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Summary 
 

Unlike actin, which is required for almost all eukaryotic cell migrations, 

the roles of another cytoskeleton component, the microtubule, are less 

clear. Much of our understanding of how cells migrate has largely come 

from studies in tissue culture assays, raising the concern that it may 

not always be applied in vivo. Border cells are a group of somatic 

follicle cells that perform a stereotypic migration between the nurse 

cells of the Drosphila ovary during oogenesis. During this migration the 

nurse cells act as the substrate over which the border cells migrate. 

This reproducible migration serves as a convenient model to study 

collective migration in vivo. Through imaging of both stable and 

dynamic microtubules, we found differential microtubule organization 

and dynamics within the cluster: microtubules are highly organized in 

the polar cells and form a microtubule organization center (MTOC)-like 

structure that is polarized towards the leading edge prior to migration. 

The outer border cells, in contrast, have some cortical microtubules, 

but are less organized. Tracking of the plus end marker EB1-GFP 

showed microtubules grow preferentially towards the center of the 

cluster.  

 

We started investigations of general effects of microtubules in the 

border cell migration system by drugs. Net cluster movement was 

affected by both nocodazole and taxol which disrupt microtubules and 



 

 XI 

microtubule dynamics. The specific microtubule depolymerization 

factor Stathmin had a subtle role in migration, and was found to be 

largely required in the substrate nurse cells. To find additional 

regulators, we conducted a RNAi screen against genes encoding 

known or potential microtubule regulators in the fly genome. Among 

about 70 genes screened, the dynein interactors Lissencephaly-1 (Lis-

1) and nudE, together with dynein were found to be required both in the 

polar cells (in agreement with previous published results) and outer 

border cells. These genes have important roles in regulating the 

forward extensions that may generate traction force for cluster 

movement. In addition, compromising their activities severely disrupted 

the organization of the border cell cluster, as visualized by the 

abnormal distribution of adhesion molecules. In summary, we found 

microtubules do play roles in both migratory border cells as well as 

their interacting cells. Specifically, the Lis-1-NudE-Dynein complex was 

required, possibly through regulating front extensions and the 

reorganization of the follicular epithelium to ensure a properly 

organized migratory cluster.
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1. Introduction 
 

1.1 Cell Migration 
 

1.1.1 Importance of cell migration 
 

Cell migration was first witnessed by the Dutch microscopist and 

microbiologist Antonie van Leeuwenhoek in 1675 when he observed 

the movements of bacteria under his microscope (Porter 1976). Since 

then, cell migration has been found to be involved in a wide variety of 

biological processes. For example, in developmental morphogenesis, 

cell migration is important for gastrulation, when extensive cell 

movements take place to form the proper three-layered embryo. In the 

inflammatory response, leukocytes migrate to the sites of infection to 

mount proper immunity; and migration of fibroblasts and vascular 

endothelial cells is essential for wound healing. Cell migration is 

therefore a fundamental process for the normal physiology of living 

animals and requires strict regulation. Mis-regulation of cell migration 

can result in severe consequences and contribute to a variety of 

pathological conditions such as cancer metastasis and autoimmune 

diseases. Therefore, studying the molecular mechanism of cell 

migration and its regulation is important for both human physiology and 

pathology. 
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1.1.2 Different types of cell migration 
 

Eukaryotic cells often display solitary migration, such as the migrating 

neutrophils that are well adapted to quickly respond and move to an 

infection site upon stimulation. Many other cells, however, migrate 

together, either in loosely or closely associated groups. Collective cell 

migrations usually occur in developmental contexts with spatial and 

temporal regulation. A few classical examples of collective cell 

migration include the branching and sprouting movement of endothelial 

cells to form vasculature in vertebrates and trachea in the fruit fly 

Drosophila (Adams and Alitalo 2007; Affolter and Caussinus 2008); the 

slug type of movement of the zebrafish lateral line primordium cells; the 

moving sheets of cells in Drosophila dorsal closure (similar to wound 

healing) as well as Drosophila border cells that migrate as a free group.  

 

Finally, cell migration can be random or directed. Directional migration 

is achieved by detection and interpretation of guidance cues provided 

by the target. 

 

1.1.3 Basic processes of cell migration 
 

Eukaryotic cell migration has been studied extensively in simplied 

cultured models in the past decades and constitutes much of our 

knowledge in understanding the basic cellular and molecular 

machinery for cell motility. The general description of cell migration is 

taken from observations of a single migrating cell moving on a cover 
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slip. For example, the process of a migrating fibroblast in cultured dish 

can be conceptually described as a cyclic process that includes 1) 

initial polarization, 2) protrusion formation and establishment of 

adhesions, 3) translocation of the cell body and 4) retraction of the rear 

(Lauffenburger and Horwitz 1996; Sheetz et al. 1999). These steps are 

integrated by extensive signaling network regulations to ensure a 

coordinated process. For example, protrusions and retractions need to 

be coordinated with the formation and disassembly of adhesions 

between the migrating cells and the substrate as the migrating cell 

moves forward while remaining attached to the substrate 

(Lauffenburger and Horwitz 1996; Ridley et al. 2003). 

 

1.1.3.1 Polarization 
 

A migrating cell usually has a distinct front and back, oriented in the 

direction of migration. Polarization refers to the process of generating 

this cell asymmetry. Cell polarity can arise from asymmetric subcellular 

distribution of intrinsic factors such as proteins, mRNAs, and/or 

organelles, ultimately leading to cell type-specific morphological 

polarity. Cell polarity can also be externally imposed by signals from 

the environment, for example the presence of directional cues such as 

chemoattractants and morphogens.  

 

1.1.3.2 Protrusion formation 
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A polarized migrating cell has a distinct leading edge with extended 

membrane structures named protrusions. The protrusions are usually 

driven by actin polymerization, which provides the driving force for cell 

motility. In fibroblast type cells, there are two types of protrusions: 

lamellipodia and filopodia, depending on the shape and the structure of 

the underlying actin network. Lamellipodia have large, flat and fan-like 

structures enriched in branched actin structures. They provide wide 

surfaces for generation of traction for forward movement (Small et al. 

2002). Filopodia are spike-like protrusions comprised of long parallel 

actin bundles. They are thought to be the mechanosensory and 

chemosensing device for helping the migrating cells to explore the local 

environment (Mattila and Lappalainen 2008). Other cell types use 

somewhat different protrusions such as “blebs” of locally extruded 

cytoplasm and membrane; the blebs are also actin-based, however 

they are regulated differently (Insall and Machesky 2009). 

 

1.1.3.3 Establishment of adhesions 
 

Cell migration requires dynamic interactions between the migrating 

cells and the substrate to which it is attached and over which it 

migrates. The substrate can be extracellular matrix (ECM) or adjacent 

cells. Establishment of adhesions stabilizes protrusions and provides 

traction as the cell advances. Adhesion assembly and disassembly are 

highly dynamic and coordinated during migration. 
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Adhering of migrating cells to the substratum occurs via cell adhesion 

molecules (CAMs), which are typical transmembrane receptors that 

have an extracellular domain that binds directly to ECM or to other 

CAMs present on neighboring cells. CAMs have an intracellular domain 

that links the substratum intercellularly to the actin cytoskeleton via 

various adaptors and regulatory proteins. Cell-ECM adhesion is usually 

mediated by integrins, which are heterodimeric receptors that bind to 

extracellular matrix components such as Arg-Gly-Asp (RGD) peptides 

(Ruoslahti 1996; Juliano 2002). For cell-cell adhesions, they are 

usually mediated by cadherins, which comprise a family of calcium-

dependent cell adhesion molecules that mediate homophilic adhesions 

between cells (Juliano 2002).  

 

1.1.3.4 Translocation of cell body 
 

Adhesions serve as traction sites for cell translocation, which happens 

immediately after the formation of protrusions of cellular body. 

Translocation of cell is driven by a coordinated contraction of the 

actomyosin cytoskeleton, which depends on myosin II activity (Svitkina 

et al. 1997). Beside actomyosin contraction, the microtubule 

cytoskeleton is implicated in nuclear translocation (Gomes et al. 2005; 

Levy and Holzbaur 2008). 

 

1.1.3.5 Retraction of the rear 
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In order for a migrating cell to advance, protrusion of the front and 

translocation of the cell body must be followed by retraction of the rear. 

The rear retraction requires the coordinated contraction of the actin 

cytoskeleton and disassembly of the adhesions at the trailing edge 

(Crowley and Horwitz 1995; Chrzanowska-Wodnicka and Burridge 

1996).  

 

These basic steps of cell migration may happen sequentially as 

described here or can be overlapping and concurrent, but each type of 

function is required for cell migration in general. 

 

1.2 Microtubules in cell migration 
 

While actin and the actin cytoskeleton have a central role in essentially 

all types of eukaryotic cell migration, the roles of the other major 

cytoskeleton components, namely the microtubules, are less clear and 

can be variable in cell types.  

 

1.2.1 Basic properties of the microtubule cytoskeleton  
 

1.2.1.1 Microtubule structure and polarity 
 

Microtubules are stiff hollow cylindrical structures assembled from 13 

linear protofilaments side by side; each is composed of head-to-tail 

arrays of parallel αβ Tubulin heterodimers (Figure 1.1). Because of the 

aligned arrangement of α and β Tubulin, microtubules themselves are 
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intrinsicically polar with α Tubulin facing at one end and β Tubulin at 

the other (Nogales 2000). In this polar filament, the rate of 

polymerization and depolymerization is also different between the two 

ends: the fast end is called the plus end that is exposed to β Tubulin 

whilst the slow end is called the minus end that is exposed to α Tubulin 

(Desai and Mitchison 1997).  

 

Microtubule motor proteins such as Kinesin and Dynein can transduce 

chemical energy from ATP hydrolysis into mechanical force used for 

movement of cargos on microtubules (Vale 2003). The conventional 

Kinesin (Kinesin I) moves predominantly to the plus end, whilst Dynein 

is a large protein complex that primarily moves to the minus end of 

microtubules.  

 

Microtubule polarity is important for directed motor-driven transport of 

cargos along microtubules. These motors move cargos such as 

membrane bound vesicles, protein-RNA complex, or even organelles 

around in interphase cells, for example, up and down a very long axon 

of a differentiated neuron. 
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Figure 1. 1 Schematic representation of microtubule compositions 

 
(A-B) Microtubules composed of head-to-tail arrangement of α (black) 
and β (red) Tubulin heterodimers. The plus end of microtubules is 
undergoing constant growing (A) and shrinkage (B). The growing 
microtubules are thought to form an open sheet of Tubulin polymer 
containing GTP β-Tubulin at the tips (A). During shrinking, microtubule 
plus ends have curved protofilaments (demonstrated in C) that peel 
away from the microtubule wall (B). The cross section at the minus end 
with 13 α Tubulin is shown in (D).  
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1.2.1.2 Microtubule dynamic instability and organization 
 

Another important function of microtubules is to couple and move 

cellular structures around the cell, such as chromosomes during 

mitosis. This movement does not rely exclusively on motor proteins 

that move along microtubules, but the microtubules themselves can 

generate force to move those structures around. This is attributed to 

the dynamic instability of microtubules, a phenomenon of microtubules 

undergoing constant growth and shrinkage, mostly at the plus end 

(Figure 1.1, (Mitchison and Kirschner 1984). In most eukaryotic cells, 

microtubules are anchored at so called Microtubule Organization 

Center (MTOC) at their minus end. The main MTOC is built around 

pairs of centrioles within the centrosome. As the microtubules grow and 

shrink, the structures that are attached to the plus end of the 

microtubules get pushed or pulled around the cell, away or towards the 

centrosomes that remain attached. During mitosis, the two 

centrosomes emanate microtubules from spindle poles, and the 

microtubules capture chromosomes at the kinetochores and form the 

mitotic spindle, which provide the force for the separation of 

chromosomes in mitosis. 

 

While many microtubule minus ends are focused at the centrosomes, a 

variety of differentiated cell types contain a substantial number of 

microtubules with free minus ends (Keating and Borisy 1999). The non-

centrosomal microtubules perform specialized function in these cells. 
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For example, a polarized epithelial cells display a non-radial, apical to 

basal aligned microtubule array that plays a fundamental role in the 

establishment of apical-basal cell polarity. 

 

1.2.1.3 Regulation of microtubules dynamics 
 

Microtubule dynamics are modulated by various factors, and 

depending on the effect, these factors are classified as either 

microtubule stabilizing factors or microtubule destabilizing factors. 

Structural microtubule associated proteins (MAPs) such as the Tau 

protein, decorate the microtubule lattice and stabilize it (Mandelkow 

and Mandelkow 1995). Another class of MAPs is the plus-end tracking 

proteins (+TIPs), which can bind specifically to the plus end of growing 

microtubules and influence its dynamics, for example, the end binding 

protein 1 (EB1). Many +TIPs promote microtubule stabilizing by binding 

and connecting the plus end of microtubules to the cell cortex 

(Akhmanova and Steinmetz 2010). 

  

Microtubule de-stabilizing factors can directly promote microtubule 

disassembly or inhibit its polymerization. The microtubule severing 

protein spastin or katanin can directly break microtubules. Stathmin, on 

the other hand, can bind and sequester αβ Tubulin heterodimers to 

reduce free αβ Tubulin subunits available for microtubule 

polymerization. 
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1.2.2 Microtubules and cell migration 
 

Microtubules are important regulators of cell polarity and thus are 

important for the polarization of many migrating cells, such as neurons, 

fibroblasts and macrophages. In most cells microtubules are important 

for cell polarity and migration is altered when microtubules are 

disrupted (Vasiliev et al. 1970; Goldman 1971; Bershadsky et al. 1991). 

However, migration of fish keratocytes is not perturbed when 

microtubules are depolymerized (Euteneuer and Schliwa 1984) and 

neutrophil motility is even increased in the absence of microtubules 

(Keller et al. 1984). Unlike actin that provides the protrusive and 

contractive forces necessary for migration, microtubules appear to act 

to regulate and coordinate these actin-based activities (Vasiliev et al. 

1970; Rinnerthaler et al. 1988; Danowski 1989; Bershadsky et al. 1991; 

Waterman-Storer et al. 1999). In addition, microtubules might modify 

adhesions by promoting adhesion turn-over (Danowski 1989; 

Bershadsky et al. 1996; Kaverina et al. 1998; Kaverina et al. 1999). 

Overall the roles of the microtubule cytoskeleton in migration appear 

quite variable and the molecular mechanisms are often not clearly 

defined. Below I summarized a few of the more well-studied functions 

of microtubules in regulating directional migration. 

 

1.2.3 Microtubule dependent regulation of cell migration 
 

1.2.3.1 Centrosomal repositioning and polarization of 
microtubules in migrating cells 
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Although not for all cell types, many migrating cells reposition their 

centrosomes ahead of the cell nucleus in the direction of migration 

(Kupfer et al. 1982; Kupfer et al. 1983; Ueda et al. 1997). It is not clear 

why cells do this, and whether centrosome repositioning is the cause or 

the consequence of cell polarization has been a matter of debate 

(Wittmann and Waterman-Storer 2001). Nevertheless, it was 

speculated that centrosomal repositioning may polarize the 

microtubules, which in turn provides a polarized membrane trafficking 

towards the leading edge (Kupfer et al. 1982; Kupfer et al. 1983). 

Concomitantly with centrosome repositioning, microtubules are 

selectively stabilized at the leading edge and this may count as an 

early event of generation of cell asymmetry (Gundersen and Bulinski 

1988). Centrosomal repositioning is thought to be responsive to 

signaling molecules in migration such as the Rho GTPase Cdc42. The 

actual movement of centrosomes depends on the microtubules 

themselves as well as the microtubule motor Dynein (Palazzo et al. 

2001). 

 

1.2.3.2 Cross-talk between the microtubule network and the actin 
cytoskeleton 

 

As the centrosome repositions towards the leading edge, microtubules 

emanate and grow towards the periphery, where they interact with the 

cortical actin network. In migrating fibroblasts, it has been shown that 

microtubule growth towards the leading edge per se can locally 

activate the Rho GTPase Rac1, leading to the increased 
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polymerization of actin in lamellipodial protrusions (Waterman-Storer et 

al. 1999). Therefore, microtubules can regulate the actin cytoskeleton 

via modulation of Rho GTPases. Rho GTPases, in turn, can influence 

microtubule activities (Wittmann and Waterman-Storer 2001). IQGAP1, 

an effector of Rac1 and Cdc42, can interact with several microtubules 

+TIPs such as the Cytoplasmic Linker Proteins (CLIP)-170 and the 

anaphase promoting complex (APC), leading to stabilization of 

microtubules in the leading edge. Such interactions represent an 

important aspect of the cross-talk between the actin and microtubule 

cytoskeletons, and are expected to be qualitatively different in the 

protrusions at the cell front compared to the retracting rear.  

 

1.2.3.3 Microtubules promote adhesion turn-over 
 

Microtubules can also target adhesions and promote their disassembly 

(Kaverina et al. 1999), particularly at the trailing edge, which is 

important for the rear retraction. The exact molecular mechanism is not 

quite clear. It has been speculated that microtubules may directly 

deliver some unknown relaxation signals to adhesion sites to promote 

adhesion disassembly (Kaverina et al. 1999). Alternatively, 

microtubules may mediate endocytosis of adhesion complex 

components for adhesion turn-over. The endocytosis component 

dynamin, together with the focal adhesion kinase (FAK), have been 

shown to have a role in microtubule-induced adhesion disassembly 

(Ezratty et al. 2005). 
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1.3 Cell migration in development 
 

Although it shares many common features in terms of the actual 

machinery of motility, cell migration in a developmental context is more 

complex than cell migration in tissue culture both in terms of spatial 

and temporal regulation. Some of the best-studied examples of cell 

migration in developmental context include the movement of 

mesodermal cells during gastrulation, neuronal cell migration, germ 

cells migration (in different organisms), Drosophila dorsal closure 

whereby an eye-shaped gap in the dorsal epithelium is closed by 

coordinated actions of different cell types; and finally Drosophila border 

cell migration that is discussed in this study.  

 

1.3.1 Spatial and temporal regulation 
 

For most types of migration that occur during development, the first 

essential step is the initiation, during which an originally immotile cell 

becomes migratory. This involves multiple changes at a cellular level: a 

cell that is going to migrate remodels its adhesions to delaminate from 

previous attachment sites, reorganizes its cytoskeleton to assume a 

polarized shape and makes actin-rich protrusions at the leading edge. 

During the actual migration, the cell must adhere to and dynamically 

interact with the substrate on which it migrates to generate traction for 

movement. If it is a guided migration, the cell must also interpret 

guidance cues to establish a directional migration towards the target.  
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In physiological conditions, many cells migrate collectively, as part of a 

group. In addition to the basic migratory features seen in solitary cells, 

collective migrating cells also interact and influence each other while 

migrating. For example, neural crest cells migrate directionally in 

‘‘streams’’ in vivo, with frequent dynamic interactions between the cells. 

This cell-cell interaction is regulatory and can generate non-cell-

autonomous pushing and pulling forces to affect the overall movement. 

In addition, the collectively migrating cells have the potential to provide 

spatial information with each other when they occupy different locations 

in the substrate space (Rorth 2011).  

 

1.3.2 Microtubules in cell migration during development 
 

One in vivo system where the role of microtubules is quite clear from 

genetic evidence is the neuronal cell migration. Mammalian Lis-1 was 

originally identified as a dosage sensitive gene that can cause 

lissencephaly, a defect in the migration of differentiating neurons in the 

developing brain (Reiner et al. 1993). Lis-1 participates in microtubule-

based behavior. It was later found that both Lis-1 and its interacting 

proteins including the microtubule motor Dynein have an established 

role in neuronal migration, where they control the translocation of the 

nucleus in neurons (Vallee and Tsai 2006).  

 

1.4  Drosophila border cell migration as a model to study 
collective cell migration in development 
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1.4.1 Physiology of border cells  
 

Border cells are a group of somatic cells that perform a simple, 

stereotypic migration during Drosophila oogenesis. An early Drosophila 

egg chamber consists of germ-line derived cells, the oocyte and nurse 

cells, surrounded by a layer of follicular epithelium, with a pair of 

specialized polar follicular cells sitting at each end (Figure 1.2). At 

stage 8 of oogenesis, the two anterior polar cells signal to 4-8 

neighboring follicle cells, inducing them to become border cells. The 

border cells form a tight cluster and delaminate from the epithelium as 

the cells become migratory. At early stage 9, the motile outer border 

cells invade between the giant nurse cells and migrate to the oocyte, 

carrying the two central non-motile polar cells along with them (Figure 

1.2). By stage 10, the border cells have reached the oocyte, and then 

migrate a short distance dorsally toward the oocyte nucleus. There, 

they are important for making a hole in the micropyle through which 

sperm enters to fertilize the egg (Rorth 2002).  
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Figure 1. 2 Schematic representation of border cell migration 

 
Schematic of egg chambers before (left) and after (right) initiation of 
border cells migration. In this and all other figures, anterior is to the left 
and cells migrate to the right. Border cells (red) and polar cells (blue) 
are indicated.  
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1.4.2 Specification of border cells  
 

The process by which the epithelium-originated border cells become 

migratory and initiate invasive migration is under tight control both 

spatially and temporally. Spatially, the polar cells secret a ligand 

Unpaired (Upd), which acts non-cell antonomously through Domeless 

receptor (Ghiglione et al. 2002) and turns on Janus kinase (JAK)/Signal 

Transducer and Activator of Transcription (STAT) pathway in adjacent 

cells (Beccari et al. 2002). The JAK/STAT signaling is active at high 

levels in immediately surrounding follicle cells and activates the 

expression of another transcription factor named slbo border cell 

(Slbo). Both STAT and Slbo are important for border cells to become 

migratory.  

 

The timing of border cell migration is regulated by both the ecdysone 

and Notch signaling pathways. Ecdysone is a fly steroid hormone that 

is expressed exactly at the stage when border cell migration occurs. 

Border cells express the ecdysone receptor (EcR) and its coactivators 

Taimen (Tai), and activated ecdysone signaling is essential for border 

cell motiity, possibly through regulating the turnover of adhesion 

complexes (Bai et al. 2000).  

 

The transmembrane receptor Notch is activated in many follicle cells in 

stage 6 of oogenesis, however, later on at stage 9, its activation is 

exclusively restricted to migrating border cells, despite uniform 

expression of Delta. Like JAK/STAT, Notch signaling is required for the 
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expression of Slbo and therefore it is essential for border cell 

specification and migration (Gonzalez-Reyes and St Johnston 1998). 

 

Slbo is the Drosophila homolog of vertebrate CCAAT/enhancer-binding 

protein (C/EBP), and is a transcriptional activator. It is expressed 

specifically in border cells and later in centripetal cells, another group 

of follicle cells that become motile later. Slbo expression is essential for 

border cell migration (Montell et al. 1992). Without Slbo, border cells 

are formed but do not migrate. One of the key target genes that is 

upregulated in border cells by Slbo is the gene encoding the 

Drosophila homolog of the cell-cell adhesion molecule E-Cadherin (DE-

cadherin), which is essential for promoting border cell motility 

(Niewiadomska et al. 1999), see also in 1.4.4). 

 

To find additional Slbo targets, comparative whole-genome expression 

profiling on wild-type and Slbo mutant border cells as well as non-

migratory follicle cells have been performed to understand at a 

molecular level how a transcriptional switch induces migration 

(Borghese et al. 2006; Wang et al. 2006). A number of the border cell-

enriched genes were found to be involved in adhesions, cytoskeletal 

regulation and the secretory pathway (Borghese et al. 2006; Wang et 

al. 2006) and these may affect cell shape changes and adhesion 

turnover during border cell migration.  
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Of the genes that require Slbo for their upregulation were a number of 

actin regulators and one microtubule regulator namely stathmin. 

Stathmin is quite robustly upregulated by Slbo in border cells. 

 

1.4.3 Actin-dependent protrusions 
 

The actin cytoskeleton is essential in border cells to make dynamic 

protrusions and together with myosin II, to generate contractile force to 

move the cell forward (Edwards and Kiehart 1996; Fulga and Rorth 

2002; Rorth 2003). Many actin binding proteins control the rate and 

organization of actin polymerization and have a role in border cell 

migration. For example, the Arp2/3 complex which is essential for 

making branched actin structures in lamellipodium, is an essential 

regulator in border cell migration (Lu 2011) In addition, the minus-end 

directed actin motor Myosin VI can bind to DE-cadherin and β-catenin, 

stabilizing the adhesion complex and linking it to the cytoskeleton. This 

may provide additional force to facilitate the protrusion formation 

(Geisbrecht and Montell 2002). 

 

1.4.4 DE-cadherin mediated adhesion and traction 
 

The Drosophila homolog of the cell-cell adhesion molecule E-cadherin 

(DE-cadherin) is essential both in the migrating border cells and in the 

substrate nurse cells for migration to occur (Niewiadomska et al. 1999). 

It is expressed highly in border cells and accumulates prominently in 

cell contacts between individual border cells and to a less extent 
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between border cell and nurse cells. Such DE-cadherin mediated 

homophilic cell-cell adhesion is required and regulated to generate 

traction for border cell migration (Niewiadomska et al. 1999; Pacquelet 

and Rorth 2005). This is different as compared to some epithelial cells 

that undergo epithelial to mesenchymal transition (EMT) in becoming 

migratory both during normal development and tumor metastasis 

(Thiery et al. 2009). EMT involves multiple changes including the loss 

of cell-cell adhesion by downregulation of E-cadherin, the loss of cell 

polarity, and the acquisition of migratory and invasive properties 

(Thiery et al. 2009). Border cells instead upregulate DE-cadherin for 

becoming migratory, suggesting E-cadherin does not exclusively 

function as an invasion suppressor; it may contribute to the dynamic 

adhesions that can positively promote motility and invasiveness in this 

cell type, just as the neural cell adhesion molecule (N-cadherin) does 

as a invasion promoter in neuronal migration (Derycke and Bracke 

2004).  

 

1.4.5 Guidance signaling during border cell migration 
 

Directional migration (guidance) of the border cells to the oocyte is 

controlled by two receptor tyrosine kinases (RTKs), the epidermal 

growth factor receptor (EGFR) and PDGF/VEGF Receptor (PVR). The 

ligands for these receptors, principally PVF1 and Gurken respectively, 

are expressed in the target, the oocyte (Duchek and Rorth 2001; 

Duchek et al. 2001). Border cells migrate in two distinct phases with 

different modes of guidance signaling: an initial rapid migration with 
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polarized cell behavior followed by a slower migration that depends on 

collective processing of guidance signals as a whole cluster (Bianco et 

al. 2007). Both PVR and EGFR act in both phases but use different 

downstream effectors to direct border cell migration with differential 

behavior effects: PVR dominantly induces large persistent front 

extensions and signals to Rac dependent atypical Rac exchange factor 

Myoblast city (Mbc) and engulfment and cell motility (ELMO) pathway 

(Bianco et al. 2007; Poukkula et al. 2011). EGFR is absolutely required 

for the migration in the late phase, till to the dorsal side towards the 

oocyte nucleus (Duchek and Rorth 2001).  

 

1.4.6 Advantage of using border cell as a model 
 

Border cell migration is spatially and temporally regulated and 

represents an excellent model to study collective migration in vivo 

(Rorth 2002; Montell 2003). They migrate in a physically constrained 

three-dimensional environment, squeezing between nurse cells. This 

type of cell-on-cell migration is best known from the neuronal migration 

in the brain and they may share some common features. Though 

detailed biochemical characterization is not as advanced as in tissue 

culture, powerful genetic approaches have allowed the identification of 

important molecules for migration, such as the guidance signaling. In 

addition, the ability to perform live imaging with this system has allowed 

the appreciation of this dynamic process ex in situ (Bianco et al. 2007; 

Prasad and Montell 2007; Tekotte et al. 2007; Poukkula et al. 2011; 

Inaki et al. 2012). Further studies are actively on-going to understand 
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the dynamic regulation of the cytoskeleton organization and adhesions, 

as well as how the guidance signaling regulate those downstream 

effectors in border cell migration. 

 

1.5 Aim of the project 
 

The aim of the Ph.D project was to understand how microtubules 

affects border cell migration and how microtubule dynamics are 

regulated; and in addition, to find out the roles of individual microtubule 

regulators including the previously identified gene stathmin in border 

cell migration. 
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2. Results 
 

2.1 Microtubules in the border cells 
 

2.1.1 Microtubule organizations 
 

To investigate the functions of microtubules in border cell migration, I 

first tried to characterize the organization of microtubules in the border 

cell cluster. Anti-Tubulin staining of fixed samples showed that 

microtubules were present in the border cells cluster throughout 

migration: in early stage when border cells were specified (Figure 2.1 

A) and formed a border cell cluster (Figure 2.1 B); this resembles the 

staining in follicle cells, the epithelium that border cells are derived 

from. Prior to migration, the two anterior polar cells contained a strong 

MTOC like structure that was oriented towards the front of the cluster, 

in the future migration direction (arrow in Figure 2.1 B). During 

migration, the two polar cells are assumed to be immobile 

(Niewiadomska et al. 1999) and not actively contributing to migration. 

They are thought to be carried along by the outer border cells as they 

migrate. Because the outer border cells are actively rotating and 

shuffling (Bianco et al. 2007), the polar cells also get rotated and the 

relative MTOC position in the cluster changes during migration (arrow 

in Figure 2.1 D). In contrast to the polar cells, the outer border cells 

displayed loosely organized bundles of microtubules enriched at the 

cell cortex, both when they initiating migration and during their active 

migration (arrow head, Figure 2.1 B and 2.1 D).  
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Figure 2. 1 Organization of microtubules in border cell clusters at 
different stages of migration 

 
(A) late stage 8 when border cells are specified  
(B) early stage 9 when border cells form a cluster  
(C) middle stage 9 when border cell cluster have detached from 
epithelium and migrating 
(D) late stage 9 when border cells are migrating  
Border cells are marked with the transcriptional factor Slbo (red); polar 
cells are marked with NeurA101 (green); microtubules are stained by 
anti-Tubulin (white). Arrow indicates MTOC-like structure in polar cells; 
arrowhead indicates cortical microtubules in outer border cells. 
Genotype of egg chambers is w1118/+; neurA101 /+  (Scale bar: 10µm).  
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Microtubules can be post-translationally modified and acetylation of α-

Tubulin marks stable microtubules (Piperno et al. 1987). Anti-

acetylated Tubulin staining in border cells showed a similar pattern to 

anti-Tubulin staining (Figure 2.2), possibility because fixation 

preferentially captured the stable but not the dynamic microtubules.  

 

 

 
Figure 2. 2 Organization of stable microtubules in border cell 
clusters at different stages.  

 
(A) late stage 8 when border cells are specified  
(B) early stage 9 when border cells form a cluster  
(C) middle stage 9 when border cells are migrating.  
Border cells are marked with the transcriptional factor Slbo (red); polar 
cells are marked with Upd-GFP (green); stable microtubules are 
stained by anti-actylated Tubulin (white). Genotype of egg chambers is 
UpdGal4/+;UAS-PH-GFP/+  (Scale bar: 10µm).  
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As microtubules are often not fixed very well, to confirm the observed 

staining pattern, I performed live imaging analysis of a green 

fluorescence protein (GFP) tagged Tubulin (tubulin-GFP). Tubulin-GFP 

showed similar results (Figure 2.3), indicating that both anti-Tubulin 

and anti-actylated Tubulin staining in fixed sample can both be used to 

examine microtubule organizations in border cells. 

 
 

 
 
Figure 2. 3 Visualization of microtubules in border cells at 
different stages by live imaging of tubulin-GFP transgene. 

 
(A) border cell cluster has just been formed  
(B) border cell cluster is initiating migration  
(C) border cell cluster is migrating 
The genotype of egg chamber is w1118/tubulin-GFP (Scale bar:10 µm)  
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2.1.2 Microtubule dynamics 
 

To visualize dynamic microtubules and check the dynamics of 

microtubules, I tracked the movements of the GFP tagged EB1 

expressed in egg chambers by live imaging. EB1 associates with the 

plus end of growing microtubules, and therefore its direction reflects 

the direction of microtubule growth. As border cell migration occurs 

deep inside the tissue, I used confocal microscopy for live imaging. 

Live imaging was done at one confocal optical section of a 

delaminating or early migrating border cell cluster to allow reasonable 

detections of fast-moving EB1-GFP dots. In follicle cells, which have 

well-defined apical-basal polarity, all EB1-GFP dots were highly 

dynamic and most of the tracks moved exclusively from the apical side 

towards the basal side (Figure 2.4 B). The polar cells are the only cells 

with a visible MTOC like structure. As expected, most of the EB1-GFP 

tracks emanate from the MTOC like region and move towards the 

periphery (data not shown).  

 

For the outer border cells, the highly dynamic EB1-GFP dots were 

found to move in multiple directions and therefore a quantitative 

analysis of the overall bias of all EB1-GFP tracks detected were 

needed. In the front cell within the border cell cluster, the overall bias of 

EB1-GFP comets was to move away from the leading edge (Figure 2.4 

C). In the back cell of the border cell cluster, more EB1-GFP tracks 

moved away from the back (Figure 2.4 C).  
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The outer border cells are orientated with respective to each other. 

They have outer membrane touching the germline nurse cells and 

inner membrane facing inward, towards the center polar cells (Figure 

2.4 E). If we consider the border cells as one cluster, the microtubules 

in the front and back cells are both organized inwards, towards the 

cluter center. Therefore, there is a subtle bias for EB1-GFP comets to 

move more towards the center of the cluster (Figure 2.4 D). 
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Figure 2. 4 EB1-GFP track directions in follicle cells and outer 
border cells 

 
(A) Three cut-out frames from EB1-GFP movies illustrating tracking of 
EB1-GFP dots in the front part of the front border cell (Scale bar: 4µm).  
 
(B) Quantificaiton of EB1-GFP directions in follicle cells 
Measured EB1-GFP tracks are catagorized into three catogories 
according to apical-basal axis and the percentage of EB1-GFP tracks 
in each category is presented. 22 tracks from 2 movies were analyzed, 
SEM indicated; P<0.05 (two-tailed student t-test) for towards apical 
versus towards basal movement.  
 
(C-D) Quantification of EB1-GFP directions in outer border cells 
according to (B) migration direction axis and (C) direction towards polar 
cells.131 tracks from 7 movies were analyzed, SEM indicated; P<0.05 
(two-tailed student t-test) for outwards versus inwards movement. 
 
(E) Schematic representation of the orientation of outer border cells 
(red) with respect to polar cells (blue) in a border cell cluster. The outer 
membranes are facing the germline (yellow). 
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It has been shown that the outer border cells retain some apical 

characteristics (Niewiadomska et al. 1999), so this modest bias  of 

EB1-GFP comets moving away from the apical-like region (outer-

membrane) is similar to that of the follicle cells, in which the  EB1-GFP 

comets move more exclusively away from the apical region (Figure 

2.5). However, the bias is less strong, consistent with border cells 

being less strictly apical-basal polarized, or rather, partially polarized. 

The less dominent presence of EB1-GFP tracks moving to the opposite 

direction indicates some reorganization of microtubules occurs upon 

formation of the motile cluster.    

 

 

 

Figure 2. 5 Schematics illustration of cell organization and EB1-
GFP directions in border cell cluster at different stages 

 
(A) Cell organization and (B) EB1-GFP directionality before (upper 
panel) and after (lower panel) the formation of a migrating cluster (see 
Figure 1.2). Apical (purple line) surface is towards the germ line 
(yellow). The outer membrane (red) of migratory border cells (lower 
panel) is facing the germline (see also in Figure 2.4E). Polar cells 
(blue) are in the center. Arrows in B are colour coded and illustrate the 
directional bias of EB1-GFP tracks as shown in Figure 2.4 B and 2.4 D. 
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2.2 Effects of microtubule disruption drugs on border cells 
 

2.2.1 Effects on microtubules in border cells 
 

The immediate effects of perturbing microtubules can be determined by 

using specific drugs that interfere with microtubules and microtubule 

dynamics. Nocodazole is an anti-neoplastic agent that interferes with 

polymerization of microtubules. First, different concentrations of 

nocodazole were applied to egg chambers and the concentration was 

titrated to 2µM, which did not cause perturbations of the overal 

development of egg chambers and nurse cell nuclear dynamics, yet 

had a effect on the net cluster movement (Figure 2.6 A). I then checked 

whether this concentration had an effect on microtubules in the border 

cells. Treatment of 2µM nocodazole in egg chambers caused some 

attenuation of the strong foci of microtubules in polar cells (Figure 2.6 

C) and a marked reduction of the cortical microtubules in border cells 

(Figure 2.6 C). Treatment with 2µM taxol, which stabilizes 

microtubules, caused microtubules in the border cells to become 

denser throughout the cytoplasm (Figure 2.6 D). More dramatically, the 

normally very dynamic microtubules in the surrounding germ line cells 

were stabilized and can be clearly visualized upon taxol treatment (see 

arrow in Figure 2.6 D). These changes were observed within minutes 

of drug addition, allowing immediate live assessment of effects of 

perturbing the microtubule cytoskeleton. 
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Figure 2. 6 Effects of drugs on microtubules in border cells 

 
(A) Relationship between net cluster speed and nocodazole 
concentration.  
 
(B-D) Microtubules visualized by live imaging of border cell clusters 
expressing tubulin-GFP transgene.  
Top panel: One confocal section image including polar cells from Z-
stack movies of (B) dimethyl sulfoxide (DMSO), (C) nocodazole and 
(D) taxol treated egg chambers. Arrow points to the germline.  
Bottle panel: Another confocal section image including only outer 
border cells from Z-stack movies of (B) DMSO and (C) nocodazole 
treated egg chambers. The genotype of egg chamber is w1118/tubulin-
GFP (Scale bar:10 µm)  
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2.2.2 Effects on initiation of border cell migration 
  

To assess the effects of disrupting microtubules in border cell 

migration, live imaging was performed to analyze the behavior of 

border cell clusters upon drug treatment. Egg chambers were 

dissected from female ovaries and treated with microtubule disrupting 

drugs. Live imaging was set up immediately after the addition of the 

drug with a few minutes lag time to allow the assessment of immediate 

effects of microtubule disruption on border cells migration. Images 

were acquired for up to two hours, which allowed the healthy 

development of egg chambers ex in-situ (Bianco et al. 2007).  

 

I first checked whether drug treatment could affect the initiation of 

border cell migration. Prior to the onset of imaging and addition of the 

drug, early stage 9 egg chambers in which border cells had not initiated 

migration but are likely to start migration soon were chosen, as judged 

by their stage and size. The competency of migration initiation was 

analyzed. This was done by monitoring the ability of clusters to start 

migration within a set period of time, in this case, in the two hours 

during which the egg chamber were imaged for (Figure 2.7). 

Nocodazole-treated border cell clusters showed reduced competency 

of initiating migration, indicating this particular stage is sensitive to 

microtubule disruption. Taxol treatment produced slightly opposite 

effect, but it was not statistically significant different to control. 
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Figure 2. 7 Effects of microtubules drugs on initiation of migration 

 
Quantification of percentage of border cell clusters from early stage 9 
egg chambers that succeed in initiating migration during 2-hour 
movies. P<0.05 for comparison between nocodazole versus control 
(DMSO) treatment using two-tailed Fisher’s exact test. Number of 
movies analyzed is between 6 (control sample) to 50 (drug treated 
sample). Genotypes are slboGal4,10xGFP/+ 
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2.2.3 Effect of drugs on border cell migration 
 

To assess whether drugs could have an effect on the process of 

migration, live imaging was done for clusters that had already initiated 

migration (cluster had detached from the anterior epithelium). The net 

speed of migrating border cell clusters in the early phase was 

analyzed. Both nocodazole and taxol treatment significantly reduced 

the net cluster speed by 50% (Figure 2.8 A), indicating microtubule and 

microtubule dynamics are important for border cell migration. 

 

The defect in net cluster speed could be due to several possibilities. A 

reduction of basic motility of border cells in the cluster or a lack of 

proper directionality. In addition, net forward cluster movement requires 

invasiveness as border cells invade into the germ-line tissue. 

Disruption of the guidance cues would be expected to reduce net 

cluster speed but not the basic cell motility (Poukkula et al. 2011).  

 

To determine whether drug treatment caused a change in cell motility, I 

estimated the movement of individual border cells by manually tracking 

the nuclei movement in 3D (Figure 2.8 C). The apparent cell movement 

speed in nocodazole and taxol treated border cells was reduced by 

about 30% and 20% respectively (Figure 2.8 B). Very recent data from 

the lab on 3D reconstruction of border cell clusters has revealed 

individual nucleus does move considerably within the cell and nuclei 

tracking overestimates the actual cell movement by 25%, and does so 

systematically (W Yu, et al, unpublished results). Therefore, this 
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reduction on the apparent cell movement could be caused by a subtle 

defect on cell movement, or could be caused by the disruption of nuclei 

movement within a cell. This was not surprising as microtubules are 

important for nuclei movement (Reinsch 2001; Dujardin and Vallee 

2002).  

 

Therefore, both microtubule drugs affect cell or nuclei movement and 

have an added effect on the net cluster movement. The additional 

defect in cluster movement could be due to disruption of guidance, but 

is unlikely, as explained in the next section (2.2.4). The defect could 

also be due to a lack of progressiveness, as border cells move and 

invade into the dense cellular environment and require proper 

invasiveness for progression. 
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Figure 2. 8 Effects of drugs on border cell migration 

 
(A) Quantification of net cluster speed from migrating border cell 
clusters. P<0.001 for both comparisons between drug treatments 
versus control. Two-tailed student t-test was used. Number of movies 
analyzed is between 8 (control sample) to 21 (drug treated sample). 
Genotypes are slboGal4,10xGFP/+. 
 
(B) Quantification of apparent single cell speed from migrating border 
cell clusters. Single cell nuclei were tracked between 1-2 minutes 
interval. P<0.05 for comparison between nocodazole treatment versus 
control using two-tailed student t-test. Number of movies analyzed is 
between 7 (control sample) to 17 (drug treated sample). Genotypes are 
slboGal4,10xGFP/+. 
 

(C) Illustration of single cell nuclei tracking. 
Image from a wild-type video (slboGal4,10xGFP/+) showing the border 
cell cluster migration and the track of one nucleus (cell) in the early 
phase (yellow in overlay; blue below). All cells are outlined by FM 4–64 
(red).  
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2.2.4 Effect on extension profiles of border cells 
 

To gain more insights into the alterations of behavior of border cell 

clusters in which microtubule cytoskeleton was perturbed by drugs, I 

analyzed their protrusion (extension) profiles. Extensions were 

identified by an automated method (Poukkula et al. 2011) and 

classified into one of the three categories according to their direction 

with respect to the direction of migration, front being toward the oocyte, 

back in the opposite direction and side covers the rest (Figure 2.9 A). 

In a border cell cluster, forward extensions grow from the front cell; 

backward extensions grow outward from the back cell and they are 

active extensions, not simply non-retracted tails (Poukkula et al. 2011). 

In wild type, extensions were observed in all the three directions, but 

front extensions were predominant (Figure 2.9 B). The front extension 

has a large size and generates traction for movement (Poukkula et al. 

2011). Both drug treatments led to a reduction in front extension size 

(Figure 2.9 C), however, the clear bias for front extension was still 

retained (Figure 2.9 B), implying appropriate perception of the 

guidance cues and overall cluster polarity is maintained. Nocodazole 

treatment also led to a significant increase of both the abundance and 

size of back extensions (Figure 2.9 B and Figure 2.9 C). Therefore 

back extensions could have been stabilized or stimulated for increased 

growth upon microtubule disruption, indicating microtubules may 

negatively regulate or destabilise back extensions. Future higher time 

resolution movies would be needed to distinguish between the two 

possibilities. 
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Figure 2. 9 Drug’s effect on extension profiles of border cells 

 
(A) Illustration of identifying and classifying extensions. 
Left: Projected GFP image of a wild-type border cell cluster (slboGal4, 
UAS-10xGFP/+); arrows indicate direction to the oocyte 
Right: same as left, but after segmentation and automatic definition of 
the cluster body (blue) and extensions (red). Extensions are classified 
as front (0-45° and 315-360°), side (255-315°+45-135°), and back 
(135–225°). Scale bar, 10 µm. Image courtesy of Adam Cliffe.  
 
(B) Quantification of number of extensions as presence per frame from 
migrating clusters. For nocodazol, front and back are significant 
(P<0.001). For taxol, only back is significant (P<0.001). Two-tailed 
student t-test was used. At least 388 frames were analyzed. Genotypes 
are slboGal4,10xGFP/+. 
 
(C) Quantification of the area of front and back extensions from 
migrating cluster. For nocodazole, comparison with control in both the 
front and the back category is statistically significant (P<0.001). Taxol 
treatment only induced a significant decrease of front extension 
(P<0.001). Two-tailed student t-test were used. For front extensions, at 
least 289 extensions were analyzed. For back extensions, at last 42 
back extensions (in control) were analyzed. Genotypes are 
slboGal4,10xGFP/+. 
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2.2.5 Autonomous and non cell-autonomous effect of disrupting 
microtubules in border cell migration 
 

The above-mentioned experiments with drugs do not distinguish 

between border cell dependent/autonomous effect and effects due to 

changes in nurse cells, that is, non-autonomous effect. To disrupt 

microtubules generally but in a cell-specific way, I induced expression 

of the microtubule severing protein spastin (Roll-Mecak and Vale 2008) 

in migratory border cells using a specific expression inducer (slbo-

Gal4). Slbo-Gal4 expression starts at late stage 8 and increases later 

on (Rorth et al. 1998). Prior to migration, the Slbo-Gal4 expression in 

outer border cells had not yet be fully turned on in all cells, leading to a 

variable and insufficient reduction of microtubules in outer border cells 

(Figure 2.10 A).  

 

Later in migration, Slbo driven expression of spastin in migrating border 

cells led to a clear reduction of microtubule density in the migratory 

border cells but not in the polar cells (Figure 2.10 B). However, the net 

cluster speed in spastin-expressing border cells was similar to that of 

control (Figure 2.10 C). Therefore, the reduction of net cluster speed in 

nocodazole treated egg chambers could be due to a non cell-

autonomously effect either on the polar cells or/and on the substrate 

nurse cells. Microtubules in the polar cells are required for the 

polarized localization of the cytokine Upd (Van de Bor et al. 2011), and 

therefore could in principle have a non-autonomous effect on border 

cell movement. 
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Although there was no reduction in the cluster speed in spastin over-

expressing border cell clusters, I did observe some clear changes in 

extension dynamics, especially for the back extensions. Wild type 

border cells produce predominantly front extensions with a large size; 

reduction of microtubules in the border cells by over-expressing spastin 

resulted in some reduced frequency of front extensions but an 

increased frequency of both side and back extensions (Figure 2.10 D). 

The size of the back extensions also increased dramatically (Figure 2. 

10 E), making the front and back extensions more similar to each other. 

This was similar to the effect from nocodazole-treated clusters; 

implying that microtubules are required in border cells and that they 

may negatively regulate the stability and/or growth of extensions, in 

particular in the back cell.  
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Figure 2. 10 Non cell-autonomous effect of disrupting 
microtubules in border cell migration 

 
(A-B) Effects of expressing spastin by SlboGal4 driver on microtubules 
in border cell clusters at (A) early stage prior to migration and (B) at 
late stage during migration. Microtubules are stained with anti-Tubulin 
(white). Spastin-expressing borer cells are marked with GFP. Border 
cell nuclei are marked with 4',6-diamidino-2-phenylindole (DAPI; 
blue).Genotype of egg chambers is w1118/UAS-spastin-EGFP; 
slboGal4 /+  (Scale bar: 10µm).  
Arrow in (A) indicates a non-expressing border cell.  
Arrowhead in (B) indicates an expressing border cell with clear 
reduction of tubulin as compared to the non-expressing polar cells in 
the cluster (arrow in B). 
 
(C) Quantification of net cluster speed from border cell clusters. Two-
tailed student t-test was used. Number of movies analyzes is between 
6 (control) to 10 (slbo>spastin). Genotype of egg chambers is 
w1118/+;slboGal4,10xGFP/+ for control and w1118/UAS-spastin-
EGFP; slboGal4,10xGFP/+ for slbo>spastin. 
 
(D) Quantification of number of extensions as presence per frame from 
migrating clusters. Comparisons between control and slbo>spastin in 
all the three categories are statistically significant (P<0.001). Two-tailed 
student t-test was used. At least 388 frames were analyzed for each 
category. Genotype of egg chambers is w1118/+;slboGal4,10xGFP/+ 
for control and w1118/UAS-spastin-EGFP; slboGal4,10xGFP/+ for 
slbo>spastin. 
 

(E) Quantification of the area of front and back extensions from 
migrating cluster. For front extensions, at least 289 extensions were 
analyzed. For back extensions, at last 42 back extensions (in control) 
were analyzed. Genotype of egg chambers is 
w1118/+;slboGal4,10xGFP/+ for control and w1118/UAS-spastin-
EGFP; slboGal4,10xGFP/+ for slbo>spastin. 
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2.2.6 Genetic interactions between microtubules and DE-cadherin 
 
 

We know Cadherin-mediated adhesion is essential for border cell 

migration; border cells migrate more slowly when DE-cadherin activity 

is reduced. Because microtubules normally decrease the adhesive 

strength of Cadherin (amount and turn-over), I decided to check 

whether there was any interaction between microtubules and DE-

cadherin in border cells. ShgR69 is a null allele for DE-

cadherin/shotgun(shg); shgR69 heterozygous flies have reduced level of 

DE-cadherins in border cells and nurse cells yet show normal border 

cells migration (Figure 2.11 A). Interestingly, the reduction of net 

cluster speed upon nocodazole treatment can be suppressed in border 

cells from ShgR69 heterozygous flies (Figure 2.11 A), indicating a 

negative genetic interaction between cadherin and microtubules. 

 

ShgPB4354 is an shg allele that efficiently reduces DE-cadherin levels 

specifically in border cells (Mathieu et al. 2007). The reduction of net 

cluster migration speed caused by nocodazole was not repressed but 

became worse in border cells from shgPB4353 heterozygous flies (Figure 

2.11 B), indicating the rescue of nocodazole’s effect on net cluster 

speed by shgPB4354  is via the reduction of DE-cadherins in the nurse 

cells. This further supported the previous idea that the immediate effect 

of nocodazole on border cell movement could be due to perturbations 

of microtubules in the substrate nurse cells. 
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Figure 2. 11 Genetic interactions between microtubules and DE-
cadherin 

 
(A) Quantification of net cluster speed from wildtype and cadherin 
heterozygous mutant (shgR69/+) border cell clusters. P<0.05 for 
wildtype cluster between control versus nocodazole treatment. Two-
tailed student t-test was used. Number of movies analyzes is between 
8 (control treated) to 26 (nocodazole treated). Genotype of egg 
chambers is w1118/+;slboGal4,10xGFP/+ for control and 
w1118/+;shgR69/+;slboGal4,10xGFP/+ for shgR69/+ 
 
(B) Quantification of net cluster speed from nocodazole-treated 
wildtype, cadherin heterozygous mutant (shgR69/+), and cadherin 
piggyback allele heterozygous mutant (shgPB4354/+) border cell 
clusters. shgPB4354 is a cadherin allele that specifically disrupts its 
expression in border cells. Number of movies as indicated in Figure (A) 
except n=8 for shgPB4354/+. 
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2.3 Stathmin is a subtle regulator of border cell migration 
 

Stathmin is a ubiquitous cytosolic phosphoprotein that can bind to αβ 

Tubulin heterodimer and promote microtubule depolymerization (Sobel 

1991). Stathmin is a conserved protein and Drosophila Stathmin 

appeared to have similar function and regulation to the more studied 

mammalian protein (Ozon et al. 2002). The lab has previously 

identified Stathmin is highly expressed in border cells and it is also 

expressed in the substrate nurse cells (Borghese et al. 2006). More 

interestingly, stathmin is a slbo target, (Borghese et al. 2006), implying 

its possible roles in border cell migration.  

 

2.3.1 Generating of the stathminKO allele 
 

The initial characterization of Stathmin’s function in border cells was 

incorrect (Borghese et al. 2009). The severe non-migrating phenotype 

displayed by the imprecise excision allele of stathminL27 was later 

found to be contributed by the disruption of the neighboring gene Arcp-

20, which encodes an important regulator of actin polymerization. To 

determine the correct function of Stathmin in border cells, I generated a 

knock-out allele of the stathmin (staiKO) by homologous recombination 

(details in Material and Methods 4.1). This staiKO allele removes three 

out of the four exons that are present in all Stathmin isoforms (Figure 

2.12 A), resulting in a truncated protein with about 80% coding 

sequences being removed (Figure 2.12 B). In addition, the three 

removed exons encode peptide sequences covering two predicted 
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alpha helical structures (Ozon et al. 2002), which are conserved in 

mammalian Stathmin and essential for Tubulin binding (Gigant et al. 

2000; Redeker et al. 2000). Therefore, the resulting truncated protein 

product encoded by staiKO is expected to be non-functional.
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Figure 2. 12 Schematics showing the coding exons of stai and the 
protein sequences of four isoforms 

 
(A): Construction of staiKO. Conserved coding exons between all four 
Stathmin isoforms are shown in yellow. Alternative coding exons are 
shown in light blue. A neighboring gene CG31642 locates within 
stathmin genomic region is marked in megenta. Targeted knockout 
region is replaced by white gene after homologous recombination, 
resulting in the disruption of translation since Thr55 as in Stathmin A 
(see magenta arrow in B, which contains 251 amino acids in total (refer 
to sequences of Stathmin A (with label shaded in dark blue) in B).  
 
(B): Protein sequence alignment of four Stathmin isoforms. The 
conserved sequences are shaded in yellow. Megenta arrow indicates 
the start of the amino acid deletion in StaiKO.  
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2.3.2 Overall phenotypes of stathminKO mutant animals 
 

Homologous recombination can often lead to introduction of 

background mutations (personal communications with Cohen lab, also 

see Material and Methods 4.2.1.3), therefore I characterized the true 

loss of function phenotype of Drosophila Stathmin by examining 

transheterozygous flies carrying the staiKO allele over the small 

stathminL27 deficiency or transheterozygous flies of various staiKO lines 

obtained (see Material and Methods 4.2.1.3). Similar to the viable 

stathmin null mice, flies without stathmin (staiKO) are viable but display 

reduced survival rates (Figure 2.13 A), indicating the Drosophila 

stathmin is not an essential gene. In addition, these staiKO flies do not 

move much as wildtype adults (Figure 2.13 C), suggesting the loss of 

Stathmin may cause neurological defects, just as in mammals 

(Schubart et al. 1996; Liedtke et al. 2002; Shumyatsky et al. 2005). 

Interestingly, staiKO adult males display a high level of infertility (Figure 

2.13 B), indicating Stathmin has a novel role in male germ cells.  

 

To ensure the phenotypes observed were indeed due to loss of 

Stathmin, a rescue construct with the stathmin cDNA driven by a 

ubiquitous promoter was introduced back to staiKO flies. The observed 

phenotypes were largely rescued, indicating they were due to loss of 

Stathmin, and the staiKO allele generated is a true stathmin mutant. 
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Figure 2. 13 Overall phenotypes of stathminKO mutant animals 

(Details see in Material and Methods 4.3-4.5) 
 
(A) Viability assay.  
Shown is the quantification of percentage of viable flies. At least 82 F1 
progenies were scored for each genotype as indicated.  
 
(B) Fertility assay.  
Shown is the quantification of percentage of fertile male flies. At least 
10 male flies were analyzed for each genotype indicated.  
 
(C) Climbing assay.  
Shown is the cumulative success rate for each genotype as indicated; 
7<n<10.  
 
Ubiquitous-expression of stai in all tissues largely rescues the 
phenotype.  
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2.3.3 Roles of Stathmin in border cells 
 

2.3.3.1 Effects of stathminKO on microtubules 
 

As the staiKO homozygous mutant flies are viable, I was able to directly 

dissect the mutant females’ ovaries to analyze border cell migration. 

Note that in addition to the high expression level in border cells; 

Stathmin is also expressed in nurse cells, making it possible that it 

functions in both cell types.  

 

I first checked whether microtubules in border cells are affected. The 

gross organization and level of microtubules in border cells from staiKO 

homozygous mutant ovaries appeared to be normal both before and 

during migration (Figure 2.14). This indicates Stathmin does not play a 

major role in microtubule destabilization in border cells.  
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Figure 2. 14 Effects of stathminKO on microtubules 

 
Organization of stable microtubules in stathminKO mutant border cell 
cluster prior to (left panel) and during migration (right panel). Cell nuclei 
are marked by DAPI (blue) and cell membrane is marked by DE-
cadherin (green). Stable microtubules are marked by anti-acetylated 
Tubulin staining (red in top merge panel and white in bottom panel). 
(Scale bar: 10µm).  
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2.3.3.2 Effects of stathminKO on border cell migration 
 

In addition to staiKO mutant ovaries, I also generated staiKO mutant 

border cell clones to analyze the autonomous effect. I first scored 

border cell migration phenotype from a number of fixed samples. At 

stage 10, when wild type border cells have finished migration, most of 

the staiKO mutant border cells managed to reach the oocyte, indicating 

Stathmin is not essential for border cell migration (Figure 2.15 A). 

However, when I analyzed stage 9 egg chambers when border cells 

are still in the course of migration, I found a migration phenotype. In 

both staiKO border cell clones and staiKO border cells from staiKO mutant 

tissue, there was a significant percentage of egg chambers showing 

border cell migration delays compared to that of control (Figure 2.15 

B), indicating Stathmin does have a regulatory role in border cell 

migration. Therefore I decided to pursue further to characterize 

Stathmin’s regulatory function in border cell migration. 

 

To investigate the cause of the migration delay in stage 9, I performed 

live imaging experiments of staiKO border cells and analyzed the 

movies as described. StaiKO mutant egg chambers showed similar 

initiation competency as compared to wild type control (Figure 2.15 C), 

however after initiation, the mutant clusters migrate a bit slower with 

reduced net cluster speed (Figure 2.15 D). I confirmed that this effect 

was due to lack of Stathmin, as the reduction of cluster speed can be 

rescued by tubulin-stathmin, which restores the expression of the 

stathmin cDNA transgene in the mutant tissue (Figure 2.15 D). 
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Therefore the mild migration delay seen from the fixed sample analysis 

of staiKO mutant ovaries at stage 9 (Figure 2.15 B) was at least partly 

due to the less efficient migration of the staiKO mutant clusters rather 

than an initiation delay. 

 

StaiKO mutant border cell clones in staiKO heterozygous mutant 

background display different phenotypes: the mutant border cell 

clusters did not initiate migration as efficiently as control (Figure 2.15 

C), however, once the mutant cluster had initiated migration, they 

migrate as effectively as control (Figure 2.15 D). This is again due to 

lack of Stathmin, because the defect of inefficient initiation of migration 

can be rescued upon restoring the expression of Stathmin using a 

cDNA transgene in the border cells (Figure 2.15 C). The reduced rates 

of initiation of migration in staiKO mutant border cell clones may 

contribute to the observed migration delay phenotype from fixed 

sample studies at stage 9 (Figure 2.15 B).  
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Figure 2. 15 Effects of stathminKO on border cell migration 

(A) Quantification of percentage of stage 10 egg chambers with 
migration delay. Stage 10 egg chambers were scored from fixed 
samples.  
Genotypes are indicated below: 
Control: border cells from egg chambers with genotype of 
slboGal4,10xGFP/+ 
staiKO: border cells from egg chambers with genotype of staiKO 

control border cell clone: GFP negatively labelled border cell clones in 
egg chamber with genotype of  
hsFLP/+;FRT40/FRT40,ubiqutin-GFP 
staiKO border cell clone: GFP negatively labelled border cell clones in 
egg chamber with genotype of 
hsFLP/+;staiKO,FRT40,FRT42/FRT40,ubiquitin-GFP 
20<n<120 
 
(B) Quantification of percentage of stage 9 egg chambers with 
migration delay. Mid-late stage 9 egg chambers were scored from fixed 
samples.  
Genotypes for control and staiKO as indicated in (A). Additional 
genotypes are indicated below: 
Control: border cells from egg chambers with genotype of  
control border cell clone: GFP positively labelled border cell clones in 
egg chamber with genotype of 
hsFLP/+;FRT40,FRT42/FRT40,Gal80;slboGal4/10xGFP 
staiKO border cell clone: GFP posotively labelled border cell clones in 
egg chamber with genotype of 
hsFLP/+;FRT40,staiKO,FRT42/FRT40,Gal80;slboGal4/10xGFP 
For staiKO, 26 border cell clusters from staiKO egg chambers and 219 
staiKO border cell clones were scored. For the control, 56 border cell 
cluster from control egg chambers and 105 control border cell clone 
clusters were scored. The comparison between control border cell 
clone versus staiKO border cell clone was statistically significant with 
P<0.001 using Fisher’s exact test.  
 
(C) Quantification of percentage of border cells that succeed in 
initiation of migration as analyzed in Figure 2.7. Genotypes as 
indicated in B except for staiKO+stai, of which the genotype of the egg 
chamber is staiKO; tub-stai/+. The comparison between control clone 
versus staiKO clone is statistically significant with P<0.05 using two-
tailed Fisher’s exact test. At least 13 movies were analyzed for each 
genotype. 
 

(D) Quantification of net cluster speed from migrating border cell 
clusters. Genotypes as indicated in B. For staiKO, 11 staiKO egg 
chambers and 10 staiKO border cell clones were analyzed. Only the 
comparison between control and staiKO is statistically significant with 
P<0.05 using two-tailed student t-test. 
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Therefore, the delay in migration at a specific stage in both fully mutant 

egg chambers and border cell mutant clones appeared to reflect two 

roles, one at initiation of migration, where Stathmin acts in border cells, 

and another during migration where Stathmin likely functions in the 

nurse cell substrate. The defects in whole tissue could be due to 

disruption of Stathmin in nurse cells or a combined effect of loss of 

Stathmin in both nurse cells and border cells. This is similar to what 

was observed with severe disruption of microtubules as shown in 

previous session: differences in disrupting microtubules in whole tissue 

versus in border cells alone. However, as stathmin is a negative 

regulator of microtubules, knocking out this gene in border cells would 

take away a mode of negative regulation, causing a different effect as 

compared to nocodazole treatment. Interestingly, the unexpected 

absence of initiation delay in staiKO mutant tissue as compared to staiKO 

border cell clones indicates that effects on border cells and the 

substrate nurse cells are not simply additive, but may sometimes be 

compensatory.  
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2.3.3.3 Effect of stathminKO on extension profiles of border cells 
 

During migration, staiKO mutant border cell clusters from staiKO mutant 

egg chambers (stai, in Figure 2.16 A) have increased number of back 

and side extensions, and this can be rescued by restoring the 

expression of a stathmin cDNA transgene in the whole tissue (Figure 

2.16 A). However, this alteration of extensions was not observed in 

staKO mutant border cell clones (staiKO clone, in Figure 2.16 A), 

indicating Stathmin may play a non-cell autonomous effect in the nurse 

cell substrate to regulate extensions. StaiKO mutant border cell clones, 

however, display another phenotype: an increased frequency of non-

resolved extensions from the back cell of the staiKO mutant border cells 

clone during initiation of migration (Figure 2.16 B). About 25% of staiKO 

mutant border cell clones retained an attachment to the anterior 

epithelium for a long period and this extension from the back cell was 

persistently present during the two-hour imaging period and did not get 

resolved (see Figure 2.16 B). This was rarely observed in wild type 

clusters (Figure 2.16 B). The attached clusters migrated slower than 

the free clusters, indicating the non-resolving extensions from the back 

cell exerted pulling force or drag that counteracted and interfered with 

the migrating cluster (Figure 2.16 C). The attached clusters were not 

included in the calculation of net cluster speed and the extension 

profiles (Figure 2.15 D and Figure 2.16 A). Therefore, the migration 

delay scored from fixed sample analysis in which whether back 

attachments were present or not was not considered (Figure 2.15 B), 
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could be due to a combined effect: the inefficient initiation of migration 

of staiKO mutant border cell clusters and the attached clusters that 

migrate less effectively. Overall, Stathmin apparently functions in both 

border cells and nurse cells; in a way that affects border cell 

movement: at initiation, Stathmin is required in the border cell to 

promote effective detachment from anterior epithelium. During 

migration, the presence of Stathmin appears to have a non-

autonomous effect to regulate extensions from border cells. 
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Figure 2. 16 Effect of stathminKO on extension profiles of border 
cells 

 
(A) Quantification of number of extensions as presence per frame from 
migrating clusters.  
For control, total number of extensions analyzed is 388 from control 
and 195 from control border cell clones. For staiKO, 792 extensions 
from staiKO and 465 from staiKO border cell clones were analyzed. Only 
comparisons of back and side extensions between control and staiKO 
are significant with P<0.001 using two-tailed student t test. Genotypes 
are as indicated in Figure 2.15 B. 
 
(B) Non-resolved extension phenotypes in staiKO border cell clones.  
(Left panel) Selected images of control and staiKO border cell clones at 
comparable migration path from live imaging movies. Border cells were 
marked with GFP (green) and membrane of the egg chamber was 
marked by a lipophilic marker FM4-64 (red). After two hours of imaging, 
the back cell from the staiKO border cell cluster still retained an 
extension connected with anterior epithelium. The frequency of such 
attached cluster was quantified (right panel). Genotypes are as 
indicated in Figure 2.15 B. 
 
(C) Quantification of net cluster speed from border cell clusters at both 
early and late phase of migration.  
P<0.05 for detached cluster versus attached cluster in both phases. 
Two-tailed student t-test was used. A total of 26 movies were analyzed. 
Genotypes are as indicated in Figure 2.15 B. 
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2.4 Systematic screen of microtubule regulators and motors 
 

Disrupting microtubules have clear consequences in border cell 

migration, yet the phenotype of staiKO mutant border cells are quite 

subtle. As Stathmin is only one of many microtubule regulators, I 

decided to perform a systematic screen of a larger set of microtubule 

regulators for their potential roles in border cell migration. These 67 

genes encode known or potential microtubule regulators, which include 

microtubule motors and their interacting proteins; regulators for 

microtubule organization; regulators of microtubule dynamics such as 

microtubule severing proteins and microtubule 

polymerization/depolymerization promoters. A full list is given in Table 

2.1.  

 

2.4.1 Screen schemes 
 

For genes that have mutant alleles available, border cell migration was 

analyzed in either homozygous mutant ovaries (for viable mutations) or 

border cell mutant clones (for lethal mutations). For the genes which 

have no mutant alleles available, border cell migration was analyzed in 

clusters expressing transgenic RNAi constructs to knock down 

expression of the gene product. One or two RNAi lines were used per 

gene. RNAi expression was induced in all follicle cells using the actin-

Gal4 driver with a flipout cassette (AFG) several days prior to analyzing 

of border cell migration. Past experiments done in the lab had shown 

that the border cell specific driver SlboGal4 only induced overt 
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phenotypes for a small subset of genes known to be important for 

border cell migration, with protein levels only decreased significantly 

after migration was well underway. This was also demonstrated by the 

inefficient depolymerization of microtubules by over-expressing spastin 

using SlboGal4 in early stage as shown in Figure 2.10 A. Therefore, to 

provide strong and robust expression of the RNAi transgene both prior 

and during migration, AFG was used.  

 

2.4.2 Screen results 
 

Border cell migration was scored by comparing the position of border 

cells with follicle cells at mid-late stage 9 or at stage 10. Generally, 

border cells lagging behind the anterior end of retracting follicle cells by 

at least one nurse cell is scored as a migration delay. For RNAi-

mediated knockdown, at least100 egg chambers were scored for each 

genotype. From the total 67 genes screened, only 4 genes had a 

border cell migration phenotype upon generation of RNAi mediated 

knockdown or loss-of-function mutants (Figure 2.17 and Table 2.1).  
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Figure 2. 17 Summary of the screen to identify microtubule 
regulators important for border cell migration 

 
RNAi expressing cells are marked with GFP. The egg chamber 
membrane is marked with FM4-64 (red).  
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Table 2.1: Full list of genes included in the screen 

Flybase ID Gene Function Alleles RNAi lines Migration 
FBgn0032390 dgt2 MT nucleator   Trip.HM04038 normal 
FBgn0034569 dgt3 MT nucleator   v103624 normal 
FBgn0026085 dgt4 MT nucleator   v108969 normal 
FBgn0033740 dgt5 MT nucleator   v13788 normal 
FBgn0039638 dgt6 MT nucleator   105330 normal 
FBgn0026431 Grip75 MT nucleator   v106044 normal 
FBgn0032705 Grip71 MT nucleator   v103377 normal 
FBgn0026432 Grip163 MT nucleator   v108586 normal 
FBgn0026430 Grip84 MT nucleator   v105640 normal 
FBgn0001612 Grip91 MT nucleator   v2983 normal 
FBgn0027500 spd2 MT nucleator   v101882 normal 

FBgn0036059 nudE 
MT minus end 
anchor   v29788 delay 

FBgn0027066 Eb1 
MT aseembly 
promoter   v106233 normal 

FBgn0027948 msps 
MT aseembly 
promoter   v21982 normal 

FBgn0020503 CLIP-190 
MT aseembly 
promoter   v107176 normal 

v108852 

FBgn0004379 Klp67A 

MT 
disassembly 
 promotor   

Trip.JF02701 
normal 

FBgn0022085 ssp4 MT severing   v108927 normal 
FBgn0039141 spastin MT severing  spas5.75 v108739 normal 
FBgn0040208 katanin 60 MT severing    v106487 normal 
FBgn0259108 futsch MT stabilizing futschK68 v6973 normal 
FBgn0004378 Klp61F MT bundling   v109280 normal 
 v108620 
FBgn0021760 chb MT stabilizing chbS068607 v26051 delay 
FBgn0013733 short stop MT stabilizing shot3   normal 
FBgn0040232 cmet MT stabilizing   v35081 normal 
FBgn0005316 mud MT stabilizing  mud4   normal 
FBgn0026620 D-tacc MT stabilizing   v101439 normal 
    v106777 
FBgn0015754 Lis-1  MT stabilizing  Lis-1G10.14  v6216 delay 
FBgn0028902 tektin-A MT stabilizing   v101714 normal 
FBgn0035638 tektin-C MT stabilizing   v100094 normal 
FBgn0029687 Vap-33-1 MT stabilizing Vap-33-147 v100809 normal 
FBgn0041174 Vhl MT stabilizing   v108920 normal 

v27473 normal 
FBgn0022959 yps 

MT assembly 
promoter   v27472 normal 

FBgn0000150 awd MT binding   v33198 normal 
FBgn0001108 Glued Dynein binding   v3785 normal 

FBgn0001308 Khc 
MT plus-end 
motor Khc27 v44337 normal 

v2911 
FBgn0000140 asp MT associated   v2910 normal 

FBgn0040233 cana 
MT plus-end 
motor   v107714 normal 

FBgn0000352 cos MT motor cos5 v108914 normal 
FBgn0011606 Klp3A MT plus-end Klp3Amei-352 v104682 normal 
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motor 
v104667 
v2983 

FBgn0001612 l(1)dd4 
MT minus-end 
binding   Trip.JF01719 normal 

FBgn0002924 ncd 
MT minus-end 
motor ncdD   normal 

FBgn0004374 neb MT motor   v108138 normal 

FBgn0002948 nod 
MT plus-end 
binding noda v48148 normal 

FBgn0011692 pav MT motor   v46134 normal 
FBgn0003545 sub MT motor   v18754 normal 
FBgn0003654 sw MT motor   v101559 normal 

v23464  
v47171   

FBgn0034155 unc-104 MT motor   v23465 normal 
FBgn0014133 bif MT binding   v109722 normal 
FBgn0000256 capu MT binding capuEE v34278 normal 
FBgn0032210 CYLD MT binding   v101414 normal 
FBgn0004167 kst MT binding   v37074 normal 
        v37075 normal 
FBgn0013726 pnut MT binding   Trip.JF02792 normal 
FBgn0003475 spir MT binding   v107335 normal 
FBgn0250788 β Spectrin MT binding   v42054 normal 
FBgn0004380 Klp64D MT motor   v45373 normal 

v103358  
FBgn0086362 

 
spn-F 

 
MT minus-end 
motor  

 
  v107850 

 
normal 

FBgn0260991 Incenp MT binding   v101123 normal 
        v17044 normal 
FBgn0033687 CG8407 MT motor   v100696 normal 
FBgn0019968 Khc-73 MT motor   v105984 normal 
        v24225 
FBgn0035800 CG7716 MT nucleation   v104217 

 
normal 

FBgn0004381 Klp68D MT motor   v101058 normal 
FBgn0038205 Kif19A MT motor   v106569 normal 
FBgn0030268 Klp10A MT motor   v41534 normal 
FBgn0026141 Cdlc2 MT motor   v42113 normal 
FBgn0011760 ctp MT motor   v109084 normal 
FBgn0034824 Klp59C MT motor   v109829 normal 
FBgn0052371 CG32371 MT binding   v106233 normal 

FBgn0261797 Dhc64C 
MT minus end 
motor Dhc4-19 Trip.JF03177 delay 

FBgn0001316 klar MT attachment klar1   normal 
 

Each gene is presented with its synonyms and functions. The unique 
Flybase identification number (ID) was shown on the left of each gene.  
Mutant alleles include characterized amorph and hypomorph alleles or 
based on mutant phenotypes associated with as reported in other 
system. RNAi lines starting with v are VDRC stock number; RNAi lines 
staring with Trip are TRiP line numbers from Trip Harvard Medical 
School. Mutants showing border cell migration delay are highlighted in 
bold. 



 

 70 

2.4.2.1 Chb 
 

Chromosome bows (Chb), also known as Orbit/Mast, is the CLASP 

orthologue of Drosophila (Lemos et al. 2000). CLASPs are conserved 

class of microtubule binding proteins that associate with microtubule 

plus-end and regulate its stability (Bratman and Chang 2008). 

Drosophila CLASP had been shown to regulate microtubule bundling 

which is important for persistent motility and contact repulsion in 

Drosophila macrophages in vivo (Stramer et al. 2010). Border cell 

clones for a hypomorphic allele of Chb showed some migration delay 

(Figure 2.18 A and B). I tried to further verify the migration delay 

phenotype in Chb null clones; however, I was not able to get generate 

any null clones, indicating Chb may be essentially required for cell 

viability and/or growth in follicle cell epithelium. I also tested the effects 

of two single RNAi lines by live imaging analysis, which had apparent 

no effects in the net cluster speed from an average of 10 movies 

analyzed. To push this further, I tried to combine the two RNAi lines 

together to achieve an increased knock down and found the net cluster 

speed was reduced slightly, but not statistically significant (Figure 2.18 

C). Therefore, the function of this gene in border cell migration was not 

pursued further.  
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Figure 2. 18 Effects of Chb on border cell migration 

 
(A) Border cell migration delay of Chb hypomorph clone. Phallodin 
stained actin (red) and mutant clones were marked by the absence of 
GFP (green). Border cell cluster with 2X zoom in was displayed in (B) 
and the GFP image was shown in white. Genotype of egg chamber is 
hsFLP; chb1, FRT80/ubiquitinGFP, FRT80. In total 8 Chb hypomorph 
clones were scored and 6 displayed migration delay. Scale bar: 10µm.  
 
(C) Quantification of net cluster speed. Genotypes are hsFLP/w1118; 
AFG,10xGFP/+ for control and hsflp/w1118; chbv108620/chbv26051; 
AFG,10xGFP/+ for Chb RNAi. n=14.  
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2.4.2.2 Lis-1, nudE and Dhc64C 
 

Depletion of three other genes, namely the Lis-1, nudE, and 

cytoplasmic Dynein heavy chain 64C (Dhc64C) caused border cell 

migration delay (Figure 2.19). Lis-1 and NudE are Dynein interactors 

that form a complex. The Lis-1/NudE complex binds to cytoplasmic 

Dynein and help it to process large load cargos, such as nuclei, 

centrosomes or entire microtubules (McKenney et al. 2010). This high-

load regulatory mode of cytoplasmic Dynein is important for nuclei 

movement, microtubule organization and cell migration (Dujardin et al. 

2003; Vallee et al. 2012). Finding that all the three genes produced 

border cell migration delay, whereas downregulation of most other 

microtubule regulators had not effect (Table 2.1) suggests that this 

cooperating protein complex has an important role in border cell 

migration.  
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Figure 2. 19 Effects of Lis-1, nudE and Dhc64C RNAi on border 
cell migration 

 
Quantification of percentage of mid-late stage 9 egg chambers with 
migration delay from fixed sample analysis. About 100 egg chambers 
were scored for each genotypes as indicated below: 
Control: hsFLP/w1118; AFG,10xGFP/+ 
Lis-1KK: hsFLP/w1118; Lis-1KK108813/+;AFG,10xGFP/+ 
Lis-1GD: hsFLP/w1118;Lis-1GD1480/AFG,10xGFP 
Lis-1 double: hsFLP/w1118;Lis-1 RNAi (KK108813)/+;Lis-1 
RNAi(GD1480)/10xGFP 
NudE: hsFLP/w1118; nudE(GD29788)/AFG,10xGFP 
Dhc64C:hsFLP/w1118,Dhc64C RNAi (TripJF03177)/AFG,10xGFP 
All comparisons of RNAi to control are statistically significant using two-
tailed Fisher’s exact test. P values were all below 0.001 with the 
exception of Lis-1KK that has a P value<0.05.  
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2.5 Probing the functions of the Lis-1/NudE/Dynein complex in 
border cell migration 
 

2.5.1 The Lis-1/NudE/Dynein complex is required in both polar 
cells and outer border cells for border cell migration 
 

While this work was underway, the other researchers reported that the 

Dynein complex functions in the polar cells for polarized localization of 

the cytokine Upd (Van de Bor et al. 2011). Upd in turn, is important for 

border cell fate specification through activation of the JAK/STAT 

pathway. This could in principle explain the observed border cell 

migration delay phenotypes because the RNAi is expressed in all the 

cells in the border cell cluster including the two polar cells. To 

investigate whether the observed migration delay phenotype was solely 

caused by a dysfunction of the complex in the polar cells, I checked 

border cell migration when the RNAi construct is expressed only in 

polar cells. Using a polar cell specific driver Upd-Gal4 that mediates 

the knockdown of Lis-1 RNAi only in polar cells, a much milder border 

cell migration delay was observed (Figure 2.20 A). The two treatments 

caused apparently the same strength of defects in cell fate 

specification, as measured by the number of border cells expressing 

the cell fate marker Slbo (Figure 2.20 B).  
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Figure 2. 20 The Lis-1/NudE/Dynein complex functions beyond 
polar cells 

 
(A) Quantification of percentage of mid-late stage 9 egg chambers with 
migration delay. Genotypes of egg chambers are: 
Control: hsFLP/+; Lis-1 RNAi (KK108813)/+; Lis-1 RNAi (GD1480)/ 
neurA101,UAS-RFP 
Upd Gal4: UpdGal4/hsFLP; Lis-1 RNAi (KK108813)/+;Lis-1 RNAi 
(GD1480)/UAS-PHGFP  
AFG: hsFLP/+; Lis-1 RNAi (KK108813)/+;Lis-1 RNAi 
(GD1480)/AFG,10xGFP 
Comparison between UpdGal4 and AFG are statistically significant with 
P<0.0001 using two-tailed Fisher’s exact test. At least 91 mid-late 
stage 9 egg chambers were scored for both Upd and AFG.  
  
(B) Quantification of numbers of slbo positive cells in border cell cluster 
from egg chambers with genotypes as indicated in (A). For Upd and 
AFG, at least 27 egg chambers were scored. 
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Therefore, the strong border cell migration delay phenotype observed 

in RNAi mediated knock down in all cells by AFG was not solely 

caused by the defect of cell fate specification, suggesting that Lis-1, 

NudE and Dynein play additional roles in the outer migratory border 

cells. To test this, SlboGal4, which drives RNAi expression in outer 

border cells but not in polar cells was used in a slightly sensitized 

genetic background with one copy of slbo hypomorph allele slbo1310 

and at 29 ºC to increase Gal4 expression. This led to significant delay 

of migration from nudE RNAi expressing border cell clusters (Figure 

2.21). Mild migration delay was observed with Lis-1 RNAi. Thus the 

migration defect of knocking down nudE and less so with Lis-1 by 

SlboGal4 supports a role of the protein complex in outer border cells. 

The effect of nudE RNAi is stronger than that of Lis-1 and dynein with 

this driver as compared to AFG suggests that NudE might be a more 

unstable protein or more sensitive to the short term downregulation by 

SlboGal4. 

 

Nevertheless the migration delay phenotype seen in nudE and dynein 

RNAi knock down by SlboGal4 demonstrated the requirement of the 

two genes in outer border cells, further supporting the idea that the Lis-

1/NudE/Dynein complex functions in outer border cells in addition to 

polar cells in regulating border cell migration. 
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Figure 2. 21 NudE and Lis-1 are required in outer border cells for 
migration 

 
Quantification of percentage of egg chambers with migration delay at 
slbo1310 heterozygous background. slbo1310 is a slbo hypomorph allele 
and heterozygous of slbo1310 provides a sensitized genetic background 
for border cell migration delay. Egg chambers has been kept for 29 
degree for two days before analysis. About 100 stage 9 egg chambers 
were scored from fixed samples for each genotype as indicated below: 
Control: yw/+; SlboGal4,slbo1310/+ 
Lis-1 double RNAi: Lis-1 RNAi (KK108813)/SlboGal4,slbo1310; Lis-1 RNAi 
(GD1480)/+ 
Dhc64C: SlboGal4,slbo1310/+; Dhc64C RNAi (TripJF03177)/+ 
NudE: SlboGal4,slbo1310/+; NudE RNAi (GD29788)/+ 
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To test this idea more stringently, I analyzed genetic mosaic clones of 

complete loss-of-function (null) alleles of Lis-1 and Dhc64C, where I 

looked for clones in which outer border cells were mutants but none of 

the polar cells were mutants. Such clones were rare: two were found 

for Lis-1 and two were found for Dhc64C. In both cases severe border 

cell migration delay was observed (Figure 2.22). In addition, the few 

mutant border cells were found located at the back of the migrating 

cluster (see arrow in Figure 2.22 right panel), a hallmark of mutations 

that specifically affect migratory cells. Therefore, I conclude that Lis-1, 

NudE and Dynein together perform a critical function in outer border 

cells and that RNAi-mediated gene knock down can mimic the mutants’ 

effects. 

 

 

Figure 2. 22 Autonomous requirement of Lis-1 and Dynein in outer 
border cells for migration 

 
Left panel: Image of a full Lis-1G10.14 outer border cell clones from a late 
stage 9 egg chamber with genotype of hsFLP/+; FRTG13,Lis-1G10.14 
/FRTG13,ubiquitinGFP.  
Right panel: Images of a partial Dhc64C4-19 outer border cell clones 
from a stage 10 egg chamber with genotype of hsFLP/+; Dhc64C4-

19,FRT2A/FRT2A,ubiquitnGFP. 
Mutant clones are marked by the loss of GFP. Polar cells are marked 
by FasIII (red). DAPI marks cell nuclei (blue). Regions covering border 
cells are zoomed in 3X and shown as boxed region on top of the 
original image on the right hand side. (Scale bar: 30 µm) 
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2.5.2 Lis-1/NudE/Dynein is strongly required in border cells for 
initiating migration  

 

From fixed sample analysis, Lis-1 RNAi mediated knock down caused 

a strong border cell migration delay, where more than a half of the egg 

chambers showed no migration at all (Figure 2.23). This lack of 

migration phenotype was prevalent at a similar penetrance at both 

stage 9 and stage 10, indicating a complete block of initiation of 

migration. If knockdown only caused a delay in migration, more 

clusters would be expected to reach the oocyte by stage 10. 

 

 

 
Figure 2. 23 Border cell migration defect upon Lis-1 disruption 

 
Quantification of border cell migration from both stage 9 and stage 10 
egg chambers. Genotypes are indicated as below: 
Control: hsFLP/w1118; AFG,10xGFP/+ 
Lis-1: hsFLP/w1118;Lis-1 RNAi (KK108813)/+;Lis-1 RNAi(GD1480)/AFG, 
10xGFP 
13-42 egg chambers were scored for control and 90-133 egg chambers 
were scored for Lis-1. 
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To determine why some Lis-1 knockdown border cell clusters did not 

initiate migration, I did live imaging analysis and focused on the stage 

when wild type border cell clusters normally initiate migration. For wild 

type control clusters, migration was well initiated at early stage 9. The 

competent cluster has a polarized cell shape with a large prominent 

forward extension in the leading edge (top panel in Figure 2.24 A). All 

wild type clusters analyzed showed this behavior. Lis-1 RNAi knock-

down border cell clusters were much more rounded and lacked large 

extensions at the leading edge (bottom panel in Figure 2.24 A).  

 

The process of the initiation of migration in border cell clusters has 

been extensively analyzed by Dr. Mikiko Inaki in the lab and she found 

that invasion did not necessarily take place upon the formation of the 

first or longest forward extension, indicating this was not the sole 

determination for initiation. Instead, the initiation of migration was best 

correlated to the total forward reach of the cluster, which was defined 

to be the distance between the most anterior tip of the follicle cells and 

the most posterior tip of the extension (see illustrations in Figure 2.24 

A). Initiation of migration occurred when the total reach was on average 

49 µm and at least 36 µm (Figure 2.24 D). In Lis-1 knock down 

situation, the forward extensions occurred much rarer (Figure 2.24 B) 

and they were shorter (Figure 2.24 C), making the total reach ranged 

from 15 µm to 36 µm (Figure 2.24 D). In agreement with the non-

migrating phenotype observed from fixed samples, for a total number 

of 21 movies analyzed, only three Lis-1 knock down border cell clusters 
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succeeded in initiation of migration. Those clusters that did initiate 

migration were three of the five most extended ones; further support 

the importance of this feature for the initiation of migration (Figure 2.24 

D).  
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Figure 2. 24 Lis-1 has a strong effect on forward extension in 
initiation 

 
(A) Still Images from live imaging movies of border cells of 
(top) control and (bottom) Lis-1 at initiation stage (early stage 9).  
Border cells are marked by GFP. Genotypes as in Figure 2.23.  
Scale bar: 20µm.  
 
(B) Quantification of presence of forward extension from two-hour 
movies of control (n=15) and Lis-1 RNAi border cells clusters (n=25) 
during the stage of initiating migration. Genotypes as in A. 
 
 
(C) Maximum length of extensions were manually identified from 
movies of early stage 9 control clusters (n=15) and Lis-1 RNAi clusters 
(n=25). The difference is statistically significant with P<0.05 using two 
tailed student t-test. Genotypes as in A.  
 
 
(D) Total forward reach (see A) for control clusters at time of 
detachment from anterior end (n=15); for Lis-1 RNAi clusters maximal 
forward reach in movie, only 3 (red) detach (n=21). Genotypes as in A.  
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2.5.3 The Lis-1/NudE/Dynein complex is required in border cells 
during migration 
 

As there were three Lis-1 knock down escapers that did initiate 

migration, it allowed me to analyze whether this strong reduction of Lis-

1 affected the process of migration as well. As with the initiating 

clusters, the migrating Lis-1 knock down clusters formed much fewer 

forward extensions and their sizes were much smaller (Figure 2.25 A). 

The number and size of back extensions were also reduced. Border 

cell specific knock down of nudE by RNAi using SlboGal4 showed 

similar effects (Figure 2.25 A), but not as severe. This indicates that the 

few Lis-1 RNAi knock down escapers truly represented the effect of 

reducing Lis-1 complex. Therefore, the Lis-1/NudE/Dynein complex 

plays an important role in regulating extensions both for the initiation 

and the actual process of migration. 

 



 

 84 

 

Figure 2. 25 The Lis-1/NudE/Dynein complex is required in border 
cells during migration 

 
 
(A) Effects of disrupting Lis-1 and NudE in border cells on (left panel) 
number and (right panel) size of extensions from movies of migrating 
border cells. Genotypes for AFG are the same as Figure 2.23; for 
SlboGal4: 10xGFP/+ (con) and slboGal4,10xGFP/nudEGD15226 (NudE); 
n=3 for Lis-1 (escapers) and n=13 for NudE, differences to control are 
both significant (P<0.01) using two tailed student t-test. 
 
(B) Effects of disrupting Lis-1 and NudE in border cell cluster speed. 
Quantification of net cluster speed of border cells from egg chambers 
with genotype as in A. 
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It has been shown previously that the net cluster speed of wild type 

border cell clusters was directly correlated with the ability of making 

and maintaining large forward extensions (Poukkula et al. 2011), thus 

the severe reduction of the size of forward extensions observed in Lis-1 

knock down border cell clusters would predict a pronounced defect in 

movement. Indeed, when analyzing the three Lis-1 knock down 

escapers, despite a high variation due to the small sample size, the 

average net cluster speed was much reduced as compared to control 

(Figure 2.25 B). Border cell specific knock down of nudE showed 

similar effect of reducing the net cluster speed, further confirming that 

the phenotypes observed were indeed indicative of Lis-1/NudE 

complex function. Because the nudE knock down was only induced in 

migrating border cells and after their specification, it indicates the 

effects were within the border cells, i.e. not due to a potential non-

autonomous effect from polar cells. In addition, the effects were not an 

indirect effect of long-term depletion, as could have been for the case 

with Lis-1 knock down. Therefore, I conclude that the Lis-

1/NudE/Dynein complex functions in border cells to allow the formation 

of big forward extensions, which in turn, are required for both the 

initiation of migration and effective cluster movement during migration. 
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2.5.4 The Lis-1/NudE/Dynein complex is required to maintain the 

proper organization of a migratory border cell cluster 

 

2.5.4.1 Disrupting Lis-1/NudE/Dynein can affect cell polarity 
 

To better understand the defects in cells with disrupted Lis-

1/NudE/Dynein complex, I first checked the apical-basal cell polarity. 

Apical-basal cell polarity is important for maintaining the proper 

organization of the follicular epithelium (Tanentzapf et al. 2000) as well 

as border cell migration (Pinheiro and Montell 2004). It has been 

shown that strong loss of dynein function in follicle cells disrupts both 

molecular and morphological aspects of apical-basal polarity (Horne-

Badovinac and Bilder 2008), however partial block of Dynein activity 

using combinations of hypomorph alleles or injecting anti-Dhc 

antibodies failed to produce epithelial polarity phenotypes (Harris and 

Peifer 2005). Those studies indicate the epithelium cells can tolerate a 

substantial reduction of Dynein activities (Horne-Badovinac and Bilder 

2008). Similar to dynein, complete removal of Lis-1 in follicle cells null 

mutants resulted in the loss of apical-basal polarity (Figure 2.26 A), 

whilst a reduction of Lis-1 by RNAi mediated knockdown did not 

(Figure 2.26 B). Similarly, microtubule polarity in the Lis-1 knockdown 

follicle cells was essentially normal, as revealed from live EB1-GFP 

tracing (Figure 2.26 C). These results further supported that Lis-1 acts 

with Dynein in follicle cells, and small amount of Lis-1/Dynein is 

sufficient to maintain the simple apical-basal epithelial polarity. Thus, 
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the strong border cell migration phenotype caused by Lis-1 RNAi 

mediated knockdown was unlikely to be due to the loss of apical-basal 

polarity. 

 

 
Figure 2. 26 Assaying apical-basal polarity upon Lis-1 disruption 

 
(A-B) Follicle cells from stage 9 egg chambers stained with aPKC 
(white) in (A) Lis-1G10.14 clones marked with absence of GFP (green) 
and (B) Lis-1 expressing cells marked positively with GFP.  Scale bar: 
5µm.   
 
(C) Quantifications of directions of tracked EB1-GFP comets in control 
and Lis-1 RNAi expressing follicle cells. Genotypes: hsFLP/+; AFG/+, 
ubiqutin-EB1-GFP, UAS-RFP/+ (control) and hsFLP/+;AFG/Lis-
1KK106777, ubiqutin-EB1-GFP,UAS-RFP/Lis-1GD6212 (Lis-1). 16 tracks 
from control and 31 tracks from Lis-1 RNAi were analyzed.  
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2.5.4.2 Disrupting Lis-1/NudE/Dynein affects microtubules and the 
organization of the border cell cluster 

 

It has been shown that in neuronal cells, disrupting either Lis-1 or 

Dynein had a dramatic effect on the morphological reorganization of 

growth cone and interfered with microtubule behavior (Grabham et al. 

2007). To determine the role of Lis-1 in microtubule organization in 

border cells, I first looked at fixed samples. In Lis-1 knockdown border 

cells, I observed a mis-localization of microtubules (Figure 2.27 B, C 

and D). In wild type, prior to migration, all border cell clusters consist of 

two adjacent polar cells with an apically present MTOC-like structure. 

The two polar cells align closely with each other and position their 

MTOC-like structures towards the leading edge, such that they appear 

as one structure (see previous Figure 2.1 B and 2.2 B). During 

migration, the two MTOC-like structures get repositioned however they 

still remain together as the two polar cells are kept close with each 

other while they are carried along by the migrating outer border cells 

(see Figure 2.27 A, also refer to previous Figure 2.1 D and Figure 2.2 

C).  

 

This prominent type of MTOC-like structure was mostly lost or altered 

in Lis-1 knockdown clusters. Instead of being close to each other, two 

separate foci can be observed in different positions, often far apart 

(Figure 2.27 B, C and D), they also appeared less focused and more 

diffuse, sometimes in a belt like structure (Figure 2.27 B, C).  
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Figure 2. 27 Mislocalization of microtubules upon Lis-1 disruption 

 
Migrating border cell clusters stained with anti-actylated Tubulin (white) 
and anti-βgal (red) from lacZ in neurA101 in (A) control and (B) Lis-1 
RNAi knockdown border cell clusters. Arrow points towards the MTOC 
like structure. Genotypes are hsFLP/+;AFG/+;UAS-RFP,neurA101 /+ 
(control) and hsFLP/+; Lis-1KK108813 /AFG;UAS-RFP, neurA101 / Lis-
1GD1480 (Lis-1). (C) Non-migrated and (D) migrating Lis-1 depleted 
clusters show similar polar cell displacement.  Note also the rotated 
MTOC-like structure in both. Anti-actylated tubulin (white); red asterisks 
indicate center of polar cell nuclei, determined as in B; genotype as B. 
Scale Bars: 20µm.  
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Microtubule organization was also analyzed by imaging of EB1-GFP in 

Lis-1 knockdown clusters. The MTOCs clearly localize abnormally 

(Figure 2.28 C-F). Prior to migration, there is one area in which the two 

MTOCs are present in the apical region in the two adjacent polar cells  

(Figure 2.28 A, Figure 2.29 A and B); these MTOCs later get 

repositioned when border cell clusters are migrating (Figure 2.28 B and 

Figure 2.29 C). In Lis-1 knockdown cluster, however, the MTOCs are 

frequently mis-localized (Figure 2.28 C and D); in addition, the two 

polar cells often have their own MTOC independently positioned 

(Figure 2. 28 E and F).  

 

These prominent defects of microtubule misorganization were 

observed both in clusters that were unable to initiate migration (Figure 

2.27 C, Figure 2.28 C and E), as well as those that did (Figure 2.27 B 

and D, Figure 2.28 D and F), indicating this defect is not the simple 

consequence or cause of the lack of migration.  
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Figure 2. 28 Mislocalizaton of MTOC like structure upon Lis-1 
disruption 

 
Still Images of EB1-GFP from live imaging movies of non-migrating (left 
panel: A,C,E) and migrating (right panel: B,D,F) border cell clusters 
with genotypes as indicated in Figure 2.26. Green arrows indicate 
MTOC-like structure. Scale bars: 10µm.  
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Figure 2. 29 Illustration of MTOC in polar cells at different stage of 
oogenesis  

 
(A) prior to the formation of border cell cluster 
(B) border cell cluster has just been formed  
(C) border cell cluster is migrating 
 
Microtubules (magenta) emanate from the two MTOCs in adjacent 
polar cells (red); outer border cells are marked with blue.  
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The abnormal localization of polar cell MTOCs in border cell cluster 

suggested that the polar cells were not correctly localized, i.e. a defect 

in overall cluster organization. To look at this more specifically, I used a 

nuclear marker Neuralized (Neur), which is specifically expressed in 

polar cells. Normally the distance between two polar cell nuclei is in 

average about 4.03 µm (Figure 2.30 B), close to the radii of two nuclei 

(4µm, Figure 2.30 A), indicating the two polar cells are kept close 

together. When Lis-1 is knocked down, some clusters showed 

abnormal number of polar cells, in consistent with the reported 

functions of Lis-1 in mitosis (Faulkner et al. 2000). These mitosis 

defective clusters were excluded from furture quantification and 

phenotypic analysis. For the remaining Lis-1 knockdown clusters, the 

two polar cells were no longer in close proximity; instead, they were 

apart and apparently detached (Figure 2.30 B). Polar cell displacement 

in Lis-1 knockdown clusters was a progressive effect: it was visible 

prior to the formation of a motile border cell cluster (Figureg 2.30 C and 

2.30 D) and became more severe later in migrating clusters (Figure 

2.30 C and 2.30 D).  

 

In conclusion, disrupting Lis-1 causes mis-organization of microtubules 

and that was most easily observed in polar cells but likely to also occur 

in outer border cells. In addition, Lis-1 is required to maintain the tight 

association between the two polar cells to ensure the proper 

positioning of polar cells within the border cell cluster. The question 

would be then are these two phenotypes related, and if so, how they 
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are related. As microtubules are known to regulate adhesions and cell-

cell adhesions may be important for cluster organization (see next 

section, 2.5.4.3), I thus went on to test whether adhesions are affected 

in Lis-1 knockdown border cell clusters.  
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Figure 2. 30 Separation of polar cells in Lis-1 RNAi clusters at 
both early and late stage.  

 
(A) Sum of the radius of two polar cells in control (left) and Lis-1 RNAi 
(right) border cell clusters. 
 
(B) Distance between 2 polar cells in a cluster is measured between 
the centers of nuclei, in 3D, genotypes as in Figure 2.27.  
 
(C) Distance between 2 polar cells as measured in (B) at different 
stages.  
 
(D) Percentage of polar cell distance over 4 µm at different stages. 
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2.5.4.3 Disrupting Lis-1/NudE/Dynein affects the localization of 
adhesion molecules 
 
 

Fasciclin II (FasII) is a transmembrane homophilic CAM that is the 

Drosophila ortholog of mammalian neural cell adhesion molecule 2 

(NCAM2). Similar to NCAM2, Drosophila FasII undergoes alternative 

splicing to generate multiple isoforms with differential expression 

pattern and intracellular binding partners: two transmembrane 

isoforms, one glycosylphosphatidylinositol (GPI) linked (Grenningloh et 

al. 1991; Lin et al. 1994) and another recently identified new variant 

FasIIPB that expresses in glial cells (Silies and Klambt 2010). The glial 

FasIIPB can mediate homophilic adhesions with transmembrane bound 

axonal FasII to regulate subcellular gradient of adhesiveness in glial 

migration in the Drosophila peripheral nervous system (Silies and 

Klambt 2010). The monoclonal antibody that is generally used to detect 

FasII recognizes an epitope in the intracellular domain of the two 

transmembrane FasII isoforms. This antibody (mAb 1D4) showed 

enriched expression in polar cells (Figure 2.31 A and A’, see also 

(Szafranski and Goode 2004). Interestingly, the outer border cells have 

a non-autonomous role in FasII localization (Szafranski and Goode 

2004), either through a putative border cell receptor as postulated by 

Szefranski and Goode, or more likely via homophilic binding to other 

FasII isoforms that are not recognized by the mAb 1D4 antibody. 

Fasciclin III (FasIII), another homophilic CAM, is exclusively localized 

to the interface between the two polar cells. The localization of these 
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two markers as well as DE-cadherin was analyzed in Lis-1 knockdown 

cells and compared to control (Figure 2.31). FasII and FasIII were 

visibly abnormally localized in 30-50% of Lis-1 knockdown clusters 

(Figure 2.31). The mislocalization of adhesion molecules could 

contribute to the final polar cell separation phenotype, or could be a 

consequence of polar cell separation. To distinguish between these 

two possibilities, FasII and FasIII localization were examined in earlier 

stages of Lis-1 knockdown follicle cells, prior to the establishment of a 

cluster topology. The abnormal localization of FasII and FasIII were 

evident even before the onset of a rounded cluster (Figure 2.31), 

indicating mislocalization of adhesion molecules procedes polar cell 

displacement in Lis-1 knockdown cells. In addition, some categories of 

mislocaliztion did not show obvious cell separation. Therefore, 

mislocalization of adhesion molecules could be a result of Lis-1 

depletion, perhaps due to the abnormal microtubule cytoskeleton. This 

might cause subsequent polar cell separation during the epithelium to 

cluster transition stage.  
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Figure 2. 31 Mislocalization of adhesion molecules in Lis-1 
knockdown border cells 

 
(A and A’) FasII staining patten in control border cells at early (A) and 
late (A’) stage.  
 
(B-C) Examples of abnormal FasII localization in Lis-1 depleted 
clusters at early (B, C) and late (B’, C’) stage. Quantification shown in 
G, n=17-28.    
 

(D and D’) FasIII (white) and Cadherin (red) staining patten in control 
border cells at early (D) and late (D’) stage.  
 
(E-F) Examples of abnormal FasIII localization in Lis-1 depleted 
clusters at early (E, F) and late (E’, F’) stage. (H) Quantification shown 
in H, n=8-14.    
 
Genotypes are hsFLP/+; AFG,10xGFP/+ (control) and  hsFLP/+;Lis-
1KK108813 /+;AFG,10xGFP/ Lis-1GD1480 (Lis-1).  Scale bars: 10µm. 
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How would mislocalizaiton of adhesions cause polar cell separation 

during the epithelium to cluster transition stage? To understand how 

the cluster mis-organization may occur, I considered what normally 

happens during the formation of a migratory border cell cluster from 

their epithelial cell precursors. In order to initiate migration, the 

specified border cells must rearrange themselves to change from an 

epithelial to cluster topology. Mikiko has performed extensive live 

imaging analysis of wild type clusters at this stage and found actin-

dependent rotational or jostling movement of border cells (Figure 2.32). 

The two central polar cells need to be displaced by adjacent motile 

outer border cells during this and subsequent phases, whether invasion 

takes place or not, and in a progressive manner (refer to previous 

Figure 2.29). As such, border cell and polar cell interactions and 

remodeling of adhesions at the junction between them are expected to 

allow this epithelial to cluster topology conversion. Defects in cell-cell 

adhesion at the cell contact would result the polar cells jossled out of 

position within the border cell cluster. Cell-cell interaction defects would 

be consistent with the overt cluster disorganization phenotype not 

being a purely polar cells autonomous defect. 
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Figure 2. 32 Analysis of early rotating movement 

 

Rotating movement in border cell clusters at initiation of migration 
(slbo-Gal4,UAS-10xGFP/+), compared to posterior follicle cells at the 
same stage and border cells in egg chambers treated with 1µM of 
cytochalasin D (n=7-9 clusters, two cells tracked per cluster).  The 
angle from cluster center to nucleus is tracked (see illustrations in A). 
The baseline “movement” may mostly be intracellular nuclear 
movement and manual tracking inaccuracies.  
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3. Discussion 
 

3.1 Microtubule polarity in border cells 
 

Many migratory cells perform directional migration, and some of them 

require polarized microtubules to establish and/or maintain cell polarity. 

The polarity of microtubules and its function has largely been studied in 

single cell migration in tissue culture (Keller et al. 1984; Liao et al. 

1995), such as the polarized migration of fibroblasts on ECM. Such 

cells have a prominent centrosome located in the middle of the cell, 

where microtubules minus ends are concentrated. During migration, 

the centrosomes are repositioned ahead of cell nucleus, and 

microtubules grow towards the leading edge. In these cells, there is a 

clear bias of microtubules to grow towards the front.  

 

There are several differences between border cells and these well 

studied single cell migration in tissue culture system. Border cells 

migrate as a cohesive cluster contacting each other. On the outside of 

the cluster, border cells interact with the substrate, which are the 

neighboring nurse cells.  

 

The border cell cluster forms an elongated shape when initiating and 

during early phase of migration. It is thus interesting to study the 

polarity of microtubules in such group of cells. If the whole cluster is 

considered as one unit, the microtubule polarity is essentially the 
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opposite to what has been found in most of the single migrating cells. 

In border cell cluster, the overall bias of microtubules is to grow away 

from the periphery, towards the middle of the cluster. It is thus 

interesting to consider how and why border cells have opposite 

microtubule polarity as compared to single migrating cells. One 

difference is that with the exception of the center polar cells that are 

specialized and have a MTOC like structure, the outer border cells do 

not have an obvious MTOC, and in those cells microtubule grow in a 

less biased way, only with a subtle bias towards the center (inward 

bias) as revealed from quantification. In other words, some 

microtubules grow towards the periphery as well. 

 

The inward bias may reflect that these cells were polarized epithelial 

follicle cells before reorganizing into a migratory cluster, and some of 

the microtubule apical-basal polarity got retained with them later when 

they form a cluster. In follicle cells that with strict apical-basal polarity, 

the minus end is at the apical side and plus ends grow basally. Thus 

the outside membrane of border cells can be considered as modified 

apical membrane (Niewiadomska et al. 1999) with a subtle bias for the 

minus end. 

 

Polar cells have a clearly polarized microtubule cytoskeleton with the 

minus end enriched at the apical side. The microtubule minus end 

motor Dynein together with its interacting proteins Lis-1 and NudE have 

an indispensable role in Upd RNA localizatioin to the apical site (Van 
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de Bor et al. 2011). I have found the same complex is required in the 

migrating border cell as well. Since the outer membrane of border cells 

can be considered as modified apical-like membrane that has a subtle 

inward bias, we would expect the bias for the minus end is outward, i.e, 

the minus end of microtubules would be located more towards the 

periphery. As Dynein is a minus end motor, it is interesting to speculate 

that the Lis-1/NudE/Dynein complex may be involved in transporting 

some putative cargos towards the periphery, raising the possibility that 

it might have a role in regulating extensions. We do see that both the 

forward and backward extensions are severely affected when the 

complex is disrupted in outer border cells. 

 

If Lis-1/NudE/Dynein functions in minus end transport of some putative 

cargos in regulating extensions, we would expect this is microtubule 

dependent and disruption of microtubules may cause a similar effect. 

When microtubules were disrupted upon nocodazole treatment, we 

observed only a modest effect on extensions. One possible 

explaination of the subtle phenotype would be the low concentration of 

nocodazole only depolymerizes dynamic microtubules, leaving the 

stable microtubules largely unaffected. It will be interesting to find out if 

there is a difference in polarity of stable and dynamic microtubules in 

border cells.  

 

3.2 Regulatory roles of microtubules in border cell migration 
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Roles of microtubules in cell migration are variable; they make different 

contributions to cell migration in different cell types. I have done both 

drug studies and mutants to investigate the roles of microtubules in 

border cell migration. Drug studies showed that both reducing 

microtubules and altering microtubule dynamics affect the process, 

indicating a requirement of microtubules in border cell migration. 

However, though drug treatments were effective to reduce the cluster 

speed, it neither completely nor severely block cluster movement, 

implying a modest effect of microtubules in regulating border cell 

migration. This is in contrast to the effects caused by actin 

depolymerisation using cytochalasin D (CytoD) treatment (data not 

shown), which completely blocks migration, showing that actin 

cytoskeleton is essential for movement (as expected). Thus 

microtubules appear to play more a supportive or regulatory role during 

border cell migration. The modest effect was also seen in the genetic 

perturbation of the specific microtubule depolymerization factor 

stathmin. Furthermore, systematic screen of a large set of genes 

encoding microtubule regulators only recovered few genes having a 

role in border cell migration. Although most of the results were obtained 

from RNAi mediated knockdown but not from complete loss of function 

studies, and so may have missed some of the genes in the list; I did 

observe detectable effects from knockdown each of the 3 genes that 

encode a cooperating protein complex, suggesting a reliable overall 

efficiency of the screen. This, in turn, supports the notion that only a 
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few microtubule regulators and motors have uniquely required 

functions in border cell migration. 

 

3.3 Autonomous and non-autonomous requirement of 
microtubules in border cell migration 
 

Another difference between border cells and many of the migrating 

cells studied is the migration substrate. For many well-studied 

migratory cells, the migration substrate is either the ECM or the culture 

dish surface. In contrast, border cells migrate between and on the giant 

nurse cells and we study the migration process within the tissue. 

Reduction of microtubules in the tissue using drug treatment caused a 

clear reduction of net cluster speed whilst autonomous reduction of 

microtubules in the border cells by over-expressing the severing 

protein spastin did not. One difference between drug treatment and 

genetic perturbation is the timing: drug treatment produces immediate 

acute effect whilst genetic perturbations depend on the timing when the 

transgene is well turned on by the driver; in addition, long term genetic 

pertubation may allow cells to build up compensatory mechanisms that 

eventually lead to adaptation. However, the non-autonomous effect 

was also seen in the genetic perterbation of loss of stathmin situation, 

implying the diffences in timing may not be the primary cause of the 

differences.  

 

Drug treatment might also affect microtubules in the polar cells, which 

are important for the localization of Upd RNA. Therefore drug treatment 
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may in-principle affect border cell migration by affecting the 

specification of border cells. We cannot formally rule out this possibility, 

however, given the immediate acute effect of drugs on clusters that 

have been already specified prior to drug addition, any cell 

specification defect that might have slowly built up would not be the 

primary cause. In addition, loss of Stathmin activity in the whole border 

cell cluster (including polar cells) produces different effect to loss of 

Stathmin in the whole tissue, further demonstrating the importance of 

microtubules in both border cells and the substrate nurse cells.   

 

3.4 Interactions between microtubules and adhesions 
 

One possible explanation for both autonomous and non-autonomous 

effects of microtubule is that the cell-cell adhesions are affected when 

microtubules are disrupted. In the case of border cells migrating on 

nurse cells, this appears to be mediated by DE-cadherin mediated 

homophilic adhesion (Niewiadomska et al. 1999; Pacquelet and Rorth 

2005).  Microtubules have in other contexts been shown to regulate 

cadherin-dependent adhesion or adherens junctions, and vice-versa 

(Chausovsky et al. 2000; Stehbens et al. 2006) and we did observe a 

genetic interaction with DE-cadherin. Reducing DE-cadherin in the 

tissue but not in the border cells rescued the migration defect in 

nocodazole treated border cell clusters, suggesting a role of 

microtubules in negatively regulating DE-cadherin in the nurse cells. 

Nocodazole treatment may preferentially stabilize nurse cell adhesions 
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and thus increase the stickiness of the substrate, making them difficult 

for border cell to migrate on. Alternatively, as border cells use DE-

cadherin mediated adhesions for migration in the crowded three-

dimensional environment by squeezing between the nurse cells, there 

might be a competition for DE-cadherin mediated adhesions between 

border cells and nurse cells. This is relevent as DE-cadherin mediated 

adhesion is homophilic. Border cell-nurse cell adhesions need to “win” 

over nurse cell-nurse cell adhesions for invasaion and migration to 

progress in border cells. Our lab has previously observed that 

increasing the level of DE-cadherin in the nurse cell substrate can 

cause border cell migration delays (A. Pacquelet and P. Rorth, 

unpublished observations), highlighting the importance of proper 

balance of DE-cadherin between border cells and nurse cells. It would 

ultimately be ideal to characterize and compare DE-cadherin 

localization and dynamics in control and nocodazole treated condition 

to clarify the exact roles of microtubules in regulation of DE-cadherin. 

 

In addition, when perturbing microtubule regulations, other phenotypes 

that may be related to defects in adhesions were observed, both in the 

modest regulator Stathmin and the strong regulator Lis-1. Stathmin 

mutant border cell clones have prolonged attachments with anterior 

epithelium cells and did not delaminate completely. This may be 

caused by inappropriate de-adhesions or lack of retraction of the 

mutant border cells, which could be due to an altered cell-cell 

adhesion, with neighboring somatic cells and substrate nurse cells, 
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respectively. Lis-1 RNAi causes severe block in the initiation of border 

cell migration, with cluster reorganization and redistribution of adhesion 

molecules largely affected. Therefore, both microtubule regulator 

mutant phenotypes imply defects in adhesions, with neighboring cells 

and within the whole cluster, respectively. Therefore, it is tempting to 

speculate that spatial regulation of cell-cell adhesion is a key role of the 

microtubule cytoskeleton in border cell migration.  

 

3.5 Regulatory roles of microtubules in cellular extensions 
 

Cell migration is often associated with the formation of membrane 

protrusions, which contain an underlying dynamic cytoskeleton network 

to provide both the protrusive and contractile force essential for cell 

motility. In border cells, initiation of their invasive migration is linked to 

the formation of a robust forward-directed extension from the front cell 

most of the time. Such front extensions are stable and seem to 

generate the traction force needed for forward-directed movement 

(Poukkula et al. 2011). Border cells also have back extensions, which 

are active just as front extensions, but they are outward, non-trailing 

tails from the back cells. Back extensions are fewer, smaller, and short-

lived; they do not seem to generate traction force. It has been shown 

that in normal situation, back extensions are non-productive and do not 

interfere with clusters’ movement, and their non-productivity is 

regulated by the guidance signaling through the RTKs PVR and EGFR 

(Poukkula et al. 2011). Interference of the guidance signaling by over-



 

 109 

expressing double dominant receptors for both PVR and EGFR can 

make back extension become productive, which may render the border 

cell cluster into a tug of war situation and lead to inefficient movement 

(Poukkula et al. 2011).  

 

Interestingly, disruption of the microtubule regulators Lis-1 and NudE 

severely affected the formation of the prominent structure of forward 

extension, which can explain the observed severe migration defect. If 

Lis-1, NudE and Dynein were required to produce load-bearing 

movement of the front cell nucleus or cell content, the expectation is 

that the microtubule cytoskeleton would be required as well. However, 

front extensions were not severely affected by border cell autonomous 

or tissue-level reduction of microtubules, implying that the microtubule 

cytoskeleton as such might not be essential for this structure. We 

cannot formally rule out microtubule independent roles of Lis-1 and 

NudE, however, with the observed overlapping phenotypes in border 

cell migration and the well known regulatory roles of Lis-1 and NudE in 

Dynein motor function, this is highly unlikely and we did observe mis-

organization of microtubules in Lis-1 RNAi clusters. Therefore the 

stronger effect caused by the disruption of Lis-1 and NudE may be 

caused by the mis-organized microtubule cytoskeleton, which might be 

more disruptive for polarized migratory cells than the simple loss of 

microtubules altogether.  
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Microtubules also play roles in regulating the back extensions. 

Autonomous reduction of microtubules by over-expressing the severing 

protein spastin in border cells caused a significant increase in the 

number and size of back extensions, making back extensions bigger 

and maybe more stable. This indicates microtubules may preferentially 

destabilize back extensions in the back cell. With limited effect on front 

extesions, microtubule depletion reduces the difference between front 

and back cells, making them more similar to each other. In addition, 

loss of function of the microtubule-depolymerization factor Stathmin in 

the tissue but not in the border cells causes a similar effect in 

promoting back extensions, suggesting a non-autonomous requirement 

in the nurse cells, possible due to an effect in stabilizing microtubules. 

 

Interestingly, the apparent large effect on back extensions upon 

microtubule depletion did not affect clusters’ movement, indicating 

these stabilized back extensions appear to still be non-productive. This 

implies that microtubules either negatively regulate back extensions 

independently of the guidance signaling, or microtubules themselves 

are not the downstream effecters of the guidance cues. Instead, 

microtubules might regulate adhesions that are essential for border 

cells’ invasiveness when they invade the germline nurse cells. 

 

3.6 Common features of Lis-1/NudE/Dynein and microtubules in 
cell-on-cell migration 
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The mammalian Lis-1, Ndel1 (one of the two NudE-related proteins in 

mammals) and Dynein complex has well known roles in neuronal 

migration in the cerebral cortex. It is interesting to compare neuronal 

migration in the brain to border cell migration as both represent cells 

migrating in a crowded three-dimensional environment upon other cells. 

They also both require the evolutionally conserved Lis-1/NudE/Dynein 

complex. In neuronal cell migration, depletion of Lis-1 and Dynein 

specifically in the neurons (Tsai et al. 2005) or the entire animal (Youn 

et al. 2009) had a prominent effect on cell and nuclear movement as 

well as an effect on axonal extensions, which was also observed in 

culture (Grabham et al. 2007), but not on all extensions. In border cell 

migration, Lis-1/NudE/Dynein complex is strongly required and 

disruption of Lis-1 and NudE had strong effects on the front extensions. 

In addition, neuronal progenitors undergo changes to switch from one 

differentiated cell state and shape to another (multipolar to bipolar 

migratory state), just as border cells re-organize to become migratory 

(epithelial to cluster transition); and Lis-1 RNAi retained neuronal 

progenitors’ multipolar morphology (Hippenmeyer et al. 2010). 

Therefore, it is interesting to speculate the transition to a migratory 

state is a Lis-1-dependent step. 

 

Recent advance in genetic mosaic techniques have allowed the 

appreciation of extensive cell-cell interactions among migrating 

neurons and revealed an unexpected degree of non-cell autonomy of 

phenotypic effects for both Lis-1 and Ndel1. It was speculated that the 
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non-autonomous functions may be due to community effects (piggy-

backing) that can be observed for collective cell migration (Rorth 2009) 

or cell-cell signaling effects. Given the effects of microtubules in border 

cell migration, it is also interesting to speculate that the non-cell 

autonomous requirements for Lis-1/Ndel1 might be liked to cell-cell 

adhesion: effects in both the migrating cell and the substrate cells. 

There are obviously significant differences between neuronal and 

border cell migration. For example, migrating neurons have a 

prominent centrosomes and microtubules are aligned parallel to the 

long axis with plus end predominantly outwards (Rakic et al. 1996; Tsai 

et al. 2007), but the common features of cell-on-cell migration by 

different cell types may be informative and are clearly worth further 

investigation.  
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4. Material and Methods 
 

4.1 Drosophila genetics 
 

4.1.1 Fly stocks and husbandry 
 

All flies were grown on standard corn meal and crosses were set up at 

25 ºC except for the cross between slboGal4, slbo1310 and nudE RNAi 

flies that was carried out at 29 ºC. PolyUbiqutin promoter driven EB1-

GFP flies were obtained from Ohkura (Shimada et al. 2006). Tubulin-

GFP (Grieder et al. 2000) and UAS-spastin-EGFP (Trotta et al. 2004) 

flies were obtained from Damian Brunner. 10xGFP (Poukkula et al, 

2011) was used as a marker for the movie analysis. SlboLacZ was used 

for scoring border cell migration delay by X-Gal. NeurA101 was used to 

mark polar cells. 

 

4.1.2 RNAi mediated knockdown 
 

For the RNAi-mediated knockdown screen, fly stocks were obtained 

from the Bloomington (including Trip lines generated at the Harvard 

Medical School) and Vienna Drosophila RNAi Center (details included 

in supplementary table). All RNAi expressions were driven by either a 

border cell specific driver SlboGal4 or the actin-flip-out Gal4 driver 

(AFG) for robust expression in all somatic cells. For the slboGal4 

driven RNAi screen, slbo1310 was introduced as a sensitized 

background. For AFG, to obtain expression in all border cells, female 

flies were heat shocked at 37ºC for 30min at larval stage and ovaries 
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from 1-2 day old female were dissected, except for a few lines that 

early expression resulted in lethality (Msps, Ssp4, Spastin, Tektin-C, 

Sw, Unc-104, Ctp and Klp64D, Lis-1, Dhc64C). To bypass the early 

lethality upon expression by those RNAi lines, adult female flies were 

heat shocked at 37ºC for 30min and ovaries were dissected 3-4 days 

later. For AFG driving expression, w1118 were crossed as a control. 

For slboGal41310, egg chambers of w1118/+; slboGal41310/+ often 

displayed strong migration delay and yw and Canton-S were used as 

additional controls. Border cell migration was scored by comparing the 

position of border cells with follicle cells at mid-late stage 9 or at stage 

10. Generally, border cells lagging behind the anterior end of retracting 

follicle cells by at least one nurse cell is scored as a migration delay. 

 

4.1.3 Generation of mosaic clones 
 

4.1.3.1 MACRM clones  
 

For generation of staiKO mutant border cell clones for live imaging 

analysis, staiKO mutants were recombined with FRT40,42 on the 

second chromosome and mitotic clones were generated and positively 

marked by GFP using the MARCM (Mosaic Analysis of a Repressive 

Marker) system (Lee and Luo 1999). Mitotic staiKO clones were induced 

by heat shocking larvae of the genotype hsFLP/+; 

FRT40,42,staiKO/FRT40,Gal80; slboGal4,UAS-10xGFP/+ and border 

cell cluster expressing GFP in all outer border cells were scored as full 
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mutant clones for analysis. FRT40,42 was used to induce empty clones 

as control.  

4.1.3.2 Regular clones  
 

Regular mitotic clones (GFP negatively marked) were generated 

according to Xu and Rubin (Xu and Rubin 1993). For chb clones, chb1 

(BL24502) was recombined with FRT80 and mitotic clones were 

induced by heat shocking larvae of the genotype hsFLP/+; 

chb1,FRT80/ubiqutinGFP,FRT80 and border cells with loss of GFP 

expression were scored as mutant clones for analysis. For staiKO, 

mitotic clones were induced by heat shocking larvae of the genotype 

hsFLP/+; staiKO,FRT40,42/ubiqutinGFP,FRT40. For Lis-1 clones, 

FRTG13,Lis-1G10.14 (BL8773) was used and adult flies with genotype 

hsFLP/+; FRTG13 ,Lis-1G10.14 /FRTG13,ubiquitinGFP were heat shocked 

at 37ºC for 30 minutes and ovaries were dissected 3–4 days later. For 

Dhc64C clones, Dhc64C4-19,FRT2A (BL23863) was used. Dynein 

mutant clones were initially induced as the same way as for Lis-1, 

whereby Dhc64C4-19,FRT2A was crossed with hsFLP; 

FRT2A,ubiqutinGFP and adult flies with genotype hsFLP/+;Dhc64C4-

19,FRT2A/FRT2A,ubiquitnGFP were heat shocked. Dynein mutant clones 

were also generated according to Van de Bor et al, whereby Dhc64C4-

19,FRT2A were crossed to e22cgal4, UAS-FLP/CyO; FRT2A, UbiGFP  

and e22cgal4, UAS-FLP/+; Dhc4-19, FRT2A/UbiGFP, FRT2A females 

were kept at 30°C before dissection. There was not obvious difference 

in clonal induction efficiency as well as border cell migration phenotype 
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between the two methods. The clonal analysis of Dhc64C results 

included mutant clones induced by both methods.  

 

4.2 Cloning and generating of staiKO mutant and stai rescue flies 
 

4.2.1 Generating staiKO mutant flies 
 

4.2.1.1 Cloning of staiKO knock-out vector 
 

The staiKO knock-out vector was constructed to carried two homology 

arms with about 3.5kb sequence homology to nucleotides flanking 

upstream and downstream the targeted knock out region (starts from 

nucleotide sequence encoding exon 6 and finishes at exon 8). The two 

homology arms were amplified from genomic DNA extracted from 

w1118 flies using two sets of primer pairs: 

 

• 5’ Upstream flanking homology region:  

Forward: 5’-TTGCGGCCGCTCTATTATGGCGGGTTATGC-3’ 

Reverse: 5’-TTGCGGCCGCAGGAGGAAGGAAAGCAAAGG-3’ 

 

• 3’ Downstream flanking homology region: 

Forward: 5’- TTGGCGCGCCGCATGGCCAAAAGTTTTCAT-3’ 

Reverse: 5’-TTGGCGCGCCCTACGAGAACGCAGTGGTCA -3’ 

 

The PRC amplified upstream homology arm was cloned into pW25 

vector using Not1 and downstream homology arm was cloned using 
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AscI. Clones with the two homology arms inserted in the correct 

orientation (with respect to each other) was selected and used for 

generating transgenic donor flies for the knock out.  

 

4.2.1.2 Creating staiKO knock-out donor flies 
 

Transgenic flies were made by P-element mediated germ-line 

transformation (Rubin and Spradling 1982; Spradling and Rubin 1982) 

and mapped to inserted chromosomes. 4 transformants with staiKO 

construct inserted at the third chromosome were used as “donors flies” 

for the subsequent homologous recombination.  

 

4.2.1.3 Generating staiKO knock out flies 
 

staiKO mutant was generated using homologous recombination-based 

ends-out gene targeting (Rong and Golic 2001). 200 crosses were set 

for each staiKO knock-out donor lines with hsFlp, hs-I-SceI. F1 progeny 

were heat shocked at 37ºC three times for 1 hour each with about 12 

hours interval since 2nd instar larval. F1 progenies were screened and 

mapped for the loss of w+ from the third chromosome. 21 candidates 

were obtained. 19 had been tested and14 were verified to have 

eliminated sequences from the knock-out targeted region checked by 

PRC amplified using one primer set: 

 

• Knock out region Forward: 5’-AAGAACGTTAGCGTCGAGGA-3’ 

• Knock out region Reverse: 5’-CTCCTTTAGGCGATCCAACA-3’ 
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Initially 5 staiKO lines had been tried to verify by position mapping for 

the two homology arms insertions using two sets of primers: 

 

• 5’ Upstream homology arm 

o Forward: 5’-CAAATGCGAACATTTTAACTCG-3’ 

(upstream sequence from the 5’ Upstream homology 

arm) 

o Reverse: 5’-CGACGAAGCGCCTCTATTTA-3’ (sequence 

from the white gene, reverse complemented) 

• 3’ Downstream homology Arm: 

o Forward: 5’-TCGCTGCATGAATTAGCTTG-3’ (sequence 

from the white gene) 

o Reverse: 5’-TTAAACGGAACGGAAACGAC-3’ 

(downstream sequences from the 3’ downstream 

homology arm, reverse complemented) 

 

Only 1 staiKO line had been successfully verified to have correct 

insertions of both homology arms. This line was lethal however when 

crossed with the small deficiency of stathminL27 and with other staiKO 

lines (most of the staiKO lines were lethal, few were viable however with 

very much reduced viability), transheterozygous flies were viable and 

used for the subsequent phenotypic analysis. This staiKO line was 

recombined with FRT40,42 on the second chromosome for generating 

mitotic staiKO border cell clones for border cell migration. Rescue 
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experiments were always performed concurrently to confirm the 

phenotypes were indeed due to loss of Stathmin, but not due to any 

background mutations that might have occured from the homologous 

recombination process. 

 

4.2.2 Generating of stai rescue flies  
 

4.2.2.1 Cloning of stai rescue construct 
 

For the pCasper-attB-tubulin-stathmin rescue construct, pCasper-attB-

tubulin was first generated by subcloning the tubulin promotor from 

pCasper-tubulin into pattB (Bischof et al. 2007) by Xho1 and EcoR1. 

The cDNA of staithmin A was subcloned from pBS-stai (Borghese et al. 

2006) into pCasper-attB-tubulin using Not1 and Xho1.  

 

For the pUAST-attB-stathmin rescue constructs, it was subcloned from 

pCasper-attB-tubulin-stathmin into pUAST-attb (Konrad Basler and 

Francois Karch) using Not1 and Xho1. 

 

4.2.2.2 Making stai rescue flies 
 

Transgenic flies were made by PhiC31 integrase-mediated 

transgenesis systems at targeted insertion site 86Fb.  

 

4.3 Calculation of percentage of viability 
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5 to 10 male and females of staiKO
 mutant with heterozygous balancer 

chromosomes (CyO) were crossed and the number of each F1 

progenies was counted. The fraction of viable homozygous staiKO 

mutant flies (Fexperiment) was calculated as the number of hatched staiKO 

mutant flies divided by the total number of F1 adult flies. The ultimate 

viability percentage was calculated by dividing the fraction of viable 

homozygous staiKO mutant flies (Viabilityexperiment) by the expected 

fraction of viability (Viabilityexpected). The expected fraction of viability 

(Viabilityexpected) was calculated according to Mendelian inheritance 

pattern, which has the Mendelian rate to be 33.3%. 

 

4.4 Fertility assay 
 

Each 1 to 2 days old male flies with assayed genotypes were crossed 

individually to 3 to 4 virgins of flies with genotype of w1118. More than 

10 crosses were set up. The ability of the parental cross to generate F1 

progenies was checked. The percentage of fertile males with individual 

genotypes was calculated. 

 

4.5 Climbing assay 
 

Each five-days old male with assayed genotypes was transferred to 

individual empty vials and left for thirty minutes. Each vial had an outer 

circle marked at the 5cm position from its bottom.  After thirty minutes’ 

recovery from anesthesia, each fly was gently tapped to the bottom of 

the vial. The time taken for individual fly to reach from the bottom of the 
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vial to the circle mark was recorded up to 2 minutes. Each assay was 

repeated three times and average time was calculated. Although with 

variation, generally the three measurements gave consistent results, 

i.e, the single male either succeed in all the three climbing assays 

within two minutes or fail in all the three climbing assays within two 

minutes. However, there were few cases in which heterogeneity 

occurred. Those heterogeneous events all consisted of one failure and 

two successes. In such situation, the average was calculated from the 

two success events.  

 

4.6 Live imaging and analysis 
 

4.6.1 Imaging condition 
 

Egg chambers were dissected and cultured as described previously 

(Bianco et al. 2007). Briefly, yeast-fed females were dissected in 

Schneider’s media plus 5 mg/ml insulin, and imaged in dissection 

media supplemented with 2.5% fetal calf serum (FCS), 2 mg/ml 

trehalose, 5 mM methoprene, 1 mg/ml 20-hydroxyecdysone, 50 ng/ml 

adenosine deaminase (ADA) and 9 mM FM 4-64. Dissection time did 

not exceed 15 min. Images were acquired by the inverted confocal 

microscopy (SP5, Leica) with a 63X, 1.2 NA Plan Apochromat water 

immersion objective calibrated to the coverslip thickness of the imaging 

chambers. Fluorescence was excited with the 488-nm line of an argon 

ion laser, and the emitted fluorescence was acquired simultaneously 

for GFP (500–550 nm) and red (600–700 nm) for either the membrane 
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dye FM 4–64 or red fluorescence protein (RFP) in addition to the 

transmission image. Egg chambers were aligned by rotating the scan 

field with the anterior tip of the egg chamber aligned to the left and the 

image x-axis going from this point through the middle of the oocyte (far 

right).  

 

Damaged egg chambers due to bad dissection were exluded from on 

set of imaging, as judged by the visualization from FM 4-64. Imaging 

was carried out up for two hours to ensure healthy development of the 

egg chamber.  

 
For imaging the border cell clusters marked with 10xGFP, the images 

were zoomed in 1.3X and pinhole of 1 airy unit was used. Z sections 

2.98 µm apart covering the entire border cell cluster were captured at 

between 30sec–120sec intervals. 

 

4.6.2 Imaging analysis and statistics 
 

All images were processed with ImageJ and its customized macros. 

Processed movies were first checked for quality control. Only growing 

egg chambers with nurse cell nuclei showing rotations were included 

for further analysis.  

 

All statistic analysis was done by a two-tailed student t test except for 

the comparisons of percentage of phenotype in which the Fisher’s 
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exact test were used 

(http://www.graphpad.com/quickcalcs/contingency1.cfm) 

 

4.6.2.1 Calculation of net cluster speed  
 

For the analysis of behaviors of border cell clusters marked with 

10xGFP, projected images from GFP channel were used. For the 

migrating cluster, analysis was done from videos covering up to 50% 

migration path, and the minimum length of videos used was 20 min. 

Net cluster speed was calculated from the displacement of the border 

cell cluster from initial and final position.  

 

4.6.2.2 Nuclei tracking and calculation of apparent single cell 
speed 
 

10xGFP was excluded from the nucleus due to its large size, and thus 

tracking was done on identifying the center of the GFP negative region. 

Single cell nuclei were tracked manually per frame and average of all 

the instantaneous speed were calculated for each cluster per movie. 

Extensions were identified and analyzed as described in (Poukkula et 

al. 2011).  

 

4.6.2.3 Analysis of initiation of migraiton 
 

For the analysis of behaviors of border cells prior to migration, only 

videos with starting frames in which the border cell clusters had not yet 
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detached from epithelium were included for the quantification. All 

visible extensions from the border cell cluster were manually identified 

until the frame when the cluster detached from epithelium. The 

maximum lengths of all extensions were measured from the projections 

of the GFP channel using Image J. 

 

4.7 Drug treatments 
 

To disrupt microtubules, nocodazole (Sigma) and taxol (Sigma) were 

used and DMSO (Sigma) was for control. For nocodazole, various 

concentrations had been tested in egg chambers and 2µM was shown 

not to disrupt the overall development of the egg chamber. For taxol, a 

final concentration of 2µM taxol was used. 

 

4.7.1 Assaying drugs’ effect on microtubules 
 

To assess whether the drugs affect microtubules, egg chambers from 

outcrossed flies with genotype of tubulinGFP/w1118 were first loaded 

into three wells of an imaging chamber and each image covering the 

entire border cell cluster were taken at zoom in 4X with Z stack at 

2.98µm interval. Nocodazol, taxol and DMSO were subsequently 

added to the egg chambers. Images were taken immediately with 

about less than 2 minutes lag time. Images from GFP channels were 

compared between before and after drug treatment. Images for each 

egg chambers were variable as the signal depended on the depth of 

the border cell cluster inside the tissue. We observed no effect of 
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DMSO after treatment from GFP image. Nocodazol and taxol both had 

an effect (shown in results section) after treatment. Egg chambers with 

similar amount of GFP signals initially (before treatment) were selected 

and images for those egg chambers post drug treatment were shown in 

Figure 2.6.  

 

4.7.2 Assaying drugs’ effect on behavior of border cell clusters 
 

For the analysis of the immediate effects of the drug treatment on the 

behaviors of border cell clusters, same concentrations of drugs were 

added to egg chambers with genotype of slboGal4,10xGFP/+ flies and 

live imaging were set up immediately afterwards with an average lag 

period about 10 minutes.  

 

4.8 High-resolution imaging and analysis of EB1-GFP tracks 
 

For imaging the EB1-GFP, most of the images were zoomed in 4X and 

pinhole of 1 airy unit was used. For some samples that had relative 

weak signals due to their deep position inside the tissue, the pinhole 

was opened to 2 airy unit to increase the detection and line average up 

to 4 was used to increase the signal to noise ratio. At least 10 frames 

were taken for each sample at each section with time interval between 

0.6 second up to 2.4 seconds. Z sections 2 µm apart covering the 

entire border cell cluster were also captured to provide the view of the 

overall organization of the cluster. 
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4.8.2 Analysis of EB1-GFP track directions 

 

For EB1-GFP dot tracking in both border cells and follicle cells, visible 

moving EB1-GFP dots from GFP channel were manually tracked using 

the Image J plugin MTrackJ 

(http://www.imagescience.org/meijering/software/mtrackj/)  

 

For each individual EB1-GFP track, its net movement was defined as 

the vector displacement between its initial and final position.  

 

4.8.1 EB1-GFP in border cells 
 

For border cells, the angle of this vector relative to the x-axis can be 

calculated by its arc-tan value. For each track, based on its angle, its 

direction was assigned into one of the three categories: front (0–45° 

and 315– 360°), back (135–225°) and side (>255 to <315° + >45 

to<135°). A Perl script (designed by Dr. ZhangRui) was used to 

automatically calculate the total number of tracks in each of the three 

directions for individual cell analyzed.   

 

4.8.2 EB1-GFP in follicle cells 
 

For follicle cells that had well defined apical to basal polarity, EB1-GFP 

track directions were assigned into towards apical, basal and lateral 

respectively.  
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4.9 Immunostaining and analysis 
 

Ovaries were dissected in Schedium medium (Gibco) with 0.5µM 

insulin (Sigma) and fixed in 4% para-formaldehyde (Electron 

Microscopy Sciences) for 20 minutes. Subsequent washes were done 

in 1xPBS containing 1% Triton X-100 (PT). The samples were blocked 

with 5% Natural Goat Serum for 1 hour and then incubated with 

primary antibodies at 4 degree over-night. Samples were washed 

several times in PT then incubated with 2nd antibodies for 2 hours. 

Samples were washed several times for 2 hours before mounting in the 

mounting medium (5% n-propyl gallate dissolved in PBS and 80% 

glycerol). The following primary antibodies were used: mouse anti-

alpha-Tubulin (1:5000; DM1A, Sigma); mouse anti-actylated-Tubulin 

(1/1000; T7451, Sigma); rat anti-Slbo (1/500); mouse anti-FasII (1/100; 

1D4, Developmental Studies Hybridoma Bank (DSHB); mouse anti-

FasIII (1/100; 7G10, DSHB); rat anti-DE-cadherin (1:100, DCAD2, 

DHSB), rabbit anti-aPKC (1/2000, sc-216, Santa CRuz), rabbit anti- 

βGal (1/1000, Cappel). Secondary antibodies used were Rhodamine 

(TRITC), Cy5 or Dylight-649 conjugated (Jackson ImmunoResearch). 

Alexa Fluor 546-Phallodin (Molecular Probes) was used for visualized 

F-actin and DAPI was used to visualize nuclei.  

 

Images were taken by the upright confocal microscope (Zeiss,LSM700) 

with 40X oil-immersion objective at 0.5X zoom in. Pinhole of airy 1 unit 

was used. Z-sections of 2 µm were taken to cover the entire border cell 

clusters. For high magnification images, 2X zoom in was used. 
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The 405-nm and 543-nm Diode lasers were co-excited for the 

simultaneous detection of emitted fluorescence from two PMTs: DAPI 

(SP490 filter) and Rhodamine (BP505-600 filter). The 488-nm and 633-

nm lasers were co-excited for the simultaneous detection of emitted 

fluorescence from GFP (SP555 filter) and Cy5 or Dylight-649 (LP640 

filter).  
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