 ≤ . . . ≤ ŷM . The

formula linking y and ŷ is

ŷ = Qy, (2.20)

where Q is a M ×M permutation matrix with elementary vectors as columns, and

these vectors are permuted to re-order the elements in y such that the elements in

ŷ are in ascending order. The original rule firing strength f = (f 1, f 2, . . . , fM)T and

f = (f
1
, f

2
, . . . , f

M
)T are accordingly reordered. To compute the end points, the new

orders for f and f are Qf and Qf respectively. The left end point y′l of the interval

type-reduced set can be computed as

y′l =

∑L
i=1(Qf)iŷ

i +
∑M

i=L+1(Qf)iŷ
i

∑L
i=1(Qf)i +

∑M
i=L+1(Qf)i

=
f
T
QTET

1 E1Qy + fTQTET
2 E2Qy

pT
l Qf + gT

l Qf
,

(2.21)
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where

pl = (1, 1, . . . , 1
︸ ︷︷ ︸

L

, 0, . . . , 0)T ∈ RM×1

gl = (0, . . . , 0, 1, 1, . . . , 1
︸ ︷︷ ︸

M−L

)T ∈ RM×1

E1 = (e1, e2, . . . , eL, 0, . . . , 0)T ∈ RL×M

E2 = (0, . . . , 0, ε1, ε2, . . . , εM−L)
T ∈ R(M−L)×M

and where ei ∈ RL and εi ∈ RM−L are elementary vectors [104]. Similarly, the output

y′r can be expressed as

y′r =

∑R

i=1(Qf)iŷ
i +

∑M

i=R+1(Qf)iŷ
i

∑R
i=1(Qf)i +

∑M
i=R+1(Qf)i

=
fTQTET

3 E3Qy + f
T
QTET

4 E4Qy

pT
r Qf + gT

r Qf
,

(2.22)

where

pr = (1, 1, . . . , 1
︸ ︷︷ ︸

R

, 0, . . . , 0)T ∈ RM×1

gr = (0, . . . , 0, 1, 1, . . . , 1
︸ ︷︷ ︸

M−R

)T ∈ RM×1

E3 = (e1, e2, . . . , eR, 0, . . . , 0)T ∈ RR×M

E4 = (0, . . . , 0, ε1, ε2, . . . , εM−R)T ∈ R(M−R)×M

and where ei ∈ RR and εi ∈ RM−R are elementary vectors. Finally, the interval

type-1 fuzzy set is defuzzified to generate the system output by means of computing

the average of y′l and y′r. Hence the defuzzified output is

y′ =
y′l + y′r

2
. (2.23)

Defining the consequent parameters θ = y = (y1, . . . , yM)T as adjustable parameters,

then (2.23) can be written as

y′ = φTθ (2.24)
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where

φT =
f
T
QTET

1 E1Q + fTQTET
2 E2Q

2(pT
l Qf + gT

l Qf)

+
fTQTET

3 E3Q + f
T
QTET

4 E4Q

2(pT
r Qf + gT

r Qf)

(2.25)

is a regressive vector. As illustrated in (2.24), the singleton IT2 FLS using maximum

t-conorm, product t-norm, product implication, and center of sets type-reduction can

be expressed as a linear in the parameters model. In addition, as shown in (2.21) and

(2.22), the Karnik-Mendel algorithm is embedded in (2.24).
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Chapter 3

Dynamic Positioning via Adaptive IT2

Fuzzy Control

One major application of automatic control technique in the offshore and marine

industry is DP. DP systems are widely used in situations where mooring or anchoring

is not feasible due to deep water, congested structures such as pipelines on the sea

bottom or other economical issues. DP systems maintain floating structures in fixed

position and heading for marine operation purpose exclusively by means of active

propellers and thrusters. The objective of this chapter is to position and orientate

the DP vessels to a fixed placement via attached thruster systems, which actually is

a regulation problem. To fulfill this objective, an indirect adaptive IT2 FLC for DP

vessels under time-varying hydrodynamic disturbances is proposed. It overcomes

the limitations of model-based adaptive control technique to provide an effective

control algorithm for the newly developed vessel model [37, 38]. The combination

of approximation-based adaptive technique and IT2 FLS allows us to handle time-

varying hydrodynamic disturbances without the need for exact information about the

disturbances. Besides, the DP problem is treated as an engineering application to

investigate the approximation property of IT2 FLS.

The remainder of this chapter is organized as follows. The design and stability
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analysis of the indirect adaptive IT2 FLC for DP is delineated in Section 3.1. Section

3.2 describes the simulation results of the closed-loop system. Comparisons with

other controllers are also shown in this section. Finally, conclusions of this chapter

are drawn in Section 3.3.

3.1 Adaptive Fuzzy Logic Controller Design

In this section, the process plant model is first simplified to facilitate the controller

design. Then, an indirect adaptive IT2 FLC for DP is proposed. Using Lyapunov

synthesis, the sufficient condition under which the regulation errors will semiglobally

asymptotically converge to zero, is proposed.

3.1.1 Control Plant Model

The models of marine vessels may be classified into two categories [57], namely a

process plant model and a control plant model. The process plant model, which

simulates the real plant dynamics as closely as possible including process disturbance,

sensor outputs and control inputs, is used for numerical analysis and simulation to

study the performance and stability of the closed-loop system. The control plant

model, which is a simplified form of the complicated process plant model, is used for

controller design and theoretical stability analysis (e.g., in the sense of Lyapunov). In

this thesis, the time-varying disturbances and uncertainties in the process plant model

are lumped together in the control plant model and then handled by IT2 FLSs. The

process plant model (2.1) and (2.2) for DP described in Section 2.1 is simplified on
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the basis of the following assumptions to facilitate the controller design and analytical

stability analysis.

Assumption 3.1 The motions along the heave, roll, and pitch directions are not

controlled. A conventional marine vessel is not equipped with actuators in roll and

pitch axes, which suggests that the roll and pitch motions cannot be regulated. More-

over, a conventional vessel is metacentric stable, which means that there are restoring

force and moments along heave, roll and pitch, thus this assumption is appropriate.

Assumption 3.2 The state variables of the vessel, i.e. displacements and velocities

along surge, sway, and yaw, are measured by its own on-board devices such as gyro

system, GPS, and accelerometers. Due to the development of the modern integration

system of inertial sensors and satellite navigation system, this assumption is also

appropriate.

Assumption 3.3 The influence of sea current ν ′

c is ignored. This assumption sim-

plifies the theoretical analysis. Its appropriateness would be tested in the simulation

studies.

Applying Assumptions 3.1-3.3 to (2.1) and (2.2), the following control plant model

for DP is obtained.

η̇ = J(η)ν (3.1)

Mν̇ + B̄ν = τ + τH(ν) (3.2)

where η = [x, y, ψ]T is the displacement vector along surge, sway, and yaw axes,

whereas ν = [u, v, r]T is the velocity vector. J(η) ∈ R3×3 is the rotation matrix.
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Note that JJT = I (I is the identity matrix). M ∈ R3×3 is the system inertia matrix

including the added mass. B̄ ∈ R3×3 is the potential damping matrix. τ ∈ R3 and

τH(ν) ∈ R3 are three dimensional versions of τ ′ and τ ′

H respectively.

3.1.2 Control and Adaptive Law

Indirect adaptive fuzzy control is an adaptive fuzzy controller that uses fuzzy logic

systems to provide an estimation of the plant model. It can incorporate fuzzy descrip-

tions of some parts of the plant in the model. Here, the hydrodynamic disturbances

τH in the plant model (3.2) are estimated by singleton IT2 FLSs (2.24) as

τH(ν) = −Φ(ν)Θ∗

D + ωD(ν), (3.3)

where ωD(ν) ∈ R3 is a vector of minimum estimation error.

Θ∗

D = (θ∗T
1 , θ∗T

2 , θ∗T
3 )T ∈ R3M×1

= arg minΘD∈R3M [ supν∈Uν
|τH(ν) + Φ(ν)ΘD|]

(3.4)

is the ideal weighting vector and

Φ(ν) = diag[φT
1 (ν),φT

2 (ν),φT
3 (ν)] ∈ R3×3M (3.5)

is the regressive matrix. The input signals of the FLSs, ν, is the velocity vector of

the vessel because the hydrodynamic disturbances are directly related to the velocity

vector of a vessel. As a multi-output FLS can generally be separated into several

single-output FLSs, three sub-FLSs that have M rules each are used to approximate

the three dimensional hydrodynamic disturbances in the surge, sway and yaw axes.
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Equipping the linear proportional derivative (PD) controller with indirect adap-

tive IT2 estimation, the proposed control and adaptive law for plant (3.1), (3.2) are

as follows.

τ = −λ1ν − λ2J
T(η)e + Φ(ν)Θ̂D (3.6)

˙̃ΘD = λ3Φ
T(ν)(λ4ν +

2JT(η)e

1 + 2eTe
) (3.7)

where e = η−ηd ∈ R3 is the control error vector between vessel displacement vector

η and the desired vessel placement vector ηd. Θ̃D = ΘD − Θ̂D ∈ R3M is the error

vector between ideal ΘD in (3.4) and adapted Θ̂D, and λi (i = 1, . . . , 4) are positive

constant.

Application of control and adaptive law (3.6), (3.7) to the plant (3.1), (3.2) yields

the resultant closed-loop system

Mν̇ + B̄ν = −λ1ν − λ2J
T(η)e − Φ(ν)Θ̃D + ωD(ν) (3.8)

˙̃ΘD = λ3Φ
T(ν)(λ4ν +

2JT(η)e

1 + 2eTe
) (3.9)

ė = η̇ = J(η)ν. (3.10)

3.1.3 Stability Analysis

Theorem 3.1 The regulation error e of the closed-loop system (3.8)-(3.10) semiglob-

ally asymptotically converge to zero if ωD is squared integrable,

4λ2
M − λ2

4λ2λm < 0, (3.11)

and

(λd + 2λ1)
2 − 8(λ2 − 1)(

λ4λd
2

+ λ1λ4 − 2λM − λ2
4

4
− 1) < 0, (3.12)
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where λm and λM are the minimum and maximum eigenvalue of matrix M respec-

tively, and λd is the minimum eigenvalue of matrix B̄ + B̄T.

Proof: Consider the following Lyapunov function candidate.

VD =
λ2λ4

2
eTe +

λ4

2
νTMν +

2νTMJTe

1 + 2eTe
+

1

2λ3
Θ̃T

DΘ̃D (3.13)

To make sure the Lyapunov function candidate VD positive definite, due to the fact

‖J‖ = 1 and λmI ≤ M ≤ λMI, we have

VD1 =
λ2λ4

2
eTe +

λ4

2
νTMν +

2νTMJTe

1 + 2eTe

≥λ2λ4

2
eTe +

λ4λm
2

νTν − 2λM
1 + 2eTe

νTe,

If 4λ2
M − λ2

4λ2λm < 0, then VD1 is positive definite, additionally,

VD2 =
1

2λ3

Θ̃T
DΘ̃D

is positive definite, thus VD = VD1 + VD2 is positive definite.

Differentiation of VD along the trajectory of the closed-loop system (3.8)-(3.10)

yields

V̇D = − λ4ν
TB̄ν − λ1λ4ν

Tν +
2νTMν

1 + 2eTe
− 2eTJB̄ν

1 + 2eTe
− 2λ1e

TJν

1 + 2eTe

− 2λ2e
Te

1 + 2eTe
− 8eTννTMe

(1 + 2eTe)2
+ λ4ν

TωD +
2eTJωD

1 + 2eTe
.

Applying λdI ≤ B̄ + B̄T, we have

V̇D ≤− (
λ4λd

2
+ λ1λ4 − 2λM)νTν − (λd + 2λ1)e

Tν − 2λ2e
Te + λ4ν

TωD + 2eTωD

≤− (
λ4λd

2
+ λ1λ4 − 2λM − λ2

4

4
− 1 + 1)νTν − (λd + 2λ1)e

Tν − (2λ2 − 2 + 1)eTe

− (
1

2
λ4ν + ωD)T(

1

2
λ4ν + ωD) − (e + ωD)T(e + ωD) + 2ωT

DωD.
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If (λd + 2λ1)
2 − 8(λ2 − 1)((λ4λd)/2 + λ1λ4 − 2λM − λ2

4/4 − 1) < 0 then

V̇D ≤ −νTν − eTe + 2ωT
DωD.

Integrating both sides of the above equation yields

∫ t

0

νTνdr +

∫ t

0

eTedr ≤ VD(0) + 2

∫ t

0

ωT
DωDdr.

This demonstrates that all the states and signals involved in the closed-loop system

are bounded. Furthermore, if ωD is squared integrable, that is
∫

∞

0
ωT

DωDdr <∞, we

have e ∈ L2. As all the signals are bounded, we have ė ∈ L∞. According to the

Barbalat’s Lemma, we have limt→∞ |e| = 0.

Remark 3.1 For plant (3.1), (3.2), an intuitive adaptive law may be

˙̃ΘD = λ5Φ
T(ν)ν, (3.14)

but rigorous analysis indicates that the regulation error using such adaptive law cannot

asymptotically converge.

Remark 3.2 Here, the theorem is developed for the case where the gains λi (i =

1, . . . , 4) are scalar, the proof for the case where the gains are matrices can be easily

extended via a similar approach.

Remark 3.3 In this chapter the IT2 FLSs are used as estimates of the time-varying

hydrodynamic disturbances. If other universal approximators, which can be expressed

in the linear in the parameters form like (2.24), are used, the stability analysis will be

same. Potential approximators could be type-1 FLSs, neural networks and polynomials

etc.
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Remark 3.4 From Theorem 3.1, it can be seen that in order for the regulation error

e to converge to zero, the minimum approximation error ωD is required to be small

(in the sense of squared integrable). Based on the universal approximation property

discussed in Section 2.2.2, if a sufficient number of rules are used to construct τH,

the ωD should be small.

3.1.4 Passivity Interpretation

Passivity theory gives a framework for the design and analysis of control systems

using an input-output description according to energy-related considerations. And

the input-output description further allows for a modular approach to control systems

design and analysis [105]. As illustrated in Fig. 3.1, the closed-loop system (3.8)-(3.10)

can be interpreted as the negative feedback interconnection of two subsystems with

respective inputs u1, u2 and outputs y1 and y2, with y1 = u2 and u1 = ωD(ν) − y2,

and the two subsystems as follows.
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Figure 3.1: Closed-loop equivalent representation for DP.
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Subsystem 1:






Mν̇ + B̄ν = −λ1ν − λ2J
T(η)e + u1

y1 = λ4ν + 2JT(η)e
1+2eTe

(3.15)

Subsystem 2:






˙̃ΘD = λ3Φ
T(ν)u2

y2 = Φ(ν)Θ̃D

(3.16)

Theorem 3.2 The closed-loop system (3.8)-(3.10) is passive if

4λ2
M − λ2

4λ2λm < 0 (3.17)

and

(λd + 2λ1)
2 − 8(λ2 − 1)(

λ4λd
2

+ λ1λ4 − 2λM − λ2
4

4
− 1) < 0. (3.18)

Proof: For subsystem 1, its supply rate is

∫ t

0

uT
1 y1ds

=

∫ t

0

(λ4ν +
2JTe

1 + 2eTe
)T(Mν̇ + B̄ν + λ1ν + λ2J

Te)ds

=

∫ t

0

[λ2λ4ν
TJTe +

d

ds
(
λ4

2
νTMν +

2νTMJTe

1 + 2eTe
)]ds

+

∫ t

0

[λ4ν
TB̄ν + λ1λ4ν

Tν − 2νTMν

1 + 2eTe
+

2eTJB̄ν

1 + 2eTe

+
2λ1e

TJν

1 + 2eTe
+

2λ2e
Te

1 + 2eTe
+

8eTννTMe

(1 + 2eTe)2
]ds,

if (3.17) and (3.18) are satisfied,

∫ t

0

uT
1 y1ds ≥ VD1(t) − VD1(0),

which means the subsystem 1 is passive with supply rate
∫ t

0
uT

1 y1ds and storage func-

tion VD1, which has been defined during the proof for Theorem 3.1.
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For subsystem 2, its supply rate is

∫ t

0

uT
2 y2ds =

∫ t

0

Θ̃T
DΦT(ν)u2ds

=

∫ t

0

Θ̃T
D

1

λ3

˙̃ΘDds

≥VD2(t) − VD2(0)

which means the subsystem 2 is passive with supply rate
∫ t

0
uT

2 y2ds and storage func-

tion VD2.

According to the fact that the negative feedback interconnection of two passive

systems is passive, the closed-loop system (3.8)-(3.10) is passive.

3.2 Simulation Studies

The simulation studies are performed on the platform of MSS [98]. A container ship

named as S-175 [37, 98], whose main particulars are shown in Table 3.1, is used as

case study. The subsequent simulation results are obtained for following seas with

the International Towing Tank Conference (ITTC) wave spectrum using significant

wave height Hs = 5 m and peak frequency ω0 = 0.56 rad/s. The significant wave

height Hs is used to classify the type of sea, Hs = 5 m corresponds to very rough sea

with large waves. Even though ignored during Lyapunov analysis, the sea current is

set with speed Vc = 2 m/s and direction βc = 30◦ in the following simulations. The

control objective is set to regulate the vessel to state [ηT
d ,ν

T
d ] = [0, 0] from initial

state [ηT
0 ,ν

T
0 ] = [2, 2, 5◦, 0, 0, 0].
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Table 3.1: Main particulars of the S-175.

Ship S-175

Length between perpendiculars 175 m

Beam 25 m

Draught 9.5 m

Mass 24610 ton

3.2.1 Closed-loop Performance

Although the controller (3.6), (3.7) is designed based on the control plant model (3.1),

(3.2), it is tested with the process plant model (2.1), (2.2). As indicated in (3.4) and

(3.5), three singleton IT2 sub-FLSs are used to approximate the complex hydrody-

namic disturbances. In each sub-system, each of the input domain is partitioned by

three fuzzy membership functions labeled as N, Z, and P, thus there are 27 rules.

By doing this, the input domains are covered by a simple set of labels of Negative,

Zero, and Positive. For the antecedent IT2 fuzzy sets, the primary membership

functions are chosen to be Gaussian function with uncertain standard deviation, i.e.,

µ
F̃

j
i
(xj) = exp[−1

2
(
xj −mi

σ
)2] σ ∈ [σ, σ] (3.19)

where i = 1, 2, 3 is the index of three fuzzy membership functions for jth input and

j = 1, 2, 3 is the index of three inputs. The inputs to each sub-system is scaled

properly so that the means for the Gaussian functions are fixed at m1 = −1, m2 = 0,

and m3 = 1 for each input, and the standard deviation for all of the lower membership

function is fixed at σ = 0.6, whereas the one for all of the upper membership function

48



is σ = 0.8. The primary membership functions of the antecedent IT2 fuzzy sets are

shown in Fig. 3.2. For the consequent IT2 fuzzy sets, singleton membership functions

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

x

µ

Primary membership functions of IT2 fuzzy sets

Figure 3.2: Primary membership functions of the antecedent IT2 fuzzy sets.

are chosen. So there are 27 adjustable consequent parameters, whose values are

adapted according to adaptive law. There are four control gains λi (i = 1, . . . , 4) in

the proposed controller (3.6) and (3.7). The control gain λ4 determines the relative

convergence speed of vessel displacement and velocity in the adaptive law (3.7) and

should be chosen first. The choice of the value of λ4 depends on the controlled plant.

For container ship S-175 in the simulation studies, the value of λ4 is set via trial and

error as 5. The choices of λ1 and λ2 could refer to the procedure of determining the

PD gains. The choice of λ3 must satisfy the stability condition. When λ1 = 4.3×106,

λ2 = 4.3 × 105, λ3 = 5 × 108, and λ4 = 5 in (3.6) and (3.7), the controlled position

and heading angle of the vessel are shown in Fig. 3.3. It can be observed that the

closed-loop system is stable, the control performance is satisfactory despite the time-

varying hydrodynamic disturbances, and the sub-FLSs efficiently approximate the
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complex disturbances although universal approximation property for IT2 FLS has

not been established yet. Fig. 3.4 shows the norms of the adapted weighting vectors

‖θ̂i‖ (i = 1, 2, 3), they verify the boundedness of Θ̂D. Note that the norm of weighting

vector θ̂1 shows fluctuation during the simulation, it is because the disturbances along

the surge direction fluctuate heavily at the start of the simulation.

3.2.2 Impact of Control Gains

To investigate the impact of the control gains, simulations with the following three

cases are conducted:

• Case 1: λ1 = 4.3 × 105, λ2 = 4.3 × 104, λ3 = 5 × 107;

• Case 2: λ1 = 4.3 × 106, λ2 = 4.3 × 105, λ3 = 5 × 108;

• Case 3: λ1 = 4.3 × 107, λ2 = 4.3 × 106, λ3 = 5 × 109.

The controlled positions and heading angles of the vessel are shown in Fig. 3.5. It can

be observed that as the values of the control gains increase, the control performance

becomes better. Conversely, the regulation errors would oscillate when the gains

are reduced. In practice, large control gains are not recommended as they require

larger actuators. Thus, the choice of control gains is a tradeoff between performance

requirement and practical limitation.

50



0 50 100 150 200
−0.5

0

0.5

1

1.5

2

Time (s)

S
ur

ge
 p

os
iti

on
 (

m
)

Controlled surge position

0 50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

Time (s)

S
w

ay
 p

os
iti

on
 (

m
)

Controlled sway position

0 50 100 150 200
−1

0

1

2

3

4

5

6

Time (s)

H
ea

di
ng

 a
ng

le
 (

de
g)

Controlled heading angle

Figure 3.3: Regulation errors of indirect adaptive IT2 FLC for DP.
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Figure 3.4: Norms of the adapted weighting vectors for indirect adaptive IT2 FLC.
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Figure 3.5: Regulation errors of indirect adaptive IT2 FLC with different control

gains for DP.
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3.2.3 Comparison with a PD Controller

Comparative study between the designed controller and a linear PD controller is

presented. The PD controller is in the form of

τ = −λ5ν − λ6J
T(η)e. (3.20)

Two sets of control gains are implemented for the PD controller, λ1
5 = 4.3×106, λ1

6 =

4.3 × 105 and λ2
5 = 4.3 × 108, λ2

6 = 4.3 × 107, meanwhile the parameter settings for

the indirect adaptive IT2 FLC are kept same as the one in the subsection 3.2.1. The

results are shown in Fig. 3.6, which demonstrates that with same proportion and

derivative gains, the designed controller achieves satisfactory performance, whereas

the PD controller is unstable as shown by the dot and dash line. By increasing its

proportion and derivative gains, the PD controller can be stable as shown by the

dot line, but still with large steady state error due to disturbances. Besides, large

control gains are not recommended in practice as they reduce robustness and cause

large overshoots. Hence, the designed controller performs much better than the PD

controller and has better disturbance rejection property.

3.2.4 Comparison with an Adaptive Type-1 FLC

Replace the components in (3.5) and correspondingly in (3.6) and (3.7) with fuzzy

basis function vector [41, 85],

φT = (φ1(x), . . . , φM(x)) (3.21)
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Figure 3.6: Regulation errors of indirect adaptive IT2 FLC and PD controller for DP.
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where fuzzy basis function is defined as

φl(x) =
Πn
i=1µF l

i
(xi)

ΣM
l=1(Π

n
i=1µF l

i
(xi))

, (3.22)

the controller (3.6), (3.7) becomes an adaptive type-1 FLC. In this subsection, the

indirect adaptive IT2 FLC is compared with such an adaptive type-1 FLC. For each

sub-system in the indirect adaptive IT2 FLC, the parameter settings are kept identical

as the one in previous subsection, whereas for each sub-system in type-1 case, each

of the input domain is partitioned by five fuzzy membership functions labeled as

NL, NS, Z, PS, and PL, thus there are 125 rules and 125 adjustable consequent

parameters accordingly in contrast to 27 rules and parameters for IT2 case. The

membership functions of the antecedent sets for each input are chosen as Gaussian

functions, i.e.,

µ
F

j
i
(xj) = exp[−1

2
(
xj −mi

σ
)2]. (3.23)

where i = 1, . . . , 5 is the index of five fuzzy membership functions for jth input and

j = 1, 2, 3 is the index of three inputs. While the means are set as (m1, . . . , m5) =

(−1,−0.5, 0, 0.5, 1), the standard deviations for all the Gaussian functions are fixed

at σ = 0.4. When λ1 = 4.3 × 106, λ2 = 4.3 × 105, λ3 = 1.5 × 107, and λ4 = 5 in

(3.6) and (3.7) for both adaptive type-1 and IT2 FLCs, the resultant positions and

heading angles of the vessel are shown in Fig. 3.7. It can be observed that the rising

and settling time for adaptive IT2 FLC is shorter than that for type-1 case, even

though type-1 case uses more rules. To quantify the performance differences between

adaptive type-1 and IT2 FLCs, the integral of time-weighted absolute errors (ITAE)

for both cases in the following form are calculated.
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Figure 3.7: Regulation errors of indirect adaptive IT2 and type-1 FLC for DP.
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Table 3.2: ITAE of adaptive type-1 and IT2 FLCs for DP.

ITAE Px Py Pψ

Type-1 4604 5960 210

IT2 3252 4951 121

Px =
∫ T

0
t|x|dt (3.24)

Py =
∫ T

0
t|y|dt (3.25)

Pψ =
∫ T

0
t|ψ|dt (3.26)

where T is the total simulation time. The results are shown in Table 3.2, and the

ITAE for the IT2 case are smaller than those for type-1 case along all the three degrees

of freedom. Regarding the computational burden, type-reduction for IT2 case does

take some time, but the time is very little as only a few rules are fired simultaneously

and it has been proved Karnik-Mendel algorithm is super-exponentially convergent

[106]. In addition, the real-time application of the type-2 FLS has been reported

[107]. Thus, type-reduction should not be an issue that causes any stability problem.

In a word, it seems that the IT2 FLS has better approximation property with less

rules than its type-1 counterpart.

3.3 Conclusions

In this chapter, an indirect adaptive IT2 FLC has been designed for DP vessels with

attached thrusters in the presence of time-varying hydrodynamic disturbances. It has

been proved that the regulation error under the proposed control semiglobally asymp-

58



totically converges to zero and the closed-loop system under the proposed control is

passive. Simulation results have demonstrated that the indirect adaptive IT2 FLC is

effective and robust. When compared against a PD controller, the proposed controller

has better control performance and disturbance rejection property. Comparison with

its type-1 counterpart suggests IT2 FLS has better approximation property.
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Chapter 4

Passive Adaptive IT2 Fuzzy Observer for

Dynamic Positioning

In Chapter 3, an indirect adaptive IT2 FLC is designed for DP. But the controller is

proposed based on an assumption that the state variables of the vessel, i.e. displace-

ments and velocities along surge, sway, and yaw, are measured by its own on-board

devices (Assumption 3.2). In a DP system, filtering and state estimation are impor-

tant features, as the position and heading measurements are corrupted by oscillatory

motion due to first-order wave disturbances. Moreover, in most cases the measure-

ments of the vessel velocities are not available. Thus, Assumption 3.2 restricts the

practical application of the indirect adaptive IT2 FLC. To overcome the limitation,

the work reported in this chapter assumes that only displacement measurements of

the vessel are available. Some commercial position measurement systems are hydroa-

coustic positioning reference (HPR) systems and satellite navigation systems. The

two famous satellite navigation systems are Navstar GPS and GLONASS. The ac-

curacy of the GPS satellite navigation system is degraded for civilian users. Thus,

a differential global positioning system (DGPS) is used to circumvent this problem.

The main idea of the DGPS is to use a fixed receiver, which is on shore with known

position, to calculate the GPS position errors. The position errors are then sent to
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the GPS receiver on board the vessel to fine tune the measured position of the ves-

sel. The attitude of the vessel is usually measured by a gyrocompass where the gyro

drift could be compensated for by a magnetic compass. As a dynamically positioned

vessel moves only with low speed, the influence of waves on the position and attitude

of the vessel is significant. Ocean waves are often characterized by statistical analysis

of the time history of the irregular waves. The statistical analysis leads to a “wave

spectrum”, which describes the distribution of wave energy (height) with frequency.

Fig. 4.1 shows that the measured position and attitude of the vessel will be combi-

nation of the low frequency (LF) motion of the vessel and the wave frequency (WF)

motion due to an ocean wave that has the fundamental frequency (first-order wave).

The expression of the measured position and attitude is

y′ = η′ + η′

w, (4.1)

where η′

w is the vessel’s WF motion due to first-order wave induced disturbances, and

may be computed via a Motion Response Amplitude Operator explained in [92]. It

is noted that the WF motion due to first-order wave is oscillatory.

The objective of this chapter is to design an observer to reconstruct the LF mo-

tion components η′ from the measured position and attitude signals y′ = η′ + η′

w.

Moreover, an estimate of the LF velocity ν ′ should also be produced from y′. It is

crucial to eliminate the high frequency disturbances induced by the first-order wave

from the sensor signal before feeding to the feedback loop. Otherwise, the DP system

will attempt to reject the oscillatory motion due to η′

w leading to an increase in fuel

consumption and causing wear and tear to the actuators. To fulfill the objective,
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Figure 4.1: The measured vessel motion as the sum of the LF and WF motion.

a passive adaptive IT2 fuzzy observer for DP of floating vessels under time-varying

hydrodynamic disturbances is proposed. The combination of approximation-based

adaptive technique and IT2 FLS is used to handle the time-varying hydrodynamic

disturbances and uncertainties. Besides, the observer for DP is treated as an engi-

neering application to investigate the approximation property of IT2 FLS as well.

The remainder of this chapter is organized as follows. The design and stability

analysis of the passive adaptive IT2 fuzzy observer for DP is delineated in Section

4.1. Section 4.2 describes the simulation results of the observer. Comparison with

the passive nonlinear observer is also shown in this section. Finally, conclusions of

this chapter are drawn in Section 4.3.

4.1 Adaptive Fuzzy Observer Design

In this section, the manner in which the process plant model is simplified to generate

the control plant model that facilitates the observer design is described. In the control
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plant model, a 2nd-order equation is used to estimate the Motion Response Ampli-

tude Operator model of first-order wave. Thus, the 2nd-order equation is part of the

control plant model. Then, based on the control plant model, the adaptive fuzzy ob-

server is designed. The time-varying hydrodynamic disturbances are approximated by

singleton IT2 FLSs in the observer. Using Lyapunov synthesis, the estimation errors

of the observer error dynamics are proven to be semiglobally uniformly ultimately

bounded. Rigorous analysis shows the observer error dynamics is passive.

4.1.1 Control Plant Model

The models of marine vessels may be classified into two categories [57], namely a

process plant model and a control plant model. As in Section 3.1, the process plant

model (2.1) and (2.2) for DP described in Section 2.1 is simplified to facilitate the

observer design and analytical stability analysis. Applying Assumptions 3.1 and 3.3

to (2.1), (2.2) and (4.1), the following model is obtained.

η̇ = J(η)ν (4.2)

Mν̇ + B̄ν = τ + τH (4.3)

y = η + ηw (4.4)

where η = [x, y, ψ]T is the displacement vector along surge, sway, and yaw, whereas

ν = [u, v, r]T is the velocity vector. J(η) ∈ R3×3 is the rotation matrix. Note that

JJT = I (I is the identity matrix). M ∈ R3×3 is the system inertia matrix including

added mass. B̄ ∈ R3×3 is the three dimensional version of the damping matrix

B̄′. τ ∈ R3 and τH ∈ R3 are three dimensional versions of τ ′ and τ ′

H respectively.
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y ∈ R3 is the position and heading measurement vector. ηw = [xw, yw, ψw]T is the

WF motion vector. The difference between the control plant model presented here

and the one presented in subsection 3.1.1 is that the measurement system is included

in this model.

In order to approximate the vessel’s WF motion due to first-order wave induced

disturbances, a 2nd-order equation in frequency domain is first used to fit the shape

of wave spectrum such as the Pierson-Moskovitz or the JONSWAP spectra. Then the

2nd-order equation in frequency domain is transformed to time domain to generate

the vessel’s WF motion. The 2nd-order equation was originally proposed by Balchen

et al. in [10], which used three harmonic oscillators without damping. Later Sælid

et al. introduced a damping term to better fit the shape of the wave spectrum [108].

The resultant model can be written as

hi(s) =
2λiω0iσis

s2 + 2λiω0is+ ω2
0i

(4.5)

where ω0i (i = 1, . . . , 3) is the dominating wave frequency. λi (i = 1, . . . , 3) is a

damping coefficient. And σi (i = 1, . . . , 3) is a constant describing the wave intensity.

It is noted that there is one model for each degrees of freedom.

A linear state-space model can be obtained from (4.5) by transforming it to the

time-domain. The state-space model is






ξ̇1

ξ̇2







=







0 I

A21 A22













ξ1

ξ2







+







0

E2







w (4.6)

ηw =

[

0 I

]







ξ1

ξ2







(4.7)
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where ξ1 ∈ R3 and ξ2 ∈ R3. w ∈ R3 is a vector of zero-mean Gaussian white noise,

and

A21 = − diag{ω2
01, ω

2
02, ω

2
03}

A22 = − diag{2λ1ω01, 2λ2ω02, 2λ3ω03}

E2 = diag{2λ1ω01σ1, 2λ2ω02σ2, 2λ3ω03σ3}.

In the Lyapunov stability analysis, the following assumptions are made.

Assumption 4.1 J(η) = J(y). This is an acceptable assumption since the magni-

tude of the wave-induced yaw disturbance ψw is small.

Assumption 4.2 w = 0. The wave model (4.6) is driven by zero-mean Gaussian

white noise w. This term is omitted in the control plant model since the observer

sates are driven by the state estimation errors.

The applications of Assumption 4.1 and 4.2 to (4.2) and (4.6) yield the following

control plant model.

ξ̇ = Awξ (4.8)

η̇ = J(y)ν (4.9)

Mν̇ = − B̄ν + τ + τH (4.10)

y = η + Cwξ (4.11)

where ξ = [ξT
1 , ξ

T
2 ]T ∈ R6, Aw =







0 I

A21 A22







, and Cw =

[

0 I

]

. For notational
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simplicity, (4.8), (4.9) and (4.11) are written in the state-space form

η̇0 = A0η0 + B0J(y)ν (4.12)

y = C0η0, (4.13)

where η0 = [ξT,ηT]T and A0 =







Aw 0

0 0







, B0 =







0

I







, C0 =

[

Cw I

]

.

4.1.2 Observer Equations

To handle the time-varying hydrodynamic disturbances τH in the plant model (4.10),

the hydrodynamic disturbances are estimated by singleton IT2 FLSs (2.24). The

hydrodynamic disturbances are estimated in earth-fixed frame and then transformed

to body-fixed frame as

τH(ν) = −JT(y)Φ(ν)Θ∗ + ωe(ν), (4.14)

where ωe(ν) ∈ R3 is a vector of minimum estimation error.

Θ∗ = (θ∗T
1 , θ∗T

2 , θ∗T
3 )T ∈ R3M×1

= arg minΘ∈R3M [ supν∈Uν
|τH(ν) + JT(y)Φ(ν)Θ|]

(4.15)

is the ideal weighting vector and

Φ(ν) = diag{φT
1 (ν),φT

2 (ν),φT
3 (ν)} ∈ R3×3M (4.16)

is the regressive matrix. The input signals to the FLSs, ν, is the velocity vector of

the vessel because the hydrodynamic disturbances are directly related to the velocity

vector of the vessel as shown in [92]. As a multi-output FLS can be divided into several

single-output FLSs, three sub-FLSs that have M rules each are used to approximate

66



the three dimensional hydrodynamic disturbances τH. As a result, by substituting

(4.14) into (4.10), the plant model (4.10) may be expressed as

Mν̇ = −B̄ν + τ − JT(y)Φ(ν)Θ∗ + ωe(ν). (4.17)

Then, the observer is designed as

˙̂
ξ = Awξ̂ + K1ỹ (4.18)

˙̂η = J(y)ν̂ + K2ỹ (4.19)

˙̂
Θ = − ΦT(ν̂)K3ỹ (4.20)

M ˙̂ν = − B̄ν̂ + τ − JT(y)Φ(ν̂)Θ̂ + JT(y)K4ỹ (4.21)

ŷ = η̂ + Cwξ̂ (4.22)

where ỹ = y − ŷ is the estimation error vector. K1 ∈ R6×3 and K2,3,4 ∈ R3×3

are observer gain matrices. The block diagram of the observer is shown in Fig. 4.2,

which demonstrates how the observer is implemented. The inputs to the observer are

signals from sensors and actuators, whereas the outputs are estimated displacement

and velocity signals of vessel. In order to facilitate the stability analysis, similar to

(4.12) and (4.13), the observer equations (4.18), (4.19) and (4.22) are written in the

state-space form

˙̂η0 = A0η̂0 + B0J(y)ν̂ + Kỹ (4.23)

ŷ = C0η̂0, (4.24)

where η̂0 = [ξ̂
T
, η̂T]T and K =







K1

K2







.
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Figure 4.2: Block diagram of the adaptive IT2 fuzzy observer.

4.1.3 Observer Error Dynamics

Define the estimation errors as η̃0 = η0 − η̂0, Θ̃ = Θ∗ − Θ̂ and ν̃ = ν − ν̂. By

subtracting the observer equations from the control plant model, the observer error

dynamics can be expressed as

˙̃η0 = (A0 − KC0)η̃0 + B0J(y)ν̃ (4.25)

˙̃Θ = ΦT(ν̂)K3ỹ (4.26)

M ˙̃ν = − B̄ν̃ − JT(y)Φ(ν̂)Θ̃ − JT(y)K4ỹ + ω (4.27)

ỹ = C0η̃0, (4.28)

where ω = ωe + ωf , and where ωf = JT(y)Φ(ν̂)Θ∗ − JT(y)Φ(ν)Θ∗. Since the

elements of the regressive matrices Φ(ν) and Φ(ν̂) are fuzzy basis functions as defined

in [74], ‖Φ(ν)‖2 ≤ 1 and ‖Φ(ν̂)‖2 ≤ 1. Moreover, JT(y) is rotation matrix and

‖JT(y)‖2 ≤ 1. Thus, ‖ωf‖2 ≤ ‖Θ∗‖2. Define Z̃ = Φ(ν̂)Θ̃ + K4ỹ and X̃ =







η̃0

Θ̃







, the
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observer error dynamics can be re-written in compact form as

˙̃
X = AX̃ + BJ(y)ν̃ (4.29)

Z̃ = CX̃ (4.30)

M ˙̃ν = − B̄ν̃ − JT(y)Z̃ + ω, (4.31)

where A =







A −KC0 0

ΦT(ν̂)K3C0 0







, B =







B0

0







and C =

[

K4C0 Φ(ν̂)

]

.

The block diagram of the observer error dynamics is shown in Fig. 4.3, where two

new error terms εz = −JT(y)Z̃ + ω and εv = J(y)ν̃ are defined.

B01/s
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~
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1H

2H

Figure 4.3: Block diagram of the observer error dynamics.

4.1.4 Stability Analysis

Lemma 4.1 Kalman-Yakubovich-Popov (KYP) lemma as shown in [105]. Let

G(s) = C(sI − A)−1B be a n × n transfer function matrix, where A is Hurwitz,

(A,B) is controllable, and (A,C) is observable. Then G(s) is strictly positive real

(SPR) if and only if there exist positive-definite matrices P = PT and Q = QT such
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that

PA + ATP = − Q (4.32)

BTP = C. (4.33)

Proposition 4.1 If the observer gain matrices have the following structure

K1 =























k11 0 0

0 k12 0

0 0 k13

k14 0 0

0 k15 0

0 0 k16























,Kj =











kj1 0 0

0 kj2 0

0 0 kj3











where j = 2, 3, 4, then the positive elements of the observer gain matrices can be

chosen such that the system (A,B,C) given by (4.29) and (4.30) satisfies the KYP

lemma.

Proof: As shown in Fig. 4.3, the system (A,B,C), which corresponds to the

mapping εv 7→ Z̃, can be described by transfer functions as

Z̃ = H(s)εv = HA(s)H0(s)εv (4.34)

where

HA(s) = K4 +
1

s
Φ(ν̂)ΦT(ν̂)K3

and

H0(s) = C0(sI − A0 + KC0)
−1B0.
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Since the elements of the regressive matrix Φ(ν̂) are fuzzy basis functions as defined

in [74],

Φ(ν̂)ΦT(ν̂) = diag{φ1, φ2, φ3}

where 0 < φi ≤ 1 (i = 1, . . . , 3). As the observer gain matrices are diagonal, the

transfer function HA(s) and H0(s) are decoupled as

HA(s) = diag{h1
A(s), h2

A(s), h3
A(s)}

and

H0(s) = diag{h1
0(s), h

2
0(s), h

3
0(s)}.

The elements of HA(s) and H0(s) are

hiA(s) =
k4i(s+ φik3i

k4i
)

s
(4.35)

and

hi0(s) =
s2 + 2λiω0is+ ω2

0i

s3 + as2 + bs + ω2
0ik2i

(4.36)

where a = k1(i+3) + k2i + 2λiω0i, b = ω2
0i + 2λiω0ik2i − k1iω

2
0i and i = 1, . . . , 3. In

order to obtain the desired notch effect and filter out the first-order WF motion, the

desired shape of hi0(s) is specified as

hi0(s) =
s2 + 2λiω0is+ ω2

0i

(s2 + 2λniω0is+ ω2
0i)(s+ ωci)

(4.37)

where λni > λi determines the notch and ωci > ω0i is the filter cut-off frequency.

Equating (4.36) and (4.37) yields the following formulas for the elements of the ob-
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server gains K1 and K2.

K1i(ω0i) = − 2(λni − λi)
ωci
ω0i

(4.38)

K1(i+3)(ω0i) = 2ω0i(λni − λi) (4.39)

K2i = ωci (4.40)

where i = 1, . . . , 3. It is noted that the observer gains can be gain-scheduled with

respect to dominating wave frequencies ω0i if desired. In Fig. 4.4, the bode diagram

of total transfer function hi(s) = hiA(s)hi0(s) is illustrated when all filter gains are

properly selected. In order to meet the SPR requirement, the three decoupled transfer

functions hi(s) in H(s) should have phase greater than −90◦. Hence, the system

(A,B,C) can satisfy the SPR requirement and thus the KYP lemma if the following

tuning rules for k3i and k4i are applied.

φik3i

k4i

< ω0i < ωci (i = 1, . . . , 3) (4.41)

To investigate the stability property of observer error dynamics (4.29)-(4.31), a

useful lemma from [109] as below is referred to.

Lemma 4.2 For bounded initial conditions, if there exists a C1 continuous and

positive-definite Lyapunov function V (x) satisfying κ1(‖x‖) ≤ V (x) ≤ κ2(‖x‖), such

that V̇ (x) ≤ −ρV (x) + c, where κ1, κ2 : Rn −→ R are class K functions and c is

positive, then the solution x(t) is uniformly ultimately bounded.

Theorem 4.1 Consider the observer error dynamics (4.29)-(4.31). For each com-

pact set Ω0 where (ν̃(0), X̃(0)) ∈ Ω0, the estimation errors of the observer error
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Figure 4.4: Bode diagram of the transfer function hi(s) when φik3i

k4i
< ω0i < ωci.

dynamics are semiglobally uniformly ultimately bounded. The estimation error sig-

nals, ν̃ and X̃ will remain within the compact sets Ων̃ and ΩX̃ respectively defined

by

Ων̃ ={ν̃ ∈ R3| ‖ν̃‖ ≤
√

D

λmin(M)
}, (4.42)

ΩX̃ ={X̃ ∈ R(3M+9)×1| ‖X̃‖ ≤
√

D

λmin(P)
}, (4.43)

and eventually converge to the compact sets Ων̃s and ΩX̃s respectively defined by

Ων̃s ={ν̃ ∈ R3| ‖ν̃‖ ≤
√

c

ρλmin(M)
}, (4.44)

ΩX̃s ={X̃ ∈ R(3M+9)×1| ‖X̃‖ ≤
√

c

ρλmin(P)
}, (4.45)

where D = V (0) + c/ρ with ρ and c as defined in (4.49) and (4.50) respectively.

Proof: Consider the following Lyapunov function candidate.

V (t) = ν̃TMν̃ + X̃TPX̃ (4.46)
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Differentiation of V along the trajectory of the observer error dynamics (4.29)-(4.31)

yields

V̇ = 2ν̃TM ˙̃ν + ˙̃
XTPX̃ + X̃TP

˙̃
X

= 2ν̃T(−B̄ν̃ − JTZ̃ + ω) + X̃T(ATP + PA)X̃

+ 2X̃TPBJν̃.

According to Proposition 4.1, after properly choosing the observer gain matrices the

system (A,B,C) satisfies the KYP lemma, i.e., there exist positive-definite matrices

P = PT and Q = QT such that

PA + ATP = − Q (4.47)

BTP = C. (4.48)

Therefore,

V̇ = − ν̃T(B̄ + B̄T)ν̃ − X̃TQX̃ + 2ν̃Tω

≤− λbν̃
Tν̃ − X̃TQX̃ + 2ν̃Tω

where λb is the minimum eigenvalue of matrix B̄ + B̄T. Choose λ1, λ2 and λ3 such

that λ1 + 1/λ2
2 + 1/λ2

3 = λb, then

V̇ ≤− λ1ν̃
Tν̃ − X̃TQX̃− 1

λ2
2

ν̃Tν̃ − 1

λ2
3

ν̃Tν̃ + 2ν̃Tω

≤− λ1ν̃
Tν̃ − X̃TQX̃− (

1

λ2

ν̃ − λ2ωe)
T(

1

λ2

ν̃ − λ2ωe)

− (
1

λ3
ν̃ − λ3ωf)

T(
1

λ3
ν̃ − λ3ωf) + λ2

2ω
T
e ωe + λ2

3ω
T
f ωf

≤− λ1ν̃
Tν̃ − X̃TQX̃ + λ2

2ω
T
e ωe + λ2

3ω
T
f ωf

≤− ρV (t) + c.
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ρ and c are defined as

ρ =min[
λ1

λmax(M)
,
λmin(Q)

λmax(P)
] (4.49)

c =λ2
2ω

T
e ωe + λ2

3‖Θ∗‖2, (4.50)

where λmin(A) and λmax(A) denote the minimum and maximum eigenvalues of matrix

A. According to lemma 4.2, it could be concluded that the estimation errors in the

observer error dynamics (4.29)-(4.31) are semiglobally uniformly ultimately bounded.

Multiplying V̇ (t) ≤ −ρV (t) + c by eρt yields

d

dt
(V (t)eρt) ≤ ceρt.

Integrating the above inequality yields

V (t) ≤ (V (0) − c

ρ
)e−ρt +

c

ρ
≤ V (0) +

c

ρ
. (4.51)

Substituting V (t) in (4.46) into the above inequality,

ν̃TMν̃ ≤ V (0) +
c

ρ
. (4.52)

Hence, ν̃ is bounded by the compact set Ων̃ . From (4.51), we have

‖ν̃‖ ≤

√

(V (0) − c
ρ
)e−ρt + c

ρ

λmin(M)
, (4.53)

thus

lim
t→∞

‖ν̃‖ ≤
√

c

ρλmin(M)
. (4.54)

Bound and convergence of X̃ can be similarly shown and this concludes the proof.
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Remark 4.1 In this chapter the IT2 FLSs are used as estimates of the time-varying

hydrodynamic disturbances. If other universal approximators, which can be expressed

in the linear in the parameters form like (2.24), are used, the stability analysis will be

same. Potential approximators could be type-1 FLSs, neural networks and polynomials

etc.

4.1.5 Passivity Interpretation

As depicted in Fig. 4.3, the observer error dynamics (4.29)-(4.31) can be interpreted

as the negative feedback interconnection of two subsystems with respective inputs u1

and u2 and outputs y1 and y2, with u1 = −JT(y)y2 + ω, u2 = J(y)y1 and the two

subsystems as follows.

Subsystem H1 





M ˙̃ν + B̄ν̃ = u1

y1 = ν̃

(4.55)

Subsystem H2 





˙̃
X = AX̃ + Bu2

y2 = Z̃

(4.56)

It is noted that the coordinate transformation is performed by a nonsingular and

bounded matrix J(y).

Theorem 4.2 The observer error dynamics comprising subsystems H1 and H2 is

passive.
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Proof: For subsystem H1, its supply rate is

∫ t

0

uT
1 y1dr

=

∫ t

0

(M ˙̃ν + B̄ν̃)Tν̃dr

=

∫ t

0

ν̃TM ˙̃νdr +

∫ t

0

ν̃TB̄ν̃dr

=
1

2
ν̃T(t)Mν̃(t) − 1

2
ν̃T(0)Mν̃(0) +

∫ t

0

ν̃TB̄ν̃dr

Thus, the subsystem H1 is output strictly passive with supply rate
∫ t

0
uT

1 y1dr and

storage function ν̃TMν̃/2.

For subsystem H2, according to Proposition 4.1 and the fact SPR systems are

passive as explained in [105], the subsystem H2 is passive. Since the negative feedback

interconnection of two passive systems is passive, the observer error dynamics (4.29)-

(4.31), which can be interpreted as negative feedback interconnection of subsystem

H1 and subsystem H2, is passive.

4.2 Simulation Studies

MSS as reviewed in [99] is employed as the platform for the simulation studies. This

simulator provides necessary resources for rapid implementation of mathematical

models of marine systems with focus on the control system design. Although the

adaptive fuzzy observer (4.18)-(4.22) is designed based on the control plant model

(4.8)-(4.11), it is evaluated with the process plant model (2.1), (2.2) and (4.1) in

the simulations. The ITTC wave spectrum with significant wave height Hs = 8 m

and dominating wave frequency ω0 = 0.8 rad/s is used to imitate high sea with high
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waves. Sea current with speed Vc = 0.2 m/s and direction βc = 30◦ is also included

in the simulations, although ignored during the observer design. The container ship

named as S-175 as shown in [37], whose main particulars are shown in Table 3.1, is

employed as case study.

4.2.1 Performance of the Adaptive IT2 Fuzzy Observer

The IT2 FLSs in the adaptive fuzzy observer (4.18)-(4.22) are configured as follows.

As there are three degrees of freedom considered for the motion of the vessel, three

singleton IT2 sub-FLSs are employed one each for the surge, sway and yaw axis as

defined in (4.15) and (4.16). For each sub-system, three fuzzy membership functions

labeled as N, Z, and P are employed to partition each of the input domain. As there

are three inputs, there are totally 27 rules and 27 adjustable consequent parameters

for each sub-system. Gaussian function with uncertain standard deviation, as defined

in (4.57), is chosen to be the primary membership functions of the antecedent IT2

fuzzy sets.

µ
F̃

j
i
(xj) = exp[−1

2
(
xj −mi

σ
)2] σ ∈ [σ, σ] (4.57)

where j = 1, . . . , 3 is the index of three inputs and i = 1, . . . , 3 is the index of

three fuzzy membership functions for jth input. For each input, the means of the

Gaussian functions are m1 = −1, m2 = 0, and m3 = 1, the standard deviations

of the lower membership functions are σ = 0.6, and the standard deviations of the

upper membership functions are σ = 0.8. The primary membership functions of the

antecedent IT2 fuzzy sets are the same as those in the previous chapter, and shown
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in Fig. 3.2. The consequent sets are chosen to be singletons. Their values are initially

set as random numbers between 0 and 100, and then adapted online according to the

adaptive law (4.20).

The observer parameters for first-order wave in (4.18) are chosen as λi = 0.1 and

ω0i = 0.8 rad/s, whereas the observer parameters for notch filter effect are chosen as

λni = 1 and ωci = 1.04 rad/s (i = 1, . . . , 3). According to (4.38)-(4.40), the gain ma-

trices K1 and K2 can be calculated. The gain matrices K3 and K4 are chosen as K3 =

diag{106, 3×106, 1010} and K4 = diag{107, 6×106, 1.5×1010}. The vessel is driven by

control inputs τ = [106 sin(0.05t) N, 106 sin(0.1t) N, 108 sin(0.07t) N · m]T. The initial

states of the vessel are set as [ηT
0 ,ν

T
0 ] = [20 m, 20 m,−10◦, 0.8 m/s, 0.8 m/s, 0.3◦/s].

The actual LF motion and the LF motion estimated by the adaptive fuzzy observer

in surge, sway and yaw axes is shown in Fig. 4.5. It can be observed that excellent

tracking of the LF motion is obtained and the first-order wave induced motion is

filtered out. The actual velocities and the velocities estimated by the observer in

surge, sway and yaw axes are shown in Fig. 4.6. The big errors at the start point are

due to the differences between the initial states of actual and estimated velocities.

As time passes by, the estimated velocities converge to their actual value. Although

the velocity signals are not measured, they are efficiently reconstructed from the po-

sition measurement signals. The first-order wave induced motion in surge, sway and

yaw axes and their estimates by the observer are shown in Fig. 4.7. It can be seen

the oscillatory behavior of WF motion is estimated. Thus, the IT2 FLSs efficiently

approximate the time-varying hydrodynamic disturbances and make the estimation

errors of the observer error dynamics uniformly ultimately bounded. The combination
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of approximation-based observer and IT2 FLS can effectively handles the hydrody-

namic disturbances. The assumption such as the ignorance of sea current during

algorithm design is appropriate.

4.2.2 Impact of Observer Gains

There are four observer gains Ki (i = 1, . . . , 4) in the adaptive IT2 fuzzy observer

(4.18)-(4.22). According to (4.38)-(4.40), the observer gains K1 and K2 depend on

the parameters of first-order wave and could be calculated based on those parameters.

The choice of the observer gains K3 and K4 must satisfy the stability condition (4.41).

To investigate the impact of the observer gains, simulations with the following three

cases are conducted:

• Case 1: K3 = diag{105, 3 × 105, 109}, K4 = diag{106, 6 × 105, 1.5 × 109};

• Case 2: K3 = diag{106, 3 × 106, 1010}, K4 = diag{107, 6 × 106, 1.5 × 1010};

• Case 3: K3 = diag{107, 3 × 107, 1011}, K4 = diag{108, 6 × 107, 1.5 × 1011}.

The estimation errors between actual LF motion and the LF motion estimated by

the observers in surge, sway and yaw axes for different observer gains are shown

in Fig. 4.8. It can be seen that among three cases, the observer gains in case 2

achieve best performance with smallest estimation errors of displacement in all three

axes. The observer gains in case 1 achieve better performance than those in case 3.

The estimation errors between actual velocities and the velocities estimated by the

observers in surge, sway and yaw axes for different observer gains are depicted in

Fig. 4.9. Similar conclusion to that for displacement estimation could be drawn. The
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Figure 4.5: Actual and estimated LF motion of adaptive IT2 fuzzy observer.
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Figure 4.6: Actual and estimated velocities of adaptive IT2 fuzzy observer.
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Figure 4.7: Actual and estimated WF motion of adaptive IT2 fuzzy observer.
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Figure 4.8: Estimation errors of LF motion for different observer gains.
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Figure 4.9: Estimation errors of velocity for different observer gains
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Figure 4.10: Estimation errors of WF motion for different observer gains.
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observer gains in case 2 achieve best performance. The estimation errors between

the first-order wave induced motion and their estimates by the observers for different

observer gains are shown in Fig. 4.10. Similarly, the observer gains in case 2 obtain

best performance followed by those in case 1. Thus, regarding the choice of the

observer gains K3 and K4, too large or too small value of these gains would degrade

the estimation performance.

4.2.3 Comparison with Passive Nonlinear Observer

In this subsection, the adaptive IT2 fuzzy observer is compared with the passive

nonlinear observer proposed in [25], in which the time-varying hydrodynamic distur-

bances were modeled as a first order Markow process. To provide a common base

for comparison, the parameter settings of the adaptive IT2 fuzzy observer are not

changed as in subsection 4.2.1. The passive nonlinear observer is also tested on the

MSS. The initial states and control forces of the ship and the environmental distur-

bances such as wave and current for the passive nonlinear observer are set same as

those for the adaptive IT2 fuzzy observer. The bias time constants for the passive

nonlinear observer are chosen as T = diag{1000, 1000, 1000}. The gain matrices K

and Λ for the passive nonlinear observer are chosen as K = diag{106, 106, 6 × 109}

and Λ = 0.1K. The estimation errors between actual LF motion and the LF motion

estimated by the observers in surge, sway and yaw axes for the two observers are

shown in Fig. 4.11. It can be seen that the estimation errors of displacement for the

adaptive IT2 fuzzy observer is smaller than those for the passive nonlinear observer,
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especially in yaw axis. The estimation errors between actual velocities and the ve-

locities estimated by the observers in surge, sway and yaw axes for the two observers

are depicted in Fig. 4.12. It can be observed that the performance improvement by

using adaptive IT2 fuzzy observer for velocity estimation is very obvious. The esti-

mation errors between the first-order wave induced motion and their estimates by the

observers for the two observers are shown in Fig. 4.13. Similarly, the adaptive IT2

fuzzy observer outperforms the passive nonlinear observer. The reason behind this

is that the IT2 FLSs better model the time-varying hydrodynamic disturbances than

the first order Markow process.

4.3 Conclusions

In this chapter, a passive adaptive IT2 fuzzy observer has been designed for dy-

namic positioning of floating vessels in the presence of time-varying hydrodynamic

disturbances. The semiglobal uniform boundedness of the estimation errors of the

observer error dynamics is guaranteed by means of Lyapunov synthesis. Besides, the

observer error dynamics is proven to be passive. It has been shown that both the

low frequency displacements and velocities of the vessel in surge, sway and yaw can

be computed from noisy displacement measurements. In addition, filtering of wave

frequency motion due to first-order wave induced disturbances has been done. The

proposed observer has been simulated on a computer model of a container vessel. The

simulation results show that all estimation errors are uniformly ultimately bounded

in face of the hydrodynamic disturbances. In comparison with the passive nonlinear
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observer by [25], the proposed observer has better performance.
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Figure 4.11: Estimation errors of LF motion for two observers.

90



0 200 400 600 800
−3

−2

−1

0

1

2

Time (s)

E
st

im
at

io
n 

er
ro

rs
 (

m
/s

)

Estimation errors of velocity in surge for two observers

 

 

nonlinear
adaptive T2

0 200 400 600 800
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time (s)

E
st

im
at

io
n 

er
ro

rs
 (

m
/s

)

Estimation errors of velocity in sway for two observers

 

 

nonlinear
adaptive T2

0 200 400 600 800
−1

−0.5

0

0.5

1

1.5

2

Time (s)

E
st

im
at

io
n 

er
ro

rs
 (

de
g/

s)

Estimation errors of velocity in yaw for two observers

 

 

nonlinear
adaptive T2

Figure 4.12: Estimation errors of velocity for two observers.
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Figure 4.13: Estimation errors of WF motion for two observers.
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Chapter 5

Tracking Control via Adaptive IT2 Fuzzy

Control

Another major application of automatic control technique in the offshore and marine

industry is trajectory tracking. When guiding a surface vessel through a busy water

way or performing sea operations like dredging operations, towing operations, sea

survey operations, cable/pipe laying operations, tracking control of surface vessels

is necessary. The dynamics of surface vessels which have non-zero forward speed

is characterized by large inertia, large damping and strong nonlinearity. Besides,

the surface vessels are easily influenced by environment such as wind, waves and

currents. As the time-varying hydrodynamic disturbances presented in the vessel

model [37,38], trajectory tracking control of the model is very challenging. To alleviate

the challenge, approximation-based adaptive control technique is combined with IT2

FLS to construct an indirect as well as a direct adaptive IT2 FLC for tracking control

of marine vessels. The proposed control scheme aims at overcoming the limitation of

model-based adaptive control technique and to reject the time-varying hydrodynamic

disturbances. The ability of the proposed control scheme to yield a passive closed-loop

system that ensures the tracking errors decay to zero asymptotically is studied. As

asymptotical convergence of tracking errors occurs only when the IT2 FLS adequately
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approximates the underlying function, another objective of this paper is to verify

universal approximation property of IT2 FLS via an engineering application.

The rest of the chapter is organized as follows. The design and stability analysis

of the two adaptive IT2 FLCs is delineated in Section 5.1. Section 5.2 describes the

simulation results of the closed-loop system. Comparisons with their type-1 coun-

terparts are also shown in this section. Finally, conclusions are drawn in Section

5.3.

5.1 Adaptive Fuzzy Logic Controller Design

The control objective of this chapter is to manipulate a surface vessel to track the

desired trajectory ηd = [xd, yd, ψd]
T, whose second derivative is continuous, as closely

as possible. In this section, the process plant model is first simplified to facilitate

the controller design. Then, both indirect and direct adaptive fuzzy logic controller

are designed for trajectory tracking control. However, the closed-loop systems under

these two control schemes turn out to be similar. Using Lyapunov synthesis, the

sufficient condition, under which the tracking errors of these two control techniques

will semiglobally asymptotically converge to zero, is proposed. Rigorous analysis

shows the closed-loop systems are passive.

5.1.1 Control Plant Model

Similar to the procedure in Section 3.1, the process plant model (2.1) and (2.3)

for tracking control described in Section 2.1 is simplified to facilitate the tracking
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controller design and analytical stability analysis. Applying Assumptions 3.1-3.3 to

(2.1) and (2.3), the following control plant model is obtained.

η̇ = J(η)ν (5.1)

Mν̇ + Dν = τ + τH (5.2)

where η = [x, y, ψ]T is the displacement vector along surge, sway, and yaw, whereas

ν = [u, v, r]T is the velocity vector. J(η) ∈ R3×3 is the rotation matrix. Note

that JJT = I (I is the identity matrix). M ∈ R3×3 is the system inertia matrix

including added mass. D = CRB + CA + B̄ ∈ R3×3 is the damping matrix, and

where CRB ∈ R3×3, CA ∈ R3×3, and B̄ ∈ R3×3 are three dimensional versions of

their corresponding matrices. τ ∈ R3 and τH ∈ R3 are three dimensional versions

of τ ′ and τ ′

H respectively. Compared to the control plant model used for DP in the

previous two chapters, there are more hydrodynamic forces in the control plant model

for tracking control. These hydrodynamic forces are related to velocity of vessel and

generated due to non-zero forward speed of the vessel.

5.1.2 Indirect Adaptive Fuzzy Control

Indirect adaptive fuzzy control is an adaptive fuzzy controller that uses fuzzy logic

systems to provide an estimation of the plant. The controller can incorporate fuzzy

descriptions of some parts of the plant into itself. Here, the hydrodynamic distur-

bances τH in the plant model (5.2) are estimated by singleton IT2 FLSs (2.24) as

τH(ν) = −Φ(ν)Θ∗

IA + ωIA(ν), (5.3)
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where ωIA(ν) ∈ R3 is a vector of minimum estimation error.

Θ∗

IA = (θ∗T
1 , θ∗T

2 , θ∗T
3 )T ∈ R3M×1

= arg minΘIA∈R3M [ supν∈Uν
|τH(ν) + Φ(ν)ΘIA|]

(5.4)

is the ideal weighting vector and

Φ(ν) = diag[φT
1 (ν),φT

2 (ν),φT
3 (ν)] ∈ R3×3M (5.5)

is the regressive matrix.

Define e = η − ηd ∈ R3 as the tracking error vector between the vessel actual

displacement η and the desired displacement ηd, νd = JT(η)η̇d as the desired velocity

vector, and eν = ν − νd ∈ R3 as the velocity error vector. Note ė = J(η)eν due to

(2.1) and JJT = I. Then the control and adaptive law of the indirect adaptive IT2

FLC for plant (5.1), (5.2) may be defined as

τ = Mν̇t + Dνt − λ1s + Φ(ν)Θ̂IA + τ a (5.6)

˙̃ΘIA = λ2Φ
T(ν)s (5.7)

where νt = νd−λ3J
T(η)e = JT(η)η̇d−λ3J

T(η)e = JT(η)(η̇d−λ3e), and s = ν−νt =

eν + λ3J
T(η)e = JT(η)ė + λ3J

T(η)e = JT(η)(ė + λ3e). Θ̃IA = Θ∗

IA − Θ̂IA ∈ R3M

is the error vector between the ideal weighting vector Θ∗

IA in (5.3) and the adapted

weighting vector Θ̂IA. λi (i = 1, 2, 3) are positive constants. τ a is designed in the

following form as an adaptive robust term.

τ a = − 1

2λ2
4

s (5.8)

where λ4 is a positive constant.
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Application of the control and adaptive law of the indirect adaptive IT2 FLC

(5.6) and (5.7) to the plant (5.1) and (5.2) yields the closed-loop system

Mṡ + Ds = −(λ1 +
1

2λ2
4

)s − Φ(ν)Θ̃IA + ωIA(ν) (5.9)

˙̃ΘIA = λ2Φ
T(ν)s (5.10)

ė = −λ3e + J(η)s. (5.11)

The overall control scheme of this indirect adaptive IT2 FLC is shown in Fig. 5.1.
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Figure 5.1: Overall scheme of indirect adaptive IT2 FLC for tracking control.

5.1.3 Direct Adaptive Fuzzy Control

Direct adaptive fuzzy control is an adaptive fuzzy controller that uses fuzzy logic

systems as controllers. It can incorporate fuzzy control rules directly into itself.

Thus, in direct adaptive fuzzy control, the parameters of the controller are directly

adjusted to reduce the tracking error. Here, assume the singleton IT2 FLSs (2.24)
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can estimate the function Mν̇t + Dνt − τH − λ1s + τ a as follows.

Mν̇t + Dνt − τH − λ1s + τ a = Φ(ν)Θ∗

DA − ωDA(ν) (5.12)

where −ωDA(ν) ∈ R3 is the minimum estimation error vector. Θ∗

DA ∈ R3M which is

similar to Θ∗

IA in (5.4) is the ideal weighting vector.

The control and adaptive law of the direct adaptive IT2 FLC for plant (5.1), (5.2)

could be designed as follows.

τ = Φ(ν)Θ̂DA

= Mν̇t + Dνt − τH − λ1s + τ a + ωDA(ν) − Φ(ν)Θ̃DA (5.13)

˙̃ΘDA = λ2Φ
T(ν)s (5.14)

where Θ̃DA = Θ∗

DA − Θ̂DA ∈ R3M is the error vector between the ideal weighting

vector Θ∗

DA and the adapted weighting vector Θ̂DA. Thus, here three sub-FLSs (each

one has M rules) are used to approximate the control actions.

Applying the control and adaptive law of the direct adaptive IT2 FLC (5.13) and

(5.14) to the plant (5.1) and (5.2) results in the closed-loop system

Mṡ + Ds = −(λ1 +
1

2λ2
4

)s − Φ(ν)Θ̃DA + ωDA(ν) (5.15)

˙̃ΘDA = λ2Φ
T(ν)s (5.16)

ė = −λ3e + J(η)s. (5.17)

The overall control scheme of this direct adaptive IT2 FLC is shown in Fig. 5.2.
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Figure 5.2: Overall scheme of direct adaptive IT2 FLC for tracking control.

5.1.4 Stability Analysis

Compare the closed-loop system for indirect adaptive control (5.9)-(5.11) with that for

direct adaptive control (5.15)-(5.17), it can be observed they are identical except for

the fuzzy weighting vectors Θ̃IA and Θ̃DA. Thus, the stability and passivity analysis

for these two control schemes are also analogous. For the sake of conciseness, the

following set of equations will be used to represent (5.9)-(5.11) and (5.15)-(5.17) in

the subsequent stability and passivity analysis.

Mṡ + Ds = −(λ1 +
1

2λ2
4

)s − Φ(ν)Θ̃ + ω(ν) (5.18)

˙̃Θ = λ2Φ
T(ν)s (5.19)

ė = −λ3e + J(η)s (5.20)

Theorem 5.1 Consider the plant (5.1) and (5.2) with the indirect adaptive fuzzy

control (5.6) and (5.7) and direct adaptive fuzzy control (5.13) and (5.14). The

tracking error e will semiglobally asymptotically converge to 0, if ω(ν) is squared

integrable.
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Proof: Consider the following Lyapunov function candidate, which is positive defi-

nite.

V =
1

2
sTMs + λ1λ3e

Te +
1

2λ2
Θ̃TΘ̃ (5.21)

Differentiation of V along the trajectory of the closed-loop system (5.18)-(5.20)

yields

V̇ = sT[−Ds − (λ1 +
1

2λ2
4

)s − Φ(ν)Θ̃ + ω] + 2λ1λ3e
Tė + Θ̃TΦT(ν)s

= − sTDs − λ1ė
Tė − λ1λ

2
3e

Te − 1

2λ2
4

sTs + sTω

= − sTDs − λ1ė
Tė − λ1λ

2
3e

Te − 1

2
[
1

λ4

s − λ4ω]T[
1

λ4

s − λ4ω] +
1

2
λ2

4ω
Tω

≤− 1

2
sT(D + DT)s − λ1ė

Tė − λ1λ
2
3e

Te +
1

2
λ2

4ω
Tω.

If ω(ν) = 0, which is a special case of a squared integrable function, then V̇ ≤

0, which means the derivative of the Lyapunov function candidate is semi-negative

definite. Moreover, the largest invariant set contained in the set V̇ ≡ 0 is contained

in the set (s, e) = (0, 0). According to Krasovskii-La Salle Invariant Set Theorem,

we may conclude the point (s, e) semiglobally asymptotically converges to (0, 0) as

time tends to infinite, and ˙̃Θ = 0, which means Θ̂ is bounded.

If ω(ν) 6= 0, then

V̇ ≤ −λ1ė
Tė − λ1λ

2
3e

Te +
1

2
λ2

4ω
Tω.

Integrating both sides of the above equation yields

∫ t

0

eTedr +
1

λ2
3

∫ t

0

ėTėdr ≤ 1

λ1λ2
3

V (0) +
λ2

4

2λ1λ2
3

∫ t

0

ωTωdr.

This demonstrates that all the states and signals involved in the closed-loop system

are bounded. Furthermore, if ω is squared integrable, that is
∫

∞

0
ωTωdr < ∞, we
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have e ∈ L2. As all the signals are bounded, we have ė ∈ L∞. According to the

Barbalat’s Lemma, we have limt→∞ |e| = 0.

Remark 5.1 Based on the above analysis, it can be observed that the accuracy of the

singleton IT2 FLSs in estimating the nonlinear functions is essential to the stability

of the adaptive fuzzy control. It has been proved in [85]– [88] that type-1 FLSs are uni-

versal approximators, i.e., for any given continuous nonlinear function, there exists

a type-1 FLS that can uniformly approximate the function to any desired accuracy.

Thus, type-1 FLSs may be used to achieve stable adaptive control. However, rigorous

proofs that IT2 FLSs are universal approximators have not been developed. As IT2

FLSs have extra degree of freedoms compared to type-1 FLSs, it may be conjectured

that the IT2 FLSs provide more modeling flexibility. Hence, an objective is to ver-

ify using a simulation example whether IT2 FLSs are able to model nonlinearities

sufficiently accurately for indirect and direct adaptive controllers.

Remark 5.2 The theorem developed in this paper is for the case where the gains

λi (i = 1, 2, . . . , 4) are scalar. The case where the gains are matrices could be extended

to in a similar approach, and the matrix gains will not cause any stability problem.

5.1.5 Passivity Interpretation

According to energy-related considerations, the passivity theory provides a framework

for the design and analysis of control systems. The input-output description further

allows for a modular method of control systems design and analysis [105]. As shown

in Fig. 5.3, the closed-loop system (5.18)-(5.20) can be interpreted as the negative
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feedback interconnection of three subsystems with respective inputs u1, u2, u3 and

outputs y1, y2, and y3, with y1 = u2 = u3 and u1 = −y2 − y3 + ω(ν), and the three

subsystems as follows.

Subsystem 1:






Mṡ + Ds = u1

y1 = s

(5.22)

Subsystem 2:






˙̃Θ = λ2Φ
T(ν)u2

y2 = Φ(ν)Θ̃

(5.23)

Subsystem 3:






ė = −λ3e + J(η)u3

y3 = (λ1 + 1
2λ2

4

)u3

(5.24)

Theorem 5.2 The closed-loop system comprising subsystems 1, 2 and 3 is passive.
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Figure 5.3: Closed-loop equivalent representation for tracking control.
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Proof: For subsystem 1, its supply rate is

∫ t

0

uT
1 y1dr

=

∫ t

0

(Mṡ + Ds)Tsdr

=

∫ t

0

sTMṡdr +

∫ t

0

sTDsdr

=
1

2
sT(t)Ms(t) − 1

2
sT(0)Ms(0) +

∫ t

0

sTDsdr

Thus, the subsystem 1 is output strictly passive with supply rate
∫ t

0
uT

1 y1dr and

storage function sTMs/2.

For subsystem 2 its supply rate is

∫ t

0

uT
2 y2dr =

∫ t

0

Θ̃TΦT(ν)u2dr

=

∫ t

0

Θ̃T 1

λ2

˙̃Θdr

=
1

2λ2
Θ̃T(t)Θ̃(t) − 1

2λ2
Θ̃T(0)Θ̃(0)

which means the subsystem 2 is passive with supply rate
∫ t

0
uT

2 y2dr and storage func-

tion Θ̃TΘ̃/(2λ2).

For subsystem 3, its supply rate is

∫ t

0

uT
3 y3dr =

∫ t

0

uT
3 (λ1 +

1

2λ2
4

)u3dr

=

∫ t

0

2λ2
4

2λ1λ2
4 + 1

yT
3 y3dr

=
2λ1λ

2
4 + 1

4λ2
4

∫ t

0

uT
3 u3dr +

λ2
4

2λ1λ2
4 + 1

∫ t

0

yT
3 y3dr

which means the subsystem 3 is very strictly passive with supply rate
∫ t

0
uT

3 y3dr.

According to the fact that the negative feedback interconnection of two passive

systems is passive, the closed-loop system (5.18)-(5.20), which can be interpreted as
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negative feedback interconnection of subsystem 1 and subsystem 2, then together

with subsystem 3, is passive.

5.2 Simulation Studies

As in the previous chapters, MSS [98] is employed as the platform for the simula-

tion studies. The container ship S-175 [37, 98], whose main particulars are shown in

Table 3.1, is used as case study. Ship collisions and groundings frequently happen

in restricted water way, threaten staff safety, result in financial loss, and affect the

marine environment. To enhance safety, the International Maritime Organization

has advocated the e-navigation concept in 2005 [110]. Under this concept, the ves-

sels traveling in restricted water way may automatically track a pre-set trajectory

to avoid collision. As a preliminary work towards e-navigation, the control objective

in this chapter is to control the vessel to track a sinusoidal trajectory. In this way,

the frequent turning behaviors of a vessel when it is traveling in restricted water

way are mimicked. The sinusoidal trajectory is chosen as ηd = [xd, yd, ψd]
T, where

xd = 8t, yd = 200 cos(0.005πt), and ψd = arctan(yd/xd). The initial states are set as

[ηT
0 ,ν

T
0 ] = [10, 210, 0, 0, 0, 0]. The ITTC wave spectrum with significant wave height

Hs = 3 m and peak frequency ω0 = 0.56 rad/s is used to imitate rough sea with large

waves. Sea current with speed Vc = 0.2 m/s and direction βc = 30◦ is also included

in the simulations, although ignored during the controller design. All the IT2 FLSs

in indirect adaptive fuzzy controller (5.6), (5.7) and direct adaptive fuzzy controller

(5.13), (5.14) are configured as follows. As there are three degrees of freedom con-
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sidered for the motion of the vessel, three singleton IT2 sub-FLSs are employed for

each controller, which is defined in (5.4) and (5.5). For each sub-system, three fuzzy

membership functions labeled as N, Z, and P are employed to partition each of the

input domain. As there are three inputs, there are totally 27 rules and 27 adjustable

consequent parameters for each sub-system. Gaussian function with uncertain stan-

dard deviation, as defined in (5.25), is chosen to be the primary membership functions

of the antecedent IT2 fuzzy sets.

µ
F̃

j
i
(xj) = exp[−1

2
(
xj −mi

σ
)2] σ ∈ [σ, σ] (5.25)

where j = 1, 2, 3 is the index of three inputs and i = 1, 2, 3 is the index of three

fuzzy membership functions for jth input. For each input, the means of the Gaussian

functions are m1 = −1, m2 = 0, and m3 = 1, the standard deviations of the lower

membership functions are σ = 0.6, and the standard deviations of the upper mem-

bership functions are σ = 0.8. The primary membership functions of the antecedent

IT2 fuzzy sets are shown in Fig. 3.2. The consequent sets are chosen to be singletons.

Their values are initially set as random numbers between 0 and 100, and then adapted

online according to the adaptive law.

5.2.1 Closed-loop Performance

5.2.1.1 Indirect Adaptive Fuzzy Control

The desired and actual trajectory of the vessel under the indirect adaptive IT2 FLC,

when λ1 = 4.3 × 108, λ2 = 1 × 108, λ3 = 0.02, and λ4 = 1 in (5.6) and (5.7),

is shown in Fig. 5.4. The tracking errors of the vessel’s actual trajectories to the
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desired trajectories are shown in Fig. 5.6. It can be observed that the tracking errors

asymptotically converge to zero despite the time-varying hydrodynamic disturbances

and the sub-FLSs effectively approximate the complex disturbances τH .

Figure 5.4: The desired and actual trajectory of the container ship under indirect

adaptive IT2 FLC.

5.2.1.2 Direct Adaptive Fuzzy Control

The desired and actual trajectory of the vessel under the direct adaptive IT2 FLC,

when λ2 = 1 × 108 and λ3 = 0.02 in (5.13) and (5.14), is shown in Fig. 5.5. The

tracking errors are shown in Fig. 5.7. The tracking performance is satisfactory in the

presence of the time-varying disturbances, and the sub-FLSs effectively generate the

control forces and moment. Small fluctuations in the tracking error of surge direction

are observed, that is because the inputs to the sub-FLSs are insufficient to make the

sub-FLSs accurately approximate the function in (5.12). Specifically, the function on
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the left side of (5.12) is a function of displacement, velocity and acceleration signals.

But the inputs to the sub-FLSs are just velocity signals.

Figure 5.5: The desired and actual trajectory of the container ship under direct

adaptive IT2 FLC.

The control performance under indirect adaptive fuzzy control is noted to be

better than that under direct adaptive fuzzy control. However, the direct adaptive

fuzzy controller has an advantage over the indirect one, i.e., the direct adaptive fuzzy

controller does not need the knowledge of inertial matrix M and damping matrix D.

The direct adaptive controller can, therefore, be used under the situation where such

knowledge is not available.

5.2.2 Impact of Control Gains

There are four control gains λi (i = 1, . . . , 4) in the indirect adaptive IT2 FLC (5.6)

and (5.7) and two control gains λ2 and λ3 in the direct adaptive IT2 FLC (5.13) and

107



0 200 400 600 800
−2

0

2

4

6

8

10

12

Time (s)

T
ra

ck
in

g 
er

ro
r 

(m
)

Tracking error in surge for indirect adaptive type−2 FLC

0 200 400 600 800
−2

0

2

4

6

8

10

Time (s)

T
ra

ck
in

g 
er

ro
r 

(m
)

Tracking error in sway for indirect adaptive type−2 FLC

0 200 400 600 800
−100

−80

−60

−40

−20

0

20

Time (s)

T
ra

ck
in

g 
er

ro
r 

(d
eg

)

Tracking error in yaw for indirect adaptive type−2 FLC

Figure 5.6: Tracking errors of indirect adaptive IT2 FLC for tracking control.
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Figure 5.7: Tracking errors of direct adaptive IT2 FLC for tracking control.
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(5.14). Since the functions of control gains λ2 and λ3 in indirect and direct adaptive

IT2 FLCs are similar, same notations are used. The control gain λ3 determines the

relative convergence speed of vessel displacement and velocity and should be chosen

first based on trial and error. The choice of the value of λ3 depends on the controlled

plant. For container ship S-175 in the simulation studies, the value of λ3 is set as

0.02. The control gain λ4 in (5.8) is used to handle estimation error ω(ν) and is set

as 1. Besides, the control gain λ1 is similar to PD gain in PD controller and could be

chosen accordingly. The control gain λ2 determines the convergent speed of adaptive

law and could be chosen according to experience. To investigate the impact of the

control gains in the indirect adaptive IT2 FLC, simulations with the following three

cases are conducted:

• Case 1: λ1 = 4.3 × 107, λ2 = 1 × 107;

• Case 2: λ1 = 4.3 × 108, λ2 = 1 × 108;

• Case 3: λ1 = 4.3 × 109, λ2 = 1 × 109.

The tracking errors of the vessel’s actual trajectories to the desired trajectories under

the indirect adaptive IT2 FLC (5.6) and (5.7) for different control gains are shown in

Fig. 5.8. It could be seen that as the values of control gains increase, the steady state

errors decrease, but the rising time increases. Thus, the choice of control gains of the

indirect adaptive IT2 FLC is a tradeoff between steady state errors and rising time.

To investigate the impact of the control gains in the direct adaptive IT2 FLC,

simulations with the following three cases are conducted:

• Case 1: λ2 = 1 × 107;
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• Case 2: λ2 = 1 × 108;

• Case 3: λ2 = 1 × 109.

The tracking errors of the vessel’s actual trajectories to the desired trajectories under

the direct adaptive IT2 FLC (5.13) and (5.14) for different control gains are shown

in Fig. 5.9. It could be observed that among three cases, the control gains in case

2 achieve best performance with smallest estimation errors in all three axes. Thus,

regarding the choice of the control gain λ2 for the direct adaptive IT2 FLC, too large

or too small value would degrade the performance.

5.2.3 Comparison with Adaptive Type-1 Fuzzy Controllers

In this subsection, the adaptive IT2 FLCs are compared with their type-1 counter-

parts. Replace the regressive vector (2.25) in the indirect adaptive fuzzy controller

(5.6), (5.7) and the direct adaptive fuzzy controller (5.13), (5.14) with the fuzzy basis

function vector [41, 85],

φT = (φ1(x), . . . , φM(x)) (5.26)

where the fuzzy basis function is defined as

φl(x) =
Πn
i=1µF l

i
(xi)

ΣM
l=1(Π

n
i=1µF l

i
(xi))

. (5.27)

The controllers (5.6), (5.7) and (5.13), (5.14) become adaptive type-1 FLCs. For each

sub-FLS in the type-1 cases, five fuzzy membership functions labeled as NL, NS, Z,

PS, and PL are employed to partition each of the input domain. As there are three

inputs, there are 125 rules compared to 27 rules for type-2 cases. Gaussian functions
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Figure 5.8: Tracking errors of indirect adaptive IT2 FLCs with different control gains

for tracking control.
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Figure 5.9: Tracking errors of direct adaptive IT2 FLCs with different control gains

for tracking control.
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are chosen to be the membership functions of the antecedent sets for each input, they

can be written as

µ
F

j
i
(xj) = exp[−1

2
(
xj −mi

σ
)2], (5.28)

where j = 1, 2, 3 is the index of three inputs and i = 1, . . . , 5 is the index of five

fuzzy membership functions for jth input. The means are fixed as (m1, . . . , m5) =

(−1,−0.5, 0, 0.5, 1), whereas the standard deviations for all the Gaussian functions

are set as σ = 0.4. The consequent sets for the type-1 cases are also chosen to

be singletons. So, there are 125 adjustable consequent parameters compared to 27

parameters for type-2 cases. Their values are randomly generated to be between 0

and 100, and then adapted online according to the adaptive law (5.7) and (5.14).

Other conditions such as wave, current, and other hydrodynamic forces are same as

the ones for IT2 cases.

When λ1 = 4.3 × 108, λ2 = 1 × 107, λ3 = 0.02, and λ4 = 1 in (5.6) and (5.7)

for both indirect adaptive type-1 and IT2 FLCs, the tracking errors are shown in

Fig. 5.10. When λ2 = 1 × 108 and λ3 = 0.02 in (5.13) and (5.14) for both direct

adaptive type-1 and IT2 FLCs, the tracking errors are depicted in Fig. 5.11.

It can be observed from Fig. 5.10 and Fig. 5.11 that the adaptive IT2 FLCs

perform comparably with, if not better than, their type-1 counterparts, even though

type-1 cases use more than four times the number of the rules. In order to quantify

the performance differences between adaptive type-1 and IT2 FLCs, the ITAE for all
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Figure 5.10: Tracking errors of indirect adaptive type-1 and IT2 FLCs for tracking

control.
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Figure 5.11: Tracking errors of direct adaptive type-1 and IT2 FLCs for tracking

control.
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the above four cases in the following form are calculated.

Px =
∫ T

0
t|ex|dt (5.29)

Py =
∫ T

0
t|ey|dt (5.30)

Pψ =
∫ T

0
t|eψ|dt (5.31)

where T is the total simulation time and ex, ey, and eψ are three components of the

tracking error vector e. Moreover, an improvement index defined as following is also

calculated to quantify the performance improvement.

I =
PT1 − PT2

PT1

(5.32)

where PT1 corresponds to Px, Py and Pψ for adaptive type-1 FLCs. PT2 corresponds

to Px, Py and Pψ for adaptive IT2 cases. According to the results shown in Table 5.1,

the values of the ITAE for the adaptive IT2 FLCs are smaller than those for type-1

cases along all the three degrees of freedom. The performance improvement of the

indirect adaptive FLC using IT2 FLSs over the one using type-1 FLSs could be as

high as 57.6%, and at least is 21.9%. In contrast, the performance improvement of

the direct adaptive FLC could be as high as 66.9%, and at least is 18.0%. As regards

the computational burden, type-reductions for IT2 cases do take some time, but the

time is very little as only a few rules are fired at the same time and Karnik-Mendel

algorithm has been proved to be super-exponentially convergent [106]. Furthermore,

it has been reported the type-2 FLS can be implemented in real-time applications

[107]. Thus, type-reduction should not be an issue and will not cause any stability

problem. In conclusion, the simulation results indicate that the IT2 FLS has better
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approximation property with fewer fuzzy rules than its type-1 counterpart in this

application.

Table 5.1: ITAE of adaptive type-1 and IT2 FLCs for tracking control.

ITAE Px Py Pψ

Indirect T1 192746 85064 14154

Indirect IT2 81796 66428 9592

Improvement index I 57.6% 21.9% 32.2%

Direct T1 162892 78648 5680

Direct IT2 53917 43013 4660

Improvement index I 66.9% 45.3% 18.0%

5.3 Conclusions

In this chapter, indirect and direct adaptive IT2 FLCs have been designed for tracking

control of surface vessels in the presence of time-varying hydrodynamic disturbances.

The sufficient condition, under which the tracking errors of both of the proposed

controls will semiglobally asymptotically converge to zero, is proposed by means of

Lyapunov synthesis. Although designed through different approaches, the closed-loop

systems for both indirect and direct IT2 FLCs are similar and passive. Simulation re-

sults have demonstrated that the two controllers are effective and robust. Comparison

with their type-1 counterpart suggests the IT2 FLS has comparable approximation

property even with fewer fuzzy rules. The indirect adaptive IT2 FLC can achieve at

118



least 21.9% performance improvement, whereas the improvement for direct adaptive

IT2 FLC is 18.0%.
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Chapter 6

Tracking Control via Fault-tolerant

Adaptive Backstepping

In Chapter 5, an indirect as well as a direct adaptive IT2 FLC are proposed for track-

ing control of marine vessels. The main limitation of this work is that the control

scheme is proposed based on the assumption that the state variables of the vessel,

i.e. displacements and velocities along surge, sway, and yaw, are measured by its own

on-board devices (Assumption 3.2). This limitation prevents the indirect and direct

adaptive IT2 FLCs from applying in situations where the measurements of vessel

velocities are not available. Since the influence of first-order wave on the measure-

ments of vessel displacements is not very significant for vessels traveling with non-zero

forward speed, a high-gain observer [111] is used to construct velocities from displace-

ment measurements in this chapter. With the high-gain observer, the stability of the

output feedback closed-loop system could be theoretically proved. But if the influence

of first-order wave on the measurements of vessel displacements is very significant,

i.e. the WF motion has to be filtered out, the passive adaptive IT2 fuzzy observer

introduced in Chapter 4 could be used. Moreover, in order to improve the reliability

of marine control systems, fault-tolerant control technique is explored in this chapter.

Through backstepping control and Lyapunov synthesis, a sate feedback fault-tolerant
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adaptive backstepping IT2 FLC for tracking control of marine vessels is constructed,

with the option of high-gain observer for output feedback control. The combination

of backstepping control and approximation-based adaptive technique allows the pro-

posed control scheme to be able to accommodate certain faults in the plant and the

controller itself, and to handle time-varying hydrodynamic disturbances without ex-

plicit knowledge about the disturbance model. The ability of the proposed control

schemes to yield stable closed-loop systems that ensure the tracking errors decay to

zero asymptotically is studied. For the sate feedback case, the asymptotic conver-

gence of tracking errors occurs only when the IT2 FLS adequately approximates the

underlying function. For the output feedback case, the tracking errors are uniformly

bounded by a parameter proportional to the approximation error between the IT2

FLS and the underlying function.

The rest of the chapter is organized as follows. The design and stability analysis

of the state feedback fault tolerant adaptive backstepping IT2 FLC are delineated in

Section 6.1. The fault accommodation mechanism is also explained in this section.

Section 6.2 describes the high-gain observer. The stability property of the output

feedback fault tolerant adaptive backstepping IT2 FLC is analyzed in this section as

well. Section 6.3 illustrates the simulation results of the state and output feedback

closed-loop systems with a container ship. Finally, conclusions are drawn in Section

6.4.
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6.1 Adaptive Backstepping Fuzzy Controller De-

sign

The control objective in this chapter is to manipulate a surface vessel to track the

desired trajectory ηd = [xd, yd, ψd]
T, whose second derivative is continuous, as closely

as possible. In this section, the process plant model is first simplified to facilitate the

controller design. Then, through the combination of approximation-based adaptive

technique and backstepping control a fault-tolerant adaptive backstepping IT2 FLC

is designed. Using Lyapunov synthesis, the sufficient condition, under which the

tracking errors of the controller will semiglobally asymptotically converge to zero, is

proposed. At last, the fault accommodation mechanism of the controller for certain

faults in the plant and the controller itself is explained.

6.1.1 Control Plant Model

Analogous with the procedure in previous chapters, the process plant model (2.1)

and (2.3) for tracking control described in Section 2.1 is simplified to facilitate the

tracking controller design. Applying Assumptions 3.1 and 3.3 to (2.1) and (2.3), the

same control plant model as in section 5.1.1 is obtained.

η̇ = J(η)ν (6.1)

Mν̇ + Dν = τ + τH (6.2)
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6.1.2 Fault-tolerant Control

Through following the conventional backstepping procedure in [24], the generalized

tracking error as z1 = η − ηd such that ż1 = J(η)ν − η̇d is defined. Introduce a

virtual control signal α1 and define a second error variable as z2 = ν − α1. The

derivative of z1 with respect to time can be expressed as

ż1 = J(η)(z2 + α1) − η̇d. (6.3)

Consider a Lyapunov function candidate with quadratic z1

V1 =
1

2
zT

1 z1 (6.4)

and taking its derivative along (6.3) results in

V̇1 = zT
1 J(η)z2 + zT

1 [J(η)α1 − η̇d]. (6.5)

Note the property J(η)JT(η) = I and choose

α1 = JT(η)(η̇d − K1z1), (6.6)

where the gain matrix K1 > 0 is diagonal. Then, (6.5) becomes

V̇1 = −zT
1 K1z1 + zT

1 J(η)z2. (6.7)

Differentiating z2 with respect to time yields

ż2 = M−1(−Dν + τ + τH) − α̇1 (6.8)

where

α̇1 =
∂α1

∂η
η̇ +

∂α1

∂η̇d
η̈d +

∂α1

∂z1
ż1. (6.9)
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Next, consider the following Lyapunov function candidate

V2 = V1 +
1

2
zT

2 Mz2. (6.10)

Its time derivative is

V̇2 = − zT
1 K1z1 + zT

1 J(η)z2

+ zT
2 (−Dν + τ + τH − Mα̇1).

(6.11)

Suppose the time-varying hydrodynamic disturbance vector τH is known, the follow-

ing model based control law could be designed.

τ = −JT(η)z1 −K2z2 + Dν − τH + Mα̇1 (6.12)

where the gain matrix K2 > 0 is diagonal. Substituting (6.12) into (6.11) yields

V̇2 = −zT
1 K1z1 − zT

2 K2z2 (6.13)

which is negative semidefinite. Since the time-varying hydrodynamic disturbances

are very complex and unknown, the model based control law (6.12) obtained through

backstepping may not be realizable. To overcome this challenge, the approximation-

based adaptive technique is combined with the backstepping control. Subsequently,

a fault-tolerant adaptive backstepping fuzzy controller is designed.

To handle the time-varying hydrodynamic disturbances and equip the designed

controller with fault-tolerant ability, a compensator Φ(ν)Θ̂H which is composed of

singleton IT2 FLSs (2.24) is introduced. The structure of the singleton IT2 FLSs will

be adapted according to hydrodynamic disturbances and fault natures. Apply the

compensator to estimate Φ(ν)Θ∗

H defined via the following expression

τH(ν) = −Φ(ν)Θ∗

H + ωH(ν), (6.14)
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where ωH(ν) ∈ R3 is a vector of minimum estimation error.

Θ∗

H = (θ∗T
1 , θ∗T

2 , θ∗T
3 )T ∈ R3M×1

= arg minΘH∈R3M [ supν∈Uν
|τH(ν) + Φ(ν)ΘH|]

(6.15)

is the ideal weighting vector and

Φ(ν) = diag[φT
1 (ν),φT

2 (ν),φT
3 (ν)] ∈ R3×3M (6.16)

is the regressive matrix.

Referring to the model based control law (6.12), the control and adaptive law

of the fault-tolerant adaptive backstepping IT2 FLC for plant (6.1), (6.2) may be

defined as

τ = − JT(η)z1 − K2z2 + Dν + Φ(ν)Θ̂H + Mα̇1 (6.17)

˙̃ΘH = K3Φ
T(ν)z2 (6.18)

where the gain matrix

K3 = diag[k31, . . . , k31
︸ ︷︷ ︸

M

, k32, . . . , k32
︸ ︷︷ ︸

M

, k33, . . . , k33
︸ ︷︷ ︸

M

] > 0.

Θ̃H = Θ∗

H − Θ̂H ∈ R3M is the error vector between the ideal weighting vector Θ∗

H in

(6.14) and the adapted weighting vector Θ̂H. From the control law (6.17), it can be

observed that the control law could be divided into two parts. One part is the model

based control law −JT(η)z1 − K2z2 + Dν + Mα̇1 derived through backstepping.

The other part is the compensator Φ(ν)Θ̂H. The stability problem of the closed-loop

system will be addressed by the following theorem.
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Theorem 6.1 Consider the plant (6.1) and (6.2) with the adaptive backstepping fuzzy

control (6.17) and (6.18). The tracking error z1 will semiglobally asymptotically

converge to zero, if ωH(ν) is squared integrable.

Proof: Consider the augmented Lyapunov function candidate, which is positive

definite.

VH = V2 +
1

2
Θ̃T

HK−1
3 Θ̃H (6.19)

Differentiating (6.19) along closed-loop trajectory with (6.17) and (6.18) yields

V̇H = − zT
1 K1z1 − zT

2 K2z2 − zT
2 Φ(ν)Θ̃H + zT

2 ωH

+ Θ̃T
HK−1

3
˙̃ΘH

= − zT
1 K1z1 − zT

2 K2z2 + zT
2 ωH

= − zT
1 K1z1 − zT

2 (K2 −
1

2
I)z2

− 1

2
(z2 − ωH)T(z2 − ωH) +

1

2
ωT

HωH

≤− zT
1 K1z1 − zT

2 (K2 −
1

2
I)z2 +

1

2
ωT

HωH

Choose the gain matrix K1 and K2 such that K1 > 0 and K2−I/2 > 0, and integrate

both sides of the above equation. Then,

∫ t

0

zT
1 K1z1dr +

∫ t

0

zT
2 (K2 −

1

2
I)z2dr + VH(t)

≤ VH(0) +
1

2

∫ t

0

ωT
HωHdr,

which demonstrates that z1, z2, Θ̃H and other signals involved are bounded. Fur-

thermore, if ωH is squared integrable, that is
∫
∞

0
ωT

HωHdr <∞, we have z1 ∈ L2. As

all the signals are bounded, we have ż1 ∈ L∞. According to Barbalat’s Lemma, we

have limt→∞ |z1| = 0.
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Remark 6.1 According to the above analysis, the accuracy of the singleton IT2 FLSs

estimating the time-varying hydrodynamic disturbances is essential to the stability of

the adaptive backstepping fuzzy control. The quality of the estimation will be checked

in the subsequent simulations.

6.1.3 Fault Accommodation Mechanism

Automated systems are vulnerable to faults. Defects in sensors, actuators, the plant

itself or within the controller can be amplified by the closed-loop system, and faults

can develop into malfunction of the loop. Research into fault-tolerant control concerns

wide fault natures. The faults that the adaptive backstepping fuzzy controller can

accommodate are discussed in the following.

6.1.3.1 Faults in the Plant

Although advanced modeling techniques are used, the modeling error is inevitable in

the modeling of surface vessels. Moreover, supposing the modeling is very accurate,

the parameters of the mathematical model will change according to various loading

conditions and trimming of the vessels. Here, suppose the system parameters M and

D are changed to M+ ∆M and D+ ∆D due to loading conditions or trimming, i.e.,

the system parameters M and D are unknown in control law (6.17), the compensator

Φ(ν)Θ̂H in (6.17) will compensate for the fault without significant degradation of

the control performance. That is because in this situation, the modeling errors and

the errors due to loading conditions or trimming can be lumped together with the
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hydrodynamic disturbances to be represented by a new vector of hydrodynamic dis-

turbances τH1 = τH−∆Mν̇ −∆Dν. Now the compensator is adapted from Φ(ν)Θ̂H

to Φ(ν)Θ̂H1 to estimate Φ(ν)Θ∗

H1 defined as follows.

Dν − τH1 + Mα̇1

= Φ(ν)Θ∗

H1 − ωH1(ν)

(6.20)

where −ωH1(ν) ∈ R3 is the minimum estimation error vector. Θ∗

H1 ∈ R3M which is

similar to Θ∗

H in (6.15) is the ideal weighting vector. The control and adaptive law

now may be considered as follows.

τ 1 = − JT(η)z1 −K2z2 + Φ(ν)Θ̂H1

= − JT(η)z1 −K2z2 + Dν − τH1 + Mα̇1

− Φ(ν)Θ̃H1 + ωH1(ν) (6.21)

˙̃ΘH1 = K3Φ
T(ν)z2 (6.22)

where Θ̃H1 = Θ∗

H1− Θ̂H1 ∈ R3M is the error vector between the ideal weighting vector

Θ∗

H1 and the adapted weighting vector Θ̂H1. Compared to the proposed control law

(6.17), the control law (6.21) do not contain information of the parameters M and D.

Regarding the stability property of the control and adaptive law (6.21) and (6.22),

consider the Lyapunov function candidate

VH1 = V2 +
1

2
Θ̃T

H1K
−1
3 Θ̃H1, (6.23)

similar conclusion as Theorem 6.1 could be drawn. Thus, the proposed control law

(6.17) could stabilize the closed-loop system even if the parameters M and D are set

as M = 0 and D = 0 in the control law.
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6.1.3.2 Faults in the Controller

As explained, the control law of the fault-tolerant adaptive backstepping IT2 FLC

(6.17) can be viewed as a combination of two parts, a model based control law

−JT(η)z1 − K2z2 + Dν + Mα̇1 and a compensator Φ(ν)Θ̂H.

Imagine the model based control law and the compensator are implemented on

two separate computers. If the fault occurs in the computer that implements the

model based control law, the errors due to the fault can be lumped together with

the hydrodynamic disturbances to be represented by a new vector of hydrodynamic

disturbances τH2. In this case the compensator is adapted from Φ(ν)Θ̂H to Φ(ν)Θ̂H2

to estimate Φ(ν)Θ∗

H2 defined as follows.

− JT(η)z1 − K2z2 + Dν − τH2 + Mα̇1

= Φ(ν)Θ∗

H2 − ωH2(ν)

(6.24)

where −ωH2(ν) ∈ R3 is the minimum estimation error vector. Θ∗

H2 ∈ R3M which is

similar to Θ∗

H in (6.15) is the ideal weighting vector. The control and adaptive law

now could be viewed as follows.

τ 2 = Φ(ν)Θ̂H2

= − JT(η)z1 −K2z2 + Dν − τH2 + Mα̇1

− Φ(ν)Θ̃H2 + ωH2(ν) (6.25)

˙̃ΘH2 = K3Φ
T(ν)z2 (6.26)

where Θ̃H2 = Θ∗

H2− Θ̂H2 ∈ R3M is the error vector between the ideal weighting vector

Θ∗

H2 and the adapted weighting vector Θ̂H2. It is noticed that in this case the control
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forces are directly generated by the compensator. The parameters of the conpensator

are directly adjusted to reduce the tracking errors. As regards the stability property

of the control and adaptive law (6.25) and (6.26), similar Theorem as Theorem 6.1

could be derived. Thus, the compensator Φ(ν)Θ̂H alone could stabilize the closed-loop

system.

If the fault is in the compensator, the system will rely on the robustness of the

model based control law τ 3 = −JT(η)z1 − K2z2 + Dν + Mα̇1 derived through

backstepping.

6.2 Output Feedback Control

The proposed controller (6.17) and (6.18) requires the states η and ν are measurable.

In the absence of velocity sensors such as the doppler velocity log, a high-gain observer

introduced by [111] is designed to estimate ν. With the high-gain observer, the

stability of the output feedback closed-loop system could be theoretically derived.

Lemma 6.1 Suppose a system output y(t) and its first n derivatives are bounded

such that |y(k)| < Yk with positive constants Yk, consider the following linear system:

επ̇i = πi+1, i = 1, . . . , n− 1 (6.27)

επ̇n = − λ1πn − λ2πn−1 − · · · − λn−1π2 − π1 + y(t) (6.28)

where ε is any small positive constant and the parameters λ1 to λn−1 are chosen such

that the polynomial sn + λ1s
n−1 + · · · + λn−1s + 1 is Hurwitz. Then, the following
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property holds:

ξk = y(k−1) − πk
εk−1

= εζ (k), k = 1, . . . , n (6.29)

where ζ = πn + λ1πn−1 + · · · + λn−1π1 with ζ (k) denoting the kth derivative of ζ.

Furthermore, there exist positive constants hk (independent of ε) and t∗ such that

|ξk| ≤ εhk for t > t∗.

The proof of Lemma 6.1 could be found in [111]. Note that πk+1/ε
k asymptotically

converges to y(k) with a small time constant, provided that y and its k derivatives

are bounded. Hence, πk+1/ε
k for k = 1, 2, . . . , n is a suitable observer to estimate

the output derivatives up to the nth order. In this chapter the high-gain observer is

designed as follows.

επ̇1 = π2 (6.30)

επ̇2 = − λ1π2 − π1 + η (6.31)

According to Lemma 6.1, ν̂ = JT(η)(π2/ε) asymptotically converges to ν. Define

ν̃ = ν − ν̂, note that ν̃ = JT(η)ξ2 and ν̃Tν̃ ≤ ε2h2
2 for t > t∗. Modifying the

control and adaptive law (6.17) and (6.18) from full state feedback case, the control

and adaptive law for output feedback control are obtained as

τ o = − JT(η)z1 − K2ẑ2 + Dν̂ + Φ(ν̂)Θ̂H + Mα̇1 (6.32)

˙̃ΘH = K3Φ
T(ν̂)ẑ2, (6.33)

where ẑ2 = ν̂ − α1. Define z̃2 = z2 − ẑ2, note that z̃2 = ν̃.

Theorem 6.2 Consider the plant (6.1) and (6.2) with the output feedback adap-

tive backstepping fuzzy control (6.32) and (6.33). For each compact set Ω0 where
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(η(0),ν(0), Θ̂H(0)) ∈ Ω0, the trajectories of the closed-loop system are semiglobally

uniformly bounded. The closed-loop error signals, z1, z2 and Θ̃H will remain within

the compact sets Ωz1, Ωz2 and ΩΘH
respectively defined by

Ωz1 ={z1 ∈ R3| ‖z1‖ ≤
√
D}, (6.34)

Ωz2 ={z2 ∈ R3| ‖z2‖ ≤
√

D

λmin(M)
}, (6.35)

ΩΘH
={Θ̃H ∈ R3M×1| ‖Θ̃H‖ ≤

√

D

λmin(K
−1
3 )

}, (6.36)

where D = 2(VH(0) +C/ρ) with ρ and C as defined in (6.37) and (6.38) respectively.

Proof: Assuming ΦT(ν) = ΦT(ν̂), the time derivative of the Lyapunov function

candidate VH in (6.19) along the closed-loop trajectory with (6.32) and (6.33) yields

V̇H = − zT
1 K1z1 + zT

2 [−K2ẑ2 −Dν̃ − Φ(ν)Θ̃H + ωH] + Θ̃T
HΦT(ν)ẑ2

= − zT
1 K1z1 − zT

2 K2z2 + zT
2 (K2 −D)ν̃ + zT

2 ωH − Θ̃T
HΦT(ν)ν̃

≤− zT
1 K1z1 − zT

2 (K2 −
1 + λ2

kd

2
I)z2 −

1

2
(λkdz2 − ν̃)T(λkdz2 − ν̃)

+
1

2
ν̃Tν̃ − 1

2
(z2 − ωH)T(z2 − ωH) +

1

2
ωT

HωH − Θ̃T
HΦT(ν)ν̃

≤− zT
1 K1z1 − zT

2 (K2 −
1 + λ2

kd

2
I)z2 + ν̃Tν̃ +

1

2
ωT

HωH − 1

2
‖Θ̃H‖2

≤− ρVH + C

where λkd is the maximum eigenvalue of K2 − D. ρ and C are defined as

ρ = min[2λmin(K1),
2λmin(K2 − 1+λ2

kd

2
I)

λmax(M)
,

1

λmax(K
−1
3 )

] (6.37)

C =ε2h2
2 +

1

2
ωT

HωH (6.38)

where λmin(A) and λmax(A) denote the minimum and maximum eigenvalues of matrix

A. To ensure ρ > 0, the gain matrix K1 and K2 are chosen such that λmin(K1) > 0
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and λmin(K2 − (1 + λ2
kd)I/2) > 0. Hence, the signals z1, z2 and Θ̃H are semiglobally

uniformly bounded, and other signals involved are also bounded. Multiplying V̇H ≤

−ρVH + C by eρt yields

d

dt
(VHe

ρt) ≤ Ceρt.

Integrating the above inequality yields

VH ≤ (VH(0) − C

ρ
)e−ρt +

C

ρ
≤ VH(0) +

C

ρ
.

Substituting VH in (6.19) into the above inequality,

1

2
‖z1‖2 ≤ VH(0) +

C

ρ
. (6.39)

Hence, z1 is bounded by the compact set Ωz1 . Bounds of z2 and Θ̃H can be similarly

shown and this concludes the proof.

Remark 6.2 Theorem 6.2 is applicable to the situations where the faults described

in subsection 6.1.3 occur. The proof procedures are similar to the proof of Theorem

6.2.

Remark 6.3 In this chapter, a rigorous theoretical treatment of the output feedback

problem is proposed using high-gain observer. The theorem is obtained based on the

assumption that the position measurements are perfect. If the position measurements

are contaminated with zero mean Gaussian white noise within tolerance, careful im-

plementation is necessary through designing ε to be sufficiently small. In this case,

the transient performance may degrade.
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6.3 Simulation Studies

MSS as reviewed in [99], which is a Matlab/Simulink library developed in Norwegian

University of Science and Technology, is employed as the platform for the simulation

studies. Sea current with speed Vc = 0.2 m/s and direction βc = 30◦ is included

in the simulations, although ignored during the controller design. The ITTC wave

spectrum with significant wave height Hs = 3 m and peak frequency ω0 = 0.56 rad/s

is used to imitate rough sea with large waves. The encounter angle, which is the angle

between the heading of the vessel and the direction of the wave, is set as β = 30◦.

The container ship S-175 as shown in [37] is used as case study. Its main particulars

are shown in Table 3.1. Similar to the setting in previous chapter, the sinusoidal

trajectory is chosen as ηd = [xd, yd, ψd]
T, where xd = 8t, yd = 200 cos(0.005πt), and

ψd = arctan(yd/xd). The initial states are set as [ηT
0 ,ν

T
0 ] = [10, 210, 0, 0, 0, 0]. All the

IT2 FLSs in the state feedback controller (6.17) and (6.18) and the output feedback

controller (6.32) and (6.33) are configured same as those in previous chapter.

6.3.1 State Feedback

In this subsection, the state feedback fault-tolerant adaptive backstepping IT2 FLC

(6.17) and (6.18) is evaluated. Three conditions, i.e., no fault, faults in the plant, and

faults in the controller are considered.

• No fault

134



If there is no fault, the control law expressed as (6.17) can be used for tracking

control

τ = −JT(η)z1 − K2z2 + Dν + Φ(ν)Θ̂H + Mα̇1.

The desired and actual trajectory of the vessel under the state feedback fault-tolerant

adaptive backstepping IT2 FLC, when K1 = diag[0.02, 0.02, 0.02], K2 = diag[4.3 ×

108, 4.3 × 108, 4.3 × 108], k31 = 108, k32 = 109 and k33 = 1010, is shown in Fig. 6.1.

The tracking errors of the vessel’s actual trajectories to the desired trajectories are

shown as solid line in Fig. 6.2. It can be observed that when there is no fault,

the tracking errors under the proposed controller asymptotically converge to zero

despite the time-varying hydrodynamic disturbances and the IT2 FLSs effectively

approximate the complex disturbances τH .

Figure 6.1: The desired and actual trajectory of the container ship under state feed-

back fault-tolerant adaptive backstepping IT2 FLC.

• Fault in the plant
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Figure 6.2: Tracking errors of state feedback adaptive backstepping IT2 FLC.
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If there are faults in the plant as explained in subsection 6.1.3, the control law

could be expressed as in (6.21) as

τ 1 = −JT(η)z1 −K2z2 + Φ(ν)Θ̂H1.

Now the parameters M and D in (6.17) are unknown and set as M = 0 and D = 0.

The tracking errors, when K2 = diag[4.3 × 108, 4.3 × 108, 4.3 × 108], k31 = 108,

k32 = 109 and k33 = 1010, are shown as dash line in Fig. 6.2. It can be seen when

there is modeling error or the loading condition and the trimming of the vessel change,

the proposed controller can maintain satisfactory performance.

• Fault in the controller

As mentioned, the control law of the fault-tolerant adaptive backstepping IT2

FLC (6.17) can be viewed as a combination of two parts, a model based control law

−JT(η)z1 − K2z2 + Dν + Mα̇1 and a compensator Φ(ν)Θ̂H. Imagine the model

based control law and the compensator are implemented on two separate computers.

If there are faults in the computer that operating the model based control law, the

control law could be expressed as in (6.25) as

τ 2 = Φ(ν)Θ̂H2.

Now only the compensator is working. The tracking errors, when k31 = 108, k32 =

109 and k33 = 1010, are shown as dot line in Fig. 6.2. It can be observed that

the performance degrades a little. Small fluctuations in the tracking error of surge

direction are observed, that is because the function to be modeled is more complex,

but the structures of the IT2 FLSs are the same.
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If there are faults in the computer that operating the compensator, the control

law could be expressed as

τ 3 = −JT(η)z1 − K2z2 + Dν + Mα̇1.

The tracking errors, when K1 = diag[0.02, 0.02, 0.02], K2 = diag[4.3 × 108, 4.3 ×

108, 4.3 × 108], are shown as dot dash line in Fig. 6.2. It can be seen that the per-

formance degrades very much. This is because τ 3 does not have any disturbance

compensation due to the lack of information. However, in order to have better per-

formance one can estimate a conservative bound of the disturbances and include the

bound in τ 3 to dominate the disturbances. Meanwhile, a fault detection and isolation

unit may be needed to switch the control laws when the compensator fails.

6.3.2 Impact of Control Gains

There are three control gains Ki (i = 1, . . . , 3) in the fault-tolerant adaptive back-

stepping IT2 FLC (6.17) and (6.18). The control gain K1 determines the relative

convergence speed of vessel displacement and velocity and should be chosen first.

The choice of the value of K1 depends on the plant. For container ship S-175 in

the simulation studies, K1 is set as K1 = diag[0.02, 0.02, 0.02]. The control gain K3

determines the convergent speed of adaptive law. To investigate the impact of the

control gains in the proposed controller, simulations with the following three cases

are conducted:

• Case 1: K2 = diag[4.3 × 107, 4.3 × 107, 4.3 × 107], k31 = 107, k32 = 108 and

k33 = 109;
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• Case 2: K2 = diag[4.3 × 108, 4.3 × 108, 4.3 × 108], k31 = 108, k32 = 109 and

k33 = 1010;

• Case 3: K2 = diag[4.3 × 109, 4.3 × 109, 4.3 × 109], k31 = 109, k32 = 1010 and

k33 = 1011.

The tracking errors of the vessel’s actual trajectories to the desired trajectories under

the the fault-tolerant adaptive backstepping IT2 FLC (6.17) and (6.18) for different

control gains are shown in Fig. 6.3. It could be seen that as the values of control

gains increase, the steady state errors decrease. And the performance improvement

between Case 1 and Case 2 is more obvious than that between Case 2 and Case 3. In

practice, large control gains are not recommended as they require larger actuators.

Thus, the choice of control gains should consider both performance requirement and

practical limitation.

6.3.3 Output Feedback

In this subsection, the high-gain observer (6.30) and (6.31) is used to obtain the

velocity estimate ν̂ = JT(η)(π2/ε) with λ1 = 2 and ǫ = 0.04. Corresponding to

subsection 6.3.1, the output feedback fault-tolerant adaptive backstepping IT2 FLC
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Figure 6.3: Tracking errors of fault-tolerant adaptive backstepping IT2 FLC with

different control gains.
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(6.32) and (6.33) is evaluated. Four different cases considered are as follows.

τ o = − JT(η)z1 − K2ẑ2 + Dν̂ + Φ(ν̂)Θ̂H + Mα̇1

τ o1 = − JT(η)z1 − K2ẑ2 + Φ(ν̂)Θ̂H1

τ o2 = Φ(ν̂)Θ̂H2

τ o3 = − JT(η)z1 − K2ẑ2 + Dν̂ + Mα̇1

The simulation results for the above four cases, when K1 = diag[0.02, 0.02, 0.02],

K2 = diag[4.3 × 108, 4.3 × 108, 4.3 × 108], k31 = 108, k32 = 109 and k33 = 1010,

are shown in Fig. 6.4. From the performance of the proposed controller τ o, it can be

observed that the tracking errors under the output feedback controller converge to and

remain within a small neighborhood of zero despite the time-varying hydrodynamic

disturbances. If the tracking errors are desired to be lower, it can be reduced by

several means to decrease C/ρ in Theorem 6.2. From the performance of the control

law τ o1, it can be seen similar to the state feedback case, the proposed controller can

well handle modeling error and the changes of the loading condition and the trimming

of the vessel. When the model based control law or the compensator in the proposed

controller fails, it can be observed that the performance degrades very much in the

output feedback cases. The reasons are similar to those for the sate feedback cases. In

conclusion, the proposed state and output feedback controllers can well accommodate

the faults in the plant, and maintain some “acceptable” level of performance when

the faults in the controller occur.

The small time convergence of the high-gain observer estimates to the velocity

signals for the four output feedback cases is clearly shown in Fig. 6.5. Within about
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1 s, the estimates peak at their respective values. Here, saturation functions are used

to overcome the peaking phenomenon of the high-gain observer. After saturation,

the observer estimates converge rapidly to the actual velocity signals. Thereafter, the

estimates remain in a small neighborhood of the velocity signals.

6.4 Conclusions

In this chapter, both state feedback and output feedback fault-tolerant adaptive back-

stepping IT2 FLCs have been designed for tracking control of fully actuated surface

vessels in face of time-varying hydrodynamic disturbances. For the state feedback

case, the sufficient condition, under which the tracking errors will semiglobally asymp-

totically converge to zero, is proposed. For the output feedback case, a high-gain

observer is used to estimate the unmeasurable states. The closed-loop signals under

this case are semiglobally uniformly bounded and converge to a compact set which

can be made small through appropriate choice of design parameters. Simulation re-

sults have demonstrated that the proposed state and output feedback controllers are

effective in reducing the tracking errors, and able to accommodate certain faults in

the plant and the controllers.
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Figure 6.4: Tracking errors of output feedback adaptive backstepping IT2 FLC.
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Figure 6.5: The errors ν̃ between actual velocity signals and their estimates for four

output feedback control cases.
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Chapter 7

Conclusions

7.1 General Conclusions

This thesis focused on marine control system design by means of adaptive IT2 fuzzy

logic control to handle the time-varying disturbances and uncertainties presented in

marine operations. The key results are as follows:

• Dynamic Positioning

In this thesis, an indirect adaptive IT2 FLC and a passive adaptive IT2 fuzzy

observer have been designed for DP vessels with attached thrusters in the presence of

time-varying hydrodynamic disturbances. The combination of approximation-based

adaptive technique and IT2 FLS allows the time-varying hydrodynamic disturbances

in the vessel model to be handled without exact information on them. The sta-

bilities of the adaptive IT2 fuzzy controller and observer were explored separately

through Lyapunov and passive analyses where the regulation errors of the adaptive

IT2 fuzzy controller would semiglobally asymptotically converge to zero, if the IT2

FLS adequately approximates the underlying function. And the estimation errors

of the adaptive IT2 fuzzy observer are semiglobally uniformly ultimately bounded.

Rigorous analysis showed that the adaptive IT2 fuzzy controller generated a passive
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closed-loop system and the adaptive IT2 fuzzy observer resulted in a passive observer

error dynamics. Simulation results with a container ship have shown that both the

adaptive IT2 fuzzy controller and observer are efficient and robust. IT2 FLS has com-

parable universal approximation property with type-1 FLS in DP application. As the

kinematics and dynamics of vessels are very typical in mechanical systems, the pro-

posed method could be used in regulation control of other mechanical systems such

as mobile vehicle and unmanned aerial vehicle. The main contributions of this piece

of work are: (i) the combination of approximation-based adaptive technique and IT2

FLS is proposed to handle disturbances and uncertainties in regulation and observer

design problem; (ii) a control scheme including both controller and observer, which is

able to adjust its parameters subject to the variations in vessel loading condition and

sea state, is introduced for DP; (iii) the stabilities of the adaptive IT2 fuzzy controller

and observer for DP are rigorously analyzed; (iv) passive nonlinear observer [25] is

extended and better estimation performance is achieved.

• Trajectory Tracking Control

The problem of tracking control of fully actuated surface vessels along a desired

trajectory in the presence of time-varying hydrodynamic disturbances was investi-

gated in this thesis. The combination of approximation-based adaptive technique

and IT2 FLS was also used to handle time-varying hydrodynamic disturbances and

uncertainties in the tracking control problem. An indirect adaptive IT2 FLC as well

as a direct adaptive IT2 FLC were first proposed. Although designed through dif-

ferent approaches, the closed-loop systems for both indirect and direct IT2 FLCs are
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similar and passive. The semiglobal asymptotic convergence of the tracking errors in

the closed-loop systems was shown by means of passive analysis and Lyapunov syn-

thesis. Simulation results have demonstrated that the indirect and direct adaptive

IT2 fuzzy techniques are effective, and reduce the integral of time-weighted absolute

tracking errors for the indirect adaptive FLC by at least 21.9% and 18.0% for the

direct adaptive case compared to type-1 FLCs. It was also shown that the IT2 FLS

has comparable approximation property even with fewer fuzzy rules when compared

to its type-1 counterpart in tracking control application. Although possessing good

performance, both the indirect and direct IT2 FLCs show their limitations in the sit-

uations where the velocities of the surface vessels are not measurable. This is because

both the indirect and direct IT2 FLCs were designed based on the assumption that

all the state variables of the vessel, i.e. displacements and velocities are measured

by its own on-board devices. To overcome this limitation and improve the reliability

of the tracking controller, a state feedback fault-tolerant adaptive backstepping IT2

FLC was then introduced, with the option of high-gain observer for output feedback.

Through backstepping and Lyapunov synthesis, the stabilities of the closed-loop sys-

tems were explored where sufficient condition for guaranteeing semiglobal asymptotic

convergence of the tracking errors in sate feedback control was proposed, whereas

semiglobal uniform boundedness of the closed-loop signals in output feedback control

was guaranteed. The combination of backstepping control and approximation-based

adaptive technique allows the proposed controller to be able to accommodate faults

such as the changes of the loading conditions and trimming of the vessels, and failure

of some parts of the control law. Simulation studies with a container ship were con-
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ducted. Results showed both the state and output feedback controllers are effective

and robust. Similarly, the proposed method could be used in tracking control of other

mechanical systems such as mobile vehicle and unmanned aerial vehicle. The main

contributions of this piece of work are: (i) the combination of approximation-based

adaptive technique and IT2 FLS is proposed to handle disturbances and uncertainties

in tracking control problem; (ii) an indirect and a direct adaptive IT2 FLC, which

have similar passive and stable closed-loop systems, are proposed for tracking control;

(iii) both a state feedback and an output feedback fault-tolerant adaptive backstep-

ping IT2 FLC are constructed for tracking control; (iv) detailed stability analyses of

all the proposed controller are described.

7.2 Future Research

The efficiency of the control algorithms designed for DP and tracking control of marine

vessels are verified by means of simulation. Whether their performances could be

guaranteed in practice is not very clear. It would be laudable if experiments with

real vessels in sea [25, 112] or scaled models of vessels in towing tank [33] could be

conducted to test the performances of the algorithms.

In [113], a separation principle of PD-like controller and passive nonlinear observer

was proposed for DP of ships based on cascaded nonlinear systems and Lyapunov

theory. Further study is needed to propose a similar separation principle for the

adaptive IT2 fuzzy controller and observer in DP.

Due to the developments in computer science, propulsion systems and modern
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sensor technology, more and more attentions are paid on the reliability of marine

control systems. Although the fault-tolerant marine control systems are explored

in this thesis, the faults that the proposed control algorithm can accommodate are

limited. In order to make the marine control systems more reliable, future research

should attempt to propose more complex fault-tolerant marine control systems which

include fault detection and isolation unit and supervision system.

In DP and tracking control of marine vessels, it is shown that IT2 FLS has

comparable approximation property with type-1 FLS. However, due to the obstacle

caused by switch points in type-reduction of IT2 FLS, there is still a lack of theoretical

analysis showing the reason behind this. It will be interesting to extend the works

[89]– [91] to investigate the universal approximation property of IT2 FLS rigorously

in future study.
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