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Summary

Summary

This dissertation aims to develop graph theoretical interpretations for properties of multi-

agent systems, which usually stand for collections of individual agents with local interac-

tions among the individuals. The interconnection topology has been proven to have a pro-

found impact on the collective behavior of whole multi-agent system. In particular, we aim

to reveal this kind of impact under external signals on system performance in terms of its

controllability and disturbance rejection capability. Interaction link weight plays an impor-

tant role in how interconnection topology affects multi-agent system behavior. Nonetheless,

it is assumed that interaction links have no weight in most theoretical study, until recently.

Consequently, in this dissertation, a weighted interconnection topology graph is adopted

as the graphic representation of multi-agent system. What follows is that rather than the

traditional controllability and disturbance rejection of multi-agent systems, we study these

two problems of multi-agent system in a new structural sense.

In the controllability discussion, multi-agent systems with switching topologies are

taken into consideration, which can be usually formulated as some kinds of hybrid sys-

tem. Consequently, controllability of hybrid systems: switched linear system, represent-

ing time-dependent switching, and piecewise linear systems, representing state-dependent

switching, is investigated first as a general case. More specifically, the structural controlla-

bility of switched linear systems is investigated first. Two kinds of graphic representations
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Summary

of switched linear systems are devised. Based on these topology graphs, graph theoretical

necessary and sufficient conditions of the structural controllability for switched linear sys-

tems are presented, which show that the controllability purely bases on the graphic topolo-

gies among state and input vertices. Subsequently, as a special class of switched linear

systems, the structural controllability of multi-agent systems under switching topologies

is investigated. Graph-theoretic characterizations of the structural controllability are ad-

dressed and it turns out that the multi-agent system with switching topology is structurally

controllable if and only if the union graph G of the underlying communication topologies

is connected (single leader) or leader-follower connected (multi-leader). Besides, as prede-

cessor research investigation for further study on multi-agent system with state-dependent

switching topology, we consider the null controllability of piecewise linear system. An ex-

plicit and easily verifiable necessary and sufficient condition for a planar bimodal piecewise

linear system to be null controllable is derived. What follows is a short discussion on how

to adopt the results to the research process of controllability of state-dependent multi-agent

systems.

The influence of interconnection topology on the disturbance rejection capability of

multi-agent systems in a structural sense is also addressed. Multi-agent systems consist-

ing of agents with non-homogeneous general linear dynamics are considered. With the

aid of graph theory, criteria to determine the structural disturbance rejection capability of

these systems are devised. These results show that using only the local disturbance re-

jection capability of each agent and the interconnection topology among local dynamics,

the disturbance rejection capability of whole multi-agent system can be deduced. Besides,

combination of disturbance rejection with controllability problem of multi-agent systems

is introduced. We explicitly deduce the requirement on multi-agent interconnection topolo-

gies to guarantee the structural controllability and structural disturbance rejection capability

viii
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simultaneously.
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Chapter 1

Introduction

Multi-agent systems, such as group of autonomous vehicles, power grid, sensor networks

and so on, have brought great influence to our lives. However, due to the number of subsys-

tems and the complexity of interactions among them, we still do not know how to control

such large scale complex systems fully. Here we are specially interested in how multi-agent

dynamics can be influenced by external signals and decisions in terms of controllability and

disturbance rejection capability. In the following introduction part, we will introduce the

background and motivation of this dissertation’s research first. Followed by reviews on

related research efforts in literature on multi-agent systems, such as consensus, controlla-

bility and disturbance rejection, together with review on structured systems and structural

properties, which will be the basis for the whole dissertation’s study. Finally, this chapter

will summarize the organization and research contribution of this dissertation.

1



1.1 Multi-Agent Systems

1.1 Multi-Agent Systems

1.1.1 Background and Motivation

Due to the latest advances in communication and computation, the distributed control and

coordination of the networked dynamic agents has rapidly emerged as a hot multidisci-

plinary research area [1–3], which lies at the intersection of systems control theory, com-

munication and mathematics. In addition, the advances of the research in multi-agent sys-

tems are strongly supported by their promising civilian and military applications, such as

distributed plants (power grids, collaborative sensor arrays, sensor networks, transporta-

tion systems, distributed planning and scheduling, distributed supply chains), distributed

computational systems (decentralized optimization, parallel processing, concurrent com-

puting, cloud computing) and multi-robot systems (cooperative control of unmanned air

vehicles(UAVs), autonomous underwater vehicles(AUVs), space exploration, air traffic

control) [4, 5]. The behavior of these multi-agent systems has an important feature: all

agents make their own local decisions while trying to coordinate the global goal with the

other agents in the system, which is quite similar as the collective behavior of biological

systems, such as ant colonies, bee flocking, and fish schooling. Usually, in these systems,

each agent has very limited sensing, processing, and communication capabilities. How-

ever, a well coordinated group of these elementary agents can generate more remarkable

capabilities and display highly complex group behaviors by following some simple rules

which require only local intuitive interactions among the agents. This brings the fact that

the group behavior is not a simple summation of the individual agent’s behavior and can be

greatly impacted by the communication protocols or interconnection topology among the

agents, which poses several new challenges on control of such large scale complex systems

2



1.1 Multi-Agent Systems

that fall beyond the traditional methods. Hence, the cooperative control of multi-agent sys-

tems is still in its infancy and attracts more and more researchers’ attention. Inspired by

experience gained from biological systems, researchers have started focusing their atten-

tion on investigating how the group units make their whole group motions under control or

get better performance just through limited and local interactions among them. In the next

part we will review some research directions and methods in multi-agent systems.

1.1.2 Research Efforts in Literature

Lots of research have been done on multi-agent system in terms of its stability, controlla-

bility, observability, and performance. Due to the significance of local interactions among

agents, there is a major on-going research effort in understanding how the interconnec-

tion topology influences the global behavior of multi-agent systems. On this topic, graph-

theoretic approach has been widely utilized for encoding the local interactions and infor-

mation flows in multi-agent systems. With the aid of algebraic graph theory [6], the inter-

actions among agents and the information flow described by corresponding representative

graphs can be translated into matrix representations, which can easily be incorporated into

a dynamical system. In this graph-theoretic approach, a frequently adopted model is the

Laplacian dynamics of multi-agent systems, which are built based on the Laplacian of rep-

resentative graphs. This model has shown its significance in solving wide range of multi-

agent related problems including consensus, social networks, flocking, formation control,

and distributed computation [7–12]. In multi-agent consensus problem, the objective of

multi-agent system is to make all agents agree upon certain quantities of interest, where

such quantities might or might not be related to the motion of the individual agents (for

example, the heading of a team of robots). In [7], the consensus problem was investigated

under either fixed or switching interconnection topology with directed or undirected flow

3



1.1 Multi-Agent Systems

graphs. In [11], unmanned aerial vehicles (UAVs) formation control, which is concerned

with whether a group of autonomous vehicles can follow a predefined trajectory while

maintaining a desired spatial pattern, was studied using the the Laplacian of a formation

graph and presented a Nyquist-like criterion. Besides this graph Laplacian, approaches

like artificial potential functions [13–15], and navigation functions [16–19] have also been

developed. In [13], using potential functions obtained naturally from the structural con-

straints of a desired formation, multiple autonomous vehicle systems distributed formation

control problem was investigated. The navigation function method was adopted in [16] to

deal with partially known environment for mobile robot motion planning.

Much more research investigation on the control and applications of multi-agent sys-

tems can be found in literature. A survey of recent research efforts, including formation

control, cooperative tasking, spatio-temporal planning, and consensus, and possible future

directions in cooperative control of multi-agent systems was introduced in [20]. Besides

the aforementioned work, other directions of research efforts can be observed in literature,

such as: parallel processing [21, 22], optimization based path planning [23–25], game the-

ory based coordinations [26], geometrical swarming [27,28], distributed learning [29], and

observability of distributed sensor network [30].

As we can see, much of the prior work has concentrated on properties of stability (for

example, consensus and formation control), observability (for example, observability of

distributed sensor network), and performance (for example, optimization based path plan-

ning) of multi-agent systems. Our goal in this dissertation is to consider situations where

multi-agent dynamics can be influenced by external signals and decisions. Consequently,

this dissertation has particular interest in two new angles of properties of multi-agent sys-

tems: the controllability as well as another performance index in terms of the disturbance

rejection capability. Section 1.1.3 will introduce the research efforts on controllability of

4



1.1 Multi-Agent Systems

multi-agent systems and in Section 1.1.4, some work on disturbance rejection of multi-

agent systems will be addressed. Section 1.1.5 will give a short review of structural systems

and structural properties, which will be the basis for the whole dissertation’s study.

1.1.3 Controllability of Multi-Agent Systems

The controllability issue of multi-agent systems has recently attracted attentions. Actually,

in control of multi-agent systems, it is desirable that people can drive the whole group

of agents to any desirable configurations only based on local interactions between agents

and possibly some limited commands to a few agents that serve as leaders. This can be

straightforwardly transferred to the controllability problem, under which the multi-agent

system would be considered as having the leader-follower framework: in this group of

interconnected agents, some of the agents, referred to as the leaders, are influenced by

an external control input, and the complement of the set of leaders in the system act as

followers, who will abide by some agreement protocol. This multi-agent controllability

problem was first proposed in [31], which formulated it as the classical controllability of a

linear system and proposed a necessary and sufficient algebraic condition in terms of the

eigenvectors of the graph Laplacian. Reference [31] focused on fixed topology situation

with a particular member which acted as the single leader. Besides, an interesting finding

was shown in [31] that increasing the connectivity of the interconnection topology graph

will not necessarily do good to the controllability of corresponding multi-agent system.

Subsequently, the problem was then developed in [32–41]. A notion of anchored systems

was introduced in [34] and it was substantiated that symmetry with respect to the anchored

vertices makes the system uncontrollable. This result was related to the symmetry and

automorphism group of the interconnection topology graph. In [32], sufficient condition

based on the null space of graph Laplacian for controllability of multi-agent systems was

5



1.1 Multi-Agent Systems

proposed. Furthermore, in [33], it was shown that a necessary and sufficient condition for

controllability is not sharing any common eigenvalues between the Laplacian matrix of

the follower set and the Laplacian matrix of the whole topology. To pursue a more intrin-

sic graph theoretical explanation of the controllability issue, in the same paper [33], the

authors introduced the network equitable partitions and proposed a graph-theoretic neces-

sary condition for the controllability of multi-agent systems. Following this new graphic

characterization method, [35] subsequently investigated the graphic interpretation of con-

trollability under multi-leader setting. In [41], the authors pushed the boundary further by

introducing the notion of relaxed equitable partitions and provided a graph-theoretic inter-

pretation for the controllability subspace when the multi-agent system is not completely

controllable. The controllability of multi-agent system under switching topologies was

studied in [37, 40], where some algebraic conditions for the controllability of multi-agent

systems were introduced.

From the above literature review, it can be observed that so far the research progress

using graph theory is quite limited and it remains elusive on getting a satisfactory graphic

characterization of the controllability of multi-agent systems. Besides, the weights of com-

munication links among agents have been demonstrated to have a great influence on the

behavior of whole multi-agent group (see e.g., [42]). However, in the previous multi-agent

controllability literature [31, 41], the communication weighting factor is usually ignored.

One classical result under this no weighting assumption is that a multi-agent system with

complete graphic communication topology is uncontrollable [31]. This is counter-intuitive

since it means each agent can get direct information from each other but this leads to a bad

global behavior as a team. This shows that too much information exchange may damage

the controllability of multi-agent system. In contrast, if we set weights of unnecessary links

to be zero and impose appropriate weights to other links so as to use the communication
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1.1 Multi-Agent Systems

Fig. 1.1: Interconnections in a multi-agent system

information in a selective way, then it is possible to make the system controllable [43].

Motivated by the above observation, in this dissertation, the weighting factor is taken into

account for multi-agent controllability problem. In particular, rather than the classical con-

trollability of multi-agent systems, a new notion for the controllability of multi-agent sys-

tems, called structural controllability, which was proposed by us in [43], is investigated

directly through the graph-theoretic approach for control systems. Besides, since fixed in-

terconnection topologies may restrict their impacts on real applications, switching topolo-

gies will be adopted in investigation of multi-agent controllability in this dissertation. Take

a real multi-agent system as example [44], which consists of helicopters, ships, tanks and

submarines as depicted in Fig.1.1 . For the whole system, it’s required to turn on/off some

interconnection links to save energy and achieve the global goal with optimized commu-

nication energy usage. Under this situation, people can arbitrarily control the intercon-

nections and this interconnection topology is called time-dependent switching topology of

multi-agent systems. Under some other situations, the interconnections are influenced by

factors that are out of control, such as distance and signal strength, which means the inter-

connection topology can not be fixed or arbitrarily controlled. Here it is assumed that the

7



1.1 Multi-Agent Systems

interconnections are fully determined by the agents’ states and the corresponding multi-

agent system interconnection topology is state-dependent switching topology. More details

are provided in Chapter 3.

1.1.4 Disturbance Rejection

The problem of rejecting disturbances appears in a variety of applications including aircraft

flight control systems [45, 46], active control systems of offshore structures affected by

ocean wave forces [47], active noise control systems [48], rotating mechanical systems and

vibration damping in industrial applications [49, 50], etc. As systems performing tasks in

natural environments such as microsatellite clusters, formation flying of UAVs, automated

highway systems and mobile robotics, the coordination of multi-agent systems also faces

the challenge of external disturbance, which is a pervasive source of uncertainty in most

applications. Hence, the control of such large scale complex systems must address the issue

of disturbance rejection [51, 52].

Early research efforts on disturbance rejection problem can be traced back decades ago

and rich literature can be found for the disturbance rejection for various control systems.

In [53], under linear time-invariant systems, the authors discussed the problem of distur-

bance rejection by using state feedback, feed forward control and dynamic compensation

in control u. A constructive solvability condition of disturbance rejection problem was

introduced. Polynomial approach was adopted in [54] as a tool for analysis of the distur-

bance rejection problem of linear systems. Using an external polynomial model and the

algebra of polynomials, solvability conditions were addressed together with a simple de-

sign procedure providing a stable dynamical solution. The authors in [55], investigated the

8



1.1 Multi-Agent Systems

disturbance rejection of nonlinear system. A sufficient condition was addressed to guaran-

tee the existence of PI compensator of a given nonlinear plant to yield a stable closed-loop

system with desired tracking and disturbance rejection performance. With the aid of neural

networks, in [56] the state space of the disturbance-free plant was expanded to eliminate the

effect of the disturbance. For some special cases, theoretical condition was introduced for

complete rejection of the disturbance. In [57], under the disturbance-observer-based con-

trol (DOBC) framework, different observer designs were addressed for plants with different

nonlinear dynamics for rejecting external disturbances. With the goal to find optimal distur-

bance rejection PID controller, the authors in [58] formulated this problem as a constrained

optimization problem. Employing two genetic algorithms, a new method was developed

for solving the constraint optimization problem. Inherited from traditional PID controller,

active disturbance rejection control (ADRC) has been a work in progress [59–61]. With

unknown system dynamics, [61] gave a detailed introduce of each component of ADRC as

well as its structure and philosophy. Besides, the internal model principle is also adopted in

disturbance rejection problem [62–64]. By using an adaptive observer, a compensator was

designed to reject a biased sinusoidal disturbance in [63]. The authors of [64] proposed an

internal model structure with adaptive frequency to cancel periodic disturbances.

Although the literature in disturbance rejection is rich, little attention has been paid to

disturbance rejection of multi-agent systems, especially on the impact of interconnection

topology among agents to disturbance rejection capability of whole multi-agent systems.

In spite of this, some related research efforts can be observed in literature. Based on the

Lyapunov function method, in [65], the problem of persistent disturbance rejection via state

feedback for networked control systems was considered. The feedback gain to guarantee

the disturbance rejection performance of the closed-loop system was derived with the aid

of linear matrix inequalities. In [66], targeting analysis and growing analysis methods
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were adopted to the deadbeat disturbance rejection problem of multi-agent systems and a

necessary condition for successful disturbance rejection was proposed. The authors in [67]

built equivalence between the disturbance rejection problem of a multi-agent system and a

set of independent systems whose dimensions are equal to that of a single agent. Besides, an

interesting phenomenon was also observed is that the disturbance rejection capability of the

whole multi-agent system coupled via feedback of merely relative measurements between

agents will never be better than that of an isolated agent. In [51], the networked sensitivity

transfer functions between any pair of agents for a given topology were developed for the

convenience of disturbance rejection study of multi-agent systems. Disturbance rejection

capability of uncertain multi-agent networks was investigated based on the proposed model

reference adaptive control (MRAC) laws in [52].

Similar as the controllability problem, in this dissertation, under the disturbance rejec-

tion problem, we will consider multi-agent system described by weighted and directed in-

terconnection topology, which most commonly emerges in complex system. Consequently,

rather than the traditional disturbance rejection, the disturbance rejection in a structural

sense will be discussed. Detailed motivation and discussions are addressed in Chapter 5.

Since both the controllability and disturbance rejection will be investigated in a struc-

tural sense, in the following part, we will give a short survey on structured system and what

is going on in its structural properties study.

1.1.5 Structured System and Structural Properties

Motivated by the fact that the exact values of system parameters are usually difficult to

obtain in practical applications due to uncertainties and noises, it is desirable to model

physical systems into structured systems. A structured system is representative of a class

10



1.1 Multi-Agent Systems

of linear systems in the usual sense, whose system parameters are free parameters or fixed

zeros. The structured systems viewpoint allows the determination of system properties to

lie in the system structure and to remain invariant to changes in the parameter values. These

so-called structural properties turn out to be true for almost all parameter values except for

parameters in the zero set of some nontrivial polynomial with real coefficients in the system

parameters.

The study of structured system was first introduced in [68], in which the structured

system was associated with a directed graph whose vertices correspond to the input, state

or output variables, and with an edge between two vertices if there is a free parameter

relating the corresponding two variables in system dynamic equations and the structural

controllability was investigated subsequently. The structural controllability study was fur-

ther developed by [69] and alternatively investigated by [70, 71]. The authors in [72] fur-

ther extended the structural controllability from linear system to interconnected linear sys-

tems. Following this framework, the structural controllability study for these composite

structured systems was further derived using graph-theoretic method in [73–75]. In [75],

criteria to determine the structural controllability of whole composite system using local

structural controllability properties and the interconnection topology were developed. Lots

of other control problems have been extensively investigated under this structured system

framework. [76] addressed some basic issues and approaches related to structured property

study and [77] provides a good survey of recent research efforts on structured systems.

To describe the generic structure of transfer matrix at infinity, [78, 79] introduced disjoint

input-output paths in the associated graph to deduce the infinite zero orders. The authors

in [80–82] addressed how to determine the generic number of kinds of zeros for structured

systems. Using graphic approaches to determine the state or feedback disturbance rejection

problem was extensively addressed in [79, 83–86]. The authors in [83] substantiated that
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whenever the control inputs reach the outputs more quickly than the disturbances, the dis-

turbance rejection is solvable by state feedback generically. In [85], necessary and sufficient

conditions were derived for the generic solvability of the disturbance decoupling problem

by measurement feedback for structured transfer matrix systems. In relation to the distur-

bance decoupling problem by measurement feedback, the sensor location and classification

problem was introduced in [87]. [88] adopted graph-theoretic tools to show what kind of

structured system can generically be decoupled into single-input, single-output systems

by state feedback. This input-output decoupling problem was further investigated in [89].

Some investigations on decentralized control of structured systems were also addressed

in [90, 91].

Based on the above literature review and motivation discussions, we are now ready to

outline the detailed research problems attempted in this dissertation.

1.2 Contributions and Outline

The group behavior of multi-agent systems depends not only on the dynamics of each in-

dividual agent, but also on the local interactions among agents, i.e., the interconnection

topology. In this dissertation, we aim to reveal the impact of interconnection topology on

performance indexes of multi-agent systems under external signals (control signal and dis-

turbance). In particular, controllability and disturbance rejection problems are addressed.

The major novelties of this dissertation lie in the following several points:

• Rather than the traditional controllability and disturbance rejection, we consider a

weighted interconnection topology of multi-agent systems, which quite commonly
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emerges in complex systems, and investigate the controllability and disturbance re-

jection in a structural sense, which are of more practical meaning, can overcome the

inherently incomplete knowledge of the link weights and reduce the complexity of

obtained justification algorithms. Besides, this kind of structural properties are true

for almost all weight combinations except for some zero measure cases that occur

when the system parameters satisfy certain accidental constraints.

• Graph theoretical interpretations of multi-agent system properties are addressed, which

reveal the intrinsic relationship of interconnection topology and system behavior.

This kind of graphic conditions make it convenient to verify system property just

through the topology graph.

• Switching topologies are taken in to account under the multi-agent controllability

problem, for which, to the best of our knowledge, there is almost no graph theory

based study in literature.

Multi-agent systems with switching topologies are usually formulated as some kinds

of hybrid system. Consequently, properties of hybrid systems: switched linear system and

piecewise linear system, are investigated first as a general case. Then subsequent multi-

agent properties study follows. The outline and contributions of this dissertation are ad-

dressed as follows.

First of all, the structural controllability of switched linear systems is investigated in

Chapter 2. Two graphic representations of switched linear systems are presented. First,

referring to the definition of structural controllability of linear system, we give the for-

mal definition of structural controllability of switched linear systems. Subsequently, one

representation graph named union graph is introduced. After addressing several graphic

properties and their reflections in system matrix form, a sufficient condition for structural

13



1.2 Contributions and Outline

controllability of switched linear system is proposed. Furthermore, to obtain a elegant

graphic interpretation of structural controllability, we devise another graph called colored

union graph, in which edges from different subsystems (subgraphs) are labeled with dif-

ferent indexes (different colors). Based on this new proposed graph, two necessary and

sufficient conditions for structural controllability are developed. Furthermore, the algo-

rithm for verifying the graphic conditions is also presented together with the computation

complexity estimation.

Following the discussion in Chapter 2, Chapter 3 formulates multi-agent system with

switching topology as a special class of switched linear systems. Subsequently, the struc-

tural controllability of multi-agent systems is addressed and graphic interpretations of

structural controllability under single/multi-leader under fixed/switching interconnection

topology are proposed.

In Chapter 4, we consider the null controllability of piecewise linear system, which

consists of two second order LTI systems separated by a line crossing through the origin.

This can be treated as predecessor research effort for further study on multi-agent system

with state-dependent switching topology. In the first part, the null controllability problem

is addressed. First, the evolution directions from any non-origin state are studied from

the geometric point of view, and it turns out that the directions usually span an open half

space. Then, we derive an explicit and easily verifiable necessary and sufficient condition

for a planar bimodal piecewise linear system to be null controllable. In the second part,

a short survey of research efforts on state-dependent multi-agent systems together with

possible application of the result obtained for piecewise linear system to state-dependent

multi-agent system are presented.

Chapter 5 considers how the interconnection topology influences the structural distur-

bance rejection capability of multi-agent systems. The intrinsic interactions among states
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of agents are illustrated using a weighted and directed interconnection graph. Two kinds

of systems models are considered: multi-agent systems with identical single integrator dy-

namics and multi-agent systems with non-homogeneous general linear dynamics. Criteria

to determine the structural disturbance rejection capability of these systems using only

the local disturbance rejection capability and the interconnection topology among local dy-

namics are devised. Besides, this chapter investigates the potential combination of obtained

disturbance rejection results with the controllability problem of multi-agent systems. We

explicitly show under what kind of interaction topologies, the whole multi-agent system is

structurally controllable and meanwhile has structural disturbance rejection capability

In Chapter 6, we summarize the dissertation and discuss the results obtained. We also

sketch the possible future steps to continue the work started with this dissertation.
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Chapter 2

Structural Controllability of Switched

Linear System

2.1 Introduction

In this chapter we will focus on providing solutions to the structural controllability prob-

lem of switched linear systems with the aid of graph theory. This work can be treated

as a general case or predecessor research effort of the following study on structural con-

trollability of multi-agent systems with switching topologies in Chapter 3. The structural

controllability is a generalization of the traditional controllability concept for dynamical

systems, and purely based on the graphic topologies among state and input vertices. The

main underlying question here is to reveal how the graphic topologies of switched linear

systems will influence or determine the structural controllability of switched linear systems

and what are the graph theoretic necessary and sufficient conditions for the controllability.

To fully describe the graphic topologies of switched linear systems, two kinds of graphic

representations, union graph and colored union graph, will be addressed. After devising
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clear relations between several graphic properties and system matrices, graph theory based

necessary and sufficient characterizations of the structural controllability for switched lin-

ear systems are presented. A brief literature review on controllability of switched linear

systems and the motivation of the tackled problem in this chapter are given as follows.

As a special class of hybrid control systems, a switched linear system consists of several

linear subsystems and a rule that orchestrates the switching among them. Switching be-

tween different subsystems or different controllers can greatly enrich the control strategies

and may accomplish certain control objective which can not be achieved by conventional

dynamical systems. For example, it provided an effective mechanism to cope with highly

complex systems and/or systems with large uncertainties [92]. References [93] presented

good examples that switched controllers could provide a performance improvement over

a fixed controller. Besides, switched linear systems also have promising applications in

control of mechanical systems, aircrafts, satellites and swarming robots. Driven by its im-

portance in both theoretical research and practical applications, switched linear system has

attracted considerable attention during the last decade [94–102].

Much work has been done on the controllability of switched linear systems. For ex-

ample, the controllability and reachability for low-order switched linear systems have been

presented in [96]. Under the assumption that the switching sequence is fixed, references

[97] and [98] introduced some sufficient conditions and necessary conditions for control-

lability of switched linear systems. Complete geometric criteria for controllability and

reachability were established in [99] and [101].

Up to now, all the previous work mentioned above has been based on the traditional

controllability concept of switched linear systems. In this chapter, we propose a new no-

tion for the controllability of switched linear system: structural controllability, which may

be more reasonable in face of uncertainties. Actually, it is more often than not that most of
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system parameter values are difficult to identify and only known to certain approximations.

On the other hand, we are usually pretty sure where zero elements are either by coordi-

nation or by the absence of physical connections among components of the system. Thus

structural properties that are independent of a specific value of unknown parameters, e.g.,

the structural controllability studied here, are of particular interest. It is therefore assumed

here that all the elements of matrices of switched linear systems are fixed zeros or free

parameters. Furthermore, the switched linear system is said to be structurally controllable

if one can find a set of values for the free parameters such that the corresponding switched

linear system is controllable in the classical sense. For linear structured systems, generic

properties including structural controllability have been studied extensively and it turns out

that generic properties including structural controllability are true for almost all values of

the parameters [68–71,75–77,103,104]. That is also true for switched linear systems stud-

ied here and presents one of the reasons why this kind of structural controllability is of

interest.

Graphic conditions can help to understand how the graphic topologies of dynamical

systems influence the corresponding generic properties, here especially for the structural

controllability. This would be helpful in many practical applications. For example, for

multi-agent systems in Chapter 3, graphic interpretations for structural controllability help

us to understand the necessary information exchange among agents to make the whole

team well-behaved, e.g., controllable. Therefore, this motivates our pursuit on illuminating

the structural controllability of switched linear systems from a graph theoretical point of

view. In this chapter, we propose two graphic representations of switched linear systems

and finally, it turns out that the structural controllability of switched linear systems only

depends on the graphic topologies of the corresponding systems.

The organization of the rest of this chapter is as follows. In Section 2.2, we introduce
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some basic preliminaries and the problem formulation, followed by structural controllabil-

ity study of switched linear systems in Section 2.3, where several graphic necessary and

sufficient conditions for the structural controllability are devised. Numerical examples to-

gether with discussions on a more general case are also presented. Finally, some concluding

remarks are drawn in Section 2.4.

2.2 Preliminaries and Problem Formulation

2.2.1 Graph Theory Preliminaries

First of all, the definition and example of a structured matrix are introduced as follows:

Definition 1. P is said to be a structured matrix if its entries are either fixed zeros or

independent free parameters. P̃ is called admissible (with respect to P) if it can be obtained

by fixing the free parameters of P at some particular values. In addition Pi j is adopted to

represent the element of P at row i and column j.

Example 1. P=


0 λ1

λ2 λ3

 is a structured matrix, where λ1, λ2 and λ3 are free parameters,

and P̃=


0 1

2 0

 is admissible with respect to P.

Following the above definition, now consider a linear control system:

ẋ = Ax(t) + Bu(t), (2.1)

where x(t) ∈ Rn and u(t) ∈ Rr. The matrices A and B are structured matrices, which means

that their elements are either fixed zeros or free parameters. This structured system given
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Fig. 2.1: Stem

by matrix pair (A, B) can be described by a directed graph [68]:

Definition 2. The representation graph of structured system (A, B) is a directed graph G,

with vertex setV = X∪U, where X = {x1, x2, . . . , xn}, which is called state vertex set and

U = {u1, u2, . . . , ur}, which is called input vertex set, and edge set I = IUX ∪ IXX, where

IUX = {(ui, x j)|B ji , 0, 1 ≤ i ≤ r, 1 ≤ j ≤ n} and IXX = {(xi, x j)|A ji , 0, 1 ≤ i ≤ n, 1 ≤
j ≤ n} are the oriented edges between inputs and states and between states defined by the

interconnection matrices A and B above. This directed graph (for notational simplicity, we

will use digraph to refer to directed graph) G is also called the graph of matrix pair (A, B)

and denoted by G(A, B).

Note that the total number of vertices inG(A, B) equals to the summation of dimension n

of system states and dimension r of system control inputs. One important graphic definition

in a digraph G is needed before we proceed forward:

Definition 3. (Stem [68]) An alternating sequence of distinct vertices and oriented edges

is called a directed path, in which the terminal node of any edge never coincide to its initial

node or the initial or the terminal nodes of the former edges. A stem is a directed path in

the state vertex set X, that begins in the input vertex setU.

Two graphic properties ‘accessibility’ and ‘dilation’ were proposed by [68], which will

serve as the basis of following discussion. We state them as follows:

Definition 4. (Accessibility [68]) A vertex (other than the input vertices) is called nonac-

cessible if and only if there is no possibility of reaching this vertex through any stem of the
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Fig. 2.2: Dilation

graph G.

Definition 5. (Dilation [68]) Consider one vertex set S formed by the vertices from the

state vertices set X and determine another vertex set T (S ), which contains all the vertices

v with the property that there exists an oriented edge from v to one vertex in S . Then the

graph G contains a ‘dilation’ if and only if there exist at least a set S of k vertices in the

vertex set of the graph such that there are no more than k − 1 vertices in T (S ).

Graphic illustrations for ‘stem’ and ‘dilation’ are shown in Fig.2.1 and Fig.2.2 respec-

tively.

2.2.2 Switched Linear System, Controllability and Structural Con-

trollability

In general, a switched linear system is composed of a family of subsystems and a rule that

governs the switching among them, and is mathematically described by

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), (2.2)

where x(t) ∈ Rn are the states, u(t) ∈ Rr are piecewise continuous input, σ : [0,∞)→ M ,

{1, . . . ,m}, where time slot 0 is system initial time, is the switching signal. System (2.2)
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contains m subsystems (Ai, Bi), i ∈ {1, . . . ,m} and σ(t)= i implies that the ith subsystem

(Ai, Bi) is active at time instance t.

In the sequel, the following definition of controllability of system (2.2) will be adopted

[99]:

Definition 6. Switched linear system (2.2) is said to be (completely) controllable if for any

initial state x0 and final state x f , there exist a time instance t f > 0, a switching signal

σ : [0, t f )→ M and an input u : [0, t f )→ Rr such that x(0) = x0 and x(t f ) = x f .

For the controllability of switched linear systems, a well-known matrix rank condition

was given in [100]:

Lemma 1. ( [100]) If matrix:

[B1, B2, . . . , Bm, A1B1, A2B1, . . . , AmB1, A1B2, A2B2, . . . , AmB2, . . . , A1Bm, A2Bm,

. . . , AmBm, A2
1B1, A2A1B1, . . . , AmA1B1, A1A2B1, A2

2B1, . . . , AmA2B1, . . . , A1AmBm

, A2AmBm, . . . , A2
mBm,

, . . . ,

An−1
1 B1, A2An−2

1 B1, . . . , AmAn−2
1 B1, A1A2An−3

1 B1, A2
2An−3

1 B1, . . . , AmA2An−3
1 B1 . . . ,

A1An−2
m Bm, A2An−2

m Bm . . . , An−1
m Bm]

(2.3)

has full row rank n, then switched linear system (2.2) is controllable, and vice versa.

Remark 1. This matrix is called controllability matrix of switched linear system (2.2) and

for simplicity, we will use C(A1, . . . , Am, B1, . . . , Bm) to represent it. If we use ImP to repre-

sent the range space of arbitrary matrix P, actually,

ImC(A1, . . . , Am, B1, . . . , Bm) is the controllable subspace of switched linear system (2.2)(see

[99] and [100]). The above lemma implies that system (2.2) is controllable if and only if
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ImC(A1, . . . , Am, B1, . . . , Bm) = Rn. Besides, controllable subspace can be expressed as

〈A1, . . . , Am|B1, . . . , Bm〉, which is the smallest subspace containing ImBi, i = 1, . . . ,m and

invariant under the transformations A1, . . . , Am [102].

In view of structural controllability, system (2.2) will be treated as structured switched

linear system defined as:

Definition 7. For structured system (2.2), elements of all the matrices

(A1, B1, . . . , Am, Bm) are either fixed zero or free parameters and free parameters in different

subsystems (Ai, Bi), i ∈ M are independent. A numerically given matrices set (Ã1, B̃1, . . . ,

Ãm, B̃m) is called an admissible numerical realization (with respect to (A1, B1, . . . , Am, Bm))

if it can be obtained by fixing all free parameter entries of (A1, B1, . . . , Am, Bm) at some

particular values.

Similar with the definition of structural controllability of linear system in [76], we have

the following definition for structural controllability of switched linear system (2.2):

Definition 8. Switched linear system (2.2) given by its structured matrices

(A1, B1, . . . , Am, Bm) is said to be structurally controllable if and only if there exists at least

one admissible realization (Ã1, B̃1, . . . , Ãm, B̃m) such that the corresponding switched linear

system is controllable in the usual numerical sense.

Remark 2. It turns out that once a structured system is controllable for one choice of

system parameters, it is controllable for almost all system parameters, in which case the

structured system then will be said to be structurally controllable [68, 77].

Before proceeding further, we need to introduce the definition of g-rank of one matrix:

Definition 9. The generic rank (g-rank) of a structured matrix P is defined to be the maxi-

mal rank that P achieves as a function of its free parameters.
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Then, we have the following algebraic condition for structural controllability of system

(2.2):

Lemma 2. Switched linear system (2.2) is structurally controllable if and only if

g-rank C(A1, . . . , Am, B1, . . . , Bm) = n.

2.3 Structural Controllability of Switched Linear Systems

2.3.1 Criteria Based on Union Graph

For switched linear system (2.2), digraph Gi(Ai, Bi) with vertex setVi and edge set Ii can

be adopted as the representation graph of subsystem (Ai, Bi), i ∈ {1, . . . ,m}.

As to the whole switched system, one kind of representation graph, which is called

union graph, is described in the following definition:

Definition 10. Switched linear system (2.2) can be represented by a union digraph G
(sometimes named union graph without leading to confusion). Mathematically, G is de-

fined as

G1 ∪ G2 ∪ . . . ∪ Gm = {V1 ∪V2 ∪ . . . ∪Vm;I1 ∪ I2 ∪ . . . ∪ Im}

For union graph G, the vertex set is the same as the vertex set of every subgraph Gi. The

edge set of G equals to the union of the edge sets of the subgraphs. Note that there are no

multiple edges between any two vertices in G.

Remark 3. It turns out that union graph G is the representation graph of linear structured

system: (A1 + A2 + . . . + Am, B1 + B2 + . . . + Bm). The reason is as follows: If the element
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at position a ji(b ji) in matrix [A1 + A2 + . . . + Am, B1 + B2 + . . . + Bm] is a free parameter,

this implies that there exist some matrices [Ap, Bp], p = 1, . . . ,m such that the element at

position a ji(b ji) is also a free parameter and in the corresponding subgraph Gp, there is an

edge from vertex i to vertex j. According to the definition of union graph, it follows that

there is also an edge from vertex i to vertex j in union graph G. If the element at position

a ji(b ji) in [A1 + A2 + . . .+ Am, B1 + B2 + . . .+ Am] is zero, this implies that for every matrices

[Ap, Bp], p = 1, . . . ,m, the element at position a ji(b ji) is zero and in the corresponding

subgraph Gp, there is no edge from vertex i to vertex j. It follows that there is also no edge

in union graph G from vertex i to vertex j.

Before proceeding further, we need to introduce two definitions which were proposed

in [68] for linear system (2.1) first:

Definition 11. ( [68]) The matrix pair (A, B) is said to be reducible or of form I if there

exists a permutation matrix P such that they can be written in the following form:

PAP−1 =


A11 0

A21 A22

 , PB =


0

B22

 , (2.4)

where A11 ∈ Rp×p , A21 ∈ R(n−p)×p, A22 ∈ R(n−p)×(n−p) and B22 ∈ R(n−p)×r.

Remark 4. Whenever the matrix pair (A, B) is of form I, the system is structurally uncon-

trollable ( [68]) and meanwhile, the controllability matrix

C ,
[
B, AB, . . . , An−1B

]
will have at least one row which is identically zero for all parame-

ter values [70]. If there is no such permutation matrix P, we say that the matrix pair (A, B)

is irreducible.
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Definition 12. ( [68]) The matrix pair (A, B) is said to be of form II if there exists a per-

mutation matrix P such that they can be written in the following form:

[
PAP−1, PB

]
=


P1

P2

 , (2.5)

where P2 ∈ R(n−k)×(n+r) , P1 ∈ Rk×(n+r) with no more than k − 1 nonzero columns (all the

other columns of P1 have only fixed zero entries).

The following lemma, which will underpin the following analysis on switched linear

systems, details the criteria for evaluating structural controllability of linear system (A, B)

[68, 76]:

Lemma 3. ( [68,76]) For linear structured system (2.1), the following statements are equiv-

alent:

a) the pair (A, B) is structurally controllable;

b) i)[A, B] is irreducible or not of form I,

ii)[A, B] has g-rank[A, B] = n or is not of form II;

c) i)there is no nonaccessible vertex in G(A, B),

ii)there is no ‘dilation’ in G(A, B).

This lemma proposed interesting graphic conditions for structural controllability of lin-

ear systems and revealed that the structural controllability is totally determined by the un-

derlying graph topology. However, for switched linear systems, to the best of our knowl-

edge, proper graphic representations which can determine the structural controllability

properties of switched linear systems are still lacking in the literature.
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With the previous lemmas and definitions, we are in the position to present the first

main result of the chapter, which is actually a graphic sufficient condition for structural

controllability of switched linear systems:

Theorem 4. Switched linear system (2.2) with graphic topologies Gi, i ∈ {1, . . . ,m}, is

structurally controllable if its union graph G satisfies:

i) there is no nonaccessible vertex in G,

ii) there is no ‘dilation’ in G.

Proof. Assume the two conditions in this theorem are satisfied. According to Remark 3

and Lemma 3, the corresponding linear system (A1 + A2 + . . . + Am, B1 + B2 + . . . + Bm) is

structurally controllable. It follows that there exist some scalars for the free parameters in

matrices (Ai, Bi), i = 1, 2, . . . ,m such that controllability matrix

[B1 + B2 + . . . + Bm, (A1 + A2 + . . . + Am)(B1 + B2 + . . . + Bm),

(A1 + A2 + . . . + Am)2(B1 + B2 + . . . + Bm), . . . ,

(A1 + A2 + . . . + Am)n−1(B1 + B2 + . . . + Bm)]

has full row rank n. Expanding the matrix, it follows that matrix

[B1 + B2 + . . . + Bm, A1B1 + A2B1 + . . . + AmB1 + A1B2 + A2B2

+ . . . + AmB2 + . . . + A1Bm + A2Bm . . . + AmBm, . . . ,

An−1
1 B1 + A2An−2

1 B1 + . . . + An−1
m Bm]

has full rank n.
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The following matrix can be got after adding some column vectors to the above matrix:

[B1 + B2 + . . . + Bm, B2, . . . , Bm, A1B1 + A2B1 + . . . + AmB1 + A1B2 + A2B2

+ . . . + AmB2 + . . . + A1Bm + A2Bm + . . . + AmBm, A2B1, . . . , AmBm, . . . ,

An−1
1 B1 + A2An−2

1 B1 + . . . + A1An−2
m B1 + . . . + An−1

m Bm, A2An−2
1 B1, . . . ,

A1An−2
m B1, . . . , An−1

m Bm].

Since this matrix still has n linear independent column vectors, it follows that it has full row

rank n. Next, subtracting B2, . . . , Bm from B1 + B2 + . . . + Bm; subtracting A2B1, . . . , AmBm

from A1B1 + A2B1 + . . . + AmB1 + . . . + A1Bm + . . . + AmBm and subtracting A2An−2
1 B1, . . . ,

A1An−2
m B1, . . . , An−1

m Bm from An−1
1 B1 + A2An−2

1 B1 + . . .+ A1An−2
m B1 + . . .+ An−1

m Bm, we can get

the following matrix:

[B1, B2, . . . , Bm, A1B1, A2B1, . . . , AmBm, . . . ,

An−1
1 B1, A2An−2

1 B1, . . . , A1An−2
m B1, . . . , An−1

m Bm],

which is the controllability matrix for switched linear systems (2.2). Since column funda-

mental transformation does not change the matrix rank, this matrix still has full row rank

n. Hence, the switched linear system (2.2) is structurally controllable. �

Actually, from the proof, we can see that full rank of controllability matrix of linear

system (A1 + A2 + . . . + Am, B1 + B2 + . . . + Bm) in Remark 3 implies the full rank of con-

trollability matrix of system (2.2), which means that the structural controllability of this

linear system implies structural controllability of system (2.2). It turns out that this cri-

terion is not necessary for system (2.2) to be structurally controllable (see the example in

subsection 3.4). This implies that the union graph does not contain enough information for

determining structural controllability. This is because edges from different subsystems are
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not differentiated in union graph. In the following subsection, another graphic representa-

tion of switched linear systems is proposed, from which necessary and sufficient conditions

for structural controllability arise.

2.3.2 Criteria Based on Colored Union Graph

Another graphic representation:‘colored union graph’ is defined as follows:

Definition 13. Switched linear system (2.2) can be represented by a colored union digraph

G̃(Ṽ, Ĩ) (sometimes named colored union graph without leading to confusion), where ver-

tex set Ṽ = {V1 ∪ V2 ∪ . . . ∪ Vm} and edge set Ĩ = {e|e ∈ Ii, i = 1, 2, . . . ,m}, i.e., for

i ∈ {1, . . . ,m}, to each edge e we associate index i in G̃, if this edge is associated to the

subsystem i (subgraph Gi). Note that we associate several indexes (several different colors)

to an edge e if it belongs to several subsystems.

With this colored union graph, several graphic properties are introduced in the following

lemmas.

Lemma 5. There is no nonaccessible vertex in the colored union graph G̃ of switched

linear system (2.2) if and only if the matrix

[A1 + A2 + · · · + Am, B1 + B2 + · · · + Bm] (2.6)

is irreducible or not of form I.

Proof. One vertex is accessible if and only if it can be reached by a stem. From Definitions

10 and 13, it follows that there is no nonaccessible vertex in the colored union graph if and

only if there is no nonaccessible vertex in the union graph. Besides, from Remark 3, it is
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clear that the matrix representation of the union graph is [A1 + A2 + · · · + Am, B1 + B2 +

· · ·+ Bm]. According to Lemma 3, there is no nonaccessible vertex in the union graph if and

only if matrix (2.6) is irreducible or not of form I. Consequently the equivalence between

accessibility of colored union graph and irreducibility of matrix (2.6) gets proved. �

A new graphic property ‘S -dilation’ in colored union graph needs to be introduced

here:

Definition 14. In colored union graph G̃, which is composed of subgraphsGi, i = 1, 2, . . . ,m,

consider one vertex set S formed by the vertices from the state vertex set X and determine

another vertex set T (S ) = {v|v ∈ Ti(S ), i = 1, 2, . . . ,m}, where Ti(S ) is a vertex set in Gi

which contains all the vertices w with the property that there exists an oriented edge from

w to one vertex in S . Then |T (S )| =
∑m

i=1 |Ti(S )|. If |T (S )| < |S |, we say that there is a

S -dilation in the colored union graph G̃.

Based on this new graphic property, the following lemma can be introduced:

Lemma 6. There is S -dilation in the colored union graph G̃ of switched linear system (2.2)

if and only if matrix [A1, A2, . . . , Am, B1, B2, . . . , Bm] is of form II. It means that this matrix

can be written into: [A1, A2, . . . , Am, B1, B2, . . . , Bm]=


P1

P2

, where P1 ∈ Rp×k with no more

than p − 1 nonzero columns (all the other columns of P1 have only fixed zero entries).

Proof. From [68] and [71] or Lemma 3, it is known that in linear systems, there is no

‘dilation’ in the corresponding graph if and only if the matrix pair [A, B] can not be of

form II or have g-rank = n. From the explanation of this result in [68] and Definition 12,

P1 in [A, B] has p rows, which actually represents the p vertices of vertex set S (defined

for dilation), and each nonzero element of each row of P1 represents that there is one

vertex pointing to the vertex presented by this row. Therefore, the number of nonzero
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columns in P1 is the number of vertices pointing to some vertex in S , and actually equals

to |T (S )|. Furthermore, by the definition of S -dilation, |T (S )| is now the summation of

|Ti(S )|, i ∈ {1, . . . ,m}, in every subgraph. Consequently, it follows that there is S -dilation

in the colored union graph G̃ if and only if matrix [A1, A2, . . . , Am, B1, B2, . . . , Bm] is of form

II. �

Before going further to give another algebraic explanation of S -dilation, one definition

and lemma proposed in [69] must be introduced first:

Definition 15. ( [69]) A structured n × m′ (n ≤ m′) matrix A is of form (t) for some t,

1 ≤ t ≤ n, if for some k in the range m′ − t < k ≤ m′, A contains a zero submatrix of order

(n + m′ − t − k + 1) × k.

Lemma 7. ( [69]) g-rank of A = t

i) for t = n if and only if A is not of form (n);

ii) for 1 ≤ t < n if and only if A is of form (t + 1) but not of form (t).

From the above definition and lemma, another lemma is proposed here:

Lemma 8. There is no S -dilation in the colored union graph G̃ of switched linear system

(2.2) if and only if the following matrix

[A1, A2, . . . , Am, B1, B2, . . . , Bm] (2.7)

has g-rank n.

Proof. Necessity: If the matrix in (2.7) has g-rank < n, from Lemma 7, it follows that this

matrix is of form (n). Then referring to Definition 15, the matrix in (2.7) must have a zero
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submatrix of order (n + m′ − t − k + 1) × k. Here, t can be chosen as n, then (2.7) has a

zero submatrix of order (m′ − k + 1) × k. For this (m′ − k + 1) rows, there are only (m′ − k)

nonzero columns. Consequently, the matrix in (2.7) is of form II and by Lemma 6, there is

S -dilation in the colored union graph G̃ of switched linear system (2.2).

Sufficiency: If there is S -dilation in the colored union graph G̃, by Lemma 6, the matrix

in (2.7) is of form II, then obviously P1 in (2.7) can not have row rank equal to k and

furthermore, the matrix in (2.7) can not have g-rank = n. �

With the above definitions and lemmas, a graphic necessary and sufficient condition for

switched linear system to be structurally controllable can be proposed here:

Theorem 9. Switched linear system (2.2) with graphic representations Gi,

i ∈ {1, . . . ,m}, is structurally controllable if and only if its colored union graph G̃ satisfies

the following two conditions:

i) there is no nonaccessible vertex in the colored union graph G̃,

ii) there is no S -dilation in the colored union graph G̃.

Proof. Necessity: (i) If there exist nonaccessible vertices in G̃, by Lemma 5, the matrix

[A1 + A2 + · · · + Am, B1 + B2 + · · · + Bm] is reducible or of form I. It follows that the

controllability matrix

[B1 + B2 + . . . + Bm, (A1 + A2 + . . . + Am)(B1 + B2 + . . . + Bm),

(A1 + A2 + . . . + Am)2(B1 + B2 + . . . + Bm), . . . ,

(A1 + A2 + . . . + Am)n−1(B1 + B2 + . . . + Bm)]

always has at least one row that is identically zero (Remark 4). It is clear that every com-

ponent of the matrix, such as Bi, AiB j and Ap
i Aq

j Br has the same row always to be zero. As
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a result, the controllability matrix

[B1, . . . , Bm, A1B1, . . . , AmB1, . . . , AmBm, A2
1B1, . . . , AmA1B1, . . . , A2

1Bm, . . . ,

AmA1Bm, . . . , An−1
1 B1, . . . , AmAn−2

1 B1, . . . , A1An−2
m Bm, . . . , An−1

m Bm]

always has one zero row and can not be of full rank n. Therefore, switched linear system

(2.2) is not structurally controllable.

(ii) Suppose that switched linear system (2.2) is structurally controllable, i.e., the con-

trollability matrix satisfies g-rank C(A1, . . . , Am, B1, . . . , Bm) = n. Specifically,

Im[B1, . . . , Bm, A1B1, . . . , AmBm, A2
1B1, . . . , An−1

m Bm] = Rn. Since ∀P ∈ Rn×r, Im(AiP) ⊆
Im(Ai), we have that Im[B1, . . . , Bm, A1B1, . . . , AmBm, A2

1B1, . . . , An−1
m Bm] ⊆ Im[A1, A2, . . . ,

Am, B1, B2, . . . , Bm] ⊆ Rn. Thus condition g-rank C(A1, . . . , Am, B1, . . . , Bm) = n requires

that Im[A1, A2, . . . , Am, B1, B2, . . . , Bm] = Rn and therefore g-rank [A1, A2, . . . , Am, B1,

B2, . . . , Bm] = n. However, if there is S -dilation in the colored union graph G̃, by Lemma

6, g-rank [A1, A2, . . . , Am, B1, B2, . . . , Bm] < n. Consequently, the switched linear system

(2.2) is not structurally controllable.

Sufficiency: The general idea in the sufficiency proof is that we will assume that the two

graphic conditions in the theorem hold. Then a contradiction will be found such that it is

impossible that switched linear system (2.2) is structurally uncontrollable.

Before proceeding to switched linear system (2.2), firstly, consider a structured linear

system:

ẋ(t) = Ax(t) + Bu(t) (2.8)

It is well known that system (2.8) is structurally controllable if and only if there exists

a numerical realization (Ã, B̃), such that rank (sI − Ã, B̃) = n,∀s ∈ C. Otherwise, the

PBH test [105] states that system (2.8) is uncontrollable if and only if for every numerical
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realization, there exists a row vector q , 0 such that qÃ = s0q, s0 ∈ C and qB̃ = 0, where

rank (s0I − Ã, B̃) < n.

On one hand, if for every numerical realization rank (sI − Ã, B̃) = n,∀s ∈ C \ {0}, then

the uncontrollability of system (2.8) implies necessarily that for every numerical realization

there exists a vector q , 0 such that qÃ = 0 and qB̃ = 0.

On the other hand, Lemma 14.1 of [76] states that, if in the digraph associated to (2.8),

every state vertex is an end vertex of a stem (accessible), then g-rank (sI − A, B) = n,∀s ∈
C \ {0}, which means that for almost all numerical realization (Ã, B̃), rank (sI − Ã, B̃) =

n,∀s ∈ C \ {0}.

Now considering switched linear system (2.2), assume that the two conditions in Theo-

rem 9 are satisfied. Due to Lemma 14.1 of [76], as all the parameters of matrices A1, . . . , Am,

B1, . . . , Bm are assumed to be free, the condition (i) of Theorem 9 implies that, for almost all

vector values ū = (ū1, . . . , ūm), we have g-rank (sI−(ū1A1+. . .+ūmAm), (ū1B1+. . .+ūmBm)) =

n,∀s , 0. On the other hand, if switched linear system (2.2) is structurally uncontrol-

lable, then for all constant values, ū = (ū1, . . . , ūm), linear systems defined by matri-

ces (Ā, B̄) are also uncontrollable, where Ā =
∑m

i=1 ūiAi and B̄ =
∑m

i=1 ūiBi. We write

the numerical realization of (Ā, B̄) as ( ˜̄A, ˜̄B). This is due to the fact that for all con-

stant values ū, Im(C(Ā, B̄) ⊆ Im(C(A1, . . . , Am, B1, . . . , Bm)). Therefore, if the switched

linear system is structurally uncontrollable, since for almost all ū = (ū1, . . . , ūm), g-rank

(sI− (ū1A1 + . . .+ ūmAm), (ū1B1 + . . .+ ūmBm)) = n,∀s , 0, we have that for every numerical

realization matrix pair ( ˜̄A, ˜̄B), there exists a nonzero vector q such that q ˜̄A = 0 and q ˜̄B = 0.

Since this statement is true for almost all the values ū = (ū1, . . . , ūm), we have that for al-

most all n · m-tuple values ū j = (ū j
1, . . . , ū

j
m), j = 1, . . . , n · m, we can find nonzero vectors
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q j such that the following holds:



∑m
i=1 ū j

i q jÃi = 0, j = 1, . . . , n · m
∑m

i=1 ū j
i q jB̃i = 0. j = 1, . . . , n · m

(2.9)

Obviously, there can not exist more than n linear independent vectors q j. Let us denote

q1, q2, . . . , qn the vectors such that span (q1, q2, . . . , qn·m) ⊆
span (q1, q2, . . . , qn) (we can renumber the vectors if necessary). All the vectors q j, j =

n + 1, . . . , n · m are linear combinations of q1, q2, . . . , qn. Therefore, system (2.9) contains

the following equations:



∑n
k=1

∑m
i=1 a j

i,k(ū)qkÃi = 0 j = 1, . . . , n · m
∑n

k=1
∑m

i=1 a j
i,k(ū)qkB̃i = 0 j = 1, . . . , n · m

(2.10)

where a j
i,k(ū) are linear functions of ū j, j = 1, . . . , n · m. Since system (2.9) is satisfied for

almost all the values, we can find ū j, j = 1, . . . , n · m such that

det



a1
1,1(ū) a1

1,2(ū) . . . a1
m,n(ū)

a2
1,1(ū) a2

1,2(ū) . . . a2
m,n(ū)

...
...

...
...

an·m
1,1 (ū) an·m

1,2 (ū) . . . an·m
m,n(ū)



, 0.

In this case, the only solution of (2.10) is qkÃ1 = . . . = qkÃm = qkB̃1 = · · · = qkB̃m =

0, k = 1, . . . , n. Obviously, if the switched linear system is structurally uncontrollable,

then vector qk, k = 1, . . . , n is nonzero. Consequently, switched linear system (2.2) is

structurally uncontrollable only if for every numerical realization there exists at least one

nonzero vector q such that qA1 = . . . = qAm = qB1 = · · · = qBm = 0. However, if condition

ii of Theorem 9 is satisfied, then g-rank [A1, . . . , Am, B1, . . . , Bm] = n and therefore, for at
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least one numerical realization, there does not exist a vector q , 0 such that qA1 = . . . =

qAm = qB1 = · · · = qBm = 0. Hence, the two conditions are sufficient to ensure the

structural controllability of switched linear system (2.2). �

Actually, using the terminologies ‘dilation′ and ‘S -dilation′ as graphic criteria is not so

numerically efficient. For example, to check the second condition of Theorem 9, we need

to test for all possible vertex subsets to see whether there exist S -dilation in the colored

union graph or not. Consequently, we will adopt another notion ‘S -dis joint edges’ to form

a more numerically efficient graphic interpretation of structural controllability.

Definition 16. In the colored union graph G̃, consider k edges e1 = (v1, v′1), e2 = (v2, v′2), . . . ,

ek = (vk, v′k). We define for i = 1, . . . , k, S i as the set of integers j such that v j = vi, i.e.,

S i = {1 ≤ j ≤ k|v j = vi}. These k edges e1, e2, . . . , ek are S -dis joint if the following two

conditions are satisfied:

i) edges e1, e2, . . . , ek have distinct end vertices,

ii) for i = 1, . . . , k, S i = {i} or there exist r distinct integers i1, i2, . . . , ir such that e j1 ∈
Ii1 , e j2 ∈ Ii2 , . . . , e jr ∈ Iir , where j1, j2, . . . , jr are all the elements of S i.

Roughly speaking, k edges are S -dis joint if their end vertices are all distinct and if all

the edges which have the same begin vertex can be associated to distinct indexes i. For this

new graphic property, the following lemma can be given:

Lemma 10. Considering switched linear system (2.2), there exist n S -dis joint edges in

associated colored union graph G̃ if and only if [A1, A2, . . . , Am, B1, B2, . . . , Bm] has g-rank

= n.

Proof. Necessity: If there exist n S -dis joint edges in G̃, matrix [A1, A2, . . . , Am,

B1, B2, . . . , Bm] contains at least n free parameters. Since the n S -dis joint edges have
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distinct end vertices, the corresponding n free parameters lie on n different rows. Be-

sides, the n S -dis joint edges have distinct begin vertices or have same begin vertex that

can be associated to distinct indexes i. This implies that these n free parameters lie on

n different columns. keep these n free parameters and set all the other free parameters

to be zero. We can see that matrix [A1, A2, . . . , Am, B1, B2, . . . , Bm] has following form:

0 λ1 0 0 . . . 0

0 0 0 λ2 . . . 0
...

...
...

...

λn 0 0 0 . . . 0

.



, which has g-rank = n.

Sufficiency: From the Definition 12.3 and the following discussions of [76], for a struc-

tured matrix Q, g-rank Q = s-rank Q. where s-rank of Q is defined as the maximal num-

ber of free parameters that no two of which lie on the same row or column. If matrix

[A1, A2, . . . , Am, B1, B2, . . . , Bm] has g-rank = n, it follows that there exists n free parame-

ters from n different rows, which implies that the corresponding n edges have different end

vertices, from n different columns, which implies that these n edges start from different

vertices or start from same vertices but can be associated to different indexes. Hence the

condition that the matrix has g-rank = n is sufficient to ensure the existence of n S -dis joint

edges. �

With the above definition and lemma, another necessary and sufficient condition for

structural controllability of system (2.2) can be proposed here:

Theorem 11. Switched linear system (2.2) with graphic representations Gi, i ∈ {1, . . . ,m},
is structurally controllable if and only if its colored union graph G̃ satisfies the following

two conditions:

i) there is no nonaccessible vertex in the colored union graph G̃,
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ii) there exist n S -dis joint edges in the colored union graph G̃.

Proof. Lemma 6 and Lemma 10 show that there exist n S -dis joint edges in the colored

union graph G̃ if and only if there is no S -dilation in G̃. Then this theorem follows imme-

diately. �

2.3.3 Computation Complexity of The Proposed Criteria

Compared with condition using ‘S -dilation′, this condition using ‘S -dis joint edges’ does

not require to check all the vertex subsets, which is a more efficient criterion. The maximal

number of ‘S -dis joint edges’ can be calculated using bipartite graphs. For example, we can

use the algorithm in [106], which allows to compute the cardinality of maximum matching

into a bipartite graph. A bipartite graph is a graph whose vertices can be divided into

two disjoint sets U and W such that every edge connects a vertex in U to one in W.

To build a bipartite graph in directed subgraph Gi(Vi,Ii), what we need to do is adding

some vertices and making Ui = {v ∈ Vi|∃(v, v′) ∈ Ii}, which implies that cardinality

|Ui| equals to the number of nonzero columns in matrix [Ai, Bi]. Besides, Wi = Xi, i.e.,

the state vertex set. Then it follows that the maximum matching in this bipartite graph

is the same as the maximal S -dis joint edge set in Gi(Vi,Ii). According to definition of

S -dis joint edges, the beginning vertex from different subgraphs should be differentiated

when building the bipartite graph for colored union graph G̃. Therefore for the bipartite

graph of G̃,U = {v|∃(v, v′) ∈ Ii, i = 1, 2, . . . ,m}, which implies that cardinality |U| equals

to the number of nonzero columns in matrix [A1, A2, . . . , Am, B1, B2, . . . , Bm]. AndW = X,

i.e., the state vertex set. Similarly, the maximum matching in this bipartite graph is the

same as the maximal S -dis joint edge set in colored union graph. Therefore the complexity

order of algorithm using method in [106] is O(
√

p + n · q), where q is the number of edges
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Fig. 2.3: Multi-agent system with switching topologies

in colored union graph, i.e., the number of free parameters in all system matrices, p is the

number of nonzero columns in matrix [A1, A2, . . . , Am, B1, B2, . . . , Bm] and n is number of

state variables. Compared with condition (ii) of Theorem 11, condition (i) of Theorem 11

is easier to check. We have to look for paths which connect each state vertex with one of

the input vertex. This is a standard task of algorithmic graph theory. For example, depth-

first search or breadth-first search algorithm for traversing a graph can be adopted and the

complexity order is O(|V | + |E|), where |V | and |E| are cardinalities of vertex set and edge

set in union graph.

2.3.4 Numerical Examples

In the first example, we will consider a real group of control objects which can be modeled

as switched linear system: A multi-agent systems with switching topologies as illustrated

in Fig.2.3 [107].

This multi-agent system adopts a leader-flower structure, consisting of one airship,

which works as the leader, and three ground robots, which work as followers. There are
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Fig. 2.4: Switched linear system with two subsystems

communications among the agents: the leader airship gives commands to some of fol-

lower ground robots and ground robots transmit position information to each other. All the

commands and communication channels are under people’s control, which means we can

turn on/off communications as our wish to save energy. The structural controllability of

this multi-agent system implies that all robots can reach any desired position configuration

through proper choices of communication information weights among robots under com-

mand from the leader airship. Here we assume there are totally two kinds of communication

topologies as shown in Fig.2.3. For the multi-agent system under specific communication

topology, it can be modeled as a linear system. Consequently, for the whole multi-agent

system with two switching topologies, it can be modeled as a switched linear system with

two subsystems. This switched linear system is depicted by the graphic topologies in Fig.

2.4(a)-(b). In colored union graph G̃ (Fig. 2.4(d)), thick lines represent edges from sub-

graph (a) and thin lines represent the edges from subgraph (b). Vertices 1,2 and 3 represent

system states (ground robots positions) and vertex 0 represents system control input (com-

mand from airship). It turns out that the colored union graph G̃ has no nonaccessible vertex

and no S -dilation. Besides, the three edges are S -dis joint edges since they have different

end vertices and one edge begins at vertex 3 and two edges begin at vertex 0 but they come

from different subsystems. According to Theorem 9 or 11, the switched linear system is

structurally controllable. On the other hand, the system matrices of each subsystem of
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Fig. 2.5: The boost converter

Fig. 2.6: Pulse-width modulation

corresponding subgraph are:

A1 =



0 0 0

0 0 0

0 0 0


, B1 =



0

0

λ1


; A2 =



0 0 0

0 0 λ2

0 0 0


, B2 =



λ3

0

0


.

controllability matrix (2.3) can be calculated and can be shown to have g-rank=3. In ad-

dition, there exist a dilation in union graph Fig. 2.4(c), which shows that the condition in

Theorem 4 is not necessary for structural controllability.

In the following example, we will consider another real control object with switched

linear system model: A PWM-Driven Boost Converter [108] as illustrated in Fig.2.5.

In this electrical network, L is the inductance, C the capacitance, R the load resistance,
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Fig. 2.7: PWM driven boost converter

Fig. 2.8: Switched linear system with two subsystems

and eS (t) the source voltage. With this converter, the source voltage eS (t) can be trans-

formed into a higher voltage eC(t) over the load R. The switch s(t), which is supposed to

have two states, namely, 0 and 1, is controlled by a PWM device. Then, we have s(t) ∈ {0, 1}
as shown in Fig.2.6. The schematic of the PWM-driven Boost converter is shown in Fig.2.7.

By introducing the normalized variables τ = t/T , L1 = L/T , and C1 = C/T , the dynamics

for the Boost converter are described as follows:

ėC(τ) = −1
RC1

eC(τ) + (1 − s(τ)) 1
C1

iL(τ),

i̇L(τ) = −(1 − s(τ)) 1
L1

eC(τ) + s(τ)) 1
L1

eS (τ),
(2.11)

Let x1 = eC, x2 = iL, u = eS σ = s + 1, then the system dynamics can be described as:

ẋ = Aσx + Bσu, σ ∈ {1, 2} (2.12)
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2.3 Structural Controllability of Switched Linear Systems

where:

A1 =


− 1

RC1

1
C1

− 1
L1

0

 , B1 =


0

0

 ; A2 =


− 1

RC1
0

0 0

 , B2 =


0

1
L1

 .

Modeling this system using independent parameter and zero elements, we have that

A1 =


λ1 λ2

λ3 0

 , B1 =


0

0

 ; A2 =


λ4 0

0 0

 , B2 =


0

λ5

 .

The two subsystems are depicted by the graphic topologies in Fig. 2.8(a)-(b). In colored

union graph G̃ (Fig. 2.8(c)), thin lines represent edges from subgraph (a) and thick lines

represent the edges from subgraph (b). It turns out that the colored union graph G̃ has no

nonaccessible vertex and no S -dilation. Besides, the edge starting from x2 and ending at x1

with index (a) together with the edge starting from u and ending at x2 with index (b) consist

of two S -dis joint edges since they have different starting and ending vertices. According

to the results obtained above, this switched electrical network is structurally controllable

and similarly the rank condition can be checked that it has full g-rank 2.

Form the above example, we can see that in some real applications there are some

dependent parameters among subsystems (since under our independent case, the structural

controllability holds for almost all values of the free parameters, the dependent case can

be treated as a further extension but will not belittle the significance of results obtained

above). For further investigation purpose, next we will use examples to illustrate that the

dependence among system parameters will make some edges ‘useless’ or ‘excessive’ in

judging the structural controllability. See the following switched linear system first

A1 =


0 0

0 0

 , B1 =


λ1

λ2

 ; A2 =


0 0

0 0

 , B2 =


λ3

λ4

 .
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According to Theorem 9 or 11, this system is structurally controllable. However, if depen-

dent parameters are considered, see the following switched linear system (a linear system

actually)

A1 =


0 0

0 0

 , B1 =


λ1

λ2

 ; A2 =


0 0

0 0

 , B2 =


λ1

λ2

 .

The dependence of all the parameters in matrix B1 and B2 makes this system not structurally

controllable and the results in Theorem 9 or 11 not hold, even though it would be struc-

turally controllable if the parameters in B2 are replaced with λ3 and λ4 or simply remove λ1

or λ2 in the second subsystem.

2.4 Conclusions

In this chapter, structural controllability for switched linear systems has been investigated.

Combining the knowledge in the literature of switched linear systems and graph theory, sev-

eral graphic necessary and sufficient conditions for the structural controllability of switched

linear systems have been proposed. These graphic interpretations provide us a better un-

derstanding on how the graphic topologies of switched linear systems will influence or

determine the structural controllability of switched linear systems. This shows us a new

perspective that we can design the switching algorithm to make the switched linear system

structurally controllable conveniently just having to make sure some properties of the cor-

responding graph (union or colored union graph) are kept during the switching process. In

this chapter, the parameters in different subsystem models are assumed to be independent.

A more general assumption is that some free parameters remain the same among different

subsystems switching, i.e., dependence among subsystems. It turns out that our necessary
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and sufficient condition derived here would be a necessary condition under this depen-

dence assumption. Besides, our result can be treated as basic starting point for exploring

the structural controllability of switched nonlinear systems: adopt Lie algebra or transfer

function methods to get full characterizations for controllability of switched nonlinear sys-

tem, then interpret each condition into graphic one and finally combine these conditions

together to get graphic interpretations for structural controllability for switched nonlinear

system. To obtain a full characterization for the dependent case or switched nonlinear case

needs further investigation.

Next chapter will continue this research direction/method and investigate the structural

controllability of multi-agent system with switching topologies. In particular we will study

the influence of interconnection topology to group behavior of multi-agent systems.
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Chapter 3

Structural Controllability of

Multi-Agent System with Switching

Topology

3.1 Introduction

In Chapter 2, graphic interpretations of structural controllability of general switched linear

systems are addressed. In this chapter, we will follow the same methodology to investigate

how the local interactions among agents influence the controllability of whole multi-agent

systems. By controllability, we mean that people can drive the whole group of agents to

any desirable configurations only based on local interactions between agents and possi-

bly some limited commands to a few agents that serve as leaders. As we said in the very

beginning, switching topologies are of more practical meaning than fixed topologies and

the interaction link weight among agents has a profound impact on the collective behav-

ior of multi-agent systems. Consequently, a weighted switching interconnection topology
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3.2 Preliminaries and Problem Formulation

is chosen in this chapter to encode the local interactions and information flows in multi-

agent systems. And the controllability of multi-agent systems will be studied in a structural

sense, which holds for almost all values of interaction link weights. The main objective

of the chapter is to get graph theoretic characterizations of the structural controllability for

multi-agent systems. Graphic necessary and sufficient conditions of structural controllabil-

ity under single/multi-leader under fixed/switching interconnection topology are proposed.

It turns out that structural controllability of multi-agent system with switching topology is

purely based on the interconnection topologies among agents. In what follows, we first

give some basic preliminaries and the problem formulation in Section 3.2, and propose our

graph based interpretation for the structural controllability under single leader case, in Sec-

tion 3.3. In Section 3.4, graphic interpretation of structural controllability of multi-leader

multi-agent system is addressed. Numerical examples are also presented as illustrations of

obtained results in Section 3.5. Finally, some concluding remarks are drawn in the chapter.

3.2 Preliminaries and Problem Formulation

3.2.1 Graph Theory Preliminaries

A weighted graph is an appropriate representation for the communication or sensing links

among agents because it can represent both existence and strength of these links among

agents. The weighted graph G with N vertices consists of a vertex setV = {v1, v2, . . . , vN}
and an edge set I = {e1, e2, . . . , eN′}, which is the interconnection links among the vertices.

Each edge in the weighted graph represents a bidirectional communication or sensing me-

dia. Two vertices are known to be neighbors if (i, j) ∈ I, and the number of neighbors

for each vertex is its valency. An alternating sequence of distinct vertices and edges in the
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3.2 Preliminaries and Problem Formulation

weighted graph is called a path. The weighted graph is said to be connected if there exists

at least one path between any distinct vertices, and complete if all vertices are neighbors to

each other.

The adjacency matrix,A is defined as

A(i, j) =


Wi j (i, j) ∈ I,

0 otherwise,
(3.1)

whereWi j , 0 stands for the weight of edge ( j, i). Here, the adjacency matrix A is | V |
× | V | and | . | is the cardinality of a set.

The Laplacian matrix of a graph G, denoted as L(G) ∈ R|V|×|V| or L for simplicity, is

defined as

L(i, j) =



Σ j∈Ni Wi j i = j,

−Wi j i , j and (i, j) ∈ I,
0 otherwise.

(3.2)

3.2.2 Multi-Agent Structural Controllability with Switching Topology

Specifically, controllability problem usually cares about how to control N agents based on

the leader-follower framework. Take the case of single leader as example. Without loss

of generality, assume that the N-th agent serves as the leader and takes commands and

controls from outside operators directly, while the rest N − 1 agents are followers and take

controls as the nearest neighbor law.

Mathematically, each agent’s dynamics can be seen as a point mass and follow

ẋi = ui. (3.3)
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3.2 Preliminaries and Problem Formulation

The control strategy for driving all follower agents is

ui = −
∑

j∈Ni
wi j(xi − x j) + wiixi, (3.4)

where Ni is the neighbor set of the agent i (could contain i itself), and wi j is weight of the

edge from agent j to agent i. On the other hand, the leader’s control signal is not influenced

by the followers and needs to be designed, which can be represented by

ẋN = uN . (3.5)

In other words, the leader affects its nearby agents, but it does not get directly affected

by the followers since it only accepts the control input from an outside operator. For sim-

plicity, we will use z to stand for xN in the sequel. It is known that the whole multi-agent

system under fixed communication topology can be written as a linear system:


ẋ

ż

 =


A B

0 0




x

z

 +


0

uN

 , (3.6)

where A ∈ R(N−1)×(N−1) and B ∈ R(N−1)×1 are both sub-matrices of the corresponding graph

Laplacian matrix −L.

The communication network of dynamic agents with directed information flow under

link failure and creation can be usually described by switching topology. Under m switch-

ing topologies, it is clear that the whole system equipped with m subsystems can be written

in a compact form 
ẋ

ż

 =


Ai Bi

0 0




x

z

 +


0

uN

 , (3.7)
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or, equivalently, 
ẋ = Aix + Biz,

ż = uN ,
(3.8)

where i ∈ {1, . . . ,m}. Ai ∈ R(N−1)×(N−1) and Bi ∈ R(N−1)×1 are both sub-matrices of the cor-

responding graph Laplacian matrix −L. The matrix Ai reflects the interconnection among

followers, and the column vector Bi represents the relation between followers and the leader

under corresponding subsystems. Since the communication topologies among agents are

time-varying, so the matrices Ai and Bi are also varying as a function of time. Therefore,

the dynamical system described in (3.7) can be naturally modeled as a switched system

(definition can be found latter).

Considering the structural controllability of multi-agent system, system matrices Ai

and Bi, i ∈ {1, . . . ,m} are structured matrices, which means that their elements are either

fixed zeros or free parameters. Fixed zeros imply that there is no communication link

between the corresponding agents and the free parameters stand for the weights of the

communication links. Our main task here is to find out under what kinds of communication

topologies, it is possible to make the group motions under control and steer the agents to

the specific geometric positions or formation as a whole group. Now this controllability

problem reduces to whether we can find a set of weights wi j such that the multi-agent

system (3.7) is controllable. Then the controllability problem of multi-agent system can

now be formulated as the structural controllability problem of switched linear system (3.7):

Definition 17. The multi-agent system (3.7) with switching topology, whose matrix ele-

ments are zeros or free parameters, is said to be structurally controllable if and only if

there exist a set of communication weights wi j that can make the system (3.7) controllable

in the classical sense.
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3.3 Structural Controllability of Multi-Agent System with Single Leader

3.3 Structural Controllability of Multi-Agent System with

Single Leader

The multi-agent system with a single leader under switching topology has been modeled

as switched linear system (3.7). Before proceeding to the structural controllability study,

we first discuss the controllability of multi-agent system (3.7) when all the communication

weights are fixed.

After simple calculation, the controllability matrix of switched linear system (3.7) can

be shown to have the following form:


0, . . . , 0, B1, . . . , Bm, A1B1 . . . , A1AN−3

m Bm, . . . , AN−2
m Bm

1, . . . , 1, 0, 0, 0, 0, 0, 0, 0, 0



This implies that the controllability of the system (3.7) coincides with the controllability of

the following system:

ẋ = Aix + Biz i ∈ {1, . . . ,m} . (3.9)

Which is the extracted dynamics of the followers that correspond to the x component of the

equation. Therefore,

Definition 18. The multi-agent system (3.7) is said to be structurally controllable under

leader z if system (3.9) is structurally controllable under control input z.

For simplicity, we use (Ai, Bi) i ∈ {1, . . . ,m} to represent switched linear system (3.9)

in the sequel.

In (3.9), each subsystem (Ai, Bi) can be described by a directed graph [68]:

Definition 19. The representation graph of structured system (Ai, Bi) is a directed graph
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3.3 Structural Controllability of Multi-Agent System with Single Leader

Gi, with vertex setVi = Xi∪Ui, whereXi = {x1, x2, . . . , xn}, which is called state vertex set

andUi = {u1, u2, . . . , ur}, which is called input vertex set, and edge set Ii = IUiXi ∪ IXiXi ,

where IUiXi = {(up, xq)|Bqp , 0, 1 ≤ p ≤ r, 1 ≤ q ≤ n} and IXiXi = {(xp, xq)|Aqp ,

0, 1 ≤ p ≤ n, 1 ≤ q ≤ n} are the oriented edges between inputs and states and between

states defined by the interconnection matrices Ai and Bi above. This directed graph (for

notational simplicity, we will use digraph to refer to directed graph) Gi is also called the

graph of matrix pair (Ai, Bi) and denoted by Gi(Ai, Bi).

For each subsystem, we have got a graph Gi with vertex set Vi and edge set Ii to

represent the underlaying communication topologies. As to the whole switched system,

the representing graph, which is called union graph, is defined as follows:

Definition 20. The switched linear system (3.9) can be represented by a union digraph,

defined as a flow structure G. Mathematically, G is defined as

G1 ∪ G2 ∪ . . . ∪ Gm = {V1 ∪V2 ∪ . . . ∪Vm; (3.10)

I1 ∪ I2 ∪ . . . ∪ Im}

Remark 5. It turns out that union graphG is the representation of linear structured system:

(A1 + A2 + . . . + Am, B1 + B2 + . . . + Bm).

Remark 6. In lots of literature about controllability of multi-agent systems [31–38, 40],

the underlying communication topology among the agents is represented by undirected

graph, which means that the communication among the agents is bidirectional. Here we

still adopt this kind of communication topology. Then wi j and w ji are free parameters or

zero simultaneously (in numerical realization, the values of wi j and w ji can be chosen to

be different). Besides, one edge in undirected graph can be treated as two oriented edges.
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Consequently, even though all the analysis and proofs for structural controllability of multi-

agent systems are based on the directed graph (the natural graphic representation of matrix

pair (Ai, Bi) is digraph), the final result will be expressed in undirected graph form.

Before proceeding further, we need to introduce two definitions which were proposed

in [68] for linear structured system ẋ = Ax + Bu first:

Definition 21. ( [68]) The matrix pair (A, B) is said to be reducible or of form I if there

exist permutation matrix P such that they can be written in the following form:

PAP−1 =


A11 0

A21 A22

 , PB =


0

B22

 , (3.11)

where A11 ∈ Rp×p , A21 ∈ R(n−p)×p, A22 ∈ R(n−p)×(n−p) and B22 ∈ R(n−p)×r.

Remark 7. Whenever the matrix pair (A, B) is of form I, the system is structurally uncon-

trollable [68] and meanwhile, the controllability matrix Q =
[
B, AB, . . . , An−1B

]
will have

at least one row which is identically zero for all parameter values [70]. If there is no such

permutation matrix P, we say that the matrix pair (A, B) is irreducible.

Definition 22. ( [68]) The matrix pair (A, B) is said to be of form II if there exist permuta-

tion matrix P such that they can be written in the following form:

[
PAP−1, PB

]
=


P1

P2

 , (3.12)

where P2 ∈ R(n−k)×(n+r) , P1 ∈ Rk×(n+r) with no more than k − 1 nonzero columns (all the

other columns of P1 have only fixed zero entries).
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Here we need to recall a known result in literature for structural controllability of multi-

agent system with fixed topology [43]:

Lemma 12. ( [43]) The multi-agent system with fixed topology under the communication

topology G is structurally controllable if and only if graph G is connected.

This lemma proposed an interesting graphic condition for structural controllability in

fixed topology situation and revealed that the controllability is totally determined by the

communication topology. However, how about in the switching topology situation? Ac-

cording to Lemma 1, once we impose proper scalars for the parameters of the system matrix

(Ai, Bi) to satisfy the full rank condition, the multi-agent system (3.9) is structurally con-

trollable. However, this only proposed an algebraic condition. Do we still have very good

graphic interpretation for the relationship between the structural controllability and switch-

ing interconnection topologies? The following theorem answers this question and gives

a graphic necessary and sufficient condition for structural controllability under switching

topologies.

Theorem 13. The multi-agent system (3.9) with the communication topologies Gi, i ∈
{1, . . . ,m} is structurally controllable if and only if the union graph G is connected.

Proof. Necessity: Assume that the multi-agent switched system is structurally control-

lable, we want to prove that the union graph G is connected, which is equivalent to that the

system has no isolated agents in the union graph G [43].

Suppose that the union graph G is disconnected and for simplicity, we will prove by

contradiction for the case that there exits only one disconnected agent. The proof can be

straightforwardly extended to more general cases with more than one disconnected agents.

If there is one isolated agent in the union graph, there are two possible situations: the

isolated agent is the leader or one of the followers. On one hand, if the isolated agent is
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the leader, it follows that B1 + B2 + . . . + Bm is identically a null vector. So every Bi is a

null vector. Easily we can conclude that the controllability matrix for the switched system

is never of full row rank N − 1, which means that the multi-agent system is not structurally

controllable. On the other hand, if the isolated agent is one follower, we get that the matrix

pair (A1 + A2 + . . .+ Am, B1 + B2 + . . .+ Bm) is reducible. By definition 21, the controllability

matrix

[B1 + B2 + . . . + Bm,

(A1 + A2 + . . . + Am)(B1 + B2 + . . . + Bm),

, · · · ,

(A1 + A2 + . . . + Am)N−2(B1 + B2 + . . . + Bm)]

always has at least one row that is identically zero. Expanding the matrix yields

[B1 + B2 + . . . + Bm,

A1B1 + A2B1 + . . . + AmB1 + A1B2 + A2B2

+ . . . + AmB2 + . . . + A1Bm + A2Bm . . . + AmBm

, . . . ,

AN−2
1 B1 + A2AN−3

1 B1 + . . . + AN−2
m Bm].

The zero row is identically zero for every parameter. This implies that every component in

this matrix, such as Bi, AiB j and Ap
i Aq

j Br, has the same row always to be zero. As a result,
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the controllability matrix

[B1, . . . , Bm, A1B1, . . . , AmB1, . . . , AmBm, A2
1B1, . . . , AmA1B1,

. . . , A2
1Bm, . . . , AmA1Bm, . . . , An−1

1 B1, . . . , AmAn−2
1 B1, . . . ,

A1An−2
m Bm, . . . , An−1

m Bm]

always has one zero row. Therefore, the multi-agent system (3.9) is not structurally con-

trollable. Until now, we have got the necessity proved.

Sufficiency: If the union graph G is connected, we want to prove that the multi-agent

system (3.9) is structurally controllable.

According to Lemma 12, the connectedness of the union graph G implies that the corre-

sponding system (A1 +A2 +A3 + . . .+Am, B1 + B2 + B3 + . . .+ Bm) is structurally controllable.

Then there exist some scalars for the parameters in system matrices that make the control-

lability matrix

[B1 + B2 + . . . + Bm,

(A1 + A2 + . . . + Am)(B1 + B2 + . . . + Bm),

, . . . ,

(A1 + A2 + . . . + Am)N−2(B1 + B2 + . . . + Bm)],
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has full row rank N − 1. Expanding the matrix, it follows that the matrix

[B1 + B2 + . . . + Bm,

A1B1 + A2B1 + . . . + AmB1 + A1B2 + A2B2

+ . . . + AmB2 + . . . + A1Bm + A2Bm . . . + AmBm

, . . . ,

AN−2
1 B1 + A2AN−3

1 B1 + . . . + AN−2
m Bm],

has full rank N − 1. Next, we add some column vectors to the above matrix and get

[B1 + B2 + . . . + Bm, B2, . . . , Bm,

A1B1 + A2B1 + . . . + AmB1 + A1B2 + A2B2 + . . . + AmB2

+ . . . + A1Bm + A2Bm + . . . + AmBm, A2B1, A3B1, . . . , AmBm

, . . . ,

AN−2
1 B1 + A2AN−3

1 B1 + . . . + AN−2
m Bm, A2AN−3

1 B1, . . . , AN−2
m Bm].

This matrix still have N−1 linear independent column vectors, so it has full row rank. Next,

subtract B2, . . . , Bm from B1 + B2 + . . . + Bm; subtract A2B1, . . . , AmBm from A1B1 + A2B1 +

. . . + AmBm and subtract A2AN−3
1 B1, . . . , AN−2

m Bm from AN−2
1 B1 + A2AN−3

1 B1 + . . . + AN−2
m Bm.

Since this column fundamental transformation will not change matrix rank, the matrix still

has full row rank. Now the matrix becomes

[B1, . . . , Bm, A1B1, . . . , AmB1, . . . , AmBm, A2
1B1, . . . , AmA1B1,

. . . , A2
1Bm, . . . , AmA1Bm, . . . , An−1

1 B1, . . . , AmAn−2
1 B1, . . . ,

A1An−2
m Bm, . . . , An−1

m Bm]

which is the controllability matrix of system (3.9) and has full row rank N − 1. Therefore,
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the multi-agent system is structurally controllable. �

3.4 Structural Controllability of Multi-Agent System with

Multi-Leader

In the above discussion, we assume the multi-agent system has totally N agents and the

N-th agent serves as the leader and takes commands and controls from outside operators

directly, while the rest N − 1 agents are followers and take controls as the nearest neighbor

law. In the following part, we will discuss the situation that several agents are chosen as the

leaders of the whole multi-agent systems, which is actually an extension of single leader

case.

Similar to the single leader case, the multi-agent system with multiple leaders is given

by: 
ẋi = ui, i = 1, . . . ,N

ẋN+ j = uN+ j, j = 1, . . . , nl

(3.13)

where N and nl represent the number of followers and leaders, respectively. xi indicates the

state of the ith agent, i = 1, . . . ,N + nl.

The control strategy ui, i = 1, . . . ,N for driving all follower agents is the same as the

single leader case. The leaders’ control signal is still not influenced by the followers and

we are allowed to pick uN+ j, j = 1, . . . , nl arbitrarily. For simplicity, we use vector x to

stand for the followers’ states and z to stand for the leaders’ states.

Then the whole multi-agent system equipped with m communication topologies can be
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3.4 Structural Controllability of Multi-Agent System with Multi-Leader

written in a compact form


ẋ

ż

 =


Ai Bi

0 0




x

z

 +


0

u

 , (3.14)

or, equivalently, 
ẋ = Aix + Biz,

ż = u,
(3.15)

where i ∈ {1, . . . ,m}. Ai ∈ RN×N and Bi ∈ RN×nl are both sub-matrices of the corresponding

graph Laplacian matrix −L.

The dynamics of the followers can be extracted as

ẋ = Aix + Biz, i ∈ {1, . . . ,m}. (3.16)

Remark 8. Similar with the single leader case, the structural controllability of system

(3.14) coincides with the structural controllability of system (3.16). And we say that the

multi-agent system (3.13) with switching topology and multi-leader is structurally control-

lable if and only if the switched linear system (3.16) is structurally controllable with z as

the control inputs.

Before proceeding further, we first discuss the structural controllability of multi-agent

systems with multi-leader under fixed topology with the following dynamics:

ẋ = Ax + Bz, (3.17)

where A ∈ RN×N and B ∈ RN×nl are both sub-matrices of the graph Laplacian matrix −L.
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3.4 Structural Controllability of Multi-Agent System with Multi-Leader

In [36] and [38], a new graph topology: leader-follower connected topology was pro-

posed:

Definition 23. ( [36]) A follower subgraph G f of the interconnection graph G is the sub-

graph induced by the follower set V f (here is x). Similarly, a leader subgraph Gl is the

subgraph induced by the leader setVl (here is z).

Denote by Gc1 , . . . ,Gcγ , the connected components in the follower G f . The definition

of leader-follower connected topology is as follows:

Definition 24. ( [38]) The interconnection graph G of multi-agent system (3.17) is said

to be leader-follower connected if for each connected component Gci of G f , there exists a

leader in the leader subgraph Gl, so that there is an edge between this leader and a node

in Gci , i = 1, . . . , γ.

Based on this new graph topology, we can derive the criterion for structural controlla-

bility for multi-agent system (3.17) under fixed topology:

Theorem 14. The multi-agent system (3.17) with multi-leader and fixed topology under

the communication topology G is structurally controllable if and only if graph G is leader-

follower connected.

Proof. Necessity: The idea of necessity proof is similar to the proof of Lemma 3 in [36].

We assume that there exists one connected component Gcp not connected to the leader

subgraph Gl. Define Ai and Bi matrices as sub-matrices of A and B, the same as the Fi and

Ri matrices in Lemma 3 of [36]. Following the analysis in Lemma 3 of [36], it can be easily
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got that the controllability matrix of multi-agent system (3.17) is:

C =



B1 A1B1 A2
1B1 · · · AN−1

1 B1

...
...

... · · · ...

0 0 0 · · · 0
...

...
... · · · ...

Bγ AγBγ A2
γBγ · · · AN−1

γ Bγ



. (3.18)

Consequently, rank C = row rank C < N. The maximum rank of C is less than N, which

implies that the corresponding multi-agent system (3.17) is not structurally controllable.

Sufficiency:We adopt the proof of Theorem 1 in [38] to help us prove the sufficiency.

The communication graph G consists of several connected components G(i), i = 1, . . . , κ,

which can be partitioned into two subgraphs: induced leader subgraph G(i)
l and induced fol-

lower subgraph G(i)
f . For each connected components G(i), i = 1, . . . , κ, it can be modeled as

a linear system with its system matrices being sub-matrices of A and B matrices. Following

the analysis in Theorem 1 in [38], the following equation can be deduced:

rank C = rank C1 + rank C2 + . . . + rank Cκ, (3.19)

where C is the controllability matrix of multi-agent system (3.17) and Ci is the controllabil-

ity matrix of connected component G(i). The independence of these connected components

guarantees the independence of free parameters in the corresponding matrices, which cor-

respond to the communication weights of the links. Consequently, we have that

g-rank C = g-rank C1+ g-rank C2+. . .+ g-rank Cκ

where g-rank of a structured matrix M is defined to be the maximal rank that M achieves
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as a function of its free parameters. Besides, if in some connected component G(i), there

is more than one leaders, we can split it into several connected components with single

leader or choose one as leader and set all weights of the communication links between

the followers and other leaders to be zero. After doing this, connected component G(i)

is a connected topology with single leader. According to Lemma 12, Ci has full g-rank,

which equals to the number of follower agents in G(i). Moreover, there is no common

follower agent among the connected components. Consequently, g-rank C=N and multi-

agent system (3.17) is structurally controllable. �

With the above definitions and theorems, we are in the position to present the graphic

interpretation of structural controllability of multi-agent systems under switching topology

with multi-leader:

Theorem 15. The multi-agent system (3.14) or (3.16) with the communication topologies

Gi, i ∈ {1, . . . ,m} and multi-leader is structurally controllable if and only if the union graph

G is leader-follower connected.

Proof. As stated in Remark 5, the union graph G is the representation of the linear system:

(A1 + A2 + A3 + . . . + Am, B1 + B2 + B3 + . . . + Bm). Therefore, the condition that the

union graph G is leader-follower connected is equivalent to the condition that linear system

(A1 + A2 + A3 + . . . + Am, B1 + B2 + B3 + . . . + Bm) is structurally controllable. Following

the proof procedure in Theorem 13, this result can get proved. �

3.5 Numerical Examples

In the first example, we consider a real multi-agent system, as illustrated in Fig.3.1 [109],

with fixed topology to show how to model multi-agent system with state space model and
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Fig. 3.1: Multi-agent system with full communications

Fig. 3.2: Topology graph with weighted edges
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also instance the role of communications link weights.

This multi-agent system adopts a leader-flower structure, consisting of one ship as the

leader, and five submarines as followers. There are full communications among all the

agents. The topology graph of this multi-agent system is shown in Fig.3.2: vertex 1 repre-

sents leader ship and vertices 2, 3, 4, 5, 6 represent the five follower submarines. The edges

with numbers on them are used to represent weighted communication links among agents.

According to [31], this multi-agent system is not controllable if no weights are assigned

to the communication links. After properly assigning weights as shown in Fig.3.2, the

system matrices can be calculated as follows:

A =



8 −2 −2 −2 −1

−2 11 −3 −2 −2

−2 −3 18 −5 −3

−2 −2 −5 14 2

−1 −2 −3 −2 9



, B =



−1

−2

−5

−3

−1



.

Checking controllability matrix, this multi-agent system can be proven to be control-

lable, which shows that proper choices of communication link weights can lead a good

performance of whole system.

Next we will give two examples to illustrate the results under switching topologies and

for simplicity, we take single leader case as examples.

We consider here a four-agent network with agent 0 as the leader and with switching

topology described by the graphs in Fig.3.3(a)-(b) (the self-loops are not depicted, because

it will not influence the connectivity). Overlaying the subgraphs together can get the union

graph G of this example as shown in Fig.3.3(c). It turns out that the union graph of the
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Fig. 3.3: Switched network with two subsystems

switched system is connected. By Theorem 13, it is clear that the multi-agent system is

structurally controllable.

Next, the rank condition of this multi-agent system will be checked.

From Fig.3.3, calculating the Laplacian matrix for each subgraph topology, it can be

obtained that the system matrices of each subsystem are (one thing we should mention here

with the control strategy that each agent can use its own state information, the diagonal

elements always have free parameters, so we can get the following form of sub-matrix of

Laplacian matrix) :

A1 =



λ1 0 λ4

0 λ2 0

λ5 0 λ3


, B1 =



0

λ6

0


; A2 =



λ7 λ10 0

λ11 λ8 0

0 0 λ9


, B2 =



0

0

λ12


.

According to Lemma 1, the controllability matrix for this switched linear system is:

[B1, B2, A1B1, A2B1, A1B2, A2B2, A2
1B1, A2A1B1, A1A2B1, A2

2B1, A2
1B2, A2A1B2, A1A2B2, A2

2B2].

After simple calculation, we can find three column vectors in the controllability matrix:



0

λ6

0


,



0

0

λ12


,



λ4λ12

0

λ3λ12


.
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Fig. 3.4: Another switched network with two subsystems

Imposing all the parameters scalar 1, it follows that these three column vectors are

linearly independent and this controllability matrix has full row rank. Therefore, the multi-

agent system is structurally controllable.

In the second example, we still consider a four-agent network with agent 0 as the leader

and with switching topology described by the graphs in Fig.3.4(a)-(b). Overlaying the

subgraphs together can get the union graph G of this example shown in Fig.3.4(c). It

turns out that the union graph of the switched system is disconnected, because agent 2 is

isolated. According to Theorem 13, it is clear that the multi-agent system is not structurally

controllable.

Similarly, the rank condition of this switched linear system needs to be checked to see

whether it is structurally controllable or not.

From Fig.3.4, calculating the Laplacian matrix for each graphic topology, it is clear that

the system matrices of each subsystem are :

A1 =



λ1 0 λ4

0 λ2 0

λ5 0 λ3


, B1 =



λ6

0

0


; A2 =



λ7 0 λ10

0 λ8 0

λ11 0 λ9


, B2 =



0

0

λ12


.
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Computing the controllability matrix of this example yields the controllability matrix:



λ6 0 λ1λ6 . . . λ7λ10λ12 + λ9λ10λ12

0 0 0 . . . 0

0 λ12 λ5λ6 . . . λ10λ11λ12 + λ2
9λ12


.

This matrix has the second row always to be zero for all the parameter values, which

makes the maximum rank of this matrix less than 3. Therefore, this multi-agent system is

not structurally controllable.

3.6 Conclusions

In this chapter, the structural controllability problem of the multi-agent systems intercon-

nected via a switching weighted topology has been considered. Based on known results in

the literature of switched systems and graph theory, graphic necessary and sufficient con-

ditions for the structural controllability of multi-agent systems under switching communi-

cation topologies were derived. It was shown that the multi-agent system is structurally

controllable if and only if the union graph G is connected (single leader) or leader-follower

connected (multi-leader). The graphic characterizations show a clear relationship between

the controllability and interconnection topologies and give us a foundation to design the

optimal control effect for the switched multi-agent system.

The switched linear system studied in Chapter 2 and the multi-agent system with switch-

ing topologies in this chapter can both be classified under time-dependent switching topol-

ogy situation. Next question on the controllability topic would be how the state-dependent
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topology influences multi-agent system behavior. Consequently, in Chapter 4, the control-

lability of piecewise linear system will be addressed as a potential predecessor research

attempt for the controllability of multi-agent system with state-dependent switching topol-

ogy.
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Chapter 4

Null controllability of Piecewise Linear

System

4.1 Introduction

Time-dependent switching topology and state-dependent switching topology can be viewed

as two main types of switching topologies. In Chapter 2 and Chapter 3, the impact of time-

dependent switching topology on system performance has been addressed. In this chapter,

we aim to investigate the null controllability of piecewise linear system, which can be a

possible modeling of multi-agent system with state-dependent switching topology. In the

first part of this chapter, the null controllability problem is addressed and we devise an

explicit and easily verifiable necessary and sufficient condition for a planar bimodal piece-

wise linear system to be null controllable. In the second part, a short survey of research

efforts on state-dependent multi-agent systems is presented and the relation between the re-

sult obtained for piecewise linear system and possible research directions of controllability

of state-dependent multi-agent system is also introduced. A brief review on controllability
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of piecewise linear systems and the motivation of the tackled problem in this chapter are

given as follows.

Piecewise linear systems refer to a subclass of hybrid systems that the whole state

space is partitioned into polyhedral regions and a linear dynamics is active on each of

these regions. A large class of nonlinear systems [110, 111] and lots of practical systems

can be modeled as piecewise linear systems [112, 113]. For example, in [110], it was

proven that piecewise linear systems can be used to analyze smooth nonlinear dynamics

with arbitrary accuracy. In [113], the tunnel diode circuit was treated using framework

of piecewise linear systems. Besides, piecewise linear systems can serve as an alternative

system for the study of a particular hybrid system as indicated in [114], where equivalences

among five classes of hybrid systems including piecewise linear systems were established.

Due to their theoretical and practical importance, piecewise linear systems have drawn

considerable attention these years [115–121].

[122] pointed out that observability and controllability properties of piecewise linear

systems cannot be easily deduced from those of the component linear subsystems. Even

if every subsystem is controllable, the whole piecewise linear system can not always be

controllable. For example, consider the following bimodal piecewise linear system:

ẋ1 =



x2 i f x2 ≥ 0

−x2 i f x2 ≤ 0

ẋ2 = u.

Each subsystem is controllable in the classical sense. However, the overall system is uncon-

trollable as the derivative of x1 is always nonnegative. Conversely, even if some subsystem
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is uncontrollable, the whole piecewise linear system can still be controllable. For example,

consider the following bimodal piecewise linear system:

ẋ1 =



u1 i f x2 ≥ 0

0 i f x2 ≤ 0

ẋ2 = u2.

The subsystem in x2 ≥ 0 is controllable and the subsystem in x2 ≤ 0 is uncontrollable

because the derivative of x1 is always 0. After simple observation, we can see that the

whole system is controllable. Actually, due to the hybrid nature of piecewise linear sys-

tems, the controllability issues are far from being trivial as was pointed out in [123], where

it was shown that even for simple classes of piecewise linear systems, the controllability

problem turns out to be undecidable. Although it is difficult to obtain explicit conditions

for controllability of general piecewise linear systems, it is still possible to get some ex-

plicit necessary and/or sufficient conditions for some special subclasses of piecewise linear

systems. In [124], based on the geometric control theory, the authors investigated the con-

trollability property of bimodal systems and a small-time local controllability condition

was given. In [125–127], bimodal systems with continuous dynamics on the switching

surface were considered. For example, in [125], the authors proposed a necessary and suf-

ficient condition for the controllability of planar bimodal linear complementarity systems,

which can be treated as a special class of piecewise linear systems. The controllability

problem of conewise linear systems with dynamics continuous on the switching surface

was studied in [128]. Some results about controllability of planar conewise linear sys-

tems were proposed in [129]. References [130] and [131] discussed the null controllability

of discrete-time bimodal piecewise linear systems, in which some results that need to be
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checked case by case, were proposed.

In this chapter, the attention is paid to the continuous-time planar bimodal piecewise

linear systems. In particular, the null controllability problem is investigated. First, the evo-

lution directions from any non-origin state are studied from the geometric point of view,

and it turns out that the directions usually span an open half space. After that, the whole

state space is segmented into several spacial regions using the switching surface together

with several new proposed dividing lines. Furthermore, using the classification discussion

method according to the geometric position relation of system matrices, switching surface

and the new proposed dividing lines, an explicit and easily verifiable geometric necessary

and sufficient condition for the null controllability of planar bimodal piecewise linear sys-

tems is proposed.

The rest of this chapter is organized as follows. In Section 4.2, we introduce the class

of systems to be studied, followed by null controllability study in Section 4.3, where one

geometric necessary and sufficient condition, together with some necessary or sufficient

conditions, for the null controllability is given. In Section 4.4, some examples are pre-

sented to illustrate the theoretical results. Possible application of the obtained results on

the controllability of state-dependent multi-agent is addressed in Section 4.5. Finally, some

concluding remarks are drawn in the chapter and some proofs are put into the appendix.
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4.2 Problem Formulation

Consider the planar bimodal piecewise linear system with the following mathematical

model:



ẋ(t) = A1x(t) + bu(t) cT x ≥ 0,

ẋ(t) = A2x(t) + bu(t) cT x ≤ 0,

(4.1)

where x ∈ R2 is the state, u ∈ R is the control, A1, A2 and b (b =


b1

b2

) are constant

matrices with appropriate dimensions. c is a vector in R2. The whole state space is divided

into two parts: S 1 = {x ∈ R2; cT x ≥ 0} and S 2 = {x ∈ R2; cT x ≤ 0}, with one system active

in each spacial part. Besides, on the switching surface cT x = 0, each of the two subsystems

is possible to be active.

In the sequel, we will adopt the following definition of a trajectory of system (4.1):

Definition 25. An absolutely continuous function x(·) : [0,T ] → R2 is called (admissible)

trajectory of system (4.1) if there exist a finite number of points 0 = t0 < t1 < · · · < tp = T

and integers i1, i2, . . . , ip ∈ {1, 2} such that for every k ∈ {1, . . . , p},

i) x(t) ∈ S ik for all t ∈ [tk−1, tk];

ii) there exists a piecewise continuous function u(·) such that ẋ(t) = Aik x(t) + bu(t) for

almost everywhere t ∈ [tk−1, tk].

What follows is the definition of null controllability of system (4.1):
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Definition 26. (Null controllability) A nonzero state x of system (4.1) is called controllable,

if there exists a trajectory x(·) of (4.1) such that x(0) = x and x(t f ) = 0 for some t f > 0.

System (4.1) is said to be null controllable if any nonzero state x is controllable.

Our aim here is to find out under which condition, it is possible to drive any nonzero

state in (4.1) to the origin with suitable choice of control input, namely that the continuous-

time planar bimodal piecewise linear system (4.1) is null controllable.

4.3 Null Controllability

4.3.1 Evolution Directions

A question arises naturally when people study the trajectory of some system dynamics:

which directions can the state evolve at specific point x0, i.e., what are the directions of

tangent vectors or derivatives of state x0?

Before answering this question, we need to introduce some notations first: in system

(4.1), the line parallel to vectors b and −b and crossing zero is defined as dT x = 0, where

d =


−b2

b1

. The line parallel to vectors b and −b and crossing some point p is dT x = dT p.

For notational convenience, this line will be represented by dT x(p) in the rest of this chapter.

Let’s use X0 to represent the set of evolution directions or derivative vectors at point x0. It

turns out that all the possible evolution directions of x0 at a non-origin state x0 usually span

an open half space.

To answer the above question, what we need is to consider the coordinate centered at

the point x0 in a linear system. Then we can easily get the following lemma:

Lemma 16. i) X0 = {x|dT x = 0} if Ax0 is linearly dependent with b;
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Fig. 4.1: Graphic illustration of Lemma 16

ii) X0 = {x|dT x > 0} or {x|dT x < 0} if Ax0 is linearly independent of b.

Proof. For i, since Ax0 is linearly dependent with b, Ax0 + bu, u ∈ R can be any vector

that belongs to the line parallel to b and −b and crossing 0, i.e., dT x(0). For ii, because

Ax0 is linearly independent of b, every vector f can be expressed as f = λ1Ax0 + λ2b. If

dT f > 0, definitely, λ1 is always positive (negative). Meanwhile, if another vector f ′ =

λ′1Ax0 + λ′2b satisfies dT f ′ < 0, definitely, λ′1 is always negative (positive). Now consider

arbitrary vectors f and f ′ satisfying dT f > and dT f ′ < 0, respectively. Suppose λ1 > 0 and

λ′1 < 0. Then we have f /λ1 = Ax0 + λ2/λ1b and − f ′/|λ′1| = Ax0 + λ′2/λ
′
1b. Consequently,

Ax0+bu, u ∈ R can be and only be any vector that satisfies dT (Ax0+bu) > 0. Suppose λ1 < 0

and λ′1 > 0. Ax0 + bu, u ∈ R can be and only be any vector that satisfies dT (Ax0 + bu) < 0.

Since Ax0 is linearly independent of b, Ax0 , 0. Therefore, Ax0 + bu, u ∈ R can not be any

vector along the direction of b or −b. A graphic illustration is shown in Fig. 4.1. �

Define another vector Ei = [Ei1, Ei2] = dT Ai=


−b2

b1



T

Ai, i = {1, 2}. The vector ei
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which belongs to Eix = 0 is ei =


−Ei2

Ei1

or


Ei2

−Ei1

. e1 and e2 need to be chosen in

the way that cT e1 ≥ 0, cT e2 ≤ 0, because subsystem 1 is only active when cT x ≥ 0 and

subsystem 2 is only active when cT x ≤ 0. Now for each of the two subsystems, in the

whole state space, we have:

Lemma 17. i) X0 = {x|dT x = dT x0} if Eix0 = 0;

ii) X0 = {x|dT x > dT x0}(or {x|dT x < dT x0}) if Eix0 > 0. Meanwhile, X0 = {x|dT x <

dT x0}(or {x|dT x > dT x0}) if Eix0 < 0.

Proof. This lemma is a direct corollary of Lemma 16. �

4.3.2 Null Controllability

The following lemma presents a necessary condition for system (4.1) to be null control-

lable:

Lemma 18. If both subsystems (A1, b) and (A2, b) are uncontrollable in the classical sense,

the piecewise linear system (4.1) is not null controllable.

Suppose that both subsystems are uncontrollable. For any subsystem (Ai, b), i = 1 or

2, the controllability matrix is [b, Aib]. Since (Ai, b) is not controllable, the controllability

matrix now has rank 1 and is of the form [b]. For a linear system, the range space of con-

trollability matrix, i.e., λb here, is actually the reachability and controllability spaces, i.e.,

the largest set of states that can be driven to zero. This implies that any state that not be-

longs to λib is not controllable and can not be driven to zero under this linear dynamics. For

the whole piecewise linear system (4.1), suppose cT b , 0, i.e., neither of the controllability
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Proof.

Fig. 4.2: Graphic illustration of Lemma 18

spaces of two subsystems coincides with line cT x = 0 as depicted in left half of Fig.4.2.

Consider an arbitrary state point p in cT x ≥ 0 but not in λ1b. Since (A1, b) is not control-

lable, p can not reach zero in cT x ≥ 0. If there exists a trajectory starting from p, crossing

the line cT x = 0 and reaching zero as depicted in the figure, there must exist another state p′

of this trajectory included in cT x ≤ 0 but not in λ2b. Besides, the trajectory starting from p′

and reaching zero stays entirely in cT x ≤ 0. This conflicts with the assumption that system

(A2, b) is not controllable and its controllable space is limited in λ2b. Therefore, p can not

be driven to zero and the piecewise linear system (4.1) is not null controllable under this

case. If cT b = 0 as depicted in right half of Fig.4.2, consider an arbitrary state p in cT x < 0.

The reachable set of subsystem (A2, b) is now the line cT x = 0 and there is no control input

that can drive state p to zero or any point on cT x = 0. Consequently, the piecewise linear

system (4.1) is not null controllable. �

Remark 9. the necessary condition in this lemma can be applied to a more general model

as follows:



ẋ(t) = A1x(t) + B1u(t) cT x ≥ 0,

ẋ(t) = A2x(t) + B2u(t) cT x ≤ 0.

(4.2)
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Compared with system (4.1), this planar bimodal piecewise linear system has different B

matrices in the two subsystems and the control input u may not be scalar now. Besides, it

is also a necessary condition for system (4.2) to be completely controllable.

Lemma 19. The linear system ẋ = Aix + bu, i=1 or 2, is controllable if and only if Eib , 0.

Proof. If b = 0, the result follows directly. We assume that b =


b1

b2

 , 0. If the system

(Ai, b) is not controllable, the controllability matrix [b, Aib] has rank 1, which means that

column vector Aib is linearly dependent with b, i.e., Aib=λb. Furthermore, Ei =


−b2

b1



T

Ai

as defined. Therefore, Eib =


−b2

b1



T

Aib = λ


−b2

b1



T 
b1

b2

 = 0. On the other hand, if

Eib = 0, we have


−b2

b1



T

[b, Aib] = [


−b2

b1



T

b,


−b2

b1



T

Aib] = [0, Eib] = 0. Since

b , 0, b1 , 0 or b2 , 0. Therefore, the controllability matrix has rank less than 2 and the

linear system (Ai, b) is uncontrollable. This completes the proof. �

Before proceeding further, we need to introduce the following definition for system

(4.1):

Definition 27. Define the convex cone formed by e1 and e2 asV: specifically,V is defined

as an open convex cone if e1 , λe2, λ > 0 and we say a vector v ∈ V if there exist positive

scalars λ1 and λ2 such that v = λ1e1 + λ2e2; When e1 = λe2, λ > 0, we say a vector v ∈ V
if there exists positive scalar λi such that v = λi ∗ ei. Moreover, the condition that state x is

outsideV means that vector x < V and vector x , λ1e1 and x , λ2e2, λ1 > 0, λ2 > 0.

With the previous lemmas and definitions, we are in the position to present the main

result of this chapter:
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4.3 Null Controllability

Theorem 20. The bimodal piecewise linear system (4.1) is null controllable if and only if:

i) there exist i ∈ {1, 2}, a scalar u, and a vector x outsideV such that Aix + bu ∈ V;

ii) the corresponding subsystem (Ai, b) is controllable.

Remark 10. If cT ei , 0, definitely we have an unique ei. Otherwise, when cT ei = 0, both

ei and −ei satisfy the requirement that cT ei = 0 (cT ei 5 0). Consequently, there are several

convex cones formed by e1 and e2 (including −ei). To satisfy conditions in Theorem 20, we

should make sure for every cone, the two conditions should be satisfied.

If the matrix c has the form c =


c1

c2

, the following sufficient condition for system

(4.1) to be null controllable can be given:

Corollary 1. If the system matrices satisfy the following conditions:

i)


−b2

b1



T

A1


−c2

c1

 , 0 and


−b2

b1



T

A2


−c2

c1

 , 0, and

ii) b = λ3e1 + λ4e2, for some λ3, λ4 that λ3λ4 > 0,

then the bimodal piecewise linear system (4.1) is null controllable.

Proof. This is actually a special case of the main theorem. For detailed proof, please refer

to the case A.c in the appendix. �

Besides, we can get the following sufficient condition for system (4.1) to be not null

controllable:

Corollary 2. If the system matrices satisfy the following conditions:
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i)


−b2

b1



T

A1


−c2

c1

 = 0 or


−b2

b1



T

A2


−c2

c1

 = 0, and

ii)


−b2

b1



T

A1b = 0 or


−b2

b1



T

A2b = 0,

then the bimodal piecewise linear system (4.1) is not null controllable.

Proof. This is actually a combination of several cases of the main theorem. For detailed

proof, please refer to the cases B.a, B.b and C.b in the appendix. �

4.4 Numerical Examples

Example 2. Consider the system dynamics described in the following equations:




ẋ1(t)

ẋ2(t)

 =


1 2

1 1

 x(t) +


1

1

 u(t) − x1 + x2 ≥ 0,


ẋ1(t)

ẋ2(t)

 =


2 2

1 0

 x(t) +


1

1

 u(t) − x1 + x2 ≤ 0.

(4.3)

The system matrices are as follows:

A1 =


1 2

1 1

, A2 =


2 2

1 0

, b =


1

1

, c =


−1

1

.

After simple calculation, it can be seen that: d =


1

−1

 or


−1

1

 and furthermore, we

can get the two dividing lines:
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Fig. 4.3: Refinement of state space of system (4.3)

E1 = dT
1 A1 = [1 − 1]


1 2

1 1

 = [0 1], E1x = 0⇔ x2 = 0;

E2 = dT
2 A2 = [−1 1]


2 2

1 0

 = [−1 − 2], E2x = 0⇔ x1 + 2x2 = 0.

The refinement of the whole state space according to the dividing lines is shown in Fig.4.3.

We can easily see that for the cone V, there exists some vector A1x + bu, i.e., derivative

vector of state x, ∈ V, when x is in area 1© outside V and also the subsystem (A1, b) is

controllable. According to Theorem 20, the system (4.3) is null controllable. Also, we can

see that the conditions in corollary 1 are also satisfied, with e1 =


−1

0

, e2 =


2

−1

,

λ3 = −3 and λ4 = −1. Next, some simulation results are presented to illustrate the null

controllability. Here, we choose one typical state, design suitable control input and drive it

to zero.
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Fig. 4.4: Trajectory and control input of driving (1,-1) to 0 in system (4.3)

Starting from state (1,−1), designing suitable u can ensure the system trajectory be

driven along a line trajectory to zero. The simulation result is shown in Fig.4.4.

Example 3. Consider another system dynamics described in the following equations:




ẋ1(t)

ẋ2(t)

 =


1 2

2 1

 x(t) +


1

1

 u(t) − x1 + x2 ≥ 0,


ẋ1(t)

ẋ2(t)

 =


1 1

0 2

 x(t) +


1

1

 u(t), −x1 + x2 ≤ 0.

(4.4)

The system matrices are as follows:

A1 =


1 2

2 1

, A2 =


1 1

0 2

, b =


1

1

, c =


−1

1

.

Simple calculation yields that: d =


1

−1

 or


−1

1

 and furthermore, we can get the two

dividing lines:
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Fig. 4.5: Refinement of state space of system (4.4)

E1 = dT
1 A1 = [1 − 1]


1 2

2 1

 = [−1 1], E1x = 0⇔ −x1 + x2 = 0;

E2 = dT
2 A2 = [−1 1]


1 1

0 2

 = [−1 1], E2x = 0⇔ −x1 + x2 = 0.

The refinement of the whole state space according to the dividing lines is depicted in

Fig.4.5. It can be easily seen that for the coneV, there is no vector Aix+bu, i.e., derivative

vector of state x, ∈ V, where x is outsideV (here is area 1©). According to Theorem 20 or

corollary 2, the system (4.3) is not null controllable. Actually, we can see that with such set

of possible evolution directions as depicted in the figure for all states in area 1©, arbitrary

state in this area can not be driven to zero.
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4.5 State Dependent Multi-Agent Systems

In this section, we will briefly discuss the possible application of above obtained result to

the controllability study of multi-agent with state-dependent switching topologies.

In practice, the communication links between agents are unavoidably influenced by

many factors that are out of control, such as distance, noise disturbance and signal strength.

For these applications, it may become impossible to keep the communication topology

fixed or be arbitrarily controlled by people for the whole period. Specifically, we consider

a scenario where the existence of an interaction link between a pair of agents is determined

fully by the agents’ states. For example, a set of sensors collecting and processing infor-

mation about a time-varying spatial field (e.g., to monitor temperature levels or chemical

concentrations). Another real implementation example can a collection of mobile robots

performing dynamic tasks which are divided regionally. Consequently, the interconnection

topology of multi-agent system under this scenario inherently changes according to the

spatial change of the states of agents. Namely, these kinds of multi-agent system are called

multi-agent systems with state-dependent switching topologies.

Some research efforts using the concept of state-dependent interconnection topology

can be observed, such as in [132], a global optimization problem was distributed to individ-

ual agents and the interactions among agents are assumed as a state-dependent communi-

cation model. In [133] an opinion consensus problem was addressed with the connectivity

of communication topology is state-dependent. However, there is almost no research in-

vestigating the impact of state-dependent topology on the behavior of multi-agent systems.

In [134], a distributed system described by discrete-event finite state space was introduced

and the interaction topology was modeled into a state-dependent graph. Subsequently, a

controllability concept for such state dependent graphs was devised together with some

84



4.5 State Dependent Multi-Agent Systems

graphic interpretation for this controllability.

Consider the case that existence of an link between two agents only depends on the dis-

tance of two agents. Then the multi-agent system with state-dependent switching topology

can be described as follows:


ẋ = A(x)x + B(x)z,

ż = uN ,
(4.5)

where A(x), B(x) are sub-matrices of the corresponding graph Laplacian and dependent on

system state x. Using i ( j) and xi (x j) to represent agent i and its state (position here), the

interconnection topology can be deduced in the following way:

edge (i, j) exist if and only if ‖ xi − x j ‖≤ d

The matrices A(x), B(x) can be derived accordingly.

In order to make this kind of modeling be really implemented, the system states need

to be constrained to finite state set case or the system space needs to be divided to finitely

many regions with each region corresponding to one interconnection topology.

For the fist situation, there are several possible problems needed to be solved before de-

ducing the controllability of multi-agent system from the state-dependent topology graphs:

1. Solve graphic equations g(x) = G, where x is system state and G is one interconnec-

tion topology and deduce the state set corresponding to any specific interconnection

topology.

2. Study the influence of states evolution and topologies evolution on each other.

3. Investigate the impact of state-dependent topologies on controllability of multi-agent

systems.
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4.5 State Dependent Multi-Agent Systems

Fig. 4.6: Interconnections in a multi-agent system

For the second situation that system space can be divided to finitely many regions with each

region corresponding to one interconnection topology, we can simplify the system model

into a special class of piecewise linear system as we studied above. This situation is also

of great practical meaning. As shown in Fig.4.6, this multi-agent system is conducting a

surveillance task over an area, in which agents like helicopters, ships, tanks and submarines

work in different roles and cooperate to finish the whole task. The information exchanges

among agents, i.e., the interconnection links are unavoidably influenced by factors that

are out of control, such as distance and signal strength, which can be assumed to be fully

determined by the agents’ states. This group of agents are required to monitor different

some spacial regions. With moving to different regions, due to the circumstances change,

role of each agent is changed and the cooperation relationships between agents are also

changed, which requires totally different information exchange channels or interconnection

topology. If two special regions with a spacial dividing line are considered under this

scenario, multi-agent system with this kind of state-dependent switching topology can be
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4.5 State Dependent Multi-Agent Systems

described as follows:



ẋ(t) = A1x(t) + B1u(t) cT x ≥ 0,

ẋ(t) = A2x(t) + B2u(t) cT x ≤ 0,

(4.6)

where A1, A2, B1, B2 are sub-matrices of the corresponding graph Laplacian. This is ac-

tually one kind of piecewise linear system and other piece linear system model can be

adopted according to the spacial region division.

However, as we said above, quite limited research progress has been achieved on

the controllability of piecewise linear system. Consequently, a big gap lies here to get

the graphic interpretation for controllability of multi-agent system with state-dependent

switching topologies. Following this direction, several steps need to be finished in order to

fully reveal the impact of state-dependent topologies on the controllability of multi-agents:

1. Solve the controllability of piecewise linear system.

2. Take the special structure of multi-agent system matrices into consideration and solve

its controllability using algebraic method.

3. Interpret each algebraic condition into graphic expressions.

4. Combine all the graphic interpretations and devise condition on interconnection topolo-

gies to guarantee the controllability of multi-agent systems
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4.6 Conclusions

In this chapter, we have investigated the null controllability of planar bimodal piecewise lin-

ear systems. An explicit and easily verifiable necessary and sufficient condition has been

proposed in terms of the system parameters, followed by several necessary or sufficient

conditions. The method of analyzing the evolution directions of system states brings us a

deep insight of the relation between system trajectory and its controllability. Furthermore,

we believe that using this kind of geometric analysis method, certain controllability of more

general piecewise linear systems can also be considered, such as, high-order, multi-modal

and complete controllability. In the last part of this chapter, the modeling of controlla-

bility of multi-agent system with state-dependent switching topology is addressed and the

research effort on controllability of piecewise linear system is shown to light the way for

solving the state-dependent multi-agent controllability problem.

In next chapter, the multi-agent behavior under another kind of external signal, external

disturbance, will be discussed. Namely, the disturbance rejection problem will be investi-

gated in structural way.

4.7 APPENDIX

4.7.1 Proof of Theorem 20

Proof. The basic idea here is to enumerate all the possible cases that there exists a vector

Aix + bu ∈ V when x is outside V and (Ai, b) is controllable, and then prove that every

nonzero state can be driven to zero. Conversely, all the possible cases that at least one of

the two conditions stated in the theorem can not be satisfied will be presented and proven
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4.7 APPENDIX

Fig. 4.7: Case A.a: b = λ1e1 or b = λ2e2

that there exists some nonzero state that can not be driven to zero. For simplicity, in all

the following figures, let’s use c, e1 and e2 to represent the lines cT x = 0, E1x = 0 and

E2x = 0, respectively. The derivative vectors or evolution directions of every state are

depicted using the solid line with arrow. Besides, the dashed line with arrow represents the

extreme derivative direction which can not be achieved, which actually is the direction of

vectors b and −b.

case A:cT e1 , 0, cT e2 , 0:

As stated in Lemma 17, the evolving direction of one state p is actually along the line

parallel to b and −b and crossing p, i.e., dT x(p), or the right (left) open half plane divided

by this line. Consequently, the geometric position relation of vector b and the coneV will

clarify whether there exists vector Aix + bu that belongs to the coneV:

case A.a:b = λ1e1 or b = λ2e2:

This is actually the case that the line parallel to b and −b is parallel to or coincides with
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Fig. 4.8: Case (a) of b = λ1e1 or b = λ2e2

the boundary ofV. All the possible situations are shown in Fig.4.7.

A.a.a: consider the case depicted in Fig.4.8. It can be easily seen that there is no vector

Aix + bu ∈ V when x is outside V. Furthermore, consider one point p in area 1©. We

will show that starting from p, the system can not reach any point in the right half space

of line dT x(p). Suppose that there is a point q, who is reachable from p, in the right half

space of line dT x(p) and outside the cone V. If the system trajectory starting from p and

reaching q crosses V as depicted using the dashed line, we can always find another point

q′ with the system trajectory from p to q′ staying entirely outside the cone V . Thus, we can

assume that the trajectory reaching q stays entirely outside the cone, which is represented

by the solid line in the figure. Obviously, the trajectory must cross the line dT x(p) if it can

reach the point q. We use p′ to represent the crossing point. Consider another point that is

infinitely close to p′ in the right half space of the line dT x(p). The secant connecting these

two points of this trajectory curve is the tangent which represents the derivative vector of p′

when the two points are infinitely close. This implies that there is derivative vector of some

point outside the cone V whose direction belongs to the right half plane of line dT x(p).
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Fig. 4.9: Case (b) of b = λ1e1 or b = λ2e2

However, this is impossible since there is no such derivative vector of any point outside the

cone V as shown in the figure. Consequently, p can not be driven to zero which implies

that the system under this case is not null controllable.

A.a.b: consider the case depicted in Fig.4.9. After simple observation, it can be seen

that there are four types of points (states) according to the geometric position, indicated by

1© 2© 3© 4©, respectively in Fig.4.9 (the states belonging to the dividing lines and cT x = 0 are

not included. The analysis for these states is relatively easy, so we put it to the end of this

case). For any point in area 2© and 3©, obviously, there exists some vector A2x + bu ∈ V.

Besides, subsystem (A2, b) is controllable according to Lemma 19. For an arbitrary point p1

in area 1©, p1 is connected with zero using the solid line. Since the line is entirely contained

in coneV, each point on this line can have its derivative vector along the direction of −p1

with suitable choice of u. Therefore, we can design the control input u and make the system

dynamics as:

ẋ(t) = A2x(t) + bu(t) = −λ(t)p1, λ(t) > 0.
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Solving this equation yields that the trajectory of this system is:

x(t) = −p1

∫ t

0
λ(t)dt + x0.

The system (A2, b) is controllable and vector b is not parallel with e2, which implies that

the derivative vector of system states with direction orthogonal to E2x = 0 can be chosen to

be nonzero. Therefore, noticing that λ(t) is always positive scalar, suitable t can be chosen

and the integral can be made equal to 1 since λ(t) will not converge to zero now. Clearly,

x0 equals to p1 here. Hence, x(T ) = 0 for some T , which implies that any state p1 in area

1© can be driven to zero. Using the similar analysis, it is easy to show that any point p2

in area 2© can be driven to zero and the possible trajectory is also depicted using solid line

in the figure. Consider an arbitrary point p3 in area 3©. As shown above, there always

exists some vector Aix + bu ∈ V for any point in area 3©. Choosing a derivative vector in

the open cone V, the corresponding line parallel to this derivative vector and crossing p3

surely intersects E2x = 0, which is the boundary ofV, at some point p′. As the part of line

between p3 and p′ is entirely outside V, all the points in this part have the same possible

evolution directions. Consequently, we can design the control u and make every state in

this part have derivative direction of vector p′ − p3. The system dynamics now become:

ẋ(t) = A2x(t) + bu(t) = λ(t)(p′ − p3), λ(t) > 0.

Solving this equation, we can get the trajectory of this system as:

x(t) = (p′ − p3)
∫ t

0
λ(t)dt + x0.

With similar reason as above, some suitable t can be chosen and the integral can be made

equal to 1. Besides, x0 equals to p3 here. Thus, x(T ) = p′ for some T . Furthermore, there
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are two reasons that the system dynamics can not stay on E2x = 0 or go back to the outside

ofV. One is that on E2x = 0, we can choose the u to let the derivative direction still point

to the inside of coneV (b or −b direction). The other is, actually, the dynamical equations

of system do not have description about second derivative of the state. Therefore, sudden

change, (here inverse change) of evolution trajectory of system state is not possible. Due to

these two reasons, the system dynamics will not stay at the point p′ or go back. The system

trajectory will reach some point in area 1© and using the former control design strategy, the

system trajectory can be driven to zero. Finally, any state p3 in area 3© has been proven

that it can be driven to zero and is controllable. Area 4© is defined as the area cT x > 0

except the dividing line E1x = 0. Consider an arbitrary point p4 in area 4©. According to

Lemma 19, subsystem (A1, b) is not controllable and its controllability space is limited in

line E1x = 0. Therefore, p4 can not be driven to zero if its trajectory is only under linear

dynamics ẋ = A1x + bu. (Even though it seems that we can drive p4 directly to zero along a

line trajectory, it is actually not possible because the derivative vector orthogonal to E1x = 0

and the parameter λ(t) will converge to zero due to the geometric relation of b and E1x = 0,

which means the integral of λ(t) can reach 1 only when t towards infinity). Fortunately,

similar to the discussion about the states in area 3©, we can design control u and let p4 be

driven to some point p′′ and then into area 2© ( 1© for the states in right half of area 4©) and

finally to zero. For the points on E1x = 0 or E2x = 0, using similar control trajectory as

discussed above, as shown in the figure, designing suitable control u can ensure the points

on E1x = 0 be driven to zero along the boundary ofV and the points on E2x = 0 be driven

into area 1© and then driven to zero. The states on cT x = 0 can be treated as states in area

1© or 2© because we assume that any subsystem can be active on cT x = 0. All the states

here can be driven to zero and therefore, the system is null controllable in this case.

A.a.c: consider the case depicted in Fig.4.10. The analysis for this case is similar with
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Fig. 4.10: Case (c) of b = λ1e1 or b = λ2e2

the above case and the system is null controllable. The corresponding trajectory for every

state driven to zero is shown in the figure (proof details omitted due to length limit of

chapter).

A.a.d: consider the case depicted in Fig.4.11. It can be easily seen that even though

there exists some vector A1x + bu ∈ V when x is in area 2©, the subsystem (A1, b) is not

controllable. The conditions in the theorem are not satisfied. Furthermore, consider an

arbitrary point p in area 1© in Fig.4.11 (notice that the long dashed line is the line parallel

to b and −b and crossing 0. Points in area 1© are the points in the left open half plane of this

line and in cT x < 0). Using the same analysis as case A.a.(a), it can be shown that starting

from p, the system trajectory can not reach any point in the right half space of line dT x(p)

under linear dynamics ẋ = A2x + bu. The corresponding trajectory starting from p may

enter area 2©. Consider an arbitrary point p′ in area 2©. Similar to the analysis about the

states in area 4© of case A.a.(b), it can be shown that starting from p′, the system can not

reach any point on the line E1x = 0 under linear dynamics ẋ = A1x+bu. The corresponding

trajectory may go into area 1©. If the trajectory reaches the dividing line of area 1© and 2©,
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Fig. 4.11: Case (d) of b = λ1e1 or b = λ2e2

i.e., the left open segment of line cT x = 0, any one of the two subsystems maybe active.

However, no matter which system is active, the corresponding trajectory still can not reach

zero according to the trajectory analysis for states in areas 1© and 2©. Consequently, any

state p in area 1© and any state p′ in area 2© can not be driven to zero point which implies

that the system is not null controllable.

Remark 11. All the proofs and graphic illustrations are based on b = λ1e1. For the case

that b = λ2e2, the analysis method and result are similar. As a result, in this chapter, we will

only give detailed analysis on b = λ1e1 to stand for the analysis of the case that b = λ1e1

or b = λ2e2 if without leading to confusion.

case A.b: b and − b are outsideV:

All the possible situations are shown in Fig.4.12.

A.b.a: consider the case depicted in Fig.4.13. It can be easily seen that there is no

vector Aix + bu ∈ V when x is outside V. Furthermore, consider one point p in area 1©
in Fig.4.13 (notice that the long dashed line is the line parallel to b and −b and crossing
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Fig. 4.12: Case A.b: b and − b are outsideV

Fig. 4.13: Case (a) of b and − b are outsideV
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Fig. 4.14: Case (b) of b and − b are outsideV

0. Points in area 1© are the points in the left open half plane of this line). Using the same

analysis as case A.a.(a), it can be shown that starting from p, the system trajectory can not

reach any point in the right half space of line dT x(p). Consequently, p can not be driven to

zero which implies that the system under this case is not null controllable.

A.b.b: consider the case depicted in Fig.4.14. After simple observation, it is clear that

there are four types of points according to the geometric position, indicated by 1© 2© 3© 4©,

respectively in Fig.4.14. For any point in area 1©, 3© and 4©, obviously, there exists some

vector Aix + bu ∈ V and (Ai, b) is controllable. Using the same analysis as case A.a.(b), it

can be found that the points in 1© 2© can be driven directly to zero along a line trajectory.

Besides, the points in area 3©( 4©) can be driven by a line trajectory to some point p′(p′′)

and then into area 2©( 2©) and finally driven to zero. The points on E1x = 0, E2x = 0 or

cT x = 0 can easily be shown to be controllable too. All the states here can be driven to zero

and therefore, the system is null controllable in this case.

A.b.c and A.b.d: consider the cases depicted in Fig.4.15 and Fig.4.16. The analysis
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Fig. 4.15: Case (c) of b and − b are outsideV

Fig. 4.16: Case (d) of b and − b are outsideV
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Fig. 4.17: Case A.c: b or − b is inV

for these cases are similar as the above case and the system is null controllable. The cor-

responding trajectory for every state driven to zero is shown in the figures (proof details

omitted due to length limit of chapter).

case A.c:b or − b is inV:

All the possible situations are shown in Fig.4.17.

A.c.a, A.c.b, A.c.c and A.c.d: consider the cases depicted in Fig.4.18, Fig.4.19, Fig.4.20

and Fig.4.21). The analysis for these cases are similar as case A.b.(b). There exists some

vector Aix + bu ∈ V, when x is outside V and (Ai, b) is controllable. The corresponding

trajectory for every state driven to zero is shown in the figures. All the states can be driven

to zero and therefore the system is null controllable in these cases.

Remark 12. A special case contained in this case is that e1 and e2 are linearly dependent,

which represents that line E1x = 0 coincides with E2x = 0. The proof for this special case

is actually the same as the general case we presented above.
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Fig. 4.18: Case (a) of b or − b is inV

Fig. 4.19: Case (b) of b or − b is inV

100



4.7 APPENDIX

Fig. 4.20: Case (c) of b or − b is inV

Fig. 4.21: Case (d) of b or − b is inV
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Fig. 4.22: Case B.a: b = λ2e2

case B:cT e1 , 0, cT e2 = 0:

Remark 13. We can also assume cT e1 = 0, cT e2 , 0. All the following proof would be the

same, so we only prove this case with cT e1 , 0, cT e2 = 0.

Remark 14. As stated in Remark 10, from cT e2 = 0, we have e2 and −e2. It is necessary

to consider simultaneously the convex cone formed by e1 and e2 and the convex cone e1

and −e2 when we verify the conditions stated in Theorem 20. For simplicity, we refer to the

cone on the right side as coneV1 and the left one asV2.

case B.a:b = λ2e2:

This is actually the case that dT x(p) is parallel to or coincides with cT x = 0. All the

possible situations are shown in Fig.4.22.

B.a.a: consider the case depicted in Fig.4.23. Considering cone V1, for any point in

area 3©, obviously, there exists some vector A1x + bu ∈ V1 and (A1, b) is controllable.

However, for cone V2, even though for any point in area 1©, there exists some vector
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Fig. 4.23: Case (a) of b = λ2e2

A2x + bu ∈ V2, (A2, b) is uncontrollable. Therefore, the conditions in the theorem are not

satisfied. For any state p in area 1©, since subsystem (A2, b) is uncontrollable, using the

similar analysis about the states in area 4© of case A.a.(b), it can be shown that starting

from p, the system can not reach any point on the line E2x = 0 (also cT x = 0 here) under

linear dynamics ẋ = A2x + bu. Consequently, state p can not be driven to zero and the

system is not null controllable.

B.a.b, B.a.c and B.a.d: consider the cases depicted in Fig.4.24, Fig.4.25 and Fig.4.26.

These cases are similar as the above case. In case B.a.(b), considering cone V1, for any

point in area 1©, there exists some vector A2x + bu ∈ V1, but (A2, b) is uncontrollable. In

case B.a.(c), for coneV2, the area outsideV2 is now consisting of 1©, 3© and their dividing

line. Obviously, there is no point with a derivative vector, i.e., a vector Aix + bu, that is

in the open cone V2. In case B.a.(d), for cone V1, the area outside V1 is now consisting

of 1©, 2© and their dividing line. Clearly, there is no point with a derivative vector, i.e., a

vector Aix + bu, that is in the open coneV1. The conditions in the theorem are not satisfied

in all these cases. For the same reason as in the above case or case A.a.(a), one state p in
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Fig. 4.24: Case (b) of b = λ2e2

Fig. 4.25: Case (c) of b = λ2e2

104



4.7 APPENDIX

Fig. 4.26: Case (d) of b = λ2e2

area 1© can not reach zero. Therefore, the piecewise linear systems in these cases are not

null controllable.

case B.b:b = λ1e1:

This is actually the case that dT x(p) is parallel to or coincides with E1x = 0. All the

possible situations are shown in Fig.4.27.

B.b.a: consider the case depicted in Fig.4.28. Considering cone V1, for any point in

area 1©, obviously, there exists some vector Aix + bu ∈ V1. However, for coneV2, the area

outsideV2 is now consisting of 1©, 3© and their dividing line. Obviously, there is no point

with a derivative vector, i.e., a vector Aix + bu, that is in the open cone V2. Furthermore,

similar to case A.a.(a), any point p in area 3© can not reach any point q in the left half space

of line dT x(p) in area 3© and 1©. Therefore, p can not be driven to zero which implies that

the system is not null controllable.

B.b.b: consider the case depicted in Fig.4.29). This case is almost the same as the

above case. The only difference is that under this case, it is that for cone V1 rather than

coneV2, there is no desired vector Aix + bu ∈ V1 (proof details omitted due to length limit

105



4.7 APPENDIX

Fig. 4.27: Case B.b: b = λ1e1

Fig. 4.28: Case (a) of b = λ1e1
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Fig. 4.29: Case (b) of b = λ1e1

of chapter).

B.b.c: consider the case depicted in Fig.4.30. Considering cone V1, for any point in

area 1©, clearly, there exists some vector A2x+bu ∈ V1 and (A2, b) is controllable. However,

considering cone V2, for any point in area 2©, there exists some vector A1x + bu ∈ V1,

but (A1, b) is uncontrollable. Therefore, the conditions in the theorem are not satisfied.

Furthermore, similar to case A.a.(d), although any state p in area 1© can reach some states

in area 2© or dividing line of areas 1© and 2© and any state p′ in area 2© can reach some states

in area 1© or dividing line of areas 1© and 2©, no state in area 1©, area 2© and their dividing

line can be driven to zero. Thus, the system under this case is not null controllable.

B.b.d: consider the case depicted in Fig.4.31. The analysis for this case is similar to the

above case. Easily we can see for coneV1, even though for any point in area 2©, there exists

some vector A1x + bu ∈ V1, (A1, b) is uncontrollable. System (4.1) is not null controllable

in this case (proof details omitted due to length limit of chapter).

case B.c:b or − b is inV2:

Remark 15. We can also assume that b or −b is in V1. All the following proof would be
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Fig. 4.30: Case (c) of b = λ1e1

Fig. 4.31: Case (d) of b = λ1e1

108



4.7 APPENDIX

Fig. 4.32: Case B.c: b or − b is inV2

the same, so we only prove this case with b or −b ∈ V2.

All the possible situations are shown in Fig.4.32.

B.c.a: consider the case depicted in Fig.4.33. Considering cone V2, for any point in

area 1©, obviously, there exists some vector A2x + bu ∈ V2 and (A2, b) is controllable.

However, for cone V1, the area outside V1 is now consisting of 1©, 3© and their dividing

line. Clearly, there is no point with a derivation vector, i.e., a vector Aix + bu, that is in

the open cone V1. Furthermore, similar to case A.a.(a), some point p in area 1© can not

reach any point q in the right half space of line dT x(p) in area 1© and 3©. Consequently,

p can not be driven to zero point which implies that the system under this case is not null

controllable.

B.c.b, B.c.c and B.c.d: consider the cases depicted in Fig.4.34, Fig.4.35 and Fig.4.36.

Easily we can see for both cone V1 and cone V2, there exists the desired vector and the

corresponding subsystem is controllable. The system (4.1) is null controllable under these
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Fig. 4.33: Case (a) of b or − b is inV2

Fig. 4.34: Case (b) of b or − b is inV2
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Fig. 4.35: Case (c) of b or − b is inV2

cases. The corresponding trajectory for every state driven to zero is shown in the figures

(proof details omitted due to length limit of chapter).

case C:cT e1 = cT e2 = 0:

Remark 16. As stated in Remark 10, from cT e1 = cT e2 = 0, it follows that e1, −e1, e2 and

−e2 all satisfy the equation cT e1 ≥ 0 and cT e2 ≤ 0. Then we should consider simultaneously

the convex cone formed by e1 and e2, the convex cone formed by−e1 and e2, convex cone

formed by e1 and −e2 and convex cone formed by −e1 and −e2 when we verify the conditions

stated in Theorem 20. According to definition 27, V is defined as the open convex cone if

e1 , λe2, λ > 0 and we say a vector v ∈ V if v = λ1e1 + λ2e2, λ1 > 0, λ2 > 0. When

e1 = λe2, λ > 0, we say a vector v ∈ V if v = λi ∗ ei, λi > 0. For simplicity, in the following

proof, we denote the open cone opening up as coneV1 and the open cone opening down as

V2. For e1 = λe2, λ > 0, we refer to the right side cone asV3 and the left side cone asV4.

case C.a:b , λ1e1:

This is actually the case that dT x(p) is not parallel to or coincides with cT x = 0. All the

111



4.7 APPENDIX

Fig. 4.36: Case (d) of b or − b is inV2

possible situations are shown in Fig.4.37.

C.a.a: consider the case depicted in Fig.4.38. There are four types of points according

to the geometric position, indicated by 1© 2© 3© 4©, respectively in Fig.4.38. First, considering

coneV1 (the left open half plane of cT x = 0 here), for any point in area 2© and 3©, clearly,

there exists some vector A2x + bu ∈ V1 and (A2, b) is controllable. Second, considering

coneV2 (the right open half plane of cT x = 0 here), for any point in area 1© and 4©, clearly,

there exists some vector A1x + bu ∈ V2 and (A1, b) is controllable. Third, considering cone

V3 (the right half segment of line cT x = 0), for any point in area 1© and 4©, clearly, there

exists some vector A1x + bu ∈ V3 and (A1, b) is controllable. Finally, considering cone

V4 (the left half segment of line cT x = 0), for any point in area 2© and 3©, clearly, there

exists some vector A2x + bu ∈ V4 and (A2, b) is controllable. The conditions in Theorem

20 are satisfied. Similarly, it can be shown that the points in 1© 2© can be driven directly

to zero along a line trajectory. Besides, the points in area 3© and 4© can be driven by a

line trajectory to some point p′ and p′′ and then into area 1© and 2© respectively and finally

driven to zero. The points on cT x = 0 can be shown that they can be driven to area 1© or 2©
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Fig. 4.37: Case C.a: b , λ1e1

Fig. 4.38: Case (a) of b , λ1e1
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Fig. 4.39: Case (b) of b , λ1e1

or 3© or 4©. Consequently, all the states here can be driven to zero and therefore the system

is null controllable in this case.

C.a.b: consider the case depicted in Fig.4.39. For coneV4, the area outsideV4 is now

consisting of all the areas except the left half of line cT x = 0. Obviously, there is no state

with a derivative vector, i.e., a vector Aix + bu, that is in the coneV4. Furthermore, similar

to case A.a.(a), any point p at area 1© can not reach any point q on the left half space of line

dT x(p). Therefore, p can not be driven to zero which implies that the system under this

case is not null controllable. All the possible situations are shown in Fig.4.40.

case C.b:b = λ1e1:

This is actually the case that dT x(p) is parallel to or coincides with cT x = 0. All the

possible situations are shown in Fig.C.b.

C.b.a: consider the case depicted in Fig.4.41. For cone V1, although for any point in

area 1©, there exists some vector A2x + bu ∈ V1, the subsystem (A2, b) is uncontrollable.

Therefore, the conditions in the theorem are not satisfied. Furthermore, similar to the

discussion analysis about the states in area 4© of case A.a.(b), it can be shown that starting
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Fig. 4.40: Case C.b: b = λ1e1

Fig. 4.41: Case (a) of b = λ1e1
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Fig. 4.42: Case (b) of b = λ1e1

Fig. 4.43: Case (c) of b = λ1e1
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Fig. 4.44: Case (d) of b = λ1e1

from arbitrary state p in area 1©, the system can not reach any point on the line E2x = 0

(also cT x = 0 here) under linear dynamics ẋ = A2x + bu. Hence, p can not be driven to zero

which implies that the system under this case is not null controllable.

C.b.b, C.b.c, C.b.d: consider the cases depicted in Fig.4.42, Fig.4.43 and Fig.4.44.

These cases are similar with the above case. In case C.b.(b), for cone V1, the area outside

V1 is now area 1©. Clearly, there is no state with a derivative vector, i.e., a vector A2x + bu,

that is in the open cone V1. In case C.b.(c), for cone V1, the area outside V1 is now area

1©. It is easy to see that there is no state with a derivative vector, i.e., a vector A2x + bu, that

is in the open coneV1. In case C.b.(d), for coneV2, the area outsideV2 is now area 1©. It

is clear that there is no state with a derivative vector, i.e., a vector A1x + bu, that is in the

open cone V2. The conditions in the theorem are not satisfied in all these cases. For the

same reason as in the above case or case A.a.(a), one state p in area 1© can not reach zero.

Consequently, the piecewise linear systems in these cases are not null controllable.

In conclusion, all the cases that there exists a vector Aix + bu ∈ V when x is outsideV
and the corresponding subsystem (Ai, b) is controllable, are proven to be null controllable.

Besides, all the possible cases that at least one of the two conditions can not be satisfied are
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proven that there always exists some nonzero state that can not be driven to zero and the

system (4.1) is not null controllable. �
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Chapter 5

Disturbance Rejection of Multi-agent

System

5.1 Introduction

This chapter aims to investigate the impacts of local interactions between agents on the

disturbance rejection property of the whole multi-agent system. The disturbance rejec-

tion property is important for multi-agent systems, since many applications of multi-agent

systems usually require deployment of agents outdoors and possibly in unstructured envi-

ronments. Hence external disturbances unavoidably influence the dynamical behavior of

agents and the emergent behavior of the group. Furthermore, compared with traditional

control objects, the disturbances may get exaggerated through information transferring

along the network and bring much worse influence to the whole system behavior. There-

fore, the control of such large scale complex systems must address the issue of disturbance

rejection. Take the multi-agent system depicted in Fig.5.1 as example [135]. This group

of UAVs and robots are moving towards a target area in a specific formation. Interactions

119



5.1 Introduction

Fig. 5.1: Disturbed multi-agent system

among them couple their dynamics closely, which means a small unexpected change in the

movement of one UAV or robot may greatly influence whole group’s formation. Distur-

bances from surrounding environment, such as wind, external force and so on, may bring

damage to whole system behavior. This motivates us to investigate under what kind of in-

terconnections, this multi-agent system can dismiss the disturbance influence to the desired

system behavior.

Different from the existing algebraic or geometric approaches to networked multi-agent

systems, we model the multi-agent system as a structured system and study its disturbance

rejection property from a structural sense. To be more specific, the interactions among

agents are assumed to follow the nearest neighbor law while the weights are assumed to be

adjustable. A multi-agent system is said to have structural disturbance rejection capability

if it can reject disturbance for almost all such weighting parameters. In other words, we are

interested in identifying interconnection topologies among agents that have the disturbance

rejection capability. The advantage of the proposed method over the existing algebraic or

geometric methods lies on the fact that the structural property does not depend on particular

system parameters, the exact values of which are usually difficult to obtain in practical
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applications due to uncertainties and noises. In addition, the checking of structural property

turns out to be of polynomial computational complexity and therefore can scale up for a

network with large numbers of agents.

These considerations motivate us to investigate the disturbance rejection property of

networked multi-agent systems from a structural sense. In particular, we consider agents

with non-homogeneous linear structured dynamics (with single integrator dynamics as a

special case) and the interconnection topology is modeled as a graph in which the states

of each agent are represented by vertices, while the interaction links are the edges. With

this graphic representation, the structural disturbance rejection problem is investigated di-

rectly through the graph-theoretic approach. For example, a special kind of graph structure

called cacti was introduced in [68] to describe the structural controllability of linear system.

Under this framework, the problem of disturbance rejection by measurement feedback has

been solved using a graphic approach in [85, 136]. The main contribution of this chapter

lies on the proposal of necessary and sufficient conditions for structural disturbance rejec-

tion capability of multi-agent systems. It turns out that the global disturbance rejection

capability can be deduced by the local disturbance rejection capability of individual agents.

These conditions can be easily verified from the associated graph, which is convenient and

efficient. Besides, these results remove the necessity of requiring exact knowledge of the

parameters of individual agent, focusing instead on the structure which is decided by posi-

tions of nonzero parameters and this makes it possible to conduct global network properties

directly from the local properties of the interconnected agents. Furthermore, as a combina-

tion of obtained disturbance rejection results with other multi-agent control problems, we

consider the the controllability of multi-agent systems with external disturbance. We ex-

plicitly show under what kind of interconnection topologies, the whole multi-agent system

is structurally controllable and meanwhile has structural disturbance rejection capability.
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The outline of this chapter is as follows: In Section 5.2, we introduce some basic pre-

liminaries and problem formulation, followed by disturbance rejection study in Section

5.3, where a graphic necessary and sufficient condition for the disturbance rejection capa-

bility of networked multi-agent systems with non-homogeneous general linear structured

dynamics is proposed. Besides, disturbance rejection capability of network with identical

single integrator dynamics is also investigated as a special case. In Section 5.4, we com-

bine the disturbance rejection results in controllability problem of multi-agent system. In

Section 5.5, illustrative examples are presented to give the readers deeper understanding of

our theoretical results. Finally, some concluding remarks are drawn in the chapter.

5.2 Preliminaries and Problem Formulation

5.2.1 Graph Theory Preliminaries

A directed graph is an appropriate representation for the interconnection topology among

agents. The directed graph G with N vertices consists of a vertex set V = {v1, v2, . . . , vN}
and an edge set I = {e1, e2, . . . , eN′}, which are the interaction links among the vertices.

Each element a = (i, j) of I ⊂ V2 characterizes the relation between distinct pairs of

vertices i, j ∈ V. For an edge (i, j), we call i the tail and j the head. The in(out) degree

of a vertex i is the number of edges with i as its head(tail). A directed path in a graph is a

sequence of vertices such that from each of its vertices there is an edge to the next vertex

in the sequence. A directed path with no repeated vertices is called a simple directed path.

A directed graph is called strongly connected if there is a directed path from each vertex in

the graph to every other vertex. A directed graph is weakly connected if every vertex can

be reached from every other but not necessarily following the directions of the edges. A
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simple cycle is a closed path that is self-avoiding (does not revisit vertices, other than the

first). A acyclic directed graph is a directed graph without cycles.

5.2.2 Disturbance Rejection of Networked Multi-Agent Systems

In this chapter, we will consider a dynamic network composed of n agents with non-

homogeneous general linear dynamics. In particular, the network is modeled as structured

system and its structural properties are investigated. We are interested in how the intercon-

nection topology will influence the disturbance rejection capability of the network. Namely,

we would like to determine the disturbance rejection capability of the dynamical network

composed of interconnected dynamical agent systems where each individual agent has the

dynamics model: 
ẋi = Aixi + Eiωi +

∑
j Li jx j

yi = Cixi

(5.1)

where xi ∈ Rni are the local states and yi are the local output. Ai ∈ Rni×ni and Ei represent

the local dynamics and the local disturbance effectiveness respectively. The matrices Li j ∈
Rni×n j represent the network interconnections and determine the effects of the states of a

given system on the evolution of neighboring systems. Since the self-influence is already

captured by Ai, we set Lii = 0 where 0 is the ni × ni matrix of zeros.

Here this dynamic networked multi-agent system is considered as a structured system,

whose entries of the system matrices Ai, Ei, Li j and Ci are either fixed zeros or independent

parameters. If the system has totally p parameters, it can be parameterized by means of a

parameter vector q ∈ Rp. For such structured systems, one can study structural properties.

A property is said to be structural if it is true for all values of the parameters except for

those in a proper algebraic variety of the parameter space. Define the transfer function
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from external disturbance to output as T∧(s). Then for the structural disturbance rejection

of networked multi-agent systems:

Definition 28. The networked multi-agent system consisting of dynamic agents (5.1) has

structural disturbance rejection capability if and if for almost all q ∈ Rp, T∧(s) ≡ 0.

The aim of our work is to investigate the structural disturbance rejection capability of

whole multi-agent systems from graphic point of view. Especially, we aim to reveal how

to deduce the global disturbance rejection capability from the local disturbance rejection

capability of individual agent and interconnection topology among them.

5.3 Structural Disturbance Rejection

5.3.1 Non-Homogeneous General Linear Dynamics Case

Before proceeding to the global structural disturbance rejection study, let us recall indi-

vidual agent dynamics (5.1) first. We can see that it is possible to study the disturbance

rejection capability of each agent dynamics with respect to both the local disturbance ωi

and the network interactions x j. Since each agent has its own inherent disturbance rejec-

tion capability, by eliminating these network interactions x j first, it sounds reasonable to

analyze the disturbance rejection capability of each local system with respect to local dis-

turbance ωi and then determine a posteriori if the interaction structure will ensure a good

disturbance rejection capability of whole networked multi-agent systems. This motivates

the following definition about local disturbance rejection problem of each local individual

agent dynamics:

Definition 29. (local disturbance rejection) We perform a structural disturbance rejection
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analysis on each local agent dynamics:


ẋi = Aixi + Eiωi +

∑
j Li jx j

yi = Cixi

(5.2)

If the following linear structural system has structural disturbance rejection capability, we

say that the agent system (5.2) has locally structural disturbance rejection capability:


ẋi = Aixi + Eiωi

yi = Cixi

(5.3)

For each local agent, we have the following graphic representation:

Definition 30. (local representation graph) For each agent dynamics (5.2), we describe

its local interconnection topology using a directed graph Gi(Vi,Ii), where each vertex

of vertex set Vi corresponds to one element of agent i state xi or one element of local

disturbance ωi and each edge of edge set Ii corresponds to one independent parameter of

structured matrices Ai or Ei.

Combining all the local dynamics of individual agents, for the whole networked multi-

agent systems, let x = [xT
1 , x

T
2 , . . . , xT

n ]T , y = [yT
1 , y

T
2 , . . . , y

T
n ]T , ω = [ωT

1 , ω
T
2 , . . . , ω

T
n ]T ,

C = [CT
1 ,C

T
2 , . . . ,C

T
n ]T , A = diag(A1, A2, . . . , An), L = {Li j} and E = diag(E1, E2, . . . , En).

Then the network dynamics can be described as follows:


ẋ = A∧x + L∧x + E∧ω

y = C∧x
(5.4)

where subscription ∧ means the matrix is a structured matrix, i.e., A∧, L∧, E∧ and C∧

are all structured matrices.
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Since each local dynamics is a general linear system, we consider the following linear

structured system: 
ẋ = A∧x + B∧u

y = C∧x + D∧u
(5.5)

Suppose this structured system is parameterized by means of a parameter vector q ∈ Rp,

where p is number of parameters. Let s−rank represent the structural rank, i.e. the number

of infinite zeros of (5.5), T∧(s) = C∧(sI − A∧)B∧ + D∧ represent transfer matrix. For each

specific q ∈ Rp, we call the following system as an admissible realization of (5.5):


ẋ = Ax + Bu

y = Cx + Du
(5.6)

Transfer matrix of this system is T (s) = C(sI − A)B + D. Define n − rank as normal rank

of T (s), i.e., the rank of T (s) for almost all s.

Then for s − rank, we say:

Lemma 21. ( [83]) s − rank of linear structured system (5.5) is equal to the maximal

number of input-output vertex disjoint paths.

From [77], we have s − rank equals n − rank(T∧(s)) for almost all q ∈ Rp. Then we

have that

Lemma 22. T∧(s)=0 for all most all q ∈ Rp if and only if maximal number of input-output

vertex disjoint paths is 0.

One step forward, we can have the following lemma for the local structural disturbance

rejection:

Lemma 23. Local agent (5.1) has structural disturbance rejection capability if and only if

maximal number of disturbance-output vertex disjoint paths is 0.
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Fig. 5.2: Network and local representation graph

For the whole networked multi-agent systems, we also have the following graphic rep-

resentation:

Definition 31. (network representation graph) For the whole network dynamics (5.4), com-

bine all the local graphGi(Vi,Ii) together and build connection edges among agents. Then

we have an additional edge set L̃, which corresponds to the independent parameters of Li j

and describes the interaction among agents. Then the network interconnection topology

can be described using a directed graph G(V,I), where V = {V1 ∪ V2 ∪ . . . ∪ Vn} and

I = {I1 ∪I2 ∪ . . .∪In ∪ L̃}. The vertex setV contains all the vertices in each local graph

and the edge set I contains all the edges in each local graph together with all the linking

edges among the local graphs, which corresponds to the independent parameters in Li j.

A presentation topology graph is shown in Fig. 5.2. Each dash line circled subgraph

is the local representation graph of each agent. The line with blue circle, green circle,

yellow circle, and purple circle corresponds to one free parameter in A∧, C∧, E∧, and L∧

respectively. The line with red circle corresponds to possible external control input in B∧

(for later use). In the interconnection topology graph G(V,I) of network (5.4), we need to

introduce some notations for vertices with special properties:
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Definition 32. Considering the network topology G(V,I), we define the each state vertex

of x j with the corresponding element in Li j nonzero as a virtual controller vertex for the

agent system i and the corresponding state vertex of xi, which is the head of edge starting

from the virtual controller, is called virtual injector. In each local graph Gi(Vi,Ii), we

define a state vertex of xi as detectable if there is a directed path starting from this vertex

and ending at one of the output vertices. Besides, we define a state vertex of xi as disturbed

if there is a directed path starting from one of the disturbance vertices and ending at this

vertex.

With all the above definitions and lemmas, we are ready to present the following result

for the structural disturbance rejection capability of whole networked multi-agent systems:

Theorem 24. The structured dynamic network of equation (5.4) has structural disturbance

rejection capability if and only if

C1) Each individual agent has locally structural disturbance rejection capability;

C2) For each directed path starting from a disturbed virtual controller, all the virtual

injectors along this directed path are not detectable.

Proof. Since both Lii and Ai stand for self-influence of states xi, having Lii = 0 avoids ex-

istence of duplicated parameters in A∧ and L∧. Consequently the independence of system

matrices A∧, L∧, E∧ and C∧ is guaranteed. By Lemma 22, the whole networked multi-

agent system (5.4) has structural disturbance rejection capability if and only if the maximal

number of disturbance-output vertex disjoint paths is 0. One one hand, if C1 does not hold,

which means for some local graph, the maximal number of disturbance-output vertex dis-

joint paths is bigger than 0, this implies that in the whole network interconnection topology,

the maximal number of disturbance-output vertex disjoint paths is bigger than 0. If C2 does

128



5.3 Structural Disturbance Rejection

not hold, which means that for some virtual injector is reachable from a disturbed virtual

controller, it is then concluded that the the maximal number of disturbance-output vertex

disjoint paths is bigger than 0. On the other hand, if C1 and C2 holds, there is no possibility

for a disturbance vertex to have a directed path to its own local graph’s output vertices due

to C1 and no possibility for it to have a directed path to any output vertices in other local

graphs since such a path among local graphs requires at least a disturbed virtual controller

and a detectable virtual injector. Then the result follows. �

Remark 17. This result highlights the importance of interconnection topology structures

in determining the disturbance rejection capability of structured networked multi-agent

systems. More specifically, the disturbance rejection capability of each agent and the in-

teraction among the agents together decide the disturbance rejection capability of whole

networked multi-agent systems. Although unavoidably we still need to know the whole

topology, once the disturbance rejection capability of each agent is fixed, even when the

interconnection topology changes, the only thing we need to do is to check the interaction

of the virtual controller and virtual injector, which is only subset of the vertex set of whole

multi-agent systems. Hence this result provides us graphic and convenient method for ver-

ifying the disturbance rejection capability of networked multi-agent systems. This makes it

possible to conduct global network disturbance rejection capability directly from the local

disturbance rejection capability of the interconnected agents.

Checking condition C2 amounts to find paths which connect ‘special vertices’. This

is a standard task of algorithmic graph theory. For example, depth-first search or breadth-

first search algorithm for traversing a graph can be adopted and the complexity order is

O(|V |+ |E|), where |V | and |E| are cardinalities of vertex set and edge set in topology graph.
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5.3 Structural Disturbance Rejection

5.3.2 Single Integrator Case

In above general linear dynamics case, interactions among agents can not stand for the

whole topology of multi-agent system since interactions exist among states of each local

agent. Actually in multi-agent literature, individual agent is usually modeled as single

integrator (mass point) dynamics, which can be treated as a special case of the above case

here. This kind of modeling will bring convenience to reveal how the interactions among

the agents determine the structural disturbance rejection capability of whole multi-agent

system without considering the influence of local dynamics.

Specifically, considering a group of n agents, with dynamics of each agent being single

integrator subject to external disturbance:


ẋi = ui + Eiωi

yi = Cixi

(5.7)

where xi is the state, ui is the control input, ωi is the scalar external disturbance, yi is the

controlled output of agent i.

The interconnection topology of this networked multi-agent systems can be represented

by a graph G(V,I), where each element of vertex setV corresponds to an agent and each

element of edge setV corresponds to an edge between two agents.

A coordination control law named the nearest neighbor control law is given by

ui = −
∑

j∈Ni
wi j(xi − x j) + wiixi, (5.8)

where Ni is the neighbor set of the agent i.

Let x = [x1, x2, . . . , xn]T , y = [y1, y2, . . . , yn]T ,ω = [ω1, ω2, . . . , ωn]T , C = [C1,C2, . . . ,Cn]T
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5.3 Structural Disturbance Rejection

and E = diag(E1, E2, . . . , En). Then by stacking the dynamics (5.7) of each agent, we can

obtain that dynamics of whole networked multi-agent systems is:


ẋ = Lx + Eω

y = Cx
(5.9)

where L is the Laplacian matrix of interaction graph G.

Similarly, we will investigate the disturbance rejection capability of above system in

a structural sense. Thus we will consider the networked multi-agent systems of the type

defined by Eq. (5.9) with parameterized entries and denoted by
∑
∧ as follows:


ẋ = L∧x + E∧ω

y = C∧x
(5.10)

This multi-agent system is called a structured multi-agent system if all the entries of system

matrices L and J are either fixed zeros or independent parameters.

A directed graph G̃(Ṽ, Ĩ) can be associated with structured system (5.10).

Definition 33. The representation graph of structured system (5.10) is a directed graph

G̃(Ṽ, Ĩ), with vertex set Ṽ = X ∪ D ∪ Y, where X = {x1, x2, . . . , xn}, which is called

state vertices set, D = {d1, d2, . . . , dn}, which is called disturbance vertices set and Y =

{y1, y2, . . . , yn}, which is called output vertices set, and edge set Ĩ = IXX ∪ IDX ∪ IXY ,

where IXX = {(xi, x j)|L∧ ji , 0}, IDX = {(ei, x j)|E∧ ji , 0} and IXY = {(xi, y j)|C∧ ji , 0}
are the oriented edges between states, disturbance and output defined by the interaction

matrices L∧, E∧ and C∧ above.

Let V1, V2 be two nonempty subsets of the vertex set Ṽ . A simple path P is called a

V1 − V2 path if its start vertex belongs to V1 and its end vertex belongs to V2. V1 − V2 paths

131



5.3 Structural Disturbance Rejection

are said to be disjoint if they have no common vertex.

Similarly, we are curious to look for a proper interconnection topology such that there

exist appropriate coordinating law control ui = −∑
j∈Ni

wi j(xi − x j) + wiixi, such that the

transfer matrix from disturbance to output is equal to zero, which means that the whole

multi-agent system performance y is not affected by the external disturbance ω.

Specifically, for the networked multi-agent system (5.10), we have the following defi-

nition for the disturbance rejection problem:

Definition 34. If under certain interconnection topology, there exists appropriate coordi-

nating law control ui = −∑
j∈Ni

wi j(xi − x j) + wiixi, i ∈ {1, 2, . . . , n}, such that the transfer

matrix from disturbance to output is equal to zero, multi-agent system (5.10) is then said to

have disturbance rejection capability.

Then, we have the following result for the disturbance rejection problem for multi-agent

system (5.10):

Theorem 25. Multi-agent system (5.10) has structural disturbance rejection capability if

and only if graphically, in the interconnection topology graph G̃(Ṽ, Ĩ), maximal number

of disturbance-output vertex disjoint paths is 0.

Proof. For the closed loop dynamics of multi-agent system (5.10), we treat the disturbance

as input, then the transfer function now is C(sI − L)−1E = 0. Besides, by definition of

coordination control law u, the independence of diagonal elements is guaranteed due to

the existence of independent parameter wii. Then from Lemma (21) and (22), the result

follows. �

Remark 18. Compared with the non-homogeneous general linear dynamics case, graphic
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interpretation of disturbance rejection capability of the single integrator case is much in-

tuitive. This comes from the fact we mentioned at the beginning of this part that for single

integrator case, the interactions among agents are actually the interactions among all the

states of the whole network system. Consequently, there is no need to consider the impact

of local dynamics of agents on the disturbance rejection capability of whole network, which

makes the graphic interpretation more succinct.

5.4 Structurally Controllable Multi-Agent System with Dis-

turbance Rejection Capability

As a combination of obtained disturbance rejection results with other multi-agent control

problem, we will consider the the controllability of multi-agent systems with external dis-

turbance.

In control of multi-agent systems, it is desirable to apply proper control commands to

agents and exchange information among the agents so that the whole group of agents can be

positioned arbitrarily in the space. For example, group of unmanned air vehicles(UAVs) are

required to fly in some specific formation in order to reduce the system cost, increase the

robustness and efficiency. Following external commands for command center and exchang-

ing position and speed information among all UAVs properly, this group of UAVs reach the

required formation and finish the military task. Similar applications can be observed in

lots of areas, such as space exploration, congestion control in communication networks,

air traffic control and so on. This problem can be extracted as the controllability problem

of multi-agent systems [31], during which the external disturbance would unavoidably af-

fect the control process. The controllability of multi-agent system has also been studied in
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structural sense by our paper in groups [137, 138]. In what follows we will explicitly show

under what kind of interconnection topologies, the whole multi-agent system is structurally

controllable and meanwhile has structural disturbance rejection capability.

Adding control inputs to each individual agent in (5.1), we adopt the following mathe-

matic description of each agent’s dynamics model:


ẋi = Aixi + Biui + Eiωi +

∑
j Li jx j

yi = Cixi

(5.11)

where ui are the local control input and Bi represents the local control effectiveness.

xi, yi, Ai, Ei, Li j,Ci have the same meaning and setting as that in (5.1).

Similarly, with x = [xT
1 , x

T
2 , . . . , xT

n ]T , y = [yT
1 , y

T
2 , . . . , y

T
n ]T , ω = [ω1, ω2, . . . , ωn]T ,

C = [CT
1 ,C

T
2 , . . . ,C

T
n ]T , A = diag(A1, A2, . . . , An), B = diag(B1, B2, . . . , Bn), L = {Li j} and

E = diag(E1, E2, . . . , En), the dynamics of whole multi-agent system can be described as:


ẋ = A∧x + L∧x + B∧u + E∧ω

y = C∧x
(5.12)

here we assume C∧ is nonsingular.

The representation graphs Gi(Vi,Ii) (G(V,I)) can be obtained by adding vertices

standing for the control inputs to Vi(V) and adding edges standing for the parameters

in control input matrix Bi to Ii(I). Similar as in Definition 33, the vertex set V =

X ∪U ∪D ∪Y now, whereU is control input vertices set.

One important graphic definition is needed before we proceed forward:

Definition 35. (Stem [68]) A stem is an acyclic, directed path in the state vertex set X, that

begins in the input vertex set U. The final state variable vertex in the stem is denoted as
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the terminal stem vertex.

For this multi-agent system, we adopt the following definition of its controllability:

Definition 36. We say multi-agent system (5.12) is controllable if for any initial state x0

and final state x f , there exist a time instance t f > 0 and an input u : [0, t f ) such that

x(0) = x0 and x(t f ) = x f .

In other words, we can drive the whole state of multi-agent system to any desirable state

we want through external control input. Then the structural controllability of system (5.12)

can be defined as:

Definition 37. Multi-agent system (5.12), whose matrix elements are zeros or free parame-

ters, is said to be structurally controllable if and only if there exist a set of parameter values

that can make the system (5.12) controllable in the classical sense.

To facilitate the following investigation, the output controllability of multi-agent system

(5.12) needs to be introduced first:

Definition 38. Multi-agent system (5.12) is output controllable if for any initial y0 and

final y f , there exist a time instance t f > 0 and an input u : [0, t f ) such that y(0) = y0 and

y(t f ) = y f .

Similarly, we can have the definition for structural output controllability as follows:

Definition 39. We say multi-agent system (5.12) is structurally output controllable if and

only if there exist a set of system matrix parameter values that can make the system (5.12)

output controllable in the classical sense.

From (5.11), we can see that the controllability of each individual agent would be in-

fluenced by the interaction information from other agents. With the definition of virtual
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controllers in (32), for each agent i, we will treat these interaction information x j in (5.11)

as virtual control input although x j may can not be arbitrarily chosen as real control in-

put ui. A subsequent definition for the local controllability of each agent named virtually

structural controllability is adopted here [75]:

Definition 40. If we treat vi = [x1, x2, . . . , xn] as virtual control input, ûi = [ui, vi] and B̂i =

[Bi, Li j] where Li j = [Li1, Li2, . . . , Lin] with Lii = 0 are extended control input and extended

control input matrix respectively. We say agent i is virtually structurally controllable if

matrix pair (Ai, B̂i) is structurally controllable.

Based on this definition, the structural controllability of whole multi-agent systems has

been proven to have close relation with local controllability of each agent [75]:

Lemma 26. Multi-agent system (5.12) is structurally controllable if and only if

C1) Each individual agent is virtually structurally controllable with respect to some local

and virtual controllers and;

C2) Every virtual controller of (i) is connected to an unique terminal stem vertex.

With all the above lemmas and theorem, here we are in the position to reveal under

what kind of interconnection topologies, the whole multi-agent system is structurally con-

trollable and meanwhile has structural disturbance rejection capability.

Corollary 3. Networked multi-agent system (5.12) is structurally controllable and simul-

taneously has structural disturbance rejection capability if and only if

C1) Each individual agent is virtually structurally controllable with respect to some local

and virtual controllers and;
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C2) Each individual agent has locally structural disturbance rejection capability and;

C3) Every virtual controller of C1 is connected to an unique terminal stem vertex and;

C4) For each directed path starting from a disturbed virtual controller, all the virtual

injectors along this directed path are not detectable.

Proof. One one hand, since the interactions among agents or ‘state feedback’ from others

agents have been incorporated in matrix L∧, the control input u is purely external control

signal and will not influence transfer function from disturbance to output. On the other

hand, the disturbance rejection capability of multi-agent system (5.12) excludes the influ-

ence of external disturbance to system output, which implies we can reduce the output

controllability of original multi-agent system to the output controllability of system


ẋ = A∧x + L∧x + B∧u

y = C∧x
(5.13)

Under the case the matrix C∧ is square nonsingular, the output controllability matrix

[C∧B∧,C∧(A∧ + L∧)B∧, . . . ,C∧(A∧ + L∧)N−1B∧] has the same row rank with that of state

controllability matrix [B∧, (A∧+L∧)B∧, . . . , (A∧+L∧)N−1B∧], which implies the equivalence

between these two controllability. Consequently, the theorem follows from combing the

conditions under structural controllability and structural disturbance rejection capability.

�

We can treat this as a ‘separation rule’ of controllability and disturbance rejection under

this networked multi-agent systems. We note that in addition to using these results to

evaluate the structural disturbance rejection of a multi-agent system it is also possible to

apply these results to multi-agent cooperative control applications, such as controllability

and optimal interconnection topologies design of networked multi-agent systems.
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5.5 Numerical Examples

Fig. 5.3: Networked multi-agent system with two agents

5.5 Numerical Examples

The following simple examples are presented as illustrations of the obtained results.

For the first multi-agent system depicted in Fig. 5.3, we have totally two agents: S 1 and

S 2 in the network. From our earlier results it is possible to study the structural disturbance

rejection capability of whole networked multi-agent systems from the local disturbance

rejection capability of each agent and the interaction among the agents. In Fig. 5.3 the

digraphs of the two systems as well as the two proposed interactions (x3 → x1, x3 → x2)

between the systems are displayed. Easily we can see that for each dynamic system S 1 and

S 2, they both has structural disturbance rejection since maximal number of disturbance-

output vertex disjoint paths is 0. However, we have one virtual controller x3 (circled by

blue line), two virtual injectors x1 and x2 (circled by red line), where x3 is disturbed by d2

and x2 is detectable. Consequently, C2 in Theorem 24 does not hold and the networked

multi-agent system does not structurally have disturbance rejection capability.

Consider another multi-agent system consisting of three agents S 1 , S 2 and S 3 in Fig.

5.4. There are three interactions (x5 → x12, x4 → x10 and x7 → x6) between the systems.

With these three interactions, conditions of corollary 3 are satisfied and the individual cacti

form a cactus cover for all the state variables in the network, thus ensuring that the network
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Fig. 5.4: Networked multi-agent systems with three agents

is structurally controllable. Besides, easily we can see that for each dynamic system, they

all have structural disturbance rejection capability since maximal number of disturbance-

output vertex disjoint paths is 0. Furthermore, we have three virtual controllers x5, x5 and

x7, three virtual injectors x6 and x10 and x12. We can see that for each directed path starting

from a disturbed virtual controller, all the virtual injectors along this directed path are not

detectable. Consequently, the networked multi-agent system is structurally controllable and

has structural disturbance rejection capability. It should be noted that besides using these

results to evaluate the disturbance rejection capability of a dynamical network, these results

can also possibly be used to design systems and interconnection topologies that ensure the

disturbance rejection capability of a dynamical network.

5.6 Conclusions and Future Work

In this chapter, the structural disturbance rejection capability of networked multi-agent sys-

tem under arbitrary topologies is studied. Based on known results in the literature of linear

structured system and graph theory, graphic necessary and sufficient conditions for the

structural disturbance rejection capability of networked multi-agent systems were derived.

The graphic characterizations show a clear relationship between the disturbance rejection
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capability of whole network and that of each agent and interconnection topologies. This

gives us a convenient way to design a network of multi-agent systems which has a desired

disturbance rejection capability using only the information of interconnection topologies.

Subsequently, we investigate how the disturbance rejection results can be incorporated into

the controllability problem of multi-agent systems. This shows possible combination of

these results with multi-agent cooperative control problem, such as controllability and op-

timal interconnection topologies design of networked multi-agent systems and so on.

Some interesting remarks can be made on these results. First, it gives us a clear under-

standing on how the local disturbance rejection capability and the information exchanges

among agents determine the disturbance rejection capability of whole group of agents. Sec-

ond, the results developed in this chapter is based on the linear feedback law. If considering

nonlinear feedback control law, the interactions among agents are different and the whole

network of multi-agent systems should have a different interconnection topology. Con-

sequently, the disturbance rejection under nonlinear feedback control laws needs further

consideration. We will investigate this question in our future research.
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Chapter 6

Conclusions

The profound impact of the interconnection topology on the collective behavior of whole

multi-agent system has motivated us to develop graph theoretic interpretations of multi-

agent system properties. Considering system dynamics under external signals, we explic-

itly described how the underlying interconnection topology affects properties of the overall

system in terms of its controllability and disturbance rejection capability. Various graph

theoretic interpretations of these two multi-agent properties were devised, which highlight

the point that the collective behavior of multi-agent system in its controllability and distur-

bance rejection capability is purely based on the interconnection topologies among agents.

In particular, a weighted interconnection topology, which quite commonly emerges in

large scale complex systems, was adopted as the graphic description of interactions among

agents. Subsequently the controllability and disturbance rejection of multi-agent systems

were addressed in a new structural sense. This kind of structural sense properties were

shown to hold for almost all interaction link weight combinations and are of more practi-

cal meaning. The structural controllability and disturbance rejection capability help us to

overcome our inherently incomplete knowledge of the link weights and from another angle,
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bring to light the effects of the interconnection topology on the controllability and distur-

bance rejection of multi-agent systems without worrying about the influence of weights

factor. Besides, two kinds of switching topologies were adopted in the controllability dis-

cussion: time-dependent switching topology, modeled as switched linear system and state-

dependent switching topology, modeled as piecewise linear system. With the aid of graph

theory and geometric methods, controllability of general switched linear system and piece-

wise linear system were investigated as the predecessor research for the following control-

lability study of multi-agent system with time-dependent and state-dependent switching

topologies.

More specifically, we will summarize and discuss each chapter’s work of this disserta-

tion. In addition, we also outline possible future research directions.

In Chapter 2, we have investigated structural controllability for switched linear sys-

tems. Two graphic representations of switched linear systems were devised. Subsequently,

several graph-theoretic necessary and sufficient conditions for the structural controllability

of switched linear systems have been introduced, which reveals the relationship between

graphic topologies of switched linear system and its controllability. This brings light that

we can design the switching algorithm to make the switched linear system structurally con-

trollable conveniently just having to make sure some properties of the corresponding graph

(union or colored union graph) are kept during the switching process.

A further extension of the work in this chapter can be observed from that the parameters

in different subsystem models are assumed to be independent. However, in real practice, for

example, in a multi-agent system, agent α uses information from agent βwith some specific

weight sometime and later even though whole interconnection topology changes, agent α

still prefers to use information in totally the same way. This implies some free parame-

ters may remain the same among different subsystems switching, i.e., dependence among
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subsystems. A possible consideration would be that the duplicated parameters should be

indexed specially in the topology graph and their impact on system controllability should

be a crucial point. Besides, since in real applications, lots of systems naturally have nonlin-

ear dynamics and a time-varying composition relationship of system components, systems

usually can be modeled as switched nonlinear systems, which can be treated as a natural

extension of switched linear system models. Our result can be treated as basic starting point

for exploring the structural controllability of switched nonlinear systems: adopt Lie alge-

bra or transfer function methods to get full characterizations for controllability of switched

nonlinear system, then interpret each condition into graphic one and finally combine these

conditions together to get graphic interpretations for structural controllability for switched

nonlinear system.

Chapter 3 represents a continuation of the work in Chapter 2. Multi-agent system inter-

connected via a switching weighted topology was modeled as a special class of switched

linear system. Graph theoretic interpretations of its structural controllability were derived.

It was shown that the multi-agent system is structurally controllable if and only if the union

graphG is connected (single leader) or leader-follower connected (multi-leader). This work

gives us a clear understanding on what are the necessary information exchanges among

agents to make the group of agents behave in a desirable way.

One interesting research question arises from this scenario. In a real multi-agent sys-

tem, high communication load will bring data drop or high energy consumption, which

may greatly influence whole system’s behavior. Based on developed results, this motivates

us to reduce communication load by disabling certain links or making them on and off as

long as the union graph is connected. Consequently, we will investigate how to find a min-

imum number of interaction links in our future work. Basically, as a multi-agent system

with switching topologies, for each subgraph, we have several parameters for link weights.
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The problem can be formulated as an optimized problem with the the total number of link

weight parameters as the optimization index under the constraints on the link weight pa-

rameters such that the second smallest eigenvalue of union graph Laplacian matrix should

be greater that 0 to guarantee the connectedness.

With time-dependent switching topology studied in Chapter 2 and Chapter 3, Chap-

ter 4’s work has proceeded to study state-dependent switching topology. As we can see

in Section 4.5, multi-agent system could be modeled as a piecewise linear system under

some application scenarios. Consequently, in this chapter, we have investigated the null

controllability of planar bimodal piecewise linear systems. An explicit and easily verifiable

necessary and sufficient condition has been proposed in terms of the system parameters,

followed by several necessary or sufficient conditions. A subsequent short survey of ex-

isting research on state-dependent multi-agent systems was presented and we also devised

modeling multi-agent system with state-dependent topologies into special class of piece-

wise linear systems.

The modeling of state-dependent multi-agent systems provokes several future steps in

order to reveal the impact of state-dependent topology on controllability property:

1. Solve the controllability of piecewise linear system.

2. Take the special structure of multi-agent system matrices into consideration and solve

its controllability using algebraic method.

3. Interpret each algebraic condition into graphic expressions.

4. Combine all the graphic interpretations and devise condition on interconnection topolo-

gies to guarantee the controllability of multi-agent systems

In Chapter 5, another system-theoretic property of the overall multi-agent system: the
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structural disturbance rejection capability multi-agent system under arbitrary interconnec-

tion topologies was studied. Graphic necessary and sufficient conditions for the structural

disturbance rejection capability of multi-agent systems were derived. How to guarantee

structural controllability and structural disturbance rejection capability of multi-agent sys-

tems simultaneously is also addressed graphically.

Possible further extension based on this chapter’s work can be observed: the results

developed in this chapter are based on the linear dynamics. Actually, the dynamics of

agents and the coupling among the agents can usually be nonlinear. If considering this case,

the interactions among agents would be different and the whole network of multi-agent

systems should have a different interconnection topology. The first step can be developing

algebraic conditions for disturbance rejection problem, using tools like transfer function,

and subsequently next step is interpreting these conditions into graphic ones. We will

investigate this question in our future research.
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