
ROUTE PLANNING ALGORITHMS FOR
URBAN ENVIRONMENT

OW YI XIAN
(B.Eng.(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF
ENGINEERING

DEPARTMENT OF ELECTRICAL & COMPUTER
ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48657526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

DECLARATION

I hereby declare that the thesis is my original work and it has been written
by me in its entirety. I have duly acknowledged all sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university
previously.

Ow Yi Xian
29 June 2012

ii

ACKNOWLEDGEMENTS

I thank my caring parents and girlfriend who have always been there to
provide moral support. I give my sincere thanks to both of my supervisors
Dr. Mandar Chitre and Dr. Daniela Rus for accepting me as their student
and for giving me this much appreciated research opportunity especially to
Dr. Mandar for his close guidance throughout my candidature. I give my
thanks to the kind people of Future Urban Mobility, Singapore-MIT Alliance
for Research and Technology and Acoustic Research Laboratory, National
University of Singapore for all of their assistance and support. These people
include Dr. Zou Bingran, Mr. Lim Sejoon, Mr. Mohanan Panayamadam,
Mr. Tan Yew Teck, Mr. Koh Wee Kiat, Mr. Shankar Satish to name a few.
Thanks to all for moral support and best wishes.

iii

Contents

Abstract vi

List of Tables vii

List of Figures viii

List of Symbols x

1 Introduction 1
1.1 Thesis Organization . 2
1.2 Contributions . 3
1.3 Literature Survey . 4

1.3.1 Boolean Satisfiability (SAT) Optimization 5
1.3.2 Traffic Modelling/Prediction 5
1.3.3 City-Scale Traffic Forecasting with Roving Sensor Net-

work . 10
1.3.4 Bus Route Planning 10

1.4 Problem Formulation . 11
1.4.1 Probe Allocation Problem Statement 11
1.4.2 Traffic Speed Model 12
1.4.3 Entropy of Traffic Speed 13
1.4.4 Objective . 14
1.4.5 Simulation Setup (NUS) 14
1.4.6 Summary . 17

2 Relaxed Eulerian Circuit Solution 18
2.1 Chinese Postman Problem . 19
2.2 Optimality Of Relaxed Eulerian Circuit 20

iv

2.3 Node Pairing: Graph Theory Vs. Combinational Optimization 21
2.4 Relaxed Eulerian Circuit Algorithm 23

2.4.1 Modified Chinese Postman Algorithm (Undirected Graph) 23
2.4.2 Relaxed Eulerian Circuit Algorithm (Directed Graph) . 24
2.4.3 Hierholzer’s algorithm 26

2.5 Simulation Results (NUS) . 26
2.6 Summary . 27

3 Fixed Circuit Solution 30
3.1 Problem Properties . 30
3.2 Original Fixed Circuit Solution 31

3.2.1 Combinatorial Optimization 32
3.2.2 Combination Of Circuits 34

3.3 Approximate Algorithm For Linear
Complexity Growth . 35
3.3.1 Combinatorial Optimization 2 36

3.4 Fixed Circuit Complexity . 37
3.5 Additional Agents In Approximate Algorithm 37
3.6 Performance Guarantee . 38
3.7 Fixed Circuit Simulation Results (NUS) 40
3.8 Summary . 42

4 Random Walk Solution 44
4.1 Random Walk Without Communication Solution Algorithm . 44
4.2 Random Walk With Communication Solution Algorithm . . . 47
4.3 Random Walk Simulation Results (NUS) 48
4.4 Summary . 50

5 Singapore-Scale Simulations 51
5.1 Simulation Setup (Singapore) 51

5.1.1 Hidden Markov Map Matching 52
5.1.2 Differentiation Of Weekday And Weekend 52
5.1.3 Time Of Day For Highest Number Of Agents Required 53
5.1.4 Growth Rate Of Entropy 54
5.1.5 Entropy Threshold . 55
5.1.6 Edge Frequencies . 55

5.2 Singapore-Scale Simulation: Relaxed Eulerian Circuit 56
5.3 Singapore-Scale Simulation : Approximate Fixed Circuit . . . 57

v

5.4 Singapore-Scale Simulation: Random Walk 57
5.5 Installation Of Sensors On Roads 59
5.6 Summary . 60

6 Bus Route Planning Problem 61
6.1 Bus Route Problem Statement 61
6.2 Bus Route Algorithm . 63
6.3 Algorithm Part 1 . 64
6.4 Algorithm Part 2 . 66
6.5 Algorithm Part 3 . 70
6.6 Bus Algorithm Time Complexity 73
6.7 Bus Route Simulation Setup (NUS) 74
6.8 Simulation Results (NUS) . 77
6.9 Mandl’s Benchmark . 82
6.10 Summary . 85

7 Conclusions And Future Work 86
7.1 Conclusion . 86
7.2 Future Work . 87

Bibliography 89

vi

Abstract

This thesis introduces solutions to two route planning problem for urban en-
vironment. The first is the probe allocation problem where a team of agents
is deployed to monitor traffic condition in an urban environment such that
accurate estimation of traffic condition along all roads can be made. The
second is the bus route planning problem where public transportation is op-
timized such that commuter travel time is minimized. The performances of
these solutions are studied both analytically and through simulations.

Surveillance problem in a variety of scenarios such as hostile environ-
ments, environmental monitoring and law enforcement missions (i.e. border
patrol) etc have been widely studied. However, monitoring of traffic condi-
tions in urban environments by deploying a team of agents is a novel problem
not found in any existing literature. This problem is termed as the probe
allocation problem. In light of the recent developments of automated cars,
studies of such surveillance problems in urban environments will prove to be
useful. Two sets of algorithms are proposed for this problem, each pertaining
to a different deployment strategy.

In addition, it is shown that the probe allocation problem is very similar
to the bus route planning problem. In the bus route planning problem, bus
routes are being optimized such that the total travel time of every commuter
is minimized in addition to other factors such as the number of transfers
made etc. A novel algorithm (a modified version from one of the algorithms
originally proposed for the probe allocation problem) is proposed for the bus
route planning problem. The proposed algorithm for the bus route plan-
ning problem outperforms many existing bus route planning solutions when
compared against the well known Mandl’s Benchmark.

vii

List of Tables

5.1 Number Of Unbalanced Nodes. 56

6.1 Walking Time Matrix . 77
6.2 Demand Matrix PB . 78
6.3 Node Sequence Of Bus Routes For NUS Simulation 80
6.4 Travel Demand Matrix Of Mandl Benchmark 83
6.5 Performance Comparison Using Mandl Benchmark 83

viii

List of Figures

1.1 Velocity vs Density . 6
1.2 Road Density Fluctuation . 6
1.3 Road Densities . 7
1.4 Roads Speed . 7
1.5 Speed Normally Distributed 9
1.6 Original NUS Map. 15
1.7 NUS Simulation Environment. 16

2.1 Node Pairing Computational Time 22
2.2 Modified Chinese Postman Algorithm Simulation 28
2.3 Modified Chinese Postman Algorithm Simulation 29

3.1 No. of Agents Needed Plotted Against Various Numbers of kmax 41
3.2 Computational Run Time for Original Algorithm Plotted Against

Various Numbers of kmax . 41
3.3 Computational Run Time for Approximated Algorithm Plot-

ted Against Various Numbers of kmax 42
3.4 fixed circuit solution kmax = 6 (NUS) 43

4.1 random walk Algorithm Siumation Results. 49
4.2 NUS Road Capacity . 50

5.1 Singapore Road Network . 52
5.2 Plots of µ̄t, σ̄

2
t and σ̄2

t /µ̄t . 53
5.3 Traffic Sample Points . 54
5.4 Traffic Speed Distribution for 1 Nat 56
5.5 Approximate fixed circuit Simulation Results (Singapore) . . . 58
5.6 random walk Algorithm Siumation Results (Singapore). 58

ix

6.1 NUS Map With Bus Stops . 75
6.2 Digitally Drawn Version of NUS Map With Bus Stops 76

6.3 Plot Of
∑
∀i,j

pB
i,j

(
wNi,j
)
−
∑
∀i,j

pB
i,j

(
wPi,j
)

Against NB 79

6.4 NUS Bus Routes . 81
6.5 Computed Bus Routes . 81
6.6 Road Network Of Mandl Benchmark 82

x

List of Symbols

G Directed graph denoteing road network
V, Vj Set of vertices of G, jth vertex in V : 1 ≤ j ≤|V |
E,Ei Set of edges of G, ith edge in E : 1 ≤ i ≤|E|
t Time of the day
τEi

Average time taken to travel along edge Ei and
transit to another edge

µt,Ei
, σ2

t,Ei
Expectation and variance from past information on
edge Ei at time t

µ̄t,Ei
, σ̄2

t,Ei
Estimated expectation and variance on edge Ei at
time t

ŝEi
, šEi

Max. and Min. of average traffic speed on edge
Ei.

λt,Ei
Total probability of N (µt,Ei

, σ2
t,Ei

) from šEi
to ŝEi

λ̄t,Ei
Total probability of N (µ̄t,Ei

, σ̄2
t,Ei

) from šEi
to ŝEi

ps(s; t, Ei) Probability function for average speed on edge Ei
at time t

g(Ei, t), ĝ(Ei, t) Actual value and estimated value of average speed
on edge Ei at time t

g̃(Ei, t), g̃
max(Ei, t) Entropy and maximum entropy of average speed

on edge Ei at time t
βt,Ei

Rate of change of g̃(Ei, t)
fEi

Frequency at which edge Ei must be visited by an
agent

fmax, fmin Maximum and non-zero minimum frequency out of
all fEi

values
kmax, kopt Total number of groups γk : 1 ≤ k ≤ kmax, Opti-

mum total number of groups γk : 1 ≤ k ≤ kopt

f ′ Frequency interval defined as f ′ = fmax−fmin

kmax

xi

γk Set of edges grouped into kth group with respect
to fEi

and f ′

αk A disjoint circuit for kth group such that it is a
subset of edges in E and forms a subgraph of G
consisting of one or more components, such that
there exists an Eulerian circuit in each of these
components.

α′k Subset of γk such that α′k ∩ αk′ = ∅ | ∀k′ > k
fmax
k , fmin

k Maximum and minimum fEi
of all edges Ei ∈ γk

D(αk, Vj)in, D(αk, Vj)out Number of in coming and out going edges incident
on vertex Vj in subgraph formed with edges in αk

D+/−(Vj) The result from the difference between the in-
degree and out-degree of node Vj

V +
j Set of nodes Vj such D+/−(Vj) > 0
V −j Set of nodes Vj such D+/−(Vj) < 0
α′′m A circuit such that it is a subset of edges in E and

forms a subgraph of G consisting of exactly one
component which has an Eulerian circuit

km Index indicating αkm : α′′m ⊆ αkm
fm fm = max(fEi

)|Ei ∈ α′′m ∩ α′km
τ ′m Total time needed to traverse Eulerian circuit of

subgraph of G formed by edges in α′′m
nm, nm,m′ Number of agents required by α′′m and combination

of α′′m and α′′m′
V (α′′m) Set of vertices incident to at least one edge in α′′m
nEi

Minimum number of agents needed on edge Ei
evenly spread out

n′Ei
Minimum number of agents needed on edge Ei so
that there are nEi

number of agents evenly spread
out on edge Ei

nh
Ej

Modified version of n′Ei
such that no value is equal

to zero
n′′Ei

Actul number of agents on edge Ei
a Confidence level that the goal/objective is met
cEi

Road capacity of edge Ei
P, P ′ Both are equilibrium probability of a Markov

Chain

xii

pEi
, p′Ei

Equilibrium probability that an agent is on each
edge Ei

T, T ′ Both are transition matrix of a Markov Chain
tEi,Ej

, t′Ei,Ej
Probability for an agent on edge Ei to choose to
move to edge Ej

SA(Ei) Set of out-going edges incident to the entrance
node for edge Ei inclusive of edge Ei

SB(Ei) Set of out-going edges incident to the exit node for
edge Ei

pB
i,j, P

B Representing number of commuters travelling from
bus stop i to j, demand matrix

vB
i , V

B, V B′ Vertex representing bus stop i, set of all vertices,
set of vertices corresponding to bus terminals

er
i,j, E

r Edge representing road between bus stop i and j,
set of all edges er

i,j

ew
i,j, E

w Edge representing walking path between bus stop
i and j, set of all edges ew

i,j

cr
i,j, c

w
i,j Time taken to traverse the road/walking path re-

spectively
eB
i,j, E

B Results due to combination of er
i,j, e

w
i,j, set of all eB

i,j

Gr, Gw, GB Graph consisting only of edges in Er, Ew, EB re-
spectively

p̄ Mean of all non-zero pB
i,j values

c(GB) Function that returns the number of components
in graph GB

cmin(GB) Function that returns the number of components in
graph GB excluding vertices that are not incident
to any edge

e(G, q) The set of edges in the qth component in graph G
ok, dk Origin and destination of kth selected OD pair
αB′
k Set of edges in the shortest circuit consisting short-

est path from ok to dk
αB
m, α

B A candidate solution before algorithm part 2; an
actual bus route solution after. Set of all αB

m

pB′
m,i,j, P

B′
m Number of commuter expected to traverse edge

er
i,j ∈ αB

m

d(αB
m) Maximum degree of all vertices vB

i ∈ V B

xiii

dV
B′

(αB
m) Maximum degree of all vertices vi ∈ V B′

σ(PB) Variance of all non-zero values in matrix PB

max(PB) Maximum of all values in matrix PB

γv(GB, i, j), γe(GB, i, j) Set of vertices and edges arranged in sequence with
respect to the shortest path from vB

i to vB
j in graph

GB respectively
γewq (GB, i, j) Set of edges of a component of subgraph induced

by edges in γe(GB, i, j) \Ew. Each q refers to each
component

γvw
q (GB, i, j) Start vertice of subgraph induced by edges in

γewq (GB, i, j)
d(vB

i , G
B) Function that returns the out-degree of vB

i in graph
GB

NB, nB
m Total number of buses available, number of buses

assigned to each bus route αB
m

tBi,j Set of indices of bus rotes in αB that describes the
bus routes a commuter have to board to travel from
bus stop i to j. In short, sequence of bus to board.

PB′′
m , dm Demand matrix for each bus route αB

m, demand on
each bus route

τB′
i,j In-vehicle travel time for commuter travelling from

i to j
τB′′
i,j Walking time for commuter travelling from i to j
wm, wi,j Bus wait time for bus route αB

m, bus wait time for
commuters travelling from i to j

τBN′
i,j In-vehicle travel time for commuter travelling from

i to j based for NUS bus routes
τBN′′
i,j Walking time for commuter travelling from i to j

for NUS bus routes
wNi,j Bus wait time for bus route αB

m, bus wait time
for commuters travelling from i to j for NUS bus
routes

τBP′
i,j In-vehicle travel time for commuter travelling from

i to j for computed bus routes
τBP′′
i,j Walking time for commuter travelling from i to j

for computed bus routes

xiv

wPi,j Bus wait time for bus route αB
m, bus wait time for

commuters travelling from i to j for computed bus
routes

Chapter 1

Introduction

Much engineering and research effort has been put into in evaluating
traffic congestion patterns. The evaluation of traffic condition is important
as it allows mitigation of traffic congestions in the short term and it is critical
for urban planning in long term. The ultimate benefit of such effort is to
increase transportation efficiency [10,12]. The effectiveness of urban planning
is essential as we can see from [2] that the amount of resources spent on
transportation is high. For instance, it is stated that “About one-third of all
city infrastructure investment need is for the transport sector.” Cities include
Singapore, Hong Kong and Kuala Lumpur etc.

In the probe allocation problem, we deploy multiple agents (mobile vehi-
cles) into an urban environment to measure traffic conditions. From [5, 7–9]
we know that if sufficient real time and past information are provided, ac-
curate estimations of the traffic conditions can be made. Therefore agents
are deployed to provide us with the necessary information. After a measure-
ment is taken, the traffic conditions can vary over time and therefore the
uncertainty in traffic conditions increases with time. The objective of the
probe allocation problem is to determine the number of agents required and
a deployment route for these agents such that the uncertainty in our esti-
mation of traffic speed for all roads will be kept below a certain threshold.
The problem can be extended to measure quantities such as human traffic,
noise level, air quality and regional temperatures etc which are also relevant
to urban planning. However, only the problem of measuring average traffic
speed over each road is discussed in this thesis.

The bus route planning problem has been widely studied in literature and
it involves the optimization of public transport. It is essentially an optimiza-

1

2

tion problem where the objective function consists of a number of factors.
Several factors have been known to be considered. These includes passenger
waiting time and travel time, number of direct trips, number of transfers
made, fleet size, operator cost and profit [20, 21, 23–28]. The objective of
the problem is to compute bus routes and bus assignments such that the
cost of the objective function is minimized. In this thesis, we identify the
similarity between the probe allocation problem and the bus route planning
problem. Therefore, we modify one of the algorithms proposed for the probe
allocation problem and propose it as a novel approach to solve the bus route
planning problem. It is shown that this approach is superior to many ex-
isting bus route planning algorithms when compared based on the Mandl’s
Benchmark.

As the work presented in this thesis is a Singapore-MIT joint project,
some of the work in this thesis has been presented as part of Future Urban
Mobility’s annual workshop. Future Urban Mobility a research group under
Singapore-MIT Alliance for Research and Technology (SMART). The work-
shops included attendees from NUS, MIT, NTU, government agencies such
as LTA, etc. In [38], a preliminary study of the probe allocation problem
was introduced along with the algorithm presented in chapter 2. In [39], the
algorithms in chapter 3 were presented. In addition, work in chapters 3 and
6 have been submitted for the upcoming IEEE Symposium Series on Compu-
tational Intelligence (SSCI) 2013 in the IEEE Symposium on Computational
Intelligence in Vehicles and Transportation Systems (CIVTS) [40,41].

1.1 Thesis Organization

This thesis is organized as follows. The literature survey is found in sec-
tion 1.3. In section 1.4, the problem formulation for the probe allocation
problem is described detailing the model for traffic speed, entropy of esti-
mation of traffic speed, a formal description of the problem’s objective etc.
In chapter 2, we show the solution for the probe allocation problem for the
special case when all roads are required to be visited by an agent at the same
frequency. In chapter 3, the fixed circuit algorithm is used to solve the probe
allocation problem, giving the intuition behind the solution and their vari-
ous properties. The problem tackled in chapter 2 assumes that all roads are
required to be visited by an agent at the same frequency and is therefore is
a special case of the problem in chapter 3 where the assumption is removed.

3

They are presented in different chapters as their solutions are very different
in nature.

In chapter 4, random walk solutions proposed to solve the probe allo-
cation problem are described. In chapter 5, the Singapore scale data and
simulation results from Singapore scale simulation for algorithms proposed
for the probe allocation problem are shown. In chapter 6, the bus route
planning algorithm and its simulation results are shown. The conclusion and
proposal for future work are shown in chapter 7. Chapters 2, 3, 4 and 6 in-
cludes NUS simulation results found after applying each section’s respective
algorithms. The simulation setup for the probe allocation problem can be
found in section 1.4 and is applicable to the NUS simulations for chapters
2, 3 and 4. The NUS bus route planning problem has a separate simulation
setup that can be found in chapter 6.

1.2 Contributions

The main contributions of this thesis will be elaborated in the following
paragraphs. They are as follow:

1. Introduction of a novel problem, the probe allocation problem.

(a) Smaller number of mobile sensors than stationary ones.

(b) Cost, logistics and maintenance.

2. Different algorithms that solves the introduced problem.

(a) Fixed circuit algorithm.

(b) Random walk algorithm.

3. Noted similarities between probe allocation problem and bus route
planning problem.

(a) Modified fixed circuit algorithm applied to bus route planning
problem to produce satisfying results.

In this thesis, the novel problem called the probe allocation problem is
formally introduced. Two sets of algorithms are introduced to solve this
problem with each of them pertaining to a different deployment strategy.
The first is called the fixed circuit algorithm. In this deployment strategy,

4

agents are assigned to compute circuits and they traverse it repeatedly. The
second is called the random walk algorithm where agents are allowed to move
randomly in the road network based on a computed Markov Chain transition
probability. A Singapore scale simulation is carried out as a case study to
investigate the number of agents required in order to make accurate traffic
speed estimations.

The study of the probe allocation problem is especially useful in a number
of situations. Its key advantage of having mobile sensors is the fact that
a smaller number of moving sensors are required as compared to a large
number of stationary sensors. In addition, maintenance of sensors would
be more convenient as it is possible to program the agents such that they
would return to a specified location either when necessary or periodically;
thus lowering cost and logistics of maintenance.

Similarities between the probe allocation problem and the bus route plan-
ning problem are identified and have led to the modification of the fixed
circuit algorithm so that it is applicable to the bus route planning problem.
The algorithm is not only novel but is also deterministic. This is not a com-
mon property in bus route planning algorithms due to the complexity of the
problem [20–28]. A NUS simulation is carried out and a set of bus routes are
computed as a solution for the NUS road network. It is found that the com-
puted bus routes perform better than the current NUS bus routes in terms
of total commuter travel time. In addition, simulation is carried out on the
Mandl’s benchmark and it is found that the proposed algorithm outperforms
many existing bus route planning algorithms.

1.3 Literature Survey

In this section, we look at some of the prior work relevant in literature.
In section 1.3.1, we discuss the methods used to solve optimization prob-
lems. Due to the nature of the problem tackled in this thesis optimization
is unavoidable and therefore literature survey on the topic is necessary. The
boolean satisfiability optimization was looked into as the selection of edges for
routes is most naturally modelled as a binary integer programming problem,
for additional details refer to section 1.4 and chapter 3. In section 1.3.2, a
brief background on how traffic modelling and prediction is typically done. In
section 1.3.3, a specific paper that solves a similar problem to the probe allo-
cation problem is mentioned. In section 1.3.4, some existing algorithms used

5

to solve the bus route planning problem are briefly discussed. No literature
survey of mobile agent based monitoring of traffic condition will be discussed
as the problem is novel and unique to this thesis. Previous work [35–37],
typically assumes stationary agents; for example in [35] agents are modelled
as network elements, such as crossings, road segments and routes.

1.3.1 Boolean Satisfiability (SAT) Optimization

In the problems stated in the thesis Abstract and section 1.2, both the
probe allocation problem and the bus route planning problem, the need to do
optimization is unavoidable. The optimization problems solved in this the-
sis in particular are all binary integer programming which can be solved as
a Boolean satisfiability optimization problem. While application of generic
methods is possible, optimization solvers written specifically for binary in-
teger programming problems performs better. For example in [6], we can
see the performance comparison between “Pseudo-Boolean Solver version 4”
(PBS4) and IBM’s ILOG CPLEX which shows that PBS4 is a superior solver
as long as the problem is satisfiable. Another example can be found in [17]
where SATsolver is used on FPGA routing problems and in [18] where plan-
ning problems are solved as satisfiability problems as well. The optimization
solver used in this thesis is the conflict-driven miniSAT algorithm described
in [3, 4]. The algorithm converts pseudo-boolean constraints and the objec-
tive functions into clauses and then sees if the problem is satisfiable. In the
first iteration, they form clauses from the objective function such that it is
assumed that its cost is smaller than a very large k value. In each iteration,
they tighten or loosen the condition depending on whether the k value used
results in a set of satisfiable or unsatisfiable clauses. This is done repeatedly
until the optimum solution is found. If the problem is unsatisfiable in the
first iteration, the problem can be quickly confirmed as unsatisfiable.

1.3.2 Traffic Modelling/Prediction

Since the formulation of the Fundamental Diagram by Bruce Greenshields
in 1930s, work is still being done on studying and modelling of traffic speed,
density and flow relationships and their uncertainties [5,7,9]. It is interesting
to note that [34] presents such a study specific to the CBD area in Singapore.
In figures 1.1, 1.2, 1.3 and 1.4 we can see some general trends discussed.
In figure 1.1, we see that given the traffic density, the corresponding traffic

6

Figure 1.1: Velocity vs Density. Adapted from [9], based on a typical site of
the GA400 ITS dataset.

Figure 1.2: Road Density Fluctuation. Adapted from [7], based on data
collected by detector 4811A along M25 freeway in England.

7

Figure 1.3: Road Density. Adapted from [5], based on data collected by
various detectors along Atlanta interstate highway.

Figure 1.4: Roads Speed. Adapted from [5], basd on data collected by various
detectors along Atlanta interstate highway.

8

speed is distributed probabilistically. Note that while the diagram represents
a general trend, it is not always true. In figure 1.2, we see an example of
how traffic density fluctuates at high frequencies but the values are typically
bounded within a range at any time instance. In figure 1.3, we see a plot of
traffic density in four different roads in Georgia against the time of the day
throughout the year of 2003 [5]. The plot indicates that while different roads
differ from each other a lot, they also follow a similar trend to some extent;
the most common trend being the peak in traffic density in the morning. In
addition, for each road and the given time of the day, there is a distribution
of traffic density which could be modelled into a probability distribution.

Figures 1.4 and 1.3 shows the car density and traffic speed on the same
4 roads respectively. Here, we can see some examples contradictory to the
Fundamental Diagram especially in the case for “Detector 201581” where the
average traffic speed seems almost invariant with respect to the varying car
density.

As a general guide to traffic speed according to [8], traffic speed is found
to be distributed normally example from [8] shown in figure 1.5, i.e. they are
Gaussian distributions. Therefore if we know the specific expectation and
variance of each edge Ei at time t, they can be represented as N (µt,Ei

, σ2
t,Ei

).
Note that traffic speeds uses the units of km/hr even though the cited exam-
ple uses the units of mph.

Note that while it is stated that t is the time of the day, the definition
can be modified to have a better resolution depending on data availability,
i.e. it is possible to also consider the day of the week, month of the year etc.
This allows for better data analysis since day-to-day and seasonal situation
have unique characteristics, i.e. significantly less people goes to work on
the weekends, snowing in December, annual holidays etc. We can see work
in [10] that studies this aspect of influence to traffic conditions. In addition,
there exist holidays that depends on non-Gregorian Calendars and that can
also be easily accounted for by considering these days separately. However, a
reasonably large amount of independent samples are necessary for µt,Ei

and
σt,Ei

to be reliable. Therefore, better resolutions in the definition of t is not
always possible and it depends on the amount of past information available.

9

Figure 1.5: Speed Normally Distributed. Example plots adapted from [8].

10

1.3.3 City-Scale Traffic Forecasting with Roving Sen-
sor Network

While the probe allocation problem is known to be novel, there exists
one paper that tackles a similar problem. In [12], they estimate traffic car
density by making inference based on the number of roving sensors (taxis)
that are on each road. They compare their estimations with the ground
truth indicated by information collected by loop detectors that are already
installed on roads. The data used in [12] is identical to the ones used in this
thesis and they are provided by LTA and ComfortDelgro. More details of
the data can be found in section 5.1.

While the roving sensors (taxis) information was able to provide variations
similar to that which is presented in the ground truth, there exists a form of
bias that changes throughout the day. The bias is a constant deviation from
the real data at each particular time of the day but varies throughout the
day, i.e. taxi information can be higher than the ground truth by a certain
consistent value at 8am for a particular road but is lower than the ground
truth by another value at another time of the day perhaps 1pm and such
deviation is found to be a phenomenon that is repeated each day. However,
it is found that for the same time of each day the bias is consistent. Therefore,
the bias could be learnt if enough past information is provided and if the bias
is taken into account, accurate estimations can be made about the traffic
density of each road. From the results presented by [12] it is found that one
week of past information is sufficient to learn the bias for each road.

1.3.4 Bus Route Planning

The problem of bus route planning is a NP-hard problem and therefore
any algorithm proposed to solve this problem is found to be stochastic in
nature or at least involves heuristic methods [20–28]. This has been the
common practise in period as early as 1974 [27]. The main contribution of
this thesis is therefore a novel approximation algorithm that is deterministic
and it is shown that the proposed algorithm is superior to many existing
algorithms.

Each of the papers in [20–28] is unique in their own unique way. For
example, [24] presents a novel ideal of modelling travel demand and distance
of bus terminals in a form of Newton gravity. In [20], it has been considered
that departure time for buses can be modified in order to minimize transfer

11

time. In [21], users are allowed to input certain important design param-
eters such as the number of initial routes (skeletons), expansion strategy
and identification of termini nodes. In [25], a metaheuristic search scheme
that combines simulated annealing, tabu, and greedy search methods was
introduced. In [27], it is assumed that passengers can take any route that
serves their desired OD pair. Meaning, the bus waiting time is reduced as
commuter route choices increases. In [28], the problem is considered in 3
difference levels and tackled in loops through iterations. In the first loop
speed of the transportation is considered; buses, trains etc. In the second
loop, the areas are split into smaller geographical areas. In the third loop
they have the more detailed route designs. In addition, various methods
were adopted, for example Ant Colony Optimization was used for the route
modification, Genetic Algorithm was used to decide frequency and fleet size
and Headway-Based Stochastic Multiple Route was used to evaluate perfor-
mance of the design in iteration. Despite the many different algorithms that
has been proposed in various papers, the benchmark most commonly used
for comparison of performance is the Mandl’s Benchmark ever since it was
created by Mandl in 1979 [22].

1.4 Problem Formulation

In this section, the details of the probe allocation problem are presented.
We begin with the general problem statement followed by the formulation for
the traffic speed model, entropy of traffic speed and a more formal description
of the objective.

1.4.1 Probe Allocation Problem Statement

Let G = (V,E) be a directed graph denoting the road network in an urban
area, with edges E denoting roads and vertices V denoting road junctions.
Let τEi

be the average time it takes to travel along each edge Ei and transit
to another edge, which is the result of the average travel speed along each
edge.

Let g(Ei, t) be the actual traffic speed along edge Ei at time t. The
entropy/uncertainty of the traffic estimation for edge Ei at time t is g̃(Ei, t)
, let g̃max(Ei) be the highest value of entropy for edge Ei and let βt,Ei

be the
rate at which the entropy increases for edge Ei at time t. Assuming that no

12

measurement is made between time t and t + δ, then the entropy at time
t+ δ is min(g̃(Ei, t) + δβt,Ei

, g̃max(Ei)).
Each time a vehicle transits Ei, it can make a measurement ĝ(Ei, t) of

the quantity and resets g̃(Ei, t) to a certain initial value. The objective is
to design an algorithm to determine control input and number of agents
required such that the entropy/uncertainty of the traffic estimation g̃(Ei, t)
are bounded, i.e. g̃(Ei, t) ≤ ε ∀Ei, t. In this problem, the vehicles are known
as agents and they will measure the traffic speed of each road as they traverse
the roads.

Assuming that in order to ensure g̃(Ei, t) ≤ ε ∀Ei, t, each road Ei will
have to be visited by an agent at a certain frequency ft,Ei

. In chapter 2,
we look at the special case where we assume that ft,Ei

= ft,Ej
∀t;Ei 6= Ej.

In chapter 3, we look at the general case where the assumption is removed.
The two problems are presented in two separate chapters as their solutions
differ significantly. In chapter 4, we look at the same problem as chapter 3.
However, random walk solutions are looked at in chapter 4 with contrast to
the fixed circuit solution in chapter 3. Finally in chapter 6, we will look at
the bus route planning problem. Although the bus route planning problem
is similar to the probe allocation problem, its problem statement will only
be presented in chapter 6 to avoid confusion.

1.4.2 Traffic Speed Model

Despite previous work [8,9,30] having modelled traffic speed as a Gaussian
distribution, the method still pose problems if it assigns a significant amount
of probability to invalid speeds, i.e. -5 km/hr or 200 km/hr. In these cases,
the approximation of traffic speed as a Gaussian distribution is invalid.

Let ŝEi
and šEi

be the maximum and minimum valid speed on edge Ei
respectively. The total probability between ŝEi

and šEi
is:

λt,Ei
=

∫ ŝEi

šEi

N (µt,Ei
, σ2

t,Ei
). (1.1)

Let ps(s; t, Ei) be the probability function of speed on edge Ei given the
time of the day, we now define a modified Gaussian distribution where the
probability for invalid speeds is zero and total probably is still unity:

ps(s; t, Ei)

{
=
N (µt,Ei

,σ2
t,Ei

)

λt,Ei
if šEi

≤ s ≤ ŝEi

= 0 otherwise
. (1.2)

13

Ever since the formulation of the Fundamental Diagram by Bruce Green-
shields in 1930s, the Speed-Flow-Density relationship of any traffic speed
model is something that will usually be of interest to any researcher. In this
thesis, however, we are only interested in modelling the traffic speed and the
study of the Speed-Flow-Density relationships will not be carried out. For
those interested, here are some examples of work in this direction [5,7,9,34].
It is interesting to note that [34] presents a study specific to the CBD area
in Singapore.

1.4.3 Entropy of Traffic Speed

In information theory, entropy is a measure of the uncertainty associated
with a random variable and we first recall the definition of continuous entropy
in Nats is −

∫∞
−∞ f(x) ln(f(x)) [31–33]. Let f(x) = ps(s; t, Ei). We then

define maximum entropy g̃max(Ei, t) as the highest amount of entropy for
edge Ei at time t based on past information, i.e. the amount of entropy for
each edge cannot exceed g̃max(Ei, t) even if no agent passes by the edge since
past information itself can be used as an estimation of the traffic speed with
an amount of entropy of its own. Meaning to say, even if no measurement
was taken at all the past information can still be used to estimate the traffic
speed. The maximum entropy is calculated to be:

g̃max(Ei, t) = −
∫∞
−∞ f(x) ln(f(x))

= −
∫ ŝEi
šEi

f(x) ln(f(x)) = −
∫ ŝEi
šEi

ψe−ξ ln(ψe−ξ)

=
∫ ŝEi
šEi

ψe−ξ ln(1
ψ

) +
∫ ŝEi
šEi

ψξe−ξ

= ln(1
ψ

)− ψ
[
s−µt,Ei

2
e−ξ
]ŝEi

šEi

+
∫ ŝEi
šEi

1
2
ψe−ξ

= ln(1
ψ

)− ψ
[
s−µt,Ei

2
e−ξ
]ŝEi

šEi

+ 1
2
,

(1.3)

where ψ = 1
λt,Ei

σt,Ei

√
2π

and ξ =
(s−µt,Ei

)2

2σ2
t,Ei

1.

Let g(Ei, t) be the actual traffic speed along edge Ei at time t. Each time
a vehicle transits Ei, it can make a measurement ĝ(Ei, t) of the quantity. Let

1Integration by parts was used to reach line 4 of equation (1.3). Let the integration be∫
u(x)v′(x)dx = u(x)v(x) −

∫
u′(x)v(x)dx where u(x) =

s−µt,Ei

2 and v′(x) =
s−µt,Ei

σ2
t,Ei

e−ξ

and x = s− µt,Ei
.

14

µ̄t,Ei
and σ̄2

t,Ei
be the expectation and variance of our estimation of the traffic

speed at time t on edge Ei. The initial entropy is then be given by:

g̃(Ei, t) = ln(1
ψ

)− ψ
[
s−µ̄t,Ei

2
e−ξ
]ŝEi

šEi

+ 1
2
, (1.4)

where ψ = 1
λt,Ei

σ̄t,Ei

√
2π

and ξ =
(s−µ̄t,Ei

)2

2σ̄2
t,Ei

2.

Assuming that uncertainty in our estimations increase linearly with time
at a rate βt,Ei

. Provided that no measurement is made between time t and
t+ δ, then the entropy at time t+ δ is 3:

g̃(Ei, t+ δ) = min(g̃(Ei, t) + δβt,Ei
, g̃max(Ei, t)). (1.5)

1.4.4 Objective

The objective is to design an algorithm to determine control input and
number of agents required such that the entropy/uncertainty of the traffic
estimation g̃(Ei, t) are bounded, i.e. g̃(Ei, t) ≤ ε ∀Ei, t 4. As a simplification
to the problem, we consider a quasi-static problem where βt,Ei

, µt,Ei
, σt,Ei

and g̃max(Ei, t) remains the same from time t (when the last measurement
was taken) to time t + δ (where the next measurement should be taken).
Therefore the frequency at which each edge Ei has to be visited by an agent
is:

ft,Ei
=

{
0 if ε ≥ g̃max(Ei, t)
1
δ

=
βt,Ei

ε−g̃(Ei,t)
otherwise

. (1.6)

1.4.5 Simulation Setup (NUS)

As chapters 2 to 4 shares the same NUS simulation scenario with slight
variations, an overview of the NUS simulation will be shown here to give a
general idea of the NUS simulations. Explanation of the details of simulation
in each chapter is provided within the respective chapters.

2When g̃(Ei, t) = g̃max(Ei, t), µ̄t,Ei = µt,Ei and σ̄t,Ei = σt,Ei .
3Since higher fluctuation naturally indicate faster rise in uncertainty, one way to de-

termine βt,Ei
is to measure the noise in past information on edge Ei at time t.

4Note that if a new measurement is taken at time t on all edges, then ε >
max(g̃(Ei, t))∀Ei otherwise the problem is unsolvable.

15

Figure 1.6: Original NUS Map.

Although the NUS simulation involves a scenario created based on per-
sonal experiences, it is setup such that the scenario is as believable as possible.
The setting is that of a morning peak hour where it require more agents than
other hours of the day. In figure 1.6 we can see the original NUS map the
simulation is based on. In figure 1.7, we can see the graph drawn from the
map of NUS with which the simulation is carried out. Along each edge, next
to each arrow head is a number representing the amount of time in minutes
it takes to travel along the edge in the direction pointed by the arrow head.
There is also a number on the middle of each edge representing the period
at which each edge should be visited in minutes.

The values used in figure 1.7 are estimated based on personal experience
but are believed to be reasonable estimation due to my personal experience
travelling in NUS while being a student in the university; I have travelled
along each of these roads at least once either on a bus or on a car etc. For
example, in the morning peak hour, it will be faster to travel from Node
1 to Node 11 than the opposite direction. The periods at which each edge
should be visited are also estimated based on my personal believe of how

16

Figure 1.7: NUS Simulation Environment. Along each edge, next to each
arrow head is a number representing the amount of time in minutes it takes
to travel along the edge in the direction pointed by the arrow head. There is
also a number on the middle of each edge representing the period at which
each edge should be visited in minutes.

predictable each road’s traffic condition are. For example, the road between
Node 10 and Node 15 is usually always empty and does not need to be visited
frequently while the road between Node 1 and Node 11 is a highway and its
traffic condition may vary a lot over a small amount of time and therefore it
was believed that it should be visited once every 11 minutes.

17

1.4.6 Summary

In this chapter, we presented the details of the probe allocation problem.
A modified Gaussian distribution was made and used as a model of the traffic
speed distribution of each road. We derived the closed-form expression for
the entropy of the traffic speed distribution and its variation with time. Then
we calculate the frequency at which each edge has to be visited. With this
information, we were able to begin introducing algorithms as solutions to
solve the probe allocation problem.

Chapter 2

Relaxed Eulerian Circuit
Solution

The probe allocation problem described in section 1.4 is generally a NP-
hard problem. However, there exists a special case of the probe allocation
problem such that all edges are required to be visited at the same frequency,
i.e. fEi

= fEj
∀Ei, Ej ∈ E. This special case of the probe allocation problem

can be solved in O(n3) computational steps. Such situation arises when
no prior information is available on the traffic statistics of each road and
therefore it is reasonable to assume that the growth rate of each road is the
same.

In order to solve this problem, it is necessary to find the shortest circuit
of the given graph G such that it visits all edges at least once. This is proven
in sections 2.2. We define the relaxed eulerian circuit as the shortest possible
circuit in G that uses every edge at least once. The term “relaxed” is used
since edges are allowed to be visited more than once. Eulerian Circuit has a
similar definition but edges are visited exactly once.

Define D+/−(Vj) as the result from the difference between the in-degree
and out-degree of node Vj, i.e. if in-degree of Vj is 2 and out-degree is
4 then D+/−(Vj) = 2 − 4 = −2. Essentially, to find the relaxed eulerian
circuit we need to balance the in-degree and out-degree of all nodes in G, i.e.
D+/−(Vj) = 0∀Vj. If a graph G has the property D+/−(Vj) = 0∀Vj, finding
its Eulerian Circuit can be quite simply done. This is shown in section 2.4.3.

When there exits some Vj such that D+/−(Vj) 6= 0, it is necessary to

18

19

introduce pseudo-edges so that D+/−(Vj) = 0. Note that∑
∀Vj

D+/−(Vj) = 0 (2.1)

is always true since each edge contributes exactly one in-degree and one out-
degree in graph G. Therefore, imbalanced degree in nodes V +

j such that

D+/−(Vj) > 0 can be cancelled out with imbalance degree in nodes V −j such

that D+/−(Vj) < 0. The strategy is to compute the shortest path for all
V +
j to all V −j in G and pair up nodes of different sets so that we repeat

edges along their shortest path. We introduce pseudo-edges into G for these
edges along the shortest paths so that D+/−(Vj) = 0∀Vj. However, to ensure
optimality of the solution it is necessary to pair nodes such that the sum of
costs of repeated edges is minimized.

Assuming that the relaxed eulerian circuit is found, let τC be the time it
takes to travel one cycle of the circuit. The number of agents N required is
min(N) : N/τC ≥ fEi

for any edge Ei. The agents are sent to traverse the
circuit repeatedly such that each of them are separated by a time difference
of τC/N away from its immediate neighbours along the circuit. Therefore,
all points in the circuit are visited by an agent once every τC/N time has
passed and therefore are visited by an agent at a frequency of at least N/τC
5.

2.1 Chinese Postman Problem

A similar problem was studied in 1962 by a Chinese mathematician Mei-
Ku Kuan and the problem is known as the Chinese Postman Problem [1,29].
The problem in essence is to find the shortest possible closed circuit or path
that visits every edge at least once in an undirected graph. The different be-
tween the relaxed eulerian circuit problem and the Chinese Postman Problem
is that relaxed eulerian circuit is defined for directed graphs while Chinese
Postman Problem is defined for undirected graphs.

Despite the difference between the two problems, they are essentially very
similar problems and can be solved using similar solutions. Both problems
require us to perform a node pairing optimization to facilitate the search for
the relaxed eulerian circuit. In the case of Chinese Postman Problem the
node pairing is performed on odd nodes so that all nodes are of even degree.

5The points along edges that are repeated is visited at a higher frequency.

20

2.2 Optimality Of Relaxed Eulerian Circuit

In this section, proof is provided to show the relaxed eulerian circuit gives
optimum solution for the special case of the probe allocation problem stated
at the start chapter 2. Recall that τC represents the time taken to traverse
one cycle in the relaxed eulerian circuit.

Theorem 1. The relaxed eulerian circuit is the optimum circuit assignment
for any surveillance problem where all edges are required to be visited by
agents at the same frequency, i.e. fEi

= fEj
∀Ei, Ej ∈ E.

Proof:
Case 1. Single circuit solution.

First note that the relaxed eulerian circuit is the shortest possible circuit
in G that uses every edge at least once by definition. Therefore, there exists
no other circuit in graph G that is shorter 6.

Case 2. Multiple circuit solution.
Assuming that there is k number of circuits and each of them requires

τC,i∀i = {1 . . . k} amount of time to traverse one cycle. The number of agents
required by the relaxed eulerian circuit is given by dfEi

τCe while the number
of agents required by the multiple circuit is given by∑

∀i={1...k}

dfEi
τC,ie . (2.2)

However, as we have multiple circuits we know that

τC ≤
∑

∀i={1...k}

τC,i (2.3)

since having multiple circuits may mean the need to repeat additional edges
or a suboptimum selection of edges. Therefore since any fEi

are of the same
value,

fEi
τC ≤

∑
∀i={1...k}

fEi
τC,i. (2.4)

6The reasoning here is very self-explanatory and is the same reason why the Chinese
Postman Problem is solved in a similar way.

21

Since lesser ceiling operations means lesser amount of rounding up,

dfEi
τCe ≤

∑
∀i={1...k}

dfEi
τC,ie . (2.5)

Therefore, having multiple circuits does not reduce the number of agents
required. This implies that the solution relaxed eulerian circuit is optimum
since it is optimum in Case 1 and solutions from Case 2 cannot perform
better than it. �

2.3 Node Pairing: Graph Theory Vs. Com-

binational Optimization

As both the relaxed eulerian circuit problem and the Chinese Postman
Problem requires the process of pairing up nodes, in this section a compar-
ison between two existing algorithms is carried out. The first algorithm is
the Kuhn-Munkres Algorithm or the Optimum Assignment Algorithm, and
it is described in [1]. It is known that this algorithm has a computational
complexity of O(n3). It is noteworthy that there exists another similar al-
gorithm called the Hungarian Algorithm [14]. It shares the same complexity
and can be used to solve the node pairing problem as well.

The Optimum Assignment Algorithm as described in [1] essentially finds
the optimum solution by looking for a perfect matching in a graph through
iterations. A matching is a set of edges in a graph without common vertex,
while a perfect matching is a matching in a graph such that all vertex of
the graph is matched. Given any weighted bipartite graph G, a spanning
subgraph of G, Gf is created such that there are lesser edges in Gf than
G. Gf have lesser edges as some of them are excluded based on a constraint
defined in the algorithm. The algorithm then attempt to find a perfect
matching in Gf , the problem is solved if there is a perfect matching. If a
perfect matching was not found, the constraint defined by the algorithm is
relaxed. Gf is then updated based on the relaxed constraint so that it has
more edges in it. Starting from the matching found in the previous iteration,
it continues the attempt to find a perfect matching in Gf . The whole process
is repeated until a perfect matching is found.

The second algorithm is the miniSAT algorithm [3, 4] that have been
awarded for its performance in the SAT 2005 competition. It is known that

22

SATsolvers tend to perform well in Boolean combinatorial constrained opti-
mization problems [6] not to mention the attention given to SATsolvers in
the yearly competitions.

The comparison is done on 1,250 randomly generated node pairing prob-
lems. The node pairing problems range from having only 2 nodes to having
50 nodes, as even number of nodes are required therefore there are 25 varia-
tions of problem size within that range. For each problem size, 50 problems
are randomly generated and therefore there are a total of 1,250 problems. In
each randomly generated problem the all nodes can be paired with any other
nodes except for itself and the cost is randomly generated.

(a) Computational Time For Optimum As-
signment

(b) Computational Time For MiniSat

Figure 2.1: Node Pairing Computational Time

As we can see in figure 2.1, the Optimum Assignment Algorithm is much
faster than the miniSAT algorithm. This is expected since the Optimum
Assignment Algorithm is an algorithm written to specifically solve problems
such as the node pairing problem. However SATsolvers in general are still
very useful in solving general Boolean combinatorial constrained optimization
problems. In each plot in figures 2.1a and 2.1b, the line is drawn across the
mean computational time of each problem size. The bar at each problem size
indicates the maximum and minimum computational time.

23

2.4 Relaxed Eulerian Circuit Algorithm

Two solutions are introduced in this section; the first is a modified so-
lution to the Chinese Postman Problem which is applicable to undirected
graphs. The modification made is a pre-processing to remove all degree-1
nodes from being considered for node pairing. This process is of O(n) com-
plexity and reduces the number of nodes considered for node pairing which is
a O(n3) process. The second is the relaxed eulerian circuit Algorithm which
is applicable to directed graphs. The complexity of solutions for either case
whether the graph is undirected or directed is O(n3). n here correspond to
the number of nodes on either side of the bipartite graph that is constructed
before applying the algorithm. The bipartite graphs are described later in
each subsection.

2.4.1 Modified Chinese Postman Algorithm (Undirected
Graph)

While there is a polynomial time solution for the Chinese Postman Prob-
lem, it is still helpful to identify ways to improve the computational time.
Here, we identify the fact that degree-1 nodes are odd nodes that contributes
to the complexity of the solution in the O(n3) node pairing process. How-
ever, it is obvious that the edge incident to it is repeated and added as a
pseudo-edge since it is the only possible option.

Let E ′CP and E ′′CP be a list of edges. Let the function D(Vi) represent
the degree of vertex Vi and let e1 represent the set of edges incident to
Vi : D(Vi) = 1∀Vi ∈ V and let ds(Vi, Vj) be the time taken to travel along the
shortest from vertex Vi to Vj and es(Vi, Vj) is the set of corresponding edges.

input: G,E,V
output: G,E,V

1: Initialize E ′CP ← ∅
2: while ∃Vi ∈ V : D(Vi) = 1 do
3: Update E ′CP ← E ′CP

⋃
e1

4: Update E ← E \ e1

5: end while
6: Update G← (V,E)
7: Construct a bipartite graph G′ with bipartition as follows:

24

X = {x1, x2, . . .} = odd vertices inV
Y = {y1, y2, . . .} = odd vertices inV
w(xi, yi) =∞
w(xi, yj) = ds(xi, yj)∀i 6= j

8: Apply the Optimum Assignment Algorithm [1] on the bipartite graph G′

9: Initialize E ′′CP ← ∅
10: for each node pair found in line 8 with a corresponding set of edges

es(Vi, Vj) do
11: E ′′CP ← {E ′′CP, es(Vi, Vj)}
12: end for
13: Update E ← {E,E ′′CP}
14: Update E ← {E,E ′CP, E

′
CP}

15: Update G← (V,E)

The while loop from line 2 to 5 continuously remove edges from vertices
that are degree-1 nodes, we do this repeatedly as this process may create
new degree-1 nodes. The degree-1 nodes are now degree-0 since the edges
incident to them are removed. In line 14 we not only add back the removed
edges we also include them a second time as pseudo-edges as well.

In line 7, we construct a bipartite graph G′ where X and Y are the two
bipartitions with each nodes representing the odd vertices in V and the costs
of the weights of edges corresponds to the shortest path distance between each
node. However, since we cannot pair nodes with themselves the weight of xi
and yi which corresponds to the same odd nodes are assigned infinite weight.
In line 8 we apply the Optimum Assignment algorithm and carry out the node
pairing process. In lines 9 to 12, we form a set of edges corresponding to the
edges of the shortest path selected by the Optimum Assignment algorithm
in line 8. These edges are then added into E as pseudo-edges.

2.4.2 Relaxed Eulerian Circuit Algorithm (Directed
Graph)

In the case of a directed graph, most of the procedure is the same. How-
ever, it is important to ensure that the graph G is strongly connected. This
procedure was found to be necessary while doing simulations with the Sin-
gapore road network provided by the LTA. The road network provided has
source nodes with no in-coming edges and sink nodes with no out-going edges.

25

These nodes represents road in Singapore that are still under construction or
are only partially constructed. It was found that there are 104 such nodes in
Singapore. Agents will never visit source nodes and agents can never leave
sink nodes once they enter, therefore removal of source and sink nodes is
necessary otherwise the problem will have no feasible solution.

Let ei(Vi) represent the edges incident to node Vi. Define the function
D(Vi)in and D(Vi)out as the number of in-coming edges and out-going edges
incident to node Vi respectively. Let the function R(Vi, k) be a set of repeated
vertices Vi depending on the number k, i.e. R(Vi, 5) = {Vi, Vi, Vi, Vi, Vi}.

input: G,E,V
output: G,E,V

1: while ∃Vi ∈ V : D(Vi)in = 0 or D(Vi)out = 0 do
2: Update E ← E \ ei(Vi) ∀ Vi : D(Vi)in = 0 or D(Vi)out = 0
3: Update V ← V \ Vi ∀ Vi : D(Vi)in = 0 or D(Vi)out = 0
4: end while
5: Update G← (V,E)
6: Find V + = {R(Vi, |D+/−(Vi)|)} ∀ Vi : D+/−(Vi) > 0
7: Find V − = {R(Vi, |D+/−(Vi)|)} ∀ Vi : D+/−(Vi) < 0
8: Construct a bipartite graph G′ with bipartition as follows:
X = {x1, x2, . . .} = V +

Y = {y1, y2, . . .} = V −

w(xi, yj) = ds(xi, yj)∀i, j
9: Apply the Optimum Assignment Algorithm [1] on the bipartite graph G′

10: Initialize E ′′CP ← ∅
11: for each node pair found in line 8 with a corresponding set of edges

es(Vi, Vj) do
12: E ′′CP ← {E ′′CP, es(Vi, Vj)}
13: end for
14: Update E ← {E,E ′′CP}
15: Update G← (V,E)

The while loop from lines 1 to 4 removes all source and sink nodes, the rea-
son this is done in a while loop is because the process of removing source/sink
nodes may produce new ones. In lines 6 and 7, we form the link of V + and
V − for pairing. Each nodes Vi are repeated with respect to the absolute value
|D+/−(Vi)| as it determines the number of times each node Vi needs to be

26

paired so that we can balance its in and out degrees, i.e. D+/−(Vi) = 0. In
lines 10 to 13 we form a set of edges corresponding to the edges of the short-
est path selected by the Optimum Assignment algorithm in line 9. These
edges are then added into E as pseudo-edges.

2.4.3 Hierholzer’s algorithm

After either applying the modified Chinese Postman Algorithm or the
relaxed eulerian circuit Algorithm depending on whether the graph is undi-
rected or directed, we only need to apply Hierholzer’s algorithm [15] to the
graph to find the actual circuit agents would travel on, i.e. the sequence
of nodes/edge. The algorithm has a complexity of O(|E |) where |E | is
the number of edges including the pseudo-edges added. The algorithm first
traverse the graph G at random until it reaches a vertex not incident to
edges or pseudo-edges that have not been visited yet. The path (sequence
of nodes/edges) so far will be stored and then the algorithm searches for
vertices that is incident to any edges or pseudo-edges that have not been
visited yet. From the vertex found the algorithm branches out to find a new
path by continuing to traverse the graph from there (selecting only edges
that have not been visited yet) until it reaches a vertex not incident to edges
or pseudo-edges that have not been visited yet. The new branching path
found is then inserted into the original path such that the new path formed
is continuous. We repeat the process of finding a vertex incident to any edges
or pseudo-edges that have not been visited yet and traversing the graph from
there using only edges not yet visited until such vertex do not exist then the
algorithm terminates. At the end of the algorithm, we would have a sequence
of nodes/edges such that it is a circuit. More details can be found in [15].

2.5 Simulation Results (NUS)

In the NUS simulation, the modified Chinese Postman Algorithm is used
as all edges are assumed to be undirected. This is reasonable since each road
in NUS has another road next to it that runs in the opposite direction. In
addition, it is assumed that sensors on agents can measure traffic speed of
roads on either direction. This assumption is only for this simulation. The
road network with which the simulation is carried out can be seen in figure
1.6.

27

In figures 2.2 and 2.3 we can see the simulation results using the modified
Chinese Postman Algorithm described in section 2.4.1. The details of the
scenario for the simulation can be found in section 1.4.5. In figure 2.2a, we
see a digitally drawn NUS road network based on the original NUS map
in figure 1.6. In figure 2.2b, we see that the edges of degree-1 nodes are
removed. In figure 2.3a, we see that four odd nodes are identified with nodes
drawn as triangles and the edges that need to be repeated as pseudo-edges are
identified. The selected node pairing is identified to be optimum and these
edges indicated in dots-and-lines correspond to the shortest path between the
odd node pairs. In figure 2.3b, we see that the edges of degree-1 nodes are
added back twice and therefore are indicated with dots-and-lines to indicate
that these edges are to be traversed twice (once for the original edge a second
time for the pseudo-edge added). All other edges are to be traversed exactly
once. Figures 2.2a, 2.2b, 2.3a and 2.3b clearly illustrate how the modified
Chinese Postman Algorithm described in section 2.4.1 works.

2.6 Summary

In this chapter, we discussed the solution for the special case of the probe
allocation problem. There were two versions of the problem and an algorithm
was proposed for each of them, the first was when the graph provided was
undirected and the second was when the graph provided was directed. Both
cases involved the process of node pairing and it was found that Optimum
Assignment Algorithm was faster in computing the optimum solution than
a generic optimization solver as shown in section 2.3.

28

(a) NUS Road Network (Digitally Drawn)

(b) Removal Of Degree-1 Nodes’ Edges

Figure 2.2: Modified Chinese Postman Algorithm Simulation

29

(a) Node Pairing For NUS Road Network

(b) Resulting Modified Graph For NUS Road Network (Modified Chi-
nese Postman Algorithm)

Figure 2.3: Modified Chinese Postman Algorithm Simulation

Chapter 3

Fixed Circuit Solution

In this chapter, we propose two algorithms each of which produces circuits
for agents to traverse in as the solution for the stated problem. The solution
is called fixed circuit solution as agents are expected to traverse the same
circuit repeatedly 7.

In the two algorithm presented, the first is an algorithm that solves the
problem by considering two basic desirable properties described in section
3.1, while the second is simply an approximation based on similar principles
that has a even lower complexity.

It has been assumed that either the modified Chinese postman algorithm
or the relaxed eulerian circuit Algorithm (depending on whether the graph
G is undirected or directed) is applied to ensure that the problem is feasible,
i.e. the fixed circuit solution may not be able to find the circuits in graph G
if the required pseudo-edges are not added.

3.1 Problem Properties

The main objective of this section is to give an intuitive understanding of
the solution proposed. The nature of this problem is similar to a surveillance
problem such that each Ei has a given minimum frequency fEi at which it
has to be visited by an agent. Due to the periodic nature of the problem,
all agents are therefore assigned a particular circuit where they repeatedly

7In addition, the agents are spread out in their respective circuit evenly with respect to
the circuit’s total travel time, i.e. they are evenly spread out with respect to time instead
of distance.

30

31

traverse.
A natural way to solve this problem is that we form k number of circuits

αk each consist of a subset of edges in E such that they are each being served
by Nk number of agents at a frequency:

fmax
k = Nk/

∑
∀Ei∈αk

τEi
. (3.1)

The objective is to minimize: ∑
∀k

Nk, (3.2)

subject to:
fEi
≤ fmax

k′ ∃ k′ : Ei ∈ αk′ . (3.3)

However, the complexity of this problem formulation is far too high. Let
each circuit k form a subgraph G′ = (V ′, E ′) of G where V ′ ⊆ V and E ′ ⊆ E.
Firstly there are 2|E| ways to form each circuit k. Secondly, to check if each
circuit is a single connected component requires a check on

(|V ′|
2

)
conditions

with a upper bound of
(|V |

2

)
. Therefore, the complexity has a upper bound

of O(
(|V |

2

)
2k|E|).

In order to simplify the problem, we recognise that the optimum solution
to the problem is the trade-off between two main properties:

1. Circuits consist of edges that are of similar frequencies.

2. Circuits have as few overlapping edges as possible with each other.

In the proposed solution, we break down the large original problem into a
number of smaller problems where the circuits are optimized based on these
two properties.

3.2 Original Fixed Circuit Solution

The original solution consists of two main parts. In the first part, each
edge is clustered into different groups with respect to their fEi

values. Then
we solve for disjoint circuit αk for each of these groups. Each disjoint circuit
αk is a subset of edges in E and forms a subgraph of G consisting of one or
more components, and that there exists an Eulerian circuit in each of these

32

components. In the second part, components are combined to form larger
circuits to reduce number of agents needed. For example, if two circuits
both need 0.3 agents, it is more efficient to combine them than to consider
them separately because when combined they require only 1 agent but when
considered separately they require a total of 2 agents.

As edges are clustered into groups such that edges of the same group
have fEi

values within a certain range. The solution found improves as the f
range of each category decreases, i.e. when kmax increases where kmax is the
maximum possible number of groups 8. Eventually when all edges in each
category consists of the same fEi

value, the solution is always optimum, i.e.
when kmax = kopt

9 .

3.2.1 Combinatorial Optimization

The first part of the solution involves solving for the disjoint circuits for
each group after having clustered the edges. This involves a combinatorial
optimization which can be solved as a combinatorial optimization. The solver
that is used for the simulation is the miniSAT solver [3, 4].

Assuming that the frequency values of each edge fEi
and the total number

of groups kmax are given. Let γk be the collection of all edges belonging to the
kth group and α′k be a subset of γk consisting all edges that must be present
in the disjoint circuit αk. Define fmin as the non-zero minimum of fEi

and
fmax as the maximum of fEi

:

fmin = min(fEi
) | ∀Ei ∈ E : fEi

6= 0, (3.4)

fmax = max(fEi
) | ∀Ei ∈ E. (3.5)

We calculate the frequency interval:

f ′ = fmax−fmin

kmax
. (3.6)

Define the function D(αk, Vj)in and D(αk, Vj)out as the number of in-
coming edges and out-going edges in αk for each vertex Vj ∈ V . The solution
can be described in the following steps.

8Provided that edge clustering is affected, solution is the same if clustering is un-
changed. The clustering can remain unchanged as we increase the number of groups as
the groups can be empty if no edge has a fEi value that lies within the group’s range.

9Since solution is optimum when kmax = kopt, increasing kmax beyond kopt cannot
improve solution.

33

1. Classify each edge Ei into the kth group γk
10 :

Ei ⊆ γk | k = min (k′ , kmax) ;

k′ : k′ − 1 ≤ fEi
−fmin

f ′
< k′.

(3.7)

2. Define max frequency of kth group as:

fmax
k = max(fEi

)∀Ei ∈ γk. (3.8)

Construct the objective function:

∑
∀k∈[1,kmax]

(
fmax 2
k

∑
∀Ei∈αk

τEi

)
. (3.9)

3. Construct the following constraints for each k ∈ [1, kmax]:

(a) α′k ⊆ γk, i.e. α′k is the subset of edges that belongs to the kth

group.

(b) αk ⊆ E, i.e. αk is the subset of all available edges,

(c) D(αk, Vj)in = D(αk, Vj)out ∀Vj ∈ V . Ensures that the computed
outcome are valid circuits.

(d) α′k ⊆ αk, i.e. the circuit αk must consist of all edges in α′k.

(e) α′k ∩ αk′ = ∅ | ∀k′ > k, i.e. edges in α′k should not be found
in circuits of a higher f groups. If they are found in circuits
of a higher f group circuit, they are already served at a higher
frequency than required by its clustered group.

4. Solve the optimization problem 11 .

10With this, γk of higher k will consist of edges with higher f . To avoid confusion, note
that the condition k = min (k′ , kmax) prevents having k > kmax.

11Note that if k′ is the number of non-empty groups, i.e. k′ = |k| ∀ γk 6= ∅, then the
number of variables in this optimization is k′|E|. Meaning we only have to declare variables
for αk in actual implementation.

34

3.2.2 Combination Of Circuits

After having solved the optimization problem, it is now necessary to con-
sider the combination of the circuits. The main reason for this is to prevent
sub-optimum solution due to rounding up the number of agents needed 12 .

Recall that the optimization results in a number of disjoint circuits where
connected circuits can be abstracted. Assuming that we have m number of
connected circuits α′′m, let km indicate the group circuit α′′m belongs to, i.e.
α′′m ⊆ αkm . The total circuit time τ ′m and the frequency at which the circuit
α′′m should be visited by an agent are defined as:

τ ′m =
∑
∀Ei∈α′′m

τEi
, (3.10)

fm = max(fEi
)|Ei ∈ α′′m ∩ α′km . (3.11)

The number of agents nm needed by α′′m and the number of agents nm,m′
needed by the combination of α′′m and α′′m′ are defined as:

nm = dfmτ ′me, (3.12)

nm,m′ = dmax(fm, fm′)(τ
′
m + τ ′m′)e. (3.13)

In addition, define V (α′′m) as the set of vertices incident to edges in α′′m.
The algorithm for joining circuits is as follows:

input: α′′, α′, fEi

output: α′′, n
1: for each m do
2: Initialize fm = max(fEi

)∀Ei ∈ {α′′m ∩ α′km}
3: Initialize τ ′m =

∑
∀Ei∈α′′m

τEi

4: end for
5: while nm,m′ ≤ (nm + nm′)∃m,m′;m′>m; V (α′′m) ∩ V (α′′m′) 6= ∅ do
6: for each m do
7: Find m′m : min

m′m
(nm,m′m − (nm + nm′m))

12 For example, mathematically an edge needs 0.1 agent but since agents comes in
integer numbers it is rounded up to 1 and therefore the edge is visited by an agent at a f
10 times higher than necessary.

35

Subject to:
m′m > m
V (α′′m) ∩ V (α′′m′m) 6= ∅
D(αk, Vj)in = D(αk, Vj)out ∀Vj ∈ V (α′′m) ∪ V (α′′m′m)

8: end for
9: if ∃m,m′m : nm = nm′m = 1 then

10: Find m : min
∀m:nm=nm′m

=1
| fm − fm′m |

11: else
12: Find m : min

∀m
(nm,m′m − (nm + nm′m))

13: end if
14: nm ← nm,m′m ; nm′m ← ∅
15: fm ← max(fm, fm′m); fm′m ← ∅
16: α′′m ← {α′′m ∪ α′′m′m}; α

′′
m′m
← ∅

17: τ ′m = τ ′m + τ ′m′m ; τ ′m′m ← ∅
18: end while

The algorithm takes in all α′′m and attempts to reduce the number of
agents needed by combining circuits in pairs in iterations. This process con-
tinues until no improvement can be made. The index m′m indicates the circuit
for α′′m to join with for the highest amount of agent reduction. As we can
see in line 9 to 13, emphasis is given to combining pair of circuits if both are
assigned only one agent; if there was more than one of such pairs, emphasis
is given to the pair of circuits that has the lowest different in their fm value.

3.3 Approximate Algorithm For Linear

Complexity Growth

While the solution presented in section 3.2 provides optimum solutions
for a given kmax value, it is still high in terms of complexity (refer to 3.4).
In order to overcome the exponential growth, an approximation algorithm is
proposed.

The basic idea behind this approximation is to solve for each αk, each as
an individual optimization problem beginning from the highest kth group to
the lowest in iterations. In each iteration, we update α′k′ ∀ 1 ≤ k′ ≤ k with
respect to the constraints stated in step 3 of section 3.2.1. In addition, the

36

new objective function is13: ∑
∀Ei∈αk

wEi
τEi
, (3.14)

where the weight wEi
is defined as:

wEi
=

{
(fmax
k − fmax

k′)2 if Ei ∈ α′k′ ; k ≥ k′

fmax2
k otherwise

. (3.15)

3.3.1 Combinatorial Optimization 2

Assuming same group assignment for γk as equation (3.7), the Approxi-
mate Algorithm is given as:

input: γ, E, V
output: α

1: for each k do
2: Initialize α′k = γk
3: end for
4: for each k from kmax to 1 do
5: for each Ei ∈ E do
6: Calculate wEi

7: end for
8: Solve for αk : min

αk

(
∑
∀Ei∈αk

wEi
τEi

)

Subject to:
αk ⊆ E
D(αk, Vj)in = D(αk, Vj)out ∀Vj ∈ V
α′k ⊆ αk

9: for each k′ : 1 ≤ k′ < k do
10: α′k′ ← α′k′ \ αk
11: end for
12: end for

13The weight wEi
replaces the fmax 2

k term of the original objective function. The term

(fmax
k − fmax

k′)
2

explicitly indicates the tradeoff in using edges of lower frequency groups.

37

Note that the constraint α′k ∩ αk′ = ∅ | ∀k′ > k of the original algorithm
is missing. The missing condition is manually maintained in the loop in
line 9 to 11, in iteration. Using this algorithm, we can find an approximate
solution to the original algorithm. After which, the same Combination of
Circuits Algorithm presented in section 3.2.2 can be applied.

3.4 Fixed Circuit Complexity

In the fixed circuit solution, we solve for the shortest disjoint circuits α′k
for each group k. The complexity upper bound is 2|E

′| : |E ′|<|E|. Typically
|E ′|�|E| as we only consider edges in E near edges in αk since we are solving
for the shortest disjoint circuits, i.e. edges further away usually increase
circuit lengths. However, it is still possible to artificially create a graph G
where |E ′|≈|E|.

In the Original fixed circuit solution, all circuits are computed as a single
optimization problem. The edge selection in the kth group can affect the
circuits in groups k′ < k since it affects αk′ . Therefore the complexity is
O(2k|E

′|). However in the Approximate Algorithm, these circuits are solved
independently therefore the complexity is O(k2|E

′|).

3.5 Additional Agents In Approximate Algo-

rithm

The Approximate Algorithm has a linear complexity growth with respect
to k, but as a trade-off it may result in overlaps in edges in the circuits com-
puted. This overlap comes from the approach of computing only the shortest
disjoint circuit in iteration without considering circuit lengths of later itera-
tions which then cause additional agents to be required. For example, when
αk is computed, some edges in α′k′ : k′ < k should had been included to
obtain the optimum solution. This cause the unused edges in α′k′ to require
to form disjoint circuits in αk′ which has an overlap with αk. However, as
these edges in α′k′ is served at fmax

k′ < fmax
k . Therefore, there is also some

reduction in the amount of additional agents at the same time.
The actual amount of additional agents required depends on the structure

of the graph G and can be quite unpredictable. However, there is an upper
bound to this increase in agents. For instance, when kmax = 1 there is no

38

overlap since we solve for only one circuit. For all kmax > 1, the upper bound
of overlapped edges in terms of time it takes to traverse them is14:∑

∀Ei∈E

τEi

k′
, (3.16)

where k′ =|k|: αk 6= ∅. Therefore the upper bound for number of additional
agents needed is15:

∑
∀k:αk 6=∅

fmax
k

∑
∀Ei∈E

τEi

k′

 , (3.17)

where k′ =|k|: αk 6= ∅.
Therefore, the additional agents in the Approximate Algorithm is 0 if

kmax = 1 and ranges from 0 to the upper bound stated in equation (3.17) for
all kmax > 1 16.

3.6 Performance Guarantee

As both algorithms works on the same basic intuition, the described per-
formance guarantee from this section is applicable to both algorithms. Define
kopt as the optimum number of groups to have. First we assume we have N
optimum number of agents when kmax = kopt = ∞, we explore the perfor-
mance of the algorithm as the number of categories of edges kmax varies. In
addition, we make the conservative assumption that in each group γk there is
only one edge with fEi

= fmax
k and all other edges in γk have fEi

= fmin
k . Re-

call that fmin is the non-zero minimum. The highest frequency of kth group
can be approximated by:

fmax
k = fmin + (k) fmax−fmin

kmax

= (k)fmax+(kmax−k)fmin

kmax

, (3.18)

14Overlap cannot be higher otherwise it contradict with the fact that αk is a shortest

disjoint circuit, i.e. if the overlap is >
∑
∀Ei∈E

τEi

kmax
, there exists edges which could be

selected to form a shorter disjoint circuit.
15This upper bound is conservative since at least one circuit should not had been con-

sidered, i.e. a circuit cannot overlap over itself.
16Note that the upper bound in the number of agents needed for the Approximate

Algorithm is capped at the worse-case upper bound stated in equation (3.20) of section
3.6.

39

while the lowest frequency of kth group can be approximated by:

fmin
k = fmin + (k − 1) fmax−fmin

kmax

= (k−1)fmax+(kmax−k+1)fmin

kmax

. (3.19)

To find the worse-case upper bound, consider the number of agents needed
for each group which is fmax

k /fmin
k times higher when kmax 6= kopt. Assuming

that all groups corresponding to k > 1 have only one agent and is a negligible
compared to total number of edges. The worse-case upper bound is:

N
fmax
1

fmin
1

= N fmax+(kmax−1)fmin

(kmax)fmin . (3.20)

Note that the worse-case upper bound when kmax = 1 and kmax =∞ are:

N fmax

fmin | kmax = 1, (3.21)

lim
kmax→∞

N
fmax + (kmax − 1) fmin

kmaxfmin
= N. (3.22)

In more general cases, tighter upper bound can be found. First we assume
that total number of agents needed is even divided amongst all groups γk
regardless of the value of kmax used. Then the number of agents needed for
a given kmax excluding group γ1 is:

N/kmax

kmax∑
∀k;k 6=1

fmax
k

fmin
k

= N/kmax

kmax∑
∀k;k 6=1

kfmax + (kmax − k) fmin

(k − 1) fmax + (kmax − k + 1) fmin

= N

(
1 + 1

kmax

kmax∑
∀k;k 6=1

1

(k − 1) + kmax
fmin

fmax−fmin

)
< N

(
1 + 1

kmax
(ln(kmax) + 1.7)

)
.

(3.23)

Here, the term 1
kmax

(ln(kmax) + 1.7) refers to the amount of additional agents
needed divided by N . We define it as a function:

N+(kmax) = 1
kmax

(ln(kmax) + 1.7). (3.24)

40

However, we know that N+(kmax) is zero when kmax = kopt, i.e. we should
remove the assumption kopt =∞. Therefore a tighter upper bound is 17 :

N
(
1 +N+′(kmax)−N+′(kopt)

)
. (3.25)

3.7 Fixed Circuit Simulation Results (NUS)

In this simulation, we make use of the scenario described in section 1.4.5
and shown in figure 1.7. Both the original fixed circuit algorithm described in
section 3.2 and the approximate version described in section 3.3 is applied to
the scenario. In the simulation, the value of kmax, the total number of groups
edges are clustered into, is varied from 1 to 8. When kmax = 8 there are six
non-empty group since there are only six unique f values. In figures 3.1, 3.2
and 3.3, we can see the simulation results in terms of number of agents and
computational run time. As we can see in figure 3.1, the number of agents
needed for both algorithms is the same. The upper bound plot corresponds to
the general case in equation (3.25). The worse-case upper bound in equation
(3.21) when kmax = 1 is 126 which is far too loose considering we actually
only need 28 agents.

In figure 3.2, we can see that the original algorithm has exponential
growth in run time and it is at 600 seconds when kmax = 8. In figure 3.3
we see a linear growth in run time and it is at 2.35 seconds when kmax = 8.
Both computations are completed on a system with 2.40 GHz.

In figure 3.4, we see four computed circuits and agent assignment when
kmax = 6. Each circuit includes both roads of either direction along each
edge drawn in figure 3.4. It is interesting to note that the red solid line
circuit needs 4 agents which is a significant number. Perhaps it means that
we should simply install a sensor along AYE instead of sending agents on it.
If we did that, the whole NUS campus only requires 10 cars (or even lesser
if we also take out Clementi Road and West Coast Highway).

17Recall that the group γ1 is excluded as it leads to a loose upper bound similar to
the worse-case upper bound. The upper bound here is tighter but applies only to general
cases.

41

Figure 3.1: No. of Agents Needed Plotted Against Various Numbers of kmax.
Note that when kmax ≥ kopt, no. of agents needed is always the same as the
upper bound.

Figure 3.2: Computational Run Time for Original Algorithm Plotted Against
Various Numbers of kmax. On system: Dual-core 2.40 GHz, 3 GB RAM

42

Figure 3.3: Computational Run Time for Approximated Algorithm Plotted
Against Various Numbers of kmax. On system: Dual-core 2.40 GHz, 3 GB
RAM

3.8 Summary

In this chapter, we presented two versions of the fixed circuit solution, the
first was the actual fixed circuit algorithm and the second was an approximate
fixed circuit algorithm. We analyzed their performance and a simple NUS
simulation was carried.

43

Figure 3.4: Four computed circuits to survey NUS when kmax = 6 displayed
in different. Agent assignment: Dashdot Line = 5; Dotted Line = 3; Solid
Line = 4; Dashed Line = 2.

Chapter 4

Random Walk Solution

In this chapter, we look at the random walk Solution which offers some
advantages over the fixed circuit solution despite the fact that it requires
more agents and does not have a 100% guarantee that the objective g̃(Ei, t) ≤
ε ∀Ei, t is always met. The first advantage is that random walk Solution does
not restrict agents to a particular edge and therefore performance degrades
more gracefully if any agent breaks down. This can be seen in section 4.3.
The second advantage is that random walk Solution does not require explicit
control in the agents’ movement, i.e. agents do not have to ensure that they
are evenly spread out. The third advantage is the flexibility to decide on the
number of agents needed based on the confidence level at which the objective
g̃(Ei, t) ≤ ε ∀Ei, t is met.

4.1 Random Walk Without Communication

Solution Algorithm

In this section, we explore a random walk Solution where we assume that
all agents do not communicate with each other. This involves calculating
N the total number of agents needed so that we satisfy the goal g̃(Ei, t) ≤
ε ∀Ei, t at a confidence level a, assuming quasi-static problem as in 1.4.4.
Define nEi

= τEi
fEi

as the minimum number of agents spread over edge Ei
such that the goal is met. Let cEi

be the road capacity of each edge Ei such
that it represents the maximum number of cars that can be found on it. As
each space on each edge Ei can only be occupied by one car at a time, we
solve the hypergeometric distribution to calculate n′Ei

, the number of agents

44

45

needed on each edge so that at a confidence level
√
a there is nEi

agents out
of cEi

spaces on the road spread out, i.e. with n′Ei
randomly placed agents

there is a confidence level of
√
a that nEi

agents are spread out evenly on
edge Ei.

We define probability function P where each pEi
is given by:

pEi
= n′Ei

/
∑
Ei

n′Ei
. (4.1)

In a Markov Chain, P corresponds to the equilibrium probability where
each state Ei represents an edge and let T be the transition matrix. Each
tEi,Ej

in T represents the transitional probability for an agent on edge Ei to
choose to move to edge Ej. Therefore

tEi,Ej

{
≥ 0 if ∃Vi : D(Ei, Vi)in = D(Ej, Vi)out = 1

= 0 otherwise
. (4.2)

Markov Chain Monte Carlo method is commonly used to solve for the
transition matrix T when given an equilibrium probability P . We can do it
by applying any of the algorithms described in section 3 of [16].

However, it is necessary to ensure that the problem is feasible to begin
with. There exists cases when given the equilibrium probability P finding a
transition matrix T is not possible. For example, let P and T be given by

P =

 0.9
0.05
0.05

 T =

 0 t2,1 t3,1
t1,2 0 t3,2
t1,3 t2,3 0

 .

Assuming that the directed edges in graph G have different entrance and
exit nodes, then all values of the matrix T are 0. We note the relationship
TP = P and find the infeasible statement 0.05t2,1 + 0.05t3,1 = 0.9. There is
a contradiction here since probability is at most 1 and therefore the highest
value for t2,1 and t3,1 is 1 thus 0.05t2,1 + 0.05t3,1 = 0.9 is infeasible.

Let SA(Ei) be a set of out-going edges incident to the entrance node for
edge Ei inclusive of edge Ei. Let SB(Ei) be a set of out-going edges incident
to the exit node for edge Ei. A way to ensure that finding T is a feasible
problem is to form a new matrix P ′ such that finding its transition matrix is
possible. We first define all nh

Ej
values in the following way

nh
Ej

{
= min(n′Ei

);∀Ei ∈ SA(Ei) : n′Ei
6= 0 if n′Ej

= 0

= n′Ej
otherwise

. (4.3)

46

This definition ensures that no nh
Ej

value is equal to zero. With this, proceed
to forming a matrix T ′ such that all out-going edges of each node has a
probability proportional to its nh

Ej
out of the all out-going edges incident to

its starting node. Each element of T ′ is

t′Ei,Ej

= 1
|SB(Ei)| if Ej ∈ SB(Ei) and

∑
∀Ek∈SB(Ei)

nh
Ek

= 0

=
nh
Ej∑

∀Ek∈SB(Ei)

nh
Ek

if Ej ∈ SB(Ei) and
∑

∀Ek∈SB(Ei)

nh
Ek
6= 0

= 0 otherwise

. (4.4)

Note that the equilibrium probability P is the normalized eigenvector (L2-
Norm = 1) of transition matrix T with the eigenvalue corresponding to 1,
therefore we can find P ′ using T ′. With this we can modify all values of n′Ej

such that they produce P ′. Making P ′ the new equilibrium probability, we
know finding its transition matrix is a feasible problem since T ′ is already a
solution to the problem. As we do not need to compute all eigenvectors we
can use the method described here [19] for fast computation.

Using Chernoff’s inequality we are able to calculate the total number of
agents N so that at a confidence level

√
a there are at least n′Ei

agents on
each road. Recall that with n′Ei

randomly placed agents there is a confidence
level of

√
a that nEi

agents are spread out evenly on edge Ei. Therefore,
with N number of agents, there is a confidence level of a that the objective
is met.

input: a,nEi
,cEi

output: P ,N

1: Find min(n′Ei
):

⌊
cEi

dnEie

⌋
(
dnEie
dnEie

)(
cEi
−dnEie

n′
Ei
−dnEie

)

(
cEi
n′
Ei

)
≥
√
a

2: n′Ei
←

n′Ei
nEi

dnEie
3: Calculate P : pEi

= n′Ei
/
∑
Ei

n′Ei

4: Calculate nh
Ei

based on equation (4.3)
5: Calculate T ′ : t′Ei,Ej

based on equation (4.4)
6: Find P ′ a normalized eigenvector (L2-Norm = 1) of T ′ corresponding to

47

eigenvalue of 1
7: n′Ei

← p′Ei
max(n′Ej

/p′Ej
); ∀Ej ∈ E

8: Find E ′i : pE′i = max(pEi
)∀Ei

9: Find N:1− e
−

(NP
E′
i
−
⌈
n′
E′
i

⌉
)2

2NP
E′
i ≥

√
a;N >

⌈
n′
E′
i

pE′
i

⌉
Note that nEi

and n′Ei
may not be integers therefore it is necessary to use

their ceiling in the calculations. There is an additional term:⌊
cEi

dnEie

⌋
apart from the hypergrometric distribution in line 1. This additional term
represents the number of ways dnEi

e the number of agents can be evenly
distributed along edge Ei. In line 2, n′Ei

is adjusted with respect to the real
nEi

value.
In line 7, we recalculate the n′Ei

values so that they produce the matrix P ′

if used to calculate the equilibrium probability. It is very important to note
that the n′Ei

values in line 7 cannot be lower than that which is calculated in
line 2 therefore in line 7 we have the term max(n′Ej

/p′Ej
) to ensure that this

constraint is not violated.
In lines 8 and 9, edge E ′i corresponding to the highest pEi

is used. It
is not necessary to consider all edges since all pEi

are proportional to their
respective n′Ei

values. The lower bound condition for N in line 9 is always
true and is simply used to speed up search for N .

4.2 Random Walk With Communication So-

lution Algorithm

Here, we look at random walk with Communication Solution which is the
same as the random walk Without Communication Solution except there are
communication between agents and therefore we explicitly control the agents’
movement. Meaning they are now assumed to spread evenly throughout each
edge with respect to the amount of time it takes to traverse the edge. All
other random walk advantages over fixed circuit solution is retained except
this solution cannot be extended to the scenario where we install sensors on
private cars and taxis.

48

All agents are assumed to have a communication range as far as the
physical distance of any road; therefore all agents are able to communication
with each other as long as they are on the same road. On each edge, agents
are constantly informing each other of their respective location on the edge.
Based on the amount of time it takes to traverse the edge τEi

and the total
number of agents on the edge n′′Ei

, they can speed up or slow down so that
each agent takes τEi

/n′′Ei
amount of time to reach the current location of its

immediate neighbour that is in front of it along edge Ei.
The algorithm here is exactly identical to its counterpart the random walk

Without Communication Algorithm in section 4.1, except line 1 is removed
and line 2 is modified to n′Ei

← nEi
. It is given as follows:

input: a,nEi
,cEi

output: P ,N
1: n′Ei

← nEi

2: Calculate P : pEi
= n′Ei

/
∑
Ei

n′Ei

3: Calculate nh
Ei

based on equation (4.3)
4: Calculate T ′ : t′Ei,Ej

based on equation (4.4)
5: Find P ′ a normalized eigenvector (L2-Norm = 1) of T ′ corresponding to

eigenvalue of 1
6: n′Ei

← p′Ei
max(n′Ej

/p′Ej
); ∀Ej ∈ E

7: Find E ′i : pE′i = max(pEi
)∀Ei

8: Find N:1− e
−

(NP
E′
i
−
⌈
n′
E′
i

⌉
)2

2NP
E′
i ≥

√
a;N >

⌈
n′
E′
i

pE′
i

⌉

4.3 Random Walk Simulation Results (NUS)

A simulation was carried out based on the same environment in section
3.7 as shown in figure 1.7. In figure 4.2 we can see the capacity of each edge
cEi

is estimated as well but adjusted so that the results are as believable
as possible. The values are decided based on both my personal experience
and an assumption that vehicles follows traffic safety rule and keep a few
car distances apart. For example, the section of AYE highway from Node
1 to Node 11 is about 2km long. Assuming cars are driving at 90km/hr

49

which is the same as 25m/s. Assuming a driver typically has a reaction time
of 1 second, the car would travel 25m before the driver steps on the brake.
Assuming that cars are about 5m long, and assuming that it is possible for
it to skid 40m before it is able to stop, this would give a safety distance of
70m. Therefore, it is assumed that a highway segment of 2km long can hold
up to 29 cars; 2000/70 ≈ 29.

In figure 4.1, we can see the number of agents needed with respect to
the confidence level we have in satisfying the goal g̃(Ei, t) ≤ ε ∀Ei, t. We
can see that 295 agents are needed in order to have a confidence level of
95% when we have no communication while we only need 144 agents when
there are communications between agents. We can also see that we always
require lesser agents for the same level of confidence level when agents can
communicate with each other. Computational time taken here is in the order
of seconds. It is also interesting to note that if any of the agents were to break
down, performance on the entire road network will degrade gracefully as the
number of available agents varies with respect to the results of the plot in
figure 4.1.

Figure 4.1: random walk Algorithm Siumation Results.

50

Figure 4.2: NUS road capacity. The number at the center of each edge
corresponds to the number of cars the edge can hold.

4.4 Summary

In this chapter, two versions of the random walk algorithm were intro-
duced. The first was meant for the scenario where agents were not allowed
to communicate while the second was for the scenario where communication
between agents along the same edge was allowed. It was found that the sec-
ond version yields a less number of agents needed, however, the first version
gave us an estimation of the number of privates cars in Singapore we can
install sensors on to achieve the same effect.

Chapter 5

Singapore-Scale Simulations

In this chapter, we present the Singapore scale simulation carried out
using the algorithms presented so far. The raw data are provided by LTA
and ComfortDelgro, however, some processing were necessary so that useful
information can be derived from them; more details can be found in section
5.1. The Singapore road network is shown in figure 5.1. In the simulations
carried out, the original fixed circuit algorithm is excluded as its complexity
is too high. However, the approximate fixed circuit algorithm is still used in
the simulations and results are presented. In addition, the simulation was
carried out on the quasi-static problem at 8am of weekdays as it is found to
be the scenario where most number of agents is needed. This is sufficient
for finding out the minimum number of agents required during any time and
day to satisfy the problem objective stated in section 1.4.4.

5.1 Simulation Setup (Singapore)

In the Singapore scale simulation carried out, we use taxi data from a
large fleet of taxis in Singapore provided by ComfortDelgro. It consists of
four weeks of data (August 2010) from 16,000 taxis in Singapore, which
amounts to approximately 31GB of data. Each taxi record contains the car
id, the driver id, the time stamp, the GPS location, and status of taxi, i.e.
available, person on board (hired), busy etc. Records are logged at intervals
between 30 seconds and 2 minutes, depending on the network connectivity.
In addition, details of the Singapore road network are provided by Land
Transport Authority. Each road record includes the road name, road capac-

51

52

ity, speed limit, GPS location of either end of the road’s junction. There are
a total of 77,283 roads and 42,323 road junctions in Singapore. The Singa-
pore road network is shown in figure 5.1. The taxi GPS data are provided by
ComfortDelgro and the road network data are provided by Land Transport
Authority. These real data are used in the Singapore scale simulation.

Figure 5.1: Singapore Road Network

5.1.1 Hidden Markov Map Matching

While the GPS information for each taxi is known, it is still necessary
to interpret this information as road routes taken by each taxi. A naive
approach is not feasible as GPS information can be noisy and intervals of 2
minutes can sometimes mean that the taxi have travelled over several roads.
Therefore a Hidden Markov Model approach is adopted as in [13].

5.1.2 Differentiation Of Weekday And Weekend

In effort to improve reliability of sampling of data, 9th of August is re-
moved as travel pattern was expected to be different on a public holiday.
In addition, the sampled data are classified into “weekday” and “weekend”
groups. “Weekday” corresponds to sampling from the time 00:00 to 23:59

53

for each day from Monday to Friday while “weekend” corresponds to that of
Saturday and Sunday from time 00:00 to 23:59.

5.1.3 Time Of Day For Highest Number Of Agents
Required

Recall that the problem objective is g̃(Ei, t) ≤ ε ∀Ei, t. In order to
identify the minimum number of agents needed to ensure that the objective
is met it is sufficient to only consider the worst case scenario throughout the
day. The highest number agents are required when the variances σ2

t,Ei
∀Ei, t

are high and when µt,Ei
∀Ei, t are low since it mean that each edge needs to be

visited more often while it takes longer to traverse these edges and therefore
a high number of agents are required.

To identify the time of the day that requires the most number of agents,
we first split the time of the day into 24 numbered sections starting from 0
to 23 and each of these section correspond to all times within that hour, i.e.
section 0 corresponds to time 0:00 to 0:59 and therefore t = {0 . . . 23}. We
then find the mean of µt,Ei

and σ2
t,Ei

overall Ei for each time t, let µ̄t and σ̄2
t

represent each of these respectively. We then compare the value of σ̄2
t /µ̄t and

find the time of the day that corresponds to the highest value. The values of
µ̄t, σ̄

2
t and σ̄2

t /µ̄t are plotted in figure 5.2.

(a) Mean of mean of traffic
speed

(b) Mean of variance of traffic
speed

(c) Mean of variance divided by
mean of mean

Figure 5.2: Plots of µ̄t, σ̄
2
t and σ̄2

t /µ̄t

From figure 5.2a, we can see that the congestion is worse during weekend
from time 20:00 to 20:59. From figure 5.2b, the time of highest variance is

54

during weekday from 08:00 to 09:59. From figure 5.2c, we can see that the
time of highest need for agents is from 08:00 to 08:59 during the weekdays.
Therefore, we only need to study the number of agents needed during week-
days 08:00 to 08:59 to understand the minimum number of agents needed to
fulfil the problem objective.

(a) CTE Traffic Speed Sample Points (Total of 3,261 samples)

(b) ECP-Nicoll Highway Traffic Speed Sample Points (Total of
1,666 samples)

Figure 5.3: Traffic Sample Points

5.1.4 Growth Rate Of Entropy

In order to compute fEi
, it is necessary to calculate the rate βEi

from time
08:00 to 08:59. We define time t = {0 . . . 59} of which each represents each

55

minute of the hour from time 08:00 to 08:59, i.e. t = 2 correspond to time
from 08:02:00 to 08:02:59. We then find the best fit for each edge Ei using
all of the traffic speed sample points from 08:00:00 to 08:59:00. Let f(Ei, t)
represent the best fit curve for edge Ei and time t = {0 . . . 59}. For each t,
we calculate the “variance” σ′2t,Ei

. It differs from the original definition of
variance as we take the value of f(Ei, t) as the “mean” instead of using the
actual mean at each time t. The value of βEi

is then calculated as the mean
of σ′2t,Ei

over all time t. This is interpreted as the amount of entropy growth
per minute.

In figure 5.3, we can see some examples of the best fit curve and the
distributions of samples. In figure 5.3a, there are a total of 3,261 samples
and as we can see variance of traffic speed along CTE is very high. In figure
5.3b, we see that even though the road from ECP entering Nicoll Highway
is usually very congested. We can see that the variance is actually very low
with most of the 1,666 sample points compact together.

5.1.5 Entropy Threshold

After calculation of maximum entropy for all edges Ei using equation
(1.3), it is found that the mean of all maximum entropy g̃max(Ei)∀Ei is
2.8 Nat. An entropy threshold ε = 1 Nat was chosen for all edges in this
thesis. Assuming that an edge has maximum speed ŝEi

= 90km/hr, minimum
speed šEi

= 0km/hr and mean speed µt,Ei
= 60km/hr. 1 Nat corresponds

to σt,Ei
= 7.5. This corresponds to a 50% probability that the speed lies

between +/- 5km/hr around µt,Ei
and a 82% probability that the speed lies

between +/- 10km/hr. The traffic speed distribution of the edge described
with uncertainty of 1 Nat is shown in figure 5.4.

5.1.6 Edge Frequencies

Using equation (1.6), we can calculate the frequencies at which each edge
should be visited. For example, CTE needs to be visited once every 27
minutes, its traffic speed samples and best fit curve is shown in figure 5.3a.
After calculation of frequencies we can calculate the time period at which
each edge needs to be visited, it is found that 16,254 out of 77,283 edges
does not need to be visited. Out of the remaining edges, 43,583 edges need
to be visited at a period < 1hour (this includes CTE that needs to be visited

56

Figure 5.4: Traffic Speed Distribution for 1 Nat

once every 27 minutes); 16,703 edges need to be visited at a period between
1 to 3hours, 743 edges need to be visited at a period > 3hours.

5.2 Singapore-Scale Simulation: Relaxed Eu-

lerian Circuit

In this simulation, the directed graph G represents the Singapore road
network. The relaxed eulerian circuit Algorithm is applied so that pseudo-
edges can be added, to satisfy the condition of D+/−(Vi) = 0∀Vi. Below is a
table that summarize the number of nodes, such that D+/−(Vi) 6= 0.

D+/−(Vi) = -2 -1 1 2
|Vi| 32 3063 3073 27

Table 5.1: Number Of Unbalanced Nodes.

In table 5.1 we can see that the number of nodes is not symmetrical in
the sense that the number of nodes with D+/−(Vi) = −2 and the ones with
D+/−(Vi) = 2, which is not the same. This is the same for number of nodes
with D+/−(Vi) = −1 versus D+/−(Vi) = 1. However, the total unbalanced
degree still cancels out, i.e. −2× 32− 3063 = 3073 + 2× 27 = 3127.

The computational complexity of the algorithm as we know is O(n3),
where n represents the number of unbalanced nodes multiplied by its degree
3127. However, after removal of source and sink nodes, (done by lines 1 to

57

4 of the algorithm in section 2.4.2) the number drops to 3075. The total
time taken by the relaxed eulerian circuit Algorithm is 51 minutes and 54
seconds on a 2.4 GHz computer. The process where source and sink nodes are
removed took 6 seconds. The amount of time taken to compute the shortest
path between all unbalanced nodes to form a 3,075 by 3,075 cost matrix is 3
minutes and 52 seconds. The amount of time the node pairing process took
is 47 minutes and 56 seconds.

5.3 Singapore-Scale Simulation : Approximate

Fixed Circuit

Recall that before the approximate fixed circuit algorithm is applied,
it is assumed that the relaxed eulerian circuit Algorithm is applied. The
simulations are carried out for a varying number of kmax values and the
results of the simulation is shown in figure 5.5.

The optimum number of agents is found when kmax = 100. The shape of
graphs for both number of agents needed and computational time is similar
to the ones found in section 3.7, where the simulation results for NUS is
shown. The general case upper bound computed from equation (3.25) of
section 3.6 is found to be lower than the actual solutions computed for some
kmax. However, it still provides a very close estimation of the actual number
of agents required.

When kmax = 100, the number of agents required is 36,669 while the
amount of time it takes to compute it is 17,083 seconds (not including time
taken for the relaxed eulerian circuit Algorithm) on a 2.4 GHz computer
with 4GB Ram. This is about 4 hours and 45 minutes. Note that at least
4GB RAM is required to make the computation due to the high amount of
memory required by in the optimization process of the approximate fixed
circuit algorithm.

5.4 Singapore-Scale Simulation: Random Walk

A simulation was carried out using both versions of the random walk
algorithm, with and without communication. The computation time is very
short with an average of about 5 minutes and 7 seconds for the random
walk without communication algorithm and 5 minutes and 2 seconds for the

58

(a) Number Of Agents Required (b) Computation Time Taken

Figure 5.5: Approximate fixed circuit Simulation Results (Singapore)

random walk with communication algorithm for each confidence level on a
2.4 GHz computer, i.e. for each confidence level, we compute the number of
agents needed and reported is the time taken for each of these computations.
The results can be seen in figure 5.6.

Figure 5.6: random walk Algorithm Siumation Results (Singapore).

Unlike the simulation carried out in section 4.3, the number of agents

59

required without communication seems to increase relatively faster than in
the NUS simulation. The difference indicates that in a large scale scenario,
communication between agents serves to provide more advantage and the
disadvantage due to lack of communication is more significant as well. As we
can see in figure 5.6, 90,922 vehicles are required to achieve a confidence level
of 95% when communication is allowed. When communication is not possible,
327,912 vehicles are required to achieve the same amount of confidence level.

We first assume that agent distribution is similar to that of the private
cars in Singapore. This assumption while not always true is reasonable when
uncertainty of traffic speed of each road corresponds to the number of cars
that uses it. According to [11], there are about 570,207 private cars in Sin-
gapore. Therefore, if we were to install sensors on private cars so that we are
able to make accurate traffic speed estimations for all roads in Singapore we
need to do so for 327,912 out of 570,207 private cars in Singapore; which is
approximately 57.5%.

5.5 Installation Of Sensors On Roads

An interesting point made in section 3.7 was that sensors can be installed
on roads that require high number of agents or have a high frequency fEi

to
reduce the number of agents required. A short simulation was carried out to
explore this idea. We first identify all edges that need to be visited by an
agent once every 30 minutes or less based on the period calculated from their
fEi

. It was found that 12,538 out of 77,283 roads in Singapore fall under this
category which is about 16.2%. We then set the frequencies of these roads
to zero and compute the number of agents needed.

In the fixed circuit algorithm with kmax = 100, it was found that only
1,151 agents are required. This is a huge decrease compared to the pre-
viously computed requirement of 36,669 agents when we do not consider
installing sensors on roads. The required number of agents computed for the
random walk without communication algorithm is 189,004 agents. Extend-
ing this result to the installation of sensor on private cars, it means that
we now only need to install sensors on 189,004 private cars which is about
33.1%. The required number of agents computed for the random walk with
communication algorithm is 28,792 agents 18. There is no significant differ-

18Note that the number of agents required by random walk simulations assumes that a
confidence level of 95% is required.

60

ence in computation time required in the three simulations. Out of all three
simulations, the one that has the most significant improvement made is the
fixed circuit algorithm.

5.6 Summary

In this chapter, we discussed about the data provided by LTA and Com-
fortDelgro and how they were processed into useful relevant information for
the probe allocation problem simulation. Simulations had been carried out
for the relaxed eulerian circuit Algorithm, the approximate fixed circuit algo-
rithm and both versions of the random walk algorithm. In addition, we had
also considered the case where sensors were installed on roads that require
agents to visit them at a high frequency and a simulation was carried out for
this scenario.

Chapter 6

Bus Route Planning Problem

The main similarity between the bus route planning problem and the
probe allocation problem is the fact that they can be solved by planning
a number of fixed circuit for buses/agents to traverse repeatedly in. The
constant increase in the number of commuters at a bus stop is analogous to
the constantly increasing uncertainty in traffic estimation. The reduction of
the number of commuters at a bus stop is also similar to how uncertainty is
decreased when an agent visits an edge. Due to the many similarities, it is
believed that the fixed circuit algorithm can be modified to solve for the bus
route planning problem.

6.1 Bus Route Problem Statement

Let V B be a set of vertices with each vertex vB
i ∈ V B corresponding to

a bus stop. Let PB be the demand matrix such that each pB
i,j represents

the number of commuters travelling from bus stop vB
i to Bvj

19. Let Gr =
(V B, Er) be the graph representing a map such that each vB

i ∈ V B is a bus
stop while each er

i,j ∈ Er is the road between bus stop vB
i and Bvj. Let

V B′ ⊆ V B be the set of bus stops that are also bus terminals. In addition,
let Gw = (V B, Ew) be another map such that each ew

i,j ∈ Ew is the walking
path between bus stop vB

i and vB
j . The amount of time it takes to traverse

edges in Er and Ew is cr
i,j and cw

i,j respectively. Lastly, let GB = (V B, EB) be

19Can also be seen as the rate of increase in number of commuters travelling from bus
stop i to j. This does not make a difference to the solution proposed.

61

62

the combination of Gr and Gw such that

eB
i,j =

er
i,j if cr

i,j ≤ cw
i,j

ew
i,j if cr

i,j > cw
i,j

∅ if cr
i,j = cw

i,j =∞
.

Let αB be a set of bus route such that each αB
m ∈ αB consists of edges

in Er. Let τB′
i,j , τ

B′′
i,j and wi,j be the total in-vehicle travel time, total walking

time, and total bus waiting time for each commuter travelling from bus stop
vB
i to vB

j respectively. Let c(GB) be a function that calculates the number
of components in graph GB including vertices with no edges incident to it
while cmin(GB) is a function that returns the number of component in graph
GB excluding vertices that are not incident to any edge. Let dV

B′
(αB

m) be
a function that returns the maximum degree of all vertices vB

i ∈ V B′ in the
subgraph induced by edges in αB

m, i.e. the maximum degree out of all nodes
that are bus terminals in the bus route αB

m.
The problem is to design a set of bus routes αB such that the total travel

time for all commuters are minimized, i.e.

min

(∑
∀i,j

pB
i,j

(
τB′
i,j + τB′′

i,j + wi,j
))

Subject to:
c(GB′ = (V B, {αB})) = 1
cmin(GB′ = (V B, αB

m)) = 1; ∀αB
m ∈ αB

D(αB
m, v

B
i)in = D(αB

m, v
B
i)out;∀αB

m ∈ αB; vB
i ∈ V B

dV
B′

(αB
m) > 0;∀αB

m ∈ αB

.

The first constraint ensures that the edges in all bus routes induce a graph
with a single component inclusive of all nodes with no edges incident to
them. This indicates that all bus stops are served by at last one bus route
and can reach any other bus stops. The second constraint indicates that all
bus routes induce a single component excluding nodes with no edges incident
to them. The third constraint indicates that the in-degree and out-degree
of all nodes in all bus routes are balanced. The second and third constraint
together implies that all bus routes are circuits that form a single component
and therefore can be implemented in real life, i.e. if there were more than
one component it means the bus route consists of two disjoint circuits and
if the in-degree and out-degree is not balanced it implies that the bus route

63

does not form a circuit. The fourth constraint indicates that all bus routes
visits at least one bus terminal.

6.2 Bus Route Algorithm

Recall that the probe allocation algorithm forms clusters of edges with
similar frequencies, forms circuits that consists of edges in the same cluster,
and then combines these circuits to reduce the number of agents needed.
However, the bus route problem is slightly different in nature and direct
application of the probe allocation algorithm is not possible.

The bus route algorithm consists of three main parts. The first part
calculates the shortest circuit consisting of the shortest path between each
origin-destination pair (OD pair). These shortest circuits are analogous to
each edge of the probe allocation problem and form the basic circuits with
which we form the bus routes. These circuits have to be the shortest possible
since it is it helps ensure that bus routes would be short as well. However,
these circuits may consist of walking paths and therefore requires modifica-
tion. In addition, we only do so for OD pair with significant travel demand
as we only wish to identify the most significant travel trends out of all OD
pairs, i.e. pB

i,j larger than mean of all non-zero values in PB. After which,
we consider a subset of the remaining OD pairs so that all bus stops are
considered as either a source or a destination at least once. The remaining
OD pairs are not considered as they are seen as noise in the demand matrix
PB. Note that the circuits computed may consist of edges corresponding to
walking paths.

The second part of the algorithm consists of a few processes. Firstly, the
walking paths of each circuit computed in the first part of the algorithm are
removed. We then compute the shortest circuit that not only consists of
the remaining edges after removal of walking paths but also only consists of
edges corresponding to roads, i.e. we modify the circuits computed from the
first part of the algorithm so that they do not consist of walking paths. The
reason to do so is to form the basic circuit with which bus routes can be made
from, therefore, walking paths are not allowed. Secondly, we cluster/combine
similar circuits. The similarities of circuits are decided by the demand for
each circuit, i.e. the expected number of commuters each circuit serve. This
is analogous to the fixed circuit algorithm. Thirdly, we modify the circuits
so that all of them pass by at least one bus terminal. Since buses are parked

64

in bus terminals, it ensures that their circuits have proper start/end points.
Fourthly, we remove bus routes that are considered to be insignificant in
demand with the constraint that all bus stops are served by at least one of
the remaining bus routes. The reason for this is to remove bus routes that are
not required by a significant number of commuters as they are seen as noise
in the set of bus routes. Similar to the reason why not every OD pairs are
considered in the first part of the algorithm. Doing so serves to concentrate
resources on bus routes that have high demand.

After the second part of the algorithm, the bus routes are already com-
puted and finalized. The third part of the algorithm determines the number
of buses on each bus route by estimating the actual number of commuters
expected to be served on each bus route.

6.3 Algorithm Part 1

Let k be a number of selected OD pair, let each ok and dk represent the
respective origin and destination bus stops and let αB′

k be the set of edges
needed to be traversed such that it is the shortest circuit consisting the
shortest path from ok to dk in GB. Let γv(GB, i, j) and γe(GB, i, j) be the set
of vertices and edges arranged in sequence with respect to the shortest path
from vB

i to vB
j in graph GB respectively.

Let k be a number of selected OD pair such that the selected OD pair
satisfies two condition. Firstly, it includes all OD pair that has a significant
amount of commuters travelling from the respective origin and destination.
It is defined as OD pair that has equal or more commuter than the mean of
all non-zero elements in PB, i.e. pB

i,j is selected if pB
i,j ≥ p̄ such that

p̄ =

∑
pB
i,j

|pBi,j |
;∀pB

i,j 6= 0.

Secondly, we consider some of the remaining OD pairs so that all bus stops
are considered as either a source or a destination at least once. The second
condition can be interpret as c(GB′) = 1 where GB′ = (V B, {αB′}). As such,
we will be able to consider OD pairs such that all bus stops are serviced by at
least one bus route and that the most significant travel trends are considered
while the insignificant ones are ignored.

The first part of the algorithm is as follows.

65

input: PB, GB

output: αB′, o, d
1: Sort all OD pair with respect to pB

i,j

2: k ← 1
3: Set i and j such that pB

i,j correspond to the largest pB
i,j value.

4: while pB
i,j ≥ p̄ do

5: ok ← i
6: dk ← j

7: Find γe(GB, i, j) using Dijkstra’s algorithm : min

 ∑
eBi,j∈γe(GB,i,j)

cB
i,j

Subject to:
D+/−(dk) = 1
D+/−(ok) = −1
D+/−(vB

i) = 0 ∀vB
i ∈ V B \ {ok, dk}

8: Find αB′
k : min

 ∑
eBi,j∈αB′

k

cB
i,j

Subject to:
γe(GB, i, j) ⊆ αB′

k

D+/−(vB
i) = 0 ∀vB

i ∈ V B

9: k ← k + 1
10: Set i and j such that pB

i,j correspond to the next largest pB
i,j value.

11: end while
12: while ∃vB

i 6∈ o
⋃
d do

13: Find i, j : max
i,j

(pB
i,j)

Subject to:
(vB
i 6∈ o

⋃
d) ∨ (vB

j 6∈ o
⋃
d)

14: ok ← i
15: dk ← j

16: Find γe(GB, i, j) using Dijkstra’s algorithm : min

 ∑
eBi,j∈γe(GB,i,j)

cB
i,j

Subject to:
D+/−(dk) = 1
D+/−(ok) = −1
D+/−(vB

i) = 0 ∀vB
i ∈ V B \ {ok, dk}

66

17: Find αB′
k : min

 ∑
eBi,j∈αB′

k

cB
i,j

Subject to:
γe(GB, i, j) ⊆ αB′

k

D+/−(vB
i) = 0 ∀vB

i ∈ V B

18: k ← k + 1
19: end while

Recall that each ok and dk represents the respective origin and destination
bus stops and αB′

k is the set of edges needed to be traversed such that it is
the shortest circuit consisting the shortest path from ok to dk in GB. The
variable k is simply used to append these set therefore its value is initialized
as 1 in line 2 and increases by one in lines 9 and 18. In lines 5 to 8 and 14 to
17, we append the considered OD pair’s ok, dk and αB′

k . In line 1, we sort the
OD pairs so that they can be simply evaluated in the while loop from lines 3
to 8. The while loop in lines 4 to 11 considers the OD pairs with significant
demand and the while loop in lines 12 to 19 considers some of the remaining
OD pair such that c(GB′) = 1 where GB′ = (V B, {αB′}).

6.4 Algorithm Part 2

Let each αB
m ∈ αB be a circuit consisting only of edges in Er. Let each

PB′
m of PB′ be a matrix such that each element pB′

m,i,j is the total number of
commuters expected to traverse the edge er

i,j of circuit αB
m. Let d(αB

m) be
the function that returns the maximum degree of all vertices vB

i ∈ V B in the
subgraph induced by edges in αB

m. Define the function σ(PB) such that it
returns the variance of the set of all non-zero elements in matrix PB. Let
max(PB) be a function that returns the largest element in the matrix PB.
Let m′ be a set of indices that refers to sets in αB. Let e(G, q) be the set of
edges in the qth component in graph G.

The second part of the algorithm is as follows.

input: αB′, ok, dk, E
r, Ew, PB

output: αB

1: m← 1
2: for each αB′

k do

67

3: for each component q in GB′ = (V B, (αB′
k \ Ew)) do

4: Find αB
m : min

 ∑
eri,j∈αB

m

cr
i,j

Subject to:
e(GB′, q) ⊆ αB

m

D+/−(vB
i) = 0 ∀vB

i ∈ V B

5: pB′
m,i,j ← pB

ok,dk
;∀er

i,j ∈ αB
m

6: m← m+ 1
7: end for
8: end for
9: while ∃αB

m, α
B
m′ : m 6= m′ that can be combined such that d({αB

m, α
B
m′m
}) <

6 do
10: for each αB

m do
11: Find m′m : min

m′m
(σ(PB′

m + PB′
m′m

))

Subject to:
m′m 6= m
d({αB

m, α
B
m′m
}) < 6

cmin(GB′ = (V B, {αB
m, α

B
m′m
})) = 1

D({αB
m, α

B
m′m
}, vB

i)in = D({αB
m, α

B
m′m
}, vB

i)out;∀vB
i ∈ V B

12: end for
13: Sort m′ with respect to σ(PB′

m + PB′
m′m

)

14: Set m′m such that σ(PB′
m + PB′

m′m
) correspond to the lowest value.

15: while m′ 6= ∅ do
16: αB

m ← {αB
m, α

B
m′m
}

17: PB′
m ← PB′

m + PB′
m′m

18: αB
m′m
← ∅

19: PB′
m′m
← ∅

20: m′ ← m′ \ {m,m′m}
21: Set m′m such that σ(PB′

m + PB′
m′m

) correspond to the next lowest
value.

22: end while
23: end while
24: for each m do

25: Find αB
m : min

 ∑
eri,j∈αB

m

cr
i,j

68

Subject to:
dV

B′
(αB

m) > 0
d(αB

m) < 6
Original αB

m ⊆ Updated αB
m

D+/−(vB
i) = 0 ∀vB

i ∈ V B

cmin(GB′ = (V B, {αB
m, α

B
m′m
})) = 1

D({αB
m, α

B
m′m
}, vB

i)in = D({αB
m, α

B
m′m
}, vB

i)out;∀vB
i ∈ V B

26: end for
27: Sort αB

m, P
B′
m with respect to max(PB′

m) such that max(PB′
1) is the largest

28: Find minimum set m′

Subject to:
m ⊆ m′ | ∀max(PB′

m) ≥ 1
2

max(PB′
1)

c(GB′ = (V B, {αB
m′})) = 1

29: Update αB ← αB
m′

The last two constraints lines 11 and 25 ensure that each bus route αB
m

induces a single component excluding nodes with no edges incident to them
and that the in-degree and out-degree of all nodes are balanced. Together,
the constraints ensure that each bus route is a single circuit that buses can
traverse on. For example, if there were more than one component it means
the bus route consists of two disjoint circuits and if the in-degree and out-
degree is not balanced it implies that the bus route does not form a circuit.

Recall that there are 4 processes in the second part of the algorithm.
Firstly, we modify the circuits computed from the first part of the algorithm
so that they do not consist of walking paths. The circuits created after this
modify are analogous to the circuits in the fixed circuit algorithm and they
will be used to create bus routes after they have been clustered/combined.
The circuit modification process runs from lines 1 to 8. As removing walking
path may induce multiple components we handle each of the components
in the loop stated in line 3. The variable m here serves as an index for
each modified circuit computed in line 4. In line 5, we collect the demand
information for each modified circuit.

The second process is where we cluster/combine similar circuits and it
goes from lines 9 to 23. This is similar to the combination of circuits in
the fixed circuit algorithm. One constraint for clustering/combining circuits
is d({αB

m, α
B
m′m
}) < 6. This means that all bus stops are served at most 2

times (served once for each in-coming and out-going edge pair) from either

69

direction by each bus route. The purpose of this constraint is to reduce
the complexity of the bus routes and ensure its directness. Directness of
bus route is a considered factor in some papers [24–26]. In lines 10 to 12,
for each modified circuit, we find another modified circuit that it can be
combined with such that the pair corresponds to the minimum amount of
variance in the resulting combined demand matrix. This would imply that
the circuits are similar analogous to the clustering/combining criteria in the
fixed circuit algorithm. In lines 13 to 22, we do the actual combination
of modified circuits. Here we adopt a greedy approach such that we begin
with the pair of modified circuits m and m′m that would combine to result
in a demand matrix that corresponds to the minimum variance out of all
combinations. Modified circuits are allowed to be combined only once in each
iteration to ensure that all combinations of circuits comply to the constraint
d({αB

m, α
B
m′m
}) < 6. In lines 16 and 17, the results of the combination of

circuits are being recorded while the original circuits are deleted in lines 18
and 19. Line 20 ensures that all modified circuits are combined once in each
iteration.

The third process from lines 24 to 26 involves modifying the circuits so
that all of them pass by at least one bus terminal. The constraint dV

B′
(αm) >

0 ensures that the circuits passes by at least one bus terminal. Since buses are
parked in bus terminals, it ensures that their circuits have proper start/end
points.

In the fourth process from lines 27 onwards, we remove bus routes that
are considered to be insignificant in demand with the constraint that all bus
stops are served by at least one of the remaining bus routes. The purpose
of doing so is to remove bus routes that are not required by a significant
number of commuters as they are seen as noise similar to why not every OD
pair are considered in the first part of the algorithm. Doing so serves to
concentrate resources on bus routes that have high demand. The constraint
m ⊆ m′ | ∀max(PB′

m) ≥ 1
2

max(PB′
1) indicates that all circuits with signifi-

cant amount of demand must be included in the finalized set of bus routes.
The constraint c(GB′ = (V B, {αB

m′})) = 1 indicates that the finalized set of
bus routes induces a graph that consists of exactly one component which
implies that all bus stops are served by at least one bus route.

70

6.5 Algorithm Part 3

In the final part of the algorithm, we attempt to approximate the best
travel route for all commuters and the bus assignment on each bus route.
The method used here assumes that commuters travel in the shortest pos-
sible path while ignoring bus waiting time in order to simplify the complex
evaluation process. While considering the edges in all bus routes αB

m and the
walking path edges in Ew, we compute the shortest path for each OD pair.
Note that here graph GB is updated to be equal to GB = (V B, {αB, Ew})
since only edges in walking path and bus routes edges can be considered.

We then remove walking paths before we compute what buses commuters
have to take. Let each γerq (GB, i, j) ⊆ γe(GB, i, j) be a set of edges inducing
a subcomponent of the shortest path with edges in Ew removed, i.e. each
component of subgraph induced by the edges in γe(GB, i, j) \ Ew. As we re-
move the walking path, it can result in a number of disjoint paths consisting
only of road edges. Each γerq (GB, i, j); q = 1, 2, . . . are a set of edges corre-
sponding to each of the components in the set of disjoint paths when edges
in Ew are removed from γe(GB, i, j). Let γvr

q (GB, i, j) be the start vertice of
subgraph induced by γerq (GB, i, j). Let d(vB

i , G
B) be a function that returns

the out-degree of vB
i in graph GB.

Let NB define the total number of buses available, while each nB
m ∈ nB

is the number of buses assigned to each bus route αB
m. Let tBi,j be the set

of indices of bus routes in α that describes the bus routes a commuter have
to board to travel from bus stop vB

i to vB
j . Let PB′′

m be the demand matrix
for each bus route αB

m and dm is the demand on each bus route. Let τB′
i,j be

the bus travel time for commuter travelling from vB
i to vB

j . Let τB′′
i,j be the

walking time for commuter travelling from vB
i to vB

j . Let β be a variable
that can take any value. Let e′ be a set of edges. In addition, recall that
V (α′′m) is the set of vertices incident to edges in α′′m and that D(αk, Vj)in and
D(αk, Vj)out are the number of incoming and outgoing edge incident to vertex
Vj in subgraph formed with edges in αk respectively; where α′′m and αk are
sets of edges.

The third part of the algorithm is as follows.

input: αB, PB,V B,Ew

output: nB,tB,τB′,τB′′

1: Update GB ← (V B, {αB, Ew})
2: Initiate PB′′ where all elements are 0

71

3: for each OD pair ∀i, j do
4: Initiate tBi,j ← ∅
5: Initiate τB′

i,j ← 0

6: Find γe(GB, i, j) using Dijkstra’s algorithm : min

 ∑
eBi,j∈γe(GB,i,j)

cB
i,j

Subject to:
D+/−(dk) = 1
D+/−(ok) = −1
D+/−(vB

i) = 0 ∀vB
i ∈ V B \ {ok, dk}

7: γv(GB, i, j)← V (γe(GB, i, j))
8: for each component q in G′ = (γv(GB, i, j), γe(GB, i, j) \ Ew) do
9: Find γerq (GB, i, j) the set of edges in component q

10: Find γvr
q (GB, i, j)← vB

i : D(γerq (GB, i, j), vB
i)in = 0;

D(γerq (GB, i, j), vB
i)out = 1

11: end for
12: τB′′

i,j ←
∑

i′,j′:ew
i′,j′∈γ

e(GB,i,j)

cw
i′,j′

13: for each q in γerq (GB, i, j) do
14: while γerq (GB, i, j) 6= ∅ do
15: Find γvr

q (GB, i, j)← vB
i : D(γerq (GB, i, j), vB

i)in = 0;
D(γerq (GB, i, j), vB

i)out = 1
16: Find m : max(|e′|)

Subject to:
e′ ⊆ {γerq (GB, i, j) ∩ αB

m}
cmin(GB′ = (V B, e′)) = 1
d(γvr

q (GB, i, j), GB′) = 1
17: Update γerq (GB, i, j)← γerq (GB, i, j) \ e′

18: τB′
i,j ←

∑
i′,j′:er

i′,j′∈e
′

cr
i′,j′

19: tBi,j ← {tBi,j,m}
20: for each i′, j′ : er

i′,j′ ∈ e′ do

21: PB′′
m,i′,j′ ← PB′′

m,i′,j′ + PB
i,j

22: end for
23: dm ← max(PB′′

m)20

20Note that this equation is dm ← dm+PB
i,j for the Mandl Benchmark since it is assumed

72

24: end while
25: end for
26: end for
27: for each m do
28: dm ← dβm
29: end for
30: for each m do

31: nB
m ←

⌊
NBdm/

∑
m

dm + 0.5

⌋
32: end for

In lines 6 to 11, we find γv(GB, i, j) γe(GB, i, j) γerq (GB, i, j) and γvr
q (GB, i, j)

for each OD pair. Recall in particular that γvr
q (GB, i, j) is the start vertice of

subgraph induced by γerq (GB, i, j); and the induced subgraph is essentially the
shortest path from node vB

i to vB
j that is why γvr

q (GB, i, j) has an out-degree
of 1 while its in-degree is 0.

In line 12 we compute the total walking time after finding the shortest
path for each OD pair. The condition in lines 13 and 14 is equivalent to
saying for each component and while the component is not empty, do the
following. The loops from lines 13 to 25 determine what buses commuters
for each OD pair takes. In each iteration in line 15, we find the starting node
γvr
q (GB, i, j) of the path described by edges in γerq (GB, i, j). We need to find
γvr
q (GB, i, j) at each iteration since the starting changes as we remove edges

from γerq (GB, i, j). In line 16, we find the most suitable bus route αB
m such that

it has the most number of edges that coincide with γerq (GB, i, j) given that
the edges forms a continuous path starting from the start node γvr

q (GB, i, j).
This condition is ensured by three constraints in line 16, the first constraint
indicates that e′ must be a subset of the edges in bus route αB

m and the
edges in γerq (GB, i, j). The second constraint indicates that the edges in e′

must induce a graph of single component, i.e. continuous paths. The third
constraint indicates that the out-degree of the starting node γvr

q (GB, i, j) is
1, this implies that the path in the graph induced by the edges in e′ starts
from the starting node γvr

q (GB, i, j) since the starting node is incident to an
edge in the subgraph induced by edges in e′.

that commuter can board the first bus that arrives and the need to wait for more than
one bus is not taken into account. Therefore it is also necessary to initiate dm = 0 at the
start of the algorithm.

73

After having found the desired bus route αB
m, in line 17 we remove the

edges in e′ from γerq (GB, i, j) in preparation for the next iteration. In line
18 we update the total in-vehicle travel time. In line 19, we update the bus
routes taken so far to keep track of transfers etc. In lines 20 to 22, we update
each element of the travel demand matrix PB′′

m that is defined for each bus
route αB

m. We do this based on the OD pair travel demand and the edges in
e′. PB′′

m gives us an idea of how many commuters are expected to travel on
which bus route along which edges. In line 23, we update dm which keeps
track of the maximum demand in each bus route αB

m along all edges. The
rationale of keeping track of the maximum demand is due to the fact that
buses have limited capacity and it is necessary to compute the number of
buses allocated to each bus route based on this information.

In lines 27 to 29, we smoothen the values of dm so that the difference
in the number of buses allocated to each bus route is not too high. It is
found that using the value of β = 0.65 provides reasonable performance in
bus assignments. From line 30 onwards, we simply assign buses to each bus
route based on the equation in line 31.

The number of transfers commuters need to make is simply |tBi,j| −1. The
bus wait time for each bus route can be found using the equation

wm =
∑

∀i,j:eri,j∈αB
m

cr
i,j

2nB
m

.

The typical convention for bus waiting time is to calculate the half of the
period at which buses arrives at each bus stop [23,27]. The total bus waiting
time for commuters of each OD pair corresponding to the demand pB

i,j is

wi,j =
∑
m∈ti,j

wm.

This total bus waiting time is commonly known as the out-of-vehicle time.
The time spent travelling on a bus τB′

i,j is commonly known as the in-vehicle
time.

6.6 Bus Algorithm Time Complexity

In part 1 of the algorithm, each OD pair is considered and therefore they
contribute to a complexity of O(|V B|2). The computation of shortest circuit

74

O(2|E
′|) where E ′ represents the edges that are near to the edges that must

be included in the shortest circuit. The indication of near here is considered
in terms of the cost. Therefore, the time complexity of the first part of the
algorithm is O(2|E

′| |V B|2). In part 2 of the algorithm, we consider joining
each circuits therefore the time complexity here is O(|V B|4) assuming that
there are O(|V B |2) number of bus routes. In part 3 of the algorithm, we
consider the application of each bus routes for each OD pair therefore the
complexity is also O(|V B|4) assuming that there are O(|V B|2) number of bus
routes.

As the value |E ′| is typically small, therefore the overall time complexity of
the bus algorithm is O(|V B|4). Despite the seemingly high complexity, many
of the computations can be done in parallel to reduce the amount of time
taken. In addition, the actual number of circuits used in the computations
are typically low due to the pruning away of insignificant OD pairs in part
1 of the algorithm and the pruning away of bus routes with insignificant
demand at the end of part 2 of the algorithm.

6.7 Bus Route Simulation Setup (NUS)

A simulation was carried out for the NUS environment and compared
against the results against the existing NUS bus routes. Most of the data used
are results of a number of estimations and assumptions made; details of these
estimations and assumptions will be explained in the following paragraphs.
Real data could be useful in future work but is not currently available. In
figure 6.1, we can see the original NUS map and each bus stop is given a
corresponding number. In figure 6.2, we can see a digitally drawn version.
Each edge represents the shortest path from one bus stop to another. A
number representing the amount of time (in minutes) it takes to traverse the
edge is shown next to each edge near the arrowheads. Amongst all bus stops,
bus stops 1 and 14 are bus terminals. Note that edges between nodes 1 and
7 and nodes 3 and 5 traverses Clementi Road.

A number of estimations and assumptions are made. Firstly, we make
estimations in the amount of time taken to traverse the roads along the short-
est path between each bus stop. The estimations made was based on travel
experiences and was found to be very similar to the distance of each road
divided by 20 km/hr, i.e. the travel experiences was found to be consistent
to the shuttle buses travelling at 20 km/hr. As Clementi Road is currently

75

Figure 6.1: NUS Map with Bus Stops. All bus stops are numbered. Bus stop
1 and 14 are bus terminals.

76

Figure 6.2: Digitally Drawn Version of NUS Map with Bus Stops. Each
edge represents the shortest path from one bus stop to another. A number
representing the amount of time (in minutes) it takes to traverse the edge is
shown next to each edge near the arrowheads.

not traversed by any bus service, it is assumed that buses travel at 60 km/hr
as it is not within NUS campus area and driving at 20 km/hr is too slow.
The time taken to traverse the edges along the shortest path from one bus
stop to another is shown in figure 6.2. With these information, we can form
the matrix Er and cr

i,j the amount of time taken to traverse each edge ew
i,j.

Secondly, we estimate the amount of time it takes to walk between each
bus stops. We assume a walking speed of 4.4 km/hr. The distances between
bus stops are taken to be the measured distance along the most commonly
known path between them. The amount of time taken to travel between bus
stops can be seen in table 6.1.

Thirdly, the demand matrix PB shown in table 6.2 is estimated based
on a manually conducted survey by counting the number of people at each
bus stops and the number of people who board/alight each bus services. The
demand matrix is then modified based on feedbacks given by some bus drivers
so that it is be more representative of their personal experiences. After the
modification, some noise was added so that there is no zero values in the
matrix PB and to add some randomness in the simulation. The noise is pre-
calculated and stored so that each time the simulation is ran, the amount of

77

- - 10 12 18 - - 18 - - - - - - - -
- - 12 18 - - - - - - - - - - - -

10 12 - 6 16 - 16 8 16 - - - - - - -
12 18 6 - - - 12 14 - - - - - - - -
18 - 16 - - 8 8 16 - 18 - - - - - -
- - - - 8 - 16 - - - - - - - - -
- - 16 12 8 16 - 8 16 10 - - - - - -

18 - 8 14 16 - 8 - 8 18 - - - - - -
- - 16 - - - 16 8 - - 12 - - - - -
- - - - 18 - 10 18 - - - 12 - - - -
- - - - - - - - 12 - - 14 10 - - -
- - - - - - - - - 12 14 - - 12 - -
- - - - - - - - - - 10 - - - 12 -
- - - - - - - - - - - 12 - - - -
- - - - - - - - - - - - 12 - - 8
- - - - - - - - - - - - - - 8 -

Table 6.1: Walking Time Matrix. Each cw
i,j represents the amount of time

taken to walk from bus stop vB
i to vB

j . Elements with no value indicates that
the walking time required can be derived by solving for their shortest path
in the graph Gw = (V B, Ew)

noise added is the same for each element.

6.8 Simulation Results (NUS)

In the simulation carried out, a set of bus routes αB was computed based
on the algorithm in section 6.2 and data described in section 6.7. The bus
routes were computed in 47 seconds on a 2 GHz computer. In addition, we
apply the third part of the algorithm of section 6.2 to the NUS bus routes
to determine the travel time for commuters. Let τBN′

i,j ,τBN′′
i,j ,wNi,j be the total

in-vehicle travel time, total walking time, and total bus waiting time for
each commuter travelling on the NUS bus routes from bus stop vB

i to vB
j

respectively; and let τBP′
i,j ,τBP′′

i,j ,wNPi,j be the ones for commuter travelling on
the bus routes computed by the proposed algorithm. Some of the results are

78

0 5 3 13 5 1 1 1 5 9 3 5 4 5 8 10
5 0 8 15 4 3 23 16 5 19 4 5 14 3 5 3
3 8 0 11 8 6 10 6 4 9 3 1 8 3 2 3
13 15 11 0 13 17 48 41 7 37 11 10 37 19 6 19
5 4 8 13 0 6 9 6 3 3 7 9 13 3 7 2
1 3 6 17 6 0 16 16 5 18 5 5 14 5 5 6
1 23 10 48 9 16 0 37 8 48 10 10 48 17 4 19
1 16 6 41 6 16 37 0 6 42 4 2 40 17 5 15
5 5 4 7 3 5 8 6 0 4 4 4 8 7 4 6
9 19 9 37 3 18 48 42 4 0 6 10 44 15 10 12
3 4 3 11 7 5 10 4 4 6 0 5 8 9 9 3
5 5 1 10 9 5 10 2 4 10 5 0 7 5 3 6
4 14 8 37 13 14 48 40 8 44 8 7 0 21 9 16
5 3 3 19 3 5 17 17 7 15 9 5 21 0 5 4
8 5 2 6 7 5 4 5 4 10 9 3 9 5 0 1
10 3 3 19 2 6 19 15 6 12 3 6 16 4 1 0

Table 6.2: Demand Matrix PB. Each pB
i,j represents the number of commuters

who wish to travel from bus stop vB
i to vB

j

as follows: ∑
∀i,j

pB
i,j

(
τBN′
i,j

)
= 48861

∑
∀i,j

pB
i,j

(
τBN′′
i,j

)
= 7480∑

∀i,j

pB
i,j

(
τBP′
i,j

)
= 41788

∑
∀i,j

pB
i,j

(
τBP′′
i,j

)
= 8860

.

We can see that the computed bus route requires commuters to travel by
walking for an additional time of 8860− 7480 = 1380 minutes. As the total
number of commuters is ∑

∀i,j

pB
i,j = 2568 ,

each commuter on average have to walk for 1380/2568 = 0.537. Therefore,
on average each commuter has to walk about half a minute more than the
situation where the NUS bus routes were used instead. The simulation results
indicate that regardless of the total number of bus NB, bus waiting time is
always lesser when we use NUS bus routes. In figure 6.3, we see a plot of
the difference in total bus wait time. When the total number of bus is 10,

79

Figure 6.3: Plot Of
∑
∀i,j

pB
i,j

(
wNi,j
)
−
∑
∀i,j

pB
i,j

(
wPi,j
)

Against NB

NUS bus routes results in a total bus wait time that is lesser by 763 minutes.
Therefore on average, each commuter waits 763/2568 = 0.297 minutes more
for a bus if we apply the computed bus route; this is about 18 seconds more.

Since assuming that the total number of shuttle bus in NUS is 5 is much
too low an estimation, we assume that the total number of shuttle bus is 10,
i.e. NB = 10. With this assumption, we can calculate the total amount of
time saved by the computed bus routes∑

∀i,j

pB
i,j

(
τBN′
i,j + τBN′′

i,j + wNi,j − τBP′
i,j − τBP′′

i,j − wPi,j
)

= 4930 .

As we can see from the calculation, the total travel time is lesser by 4,930
minutes for all commuters if the computed bus routes are used. On average,
each commuters enjoys a reduction of total travel time of 4930/2568 = 1.92;
this is about 2 minutes. Note that since the demand matrix P only corre-
spond to a single trip, the average calculated is for each journey for each
commuter. This implies that if a commuter travels around NUS more than
one time, the amount of time saved is increased accordingly. Another advan-
tage of the computed bus routes is that it is easier to implement as there are
only three bus routes to consider; the NUS bus routes however have 6 bus
routes to consider (refer to table 6.3).

The NUS bus routes and the computed bus routes are shown in figures
6.4 and 6.5 respectively. All edges in both figures are bidirection except
for the ones with an arrow head attached to them; buses only travel in the
direction pointed by the arrow head. Note that NUS bus route pair D1, D2

80

are combined in the figure 6.4 since most of their paths overlap. Also note
that despite the fact that the arrow head is not shown for NUS bus route A,
it is in fact two bus routes; bus route A1 travels anti-clockwise in the edges
of “circuit A” shown in figure 6.4 while A2 goes clockwise.

The presence of edges that can only be traversed in a single direction
implies that the bus routes planned lacks symmetry therefore this reflects a
minor problem in the NUS bus routes. In addition, bus route D1 and D2
does not visit any of the two bus terminals (bus stops 1 and 14). This is
another minor problem as explicit efforts have to be made to travel to their
stating bus stop when they start the day, and they have to make additional
journey back to the bus terminal when they end the day. The node sequence
is shown in table 6.3.

Node Sequence
NUS A1 [14,16,15,13,11,9,8,7,5,10,12,14]
NUS A2 [14,12,10,5,7,8,9,11,13,15,16,14]
NUS B [1,4,3,8,7,5,10,6,5,7,8,3,4,1]
NUS C [1,4,3,9,11,13,15,13,11,9,3,4,1]
NUS D1 [12,10,5,7,8,3,2,9,11,13,15]
NUS D2 [15,13,11,9,3,2,8,7,5,10,12]

Computed
Bus Route 1 [1,4,3,5,7,8,9,11,13,15,16,15,13,11,9,8,7,5,3,4,1]
Computed

Bus Route 2 [1,4,3,5,12,14,16,15,13,11,9,8,7,8,9,11,13,15,16,14,12,5,3,4,1]
Computed

Bus Route 3 [1,7,8,2,3,5,10,6,10,5,3,2,8,7,1]

Table 6.3: Node Sequence Of Bus Routes For NUS Simulation

81

Figure 6.4: NUS Bus Routes

Figure 6.5: Computed Bus Routes

82

Figure 6.6: The road network of Mandl benchmark. Time taken (minutes)
to travel between each node is displayed in bold.

6.9 Mandl’s Benchmark

In the Mandl benchmark, there are a total of 15,570 commuters and
15 nodes each representing a bus stop. The concept of bus terminal is not
introduced and commuters are not allowed to walk between bus stops [22,23].
The benchmark is made so that performance of bus route algorithms can be
compared in a fair manner. The network and demand matrix can be seen in
figure 6.6 and table 6.4 respectively. The performance of various solutions
on the Mandl benchmark is shown in Table 6.5.

In table 6.5, the in-vehicle time is the amount of time spent travelling
while in a bus. The out-of-vehicle time is the amount of time spent waiting
for a bus either for the first bus or subsequent transfers. The transfer time is
a penalty of 5 minutes applied for each transfer made by each person. The
travel time is the sum of these three time values.

In Shih [20], two solutions are proposed. The coordinated version im-

83

0 400 200 60 80 150 75 75 30 160 30 25 35 0 0
400 0 50 120 20 180 90 90 15 130 20 10 10 5 0
200 50 0 40 60 180 90 90 15 45 20 10 10 5 0
60 120 40 0 50 100 50 50 15 240 40 25 10 5 0
80 20 60 50 0 50 25 25 10 120 20 15 5 0 0
150 180 180 100 50 0 100 100 30 880 60 15 15 10 0
75 90 90 50 25 100 0 50 15 440 35 10 10 5 0
75 90 90 50 25 100 50 0 15 440 35 10 10 5 0
30 15 15 15 10 30 15 15 0 140 20 5 0 0 0
160 130 45 240 120 880 440 440 140 0 600 250 500 200 0
30 20 20 40 20 60 35 35 20 600 0 75 95 15 0
25 10 10 25 15 15 10 10 5 250 75 0 70 0 0
35 10 10 10 5 15 10 10 0 500 95 70 0 45 0
0 5 5 5 0 10 5 5 0 200 15 0 45 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.4: Travel demand matrix of Mandl benchmark. It is symmetrical.

Solution
No. of No. of % of commuters Total time

bus route Zero One Two Travel In vehicle Out of Transfer
transfer transfer transfer time time vehicle time time

Shih 1998
(Coordi-
nated)

87 6 82.59 17.41 0 225,102 191,826 19,726 13,550

Shih 1998
(Uncoor-
dinated)

84 6 82.59 17.41 0 203,936 170,328 20,058 13,550

Baaj 1995 82 7 80.99 19.01 0 217,954 180,356 22,804 14,800
Mandl
1980

99 4 69.94 29.93 0.13 219,094 177,400 18,194 23,500

Saeed
2011

87 12 83.66 15.21 0.95 205,109 167,198 24,591 13,320

Alt 2011
(Current
Best)

87 4 86.38 10.79 2.83 196,520 156,110 27,610 12,800

Proposed
Algorithm

87 5 85.74 12.14 2.12 201,712 161,690 27,272 12,750

Proposed
Algorithm

82 5 85.74 12.14 2.12 203,346 161,690 28,906 12,750

Table 6.5: Performance Comparison Using Mandl Benchmark.

plies that departure times are modified to minimize transfer times, while
the uncoordinated version means that such modification is not made. All
other algorithms including the one proposed in this thesis did not make such
modification.

One can easily verify transfer time penalty by doing very simple cal-

84

culations. For example, the proposed algorithm have 12.14% commuter
making 1 transfer and 2.12% commuter making 2 transfers therefore its
penalty is (12.14 + 2 × 2.12)/100 × 15570 × 5 = 12750. For Mandl [23],
(29.93 + 2× 0.13)/100× 15570× 5 = 23500. The same can be seen in Shih,
Baaj and Alt [20, 21, 28] as well. However, there seems to be a mistake in
the result presented in Saeed [24]. Its true transfer time penalty should be
(15.21 + 2× 0.95)/100× 15570× 5 = 13320. Saeed has reported a penalty of
10465 instead in [24]. The mistake is already corrected in the results shown
in table 6.5.

The solution in Alt [28] is performed on the Mandl bechmark but the
evaluation method is modified and is different from the conventional means.
Therefore, I have taken the bus route it has calculated in [28] and evaluated
its performance using part 3 of the proposed algorithm from section 6.5.
The bus route computed in [28] is believed to be the current state-of-the-
art in literature as it has the best results in terms of Total Travel Time
in the Mandl benchmark. In addition, the reported bus route is the best
out of several attempts in which differences in bus route is noted in each
attempt according to [28]. This is not surprising since the method adopted
is stochastic.

Upon comparison, it can be seen that the proposed algorithm is superior
to all other solution except for the one presented in [28]. Comparing the
transfer time, one can see that the proposed algorithm have lesser transfer
made compared to solution from [28]. In fact, the proposed solution requires
the least amount of transfer out of all solutions. However, in terms of Total
Travel Time, the solution in [28] is 3.4% lower than that of the proposed
solution. Therefore, the proposed algorithm is slightly inferior to the state-
of-the-art.

Based on the computation on Mandl’s benchmark, the proposed algo-
rithm implemented on Matlab was able to compute the bus routes in 40
seconds on a 2 GHz computer. The algorithm in [28] implemented on the
“fast prototyping language Python” was only able to complete the computa-
tion in “about one hour on a 2 GHz computer” (quoted from [28]). Therefore,
even though the state-of-the-art algorithm was able to perform better than
the proposed algorithm in this thesis by 3.4% in terms of total travel time it
requires a significantly higher amount of time to compute its bus routes for
the Mandl’s benchmark.

85

6.10 Summary

In this chapter, we identified the similarities between the bus route plan-
ning problem and the probe allocation problem. We also introduced a novel
algorithm which was a modified version of the fixed circuit algorithm. A NUS
simulation was carried out and it was found that the proposed algorithm was
able to compute a bus route that performs better than the existing NUS bus
routes. In addition, the proposed algorithm was applied to the Mandl’s
benchmark and it was found that it outperforms most existing algorithms
and that while it was slightly inferior to the state-of-the-art algorithm, it was
significantly faster in terms of computational time required.

Chapter 7

Conclusions And Future Work

7.1 Conclusion

In this thesis, the novel probe allocation problem was introduced and
solved using the proposed algorithms. A special case was identified and its
similarities with the Chinese Postman Problem were noted. Two different
algorithms were proposed, one for undirected graphs (the algorithm is called
modified Chinese postman algorithm) and another for directed graphs (the
relaxed eulerian circuit Algorithm). The algorithms run in polynomial time
and produce optimum solutions. For the probe allocation problem in general
case, two categories of algorithms were proposed, the first was the fixed
circuit algorithm and the other was the random walk algorithm.

A Singapore scale simulation was carried out using the proposed algo-
rithms, together with the data provided by LTA and ComfortDelgro which
amounts to approximately 31GB of data in total. The approximate fixed
circuit algorithm took the longest amount of time requiring about 4 hours
and 45 minutes on a 2.4 GHz computer. The computation also requires the
machine to have at least 4GB RAM. The shortest amount of time is required
by the random walk algorithms requiring about 5 minutes.

According to the simulation results, it was found that 36,669 agents are
required for the fixed circuit solution in order to make accurate traffic speed
estimations in the Singapore road network which consists of 77,283 roads.
However, if we were to install stationary sensors on road that needs to be
visited frequently, i.e. require agents to visit them once every 30 minutes
or lesser (a total of 12,538 out of 77,283 roads in Singapore), the number of

86

87

agents required is reduced to 1,151. Therefore it means that we can install
12,538 sensors on roads and deploy 1,151 agents to make accurate traffic
speed estimations.

In the case for the random walk without communication algorithm, it was
found that 327,912 agents are required. Assuming that agent distribution is
similar to that of the cars in Singapore, we can consider installing sensors on
327,912 private cars which is about 57.5% of all private cars in Singapore.
However, if we install the 12,538 stationary sensors on roads that needs to
be visited frequently it was found that we only need to install sensors on
189,004 private cars which is only 33.11% of private cars.

Finally, similarities between the probe allocation problem and the bus
route planning problem were identified. The fixed circuit algorithm was
modified so that it is applicable to the bus route planning problem. It was
found that the bus routes computed by the proposed algorithm outperform
the NUS bus routes that are currently being used. In addition, the perfor-
mance of the proposed algorithm was found to outperform many existing
bus route planning algorithms when compared against the Mandl bench-
mark. The performance of the proposed algorithm is slightly inferior in to
the state-of-the-art as it produces a total travel time 3.4% higher. However,
the proposed algorithm is able to compute the bus routes significantly faster,
i.e. the state-of-the-art is reported in [28] to take “about an hour on a 2 GHz
computer” to compute its bus routes while the proposed algorithm took only
40 seconds on a 2 GHz computer.

7.2 Future Work

In this section, we discuss some of the possible future work that can be
continued from this thesis.

The first of these possibilities would be the “Probe Allocation By Kirch-
hoff’s Circuit Laws”. We note that the solutions proposed for the probe allo-
cation problem requires that agents traverse all edges in order to measure the
traffic speed along them. However, similar to the principles of Kirchhoff’s
Circuit Laws, we know that it is not necessary to make measurement along
all edges to know the traffic speed along it. With the use of the fundamental
diagram, traffic density, flow and speed can be inferred from one another
as well. It is believed that the application of these methods can potentially
reduce the number of agents required significantly.

88

Secondly, a Singapore scale simulation can be carried for the bus route
planning problem. However, in order to carry out this simulation, it is
necessary to know the demand for public transportation for each Origin-
Destination pair. This can be easily found out if EZ-link tap card data is
available. However, the data is currently not available and therefore simula-
tions cannot be carried out. In addition, the algorithm for the bus route plan-
ning problem can be extended to include the consideration of other modes
of transportation; such as taking a taxi in middle of trips, MRT and LRT
etc. It is believed that this work can potentially improve total travel time
for Singaporeans.

Thirdly, a possible future work is to write an efficient algorithm that
determines how taxi random walk should be done to ensure high quality
of service and maximization of profit. Meaning to say, if we are able to
model and predict taxi travel demand as a Markov Chain, we can calculate a
suitable transition matrix that determines the random walk for taxi such that
it is expected to maximize profit and quality of service. This is analogous
to the modification of the fixed circuit algorithm so that it is applicable to
the bus route planning problem. Here we modify the random walk algorithm
proposed in this thesis and apply it to the taxi random walk problem.

89

Bibliography

[1] Thulasiraman K., Swamy M. N. S., 1992. “Graphs: Theory and Algo-
rithms.” John Wey & Sons, Inc., 1992, Chapter 11, pp. 334-346, ISBN
978-0471513568.

[2] Gwilliam K., 2002. “Cities on the move : a World Bank urban transport
strategy review.” 2002, ISBN 978-0821351482.

[3] Een N., Srensson N., 2004. “An Extensible SAT-solver.” In Theory and
Applications of Satisfiability Testing, 2004, Volume 2919, pp. 333-336.

[4] Een N., Srensson N., 2006. “Translating Pseudo-Boolean Constraints
into SAT”, Journal on Satisfiability, Boolean Modeling and Computa-
tion 2(3-4), pp. 1-25.

[5] Bernard M., 2005. “Traffic Congestion: How Predictable? Discovering
Volume Trends across Time and Confirming Fundamental Speed-Flow-
Density Relations.” Independent Research, Princeton University. May
2005.

[6] Aloul F., Al-Rawi B., Al-Farra A., Al-Roh B., 2006. “Solving Employee
Timetabling Problems Using Boolean Satisfiability.” In The Innova-
tions in Information Technology, 2006 , pp. 1-5.

[7] Ngoduy D., Liu R., “Multiclass first-order simulation model to explain
non-linear traffic phenomena”, Physica A: Statistical Mechanics and
its Applications, Volume 385, Issue 2, 15 November 2007, pp. 667-682.

[8] Donnell E.T., Hines S.C., Mahoney K.M., Porter R.J., McGee H., 2009.
“Speed Concepts: Informational Guide.” U.S.Department of Trasnpor-
tation, Federal Highway Administration, September 2009, Publication
No. FHWA-SA-10-001.

90

[9] Li J., Cheny Q.Y., Wang H., Ni D., 2011. “Analysis of LWR model with
fundamental diagram subject to uncertainties.” In Transportmetrica,
2011, Volume 0, Issue 0, pp. 1-19.

[10] Jun J., 2010. “Understanding The Variability of Speed Distributions
Under Mixed Traffic Conditions Caused by Holiday Traffic.” In Trans-
portation Research Part C: Emerging Technologies, Volume 18, Issue
4, August 2010, pp. 599-610.

[11] Department of Statistics Singapore. “Key An-
nual Indicators.” Retrieved April 08, 2012, from
http://www.singstat.gov.sg/stats/keyind.html.

[12] Aslam J., Lim S., Pan X., Rus D., 2012. “City-Scale Traffic Forecast-
ing with Roving Sensor Network.” In The 10th ACM Conference on
Embedded Network Sensor Systems (SenSys12), In Submission, 2012.

[13] Paul N., John K., 2009. “Hidden markov map matching through noise
and sparseness.” International Conference on Advances in Geographic
Information Systems, pp. 336-343

[14] Harold W. K., 1955. “The Hungarian Method for the assignment prob-
lem”, Naval Research Logistics Quarterly, 2:8397, 1955.

[15] Herbert F., 1991. “X.1 Algorithms for Eulerian Trails”, Eulerian
Graphs and Related Topics. pp. X.113, ISBN 978-0-444-89110-5.

[16] Andrieu C., Freitas N. D., Doucet A., Jordan M. I., 2003. “An Intro-
duction to MCMC for Machine Learning”, Machine Learning, 50, pp.
5-43, 2003.

[17] Tang Y., Liu X., Chen J.H., 2011. “Optimization of pseudo-boolean
satisfiability algorithm for FPGA routing ”, Information Science and
Technology (ICIST), pp. 45-49.

[18] Rintanen J., Heljanko K., Niemela I., 2006. “Planning as satisfiability:
parallel plans and algorithms for plan search”, Artificial Intelligence,
170, Issues 12-13, pp. 1031-1080.

[19] Lehoucq, R.B., D.C. Sorensen, and C. Yang, 1998. “ARPACK Users’
Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly
Restarted Arnoldi Methods”, SIAM Publications, Philadelphia, 1998.

91

[20] Shih, M., Mahmassani, H.S., Baaj, M., 1998. “A planning and design
model for transit route networks with coordinated operations. trans-
port. In: Transportation Research Record”, Journal of the Transporta-
tion Research Board, No. 1623, Transportation Research Board of The
National Academies, pp.16-23.

[21] Baaj, M.H., Mahmassani, H.S., 1995. “Hybrid route generation heuris-
tic algorithm for the design of transit networks.” Transportation Re-
search Part C 3 (1), pp. 31-50.

[22] Mandl, C.E., 1979. Applied network optimization. Academic Press,
London.

[23] Mandl, C.E., 1979. “Evaluation and optimization of urban public trans-
portation networks.” European Journal of Operational Research 5 (6),
pp. 396-404.

[24] Saeed, A.B., Avishai, C., 2011. “Transit-network design methodology
for actual-size road networks.” Transportation Research Part B 45(10),
pp. 1787-1804

[25] Fang, Z., Albert, G., 2003. “Optimization of Transit Network to Mini-
mize Transfers.” Lehman Center for Transportation Research, Florida
International University.

[26] Valerie, G., Jin-Kao, H., 2008. “Transit Network Design And Schedul-
ing: a Global Review.” Transportation Research Part A 42(10), pp.
1251-1273

[27] Silman, L.A., Barzily, Z., Passy, U., 1974. Planning the route system
for urban buses. Computer and Operations Research 1 (2), 201-211

[28] Alt, B., Weidmann, U., 2011. “A stochastic multiple area approach for
public transport network design.” Public Transport Volume 3, Number
1 (2011), pp. 65-87

[29] Kuan, M.K., 1962. “Graphic programming using odd or even points,”
Chinese Math., Vol. 1, 273-277.

[30] Espinasse, T., Gamboa, F., Kien, J-N, Loubes, J.-M., 2012. “Modeling
and estimation for Gaussian elds indexed by graphs, application to

92

road trafc prediction.” Interdisciplinary Workshop on Inference, French
National Research Agency.

[31] Shunsuke I., 1993. “Information Theory for Continuous Systems.”
World Scientific, pp. 2, ISBN 978-981-02-0985-8.

[32] Monica B., 2011. “Fundamentals in Information Theory and Coding.”
Springer, pp. 11, ISBN 978-3-642-20346-6.

[33] Lazo A., Rathie P., 1978. “On the entropy of continuous probability
distributions.” Information Theory 24(1), pp. 120-122.

[34] Olszewski P., Fan H. S.L., Tan Y.W., 1993. “Area-Wide Traffic Speed-
Flow Model For The Singapore CBD.” Transportation Research Part
A 29(4), pp. 273-281

[35] Vrancken J., dos Santos Soares M., Ottenhof F., 2008. “A real-life test
bed for multi-agent monitoring of road network performance.” Infras-
tructure Systems and Services: Building Networks for a Brighter Fu-
ture (INFRA), 2008 First International Conference on, pp. 1-4, 10-12
November 2008.

[36] Almejalli K., Dahal K., Hossain A., 2009. “An intelligent multi-agent
approach for road traffic management systems.” Control Applications,
(CCA) & Intelligent Control, (ISIC), 2009 IEEE, pp. 825-830, 8-10 July
2009.

[37] Chen F, Pang H, 2008. “Study of multi-agent area coordination control
for urban traffic.” Intelligent Control and Automation, 2008. WCICA
2008. 7th World Congress on, pp. 4046-4050, 25-27 June 2008.

[38] Ow Y.X., Chitre M., Rus D., 2011. “Planning for Data Acquisition.”
Future Urban Mobility IRG, 12-13 January 2011.

[39] Ow Y.X., Chitre M., Rus D., 2012. “Probe Allocation Strategy.” Future
Urban Mobility Symposium 2012, 11-12 January 2012.

[40] Ow Y.X., Chitre M., Rus D., 2013. “The Probe Allocation Problem.”
CIVTS 2013, IEEE Symposium on Computational Intelligence in Ve-
hicles and Transportation Systems, In Submission, 2013.

93

[41] Ow Y.X., Chitre M., Rus D., 2013. “An Approximate Bus Route Plan-
ning Algorithm.” CIVTS 2013, IEEE Symposium on Computational
Intelligence in Vehicles and Transportation Systems, In Submission,
2013.

	Abstract
	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Thesis Organization
	Contributions
	Literature Survey
	Boolean Satisfiability (SAT) Optimization
	Traffic Modelling/Prediction
	City-Scale Traffic Forecasting with Roving Sensor Network
	Bus Route Planning

	Problem Formulation
	Probe Allocation Problem Statement
	Traffic Speed Model
	Entropy of Traffic Speed
	Objective
	Simulation Setup (NUS)
	Summary

	Relaxed Eulerian Circuit Solution
	Chinese Postman Problem
	Optimality Of Relaxed Eulerian Circuit
	Node Pairing: Graph Theory Vs. Combinational Optimization
	Relaxed Eulerian Circuit Algorithm
	Modified Chinese Postman Algorithm (Undirected Graph)
	Relaxed Eulerian Circuit Algorithm (Directed Graph)
	Hierholzer's algorithm

	Simulation Results (NUS)
	Summary

	Fixed Circuit Solution
	Problem Properties
	Original Fixed Circuit Solution
	Combinatorial Optimization
	Combination Of Circuits

	Approximate Algorithm For Linear Complexity Growth
	Combinatorial Optimization 2

	Fixed Circuit Complexity
	Additional Agents In Approximate Algorithm
	Performance Guarantee
	Fixed Circuit Simulation Results (NUS)
	Summary

	Random Walk Solution
	Random Walk Without Communication Solution Algorithm
	Random Walk With Communication Solution Algorithm
	Random Walk Simulation Results (NUS)
	Summary

	Singapore-Scale Simulations
	Simulation Setup (Singapore)
	Hidden Markov Map Matching
	Differentiation Of Weekday And Weekend
	Time Of Day For Highest Number Of Agents Required
	Growth Rate Of Entropy
	Entropy Threshold
	Edge Frequencies

	Singapore-Scale Simulation: Relaxed Eulerian Circuit
	Singapore-Scale Simulation : Approximate Fixed Circuit
	Singapore-Scale Simulation: Random Walk
	Installation Of Sensors On Roads
	Summary

	Bus Route Planning Problem
	Bus Route Problem Statement
	Bus Route Algorithm
	Algorithm Part 1
	Algorithm Part 2
	Algorithm Part 3
	Bus Algorithm Time Complexity
	Bus Route Simulation Setup (NUS)
	Simulation Results (NUS)
	Mandl's Benchmark
	Summary

	Conclusions And Future Work
	Conclusion
	Future Work

	Bibliography

