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Abstract

Deformation animations between different computer-generated char-

acters or objects have gained widespread attention in the recent years.

In movie and gaming industries, deformation animations between dif-

ferent objects create breath-taking effects. In cartoon shows, computer-

generated anthropomorphized characters are animated to tell a story.

Although many deformation techniques have been proposed in the

recent years, fully automated computerized deformation animation

generation is still seldom used in the movie industry. The reason for

employing labor-intensive methods rather than utilizing a computer

software is that there are two main limitations in deformation tech-

niques that are currently available. First, most available deformation

techniques rely on the close similarities between source and target

shapes. Source and target objects of greatly dissimilar shapes cre-

ate ambiguities in vertex correspondence mapping. Second, there are

difficulties in handling topology changes automatically.

In the current work, a simple and efficient algorithm for deformation

between objects of greatly dissimilar shapes, which does not require

any form of similarity or vertex correspondence mapping, is presented.



This deformation algorithm is called general skin deformation algo-

rithm, because all intermediate shapes are represented by a maximum

curvature continuous surface type called skin surface. All intermedi-

ate skin surfaces share the same Voronoi complex, which is called the

intermediate Voronoi complex. The Minkowski sum of the interme-

diate Voronoi complex and its dual Delaunay complex forms mixed

cells which cut skin surfaces into patches. These skin patches are

free to deform in their own mixed cells according to regular sphere or

hyperboloid functions.

This solution has several advantages. First, no prior information,

such as the similarity, is required. Second, topology changes are han-

dled automatically. Third, prior work has been done on approximat-

ing real objects to skin meshes with homeomorphism, and the skin

meshes generated are guaranteed to be in good quality. Fourth, each

intermediate skin mesh is constructed more efficiently than existing

programs, such as the online computational geometry library CGAL.
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Chapter 1

Introduction

Computer-generated shape deformation animation, where different shapes morph

from one to another, has the potential to enrich human perception, education and

entertainment in many scientific and industrial fields. Biological scientists test

their hypothesis on the mechanisms of macromolecules in computer-simulated

experiments and capture desired kinetics events, such as major conformational

changes of macromolecules, binding properties, and response to mechanical forces

[38; 54]. Realistic physical simulations for engineering purposes employ deforming

surfaces as boundaries of spatial domains that vary with time. An example of this

is the modeling of deforming boundaries in simulations, such as the isosurface of

a certain threshold temperature in a dynamic heat system, whereby the model

describes the surface of solidifying liquid formed by the isosurface at the ‘freezing

point’ [51; 53]. Computer graphics professionals generate realistic models with

meshes and human-like textures to mimic the role of human actors. As there

is an increasing demand for time-evolving shape deformation animations, it is

important to provide efficient and robust computational tools to handle these

1



forms of animated geometry.

The first difficulty of modeling shape deformation is in the handling of shape

morphing between greatly dissimilar shapes automatically in real time. Most

modern deformation techniques require similarities between the source and tar-

get shapes for the identification of the feature correspondence during deformation,

i.e. computing the association of vertices and triangles in the same feature of both

source and target shapes [1; 6; 10; 24; 27; 45; 55; 60; 71; 75]. For example, in the

deformation process from a horse to a camel, feature correspondence of vertices

and triangles is easily identified as the four legs of the horse morph to form the four

legs of the camel. It is difficult for a computer program to figure out feature corre-

spondence information between objects of greatly dissimilar shapes, for example,

the deformation from a bunny to a torus (Figure 1.2). These examples are not

unreasonable since many breath-taking movies and cartoons require deformation

animations between objects of greatly dissimilar shapes (e.g. the robot deforms

from a pool of liquid in the movie, Terminator 2). However, automatic corre-

spondence mapping methods are inadequate in these cases, and usually require

labor-intensive methods to handle the ambiguities in correspondence mapping.

Therefore, there is great demand to build a fully automated deformation system

for objects of greatly dissimilar shapes.

The second difficulty of modeling shape deformation is in selecting a suitable

surface representation for both topology and local changes. On the one hand, it

is difficult to handle topology change automatically in computer graphics; con-

trolling the splitting, merger and creation of holes and tunnels is not trivial with

explicit(parametric) surfaces [42; 70]. On the other hand, it is difficult to carry

out local manipulations of implicit surfaces. For instance, a local change in a
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small part of the surface may cause the whole surface to change unexpectedly

[8; 65]. Furthermore, implicit surfaces are not easily understood, used and ma-

nipulated, especially by artists without formal training in Mathematics subjects

such as Algebra. Thus, the search for a good representation of deforming objects

between implicit and explicit surfaces is still on.

1.1 Criteria for Good Surface Approximation in

Deformation Algorithms

There are a few criteria for selecting a suitable type of surface for performing

shape deformation.

1. The surface must be capable of approximating any given object with promised

Hausdorff distance.

2. The surface is adequate for the modeling of changes in shape, curvature

and topology, of which topology is the most challenging aspect of modeling

surface deformation.

3. The triangulation of the surface requires good triangle quality as an aid in

the numerical analysis of physical simulations and homeomorphism to the

surface during deformation. In order to maintain a triangulation with good

quality, each angle of the triangle is bound with minimum and maximum

degrees.

4. It is preferable for the surface to be able to deform the current mesh from

the previous one instead of creating the current mesh from scratch. This
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last requirement aids the surface correspondence between two meshes in

two consecutive points of time, so that information that is attached to the

surface, such as texture mappings or electric potential, deforms continuously

over time.

The skin surface by Edelsbrunner [29], which satisfies all the requirements, is

employed and presented in this thesis. The method presented in our previous work

provides a way to approximate objects by skin surfaces [20] and this enables a

fully automated process for the deformation of a given object into another without

the need for manual assistance. Therefore, artists do not need to go through the

tedious task of manipulating the deforming surface in order to accommodate

topology changes.

1.2 General Skin Deformation

The general skin deformation (GSD) algorithm [21; 29] is a suitable surface mod-

eling paradigm for the deformation of arbitrary shapes, including additional ad-

vantages, such as better mesh quality and automatic handling of topology changes

with a certain general position assumption (examples are shown in Figure 1.1 and

Figure 1.2). In the GSD algorithm, the real time visualization of deforming one

shape into another can be obtained by super-imposing the Voronoi complexes

of the two skin surfaces to produce the intermediate Voronoi complex. The in-

termediate Voronoi complex, which is different from regular Voronoi complexes,

consists of degenerate Voronoi cells which are unavoidable even with the tradi-

tional general position assumption (Figure 1.3). Therefore, a new general position

assumption for GSD algorithm is defined (Section 3.1) as GGP Assumption. An
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example of the GGP Assumption is as follows: in R2, two Voronoi edges from the

two Voronoi complexes are only allowed to intersect each other at their interior

but not their endpoints in the intermediate Voronoi complex (Figure 1.3).

Figure 1.1: General skin deformation of a mannequin skin model from a question
mark skin model.

Figure 1.2: Deformation from a bunny skin surface mesh to a torus skin surface
mesh.

The GSD algorithm has the following six advantages:

1. Direct manipulation of deformation. The Minkowski sum of the in-

termediate Voronoi complex and its dual Delaunay complex forms mixed

cells which decompose skin surfaces into patches. Every skin patch is mod-

eled by a sphere or hyperboloid function, which deforms freely in its mixed

cell. No prior information about the similarities in shape between the ob-

jects is required. Therefore, the skin surface is a suitable representation for

performing deformation between objects of greatly dissimilar shapes.
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b1

b3

b4

b5
b2

b7

b6

Figure 1.3: Super-imposition of two Voronoi complexes constructed by two
weighted point set under GGP Assumption. The resultant intermediate Voronoi
complex (right-most) has degenerate Voronoi cells such as the marked Voronoi
vertex which is surrounded by four Voronoi regions.

2. Handling topology change automatically. When a surface is deform-

ing, its topology changes when its components are split or merged, or when

the surface creates or destroys voids and tunnels. Controlling these changes

is not trivial for explicit surfaces [42; 66]. The GSD algorithm addresses this

issue, and pre-schedules all topology change in the process of deformation.

For example, in Figure 1.2, the creation of a tunnel and the destruction of

a void are automatically handled in the process of deformation.

3. Intuitive object representation and editing. Explicit surfaces are

not suitable for topology changes [46], whereas, implicit surfaces are not

suitable for local manipulations [37; 50; 72]. In contrast, general skin surface

deformation is able to handle both local changes (Figure 1.4) and topology

changes (Figure 1.2) independently and automatically. Furthermore, skin

surface approximates objects within an Hausdorff distance that is better

than implicit surfaces [20].

4. Quality triangulation. Triangulation of the surface requires good triangle

quality as an aid in the numerical analysis of physical simulations, while

6



Figure 1.4: Local modification of a caffeine molecule. In the red box, one atom
is shrunk to half its original size. In the blue box, another atom is enlarged to
twice its original size. Topology changes are handled automatically.

maintaining homeomorphism to the surface during the deformation. In

our previous work [16; 19], triangulation of the skin surface with good

quality triangles was demonstrated. However, CGAL [14] (version 4.0.1)

provides the user with triangles with very small angles, which leads to bad

visualization and inaccurate computation (Figure 1.5).

Figure 1.5: Comparison of the triangle quality of the question mark skin surface
shown in Figure 1.1 by different programs. The triangular mesh that is generated
by our program is shown on the left and the one that is generated by CGAL-4.0.1
is shown on the right.
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5. Point-wise surface point correspondence. During morphing, every

surface point p(t) ∈ F(t) moves to a new position p(t + ∆t) ∈ F(t + ∆t),

and the pair p(t) and p(t+∆t) establishes correspondence for relating differ-

ent portions between the two surfaces F(t) and F(t+∆t). This relationship

provides point-wise surface correspondence between the same surface at dif-

ferent times during deformation, which is a crucial feature for computation

and visualization purposes in fields like medical imaging [58; 69], animation

[43; 44] (e.g. texture and bump mappings) and physical simulations [7] (e.g.

finite element analysis).

6. Efficiency Improvement. Shape deformation requires visually contin-

uous frames of meshes during morphing. Current static skin meshing al-

gorithms [14; 17; 19; 23; 47] build each intermediate frame from scratch.

For example, in Figure 1.2, the construction of each intermediate frame re-

quires more than five minutes with any existing static skin mesh approach.

The skin deformation algorithm has been improved in the current work,

such that each intermediate skin mesh is obtained from the previous time

frame. This improvement makes real time visualization of the skin surface

deformation possible.

1.3 Related Work

The skin surface was first introduced as a maximum curvature continuous surface

model for molecules by Edelsbrunner in 1999 [29]. It has several distinct prop-

erties such as smoothness, deformability and complementarity, which are desir-

able in biological studies such as protein docking and protein-protein interactions
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[26; 32; 62].

However, there has been no proper algorithm for handling deformation be-

tween arbitrary skin surfaces for many years, after the initial idea was proposed

by Edelsbrunner in 1999 [29]. In 2002, Cheng et al proposed the growth model

as the first deformation framework of skin surfaces [16]. In the growth model, all

weighted points increase or decrease by the same α value [35], which is not useful

for applications in the real world. The main difficulty of modeling skin surface

deformation is all intermediate shapes have to maintain the skin surface prop-

erties with the correct topology. The intermediate skin surfaces are required to

maintain the same homology groups as the alpha complexes [31; 34; 39], whereby

most of the existing morphing theories failed to handle during the skin surface

deformation. The only way to visualize the deformation between different skin

surfaces is to generate each frame separately using static skin mesh generation

methods, such as Kruithof’s algorithm [47] developed in CGAL [14] and quality

skin mesh software developed by Cheng and Shi [18; 19]. These methods have

several disadvantages, such as lack of efficiency, no surface point correspondence

and discontinuity of homology group changes [21]. In 2006, Cheng and Chen

found that the super-imposed Voronoi diagram of two or more skin surfaces re-

mains unchanged during the deformation process [15]. This makes continuous

skin deformation possible for any combination of skin surfaces. In 2010, the GSD

algorithm was implemented in our work to perform deformation between any

given skin surfaces under the general position assumption (GPA) [21].

The interest of skin surface deformation is no longer restricted to molecular

studies, but applied to all forms of objects that are represented by sets of weighted

points. With the use of algorithms converting polygonal objects into weighted
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point sets [12; 20; 52; 68], the GSD algorithm can perform global deformation

between real world objects which are approximated by skin surfaces. In con-

trast to many existing deformation algorithms, such as the shape-interpolation

by Alexa et al. [1; 57], the skeleton-driven deformation works [49; 71] and the

vector field based mesh editing [11; 41; 67; 74; 76], the GSD algorithm has the

advantages of handling objects of greatly dissimilar shapes and automatic topol-

ogy changes (Figure 1.1 and 1.2), real-time visualization and automatic surface

point correspondence mapping (Chapter 7).

The GSD software is available at http://www.comp.nus.edu.sg/˜yanke2.

1.4 Framework

The whole GSD algorithm is separated into three parts. First, both source and

target shapes are converted into weighted point sets B0 and B1 by existing al-

gorithms, such as the power crust [52] or the sphere-tree toolkit [12]. Second,

the algorithm formulated from our previous work is used to convert B0 and B1

into skin surfaces skin (B0) and skin (B1) [16; 18; 19]. Finally, each skin patch is

deformed in its mixed cell with a parameter t ∈ [0..1] as time. It is even possi-

ble to interpolate more than two objects for performing shape synthesis by their

respective skin models [15].

The triangle quality of the mesh at any time t, is maintained at a certain

quality that guarantees homeomorphism between the mesh and the skin surface.

This is described in Section 2.1.5. It is assumed that at time t, a triangle τ is

in good quality. A time t + ∆t in the future is scheduled into a priority queue,

such that τ may fail the quality check but is not beyond repair. Checks and
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refinements (if necessary) are performed at time t + ∆t, and all the involved

triangles are rescheduled after refinement. At the same time, topological change

operations are also scheduled into the priority queue in order to maintain the

mesh.

1.5 New Issues

As compared to the old growth model [16; 30], the GSD algorithm faces new

issues such as more sophisticated intermediate complex, surface point movements

and scheduling. Solutions to these new issues are provided and the general skin

surface deformation problem is solved and presented in this thesis.

First, the nature of the mixed cells in the general deformation is more complex

than that of the growth model. The entire space is partitioned into a finite number

of convex polytopes called mixed cells, and the intersection of each mixed cell and

the skin surface is a part of a quadratic surface. In the growth model, there are

only four types of mixed cells and they are fixed in space. However, there are

seven types of mixed cells in the general deformation, and they move and deform

with time. Thus, computation of the trajectory of each surface point within a

mixed cell, and the escaping time when the surface point transfers from one mixed

cell to another, are the new issues that have to be considered.

Second, movement of these new mixed cells complicate the trajectories of

surface points. In the growth model, each surface point within a mixed cell moves

in a straight line or a quadratic curve when one tracks the surface normals, and

this enables the prediction of the triangle distortion. As the mixed cells in the

general deformation undergo deformation, the surface points do not move in such
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a simple manner. Tracking surface normals is not an easy task in the general skin

deformation model. Therefore, a new way of surface point movement is proposed

in the current work. Experiment results show that this new movement improves

the efficiency of the GSD algorithm.

Finally, the topology changes are different. In the growth model, there is at

most one topology change within one mixed cell but there are at most two in the

general deformation.

1.6 Contribution

In the current work, a simple and efficient deformation solution, namely GSD,

is presented for objects of greatly dissimilar source and target shapes with no

similarity information provided. Our algorithm solves the general skin surface

deformation problem based on the old growth model with new improvements.

New types of mixed cells and their transformations are addressed. New surface

point moving trajectories are proposed to deal with more complicated surface

movement. New topology changes are handled by scheduling. The efficiency of

the program is improved by moving the skin surface mesh from the previous time

frame to the current time frame.

1.7 Outline

The main goal of this thesis is to present the investigation and implementation of

the skin surface deformation algorithm, based on super-imposition of the Voronoi

complexes of the source and target shapes [15].
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Two versions of the GSD software are described in this thesis. The first version

implements the general skin deformation as first proposed by Edelsbrunner [16;

29]. There is a total of six primary combinations of intermediate Delaunay and

Voronoi complexes for different inputs under the GGP Assumption. The efficiency

is improved as compared with the static skin algorithms [18; 19; 47], because each

intermediate skin mesh is obtained from the previous time frame. A simplified

version of GSD, namely SGSD, is proposed in the second version in order to

further improve the efficiency [73]. In the SGSD algorithm, there are two more

combinations of intermediate Delaunay and Voronoi complexes added due to the

violation of the GGP Assumption. The new SGSD algorithm improves the overall

efficiency of GSD from O(m2n2) to O(m2 + n2). This improvement makes SGSD

a real time software for any given morphing input.

In this thesis, the fundamentals of the skin surface deformation, such as the

skin decomposition and super-imposition of the Voronoi complexes, are presented

in Chapter 2. The definitions of the intermediate complexes are introduced in

Chapter 3. The general skin surface deformation with quality triangular mesh

is explained in Chapter 4. A simplified version of GSD is discussed in Chapter

5. More degenerate cases are discussed in Chapter 6 while focus is placed on a

special deformation of partial movements. The description of the skin deformation

software is in Chapter 7 and the conclusion is in Chapter 8.
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Chapter 2

Preliminaries

In the first part of this chapter, all the necessary background definitions for the

skin surface [29] are listed. The concepts of Delaunay and Voronoi complexes [5;

36], skin decomposition [22], and quality triangulation of the skin surface [18; 19]

are introduced. In the second part, the original idea of general skin deformation

proposed by Edelsbrunner in 2000 [17; 34], and our improvements made to the

super-imposition proposed by Chen and Cheng [15; 21] are introduced. The

notations that are presented in the later parts of this thesis are defined in this

chapter. Readers may refer to the specific references for more details.

2.1 The Skin Surface Representations

In this section, the fundamentals of the skin surface representations are intro-

duced, including weighted points, convex hull, the skin surface, skin decomposi-

tion by mixed cells and quality skin surface triangulation mesh [18; 19].
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2.1.1 Weighted Points

A weighted point in Rd can be written as bi = (zi, wi) ∈ Rd × R where zi ∈ Rd is

the position and wi ∈ R is the weight. It is also viewed as a d dimensional sphere

with center zi and radius |wi|
wi

√
|wi|. Negative radius is allowed since the weight wi

is possibly negative. Given a finite set B = {b1, b2, ..., bn}, z(B) ⊂ Rd is denoted

as the set of the positions of the weighted points in B. The weighted distance of

a point x ∈ Rd from a weighted point bi is defined as πbi
(x) = ‖xzi‖2 − wi.

2.1.2 Skin

A skin surface is specified by a set of weighted points B = {bi ∈ Rd × R |
i = 1, 2, ..., n}. Three operations on weighted points are defined in the sphere

algebra, namely addition, scalar multiplication and square root of weighted points

for bi, bj ∈ B and γ ∈ R, which are defined as,

bi + bj = (zi + zj, wi + wj + 2〈zi, zj〉),

γbi = (γzi, γwi + (γ2 − γ)||zi||2),
√

bi = (zi, wi/2),

where 〈zi, zj〉 is the dot product of zi and zj.

The convex hull of B is defined as

conv (B) =
{∑

λibi |
∑

λi = 1 and λi ≥ 0, i = 1, ..., n
}

.

The skin body is the union of all shrunken balls in conv (B) and the skin surface

is the boundary of the union of all shrunken balls in conv (B) (Figure 2.1), which

15



conv(B) skin(B)

Figure 2.1: Assume B consists of only two weighted points, which are the two
largest circles on the left sub-figure. The convex hull of B in R2 is shown on left.
The skin surface of all shrunken circles in the convex hull of B is shown on the
right.

is formally expressed as

skin (B) = ∂

(⋃ √
conv (B)

)
.

In R3, the skin surface is a C1 continuous surface with continuous maximum

normal curvature, κ, which is formed by a finite collection of weighted points or

spheres (Figure 2.2). If the weighted points represent the atoms of a molecule,

then the appearance of that surface is similar to the molecular surface used in

structural biology [25; 48]. The skin surface and the molecular surface differ in

a number of details, one such difference is that the former uses hyperboloids to

blend sphere patches while the latter uses tori.
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Figure 2.2: Demonstration of skin surfaces in R3. Different sets of weighted points
are shown in the first row. The corresponding skin surfaces for the weighted point
sets in the first row are shown in the second row.

2.1.3 The Delaunay, Voronoi Complexes, General Position

Assumption and Mixed Cells.

The Voronoi region νi for each weighted point bi ∈ B is defined as,

νi = {x ∈ Rd | πbi
(x) ≤ πbj

(x), bj ∈ B}.

For a set of weighted points X ⊆ B, the Voronoi cell of X is defined as νX =
⋂

bi∈X νi. The collection of all the non-empty Voronoi cells is called the Voronoi
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complex of B, which is denoted by, VB. For each νX ∈ VB, the corresponding De-

launay cell, δX , is the convex hull of the set of centers of X, namely, conv (z(X)).

The collection of all the Delaunay cells is called the Delaunay complex of B,

which is denoted by DB. The Delaunay complex is simplicial under the following

general position assumption in Rd: ∀νX ∈ VB, card(X) = dim(δX) + 1.

A general position assumption is usually made in order for the Delaunay

complex to be simplicial. This is defined as the Traditional General Position

(TGP) Assumption, namely, ∀νX ∈ VB, card(X) = dim(δX) + 1. Under this

assumption, there are only four types of Delaunay cells in R3: vertices, edges,

triangles and tetrahedra.

A mixed cell µX is the Minkowski sum of a Delaunay cell and its corresponding

Voronoi cell, formally expressed as µX = (δX + νX) /2. With card(X) = 1, 2, 3, 4,

the four types of mixed cells are convex polyhedrons, prisms, triangular prisms

and tetrahedra respectively (Figure 2.3). The center and size of a mixed cell are

defined as

zX = aff (δX) ∩ aff (νX), and

wX = wi − ‖zXzi‖2.

where bi = (zi, wi) is any weighted point in X and wX is the negative square

radius of the ball orthogonal to X.

2.1.4 Skin Decomposition.

The skin surface skin (B) can be decomposed by mixed cells (Figure 2.4). All

four types of mixed cells, which are constructed by the Delaunay and Voronoi
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Figure 2.3: All possible mixed cell types under TGP Assumption.

complex of B, partition the whole space including the skin surface. Within each

Figure 2.4: Skin decomposition in R2.

mixed cell µX , skin (B)∩µX is a quadratic surface. In R3, skin patches are pieces

of spheres and hyperboloids of revolution (Figure 2.5), which can be expressed in

the following standard forms

x2
1 + x2

2 + x2
3 = R2, (2.1)

x2
1 + x2

2 − x2
3 = ±R2, (2.2)

after the translation of zX to the origin and the oriented axis to the x3-axis if

they are hyperboloid patches. In Equation (2.2), the plus sign on the right hand
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Figure 2.5: In R3, the skin surface is decomposed into sphere or hyperboloid
patches bounded by four types of mixed cells.

side results in one-sheeted hyperboloid and the minus sign results in two-sheeted

hyperboloid.

All possible combinations of Delaunay cells, Voronoi cells, mixed cells and

skin patches are listed in Table 2.1.4. Each type of Voronoi cell is classified by

the dimension of that particular Voronoi cell, namely, dim(νX). There are four

types of combinations under the TGP Assumption. The table is expanded in

Chapter 3 when the intermediate complexes are introduced.
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Type Voronoi Cell Delaunay Cell Mixed Cell Skin Patch
3 Polyhedron Vertex Polyhedron Sphere
2 Polygon Edge Prism Hyperboloid
1 Edge Triangle Triangular Prism Hyperboloid
0 Vertex Tetrahedron Tetrahedron Sphere

Table 2.1: Possible combinations of Voronoi cells, Delaunay Cells, Mixed Cells
and Skin Patches

2.1.5 Quality Skin Surface Triangular Mesh

Triangulation of the skin surface guarantees homeomorphism and good quality

triangles if the following Conditions [U] and [L] are satisfied. At any point x on

the skin surface, κ(x) is denoted as the maximum principal curvature at x, and

the local length scale at x is expressed as %(x) = 1/κ(x). The half length of an

edge ab is assigned as Rab = ‖a− b‖/2, and the circumcircle radius of a triangle

abc is denoted by Rabc. The mesh is homeomorphic to the surface if it satisfies

the Lower bound Condition [L] and the Upper bound Condition [U] below. Let

%ab be the maximum of %(a) and %(b), and %abc be the minimum of %(a), %(b) and

%(c). Then the two conditions are,

[L] Rab/%ab > C/Q for every edge ab, and

[U] Rabc/%abc < CQ for every triangle abc,

where C and Q are positive constants obtained empirically. The triangle quality is

guaranteed by the minimum angle of the triangles, namely sin−1 1
Q2 . For C = 0.08

and Q = 1.65, the minimal angle of the mesh is proven to be larger than 21.54◦

[16] (Figure 2.6).
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Figure 2.6: An example of quality triangular mesh satisfying [L] and [U] condi-
tions.

2.2 The Overview of General Skin Deformation

The skin surface possesses the ability to deform from one shape into another

freely in a general manner. However, there is no algorithm prior to our work

which is able to perform the skin surface deformation with triangular meshes. If

any two polygonal shapes are approximated by two skin surfaces, a robust and

fully automatic deformation is possible without any constraint, such as similarity

or topology of the two shapes [20]. Figure 1.1 and 1.2 show examples of such

general skin surface deformation.

In this section, an overview of the GSD algorithm is provided. First, the

growth model, which increases the weights of a set of weighted points without

changing their positions, is introduced. The maintenance of the triangular mesh

of the skin surface in the growth model is similar to that of the GSD algorithm.

Therefore, the growth model serves as a base case of the GSD algorithm. Sec-

ond, the construction of the intermediate weighted point sets, which define the
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intermediate skin surfaces, is shown. The intermediate weighted point sets are

obtained by interpolating the source and target weighted point sets, and they

share the same Voronoi complex through out the deformation process.

2.2.1 Growth Model

The growth model is the first skin surface deformation model [16]. It begins with

a set of weighted points, all with zero weights, and then slowly increasing all

weights with the same α value. Figure 2.7 illustrates the growth model using the

example of increasing the radii of atoms in a DNA molecule. Since all weighted

point positions remain unchanged and the weights are increased by the same

α value, all intermediate skin surfaces share the same Delaunay and Voronoi

complexes.

Figure 2.7: The growth model.

The deforming mesh algorithm presented by Edelsbrunner [30] updates the

positions of points on the mesh surface for a growing skin from the previous

time frame according to their trajectories. During the updates, mesh maintaining

operations are scheduled to preserve the homeomorphism and maintain the quality

of triangles. A point on the sphere patch, is moving towards or away from the
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sphere center during the growth motion. The motion of a point on the hyperboloid

follows a hyperbola (Figure 2.8).

Figure 2.8: Trajectories of a point on the growing circle and growing hyperbola

In order to maintain the homeomorphism between the skin surface and the

mesh during deformation, maintaining operations are applied to the mesh to

ensure that it satisfies Conditions [U] and [L]. These operations are:

1. Coordinates update

2. Edge flipping

3. Vertex insertion

4. Edge contraction

5. Metamorphosis

Of these five operations, the coordinates of a point on the surface are updated

according to the trajectory of the point. The other operations can be further

decomposed into a sequence of sub-operations. For example, a vertex insertion

relies on point additions and edge flips. The metamorphosis is used to handle
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topology changes. For example, a two-sheeted hyperboloid becomes a one-sheeted

hyperboloid. When the metamorphosis is scheduled, a special sampling is used

to preserve the homeomorphism between the mesh and the skin surface [16].

2.2.2 General Skin Deformation

The growth model provides an idea of how to maintain a moving mesh without

reconstructing each intermediate skin surface from scratch. However, the growth

model is inadequate for handling general deformation that is more complicated

and useful[15; 17; 23]. In general deformation, the weights of the points are not

changing at the same increasing speed and their locations are not fixed.

Let B0 and B1 be the weighted point sets of source shape skin (B0) and tar-

get shape skin (B1) respectively. By denoting B = {B0, B1}, the intermediate

weighted points set at time t ∈ [0, 1] is defined as,

B(t) = {bij(t) = (1− t)bi + tbj | bi ∈ B0, bj ∈ B1}, for t ∈ [0, 1].

The intermediate shape is defined as skin (B(t)) and it deforms smoothly as time

t changes.

The intermediate Voronoi complex V is defined as the Voronoi complex of B(t)

and is required for the generation of skin (B(t)). Chen and Cheng [15] proved

that all intermediate surfaces share the same intermediate Voronoi complex V

which is the superimposition of all Voronoi complexes of B.

Since the intermediate Voronoi complex remains unchanged, the general skin

deformation moves the skin surface mesh in a manner similar to that of the growth

model, but with additional freedom and different surface vertex movement. The
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idea is to schedule updates on the surface triangles as the mesh morphs during the

progression of time t. However, the growth model only allows a skin surface to

‘grow’ from nothing into a shape instead of deforming from one object into another

freely. In general skin deformation, the following new issues are considered:

The trajectory of vertices on the surface mesh. A new way of moving

the surface vertices on the mesh is employed. This new method is more efficient

and ‘intuitive’ than the growth model, which moves vertices along their normal

directions (Figure 2.8). First, the previous method creates a lot of ‘stretching’

or ‘compression’ near the tips of two-sheeted hyperboloids and the waists of one-

sheeted hyperboloids. The large number of triangle modifications (creation and

deletion) at these areas leads to unreasonable or undesirable texture distortion in

animation or numerical instability in computations. Second, all surface triangles

in Type 1 and 2 mixed cells require frequent checks on the triangles and edges to

ensure their quality and the homeomorphism between the triangulation and the

skin surface. Finally but most importantly, the model from the previous work has

a simpler movement of surface vertices because the deformation is limited to the

growth model and mixed cells do not move or deform. This enables the scheduling

of checks and updates more easily than the general deformation presented in this

thesis.

Therefore, a new type of vertex movement is proposed in order to improve

and enable the implementation of general deformation. A decision is made to

move vertices towards and away from their corresponding mixed cell centers in

order to improve efficiency. It is faster and simpler to move a point along a

straight line within a mixed cell. In the growth model, every point moves along a
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hyperbola and solution of a quartic equation is required in order to compute the

new location of the point.

Escaping time scheduling. Every point on the surface is moving along a

straight line within a mixed cell locally and the mixed cell is translating in a

linear manner. However, the point does not move along a straight line after the

combination of these two movements. Thus, there is still a need to handle and

compute the time when a point reaches the boundary of its mixed cell and enters

another one. This moment in time is called the escaping time, and it happens

when a surface vertex p(t) in µX(t) transfers to another nearby mixed cell µY (t)

when p(t) is at the boundary of HXY (t).

Scheduling of updates on the triangle quality. An element (a triangle or

an edge) in a single mixed cell does not need checks and updates on its quality

because it is only under scaling according to Conditions [U] and [L]. Thus, only

the elements that span across more than one mixed cell require scheduling, which

greatly reduces the priority queue size. Based on experimental results, the trian-

gles that span across a few mixed cells occupy less than approximately 8% of the

total triangle population.

Topology changes of the surface. Topology changes in the GSD algorithm are

different from that of the growth model because there may be at most two changes

in each mixed cell. In the former case, there is at most one topology change for

each patch in a mixed cell during the growth motion, but it is different in the
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case of general deformation where each mixed cell size of wX(t) is a quadratic

function of t. Moreover, a topology change operation is scheduled only if the

mixed cell center is in the mixed cell. Both the center and the cell are moving

and deforming, which is different from that of the growth model. This indicates

that there is a possibility that the center is not in the mixed cell when wX(t) = 0.
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Chapter 3

Intermediate Complexes in Skin

Deformation

The intermediate Delaunay and Voronoi complexes are important underlying data

structures for the construction of intermediate skin shapes in skin deformation.

Let B0 and B1 be the weighted point sets of source shape skin (B0) and target

shape skin (B1) respectively. At each time t, the intermediate Delaunay and

Voronoi complexes are obtained by the intermediate weighted point set B(t) =

{bij(t) = (1− t)bi + tbj | bi ∈ B0, bj ∈ B1}.
Two approaches are used to generate intermediate skin shapes of B(t). In

the old approach, intermediate Delaunay and Voronoi complexes are constructed

directly from B(t), the skin patches are built separately in different mixed cells,

and then the intermediate skin shapes are formed. This approach is slow and

complicated. The intermediate skin shapes are all built separately. Therefore, it

is difficult to deliver the surface information during deformation, such as textures.

In contrast, in the current work, the intermediate skin shapes are generated di-
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rectly from the previous time frame, which is much simpler and faster. In 2006,

Chen and Cheng found that all intermediate skin surfaces built from B(t) share

the same Voronoi complex, which is the superimposition of the Voronoi complexes

of B0 and B1 (Figure 3.1). This unique Voronoi complex is called the interme-

diate Voronoi complex V relative to B(t) [15]. The dual intermediate Delaunay

complex δ and intermediate mixed cells move linearly with t because V remains

unchanged. In the new general skin deformation approach, the skin surface mesh

moves directly from the previous time frame according to the new positions and

new weights of the intermediate mixed cells.

In this chapter, the unique intermediate Voronoi complex through-out the skin

deformation process is first defined. Next, the intermediate Delaunay complex,

which is the dual shape of the intermediate Voronoi complex, is introduced. A

comparison between our Delaunay update system and the famous dynamic Delau-

nay triangulation [64] is done to highlight the advantages of our system. Finally,

the intermediate mixed cells and their connections are defined. The mixed cell

connection provides the mixed cell neighborhood information, which is important

for the location of skin surface mesh points in their mixed cells during deforma-

tion.

3.1 Intermediate Voronoi Complexes

Let the Voronoi complex of B0 be V0, and the Voronoi complex of B1 be V1. The

intermediate Voronoi complex is the super-imposition of V0 and V1,

V (t) = {νXY |νX ∈ V0, νY ∈ V1, νX ∩ νY 6= ∅},
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Figure 3.1: Demonstration of deformation from a three weighted point model B0

to a four weighted point model B1 in R2. All intermediate weighted point sets
B(0.25), B(0.5) and B(0.75) share the same Voronoi complex.

where each νXY is called an intermediate Voronoi cell of V (t). For t ∈ [0, 1],

with the invariance of the intermediate Voronoi complex, the type of intermedi-

ate Voronoi cells in the process of deformation is determined. It is assumed that

the two weighted point sets are under the TGP Assumption individually. A new

general position assumption is proposed for the super-imposition of two different

Voronoi complexes.
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GSD General Position Assumption (GGP Assumption). In Rd, the di-

mension of νXY = νX ∩ νY , νX ∈ V0 and νY ∈ V1, is

dim(νXY ) = dim(νX) + dim(νY )− d.

The equation above violates the TGP Assumption as it allows new types

of Voronoi cells. There are six possible intermediate Voronoi cell types under

GGP Assumption after super-imposing Voronoi complexes in R3 (refer to Table

2.1.4). Each type of intermediate Voronoi cells is classified by a tuple, namely,

(dim(νX),dim(νY ),dim(νXY )). It is assumed that dim(νX) > dim(νY ) and all

possible tuples are (3,3,3), (3,2,2), (3,1,1), (3,0,0), (2,2,1) and (2,1,0) (Table 3.1).

The first four types of tuples represent the simplicial types, whereby their corre-

sponding Delaunay cells are simplicial. The types, (2,2,1) and (2,1,0) represent

two non-simplicial types. For example, Type (2,1,0) represents a Voronoi face

(shared by two Voronoi regions) intersecting a Voronoi edge (shared by three

Voronoi regions) at a vertex. This intermediate Voronoi vertex is a non-empty

intersection of six Voronoi regions in V (t) under the GGP Assumption.

Table 3.1: Possible combinations of intermediate Voronoi Cells, Delaunay Cells,
Mixed Cells and Skin Patches

Index Type Voronoi Delaunay Mixed Cells Patch
0 (3,3,3) Polyhedron Vertex Polyhedron Sphere
1 (3,2,2) Polygon Edge Right Prism Hyperboloid
2 (3,1,1) Edge Triangle Right Tri. Prism Hyperboloid
3 (3,0,0) Vertex Tetrahedron Tetrahedron Sphere
4 (2,2,1) Edge Parallelogram Parall. Prism Hyperboloid
5 (2,1,0) Vertex Tri. Prism Sheared Tri. Prism Sphere
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3.2 Intermediate Delaunay Complexes

The intermediate Delaunay complex, D(t), which is not a simplicial complex,

is defined as the Delaunay complex of B(t). Apart from the regular Delaunay

triangulation, the intermediate Delaunay complex is defined as,

D(t) = {conv(z(ν−1(νXY )))|νXY ∈ V (t)}, (3.1)

where

z(X) = {zi|bi ∈ X}, and

ν−1(νXY ) = {bij(t)|νX ∈ V0, νY ∈ V1, νX ∩ νY 6= ∅}.

Table 3.1 is verified with an example of Type (2,1,0). Type (2,1,0) is formed

by an intersection of a Voronoi face and a Voronoi edge. This is the case when

a Delaunay edge ab deforms to form a Delaunay triangle cde (see Figure 3.2). It

was mentioned in the previous subsection that there are a total of six Voronoi

regions sharing this type of Voronoi vertex. Hence, there are six intermediate

weighted points sharing this Voronoi vertex. The intermediate Delaunay cell is

the convex hull of the six weighted point centers, which is a triangular prism.

3.2.1 Degeneracies in Intermediate Delaunay Triangulation

Non-simplicial Delaunay cells exists in Table 3.1 because of degenerate weighted

points violating the TGP Assumption in the intermediate Delaunay triangula-

tion. For example, in regular Delaunay triangulation, the Delaunay cell in Type

(2,1,0), which is a triangle prism, is decomposed into three tetrahedra (Figure
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Figure 3.2: An Delaunay edge ab deforms to a Delaunay face cde. The interme-
diate Delaunay cell is non-simplicial and is a triangular prism.
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Figure 3.3: In a regular Delaunay triangulation, non-simplicial intermediate De-
launay cells is decomposed into simplices sharing the same Voronoi center.

3.3). However, these three tetrahedra share the same Voronoi center. In the

intermediate Delaunay triangulation, the three degenerate tetrahedra are merged

34



A

B C

D

E

Figure 3.4: Five points A, B, C, D, E share the same Voronoi center. The
degenerate triangle BCD exists in the intermediate Delaunay triangulation.

to provide a clearer Delaunay complex structure.

It is noted that the intermediate Delaunay triangulation does not prevent all

degenerate cases violating the TGP Assumption. Two tetrahedra sharing the

same Voronoi center are not combined, leaving a degenerate Delaunay triangle

(Figure 3.4). The degenerate Delaunay triangle creates a zero volume mixed cell,

which is discussed in Section 3.3.1.

3.2.2 Comparison of Delaunay Triangulation Updates and

Dynamic Delaunay Triangulation

The complexity of a Delaunay triangulation update is always an interesting topic

in computational geometry. The most famous algorithm to handle this problem

is the dynamic Delaunay triangulation (DDT) [64].

The GSD algorithm is generally faster than DDT as it takes advantage of the
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unchanging intermediate Voronoi complex. Although DDT performs the same

function as the GSD algorithm of modeling weighted points in motion, DDT

has to update the changes in topology of its Delaunay and Voronoi complexes

[28; 56]. The GSD algorithm maintains the same topology for its Voronoi complex

throughout deformation.

bi b
′

i

(a)

bi b
′

i

(b)

Figure 3.5: Weighted points movement in a higher dimension. On the left, a
weighted point moves in a straight line in a higher dimension with GSD algorithm.
On the right, a weighted point moves along the paraboloid in a higher dimension
with DDT.

The difference lies in the fact that, the weighted points move linearly in a

higher dimension after lifting in the GSD algorithm. A lifting map projects the

weighted points in Rd into unweighted points in Rd+1. The Delaunay triangu-

lation of the weighted points is the inverse projection of the convex hull of the

lifted unweighted points. The GSD algorithm moves a lifted unweighted point in

Rd+1 linearly, such that its Voronoi complex remains the same through-out the

movements (Figure 3.5(a)). In contrast, DDT moves the lifted unweighted points

along a paraboloid in a non-linear manner. This causes the Voronoi complex to
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change (Figure 3.5(b)). Thus, frequent updates are necessary during deformation.

3.3 Intermediate Mixed Cell

Intermediate mixed cells are the Minkowski sum of their corresponding Delaunay

and Voronoi cells. There are two more types for intermediate mixed cells, namely,

parallelogram and Sheared Triangular Prism in Table 3.1 as compared to Table

2.1.4.

The skin patch within a mixed cell µX(t) is determined by the position, the

size and the shape of µX(t). The position and size are determined by the center

zX(t) and the size wX(t), and the latter defines R =
√

wX(t)
2

in Equations (2.1)

and (2.2).

The intersection of the affine hulls of νX(t) and δX(t), namely, zX(t), is first

computed. As νX(t) remains unchanged and all the centers of X(t) move linearly

with t, δX(t) moves linearly, and thus, the intersection zX(t) moves linearly along

νX(t). The two positions zX(0) and zX(1) are computed as

zX(t) = (1− t) · zX(0) + t · zX(1), (3.2)

wX(t) = wi(t)− ‖zi(t)zX(t)‖2, (3.3)

where bi(t) = (zi(t), wi(t)) ∈ X(t).

The shape of µX(t) is a convex polytope formed by the intersection of a finite

number of halfspaces. Each halfspace HXY (t) is bounded by a plane hXY (t),

which separates the two mixed cells µX(t) and µY (t) with Y (t) ⊂ B(t), and δY (t)

37



is a face or coface of δX(t). The symmetric difference X(t)ª Y (t) is a singleton

set. The halfspace HXY (t) is defined as

HXY (t) = {x ∈ R3 | 〈x, nXY (t)〉 ≤ 〈mXY (t), nXY (t)〉},

where the normal of hXY (t) and a point on hXY (t) are

nXY (t) = zY (t)− zX(t),

mXY (t) =
zX(t) + zY (t)

2
.

3.3.1 Degeneracies in Intermediate Mixed Cells

In the current work, all zero-volume mixed cells are referred as degenerate mixed

cells. These degenerate mixed cells are created by degenerate simplices violating

TGP Assumption. The degenerate mixed cells are important in deformation of

skin surface and are required for special considerations. For example, in Figure

3.4, the degenerate Delaunay triangle BCD creates a zero volume mixed cell of

Type (3,1,1). For the intermediate mixed cell structure under GGP Assump-

tion (violating TGP Assumption), only mixed cells of Type (3,1,1), (3,2,2) and

(2,2,1) are possibly degenerate. More degenerate cases, by violating the GGP

Assumption, are discovered in simplified general skin deformation in Chapter 5

and partial movement in Chapter 6.

It is impossible for surface points lie inside the degenerate mixed cells. Any

point hits the boundary of this mixed cell will be transferred immediately into

another mixed cell (Section 4.3.1.4).
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3.3.2 Mixed Cell Connections

A mixed cell connection provides the information about any given mixed cell to

all possible neighboring mixed cells. This is important in many implementation

details, such as locating the mixed cell for newly inserted points, escaping time

computation (Section 4.3.1) and sticky point testing (Section 4.1.3). Promptly

finding neighboring mixed cells for the current mixed cell increases the program

efficiency.

The mixed cell connectivity chart is shown in Figure 3.6. The chart is verified,

beginning with mixed cell Type (3,3,3). In mixed cell Type (3,3,3), the Delaunay

cell is a vertex, which connects to Delaunay edge cells. Therefore, mixed cell

Type (3,3,3) connects to Type (3,2,2). The mixed cell Type (3,2,2) connects

to Type (3,1,1) and (2,2,1), since the Delaunay edge cell possibly belongs to a

triangle cell or a parallelogram cell. The parallelogram cell must be part of the

sheared triangle prism, which connects Type (2,1,0) and (2,2,1). The triangle cell

is possibly belongs to a tetrahedron or a sheared triangle prism. The mixed cell

Type (3,1,1) connects to both (2,1,0) and (3,0,0).

In Figure 3.7, a simple example of the mixed cell connection graph is drawn

with all mixed cell types included.

3.3.3 Allocating a Mesh Point in its Mixed Cell

The most direct application of the mixed cell connection (Section 3.3.2) is to

allocate a mesh point into its mixed cell. There are many reasons to find the

mixed cell µ containing the mesh point p. For example, during the initialization

of skin deformation, all given mesh points have to be allocated into different
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(3,3,3)

(2,2,1) (3,1,1)

(2,1,0)

(3,2,2)

(3,0,0)

Figure 3.6: The connectivity chart of different mixed cell types.

(3, 3, 3)

(3, 0, 0)

(3, 1, 1)

(3, 2, 2) (2, 2, 1)

(2, 1, 0)

Figure 3.7: The connectivity graph of all mixed cell types.

mixed cells in order to obtain their initial moving trajectories. The newly inserted

circum-center of a large triangle is required to find its mixed cell during triangle

refinement, while the mixed cell information of the three vertices of the large

triangle is provided. In escaping time calculation, an escaping vertex is allocated

into a new mixed cell before the calculation of its new escaping time. Therefore,

the allocation of mixed cells is an important task in the GSD algorithm.
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Given a mesh point pv and its mixed cell µv, the task is to find the mixed

cell µX for a requested point pX (Figure 3.8). Since all mixed cells are convex

polyhedrons, the problem is reduced to the calculation of the intersection between

a line segment pvpX and mixed cell boundaries (polygons), which is an easy task

in computational geometry [59; 63]. Together with the mixed cell connection

information given in the previous section, the required mixed cell µX is found.

pv

pX

µX

µv

Figure 3.8: Finding the mixed cell µX for a point pX with another given point
pv, with known mixed cell µv.
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Chapter 4

General Skin Surface Mesh

Deformation

General skin deformation in mesh is described in this chapter. As concluded from

the previous chapters, the intermediate Voronoi complex remains unchanged dur-

ing deformation, and the intermediate mixed cells move linearly. The intermedi-

ate mixed cells decompose the skin surface into sphere and hyperboloid patches.

All these patches are free to deform according to the standard sphere and hyper-

boloid functions (Equation 2.1 and 2.2) with time t ∈ (0, 1).

In this chapter, the details of deforming skin surface meshes is described.

First, the different trajectories of the skin surface mesh points are introduced.

Skin surface mesh points flow in their own mixed cells according to the dedicated

trajectories. Second, there is a chance that a surface point hits the boundary

of the mixed cell and escapes from its own mixed cell. The time tp for each

surface point p that hits its own mixed cell boundary is denoted by the escaping

time. The deformation process is paused at time tp in order to transfer p from
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its own mixed cell to a new mixed cell. A new moving trajectory is assigned to p

with a new tp as the time when it reaches another mixed cell boundary. Third,

the surface triangles might be twisted and the [U] and [L] conditions violated

when the surface point moves. In addition to the original C and Q (Section

2.1.5), a loose Q1 which defines a refinable lower quality triangulation, is assigned.

The triangulation is refined before it violates the [U] and [L] conditions with C

and Q1 during deformation, in order to maintain the surface triangle quality.

Finally, a solution to handle all possible topology changes during the skin surface

deformation is given.

4.1 Surface Points Moving Trajectories

A point p on the skin surface at time t is denoted by p(t). From a given starting

point p(t0), p(t) follows a direction and moves to a new position p(t1). The line

connecting p(t0) and p(t1) is defined as the trajectory of p(t). There are in total

three types of trajectories: scaling, snapping and sticking. Under different situ-

ations, surface points following one trajectory may change to another trajectory

as they cross the mixed cells or their mixed cells’ weights approach zero. The

time that p may change its trajectory before the deformation starts is calculated

and inserted as schedules into the program. When the scheduled time is reached

in the program, the deformation process is paused, the surface point trajectory

is changed and the deformation process is resumed subsequently.
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4.1.1 Trajectory I: Scaling

The first trajectory that scales p(t) towards or away from the mixed cell center

z(t) is shown in Figure 4.1. According to the local coordinate system of a mixed

cell, its surface patch within at time t1 is a scaling with a factor of
√

w(t1)
w(t0)

of the

patch at time t0. Therefore, surface vertices only shrink or expand towards mixed

cell centers with that factor. This implies that the benefit of the good quality of

a triangle or an edge does not change if all its vertices belong to the same mixed

cell. When a given surface vertex p(t0) lies in a mixed cell µ(t0) at time t0, p(t)

moves with a scaling factor within its mixed cell and a translation of its mixed

cell center. The location of p(t1) is

p(t1) = z(t1) + (p(t0)− zX(t0)) ·
√

w(t1)

w(t0)
. (4.1)

The velocity vector at point p(t) is calculated, as it is crucial in the im-

plementation of sticking trajectory and triangle quality maintenance. Given

that p(t) = z(t1) +
√

w(t1)
w(t0)

∗ (p(t0) − zX(t0)), the instant velocity of p(t) is di-

vided into two parts. First, the mixed cell center z(t) moves with a velocity

d
dt

z(t) = zX(1)− zX(0), which is a constant (Equation 3.2). The point p(t) moves

together with its mixed cell. Second, p(t)′ = p(t)− z(t) moves with a velocity of

d
dt

√
w(t) in the local coordinate system of the mixed cell. By expanding w(t) in
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p(t)

p(t0)

(a) Trajectory I on sphere skin patches

p(t0)

p(t)

(b) Trajectory I on hyperboloid skin patches

Figure 4.1: Trajectory I: moving away or towards the mixed cell centers.

terms of t with Equation 3.2 and 3.3

w(t) = (‖z(0)− z(1)‖2 − ‖z(1)− z(0)− zi(1) + zi(0)‖2)t2 +

(wi(1)− wi(0)− ‖z(0)− z(1)‖2 −

2〈z(1)− z(0)− zi(1) + zi(0), z(0)− zi(0)〉)t +

wi(0)− ‖z(0)− zi(0)‖2 .

The velocity for p(t) in the local coordinate system of its mixed cell is

−
d
dt

w(t)

2
√

w(t)
= − L(t)

2 ‖p(t)‖ ,

where L(t) = d
dt

w(t) is a linear equation in terms of t.

The velocity of p(t) in trajectory I is denoted by vI(t). The maximum speed
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of p(t) is ‖vI(t)‖ ≤ ‖zX(1)− zX(0)‖+ ‖L(t)‖
2‖p(t)‖ and the two parts of vI(t) are in the

same direction. This loose upper bound of ‖vI(t)‖ is useful in the triangle quality

maintenance, which will be presented in the later section. The local velocity of

p(t) within its mixed cell is denoted by vI(t)
′ = − L(t)

2‖p(t)‖ , which is important in

trajectory III implementation.

4.1.2 Trajectory II: Snapping

In hyperboloid skin patch mixed cells, such as Type (3,2,2), (3,1,1) and (2,2,1),

surface points require another moving trajectory perpendicular to the asymptote

in order to cross the asymptote, which is called snapping (Figure 4.2). Surface

points on hyperboloid skin patches following trajectory I cannot cross the asymp-

tote. Therefore, as the hyperboloid enters its hot ball, i.e. −2H2 < w(t) < 2H2,

surface points on hyperboloid skin patches have to change to snapping trajectory,

which is orthogonal to the asymptote boundary.

Assuming that the snapping direction is a normalized vector n̂, and when p(t0)

is given, the position for p(t) is calculated as p(t) = (p(t0)−z(t0))+n̂·l+z(t). The

local coordinates of p(t) is denoted by p′(t) = p(t) − z(t) in its mixed cell. The

unknown l is the Euclidian distance from p(t0)
′ to p(t)′. By recalling that surface

points on hyperboloid patches satisfy Equation 2.2 with w(t), the equation for l

is expressed as:

(p(t0)
′.x + n̂.x · l)2 − (p(t0)

′.y + n̂.y · l)2 + (p(t0)
′.z + n̂.z · l)2 = ±w(t).

By solving the above quadratic equation, the representation of l by t, namely,
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p(t0)

p(t)

Figure 4.2: Surface points changing to snapping trajectory in order to cross the
asymptote in hyperboloid skin patch mixed cells.

l(t), is obtained. The new position of p(t1) is given by p(t1) = (p(t0) − z(t0)) +

n̂ · l(t1) + z(t1).

The local velocity relative to the mixed cell center for p(t) with trajectory II is

vII(t)
′ = d

dt
l(t). Although it is complicated to solve l(t), it is straight forward to

show that l(t) ≤
√

w(t). Therefore ‖vII(t)
′‖ =

∥∥ d
dt

l(t)
∥∥ ≤

∥∥∥ d
dt

√
w(t)

∥∥∥ = ‖vI(t)
′‖.

The upper bound of ‖vI(t)
′‖, which is ‖L(t)‖

2‖p(t)‖ , is also a loose upper bound for

‖vII(t)
′‖.
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4.1.3 Trajectory III: Sticking

Surface points may be forced to ‘stick’ on the boundary of their mixed cells as they

are unable to escape to a new mixed cell. This new trajectory is called sticking

and is denoted by trajectory III. The sticking trajectory connects p(t0) on the

mixed cell boundary to mXY (t0) (Figure 4.3). Assuming that the surface point

p from mixed cell µX moves according to trajectory I or II to the boundary of

µX and another mixed cell µY , there are situations whereby p cannot enter either

µX or µY . These surface points are called sticky points. These sticky points then

follow the sticking trajectory and move along on the boundary of µX and µY .

zX(t0) zY (t0)mXY (t0)

p(t0)
Trajectory I

Trajectory III

n

µX
µY

Figure 4.3: Sticky points move along the line connecting mXY (t) and p(t0).

The algorithm to determine whether a transit point p from µX to µY is a
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zX(t) zY (t)mXY (t)

p(t)

n

µX µY

p(t0)
′
·

d
dt

√

√

√

√

√

√

wY (t)
wY (t0))

d
dtmXY (t)

Figure 4.4: Sticky point p(t0) in case 9.

sticky point is listed in Algorithm 1. Several notations are introduced before the

algorithm is presented. The normal of the mixed cell boundary is denoted by

n = zX(t) − zY (t), which does not change with varying t. The local position of

p(t) in µY is p(t)′ = p(t)−zY (t). Similarly, mXY (t)′ = mXY (t)−zY (t) is the local

position of mXY (t) in µY . The differentiation of mXY (t)′ is the local velocity of

mXY (t), namely v′mXY
= d

dt
mXY (t)′.

All cases in Algorithm 1 are shown as flow charts in Figure 4.5 and 4.6.

First, the surface patch type of the destination mixed cell µY is tested. It is

a simpler case if µY is a sphere patch mixed cell. There is a need to switch

between trajectory I and trajectory II for hyperboloid mixed cells, depending on

the metamorphing status of µY . Second, the location of zY in the two halfspaces

of hXY (t0), which is distinguished by n, is checked (see the definition of halfspace

in Section 3.3). Third, differentiation of wY (t) is performed in order to obtain

the expansion (to determine whether it is expanding or shrinking) of µY . Finally,

49



the direction of v′mXY
with respect to n is checked. For example, in Figure 4.4, it

is assumed that µY is a sphere patch mixed cell, zY is in the opposite direction

of n and v′mXY
is in the same direction as n. If the sphere patch equation in µY

is shrinking, it is clearly a sticky case for p(t). Otherwise, a comparison of the

magnitude of vI(t0)
′ and v′mXY

in the direction of n is made. It is still a sticky

case if the instant speed of p(t0)
′ is faster than the instant speed of m′

XY in the

direction of n.

The calculation of the position of p(t1) in trajectory III is similar to that of

trajectory II. However, p(t0)
′ is replaced with mXY (t0)

′, because p(t) has to stick

on the boundary of mXY (t) at all times. Hence, p(t) = mXY (t0)
′ + l · n̂ + zY (t),

where n̂ is the normalized vector perpendicular to zX(t) − zY (t). The unknown

l(t) is calculated in a similar manner as the calculation in trajectory II with

Equation 2.1 and 2.2. The new position of p(t1) is given by p(t1) = mXY (t0)
′ +

n̂ · l(t1) + zY (t1).

4.2 Topology Change Handling

Topology changes are important for the preservation of the homeomorphism be-

tween the mesh and the skin. In GSD, there are only two types of topology

changes, namely

• creating or destroying a sphere,

• changing from a one-sheeted to a two-sheeted hyperboloid, or vice versa,

which are handled automatically.
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Algorithm 1 TestSticky(p(t0))
1: if 〈mXY (t0)

′, n〉 < 0. then

2: if sphere/hyperboloid patch expands then

3: if 〈vmXY
(t0)

′, n〉 < 0 and |〈v(t0)
′, n〉| < |〈vmXY

(t0)
′, n〉| then

4: return sticky.

5: end if

6: else

7: if (〈vmXY
(t0)

′, n〉 < 0) or (vmXY
(t0)

′, n〉 > 0 and |〈v(t0)
′, n〉| >

|〈vmXY
(t0)

′, n〉|) then
8: return sticky.

9: end if

10: end if

11: else

12: if sphere/hyperboloid patch expands then

13: if (〈vmXY
(t0)

′, n〉 < 0) or (vmXY
(t0)

′, n〉 > 0 and |〈v(t0)
′, n〉| >

|〈vmXY
(t0)

′, n〉|) then
14: return sticky.

15: end if

16: else

17: if 〈vmXY
(t0)

′, n〉 < 0 and |〈v(t0)
′, n〉| < |〈vmXY

(t0)
′, n〉| then

18: return sticky.

19: end if

20: end if

21: end if

22: return non-sticky.
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Sphere Expand: d
dtwY (t) > 0 for Type (3,3,3) or

d
dtwY (t) < 0 for Type (3,0,0), (2,1,0) and (1,0,0).
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Sphere Expand: d
dtwY (t) > 0 for Type (3,3,3) or

d
dtwY (t) < 0 for Type (3,0,0), (2,1,0) and (1,0,0).
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Sphere Shrink: d
dtwY (t) < 0 for Type (3,3,3) or

d
dtwY (t) > 0 for Type (3,0,0), (2,1,0) and (1,0,0).
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Figure 4.5: Cases for sticky test on p(t0) crossing from mixed cell µX to mixed

cell µY , assuming that µY is a sphere skin patch mixed cell.
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Figure 4.6: Cases for sticky test on p(t0) crossing from mixed cell µX to mixed

cell µY , assuming that µY is a hyperboloid skin patch mixed cell.
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The mixed cell weight wX(t) is a quadratic function of t. Therefore, there

are at most two topology changes that happen in one mixed cell. Moreover, a

topology change operation is scheduled only if the mixed cell center is in the

mixed cell. Both the center and the cell are moving and deforming, which is

different from that of the growth model. This indicates that there is a possibility

that the center is not in the mixed cell when wX(t) = 0.

These topology changes in a mixed cell occur if and only if the size of a mixed

cell reaches a value of zero and the metamorphosis, wX(t′) = 0, is scheduled at the

time when this occurs. However, a special sampling is used within a hot sphere

[16] at the time slightly before and after the time t′. The triangulation within

the hot sphere is specially restructured and controlled from the time t′ − εX to

t′ + εX in µX(t) for a small value of εX .

4.2.1 Hot Sphere Size

For every mixed cell µX(t) that approaches a topology change, the absolute of the

weight ‖wX(t)‖ always decreases. The skin surface F(t) approaches the mixed

cell center zX(t) and enters a hot sphere R3
H with center at zX(t) and radius H.

The skin patches in µX(t) is denoted by FµX
(t). For each topology change, the

hot sphere size H is computed in advance to guarantee

FµX
(t)

⋂
R3

H = F
⋂
R3

H .

The skin surface inside the hot sphere is called the hot portion of F, which is

denoted by FH , is usually difficult to triangulate. Although it is straight-forward

to create or delete mesh spheres in the hot spheres, it is not so for hyperboloids.
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ε-sampling has to be given up for the construction of special structures in hot

portions on hyperboloid patches (Section 4.2.2), in order to change from two-

sheeted hyperboloids to one sheeted hyperboloids, and vise versa.

4.2.2 Special Sampling in Hot Sphere

Special sampling in the hot sphere aids in the topology change from two-sheeted

hyperboloids to one-sheeted hyperboloids, and vise versa. When the case of a

two-sheeted hyperboloid in the mixed cell µX(t) entering the hot sphere at time

t0 is considered, the weight of µX(t), wX(t0), is −2H2. The topology change

happens at time t1, i.e. wX(t1) = 0. A double-cap is constructed at time t in

between t0 and t1 in order for the crossing at the asymptote to happen, with

wX(t) = −2H2h2 (Figure 4.7). The constant 0 < h < 1 has a reasonable value of

0.98 with C = 0.08 and Q = 1.65 [16].

H

hH

r r

Figure 4.7: Topology change from left to right: a special sampling strategy from
a two-sheeted hyperboloid to a one-sheeted hyperboloid. Similarly, the reverse is
true for topology change from right to left.

The case of one sheet of the hyperboloid at time t as shown in the left figure

of Figure 4.7 is considered, whereby a special point is added to the intersection of
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the hyperboloid and the dotted sphere. The intersection between the hot sphere

surface and one sheet of the hyperboloid is a circle. Let a0, a1, ..., am−1 be the

vertices of a regular polygon with m number of sides along the circle. These

points are mirrored across the symmetry plane of the hyperboloid in order to

obtain the same points on the other sheet.

During the topology change from a two-sheeted hyperboloid to a one-sheeted

hyperboloid, the edge length of the regular polygon with m number of sides, r,

increases (Figure 4.7). It decreases when the change is reversed. In this project,

the r value for the topology change from a two-sheeted hyperboloid to a one-

sheeted hyperboloid is chosen as half of the minimum edge length which satisfies

the [L] condition. In the reversed case of topology change from a one-sheeted

hyperboloid to a two-sheeted hyperboloid, the value of r is double the edge length

of the smallest edge which satisfies the [L] condition.

4.3 Surface Point Scheduling for Changing Status

There are in total five states for each surface point: creation, trajectory I, trajec-

tory II, trajectory III and deletion. During the deformation process, all surface

points have a scheduling time which indicates the time to change the status.

When the program reaches the scheduling time, the whole deformation process

is paused while waiting for the particular surface point p to change its status.

Subsequently, the program is resumed and a new schedule time is asigned to p.

The following are involved in the surface point scheduling calculation:

• Escaping time scheduling. Escaping time scheduling provides the time when

the surface point p touches its mixed cell boundary. When the escaping
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time is reached in the program, the surface point p is transferred to another

mixed cell and its trajectory is changed.

• Metamorphing time scheduling. Metamorphosis occurs when the weight

of mixed cells Type (3,2,2), (3,1,1) and (2,2,1) reaches zero. When the

hyperboloid patches in mixed cells of Type (3,2,2), (3,1,1) and (2,2,1) enter

the hot sphere, the trajectory of the surface point in these mixed cells is

changed to Trajectory II in order for the point to cross the asymptote.

• Sphere Creation or Deletion scheduling. A mesh sphere is created or deleted

when the topology is changed for mixed cells of Type (3,3,3), (2,1,0) and

(3,0,0).

4.3.1 Escaping Time Scheduling

In general, the escaping time of p(t) in mixed cell µX is calculated as:

〈p(t), nXY 〉 = 〈mXY (t), nXY 〉, (4.2)

where nXY = zY (t)− zX(t) is a constant vector perpendicular to the boundary of

µX and µY . The Equation 4.2 is computed for all possible neighborhood mixed

cell µY of µX . The minimum value of t is the escaping time for p(t).

At the escaping time t, the surface point p may proceed to one of the following:

• transfer to another mixed cell (trajectory I → trajectory I, trajectory II →
trajectory II, trajectory I → trajectory II or trajectory II → trajectory I),

• move along the mixed cell boundary (trajectory I → trajectory III, trajec-

tory II → trajectory III or trajectory III → trajectory III).
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Creation

Deletion

Trajectory I Trajectory II Trajectory III

Figure 4.8: Transfer of states for a surface point. Arrows indicate the direction
of transfer between the states.

4.3.1.1 Trajectory I Escaping Time Calculation

The computation for escaping time is straight-forward in trajectory I. Equation

4.1 for p(t) is substituted into Equation 4.2 and the quadratic equation of t

is solved. There are at most two escaping times for every surface point that

belongs to each mixed cell. However, it is not always the case that both roots

from the quadratic equation are valid. Some roots is possibly imaginary from

〈p(t), nXY 〉 = −〈mXY (t), nXY 〉, since the Equation 4.2 is squared during the

calculation.
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4.3.1.2 Trajectory II Escaping Time Calculation

The escaping time of p(t) for trajectory II is calculated as p(t)′ = p(t0)
′ + l · n̂.

By combining with Equation 4.2,

〈p(t0)
′ + l · n̂, nXY 〉 = 〈mXY (t), nXY 〉. (4.3)

By combining with the hyperboloid or sphere equation in µX , both the un-

knowns l and escaping time t in trajectory II are solved.

4.3.1.3 Trajectory III Escaping Time Calculation

The escaping time in trajectory III is similar to that of trajectory II. The only

difference is during sticking point scheduling, p(t) moves along with the boundary

center mXY (t), implying that p(t)′ = mXY (t)′ + l · n̂.
By combining with the hyperboloid or sphere equation in µX , l is eliminated

and the escaping time t in trajectory III is solved.

4.3.1.4 Special Situation: Escaping Degenerate Mixed Cells

A surface point p(t) may escape to a degenerate mixed cell with zero volume (see

Section 3.3.1). Because no point lies inside a degenerate mixed cell, the surface

point p(t) escapes immediately after it enters the mixed cell. The Equation 4.2

does not work in this case, since the floating point numbers are not capable to

identify the entering time and escaping time.

The task becomes identifying the escaping neighborhood mixed cell from the

degenerate mixed cell without computing the escaping time. Under GGP As-
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sumption, there are three types of mixed cells possibly degenerate, namely, Type

(3,2,2), (3,1,1) and (2,2,1). For a degenerate mixed cell of Type (3,2,2), it has two

neighborhood mixed cells of Type (3,3,3). The surface point p(t), which enters

the degenerate mixed cell, must come from one mixed cell and escape to the other

mixed cell of Type (3,3,3). Similarly, for a mixed cell of Type (3,1,1) or (2,2,1),

there are two neighborhood mixed cells sharing the same Voronoi center. The

surface point p(t) from one such neighborhood mixed cell will escape to the other

neighborhood mixed cell immediately.

4.3.2 Metamorphosis Scheduling

In mixed cells of Type (3,2,2), (3,1,1) and (2,2,1), the surface points on hy-

perboloid patches have to switch from trajectory I to trajectory II, when the

hyperboloid patches enter the hot sphere:

− 2H2 < wX(t) < 2H2. (4.4)

Equation 4.4 provides another scheduling time for surface points to change tra-

jectories.

4.3.3 Make or Delete Sphere Scheduling

In contrast to mixed cells of Type (3,2,2), (3,1,1) and (2,2,1), Equation 4.4 pro-

vides a scheduling time to create or delete a mesh sphere in mixed cells of Type

(3,3,3), (2,1,0) and (3,1,0),. All surface points on the mesh sphere are created or

deleted accordingly.
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In conclusion, the minimum value of the results of all the above scheduling

calculations provides the escaping time for a surface point p to change its status

as shown in Figure 4.8.

4.4 Mesh Refinement Maintaining Triangle Qual-

ity

During deformation, homeomorphism between the mesh and the skin surface is

guaranteed by its triangle quality, which satisfies Conditions [U] and [L] [16].

The quality of triangles and edges may become bad as surface points change

their positions. Triangles and edges are categorized into three zones based on

Conditions [U] and [L]: acceptable zone, buffer zone, and unacceptable zone. The

main purpose of the maintenance is to check and refine an element, i.e. an edge

or a triangle, before it enters the unacceptable zone. An element is in the buffer

zone if it is not acceptable but satisfies the Conditions [U] and [L] with a lower

quality Q1. In this zone, the element can be refined into acceptable elements

by edge contraction or point insertion. The refinement methods include edge

contractions (Figure 4.10) and triangle circum-center insertion (Figure 4.9).

All triangles and edges are required to be refined before they enter the un-

acceptable zone. Since all surface point trajectories and the time to change the

trajectory can be computed, the triangle refinement scheduling is calculated be-

fore the triangles and edges enter the unacceptable zone, and the schedules are

inserted into the program. When the triangle scheduling time is reached in the

program, the deformation process is paused, the triangle is refined and then the
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Figure 4.9: Triangle refinement when condition [U] is violated. A point near the
circumcenter of the triangle (in red) is inserted. Edges are flipped to maintain
the Delaunay property.

Figure 4.10: Edge contraction when condition [L] is violated. The edges are
flipped until vertex b is in degree 3. This prevents surface points from crossing
edges after ab is removed.

deformation process is resumed.

When given an element that satisfies the two Conditions at time t0, it is

proven that there is a time increment ∆t whereby the element will not become

unacceptable at time t0 + ∆t, which is the triangle refinement scheduling time.

An element is not checked if all its vertices belong to the same mixed cell and it is

moving in trajectory I. Every element is scaling towards or away from the mixed

cell center in trajectory I. Scheduling is unnecessary for these elements until one

of their vertex exits the mixed cell or transfers to another trajectory.

62



4.4.1 Scheduling Edge Update

Let p(t0)q(t0) be an edge at time t0 that satisfies the Condition [L] ‖p(t0)− q(t0)‖ ≥
2 C

Q0
%p(t0)q(t0). A time t1 = t0 + ∆t is computed such that ‖p(t1)− q(t1)‖ ≥

2 C
Q1

%p(t1)q(t1) when p(t0) and q(t0) move to p(t1) and q(t1) respectively. Let ‖vpq(t)‖
be the maximum speed of p(t) and q(t); ‖p(t1)− q(t1)‖ has a lower bound of:

‖p(t1)− q(t1)‖ ≥ ‖p(t0)− q(t0)‖ − 2

∫ t1

t0

‖vpq(t)‖ . (4.5)

As C, Q0 and Q1 are all constants, the local length scale %p(t0)q(t0) has the largest

increment while vpq(t) follows trajectory I and moves away from the mixed cell

center:

%p(t1)q(t1) ≤ %p(t0)q(t0) +

∫ t1

t0

‖vpq(t)‖ . (4.6)

By combining Equations 4.5 and 4.6, t1 is solved in

‖p(t0)− q(t0)‖ − 2

∫ t1

t0

‖vpq(t)‖ ≥ 2
C

Q1

(%p(t0)q(t0) +

∫ t1

t0

‖vpq(t)‖), (4.7)

as a loose bound for ‖p(t1)− q(t1)‖ ≥ 2 C
Q1

%p(t1)q(t1). It is guaranteed that the

edge p(t)q(t) with in the time interval of (t0, t1) is longer than 2 C
Q1

%p(t)q(t).

4.4.2 Scheduling Triangle Update

Let R(t0) be the circumradius of the triangle p(t0)q(t0)u(t0) that satisfies Condi-

tion [U] at time t0, namely, %p(t0)q(t0)u(t0) · CQ0 > R(t0). The value t1 = t0 + ∆t

is computed such that the relaxed condition %p(t1)q(t1)u(t1) · CQ1 > R1 is satis-
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fied. Let u(t0)
′ be the orthogonal projection of u(t0) onto p(t0)q(t0) and H(t0) =

‖u(t0)− u(t0)
′‖. The circumradius is R(t0) = ‖p(t0)−u(t0)‖·‖q(t0)−u(t0)‖

2H(t0)
(Figure 4.11).

u(t0)
′

u(t0)

p(t0) q(t0)

H(t0)

Figure 4.11: Labeling of triangle elements at time t0 for triangle scheduling.

The maximal speed of p(t), q(t) and u(t) is denoted by ‖vpqu(t)‖. The

largest increment of the circumradius R(t0) occurs when ‖p(t0)− u(t0)‖ and

‖q(t0)− u(t0)‖ have the largest increment and H(t0) has the largest reduction:

R(t1) ≤
(‖p(t0)− u(t0)‖+ 2

∫ t1
t0
‖vpqu(t)‖) · (‖q(t0)− u(t0)‖+ 2

∫ t1
t0
‖vpqu(t)‖)

2(H(t0)− 2
∫ t1

t0
‖vpqu(t)‖)

.

In a similar manner as edge scheduling, the local length scale %p(t0)q(t0)u(t0) has the

largest increment while vpqu(t) follows trajectory I and moves towards the mixed

cell center, which is given by:

%p(t1)q(t1)u(t1) ≥ %p(t0)q(t0)u(t0) −
∫ t1

t0

‖vpqu(t)‖
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The loose bound for %p(t1)q(t1)u(t1) · CQ1 > R1 is computed by

(‖p(t0)− u(t0)‖+ 2
∫ t1

t0
‖vpqu(t)‖) · (‖q(t0)− u(t0)‖+ 2

∫ t1
t0
‖vpqu(t)‖)

2(H(t0)− 2
∫ t1

t0
‖vpqu(t)‖)

≤ %p(t0)q(t0)u(t0) −
∫ t1

t0

‖vpqu(t)‖ . (4.8)

The solution t1 of Equation 4.8 guarantees that the triangle quality, %p(t1)q(t1)u(t1)·
CQ1 > R1, is always satisfied in the time period (t0, t1).

4.5 Combine Point Scheduling with Triangle Schedul-

ing

Finally, all scheduled times for all skin surface mesh points, edges and triangles

are combined and inserted into a priority queue. The time t is given the first

priority. A function for minimum time extraction is called each time to provide

the next schedule time. In surface point scheduling, the program is paused, the

point is transferred to its new status, the new scheduling time is calculated and

then the new schedule is inserted into the priority queue. In edge or triangle

scheduling, the triangle is refined, the new scheduling time is calculated and then

the new schedule is inserted into the priority queue as well.
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The edge and triangle scheduling times are based on the current status of the

contributing vertices. The minimum scheduling time among all contributing ver-

tices of the edge or triangle determines the maximum time period for the next edge

or triangle scheduling. It is possible that several edge or triangle schedules have

the same time t as some surface point schedules. In these situations, priority is

given to the surface point schedules instead of the edge or triangle schedules. The

reason for this second order of priority is because the new scheduling time after

triangle refinement for edge or triangle schedules depends on the new scheduling

time of the contributing vertices.

4.6 Summary

In this chapter, the ways to generate the skin surface mesh at time t1 when given

the mesh at time t0 is described. First, after each surface point is located in its

mixed cell, the initial moving trajectory for that point is determined. The skin

surface mesh is free to deform according to the sphere and hyperboloid equations

until one of its mesh point hits its escaping time. The status of that particular

surface point is transferred and the deformation in its new mixed cell is resumed.

Second, surface point movements cause short edges and large triangles. The

time for each edge to become too short and thus violate the [L] condition, is

scheduled by edge scheduling. Similarly, the time for each triangle to become

too large and thus violate the [U] condition, is scheduled by triangle scheduling.

When either the edge scheduling time or triangle scheduling time is reached,

edge contraction or circum-center insertion is performed immediately in order

to maintain the triangulation quality. Finally, the times for metamorphosis and
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creation/deletion spheres are scheduled. All four types of topology changes are

automatically handled when the time for topology change is reached.

67



Chapter 5

Simplified General Skin

Deformation

New difficulties arise when the number of input weighted points is extremely large

and the intermediate complex structure becomes overwhelmingly dense. Given

two input weighted point sets with m and n points, the intermediate complex is

constructed by mn weighted points. Due to the complexity of Delaunay trian-

gulation, the overall complexity is O(m2n2). For example, a mannequin model

skin (B0) with 12, 680 weighted points is deformed to a fist model skin (B1) with

5, 461 weighted points as shown in Figure 5.1. The intermediate complex con-

sists of 69 million weighted points. The complexity of this intermediate complex

is the square of 69 million, which is impossible for a 32-bit machine to handle.

Moreover, the deformation of skin surface over such a dense intermediate com-

plex results in computationally intensive scheduling [16; 21; 30], which is directly

associated with the overall computation time of GSD.
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skin(B0)-12, 680
weighted points.

Intermediate complex
with 719, 568 weighted

points.

skin(B′

0)-57
weighted points.

skin(B′

1)-83
weighted points.

Intermediate
complex with

4, 731 weighted
points.

Intermediate
complex with

69, 245, 480 weighted
points.

skin(B1)-5, 461
weighted points.

Intermediate complex
with 446, 374 weighted

points.

Original
GSD

algorithm

Simplified
GSD

algorithm

Figure 5.1: The new SGSD algorithm partitions the original GSD into three

distinct deformations: two simplification deformations and one GSD. The inter-

mediate complex in the SGSD algorithm is much simpler as compared to that

of the original GSD algorithm. (The original mannequin and fist union of ball

models are generated by power crust by Amenta et al. [52].)
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Simplification of skin models reduces the complexity of intermediate com-

plexes and hence is of importance when the number of weighted points is large

[72]. A new simplified GSD (SGSD) algorithm is introduced to reduce the com-

plexity of the intermediate complex during deformation. As shown in Figure 5.1,

the weighted point set B0 is simplified by reducing the weighted points and ad-

justing the weights of the remaining weighted points in order to create a new

weighted point set B′
0 with m′ weighted points, where m′ is defined by the user.

The weighted point set B′
1 is obtained by simplifying B1 in the same manner.

Deformation is then performed from skin (B0) to skin (B′
0) (Figure 5.2) and from

skin (B′
1) to skin (B1). The new intermediate complex between skin (B′

0) and

skin (B′
1) is reduced from 69 million (by GSD) to 43 thousand weighted points.

Thus, deformation from the mannequin model to the fist model becomes feasi-

ble. The overall complexity of SGSD (see the arrows in Figure 5.1), when m′

and n′ are user defined constants, is reduced to O(m2 + n2). Although three

deformations are performed instead of one and three intermediate complexes are

generated instead of one, the SGSD algorithm is much more efficient than the

original GSD algorithm.

Figure 5.2: The simplification process in the SGSD algorithm.
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5.1 Simplified General Skin Deformation Algorithm

A SGSD algorithm for improving the efficiency and reducing the complexity of in-

termediate complex in GSD is proposed. When given two skin surfaces, skin (B0)

with m weighted points, and skin (B1) with n weighted points, the overall com-

plexity of GSD is improved from O(m2n2) to O(m2 + n2) in three steps:

1. Simplify weighted point set. The input weighted point sets are consid-

ered as unions of balls. The unions of balls are simplified with the number

of simplified weighted points as defined by the user. Skin surfaces for both

the original weighted point sets and the simplified weighted point sets are

generated as inputs for the SGSD algorithm.

2. Deform skin surfaces. The whole SGSD process is divided into three

parts. The three parts are named as Deformation I, II and III, for defor-

mation from skin (B0) to skin (B′
0), from skin (B′

0) to skin (B′
1) and from

skin (B′
1) to skin (B1) respectively.

3. Connect the three deformation processes. The whole deformation pro-

cess is constructed by connecting Deformation I, II and III. The result from

the previous deformation is used for later deformations like Deformation

II and III. The mesh points therefore move continuously between different

deformations with this connection.

5.2 Simplification of Weighted Point Set

Weighted point sets, which are considered as unions of balls, are simplified by

two steps: removal and recovering volume. The simplification mentioned in this
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thesis is different from the geometry simplification in two aspects,

1. Typical geometry simplification usually refers to level of detail [2; 3; 40].

The purpose of the simplification is to use less geometry elements and keep

most visible features of the original model. However, the main goal of the

simplification in this thesis is to mimic an intermediate shape in the original

deformation process. Thus, sharp features (small balls on the surface) may

removed since they are usually covered by large balls during the original

GSD process.

2. A way of recovering volume is allowed after the removal step.

Many research works have been done to simplify unions of balls. One method

by Attali and Montanvert examines the skeleton of the model and remove branch

T with two criteria [4],

1. The homotopy class of the shape is preserved when T is removed.

2. T is not relevant with a fixed threshold, which is calculated considering

both surfacial skeleton and wireframe skeleton.

This method preserves the characteristics of the original shape. However, only

one threshold is not enough for both surfacial skeleton and wireframe skeleton.

Another method developed by Tam and Heidrich [61] builds the medial axis of the

model and prunes the medial axis iteratively. This is a similar work to the work by

Attali and Montanvert with more sophisticated parameters used in each iteration

instead of a single threshold. In 2009, Bordignon proposed a new method to

simplify a union of balls called Scale-Space [9]. The algorithm smoothes the shape

and preserve the volume by analyzing the scale-space properties of bi-dimensional
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curvature motion. It has nice properties such as avoiding disconnection and self-

intersection. However, the algorithm tends to simplify all shapes into a single

sphere.

The simplification method, which is used in SGSD, summarizes all previous

works stated above. Two variables are introduced, the feature variable (K) and

the density variable (J). The original union of balls is simplified by deleting balls

which are,

• Not affecting the homotopy group of the object,

• Not relevant according to certain criterion which takes in consideration of

K and J , and

• Contributing small volume to the union, and the volume can be recovered

by enlarging the rest of balls.

After the deletion, we enlarge the weight of each ball from wi to wi + α with

a value of α that gives the least difference of the volumes between the union of

the original and simplified set of balls. This increment by α does not change the

underlying Voronoi complex. Koehl’s code [33] is used in the volume calculations.

The ultimate goal is to simplify a given large set of balls into a set with m′

(defined by the user) number of balls with a similar shape. We also provide

suggestions for reasonable small number m′ by suggesting the numbers for the

two variables, K and J (See Section 5.2.2 for details). The word ‘reasonable’

is defined as not setting a tight bound on the difference between the volumes

of the two unions of balls. This is because the simplified version is one of the

intermediate shapes in the deformation sequence.
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The ideal result of the simplified union of balls provides a similar intermediate

weighted point set in the original GSD process. Experimental result shows that,

with identical homology classes and tolerable volume difference, the deformation

process with SGSD is similar to the one with original GSD (Section 7.2).

The calculation of the volume and volume difference of the union of balls is

introduced in section 5.2.1. The simplification method consists of 2 steps. First,

the relevant spheres are removed, as described in section 5.2.2. Second, the balls

are enlarged in the resultant model in an effort to recover some lost volume, as

described in section 5.2.3.

5.2.1 Volume and Volume Difference of Union of Balls

The volume of the union of balls can be calculated in a few ways. One method

is implemented in the program called Volume [13]. The purpose of the program

is to break the balls into pyramids with flat bottoms and pyramids with rounded

bottoms, which are called restrictions. The volume of the union of balls is the

sum of all these restrictions.

Another method is the inclusion-exclusion formula. A program that employs

this method is written by Patrice Koehl named AlphaBalls, which is written in

Fortran and C [33]. While most of the code is written in Fortran for historical

reasons, this software has proven greatly useful and fast. For an input of about

20,000 balls, the software takes about 5 seconds for computation. The software

also computes the volume and surface area that each sphere contributes to the

model. This information is useful for deciding which spheres can be deleted or

replaced.
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After we simplify a union of balls A to a smaller set A′, we do not simply

take the volume difference between A and A′ to evaluate the shape difference.

Instead, we take the symmetric volume difference as in Equation 5.1.

V =
(A ∪ A′)− (A ∩ A′)

A ∪ A′ · 100%. (5.1)

The percentage shown in V evaluates the shape difference between A and A′.

5.2.2 Removal

Removal is further broken down into 2 steps. First, spheres that contribute much

surface to the model are removed. This is because, when the alpha value changes,

the shape of the model is alter significantly as the surface spheres change their

volume. The followings describe the criteria for the removal of a sphere bi:

• The sphere bi contributes some surface to the model.

• The volume that bi contributes is less than the feature variable (K) multiply

the average contribution of all the spheres.

• Topology is preserved.

The second step involves preventing large spheres in the model that contribute

some surface to the model from being removed. Interestingly, this step tends to

remove smaller features, after which, a smaller set of spheres remains. However,

since geometric models are dealt with in the current work, this remaining set

will likely be very densely packed. The sphere bi is removed, beginning with the

smallest spheres, according to the following criteria:
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• The sphere bi contributes less than the density variable (J) of its volume

to the model.

• Topology is preserved.

This step is necessary because if the effects are approximated with the enlarge-

ment of all the spheres, these spheres will probably be swallowed up by their

neighbors.

5.2.3 Recovering Volume

The volume is recovered by enlarging the balls in the resultant model according

to Equation 5.2.

ri(α) =
√

ri
2 + α2 (5.2)

All the balls in the resultant model increase their radius ri with the same α

value. The benefits for this are:

1. to avoid skinny intermediate mixed cells [16], and

2. to reduce the complexity of the intermediate complex.

For example, in Figure 5.3, a skin surface skin (B0) with four weighted points

is deformed to its simplified model skin skin (B′
0) by deleting one weighted point

in B0. The intermediate complex is built based on the super-imposition of the

two Voronoi complexes of B0 and B′
0, namely V (B(t)). The complexity of the

intermediate complex is equivalent to the number of simplices in V (B(t)). In

Figure 5.3, there are four intermediate Voronoi vertices in the intermediate com-

plex. However, if different weight changes in B′
0 are allowed, there are more than
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four intermediate Voronoi vertices after the super-imposition (Figure 5.4). In

addition, very slim intermediate Delaunay cells are created in the intermediate

Delaunay triangulation.

V (B0) V (B′

0)
V (Bt)

Figure 5.3: A four weighted point set B0 deforms to a subset B′
0 by deleting one of

its weighted point. The Voronoi diagram of B0, B′
0 and the intermediate weighted

point set B(t) are shown. The vertices circled in V (B(t)) are intermediate Voronoi
vertices with trapezoid intermediate Delaunay cells.

V (B0) V (B′

0)
V (Bt)

Figure 5.4: An α value is given to the weighted point on the upper-right corner.
There are 6 intermediate Voronoi vertices after super-imposition.

The minimum α value is calculated by the bisection method. The symmetric

volume difference is expected to have one global minimum, where only positive

α values are considered (Figure 5.5).

Figure 5.6 shows the simplified unions of balls of the mannequin and fist

models used in this thesis. For different values of K and J , it shows the number

of balls reduced and the symmetric volume difference. In both cases, as the values
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Figure 5.5: Symmetric volume difference as alpha is varied for the mannequin
model

of the variables decrease, the proportion of balls removed becomes smaller. The

symmetric volume difference as a consequence becomes smaller as well. Koehl’s

code is used for all the above computations [33].

One bottleneck is the check for introduction of holes. This check takes long as

it involves a search through the Delaunay triangulation. The impact of this check

is apparent in both the feature decreasing step and the density decreasing step.

Moreover, because of this check, fewer balls are removed in the feature decreasing

step, leaving more balls to be processed by the density reducing step. The worst

combination for performance is a low feature variable, a non-zero density variable

and a large model with the check. In those cases, the removal process runs for

a few days. Therefore, we recommend a range of values to the user. For the

feature variable (K), a value greater than 0.5 and less than 1.5 is recommended.

For the density valuable (J), a value between 0 and 0.5 is suggested. In Chapter

7, we show experiments comparing the original GSD versus the SGSD. Similar
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deformation processes can be obtained with proper choice of variables K and J .

K = 0; J = 0.1

Reduc.: 86.17%
Vol. Diff.: 3.78%

Reduc.: 76.69%
Vol. Diff.: 4.01%

K = 0.3; J = 0.1

Reduc.: 95.57%
Vol. Diff.: 4.29%

Reduc.: 85.20%
Vol. Diff.: 4.21%

K = 0.6; J = 0.1

Reduc.: 95.79%
Vol. Diff.: 4.04%

Reduc.: 86.57%
Vol. Diff.: 4.78%

K = 1.0; J = 0.1

Reduc.: 95.98%
Vol. Diff.: 4.02%

Reduc.: 87.04%
Vol. Diff.: 4.66%

K = 1.0; J = 0.2

Reduc.: 97.14%
Vol. Diff.: 6.03%

Reduc.: 89.42%
Vol. Diff.: 8.78%

K = 1.0; J = 0.3

Reduc.: 97.77%
Vol. Diff.: 10.02%

Reduc.: 91.70%
Vol. Diff.: 11.80%

Figure 5.6: The simplified unions of balls with different K and J values. The
reduction percentage and the symmetric volume difference are shown.

5.3 Degeneracies in Intermediate Delaunay and

Voronoi Complexes

Degeneracies arise in the intermediate complex of Deformation I and III. The

GGP Assumption is again unavoidably violated when B0 and B′
0 share the same

point locations. First, the degenerate case in R2 is illustrated. In R2, after the

Voronoi complexes in Deformation I and III are super-imposed, there are Voronoi

edges from different Voronoi complexes that intersect at one of their end-points

(see Figure 5.3 as an example). This degenerate case is represented by Type

(1,0,0). The corresponding intermediate Delaunay cell is a trapezoid which is

obtained by deforming a Delaunay edge to form a Delaunay triangle (Figure 5.7).
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D(B0) D(B′

0)D(B(0.5))

Figure 5.7: The intermediate Delaunay triangulation at t = 0.5 (middle) for
the original simplification (shown in Figure 5.3). The intermediate Delaunay
triangulation involves three trapezoids and one triangle

Figure 5.8: An intermediate Voronoi complex after deleting one point in a five
weighted point set. The deleted point is shown in red. There are six degenerate
Voronoi edges (in red), and four degenerate Voronoi vertices (circled in red)

In R3, there are two more degenerate cases in the intermediate complex. First,

it is indicated by Type (2,1,1) that a Voronoi face and a Voronoi edge from

different Voronoi complexes intersect at one boundary edge of the Voronoi face.

For example, as shown in Figure 5.8, one weighted point from a five weighted

point set is deleted. There are six such degenerate intermediate Voronoi edges,
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Figure 5.9: The intermediate Delaunay complex that corresponds to the interme-
diate Voronoi complex in Figure 5.8 at time t = 0.5. The intermediate Delaunay
triangulation consists of four frustums and one tetrahedron.

Table 5.1: All possible combinations of intermediate Voronoi cells and Delaunay
Cells. The new degenerate cases are shown in bold.

Type Voronoi Delaunay Patch
(3,3,3) Polyhedron Vertex Sphere
(3,2,2) Polygon Edge Hyperboloid
(3,1,1) Edge Triangle Hyperboloid
(3,0,0) Vertex Tetrahedron Sphere
(2,2,1) Edge Parallelogram Hyperboloid
(2,1,0) Vertex Triangle Prism Sphere
(2,1,1) Edge Trapezoid Hyperboloid
(1,0,0) Vertex Tri. Frustum Sphere

each of which is shared by four Voronoi regions. The corresponding intermediate

Delaunay cells are trapezoids. Second, Type (1,0,0) represents an intersection

between a Voronoi edge and a Voronoi point from different Voronoi complexes.

The corresponding intermediate Delaunay cell is a frustum which deforms from a

triangle to a tetrahedron (Figure 5.9). Table 3.1 is expanded to include the two

degeneracies in SGSD (Table 5.1).
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5.4 Escaping Time in New Degenerate Mixed Cells

New degenerate mixed cells are found in mixed cell Type (2,1,1) and (1,0,0). In

Figure 5.10, a triangle frustum is interpolated from a triangle to a tetrahedron.

At time t = 0, the single mixed cell of Type (1,0,0) and four mixed mixed cells

of Type (2,1,1) have volume of zero. Therefore, all these five mixed cells are

degenerate at t = 0.

t = 0 t = 0.5 t = 1

Figure 5.10: A triangle frustum is interpolated from a triangle to a tetrahedron.

The Equation 4.2 fails to handle the escaping time calculation for these new

degenerate mixed cells because of the numerical errors in floating point numbers.

The numerical errors exist while the time t is greater but close to 0. The front

view of the mixed cells of Type (2,1,1) and (1,0,0) for the triangle frustum in

Figure 5.10 with time t approaching to 0, is drawn in Figure 5.11.

Mixed Cell Type (1, 0, 0) Mixed Cell Type (2, 1, 1)

p(t)

Figure 5.11: The front view of mixed cells Type (2,1,1) and (1,0,0) for the triangle
frustum in Figure 5.10 with time t approaching to 0 .
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Since the escaping time is not possible to be computed in degenerate mixed

cell, the surface point p(t) escapes immediately after it enters the degenerate

mixed cell. However, different from the case in Section 4.3.1.4, all mixed cells,

except the one that p(t) comes from, are possible destinations, since the time t is

not exactly 0. There are several heuristics available to choose the most reasonable

escaping mixed cell. The best solution is to choose the boundary nearest to

p(t) along its trajectory with opposite normal, comparing to the normal of the

boundary which the surface point p(t) comes from.

5.5 Complexity Analysis

The complexity for the new SGSD reaches O(m2 + n2), assuming that the user

inputs m′ and n′ are small as compared with m and n. The number of weighted

points in Deformation I is mm′ and the complexity can be treated as O(m) when

m′ is a small constant. The overall complexity is O(m2) + O((m′n′)2) + O(n2) =

O(m2 + n2), by treating Deformation III in the same manner.

The overall complexity can be verified by studying the intermediate Voronoi

complexes. In Deformation I and III, the complexity is equal to that of one of

the intermediate Voronoi complexes. Deformation I from skin (B0) to skin (B′
0)

is used to illustrate this point. When the two Voronoi complexes V0 and V ′
0 of B0

and B′
0 are super-imposed, the extra Voronoi regions in the intermediate Voronoi

complex are the cells in V ′
0 within the Voronoi cells of the deleted weighted points

in V0. In the worst case, each cell of the deleted points come into contact with

all the cells in V ′
0 and each of these m−m′ deleted points generate m′ new cells.

However, the cells of V ′
0 are far larger in size than those of the deleted points in
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V0. The number of cells in V ′
0 in the cell of each of the deleted points in V0 are not

proportional to m′, and it will not increase the complexity of the intermediate

Voronoi complex to O(m2m′2).

5.6 Conclusion

In this chapter, a new simplified general skin deformation algorithm is introduced

to improve the efficiency of the original GSD algorithm. A solution to deform

skin surfaces with huge weighted point sets, which is originally impossible for the

GSD algorithm to handle, is provided. It is demonstrated that the complexity of

the intermediate complex can be improved from the original O(m2n2) to O(m2 +

n2). This improvement reduces the number of intermediate mixed cells in the

deformation and therefore reduces the number of schedules in the GSD algorithm

and improves the overall running time.

In addition, a new aspect of GSD is investigated, which is to study the degen-

eracies where the GPA is unavoidably violated. In this chapter, a small portion of

the degeneracies found during the simplification deformation process is discussed.

More degeneracies occur in other situations, for example, in partial movements

such as the bending of an elbow with only the lower part of the arm changing

position. All possible shapes of intermediate Delaunay and Voronoi complexes in

R2 and R3 are listed in Chapter 6.
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Chapter 6

Special Deformation: Partial

Movements

More degenerate cases are discovered when points from part of the weighted

point set are allowed to change their positions. For example, more intermediate

Delaunay types are required for a bending elbow with only the lower part of the

arm changing position. In molecular dynamics, molecules change part of their

shape, while the rest of their atoms remain unchanged. When this happens,

the GGP Assumption is unavoidably violated and more degenerate cases will be

created in the intermediate Voronoi complex because the following is allowed,

dim(νX ∩ νY ) > dim(νX) + dim(νY )− d.
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6.1 More Degenerate Types of Intermediate Com-

plexes

In Figure 6.3, a ‘molecule movement’ with only one atom moving away from its

original position in R2 is demonstrated. In the figure, both νX and νY are in

dimension 1. However, νXY = νX ∩ νY is also in dimension 1 and violates the

GGP Assumption.

In R3, there are seven additional degenerate cases that violate the GGP As-

sumption, namely (2,2,2), (2,1,1), (2,0,0), (1,1,1), (1,1,0), (1,0,0) and (0,0,0) (Ta-

ble 7.2).

Table 6.1: Additional types of intermediate Voronoi, Delaunay and mixed cells.
Type Voronoi cells Delaunay cells Surface Patch
(2,2,2) Polygon Edge Hyperboloid
(2,1,1) Edge Quadrangle or Pentagon Hyperboloid
(1,1,1) Edge Polygon with 3 to 6 vertices Hyperboloid
(1,1,0) Vertex Polyhedron with 7 to 9 vertices Sphere
(2,0,0) Vertex Polyhedron with 6 to 7 vertices Sphere
(1,0,0) Vertex Polyhedron with 6 or 11 vertices Sphere
(0,0,0) Vertex Polyhedron with 4 to 12 vertices Sphere

The shapes of Voronoi cells and Delaunay cells are shown using Equation

3.1. Two coplanar Voronoi polygons overlap with each other in Type (2,2,2),

and the intersection is a polygon (Figure 6.1(a)). There are two Voronoi regions

sharing this polygon. The two weighted points of these two regions form a convex

hull that is a Delaunay edge. A Voronoi edge intersects a Voronoi face and

forms another Voronoi edge in Type (2,1,1) (Figure 6.1(b)). As a result, the

intermediate Voronoi edge is surrounded by four or five Voronoi regions, which
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(a) (b)

(c) (d)

Figure 6.1: (a) Two Voronoi polygons overlap to form a new intermediate Voronoi
polygon. (b) A Voronoi polygon intersects a Voronoi edge to form another Voronoi
edge. (c) Two Voronoi edges intersect at an intermediate Voronoi vertex. (d) Two
Voronoi edges overlap to form an intermediate Voronoi edge.

are contributed by four or five intermediate weighted points. The convex hull

of these weighted point centers is a quadrangle or a pentagon. Two Voronoi

edges intersect at a Voronoi vertex in Type (1,1,0), (Figure 6.1(c)). The Voronoi

vertex is surrounded by seven, eight or nine Voronoi regions. The intermediate

Delaunay cell is a polyhedron with seven to nine vertices. Two Voronoi edges

overlap and form an intermediate Voronoi edge in Type (1,1,1) (Figure 6.1(d)).

There are a minimum of three and a maximum of six Voronoi regions surrounding

this intermediate Voronoi edge. The intermediate Delaunay cell is a polygon with

three to six vertices. The intermediate Voronoi cell is always a vertex for Type
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(2,0,0), (1,0,0) and (0,0,0). The intermediate Delaunay cells are obtained by

counting the number of surrounding Voronoi regions.

Although the number of intermediate Voronoi cell types is increased, the types

of skin patches remain the same as that of hyperboloids and spheres. The con-

struction of intermediate skin surface mesh is similar to that of GSD and SGSD.

6.2 Conclusion

Degenerate intermediate Delaunay and Voronoi cells violating the GGP Assump-

tion are dealt with, such that the GSD Algorithm can be applied to partial

movements.

By relaxing the GGP Assumption, new types of degenerate Voronoi cells are

formed and dealt with in order to enable the GSD Algorithm to perform partial

motion modeling. Such modeling in a real time manner facilitate the investigation

and execution of experiment simulations (see Figure 6.2). In this chapter, all the

cases in R2 and R3 are enumerated.

Figure 6.2: An example of partial molecular movement.
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νX

(a)

νY

(b)

νXY

νb

(c) (d)

(e) (f)

Figure 6.3: Movement of a simple ‘molecule’ with four atoms from status in (a)
to a new status in (b). The two Voronoi complexes are super-imposed in (a)
and (b), and a degenerate intermediate Voronoi vertex νb, which has a trapezoid
intermediate Delaunay cell, is formed. (c) - (f) demonstrate the deformation
process with different t values at (c) t = 0.25, (d) t = 0.5, (e) t = 0.75 and (f)
t = 1.
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Chapter 7

Software Development and

Experiment Results

A general skin deformation software has been developed in Visual C++ with QT4

and OpenGL under windows platform. The software is available at our project

development page: http://www.comp.nus.edu.sg/˜yanke2/skin/skin.htm.

In this chapter, it is first demonstrated that our GSD algorithm is faster

than existing static skin mesh algorithms. Second, subsequent improvement in

efficiency from GSD to SGSD is shown.

7.1 Software for General Skin Deformation

Experimental results show that the GSD algorithm is much faster than existing

static skin mesh algorithms in terms of generating each frame of intermediate skin

mesh model with triangle quality guaranteed. The time taken in three different

sets of skin model deformation is shown in Table 7.1: a mannequin skin model to
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a question mark skin model (Figure 1.1); a bunny model to a torus model (Figure

1.2); a woman skin model to a fish skin model. All experiments are performed with

Intel Duo Core 2.33GHz and 4GB RAM. In order to show a smooth deformation

processes, one thousand frames (intermediate skin model meshes) are generated

for each example. Therefore, if 24 frames per second is required for a short video

clip, a deformation process of approximately one minute is produced. The GSD

algorithm is compared with Kruithof’s algorithm [47] developed in CGAL [14]

and the static skin section of the dynamic skin deformation algorithm (DST)

developed by Cheng [16; 30] in Table 7.1.

In the first experiment (Figure 1.1), a mannequin skin mesh model (built by

12, 684 spheres) is deformed to form a question mark (7 spheres). The details

of the triangulation quality is shown in Figure 7.1. It is shown in Table 7.1

that the GSD algorithm is hundreds of times faster than both static skin mesh

algorithms (CGAL-4.0.1 and DST). These static skin algorithms are slow because

they generate each intermediate skin mesh model from scratch. They have the

potential to be faster if the skin models are built by fewer spheres. In the example

of Woman.skn (8 spheres) deforming to Fish.skn(8 spheres), our algorithm is only

about two times faster than CGAL-4.0.1. Meshes with better triangle quality is

produced by our program as compared to CGAL-4.0.1.

The faster performance of the GSD algorithm is also due to the new way of

linear vertex movement. Figure 7.2 shows the minority of triangles that are being

tested and refined during the time interval of two frames. The total number of

triangles being refined is constant for each deformation regardless of how many

frames are generated in the whole deformation process.
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Figure 7.1: A zoomed-in snapshot of the general deformation between a man-
nequin skin model and a question mark skin model. Triangles are shown in
wireframe.

Experiments GSD CGAL-4.0.1 DST
Mannequin.skn ↔
Question_Mark.skn

1.748 sec 323.8 sec 695.0 sec

Bunny.skn ↔ Torus.skn 0.908 sec 79.98 sec 93.76 sec
Woman.skn ↔ Fish.skn 0.615 sec 1.025 sec 1.875 sec

Table 7.1: Average time taken by different algorithms for different examples.
Each deformation process is run with 1,000 frames.

7.2 Software for Simplified General Skin Defor-

mation

The SGSD algorithm, which significantly reduces the number of intermediate

mixed cells, the number of schedules and the overall running time as compared

to the original GSD algorithm, is employed in the second version of GSD. A

comparison of the results of deformation for three pairs of skin models is made:

a bunny skin model deforming to form a cow skin model (Figure 7.3), a dragon

skin model deforming to form a bunny skin model and a mannequin head skin

model deforming to form a fist skin model (Figure 7.4). Two simplification lev-
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Figure 7.2: Triangle and vertex correspondences for frame 344 and 345 during
the deformation. The red regions in frame 345 are triangles that are being refined
from frame 344.

els are introduced to compare the performance by choosing different values of

feature variable K and density valuable J . As the current available source (32-

bit machine) is unable to store the original intermediate complex (149, 381, 672

intermediate mixed cells) of the last pair of skin models (mannequin head and

fist), the original GSD of this pair of skin models is not tested. All starting

weighted point sets are obtained from the power crust project developed by

Nina Amenta et al. [52] at http://www.cs.ucdavis.edu/ amenta/powercrust.html

and the sphere-tree construction toolkit developed by Bradshaw et al. [12] at

http://isg.cs.tcd.ie/spheretree/. The input skin meshes are generated by the

quality skin mesh software developed by Cheng and Shi [18; 19] (Table 7.2).

Both GSD and SGSD algorithms are tested in a 32-bit windows machine with

Intel Duo Core 2.33GHz and 4GB RAM. For the SGSD, we select two levels of

simplification. In the first level, we choose K = 0.6 and J = 0.1 and we call it

SGSD-1. Second, we choose K = 1.0 and J = 0.3 in the second level, or SGSD-2.
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Table 7.2: Input skin meshes.
Input # W. Points # Vertices # Triangles

Mannequin 12680 274206 482568
Fist 5461 217736 348616

Bunny 658 79030 110422
Cow 732 93813 149282

Dragon 869 100420 162231

In Figure 7.4 and 7.3, we show the comparison of actual deformation processes

between the original GSD, SGSD-1 and SGSD-2. Similar deformation processes

are achieved although we use much simpler intermediate weighted point sets.

First, a comparison of the total number of intermediate mixed cells is made,

as shown in Table 7.3. The total number of intermediate mixed cells in all three

sub-deformations in SGSD are also shown in Table 7.3. The result shows that

the intermediate complex is significantly simplified in SGSD. Second, the whole

deformation process is divided into 1, 000 frames and the average number of

schedules (Table 7.4) and average running time (Table 7.5) are compared in each

frame for both algorithms. Based on the statistics collected, both the number of

schedules and running time are reduced due to the simpler intermediate complexes

in SGSD.

Table 7.3: Number of intermediate mixed cells for different deformation models.
Model pair GSD SGSD-1 SGSD-2

Mannequin ↔ Fist 149,381,672 913,053 317,192
Bunny ↔ Cow 577,614 182,254 94,911

Dragon ↔ Bunny 891,161 221,658 103,746

The number of intermediate weighted points is maintained at less than 3 mil-

lion in GSD. When the number of intermediate weighted points exceeds 3 million,
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Table 7.4: Average number of schedules.

Model pair GSD SGSD-1 SGSD-2
Mannequin ↔ Fist - 16,491 5,719
Bunny ↔ Cow 10,855 3,712 1,731

Dragon ↔ Bunny 13,774 4,073 2,442

Table 7.5: Average time taken in each frame.

Model pair GSD SGSD-1 SGSD-2
Mannequin ↔ Fist - 3.18 sec 1.38 sec
Bunny ↔ Cow 5.40 sec 1.87 sec 0.65 sec

Dragon ↔ Bunny 6.14 sec 1.92 sec 0.75 sec

for example, the direct GSD between the mannequin and fist skin models in Fig-

ure 5.1, it is impossible for a 32-bit machine to handle such a large intermediate

complex (indicated by the empty cell in Table 7.3 and 7.4). However, It is possi-

ble to deform the mannequin model to the fist model using the SGSD algorithm

by two simplification deformations and one GSD (Figure 7.4).

The result of SGSD can be very much similar to the original GSD algorithm

as the simplification processes guarantees the volume difference to be small. Al-

though the simplified objects may lose sharp features of the original objects, it is

visually tolerable since it is only one intermediate frame in the whole deformation

process.
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K = 0.6; J = 0.1

K = 1.0; J = 0.3

K = 0.6; J = 0.1

K = 1.0; J = 0.3

Figure 7.3: Different simplification level break down for deformation between
bunny and cow.

K = 0.6; J = 0.1

K = 1.0; J = 0.3

K = 0.6; J = 0.1

K = 1.0; J = 0.3

Figure 7.4: Different simplification level break down for deformation between
mannequin and fist.
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Chapter 8

Conclusions

An algorithm called general skin deformation (GSD) that allows automatic free

form deformation between any two objects is presented in this thesis. This al-

gorithm provides the speed boost required for deformation with additional ad-

vantages, such as automatic topology change handling, quality triangulation and

surface point correspondence mapping. These enhancements do not only enable

shape synthesis to become possible in computer animation, engineering and bio-

geometry applications, but also facilitate shape manipulations such as shape space

searching, simplification or compression. The surface correspondence, guaranteed

triangle quality and homeomorphism enable robust computation for engineering

simulations.

The efficiency of GSD is improved with a simplified version of GSD, which

is called SGSD. In SGSD, most features are inherited from GSD and the overall

complexity is improved from O(m2n2) to O(m2 + n2). This improvement greatly

reduces the program running time as it simplifies the intermediate complex struc-

ture and abandons unnecessary topology changes. This improvement also enables

some impossible deformations with large input sets to become possible. New de-

generacy problems arise in the simplified deformation process and they are solved
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by introducing new types of intermediate complexes.

Both GSD and SGSD algorithms are suitable for deformation between objects

of greatly dissimilar shapes, since all input weighted points are assumed in gen-

eral positions. In fact, for two shapes that are too similar, both algorithms suffer

from degeneracy problems. Several new intermediate Delaunay types are intro-

duced because of identical point positions in source and target weighted point

sets (examples are shown in Chapter 5 and in Chapter 6).

Fully automated deformation algorithms are still far from being practical in

real world applications, such as movie and cartoon animations. In GSD and

SGSD, a solution to escape from the restriction of similarity is provided, both

source and target shapes are converted into weighted point sets and the weighted

points are interpolated from the two sets. The limitation of this approach is that

sharp features may be lost in the intermediate shapes. It is recommended that the

future work addresses this limitation by introducing additional reference shapes

during the deformation[15].

Future research includes controlling the deformation locally, for example, re-

ducing the topology changes during deformation so that the changes can be con-

trolled. Another area of interest is to investigate new types of possible vertex

movement schemes, such as movements along directions that are orthogonal to

the hyperboloids surface to enhance performance and quality. Another exciting

challenge is to extend our algorithm to construct a deforming volume tetrahedral

mesh for physical simulation purposes. The tetrahedral refinement in a deforming

body is more complex than that of the surface mesh. A study has been done to

show that a good surface mesh of the boundary of an object aids the construction

of the volumetric mesh [18].
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