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Summary

Standard results in the study of switched systems mostly consider unconstrained models

with arbitrary switching functions. This thesis focuses on the stability of constrained

switched systems when the switching function satisfies some minimal dwell-time re-

quirement. Main contributions of the thesis include (i) a necessary and sufficient

condition for the stability of switched systems when the switching function satisfies

dwell-time requirement; (ii) an algorithm that computes the minimal common dwell-

time needed for stability; (iii) a constructive procedure for computing the minimal

mode-dependent dwell-times (mode-dependent dwell-times refers to the case where

one dwell-time is used for each mode); (iv) a new characterization of robust invariant

sets for dwell-time switched systems subject to disturbance inputs and constraints; and

(v) algorithms that compute the minimal and maximal convex robust invariant sets

under dwell-time considerations.

The above contributions are for the case where either a common dwell-time or

mode-dependent dwell-times are imposed on the switched systems. They can be seen

as the generalization of the special case where the system switches arbitrarily among the

various modes. Finally, some of the above-mentioned theoretical results are applied to

the problem of controlling the read/write head of a Hard Disk Drive (HDD) system. A

mode switching control scheme with controller initialization is proposed that improves

the performance of the HDD system compared to the conventional switching schemes.
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Chapter 1

Introduction and Review

The study of switched systems is motivated by their prevalence in numerous mechanical

systems, power systems, biological systems, aircraft, traffic systems and others. For

example control of read/write heads in hard disk drives requires precise positioning

and rapid transitioning between tracks on a disk drive. To meet these objectives,

commercial hard disk drives use switching control strategies [1–3] which combine a

track-seeking controller and a track-following controller. The track-seeking controller

rapidly steers the magnetic head to a neighborhood of the desired track, while the

track-following controller regulates position and velocity, precisely and robustly, to

enable read/write operations. This control strategy results in a switched system based

on output feedback.

One main focus in the study of switched systems is to find conditions that ensure

stability. This focus arises from several interesting phenomena. For example, when

all the subsystems are exponentially stable, the switched system may have divergent

trajectories for certain switching signals [4–6]. Another interesting example is that

careful switching can stabilize a switched system with all individually unstable sub-

systems [5, 6]. In addition, there exists a large class of nonlinear systems which can

be stabilized by switching control schemes, but cannot be stabilized by any continu-

ous static state feedback control law [5, 7–9]. Given the wide applicability of switched

1



CHAPTER 1. INTRODUCTION AND REVIEW

systems, the study of their stability and other analysis and design tools naturally arose.

1.1 Background

A switched system consists of a finite number of subsystems and some logical rules

that govern the switching between these subsystems. The switching logic is specified

in terms of a switching signal σ(·) that indicates the active mode of the system at any

given time. In general, the active mode at time t not only depends on the time instant,

but also on the current state x(t) and/or previous active modes. Accordingly, switched

systems are usually classified as time-dependent (switching depends on time t only),

state-dependent (switching depends on state x(t) as well), and with or without memory

(switching also depends on the history of active modes) [5]. Switched systems can also

be classified based on the dynamics of their subsystems, for example continuous-time

or discrete-time, linear or nonlinear, etc. Of course, combinations of several types of

switching is also possible.

A switched system with time-dependent switching is represented by

ẋ(t) = fσ(t)(x(t)) , σ : R+ → IN (1.1)

where IN = {1, 2, · · · , N} is a finite index set and fi’s are sufficiently regular (at

least locally Lipschitz) functions. The switching signal σ(·) is a piecewise constant

function that has a finite number of discontinuities, called switching times, on every

bounded time interval. To avoid ambiguity at switching times, it is assumed that σ(·)

is continuous from the right everywhere, i.e. σ(t) = limh→t+ σ(h) for every h ≥ 0. An

example of such a switching signal for the case of IN = {1, 2} is depicted in Figure 1.1.

In this thesis, we limit the scope of our study to the class of switched systems with

linear modes and under time-dependent switching, for which a brief review of some of

2
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t1 t2 t3

σ(t)

1

2

t

Figure 1.1: A time-dependent switching signal with switching times t1, t2, t3.

the recent results are presented in this chapter. Throughout this thesis the following

standard notations are used.

Notations: Given a matrix A ∈ Rn×n, ρ(A) denotes its spectral radius. The floor

function ⌊a⌋ is the largest integer that is less than a. Symbol “⊤” denotes the transpose

of a matrix or a vector and co{·} denotes the convex-hull. Standard 2-norm is indicated

by ∥ · ∥ while other p-norms are ∥ · ∥p, p = 1,∞. B(r) := {x ∈ Rn : ∥x∥ ≤ r} refers

to the 2-norm ball of radius r. Positive definite (semi-definite) matrix, P ∈ Rn×n,

is indicated by P ≻ 0(≽ 0) and In is the n × n identity matrix. Given a P ≻ 0,

E(P, c) := {x : x⊤P x ≤ c} is the ellipsoidal set and E(P ) := {x : x⊤P x ≤ 1}. A

polyhedral set S = {x : Fx ≤ 1}, where F ∈ Rq×n is some matrix and the boldface

1 ∈ Rq indicates the vector of all 1s. ∂S denotes the boundary of the set S. Suppose

α > 0 and X, Y ⊂ Rn are compact sets that contain 0 in their interiors. Then, the

scaling of X is αX := {αx : x ∈ X}, image of X is AX := {y : y = Ax and x ∈ X} for

some appropriate matrix A, the Minkowski sum is X ⊕ Y := {z ∈ Rn : z = x + y, x ∈

X, y ∈ Y }, the Pontryagin (or Minkowski) difference is X ⊖ Y := {z ∈ Rn : z + y ∈

X,∀y ∈ Y } and A(X ⊕ Y ) = AX ⊕ AY . The distance between x ∈ Rn and a set

Y ⊂ Rn is d(x, Y ) := infy∈Y ∥x − y∥.

3



CHAPTER 1. INTRODUCTION AND REVIEW

1.2 Switched Linear Systems

Switched systems with all subsystems described by linear differential/difference equa-

tions are called switched linear systems, and have attracted most of the attention in

the literature [5–7,9, 10]. In particular, switched linear systems are represented by

ẋ(t) = Ai x(t), t ∈ R+, i ∈ IN (1.2a)

or, x(t + 1) = Ai x(t), t ∈ Z+, i ∈ IN (1.2b)

where x ∈ Rn, Ai ∈ Rn×n for all i ∈ IN and the origin is an equilibrium point (maybe

unstable) of the system.

In what follows, an overview of the recent results relevant to the stability of

switched linear systems with time-dependent switching is presented. First, we focus on

the stability of switched systems when switching among different modes is arbitrary,

and highlight some necessary and sufficient stability conditions for arbitrary switch-

ing. Then, the stability problem is studied under restricted time-dependent switching.

Finally, the gaps/challenges in this field that motivated the thesis are highlighted. It

should be noted that since the literature on switched linear systems is so extensive,

only the main ideas and drawbacks are presented here. Interested readers can find the

detailed discussions of the results in the survey papers [8, 9, 11, 12] and the references

therein.

1.2.1 Stability Analysis under Arbitrary Switching

One common question asked of a switched system is its stability conditions when there

is no restriction on the switching signals. This issue is known as stability analysis

under arbitrary switching and is of practical importance. For example, when multiple

controllers are designed for a plant for performance enhancement, it is important that

switching among these controllers does not cause instability. Clearly, this would not

4
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be an issue if it is known a priori that system is stable under arbitrary switching.

The main tool for stability analysis of dynamical systems is the classical Lyapunov

function [13, 14]. The main idea is to find a positive (norm-like) Lyapunov function

V (x(t)) > 0 whose derivative is negative along the trajectories of the system (i.e.

V̇ (x(t)) < 0)1. This would then implies that x(t) → 0 as t → ∞ and hence the origin

of the system is asymptotically stable. Most of the recent works on the stability of

switched linear systems is based on this method.

Consider a candidate Lyapunov function V (x) that decreases along all trajectories

of a switched linear system under arbitrary switching. Since the set of all arbitrary

switching signals contains any constant switching signal σ(t) = i for all t ∈ R, it is

concluded that such function V (x) is also a Lyapunov function for each mode i of the

system (1.2). Thus V (x) has to be a “common” Lyapunov function for all the modes.

It is well-known [5,15–18] that if a common Lyapunov function exists for all the modes

of a switched linear system, then the system is asymptotically stable under arbitrary

switching. We now discuss different types of common Lyapunov functions proposed in

the literature of switched linear systems.

Common Quadratic Lyapunov functions: Recall that for a linear time-invariant

(LTI) system ẋ(t) = Ax(t) (respectively x(t+1) = Ax(t)), the function V (x) = x⊤P x

is a quadratic Lyapunov function (QLF), if (i) P is symmetric and positive definite, and

(ii) A⊤P + PA (respectively A⊤P A − P ) is negative definite. Similarly, for switched

linear systems, the function V (x) = x⊤P x is a common quadratic Lyapunov function

(CQLF) if it is a QLF for each individual subsystem. More specifically, continuous-

time switched system (1.2a) is asymptotically stable under arbitrary switching if there

exists a P ≻ 0 such that

PAi + A⊤
i P ≺ 0, ∀i ∈ IN . (1.3)

1The discrete version of this condition requires ∆V (x(t)) := V (x(t + 1)) − V (x(t)) < 0.

5
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Similarly, discrete-time switching system (1.2b) is asymptotically stable under arbitrary

switching if there exists a P ≻ 0 such that

A⊤
i PAi − P ≺ 0, ∀i ∈ IN . (1.4)

−2
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0
1

2

−2

−1

0

1

2
0
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4
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8

x
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x
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V
(x
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=

 x
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(a) CQLF and its level-sets

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

A
1
 x

A
2
 x

x
2

E(P,c)

(b) Contractive ellipsoid

Figure 1.2: Illustration of a common quadratic Lyapunov function in R2

The geometrical interpretation of the the above conditions is insightful. As it is

shown Figure 1.2(a), the level-sets of a CQLF are the ellipsoids of the form E(P, c) =

{x : x⊤Px ≤ c}. Condition (1.3) implies that for every point on the boundary of the

ellipsoidal set E(P, c), the flow direction (i.e. Aix, i ∈ {1, 2}) is pointing inwards to

the set (see Figure 1.2(b)). This means when x is on the boundary of E(P, c), not only

trajectory remains in the set but is also pushed inside with a guaranteed (boundary-

crossing) speed. Since the subsystems are linear, by scaling the boundary of the set,

we can see that the crossing speed implies the rate of convergence of the states to the

origin. A set with such properties is called a contractive set.

The condition (1.3) or (1.4) is a linear matrix inequality (LMI) and can be solved

using standard convex optimization routines (e.g. [19]). However, there are examples

[5,7] of switched systems that do not have a CQLF, but are exponentially stable under

arbitrary switching. Hence, existence of CQLF is only a sufficient condition for stability

and could be rather conservative.

6
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Another approache resulting in CQLF, is the Lie algebraic method [4, 7, 20–22],

which is based on the solvability of the Lie algebra generated by the subsystems’ state

matrices. It is shown that if the Lie algebra generated by the set of state matrices

is solvable, then there exists a CQLF, and the switched linear system is stable under

arbitrary switching.

Due to the conservatism of CQLFs, some attentions have been paid to a less conser-

vative class of Lyapunov functions, called switched quadratic Lyapunov functions [23].

Basically, since every subsystem is stable, there exists a positive definite symmetric

matrix Pi ≻ 0 that solves the Lyapunov equation for each subsystem i ∈ IN . These

matrices are then patched together based on the switching signals to construct a global

Lyapunov function as V (t, x(t)) = x(t)⊤Pσ(t)x(t). The stability condition under arbi-

trary switching is

A⊤
i Pj Ai − Pi ≺ 0 ∀(i, j) ∈ IN (1.5)

that grantees that V (t + 1, x(t + 1)) < V (t, x(t)) whenever the system switches from

mode i ∈ IN to mode j ∈ IN . Again, condition (1.5) is an LMI and can be solved

efficiently. The geometrical interpretation of (1.5) is that the set S :=
∩

i∈IN
E(Pi, c) is

a contractive, i.e. there exists a λ ∈ (0, 1) such that Aix ∈ λS for every x ∈ S.

It is clear that when Pi = Pj for all i, j ∈ IN , the switched quadratic Lyapunov

function becomes the CQLF. Therefore, the stability criteria based on the switched

quadratic Lyapunov function generalizes the CQLF approach and is less conserva-

tive. However, it is worth pointing out that the switched quadratic Lyapunov function

method is still only a sufficient condition.

Polyhedral Lyapunov Functions: To obtain a condition that is both necessary

and sufficient for stability of switched linear systems under arbitrary switching, a more

complicated Lyapunov function than CQLF is required. This motivates the study of

7
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non-quadratic Lyapunov functions.

The usage of non-quadratic functions has first appeared in the stability analysis of

linear differential/difference inclusions (LDIs) of the form

ẋ(t) = A(t) x(t), A(t) ∈ co{A1, A2, · · · , AN} (1.6a)

x(t + 1) = A(t) x(t), A(t) ∈ co{A1, A2, · · · , AN} (1.6b)

where A(t) is constructed by a convex combination of Ai’s. It is shown in [15] that

stability of the above LDI systems, with infinite number of possible modes, is equivalent

to the stability of the system when only the finite vertices (Ai, i ∈ IN) are considered.

This means stability of switched linear systems under arbitrary switching is equivalent

to stability of LDI (1.6) and thus all the stability results of LDIs are also applicable to

arbitrary switched systems.

For the LDIs and hence the arbitrary switched systems, it is known [15–17] that

asymptotic stability is equivalent to existence of a common Lyapunov function (not

necessarily quadratic) that is strictly convex and its directional derivative2 along Ai x is

negative for all i ∈ IN . This statement also suggests that more complicated functions

than quadratic functions should be used.

The first non-quadratic function described here is the class of Polyhedral Lyapunov

Functions (PLFs), which are also known as piecewise linear Lyapunov functions. A

PLF is defined by

V (x) = max{Fj x : j = 1, 2, · · · , q} (1.7)

where Fj ∈ R1×n for j = 1, · · · , q and the linear functions Fj x are called generators of

2When function V (x) is not differentiable, directional derivative are used. The directional derivative
of V (x) in direction ζ is V̇ (x; ζ) := limh→0+

V (x+hζ)−V (x)
h .

8
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the PLF [11]. The function V (x) is induced by polyhedral set of the form

S = {x : Fx ≤ c1}, c > 0 (1.8)

where F = [F⊤
1 , F⊤

2 , · · · , F⊤
q ]⊤ ∈ Rq×n and 1 ∈ Rq is a vector of all 1s. In other words,

the polyhedral sets of (1.8) are the level-sets of the the PLF (1.7) as illustrated in

Figure 1.3.
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Figure 1.3: Polyhedral Lyapunov Function and its polyhedral level-sets in R2

It is clear that by increasing the number of generators (q) of a polyhedral set, the

complexity of the PLF increases and hence it can be used as a non-conservative tool

for stability analysis of switched systems. The following results, taken from [12, 24],

summarizes a necessary and sufficient stability condition using PLFs.

Theorem 1.1 Switched linear system x(t + 1) = Ai x(t), i ∈ IN is asymptotically

stable under arbitrary switching if and only if there exist λ ∈ (0, 1), F ∈ Rq×n, q ≥ n

and non-negative matrices3 Xi ∈ Rq×q such that

FAi = XiF, Xi1 ≤ λ1, ∀i ∈ IN (1.9)

The above condition, simply implies that the polyhedral set S = {Fx ≤ 1} is con-

3A matrix is non-negative if all of its elements are non-negative.

9
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tractive (with contraction rate λ). To see this, consider any x(t) on the boundary of

S. It follows from (1.9) that Fx(t + 1) = FAi x(t) = XiFx(t) ≤ Xi1 ≤ λ1 for any

arbitrary i ∈ IN . This means x(t + 1) ∈ λS. Repeating this and noting that λ < 1

and S is bounded, x(t) → 0 and asymptotic stability of the origin follows. Of course,

the Lyapunov function induced by S is a PLF.

Theorem 1.2 Switched linear system ẋ(t) = Aix(t) is asymptotically stable under

arbitrary switching if and only if there exist β > 0, F ∈ Rq×n, q ≥ n and Metzler

matrices4 Yi ∈ Rq×q such that

FAi = YiF, Yi1 ≤ −β1, ∀i ∈ IN (1.10)

Condition (1.10) ensures that for any x on the boundary of S = {Fx ≤ 1}, the

directional derivative of V (x) = maxj=1,··· ,q{Fj x} along the directions Ai x is negative.

To see this, consider any x ∈ ∂S. It follows that

V̇ (x; Aix) = max
j

{FjAix} = max
j

{YijFx} ≤ max
j

{Yij1} ≤ −β ∀i ∈ IN

where Yij is the j-th row of matrix Yi. This means for every x ∈ ∂S, the flow direction

of Aix is pointing inwards to the set S and hence S is a contractive set with convergence

rate β (see Figure 1.4).

While the above theorems provide a necessary and sufficient set of stability con-

ditions based on PLFs, it is generally difficult to specify “a priori” the number q of

generators that are necessary for the construction of a common PLF. That is why

several numerical algorithms have been developed for the construction of polyhedral

Lyapunov functions. In [25], the authors propose an algorithm for difference inclusions

which calculates a series of balanced polytopes converging to the level set of a com-

mon PLF after a finite number of steps. An alternative approach is given in [15, 16],

4A matrix is Metzler if all the off-diagonal elements are non-negative.
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Figure 1.4: Illustration of a polyhedral contractive set S for a switched system with
two modes: For all x ∈ ∂S, A1x (solid line) and A2x (dashed-line) points inward to

the set S.

where linear programming based methods are developed for solving stability conditions.

In [26], a numerical approach, called ray-griding, is suggested for the computation of

PLFs based on a uniform partition of the state-space in terms of the ray directions.

However, most of the above methods are applicable only to second-order or third-order

systems. Blanchini and Miani [24, 27] proposed a method, based on recursive compu-

tation of backward sets of the system, that converges to a polyhedral contractive set.

This method can be applied to high-dimensional systems and will be discussed in detail

in the next chapter.

Composite Quadratic Lyapunov Functions: As stated earlier, piece-wise linear

functions are universal tools for stability analysis, in the sense that existence of a

common PLF is both necessary and sufficient for stability. It turns out that piece-wise

quadratic functions can also be used as universal stability analysis tools. This is due to

the fact that any polyhedral function can be arbitrarily approximated by a piece-wise

quadratic function.

The usage of piece-wise quadratic Lyapunov functions has appeared recently in

the analysis and design of LDIs [28–33]. One such function is the point-wise maximum

of a family of quadratic functions, which is convex and homogeneous of degree two.

11
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Since this functions is composed from a family of quadratic functions, it is also called

a composite quadratic function.

Given s positive definite matrices Pj ≻ 0, j = 1, · · · , s, the max of quadratics is

defined as Vmax(x) := max{x⊤Pj x : j = 1, · · · , s}. and its level set is the intersection of

the ellipsoids ∩s
j=1E(Pj). A necessary and sufficient stability condition using composite

quadratic functions is stated next.

Theorem 1.3 [33] The switched system ẋ(t) = Ai x(t), i ∈ IN is asymptotically

stable under arbitrary switching if and only if there exist an integer s ≥ N , matrices

Pj ≻ 0 for j = 1, · · · , s, and non-negative numbers ηijk ≥ 0, i ∈ IN , j, k ∈ {1, · · · , s}

such that

A⊤
i Pj + PjAi ≺

∑
j ̸=k

ηijk (Pk − Pj) − βPj ∀ i, j, k (1.11)

To understand this condition, we expand it for the case where IN = {1, 2} and only

two ellipsoids are used (s = 2). Then, (1.11) becomes

A⊤
1 P1 + P1A1 ≺ η112 (P2 − P1) − βP1 i = 1, j = 1, k = 2

A⊤
1 P2 + P2A1 ≺ η121 (P1 − P2) − βP2 i = 1, j = 2, k = 1

A⊤
2 P1 + P1A2 ≺ η212 (P2 − P1) − βP1 i = 2, j = 1, k = 2

A⊤
2 P2 + P2A2 ≺ η221 (P1 − P2) − βP2 i = 2, j = 2, k = 1

In what follows, we show that S = E(P1)∩E(P2) is a contractive set (with convergence

rate β). For this purpose, consider any x ∈ ∂S. The directional derivative of Vmax(x)

is given by

V̇max(x; Aix) = max{x⊤(A⊤
i Pj + PjAi)x : j ∈ {j : Vmax(x) = Vj(x)}, i ∈ IN}

For every x ∈ ∂S such that x⊤P1x < x⊤P2x, it follows that Vmax(x) = V2(x) and hence

12
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V̇max(x; Aix) = maxi{x⊤(A⊤
i P2 + P2Ai)x}. From second and fourth inequality above

it follows that V̇max(x; Aix) < maxi{ηi21 x⊤(P1 − P2)x − β x⊤P2x}. Since x⊤P1x <

x⊤P2x, x⊤(P1 − P2)x < 0 and hence V̇max(x; Aix) < −β x⊤P2x. For the case when

x⊤P2x < x⊤P1x, the same argument holds using the first and third inequalities and

V̇max(x; Aix) < −β x⊤P1x. Finally, when x⊤P2x = x⊤P1x, in all the four inequalities

x⊤(P2 − P1)x = 0, and V̇max(x; Aix) < −β x⊤Pjx < 0 for all i ∈ IN and for all

j = 1, 2. Thus V̇max(x; Aix) < −β Vmax(x) for all x ∈ ∂S and hence S is contractive

(with convergence rate β).

Theorem 1.4 [33] Switched system x(t + 1) = Aix(t), i ∈ IN is asymptotically

stable under arbitrary switching if and only if there exist an integer s ≥ N , Pj ≻ 0,

j = 1, · · · , s and non-negative numbers ηijk ≥ 0, j, k ∈ {1, · · · , s} and λ ∈ (0, 1) such

that
∑s

j=1 ηijk < 1 and

A⊤
i Pj Ai − λ

∑
j ̸=k

ηijk Pk ≺ 0 ∀ i, j, k (1.12)

Similar to the discussion above, condition (1.12) implies that the set S =
∩s

j=1 E(P ) is

contractive (with contraction rate λ).

The necessary and sufficient conditions of the above theorems is not surprising since

any polyhedral function can be arbitrarily approximated by a piece-wise quadratic func-

tion provided that number of ellipsoids (s) is sufficiently large. As shown in [33], the

number of ellipsoids (s) required for stability is equivalent to the number of piece-

wise linear generators (q) of polyhedral Lyapunov functions appeared in Theorem 1.1

or Theorem 1.2. Similar to PLFs, the number of piece-wise quadratic functions (s)

required is not known a priori. In addition, stability conditions (1.11) or (1.12) are bi-

linear matrix inequalities (BMIs) due to the existence of product of unknown variables,

e.g. ηijk × Pj. Solving BMI problems obtained from composite quadratic functions,

are much harder than the LMI conditions obtained using CQLFs. BMI problems are

13
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known to be NP-hard [19] and heuristic algorithms which involve approximation and

local search should be used for solving them. In summary, finding non-conservative

stability results, using piece-wise linear/quadratic functions, is computationally expen-

sive.

1.2.2 Stability Analysis under Restricted Switching

When a switched system is unstable under arbitrary switching, it is still possible to

preserve stability of the origin by imposing some restrictions on the switching signal.

The restrictions on switching may either be in time domain (e.g. dwell-time and average

dwell-time) or in state space (e.g restrictions imposed by partitions of the state space).

This section considers the stability problem of switched systems under restricted time-

dependent switching and reviews the class of Multiple Lyapunov functions as their

main stability analysis tool.

Multiple Lyapunov functions: The stability analysis under restricted switching

is usually pursued in the framework of Multiple Lyapunov Functions (MLFs). The

basic idea of MLFs is to concatenate several Lyapunov functions to construct a non-

conventional Lyapunov function. The non-conventionality is in the sense that the MLF

may not be monotonically decreasing along the state trajectories, may have discontinu-

ities, and may only be piecewise differentiable. The reason for considering MLFs is that

conventional Lyapunov functions may not exist for switched systems with restricted

switching. For such cases, one may still construct a collection of Lyapunov-like func-

tions, which only require local negativity of derivatives for certain subsystems/regions

instead of global negativity [8].

There are several versions of MLF results in the literature. A very intuitive MLF

result [6] is illustrated in Fig. 1.5(a), for which the Lyapunov-like function is decreasing

when the corresponding mode is active and its value does not increase at each switching

14
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Figure 1.5: Illustration of Multiple Lyapunov Functions

instant. Less conservative results can be obtained by relaxing the decreasing require-

ment at every switching time. For this purpose define ti,k to be the k-th time in which

we switch into mode i of the system (i.e. σ(t−i,k) ̸= σ(t+i,k) = i). The switched system

is asymptotically stable provided that Lyapunov-like function values at every entering

times to mode i, form a decreasing sequence i.e. Vi(x(ti,k)) < Vi(x(ti,k−1)). The profile

of typical Lyapunov functions associated with modes 1 and 2, for a switching sequence

satisfying this condition, is depicted in Fig. 1.5(b). The following theorem, taken

from [34], summarizes this result.

Theorem 1.5 [34] Suppose that Lyapunov-like functions are associated for each mode
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i such that Vi(x) > 0 and V̇i(x) < 0 (respectively ∆Vi(x) < 0). In addition suppose

that σ(t) is a switching sequence such that

Vi(x(ti,k)) < Vi(x(ti,k−1)) for all i ∈ IN (1.13)

where ti,k is the k-th time that vector field fi is “switched in”. Then the origin of the

switched system ẋ(t) = fσ(t)x(t) (respectively x(t + 1) = fσ(t)x(t)) is asymptotically

stable.

The above stability condition can be further relaxed, by letting the Lyapunov-

like functions to increase their values in between switching times, provided that the

increment is bounded by certain classes of functions [10,35]. This scenario is illustrated

in Fig. 1.5(c).

While useful for stability analysis of both continuous-time and discrete-time switched

systems, MLFs theorems have their drawbacks. First, applying MLFs theorems re-

quires some information about the solutions of the system. Namely, the values of

suitable Lyapunov functions at switching times must be known, which in general re-

quires the knowledge of the state at these times. This is in contrast to the classical

Lyapunov stability results, which do not require the knowledge of the state solutions.

Second, extraction of the level-sets of MLFs is not obvious. Unlike common Lyapunov

functions that their level-sets are convex and well-defined, the level-sets of MLFs have

no clear structure. Finally, like most of the Lyapunov based methods, the stability

results based on MLFs theorems are only sufficient conditions and may be rather con-

servative.

1.2.3 Stability under Time-Dependent Switching

It is well known that a switched system is stable if all individual subsystems are stable

and the switching is sufficiently slow, so as to allow the transient effects to dissipate after
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each switch [7, 36–38]. In this section we discuss how this property can be formulated

and justified using multiple Lyapunov function techniques [9, 36–39].

The simplest way to specify slow switching is to introduce a number τ > 0 and

restrict the class of admissible switching signals with switching times t1, t2, · · · , tk, · · ·

to satisfy the inequality tk+1 − tk ≥ τ for all k. This number τ is usually called the

dwell-time because σ “dwells” on each of its values for at least τ units of time. The

set of all switching signals that satisfies the dwell-time restriction τ is denoted by Sτ .

Computation of dwell-time: When all subsystems are asymptotically stable, the

lower bound on τ required for stability can be calculated using multiple Lyapunov

functions. The following theorem, taken from [38], states a sufficient condition for

stability of switched systems under dwell-time switching.

Theorem 1.6 [38] Consider the switched system ẋ(t) = fσ(t)x(t) (respectively x(t +

1) = fσ(t)x(t) ), where fi(0) = 0, for all i ∈ IN . If there exist Lyapunov-like functions

Vi(x) > 0 for each i ∈ IN , µ ≥ 1 and β > 0 (respectively λ ∈ (0, 1)) such that

V̇i(x(t)) ≤ −βVi(x(t)) (respectively Vi(x(t + 1)) ≤ λVi(x(t)) ) ∀i ∈ IN

(1.14)

Vi(x(t)) < µVj(x(t)) ∀(i, j) ∈ IN × IN

(1.15)

Then, the switched system is asymptotically stable with any dwell-time τ ≥ ln µ
β

(respec-

tively τ ≥ − ln µ
ln λ

).

The above conditions are direct usage of MLFs theorems. To see this, consider a

switching signal with switching instants t1, t2, · · · , tk, · · · . Then from (1.14), it follows
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that

Vi(x(tk+1)) ≤ e−β(tk+1−tk)Vi(x(tk)), if σ(t) = i ∀t ∈ [tk, tk+1)

or Vi(x(tk+1)) ≤ λ(tk+1−tk)Vi(x(tk)), if σ(t) = i ∀t ∈ [tk, tk+1)

When a switching happens from mode i to mode j, from (1.15) it follows that

Vj(x(tk+1)) ≤ µVi(x(tk+1)) ≤ µe−β(tk+1−tk)Vi(x(tk))

or Vj(x(tk+1)) ≤ µVi(x(tk+1)) ≤ µλ(tk+1−tk)Vi(x(tk))

Assuming that tk+1 − tk ≥ τ , it is clear that if µe−βτ < 1 (respectively µλτ < 1), then

Vj(x(tk+1) < Vi(x(tk)). Therefore, when τ > ln µ
β

(respectively τ > − ln µ
ln λ

), it follows

that Vi(x(ti,k+1) < Vi(x(ti,k)). Asymptotic stability of the origin then follows from

Theorem 1.5.

The conditions of Theorem 1.6 for switched linear systems is simplified to the

existence of positive definite matrices Pi ≻ 0 for each i ∈ IN such that

A⊤
i Pi + PiAi ≼ −βPi (respectively A⊤

i PiAi ≼ λPi) ∀i ∈ IN (1.16)

Pi ≺ µPj ∀(i, j) ∈ IN × IN (1.17)

Assuming that linear subsystems are all asymptotically stable, the first inequality is

always feasible. A feasible value of parameter µ ≥ 1 that satisfies the second condition

is µ = maxi,j{λmax(Pi)
λmin(Pj)

}, where λmax(·) and λmin(·) denotes the maximum and minimum

eigen-value of a matrix.

The above analysis justifies that when all the subsystems are asymptotically stable,

there indeed exists a scalar τ such that the switched system is exponentially stable if

the dwell time is larger than τ . An important and challenging problem under dwell-

time switching, is to determine a minimal dwell time τmin > 0 such that the origin
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of the switched system is globally asymptotically stable under the time-dependent

switching signal σ(t) ∈ Sτmin
. Unfortunately, the conditions appeared in (1.16) - (1.17)

are nonlinear in terms of variables β (or λ), µ and Pi’s. Hence, finding the optimal

values that results in the minimal τ is not easy. Even if optimal values are obtained,

there is no guarantee that the resulting τ is the minimum since the conditions (1.16)

- (1.17) are only sufficient stability conditions. Hence, several other approaches for

computing an upper bound of τmin are proposed in the literature. Some of the notable

results are reviewed next.

A simple method for computing an upper bound of τmin of switched linear systems

is based on the exponential decay bounds on the transition matrices of the individual

LTI subsystems. Due to the asymptotic stability of the linear subsystems, there exist

positive constants α, β such that ∥eAi(t−t̄)∥ ≤ αe−β(t−t̄) for all t ≥ t̄ ≥ 0 and for all

i ∈ IN . The constant β can be viewed as a common stability margin for all subsystems

Ai, i ∈ IN . With t1, t2, · · · , tk being the switching times in the interval (t0, t), the

solution of ẋ(t) = Aσ(t)x(t) is

x(t) = eAσ(tk)(t−tk)eAσ(tk−1)(tk−tk−1) · · · eAσ(t1)(t2−t1)eAσ(t0)(t1−t0)x(t0) (1.18)

Assuming that σ ∈ Sτ , it follows that tk+1 − tk ≥ τ for all k and hence

eAσ(tk−1)(tk−tk−1) ≤ αe−β(tk−tk−1) ≤ αe−βτ

To ensure asymptotic stability it is sufficient to have αe−βτ < 1, which can be achieved

with any τ ≥ ln α
β

.

Similarly for discrete-time switched systems, there exist positive scalars α and λ

with λ ∈ (0, 1) such that ∥Ak
i ∥ < αλk for all k ∈ Z+ and for all i ∈ IN . Again the

constant λ can be viewed as a common stability margin for all subsystems Ai, i ∈

IN . With t1, t2, · · · , tk being the switching times in the interval (t0, t), the solu-
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tion of discrete-time system at time t is x(t) = Aσ(t−1)Aσ(t−2) · · ·Aσ(1)Aσ(0)x(t0) =

At−tk
σ(tk)A

tk−tk−1

σ(tk−1) · · ·At1−t0
σ(t0) x(t0). It follows that

∥x(t)∥ = ∥At−tk
σ(tk)A

tk−tk−1

σ(tk−1) · · ·At1−t0
σ(t0) x(t0)∥

< α(t/τ)λt∥x(t0)∥ =
(
α1/τλ

)t∥x(t0)∥

The switched system is asymptotically stable with dwell-time τ provided that α1/τλ < 1

or equivalently τ > − ln α
ln λ

.

The following theorem, taken from [36,38,40], provides an upper for minimal dwell-

time required for stability of switched linear systems.

Theorem 1.7 For each i ∈ IN , let Ti := infα>0,β>0

{
ln α
β

: ∥eAit∥ ≤ αe−βt, ∀t ≥ 0
}

for continuous-time subsystems [38, 40] and let Ti := infα>0,0<λ<1

{
− ln α

ln λ
: ∥Ai

t∥ ≤

αλt, ∀t ≥ 0
}

for discrete-time subsystems [36]. Define T := maxi∈IN
Ti. Then,

switched linear system ẋ(t) = Aσ(t)x(t) (correspondingly x(t+1) = Aσ(t)x(t)) is asymp-

totically stable under dwell-time switching with any dwell-time τ ≥ T .

Since only ∥ · ∥ of states is considered, the minimal dwell-time obtained from the

above result is rather conservative. Recently, Geromel and Colaneri [41, 42] propose a

less conservative upper bound on the minimal dwell-time based on MLFs.

Theorem 1.8 Assume that for some T > 0, there exists a collection of positive definite

matrices Pi ≻ 0, i ∈ IN of compatible dimensions such that

A⊤
i Pi + PiAi ≺ 0 ∀i ∈ IN (1.19a)

eA⊤
i T Pj eAiT − Pi ≺ 0 ∀i ̸= j, (i, j) ∈ IN × IN (1.19b)

Then, the switched system ẋ(t) = Aσ(t)x(t) with dwell-time τ ≥ T is globally asymp-

totically stable [41].
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Similarly, if for some T ≥ 1, there exists a collection of positive definite matrices

Pi ≻ 0, i ∈ IN of compatible dimensions such that

A⊤
i PiAi − Pi ≺ 0 ∀i ∈ IN (1.20a)

AT
i

⊤
Pj AT

i − Pi ≺ 0 ∀i ̸= j, (i, j) ∈ IN × IN (1.20b)

Then, the discrete-time switched system x(t + 1) = Aσ(t)x(t) with dwell-time τ ≥ T is

globally asymptotically stable [42].

The upper bound of τmin obtained from these theorems is the minimum T such

that conditions of (1.19) or (1.20) are satisfied. Again, these conditions are nonlinear

with respect to the variables T and Pi’s. However, for a fixed value of T , optimization

problems (1.19) and (1.20) are LMIs and can be solved using convex optimization

algorithms. The minimum T that satisfy these LMIs can be found using a bisection

search on T .

Despite the various methods proposed in the literature, a constructive procedure for

choosing the candidate Lyapunov functions that minimizes the dwell-time needed for

stability is still lacking. As an alternative solution to this problem, several relaxations

to the dwell-time concept are proposed. One is the use of average dwell-time [38]

instead of strict dwell-time requirement at each switching instant. In the context of

time-dependent switching, specifying a fixed dwell-time may be rather restrictive. If,

after a switch occurs, there can be no more switches for the next τ units of time, then

it is impossible to react to possible system failures during that time interval. Thus it is

of interest to relax the concept of dwell-time, allowing the possibility of switching fast

when it is necessary and then compensate for it by switching sufficiently slower later.

The concept of average dwell time from [38] serves this purpose. Denote the number

of switches in σ(·) in an interval (t, T ) by Nσ(t, T ). We say that σ has an average
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dwell-time τa, if there exist two positive numbers N0 and τa such that

Nσ(t, T ) ≤ N0 +
T − t

τa

(1.21)

The constant τa is called the average dwell-time, N0 the chatter bound and Sτa,N0 the

set of all switching signals that satisfies the average dwell-time condition. Average

dwell-time is less restrictive that the dwell-time condition. In fact, N0 = 1 in (1.21)

implies that σ cannot switch twice on any interval of length smaller than τa. Switching

signals with this property are exactly the switching signals with dwell time τa. In

general, if we discard the first N0 switches, then the average time between consecutive

switches is at least τa ≥ T−t
Nσ(t,T )−N0

. The constant N0 affects the overshoot bound for

Lyapunov stability but otherwise does not change stability properties of the switched

system [7,9].

In addition, it is possible to extend the results to the case where both stable and

unstable subsystems coexist. When one considers unstable dynamics, slow switching

(i.e., long enough dwell or average dwell time) is not sufficient for stability; it is also

required to make sure that the switched system does not spend too much time in the

unstable subsystems. The reason to consider unstable subsystems in switched systems

is because there are cases where switching to unstable subsystems becomes unavoidable;

e.g., when a failure occurs, or there are packet dropouts in communication. Sufficient

conditions for the stability of the switched systems with unstable modes have appeared

in [36]. Several other extensions and refinements on the dwell-time stability are also

appeared in the literature [9, 36, 37, 41–46]. However, these results are conservative as

they are based on MLFs which are sufficient conditions for stability. Necessary and

sufficient conditions for stability of switched systems under dwell-time switching and

procedures for computing minimal dwell-time need for stability are still lacking.
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1.3 Motivation

As discussed in the previous section, despite the extensive work in the field of switched

linear systems with time-dependent switching, there are some challenges that have not

been studied thoroughly. Some of these issues, to be discussed in the thesis, are as

follows:

(I1) Necessary and sufficient condition for stability of switched linear sys-

tems under dwell-time switching: While there has been much progress on

stability analysis of switched systems under arbitrary switching [12,15,16,32,33],

the work on dwell-time switching is much less. In literature, only sufficient sta-

bility conditions (based on MLFs) has been derived [36–38, 41, 44, 45, 47]. This

motivates Chapter 2, in which a necessary and sufficient condition for stability

under dwell-time switching is presented. The result is based on the polyhedral

Dwell-Time contractive sets that can be seen as the generalization of polyhedral

contractive sets appeared for arbitrary switching.

(I2) Computation of the minimal dwell-time needed for stability: Several

approaches for computation of dwell-time [36, 41, 42, 46] and/or relaxation of

the dwell-time needed for stability [38, 45, 47] are proposed in the literature.

However, they all provide an upper bound on the minimal dwell-time needed

for stability. Thus, a constructive procedure for computation of the τmin is still

lacking [11,48]. This problem is addressed in Chapter 2 by providing an algorithm

for the computation of the minimal dwell-time. In addition, relaxation of the

dwell-time requirement is discussed in Chapter 3, by imposing a dwell-time for

each mode of the system instead of one common dwell-time for all modes. A

constructive procedure for computation of mode-dependent dwell-times is also

discussed in this chapter.
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(I3) Effect of state and control constraints on switched systems: Most of

the real-world systems have physical constraints on states and/or control inputs.

When constraints are present, one major focus of research is the characterization

of invariant sets that are constraint admissible. A typical candidate for such

sets is the level-set of the corresponding Lyapunov functions that is inside the

constraint set [49]. While the level-sets of common Lyapunov functions used for

arbitrary switched systems are convex and well-defined, the level-sets of MLFs

have no clear structure. This motivates Chapters 2 and 4, which provide a new

characterization for constraint admissible Dwell-Time invariant sets. These sets

are constraint admissible at all times and invariant for every admissible switching

that satisfies the dwell-time consideration. The case of control constraints is also

covered in Chapter 5.

(I4) Effect of disturbance on dwell-time switched systems: Study of effect of

disturbance on dynamical systems is crucial as it defines the robustness of the

system with respect to the disturbances. This problem, which is only partially

addressed in [46,50,51], is quite challenging for dwell-time switched systems since

the effect of both exogenous disturbances and switching signals should be consid-

ered. Chapter 3 presents a complete characterization of robustly invariant sets

and provides algorithms for computation of maximal and minimal robust invari-

ant sets. These sets are important for obvious practical reasons. For example,

the minimal robust invariant set characterizes the asymptotic behavior of the

system due to the combined effect of switching and the exogenous disturbance

input; while the maximal robust invariant set is used to ensure the satisfaction

of physical state constraints, the violation of which can be detrimental in some

applications.
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1.4 Objectives and Scopes

The objective of this research is to develop tools for stability analysis and evaluation

of effect of disturbances on discrete-time switched linear systems under dwell-time

switching when they are subjected to constraints. The scope of the thesis will cover

the following issues:

• Necessary and sufficient conditions for stability of switched systems under dwell-

time switching.

• Algorithms for computation of the minimal common dwell-time needed for sta-

bility.

• Relaxation of the dwell-time requirement by imposing a dwell-time for each mode

of the system instead of one single dwell-time for all modes and a constructive

procedure for computation of a set of non-conservative (minimal under some

conditions) mode-dependent dwell-times.

• Characterization and computation of constraint admissible invariant sets for

dwell-time switched systems in the presence of constraints and disturbance in-

puts.

• Applying some of the above mentioned theoretical results, to the problem of

controlling the read/write head of a Hard Disk Drive (HDD) system and showcase

the performance improvement obtained using the proposed switching controller.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 includes the characterization

and computation of contractive sets for dwell-time switching systems. Based on this

characterization, a necessary and sufficient condition for asymptotic stability and a
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procedure for computation of the minimal dwell-time needed for asymptotic stability

is provided. The relaxation of dwell-time requirement is described in Chapter 3 by

introducing the mode-dependent dwell-times. Necessary and sufficient conditions for

stability under such conditions and a constructive procedure of computing the mini-

mal mode-dependent dwell-times are also discussed. Chapter 4 considers the charac-

terization of robust invariant sets (robustness with respect to disturbance inputs) for

dwell-time switching systems. Computation and convergence of the maximal and the

minimal robust invariant sets are also discussed in this chapter. Chapter 5 describes

the computation of domain of attraction of switched systems where the control input

is subjected to saturation nonlinearity. The results of previous chapters are applied

to the problem of controlling a HDD system in Chapter 6. A switching strategy with

controller initialization that improves the performance of HDD is also proposed in this

chapter. Finally, Chapter 7 summarizes the research contributions and describes the

possible future works.
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Chapter 2

Characterization and Computation

of Contractive Sets

This chapter introduces the concepts of Dwell-Time invariant/contractive (DT-invariant/

contractive) set and maximal constraint admissible DT-invariant set for discrete-time

switching systems under dwell-time switching. Main contributions of this chapter in-

clude a characterization of DT-invariant/contractive sets; a numerical algorithm for

the computation of the maximal constraint admissible DT-invariant set; a necessary

and sufficient condition for asymptotic stability of the switching systems under dwell

time switching and an algorithm for the computation of the minimal dwell-time needed

for asymptotic stability.

2.1 Introduction

This chapter considers the following constrained discrete-time switched linear system:

x(t + 1) = Aσ(t) x(t), (2.1a)

x(t) ∈ X, ∀t ∈ Z+ (2.1b)
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where x(t) ∈ Rn is the state variable and σ(t) : Z+ → IN := {1, · · · , N} is a time-

dependent switching signal that indicates the current active mode of the system among

N possible modes in A := {A1, · · · , AN}. The constraint set X ⊂ Rn models physical

state constraints imposed on the system, including those arising from the actuator via

some appropriate state feedback if (2.1) is seen as a feedback system.

2.2 Preliminaries

This section begins with a review of the definitions of switching time, dwell time and

admissible switching sequence/function. Suppose t0, t1, · · · , tk, · · · are the switching

instants of (2.1) with t0 = 0 and tk < tk+1. By definition, this means that σ(tk) ̸=

σ(tk+1) and σ(tk) = σ(tk + 1) = · · · = σ(tk+1 − 1) for all k ∈ Z+.

Definition 2.1 An admissible switching sequence of system (2.1), Sτ (t) = {σ(t −

1), · · · , σ(0)}, with switching instants t0, t1, · · · , tk, · · · has a dwell time of τ means

that tk+1 − tk ≥ τ for all k ∈ Z+. In addition, suppose tlast is the last switching time

for an admissible sequence Sτ (t), then t − tlast ≥ τ .

Remark 2.1 As defined, the dwell time condition corresponds to the minimal duration

of stay in each mode required of the system. The last condition in Definition 2.1 requires

further qualification. Suppose A = {A1, A2} and τ = 3 then S3(6) = {1, 1, 1, 2, 2, 2} is

an admissible sequence. However, S̄3(6) = {1, 1, 2, 2, 2, 2} is not an admissible sequence

because t − tlast < 3 and the dwell time consideration may be violated if σ(6) = 2. On

the other hand, if σ(6) = 1 means S̄3(6) is a truncated subsequence of an admissible

sequence. This is a key point that distinguishes systems under dwell time consideration

and under arbitrary switching. Following the same reasoning, Sτ (t) for t < τ is also

not meaningful.

Throughout this thesis, system (2.1) is assumed to satisfy the following assump-

tions:
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(A1) The spectral radius of each individual subsystem Ai, i ∈ IN is less than 1;

(A2) The constraint set X is a polytope represented by X = {x : Rx ≤ 1} for some

appropriate matrix R ∈ Rq×n;

(A3) (Ai, R) is observable for at least one Ai ∈ A;

(A4) A value of τ ≥ 1 has been identified such that the origin of the unconstrained

switched system (2.1) with dwell time τ is asymptotically stable.

Assumption (A1) defines the family of systems considered in this work and is

a reasonable requirement. The polyhedral assumption of (A2) is made to facilitate

numerical computations of the invariant set of (2.1). Assumption (A3) ensures the

compactness of the sets. It applies to only one i ∈ IN since the invariance is applicable

to all admissible sequences including one where σ(k) = i for all k ∈ Z+. Of course, if

(A3) is not satisfied, system (2.1) can be reformulated to consider only the observable

subsystem of Ai. Assumption (A4) follows from (A1) and poses minimal restriction as

procedure for obtaining dwell-time that satisfies this condition is well-known [36,42].

2.3 Main Results

This section begins with several definitions needed to precisely state the invariance

condition for system with dwell time consideration. For notational convenience, ASτ (t)

refers to the product Πt−1
r=0Aσ(r) associated with the admissible sequence Sτ (t) = {σ(t−

1), · · · , σ(0)}.

Definition 2.2 A set Ω ⊂ Rn is said to be DT-invariant (Dwell-Time invariant) with

respect to system (2.1a) with a dwell time τ if x ∈ Ω implies ASτ (t)x ∈ Ω for all

admissible switching sequences Sτ (t) and for all time t.

While stating the requirement of DT-invariance for system (2.1), the above defini-

tion is of limited practical usefulness since ASτ (t)x ∈ Ω has to be satisfied by an infinite
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number of admissible sequences for all time t. The next theorem shows how the infinite

sequences can be avoided.

Theorem 2.1 Suppose (A1) and (A4) are satisfied. A set Ω ⊂ Rn is DT-invariant

for system (2.1a) with dwell time τ if and only if for every x ∈ Ω,

At
i x ∈ Ω, for t = τ, τ + 1, · · · , 2τ − 1, ∀Ai ∈ A (2.2)

Proof:

(i) (⇒): The solution of (2.1) under an admissible switching function at time t is

x(t) = ASτ (t)x0 where

ASτ (t) = · · ·Akℓ
iℓ
· · ·Ak1

i1
Ak0

i0
(2.3)

for some appropriate switching sequence Sτ (t) = {iℓ, · · · , iℓ, iℓ−1, · · · , iℓ−1, · · · , i0} where

ij ∈ IN and kj := tj+1 − tj, j = 0, 1, · · · , ℓ being the corresponding duration times in

each mode. Due to the dwell time requirement, each kj ≥ τ . Without loss of generality,

consider any of the Ak
i on the right hand side of (2.3). This term can be decomposed

into a product of matrices involving Aτ
i and one matrix from {Aτ

i , A
τ+1
i , , · · · , A2τ−1

i }.

To see this, let q = ⌊k−τ
τ
⌋ with ⌊·⌋ being the floor function. Then,

Ak
i = (Aτ

i )
q Ak−qτ

i (2.4)

Here, the superscript k − qτ of the last term corresponds to the remainder of k − τ

when divided by τ and hence, assumes a value from {τ, τ + 1, · · · , 2τ − 1}. Consider

the rightmost term of (2.4). From (2.2), it follows that Ak0−q0τ
i0

x0 ∈ Ω for any x0 ∈ Ω.

Similarly, (Aτ
i0
)q0Ak0−q0τ

i0
x0 ∈ Ω from (2.2). Repeating this process for the rest of the

terms in (2.3) and for all admissible sequences completes the proof.

(ii) (⇐) Suppose there exists a t ∈ {τ, τ + 1, · · · 2τ − 1} and some Ai ∈ A such that Ω

is not invariant w.r.t. At
i. The sequence Sτ (t) := {i, i, · · · , i}, which is an admissible
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sequence, violates the DT-invariance of Ω.

An example that illustrates the proof is in order. Consider A = {A1, A2}, τ = 3

and x(27) = ASτ (27)x0 = A8
1A

9
2A

10
1 x0. Using the procedure described in the proof

above, x(27) = [A3
1A

5
1] [(A

3
2)

2A3
2] [(A

3
1)

2A4
1] x0. Since At

i x ∈ Ω for all t = 3, 4, 5 and for

i ∈ {1, 2}, it follows that ASτ (27)x0 ∈ Ω if x0 ∈ Ω.

An interesting and important connection can now be established between dwell

time stability and stability under arbitrary switching for system (2.1a). While not

needed for the rest of this section, this result is needed for the algorithm described in

Section 2.4.

Theorem 2.2 Consider an associated system of (2.1a) in the form

x̂(t + 1) = Âx̂(t), Â ∈ {Ar
i : for all i ∈ IN and r = τ, · · · , 2τ − 1} (2.5)

Then system (2.1a) is asymptotically stable with dwell time τ if and only if (2.5) is

asymptotically stable under arbitrary switching.

Proof: (i) (⇐) We show that asymptotic stability of (2.5) implies asymptotic

stability of (2.1a) with dwell time τ . It is well-known [15, 17] that (2.5) is asymptot-

ically stable iff a polyhedral contractive set exists w.r.t. (2.5). This implies (2.5) is

asymptotically stable iff a polyhedral set S and a λ ∈ (0, 1) exist such that Âx ∈ λS

for every x ∈ S and for every Â ∈ {Aτ
i , A

τ+1
i , ..., A2τ−1

i for all i ∈ IN}. Now consider an

admissible switching sequence of the form (2.3) and x(0) ∈ S, it follows that

x(t) = ASτ (t)x(0) =
(
Akn

sn
· · ·Ak1

s1
Ak0

s0

)
x(0) ∈ λk̄S (2.6)

where k̄ := ⌊k0/τ⌋ + ⌊k1/τ⌋ + · · · + ⌊kn/τ⌋. The rightmost condition of (2.6) follows

from the fact that all kj ≥ τ and that x(0) ∈ S implies At
i x(0) ∈ λS for all i ∈ IN and

for all τ ≤ t ≤ 2τ − 1. Since k̄ → ∞ as t → ∞, asymptotic stability of (2.1a) follows.
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(ii) (⇒) We show that asymptotic stability of (2.1a) implies asymptotic stability

of (2.5) with arbitrary switching. Proof of this part is by contradiction. Suppose that

(2.1a) is asymptotically stable but (2.5) is not. This means there exist an arbitrary

switching sequence w.r.t. (2.5) that is not converging to the origin. Clearly this

switching sequence is an admissible switching sequence that satisfies the dwell time

condition w.r.t. (2.1a) and hence it violates the asymptotic stability of (2.1a), which

is a contradiction.

A consequence of Theorem 2.2 is that properties related to the stability of system

(2.5) is also applicable to the stability of dwell-time switching systems.

Theorem 2.1 on DT-invariance for a set Ω requires that x(t) ∈ Ω for all t with

τ ≤ t ≤ 2τ − 1 but no mention is made of the x(t) ∈ X constraint stipulated in (2.1b).

The next definition imposes this latter requirement for all time instants.

Definition 2.3 A set Ω is said to be CADT-invariant (Constraint Admissible Dwell

Time-invariant) with respect to system (2.1) with dwell time τ if it is DT-invariant

and x(t) ∈ X for all t ∈ Z+.

Clearly, a necessary condition for constraint admissibility is that Ω ⊆ X, but this

is not sufficient. The following theorem states a necessary and sufficient condition for

CADT-invariance of a set.

Theorem 2.3 A DT-invariant set Ω ⊂ X is CADT-invariant for system (2.1) with

dwell time τ , if and only if for any x ∈ Ω,

At
i x ∈ X, for all i ∈ IN and for all t = 1, · · · , τ − 1. (2.7)

Proof: Consider the solution of switched system (2.1) under any admissible

switching sequence of the form (2.3) with x(0) ∈ Ω. Then, from DT-invariance of Ω

and proof of Theorem 2.1, it follows that x(t) ∈ Ω ⊂ X for all t ∈ [τ, 2τ − 1]. If in
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addition, x(t) ∈ X for t = 1, 2, · · · , τ − 1, it is inferred that x(t) = ASτ (t)x(0) ∈ X for

all time t ∈ Z+ and thus Ω is CADT-invariant. The necessity can be easily shown with

contradiction.

2.3.1 Computation of polyhedral CADT-invariant sets

The results of Theorems 2.1 and 2.3 can be used to compute the maximal CADT-

invariant set for (2.1). This set, denoted by O∞(A, X, τ), is the largest CADT-invariant

set inside X in the sense that x(t) = ASτ (t)x(0) ∈ O∞(A, X, τ) if x(0) ∈ O∞(A, X, τ)

for any admissible switching sequence Sτ (t). For this purpose, let

Q̂i(Ω) = {x : Ai x ∈ Ω}

denote the one time backward set of Ω under subsystem Ai, i ∈ IN . It corresponds to

the set of x that can be brought into Ω by system x(t + 1) = Ai x(t) in one time step.

Similarly, repeating the above ℓ times lead to

Q̂i
ℓ(Ω) = Q̂i · · · Q̂i(Ω) = {x : Aℓx ∈ Ω} (2.8)

and is referred to as the ℓ-step backward set of Ω with respect to mode i ∈ IN . For

notational simplicity let T = {τ, τ + 1, · · · , 2τ − 1} and define

Qi(Ω) :=
∩
ℓ∈T

Q̂i
ℓ(Ω) (2.9)

as the intersection of Q̂i
ℓ(Ω) over all ℓ = τ, τ + 1, · · · , 2τ − 1 for mode i. With this

definition, the algorithm for computing the O∞(A, X, τ) set using Theorems 2.1 and

2.3 is now given. Hereafter, the dependence of O∞(A, X, τ) on A, X, τ is dropped for

notational convenience unless needed.

Step (1) of Algorithm 1 imposes the constraints according to Theorem 2.3. Sim-

33



CHAPTER 2. CHARACTERIZATION AND COMPUTATION OF
CONTRACTIVE SETS

Algorithm 1 Computation of maximal CADT-invariant set

Input: A, X and τ .

1) Set k = 0 and let O0 := X
∩

i∈IN

{∩
ℓ=τ,··· ,τ−1 Q̂i

ℓ(X)
}
.

2) Compute Qi(Ok) for each mode i ∈ IN and let Ok+1 := Ok

∩
i∈IN

Qi(Ok).

3) If Ok+1 ≡ Ok set O∞ = Ok then stop, else set k = k + 1 and goto step (2).

ilarly, step (2) imposes the condition of Theorem 2.1. More exactly, each Qi(Ok) of

step (2) is
∩

ℓ∈T Q̂i
ℓ(Ok) of (2.9) and is the intersection for ℓ-step backward set of each

mode for ℓ = τ, · · · , 2τ − 1. By taking intersection of Qi(Ok) over all i ∈ IN , step

(2) captures all possible admissible sequences defined in Theorem 2.1. Obviously, the

O∞ obtained using the above algorithm depends on the choices of A, X and τ . For

notational convenience, such dependencies are not shown unless warranted.

Remark 2.2 When X = {x : Rx ≤ 1} is a non-empty polytope as given under (A2),

the associated computations of step (2) can be obtained noting that Q̂i(X) = {x :

RAi x ≤ 1}, Q̂i
ℓ(X) = {x : RAℓ

i x ≤ 1}.

While not stated in Algorithm 1, fewer computations result if redundant inequali-

ties are removed from Ok+1 at the end of step (2). Properties of the O∞ set obtained

from the Algorithm 1 are stated next.

Theorem 2.4 Suppose system (2.1) satisfies assumptions (A1)-(A4) and Ok is gen-

erated based on Algorithm 1. Then, (i) Ok ⊂ X and Ok ⊆ Ok−1 for all k. (ii)

O∞ := limk→∞ Ok ⊂ X exists, contains the origin and is finitely determined. (iii)

O∞ is the largest CADT-invariant set in the sense of Definition 2.3 and is the largest

constraint-admissible domain of attraction under admissible switching sequences. (iv)

When O∞ is the largest CADT-invariant set for system (2.1) with constraint set X,

βO∞ is the corresponding set for system (2.1a) with constraint βX for any β > 0.

Proof: (i) This result follows from step (2) of algorithm 1 that Ok ⊆ Ok−1

for all k. (ii) Suppose O0 := {x : R̄j x ≤ 1 for all j ∈ J }. When Ok is incremented
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to Ok+1 in step (2) of Algorithm 1, additional inequalities are added to Ok in the

form of Qt(Ok) for t = τ, · · · , 2τ − 1. For each Qt(Ok), a total of N new inequalities

are added. They are of the form R̄j At1
i1
At2

i2
· · ·Atk+1

ik+1
x ≤ 1, for some i1, · · · , ik ∈ IN ,

t1, · · · , tk+1 ∈ {τ, τ +1, · · · , 2τ −1} and for all ik+1 = 1, · · · , N , as discussed in Remark

2.2. This procedure of generating Ok captures all admissible sequences Sτ (t) in the

form of ASτ (t) = At1
i1
At2

i2
· · ·Atk

ik
such that t = t1 + t2 + · · · + tk and k = ⌊ t

τ
⌋. The main

part of the proof is to show that after some sufficiently large step k, all these added

inequalities are redundant to the Ok set.

It follows from Assumption (A4) that for every ϵ > 0, there exist a t̂ ∈ Z+ such

that
∥∥ASτ (t)

∥∥ < ϵ for all t ≥ t̂. Choose 0 < ϵ < min{ 1
∥x∥∥R̄j∥

: j ∈ J , x ∈ O0}. Then,

for all t1 + · · · + tk ≥ t̂ and every j ∈ J ,

R̄j(A
t1
i1
· · ·Atk

ik
)x = R̄jASτ (t)x ≤ max

ξ∈B(∥x∥)
R̄jASτ (t)ξ = max

ζ∈B(∥ASτ (t)x∥)
R̄j ζ

< max
ζ∈B(ϵ∥x∥)

R̄j ζ = max
ζ̄∈B(∥x∥)

ϵ R̄j ζ̄ = ϵ ∥x∥ ∥R̄j∥ < 1

where the last inequality follows from the choice of ϵ. Hence all inequalities added

after t̂-th iteration of algorithm 1 are redundant to the set Ot̂−1 and this shows finite

termination of Ok. The result of 0 ∈ O∞ follows from 0 ∈ O0 and 0 ∈ Qt(Ok) for all

t ∈ {τ, τ + 1, · · · , 2τ − 1}. (iii) When algorithm 1 terminates at some integer k∗, it

is inferred that Ok∗ = Ok∗+1. This and step (2) of the algorithm implies that Ok∗ is

t-invariant for all τ ≤ t ≤ 2τ − 1 w.r.t all Ai ∈ A and hence Ok∗ is DT-invariant. Step

(1) of algorithm 1 implies that Ok∗ is constraint admissible for all of the first τ − 1

steps. This and DT-invariance of Ok∗ implies Ok∗ is CADT-invariance. The proof of

O∞ being maximal is by contradiction. Suppose O∞ is not maximal, therefore there

exist a CADT-invariant set O∗ ⊆ X such that O∗ * O∞. Since O∗ must be constraint

admissible for any switching sequence that is less than τ , O∗ ⊂ O0. Let x ∈ O∗. As

O∗ is CADT-invariant, At
i x ∈ O∗ ⊂ O0 for all t = τ, · · · , 2τ − 1 and for all i ∈ IN .
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This implies that x ∈ Qt(O0) for all τ ≤ t ≤ 2τ − 1, or, x ∈ O1. Hence, O∗ ⊆ O1.

Repeating the above argument shows that O∗ ⊆ Ok for all k and O∗ ⊆ limk→∞ Ok =

O∞ which violates O∗ * O∞. That O∞ is the largest domain of attraction follows from

it being a CADT-invariant and assumption (A4). (v) Since Q̂ℓ(βΩ, Ai) = βQ̂ℓ(Ω, Ai),

it follows that Qℓ(βΩ) =
∩

i Q̂ℓ(βΩ, Ai) =
∩

i βQ̂ℓ(Ω, Ai) = βQℓ(Ω). Using this result

in algorithm 1 yields O∞(βX) = βO∞(X).

Remark 2.3 It is important to highlight the precise meaning of result (iii) of the pre-

ceding Theorem. As mentioned in Remark 2.1 and Definition 2.1, a sequence that

violates the t − tlast ≥ τ condition is not admissible, yet it may be a truncated sub-

sequence of an admissible sequence. As Algorithm 1 is for system (2.1) under all

admissible sequences, the presence of such inadmissible sequences results in O∞ being

CADT-invariant and not positive invariant in the conventional sense. This means that

x(0) ∈ O∞ implies x(τ) ∈ O∞ and x(t) ∈ X for all t. There is no requirement that

x(t) ∈ O∞ when t = 1, · · · , τ − 1. A set with such property is also known as a con-

straint admissible returnable set. Figure 2.1 shows the O∞ set based on an example

with X = {x ∈ R2 : ||x||∞ ≤ 1}, IN = {1, 2}, A1 =
0.7 1

0 0.2

, A2 =
0.8 0

0.4 0.6

 and τ = 2.

Trajectories under admissible sequences of two initial states (±(0.846,0.408)) within

O∞ are shown. Clearly, x(1) /∈ O∞ but x(2) is.
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Figure 2.1: Maximal CADT set with sample trajectories from x(0) = ±(0.846, 0.408)
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2.3.2 Computation of piece-wise quadratic CADT-invariant

sets

The results of Theorems 2.1 and 2.3 can also be extended to obtain a CADT-invariant

set defined by the intersection of ellipsoidal sets. The next theorem shows the basic

results needed.

Theorem 2.5 Suppose system (2.1) satisfies assumptions (A1)-(A4) with dwell time

τ . If there exist Pi ≻ 0 for i = 1, · · · , N such that

(
Ak

i

)⊤
Pjk

(
Ak

i

)
− Pik ≺ 0, ∀(i, j) ∈ IN × IN , ∀k ∈ {τ, τ + 1, · · · , 2τ − 1} (2.10)

Then, (i) Ψ :=
∩

i∈IN ,k∈T E(Pik) where E(P ) = {x : x⊤Px ≤ 1} is a DT-invariant set

for system (2.1). (ii) Let O0 := X
∩

i∈IN ,ℓ=τ,··· ,τ−1 Q̂i
ℓ(X). There exists an ᾱ > 0, such

that αΨ is CADT-invariant for all α ≤ ᾱ.

Proof: (i) For a positive definite P ≻ 0, define ∥x∥P := {x : x⊤Px ≤ 1} and let

x ∈ Ψ. By (2.10) and the fact that Pik ≻ 0, it follows that ∥Ak
i x∥2

Pjk
< ∥x∥2

Pik
≤ 1 for

all (i, j) ∈ IN × IN and for all k ∈ T. This means that Ak
i x ∈ Ψ, for all i ∈ IN and

for all k ∈ T, which shows the DT-invariance of Ψ. (ii) Suppose O0 is represented as a

polyhedral of the form O0 := {x : a⊤
j x ≤ 1 for all j ∈ J }. Consider the optimization

problem αj := maxx,γ{γ : x⊤Pik x ≤ γ2, a⊤
j x ≤ 1} for the jth inequality of O0. The

solution of this problem can be shown to be (a⊤
j P−1

ik aj)
−0.5. Hence, αjΨ is the largest

scaled Ψ set that is contained in the half-space of {x : a⊤
j x ≤ 1}. Repeating this

procedure over all inequalities of O0 yields ᾱΨ being the largest scaled Ψ set within

O0. This, together with definition of O0, show that ᾱΨ is CADT-invariance. That αΨ

is also CADT-invariance for any α < ᾱ follows from αΨ ⊆ ᾱΨ ⊆ O0.

Part (i) of the above theorem can be seen as the equivalence of Theorem 2.1 but

with Ω replaced by Ψ. Like Theorem 2.1, part (i) does not impose the x(t) ∈ X

37



CHAPTER 2. CHARACTERIZATION AND COMPUTATION OF
CONTRACTIVE SETS

condition. Instead, constraint satisfaction is imposes via the O0 set in a similar fashion

as Theorem 2.3 and step (1) of Algorithm 1. Closed-form expression of ᾱ also exists

under (A2). More exactly, when O0 is expressed as O0 := {x : a⊤
j x ≤ 1 for all j ∈ J }

for some appropriate row vectors aj, j ∈ J , the value of ᾱ of ᾱΨ is obtained by finding

the largest α such that αE(Pik) ⊆ O0 for all i ∈ IN and for all k ∈ T. This is done by

considering the largest αE(Pik) contained in each half space {x : a⊤
j x ≤ 1}. In addition,

it is easy to show that αj =
√(

a⊤
j P−1

ik aj

)−1
:= maxα,y{α : y⊤Pik y ≤ α2, a⊤

j y ≤ 1} and

ᾱ can be determined. Figure 2.2 shows the corresponding ᾱΨ set for the same problem

given in Remark 2.3. Clearly, ᾱΨ ⊂ O∞ since O∞ is the largest DT-invariant set.
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Figure 2.2: Comparison of maximal polyhedral and piece-wise quadratic CADT-
invariant sets.

2.4 Computation of the minimal dwell time

An algorithm that finds the minimal dwell time which ensures stability of the origin

of system (2.1) can be obtained based on Algorithm 1. This is motivated by the

observation that an empty O∞ set results if the τ used in Algorithm 1 does not satisfy

(A4). Since τ is a scalar, a bisection search with Algorithm 1 as a sub-routine, can

be used to find the minimal τ needed for stability. Such an approach, however, suffers
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from two drawbacks.

• (I1) The implication of violation of assumption (A4): when a given τ is not known

a priori to satisfy (A4), there is no guarantee that the origin is asymptotically

stable even when Algorithm 1 terminates successfully. Only Lyapunov stability

can be ascertained.

• (I2) The implication of the characterization of the O∞ set in Algorithm 1. If

Algorithm 1 fails for a given τ when O∞ is polyhedral, does there exists a different

characterization of O∞ (quadratic, piece-wise quadratic or otherwise) for which

the origin is asymptotically stable?

These issues are now addressed. As assumption (A4) no longer holds in this sec-

tion, a new definition is needed, which is motivated from the definition of standard

contractive sets [17].

Definition 2.4 A set Ω ⊂ Rn containing the origin is said to be DT-contractive (with

contraction λ) w.r.t. (2.1), if there exists a λ ∈ (0, 1) such that x ∈ Ω implies ASτ (t)x ∈

λΩ for all admissible switching sequences Sτ (t) and for all time t.

Again, the above definition is of limited applicability since all admissible sequences

are needed. The adaption of DT-contractive set to a result similar to Theorem 2.1 is

therefore desirable and can be easily achieved.

Corollary 2.1 A non-empty set Ω ⊂ Rn is DT-contractive, with contraction λ ∈

(0, 1), if and only if At
i Ω ⊆ λΩ for all i ∈ IN and for all τ ≤ t ≤ 2τ − 1.

With this, a necessary and sufficient condition for stability of (2.1) with dwell time τ ,

is now given.

Theorem 2.6 Suppose (A1)-(A3) are satisfied. The origin of system (2.1) is asymp-

totically stable under admissible switching with dwell time τ if and only if system (2.1)

admits a polyhedral DT-contractive set, that contains the origin, for some λ ∈ (0, 1).
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Proof: (⇐) Suppose a polyhedral DT-contractive set, S, with contractive factor

λ ∈ (0, 1) exists for system (2.1a). Consider an admissible switching sequence of the

form (2.3) and x(0) ∈ S, it follows that

x(t) = ASτ (t)x(0) =
(
Akn

sn
· · ·Ak1

s1
Ak0

s0

)
x(0) ∈ λk̄S (2.11)

where k̄ := ⌊k0/τ⌋ + ⌊k1/τ⌋ + · · · + ⌊kn/τ⌋. The rightmost condition of (2.11) follows

from the fact that all kj ≥ τ and that x(0) ∈ S implies At
i x(0) ∈ λS for all i ∈ IN

and for all τ ≤ t ≤ 2τ − 1. Since k̄ → ∞ as t → ∞, the asymptotic stability of system

(2.1a) follows.

(⇒) In view of theorem 2.2, the origin of (2.1) is asymptotically stable under dwell

time switching iff (2.5) is asymptotically stable under arbitrary switching. In addition,

(2.5) is asymptotically stable iff there exist a polyhedral contractive set w.r.t. (2.5)

[15,17]. This implies that (2.5) is asymptotically stable iff there exist a λ ∈ (0, 1) and a

polyhedral set S such that ÂS ⊆ λS for every Â ∈ {Aτ
i , A

τ+1
i , ..., A2τ−1

i for all i ∈ IN}.

This implies, from definition 2.4, that S is DT-contractive w.r.t. (2.1) and the result

follows.

A polyhedral DT-contractive set can be computed by a slight modification to Al-

gorithm 1 by incorporating a choice of λ ∈ (0, 1). Computation of polyhedral CADT-

contractive set is described in Algorithm 1a.

Algorithm 1a Computation of polyhedral CADT-contractive set

Input: A, X, λ and τ .

1) Set k = 0 and let Oλ
0 := X

∩
i∈IN ,ℓ=τ,··· ,τ−1 Q̂i

ℓ(X).

2) Compute Qi(λOλ
k) for each i ∈ IN and let Oλ

k+1 := Oλ
k

∩
i∈IN

Qi(λOλ
k).

3) If Oλ
k+1 ≡ Oλ

k set Oλ
∞ = Oλ

k then stop, else set k = k + 1 and goto step (2).

It is worthy to note that step (1) above ensures constraint satisfaction according

to Theorem 2.3 and, hence, does not require the consideration of λ.
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Theorem 2.7 Suppose the origin of system (2.1) is asymptotically stable under dwell

time switching with dwell time τ . Algorithm 1a with dwell time τ yields a non-empty

Oλ̄
∞ for some λ̄ ∈ (0, 1). In addition, Algorithm 1a with dwell time τ will yield a

non-empty Oλ
∞ for any λ ∈ [λ̄, 1].

Proof: From the result of Theorem 2.6, asymptotic stability of (2.1) implies

the existence of a polyhedral DT-contractive set, S, which contains the origin and a

λ̄ ∈ (0, 1) such that At
iS ⊆ λ̄S for all i ∈ IN and for all t = τ, τ + 1, · · · , 2τ − 1. Let

∥ · ∥S be the norm induced by S. DT-contractivity of S implies that

∥At
i∥S < λ̄ < 1, for all i ∈ IN and for all t = τ, τ + 1, · · · , 2τ − 1 (2.12)

The rest of the proof follows similar development as in Theorem 2.4 and hence will be

brief. Suppose Algorithm 1a is invoked with some λ < λ̄ and let Oλ
0 := {x : R̃j x ≤

1 for all j ∈ J }. Additional inequalities are added to Oλ
k , when Oλ

k is incremented

to Oλ
k+1 in step (2) of Algorithm 1a. These additional inequalities are of the form

R̃j At1
i1
At2

i2
· · ·Atk+1

ik+1
x ≤ λk+1, where i1, i2, · · · , ik+1 ∈ IN and t1, t2, · · · , tk+1 ∈ T. For

each added inequalities at the k-th iteration of algorithm 1a, for some positive real

numbers δ1 and δ2, we have

R̃j(A
t1
i1
· · ·Atk

ik
)x = R̃jASτ (t)x ≤ max

ξ∈B(∥ASτ (t)x∥)
R̃j ξ ≤ max

ζ∈B(∥ASτ (t)x∥S)
δ1R̃j ζ

< max
ζ∈B(λ̄k∥x∥S)

δ1R̃j ζ = max
ζ̄∈B(∥x∥S)

λ̄k δ1R̃j ζ̄

≤ max
ξ̄∈B(∥x∥)

λ̄k δ1δ2 R̃j ξ̄ ≤ λ̄k δ1δ2 ∥x∥ ∥R̃j∥

< λk

The last inequality holds for a sufficiently large k due to the fact that λ < λ̄. This

means that for some sufficiently large k, all new inequalities are redundant to Oλ
k−1 and

the iteration converges, yielding Oλ
∞. That the above argument holds for all λ ∈ (λ̄, 1]

41



CHAPTER 2. CHARACTERIZATION AND COMPUTATION OF
CONTRACTIVE SETS

completes the proof.

Together, Theorems 2.6 and 2.7 address issues (I1) and (I2). Successful termination

of Algorithm 1a means that x(t) → 0 for any x(0) ∈ Oλ
∞ and hence issue (I1) is resolved.

While the use of a polyhedral set is both necessary and sufficient for determining the

asymptotic stability by Theorem 2.6, Theorem 2.7 also shows that there is a range of

λ, [λ̄, 1), that is admissible for Algorithm 1a. In practice, it is prudent to chose λ close

to 1, say λ = 0.999.

With the above observations, the next algorithm outlines the steps for finding the

minimal dwell-time needed for stability. It is based on a bisection search on τ starting

with an initial τ0 that satisfies (A4).

Algorithm 2 Computation of minimum dwell time
Input: A, X, τ0

Initialization: Let τ = τ0 and τ = 1.
while τ > τ + 1

1) Let τ = ⌊(τ + τ)/2⌋ and invoke Algorithm 1 using A, X and τ .

2) If O∞ = ∅, then τ = τ , else τ = τ .

end while

Let τ̄ := τ .

3) Invoke Algorithm 1a using A, X, τ̄ and λ = 0.999.

4) If Oλ
∞ ̸= ∅, then τmin = τ̄ and terminate, else τ̄ = τ̄ + 1. Goto step (3)

The “while” loop in Algorithm 2 compute O∞ based on Algorithm 1. Following

the discussion of (I1) above, the second part of algorithm 2 is needed to ensure that

all x ∈ O∞ converges to the origin. Clearly, if only DT-invariance is needed but not

asymptotic stability of the origin, this second part can be omitted.

Remark 2.4 The Oλ
∞ obtained from Algorithm 1a can be interpreted as a “generalized”

Lyapunov function for switching system (2.1). Since Oλ
∞ is a polytope and contains

the origin, it induces a norm ∥x∥Oλ
∞

:= min{µ ≥ 0 : x ∈ µOλ
∞} (or the Minkowski
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distance function of Oλ
∞). Let V (x(t)) := ∥x(t)∥Oλ

∞
. Unlike conventional Lyapunov

functions, V (x(t)) does not decreases at every step, but decreases at every τ time steps

or at every switching instant. Contractivity of Oλ
∞ ensures that V (x(tk+1)) ≤ λV (x(tk))

where tk and tk+1 are consecutive switching instants. Hence, the sequence of V (x(tk))

with respect to index k is a decreasing sequence that converges to zero. This also means

that V (t) may increase in between switching instants, see example in Section 2.5.

Remark 2.5 (Systems with parametric uncertainty)

Consider the switched system with parametric uncertainty where Ai matrices are un-

certain and represented in the form of

Ai ∈ co{Āi,1, Āi,2, · · · , Āi,Mi
} for each i ∈ IN .

Accordingly, the robust 1 backward sets are defined as

Q̂i(Ω) = {x : Ai x ∈ Ω} =
{
x : Āi,r x ∈ Ω,∀r ∈ {1, · · · ,Mi}

}
=

Mi∩
r=1

{
x : Āi,r x ∈ Ω

}
Q̂i

ℓ(Ω) = Q̂i · · · Q̂i(Ω)

With this modification, Algorithm 1 or 1a can be used for computation of polyhedral

CADT-invariant/contractive sets of switched systems with parametric uncertainty. Re-

sults of Theorem 2.4, 2.6 and 2.7 are also valid for uncertain switched systems.

2.5 Numerical Examples

The numerical example is on a switching system with A = {A1, A2}, A1 =
 1 0.1

−0.2 0.9

,
A2 =

 1 0.1

−0.9 0.9

 with state constraints X = {x ∈ R2 : ||x||∞ ≤ 1}. The intention is to

determine the minimum dwell time and the maximal constraint admissible domain of

attraction under dwell time switching for this system. It is worthy to note that existing

1The robustness considered here is with respect to parametric uncertainty.
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techniques [12, 24] meant for systems under arbitrary switching is not applicable for

this example.
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(a) State trajectory in x1 − x2 space; x(0) = (0.1124, 0.8929)
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∞

Figure 2.3: Illustration of CADT-contractive set Oλ
∞ for τmin = 15.

Using the approach of [36], an upper bound on τmin, τZ := 233 is obtained for this

example. Using the piece-wise quadratic Lyapunov function of Theorem 2.5 discussed

in Section 2.3, it is observed that the smallest τ for which (2.10) admits a solution is

at τLMI := 16. Algorithm 2, however, yields a minimum dwell time of τmin = 15. This

is due to the fact that the conditions in the literature are all sufficient conditions for
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stability. Figure 2.3(a) shows the Oλ
∞ (with λ = 0.999) set and a state trajectory under

a periodic switching sequence where tsk+1
− tsk

= 15 for all k and σ(0) = 1. That the

state moves out of Oλ
∞ is clear but it comes back in no more than 15 steps. Moreover,

x(t) ∈ X at all times. The “generalized” Lyapunov function of V (x(t)) = ∥x(t)∥Oλ
∞

for

this trajectory is shown in Figure 2.3(b). Again, V (t) is not monotonically decreasing

with respect to t but is monotonically decreasing with k and V (t) → 0 as t → ∞.

The example above shows that there is a significant improvement on stability

conditions in terms of dwell time calculations when compared to the results available

in the literature to date; see [36]. Moreover, constraint admissible domain of attraction

of dwell time switching systems is obtained, which is appeared to be the first of its

kind.

2.6 Summary

Definitions and characterization of DT-contractive and CADT-contractive sets for

discrete-time switched systems under dwell-time switching are given in this chapter.

It is shown that existence of a polyhedral DT-contractive set is both necessary and

sufficient for asymptotic stability of switched systems under dwell-time switching. A

numerical algorithm for computation of the maximal CADT-invariant/contractive set

is also provided. Using this algorithm as a sub-algorithm, a procedure for the com-

putations of the minimal dwell time needed for stability of the switched system is

obtained.
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Chapter 3

Computations of Mode Dependent

Dwell Times

3.1 Introduction

The same switched system considered in last chapter is considered here:

x(t + 1) = Aσ(t) x(t), (3.1a)

x(t) ∈ X, ∀t ∈ Z+ (3.1b)

where σ(t) : Z+ → IN := {1, · · · , N} is a time-dependent switching signal and X ⊂ Rn

is the constraint set.

Results of Chapter 2 provide necessary and sufficient conditions for asymptotic

stability of (3.1) and algorithms for determination of the minimal dwell time. As men-

tioned in Chapter 1, several relaxations to the dwell-time approach have also appeared.

One is the use of average dwell-time [52] instead of strict dwell-time requirement at

each switching instant. However, average dwell-time requirement may result in the

state moving far away from the origin and violating physical constraints. Such a be-

havior is not likely to happen under strict dwell-time requirement so long as the initial
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state is within reasonable bound from the origin. Another relaxation is to impose a

dwell-time for each mode of the system instead of one single dwell time for all modes

of the system [45,47].

This chapter is concerned with the determination of the mode-dependent dwell

times and is an extension of the work presented in Chapter 2. Algorithms presented

in Chapter 2, together with several other results introduced hereafter, are used to

compute the mode-dependent dwell times for (3.1).

3.2 Preliminaries

The assumptions on the problem data are the same as those appeared in Chapter 2.

Also recall that a set Ω ⊂ Rn is DT-contractive for system (3.1a) with dwell time τ , if

and only if there exists a λ ∈ (0, 1) such that for every x ∈ Ω,

At
i x ∈ λΩ for all t ∈ T = {τ, τ + 1, · · · , 2τ − 1} and for all i ∈ IN . (3.2)

This result was used in Algorithm 1a to compute the maximal constraint admissible

DT-contractive set, Oλ
∞, of system (3.1) for a particular choice of λ ∈ (0, 1). The input

to the algorithm were A := {A1, · · · , AN}, X, λ and τ while the output of the algorithm

was Oλ
∞. When Oλ

∞ ̸= ∅, then the given τ is known to be equal or greater than the

minimal dwell time, τmin, for stability. On the other hand, Oλ
∞ = ∅ implies that

τ < τmin. With this fact, the bisection Algorithm 2 on variable τ was used to compute

τmin.

3.3 Main Results

This section and hereafter consider the case where one dwell time is associated with each

mode of system (3.1a). Let these dwell times be collective denoted by Γ := {τ1, · · · , τN}
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with τi being the dwell time for mode i. In addition, τc is the common dwell time when

all the dwell times are the same. Clearly, an admissible switching sequence, SΓ(t), with

switching instants t0, t1, · · · , tk, · · · means that tk+1 − tk ≥ τi when σ(tk) = i for all

k ∈ Z+. Similarly, let

Ti := {τi, τi + 1, · · · , 2τi − 1} for any i ∈ IN , and (3.3)

TΓ := ∪i∈IN
Ti. (3.4)

Theorem 3.1 Suppose (A1) is satisfied with Γ and TΓ as defined above. A set Ω ⊂ Rn

is DT-contractive with contraction factor λ ∈ (0, 1) for system (3.1a) with dwell times

Γ, if and only if for every x ∈ Ω,

At
i x ∈ λΩ for all t ∈ Ti and for all i ∈ IN . (3.5)

This result is a direct extension of Theorem 2.1 and its proof follows similar argu-

ments. The key to the application of Theorem 3.1 lies in the computation of the set

Ω. Algorithm 1a computes the maximal constraint admissible DT-contractive set for

the case of a single dwell time for system (3.1). That algorithm is extended here for

the case where there are mode-dependent dwell times. Let Q̂i(Ω) := {x : Aix ∈ Ω} be

the set of x that can be brought into Ω by system Ai in one time step. Repeating the

above ℓ times lead to Q̂i
ℓ(Ω) = Q̂i · · · Q̂i(Ω) = {x : Aℓ

ix ∈ Ω} and is referred to as the

ℓ-step backward set of Ω under system Ai. Define

Qi(Ω) :=
∩
ℓ∈Ti

Q̂i
ℓ(Ω) (3.6)

as the intersection of Q̂i
ℓ(Ω) for ℓ = τi, · · · , 2τi − 1 for Ai. With this definition, the

algorithm for computing the DT-contractive set for a particular choice of λ ∈ (0, 1),

denoted by Oλ
∞, is now given.
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Algorithm 3 Computation of polyhedral DT-contractive set with Mode dependent
dwell times
Input: IN , Γ, X and λ.
Output: Oλ

∞.

(i) Set k = 0 and let Oλ
0 := X.

(ii) Compute Qi(λOλ
k) for every i ∈ IN and let Oλ

k+1 := Oλ
k

∩
i∈IN

Qi(λOλ
k).

(iii) If Oλ
k+1 ≡ Oλ

k set Oλ
∞ = Oλ

k then stop, else set k = k + 1 and goto step (ii).

Step (ii) imposes the condition of Theorem 3.1 with Qi(Ω) = ∩ℓ∈Ti
Q̂i

ℓ(Ω) as given

by (3.6). For mode i, the Q operator is applied for τi, · · · , 2τi − 1 to obtain the set

Qi(Ω) such that points starting from it will return to λQi(Ω) after τi to 2τi − 1 steps.

Obviously, the Oλ
∞ obtained using the above algorithm depends on the choices of A,

X, λ and τ . For notational convenience, such dependencies are not shown unless

warranted.

Remark 3.1 In the subsequent reference to Algorithm 1, the input variables, X and λ

will not be mentioned unless warranted. The X set is defined by (3.1b) and λ := 1 − ϵ

for some small ϵ > 0 in our numerical experiments involving Algorithm 1.

Remark 3.2 If a constraint admissible DT-contractive set is needed instead of DT-

contractive, step (i) of Algorithm 1 can be replaced by Oλ
0 := X∩i∈IN ,ℓ=1,2,··· ,τi−1 Q̂i

ℓ(X).

Algorithm 1 uses DT-contractive set for the purpose of determining stability of (3.1a)

under dwell time switching, as indicated in Theorem 2.2.

The following result provides a necessary and sufficient condition for asymptotic

stability of (3.1). The proof follows similar reasoning given in Chapter 2 and is therefore

omitted.

Theorem 3.2 Suppose (A1)-(A3) are satisfied with Γ as defined above. System (3.1)

is asymptotically stable under Γ if and only if Algorithm 1 yields a non-empty DT-

contractive set with a contraction factor λ ∈ (0, 1).

49



CHAPTER 3. COMPUTATIONS OF MODE DEPENDENT DWELL TIMES

Using the procedure given in Algorithm 2, a minimal common dwell time, τc, for

system (3.1a) can be computed. This choice of τc is both necessary and sufficient for

stability of (3.1a) under any admissible dwell-time switching sequence that satisfy the

common dwell time requirement. In addition, an associated non-empty set Ωc and a

λc ∈ (0, 1) are available such that Ωc is DT-contractive.

Given this setting, the procedure hereafter describes a procedure that determines

Γ with an associated DT-contractive set Ω in the sense of Theorem 3.1. Clearly, the

trivial choice of τ1 = · · · = τN = τc is admissible. Hence, a more meaningful search is

to restrict Γ to the set

Υc := {Γ : τi ≤ τc for all i ∈ IN}. (3.7)

The above definition on Υc is useful to define the meaning of optimal dwell time.

Definition 3.1 Given system (3.1a) and an optimal common dwell time τc such that

Υc is defined by (3.7). The system has an optimal mode-dependent dwell time Γ ∈ Υ

if Γ is a stabilizing dwell time having the smallest value of
∑N

i=1 τi.

Several useful lemmas are first stated to facilitate the approach towards searching

for the stabilizing mode-dependent dwell time.

Lemma 3.1 Suppose Γa = {τ1, · · · , τk, · · · , τN} is a stabilizing dwell time for system

(3.1a), so is Γb = {τ1, · · · , τk + 1, · · · , τN}.

Proof: Consider the case when i = k, Theorem 3.2 implies that there exists an

Ω such that At
k x ∈ λΩ for all t ∈ {τk, · · · , 2τk − 1}. This also implies that A2τk

k x ∈

λΩ and A2τk+1
k x ∈ λΩ for any x ∈ Ω since A2τk

k x = Aτk
k Aτk

k x ∈ λ2Ω ⊂ λΩ and

A2τk+1
k x = Aτk

k Aτk+1
k x ∈ λΩ. These two inclusions imply that At

k x ∈ λΩ for all

t ∈ {τk + 1, · · · , 2τk − 1, 2τk, 2τk + 1} which proves the assertion.
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Corollary 3.1 From Lemma 3.1, it follows that any Γ̂ = {τ̂1, · · · , τ̂N} such that τ̂i ≥ τi

for all i ∈ IN is a stabilizing mode-dependent dwell time if Γ = {τ1, · · · , τN} is one.

Lemma 3.2 Suppose a common minimal dwell time τc is known for system (3.1a) and

Υc is that defined by (3.7). Let Γ ⊂ Υc be a stabilizing dwell time such that system

(3.1a) is stable. Then, at least one τi ∈ Γ is equal to τc.

Proof: Suppose the assertion is not true. This means that there exists a

Γ̂ = {τ̂1, · · · , τ̂N} with τ̂i < τc for all i ∈ IN such that system (3.1a) is stable un-

der dwell time switching. Let τ̂max = maxi∈IN
τ̂i. By Corollary 3.1, it follows that

{τ̂max, · · · , τ̂max} is a stabilizing mode-dependent dwell time. Since τ̂max < τc, this

contradicts τc being the minimal common dwell time.

This search of a stabilizing dwell time is facilitated by a bisection algorithm with

Algorithm 1 as a subalgorithm and Lemma 3.2. The bisection search algorithm is

now described. Besides standard inputs of Algorithm 1, it requires Γ and Γ to be

non-stabilizing and stabilizing dwell times respectively.

Algorithm 4 Bisection Algorithm for mode-dependent dwell-times

Input: I, {Ai : i ∈ I}, X , λ, Γ, and Γ.
Output: A stabilizing dwell time Γ.

(i) Let Γ = ⌊Γ+Γ
2
⌋ (implemented elementwise). If Γ = Γ, set Γ = Γ and terminate.

(ii) Invoke Algorithm 1 with inputs I and Γ.

(iii) If Oλ
∞ = ∅, set Γ = Γ. Otherwise, set Γ = Γ. Goto step (i).

The results of Lemma 3.2 and the bisection algorithm is used for the search of sta-

bilizing mode-dependent dwell times. The basic idea is first described in the exemplary

case of a two-mode system.
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3.3.1 System with two modes

Given system (3.1a) with IN = {1, 2} and the common minimal dwell time, τc, for this

system. Let Γ = {τc, 0} and Γ = {τc, τc}. Invoke the bisection algorithm using Γ, Γ,

I = IN , A = {A1, A2} and X . Let the solution to be Γ1. Repeat the above but with

Γ = {0, τc} and Γ = {τc, τc} and let the solution be Γ2. The optimal dwell time is one

with the smallest total dwell time and is given by min{τ1 + τ2|(τ1, τ2) ∈ Γi, i = 1, 2}.

The setting of Γ = {τc, 0} (or Γ = {0, τc}) in the above is a notation to denote that

Γ is an inadmissible set for the proper working of the bisection Algorithm (note that

step (i) sets Γ = ⌊Γ+Γ
2
⌋ elementwise). It should not be interpreted as one of the two

modes is dropped from consideration. Also, see Remark 3.5 in the event that Γ1 ̸= Γ2

but having the same value of τ1 + τ2.

Lemma 3.3 The mode-dependent dwell time obtained using the above procedure is

optimal (in the sense of Definition 3.1) for system (3.1a) with IN = {1, 2}.

Proof: The result is based on the fact that Algorithm 1 is both necessary and

sufficient for Γ being a stabilizing dwell time, the result of Lemma 3.2 and that τ1 + τ2

is the smaller of Γ1 and Γ2.

3.3.2 System with more than two modes

In the general case where N > 2, two procedures are needed prior to the computation

of the dwell times. The first is the common dwell time, τc, for the N -mode system.

The second is the dwell times of all K-mode combinations for K = 2, 3, · · · , N − 1.

These dwell times for the K-mode system are generated incrementally starting from

K = 2, one step at a time. For every value of K, there are CN
K := N !

K!(N−K)!
distinct

choices to pick K modes from the N -mode system. Let the collection of these distinct
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CN
K index sets and a specific choice of one of these sets be denoted respectively by

CK : = {I = {i1, · · · , iK} : ij < ij+1 j ∈ ZK−1
1 and ij ∈ IN ∀j ∈ ZK

1 }, (3.8)

ΓI : = {τi1 , · · · , τiK} for some I ∈ CK . (3.9)

Suppose ΓJ for all J ∈ CK are known. Without loss of generality, these J are

denoted respectively as J1, · · · ,Jr where r = CN
K . Let I ∈ CK+1 be a specific choice

of the (K +1)-mode system and Γc = {τc, · · · , τc} where τc is the single common dwell

time for the (K + 1)-mode system corresponding to I. Note that |I| = K + 1 while

|Jℓ| = K for all ℓ = 1, · · · , r. The procedure that computes the ΓI is now described.

Algorithm 5 Computation of ΓI

Input: {ΓJ : J = J1, · · · ,Jr}, τc, Γc = {τc, · · · , τc} and I = {i1, · · · , iK+1}.
Output: A stabilizing dwell time ΓI for the corresponding (K + 1)-mode system.

(0) Set j = 1.

(i) Let Ij = I\ij and let J ∗ denote the J index set that has the same elements as Ij.

(ii) Let ΓI+ = {τi1 , · · · , τiK+1
} where τij = τc and the rest of the τi are set equal to

those from ΓJ ∗ . Let ΓI− = ΓI+ except that τij = 0. Invoke Algorithm 3 with I
and ΓI+ and yielding output set O∞.

(iii) If O∞ = ∅, set Γ = Γc and Γ = ΓI+. Else, set Γ = ΓI+ and Γ = ΓI−.

(iv) Invoke the bisection algorithm 4 with Γ and Γ. Let Γj
I be the solution of the

bisection algorithm. If j < K + 1, set j = j + 1 and goto step (i).

(v) Let k = argj min{τ1 + · · · + τK+1 : Γj
I , j = 1, · · · , K + 1} and set ΓI = Γk

I . Stop.

The choice of ΓI+ in step (ii) is motivated from Lemma 3.2. The rest of τ are

set equal to those from ΓJ ∗ because they are necessary conditions for stability for the

(K + 1)-mode system. Similarly, the choice of τij = τc in step (ii) is a result of Lemma

3.2. Lemma 3.2 has a further implication that is not captured in the algorithm above.

Remark 3.3 In step (iii) under the case where O∞ ̸= ∅, the bisection algorithm is

invoked with Γ = ΓI+ and Γ = ΓI−. This step is fine if there are more than one τ in
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ΓI+ that are equal to τc. If τij is the only τ having a value of τc, then the bisection

algorithm can be avoided by setting Γj
I = ΓI+ as a result of Lemma 3.2.

Lemma 3.4 Suppose for some value of K, ΓI are the optimal dwell times for all

I ∈ CK. (This is true for the K = 2 case following Lemma 3.3). Consider a particular

choice of j in step (i) of Algorithm 5. Suppose the output set O∞ of step (ii) is non-

empty, then the corresponding Γj
I so obtained in step (iv) is the optimal dwell time in

the sense of Definition 3.1.

Proof: Note that when O∞ of step (ii) is non-empty, Γj
I is obtained from

the bisection algorithm with ΓI+ = {τi1 , · · · , τc, · · · , τiK+1
} and ΓI− = {τi1 , · · · , 0, · · · ,

τiK+1
}. Hence, Γj

I takes the form of {τi1 , · · · , τij , · · · , τiK+1
}. Now suppose the assertion

is not true and there exists a τ̂ℓ < τℓ for some ℓ satisfying 1 ≤ ℓ ≤ K + 1 such that

Γ := {τi1 , · · · , τ̂ℓ, · · · , τiK+1
} is a stabilizing dwell time. If ℓ = j, this leads to a

contradiction since τℓ is already the optimal under the bisection algorithm. If ℓ ̸= j,

this also leads to a contradiction since Γ\{τ̂ℓ} is the optimal dwell time for the K-mode

system.

Remark 3.4 The result of Lemma 3.4 is not as limited as it appears. In step (v) of

algorithm 5, the mode-dependent dwell times for a particular choice of I is identified by

the index k that achieves the minimal value of τ1+· · ·+τK+1. Hence, if the case of index

k (and not for all j = 1, · · · , K + 1) satisfies the conditions stipulated in Lemma 3.4,

the mode-dependent dwell times for I is optimal. In many of the numerical examples

tested (including the two examples of Section 3.4), the output Γ is obtained under such

a situation and is, therefore, the optimal mode-dependent dwell time.

Remark 3.5 While never experienced in all our numerical examples, it is possible that

there are more than one j that attains the minimal value of τ1 + · · ·+ τK+1 in step (v)

of Algorithm 5. In such an event, the Γ corresponding to all the non-unique minima
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should be stored under the choice of I. Correspondingly, steps (i)-(iv) of Algorithm 5

will have to be run more than once to obtain the ΓI. Specifically, suppose there are two

ΓJℓ
, ΓJ 1

ℓ
and ΓJ 2

ℓ
, for a specific choice of J . Step (i)-(iv) has to be done twice, one

each of the ΓJ i
ℓ
. Step (v) should also include the two values of Γj

I in determining the

optimal k.

3.4 Numerical Examples

The algorithms described in the prior sections are illustrated using two numerical ex-

amples and the results are also compared with the results of a recent work in the

literature [47]. The first example considered has the following details: X = {x ∈ R2 :

∥x∥∞ ≤ 1} and IN = {1, 2, 3, 4} with A1 = [1, 0.1;−0.2, 0.9], A2 = [1, 0.1;−0.9, 0.8],

A3 = [0.95, 0.09;−0.94, 0.86] and A4 = [0.99,−0.04; 0.4, 0.95]. The corresponding spec-

tral radii are 0.959, 0.943, 0.950, 0.978 respectively.

index j {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

of τc = 7 τc = 8 τc = 15 τc = 1 τc = 5 τc = 1

Alg. 3 Γ Γ Γoutput Γoutput Γoutput Γoutput Γoutput Γoutput

1 τc 0 τc τc 7 7 8 8 15 1 1 1 5 1 1 1

2 0 τc τc τc 1 7 1 8 14 15 1 1 5 5 1 1

Table 3.1: Intermediate mode-dependent dwell times for all 2-mode subsystems of
Example I.

Table 3.1 shows the intermediate mode-dependent dwell times computed for all 2-

mode subsystems as described in section 3.3.1. The minimal dwell times are indicated

in bold font. They are used to compute the mode-dependent dwell time for the 3-mode

subsystems shown in Table 3.2 according to the procedure described in Algorithm 5

incorporating the features mentioned in Remarks 3.3 and 3.4.
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index {1, 2, 3}, τc = 8 {1, 2, 4}, τc = 15 {1, 3, 4}, τc = 15 {2, 3, 4}, τc = 5

j Γ Γ Γoutput Γ Γ Γoutput Γ Γ Γoutput Γ Γ Γoutput

1 8 1 1 8 8 8 8 7 8 15 5 1 – 15 5 1 15 1 1 – 15 1 1 5 1 1 – 5 1 1

2 1 0 8 1 8 817 8 15 0 1 15 15 1 155 1 15 0 1 15 15 1 151 1 5 0 1 5 5 151 1

3 1 7 8 – 1 7 8 1 7 15 15 15 15 14 7 15 1 8 15 15 15 15 14 8 15 1 1 5 5 5 5 5 1 5

Table 3.2: Intermediate mode-dependent dwell times for all 3-mode subsystems of
Example I.

index {1, 2, 3, 4}, τc = 15

j Γ Γ Γoutput

1 15 5 1 1 15 15 15 15 15 5 3 1

2 15 0 1 1 15 15 1 1 15 6 1 1

3 15 5 0 1 15 5 15 1 15 5 3 1

4 1 7 8 15 15 15 15 15 15 7 8 15

Table 3.3: Intermediate mode-dependent dwell times for the 4-mode system of Example
I.

The result of K = 3 is shown in Table 3.21. Each of the 3 rows corresponds to a

particular choice of j for j = 1, 2, 3 described in step (i) of Algorithm 5. Also, the Γ,

Γ are those set according to step (iii) of the same Algorithm. The results of Table 3.2

are used to compute the results of Table 3.3. Hence, the mode-dependent dwell times

obtained form algorithm 5 is Γ = [τ1, τ2, τ3, τ4] = [15, 6, 1, 1] and is optimal because it

satisfies the conditions of Remark 3.4.

As a comparison, the procedure for mode-dependent dwell time is computed using

the MLFs approach of [47]. They show that if there exist Pi ≻ 0, 0 < λi < 1, and

µi ≥ 1 for each i ∈ IN such that

AT
i Pi Ai ≼ λi Pi ∀i ∈ IN (3.10)

Pi ≼ µj Pj ∀(i, j) ∈ IN × IN (3.11)

1The symbol “–” in the Tables 3.2 indicates that the bisection Algorithm is not invoked as a result
of Remark 3.3.
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Then, the system is asymptotically stable under dwell times τi ≥ − ln µi

ln λi
for all i ∈ IN .

Clearly, τi can be minimized by minimizing µi ≥ 1 and λi ∈ (0, 1) simultaneously.

Unfortunately, (3.10)-(3.11) is a Bilinear Matrix Inequality (BMI) in λi, µi and Pi and

the optimal solution is not easily determinable. If λi and µi are fixed, then Pi is easily

solvable since it is a Linear Matrix Inequality. The same is true when Pi for all i ∈ IN

are fixed and solving for λi and µi. The procedure proceeds by alternatively fixing these

two groups of variables. The mode-dependent dwell times found using their method

are ΓZ = [τ1, τ2, τ3, τ4] = [43, 16, 14, 8].

Details of the second example are X = {x ∈ R2 : ∥x∥∞ ≤ 1}, IN = {1, 2, 3, 4, 5},

A1 = [1, 0.1;−0.2, 0.9], A2 = [1, 0.1;−0.9, 0.9], A3 = [0.95, 0.09;−0.94, 0.8], A4 =

[1,−0.04; 0.4, 0.95] and A5 = [0.8, 0.5; 0 , 0.5] and their respective spectral radii are

0.959, 0.995, 0.919, 0.983 and 0.8. The mode-dependent dwell times obtained from

algorithm 3 is found to be Γ = [16, 8, 1, 16, 7] or
∑

τi = 48 and is known to be opti-

mal (from Remark 3.4) while the result of [47] yields to ΓZ = [35, 157, 13, 31, 9] with∑
τi = 245.

3.5 Summary

This chapter proposes an algorithmic approach to the determination of mode-dependent

dwell times of a system switching among N linear subsystems. The approach builds

up progressively by computing the mode-dependent dwell times of the K-mode sub-

systems for K = 2, · · · , N . The K-mode dwell times provide necessary conditions for

the stabilizing dwell times for the (K + 1)-mode subsystems and, under appropriate

conditions, sufficient conditions for the optimal mode-dependent dwell times. In the

numerical examples considered, where some of N modes having spectral radii close to

1, the approach yields the optimal mode-dependent dwell times that are significantly

smaller than the results of a recent work in the literature.
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Chapter 4

Computation of Disturbance

Invariant Sets

4.1 Introduction

This chapter considers the following constrained discrete-time switched linear system

with additive disturbance:

x(t + 1) = Aσ(t)x(t) + w(t) (4.1a)

x(t) ∈ X,w(t) ∈ W, ∀t ∈ Z+ (4.1b)

where x(t) ∈ Rn, w(t) ∈ Rn are the state and disturbance variables respectively,

W ⊂ Rn is the disturbance set, σ(t) : Z+ → IN := {1, · · · , N} is a time-dependent

switching that satisfies some dwell time conditions and X ⊂ Rn is the constraint set.

Most of the literature of the switched systems [5, 12, 23, 36–38, 53] is concerned

with stability condition when disturbance inputs are absent. A few of them also con-

sider the presence of constraints and/or disturbances [24, 54–56] when switching is

arbitrary. This chapter is concerned with the characterization and computation of
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suitably defined disturbance-invariant sets (also known as robust1-invariant sets) for

system (4.1) when σ(·) is an admissible switching function that respects the dwell-time

consideration. Since only dwell-time switching is allowed, the invariance condition is

termed Disturbance Dwell-Time invariance (DDT-invariance). Other contributions of

this chapter include algorithms for the computations of the maximal and the minimal

convex DDT-invariant sets for system (4.1). In the limiting case where the dwell-time

is one sample period, σ(·) becomes an arbitrary switching function, and the corre-

sponding invariant sets and their computations have appeared in the literature, see

for example, [24] and [55, 56]. Hence, this work can also be seen as a generalization

of those obtained for arbitrary switching systems. Note that the results presented in

this chapter are for the case when a common dwell-time is considered. Extension of

the results to mode-dependent dwell-time is obvious and hence will not be considered

here. Also for the convenience of following the main ideas, the proofs of theorems are

deferred to the end of the chapter.

4.2 Preliminaries

Recall that Sτ is the class of admissible switching signals that satisfies the dwell-time

consideration. Let {i}ℓ := {i, i, · · · , i} be a sequence of ℓ elements of i with i ∈ IN and

Wℓ be the set of sequences {w(·)} of length ℓ with every w(·) ∈ W . Then, a switching

sequence can equivalently be represented by Sτ (t) = {{im}km , · · · , {i1}k1 , {i0}k0} for

some appropriate ij ∈ IN for all j = 0, · · · ,m and
∑m

j=0 kj = t.

Assumptions on problem data are (A1)-(A4) of Chapter 2. In addition, the dis-

turbance set of system (4.1) satisfies (A5) W is a polytope and contains 0 in its interior.

The polyhedral assumption of (A5) is made to facilitate numerical computations de-

scribed in this chapter and it is not needed for the theoretical development of Section

4.3.

1Robustness is with respect to additive disturbance
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4.3 Main Results

This section begins with definitions of Disturbance-Dwell-Time-invariant (DDT-invariant)

set and Constraint Admissible Disturbance Dwell-Time-invariant (CADDT-invariant)

set for system (4.1a) with admissible input sequences.

Definition 4.1 A set Ω ⊂ Rn is said to be DDT-invariant w.r.t. (4.1a) with dwell-

time τ , if x(0) ∈ Ω implies x(t) ∈ Ω for every admissible sequence Sτ (t) and for every

allowable disturbance sequence {w(0), · · · , w(t − 1)} ∈ Wt.

Definition 4.2 A set Ω ⊂ Rn is said to be CADDT-invariant w.r.t. (4.1a) with dwell-

time τ , if it is DDT-invariant and x(t) ∈ X for all t ∈ Z+.

The definition of DDT-invariance is closely related to the definition of an admissible

sequence. Aa an example, suppose that Ω is DDT-invariant and x(0) ∈ Ω. With the

admissible sequence S3(6) = {1, 1, 1, 2, 2, 2} it follows that x(6) ∈ Ω but sequence

S̄3(6) = {1, 1, 2, 2, 2, 2} may not result in x(6) ∈ Ω. Similarly, x(7) ∈ Ω if S̄3(7) =

{1, 1, 1, 2, 2, 2, 2} is obtained from S̄3(6) with σ(6) = 1.

While stating the requirements of DDT-invariance and CADDT-invariance, the

above definitions are of limited practical usefulness since the reachable set of system

(4.1) for all admissible switching input and disturbance sequences of length t have to be

considered. Clearly, such an approach is not computationally tractable. This difficulty

can be circumvented using the characterization of Dwell-Time invariance of Chapter 2.

For the disturbance-free system it was shown that any admissible sequence of the form

Sτ (t) = {{im}km , · · · , {i1}k1 , {i0}k0} (4.2)

60



CHAPTER 4. COMPUTATION OF DISTURBANCE INVARIANT SETS

with ij ∈ IN , kj ≥ τ for all j = 0, · · · ,m and
∑m

j=0 kj = t can be written as a unique

ordering of a finite number of subsequences as

Sτ (t) = {{im}qmτ , {im}rm , · · · , {i1}q1τ , {i1}r1 , {i0}q0τ , {i0}r0} (4.3)

where, for all j = 0, · · · ,m, qj = ⌊kj−τ

τ
⌋ is the remainder of kj − τ when divided by τ

and rj ∈ T with

T := {τ, τ + 1, · · · , 2τ − 1}. (4.4)

Motivated by this result, a parameterization of all admissible sequences can be obtained

using an alternative representation of (4.2). This takes the form of

Sτ (t) = { {jp−1}ℓp−1 , · · · , {j1}ℓ1 , {j0}ℓ0} (4.5)

for some appropriate integers ℓ0, ℓ1, · · · ℓp−1 with
∑p−1

i=0 ℓi = t where each ℓi ∈ T, ji ∈ IN

for i = 0, · · · , p − 1. This form shows that an admissible sequence is a concatenation

of p-stage subsequences (as opposed to a m-mode subsequences of (4.2)): the first

stage is in mode j0 for ℓ0 steps, the second in mode j1 for ℓ1 steps and so on with

the possibility that ji = ji+1. For example, S3(10) = {{1}4, {2}6} with IN = {1, 2}

can be represented as {{1}4, {2}3, {2}3} in the format of (4.5). Such a representation

facilitates the representation of all admissible sequences up till time t. For this purpose,

several operations are introduced. They are slight modifications of well-known one-step

forward (backward) operator for standard linear system.

Given a set Ω ⊂ Rn, let P̂ (Ω, A, W ) := {Ax + w : x ∈ Ω, w ∈ W} = AΩ ⊕ W be

the set of reachable states in one time step from Ω with respect to system x(t + 1) =

Ax(t) + w(t) driven by disturbance w(·) ∈ W . Repeating this operation ℓ times lead
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to the ℓ-step reachable set of Ω given by

P̂ℓ(Ω, A, W ) = {Aℓ x + Aℓ−1w + · · · + Aw + w : x ∈ Ω, w ∈ W}

= AℓΩ ⊕ Aℓ−1W ⊕ · · · ⊕ AW ⊕ W (4.6)

In the case of (4.5), mode ji can be any index of IN and ℓi is any element in T. This

motivates the definition of

P (Ω,W ) :=
∪
ℓ∈T

{ ∪
i∈IN

P̂ℓ(Ω, Ai, W )
}

=
∪

ℓ∈T,i∈IN

P̂ℓ(Ω, Ai,W ) (4.7)

and it characterizes the reachable set of one stage based on the representation given

by (4.5). This means that x(ℓ0) ∈ P ({0},W ) and

x(ℓ1 + ℓ0) ∈
∪

ℓ∈T,i∈IN

P̂ℓ(P
(
{0},W ), Ai,W

)
= P

(
P ({0},W ),W

)
= P2({0},W ).

This continues till the p-th stage where

x(ℓp−1 + · · · + ℓ0) ∈
∪

ℓ∈T,i∈IN

P̂ℓ

(
Pp−1({0},W ), Ai,W

)
= Pp({0},W ). (4.8)

Another interpretation of the above is that the family of all admissible sequences up

to time p(2τ − 1) is

∪
ℓ0∈T,··· ,ℓp−1∈T

( ∪
j0∈IN ,··· ,jp−1∈IN

{ {jp−1}ℓp−1 , · · · , {j1}ℓ1 , {j0}ℓ0}

)
(4.9)

The above analysis is based on the forward operation of P̂ (·, ·, ·). Another operation

needed in the sequel is that given by the one-step backward operator. Formally, this

one-step and ℓ-step backward sets of a given non-empty Ω ⊂ Rn w.r.t. system x(t+1) =

Ax(t) + w(t) are known respectively to be Q̂(Ω, A,W ) = {x : Ax + w ∈ Ω, w ∈ W} =
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{x : Ax ∈ (Ω ⊖ W )} and

Q̂ℓ(Ω, A, W ) = Q̂ · · · Q̂(Ω, A,W ) = {x : Aℓx + · · · + Aw + w ∈ Ω, w ∈ W}

=
{
x : Aℓx ∈

(
Ω ⊖ W ⊖ · · · ⊖ Aℓ−1W

) }
(4.10)

In the characterization of (4.5), the first stage consists of ℓ0 time steps where ℓ0 can be

any element in T while j0 can be any element of IN . Hence, the set of state that can

be brought into Ω for one stage of an admissible sequence is

Q(Ω,W ) :=
∩
ℓ∈T

{ ∩
i∈IN

Q̂ℓ(Ω, Ai,W )
}

=
∩

ℓ∈T,i∈IN

Q̂ℓ(Ω, Ai,W ) (4.11)

and it is the backward set for one stage in an admissible sequence.

Theorem 4.1 Suppose (A1), (A4) and (A5) are satisfied and a non-empty set Ω is

given. Let P (·, ·) and Q(·, ·) be as defined by (4.7) and (4.11) respectively. The following

statements are equivalent:

(i) A set Ω ⊂ Rn is DDT-invariant for system (4.1a);

(ii) P (Ω,W ) ⊆ Ω;

(iii) Ω ⊆ Q(Ω,W ).

Theorem 4.1 shows that x(0) ∈ Ω implies x(t) ∈ Ω for all t ∈ T. However, no

mention is made of the constraints x(t) ∈ X for all t as stipulated in (4.1b). Clearly,

the constraint admissibility requires more conditions than Ω ⊆ X. Imposing x(t) ∈ X

for t = 0, 1, · · · , τ − 1 ensures that Ω is CADDT-invariant. This result is therefore

obvious and stated in the following corollary without a proof.

Corollary 4.1 Suppose (A1), (A4) and (A5) are satisfied and a non-empty set Ω is

given. Let P̂ℓ(·, ·, ·) and Q̂ℓ(·, ·, ·) be as defined by (4.6) and (4.10) respectively. A

DDT-invariant set Ω ⊆ X is CADDT-invariant for system (4.1) with dwell-time τ , if
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and only if (i) P̂ℓ(Ω, Ai,W ) ⊆ X for all ℓ = 0, 1, · · · , τ − 1 and for all i ∈ IN or (ii)

Ω ⊆ Q̂ℓ(X,Ai,W ) for all ℓ = 0, 1, · · · , τ − 1 and for all i ∈ IN .

4.4 Minimal DDT-invariant set and its computa-

tion

The solution of (4.1a) is

x(t) = Aσ(t−1)Aσ(t−2) · · ·Aσ(1)Aσ(0)x(0) + Aσ(t−1) · · ·Aσ(1)w(0)+

Aσ(t−1) · · ·Aσ(2)w(1) + · · · + Aσ(t−1)w(t − 2) + w(t − 1). (4.12)

The first term on the righthand side of (4.12) approaches zero as t approaches infinity

for any admissible switching sequence under (A4). The sum of the rest of the terms on

the righthand side of (4.12) characterizes the asymptotic behavior of switching system

(4.1a) in the presence of disturbance sequences. Let Ft(A,W, τ) be the set of states

that can be reached in t steps from the origin for all admissible sequences with dwell-

time τ and all disturbance sequences of length t. Using (4.12) with x(0) = 0, it follows

that

Ft(A,W, τ) :=
∪

σ(·)∈Sτ (t)

(
Aσ(t−1)Aσ(t−2) · · ·Aσ(1)W ⊕ · · · ⊕ Aσ(t−1)W ⊕ W

)
(4.13)

with F0(A,W, τ) := {0}. For notational simplicity, the dependence of Ft and other

derived sets on (A,W, τ) will be dropped unless warranted by context. The limiting

condition of (4.13), existence of which is shown in Theorem 4.2, becomes

F∞ = lim
t→∞

Ft (4.14)
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Hence, F∞ characterizes the asymptotical behavior of (4.1) and, typically, a small F∞

set is desirable. The computation of Ft based on the elapsed time t for system (4.1) is

difficult because it has no clear structure. A more useful representation is that given

by (4.5) which characterizes the reachable states by stages instead of time. Let Fk be

the set of reachable states at the k-th stage. Using the same reasoning in Section 4.3

leading to equation (4.9), define

Fk := P (Fk−1,W ) =
∪

ℓ∈T,i∈IN

P̂ℓ(Fk−1, Ai,W ) (4.15)

with F0 = {0}. Since the above union operation is taken over all ℓ ∈ T and all i ∈ IN ,

(4.15) captures all admissible sequences of length k(2τ − 1) and hence, Fk = Fk(2τ−1)

for all k ∈ Z+. Taking the limit as k → ∞, F∞ = limt→∞ Ft = limk→∞ Fk(2τ−1) =

limk→∞Fk = F∞.

The union operation of (4.15) remains problematic computationally as it does not

preserve convexity. This problem can be circumvented by computing a convex outer-

bound of Fk, denoted by Fk in the form of Fk := co{Fk}. Similarly, F∞ := limk→∞ Fk.

Conceptually, the procedure of computing F∞ is to first compute Fk based on (4.15)

at every stage k and then compute its convex hull, starting from k = 0. The exact

algorithmic computation of F∞ is given below.

Algorithm 6 Computation of F∞
Input: A, X, W and τ .

(a) Set k = 0, ℓ = τ , i = 1, F0 = {0}, F1 = {0}.

(b) While ℓ ≤ 2τ − 1,
While i ≤ N ,

Fk+1 = co
{

Fk+1, P̂ℓ (Fk, Ai,W )
}

next i
next ℓ

(c) If Fk+1 ≡ Fk, set F∞ = Fk and stop, else set k = k +1 and goto step (b).
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Clearly, step (b) of Algorithm 6 computes

Fk+1 = co{P (Fk,W )} = co{P̂ℓ (Fk, Ai,W ) : ℓ ∈ T and i ∈ IN}. (4.16)

This step can be computed when W is a polytope under (A5). Properties of the F∞

set obtained from Algorithm 6 are stated next.

Theorem 4.2 Suppose system (4.1) satisfies assumptions (A1), (A4), (A5) and Fk is

generated based on Algorithm 6. The following properties hold:

(i) Fk ≡ co{Fk} for all k.

(ii) 0 ∈ Fk and Fk ⊆ Fk+1 for all k.

(iii) Fk ⊇ Fk = Fk(2τ−1) for all k.

(iv) F∞ := limk→∞Fk exists and it is bounded.

(v) F∞ := limk→∞ Fk exists and the set sequence {Fk : k ∈ Z+} of Algorithm 6 con-

verges to F∞.

(vi) F∞ = co{F∞}.

(vii) F∞ is DDT-invariant.

(viii) F∞ is the minimal convex DDT-invariant set.

(ix) The state of system (4.1a) starting from any x(0) converges to F∞ for every ad-

missible sequence in the sense that d(x(t), F∞) → 0 as t → ∞.
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4.5 Maximal Constraint Admissible DDT-invariant

set

This section deals with the characterization and computation of the maximal constraint

admissible DDT-invariant set, O∞(A, X, W, τ), for system (4.1). This set defines the

largest region starting from which system (4.1) remains constraint admissible for all

admissible sequences. A necessary assumption for the existence of such a set is that

(A6) F∞ ⊂ X and is CADDT-invariant. This is a reasonable assumption requiring

that the effect of disturbance be small and not to exceed the constraint set.

Let O1(A, X, W, τ) be the set of states that can be brought into constraint set X

in one stage for system (4.1) under an appropriate Sτ (t). This means that x(t) ∈ X

if x(0) ∈ O1(A, X, W, τ) for all appropriate t for one stage. Using (4.5), x(0) belongs

to the set O1(A, X, W, τ) := Q(X,W ) =
∩

ℓ∈T,i∈IN
Q̂ℓ(X, Ai,W ) since (j0,ℓ0) of (4.5)

can be any element of T × IN and x(t) ∈ X has to be satisfied for all such sequences.

Using the above recursively leads to

Ok(A, X,W, τ) = Q(Ok−1(A, X, W, τ),W )

=
∩

ℓ∈T,i∈IN

Q̂ℓ(Ok−1(A, X,W, τ), Ai,W ) (4.17)

with O0 := X
∩

i∈IN ,ℓ=1,2,···τ−1 Q̂ℓ(X,Ai,W ). The detailed algorithmic computation

of O∞ is given in Algorithm 7. Hereafter, the dependence of Ok on (A, X, W, τ) is

dropped for notational convenience unless needed.
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Algorithm 7 Computation of maximal CADDT-invariant set

Input: A, X, W and τ .

(a) Set k = 0, ℓ = 1, i = 1, O0 = X.

(b) While ℓ ≤ τ − 1,
While i ≤ N ,

O0 = O0 ∩ Q̂ℓ(X,Ai, W )
next i

next ℓ

(c) Set ℓ = τ , i = 1, Ok+1 = Ok.

(d) While ℓ ≤ 2τ − 1,
While i ≤ N ,

Ok+1 = Ok+1 ∩ Q̂ℓ(Ok, Ai, W )
next i

next ℓ

(e) If Ok+1 ≡ Ok, set O∞ = Ok then stop, else set k = k + 1 and goto

step (c).

Step (b) of Algorithm 7 imposes the constraints for the first τ−1 steps to ensure the

constraint admissibility of O∞ according to Corollary 4.1. Similarly, step (d) imposes

(4.17) and captures all possible admissible switching sequences.

When X and W are polytopes under assumptions (A2) and (A5), so is Ok. The

corresponding numerical operations for each step of Algorithm 7 are also straight for-

ward, including the computation of Q̂(X, A, W ) (see [57]). More exactly, Q̂(X, A,W ) ={
x : R(Ax + w) ≤ 1,∀w ∈ W

}
=
{
x : RAx ≤ 1 − maxw∈W Rw

}
. Hence,

Q̂ℓ(X, Ai,W ) =
{

x : RAℓ
i x ≤ 1 − max

w∈W
Rw − max

w∈W
RAiw − · · · − max

w∈W
RAℓ−1

i w
}

.

(4.18)

If
(
1 − maxw∈W RjAiw − · · · − maxw∈W RjA

r−1
i w

)
of (4.18) is negative for any of its

rows, Algorithm 7 terminates with O∞ = ∅. While not stated in Algorithm 7, fewer

computations results if redundant inequalities are removed from Ok+1 at the end of

step (2). Properties of the O∞ obtained from Algorithm 7 are stated next.
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Theorem 4.3 Suppose system (4.1) satisfies assumptions (A1)-(A5) and Ok is gen-

erated based on Algorithm 7, such that Ok ̸= ∅ for all k. Then, the following results

are known:

(i) Ok ⊂ X and Ok+1 ⊆ Ok for all k.

(ii) O∞ := limk→∞ Ok exists, contains the origin in its interior and is finitely deter-

mined.

(iii) O∞ is the largest CADDT-invariant set contained in X.

(iv) For every x(0) ∈ O∞, x(t) converges to F∞ for every admissible switching sequence

in the sense that d(x(t), F∞) → 0 as t → ∞.

Remark 4.1 Suppose system (4.1) satisfies assumptions (A1)-(A5) and O∞ ̸= ∅.

Then, minimality of F∞ implies that F∞ ⊂ O∞ ⊂ X. Conversely, (A6) implies the

existence of at least one CADDT-invariant set in X. Thus, O∞ ̸= ∅ if and only if (A6)

is satisfied.

Remark 4.2 If x(0) ∈ O∞(A, X,W, τ) then x(0) ∈ O∞(A, X, W, τ̄) for any τ̄ ≥ τ .

This follows because any admissible sequence with dwell-time τ̄ is also an admissible se-

quence with dwell time τ . In addition, the trajectory starting from x(0) with any admis-

sible sequences with dwell-time τ̄ is also constraint admissible because x(0) ∈ O∞(τ).

Hence, O∞(A, X, W, τ̄) ⊇ O∞(A, X, W, τ). A similar argument but considering the

union instead of intersection leads to F∞(A, W, τ̄) ⊆ F∞(A,W, τ).

Remark 4.3 Following (4.10), (4.11) and Algorithm 7, the following properties can

be easily verified:

(i) O∞(A, X,W, τ) ⊆ O∞(A, X, W̄ , τ) for any W̄ ⊆ W ;

(ii) O∞(A, X, W, τ) ⊆ O∞(Ā, X, W, τ) for any Ā ⊆ A;

(iii) O∞(A, X, W, τ) ⊆ O∞(A, X̄, W, τ) for any X̄ ⊇ X;

(iv) O∞(A, αX, αW, τ) = αO∞(A, X,W, τ) for any α > 0. The last property follows

from Q̂(αX, A, αW ) = {x : R(Ax + αw) ≤ α1,∀w ∈ W} = {x : RAx ≤ α(1 −

maxw∈W Rw)} = αQ̂(X,A, W ).
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Remark 4.4 Following Remark 4.2, O∞(A, X,W, τ) ⊆ O∞(A, X,W, τ = ∞) =

∩i∈IN
O∞(Ai, X, W ) and F∞(A,W, τ) ⊇ F∞(A,W, τ = ∞) = ∪i∈IN

F∞(Ai,W ) where

O∞(Ai, X, W ) and F∞(Ai,W ) are the maximal and minimal disturbance invariant sets

for the standard linear system x(t + 1) = Aix(t) + w(t) with constraint x(t) ∈ X.

Remark 4.5 When Ai matrices are uncertain and parameterized in the form of

Ai ∈ co{Āi,1, Āi,2, · · · , Āi,Mi
} for each i ∈ IN .

Then, the robust2 forward/backward sets are modified as

P̂ (Ω, Ai,W ) =
{
Āi,r x + w ∈ Ω, x ∈ Ω, w ∈ W, r ∈ {1, · · · ,Mi}

}
=

Mi∪
r=1

(
Āi,r Ω ⊕ W

)

P̂ℓ(Ω, Ai,W ) = P̂ · · · P̂ (Ω, Ai,W )

Q̂(Ω, Ai,W ) =
{
x : Āi,r x + w ∈ Ω, w ∈ W, r ∈ {1, · · · ,Mi}

}
=

Mi∩
r=1

{
x : Āi,r x ∈ Ω ⊖ W

}

Q̂ℓ(Ω, Ai,W ) = Q̂ · · · Q̂(Ω, Ai,W )

With these modifications, Algorithm 6/7 can be used for computation of minimal/maximal

CADT-invariant sets of switched systems with parametric uncertainty. Results of The-

orems 4.1, 4.2 and 4.3 are also valid for uncertain system.

2Robustness considered here is with respect to parametric uncertainty.
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4.6 Numerical Examples

The first example is on a system with A = {A1, A2}, A1 =
 0.1321 0.2494

−2.4940 −0.1173

, A2 =
 0.9885 0.4406

−0.0441 0.7682

. The constraint and disturbance sets are X = {x ∈ R2 : ||x||∞ ≤ 1} and

W = {w ∈ R2 : ||w||∞ ≤ 0.001} respectively. It can be verified that the disturbance-

free system is asymptotically stable with any dwell-time τ ≥ 6. Equivalently, this

means that the system is unstable under arbitrary switching and existing computational

techniques [24,55,56] for arbitrary switched systems cannot be used. With τ = 6, both

the minimal and maximal CADDT-invariant sets are computed for this system and are

shown in Figure 4.1. A typical state trajectory of this example starting from x(0) =

(0.3969, 0.0769) is also shown. The input sequence used is periodic with σ(0) = 2,

tsk+1
− tsk

= 6 for all k ≥ 0 while the disturbance sequence is generated from a random

uniform distribution over W .
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Figure 4.1: Illustration of maximal and minimal CADDT-invariant sets

It is interesting to note that x(t) /∈ O∞ for t = 1, · · · , 5 but x(6) ∈ O∞. Subse-

quently, x(t) leave O∞ momentarily at t = 7, 9 and 11. Hence, O∞ is not positively

invariant but CADDT-invariant, the behavior of which is described in Defintion 2.1.
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The trajectories have two properties that are clearly different from those of standard

invariant set: x(t) ∈ X but not necessarily in O∞ for all t ≥ 0 and x(t + τ) ∈ O∞ if

x(t) ∈ O∞ for all t ≥ 0. Finally, the state trajectories converge to F∞, as claimed in

property (iv) of Theorem 4.3.

Additional runs on this example are done to illustrate the points mentioned in

Remarks 4.2 and 4.4. Figure 4.2(a) shows F∞ and O∞ for τ = 6 and 10 respec-

tively. Clearly, O∞(τ = 10) ⊇ O∞(τ = 6) and F∞(τ = 10) ⊆ F∞(τ = 6) as dis-

cussed in Remark 4.2. Figures 4.2(b) and 4.2(c) show the fact that O∞(A, X,W, τ) ⊆

∩i∈IN
O∞(Ai, X, W ) and ∪i∈IN

F∞(Ai,W ) ⊆ F∞(A,W, τ) as claimed in Remark 4.4.
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Figure 4.2: Illustration of (a) minimal/maximal CADDT-invariant sets for τ = 6, τ =
10, (b) maximal invariant set of linear subsystems, (c) minimal invariant set of linear

subsystems.
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O∞ F∞
Ex. n N τ ρmax time # kit time # kit

Ia 2 2 6 0.472 8.10 10 3 472.41 38 88
Ib 2 2 10 0.287 17.39 4 3 390.38 44 19
II 4 4 3 0.753 28.25 50 7 18148 1184 68
III 11 2 5 0.828 10415 5478 12 ∞ - -

Table 4.1: Computational results

Computational results for the examples considered in this paper are presented in

Table 4.1. These results include the dimension of the problem (n), number of modes

(N), a measure of the spectral radius of the system (ρmax := max{ρ(Aτ
i ) : i ∈ IN}),

the computational (wall-clock) time3 in seconds, the number of inequalities (#) that

represents O∞/F∞ set and the iteration (kit) at which algorithms converge. Examples

Ia and Ib use the system considered earlier but with dwell-time 6 and 10 respectively.

Example II is a dynamical model of longitudinal flight of F8 aircraft [59] discretized

with a sampling period of 0.1 second. In this example, A := {A1, A2, A3, A4} with

Ai := A + BKi where Ki’s are LQR controller gains obtained for Q1 = Q2 = Q3 =

0.5Q4 = I4, R1 = 0.5R3 = R4 = I2 and R2 = diag([1, 0.1]). The constraints arise

from the control inputs {u ∈ R2 : ||u||∞ ≤ 25π
180

}. Example III is an 11-dimensional

model of a UAV helicopter taken from [60] discretized with a sampling period of 0.02

second. Similarly, it has Ai := A + BKi where Ki’s are LQR controllers obtained

with Q1 = Q2 = I11, R1 = diag([10, 0.1, 0.1, 1]) and R2 = I4. The constraints for

this example are {x ∈ R11 : ||x||∞ ≤ 10} and those arise from the control inputs

{u ∈ R4 : ||u||∞ ≤ π/4}. In all the above examples, W = {w ∈ Rn : ∥w∥∞ ≤ 0.001}.

Characteristics of the complexity of Algorithm 7 are similar to that used for com-

puting the maximal invariant set for standard linear system [57]. For example, much

of the computational load is on the verification of Ok+1 ≡ Ok; computational load

increases when the dimension of the problem increases. Of course, the complexity also

3All the algorithms of this paper are implemented in Matlab 7 using MPT toolbox solvers [58] and
the computations are performed on a dual-core CPU with 3.2 GHz processor.
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increases when ρmax approaches 1, N increases, or τ increases.

The computational effort for F∞ is much higher than that for O∞, due to the

Minkowski sum and the convex-hull operations of (4.6) and (4.16) needed by Algorithm

6. Of course, the complexity also increases with the dimension of the system, see result

of example II. This complexity issue is likely to remain unless significant improvement

is made to the Minkowski sum and convex hull operations. For the time being, it may

be desirable to develop efficient outer-approximation algorithms for F∞ like those given

by [61] and [55].

4.7 Summary

Definitions of a DDT-invariant set and a CADDT-invariant set are given for constrained

discrete-time switching systems under input sequence that respects dwell-time consid-

eration. Using a characterization of all admissible sequences, numerical algorithms for

the computation of the minimal and maximal convex CADDT-invariant sets are pro-

vided. Examples of maximal CADDT-invariant sets are provided including a system

of moderately high dimension. The minimal convex CADDT-invariant set requires

the convex hull operation and can be computationally intensive for system with large

dimension.
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Proofs

Proof of Theorem 4.1:

(i) ⇒ (ii): This proof is by contradiction. Suppose Ω is DDT-invariant but (ii) is not

satisfied. This means there exists an ℓ ∈ {τ, τ + 1, · · · , 2τ − 1} and i ∈ IN such that

P̂ℓ(Ω, Ai,W ) * Ω. However, {i}ℓ = {i, i, · · · , i} is an admissible switching sequence

and for any x(0) ∈ Ω it follows that x(t) ∈ P̂ℓ(Ω, Ai,W ) * Ω. This implies x(t) /∈ Ω

for some admissible switching sequence, which contradicts the DDT-invariance of Ω.

(ii) ⇒ (iii): With (4.7), condition (ii) holds means P̂ℓ(Ω, Ai,W ) ⊆ Ω for all ℓ ∈ T and

for all i ∈ IN . Applying Q̂t(·) operator on both sides of the above inclusion yields

Q̂ℓ

(
P̂ℓ(Ω, Ai,W ), Ai, W

)
⊆ Q̂ℓ(Ω, Ai,W ), ∀ℓ ∈ T, ∀i ∈ IN (4.19)

because Q̂t(Ω1, A, W ) ⊆ Q̂t(Ω2, A,W ) for any Ω1 and Ω2 such that Ω1 ⊆ Ω2. The

left-hand side of (4.19) is Q̂ℓ

(
P̂ℓ(Ω, Ai,W ), Ai,W

)
= Ω and taking the intersection of

Q̂ℓ(Ω, Ai,W ) over all ℓ ∈ T and i ∈ IN leads to Ω ⊆ Q(Ω, W ). (iii) ⇒ (i): Let

x(0) ∈ Ω, this implies x(0) ∈ Q(Ω,W ) by (iii). Consider all admissible sequence, Sτ (t)

of the form (4.5). It follows that x(ℓ0) = Aℓ0
j0

Ω + Aℓ0−1
j0

w0 + · · ·+ Aj0wℓ0−2 + wℓ0−1 ∈ Ω

for any j0 ∈ IN and any ℓ0 ∈ T. Repeating this for all stages until the last stage of

ℓp − 1 shows that x(t) ∈ Ω. This shows that Ω is DDT-invariant.
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Proof of Theorem 4.2:

(i) The proof is induction. For notational simplicity, let D(i, t) := At−1
i W ⊕ At−2

i W ⊕

· · ·⊕AiW⊕W . With F0 = F0 = {0}, it follows from (4.16) that F1 = coi∈IN ,ℓ∈T
{
D(i, ℓ)

)}
=

co
{∪

i∈IN ,ℓ∈T D(i, ℓ)
}

= co
{
F1

}
. Assume that Fk = co{Fk}, the proof is complete if

Fk+1 = co{Fk+1}. To show this, note that

Fk+1 =
∪

i∈IN ,ℓ∈T

(
Aℓ

iFk ⊕ D(i, ℓ)
)

(4.20)

from (4.15). Fk is also the reachable set at the k-th stage of all admissible sequences

characterized by (4.5). Since ji ∈ IN , ℓi ∈ T in (4.5) and there are N elements in

IN and τ elements in T, there are altogether (Nτ)k admissible sequences at the k-th

stage. Let the reachable set for each of these sequences be Ψ1, Ψ2, · · · , Ψ(Nτ)k . Then,

Fk =
∪(Nτ)k

s=1 Ψs. This and (4.20) imply that Fk+1 is the union of (Nτ)k+1 sets:

Fk+1 =
∪

i∈IN ,ℓ∈T

(
Aℓ

iFk ⊕ D(i, ℓ)
)

=
∪

i∈IN ,ℓ∈T

(
Aℓ

i(

(Nτ)k∪
s=1

Ψs) ⊕ D(i, ℓ)
)

=
∪

s=1,··· ,(Nτ)k

i∈IN ,ℓ∈T

(
Aℓ

iΨs ⊕ D(i, ℓ)
)

:=

(Nτ)k+1∪
r=1

Φr (4.21)

From (4.16), it follows that

Fk+1 = coi∈IN ,
ℓ∈T

{(
Aℓ

iFk ⊕ D(i, ℓ)
)}

=
{ ∑

j=1,··· ,(Nτ)
i∈IN ,ℓ∈T

αj

(
Aℓ

iFk ⊕ D(i, ℓ)
)

: αj ≥ 0,

Nτ∑
j=1

αj = 1
}

.
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Since Fk = co{Fk} =
{∑(Nτ)k

s=1 γsΨs : γs ≥ 0, Σ
(Nτ)k

s=1 γs = 1
}
,

Fk+1 =

{ ∑
j=1,··· ,(Nτ)
i∈IN ,ℓ∈T

αj

[
Aℓ

i

( (Nτ)k∑
s=1

γsΨs

)
⊕ D(i, ℓ)

]
: αj ≥ 0, γs ≥ 0,

Nτ∑
j=1

αj = 1,

(Nτ)k∑
s=1

γs = 1

}

=

{ ∑
j=1,··· ,(Nτ),i∈IN ,ℓ∈T

s=1,...,(Nτ)k

αjγs

[
Aℓ

iΨs ⊕ D(i, ℓ)
]

: αj ≥ 0, γs ≥ 0,

Nτ∑
j=1

αj = 1,

(Nτ)k∑
s=1

γs = 1

}

=

{
(Nτ)k+1∑

r=1

βrΦr : βr ≥ 0,

(Nτ)k+1∑
r=1

βr = 1

}
≡ co{Fk+1}.

(ii) Since 0 ∈ W , 0 ∈ P (Fk−1,W ) for all k from (4.15) and (4.6). This implies

0 ∈ Fk ⊆ Fk for all k from (4.16). Moreover, Fk ⊆ P (Fk,W ) ⊆ co{P (Fk,W )} = Fk+1

and hence Fk ⊆ Fk+1 for all k.

(iii) Since step (b) of Algorithm 6 captures all admissible switching sequences of

length k(2τ − 1), it is inferred that Fk = Ft with t = k(2τ − 1) for all k ∈ Z+. This

and result (i) imply Fk(2τ−1) = Fk ⊆ co{Fk} = Fk for all k ∈ Z+.

(v) Let W̃ := co i∈IN
{D(i, τ), D(i, τ + 1), · · · , D(i, 2τ − 1)}. Compactness of W̃

and (A1) imply [57] the existence of a λ ∈ (0, 1), a constant µ and an appropriate

norm ball B(η) such that W̃ ⊆ µB(η) and Aℓ
i W̃ ⊆ µλB(η) for all ℓ ∈ T and for all

i ∈ IN .

From (4.16), Fk+1 = coi∈IN

{(
Aτ

i Fk ⊕ D(i, τ)
)
, · · · ,

(
A2τ−1

i Fk ⊕ D(i, 2τ − 1)
)}

⊆

coi∈IN

{(
Aτ

i Fk ⊕ W̃
)
, · · · ,

(
A2τ−1

i Fk ⊕ W̃
)}

.

Expanding Fk recursively till F0, the above becomes

Fk ⊆ co i1,i2,··· ,ik∈IN
ℓ1,ℓ2,··· ,ℓk∈T

{
Aℓk

ik
A

ℓk−1

ik−1
· · ·Aℓ1

i1
F0 ⊕ Aℓk

ik
A

ℓk−1

ik−1
· · ·Aℓ2

i2
W̃ ⊕ · · · ⊕ Aℓk

ik
W̃ ⊕ W̃

}
⊆ µ

(
λk−1 + · · · + λ + 1

)
B(η).

The last inclusion follows from W̃ ⊆ µB(η) and Aℓ
i W̃ ⊆ µλB(η) stated earlier and

F0 = {0}.

77



CHAPTER 4. COMPUTATION OF DISTURBANCE INVARIANT SETS

Recall that the family of compact sets in Rn forms a complete metric space [62]

with the Hausdorff metric H(X,Y ) := max
{

supx∈X d(x, Y ), supy∈Y d(y, X)
}
. Thus,

the inclusion Fk ⊆ µ
(
λk−1 + · · · + λ + 1

)
B(η) implies that the Hausdorff distance of

Fk+1 and Fk is bounded by µλk. Hence, the set sequence {Fk : k ∈ Z+} is Cauchy and

has a limit-set, F∞, such that H(F∞, Fk) → 0 as k → ∞.

(iv) This proof is similar to that of part (v) except for the replacement of Fk by

Fk and the convex hull operator by the union operator.

(vi) Result (iv) and (v) show that the limit sets F∞ and F∞ exist. This and results

(i), (iii) imply that F∞ = co {F∞} = co {F∞}.

(vii) Algorithm 6 terminates when Fk∗+1 = Fk∗ for some k∗ and hence F∞ = Fk∗ .

This means that P̂ℓ(F∞, Ai, , W ) ⊆ F∞ for all ℓ ∈ T and for all i ∈ IN . DDT-invariance

of F∞ then follows from part (ii) of Theorem 4.1.

(viii) By definition, F∞ is the minimal DDT-invariant set. Its convex-hull, F∞, is

the minimal convex DDT-invariant set.

(ix) Considering the evolution of x(t) of system in (4.12), the first term approaches

0 as t → ∞ and the sum of the rest of the terms correspond to a point in F∞ for any

admissible switching sequence Sτ (t). This means that d(x(t), F∞) → 0 as t → ∞.

78



CHAPTER 4. COMPUTATION OF DISTURBANCE INVARIANT SETS

Proof of Theorem 4.3:

(i) This result follows directly from step (d) of Algorithm 7 and O0 ⊆ X.

(ii) Suppose O0 := {x : R̄j x ≤ 1 for all j ∈ J }. When Ok is incremented to Ok+1

in step (d) of Algorithm 7, additional inequalities are added to Ok in the form of

Q̂ℓ(Ok, Ai,W ) for ℓ = τ, · · · , 2τ − 1 and for i = 1, · · · , N . For each R̄j, j ∈ J , these

inequalities are of the form

R̄jA
ℓ1
i1

Aℓ2
i2
· · ·Aℓk

ik
A

ℓk+1

ik+1
x ≤ 1 − θ(R̄j, ℓ1, i1) − θ(R̄jA

ℓ1
i1

, ℓ2, i2)

− · · · − θ(R̄jA
ℓ1
i1
· · ·Aℓk

ik
, ℓk+1, ik+1) (4.22)

where θ(R̄j, ℓ, i) := maxw∈W R̄jw + maxw∈W R̄jAiw + · · · + maxw∈W R̄jA
ℓ−1
i w as dis-

cussed in (4.18), i1, · · · , ik+1 ∈ IN and ℓ1, · · · , ℓk+1 ∈ T. Since Ok ̸= ∅ for all k, the

righthand side of (4.22) is greater than 0. The remainder part of this proof shows

that these added inequalities are redundant to Ok after some sufficiently large k. If

θ(R̄j, ℓ, i) = ε̄, then θ(R̄jAk, ℓ, i) ≤ βkλkε̄ for some βk > 0 and λk ∈ (0, 1) and any

k ∈ IN . Hence, define ε := maxℓ∈T,i∈IN
θ(R̄j, ℓ, i). This means that there exist a

λ ∈ (0, 1) and a β > 0 such that

max
i1,i2∈IN
ℓ1,ℓ2∈T

θ(R̄jA
ℓ1
i1

, ℓ2, i2) ≤ βελ,

max
i1,i2,i3∈IN
ℓ1,ℓ2,ℓ3∈T

θ(R̄jA
ℓ1
i1

Aℓ2
i2

, ℓ3, i3) ≤ βελ2,

...

max
i1,...,ik+1∈IN

ℓ1,...,ℓk+1∈T

θ(R̄jA
ℓ1
i1

Aℓ2
i2
· · ·Aℓk

ik
, ℓk+1, ik+1) ≤ βελk
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With this, the righthand side of (4.22) is

RHS = 1 −
[
θ(R̄j, ℓ1, i1) + θ(R̄jA

ℓ1
i1

, ℓ2, i2) + · · · + θ(R̄jA
ℓ1
i1

Aℓ2
i2
· · ·Aℓk

ik
, ℓk+1, ik+1)

]
≥ 1 −

[
ε + βελ + · · · + βελk

]
= 1 − ε − βελ

1 − λk−1

1 − λ
(4.23)

≥ 1 − ε − βελ
1

1 − λ
(4.24)

In addition, the lefthand side of (4.22) satisfy

LHS = R̄j(A
ℓ1
i1
· · ·Aℓk

ik
A

ℓk+1

ik+1
)x ≤ λk+1 α ∥x∥ ∥R̄j∥ (4.25)

for some positive real number α. Since 0 < λ < 1, there exist a sufficiently large k

such that max
{
λk+1α∥x∥ ∥R̄j∥ : j ∈ J , x ∈ O0

}
< (1−ε−βελ 1

1−λ
). Then, (4.24) and

(4.25) imply that

LHS = R̄j(A
ℓ1
i1
· · ·Aℓk+1

ik+1
)x ≤ λk+1α∥x∥ ∥R̄j∥ < (1 − ε − βελ

1

1 − λ
)

< (1 − ε − βελ
1 − λk−1

1 − λ
) ≤ RHS

Hence, all new inequalities of (4.22) added at iteration (k + 1) of algorithm 7 are

redundant to Ok and Ok = Ok+1 and O∞ is finitely determined. The result of 0 ∈ O∞

follows from 0 ∈ O0 and 0 ∈ Q̂ℓ(Ok, Ai,W ) for all ℓ ∈ T and for all i ∈ IN .

(iii) Algorithm 7 terminates when Ok∗+1 = Ok∗ = O∞ for some k∗ and hence

O∞ ⊆ Q̂ℓ(O∞, Ai,W ) for all ℓ ∈ T and for all i ∈ IN . DDT-invariance of O∞ then

follows from part (iii) of Theorem 4.1. Moreover, step (b) of algorithm 2 ensures that

O∞ is constraint admissible for all of the first τ − 1 steps. This and DDT-invariance

of O∞ together, imply CADDT-invariance of O∞. The proof of O∞ being maximal

is by contradiction. Suppose O∞ is not maximal and there exist a CADDT-invariant

set O∗ ⊆ X such that O∗ * O∞. Since O∗ must be constraint admissible for any

switching sequence that is less than τ , O∗ ⊂ O0. Let x ∈ O∗. As O∗ is DDT-
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invariant, x(t) ∈ O∗ ⊂ O0 for all ℓ = τ, · · · , 2τ − 1 and for all i ∈ IN . This implies

that x ∈ Q̂ℓ(O0, Ai,W ) for all ℓ ∈ T and for all i ∈ IN , or, x ∈ O1. Therefore,

O∗ ⊆ O1. Repeating the above argument shows that O∗ ⊆ Ok for all k and hence

O∗ ⊆ limk→∞ Ok = O∞ which violates O∗ * O∞.

(iv) The result follows from (A6) that F∞ ⊆ F∞ ⊂ O∞ and property (ix) of

Theorem 4.2.
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Chapter 5

Domain of Attraction of Saturated

Switched Systems

This chapter proposes two approaches to compute domain of attraction (DOA) of

switched systems under dwell-time switching and in the presence of saturation non-

linearity. The first approach uses linear difference inclusions (LDI) to represent the

saturation nonlinearity. Accordingly, we derive sufficient conditions, in terms of linear

matrix inequalities (LMIs), for asymptotic stability of the switched system that simul-

taneously enlarge the DOA. The second approach generalizes the concept of Saturated

and Non-Saturated (SNS) invariance [63] and SNS-domain of attraction for switched

systems under dwell-time switching. An algorithm for computing the maximal SNS

domain of attraction is also provided. In addition, it is shown that any DOA obtained

from LDI approach is a subset of SNS-domain of attraction and hence SNS approach

is less conservative but requires additional computations.
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5.1 Introduction

Consider the discrete-time switched systems with saturation nonlinearity in the form

of  x(t + 1) = Aσ(t) x(t) + Bσ(t)sat(u(t))

u(t) = Kσ(t) x(t)
(5.1)

where σ(t) : Z+ → IN := {1, · · · , N} is a time-dependent switching signal that

satisfies the common dwell-time restriction. Symbol sat(·) is the standard vector-

valued saturation function, i.e., sat(u) = [sat(u1), · · · , sat(um)]T , with sat(uj) =

sgn(uj) min{1, |uj|}. Without loss of generality, the saturation limit is normalized

to one, by appropriately scaling the Bσ and Kσ matrices.

Most of the literature of switched systems is concerned with conditions that en-

sure stability of the unsaturated system (5.1) when switching signal σ(·) is arbi-

trary [7,12,23], or when it satisfies some dwell-time restrictions [36,37,46]. The earlier

chapters of this thesis extended those results to include the case where constraints are

present. A special case of constraint is the saturation limit of the control. Such a con-

straint is common in many applications and may cause instability and/or performance

degradation of the system. Consequently, estimation of the DOA of (5.1) is important

and has received the attention of many researchers (see, e.g., [64–68]).

While several approaches have been proposed to handle saturation nonlinearity,

two of them appear promising. The first approach is the polytopic representation of

saturation nonlinearity (see, e.g., [69–71]). Accordingly, the saturation nonlinearity can

be represented as a linear differential/difference inclusion (LDI). Such a representation

allows one to use conventional tools for linear systems to deal with the saturated sys-

tems [70]. The second approach is based on the concept of SNS-invariance introduced

by Alamo et al. for a single linear system [63]. They also show its role in enlarging the

DOA.
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Although the above mentioned approaches has been used for switched systems un-

der arbitrary switching, (see, e.g., [64–67] for LDI approach and [68] for SNS approach),

the extension of these methods for dwell-time switched systems has not been done due

to the complex structure of switching sequences with dwell-time restriction. To the

best of our knowledge there are very few results on such systems [72,73]. These results

are somewhat conservative and a comparison with these results is presented in section

5.6.

The following additional notations are used in this chapter. Given an integer m ≥

1, define Vm := {S : S ⊆ {1, ..., m}} as the set of all subsets of {1, ..., m}. Hence, there

2m elements in Vm including the empty set, {∅}. Also Sc = {j ∈ {1, ...,m} : j /∈ S} is

the complement of S in Vm. Given a vector x ∈ Rn, xj is the j-th element of x and |x|

is the absolute operator that is applied element-wise. Given a matrix Y ∈ Rm×n, Y i•

is the i-th row and Y •j is the j-th column of Y .

5.2 Preliminaries

Recall from Chapter 4 that a set Ω is DT-contractive if the solution of the system after

t-steps for t = τ, · · · , 2τ − 1 is inside Ω. Characterization of DT-contractive sets of

system (5.1) follow this result, but requires additional operators and hence, notations.

Consider the i-th mode of (5.1),

x(t + 1) = Ai x(t) + Bi sat(Kix(t)) (5.2)

Then the successor state of x, Fi(x), is

Fi(x) = Ai x + Bi sat(Kix).
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Repeating the above leads to

F 2
i (x) = Fi(Fi(x)) = AiFi(x) + Bi sat(KiFi(x))

...

F t
i (x) = Fi(F

t−1
i (x)) = Fi(Fi(· · ·Fi(x))) (5.3)

where F t
i (x) is the state evolution of (5.1) after t-steps with x(0) = x and Sτ (t) =

{i, i, · · · , i}. Then, a set Ω is DT-contractive (with contraction λ ∈ (0, 1)) w.r.t.

system (5.1) if and only if for every x ∈ Ω, F t
i (x) ∈ λΩ for all i ∈ IN and for all

t ∈ T = {τ, τ + 1, · · · , 2τ − 1}.

5.3 LDI approach

In this section, we generalize the LDI approach for estimating DOA of switched system

(5.1) under dwell-time switching. LDI approach uses auxiliary terms and exploits their

convex hull to represent the saturation function as summarized in the following lemmas:

Lemma 5.1 [70,71] Single-input case (u ∈ R): For all u, v ∈ R such that |v| ≤ 1,

sat(u) ∈ co {u, v}

Lemma 5.2 [70] Multi-input case (u ∈ Rm): For any S ∈ Vm, define DS to be the

m×m diagonal matrix with diagonal elements DS(j, j), whose value is 1 if j ∈ S and

0 otherwise. Also define DSc = Im − DS. Then, for all u ∈ Rm and v ∈ Rm such that

|vj| ≤ 1 for all j ∈ {1, · · · ,m}:

sat(u) ∈ co {DScu + DS v : ∀S ∈ Vm} (5.4)
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To illustrate the main idea of the LDI approach, consider any u ∈ R2 as an example.

According to Lemma 5.2, for any v ∈ R2, v =

 v1

v2

 such that |v1| ≤ 1, |v2| ≤ 1, it

follows that

sat


u1

u2


 ∈ co


u1

u2

 ,

u1

v2

 ,

v1

u2

 ,

v1

v2


 .

In other words, the above lemma states that sat(u) can be expressed as a convex hull

of vectors formed by choosing some rows (those belonging to S) from v and the rest

(those belonging to Sc) from u. Using (5.4) and assuming that u = Kix and v is

replaced by some linear function Hix, it follows that

sat(Ki x) ∈ co {DScKi x + DS Hi x : ∀S ∈ Vm} (5.5)

for all x ∈ L(Hi) := {x : ∥Hix∥∞ ≤ 1}. Define

Ei,Hi

(
x, S

)
:=
(
Ai +

∑
j∈Sc

B•j
i Kj•

i

)
x +

(∑
j∈S

B•j
i Hj•

i

)
x (5.6)

and it follows from (5.5) and (5.6) that for every x ∈ L(Hi),

Fi(x) = Ai x + Bi sat(Ki x) ∈ co{Ei,Hi
(x, S) : ∀S ∈ Vm}. (5.7)

It is known that saturated system (5.1) is asymptotically stable under arbitrary

switching if a common quadratic Lyapunov function V (x) = x⊤P x exists such that

V (Fi(x)) < V (x), ∀i ∈ IN (5.8)

Since V (x) is a convex function and Fi(x) is a convex combination of Ei,Hi
(x, S) ac-

cording to (5.7), condition (5.8) is satisfied if V (Ei,Hi
(x, S)) < V (x) for each i ∈ IN

and for each S ∈ Vm. The following theorem, taken from [64], summarizes this result.
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Theorem 5.1 [64] If there exist P ≻ 0 and matrices Hi for each i ∈ IN such that

[Ei,Hi
(x, S)]⊤P [Ei,Hi

(x, S)] − x⊤P x < 0, ∀i ∈ IN ,∀S ∈ Vm (5.9)

E(P ) ⊆ L(Hi), ∀i ∈ IN (5.10)

Then, (i) the origin of the (5.1) is asymptotically stable under arbitrary switching, (ii)

E(P ) := {x : x⊤P x ≤ 1} is the estimate of DOA of the system.

The DOA, which is inside L(Hi), can be enlarged by maximizing the size of the

ellipsoid E(P ). The key point here is to choose the auxiliary variables Hi’s so that

the size of DOA is maximized. Since Ei,Hi
(x, S) of (5.9) is a linear function of the

variable Hi, the above constraints can be converted into LMIs and solved with convex

optimization routines.

If the switched system is unstable under arbitrary switching, condition (5.9) be-

comes infeasible. This is because the strictly decreasing requirement of the Lyapunov

function is too restrictive. This requirement can be relaxed by requiring the Lyapunov

function to be decreasing after t-steps for t = τ, τ + 1, · · · , 2τ − 1.

While the stability condition is reasonable, the LDI representation of F t
i (x) is diffi-

cult as F t
i (x) consists of t nested saturation functions. The rest of this section describes

the LDI representation of F t
i (x) by introducing t auxiliary variables Hi,1, · · · , Hi,t. Each

of these variables are introduced for LDI representation of one of the nested saturations.

Consider F 2
i (x) and suppose that Hi,1 and Hi,2 are associated for LDI representa-

tion of sat(Kix) and sat(KiFi(x)), respectively. Define

Ei,Hi,2

(
Fi(x), S

)
:=
(
Ai +

∑
j∈Sc

B•j
i Kj•

i

)
Fi(x) +

(∑
j∈S

B•j
i Hj•

i,2

)
x (5.11)
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Then, from (5.6) and (5.11), it follows that

Fi(x) ∈ co{Ei,Hi,1
(x, S1) : ∀S1 ∈ Vm}, ∀x ∈ L(Hi,1) (5.12)

F 2
i (x) = Fi(Fi(x)) ∈ co{Ei,Hi,2

(Fi(x), S2) : ∀S2 ∈ Vm}, ∀x ∈ L(Hi,2) (5.13)

Since F 2
i (x) is represented by the convex-hull of Ei,Hi,2

(Fi(x), S2), and Fi(x) is by itself

a convex-hull of Ei,Hi,1
(x, S1), it is straightforward1 to expand F 2

i (x) as

F 2
i (x) ∈ co{Ei,Hi,2

(
Ei,Hi,1

(x, S1), S2

)
: ∀S1, S2 ∈ Vm}, ∀x ∈ L(Hi,1) ∩ L(Hi,2).

(5.14)

An example that illustrates this is given next. Consider a single-input system

where m = 1 and hence Vm = {{∅}, {1}}. From (5.14), it follows that Ei,Hi,2

(
Ei,Hi,1

(x, S1), S2

)
takes one of the following four expressions, depending on the value of

S1, S2 ∈ Vm.

S1 = {∅}, S2 = {∅} : Ei,Hi,2

(
Ei,Hi,1(x, {∅}), {∅}

)
= (Ai + BiKi)2x (5.15)

S1 = {1}, S2 = {∅} : Ei,Hi,2

(
Ei,Hi,1(x, {1}), {∅}

)
= (Ai + BiKi)Aix + (Ai + BiKi)Bi Hi,1x (5.16)

S1 = {∅}, S2 = {1} : Ei,Hi,2

(
Ei,Hi,1(x, {∅}), {1}

)
= Ai(Ai + BiKi)x + (Bi)Hi,2x (5.17)

S1 = {1}, S2 = {1} : Ei,Hi,2

(
Ei,Hi,1(x, {1}), {1}

)
= A2

i x + (AiBi)Hi,1x + (Bi) Hi,2x (5.18)

It is important to note that each one of the above expressions is an affine function of

Hi,1, Hi,2. Therefore, F 2
i (x) which is the convex-hull of them, is also an affine function

of Hi,1 and Hi,2.

1When α ∈ co{αi : i = 1, · · · , nα} and β ∈ co{βj : j = 1, · · · , nβ}, then γ = α + β ∈ co{αi + βj :
i ∈ {1, · · · , nα}, j ∈ {1, · · · , nα}}.
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Similar to the above procedure, by associating auxiliary matrices Hi,1, Hi,2, · · · ,

Hi,t to each one of the nested saturation functions appeared in F t
i (x), it follows that

F t
i (x) ∈ co

{
Ei,Hi,t

(Ei,Hi,t−1
· · · (Ei,Hi,1

(x, S1), · · · ),St−1), St) : ∀S1, S2, · · · , St ∈ Vm

}
,

∀x ∈ L(Hi,1) ∩ · · · ∩ L(Hi,t). (5.19)

In order to simplify the notations of F t
i (x), let

Ei (x, S1) := Ei,Hi,1
(x, S1)

E2
i (x, S1, S2) := Ei,Hi,2

(
Ei,Hi,1

(x, S1), S2

)
...

Et
i(x, S1, · · · , St) := Ei,Hi,t

(Ei,Hi,t−1
· · · (Ei,Hi,1

(x, S1), · · · ), St−1), St) (5.20)

With these notations, the following theorem states a sufficient condition for stability

of (5.1) under dwell-time switching and provides an estimate of its DOA.

Theorem 5.2 If there exist a P ≻ 0 and matrices Hi,1, Hi,2, · · · , Hi,2τ−1 ∈ Rm×n for

all i ∈ IN such that

[
Eℓ

i (x, S1, · · · , Sℓ)
]⊤

P
[
Eℓ

i (x, S1, · · · , St)
]
− x⊤Px < 0,

∀i ∈ IN , S1, · · · , Sℓ ∈ Vm, ℓ ∈ T (5.21)

E(P ) ⊆ L(Hi,t), ∀i ∈ IN , t ∈ {1, · · · , 2τ − 1} (5.22)

Then, (i) the origin of the saturated system (5.1) with dwell-time τ is locally asymp-

totically stable; (ii) there exists an ᾱ ∈ (0, 1) such that αE(P ) is DT-contractive for all

α ≤ ᾱ and αE(P ) is inside the DOA of (5.1).

Remark 5.1 Setting τ = 1 in the above theorem, retrieves the stability conditions for

saturated systems under arbitrary switching (see e.g. Theorem 5.1 or results appeared
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in [64,66,67]). Hence, the LDI approach presented here can be seen as a generalization

of those obtained for arbitrary switched systems.

5.3.1 Enlarging the DOA using LDI approach

The estimate of DOA of system (5.1) obtained from Theorem 5.2 is the ellipsoidal set,

E(P ). To enlarge this set, one must chose P ≻ 0 and auxiliary matrices Hi,1, · · · , Hi,2τ−1

such that the size of E(P ) is maximized. This can be done by solving the following

constrained optimization problem.

max
P,Hi,1,··· ,Hi,2τ−1

volume E(P )

s.t. (5.21) and (5.22). (5.23)

In what follows, we describe how to transform (5.23), into an optimization problem

with LMI constraints that can be efficiently solved with convex optimization routines.

The key point is that Et
i (x, S1, · · · , St) of (5.21) is an affine function of variable

Hi,1, · · · , Hi,t for each S1, S2, · · · , St ∈ Vm (See equations (5.15)-(5.18) for the affine

expression of E2
i (x, S1, S2) in terms of Hi,1 and Hi,2). Thus it can be rewritten as

Et
i (x, S1, · · · , St) = (Θi,0 + Θi,1Hi,1 + · · · + Θi,tHi,t)x (5.24)

where Θi,·’s are known functions of Ai, Bi, Ki only. In order to transform (5.21) into

an LMI constraint, pre- and post-multiply it by P−1. Using (5.24), it follows that

x⊤
[
P−1(Θi,0 + Θi,1Hi,1 + · · ·+ Θi,tHi,t)⊤P (Θi,0 + Θi,1Hi,1 + · · ·+ Θi,tHi,t)P−1 −P−1

]
x < 0.

Let Z = P−1 and Yi,t = Hi,tP
−1. Then, the above equation is converted into

(
Θi,0Z + Θi,1Yi,1 + · · · + Θi,tYi,t

)⊤
Z−1

(
Θi,0Z + Θi,1Yi,1 + · · · + Θi,tYi,t

)
− Z ≺ 0
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Utilizing the property of Schur complement [19], the above is equivalent to

 Z (Θi,0Z + Θi,1Yi,1 + · · · + Θi,tYi,t)
⊤

∗ Z

 ≻ 0 (5.25)

where ∗ denotes the transpose of the off-diagonal term. Equation (5.25) is an LMI in

terms of the variables Z, Yi,t’s.

Constraint (5.22) can also be converted into an LMI using the fact that E(P ) ⊆

{x : a⊤x ≤ 1} is equivalent to a⊤P−1a ≤ 1 [70]. Again, using the Schur complement it

follows that

a⊤P−1a ≤ 1 ⇔

 1 a⊤P−1

∗ P−1

 ≽ 0.

With this, constraint (5.22) is equivalent to

 1 Y j•
i,t

∗ Z

 ≽ 0 , ∀j ∈ {1, · · · ,m},∀i ∈ IN , ∀t ∈ {1, · · · , 2τ − 1} (5.26)

where Y j•
i,t is the j-th row of Yi,t.

Finally, Trace(P−1) can be used as a measure of size of the ellipsoid E(P ) and thus

the estimate of the DOA of (5.1) can be enlarged by solving the following constrained

LMI optimization problem with Z ≻ 0, Yi,1, · · · , Yi,2τ−1 for i = 1, 2, · · · , N as variables:

max
Z,Yi,1,··· ,Yi,2τ−1

Trace(Z)

s.t. LMIs in (5.25) and (5.26). (5.27)

The auxiliary matrices Hi,t can then be obtained from Hi,t = Yi,tP where P = Z−1.

Remark 5.2 Any feasible solution of optimization problem (5.27) with dwell-time τ ,

is also a feasible solution for optimization problem (5.27) with any τ̄ ≥ τ . This follows
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because for any x ∈ E(P ) and any τ̄ ≥ τ , F τ̄
i (x) ∈ E(P ) if F τ

i (x) ∈ E(P ).

5.4 SNS approach

In this section, we generalize the SNS-approach of [63] to switched systems under

dwell-time switching. To proceed, some set operations are required.

Recall from Chapter 4 that the one-step backward set of Ω w.r.t. mode i is Qi(Ω) :=

{x : Fi(x) = Aix+Bisat(Kix) ∈ Ω}. Using this, the one-step set of the switched system

(5.1) is

Q(Ω) =
∩

i∈IN

Qi(Ω) = {x : Fi(x) ∈ Ω,∀i ∈ IN} (5.28)

In general, Q(Ω) is not necessarily convex when Ω is. An example that illustrate non-

convexity of Q(Ω) is in order.

Example 1: Consider a switched system with IN = {1, 2}, A1 =
 1 1

0 1

, B1 = [10, 5]⊤,

K1 = [−0.1, 0.1], A2 =
 0 −1

0.0001 1

, B2 = [0.5, −2]⊤ and K2 = [0.02, 0.03]. Figure 5.1

shows Q1(Ω) (dotted lines), Q2(Ω) (solid lines) and Q(Ω) (in shade).

The non-convex nature of Q(Ω) makes its use for computations of DOA of (5.1) un-

desirable. To circumvent the non-convexity problem we make use of the SNS-operator

introduced in [63] for single saturated system and generalize it for switched systems.

The key idea, which is illustrated in Fig. 5.2, is to use a piece-wise linear function as

an upper-bound of the saturation function:

a sat(u) ≤ max{au,−|a|} , ∀a, u ∈ R (5.29)

The way in which (5.29) can be used, is discussed in the following example.

Example 2: Consider a saturated system x(t + 1) = Ax(t) + B sat
(
u(t)

)
, where

u ∈ R2, u = Kx, B ∈ Rn×2 and K ∈ R2×n. Also let B•j, Kj• to be the j-th column of
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Figure 5.1: Illustration of non-convex one-step sets

B and the j-th row of K, respectively. Then,

x(t + 1) = Ax(t) + Bsat
(
K x(t)

)
= Ax(t) +

[
B•1 B•2] [ sat(K1•x)

sat(K2•x)

]

= Ax(t) + B•1sat
(
K1•x(t)

)
+ B•2sat

(
K2•x(t)

)
≤ Ax(t) + max

{
B•1K1•x(t),−|B•1|

}
+ max

{
B•2K2•x(t),−|B•2|

}
≤ max

{(
A + BK

)
x(t) ,

(
A + B•2K2•)x(t) − |B•1| ,(
A + B•1K1•)x(t) − |B•2| ,

A x(t) − |B•1| − |B•2|
}

which is an upper bound of state-evolution of the saturated system after one step. Note
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a sat(u)

a u

- a

Figure 5.2: Piece-wise linear upper bound of saturation function a sat(u) for a > 0.

that in the above expression, there are four terms that define the max function. The

first term corresponds to the unsaturated system, the second term is associated with

the case where the first input (u1 = K1•x) is saturated and u2 = K2•x is not saturated.

The third term is when u2 is saturated but not u1 and the last term corresponds to

the case where both inputs are saturated. This motivates the SNS-invariance, which

is invariance for all possible modes of saturation. To obtain a the formal definition of

SNS-invariant set, denote

G(x, S) := Ax +
∑
j∈Sc

B•jKj•x +
∑
j∈S

B•jsat
(
Kj•x

)
(5.30)

as the successor state of x when only the inputs from S ∈ Vm are saturated but not

the rest. With this, the definition of SNS-invariance is now given.

Definition 5.1 A set Ω is said to be SNS-invariant if for every x ∈ Ω, G(x, S) ∈ Ω

for all S ∈ Vm.

With this definition, the SNS-one-step set is defined as

Q̂sns(Ω) = {x : G(x, S) ∈ Ω, ∀S ∈ Vm}. (5.31)

To understand this operator, consider system of Example 2. The SNS-one-step set of
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Ω = {x : R x ≤ 1} for this example is

Q̂sns(Ω) = {x : R(A + B•1K1• + B•2K2•)x ≤ 1} : G(x, {∅}) ∈ Ω

∩ {x : R(A + B•2K2•)x + RB•1sat(K1•x) ≤ 1} : G(x, {1}) ∈ Ω

∩ {x : R(A + B•1K1•)x + RB•2sat(K2•x) ≤ 1} : G(x, {2}) ∈ Ω

∩ {x : R(A)x + RB•1sat(K1•x) + RB•2sat(K2•x) ≤ 1} : G(x, {{1}, {2}}) ∈ Ω

While the Q̂sns(Ω) defined in (5.31) is not easily computable due to the existence of

saturation functions, equation (5.29) can be used to obtain an equivalent representation

of (5.31) as follows:

Q̂sns(Ω) =
∩

S∈Vm

{
x : R

(
A +

∑
j∈Sc

B•jKj•)x −
∑
j∈S

∣∣RB•j∣∣ ≤ 1
}

(5.32)

Equation (5.32) shows that Q̂sns(Ω) can be computed from the intersection of 2m

polyhedral sets and hence is convex. Q̂sns(Ω) for the system of Example 2 where

m = 2 becomes

Q̂sns(Ω) = {x : R(A + B•1K1• + B•2K2•)x ≤ 1} : S = {∅}

∩ {x : R(A + B•2K2•) x − |RB•1| ≤ 1} : S = {1}

∩ {x : R(A + B•1K1•) x − |RB•2| ≤ 1} : S = {2}

∩ {x : R(A) x − |RB•1| − |RB•2| ≤ 1} : S = {{1}, {2}}

(5.33)

Then, for any x ∈ Q̂sns(Ω),

R
(
Ax + Bsat(Kx)

)
≤ max

{
R
(
A + BK

)
x , R

(
A + B•2K2•)x − |RB•1| ,

R
(
A + B•1K1•)x − |RB•2| , RAx − |RB•1| − |RB•2|

}
(5.34)
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Each of the four terms in the max function of (5.34) corresponds to one of the terms

appeared (5.33) and is less than 1, thus R
(
Ax + Bsat(Kx)

)
≤ 1. This means Ax +

Bsat(Kx) ∈ Ω. Moreover, Q̂sns(Ω) is convex since it is obtained as the intersection of

finite number of polyhedral sets.

The Q̂sns(Ω) of (5.32), is defined for a (non-switched) saturated system. The SNS-

one-step set for mode i and for switched system (5.1) are respectively defined as:

Qi
sns(Ω) =

∩
S∈Vm

{
x : R

(
Ai +

∑
j∈Sc

B•j
i Kj•

i

)
x −

∑
j∈S

∣∣RB•j
i

∣∣ ≤ 1
}

(5.35)

Qsns(Ω) =
∩

i∈IN

Qi
sns(Ω) (5.36)

From (5.35), (5.36), it follows that

x ∈ Qsns(Ω) ⇒ Fi(x) ∈ Ω, ∀i ∈ IN ⇒ x ∈ Q(Ω).

Therefore, Qsns(Ω) is a convex inner approximation of non-convex one-step set Q(Ω)

of system (5.1). Figure 5.3 illustrates these sets for switched system of Example 1.
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Figure 5.3: Illustration of the convex SNS-one-step set.

With the help of the convex SNS-one-step operator, a simple procedure for compu-

tation of DOA of (5.1) is to start from an initial polyhedral DOA and recursively use
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the SNS-one-step operator to enlarge it. Fig 5.4 shows the resulting DOA of Example

1 when the SNS operator is used.
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Figure 5.4: Enlarging the domain of attraction by recursively computing the one-step
sets.

The above procedure, however, can only be used for switched systems that are sta-

ble under arbitrary switching. When the system is not stable under arbitrary switching

the above recursive procedure results in an empty set as it requires the states of the

system to contract at every step. When a dwell-time τ is imposed for stability, this

condition can be relaxed by requiring the states of the system to contract only af-

ter t-steps for t = τ, τ + 1, · · · , 2τ − 1. This means that F t
i (x) may not be in Ω for

t = 1, 2, · · · , τ − 1.

Define Qi
t(Ω) := Qi · · · Qi(Ω) = {x : F t

i (x) ∈ Ω} as the t-step set of Ω w.r.t. mode

i. The relaxation above requires computation of

Q(Ω) :=
∩

i∈IN

{∩
t∈T

Qi
t(Ω)

}
. (5.37)

As described earlier Qi(Ω) is non-convex (see e.g. Fig. 5.3) and so is Qi
t(Ω) and

Q(Ω). Again the non-convexity issue can be resolved if a convex (inner) approximation

of Qi
t(Ω) can be obtained. The SNS-t-step set, defined below, serves this purpose.
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Recall that x ∈ Qi
sns(Ω) implies Fi(x) ∈ Ω. Similarly, x ∈ Qi

sns(Qi
sns(Ω)) implies

that F 2
i (x) = Fi(Fi(x)) ∈ Ω. Repeating this for t times, results in the SNS-t-step set

of Ω for mode i, given by

Qi
sns,t(Ω) := Qi

sns · · · Qi
sns(Ω) (5.38)

Qi
sns,t(Ω) is convex and Qi

sns,t(Ω) ⊆ Qi
t(Ω). With this, a convex inner approximation

of Q(Ω) of (5.37) is

Qsns(Ω) :=
∩

i∈IN

{∩
t∈T

Qi
sns,t(Ω)

}
=
∩

i∈IN

Qi
sns,τ (Ω) (5.39)

Note that the second equality follows from the fact that Qi
sns,t(Ω) ⊆ Qi

sns,t+1(Ω) and

thus the inner bracket of (5.39) is Qi
sns,τ (Ω) ∩ Qi

sns,τ+1(Ω) ∩ · · · ∩ Qi
sns,2τ−1(Ω) =

Qi
sns,τ (Ω).

In summary, Qsns(Ω) has the following properties: (i) x ∈ Qsns(Ω) ⇒ F t
i (x) ∈ Ω,

∀i ∈ IN , ∀t ∈ T ⇒ x ∈ Q(Ω). (ii) Qsns(Ω) is convex and can be computed efficiently

when Ω is polyhedral.

The following algorithm summarizes the procedure for enlarging DOA of (5.1)

under dwell-time switching.

Algorithm 8 Enlarging DOA for saturated switched systems.

(i) Set k = 0 and let Ω0 to be an initial DOA that is DT-contractive.

(ii) Let Ωk+1 := Qsns(λΩk).

(iii) If Ωk+1 ≡ Ωk then stop, else set k = k + 1 and goto step (ii).

Algorithm 8 generates a sequence of DOAs of (5.1) and requires an initial DT-

contractive set Ω0. A proper choice of Ω0 is the maximal DT-contractive set Oλ
∞(X, τ)

of unsaturated system x(t + 1) = (Aσ + BσKσ)x(t), with X = L. The Oλ
∞(X, τ) can

be obtained using Algorithm 1a presented in Chapter 2.
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Note that a contraction factor of λ = 1−ε, ε > 0 is added in Algorithm 8 to impose

a strict contraction to the origin after every τ -steps. Properties of the sets obtained

from Algorithm 8 are stated next.

Theorem 5.3 Let L := ∩i∈IN
L(Ki) = ∩i∈IN

{x : ∥Ki x∥∞ ≤ 1}. Suppose that the

origin of the unsaturated system x(t + 1) = (Aσ + BσKσ)x(t), σ ∈ Sτ is asymptotically

stable with dwell-time τ . Suppose also that Ω0 ⊆ L is a DT-contractive polyhedral set

that contains the origin in its interior and Ωk’s are computed based on Algorithm 8.

Then,

(i) each Ωk is a convex polyhedron;

(ii) Ωk ⊆ Ωk+1 for all k ≥ 0;

(iii) each Ωk is DT-invariant w.r.t. system (5.1);

(iv) x ∈ Ωk ⇒ F t
i (x) ∈ λΩk−1, ∀t ∈ T,∀i ∈ IN ;

(v) each Ωk is a DOA of (5.1);

Remark 5.3 Any DOA obtained from Algorithm 8 with dwell-time τ is also a DOA

of system (5.1) with dwell-time τ̄ ≥ τ . This follows because Qsns,τ̄ (Ω) ⊇ Qsns,τ (Ω) and

Oλ
∞(X, τ̄) ⊇ Oλ

∞(X, τ).

Remark 5.4 Algorithm 8 with τ = 1 can be used for computation of DOA of switched

systems under arbitrary switched systems.

5.5 Comparison of SNS and LDI approaches

This section shows that any DT-contractive set obtained from LDI approach is con-

tained inside the DOA obtained from Algorithm 8 and hence, SNS approach is less

conservative than the LDI approach.

To show this, an additional property of the Qi
sns(·) and Qsns(·) operators must be
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highlighted. Similar to (5.30), for mode i of the system define

Gi(x, S) := Ai x +
∑
j∈Sc

B•j
i Kj•

i x +
∑
j∈S

B•j
i sat

(
Kj•

i x
)

(5.40)

as the successor state of x when only the inputs from S ∈ Vm are saturated but not

the rest. Repeating this, leads to

G2
i (x, S1, S2) = Gi(Gi(x, S1), S2)

...

Gt
i(x, S1, S2, · · · , St) = Gi(Gi · · ·Gi(x, S1) · · · ), St) (5.41)

From equivalence of (5.31) and (5.32), it follows that

Qi
sns(Ω) = {x : Gi(x, S) ∈ Ω,∀S ∈ Vm}

=
{
x : R

(
Ai +

∑
j∈Sc

B•j
i Kj•

i

)
x −

∣∣∑
j∈S

RB•j
i

∣∣ ≤ 1,∀S ∈ Vm

}
This means,

x ∈ Qi
sns(Ω) ⇐⇒ Gi(x, S) ∈ Ω,∀S ∈ Vm. (5.42)

Repeating this t times, implies that

x ∈ Qi
sns,t(Ω) ⇐⇒ Gt

i(x, S1, · · · , St) ∈ Ω,∀S1, · · · , St ∈ Vm.

and hence

x ∈ Qsns(Ω) ⇐⇒ Gt
i(x, S1, · · · , St) ∈ Ω, ∀S1, · · · , St ∈ Vm

∀t ∈ T,∀i ∈ IN (5.43)
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An associated definition is now given.

Definition 5.2 A set Ω is said to be DT-SNS-invariant (or DT-SNS-contractive),

if for every x ∈ Ω, Gt
i(x, S1, · · · , St) ∈ Ω (or λΩ) for all S1, · · · , St ∈ Vm, for all

t ∈ T = {τ, · · · , 2τ − 1} and for all i ∈ IN .

From (5.43) and Theorem 4.1 of Chapter 4, it follows that Qsns(Ω) is DT-SNS-contractive

if and only if Ω is DT-SNS-contractive, i.e. Ω ⊆ Qsns(Ω).

This property of Qsns(·) implies that, if we start from a DT-SNS-contractive set

and use Algorithm 8, the sequence of sets obtained are all DT-SNS-contractive.

Denote Ψ as a DOA obtained form LDI approach and recall that computation of

Ψ requires auxiliary matrices Hi,1, · · · , Hi,2τ−1 such that Eℓ
i (x, S1, · · · , Sℓ) ∈ λΨ for all

ℓ ∈ T and for all S1, · · · , Sℓ ∈ Vm for some λ ∈ (0, 1). The following lemma shows the

relationship between Et
i (x, S1, S2, · · · , St) of LDI approach and Gt

i(x, S1, S2, · · · , St) of

SNS approach.

Lemma 5.3 Let Et
i(x, S) and Et

i (x, S1, S2, · · · , St) be defined as (5.6) and (5.20), re-

spectively. Then,

Gi(x, S) ∈ co{Et
i (x, S̄) : ∀S̄ ∈ Vm} (5.44)

Gt
i(x, S1, S2, · · · , St) ∈ co{Et

i(x, S̄1, S̄2, · · · , S̄t) : ∀S̄1, · · · , S̄t ∈ Vm} (5.45)

From Lemma 5.3 and DT-contractivity of Ψ, it follows that for every x ∈ Ψ,

Gt
i(x, S1, S2, · · · , St) ∈ co{Et

i(x, S̄1, S̄2, · · · , S̄t)} ∈ λΨ (5.46)

Thus, Ψ is also SNS-DT-contractive. From (5.43) and Algorithm 8, it follows that

Ψ ⊂ Ω∗. The following theorem, summarizes this key result.

Theorem 5.4 Suppose that Ψ is a DT-contractive set obtained from LDI approach for

some auxiliary matrices Hi,1, · · · , Hi,2τ−1, for all i ∈ IN and Ψ ⊆
∩

i∈IN ,t∈{1,··· ,2τ−1} L(Hi,t).
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Then, (i) Ψ is a SNS-DT-contractive set, (ii) When sequence of Ωk is generated from

Algorithm 8, there exist a k > 0 such that Ψ ⊂ Ωk.

5.6 Numerical Examples

The example considered is a saturated switched system, taken from [73], with IN =

{1, 2}, A1 =
[ −0.7 1.0
−0.5 −1.2

]
, A2 =

[
0.26 −1.0
1.7 −1.5

]
, B1 = [1, 0]T , B2 = [0, −1]T , K1 =

[1.1759, 0.1089], K2 = [1.5114, −0.7765].
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1

 

 

E (P )
x0

x̄0

Ω*

Figure 5.5: Comparison of DOAs for τ = 2: SNS approach, Ω∗ and LDI approach,
E(P ).

It can be shown that this system is asymptotically stable with any dwell-time

τ ≥ 2. The intention is to compute the DOA of the system using the LDI approach of

Section 5.3 and SNS approach of Section 5.4 for different values of dwell-time τ ≥ 2

and compare the results.

The solution of the optimization problem (5.27) with τ = 2 are P = [ 2.2549 0.6805
∗ 3.5523 ],

H1,1 = [1.2215, 0.7638], H1,2 = [0.5291, 1.4426], H1,3 = [−0.4630,−1.0011], H2,1 =

[1.1322,−0.8601], H2,2 = [−0.0894,−0.7529], H2,3 = [−0.3201, 0.3926]. Figure 5.5

compares the DOA obtained from LDI approach (ellipsoid E(P )) and the SNS approach
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(Ω∗). Note that E(P ) ⊂ Ω∗ as claimed in Theorem 5.4.

Figure 5.5 also shows a sample trajectory of the system starting from x0 on the

boundary of Ω∗ under the periodic switching sequence shown in Fig. 5.6(c). The

solution of the system under the same input sequence starting from x̄0 outside Ω∗ (but

very close to the boundary of Ω∗) diverges (see Fig. 5.6(a)).
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(b) Converging response from
x0 = (−0.358, 0.802) ∈ Ω∗
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σ
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(c) input switching signal

Figure 5.6: State response of the system under periodic switching with dwell time
τ = 2.

5.6.1 Comparison with other methods

As a comparison, the authors of [73] use an LDI-based method together with MLFs to

obtain as estimate of DOA of (5.1). They show that if there exist λ ∈ (0, 1), µ ≥ 1,

Pi ≻ 0 and Hi for each i ∈ IN such that

[(Ei,Hi
(x, S))]⊤Pi [(Ei,Hi

(x, S))] ≤ λx⊤Pi x ∀i ∈ IN ,∀S ∈ Vm (5.47a)

Pi ≼ µPj ∀(i, j) ∈ IN × IN (5.47b)

E(Pi) ⊆ L(Hi) ∀i ∈ IN (5.47c)

Then, the saturated system (5.1) is asymptotically stable with dwell time τ ≥ − ln µ
ln(λ)

.

The above condition can be easily converted into LMIs and solved for Pi’s such that

the size of E(Pi) are maximized. Since MLFs are used, the estimate of DOA is then

the largest norm-2 ball Br = {x : ∥x∥ ≤ r} ⊆ ∩i∈IN
E(Pi) such that if x(0) ∈ Br then

x(t) ∈ E(Pi) for all t ∈ Z+. An admissible choice of r that guarantees this condition is
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r = mini∈IN

√
1

λmax(Pi)
.

For the example considered in this section, the smallest dwell-time τ that results

in a feasible solution for optimization problem (5.47) is τ = 5. The resulting DOA (Br)

is compared with the DOA obtained from our LDI approach E(P ) and SNS approach

(Ω∗) in Fig. 5.7.
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Figure 5.7: Comparison of Ω∗ with E(P ) and Br for τ = 5.

Computational results for τ = 2 and τ = 5 are also presented in Table 5.1. These

results include the size of DOA obtained from different approaches, the iteration at

which Algorithm 8 converges (k∗) and the number of inequalities (#) that characterizes

the Ω∗ set. From Table 5.1, it can be seen that our LDI approach is less conservative,

in terms of both minimal dwell-time needed for stability and the size of DOA, than the

LDI method of [73]. Moreover, LDI results are subset of SNS domain of attraction, i.e.

Br ⊂ E(P ) ⊂ Ω∗.

τ Area(B(r)) Area(E(P )) Area(Ω∗) k∗ #

2 – 1.143 1.896 29 6

5 1.131 6.443 12.011 17 8

Table 5.1: Computational results of saturated switched system
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5.7 Summary

In this chapter, two approaches are proposed for to the computation of DOA of switched

systems under dwell-time switching and in the presence of saturation nonlinearity.

In the LDI approach sufficient conditions, in terms of linear matrix inequalities, for

asymptotic stability of the switched system is derived. The second approach is based

on the convex SNS-operator defined for switched systems. An algorithm that starts

from an initial DOA, inside the linear region of controllers, and recursively enlarges the

DOA is also provided. It is also shown that any estimate of domain of attraction using

LDI approach is a subset of SNS approach and thus SNS approach is less conservative.
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Proofs:

Proof of Theorem 5.2:

Let Y0 := ∩i∈IN ,t=1,··· ,2τ−1L(Hi,t). Then, (5.22) implies that E(P ) ⊆ Y0 and there exists

a ᾱ < 1 such that for every x ∈ ᾱE(P ), F t
i (x) ⊆ Y0 for all t = 1, · · · , τ − 1 and for all

i ∈ IN . This and equations (5.21) and (5.22), imply that there exist λ ∈ (0, 1) such

that for every x ∈ αE(P ) with α ≤ ᾱ,

Et
i(x, S1, · · · , St) ∈ λαE(P ), ∀S1, · · · , St ∈ Vm, ∀t ∈ T.

Since F t
i (x) is a convex combination of Et

i (x, S1, · · · , St), it follows that for every

x ∈ αE(P ), α ≤ ᾱ F t
i (x) ∈ λαE(P ) and hence αE(P ) is DT-contractive. Asymptotic

stability of origin of system (5.1) then follows from Theorem 2.6.

Proof of Theorem 5.3:

Results of (i,ii,iv) follow directly from the definition of Qsns operator. (iii) DT-

invariance of Ω0 implies that Ω1 = Qsns(λΩ0) ⊃ Ω0. DT-invariance of Ω1 then follows

from property (iii) of Theorem 4.1. Repeating this recursively completes the proof.

(v) From result (iv) it follows that for every x ∈ Ωk, there exist a t ∈ Z+ such that

x(t) ∈ Ω0 for every admissible switching sequence. Since Ω0 is a DOA, it follows that

limt→∞ x(t) → 0.

Proof of Theorem 5.4:

(i) For every x ∈ Ψ, it follows from (5.46) that Gt
i(x, S1, · · · , St) ∈ λΨ for every

S1, · · · , St ∈ Vm and for all t ∈ T. Thus Ψ is a SNS-DT-contractive set. (ii) From

DT-contractivity of Ψ, it follows that for every x(0) ∈ Ψ, there exists a t such that

x(t) ∈ Ω0. This, (5.43) and recursive procedure of Algorithm 8 imply that x(0) ∈ Ωk̄

for some k̄.
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Chapter 6

Switching Controllers for Hard

Disk Drives

Hard disk drives (HDDs) are used as data-storage devices in computers and other data-

processing systems. Figure 6.1 illustrates a typical hard disk system, in which data

are arranged in concentric circles called tracks. The data are read from or written

on the rotating disks using the read/write (R/W) head, which is actuated by the

voice-coil motor (VCM). The VCM is controlled by a servo controller, which has two

main responsibilities: track-seeking and track-following. In track-seeking, the controller

moves the R/W head from one track to another as fast as possible, while in track-

following it keeps the head on the specific track so that data can be read/written.

In general, these two tasks cannot be achieved with only one controller. A common

practice in HDD industry is therefore to design separate controllers for each task, and

then use a Mode Switching Controller (MSC) that switches between them [3,74–79].

MSCs activate the track-seeking controller for quickly moving the R/W head to the

vicinity of the desired track; and switch to the track-following controller for keeping the

head on that specific track. The main challenges in MSCs are to guarantee the stability

and the switching conditions under which the performance is optimal [3, 76–80].
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R/W Head

Figure 6.1: A conventional hard disk drive

Assuming that the track-seeking and track-following controllers are given for a

HDD, this chapter explores the application of our developed methods in providing

switching conditions between these controllers such that the stability of the system

is guaranteed. Performance of the overall system is also improved by appropriate

initialization of the states of controller at the instance of mode switching.

6.1 Dynamical Model of HDD

It is well known [79, 80] in the research community of the HDD servo systems, that

VCM actuators have a characteristic of a double integrator cascaded with some high-

frequency resonance modes. The transfer function of the VCM actuator is

GV CM(s) =
y(s)

u(s)
=

k

s2

N∏
i=1

Gres,i(s) (6.1)
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where u is the actuator input (in volts), y is the position of R/W head (in tracks),

v = ẏ is the velocity of the R/W head, k is the gain of the actuator1, and Gres,i(s) for

i = 1, · · · , nr are the transfer functions of the significant resonance modes.

Throughout this chapter, the following 10-th order model of the Maxtor-51536U3

HDD, taken from [3,79], is used:

GV CM (s) =
6.4013 × 107

s2

4∏
i=1

Gres,i(s) ,

Gres,1(s) =
0.912s2 + 457.4s + 1.433 × 108

s2 + 359.2s + 1.433 × 108
, Gres,2(s) =

0.759s2 + 962.6s + 2.491 × 108

s2 + 789.1s + 2.49 × 108

Gres,3(s) =
9.917 × 108

s2 + 1575s + 9.917 × 108
, Gres,4(s) =

2.731 × 109

s2 + 2613s + 2.731 × 109

In order to minimize the effect of the high-frequency resonance modes, it is a

common practice to use notch filters to cancel the unwanted responses as much as

possible. For the above VCM model, the following notch filter is used to cancel the

first three resonance modes (see frequency response of VCM with the notch filter in

Fig. 6.2).

Gnotch(s) =
(

s2 + 238.8s + 1.425 × 108

s2 + 2388s + 1.425 × 108

)
×
(

s2 + 314.2s + 2.467 × 108

s2 + 3142 + 2.467 × 108

)
×
(

s2 + 628.3s + 9.87 × 108

s2 + 12570 + 9.87 × 108

)

1 k = kykv, where ky is the position measurement gain and kv = kt/m, with kt being the current-
force conversion coefficient and m being the mass of the VCM actuator.
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Figure 6.2: Frequency responses of the VCM with/without the notch filter

6.1.1 Model of the plant and controllers

Assuming that the high frequency resonance modes are compensated by the notch

filters, the simplified second-order model for the VCM actuator will be used hereafter

as the plant model for the purpose of controller design. In the implementation, the

overall control action would be ũ = Gnotch(s) × u, with u being the controller output.

The second-order state space model of the plant is

Plant :

 xp(t + 1) = Apxp(t) + Bp u(t) + Ep w(t)

y(t) = Cp x(t)
(6.2)

where xp =

[
y

v

]
, Ap =

[
1 Ts

0 1

]
, Cp =

[
1 0

]
, Bp =

[
kT 2

s /2

kTs

]
, k = 6.4013 × 107

and Ts = 0.05 milli-seconds is the sampling period. The disturbance w is an unknown

input that models the effect of friction and other nonlinearities. It is assumed that

u ∈ U = {u : |u| ≤ 3}, w ∈ W = {w : |w| ≤ 3 × 10−3}, and Ep = Bp. Also, only

variable y is measurable but not v.
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The track-following controller (denoted by mode 2) is taken from [79] and satisfies

certain frequency domain specifications like gain margin greater 6 dB, phase margin

greater than and 30◦, and maximum peaks of the sensitivity and complementary sen-

sitivity functions less than 6 dB. The track-seeking controller (denoted by mode 1)

is designed such that it has a fast response for seek lengths up to 200 tracks. These

controllers are of the form (6.3) and their details are given in Table 6.1.

Controller (i) :

 xc(t + 1) = Aci
xc(t) + Byi

y(t) + Bri
r(t)

uc(t) = Cci
xc(t) + Dyi

y(t) + Dri
r(t)

(6.3)

with xc being the controller states, y being the measured position, and r being the

reference track number.

Mode (i) Aci
Bri

× 105 Byi
× 105 Cci

Dyi
Dri

1
[

−0.809 −0.371

1 0

] [
1

0

] [
−1

0

]
[2.975, -5.002] 1 -1

2
[ 1 0

−0.041 0.644

] [
−5

417

] [
5

−1843

]
[-1.604, -7.524] 0.161 -0.462

Table 6.1: Details of the track-seeking (mode 1) and track-following (mode 2) con-
trollers.

Combining (6.2) and (6.3), the closed-loop equation for each mode i is

x(t + 1) = Acl,i x(t) + Bcl,i r(t) + Ecl w(t) (6.4)

where x = [x⊤
p , x⊤

c ]⊤ is the closed-loop states and

Acl,i =

 Ap + BpDy,iCp BpCc,i

By,iCp Ac,i

 , Bcl,i =

 BpDr,i

Br,i

 , Ecl =

 Ep

0


Assuming that rd is the desired track number, the equilibrium state of (6.4) is xe =
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(I −Acl,i)
−1Bcl,i rd. With the change of variables x̄ :=

[
x̄p

x̄c

]
= x−xe, the closed-loop

system (6.4) is transformed into

x̄(t + 1) = Acl,i x̄(t) + Ecl w(t) (6.5)

where x̄ = 0 is now the equilibrium solution.

6.2 Stability analysis of MSC

In this section, we briefly describe the conventional method for stability analysis of

MSC. Then, we apply our results presented in Chapters 2 and 3 to find time-dependent

switching conditions that ensures stability of MSC.

The simple switching strategy that ensures stability of conventional MSC is illus-

trated in Fig. 6.3. Suppose that D1 and D2 are respectively the DOAs of track-seeking

and track-following controllers such that D2 ⊂ D1. MSC uses the track-seeking con-

troller whenever x̄ ∈ D1, x̄ /∈ D2 and switches to track-following controller only if

x̄ ∈ D2 (see Fig. 6.3). Note that since D1 is a domain of attraction and D1 ⊃ D2,

for any initial condition x̄(0) ∈ D1 there exists a time t∗ ∈ Z+ such that x̄(t∗) ∈ D2.

Once x̄(t∗) is inside D2, MSC switches to track-following mode and the convergence

of x̄ to the origin is guaranteed since D2 is a contractive DOA of the track-following

controller. A sample trajectory of the system with such a switching strategy is also

shown in Fig. 6.3. It starts from x̄(0) outside D2 under track-seeking controller (i = 1)

and then switches to track-following controller (i = 2) when x̄ ∈ D2.

The switching condition above is state-dependent and easy to use when only two

controllers are involved. In the case of multiple controllers, the state-dependent switch-

ing condition become complicated as multiple nesting conditions has to be considered.

On the other hand, system (6.5) can be modeled as a switched system with time-
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i =
 1

i =
 2

D
2

D
1

x(0)¯ x̄=0

Figure 6.3: Illustration of conventional MSC strategy: when x̄ ∈ D1, x̄ /∈ D2 MSC uses
track-seeking and switch to track-following when x̄ ∈ D2.

dependent switching. Stability of such system can be verified with the results provided

in Chapters 2 and 3. Using Algorithm 2, the minimal common dwell-time of τc = 16

is obtained for this system. It is also easy to find the minimal mode-dependent dwell-

times τ1 = 11, τ2 = 16 that guarantees the asymptotic stability of (6.5). This means

that if the track-seeking controller is in operation for at least τ1 ≥ 11 × Ts = 0.55

msec, then it is safe to switch to the track-following controller provided that it is in

operation for at least τ2 ≥ 16 × Ts = 0.8 msec. Unlike the state-dependent switching

condition, our time-dependent switching conditions can be easily applied to the case

where multiple controller are used.

6.2.1 Performance of MSC

Stability of MSC is guaranteed with any switching sequence satisfying the above dwell-

time conditions. However, as it will be shown in the following example, the performance

of the system is highly dependent on the instance of switching and also on the saturation

limit of the actuator.

Figure 6.4 shows the response of MSC for the reference signal of rd = 50 tracks,

when switching to track-following controller happens at ts = 0.55 msec. Although the

system remains stable, x̄p1 has a large overshoot (see Fig. 6.4(b)) and the performance
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Figure 6.4: Response of the MSC for rd = 50µm with switching at ts = 0.55 msec.

of the switched system is not satisfactory. This is mainly due to (i) the abrupt change

in the control effort at the instant of switching and (ii) saturation of track-following

controller (see Fig. 6.4(a)).

To minimize the effect of saturation of track-following controller, the conventional

MSC techniques choose D2 as the largest DOA inside the linear region of track-following

controller. Fig. 6.5 shows the input/output response of the state-dependent MSC

for rd = 50 tracks with this D2. While the overshoot is reduced, the response is not

satisfactory yet and the abrupt change of control action is still present (see Fig. 6.5(a)).
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Figure 6.5: Response of the conventional MSC: switching at ts = 1.2 msec, where
x(ts) ∈ D2.

To further improve the performance of MSC, one common approach is to properly

initialize the states of track-following controller at the instance of switching. This
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approach, known as initial value compensation (IVC) [74–78], is used to obtain smooth

and fast transient responses. The basic idea is to minimize a cost function, J(x̄), of

position error and control effort at the moment of switching. Recall that states of the

plant x̄p are measurable2 and x̄ =

[
x̄p

x̄c

]
, the problem is then to find the initial values

of the controller at the switching instance, x̄c(ts), that minimizes J :

min
x̄c

J(x̄)

subject to x̄ ∈ D2 (6.6)

where D2 is a DOA of track-following controller. In the conventional MSC D2 is chosen

as the largest contractive ellipsoid that is inside the linear region of track-following

controller.

The transient response can be improved if MSC can switch earlier to the track-

following controller with proper initialization. This can be achieved by finding a larger

domain of attraction of track-following controller that considers the saturation effect

into account. The following section describes how algorithms presented in Chapter 5

can be used for this purpose.

6.2.2 Computation of DOA of saturated controller

In the VCM model of (6.2), the control effort u is constrained by u ∈ U = {u : |u| ≤ 3}.

In order to use the results of Chapter 5, which require the saturation limit of 1, we

normalize the plant model (6.2) as follows:

 xp(t + 1) = Ap xp(t) + (3Bp) sat
(

u(t)
3

)
+ E w(t)

y(t) = Cp x(t)
(6.7)

2position y is directly measured and velocity v is estimated using an state-observer.
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For simplicity, we set B̃p = 3Bp, C̃ci = Cci/3, D̃yi = Dyi/3 and D̃ri = Dri/3. Combining

(6.3) and (6.7), the saturated closed-loop system is given by:

x̄(t + 1) = Ãi x̄(t) + B̃ sat(K̃i x̄(t)) + Ẽw(t) (6.8)

where x̄ =

[
x̄p

x̄c

]
= x − xe and

Ãi =

[
Ap 0

Byi
Cp Aci

]
, B̃ =

[
B̃p

0

]
, K̃ =

[
D̃yi

Cp C̃ci

]
, Ẽ = Ecl

Since disturbance w ∈ W = {w : |w| ≤ 3 × 10−3} is present in (6.8), we need

to modify Algorithm 8 such that it considers the effect of disturbances. This can be

easily done by replacing step 2 of Algorithm 8 with Ωk+1 = Qsns(Ω
k ⊖ EW ), where

Qsns(Ω ⊖ EW ) computes the robust one-step set described in Chapter 4. We can

now compute the DOA of the track-following controller under saturated control, using

modified version of Algorithm 8 with IN = {2} and τ = 1, as only mode 2 is considered.

The DOA of the track-following controller obtained from Algorithm 8 is denoted

by X2 and has a polyhedral characterization in the form of:

X2 = {x̄ : Hp x̄p + Hc x̄c ≤ 1}. (6.9)

Switching condition and Controller initialization:

Once the characterization of X2 set is obtained, a switching strategy similar to con-

ventional MSC can be used. Accordingly, we start with the track-seeking controller

and switch to track-following controller at the moment where x̄p ∈ Proj(X2) := {x̄p :

∃x̄c s.t. [x̄⊤ , x̄⊤
c ]⊤ ∈ X2}. Similarly, the track-following controller is initialized (at
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the moment of switching) by solving the following optimization problem:

x̄c(ts) := arg min
x̄c

J(x̄(t))

s.t. Hc x̄c(t) ≤ 1 − Hp x̄p(t) (6.10)

The following algorithm summarizes the MSC strategy:

Algorithm 9 MSC with initialization of track-following controller.

(a) Let t = 0.

(b) Solve optimization problem (6.10) with x̄p(t) and x̄c(t).

(c) if there is no feasible solution then

- Set i = 1 (track-seeking controller), compute u with i = 1 from (6.3) and apply
it to the plant.

- t = t + 1 and goto step (b).

else

- Switch to mode 2 (track-following controller), with x̄c(ts) being the minimizer
of (6.10).

(d) Compute u from (6.3) with i = 2 and apply it to the plant.

(e) t = t + 1 and goto (d).

Note that the optimization problem (6.10) is solved until the states of the plant

enter Proj(X2). At this moment MSC switches to track-following mode with its states

initialized using (6.10). From then onwards no optimization is required and the con-

troller is updated according to (6.3). It should be mentioned that computation of X2

is expensive and it is done off-line. When the characterization of X2 is obtained, (6.10)

is a convex optimization problem with linear inequality constraints in R2, and hence

can be solved efficiently in real-time.

In summary, the purposed MSC method differs from the conventional MSC by

considering the saturation effect into the account and obtaining a larger DOA of the
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track-following controller.

6.2.3 Simulation Results

In this section, we compare the performance of our method, with the one of the MSC

with initialization proposed in [78].
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Figure 6.6: Comparison of the DOAs of track-following controller.

The cost function is the same for both methods and it is of the form

J(x̄) = ∥K̃2 x̄ − u1 ∥ (6.11)

that minimizes the difference between the control effort of the track-seeking controller

(u1) and track-following controller (K̃2 x̄) at the moment of switching. The difference

between the two methods is the choice of DOA of the track-following controller. For

our method, the polyhedral set X2 obtained from Algorithm 8 is used as D2 while for
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the method of [78], D2 is chosen as the largest ellipsoid E(P2) such that

P2 ≻ 0

(Acl,2 x̄ + Ecl w)⊤P2(Acl,2 x̄ + Ecl w) − P2 ≺ 0, ∀w ∈ W, ∀x̄ ∈ E(P2)

E(P2) ⊆ L(K̃2x̄)

Figure 6.6 shows the projection of the X2 into the x̄p1 - x̄p2 space and compare its size

with the maximal ellipsoidal set, denoted by E(P2), used in the conventional MSC.

Note that E(P2) is inside the linear region of track-following controller illustrated with

dotted lines in Fig. 6.6.

The input/state response obtained from method of [78] and our method are shown

in Figs. 6.7 and 6.8, respectively. It can be seen that the larger X2 set allows MSC

to switch faster to the track-following controller and thus has a better performance in

terms of (i) faster settling time and (ii) reduced response overshoot.
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Figure 6.7: Response of the conventional MSC with switching at ts = 1.2 ms and initial
states of x̄c(ts) = [−0.031 , −1.943]⊤.

To further illustrate the superiority of our proposed method, the settling time

improvement for different values of r are shown in Fig. 6.9. It can be seen that the

gain in the settling time is more profound in the larger seek lengths.
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Figure 6.8: Response of the proposed MSC with switching at ts = 1.05 ms and initial
states of x̄c(ts) = [−0.012 , −1.546]⊤.
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Figure 6.9: Improvement of settling time for different values of seek length r.

6.3 Summary

In this chapter, a mode switching controller is proposed for controlling the R/W head

of HDDs. The proposed method uses an optimization problem to find the optimal

instant of switching, together with a proper initialization of the second controller. It

was shown that this design can enhance the performance of the currently used MSCs.
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Chapter 7

Conclusions and Future Works

This chapter concludes the thesis with the summary of the main contributions and

provides possible future research directions.

7.1 Contributions

(a) Necessary and sufficient stability conditions:

Characterization of all admissible switching sequences that satisfy the dwell-

time consideration is provided. Based on this characterization, polyhedral DT-

contractive sets are introduced and it was shown in Theorem 2.6 that existence

of such sets is both necessary and sufficient for asymptotic stability of switched

linear systems under dwell-time switching. This condition is a generalization of

the results appeared in the literature of arbitrary switched systems.

(b) Computation of the minimal dwell-time:

An algorithm is proposed for the computation of the minimal dwell-time needed

for stability. In addition, relaxation of the dwell-time requirement is considered

by imposing a dwell-time for each mode of the system instead of one common

dwell-time for all modes. A constructive procedure for computation of mode-
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dependent dwell-times, which under suitable conditions results in the minimal

mode-dependent dwell-times, is provided.

(c) Characterization of constraint admissible DT-invariant sets:

A new characterization of constraint admissible sets is proposed for dwell-time

switched systems. These sets are constraint admissible at all times and DT-

invariant for every admissible switching sequence. An algorithm that computes

the maximal constraint admissible DT-invariant set is also presented.

(d) Characterization of robust invariant sets:

Similar to part (c) but in the case where disturbance is present, characterization

of robust invariant sets is presented. Algorithms for computation of maximal and

minimal robust invariant sets are also proposed.

(e) Domain of attraction of saturated systems:

Two approaches are proposed for computation of domain of attraction of switched

systems in the presence of saturation nonlinearity. These results are useful as they

can enlarge the domain of attraction beyond the linear region of controllers.

(f) Application:

A mode switching controller is proposed for the control of read/write head of

a hard disk drive system that switches between the track-seeking and track-

following modes. In addition, a procedure for initialization of the track-following

controller is proposed that minimizes the jerk in the control signal and improves

the performance of the mode switching controller.
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7.2 Future Works

This thesis opens up some interesting directions for further investigation:

(a) Stability condition when unstable modes are present:

There are situations where switching to unstable modes becomes unavoidable;

(e.g. when failure of sensors/components occurs in a servo system or there

are packet dropouts in communication networks). When unstable dynamics are

present, slow switching (i.e., long enough dwell time) is not sufficient for stability;

additional requirement is that switched system does not spend too much time

in the unstable modes [8, 36]. One way to tackle this problem is to extend the

results of Chapter 2:

Suppose A =
{
Ai : i ∈ IN = {1, · · · , N}

}
is the set of stable modes and

Ā =
{
Āj : j ∈ IN̄ = {1, · · · , N̄}

}
is the set of unstable modes. Suppose a

minimum dwell-time τ for stable modes and a maximum duration of stay on

unstable modes τ̄ is considered. Then, switched system is asymptotically stable

iff there exists a λ ∈ (0, 1) and a bounded polyhedral set Ω such that

(
Ak

i

)(
Āk̄1

j1
· · · Āk̄N̄

jN̄

)
Ω ⊆ λ Ω, ∀i ∈ IN ,∀j1, · · · , jN̄ ∈ IN̄ ,∀k ∈ {τ, · · · , 2τ − 1}

∀k̄1, · · · , k̄N̄ ∈ {0, 1, · · · , τ̄},
j=N̄∑
j=1

k̄j ≤ τ̄

This condition, basically considers all switching signals in which the dwell-time

in the stable modes is greater than τ and the total duration of stay in the unstable

modes is less than τ̄ .

The above condition implies that system remains stable if the total amount of

divergence from Ω due to unstable modes is compensated by long enough dwell-

time on stable modes. Note that when τ̄ is fixed, a bisection search can be used

to find the minimal τ of stable modes that ensures stability. Similarly, when τ

is fixed it is possible to find the maximal duration of stay, τ̄ , in unstable modes
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that ensures stability. While the condition is both necessary and sufficient, the

total number of constraints to be considered grows rapidly with increasing of N̄

or τ̄ , making the computation of such sets intractable. Further research should

be carried out to obtain reasonable and practical relaxations of this condition.

(b) Stability of switched systems with state jumps:

Currently, the thesis does not consider the systems with state jumps (also know

as Impulsive Systems). Effect of state jumps is usually specified with a reset-

map Ri,j that defines the new vale of the states when the system switches from

mode i to j, i.e. x+ = Ri,jx, with Ri,i = I. Extending the results to switched

impulsive systems is of practical importance as it is customary for systems with

multi-controllers to reset the states of the controllers at switching instants to

improve the transient response. If the reset map is given a priori, a necessary

and sufficient condition for stability is existence of compact set Ω and a λ ∈ (0, 1)

such that:

Ri,j Ak
i Ω ⊆ λΩ ∀i, j, ∀k ∈ {τ, · · · , 2τ − 1}

Of course, the above problem becomes challenging if the reset matrices Ri,j’s are

to be designed.

(c) Stability of switched systems with time delay:

In practical applications, due to the transmission delay or the mode identifying

delay, there may exist a time delay in the state or the control input. Extending

the results to switched systems with time delay should be investigated. Obtaining

the necessary and sufficient conditions are challenging as the effect of time delay

and mode switching should be considered simultaneously.

(d) Performance of time-dependent switched systems:

Performance of a switched system in the presence of disturbances is of practical
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importance. Consider the following switched system

x(t + 1) = Aσ(t)x(t) + B w(t) (7.1a)

z(t) = Cσ(t) x(t) + E w(t) (7.1b)

where z is the output of the system and w ∈ W is the disturbance input. A

measure of performance of system (7.1) is to find a γ > 0 such that
∑∞

t=0 ∥z(t)∥ ≤

γ
∑∞

t=0 ∥w(t)∥. This problem is commonly referred to as the L2-gain problem and

it determines the maximum output energy that can be excited with a given input

energy. The L2-gain problem is quite challenging for dwell-time switched systems,

as the effect of both exogenous inputs and switching signals should be considered.

Finding the minimum L2-gain (γmin) is still an open problem [48].

The results presented in Chapter 4 suggest a possible way to tackle this problem.

Specifically, the minimal robust DT-invariant set (F∞) can be used to obtain the

limit-set of all trajectories of (7.1), denoted by X∞.

X∞ :=
∪

i∈IN

P̂τ−1(F∞, Ai, BW ).

where P̂t(·) is the forward operator after t-steps defined in Chapter 4. Since,

z(t) = Cσ(t)x(t) + Ew(t), it follows that Z∞ :=
∪

i∈IN
CiX∞ ⊕ EW is the limit-

set of z, i.e. limt→∞ z(t) → Z∞. Once the characterization of Z∞ is obtained,

γ := maxz∈Z∞ ∥z∥ is the upper bound of the minimal L2-gain of (7.1).

While the above procedure provides a solution to the L2-gain problem, efficient

methods for computation/approximation of F∞, X∞, Z∞ remain challenging and

need to be addressed.

(e) Extension of the results to continuous-time systems:

The stability condition provided in Chapter 2 has a direct counterpart for con-
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tinuous systems; namely system ẋ(t) = Aσ(t)x(t) is asymptotically stable with

dwell-time τ if there exists a λ ∈ (0, 1) and a bounded polyhedral set Ω such that

eAi t Ω ⊆ λΩ, ∀t ∈ [τ, 2τ ], ∀i ∈ IN (7.2)

However, verification of the above condition is not easy as it requires consideration

of infinite number of inclusions. Since each mode is stable it might be possible

to resolve this issue by considering some upper bounds on the solutions of each

mode.

Unlike the discrete counterpart, (7.2) is only a sufficient condition and it is not

clear whether it is also necessary for asymptotic stability or not. Hence, estab-

lishing a necessary and sufficient stability condition for continuous-time systems

remains a challenging problem.
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