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Summary

With the rapid development of current society, parents become more busy and

cannot always stay with their children. Hence, a robotic nanny which can care

for and play with children is desirable. A robotic nanny is a class of social robots

acting as a child’s caregiver and aims to extend the length of parents or caregiver

absences by providing entertainment to the child, tutoring the child, keeping the

child from physical harm, and ideally, building a companionship with the child.

While many social robotics have been developed for children in entertainmen-

t, healthcare, and domestic areas, and some promising performance have been

demonstrated in their target environments, they cannot be directly applied as

a robotic nanny, or cannot satisfy our specific design objectives. Therefore, we

develop our own robotic nanny by taking the existing robots as references.

Considering our specific design objectives, we design a robotic nanny named

Dorothy Robotubby with a caricatured appearance, which consists of a head, a

neck, a body, two arms, two hands, and a touch screen in its belly. Then, we devel-

op two main user interfaces which are local control-based and remote control-based

for the child and parents, respectively. Local control-based interface is developed
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for a child to control the robot directly to execute some tasks such as telling a s-

tory, playing music and games, chatting, and video calling. Remote control-based

interface is designed for parents to control the robot remotely to execute several

commands like demonstrating facial expressions and gestures when communicat-

ing with a child via “video-chat” (like Skype). Since emotion recognition can make

important contributions towards achieving a believable and acceptable robot and

has become a necessary and significant function in social robotics for a child, we

also study facial expression-based emotion recognition by addressing two problems

which are important to drive facial expression recognition into real-world applica-

tions: misalignment-robust facial expression recognition and cross-dataset facial

expression recognition. For misalignment-robust facial expression recognition, we

first propose a biased discriminative learning method by imposing large penalties

on interclass samples with small differences and small penalties on those samples

with large differences simultaneously such that more discriminative features can

be extracted for recognition. Then, we learn a robust feature subspace by using

the IMage Euclidean Distance (IMED) rather than the widely used Euclidean dis-

tance such that the subspace sought is more discriminative and robust to spatial

misalignments. For cross-dataset facial expression recognition, we propose a new

transfer subspace learning approach to learn a feature space which transfers the

knowledge gained from the training set to the target (testing) data to improve

the recognition performance under cross-dataset scenarios. Following this idea,

we formulate four new transfer subspace learning methods, i.e., transfer prin-

cipal component analysis (TPCA), transfer linear discriminant analysis (TLDA),
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transfer locality preserving projections (TLPP), and transfer orthogonal neighbor-

hood preserving projections (TONPP). Lastly, we design a pilot study to evaluate

whether the children like the appearance and functions of Dorothy Robotubby and

collect the parents’ opinions to the remote user interface designs. To analyze the

performance of Robotubby and the interaction between the child and the robot,

we employ questionnaires and videotapes. Correspondingly, evaluation results are

obtained by questionnaire analysis, behavior analysis, and case studies.

In summary, for misalignment-robust and cross-dataset facial expression recogni-

tions, experimental results have demonstrated the efficacy of our proposed meth-

ods. While for the design of our robot Dorothy Robotubby, evaluation results from

pilot studies have shown that while there is some room to improve our robotic

nanny, most children and parents show great interest in our robot and provide

comparatively positive evaluation. More important, several valuable and helpful

suggestions are obtained from the result analysis phase.
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Chapter 1

Introduction

Social robotics, an important branch of robotics, has recently attracted increasing

interest in many disciplines, such as computer vision, artificial intelligence, and

mechatronics, and has also emerged as an interdisciplinary undertaking. While

many social robots have been developed, a formal definition of social robot has

not been agreed on and different practitioners have defined it from different per-

spectives. For example, Breazeal et al. [1] explained that a social robot is a robot

which is able to communicate with humans in a personal way; Fong et al. [2]

defined social robots as being able to recognize each other and engage in social

interactions; Bartneck and Forlizzi [3] described a social robot as an autonomous

or semi-autonomous robot that interacts with humans by following some social be-

haviors; Hegel et al. [4] defined that a social robot is a combination of a robot and

a social interface. In Wikipedia, a social robot [5] is specified to be an autonomous

robot that interacts and communicates with humans or other autonomous physi-

cal agents by following some social rules. While there are some differences among
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these definitions, they have a common characteristic which is to interact with hu-

mans. While a great deal of challenges are encountered when social robots are

used in real-world applications, there are already some social robots being de-

veloped or commercially available to assist our daily lives. They have been used

for testing, assisting, and interacting [2]. Depending on their application objects,

they can be utilized for the child, the elderly, and the adult.

Among these applications, we mainly focus on developing social robotics for the

child in this work. The developed social robotics can not only be used at home to

be a child’s companion, nanny, for entertainment, but also in several public places

like schools, hospitals, and care houses to accomplish some assisting tasks. The

robotic companion and nanny can play with and care for the child at home during

the absence of busy working parents. Compared with televisions and videos,

the robot enables to extend the length of parents’ absence. In addition, it can

keep the child safe from harm via its monitoring function for a longer time [6].

In public places like hospitals, kindergartens, and care houses, the robots can

implement pre-specified tasks to assist nurses and teachers, and can be employed

for animal-assisted therapy (AAT) and animal-assisted activities (AAA) instead

of real animals [2]. This can partly reduce working strength of the staff, activate

learning interest of the child, comfort the child in hospitalization, and provide

better therapy to the child with disabilities such as autism [7].

In this study, we aim to develop a robotic nanny to be used at home to take care

of a child, play with a child, and activate a child’s interest to learn new knowledge.

With the rapid development of current society and increasing living pressure, the

parents may be very busy and cannot always stay with their children. Under
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such situation, a robotic nanny can care for and play with the children during

parents’ absence. This can release the pressure of parents to a certain extent.

Furthermore, due to the concentration of high technologies in the robot, it may

activate the child’s interest to play with the robot and learn new knowledge during

their interaction. The robotic nanny also serves as a two-way communication

device with video and physical interaction since the parent can remotely move the

limbs of the robotic nanny when interacting with the child.

In the following sections of this chapter, the design objectives of our robotic nanny

is introduced. Then, an important emotion recognition function of our robotic

nanny is discussed.

1.1 Development of A Robotic Nanny for Chil-

dren

A robotic nanny is a subclass of social robots which functions as a child’s caregiv-

er [8] and aims to extend the length of parent or caregiver absences by providing

entertainment to the child, tutoring the child, keeping the child from physical

harm, and building a companionship with the child [9, 6]. To develop a satis-

factory robotic nanny for children, several design issues related to appearances,

functions, and interaction interfaces should be considered [10, 1]. These design

problems have a close connection with the application areas and objects of the

robot. Generally, different application areas and objects require distinct appear-

ances, functions, and interaction interfaces designs of the robot. For example,

the design of a robotic nanny for a child with autism is different from that for
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a normal child. In addition to health condition, a child’s age, individual differ-

ence, personality, and cultural background also play important roles in designing

a robotic nanny [8].

AIBO for entertainment, Probo for healthcare, and PaPeRo for childcare are three

representative social robotics for a child. While not all of them are designed to be

a robotic nanny, their appearances and functions could give us some hints when

we develop our own robot for a child.

AIBO is developed by Sony Corporation and is commercially available. From 1999

to 2006, 5 series of this kind of robot were developed [11]. All AIBO series have

a dog-like appearance and size, and can demonstrate dog-like behaviors. AIBO

is designed to be a robotic companion/pet such that it is autonomous and can

learn like a living dog by exploring its world. To behave like a real dog, AIBO has

some abilities such as face and object detection and recognition, spoken command

recognition, voice detection and recognition, and touch sensing through cameras,

microphones, and tactile sensors [12].

Probo, an intelligent huggable robot, is developed to comfort and emotionally

interact with the children in a hospital. It has the appearance of an imaginary

animal based on ancient mammoths, is about 80cm in height, and moves mainly

depending on its fully actuated head [13]. Remarkable features of Probo are its

moving trunk and the soft jacket. Due to the soft jacket, the children can make a

physical contact with Probo. In addition, Probo has a tele-interface with a touch

screen mounted on its belly and a robotic user interface in an external comput-

er. Specifically, the tele-interface is used for entertainment, communication, and
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medical assistance, and the robotic user interface is applied to manually control

the robot. Probo can also track the ball, detect face and hands, and recognize

children’s emotional states [14].

PaPeRo is a personal robot designed by the NEC Corporation and commercially

available. It can care for children and provide assistance to elders. PaPeRo is

about 40cm in height, and has 5 different colors including red, orange, yellow,

green, and blue. Unlike the high mobilities of AIBO’s body and Probo’s head,

PaPeRo can only move its head and walk via its wheels [15]. Several application

scenarios are developed to make PaPeRo to interact with children, including con-

versation through speech, face memory and recognition, touching reaction, roll-call

and quiz game designing, contacting through phone or PC, learning greetings, and

storytelling [16]. Moreover, speakers and LEDs are mounted to produce speech

and songs and display PaPeRo’s internal status, respectively.

For the above reviewed social robots, it can be seen that AIBO and PaPeRo are

commercially available and have been successfully utilized in some real applica-

tions such as entertainment and childcare. AIBO can behave like a real pet dog

and develop its own unique personality during experiencing its world. Moreover,

it can be a research platform for further study. For example, Jones and Deem-

ing [17] proposed an acoustic emotion recognition method and combined it into

Sony AIBO ERS7-M3. Since AIBO only behaves like a pet dog, it can only be

used in animal pets related applications, which largely limits its application ar-

eas. For PaPeRo, it can well execute its predefined scenarios by combining several

basic functions such as speech recognition and face tracking. However, it has less

mobility as it can only move its head and walk through the wheels. Due to the
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less mobility, several functions such as showing the robot’s emotions and dancing

with more gestures are difficult to be developed.

Different from AIBO and PaPeRo, Probo is not commercially available and is still

being developed. Moreover, it has a bigger size such that a touch screen can be

mounted on its belly. This is a more direct way to fulfill child-robot interaction.

Based on the touch screen, functions like video playing can be included. In ad-

dition, another interface used to manually control the robot has been developed

in Probo such that the robot becomes an intermedium between the operator and

the child, which is especially useful for the child with autism. However, similar

to PaPeRo, Probo also has less mobility as it only has a fully actuated head. It

is difficult to make Probo to demonstrate more gestures, which may reduce the

child’s interest.

Since different social robots have their own target environments, there are large

differences among their appearances, functions, and interaction interfaces designs.

Consequentially, it is difficult to simultaneously use the current developed social

robots for a child in different application areas due to their distinct design objec-

tives. Therefore, the researchers should develop their own robot if the existing

social robots cannot satisfy their requirements.

Based on the review of the above robots, it can be seen that they cannot be

directly applied as a robotic nanny, or cannot satisfy our design objectives. They

can only be used as references. The specific design gaps in relation to these robots

are summarized as below:
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(1) For appearance design, while the above reviewed robots have appealing ap-

pearances to a child, some of them are unsuitable for a robotic nanny, such as

AIBO. AIBO is designed as a pet dog [12], and it may be difficult to let a child

accept a pet dog as his/her nanny. Therefore, to design a robotic nanny with an

acceptable appearance should be considered.

(2) Function design has a closer relationship with application areas and objects

compared with appearance design. In addition, it depends largely on appearance

design. Since our robotic nanny has the specific application area and the unique

appearance design, the functions of other robots cannot be directly applied for

our robot like storytelling of PaPeRo [16] and video playing of Probo [14] due to

their different representation forms and contents. Moreover, several new functions

should be developed to characterize our own robotic nanny.

(3) For the interface design, since it is decided by appearance and function de-

signs, it requires more design independence. Such design of other robots can only

give some hints such as the interaction interface’s layout, color, and operability.

According to the appearance and functions of our robotic nanny, it is important to

design an interaction interface with good appearances and convenient operability.

In this study, we aim to develop a robotic nanny to play with and take care of a

child during his/her parent or caregiver absences. We expect our developed robot

can not only interact with a child in an attractive way, but also build a connection

between a child and his/her parent. The developed robotic nanny will be used at

home and focuses mainly on a normal child.

To satisfy these requirements, we have the following specific objectives:
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(1) a robot with a upper body and a caricatured appearance by following Mori’s

“uncanny valley” [18]. It mainly consists of a head, a neck, a body, two arms, two

hands, and a touch screen in its belly.

(2) a robot with several functions by adopting a user-centered design approach [19].

These functions include storytelling, playing music, games, chatting, face tracking,

video call, emotion recognition, and remote control.

(3) a robot containing two interaction interfaces in accordance with a user-centered

design approach [19]. Specifically, one interface is used to operate the robot by a

child, and the other interface is utilized to remotely control the robot by parents.

In addition to developing an acceptable robotic nanny, a real pilot study is de-

signed to evaluate the performance of our developed robot and explore the inter-

action between the child and the robot. We expect that such a pilot study can

be used to improve the current functions and develop new functions of the robot,

which makes our robot more fascinating for potential use in other applications.

We expect our robot Dorothy Robotubby is a new member of robotic nannies in

the near future. Dorothy Robotubby is the first of a family of social robots with

“family name” Robotubby. It may better activate a child’s interest to interact with

the robot and extend the length of parent or caregiver absences. It can also build

a connection between a child and his/her parent. Moreover, it can give several

hints to other robotic researchers when they develop their own robots. Our robot

will be tested in real pilot studies with children. The testing results will be useful

to study child-robot interaction which is significant in children-related topics such

as studying child development and providing therapy for disabled children.
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In this study, the appearance, function, and interaction interface designs of our

robotic nanny are introduced. We mainly concentrate on function and interface

designs, especially for the software development part. As for appearance design,

it is very complicated and involves several engineering issues like a robot’s mor-

phology, mechanical, and electrical designs. These problems are not central to

this study and not discussed in detail.

1.2 Emotion Recognition in the Robotic Nanny

As Dautenhahn, Bond, Canamero, and Edmonds [20] stated: “Agents that can

recognize a user’s emotions, display meaningful emotional expressions, and be-

have in ways that are perceived as coherent, intentional, responsive, and social-

ly/emotionally appropriate, can make important contributions towards achieving

human-computer interaction that is more ‘natural’, believable, and enjoyable to

the human partner.” In addition, emotion plays an important role in long-term

physical well-being, physiological reactions, cognitive processes, and behavior of

humans, especially for children who are in development [8]. Therefore, emotion

recognition has become a necessary and significant function in lots of social robot-

s for a child, such as Probo. It senses the user’s emotion states by using facial

expression and speech [14].

To recognize users’ emotion states, there are several cues to be utilized. General-

ly, these cues can be extracted from visual signals, audio signals, tactile signals,

and other channels. For visual signals, facial expression, body language and pos-

ture are widely used. They are important for humans to express their emotions.
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Specifically, facial expressions can well express humans’ emotions including hap-

piness, sadness, fear, anger, disgust, and surprise regardless of culture [21], and

body languages and postures are effective cues when facial features are unavail-

able or unreliable under certain conditions such as at a long distance [22]. These

vision-based cues are easily collected with various resolutions, however, they are

sensitive to varying illuminations.

For audio signals, speech is a promising way to detect emotions, where emotional

information is conveyed by linguistic messages and paralinguistic features [23].

Due to different culture backgrounds, paralinguistic messages like prosody [24]

and nonlinguistic vocalizations [23] are more exploited compared with linguistic

messages. Similar to visual signals, audio signals are also easily collected. Fur-

thermore, they are low-cost, nonintrusive, and have fast time resolution. However,

they are easily affected by the environment noises.

Physical reactions such as touching are usual behaviors during human-human

interaction or human-robot interaction. The collected tactile signals contain the

emotional content and hence become another useful modal to sense emotions [25].

Different from visual and audio signals, tactile signals are more robust to the

varying environments. However, they are heavily influenced by tactile sensors.

The type, number, accuracy, mounting places and ways of tactile sensors may

affect the final recognition results. Moreover, it is difficult to accurately connect

physical reactions with emotional states.

Besides the above modals, other signals representing physiological activities are

also employed to recognize emotion. These signals are recordings of electrical
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signals produced by muscles, skin, heart, and brain [23]. They usually reflect

spontaneous emotions of humans. However, it needs external equipments to collect

these signals.

By comparing the advantages and disadvantages of the above used signals and

motivated by the fact that most information (∼75%) received for human beings

are visual signals, we choose visual signals to recognize the user’s emotions. Fa-

cial expression, body language and posture are three popular visual signals for

emotion recognition. Mehrabian [26] has shown that in human face-to-face com-

munication, only 7% and 38% information are transferred by spoken language and

paralanguage, respectively, and 55% is transferred by facial expressions. Based

on this reason, we select facial expression to recognize emotions in this study.

1.2.1 Facial Expression-Based Emotion Recognition

Automatic facial expression recognition plays an important role in human emotion

perception and social interaction, and has attracted much attention in the areas of

pattern recognition, computer vision, human-computer interaction, and human-

robot interaction.

Over the past three decades, a number of facial expression analysis methods have

been proposed, and they can be mainly classified into two categories: geometry-

based and appearance-based. Geometry-based methods usually extract facial fea-

tures such as the shapes and locations of facial components (like the mouth, eyes,

brows and nose) and represent them by a feature vector to characterize the facial

geometry [27, 28]. In general, different facial expressions have different feature
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representations. Appearance-based methods holistically convert each facial image

into a feature vector and then apply subspace analysis techniques to extract some

statistical features for facial expression representation [29, 30]. In this study, we

apply appearance-based methods for facial expression recognition. This is because

it is challenging to precisely localize and extract stable geometrical features such

as landmarks in each facial image for geometry-based methods in many practical

applications, especially when face images are collected under uncontrolled envi-

ronments. Moreover, geometry-based methods ignore facial texture information

in the extracted features. However, texture information has been widely used in

many face analysis tasks such as face recognition and facial expression recognition,

and the performance of this feature is reasonably good.

Subspace analysis techniques are representative appearance-based methods and

have been widely used to reveal the intrinsic structure of data and applied for

facial expression recognition. By using these methods, facial expression images are

projected into a low-dimensional feature space to reduce the feature dimensions.

Representative such methods include principal component analysis (PCA) [31],

linear discriminant analysis (LDA) [32], locality preserving projections (LPP) [33]

and orthogonal neighborhood preserving projections (ONPP) [34]. Experimental

results on several benchmark face databases have also shown the advantage of this

kind of methods.

However, these methods have only demonstrated good performance under their

experimental conditions, and shown poor performance under real applications.

The specific gaps of existing facial expression recognition methods are summarized

below.



13

(1) Most existing appearance-based facial expression recognition methods can

only work well when face images are well-aligned. However, in many real world

applications such as human-robot interaction and visual surveillance, it is very

challenging to obtain well-aligned face images for recognition, especially under

uncontrolled conditions. Hence, there are usually some spatial misalignments in

the cropped face images due to the eye localization errors even if the eye positions

are manually located. A natural question is how spatial misalignments affect the

performance of these appearance-based facial expression recognition methods and

how to address this problem if spatial misalignments affect the performance of

these appearance-based methods.

(2) Most existing facial expression recognition methods assume facial images in

the training and testing sets are collected under the same condition such that

they are independent and identically distributed. However, in many real world

applications, this assumption may not hold as the testing data are usually col-

lected online and generally more uncontrollable than the training data, such as

different races, illuminations and imaging conditions. Under this scenario, the

performance of conventional subspace learning methods may be poor because the

training and testing data are not independent and identically distributed. The

generalization capability of these methods is limited on the cross-dataset facial

expression recognition problem.

In this study, we aim to address these two problems that are important to drive fa-

cial expression recognition into real-world applications by proposing the following

two methods:
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(1) a biased linear discriminant analysis (BLDA) method with the IMage Eu-

clidean Distance (IMED) to extract discriminative features for misalignment-

robust facial expression recognition.

(2) a new transfer subspace learning approach to improve the performance of

cross-dataset facial expression recognition.

By using our proposed methods, the performance of facial expression recogni-

tion under uncontrolled scenarios can be improved such that facial expression

recognition can be used in several real-world applications such as human-robot

interaction.

1.3 Summary

In summary, we mainly aim to achieve the following goals in this thesis.

(1) To develop a robotic nanny that can play with and take care of a child. It will

be designed from three aspects: appearance, function, and interaction interface

designs.

(2) To propose several advanced machine learning methods to address misalignment-

robust facial expression recognition and cross-dataset facial expression recognition.

(3) To design a real pilot study to evaluate the performance of our developed

robot and explore the interaction between the child and the robot.

The thesis is organized as follows. Chapter 2 provides a general literature review

of representative social robotics for a child and facial expression-based emotion
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recognition. Chapter 3 introduces the developed robotic nanny, Dorothy Robo-

tubby. In Chapters 4-5, we study misalignment-robust and cross-dataset facial

expression recognitions. Chapter 6 analyzes experimental results by applying the

developed robotic nanny in real pilot studies with children. Finally, conclusions

and future work are presented in Chapter 7.
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Chapter 2

Literature Review

Over the past three decades, a large number of social robotics have been developed

for children in the entertainment, healthcare, education, and domestic areas [2].

While some of them are not particularly designed as a robotic nanny, their appear-

ance and function designs could provide us some hints when we develop our own

robot for a child. In this chapter, we will review some popular design approaches

and issues for building effective social robots and introduce several representa-

tive social robotics for a child. Due to the important role of emotion recognition

in social robotics for a child, we also briefly review several representative facial

expression-based emotion recognition algorithms in this chapter.

2.1 Design A Social Robot for Children

A social robot is an undertaking from multi-disciplines such as mechanical and

electrical designs, artificial intelligence, computer vision, control theory, and natu-

ral and social sciences. With the rapid development of these disciplines, more and
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more social robots have been applied to assist people’s daily life. For example, so-

cial robots for children have been used in the entertainment, healthcare, childcare,

education, and therapy areas. Since many factors such as target environment,

gender and age information, cultural and social background, and health status

affect the design of social robots, proper design approaches and issues should be

considered to successfully develop an acceptable social robot.

2.1.1 Design Approaches and Issues

From a design perspective, Fong et al. [2] classified design approaches into two

categories: biologically inspired-based and functionally designed-based. Biologi-

cally inspired methods aim to create robots to simulate or mimic living creatures’

social behavior and intelligence. This kind of methods generally takes natural and

social sciences as theory basis and requires the developed robots to be “life-like”.

AIBO [12], a robot dog, is a representative example. Functionally designed-based

approaches aim to design a socially intelligent robot without following any sci-

ence or nature theory. They are usually driven by beliefs and desires and focus

mainly on the function and performance designs of a robot. The functionally de-

signed robots do not need to have the “life-like” capability. PaPeRo [16], used for

childcare, is a representative example.

Having selected a suitable design approach, several design issues should be tak-

en into account. Embodiment is one important factor. Dautenhahn et al. [35]

defined that embodiment is “establishing a basis for structural coupling by cre-

ating the potential for mutual perturbation between system and environment.”

Different embodied forms and structures of a robot cause different responses from
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the environment. Fong et al. [2] classified social robots’ aesthetic forms into four

categories: anthropomorphic, zoomorphic, caricatured, and functional.

Anthropomorphic robots, which follow human characteristics, have been widely

applied as research platforms to study some scientific theories such as ethology,

theory of mind, and development psychology [36]. Humanoid robots are repre-

sentative examples in this category [37]. This kind of robots is able to support

meaningful social interactions due to their high degree of human-likeness. Hence,

when designing such robots, it requires to consider the robots’ structural and

functional appropriateness with people [38].

Zoomorphic robots are developed to imitate living creatures. Specifically, animal

counterparts are general embodied forms. Generally, it is easier to design social

interaction skills for zoomorphic robots than anthropomorphic robots. That is

because human-creature relationships between zoomorphic robots and humans

are simpler than human-human relationships between anthropomorphic robots

and humans [2]. Most of entertainment robots, personal robots, and toy robots

belong to this category.

Caricatured robots are designed in virtual forms instead of realistic livings and

agents. This kind of robots normally has specific attributes and can easily give

an expressive impression to the users. Due to such specific features, more func-

tions to draw and maintain attention can be developed. Additionally, caricatured

robots are capable of providing unusual and uncommon appearances, they are

easy to establish a lower social expectation and effectively fulfill intended and

biased interactions [10, 38].



19

For functional robots, they are built according to their objectives and functions.

Robots with different applications generally have different forms and structures.

This kind of robots focuses on the accomplishment of their functions, and thus

the embodiment of functional robots reflects the designed tasks. Service robots

are examples of this category [2, 10].

While most existing social robots can be classified into the above four groups,

there are some overlaps between the first three categories and the last category.

This is due to the fact that the robots belonging to the first three categories

also require to accomplish several predefined functions, and it is unavoidable to

add some functional features into the robots for their operational objectives. For

example, some toy robots with animal appearances belong to zoomorphic robots.

However, due to some factors such as the limited production cost, the ability to

attract children, and the adaptive capability to various situations, the design of

these toy robots should reflect functional requirements. From this perspective,

these robots can also be classified into functional robot category [2].

From the above analysis, we find that anthropomorphic and zoomorphic robots

follow biologically inspired-based methods and caricatured and functional robots

adhere to functionally designed methods. Therefore, when designing a social

robot, once the robot’s embodied form is determined, the corresponding design

approach could be selected. For the embodiment of a robot, it is mainly based

on the robot’s design objectives. Design objectives can provide lots of useful and

important information, such as where the robot is used; who the users are; what

the robot executes; and what the robot achieves. According to these information,

the used embodiment of a robot can be decided. Correspondingly, the robot’s
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Figure 2.1: The uncanny valley [18].

appearance, functions, and interaction ways can be determined. It is to be noted

that these three items should be closely related to design objectives and match

each other such that the user can feel natural and comfortable when operating or

interacting with the robot.

In addition to the above mentioned design approaches and issues, there is another

design theory–Mori’s “uncanny valley” hypothesis [18]–to follow. The hypothe-

sis holds that when robots or other human replicas look and act as humans, it

causes a response of revulsion among human observers. It is shown in Figure 2.1.

Based on this theory, we need to carefully consider how to build anthropomorphic

robots. If there is no specific requirement for the developed robot, the other three

embodiments except for anthropomorphic form can be considered. Compared

with anthropomorphic robots, the other three categories of robots have another

advantage. That is their social expectation is lower than that of anthropomorphic
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robots such that their interaction skills with humans are easier and simpler.

2.1.2 Representative Social Robotics for A Child

In Chapter 1, we have reviewed three representative social robotics for a child.

They are AIBO for entertainment, Probo for healthcare, and PaPeRo for childcare.

In addition, there are more other social robotics used in these areas or related areas

for a child. Figure 2.2 shows several social robotics for a child. Among these

robots, some of them have been commercially available such as AIBO, PaPeRo,

QRIO SDR-4X, iRobiQ, Paro, Keepon, and iCat, and others such as Probo, RUBI,

Huggable, Engkey, and Iromec are still being developed to assist our daily lives.

Generally, these these robots can serve as many functions and the application for

a child is one example. Since these robots have demonstrated good performance

in children-related areas, we will review them in this chapter.

In the entertainment area, QRIO SDR-4X is another representative robot besides

AIBO. It is a small biped robot [39] which is developed by Sony Corporation.

It has 38 DOFs, standing 58cm, and can fulfill motion and communication en-

tertainment. There are two main entertainment abilities in SDR-4X, which are

dancing and singing. When singing a song, the robot can demonstrate different

emotional expressions. In addition, SDR-4X can accomplish several human-like

behaviors, such as walking on various floor conditions, human identification, and

speech communication by using its visual, audio, and tactile systems [12]. Besides

in the home environment for entertainment, the robot has been utilized in an ear-

ly childhood education center to study socialization between toddlers and robots

due to its impressive mechanical and computational skills [40].
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Figure 2.2: Several representative social robotics for a child. From left to right
and top to down, they are AIBO [11], Probo [13], PaPeRo [15], SDR [11], RUBI
[42], iRobiQ [44], Paro [45], Huggable [24], Keepon [47], iCat [48], EngKey [49],
and Iromec [50], respectively.

In the education area, one typical example is RUBI. RUBI is a three-feet tall robot.

It consists of a head, two arms and a touch screen, and is designed to assist

teachers for early childhood education. RUBI was set at the Early Childhood

Education Center at the University of California, San Diego, to interact with the

children with 18-24 months old. It can teach children numbers, colors and some

basic concepts, and schedule proper lessons and assist teachers according to the

children’s emotional responses [41]. RUBI contains some perception functions
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such as face detection and tracking, and emotion recognition [42, 43].

Similar to RUBI, iRobiQ is another robot designed for children’s education by

Yujin Robot Co.,Ltd., and has been commercialized recently [44]. The robot is

about 45cm in height and its head, arms, and wheels can move. In addition, it

can express simulated emotions by using face lamps. There are mainly four menus

used in iRobiQ, which are Thematic learning, English, Playground, and Teacher’s

room. Children can select and use these menus by touching them on the screen

which is mounted on the robot’s belly. Through the designed functions in these

menus, children can learn contents by theme, study English, listen stories, and

play puzzles together. While for the teachers, the robot is able to help them to

check attendance of children and play study materials.

In addition to entertainment and education, social robotics have been employed

for children therapy, such as therapy for a child with Autism. Paro is such a

representative robot [45]. This robot is designed with an appearance of a baby

harp seal that is covered with pure white fur. When humans hug the robot, the

contact with Paro can be measured by ubiquitous surface tactile sensors of the

robot. By analyzing the collected signals, the robot gives proper response accord-

ing to different touching from humans. Besides tactile sensors, Paro also uses a

visual sensor to sense light, an audio sensor to localize sound source and recognize

speech, and a balance sensor to adjust its movements. To extend interaction time

with the robot, Paro has the ability to demonstrate the preferred behaviors of its

owner when it lives with its owner in a long time. Due to its physical interaction

with tangibility, Paro has been applied to the therapy of children [46].
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Huggable [25] is another representative robot used for children therapy. Similar

to Paro, it mainly utilizes tactile-based signals to sense the outside environmen-

t. Huggable has the appearance of Teddy bear, and is covered with a full-body

sensitive skin containing more than 1500 sensors. Hence, it can detect and rec-

ognize pressure from the outside world. In addition, cameras and microphones

are used. After semantically analyzing the collected data, the robot can convey

a personality-rich character through some gestures and expressions. Moreover, it

can be remotely controlled and applied to monitor the elders and children through

a web interface. Due to these impressive features, Huggable is also applied for

healthcare, education, and social communication.

Besides the above mentioned robots, there are several other social robots which

can be applied in children-related areas. For example, Keepon [47], a small yellow

snowman with a black cylinder, was developed to study social development in

research institutes, assist autism therapy in care centers, and play with children

in a playroom; iCat [48], a cartoon cat without mobile ability, was designed to

be a family companion to control homely used devices and play games with a

child; Engkey [49], a spheroid robot with head, arms, and wheels, was developed

to provide educational assistance to native and Korean teachers in teaching the

English language to students; and Iromec [50], a modular robot including a mobile

platform, an interaction module, and some control buttons, was designed to engage

in social exchanges with different disable children like Autistic children, Moderate

Mentally Retarded children, and Server Motor Impaired children.
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2.1.3 Discussion

By observing the embodied forms of the reviewed robots in Figure 2.2, it can

be seen that small humanoid robot SDR-4X belongs to anthropomorphic robots;

AIBO and Paro are examples of zoomorphic robots; Probo, PaPeRo, RUBI, iRo-

biQ, Huggable, Keepon, iCat, and Engkey are caricatured robots; and Iromec is

a functional robot. Most of these robots belong to caricatured robots. It implies

that when designing a social robot for children, caricatured representation may

be a good choice because it adheres to Mori’s “uncanny valley” hypothesis [18].

Specifically, due to less human likeness of these robots, they can avoid uncanny

valley shown in Figure 2.1. While these robots cannot reach the first peak in the

figure which is in 100% human likeness, they can reach the second peak which is

in 70% human likeness by a suitable design, where the peak value refers to accep-

tance degree to the robot among humans. Moreover, due to unusual embodied

forms of caricatured robots, several unrealistic functions could be designed for

desirable tasks. For instance, if a touch screen is mounted on the robot’s belly,

some functions like video playing can be included. Additionally, the child can

easily operate the robot by touching the screen. Probo, RUBI, and iRobiQ are

three representative examples.

As we mentioned above, different design objectives have different design method-

s. Consequentially, the developed robots will demonstrate different appearances,

functions, and interaction ways. Even for similar applications, there will be large

differences in the built robots. That is because distinct designers may have dis-

tinct understanding to their developed robot systems and different design ideas
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will lead to distinct forms of robots. Therefore, it is difficult to simultaneously

apply the same robot in different areas. To effectively satisfy the design objec-

tives, robotic researchers can develop their own robots by following proper design

methods and taking existing robots as references. Besides building the robots by

self, there is another situation. For some researchers who just use robots to study

or test some theories or algorithms, they can directly utilize or slightly modify

the existing robots. In this study, we aim to develop a robotic nanny to play with

and take care of a child during his/her parent or caregiver absences. While the

above reviewed robots show good performance in their target environments, they

cannot be directly applied as a robotic nanny, or cannot satisfy our design objec-

tives. They can only be used as references. Hence, we develop our own robot.

Having reviewed design approaches and several representative social robots, we

choose functionally designed methods and caricatured form for our robot.

2.2 Facial Expression-Based Emotion Recogni-

tion

Emotion recognition plays an important role in social robotics for a child. To

recognize a user’s emotions, there are several cues that can be utilized, such as

speech, facial expressions, and gestures. Since Mehrabian [26] has shown that in

human face-to-face communications, 7% and 38% information are transferred by

spoken language and paralanguage, and 55% is transferred by facial expressions,

we select facial expressions to recognize emotions in this study. Besides emotion

recognition, facial expressions have been used to study social interaction, mental

activities, and physiological signals. Due to the wide applications, a large number
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of research work related to facial expression analysis has been concluded.

For facial expression-based emotion recognition, there is a long history going back

into the nineteenth century. A pioneering work was Darwin in 1872 [51] who

referred to the universality and continuity of facial expressions in man and ani-

mals, and stated the relationships between some inborn emotions and serviceable

associated habits. Motivated by Darwin’s work, Ekman and Friesen in 1971 [52]

proposed that six basic emotion states including happiness, sadness, fear, disgust,

surprise, and anger can be expressed by a unique and universal facial expression

under different human ethnicities and cultures. In 1978, Ekman and Friesen [53]

produced a facial action coding system (FACS) to recognize emotion by different

facial expressions. FACS described “all visually distinguishable facial movements”

caused by action units (AUs). There are 46 AUs used in the coding system to

express different facial movements. Based on FACS, Ekman et al. developed a

technique called Emotion FACS (EMFACS) [54] to score certain key AUs which

are relevant to detect emotion. It provided an effective way to reduce scoring time

for the researchers who focus on facial emotion signals. To conveniently link facial

expressions with their psychological interpretations, Ekman et al. built a Facial

Action Coding System Affect Interpretation Dictionary (FACSAID) [55]. It can

well describe the relationships of FACS scores, facial behaviors, and expressed

emotions.

Due to the efficacy and convenience of FACS to describe different facial movements

and emotions, this system has been widely used in facial expression analysis and

synthesis, and becomes a baseline of extensive facial expression recognition meth-

ods. These methods generally require to locate characteristic facial regions like



28

forehead, eyes, cheeks, nose, and mouth, and extract facial features from these

regions such as meaningful points and lines which represent the movements and

shapes of eyes, nose, and mouth.

Inspired by the importance and efficacy of facial expressions in emotion, lots of

researchers have shown great interest in the problem of detecting emotion from

facial expressions. Over the past three decades, a large number of related methods

have been proposed [23, 56, 57, 58], and they can be divided into two main cate-

gories: geometry-based and appearance-based. Geometry-based methods usually

extract facial features such as the shapes and locations of facial components (like

the mouth, eyes, brows and nose) and represent them by a feature vector to char-

acterize the facial geometry [27, 28]. The above FACS-based methods belong to

this category. While the geometry-based methods can well interpret facial ex-

pressions and emotions and have shown reasonable performance under controlled

environments, it is very challenging to precisely localize and extract these fea-

tures in many practical applications such as human-robot interaction due to com-

plex backgrounds and varying illuminations. Hence, we choose appearance-based

methods to recognize facial expressions. Appearance-based methods are popular

for facial expression recognition and also demonstrate reasonable performance in

terms of the recognition accuracy.

2.2.1 Appearance-Based Facial Expression Recognition

Appearance-based methods holistically convert each facial image or specific fa-

cial regions into a feature vector and then apply image filters or some learning
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Figure 2.3: Emotion-specified facial expressions which are anger, disgust, fear,
happy, sad, surprise, and neutral expressions, respectively [56].

techniques to extract some discriminative features for facial expression represen-

tation [29, 30]. These methods generally extract features such as local binary

pattern (LBP) feature, intensity feature, Haar-like feature, and Gabor wavelet

feature. Based on these extracted features, the tested specific facial regions are

classified into corresponding facial action units and the whole tested facial images

are labeled with prototypic emotional expressions. Some popular classification

methods include the nearest neighbor classifier, neural networks, hidden Markov

models, and support vector machines. Since Ekman and Friesen [52] claimed that

prototypic emotional expressions are universal under different human ethnicities

and cultures, most facial expression methods attempt to recognize these basic

emotional expressions that are comprised of anger, disgust, fear, happy, sad, sur-

prise, and neutral expressions, as shown in Figure 2.3, where facial images from

the Cohn-Kanade (CK) face database are used [59].

The work of Littlewort et al. [60] is an example to recognize 6 basic emotional

expressions plus neutral expression. They chose Gabor magnitude to represent

facial images. First, the authors convolved the image with a bank of Gabor filters

consisting of 8 orientations and 5 spatial frequencies. Then they compared the

performance of feature selection methods including principle component analysis

(PCA) and AdaBoost and recognition algorithms like support vector machine
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(SVM) and AdaBoost. Since SVM and AdaBoost only make binary decisions,

better decision strategies for multiclass classification should be used. Here, the

authors evaluated K-nearest neighborhood, a voting scheme, and multinomial

logistic ridge regression (MLR). Experiments conducted on the CK and Pictures

of Facial Affect (POFA) databases have shown that the combination of AdaBoost

as a feature selection method, SVM as a classification algorithm, and voting as a

multiclass decision strategy can obtain better recognition accuracy. Furthermore,

the presented recognition system can also be used to recognize facial action units.

In addition to Gabor wavelet feature, local binary pattern (LBP) is another ap-

pearance feature which is originally presented and applied to texture analysis. Due

to its strong tolerance to lighting changes and computational simplicity which are

very important for real-world applications, it has been widely applied for facial

expression analysis. Shan and colleagues [61] performed person-independent facial

expression recognition by utilizing LBP features. Template matching, SVM, lin-

ear discriminant analysis (LDA) and linear programming techniques were chosen

as the classification algorithms. Since LBP feature is a histogram to statical-

ly describe the characteristics of an image, Chi square distance was deployed in

template matching. Experimental results on the CK database have shown that

SVM obtains the best results. The authors also proposed boosting LBP that was

learned by Adaboost and can further improve the recognition performance as it

contains more discriminative information to represent facial images. Then SVM

was deployed to recognize facial expressions. The results have shown that it can

achieve better recognition accuracy than that obtained by using only SVM. More-

over, the authors evaluated its generalization ability on another two databases:
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MMI database and JAFFE database. The accuracy rates about 6 basic expres-

sions and neutral expression are only 51.1% for MMI and 41.3% for JAFFE by

using boosted-LBP and SVM (RBF).

Based on the LBP feature, Zhao and Pietikäinen [62] presented a spatiotemporal

LBP (LBP-TOP) method which extends the original LBP on three orthogonal

planes including XY , XT and Y T for facial expression recognition, in which X

and Y are the width and the height of each face image, and T is the length of image

sequences. The proposed feature not only has the original feature’s advantages like

the robustness to illumination variation, but also can represent facial expression’s

temporal characteristics. The proposed video-based LBP feature with AdaBoost

as a feature selection algorithm and SVM as a classification method obtained

good accuracy results on the CK database. Moreover, it can be used in real-world

environments.

Actually, the proposed spatiotemporal LBP is different from other features de-

scribed above. This is because it is a video-based feature, and others are image-

based. As we know, when humans show their facial expressions, facial expression

may change over time. Thus the temporal information resulted from the change

could well describe dynamic facial features and is significant to distinguish vari-

ous facial expressions. More and more researchers have realized it and put more

attention on video-based features. Yang and colleagues [63] proposed an encoded

dynamic feature to represent facial images. Due to lower computation cost of

Haar-like features, they were selected to be dynamic features by following two

steps: first, the whole image is described by Haar-like features, and then features

from consecutive frames are combined. Inspired by LBP features, the dynamic
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Haar-like features were encoded into the binary patterns in terms of a code book.

Finally, AdaBoost was applied to recognize facial expression. The experimental

results based on the CK database for 6 basic facial expressions have shown that

the proposed features can achieve better results compared with Gabor wavelet

feature in the form of the area under the receiver operating characteristic (ROC)

curves. Moreover, it can obtain a promising performance when used for action

units recognition.

Besides recognizing prototypic emotional expressions, appearance-based method-

s are employed to detect facial action units. Donato et al. [64] applied optic

flow, PCA, local feature analysis, LDA, independent component analysis (ICA),

local PCA, and Gabor wavelet filter to recognize action units in upper and low-

er faces, where the nearest neighborhood and template matching classifiers were

used. Experimental results were compared with those of humans and the results

have shown that Gabor wavelet representation can obtain the best result.

To clearly demonstrate the experimental settings and performance of each method

introduced in this subsection, we tabulate the extracted features, classification

methods, recognition accuracies, emotion categories, training and testing settings,

and the employed databases of these methods in Table 2.1. It can be seen from

the table that each method has shown good performance in terms of recognition

accuracy under their experimental settings. However, these enumerated methods

cannot be directly compared according to the recognition accuracy listed in the

papers. The reason is that these methods were conducted on different databases.

In the absence of comparative tests on common data, it is difficult to determine

the relative advantages and disadvantages of different approaches.
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Table 2.1: The methods for facial expression analysis described in this subsection.

Reference Feature Method Accuracy Categories Train
cases

Test
cases

Database

Littlewort
[60]

Gabor
wavelet
filter

AdaBoost
+ SVM
+ voting

93.3% 7 class leave-one-out cross-
validation (626
from 90 subjects)

Cohn-
Kanade

97.3% 7 class leave-one-out cross-
validation (110
from 14 subjects)

POFA

Shan
[61]

Boosted-
LBP
features

SVM 1)91.4% 2)95.1% 1)7 class 2)6 basic
emotions

10-fold cross-
validation (1280
from 96 subjects)

Cohn-
Kanade

86.9% 7 class 10-fold cross-
validation (384
from 20 subjects)

MMI

81.0% 7 class 10-fold cross-
validation (213)

JAFFE

Zhao
[62]

LBP-
TOP

Adaboost
+ SVM

93.85% 6 basic emotions 2-fold (374 se-
quences from 97
subjects)

Cohn-
Kanade

Yang
[63]

encoded
dynamic
Haar-
like
features

AdaBoost A:0.982, D:0.987,
F:0.83, H:0.983,
Sa:0.946,
Su:0.996 (ROC)

6 basic emotions 60 sub-
jects

36 sub-
jects

Cohn-
Kanade

Donato
[64]

ICA or
Gabor
wavelet
filter

Nearest
neigh-
borhood

95.5% AU 1, 2, 4, 5, 6,
7 (upper face)
AU 17, 18, 9+25,
10+25, 16+25,
20+25 (lower
face)

leave-one-out cross-
validation (111 se-
quences from 20
subjects)

Ekman-
Hager

Table 2.2: Generalization performance to independent databases.

Reference Accuracy Train database Test database
Littlewort [60] 60.0% Cohn-Kanade POFA
Shan [61] 51.1% Cohn-Kanade MMI

41.3% Cohn-Kanade JAFFE
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Among these methods, Littlewort et al. [60] and Shan et al. [61] also tested the ap-

proaches’ generality by using two different databases as training data and testing

data, respectively. Table 2.2 lists the results of two methods. From the table, we

find that the recognition accuracies on two databases drop heavily when compared

with those obtained on the same database. This is because training and testing

data from the same database are usually collected under the same condition such

that they are independent and identically distributed. It is easier to obtain good

performance for the proposed approaches under such condition. While for the

training and testing data from different databases, there is big variance between

them such that the performance of the proposed approaches will be affected. This

is also called “cross-dataset” recognition problem which is universal in real-world

facial expression recognition. It is a challenging problem, and has been deempha-

sized in this area.

2.2.2 Facial Expression Recognition in Social Robotics

Facial expression recognition has been employed in several real-world applications

to recognize humans’ emotional states. Human-robot interaction in social robots

is a representative application. For example, among the reviewed social robots in

section 2.1, RUBI has the function of facial expression recognition. The devel-

oped system can first automatically detect frontal faces in the video stream and

then code each facial image with 20 action units. Based on the detected facial

images, it firstly extracted Gabor wavelet features, and then chose Adaboost as

feature selection method and SVM as data-driven classifier. In addition to the

posed expression databases, the developed system also showed good performance
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Table 2.3: Properties of an ideal automatic facial expression recognition system.

Robustness
Rb1 Deal with subjects of different age, gender, ethnicity
Rb2 Handle lighting changes
Rb3 Handle large head motion
Rb4 Handle occlusion
Rb5 Handle different image resolution
Rb6 Recognize all possible expressions
Rb7 Recognize expressions with different intensity
Rb8 Recognize asymmetrical expressions
Rb9 Recognize spontaneous expressions

Automatic process
Am1 Automatic face acquisition
Am2 Automatic facial feature extraction
Am3 Automatic expression recognition

Real-time process
Rt1 Real-time face acquisition
Rt2 Real-time facial feature extraction
Rt3 Real-time expression recognition

Autonomic process
An1 Output recognition with confidence
An2 Adaptive to different level outputs based on input images

in spontaneous expressions [43].

Similar to normal commercialized products, the final goal of social robots is that

the developed robots should be able to perform with less human interference. In

addition, they should be capable of providing correct and real-time responses to

their users. To satisfy these requirements, the used facial expression recognition

system must perform automatically and in real time. Moreover, it should be able

to output recognition results with high confidence under various and complex

environments. Table 2.3 lists the properties of an ideal facial expression analysis

system proposed by Tian et al. [65].

By observing and analyzing each property in the table, we can find what social
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robots require is an ideal facial expression analysis system. However, each proper-

ty is a challenging problem in facial expression recognition area and it still requires

the researchers from different disciplines to address these challenges. Compared

with the social robots used in outside environments, these challenging problems

are relatively easy to be solved for a robotic nanny because the robotic nanny is

usually applied in home, and the application environment may be simpler. Even

so, more efforts should be made to drive the current facial expression recognition

techniques towards a practical robotic nanny. Note that we in this study only

discuss feature extraction and expression recognition. For an automatic facial ex-

pression recognition system in social robots, it should also include face acquisition,

which detects facial images from input images and is a preprocessing stage before

feature extraction step. We will not discuss this problem in detail.

2.2.3 Discussion

By reviewing several representative facial expression recognition methods and an-

alyzing the properties of the above mentioned facial expression analysis system, we

conclude that even if many existing methods have achieved satisfactory recogni-

tion results under their experimental settings, there is still some room to improve

them for real-world applications. This is because their experiments were conduct-

ed under controlled conditions and did not consider some real-world factors such

as individual difference in subjects, distinct data collection scene, out-of-plane

head motion, and more spontaneous expressions. If these existing facial expres-

sion recognition methods are directly used in real-world applications without any

improvement, their performance will undoubtedly drop.
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In Section 2.2.1, some researchers have studied cross-dataset problem in facial

expression recognition. The unsatisfactory results showed that the existing meth-

ods are difficult to achieve promising performance on this problem. Cross-dataset

problem refers to that the training and testing data used in experiments are col-

lected under different conditions. Generally, the testing data are collected online

and may be different from the training data, such as different races, illuminations

and imaging conditions. This is popular in real-world applications. However, to

the best of our knowledge, with some exception work such as face recognition [66]

and age estimation [67], this problem is seldom addressed in the literature on

facial expression recognition.

Another problem that is significant in automatic facial expression recognition

system and seldom studied by researchers is how to develop a misalignment-robust

facial expression recognition method. As we know, most existing appearance-

based facial expression recognition methods can only work well when face images

are well-aligned. However, under uncontrolled conditions, it is very challenging

to obtain well-aligned face images due to the eye localization error in automatic

face acquisition and alignment procedures. The caused spatial misalignments will

unavoidably affect the performance of these appearance-based facial expression

recognition methods. This has been proved by Gritti et al. by investigating

several local features based facial expression recognition methods [68].

While for other real-world factors such as out-of-plane head motion and spon-

taneous facial expression recognition, since they directly influence the real-world

applications of facial expression recognition system, more and more researchers

have been made to handle them. For example, to deal with out-of-plane head
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motion, action appearance models [69], local parametric models [70], 3D motion

models [71], and feature point tracking techniques [72] have been proposed; to

analyze spontaneous facial expression, the systems developed by CMU [73] and

UCSD [74] have achieved some promising results through recognizing a few action

units.

In this thesis, we will mainly focus on studying cross-dataset facial expression

recognition and misalignment-robust facial expression recognition from theoreti-

cal aspect. This is because facial images captured across datasets and with mis-

alignments usually occur in facial expression recognition in real-world applica-

tions. Investigating these two problems can effectively improve the performance

of an automatic facial expression recognition system. Current publicly available

databases for facial expression recognition are only for adults and not for children,

and Sullivan and Lewis [75] have shown that children are similar to adults when

they display different facial expressions. Hence, we use facial expression databases

developed for adults to study the above mentioned two problems.



39

Chapter 3

Design and Development of A

Robotic Nanny

3.1 Introduction

With the rapid development of current society, parents become more busy and

cannot always stay with their children. Hence, a robotic nanny which can care

for and play with the children is desirable. A robotic nanny is a subclass of social

robots acting as a child’s caregiver [8] and aims to extend the length of parents

or caregiver absences by providing entertainment to the child, tutoring the child,

keeping the child from physical harm, and ideally, building a companionship with

the child [9, 6]. With the help of a robotic nanny, it can release the pressure

on parents to a certain extent. Furthermore, due to the concentration of high

technologies in the robot, it may activate the child’s interest to play with the

robot and learn new knowledge during the interaction.

Currently, a large number of social robotics have been developed for children

in entertainment, healthcare, and domestic areas [2]. For example, Sony’s dog
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robot AIBO is designed to be a robotic companion/pet of a child [12]. RUBI is

designed to be an assistant of teacher for early childhood education [42]. Probo

is developed to emotionally interact with the children in a hospital [14]. NEC’s

PaPeRo is developed to care for children in domestic and public environments [16].

Some of these robots are commercially available such as AIBO and PaPeRo, and

others are being developed. While these robots have demonstrated promising

performance in their target environments, they cannot be directly applied as a

robotic nanny like AIBO, or cannot satisfy our specific design objectives such as

Probo, RUBI, and PaPeRo.

In this chapter, we develop a robotic nanny named Dorothy Robotubby to play

with and take care of a child during his/her parent or caregiver absence. We expect

our robot not only interacts with a child, but also builds a connection between a

child and his/her parent. When interacting with the robot, it is hopeful that the

child will not get bored in a short term. The developed robotic nanny is specified

for a normal child and used at home.

To achieve this goal, there are two main problems to be addressed in our robot.

The first is how to activate and maintain a child’s interest and curiosity to interact

with the robot. We solve this problem by designing a robot with a caricatured

appearance, various functions, and a conveniently-operable user interface. Among

these three design issues, the developed functions include storytelling, playing

music, games, and chatting. When executing these functions, the robot can show

different facial expressions and gestures. In addition to these direct interaction

ways with the robot, two functions including face tracking and emotion recognition

continuously work during the whole procedure of the robot operation. Compared
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with TV or several interactive computer softwares which can maintain a child’s

interest and curiosity, the robot can not only achieve similar objectives such as

playing videos or games, but also implement several functions related to actions

or motions such as face tracking and physical interaction. This will keep a child

entertained, learning, safe, and makes the robot more human-like and acceptable.

The second problem is how to connect a child and his/her parent via the robot.

According to several literature on psychology [6], while direct evidence for the

harm of parent/caregiver absences to a child is still lacking, it is undoubt that

parents/caregivers play an important role in a child’s development. Hence, a

robotic nanny cannot totally substitute parents, and it would be better to provide

a natural way to keep the child and his/her parents in touch. A feasible solution

is to transmit a child’s and parent’s video and audio data to each other by video

calling. Different from conventional video calling functions, when a child is talking

with his/her parent through the robot, the parent can remotely control the robot

to execute several commands such as showing different facial expressions and

giving a remote hug. This can help parents to express their emotions to their

child in a physical way through the robot. Moreover, the robot can continuously

transfer what it sees to parents through images such that it can keep a child from

physical harm under a parent’s surveillance.

This chapter is organized as follows. Section 3.2 overviews our robotic nanny

– Dorothy Robotubby. Section 3.3 introduces two main user interfaces in the

developed robot system. Section 3.4 describes each function of Robotubby, and

Section 3.5 concludes this chapter.
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Figure 3.1: System configuration

3.2 Overview of Dorothy Robotubby System

3.2.1 System Configuration

To develop an acceptable robotic nanny, two aspects are highlighted in our robot

– Dorothy Robotubby. One focuses on the design of robot itself, mainly including

appearance, function, and user interface designs. The other focuses on remote

control of parents. It mainly consists of the function and user interface design-

s. To guarantee such a robotic nanny system to work well, several engineering

technologies should be integrated, such as a robot’s morphology, mechanical and

electrical designs, and software development.

Figure 3.1 shows the system configuration of Dorothy Robotubby. We can see that

there are three computers used in the whole system. One touch screen computer

is mounted on the belly of the robot and utilized to control the robot. The child

can interact with the robot by directly clicking buttons on the touch screen. The

second computer is employed to help the robot to accomplish some complex tasks

such as emotion recognition. After computation, the results are sent back to
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Figure 3.2: Schematics of the whole system

the robot via the local network. These complex computation tasks require more

computer resources and thus may affect the accomplishment of other functions

of the robot. We solve this problem by using another computer. The second

computer is typically located at home, connected by a local network within the

home. The third computer is used by parents to remotely control the robot. It can

transmit information to the robot through the network. Besides three computers

and the robot, two webcams, one microphone, and one speaker are installed in

the system for video calling and surveillance.

Figure 3.2 illustrates the corresponding schematics of the whole system. From the

figure, we can see that the computer in Robotubby is the server, and the other

two computers are the clients. The computer in Robotubby transfers images of

a child to the computer of parents for surveillance and to the other computer

for computation, respectively. It also transfers the robot’s status to the other

two computers to assist network connection and remote control. Conversely, the

computer for computation transfers emotion recognition results to the computer
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of the robot, and the computer of parents transfers remote control commands to

the computer of the robot.

Besides transferring information among three computers, each computer has its

own tasks. Specifically, by controlling the computer of Robotubby, the robot can

tell stories, chat, play music videos and games, and track a child’s face. Addi-

tionally, a child can speak with his/her parent though video calling of the robot.

The main task of the computer for computation is to help the robot to recognize

the child’s emotions. While for the computer of parents, in addition to remotely

controlling Robotubby, the parent can talk with his/her child via video calling

function.

3.2.2 Dorothy Robotubby Introduction

Dorothy Robotubby is developed to be a robotic nanny for a child. We design

Robotubby with a upper body and a caricatured appearance. It mainly consists

of a head, a neck, a body, two arms, two hands, and a touch screen in its belly.

Figure 3.3 shows the main components of Robotubby.

Robotubby uses different input and output (I/O) devices to connect with the

outside environment. Table 3.1 lists the used devices in our robot. Specifically,

two web cameras provide images for face tracking, emotion recognition, and video

call functions. One microphone collects audio signals for the video call function.

Two limit switches acquire tactile signals for game playing function. These devices

are the main input devices. For the output devices, there are one speaker, 14

Dynamixel servos, and 9 Lynxmotion servos. The speaker is used to produce
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Figure 3.3: Main components of Dorothy Robotubby

Table 3.1: Input and Output Devices.

Devices Quantity Input / Output
Web Camera 2 Input
Microphone 1 Input
Limit Switch 2 Input
Speaker 1 Output
Dynamixel Servo 14 Output
Lynxmotion Servo 9 Output
Touch Screen 1 Input / Output

sounds in Robotubby. Dynamixel servos and Lynxmotion servos are employed

to control the body and head of the robot, respectively. In addition, another

important device is touch screen which can be used for both input and output.

When the child operates the robot by clicking buttons on the touch screen, the

touch screen is an input device. While when the robot gives some responses such

as playing music videos through the touch screen, the touch screen is an output

device.
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Table 3.2: The information of a Samsung Slate PC.

Type Samsung Slate 7
Processor Intel Core i5 2467M
RAM 4GB DDR3 1333MHz
Hard Disk 128GB SSD HDD
Operating System Windows 7 Professional
Screen 11.6 PLS LCD 16.7M Colour Capacitive Touch screen
Resolution 1366 X 768
Dimension 296X184X13 mm
Weight 900g

The touch screen in Robotubby is a part of a Samsung Slate PC. The reason to

select this computer in our robot is a comprehensive consideration of the size and

weight of the robot, the execution speed of the robot’s tasks, and the development

convenience of touch screen technology. The detailed information on this PC is

shown in Table 3.2. Due to the fast speed of the processor and large number of

RAM, this Slate PC is also a controller to connect and control all the I/O devices

listed in Table 3.1 to execute the tasks of Robotubby. These tasks are described

by predefined codes which are programmed using C♯ language.

To activate a child’s interest to interact with the robot, Robotubby is designed

to be able to demonstrate different facial expressions and gestures by controlling

its face and body components when it executes several tasks. Specifically, there

are 9 Degrees of Freedom (DOF) in the robot’s head, 2 DOF in its neck, 2 DOF

in its body, 2 DOF in its each shoulder, 2 DOF in its each arm, and 1 DOF in

its each hand. The correspondingly employed servo motors are listed in Table

3.3. Among these servo motors, HS-65HB uses SSC-32 servo controller from

LynxMotion which communicates with the computer using RS-232 signals. The

rest motors directly utilize the computer as their controller and connect with the
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Table 3.3: The used servo motors in Robotubby.

Type Quantity
Head HS-65HB 9
Neck RX-24F 2
Body RX-64 2
Shoulder RX-64 4
Arm RX-28 4
Hand DX-117 2

Figure 3.4: Several examples of different facial expressions of Robotubby

computer through RS-485 communication signals. Figure 3.4 illustrates several

samples of Robotubby’s facial expressions which include angry, comical, confuse,

disgust, happy, sad, thinking, and shock, respectively.
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Figure 3.5: User interface of Robotubby

3.3 Dorothy Robotubby User Interface and Re-

mote User Interface

3.3.1 Dorothy Robotubby User Interface

We mount a computer with a touch screen on the robot’s belly such that a child

can operate the robot by using a mouse or directly clicking buttons on the touch

screen. The corresponding user interface is shown in Figure 3.5. From the figure,

we can see that the interface mainly consists of five parts: assistant information

of user interface, main functions of user interface, sub-interface of telling a story,

sub-interface of talking with me, and sub-interface of emotion recognition.

Assistant information of user interface includes working status of Robutubby such

as connection status with the other two computers. Normally, it is only used to
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provide some information and no further operation from the user is required.

The functions of user interface include talking with me, telling a story, playing

music videos and games, and video calling. The sub-interfaces of talking with me

and telling a story are set in the main user interface shown in Figure 3.5. For

the function of talking with me, the child can directly input texts after its sub-

interface is loaded. While for the function of telling a story, the child should click

“Story” button first. Then he/she can select a story from the list and control it

by pressing buttons in its sub-interface. Different from these two functions, other

three functions have the independent sub-interfaces. After clicking the buttons of

“Music video”, “Video Call”, and “Mini Game”, their own sub-interfaces will pop

up.

In addition to the above functions, Robotubby has another two functions: face

tracking and emotion recognition. Face tracking begins to work when Robotubby

user interface is started. It continuously works until the robot user interface is

closed or a stop command is received from the parent’s computer. While face

tracking function has its own sub-interface, the sub-interface always hides behind

the main user interface unless the user forces it to emerge by clicking it. Emotion

recognition function runs on the other computer for computation. Once there is

a connection between the computer of Robotubby and the computer for compu-

tation by network, emotion recognition results of the user will be sent back to the

robot and displayed in the sub-interface of emotion recognition in the Robotubby

user interface.
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Figure 3.6: Remote user interface

3.3.2 Remote User Interface

In addition to Robotubby user interface, another main interface in our robotic

nanny system is the remote user interface which is operated by parents to com-

municate with their child via network. The main idea to develop this interface is

to enhance the connection between a child and his/her parent. Moreover, since

the computer of Robotubby can continuously transfer images of the child to the

computer of parents, it can keep the child from harm under parents’ surveillance.

Remote user interface mainly consists of two functions. One is that parents can

talk with their child through video calling. The other is that parents can remote-

ly control the robot to execute several commands such as demonstrating different

facial expressions and gestures. Figure 3.6 shows the remote user interface with

three information categories and four control categories.
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Specifically, three types of information include connection with Dorothy Robo-

tubby, images and robot status from Robotubby, and emotion recognition results

of a child. Among them, images, robot status, and emotion recognition results

are transferred from Robotubby. The transferred images represent what the robot

sees. Through them, parents can know what their child is doing, and thus can

keep him/her from harm under parents’ surveillance. Since there is no camera in

current robotic nanny system to capture the robot, through robot status, parents

will know which function of Robotubby is operated by the child. While for emo-

tion recognition results of a child, they can provide some reference information to

help parents recognize the child’s emotional status.

Four control categories consist of general control, action control, sound control,

and robot head servo control for Robotubby. General control function is to pause

or resume the robot, and call the child through video call. Once “Robotubby

Pause” button is clicked, the robot will stop all of its functions except video call

and the child cannot operate the robot. Only under such condition, the buttons

belonging to other three control categories can be activated and the parent can

remotely control the robot through these buttons. If “Robotubby Resume” button

is clicked, the parent cannot remotely control the robot except calling the child

through video call function and the child can operate the robot again. With

respect to action and sound controls, the parent can remotely control the robot to

demonstrate several pre-defined facial expressions and gestures such as happiness,

anger, and waving hands and play some pre-set sounds such as laugh, yawn, and

burp by clicking the corresponding buttons. While for robot head servo control,

the parent can remotely and separately control each servo of the robot head by
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dragging the sliders representing the different servos.

It should be noted that all these control categories except for sound control can

be simultaneously executed with the function of video calling. Hence, when the

parent is talking with his/her child through video call, he/she can remotely control

the robot to show some facial expressions or gestures. This is different from talking

through the telephone or the computer, and it may attract interest of the child.

The main technology problem for developing functions of this interface is how to

connect and exchange information with the other computer. Here, we utilized

Socket programming in C♯. A Socket is an End-Point of bidirectional (To and

From) communication link between two programs including Server program and

Client program running on the same network. It has been easily implemented in

C♯ through its namespaces like System.Net and System.Net.Sockets.

3.4 Dorothy Robotubby function Description

To attract a child to happily interact with Dorothy Robotubby, we have developed

several functions such as telling stories, chatting with a child, playing music videos,

playing games, and video calling. These functions of the robot are easily operated

by a child. As we introduced in Section 3.3, the child just needs to click the

corresponding buttons or input text in the corresponding input textbox in the

Robotubby user interface. In addition, there are another two functions including

face tracking and emotion recognition which begin to work when Robotubby user

interface is started. These two functions work without human intervention. The

reason we developed these functions in our robot is that face tracking and emotion
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recognition functions can make the robot more natural and believable. Video

calling feature allows a more effective communication between parent and child.

For the remaining functions, they are useful for the development of children [76, 77]

and can be better implemented in our robot. In this section, we will briefly

describe each function of the robot.

3.4.1 Face Tracking

When Robotubby user interface is started, face tracking begins to work. It will

continuously work unless Robotubby user interface is closed or the robot is re-

motely controlled by parents. Face tracking aims to track the user’s face during

interaction with the robot. It utilizes the web camera mounted on the robot neck

to capture the image. To accurately detect the user’s face in real time, we em-

ployed face detector in OpenCV which is an open source for computer vision. The

used face detector can real-time detect nearly frontal face with 95% accuracy.

Once the user’s face is detected, the position of the face relative to the center of

the image can be obtained. The obtained difference will then be used to calculate

the required shift for adjusting two servo motors of the robot neck to the correct

position. The constant re-aligning will center the user’s face and give rise to

the face tracking function. Currently, face tracking is only limited to horizontal

adjustment. The new positions of two servo motors in the robot neck can be

calculated by using Eqs. 3.4.1 and 3.4.2.
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M1NP = M1CP +Dx/∆D (3.4.1)

M2NP = M2CP +Dx/∆D (3.4.2)

where M1NP and M2NP refer to the new positions of two servo motors in robot

neck, M1CP and M2CP represent the current positions of two servo motors in

robot neck, Dx is the difference value between the position of the detected face

and the center of the image along x axis, and ∆D is the step width of motor

movement relative to the image. To balance the continuity and real-time property

of face tracking function, we set ∆D to be 5. If the user’s face cannot be detected

in several seconds, Robotubby will move the head to its neutral position.

Since the interaction between the user and the robot is mainly face-to-face, the

robot can track the user’s face in most of time during interaction. Face tracking

function can not only make the robot more human-like, but also ensure another

function to successfully work. Another function is emotion recognition which relies

on frontal facial images to recognize emotion.

3.4.2 Emotion Recognition

Emotion recognition is accomplished by another computer specially used for com-

putation. After two computers for the robot and for computation are connected

through network, the recognized emotion results will be shown in Robotubby user

interface. Currently, the detected emotional states include happy, sad, disgust,

surprise, and neutral expressions. Figure 3.7 shows emotion recognition interface.
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Figure 3.7: Emotion recognition interface.

To guarantee the real-time and automatic process of emotion recognition function,

we extracted Local Binary Pattern (LBP) feature [61] from eyes and mouth regions

of the frontal face. LBP feature uses a histogram of the binary patterns calculated

over a region to characterize the texture information of an image. It describes

each pixel by the relative gray level information with its neighbors. If the gray-

scale value of the neighbor pixel is higher or equal, the value of the described

pixel is set to be one, otherwise zero. The descriptor describes the result over the

neighborhood as a binary number (binary pattern). Compared with other features

like Gabor wavelet, LBP feature is robust to changing illumination and has low

computation cost. Moreover, once the used parameters of LBP are determined,

it is no need to manually adjust. Hence, it has been widely applied in facial

expression recognition.

Motivated by the fact that eyes and mouth regions are most informative when



56

expressing facial expressions by humans, we applied LBP feature on these two re-

gions rather than the whole face. It ensures that the features extracted from eyes

and mouth regions have lower computational cost. To detect these two regions, we

employed eyes and mouth detectors in OpenCV. With regard to the recognition

classifier, we selected template matching where the template is obtained by aver-

aging the samples in the CK and JAFFE databases and Chi square distance [61]

is used to measure the similarity between the template and the testing sample.

Due to the simplicity of this classifier, it is easy to guarantee the real-time and

automatic process of the emotion recognition system.

Since Dorothy Robotubby aims to be used at home, it means that the user of the

robot will be specifically determined. Under such scenario, a feasible solution to

improve emotion recognition accuracy is that a classification template exclusively

pointing at the user can be trained by capturing five categories of facial expression

images of the user before running the robot system. Generally, if the user and

environment of the robot system do not change, it is only required to train the

template once before using the robot for the first time. If the user do not demand

a higher emotion recognition accuracy, the pre-trained template can be used. To

provide convenience for training the template by user self, we have developed an

independent programme whose interface is shown in Figure 3.8.

In Figure 3.8, the areas labeled with orange boxes are used for collecting facial

expression images and training the template. Since the current developed emo-

tion recognition system can detect five categories of facial expressions, the user

needs to collect the facial images of each category, respectively. After clicking
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Figure 3.8: Template training interface for emotion recognition.

small square box before each emotion category, the user should display the corre-

sponding facial expression and the program begins to collect and save the images.

Clicking the button of “Stop” will stop collecting. After collecting all the images

of five categories, clicking the button of “Train” will obtain the template.

3.4.3 Telling Stories

In our robot system, we have prepared five stories that Robotubby can tell. They

are “Three pigs”, “Little red hood”, “Beauty and the Beast”, “Jack and the

Bean”, and “The leap frog”. After clicking the “Story” button in Robotubby

user interface, the child can select one of them from story list that is shown in

Figure 3.9 (a). When Robotubby tells the selected story, the read words will

be highlighted by blue color and the buttons of “Previous line”, “Repeat line”,

“Next line”, “Pause”, “Resume”, “Change”, and “Stop” can be used to control
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Figure 3.9: The sub-interface of storytelling.

Figure 3.10: Several samples of different facial expressions and gestures during
telling a story.

the told story. Figure 3.9 (b) shows the sub-interface of storytelling. When telling

the story, Robotubby can move its mouth. In addition, we have inserted several

specific labels in the prepared stories such that the robot can demonstrate different

facial expressions and gestures when meeting them. Several samples of different

facial expressions and gestures are shown in Figure 3.10.

Considering that the child may feel boring when listening to a story, the emotional

states of the child recognized by emotion recognition function were exploited to

determine whether the read story is required to continue. As mentioned above, the
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Figure 3.11: The flowchart of storytelling function.

current emotion recognition function can detect happy, sad, disgust, surprise, and

neutral expressions. We label sad and disgust expressions as negative emotions. If

the detected emotions of the child are negative on five successive times, the robot

will pause the on-going story and ask the child whether he/she wants to continue

the story. The child can choose to continue the story or change to another function

by clicking the buttons on a message box. The whole procedure of storytelling

function follows the flowchart shown in Figure 3.11.
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Figure 3.12: The sub-interface of playing games.

Figure 3.13: Several samples of different gestures during the game playing.

3.4.4 Playing Games

This function is to let a child play a simple basketball game with the robot. It

is activated by clicking the button of “Mini Game” in Robotubby user interface.

The basket mounted on the robot is designed for this game. The main procedure

of this game is that the child first delivers the ball into the basket, and then the

robot picks up the ball and passes it to the child. Next, it repeats the whole

procedure within the time limit. In addition to timing, the robot can count the

scores of successfully delivering the ball. The sub-interface of this function is

shown in Figure 3.12. The buttons of “Game Start”, “Restart”, and “Exit” are

exploited to control the game playing. Figure 3.13 illustrates the main gestures

of the robot during the game playing.
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Figure 3.14: Limit Switch and its locations.

To accomplish this function, two limit switches connected to the LynxMotion

controller were used to detect the presence of ball at specific locations. A limit

switch [78] is a switch operated by the motion of a machine part or presence of

an object which is shown in Figure 3.14(a). In particular, one limit switch is

mounted on the basket and the other is installed on the gripper of the robot.

These two locations are illustrated in Figure 3.14 (b) and (c), respectively. Once

these two limit switches are touched by the ball, it will activate the corresponding

programme to control the motion of servo motors such that the robot can fulfill

predefined actions to pick up the ball and pass it to the child. The whole procedure

of playing game function follows the flowchart shown in Figure 3.15.

3.4.5 Playing Music Videos

Playing music videos is another function of Robotubby. Through this function, the

robot can play prepared music videos with the predefined facial expressions and

gestures. The demonstrated robot movement is synchronized to the tempo of the

song. The current music videos include “If you are happy”, “Three Bears”, “Old

McDonald had a Farm”, “Twinkle Twinkle Little Star”, and “Twinkle Twinkle

Little Star Sing-A-Long”. The child can select a music video from its list which



62

Figure 3.15: The flowchart of playing game function.

is shown in Figure 3.16 (a). Figure 3.16 (b) illustrates the sub-interface of this

function. On the interface, the buttons of “Play”, “Stop”, and “Exit” can be

utilized to control the music video playing. Figure 3.17 shows several samples of

different gestures of the robot during singing a song.

In this function, we incorporated the Windows Media Player console in the sub-

interface of playing music videos. Using the functionality of Windows Media

Player in a C♯ application can not only guarantee the quality of the played music
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Figure 3.16: The sub-interface of playing music videos.

Figure 3.17: Several samples of different gestures during singing a song.

video, but also provide convenience for the development of corresponding pro-

grammes. In addition, lyrics of the songs were added such that the child is able to

follow and sing along with the music videos and dance along with the robot. This

may make the designed function more interesting and entertaining, and enhance

the interaction between the child and the robot. The whole procedure of playing

music video function follows the flowchart shown in Figure 3.18.

3.4.6 Chatting with A Child

The sub-interface of the function of chatting with a child is illustrated in Figure

3.19. The child can enter his/her question into input textbox. Then the corre-

sponding answer will be given in its output textbox. Figure 3.19 provides two

examples of the dialogue between the child and the robot. Similar to storytelling,
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Figure 3.18: The flowchart of playing music video function.

when Robotubby speaks out the given answers, it can move its mouth.

To fulfill this function, we have employed AIMLBot which is a programme im-

plementation of an AIML (Artificial Intelligence Markup Language) and can be

directly downloaded from the internet [79]. By using this technique, the user can

chat the computer with natural languages.
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Figure 3.19: The sub-interface of chatting with a child.

Figure 3.20: The sub-interface of video calling.

3.4.7 Video Calling

The function of video calling is developed to build communication between a user

like a child and another user like a parent through two computers and the internet.

Through video calling, a child can talk with his parent by using voice and video.

Figure 3.20 shows the sub-interface of this function which includes the buttons of

“Start” and “Exit”. After clicking the button of “Start” of both two computers,

talking starts. After clicking the button of “Exit” of only one computer, talking

ends. We developed this function by taking [80] and [81] as references.
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Figure 3.21: The blinking notification button for the incoming call.

Since video calling function aims to be used in two computers that are placed

in two different locations, the notification system which includes reminding text,

flashing button, and ringing tone has been designed to inform the incoming call.

Figure 3.21 illustrates the blinking notification button for the incoming call. When

there is an incoming call from the other computer, the text of button will change

from “Video Call” to “Answer?” and the background color of button will change

from gray to red. At the same time, the ringing tone will ring out. Socket

programming in C♯ was employed to transfer information between two computers.

3.5 Summary

In this chaper, we have developed a robotic nanny named Dorothy Robotubby with

the aims to play with and take care of a child during his/her parent or caregiver

absences. Robotubby is upper-body and about 70cm in height. It is designed

with a caricatured appearance, and consists of a head, a neck, a body, two arms,

two hands, and a touch screen in its belly. Robotubby includes two interaction

interfaces. One interface is developed on the touch screen for a child to control the

robot to accomplish several tasks like storytelling, playing music, games, chatting,

and video call. When Robotubby executes the first four tasks, it can demonstrate

different facial expressions and actions. While for the other interface, it is mainly
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employed to remotely control the robot by the child’s parent. Meanwhile, the

parent can see his/her child through images from Robotubby. When the child

operates the robot, two functions including face tracking and emotion recognition

will work all the time.

In summary, the developed robotic nanny system can not only interact with a

child, but also build a connection between a child and his/her parent.
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Chapter 4

Misalignment-Robust Facial

Expression Recognition

4.1 Introduction

Automatic facial expression recognition plays an important role in human emotion

perception and social interaction, and has therefore attracted much attention in

the area of pattern recognition, computer vision, human-computer interaction,

and human-robot interaction. Since appearance-based methods are popular and

have demonstrated reasonable performance in terms of the recognition accuracy,

they have been widely used in many facial expression recognition systems.

It is generally believed that the intrinsic dimensionality of the facial feature space

is much lower than that of the original face image space. Hence, it is necessary

to apply an efficient and effective feature extraction method to reduce the feature

dimensionality of face images for feature representation and recognition. Subspace

learning techniques are such methods which can reveal the intrinsic dimensionality

of the original images and obtain some succinct and compact features, and hence
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Figure 4.1: The flowchart of an automatic facial expression recognition system.

they have been widely used for facial expression recognition in recent years. By

applying these methods, face images are projected into a low-dimensional subspace

which is optimal for data reconstruction or recognition.

Figure 4.1 illustrates the flowchart of an automatic facial expression recognition

system. This system mainly consists of face and eye detection, eye localization,

face alignment, and facial expression recognition. Since facial images for recogni-

tion are pre-processed by face alignment, the accuracy of face alignment usually

affects the performance of facial expression recognition. Moreover, face alignment

depends heavily on the performance of eye localization. Therefore, face alignmen-

t templates are used as the eye position baseline. If eye positions are wrongly

localized, face misalignment will occur.

Most existing appearance-based facial expression recognition methods, howev-

er, can only work well when face images are well-aligned. In many real-world

applications such as human-robot interaction and visual surveillance, it is very

challenging to obtain well-aligned face images for recognition, especially under

uncontrolled conditions. Hence, there are usually some spatial misalignments in
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the cropped face images due to the eye localization errors even if the eye position-

s are manually located. A natural question is how spatial misalignments affect

the performance of these appearance-based facial expression recognition methods.

While a large number of facial expression recognition methods have been pro-

posed in the literature, there is only a few studies on investigating this problem.

In this chapter, we first empirically investigate this problem, and then propose

a new misalignment-robust method to extract discriminative features for facial

expression recognition. Motivated by the fact that facial images from different ex-

pressions (interclass samples) with small differences are more easily mis-classified

than those with large differences, we propose a biased linear discriminant analy-

sis (BLDA) method by imposing large penalties on interclass samples with small

differences and small penalties on those samples with large differences simulta-

neously, such that more discriminative features can be extracted for recognition.

Moreover, we further propose using the IMage Euclidean Distance (IMED) [82]

rather than the widely used Euclidean distance to seek a low-dimensional subspace

for facial feature extraction, such that the subspace sought is more discriminative

and robust. Experimental results on two widely used face databases are presented

to show the efficacy of the proposed method.

The rest of this chapter is organized as follows. Section 4.2 empirically shows

how spatial misalignment affects existing appearance-based methods for facial

expression recognition. Section 4.3 presents our proposed approach. Section 4.4

presents experimental results, and Section 4.5 concludes the chapter.
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4.2 Empirical Study of Appearance-Based Fa-

cial Expression Recognition with Spatial Mis-

alignments

4.2.1 Data Sets

Two publicly available facial expression image databases including the Cohn-

Kanade [59] and JAFFE [83] databases were selected to conduct facial expression

recognition with spatial misalignments experiments to investigate the performance

of existing appearance-based methods.

The Cohn-Kanade database consists of 100 university students aged from 18 to

30 years. 65% subjects are female, 15% are African-American, and 3% are Asian

or Latino. Subjects are instructed to perform a series of 23 facial displays, seven

of which are anger, disgust, fear, happy, neutral, sad, and surprise. We selected

14 subjects which contain all the seven different expressions from the database,

where each expression has three samples. Hence, we have 294 samples in total.

As the original image sequences in the database start from a neutral expression

and end with the peak of the expression, we selected the last three frames of each

expression sequence. For the neutral expression, we selected the first frame of

three different sequences. The size of the original sample is 640 × 490. We first

manually located the eye positions to obtain the real eye coordinates (x1, y1) and

(x2, y2) of the left and right eyes of each image. Then, we applied two random

vectors (l1, l2) and (r1, r2) to the coordinates of the left and right eyes, respectively,
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as follows:






































xn
1 = x1 + l1

yn1 = y1 + l2

xn
2 = x2 + r1

yn2 = y2 + r2

(4.2.1)

where (xn
1 , y

n
1 ) and (xn

2 , y
n
2 ) are the mis-located eye coordinates , (l1, l2) and (r1, r2)

are uncorrelated and normally distributed with zero mean and a standard devia-

tion of T . We aligned the face images with real and mis-located eye coordinates

and resized them into 64×64. Figure 4.2(a) shows some original, well-aligned and

misaligned images of different expressions of one subject from the Cohn-Kanade

database, which are shown from top to down respectively.

The JAFFE database consists of 213 facial expression images from 10 Japanese

females. They posed 3 or 4 examples for each of the seven basic expressions

(six emotional expressions including anger, disgust, fear, happy, sad, surprise plus

neutral expression). The image size is 256 × 256. Similar to the Cohn-Kanade

database, we manually located the eye positions of the images and aligned and re-

sized them into 64×64 with and without spatial misalignments, and Figure 4.2(b)

shows some original, well-aligned and misaligned images of different expressions

of one subject from the JAFFE database.

4.2.2 Results

Similar to [61], we also applied four popular subspace learning methods including

principal component analysis (PCA) [31], linear discriminant analysis (LDA) [32],
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(a)

(b)

Figure 4.2: Examples of the original, well-aligned, and misaligned images of one
subject from the (a) Cohn-Kanade and (b) JAFFE databases. From left to right
are the facial images with anger, disgust, fear, happy, neutral, sad, and surprise
expressions, respectively.

locality preserving projections (LPP) [33] and orthogonal neighborhood preserv-

ing projections (ONPP) [34] for appearance-based facial expression recognition

with spatial misalignments. We adopted a 10-fold cross-validation strategy in our

evaluation: 90% of the samples were used for training and 10% for testing. We

chose the nearest neighbor (NN) classifier for recognition. Figures 4.3 and 4.4

show the recognition performance of these four methods versus different amounts

of misalignments on the Cohn-Kanade and JAFFE databases, respectively.

We can clearly observe from Figures 4.3 and 4.4 that spatial misalignments indeed
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Figure 4.3: Recognition accuracy versus different amounts of spatial misalign-
ments on the Cohn-Kanade database.
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Figure 4.4: Recognition accuracy versus different amounts of spatial misalign-
ments on the JAFFE database.
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affect the recognition accuracy of conventional subspace learning-based facial ex-

pression recognition methods. Moreover, the larger the spatial misalignment is,

the worse the performance is. In many real-world applications, it is still very

challenging to precisely localize the eye positions of face images for image align-

ment, especially under uncontrolled conditions. Hence, it is desirable to develop

misalignment-robust methods for facial expression recognition.

4.3 Proposed Approach

Generally speaking, subspace learning techniques can be mainly classified into

two categories: supervised-based and unsupervised-based. As supervised learning

methods usually outperform unsupervised ones for facial expression recognition

tasks and LDA is a popular and widely used supervised subspace learning method

due to its simplicity and effectiveness, we employed and modified LDA in this

section to learn a new feature space to implement our misalignment-robust facial

expression recognition task. We first briefly review LDA in the following.

4.3.1 LDA

Considering a set of facial images denoted as X = [x1, x2, · · · , xN ], xi ∈ Rd,

i = 1, 2, · · · , N , where N is the number of samples and d is the feature dimension

of each face sample. For supervised subspace learning algorithms such as LDA, the

class label of xi is assumed to be li ∈ {1, 2, · · · , c}, where c is the number of classes.

For the jth class, nj denotes the number of its samples, where j = 1, 2, · · · , c.

Hence, N =
∑c

j=1 nj . Generally, the objective of a subspace learning algorithm
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is to find a linear projection matrix W = [w1, w2, · · · , wk] to map xi into a low-

dimensional representation yi, where yi = W Txi, yi ∈ Rm,m ≪ d, and yi preserves

the main information of the original data.

LDA seeks to find a set of projection axes such that the Fisher criterion (the ratio

of between-class scatter to within-class scatter) is maximized after the projection.

The between-class scatter SB and the within-class scatter SW are defined as [32, 84]

SB =
1

N

c
∑

i=1

ni(mi −m)(mi −m)T (4.3.1)

SW =
1

N

c
∑

i=1

ni
∑

j=1

(xij −mi)(xij −mi)
T (4.3.2)

where xij denotes the jth training sample of the ith class, mi is the mean of the

training samples of the ith class, and m is the mean of all the training samples.

The objective of LDA is defined as

max
w

wTSBw

wTSWw
(4.3.3)

The corresponding projections {w1, w2, · · · , wk} comprise a set of the eigenvectors

of the following generalized eigenvalue function

SBw = λSWw (4.3.4)

Let {w1, w2, · · · , wk} be the eigenvectors corresponding to the k largest eigen-

values {λi|i = 1, 2, · · · , k} ordered such that λ1 ≥ λ2 ≥ · · · ≥ λk. Then

W = [w1, w2, · · · , wk] is the LDA projection. Note that the rank of SB is bounded

by c− 1 [84, 32], i.e., k is at most equal to c− 1.
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4.3.2 BLDA

While LDA has attained reasonably good performance in many facial expression

recognition applications, there is still one shortcoming in LDA: all classes are

equally treated in the procedure of the feature learning. For facial expression

recognition, different classes (expressions) may have different similarities, hence,

the difficulties to correctly recognize them are undoubtedly different. For exam-

ple, for a testing sample with sad expression, it is much easier to mis-recognize it

as disgust rather than happy expression. Motivated by this observation, we pro-

pose here a new biased linear discriminant analysis (BLDA) method by imposing

large penalties on interclass samples with small differences and small penalties on

those samples with large differences simultaneously, such that more discriminative

features can be extracted for recognition. Specifically, we formulate BLDA into

the following optimization objective:

max
w

wT ŜBw

wT ŜWw
(4.3.5)

where

ŜB =

c
∑

i=1

c
∑

j=1

g(i, j)(mi −mj)(mi −mj)
T (4.3.6)

ŜW =
c

∑

k=1

∑

xi∈ck

(xi −mk)(xi −mk)
T (4.3.7)

g(i, j) is a penalty function to impose different weights to characterize the rela-

tionship between the ith and jth classes in calculation of the between-class scatter

ŜB. As discussed before, the larger the similarities are, the higher penalty should

be imposed, and the higher g(i, j) should be assigned. Obviously, there are a num-

ber of potential strategies to define the penalty function g(i, j), and it is generally
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believed that g(i, j) can be a monotone function of the distance between the ith

and the jth classes.

Let di,j be the distance between mi and mj , we define g(i, j) as follows:

g(i, j) = dαi,j (4.3.8)

where

di,j =
< mi, mj >

‖mi‖2 · ‖mj‖2
(4.3.9)

‖x‖2 denotes the L2 norm of x, and α ≥ 0.

There are two reasons for us to apply the correlation metric rather than the Eu-

clidean distance to measure the similarity. On one hand, facial images often need

to be preprocessed such as normalization and histogram equalization, and corre-

lation is more robust than Euclidean distance against such nonlinear changes of

the data distribution. On the other hand, many studies have shown that correla-

tion metric-based similarity measurement outperforms the conventional Euclidean

distance for the classification task [85].

Having obtained ŜB and ŜW , the feature space of BLDA comprises a set of the

eigenvectors of the generalized eigenvalue function ŜBw = ηŜWw. Similar to

LDA, let {w1, w2, · · · , wk} be the eigenvectors corresponding to the k largest

eigenvalues {ηi|i = 1, 2, · · · , k} ordered such that η1 ≥ η2 ≥ · · · ≥ ηk. Then

W = [w1, w2, · · · , wk] is the BLDA projection. It should also be noted that origi-

nal LDA method is the special case of our proposed BLDA method when α = 0.

To show the advantages of the BLDA, we selected 10 subjects from the Cohn-

Kanade database, each subject contains 7 expressions and each expression has 3
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Figure 4.5: The projections of the first three components of the original data on
the PCA feature space.

samples. We visualized their original distribution in Figure 4.5. Note that for

ease of presentation, we only used a three-dimensional space by PCA. Figures 4.6

and 4.7 show the low-dimensional distributions in the conventional LDA and our

proposed BLDA subspaces, respectively. We can see that compared with LDA,

BLDA can better separate interclass samples, especially those interclass samples

with high similarity, such as the sad and disgust samples, which further shows that

more discriminative information can be revealed in the learned BLDA subspace.

4.3.3 IMED-BLDA

Most existing subspace analysis methods learn a low-dimensional feature subspace

by using the Euclidean metric, however, they usually suffer from a high sensitivity
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Figure 4.7: The projections of the first three components of the original data
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to a small deformation because the Euclidean metric does not take into account

the spatial relationship and a small spatial misalignment may result in a large

Euclidean distance. To address this problem, Wang et al. [82] proposed an IMage

Euclidean Distance (IMED) to better characterize the dissimilarity of two samples

when small deformations are involved.

Let x = [x1, x2, · · · , xMN ] and y = [y1, y2, · · · , yMN ] be two M ×N images, where

xi and yi are pixels of these two images, respectively. The IMED between x and

y is defined as

dIMED
i,j =

√

√

√

√

MN
∑

i=1

MN
∑

j=1

gij(xi − yi)(xj − yj)

= (xi − yi)
TG(xj − yj) (4.3.10)

where the symmetric and positive define matrix G is referred to a metric matrix,

and gij is the metric coefficient indicating the spatial relationship between pixels

xi and yj. The definition of gij is given by

gij = f(dsij) =
1

2πσ2
exp(−

dsij
2σ2

) (4.3.11)

where dsij is the spatial distance between xi and yj on the image lattice, and σ is

the width parameter. For example, if xi is at location (t1, t2) and yj is at location

(t′1, t
′

2), then dsij is calculated as

dsij =
√

(t1 − t′1)
2 + (t2 − t′2)

2 (4.3.12)

Now, we use the IMED metric instead of the Euclidean metric to learn a new

feature subspace, called IMED-BLDA, by modifying the within-class and between
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class scatters as follows:

ŜB

IMED
=

c
∑

i=1

c
∑

j=1

g(i, j)dIMED(mi, mj) (4.3.13)

ŜW

IMED
=

c
∑

k=1

∑

xi∈ck

dIMED(xi, ck) (4.3.14)

Similar to BLDA, the projections of IMED-BLDA {wIMED
1 , wIMED

2 , · · · , wIMED
k }

comprise a set of the eigenvectors of the following generalized eigenvalue function

ŜB

IMED
wIMED = λŜW

IMED
wIMED (4.3.15)

Let {wIMED
1 , wIMED

2 , · · · , wIMED
k } be the eigenvectors corresponding to the k

largest eigenvalues {λi|i = 1, 2, · · · , k} ordered such that λ1 ≥ λ2 ≥ · · · ≥ λk.

Then W IMED = [wIMED
1 , wIMED

2 , · · · , wIMED
k ] is the IMED-BLDA projections.

Since IMED considers the spatial relationship between pixels, it is expected to be

robust to spatial misalignments. To verify this point, Figure 4.8 plots the trace

ratio of the between-class scatter to within-class scatter of BLDA on the Cohn-

Kanade database by using the Euclidean and IMED distances versus different

amounts of spatial misalignments, respectively. Generally, the larger the ratio is,

the more the separability of the subspace is. We can observe from this figure that

IMED is better than the Euclidean distance in characterizing this ratio. Since

the trace ratio is closely related to the recognition accuracy, we expect the IMED

metric used in BLDA can achieve higher recognition accuracy. We will show the

recognition accuracy in Section 4.4.
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Figure 4.8: The ratio of the trace of the between-class scatter to the trace of the
within-class scatter by using the Euclidean and IMED distances on the Cohn-
Kanade database. It is easy to observe from this figure that IMED is better than
the Euclidean distance in characterizing this ratio. Moreover, the larger amounts
of the misalignment, the better performance obtained.

4.4 Experimental Results

We conducted facial expression recognition experiments on the Cohn-Kanade and

JAFFE databases. The data used here are the same as those used in Section 4.2.

Similarly, the 10-fold cross-validation strategy and the NN classifier are employed

for recognition. We also compared the proposed IMED-BLDA method with the

most effective conventional subspace learning methods including LDA and LP-

P. The reason we selected LDA and LPP for comparison here is that LDA and

LPP can be performed in a supervised setting, PCA and ONPP are usually un-

supervised, and supervised methods generally outperform unsupervised ones for

classification tasks. To provide a fair comparison, all the results reported here are
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Table 4.1: Recognition performance comparison on the Cohn-Kanade database.

Method T = 0 T = 3 T = 6 T = 9 T = 12 T = 15
LDA 96.36 91.07 74.29 55.71 45.00 38.57
LPP 92.86 84.29 70.71 57.14 46.79 36.07
IMED-LDA 98.21 92.14 77.14 63.21 48.57 41.07
BLDA 97.36 91.67 76.29 62.87 48.23 39.65
IMED-BLDA 98.51 92.64 78.24 65.51 50.57 44.07

Table 4.2: Recognition performance comparison on the JAFFE database.

Method T = 0 T = 3 T = 6 T = 9 T = 12 T = 15
LDA 92.92 86.33 70.75 58.08 40.42 35.34
LPP 88.42 83.56 64.67 52.34 38.86 33.54
IMED-LDA 93.23 87.54 71.24 60.22 41.46 36.44
BLDA 93.22 88.02 72.75 61.08 42.42 37.24
IMED-BLDA 94.56 89.34 73.45 62.34 43.68 39.44

based on the best tuned parameters of all the compared methods. Specifically, α

is empirically set to be 50 for IMED-BLDA in our experiments.

As the advantage of the proposed IMED-BLDA approach stems from two differ-

ent aspects: the IMED metric and the weighted function, we also evaluated the

performance when only one factor is applied to reveal their respective effects. We

thus formulated two other LDA-based algorithms, i.e., BLDA and IMED-LDA.

We reported here the best result of each algorithm under comparison by exploring

all possible feature dimensions. The average recognition accuracies are tabulated

in Tables 4.1 and 4.2. As can be seen, the proposed IMED-BLDA method always

outperforms the other compared methods in terms of recognition accuracy.

To better show the effectiveness of the IMED metric for misalignment-robust facial

expression recognition, we used this metric to other three subspace analysis meth-

ods: PCA, LPP and ONPP to formulate the corresponding IMED-based methods.
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Figure 4.9: Performance comparisons of PCA and IMED-PCA subspace methods
learned by the Euclidean and IMED metric, respectively.

Figures 4.9-4.11 show the recognition performance of these methods versus dif-

ferent amounts of misalignments on the Cohn-Kanade database. We can easily

observe from these three figures that our proposed IMED-based subspace meth-

ods consistently outperform existing Euclidean-based subspace learning methods

for facial expression recognition with spatial misalignments, which further demon-

strates the effectiveness of the proposed approach.

Lastly, we evaluated the robustness of the IMED-BLDA versus different values of

the parameter α, and plotted the recognition accuracy in Figure 4.12. We can see

from this figure that IMED-BLDA is robust and can achieve good performance in

a large range of α. Hence, it is easy to set an appropriate value of α for practical

applications.
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Figure 4.10: Performance comparisons of LPP and IMED-LPP subspace methods
learned by the Euclidean and IMED metric, respectively.
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Figure 4.11: Performance comparisons of ONPP and IMED-ONPP subspace
methods learned by the Euclidean and IMED metric, respectively.
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Figure 4.12: The performance of IMED-BLDA versus different values of α.

4.5 Summary

We have proposed in this chapter a new misalignment-robust subspace analysis

approach for facial expression recognition. We first empirically showed that spatial

misalignments indeed affect the recognition accuracy of conventional subspace

learning-based facial expression recognition methods. To make better use of the

different interclass samples in learning the feature subspace, we proposed a biased

method by imposing large penalties on interclass samples with small differences

and small penalties on those samples with large differences simultaneously, such

that more discriminative features can be extracted for recognition. Moreover, we

learned a robust feature subspace by using the IMage Euclidean Distance (IMED)

rather than the widely used Euclidean distance, such that the subspace sought

is more discriminative and robust to spatial misalignments. Experimental results
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on two widely used face databases have demonstrated the efficacy of the proposed

methods.

For future work, we want to further extend the proposed misalignment-robust

subspace analysis approach to other supervised manifold learning methods to ex-

plore the nonlinear manifold structure of facial expression data. Moreover, how to

design a better penalty function to further improve the recognition performance

remains another interesting direction of future work. We are also going to collect

more facial expression images under uncontrolled environments to examine the ro-

bustness of our proposed method in real-world applications. In this study, we only

assume there is spatial misalignment in facial images, however, this assumption

may not hold because there could be some other variations in facial expression im-

ages such as varying illumination, poses, and occlusions, even for the same person.

Hence, how to simultaneously deal with the spatial misalignment as well as other

variations for robust facial expression recognition remains more investigation in

the future.
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Chapter 5

Cross-Dataset Facial Expression

Recognition

5.1 Introduction

Appearance-based techniques have been widely used to reveal the intrinsic struc-

ture of data and applied for facial expression recognition. By using these methods,

facial expression images are projected into a low-dimensional feature space to re-

duce the feature dimensions. Representative and state-of-the-art methods include

principal component analysis (PCA) [31], linear discriminant analysis (LDA) [32],

locality preserving projections (LPP) [33] and orthogonal neighborhood preserv-

ing projections (ONPP) [34]. Recently, Shan et al. [29] compared these methods

for facial expression recognition and reported that supervised LPP was the best

one in supervised methods and ONPP produced the best results in unsupervised

methods.

Most existing facial expression recognition methods assume facial images in the

training and testing sets are collected under the same condition such that they
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are independent and identically distributed. However, in many real-world applica-

tions, this assumption may not hold as the testing data are usually collected online

and generally more uncontrollable than the training data, such as different races,

illuminations, and imaging conditions. Under this scenario, the performance of

conventional subspace learning methods may be poor because the training and

testing data are not independent and identically distributed which refers to cross-

dataset problem. The generalization capability of these methods is limited on the

cross-dataset facial expression recognition problem. To the best of our knowledge,

this problem is seldom addressed in the literature for facial expression recogni-

tion even if it is very important to drive facial expression recognition into real

applications.

To address this problem, we propose a new transfer subspace learning approach

to learn a feature space which transfers the knowledge gained from the training

set to the target (testing) data to improve the recognition performance under

cross-dataset scenarios. We apply the proposed approach to four popular sub-

space learning methods including PCA, LDA, LPP and ONPP, and formulate the

corresponding transfer PCA (TPCA), transfer LDA (TLDA), transfer LPP (TLP-

P) and transfer ONPP (TONPP) for cross-dataset facial expression recognition.

Experimental results are presented to demonstrate the efficacy of the proposed

approaches.

The rest of this chapter is organized as follows. Section 5.2 reviews some re-

lated work on subspace learning and transfer learning. Section 5.3 presents our

proposed methods. Section 5.4 presents experimental results to demonstrate the

effectiveness of the proposed methods, and Section 5.5 concludes the chapter.
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5.2 Related Work

5.2.1 Subspace Learning

Let X = [x1, x2, · · · , xN ], xi ∈ Rd, i = 1, 2, · · · , N , be a training set of facial

images, where N is the number of samples and d is the feature dimension of

each sample. For supervised subspace learning algorithms, the class label of xi

is assumed to be li ∈ {1, 2, · · · , c}, where c is the number of classes. For the

jth class, nj denotes the number of its samples, where j = 1, 2, · · · , c. Hence,

N =
∑c

j=1 nj . The objective of a subspace learning algorithm, such as PCA,

LDA, LPP and ONPP, is to find a linear projection matrix W = [w1, w2, · · · , wk]

to map xi into a low dimensional representation yi, where yi = W Txi ∈ Rm,

m < d [29]. The essential differences of different subspace learning methods lie in

their differences in defining and finding the projection matrix W by using different

objective functions and constraints, such as

min F (W ) (5.2.1)

subject to G(W ) = 0

Table 5.1 shows the objective functions and constraints of PCA, LDA, LPP and

ONPP, where ST = 1
N

∑N

i=1(xi−m)(xi−m)T , m = 1
N

∑N

i=1 xi, SB = 1
N

c
∑

i=1

ni(mi−

m)(mi −m)T , SW = 1
N

c
∑

i=1

ni
∑

j=1

(xij −mi)(xij −mi)
T , xij denotes the jth training

sample of the ith class, mi is the mean of the training samples of the ith class,

L = D − S, Dii =
∑

j Sji, Sij is the locality similarity between xi and xj , M =
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Table 5.1: Objective functions and constraints of four popular subspace learning
methods.

Method F (W ) G(W )
PCA −tr(W TSTW ) W TW − I = 0

LDA tr(WTSWW )
tr(WTSBW )

−

LPP W TXLXTW W TXDXTW − I = 0
ONPP tr(W TXMXTW ) W TW − I = 0

(I−V T )(I−V ), V can be obtained by solving the following optimization function:

min ε(V ) =
∑

i

‖xi −
∑

k

Vikxik‖
2 (5.2.2)

where xik is the k-nearest neighbor of xi.

5.2.2 Transfer Learning

The past five years have witnessed the significance of transfer learning for practi-

cal applications such as cross-domain image and text classification, and domain-

adaptation video analysis. Transfer learning has also been identified to be an

effective solution to address the cross-dataset recognition problem because it can

transfer the knowledge gained from the training set to the testing set. Gener-

ally, there are three main issues in transfer learning: what to transfer, how to

transfer, and when to transfer. Compared with the conventional machine learning

techniques, transfer learning can be mainly classified into three categories: induc-

tive transfer learning, transductive transfer learning, and unsupervised transfer

learning. Please refer to [86] for more details.

While a number of transfer learning methods have been proposed recently, there

is little effort on transfer learning made for subspace learning. To our knowledge,
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Si et al. [66] first applied transfer learning techniques to subspace learning by

minimizing the distribution distance between the source and target domains in

subspace learning algorithms. More recently, Su et al. [67] employed the mixture

Gaussian model to model the distributions of the data in the source and target

domains to make it more consistent with the original LDA method. However,

these methods estimate the distribution based on the kernel density estimation

(KDE) method and Gaussian model, respectively, which may fail when there is a

limited number of samples in the source and target domains. In this chapter, we

propose a new nonparametric transfer learning approach to learn a feature space

which transfers the knowledge gained from the training set to the target (testing)

data to improve the facial expression recognition performance under cross-dataset

scenarios.

5.3 Proposed Methods

5.3.1 Basic Idea

Since the training and testing samples are implicitly assumed to be independent

and identical distribution, conventional subspace learning algorithms seek a fea-

ture subspace W by solving an optimization objective function F (W ) and then

apply W for feature extraction. As mentioned before, this assumption will not

hold for cross-dataset facial recognition problem. Under cross-dataset scenarios,

we also need to minimize the difference between the training and testing sets

besides optimizing F (W ).

Given N1 training samples X = [x1, x2, · · · , xN1
] and N2 testing samples Y =
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[y1, y2, · · · , yN2
], our objective now is seeking a feature space W to optimize F (W )

in the training set and minimize the differences between X and Y in W simulta-

neously. Specifically, we formulate our objective into the following optimization

function:

min
W

F (W ) + λH(W ) (5.3.1)

where λ ≥ 0 is a parameter to balance the contributions of H(W ) and F (W ).

When λ = 0, Eq 5.3.1 refers to conventional subspace learning methods.

H(W ) is formulated as

H(W ) =

N1
∑

i=1

‖W Txi −W T

k
∑

j=1

tijyij‖
2 (5.3.2)

yi1, yi2, · · · , yik are the k-nearest neighbors of xi, ti1, ti2, · · · , tik are the correspond-

ing coefficients, and they can be obtained similarly to the coefficients obtained in

the locally linear embedding (LLE) method in [87]. With the help of H(W ),

we can reconstruct each training sample by using several testing samples, which

means the knowledge from the training data can be transferred to the testing

data.

We simplify H(W ) to the following form

H(W ) =

N1
∑

i=1

tr[W T (xi −

k
∑

j=1

tijyij)(xi −

k
∑

j=1

tijyij)
TW ]

= tr[W T

N1
∑

i=1

(xi −

k
∑

j=1

tijyij)(xi −

k
∑

j=1

tijyij)
TW ]

= tr(W TGW ) (5.3.3)

where G ,
∑N1

i=1[(xi −
∑k

j=1 tijyij)(xi −
∑k

j=1 tijyij)
T ].
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The derivative of H(W ) is

∂H(W )

∂W
= 2GW (5.3.4)

As different subspace learning methods have different F (W ), we include different

F (W ) for different subspace learning methods and formulate the corresponding

transferred ones in the following.

5.3.2 TPCA

From Table 5.1, we can obtain F (W ) = −tr(W TSTW ) for PCA. To make the

minimization problem with respect to W well-posed, we impose an orthogonal

constraint W TW = I and formulate TPCA as the following constrained opti-

mization problem:

min
W

T (W ) = −tr(W TSTW ) + λtr(W TGW ) (5.3.5)

s.t. W TW = I.

Let ∂T (W )
∂W

= 0, we can obtain the projections of TPCA by solving the following

eigenvalue equation:

(λG− ST )w = αw (5.3.6)

Let {w1, w2, · · · , wp} be the eigenvectors corresponding to the p smallest eigen-

values {αi|i = 1, 2, · · · , p} ordered such that α1 ≤ α2 ≤ · · · ≤ αp. Then

W = [w1, w2, · · · , wp] is the subspace projection of TPCA.
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5.3.3 TLDA

From Table 5.1, we can obtain F (W ) = tr(WTSWW )
tr(WTSBW )

for LDA. Hence,

∂F (W )

∂W
= 2p−1

1 SWW − 2p−2
1 p2SBW (5.3.7)

where p1 = tr(W TSBW ) and p2 = tr(W TSWW ).

As Eq. 5.3.7 is nonlinear and it is nontrivial to derive its closed-form global optimal

solution, we modify the trace ratio of LDA to the difference form and seek a global

solution by the following optimization problem:

min
W

T (W ) = tr(W T (SW − SB)W ) + λtr(W TGW )

(5.3.8)

s.t. W TW = I.

Let ∂T (W )
∂W

= 0, we can obtain the projections of TLDA by solving the following

eigenvalue equation

(λG+ SW − SB)w = αw (5.3.9)

We can obtain the projections of TLDA similarly to that of TPCA.

5.3.4 TLPP

For LPP, F (W ) = W TXLXTW . Hence, TLPP can be formulated as the following

constrained optimization problem:

min
W

T (W ) = W TXLXTW + λtr(W TGW ) (5.3.10)

s.t. W TW = I.
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Let ∂T (W )
∂W

= 0, we can obtain the projections of TLPP by solving the following

eigenvalue equation:

(XLXT + λG)w = αw (5.3.11)

We can obtain the projections of TLPP similarly to that of TPCA.

5.3.5 TONPP

For ONPP, F (W ) = tr(W TXMXTW ). Hence, TONPP can be formulated as the

following constrained optimization problem:

min
W

T (W ) = tr(W TXMXTW ) + λtr(W TGW )

(5.3.12)

s.t. W TW = I.

Let ∂T (W )
∂W

= 0, we can obtain the projections of TONPP by solving the following

eigenvalue equation:

(XMXT + λG)w = αw (5.3.13)

We can obtain the projections of TONPP similarly to that of TPCA.

5.4 Experimental Results

5.4.1 Data Preparation

Three publicly available facial expression image databases including the JAFFE [88,

83], Cohn-Kanade [59], and Feedtum [89] databases were selected to evaluate the
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effectiveness of the proposed methods for cross-dataset facial expression recogni-

tion.

The JAFFE database consists of 213 facial expression images from 10 Japanese

females. They posed 3 or 4 examples for each of the seven basic expressions

(six emotional expressions including anger, disgust, fear, happy, sad, surprise plus

neutral expression). The image size is 256× 256.

The Cohn-Kanade database consists of 100 university students aged from 18 to

30 years. 65% subjects are female, 15% are African-American, and 3% are Asian

or Latino. Subjects are instructed to perform a series of 23 facial displays, seven

of which are anger, disgust, fear, happy, neutral, sad and surprise. We selected

10 subjects which contain all the seven different expressions from the database,

where each expression has four samples. Hence, we have 280 samples in total.

As the original image sequences in the database start from a neutral expression

and end with the peak of the expression, we selected the last four frames of each

expression sequence. For the neutral expression, we selected the first frame of four

different sequences. The size of the original facial image is 640× 490.

The Feedtum database, also known as the FG-NET database, is much more chal-

lenging because in the database subjects perform the expressions spontaneously

and some of the resulting expressions are not well distinguishable. It contains a set

of facial image sequences that show a number of subjects performing the seven d-

ifferent universal expressions defined by Ekman and Friesen. All seven expressions

were performed three times by each subject. Since these images were captured

under natural circumstances, there could be head movement in the images. In
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Figure 5.1: Facial expression images of one subject from the (a) JAFFE, (b)
Cohn-Kanade, and (c) Feedtum databases. From left to right are the images with
anger, disgust, fear, happy, sad, surprise and neutral expressions, respectively.

order to simplify our experiments, only the images which include frontal faces

without large head movement were chosen. We selected 10 subjects which contain

all the seven different expressions from the database, where each expression has

four samples. Hence, we have 280 samples in total. The size of the original facial

image is 320× 240.

For all the three databases, we converted the images to gray scale and manually

located the eye positions. We cropped the face regions from original images ac-

cording to the eye positions and resized them to 64× 64. No further registration

such as alignment of mouth was performed in our experiments. Some examples of

the aligned images from the databases are shown in Figure 5.1, where (a), (b) and

(c) are the example samples of the JAFFE, Cohn-Kanade and Feedtum databases,

respectively.
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Based on the three databases, we conducted six sets for cross-dataset facial ex-

pression recognition as follows:

1. J2C: the training set is JAFFE and the testing set is Cohn-Kanade;

2. J2F: the training set is JAFFE and the testing set is Feedtum;

3. C2J: the training set is Cohn-Kanade and the testing set is JAFFE;

4. C2F: the training set is Cohn-Kanade and the testing set is Feedtum;

5. F2J: the training set is Feedtum and the testing set is JAFFE;

6. F2C: the training set is Feedtum and the testing set is Cohn-Kanade.

5.4.2 Results

We employed the nearest neighbor (NN) classifier for facial expression recogni-

tion. The value of λ was empirically set to be 10 for all the four transfer subspace

learning methods. We compared our proposed transfer subspace learning meth-

ods with four existing non-transferred subspace learning methods including PCA,

LDA, LPP and ONPP for cross-dataset facial expression recognition. Figures 5.2-

5.7 show the recognition performance of these methods versus different feature

dimensions.

We can easily observe from these figures that our proposed transfer learning meth-

ods consistently outperform the conventional subspace learning methods in terms

of the recognition accuracy. That is because conventional subspace learning algo-

rithms such as PCA, LDA, LPP and ONPP assume that the training and testing
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Figure 5.2: Recognition accuracy versus different feature dimensions under the
J2C experimental setting.
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Figure 5.3: Recognition accuracy versus different feature dimensions under the
J2F experimental setting.
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Figure 5.4: Recognition accuracy versus different feature dimensions under the
C2J experimental setting.
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Figure 5.5: Recognition accuracy versus different feature dimensions under the
C2F experimental setting.
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Figure 5.6: Recognition accuracy versus different feature dimensions under the
F2J experimental setting.
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Figure 5.7: Recognition accuracy versus different feature dimensions under the
F2C experimental setting.
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Table 5.2: Confusion matrix of seven-class expression recognition obtained by
PCA under the F2C setting.

ANG DIS FEA HAP SAD SUR NEU
ANG 30.3% 22.3% 6.4% 1.4% 20.3% 7.3% 12.0%
DIS 3.6% 29.8% 22.4% 1.8% 22.6% 14.3% 5.5%
FEA 13.6% 21.4% 27.6% 21.8% 5.2% 7.4% 3.0%
HAP 3.0% 13.6% 21.4% 28.6% 20.8% 8.2% 4.4%
SAD 8.6% 16.2% 18.8% 5.6% 29.6% 15.2% 6.0%
SUR 3.0% 13.2% 21.8% 18.8% 9.2% 28.6% 5.4%
NEU 6.4% 15.3% 12.4% 11.4% 10.2% 19.3% 25.0%

samples are independent and identically distributed and this assumption does not

hold for cross-dataset facial expression recognition tasks.

The confusion matrices of the seven expressions under the F2C setting were also

calculated for PCA, LDA, LPP, ONPP, TPCA, TLDA, TLPP and TONPP, and

tabulated in Tables 5.2-5.9, respectively, where ANG, DIS, FEA, HAP, SAD,

SUR and NEU represent the anger, disgust, fear, happy, sad, surprise and neutral

expressions. We can observe from these results that diagonal elements of the

confusion matrices of transfer subspace learning methods are generally better than

those of conventional non-transferred subspace learning methods, which further

indicates that transfer subspace learning approach can improve the recognition

accuracy of subspace learning for cross-dataset facial expression recognition.

5.5 Summary

We have investigated in this chapter the problem of cross-dataset facial expression

recognition. To the best of our knowledge, this problem is seldom addressed in
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Table 5.3: Confusion matrix of seven-class expression recognition obtained by
LDA under the F2C setting.

ANG DIS FEA HAP SAD SUR NEU
ANG 37.0% 20.3% 6.4% 1.4% 16.3% 7.3% 11.3%
DIS 3.6% 36.5% 20.4% 1.8% 20.6% 12.3% 4.8%
FEA 10.6% 20.4% 34.3% 19.8% 5.2% 7.2% 2.5%
HAP 3.0% 11.6% 19.4% 35.3% 18.8% 7.7% 4.2%
SAD 6.6% 15.2% 16.8% 5.6% 36.3% 14.2% 5.3%
SUR 3.0% 12.2% 19.8% 16.8% 8.2% 35.3% 4.7%
NEU 5.4% 13.3% 10.4% 11.4% 8.5% 17.3% 33.7%

Table 5.4: Confusion matrix of seven-class expression recognition obtained by
LPP under the F2C setting.

ANG DIS FEA HAP SAD SUR NEU
ANG 34.0% 20.3% 6.4% 1.4% 19.3% 7.3% 11.3%
DIS 3.5% 33.5% 20.4% 1.8% 21.6% 14.2% 5.0%
FEA 12.6% 20.4% 31.3% 20.8% 5.0% 6.9% 3.0%
HAP 3.0% 12.6% 20.4% 32.3% 19.1% 8.2% 4.4%
SAD 7.6% 15.2% 17.8% 5.3% 33.3% 14.8% 6.0%
SUR 3.0% 12.2% 20.8% 17.8% 8.5% 32.3% 5.4%
NEU 5.4% 15.3% 11.4% 9.4% 11.2% 18.6% 28.7%

Table 5.5: Confusion matrix of seven-class expression recognition obtained by
ONPP under the F2C setting.

ANG DIS FEA HAP SAD SUR NEU
ANG 39.6% 17.3% 6.4% 1.4% 16.3% 7.2% 11.8%
DIS 3.6% 39.1% 18.4% 1.2% 20.6% 12.3% 4.8%
FEA 10.6% 18.4% 36.9% 19.2% 5.2% 7.2% 2.5%
HAP 3.0% 11.6% 18.4% 37.9% 17.2% 7.7% 4.2%
SAD 6.6% 15.2% 15.8% 5.6% 38.9% 13.2% 4.7%
SUR 3.0% 12.2% 17.8% 16.2% 8.2% 37.9% 4.7%
NEU 5.4% 13.3% 10.4% 10.8% 8.5% 15.3% 36.3%
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Table 5.6: Confusion matrix of seven-class expression recognition obtained by
TPCA under the F2C setting.

ANG DIS FEA HAP SAD SUR NEU
ANG 45.3% 12.3% 6.4% 1.4% 15.3% 7.3% 12.0%
DIS 3.6% 44.8% 12.4% 1.8% 17.6% 14.3% 5.5%
FEA 13.6% 11.4% 42.6% 16.8% 5.2% 7.4% 3.0%
HAP 3.0% 13.6% 11.4% 43.6% 15.8% 8.2% 4.4%
SAD 8.6% 11.2% 13.8% 5.6% 44.6% 10.2% 6.0%
SUR 3.0% 13.2% 11.8% 13.8% 9.2% 43.6% 5.4%
NEU 6.4% 10.3% 12.4% 10.4% 10.2% 10.3% 40.0%

Table 5.7: Confusion matrix of seven-class expression recognition obtained by
TLDA under the F2C setting.

ANG DIS FEA HAP SAD SUR NEU
ANG 55.0% 10.3% 6.4% 1.4% 10.3% 7.5% 9.1%
DIS 3.6% 54.5% 10.4% 1.8% 12.6% 12.3% 4.8%
FEA 10.6% 10.4% 52.3% 12.8% 5.2% 6.2% 2.5%
HAP 3.0% 10.6% 10.4% 53.3% 10.8% 7.7% 4.2%
SAD 3.6% 10.2% 10.8% 5.6% 54.3% 10.2% 5.3%
SUR 3.0% 12.2% 9.8% 8.8% 8.2% 53.3% 4.7%
NEU 5.4% 10.3% 6.4% 10.4% 8.5% 7.3% 51.7%

Table 5.8: Confusion matrix of seven-class expression recognition obtained by
TLPP under the F2C setting.

ANG DIS FEA HAP SAD SUR NEU
ANG 51.0% 10.3% 6.4% 1.4% 12.3% 7.3% 11.3%
DIS 3.6% 50.5% 10.4% 1.8% 14.6% 14.1% 5.0%
FEA 12.6% 10.4% 48.3% 13.8% 5.0% 6.9% 3.0%
HAP 3.0% 12.6% 10.4% 49.3% 12.1% 8.2% 4.4%
SAD 7.6% 10.2% 10.8% 5.3% 50.3% 9.8% 6.0%
SUR 3.0% 12.2% 10.8% 10.8% 8.5% 49.3% 5.4%
NEU 5.4% 1.3% 9.4% 9.4% 10.2% 8.6% 55.7%
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Table 5.9: Confusion matrix of seven-class expression recognition obtained by
TONPP under the F2C setting.

ANG DIS FEA HAP SAD SUR NEU
ANG 55.6% 9.3% 6.4% 1.4% 8.3% 7.2% 11.8%
DIS 3.6% 55.1% 11.4% 1.2% 11.6% 12.3% 4.8%
FEA 10.6% 10.4% 52.9% 11.2% 5.2% 7.2% 2.5%
HAP 3.0% 11.6% 11.4% 53.9% 8.2% 7.7% 4.2%
SAD 6.6% 10.2% 11.8% 5.6% 54.9% 8.2% 2.7%
SUR 3.0% 7.2% 11.8% 11.2% 8.2% 53.9% 4.7%
NEU 5.4% 11.3% 6.4% 6.8% 8.5% 9.3% 52.3%

literature. Since the training and testing samples are not independent and identi-

cally distributed in many real facial expression recognition applications, we have

proposed a new transfer subspace learning approach to learn a feature space which

transfers the knowledge gained from the training set to the target (testing) data

to improve the recognition performance under cross-dataset scenarios. Following

this idea, we have formulated four new transfer subspace learning methods, i.e.,

transfer PCA (TPCA), transfer LDA (TLDA), transfer LPP (TLPP), and trans-

fer ONPP (TONPP) for cross-dataset facial expression recognition. Experimental

results have demonstrated the efficacy of the proposed methods.

For our future work, we want to explore other facial representation methods such

as local binary patterns (LBP) and Gabor features to obtain more robust and

discriminative features for transfer learning to further improve the recognition ac-

curacy of cross-dataset facial expression recognition. Moreover, we also plan to

implement our proposed approach for practical human robot interaction applica-

tions to further show its effectiveness.
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Chapter 6

Dorothy Robotubby Evaluation

in Real Pilot Studies

6.1 Introduction

With the rapid development of social robots and increasing demands from robotic

users, human-robot interaction has been a hot topic and received a growing inter-

est in social robotic area over the past five years. As Goodrich and Schultz [90]

defined:“Human-Robot Interaction (HRI) is a field of study dedicated to under-

standing, designing, and evaluating robotic systems for use by or with humans”.

In this chapter, we evaluate our developed robotic nanny named Dorothy Robo-

tubby based on HRI.

An accurate evaluation not only reflects the developed robot’s performance such

as the usability, robustness, timeliness, and automaticity, but also provides the

feedback information from the users to help robotic designers to develop accept-

able and satisfactory robotic systems. That is because the users are true and

final operators of the robots. A feasible and popular solution to achieve effective
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evaluation results is pilot studies or field trials which test the robot with its target

subjects in lab environments or directly in real application environments. This

method has been used in many robot evaluation processes. For example, Keep-

on was conducted a pilot study for its rhythmic interaction with children in the

lab [47]; Olivia, a social robot that can inform and entertain visitors, was test-

ed by interacting with 120 visitors in a two-day annual exhibition TechFest [91];

Iromec [50] was placed at the primary school G.Pascoli and S.Martini in Siena to

evaluate the design aspects of the robot such as usability and acceptability; and

Paro was introduced to a care house to study its sociopsychological and physio-

logical influences on the elderly [45].

Dorothy Robotubby was introduced in Chapter 3 to play with and take care of

a child in case his/her parent or caregiver is absent. There are two main us-

er interfaces in our Dorothy Robotubby system: local control-based and remote

control-based. Local control-based interface is developed for a child to control

the robot directly to execute some tasks such as telling a story, playing music

and games, chatting, and video calling. Remote control-based interface is de-

signed for parents to control the robot remotely to execute several commands like

demonstrating facial expressions and gestures.

In this chapter, the used pilot studies focus mainly on two aspects: 1) to evaluate

whether the children like the appearance and functions of Dorothy Robotubby,

and 2) to collect the parent’s opinions on the remote user interface designs. Have

analyzed the pilot study results, in addition to the general evaluation of Robotub-

by’s performance, the feedback information from children and parents can help

us to reposition the developed robot such as the user’s age range and the robot’s
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Table 6.1: Personal information of the children involved in the survey.

Child No. 1 2 3 4 5 6 7
Age 4 5 5 10 10 12 13
Gender Female Female Female Male Female Male Male
Q1 Yes Yes Yes No Yes No Yes
Q2 No No Yes No Yes Yes Yes
Note Q1: Are you interested in a robot? Q2: Are you familiar with or

see a robot before?

application areas. Moreover, these useful information can provide significant ref-

erence to improve the current functions and to design new functions for our robot.

Since the functions of video call and remote control in remote user interface only

occupy a small part in the whole robot system, we mainly evaluate the interaction

between the child and the robot.

This chapter is organized as follows. Section 6.2 introduces experimental settings

and procedures. Section 6.3 describes evaluation methods. Section 6.4 discusses

experimental results, and Section 6.5 concludes this chapter.

6.2 Experimental Settings and Procedures

We conducted pilot studies in the Control and Mechatronics Lab at National

University of Singapore. Seven children and five parents who are friends of our

group were invited to help us to test our robot. There are 4 females and 3 males

aged from 4 to 13 years old. Table 6.1 lists some personal information of these

children. Among these children, 5 are interested in a robot and 4 are familiar

with or have seen a robot before. The tests were organized in individual session

except for two children who are the youngest with 4 and 5 years old, respectively.
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Figure 6.1: Two testing rooms of pilot study where (a) is testing room for the
child and (b) is testing room for the parent.

Considering that the children with 4 or 5 years old may feel uncomfortable to

a new environment, we allowed the parent to attend with their children at the

beginning of testing. Each child usually requires 25-30 minutes to complete the

test. Since it is difficult to ensure that all the involved children and parents are

available at the same time, we arranged their testings at three different sessions,

where 4, 2 and 1 children test our system in different sessions, respectively.

There are three computers used in our robot system. The computer for robot and

the computer for computation were placed in one room, and the computer for

parent was placed in another room. The distance between these two rooms is far

enough to ensure that the child and parent will not see and hear each other when

they test the video call and remote control functions. Figure 6.1 shows the two

testing rooms. A brief introduction on the experiments was presented to the child

and parent at the beginning of the test. During the whole test, a human assistant

also participated to answer questions and help solve problems from the child and
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parent. For younger children with 4 or 5 years old, an assistant helped them to

operate the robot until they could do it by themselves. While for the children

older than 10 years old, the assistant normally encouraged them to explore the

robot by themselves first. If required, the human assistant would supervise the

children’s activity.

There were two testing parts in the whole experiment which were designed to

follow a certain sequence. Firstly, the child was requested to test the robot’s func-

tions including story telling, chatting, music playing, game playing, face tracking,

and emotion recognition. Secondly, the parent was asked to test the remote us-

er interface’s functions including video call and remote control with the child.

During the whole test, the interaction activities between the child and the robot

were observed and recorded. After testing, participants were asked to complete a

questionnaire.

6.3 Evaluation Methods

To effectively evaluate and analyze the performance of Robotubby and the inter-

action between the child and the robot, the questionnaires focusing on children

and parents were prepared, respectively. The questionnaire for child was designed

to evaluate the robot’s functions and appearance, and the child’s feelings during

the interaction. The questionnaire for parent was employed to investigate the

parent’s feelings about the remote user interface’s design. The questions on both

questionnaires were based on a 5-point Likert scale and some suggestions were

requested if possible. Tables 6.2 and 6.3 enumerate the questions used in the
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Table 6.2: The questions used in the questionnaire for the child.

Question1 Robotubby system includes the functions of story telling, chatting,
music playing, game playing, face tracking, video call, emotion
recognition, and remote control, please score every one according
to their usability.

Answer very unsatisfied; unsatisfied; normal; satisfied; very satisfied
Question2 For the above functions, which one or ones do you like?
Answer Storytelling; Chatting; Music playing; Game playing; Face track-

ing; Video call; Emotion recognition; Remote control
Question3 About our Robotubby, how do you find its appearance?
Answer very scary; scary; normal; appealing; very appealing
Question4 What is your feeling to Robotubby after interaction with it?
Answer very boring; boring; normal; interesting; very interesting
Question5 Do you think Robotubby can be your friend?
Answer totally cannot; cannot; maybe; can; totally can
Question6 Do you think that Robotubby can appropriately recognize your

emotional states and feelings when it tells a story?
Answer totally cannot; cannot; maybe; can; totally can

Table 6.3: The questions used in the questionnaire for the parent.

Question1 Please score remote user interface from the factors of appearance,
operability, and functions.

Answer very unsatisfied; unsatisfied; normal; satisfied; very satisfied

questionnaires for the child and parent, respectively.

Summarizing the answers to each question in the questionnaires can reveal the

direct attitudes to the robot from both children and their parents. For example,

whether they like or dislike the developed robot. Analyzing the suggestions from

the children and parents can help us to understand their expectations to the robot

and thus to narrow the gap between our robot and their satisfactory robots.

Since the results from questionnaires are normally subjective, in addition to using

questionnaires, the activities of children with the robot were recorded by a video
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Figure 6.2: The statistical result of Question 1 in Table 6.2.

camera during the testing to increase objectivity of evaluation. By analyzing body

gestures, facial expressions, and verbal behaviors of the children in videos, we can

obtain more detailed information on the children’s feelings to Robotubby. Such

behavior analysis method has been widely used to study human-robot interaction

and also commonly applied in psychology to acquire knowledge in human social

interactions [91].

6.4 Results and Discussion

6.4.1 Results from Questionnaire Analysis

As listed in Table 6.2, the questionnaire for the child includes 6 questions that

focus mainly on the evaluation to the robot’s functions and appearance, and the

feelings of the child to the robot. Figures 6.2-6.7 illustrate the statistical result of

each question in the questionnaire based on the children’s assessments. Here the

score values indicate the number of children who vote for this category and hence

the maximal value should be the total number of children (7) involved in the test.
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Figure 6.3: The statistical result of Question 2 in Table 6.2.

Figure 6.2 shows the children’s responses to Question 1 in Table 6.2. The aim to

design this question is to evaluate each function of Robotubby according to usabil-

ity. We used 5 different colors to represent the degree of satisfaction. Dark blue,

light blue, green, orange, and brown are employed to denote “very unsatisfied”,

“unsatisfied”, “normal”, “satisfied”, and “very satisfied”, respectively. From the

figure, it can be seen that for the functions of chatting and video call, there is no

children to give negative assessments like “very unsatisfied” and “unsatisfied”; for

the functions of story telling, emotion recognition, and remote control, one child is

unsatisfied; for the functions of music playing and face tracking, two children are

unsatisfied; and for game playing, four children are unsatisfied, and one of them

is very unsatisfied. Generally speaking, most children feel normal or satisfied to

the developed functions except for game playing. The reason why game playing is

unsatisfied may be that there is only one game in this function. To improve this

function, one child suggested to add more game types, and another child advised

to make the game playing faster.

Figure 6.3 shows the children’s responses to Question 2 in Table 6.2. The colors
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Figure 6.4: The statistical result of Question 3 in Table 6.2.

of dark blue, green, and brown represent the age groups of the children. The

results show that the children involved in the survey show interests in different

robot functions versus their different ages. In particular, the children from 4 to

5 years old usually like the functions of story telling, music playing, and video

call; the children with 10 years old normally like the functions of game playing,

video call, and emotion recognition; the children from 12 to 13 years old like the

functions of chatting, face tracking, and emotion recognition; and no children like

the remote control function. This may be because the selected stories and music

are more suitable for younger children; the designed game is comparatively easy

for the children older than 10 years; younger children are more happy to talk with

their parents; older children usually like the function with higher technologies;

and less children like to be interfered when interacting with the robot.

For the appearance of the robot, the evaluation result is shown in Figure 6.4. We

can find that almost half of the children think it is scary and the rest think it is
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Figure 6.5: The statistical result of Question 4 in Table 6.2.

normal or appealing. Two remarkable appearance features of Robotubby are the

highly mobile face and the touch screen mounted on its belly, which are the main

reasons why children think our robot is appealing. While some children think the

robot is scary, a possible explanation is that the colors of the robot’s skin and

eyeballs are abnormal compared with real humans. One child who dislikes the

robot’s appearance gave his own reason:“the eyes are too big and never blink,

therefore, you will feel like someone is watching you.” Correspondingly, this child

suggests us to add a blinking function to the robot’s eyes. Two more children

think it would be better if the robot has hair and legs.

Figures 6.5 and 6.6 illustrate the opinions of the children after interacting with

Robotubby. From these two figures, we can find that five children think the robot

is normal or interesting after interacting with it and four children think the robot

maybe or can be their friend. It can also be found that the children who think
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Figure 6.6: The statistical result of Question 5 in Table 6.2.

Robotubby is boring and cannot be their friends are generally older than 10 years

old. Compared with younger children, they may have higher requirements for the

developed robot. Moreover, these older children normally have their own interest.

For example, two children gave the reasons why they think the robot is boring.

One child said:“It is not a car!” And the other child said:“I am not so interested

in music, stories, and basketball.” This may affect the attitude of a child to the

robot.

Generally speaking, most of the existing functions of Robotubby are too simple for

the older children and it is difficult to maintain their interest in the robot. On the

other hand, the younger children are more interested in Robotubby. Therefore,

our developed robot is more suitable for the younger children usually from 5 to

10 years old.

Since emotion recognition plays important roles on social robotics for a child and
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Figure 6.7: The statistical result of Question 6 in Table 6.2.

it is also an important part in the whole thesis, we designed a question (Question

6 in Table 6.2) to individually evaluate the effect of emotion recognition in Robo-

tubby, as shown in Figure 6.7. We can see from the figure that all the children

thought that Robotubby maybe or can appropriately recognize their emotional

states and feelings when it tells a story. One of the children said:“ It knows

that I was somewhat depressed.” Although emotion recognition is only applied

for storytelling function of the robot with current version, it still can activate the

children’s interest to interact with the robot. That is because once the robot is

not perceived as a mere machine due to its emotion recognition function in story-

telling, the children may easily keep it in their minds during the whole procedure

of interaction with the robot. Emotion recognition function makes the behavior

of the robot more believable and acceptable.

Compared with the survey on the children, we only prepared a simple question for
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Figure 6.8: The statistical result of Question 1 in Table 6.3.

the parents to evaluate the appearance, operability, and functions of the remote

user interface. Figure 6.8 shows the result of Question 1 in Table 6.3. As a

general observation from the figure, the parents thought the designed remote user

interface was normal or satisfactory. Considering the degree of satisfaction of

each evaluation item, three out of five parents thought operability of the remote

user interface is satisfactory which has the highest degree of satisfaction. The

followings are appearance and function items.

While there is no negative assessment with regard to the remote user interface’s

design, the parents offered us several suggestions. These suggestions not only

reflect the parents’ expectations to the design of remote user interface, but also

help us to further improve it.

With regard to appearance design, one parent suggested that the interface should

occupy the entire screen and some components should be highlighted such as the
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information showing robot status. The advice about operability design came from

another parent who thought there are too many buttons on the interface and the

simpler the better. Most of the rest suggestions focused on the interface’s function

design. In summary, three persons recommended to add another camera to show

the whole scene of the child and the robot together such that more surrounding

information and visual feedback could be provided to the remote side. One parent

proposed that the sound system in video call should be improved.

6.4.2 Results from Behavior Analysis

The interaction between the child and the robot was recorded by a camera. After

the entire testing on 7 children, we replayed the recorded videotapes and an-

notated the participants’ behaviors. To increase the reliability of the obtained

results, we used two coders for annotation. The behaviors can be mainly classi-

fied into two categories according to the degree of participation: high-interactive

and low-interactive. High-interactive behaviors include gaze, smile, touching, and

speech communication. Low-interactive behaviors consist of looking at the left

and right without focusing attention, quietly sitting with depressed expression,

and operating with no expression. We analyze these behaviors in this subsection.

Gaze behavior: During the interaction, the most frequent behavior is the gaze

behavior. Children’s gaze behavior can be described as gazing predominantly at

the robot, gazing predominantly at the screen, and mixed gazing at both screen

and robot. The first type of gaze behavior normally appeared when the robot

demonstrated different facial expressions and gestures. The second type usually

occurred when the child operated the robot by clicking the buttons on the screen
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Figure 6.9: Two examples of the children’s gaze behavior.

or the content on the screen changed. For the last type, it generally occurred when

the robot’s facial expressions or gestures and the screen’s content simultaneously

changed such as executing story telling and music playing functions. Figure 6.9

shows two examples of the children’s gaze behavior.

Contrary to the gaze behavior, three children occasionally behaved in the manner

of looking at the left and right without focusing attention during the interaction.

The recordings revealed that under such condition, the children’s attentions were

distracted from the robot to the other external factors such as the sound of voices

and the actions from other persons. It also implied that the currently executed

function of the robot cannot attract and maintain the children’s attention.

Smile behavior: For humans, smile is an expression denoting pleasure, joy, hap-

piness, or amusement. During the interaction, smile is the child’s response to the

robot’s behavior. All the children expressed this behavior during their interac-

tions. The difference is their different duration in smiling. Roughly speaking,

child 1 (C1), C2, and C5 smiled more than other children. C4 and C6 seldom

smiled during the interaction except when they operated chatting and video call
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Figure 6.10: Two examples of the children’s smile behavior.

functions of the robot. Figure 6.10 illustrates two examples of the children’s smile

behavior.

In addition, we examined these children’s questionnaires again and found a signif-

icant correlation between smile times and the child’s feelings to the robot. Gener-

ally, the children who express more smile behavior thought the robot is interesting

and can be their friend. In contrast, the children who seldom smile such as C4

and C6 thought the robot is boring and cannot be their friend.

Touching behavior: Besides the above two behaviors, touching is another ac-

tion used by the children during the interaction. The children’s touching behaviors

include touching the robot’s hands and touching the robot’s face. Through ob-

serving the recorded videos, we found that not all the children expressed this

behavior. Among the children, C2 and C3 touched the robot’s hands, and C3 and

C7 touched the robot’s face such as its skin, eyebrows, and mouth. By combining

facial expression and gesture analysis for these children, we think that C2 and C3

were close to the robot and expected to interact with it when they touched the

robot’s hands, and C3 and C7 seemed curious to the robot’s facial components
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Figure 6.11: Two examples of the children’s touching behavior.

when they touched the robot’s face. While there is not a direct relationship be-

tween touching behavior and the feelings of children to the robot, this behavior

could show that these children focused their attention on the robot at the moment

of expressing touching behavior. Figure 6.11 shows two examples of the children’s

touching behavior.

Speech behavior: Similar to touching behavior, speech is an occasional behavior

existing in interaction. Usually, the children asked for help from the assistant via

speech when they did not know how to explore the functions of the robot or

got into difficulty during interacting with the robot. In addition, some children

asked questions about the robot and provided advices to the assistant through

speech during the interaction. For example, C1 asked the assistant:“ Why dose

the robot have no legs?” C5 said:“ The game is so easy and I think it would be

better to throw the ball at a longer distance like at a 2-meter distance.” C5 also

said: “The younger children may like the music in the robot. It should allow

the users to choose their own songs because different people may like different

songs.” Compared with these questions and suggestions, the encouraging thing
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is that sometimes the children used greeting and polite languages to the robot.

For instance, C2 and C5 said “Hello, robot” when they saw the robot at the first

time. After the robot accomplished a task or it passed the ball to the child, C5

said “ Thank you” and “ Thank you very much” to the robot. When the children

express such speech behavior, they may enjoy the interaction with the robot at

this moment.

Besides gaze, smile, touching, and speech behaviors, the children also expressed

some other low-interactive behaviors such as quietly sitting with depressed expres-

sion and operating with no expression. These behaviors were normally expressed

by C4 and C6. These two children are not interested in the robot. It implies

that similar to smile behavior, these two behaviors may show some significant

correlations with the child’s feelings to the robot. If the children have no interest

in the robot, they will easily and frequently express these two behaviors.

When improving the current functions and designing new functions of the robot,

it would be better to consider how to activate the children to behave more in-

teractively. Due to the relationship between the above mentioned behaviors and

the degree of interaction with the robot, a reasonable solution is to develop the

functions that let the children frequently express the highly-interactive behaviors

such as gaze, smile, touching, and speech. For example, making the functions

more various and changeable may easily catch the child’s eyes like adding pictures

to storytelling; giving proper tactile feedbacks by the robot may make the child be

willing to touch the robot; and adding speech recognition function may increase

the child’s interest to talk with the robot.
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6.4.3 Results from Case Study

To comprehensively study the interaction between the child and the robot, we

analyzed three cases including four children. The reason to choose these four

children is that they expressed various behaviors during the interaction.

Case 1: The first case is a four-year-old girl C1 and a five-year-old girl C2. They

are from the same family. Since they are young, we arrange their mother to

interact with the robot together. When these two girls came to our lab and saw

the robot at the first time, they were excited and instantly sat before the robot.

After the assistant told them the robot can tell a story, C1 happily said:“ Oh,

great! It can tell a story for us.”, as illustrated in Figure 6.12(a).

However, when the robot began to tell a story with different gestures, the children

were apparently scared by the robot’s sudden motion. They ran away from the

robot and hid behind a chair. To release the children’s fear to the robot, we

stopped the story and played a music to them. While the children still did not

dare to approach the robot, they straight gazed the robot as if they were attracted

by the robot’s song and dance. Slowly, C2 did not hide behind the chair any more

and just stood away to watch the robot. This scene is shown in Figure 6.12(b).

To ensure the children interact with the robot successfully, we advised the children

to play a game with the robot. Their mother also told them the robot will not

hurt them and encouraged them to play with the robot. Then they sat before

the robot with their mother. After several demonstrations from the assistant,

the children gradually played the game by themselves which is shown in Figure

6.12(c).
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Figure 6.12: Several pictures for Case 1.

When testing the functions of chatting and video call, the children totally accepted

the robot and were not scared any more. They began to touch the robot’s hands

and follow its gestures. Frequent smiles indicated that they enjoyed to interact

with the robot. Figure 6.12(d) shows this scene.

The first case described the procedure of the children’s attitude changes to the

robot: from scare and acceptance to enjoyment. By looking up these two chil-

dren’s questionnaires and observing their videotapes, we found that they liked

storytelling function of the robot. What scared the children seemed the sudden

motion of the robot that may be beyond their imagine. In addition, young age
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and unfamiliarity to the robot are also possible reasons. Motivated by the fact

that with gradual familiarity to the robot, these two children finally enjoyed the

interaction, we could add a self-introduction function into the robot. The self-

introduction of the robot could be scheduled before the interaction by means of

several short videos which could be pre-stored in the computer of the robot. That

may make the children familiar with the robot in advance and reduce their fear

when interacting with the robot [44].

Case 2: The second case is a 10-year-old girl C5. From the beginning to the end

of the testing, she behaved actively and interested in Robotubby. When this girl

came to our lab and saw the robot at the first time, she said “Hello” to the robot.

After the assistant introduced the basic functions of the robot to her, the child

requested to play Mini game first as she liked to play games very much. At the

beginning of the game, the girl totally attracted by the robot, especially finding

that the robot can automatically pick up the ball from the basket and then pass

the ball to her. She expressed her affection by clapping hands and smile. Figures

6.13 (a) and (b) show these two behaviors of C5, respectively. She also used the

words “ This robot is cute!” to commend Robotubby’s actions and said “Thank

you!” to the robot as if the robot is not just a machine. With several times’

repeats of this game, the child was not so interested like the beginning any more.

She though the game is easy for the children at her age (10 years old) and it would

be better to increase its difficulty such as throwing the ball at a longer distance.

Then the child C5 tried storytelling and music playing functions of the robot.

When telling a story by the robot, C5 carefully listened to the story. Her gaze

changed between the story content of the screen and the demonstrated gestures
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Figure 6.13: Two examples of C5’s behavior for Case 2 where (a) is clapping hands
and (b) is smile.

of the robot. Sometimes, she touched the robot’s hands or face and smiled to the

robot. She said nothing about this function. By observing and analyzing her be-

havior, while the child acted interactively to a certain extent during storytelling,

she did not show much interest in this function since it is difficult to detect ex-

cited expressions from her behavior. During playing music video, the child smiled

several times and provided us some suggestions. She thought younger children

may like the selected music and it would be better to let the user choose their

favorite songs.

Next, the girl tested the functions of chatting and video call with her mother.

For chatting function, she asked the robot a question of “3+7=?” by means of

speech and typing texts, respectively. After finding the robot cannot correctly

answer, she smiled and then said “I beg your pardon” with a little disappointed.

At this time, it seemed that the girl did not treat Robotubby as a machine and

she expected that the robot could understand her words and help her to solve the

problems like a real human. With regard to video call, she expressed much interest
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again. She enjoyed to talk with her mother through the robot. In addition, she

followed the robot’s actions from remote control and guessed what the action is.

The second case is a representative example that the child shows great interest

in the robot and is well attracted by the robot. The result can be obtained by

observing and analyzing the child’s behavior. During the whole procedure of

interaction with the robot, the child C5 frequently expressed highly-interactive

behaviors that have been mentioned in the above subsection such as gaze, smile,

touching, and speech. In addition, she seldom behaved like looking at the left and

right without focusing attention, quietly sitting with depressed expression, and

operating with no expression. The similar result also can be obtained by looking

up C5’s questionnaire. The questionnaire showed that this child felt the robot is

very interesting after interacting with it and also thought that the robot totally

can be her friend. The answers from the questionnaire are consistent with the

expressed behaviors by the child.

Through studying the second case and summarizing the suggestions given by C5,

we could find that even if the child shows great interest in the robot and is well

attracted by the robot, we still need to improve or develop more various and

changeable functions of the robot. This is because we just arrange the children to

interact with the robot in a short time. With the passage of time, the children may

gradually lose their interest if the functions of the robot are changeless, especially

for the older children. To maintain the children’s interest, the functions suitable

for long-term interaction should be considered. In addition, we found that if the

robot behaves intelligently such as automatically picking up and passing the ball

and chatting with the child, the child does not easily treat the robot as a mere
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machine. For example, C5 communicated with the robot with the speech when

the robot behaved intelligently. Hence, more intelligent functions of the robot

should be taken into account.

Case 3: The third case is a 13-year-old boy C7. Considering the current functions

of the robot and the age of the child C7, it seems that the current functions are

relatively simple and easy for the child with 13 years old. That may be the

reason why C7 did not demonstrate great interest in the robot. This is also

verified by observing the videotape and analyzing the questionnaire. We can

find from the videotape that during the interaction with the robot, the child only

expressed highly-interactive behaviors like gaze, smile, and touching several times.

He frequently looked at the left and right without focusing attention. According

to the answers from the questionnaire, it can be seen that the child C7 thought

the robot is normal after interaction and it cannot be his friend.

While the child did not behave highly-interactively during interacting with the

robot, we still selected him as a study case. This is because after his own testing

with the robot, the child also participated other children’s testing. For example,

when other children interacted with the robot, he liked to be around to see them

and touched the robot’s face sometimes. Moreover, since C7 is the first child to

test the robot and it is easier for him to operate the robot at his age, he liked

to help other children if they met some difficulties when operating the robot.

We did not arrange this testing part for him, and this activity by him is totally

spontaneous. This is an interesting behavior and different from other children. For

other children, after they finished their own testing parts, some of them would

leave the testing location, and some of them would do their own thing without
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Figure 6.14: Two scene examples of C7.

drawing attention to the robot again even if they still were in the testing location.

Figures 6.14 (a) and (b) show two scene examples of C7.

The third case C7 demonstrated a special behavior: participation into other chil-

dren’s testing where the activity of helping other children looks like that from

the assistant to a certain extent. In addition, compared with other children, the

child C7 seemed to like to touch the robot such as its hands, skin, and facial

components. The reason why C7 expressed these behaviors may be that he would

like to understand more and deeper knowledge about the robot by exploring the

robot by himself and watching the interactions of other children. While we do

not know the real reason why C7 behaved like that, the child’s behavior could

prove that he is interested in something related to the robot even if that is not

about the developed functions of the robot. It inspires us that Robotubby may

be an intermedia between the child and other persons. For instance, the child

and his/her friends could play some games together that are developed on the

robot, and the teacher could take Robotubby as a tool to help the children learn

knowledge.
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6.4.4 Discussion

To better evaluate our developed robot, we employed questionnaires and video-

tapes in our study. The obtained results are from questionnaire analysis, behavior

analysis, and case study. Having summarized and analyzed these results, we can

find there is a consistency between them. Specifically, the children who are more

interested in this robot generally behave high-interactively and the children who

think the robot is boring usually show low-interactive behaviors.

As for the children’s attitude to the robot and behaviors expressed in the interac-

tion, many factors could influence them such as prior experience to the robot and

the preferences of males and females. The children C1 and C2 are examples to

show the influence of prior experience to the robot. As listed in Table 6.1, these

two children are not familiar with or have not seen a robot before. When they

saw the robot at the first time, they were very happy. But when the robot moved,

they felt fear. After interacting with the robot for a while, they felt happy again.

While for the other children who have interacted with the robot or something sim-

ilar, when the robot began to move, no one felt fear. Moreover, they can operate

the robot well after the helper’s introduction.

By analyzing the questionnaires and behaviors of the children, we have found

that the attitude and feelings to the robot from males and females are different.

Compared with male children, female children gave better evaluation to our robot

through the questionnaires. Moreover, through observing the behaviors of the

children during the interaction with the robot, it can be seen that female children

behaved more actively. The reason may be that female children normally like to
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play dolls and male children usually like cars or ball games, while the appearance

of our robot is more similar with dolls.

6.5 Summary

In order to improve the current functions and develop new functions of the robot,

we have designed a pilot study in this chapter from two main aspects: to evaluate

whether the children like the appearance and functions of Dorothy Robotubby

and to collect the parents’ opinions on the remote user interface designs. In the

pilot study, 7 children aged from 4 to 13 years old and 5 parents were invited to

our lab to attend this survey. After testing, questionnaires and videotapes were

employed to analyze the performance of Robotubby and the interaction between

the child and the robot. Results from questionnaire analysis, behavior analysis,

and case study have shown that while there is some room to improve our robotic

nanny, most children and parents express great interest in our robot and provide

comparatively positive evaluation. More important, several valuable and helpful

suggestions have been summarized and obtained from the result analysis phase.

That could make our robot more fascinating and to be used for more applications.

For future work, we are interested to improve the appearance, functions, and

user interfaces of the currently built robot system according to the children’s and

parents’ feedback, and improve the system by designing more effective functions.

For instance, a Kinect camera can be used to enable Robotubby to copy and follow

the child’s and parent’s certain gestures. A birds-eye-view camera can be utilized

such that the parent could see the whole picture of the interaction between the
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child and the robot. In addition, the application for the autistic children with

Robotubby will be explored and the functions aiming to the therapy for them will

be designed.



136

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have introduced our designed robotic nanny called Dorothy

Robotubby which aims to play with and take care of a child in case his/her

parent or caregiver is absent. Since emotion recognition can make important con-

tributions towards achieving a believable and acceptable robot and has become a

necessary and significant function in many social robotics for a child, we have also

studied facial expression-based emotion recognition and addressed two problems

which are important to drive facial expression recognition into real-world applica-

tions: misalignment-robust facial expression recognition and cross-dataset facial

expression recognition. Lastly, we have evaluated our robot Dorothy Robotubby

in a real pilot study. The followings detail the key contributions.

We first developed a robotic nanny named Dorothy Robotubby with a caricatured

appearance, consisting of a head, a neck, a body, two arms, two hands, and a touch
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screen in its belly. There were two main user interfaces in the designed robotic sys-

tem: local control-based and remote control-based. Local control-based interface

was developed for a child to control the robot directly to execute some tasks such

as telling a story, playing music and games, chatting, and video calling. Remote

control-based interface was designed for parents to control the robot remotely to

execute several commands such as demonstrating facial expressions and gestures.

By operating these two interfaces, our robot can not only interact with a child,

but also build a connection between a child and his/her parent. In addition, due

to the independent development, the built robot could be a robotic platform that

is easy to add new functions and explore new applications for the robot.

Second, we proposed a new misalignment-robust subspace analysis approach for

facial expression recognition. We first empirically showed that spatial misalign-

ments indeed affect the recognition accuracy of conventional subspace learning-

based facial expression recognition methods. To make better use of the different

interclass samples in learning the feature subspace, we proposed a biased subspace

analysis method by imposing large penalties on interclass samples with small dif-

ferences and small penalties on those samples with large differences simultaneously

such that more discriminative features can be extracted for recognition. More-

over, we learned a robust feature subspace by using the IMage Euclidean Distance

(IMED) rather than the widely used Euclidean distance such that the subspace

sought is more discriminative and robust to spatial misalignments. Experimental

results on two widely used face databases have demonstrated the efficacy of the

proposed method.

Then, we investigated the problem of cross-dataset facial expression recognition.
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Since the training and testing samples are not independent and identically dis-

tributed in many real facial expression recognition applications, we proposed a

new transfer subspace learning approach to learn a feature space which transfers

the knowledge gained from the training set to the target (testing) data to im-

prove the recognition performance under cross-dataset scenarios. Following this

idea, we formulated four new transfer subspace learning methods, i.e., transfer

PCA (TPCA), transfer LDA (TLDA), transfer LPP (TLPP), and transfer ONPP

(TONPP) for cross-dataset facial expression recognition. Experimental results

have demonstrated the efficacy of the proposed methods. Since facial images with

misalignment and cross-dataset problems are common in real-world application-

s, the proposed methods can serve as study reference to drive facial expression

recognition into real-world applications.

Lastly, we designed a pilot study to evaluate whether the children like the appear-

ance and functions of Dorothy Robotubby and collect the parents’ opinions on the

remote user interface design. In the pilot study, we invited 7 children and 5 parents

to our lab to attend this survey. After testing, we employed questionnaires and

videotapes to analyze the performance of Robotubby and the interaction between

the child and the robot. Results from questionnaire analysis, behavior analysis,

and case studies have shown that while there is some room to improve our robotic

nanny, most children and parents express great interest in our robot and provide

comparatively positive evaluation. More important, several valuable and helpful

suggestions have been obtained from the result analysis phase. That could make

our robot more fascinating in more applications in the future.
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7.2 Future work

In this section, we present some research directions which can be explored in the

future.

For misalignment-robust facial expression recognition, we will further extend the

proposed misalignment-robust subspace analysis approach to other supervised

manifold learning methods to further explore the nonlinear manifold structure

of facial expression data. Moreover, how to design a better penalty function to

further improve the recognition performance remains another interesting direction

of future work. We are also going to collect more facial expression images under

uncontrolled environments to examine the robustness of our proposed method in

real-world applications. In this study, we only assume there is spatial misalign-

ment in facial images, however, this assumption may not hold because there could

be some other variations in facial expression images such as varying illumination,

poses, and occlusions, even for the same person. Hence, how to simultaneously

deal with the spatial misalignment as well as other variations for robust facial

expression recognition remains to be addressed in the future.

For cross-dataset facial expression recognition, we want to explore other facial

representation methods such as local binary patterns (LBP) and Gabor features

to obtain more robust and discriminative features for transfer learning to further

improve the recognition accuracy of cross-dataset facial expression recognition.

Moreover, we also plan to implement our proposed approach for practical human

robot interaction applications to further show its effectiveness.

For our robot Dorothy Robotubby, we are interested to improve the appearance,
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functions, and user interfaces of the currently built robot system according to the

children’s and parents’ feedback, and improve the system by designing more effec-

tive functions. For instance, a Kinect camera can be used to enable Robotubby

to follow the child’s and parent’s certain gestures. A birds-eye-view camera can

also be utilized such that the parent could see the whole picture of the interaction

between the child and the robot. In addition, the application for the autistic chil-

dren with Robotubby is another interesting direction to be explored in the near

future.
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