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Summary

The emerging field of Compressive Sensing (CS), is a novel sampling paradigm that

exploits the sparsity/compressibility of signals to reconstruct them from far fewer

samples, than what is required by the traditional Shannon-Nyquist sampling the-

orem. Unlike conventional methods, which use linear sinc interpolation to recover

signals/images from the acquired samples, CS relies on non-linear optimization-

based methods to find the sparsest signal among the set of all feasible solutions.

In the current literature of compressive sampling, sparsest signal corresponds

to the one with the minimum value of `0 norm (e.g. number of nonzero elements).

However, it is acknowledged that solving the equivalent optimization problem is

computationally unwieldy in view of its NP-hard nature. Therefore, in the major-

ity of CS literature, the reconstruction is done using convex `1-based optimization.

This thesis presents some efficient and practical methodologies for reconstruc-

tion of high dimensional signals from compressive measurements that overcome

the current limitations of state-of-the-art CS recovery methods. The key con-

tributions include: Developing a stochastic-based method for achieving as close

an approximation to `0-norm as is computationally feasible in signal reconstruc-

tion from compressive samples; Exploring properties of the Gini index (GI) as an

ii



sparsity measure in the problem of signal/image reconstruction; Demonstrating

the robustness and reliability of GI as an alternative to the currently popular `p

norm-based (for 0 < p ≤ 1) sparsity measures, through extensive experiments.

In the case of time-varying signals, a novel approach for recursively recon-

structing sequences of sparse signals is proposed, where sparsity changes smoothly

with time. In this approach reconstructed signal of the previous time instant is

used to extract a probability model. This priori-knowledge is then incorporated

into the reconstruction of the next time instant signal, to significantly reduce the

number of needed samples, compared to other state-of-art CS methods. Lastly,

the application of the developed method in low power ECG wireless-enabled mon-

itoring devices and medical imaging modalities, is tested.
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Chapter 1

Introduction

1.1 Sparse Representations

The first fundamental step in any digital signal processing system is to discretize

the signal of interest. This is called sampling. Conventional approaches to sam-

pling are based on Shannon’s sampling theorem (also known as Nyquist rate)

which asserts that the sampling rate must be at least twice the maximum fre-

quency present in the signal. Currently, nearly all signal acquisition protocols

embrace this rate of sampling. Even in cases where the signal of interest is nat-

urally not band-limited, an anti-aliasing low-pass filter is usually applied first to

band limit the signal before sampling.

In many important applications, the signals of interest are sampled at high

data rates, resulting in large quantities of data, that need to be processed, trans-

mitted and/or stored. Compression Algorithms are hence heavily relied upon to

reduce the dimension/quantities of the acquired data.
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CHAPTER 1. INTRODUCTION

Compression algorithms are based on the fact that many natural signals/images

are sparse or compressible. JPEG, for example is based on sparsity of signals in

the Discrete Cosine Transforms (DCT), while the sparsity in Discrete Wavelet

Transform (DWT) is the heart of JPEG2000.

(a) Original image

0 0.5 1 1.5 2 2.5 3

x 10
5

−500

0

500

1000

1500

2000

2500

(b) Wavelets transform coefficients

(c) Compressed image (setting 90% of
DCT coefficients to zero)

0 0.5 1 1.5 2 2.5

x 10
5

−6000

−4000

−2000

0

2000

4000

6000

(d) DCT transform coefficients

Figure 1.1: Lena image and its sparse transforms.

Intuitively, a signal (s ∈ Rn) is considered sparse if it has small amount

of nonzero entries. More specifically, s is considered approximately sparse or

2



CHAPTER 1. INTRODUCTION

compressible, if it can be expanded in terms of a proper basis (Ψ ∈ Rn×n), such

that S = Ψs satisfies a power law decay as:

S[i] ≤ Ci−1/p

where S[i] is the ith largest coefficient of S, C is a constant and 0 < p < 1.

Note that smaller values of p correspond to faster decay in the magnitude of the

coefficients.

Consider, for example, the Lena image in figure 1.1(a) and its DWT and DCT

transforms in 1.1(b) and 1.1(c), respectively. Although nearly all the image pixels

have nonzero values, most of the discrete cosine and wavelet transform coefficients

are small, and relatively few large coefficients capture most of the image energy

in both transform domains.

An immediate perception is that, a sparse signal is built upon much smaller

degrees of freedom compared to what is suggested by its original length (n). A

standard compression strategy for such signal is to first map it into its sparsifying

transform domain (for instance a wavelet basis) and then encode those few sig-

nificant coefficients and store them, for later decoding and reconstruction of the

signal of interest.

It is evident that in such conventional approaches, complete information of

the signal of interest has to be acquired first through possibly a difficult or time-

consuming measurement process after which much of the acquired data is thrown

away to obtain the compressed version. This seems to be a huge waste of resources.

One might ask whether there is better way of obtaining the compressed version

3



CHAPTER 1. INTRODUCTION

of the signal somewhat more efficiently. Measuring directly the large coefficients

is impossible since their locations are not know a priori.

1.2 Compressive Sensing

Compressive Sensing (CS) [2, 3] is a novel sensing/sampling paradigm that pro-

vides a way of obtaining the compressed version of a signal using only a small num-

ber of linear and non-adaptive measurements. CS exploits the sparsity/compressibility,

which exists in many natural signals, to reconstruct them from far fewer samples,

measurements, than traditional methods require.

A successful application of CS is based on three fundamental grounds [4]:

• Sparse basis: signal/image to be sampled must have a (approximately)

sparse representation in a known transform domain.

• Incoherent sampling domain: signal/image of interest should be linearly

sampled in a domain which is incoherent with the sparse domain. This

means that aliasing artifacts in a linear reconstruction caused by under-

sampling must be noise-like in the sparsifying transform domain.

• Nonlinear reconstruction: unlike conventional methods, CS use non-

linear reconstruction methods which enforces both sparsity of the signal

representation and consistency of the reconstruction with the acquired sam-

ples.

CS contrasts with conventional sampling theory in two important aspects:

First, is in the sampling phase where rather than sampling at specific points

4
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in time, CS typically acquires m weighted linear combination of samples where

m � n. The measurements are acquired as y = Φs, where Φ is an m × n

measurement matrix. Noise may also be present in the measurement process and

therefore we will also consider a more general model y = Φs + η, where η is the

measurement noise [5].

Secondly, the two sampling paradigms differ mainly in the way they recover

the original signal back from the taken samples. In the Nyquist framework, signal

is recovered through a linear process that uses sinc interpolation. This is of course

only feasible since the number of samples are large enough. In CS, however,

number of samples are much smaller than the signal dimension and therefore

recovering the original signal can be viewed as solving an under determined system

of linear equations which is not possible in general. However, CS makes use of the

constraint, that the initial signal is sparse in a known domain and employs non-

linear optimization-based methods to search for the sparsest signal that satisfies

the measurements (1.1).

arg max
ŝ∈Rn

sparsity {(Ψŝ)}

s.t. Φŝ = y (1.1)

In the case where measurements are corrupted with noise, one may change

the constraint in (1.1) to ‖Φŝ− y‖ ≤ ε.

It is evident that to be able to find the sparsest signal, one should first be

able to measure and quantify sparsity and this measure has a profound effect on

the performance of any CS-based algorithm. In the literature of CS, sparsity is

5
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fundamentally quantified by an intuitive choice, namely `0 norm1, which is simply

number of the non-zero elements present in a signal (1.2).

‖s‖0 = {|i| : si 6= 0} (1.2)

It is believed that the smaller value of `0 norm in a signal means the sparser

that signal is. Therefore, in order to find the sparsest signal, CS methods search

for the signal with the least value of `0 norm, solving (1.3).

arg min
ŝ∈Rn

‖ŝ‖0 (1.3)

s.t. Φŝ = y

However, solving the above minimization problem is known to be compu-

tationally unwieldy in view of its combinatorial nature. As a consequence, CS

methods are compelled to resort to an alternative convex norm as an approxima-

tion to `0 norm, namely `1 norm defined as (1.4).

‖s‖1 = (
n∑
i=1

|si|) (1.4)

It is hoped that by substituting this convex norm and solving (1.5), one can

1In CS literature, the norm terminology has invariably been used for `0 even though it is
known that it does not satisfy the triangle inequality. It is a deliberate (but understood) misuse
of terminology.

6
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recover a result which is (approximately) equivalent to (1.3).

arg min
ŝ∈Rn

‖ŝ‖1 (1.5)

s.t. Φŝ = y

It have been established in CS literature [3] [4] that the combinatorial problem

(1.3) and its relaxation (1.5), are equivalent provided that s is sparse enough and

Φ satisfies certain properties.

1.3 Motivation and Objectives

The emerging field of CS, has attracted considerable attention in recent years.

CS has been shown to have a great impact on wide areas of application such

as compressive imaging [6, 7], machine learning [8], data streaming [9] and etc.

However, despite the extensive recent work that has been done in this field, there

are still many challenges to be overcome and yet to be thoroughly studied. Some

of these issues, form the basis of the research work presented, in this thesis.

1.3.1 Recovery Algorithms

As mentioned earlier, the non-linear recovery algorithm (decoder) is a crucial

part in CS performance. Currently the convex `1 minimization decoder is the

mostly used approach in all CS-based applications, as it offers theoretical recovery

guarantees and is stable under measurement noises [10]. However as it will be

discussed in more details in Chapter 2, there are two main limitations to this

7
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approach:

• Its underlying convex optimization requires relatively high memory usage

and computational cost [11] [12]. For example, the linear programming,

needed to solve (1.5), is of the complexity order of n4 [13], which is not

optimally efficient for applications involving large dimension processing. To

deal with this problem of the convex-based methods, a class of greedy al-

gorithms has been proposed in CS literature [14]. These methods, at their

best provide similar reconstruction performance to those of `1 minimization

based approaches.

• It was empirically observed that treating the NP-hard optimization prob-

lem in (1.3) by approximating it to a convex optimization problem (1.5), do

not always lead to satisfactory reconstruction of signals. The key difference

between the `1 and `0 norms is the dependence of `1 on magnitude. Un-

like `0 norm that penalizes all nonzero elements equally, in `1 norm larger

coefficients are penalized more heavily than smaller coefficients. Therefore,

in some scenarios, the `1 does not provide a close enough approximation of

the `0. This accounts for the choice, in recent literature (e.g. [15, 16]), of

the non-convex objective functions, which are a closer approximation of the

`0 than the `1 norm. These algorithms, though known to be superior to

`1 minimization in terms of the reconstruction performance, are often of a

higher computational complexity.

The above observations is the motivation to propose a stochastic-based recov-

ery algorithm, as a fast and robust approach to achieve a closer approximation

8
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to `0-norm than the one of `1 method. The essential feature of the proposed

method, which makes it efficient in difficult multivariate optimization problems,

is its underlying gradient approximation that requires only two objective func-

tion measurements per iteration regardless of the dimension of the optimization

problem. Moreover, due to its stochastic nature, it is stable in view of the noisy

inputs.

1.3.2 Measures of Sparsity

CS relies chiefly on finding the sparsest signal and currently the sparsity is mea-

sured by an intuitive choice which is the number of non-zero elements of a signal.

However, when dealing with real data, the `0 measure is inapplicable due to the

presence of the noise. Therefore, as an alternative, `0 is modified to `ε0, in which

coefficients having a value smaller than (a threshold) ε are considered to be zero.

Clearly, the value of the threshold is crucial in the performance of this measure,

and its theoretical results. Such a situation is not desirable as the threshold de-

pends on the nature of the signal we are sampling, but we have assumed that,

apart from the fact that the signal is sparse, no prior knowledge is available.

Moreover, finding the signal with the minimal value of `0 is known to be compu-

tationally unwieldy in view of its NP-hard nature. As a consequence, majority of

CS literature, utilize the `p norms with 0 < p ≤ 1 as an approximation to the `0

norm.

Clearly, choice of sparsity measure has a profound impact on the CS perfor-

mance. However, not much has been done on studying, analysis and comparison

the performance of different sparsity measures. This motivates us to provide a

9
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thorough analysis of different sparsity measures as applied to the problem of sig-

nal reconstruction from compressive samples, in Chapter 3 of this thesis. In this

chapter, through various examples, it is shown that despite the intense focus on

`0 norm as sparsity measure in the CS field, it may not be the best choice. It

is shown that this measure, together with its `1 and `p approximations, exhibit

some properties which are counter to the intuitive understanding of sparsity. One

example of such properties, is the dependence of `1 and `p on the size and to-

tal energy of the signal. This motivates us to explore the use of an alternative

measure of sparsity, namely Gini index (GI), in the context of CS.

1.3.3 Reconstruction of Dynamic Signals

There are many important real-world applications in which the signal of interest,

and therefore compressive measurements, are varying with time. In many of these

applications the rate of change is so slow and smooth that the signal at each

time instant is closely related to the one at the previous time. Examples of such

applications include ECG signals, realtime MRI images, frames of CCTV video

sequences and etc. (see figure 1.2).

In these applications we are not only interested in reconstruction of a single

signal, but we need to recover the whole sequence. Intuitively the redundancy

which exists in the signals of the adjacent time windows should be used to further

reduce the number of needed samples for reconstruction.

10
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(a) Sample frames of a real-time MRI

(b) Sequence of Neck MRI images

Figure 1.2: Sequences of sparse images.

11
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While extensive work has been done in the CS literature on the reconstruc-

tion of signals, much of them limit their scope to merely reconstruction of static

ones [17]. The current body of work in CS literature is mainly focused on gen-

eral sampling and reconstructing techniques that is not specifically designed for

any class of signals. Conventional CS methods are, therefore, not well suited

for estimating time varying sparse signals from a series of changing compressive

measurements.

Chapter 4 of this thesis presents a new method specifically designed for re-

construction of sequences of dynamic sparse signals. The proposed approach in-

corporates a priori knowledge, of the current signal, which is extracted from the

reconstructed signal of the previous time window, into the recovery process.

1.4 Main Contributions and Organization

This thesis presents some key new developments in the field of compressive sens-

ing, which are efficient and practical methodologies for reconstruction of high

dimensional signals from compressive measurements. The key contributions are

as follows:

• Chapter 2: First some of the existing sparse recovery algorithms and their

reconstruction guarantees are reviewed. Then a fast and robust recovery

method, well suited to the problem of high-dimensional signal reconstruc-

tion, is presented in which `p-norm (0 < p ≤ 1) is used to achieve a close

approximation to `0-norm. By way of thorough comparison of its perfor-

mance against the one of the other convex, greedy and non-convex based

12
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CS methods, it is shown that the proposed scheme can achieve perfect re-

construction using smaller number of samples. Moreover, the robustness of

this approach in dealing noisy measurement, is tested.

• Chapter 3: A thorough study and comparison of the currently used `p-

norm (0 ≤ p ≤ 1) sparsity measures vs. the Gini Index, is presented and

the superiority of GI is demonstrated through numerous example and exper-

iments. Moreover, the GI is successfully incorporated into an optimization

algorithm for signal reconstruction from compressive samples for a signifi-

cantly improved performance. In addition, the robustness of the proposed

approach in dealing with noisy measurements is tested.

• Chapter 4: This chapter deals with the problem of time-varying signal

reconstruction. A novel weighted-`1-based method is reported which uses

the signal of the previous time instance to extract an estimated probabil-

ity model for the signal of interest, and then incorporates this model into

the reconstruction process. The proposed method is shown to significantly

reduce the number of samples needed for perfect recovery of the original sig-

nals. Moreover, it is demonstrated that the proposed method can be quite

beneficial to use in low power ECG monitoring devices and real-time MRI

modalities.

• Chapter 5: The thesis is concluded with a summary of the results, discus-

sion of ongoing work, and directions for future research.

13
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1.5 Notations

Throughout this thesis, vectors are denoted by small boldface letters (e.g. s,y).

yi is used to refer to the ith element of y and Φi to refer to the ith column of Φ.

Scalars are shown by small regular letters (e.g. n, k) and matrices are denoted by

bold capital Greek letters (e.g. Φ,Ψ). Superscript (t) added to a vector/matrix

refers to that of time/iteration t. Notation y|S is used to denote the sub-vector

containing the elements of y with indices belonging to S.Moreover, cardinality of

a vector y is denoted by |(y)|.

14



Chapter 2

Sparse Signal Recovery

2.1 Introduction

Let the original signal/image be s ∈ Rn and S be the a linear transform of it, i.e.

S = Ψs, that has z zeros. It is said that S is k−sparse, where k = n− z. When

dealing with real data, S is called approximately k−sparse, if it can be closely

approximated by a k−sparse vector S∗, such that ‖S− S∗‖2 < ε.

Throughout this section for simplicity, and without loss of generality1, it is

assumed Ψ = I. Σn
k is also defined to be the set of all k−sparse signals, i.e.

Σk := {x ∈ Rn : |supp(x)| ≤ k}.

Consider a measurement system that acquires m linear measurements:

y = Φs

with cardinality of |y| = m.

1For an orthonormal basis Ψ, the null space of ΦΨ−1 is a rotation of Φ, and such a rotation
does not alter the success rate of CS recovery [10].
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The null space of Φ is defined as :

N (Φ) := {x ∈ Rn : Φx = 0} (2.1)

The matrix Φ, which is of size m × n, represents a dimensionality reduction

operator, i.e., it maps signals from Rn , where n is generally large, into Rm, where

m is typically much smaller than n. In this case, measurements y are referred to

as compressive measurements. It is also assumed that the measurement matrix is

incoherent with the sparsity basis.

In the absence of some additional information concerning s, it is obligatory

to ensure that Φ is invertible, in which case the original signal can be simply

recovered via s = Φ−1y. Unfortunately this requires full measurements (setting

m = n).

The case where m ≤ n number of compressive samples is employed to recon-

struct the original signal s, leads to the problem of solving an under-determined

systems of linear equations. Using the fact that the signal of interest is sparse,

CS methodology is to search for the sparsest signal that satisfies the compressive

measurements.

Equivalently, it is needed to find a ŝ which is an estimate of s, having minimum

number of nonzero elements, as a solution to the following optimization problem:

arg min
ŝ∈Rn

‖ŝ‖0 (2.2)

s.t. Φŝ = y

where ‖ŝ‖0 = |supp(̂s)| and supp(̂s) = {i : ŝi 6= 0}.
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In is evident, however, that in many real world scenarios s can only be rea-

sonably approximated with a k-sparse signal, in lieu of s of being truly k-sparse.

Moreover, adding even a small amount of noise to observations, y, will make (2.2)

incapable of finding s. To introduce some tolerance for noise and other errors,

as well as robustness to approximately sparse signals, we would typically rather

solve a variation to (2.2) presented in (2.3).

arg min
ŝ∈Rn

‖ŝ‖0 (2.3)

s.t. ‖Φŝ− y‖2 ≤ ε

Necessary and Sufficient reconstruction condition:

Theorem 1.1: [18] Every k-sparse vector ∈ Σn
k is the unique solution of the

`0-minimization problem (2.2) with y = Φs if and only if Φ ∈ Rm×n satisfies the

following null space property:

Σn
2k ∩N (Φ) = {0} (2.4)

where Σn
2k is the set of all 2k-sparse vectors in Rn.

Theorem 1.1 basically means that If s is k−sparse and the rank of Φ is larger

than 2k, then the solution to (2.2) must be the signal s.

It is also proven that for many random matrices Φ ∈ Rm×n solving (2.2) one

perfectly recovers all k−sparse signals s obeying m ≥ 2k with probability near

one [19].

However, this result is of little practical use as solving the minimization prob-

lems (2.3) and (2.2) is acknowledged to be computationally unwieldy in view of
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their non-convex and combinatorial nature.

2.1.1 Convex Relaxation

One classical alternative to solving the above inverse problem is by using least

squares; that is, the vector with smallest `2 norm (energy) is selected [5]:

arg min
ŝ∈Rn

‖ŝ‖2 (2.5)

s.t. ‖Φŝ− y‖2 ≤ ε

s
^

s

(a)

^
s

(b)

Figure 2.1: A sparse k−sparse vector, s and its recovery via (a) `2 minimization
(b) `1 minimization.

There is even a convenient closed-form solution ŝ = (ΦT (ΦΦT )−1y). But

unfortunately when the original vector s is k-sparse, `2 minimization will almost

never find it. What is obtained instead is a non-sparse vector with plenty of

ringing. This is due to the roundness nature of `2-norm ball, see figure 2.1.1(b). As
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a consequence, the literature on compressive sampling primarily proposes another

alternative convex minimization (2.6), where `1 norm of the ŝ has been used as

an approximation to `0 (see, for instance, [2, 3, 20]).

arg min
ŝ∈Rn

‖ŝ‖1 (2.6)

s.t. ‖Φŝ− y‖2 ≤ ε

This problem is not only convex, but, in its noise-free settings, can actually

be rewritten as a linear program and solved efficiently [21]. In the presence of

noise, the minimization becomes a convex problem with conic constraint, for which

accurate and efficient solvers exist.

It have been established in CS literature that the combinatorial problem (2.3)

and its relaxation (2.6), are equivalent provided that s is sparse enough and Φ

satisfies certain properties (e.g. [3, 4]).

Necessary and Sufficient reconstruction condition:

Definition 1.1: A matrix Φ ∈ Rm×n is said to satisfy the null space property

of order k if for all subsets S ⊂ n with |S| = k it holds:

‖v|S‖1 < ‖v|Ŝ‖1 for ∀v ∈ N (Φ) (2.7)

Theorem 1.2: [22] Every k-sparse vector ∈ Σn
k is the unique solution of the

`1-minimization problem (2.6) with y = Φs if and only if Φ satisfies the null space

property of order k.
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The null space property is generally difficult to verify directly. Instead, the

restricted isometry property [21], which was introduced by E. Candes and T. Tao

in [2], has become very popular in compressive sensing.

Definition 1.2: Restricted Isometery Property (RIP): A matrix Φ ∈ Rm×n

is said to satisfy RIP of order k with constant δk if for any s ∈ Σn
k :

(1− δk)‖s‖2 ≤ ‖Φs‖2 ≤ (1 + δk)‖s‖2 (2.8)

Sufficient reconstruction condition:

Theorem 1.3: [2, 4] If Φ satisfies the RIP with δ2k <
√

2 − 1 then it also

satisfies the null space property of order k.

This means that any s ∈ Σn
k can be recovered from its measurement y = Φs,

via solving `1-minimization problem. However, it should be noted that RIP is a

sufficient but not necessary condition.

It is acknowledged that checking whether a measurement matrix satisfies a

certain RIP is computationally intensive, and becomes rapidly intractable as the

size of the matrix increases [18, 23, 24]. However, there are certain important

classes of matrices for which this property is verifiable. For example in the case

where Φ is chosen randomly from a independent and identically distributed (i.i.d.)

Gaussian distribution, if the number of observations obeys m ≤ ck(log n), for

some constant c > 0, then by using the `1 minimization approach, the signal of

interest can be recovered with a probability that exceeds 1−O(n−δ) [20].

Empirically, for such measurement matrix and n in the range of a few hundred
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to a few thousand, the `1-norm minimization method can be expected to recover

signals more than 50% of the time if the size of the number of samples obeys

m ≥ 4k, and if m ≥ 8k, then the recovery rate is above 90%.

2.1.2 Greedy Algorithms

The `1-minimization approach is based on an optimization, which has relatively

high complexity. It is acknowledged that even solving the linear program for

`1 optimization has polynomial running time (often O(n3) [13]). This could be

infeasible in applications where n is quite large. To deal with the complexity of

running time and storage requirement of the convex-based methods, another class

of greedy-based methods has been proposed in CS literature [14].

There are two broad main categories of greedy methods in CS, namely greedy

pursuits [25, 26] and Iterative thresholdings [5, 11,12].

Input: y
r(0) = y, ŝ(0) = 0
while i ≤ maxiteration do

g(i) = ΦTr(i−1);

j(i) = arg maxj |g(i)
j |/‖Φj‖2;

ŝ(i) = ŝ(i−1) + g
(i)
ji /‖Φji‖2

2 ;

r(i) = r(i−1) −Φjig
(i)
ji /‖Φji‖2

2;

end
Output: ŝ

Algorithm 1: Matching Pursuit algorithm [5].

Greedy pursuits algorithms, such as Matching Pursuit (MP) [25] and Orthog-

onal Matching Persuit (OMP) [26], all iteratively build an estimate to s and they
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share two fundamental steps, as summarized in Algorithm 1:

• (1) elements selection from column of Φ to add to the support set which is

initially empty

• (2) residual error update

These methods often result in extremely fast and efficient algorithms that are

applicable to large dimensional data sets. It should be noted however, that number

of samples needed for a perfect recovery is often higher than what is needed in `1

minimization [5].

Another group, which include Iterative Hard Thresholding (IHT) method [12],

Subspace Pursiut [27] and CS Matching Pursiut [28], are called thresholding al-

gorithms as they remove the nonzero elements in each iteration. This is sum-

marized in Algorithm 2. These methods are easy to implement and relatively

fast. Moreover, their reconstruction performance guarantee is similar to those of

`1 minimization-based methods.

Input: y
ŝ(0) = 0
while i ≤ maxiteration do

ŝ(i+1) = Hε(̂s
(i) + µΦT (y −Φŝ(i)));

end
Output: ŝ

Algorithm 2: Iterative Hard Thresholding algorithm [12].
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2.1.3 Non-convex Alternative to `1 norm

The key difference between the `1 and `0 norm is the dependence of `1 on mag-

nitude. Unlike `0 norm that penalizes all nonzero elements equally, in `1 norm

larger coefficients are penalized more heavily than smaller coefficients. It is ob-

served that the `1 norm is very sensitive to high amplitudes of non-zero elements

since it may, in order to keep the `1 norm small, choose a signal with a higher

number of nonzero elements with small magnitudes than the one with the correct

smaller number of non-zero elements with high values, despite the fact that the

latter is sparser.

For example, consider a signal s of size n = 503 which has only 10 non-zero

elements (figure 2.2). Since n = 503 is a prime number, we should theoretically

be able to reconstruct [2] the sparse solution uniquely with |m| ≥ 2k. 30 random

samples is then taken from its Fourier spectrum, and use them in the `1 norm

minimization method to reconstruct the signal. From the result shown in figure

2.2, it can be seen that the `1 method does not reconstruct the signal with any

satisfactory accuracy, and, moreover, is not as sparse as the original one. It has,

in fact, 29 non-zero elements and the peak values are also reduced.

There have been some attempts in the CS literature to use non-convex reg-

ularizers in lieu of the convex `1 minimization, in order to further reduce the

minimum required number of samples, for a perfect recovery [29]. Chartrand [15]

suggested the potential of solving `p-minimization (2.9) to improve sparse signal
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Figure 2.2: Illustrative Example: `1 norm reconstruction, n = 503, k = 10,
m = 30, ‖s‖1 = 24.20, ‖ŝ‖1 = 19.02

reconstruction.

arg min
ŝ∈Rn

‖ŝ‖p (2.9)

s.t. Φŝ = y

where p ∈ (0, 1) and ‖s‖p = (
∑n

i=1 |si|p)1/p.

Figure 2.2 depicts the `p norm ball for different values of p, from which it is evi-
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dent that `p norm is a non-convex (but locally convex) function. It can be seen

that `p approaches `0 as p gets closer to 0.

Necessary and Sufficient reconstruction condition:

Definition 1.1: A matrix Φ ∈ Rm×n is said to satisfy the null space property

of order k if for all subsets S ⊂ n with |S| = k it holds:

‖v|S‖p < ‖v|Ŝ‖p for ∀v ∈ N (Φ) (2.10)

Theorem 1.2: [15] Every k-sparse vector ∈ Σn
k is the unique solution of the

`p-minimization problem (2.6) with y = Φs if and only if Φ satisfies the null space

property of order k [15].

It should be noted that the above results are associated with the case where

a global minima of (2.9) is achieved. In practice, solving (2.9) for p < 1 is

non-trivial and computationally hard, as the cost function is non-convex and has

many local minimas. On the other hand, it has been empirically demonstrated

in CS literature that even finding a local minima of (2.9) can result in exact

reconstruction of signals with many fewer measurements, compared with solving

the conventional `1 problem [15]. Moreover, it has been shown that the least-

squares solution often serves as a initialization point that is sufficiently close to

the global optimum [29].

To find the minima of (2.9), Chartrand [15] proposed a projected gradient

descent based algorithm using (
∑

i(s
2
i + ε2)p/2)1/p, which is a smoothed approxi-

mation to `p, as the cost function. The value of ε is set to a large value initially
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and then solution of each iteration serves as a starting point for the next iteration

with a smaller value of ε.

Input: y
Output: ŝ
while i ≤ maxiteration do

find ŝ(i) = arg min ‖W(i)s‖1 s.t. y = Φs;

W(i+1) = 1/(|̂s(i)|+ ε(i))1−p;

end

Algorithm 3: `q algorithm [29]

Another approach that has been proposed in [19,29,30] is to solve (2.9) using

a sequence of re-weighted `1 optimizations, where weight is selected as a diagonal

positive definite matrix which is a function of the previous solution and/or iter-

ation (i.e W (i) = f (̂s(i−1))). Two important such methods, namely Re-weighted

`1 minimization (RW`1) [19] and `q minimization [29], which were proposed in

parallel and independent of this work, are summarized in Algorithms 3 and 4.

It have been empirically reported that these re-weighted `1-based algorithms

significantly outperform the `1 minimization-based methods, in terms of minimum

number of required samples for perfect recovery. However, their complexity and

storage requirement are even higher than those of the conventional `1 minimiza-

tion. This makes them less applicable in dealing with large-scale and/or real-time

problems such as image reconstruction [5].

The reminder of this chapter is organized as follows: Section 2.2 contains an

outline of the proposed SPSA-based approach as applied to the reconstruction of

images from compressive samples. Section 2.3 presents experimental results on

the reconstruction of different images, along with a comparison of the performance
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Input: y
Output: ŝ
while i ≤ maxiteration do

find ŝ(i) = arg min ‖W(i)s‖1 s.t. y = Φs;

W(i+1) = 1/(|̂s(i)|);
end

Algorithm 4: Re-weighted `1 (RW`1) minimization algorithm [19]

of the proposed approach with that of others in the literature.

2.2 Proposed SPSA-`p Algorithm

The high computational and memory requirements of the `1-based methods, and

their conservative approximation to `0-norm, motivate us to propose the applica-

tion of Simultaneous Perturbation Stochastic Approximation (SPSA) [31–33] by

employing `p norm (p < 1), to the problem of high dimensional signal reconstruc-

tion from compressive samples.

SPSA method, first introduced in [31] and more fully analyzed in [32], is a

powerful tool in dealing with high-dimensional optimization problems. The main

difference of SPSA with the conventional optimization methods is that instead of

calculating the actual gradient at each point, it relies on estimation of gradient ,

without any direct reference to it. The SPSA approximates the gradient using only

two performance function observations per iteration, regardless of the dimension

of the signal, n. The two observations are made by simultaneously randomly

varying all the variables of the minimization problem. This feature makes SPSA

fast and efficient, particularly in dealing with high-dimensional problems and noisy
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measurements. Moreover, it has been shown that the SPSA algorithm can achieve

convergence in probability to a global optimum under fairly general conditions [34]

[33]. Its reliance on estimation of gradient instead of the actual value, works like

injected noise into the procedure, which allows the algorithm to escape the local

minimas and premature convergence, in early iterations [33].

−1 −0.5 0 0.5 1
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Figure 2.3: Level sets of different norms.

Let F(θ) be the function to be minimized over θ. It is assumed that mea-

surements of F(θ) are available at various values of θ. Starting from a θ(0), at

each step, all elements of θ are simultaneously perturbed according to a distribu-

tion vector (δ(k)), whose elements are generated by Bernoulli distribution. Then

F(θ(k) + β(k)δ(k)) and F(θ(k) − β(k)δ(k)) are evaluated to obtain an estimation of
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the gradient at θ. θ is then updated as follows:

θ(k+1) = θ(k) − α(k)F(θ(k) + β(k)δ(k))−F(θ(k) − β(k)δ(k))

2β(k)
δ(−k) (2.11)

where, α(k) is a gain sequence defined as α(k) := α
(B+k+1)γ , β(k) is a small positive

time-varying constant β(k) := β
(k+1)λ

. The parameters B,α, β, λ, γ are to be set

by the user. The algorithm is terminated when it converges to a solution.

The standard SPSA which invokes the Lagrangian multiplier method to in-

clude constraints. In contrast, a different strategy is employed to deal with con-

straints for both noise-less and noisy measurements: in each iteration, θ is pro-

jected onto the set of feasible solutions.

In the case of measurements free from noise, let the set of θ that satisfies the

observations be denoted by O = {θ : Φθ = y}. Then, with Φ† denoting the

pseudo-inverse of Φ, P (θ) = (θ −Φ†(Φθ − y)) is the nearest point to θ on

O, in other words, P (θ) is the projection of θ onto set O.

The problem of finding the correct sparse solution to (2.9) is equivalent to the

problem of minimizing the `0 norm. Therefore, the function F to be minimized

in SPSA should ideally be the `0 norm. However, as mentioned in section 2.1

the `0 norm is difficult to handle. Therefore, F is set to be `p-norm, where p

is gradually decreasing. It is empirically observed that starting from p = 1 and

decreasing p gradually helps the algorithm scape local minimas. The algorithms

starts with setting p = 1, the convergence point of the algorithm with this value

of p is then used as the initial point for the algorithm using a smaller value of p.
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Input: y
Output: ŝ
ŝ← 0;
p← 1;
while ŝ|test 6= y|test and p ≥ pmin do
k ← 0;

θ(k) ← ŝ while ‖θ(k+1) − θ(k)‖2 > ε and k < maxit do

α(k) ← α
(B+k+1)γ , β(k) ← β

(k+1)λ
;

θ(k+) ← θ(k) + β(k)δ(k);

θ(k−) ← θ(k) − β(k)δ(k);

θ̀(k+1) ← θ(k) − α(k) ‖θ(k+)‖p−‖θ(k−)‖p
2β(k) δ(−k);

θ(k+1) ← θ̀(k+1) −Φ†(Φθ̀(k+1) − y)) ;
k ← k + 1;

end

ŝ← θ(k);
p← p− 0.1;

end

Algorithm 5: SPSA `p-minimization algorithm

This procedure continues till a desired accuracy is reached or p gets smaller than

the allowed pmin. As it will be demonstrated in section 2.3.1, with an experiment,

even a slight decrease in the value of p from 1 to 0.9, significantly improves the

reconstruction performance of the algorithm. However, it is noticed that decreas-

ing p beyond 0.5, does not result in any substantial gain in the reconstruction

performance (See figure 2.4). Therefore, pmin is set to 0.5.

Further, by way of checking the reconstruction accuracy, an online mode of

verification of the reconstruction performance is employed by using a set of test

samples as test samples (y|test ⊂ y) which is not used in the minimization process.
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After reconstruction, the computed values are checked with the test samples. If

the (norm) difference between them is high or, in other words, if the desired

accuracy in the final result is not reached, the value of p is decreased, otherwise

the algorithm is terminated. The proposed SPSA-`p algorithm as applied to the

problem is given in Algorithm 5.

2.2.1 Choice of SPSA parameters

Variables γ and λ in (2.11) are set to 0.602 and 0.101, respectively [32]. The con-

stant B is recommended to be set as 10% (or less) of the maximum number of ex-

pected SPSA iterations. The parameter β is typically set to the standard deviation

of the measurement noise. When the noise is small, β is chosen as 0.01. It is recom-

mended that α be chosen such that the product α(0) ‖θ(0)+β(0)δ(0)‖p−‖θ(0)−β(0)δ(0)‖p
2β(0)

is approximately equal to the smallest desired step size during the early iterations.

Of all the SPSA parameters, selecting α requires the most effort, because it is of-

ten difficult to know ahead of time what a good initial step size should be. If

the value of α is chosen to be too small, it can significantly increase the number

of SPSA iterations required to reach the minima, while large values of α lead to

unstable, diverging solutions. However, it has been shown through experimental

evaluation that a wide range of α values will yield satisfactory results [31]. Finally,

the vector δ(k) is so chosen as to have a Bernoulli distribution [35].
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2.3 Experimental Results

The SPSA-`p algorithm is applied to both 1D and 2D synthetic signals/images. In

addition, noisy samples are used for image reconstruction to test the robustness

of the algorithm.

2.3.1 One-Dimensional Signals
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Figure 2.4: Comparison of reconstruction performance for different values of p ≤ 1.

In the first experiment the effect of the different values of p on the minimum

number of needed samples for perfect recovery of random signals with fixed spar-

sity, is explored. To this end, first 100 random signals of size n = 512 with k = 100
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(which means that the percentage of the number of zeros in each signal is 78%)

are generated. Then m number of samples (where m is arbitrary and between

150 to 350) is used to measure the signals. For each choice of m, the entries of

the sampling matrices Φ of size m × n, are randomly selected from a mean-zero

Gaussian distribution. The value of p is then set to be 1, 0.9, 0.7, 0.5 and 0.1. For

each choice of p, all the 100 random signals are reconstructed using Algorithm 5.

A reconstruction is considered successful, if MSE (2.12) is less than 10−4. It was

noted that the algorithm convergence rate decreases as p approaches zero.

The rate of success vs. number of samples taken is depicted in figure 2.4.

It can be observed that with p = 1 around 350 samples are needed for perfect

reconstruction of all signals. However, with a slight decrease in the value of p from

1 to 0.9, significantly fewer measurements are required (m = 275). Decreasing

p even further, results in smaller number of required samples (250 and 225 for

p = 0.7 and p = 0.5, respectively). However, it is noticed that decreasing p beyond

0.5, does not result in any substantial gain in the reconstruction performance.

Therefore, in all other experiments of this section, pmin is set to 0.5.

Next, the performance of the proposed SPSA-`0.5 is tested on two syntactic

scenarios, where the number of samples obeys the constraints, m
k

= 2.87 andm
k

=

2.5, against the `1 method. Figures 2.6, 2.7, 2.8 and 2.9 show the results of `1

reconstruction along with those of SPSA-`0.5 for 1D signals of size 512. It is

observed that the proposed method outperforms the `1 approach in recovering

the original signal more accurately. Since `1 norm is not very sensitive to small

elements, its reconstruction results contain many elements of small magnitudes.

Moreover, it fails to reconstruct the signal peaks.
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MSE (̂s) =
Σn
k=1(̂si − si)

2

n
(2.12)

Next an extensive comparison of the recovery performance of the proposed

method (SPSA-`p) with that of the currently used minimization-based CS meth-

ods, namely the `1-minimization ( [36]), the Re-weighted `1 minimization (RW`1

[19]) and the `q method [29], is presented. It should be noted that the pro-

posed method is an iterative one with a substantially less complexity compared

to the above mentioned methods. Therefore the proposed algorithm is also com-

pared against another iterative and less complex method, namely Iterative Hard

Thresholding (IHT) [12].

The setup of the experiment is similar to those of the first experiment. In

100 signal of size n = 512, 100 elements are randomly selected to have a random

nonzero value , chosen from a mean-zero, unit-variance Gaussian distribution. 150

to 350 linear samples are then used to measure each signal. For each choice of

m, the entries of the sampling matrices A of size m × n, are randomly selected

from a mean-zero Gaussian distribution. A signal is considered to be success-

fully recovered when error is below 10−4. In `q method q ∈ [0, 0.1, 0.2, ..., 0.9] and

ε(k) = 1/2k. Success rate for each reconstruction method vs. number of sam-

ples taken is reported in figure 2.3.1. It can be seen that the proposed method

method significantly outperformed the `1, IHT and RW`1 methods, in terms of

smaller number of samples needed for perfect reconstruction of all 100 signals. Its

performance is also superior, but comparable, to the one of `q method.
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Figure 2.5: Comparison of perfect reconstruction rate for random signals with
n = 512 and k = 100, vs. number of samples taken.
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Figure 2.6: `1 reconstruction for n = 512, k = 60, m = 172
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Figure 2.7: SPSA-`0.5 reconstruction for n = 512, k = 60, m = 172
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Figure 2.8: `1 reconstruction for n = 512, k = 120, m = 300
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Figure 2.9: SPSA-`0.5 reconstruction for n = 512, k = 120, m = 300
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2.3.2 Two-Dimentional Images

The algorithm is applied to a set of gray scale medical and natural images of size

512× 512 (see figures 2.10 and 2.11). It is known that these images, as any other

natural image, are quite sparse in wavelet domain, therefore reconstruction has

been carried out in this domain. Samples are taken along random radial lines in

Fourier domain (figure 2.11(d) shows a sampling mask).

Table 2.1 shows the PSNR (2.13) of the reconstructed image using the pro-

posed method (SPSA-`p), compared with that of the currently used CS methods,

namely the `1-minimization (using Nesta [36]), RW`1 [19] and the `q method [29]

(with q ∈ [0, 0.1, 0.2, ..., 0.9]). It is clear that the SPSA-`0.5-based reconstruc-

tion is superior to reconstruction using the `1 and RW`1 methods. Moreover, its

performance is generally better, but comparable, with that of the `q method.

PSNR(̂s) = 20 log10(
255√

(MSE (̂s))
) (2.13)

Input Data Reconstructed image PSNR
Image name % of Samples RW`1 `1 `q SPSA-`0.5

Boat 50% 32.41 32.23 32.84 33.12
Hill 39% 25.52 25.52 30.43 30.90
MRI 27% 35.90 34.11 37.90 39.27
Lena 46% 35.16 34.34 35.16 35.16

Peppers 39% 29.92 29.66 27.95 28.52
CT Image 27% 32.61 33.61 32.03 32.81

USAF Target Image 8% 14.99 14.99 48.23 51.31
Texture Image 7% 19.31 10.20 25.01 24.81

Table 2.1: PSNR of the reconstructed images.
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(a) USAF Target (b) Texture

(c) Peppers (d) Hill

(e) Boat (f) Man

Figure 2.10: Original test images [1].
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(a) MRI (b) Lena

(c) CT (d) Sampling Mask

Figure 2.11: (a-c) Original test images [1] (d) Sampling Mask.
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2.3.3 Robustness

The robustness of the proposed method is also tested as applied to the earlier test

images which are now corrupted with white Gaussian noise. As before, sampling

is done along radial lines in the Fourier domain, and reconstruction, in the wavelet

domain. Table 2.2 shows the PSNR of the noisy image and of the reconstructed

images using the different methods. It can be seen that the superiority of the

proposed method is even more evident when measurements are corrupted with

noise.

Input Data PSNR
Image name % of samples noisy image `1 `q SPSA-`0.5

Boat 50% 25.36 24.91 26.14 27.06
Hill 39% 26.12 26.54 26.78 26.78
MRI 27% 27.11 28.01 27.01 29.04
Lena 46% 25.12 25.34 23.69 23.89

Peppers 39% 25.55 23.64 23.12 26.09
CT Image 27% 26.73 26.12 26.73 27.43

USAF Target Image 8% 25.19 26.57 26.37 27.22
Texture Image 7% 23.62 26.12 26.87 26.51

Table 2.2: PSNR of the reconstructed noisy images.
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2.4 Summary

In this chapter the non-convex `p quasi-norm (0 < p < 1) is introduced, as an

alternative to the convex `1 minimization. A novel adaptation of SPSA to solve

sparse recovery problems using `p norm, is also proposed. The reconstruction

performance of the proposed method is extensively studied in both noise-free and

noisy settings and the results are compared against the ones of the currently used

methods in CS literature. It is shown that the proposed method outperforms other

methods, in terms of smaller number of needed samples for perfect reconstruction.
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Chapter 3

Measures of Sparsity

3.1 Introduction

In signal representation, practical sparsity can be defined in many ways. For

instance, a signal is sparse if its `0-norm, i.e. number of the non-zero coefficients,

is small compared to its dimension. If the original signal s needs n samples for

its complete specification but has z zeros in it, it is said to be k−sparse, where

k = n− z.

But in the case of real signals, this definition may not be practical. Al-

ternatively, a signal is sparse, if its energy is concentrated in a small number of

coefficients of its representation. In other words, when s has z elements with small

magnitudes, we can extend the above definition to “approximate k−sparsity”: if

there exists a s∗ ∈ Rn which is k−sparse, and inf ||(s− s∗)||p is small, where the

subscript p ≤ 1 denotes the `p (pseudo-) norm, then s is approximately k−sparse.

As it was mentioned in previous chapters, the core of CS is the search for
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the sparsest signal. It is evident that to be able to to so, one should first be

able to measure and quantify sparsity and this measure has a profound effect

on the performance of the CS-based algorithms. Intuitively, a sparsity measure

should depend on the relative distribution of energy among the coefficients, as a

fraction of the total energy, and not be calculated based solely on the absolute

value of each coefficient. In fact, a good measure should be a weighted sum

of coefficients of signal representation, based on the importance of a particular

coefficient in the overall sparsity. As a consequence, any slight change in the value

of a coefficient will affect sparsity only relative to the weight of that coefficient,

which is a desirable property. More explicitly, large coefficients should have a

smaller weight compared to the small ones so that they do not influence the

sparsity measure in a way that does not respond to the changes of the smaller

coefficients.

In most of the current literature on compressive sampling, sparsity is measured

using the `p (0 ≤ p ≤ 1) norm of a vector. However, as it will be demonstrated in

section 3.1.1, with the help of various examples, the `0, `1 and `p norms quantify

sparsity in a way that runs counter to an intuitive understanding of sparsity. This

observation that the norm-based sparsity measures, do not exhibit some desirable

properties [37], serves as the motivation to explore the use of the Gini index (GI)

as an alternative sparsity measure in the problem of signal/image reconstruction

from compressive measures.
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3.1.1 Gini index

Gini Index [37], which is a commonly used measure of income/wealth inequality

in the literature of economics, is defined as follows:

Given a vector s = [s1, ..., sn], with its elements re-ordered and represented

by f[k] for k = 1, 2, · · · , n, where |s[1]| ≤ |s[2]|, · · · ,≤ |s[n]|, then

Gini (s) = 1 − 2
n∑
k=1

|s[k]|
||s||1

(
n− k + 1/2

n

)
(3.1)

where ||s||1 is the `1 norm of s.

Remark 1: Gini index is a quasi-convex function on |s|.

Proof: GI, which has been defined in (3.1), can also be expressed as follows:

GI (s) =

∑n
i=1

∑n
j=1 ||si| − |sj||

2n||s||1
(3.2)

From (3.2), we have

GI (s) =
2
∑n

i=1

∑n
j=i+1 |||si| − ||sj||
2n||s||1

=
2 (||s1| − |s2||+ · · ·+ ||sn−1| − |sn||)

2n||s||1

Suppose that |sa| is the k−th element in the sorted vector then |sa| = |s[k]|. In

the numerator |sa| is compared with the other (n− 1) elements. It is clear that if

|sa| = |s[k]|, then (k−1) of s elements are smaller than |sa|, while (n−k) elements
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of s are greater. Therefore, we have

||s1| − |s2||+ · · ·+ ||s1| − |sn||+ · · ·+ ||sn−1| − |sn||

=
n∑
k=1

(k − 1)|s[k]| − (n− k)|s[k]|.

Then it follows that

GI (s) =
2
∑n

i=1

∑n
j=i+1 ||si| − |sj||
2n||s||1

=
2
∑n

k=1 (k − 1)|s[k]| − (n− k)|s[k]|
2n||s||1

=
2
∑n

k=1 k|s[k]| − ||s||1 − n||s||1
n||s||1

=
n||s||1 + 2

∑n
k=1 k|s[k] | − ||s||1 − 2n||s||1

n||s||1

= 1−
2
∑n

k=1 k|s[k]| − ||s||1 − 2n||s||1
n||s||1

which is the same as (3.1).

To show that GI(s) is quasi-convex in |s|, it is sufficient to show that the

sublevel sets of Eqn. (3.2) are convex sets. The c−sublevel set can be written as:

∑n
i=1

∑n
j=1

∣∣∣|si| − |sj|∣∣∣
2n||s||1

≤ c

We can rewrite this as :

n∑
i=1

n∑
j=1

∣∣∣|si| − |sj|∣∣∣− 2cn||s||1 ≤ 0 (3.3)

Since the first term on the left hand side of (3.3) can be rewritten as a point-wise

maximum of linear expressions, it is convex. The second term is linear. Therefore,

the above expression is convex.

48



CHAPTER 3. MEASURES OF SPARSITY

3.1.2 GI vs. `p

An important advantage of the Gini index over the conventional norm measures is

that it is normalized, and assumes values between 0 and 1 for any vector. Further,

it is 0 for the least sparse signal with all the coefficients having an equal amount

of energy; and 1 for the most sparse one which has all the energy concentrated in

just one coefficient. This gives us a meaningful measure, exhibiting the sparsity

of the distribution.

Moreover, unlike other norm measures, the value of this index is independent

of the size of the vector, thereby enabling us to compare the sparsity of vectors of

different sizes. It is also scale-invariant (i.e. GI(αs) = GI(s)), which means that

multiplying all the coefficients of the image representation by a constant does not

affect its sparsity (see table 3.1). Such a property, which is indeed desirable in

the context of image reconstruction from sparse samples, is clearly not satisfied

if we use the `p (pseudo-) norm as a sparsity measure (‖αx‖p = α‖x‖p). GI is

independent of the total energy of the signal and as a consequence, it is ideally

suited for comparing the sparsity of a signal in different transform domains. When

applied to the problem of signal reconstruction from compressive samples, the Gini

index facilitates the discovery of the sparsest domain of transform, if there is any.

Original Signal `1 `0.5 GI
[1 1 1 1 1 1 1 1 1 1] 10 100 0

[1 1 1] 3 9 0
5× [1 1 1 1 1 1 1 1 1 1] 50 500 0

Table 3.1: GI vs. `1 and `0.5.
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For example, consider the phantom image (figures 3.8) of size 512× 512. The

Gini index of this image in different transform domains is presented in table 3.5,

from which it can be easily concluded that the phantom image is most sparse in

the gradient domain and least sparse in the DFT domain. Moreover, with such

a definition, it turns out that there is no need to define explicitly approximate

sparsity measures: when the Gini index is large (i.e., close to 1), then the signal

has only a few values which are dominant; and when the Gini index is small, the

signal has very few dominant values.

Moreover, it is observed that `0 does not take the energy distribution of the

non-zero elements into account. Consider the two signals X1 = [10, 1, 1, 0] and

X2 = [4, 4, 4, 0]. Their sparsity according to `0 is the same for these two signals.

However, intuitively, the sparsity of X1 should be more than X2, since most of

the signal energy is concentrated in just one element

Next,through some examples, the effect of changing the magnitude of a single

coefficient on the Gini index and also on the norm measures, is examined. This

enables us to have a better understanding of the contribution of each coefficient

in the sparsity measures and also of how GI compares to the other norm-based

measures.

1) Effect of increasing the peak value of a signal: The following is in-

tuitively expected: if there is a rise in the magnitude of the peak value,

sparsity should not decrease; in other words, it should either remain the

same or increase. This is more intuitive when expressed in terms of wealth

distribution in a society, any increase in the wealth of rich people will widen

the wealth gap and increase the sparsity.
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Figure 3.1: Percentage of change in sparsity measures vs. change in (a) the largest
and (b) the smallest coefficient magnitude.

51



CHAPTER 3. MEASURES OF SPARSITY

As an example for two signals given by X1 = [100, 10, 0, 0] and X2 =

[120, 10, 0, 0], it is apparent that the sparsity of X2 is not less than the

sparsity of X1. However, as it can be seen in table 3.2, `1 and `0.5, unlike

the Gini index, identify the latter one to be less sparse.

GI `1 `0.5
X1 0.7045 110 173.24
X2 0.7115 130 199.28

Table 3.2: Sparsity measures for X1 & X2.

In figure 3.1(a), the magnitudes of change in the highest coefficient have

been plotted against the percentage of respective changes in each measure.

It can be seen that the norm measures tend to rise with the increase in

the peak values of the signal, which means that the measured sparsity is

reduced. This conclusion is not correct. In contrast, the rise in the Gini

index implies correctly, that the signal is getting sparser with the increase

in the peak value.

2) Effect of increasing the value of the smallest coefficient: It is intu-

itive that sparsity should decrease with the rise of a small coefficient; In the

context of wealth distribution rising magnitude of a small coefficient corre-

sponds to the increase in the wealth of poor people, which clearly reduces

the difference (sparsity) between poor and rich people.

Figure 3.1 (b), shows the contribution of the rise in the value of the small-

est coefficient in the sparsity measures. It can be seen that all measures,

correctly judge that the sparsity is reduced. However, it can be observed
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that `0.5 is quite sensitive to the change in the value of the small coefficient,

which makes this measure vulnerable to noise.

Domain GI `1 `0.5
Original signal 0.9474 440 3.49E3

noisy signal 0.9237 451.06 9.71E3

Table 3.3: Sparsity measures for signal in figure 3.2.

Figure 3.2 (b) shows a random signal corrupted with white Gaussian noise

( SNR=10 dBW). Sparsity measures of this signal vs. its original are pre-

sented in table 3.3. It can be seen that the value of the `0.5 has increased

dramatically for the noisy signal which implies that the noisy signal is much

less sparse compared to its original one.

The above observations serve as motivation for the use of the Gini index

as a sparsity measure for signal reconstruction from sparse samples. For a more

detailed discussion on the concept of sparsity and comparison of different measures

of sparsity as applied to different classes of problems, see [37].

It should be noted that, there seem to be no mathematical results that deal

with conditions on the measurement matrix Φ for recovering uniquely the original

signals from compressive samples when the Gini-index is invoked as a sparsity

measure. The existing constraints of null space and restricted isometry properties

(RIP) of Φ for unique reconstruction of k−sparse signals from compressive samples

seem to be no longer applicable here.

Moreover, it should be noted that the Gini index, which is neither a norm

nor, even, a pseudo- norm (like the `p for 0 < p < 1), has some undesirable
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Figure 3.2: A random sparse signal.
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characteristics, too. For instance, the Gini indices of two signals cannot be alge-

braically manipulated to get the Gini index of a composite signal. Further, we

cannot analyze the sparsity of a signal by decomposing it into smaller segments,

and computing the sparsity of each for summation later.

3.2 Proposed approach

Based on the Gini index as a sparsity measure, two classes of problems of recon-

struction from compressive samples, can be formulated : in the first class, the

Gini index of the signal is given, i.e., Gini (Ψs) = γ0; and, in the other, it is

not.

Problem 1: Given the measurements s find a vector ŝ (which is an

estimate of s), as a solution to the following equations:

Gini (Ψŝ) = γ0 (3.4)

such that Φŝ = y

Problem 2: Given the measurements y, find a vector ŝ (which is an

estimate of s), as a solution to the following optimization problem:

arg max
ŝ∈Rn

Gini (Ψŝ) (3.5)

such that Φŝ = y
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It appears that Problem 1 is meaningful only when some prior knowledge

of the sparsity of signals to be reconstructed is available. Therefore, Problem 2

is the one considered in the next section, where the proposed approach for the

reconstruction of signals from sparse samples by maximizing the Gini index is

presented.

When the measurement is corrupted by noise, the signal reconstruction prob-

lem can be formulated as a corollary to the above.

Corollary: Given the measurements y = Φs + η, where η is the noise vector,

satisfying the inequality ||η||2 ≤ ε, find a vector ŝ (which is an estimate of s), as

a solution to the following optimization problem:

arg max
ŝ∈Rn

Gini (Ψŝ) (3.6)

such that ||Φŝ− y||2 ≤ ε

The goal is to find the sparsest solution, in the sense of the Gini index, among

the set of admissible signals (i.e., the samples). To this end, we make use of the

”Simultaneous Perturbation Stochastic Approximation” (SPSA) to find a solution

to (3.5). It should be noted that the subject of maximization of quasi-convex

functions is well known, and some general conditions for global solutions have

been discussed in [38], [39].

In the reconstruction of real images, any optimization algorithm must be able

to contend with the high dimension of the problem and noisiness in the measure-

ments of the chosen objective function. SPSA has been found to be efficient for
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this purpose by providing a satisfactory solution using a relatively small number

of measurements of the objective function. SPSA uses observations of the desired

performance function (which, in our application, is the Gini index of the signal)

without a direct reference to its gradient. It approximates the gradient using only

two performance function observations per iteration, regardless of the dimension

of the signal. The two observations are made by simultaneously varying ran-

domly all the variables in the performance function. This is the essential feature

of SPSA, which provides its power and relative ease of use in difficult multivariate

optimization problems.

Due to its stochastic nature, SPSA allows for noisy inputs as measurements of

an image corrupted by noise. In contrast, many image reconstruction algorithms

of the literature are affected somewhat unpredictably by noise (unless special care

is taken), leading to problems of convergence and a dramatic decrease in efficiency.

Further, in the case of the SPSA, convergence conditions for both local [31]

and global optimization in the face of multiple, local optima under fairly gen-

eral conditions, including piecewise differentiability of the objective function and

Lipschitz continuity of its gradient, have been established in the literature [33,34].

SPSA Algorithm:

Assume that s is the original sparse vector which is being measured using a

matrix Φ, and y is the set of observations, y = Φs and GI(Ψθ) is the function to

be maximized over θ. It should be noted that GI is piecewise differentiable and

its gradient is Lipschitz continuous. It is assumed that measurements of GI(Ψθ)

are available at various values of θ.
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Let O be the set of all θ that satisfy the observations, O = {θ|Aθ = y}, and

P (θ) be the nearest point to θ on O or, in other words, projection of θ into set O.

In the case of measurements free from noise, let the set of θ that satisfies the

observations be denoted by O = {θ : Φθ = y}. Then, with Φ† denoting the

pseudo-inverse of Φ, P (θ) = (θ − Φ†(Φθ − y)) is the nearest point to θ on O,

in other words, P (θ) is the projection of θ onto set O. For the initialization, the

algorithm stars from multiple random points and the best answer is stored.

Input: y
Output: ŝ
k ← 0;

θ(k) ← θ0

while ‖ŝ|test − y|test‖2 < ε and ‖θ(k+1) − θ(k)‖2 > ε and
k < maxit do

α(k) ← α
(B+k+1)γ , β(k) ← β

(k+1)λ
;

θ(k+) ← θ(k) + β(k)δ(k);

θ(k−) ← θ(k) − β(k)δ(k);

θ̀(k+1) ← θ(k) + α(k) GI(Ψθ(k+))−GI(Ψθ
(k−)

)
2β(k) δ(k);

θ(k+1) ← θ̀(k+1) −Φ†(Φθ̀(k+1) − y)) ;
k ← k + 1;

end

ŝ← θ(k);

Algorithm 6: SPSA GI-maximization algorithm

In the case of measurements with noise, the set O becomes Oε = {θ :

||Φθ − y||r < ε}, and P (θ) = arg minx{||x− θ||2 s.t. x ∈ Oε}.

Starting from the point θ0, at each step, all elements of θ(k) are perturbed

simultaneously according to a distribution vector (δ(k)) whose elements are gen-
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erated by a Bernoulli distribution. We then evaluate GI(Ψ(θ(k) + β(k)δ(k))) and

GI(Ψ(θ(k) − β(k)δ(k))), and update θ as follows:

θ(k+1) = P

(
θ(k) + α(k)GI(Ψ(θ(k) + β(k)δ(k)))−GI(Ψ(θ(k) − β(k)δ(k)))

2β(k)
(δ(k))−1

)
(3.7)

where the gain sequence α(k) := α
(B+k+1)γ , and the small positive time-varying

constant β(k) := β
(k+1)λ

and P (θ) = (θ − A†(Aθ − s)). Here A† is the pseudo-

inverse. The algorithm terminates when it converges to a solution or when the

maximum number of iterations is reached.

3.3 Experimental Results

The proposed algorithm is applied to both 1D and 2D synthetic signals/images.

In addition, to test the robustness of the algorithm, images are reconstructed from

noisy samples.

3.3.1 One-Dimensional Signals

Consider a simple low dimensional example taken from [30]. It has been shown

in [30] that `p fails to reconstruct any 1-sparse signal using the following sampling
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(i.e., measurement) matrix:

Φ =

 1√
1+21−2/p

21/p−1
√

1+21−2/p

21/p−1
√

1+21−2/p

0 1√
2

−1√
2


Let s = [1 0 0]T and p = 0.5.

Then Φ =

 0.3333 6 6

0 0.7071 −0.7071

 and y = Φs = [0.3333 0]T .

The reconstruction results based on the Gini index and `0.5 norm are compared

in table 3.4. It can be seen that the Gini index can recover signals even in those

cases where the `p norm-based recovery fails.

Table 3.4: 1D example

Original Signal [1 0 0]T `1 `0.5 Gini
`0.5 Reconstruction [0 0.0278 0.0278]T 0.0556 0.1111 0.3333

GI-based Reconstruction [1 0 0]T 1 1 0.6667

In the second experiment, the goal is to find empirical bounds on the number

of measurements needed for perfect recovery of signals using GI maximization.

100 random signals are generated of size n = 1000 with k = 100, which means

that the percentage of the number of zeros in each signal is 90. Figure 3.3

shows one such random signal. m number of samples (where m is arbitrary)

is then used to measure the signals. For each choice of m, the entries of the

sampling matrices A, of size m × N, have been randomly selected from a mean-
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zero Gaussian distribution. With the GI as the sparsity measure, the signals

are reconstructed, and compared with those obtained by employing norms as

the sparsity measures (Note that in all of the experiments, the minimization of

`0.5-norm and `1 has been done using, the algorithm in [40] and NESTA [36],

respectively and a reconstruction is considered perfect if MSE (2.12) is less than

10−3).
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1

Figure 3.3: Example of a random signal (n = 1000, k = 100).

Figure 3.4 shows the percentage of success in perfect signal recovery vs. the

number of measurements taken, for all measures of sparsity. It is observed that the

proposed method outperforms the `1 and `p approaches in recovering the original
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Figure 3.4: Percentage of prefect recovery vs. number of samples taken.

signal.

To further illustrate the performance of the proposed method, the reconstruc-

tion result of `1, `p vs. GI is depicted in figures 3.5 and 3.6 for one of these random

signals over a segment of size 100. It can be seen that GI has reconstructed the

signal while other two methods have not been successful. `1 fails to recover many

of the signal peaks due to its tendency to keep the nonzero elements as small as

possible. `p reconstructed signal is sparser than to `1, however it is not as sparse

as the original signal.
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(a) One segment of the original signal
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(b) `1 reconstruction

Figure 3.5: `1 reconstruction for a segment of a random signal (n = 1000, k = 100)
using 300 random samples.
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(a) `p reconstruction

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Gini reconstruction

Figure 3.6: `p and GI reconstruction for a segment of a random signal (n =
1000, k = 100) using 300 random samples.
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3.3.2 Two-Dimensional Images

See figure 3.7 for the original images. The reconstructed images, as obtained

from the proposed SPSA algorithm, are compared with those obtained from other

currently used methods in the literature (on compressive sampling), employing

norms as the sparsity measures. As before, the minimization of `0.5-norm has

been done using [40].

Domain
Image Spatial DCT DFT Wavelets Gradient

Phantom 0.6977 0.7600 0.5664 0.8887 0.9846
Boat 0.1922 0.6948 0.6508 0.8832 0.6282
Hill 0.2448 0.6570 0.6150 0.8781 0.6036
Man 0.2450 0.6626 0.6099 0.8838 0.6099
MRI 0.5560 0.7132 0.6736 0.9389 0.8350

Peppers 0.2467 0.6996 0.6552 0.8970 0.6771
CT image 0.4534 0.8449 0.6098 0.9155 0.8165

Table 3.5: Comparison of the GI of different transform domains for the test images.

Domain
Image Spatial DCT DFT Wavelets Gradient

Phantom 3.2e09 1.6e09 1.7e12 1.1e08 9.6e06
Boat 8.5e12 4.5e11 2.8e14 5.5e11 2.7e11
Hill 7.9e12 4.8e11 3.1e14 5.6e11 2.9e11
Man 7.3e12 4.7e11 2.9e14 4.9e11 2.6e11
MRI 1.2e12 2.4e11 1.5e14 7.9e10 5.1e10

Peppers 4.9e11 3.510 1.1e13 3.9e10 1.8e10
CT image 3.1e11 1.6e10 4.19e12 1.7e10 1.2e10

Table 3.6: Comparison of the `0.5 of different transform domains for the test
images.

65



CHAPTER 3. MEASURES OF SPARSITY

Table 3.5 shows the values of Gini index, while table 3.6 shows the `0.5 norm

of each test image, in different representation domains. It is interesting to observe

that the Gini index, while apparently giving a more transparent understanding of

the measure of sparsity, shows the wavelet domain to be the sparsest for all the

test images, excepting the phantom image for which its gradient domain is the

sparsest.

In contrast, when the sparsity measure is computed using the `0.5 norm, the

gradient domain is the sparsest for all the test images. As far as the examples

of images below are concerned, it is to be noted that measurement samples are

randomly taken from radial lines in the Fourier domain.

Table 3.5 shows that the MRI-phantom image of size 256 × 256 is sparse

in its gradient domain (see figure 3.8(b)). This imaged is reconstructed using

only the randomly chosen samples along 9 radial lines in its Fourier domain, by

maximizing the Gini index of its gradient magnitude. In figures 3.8 and 3.9, the

result of the proposed method has been compared with the results of `1 and TV

norm minimization and [16]. It can be seen the GI-based method outperforms the

others in reconstructing the image from only 9 radial lines.

The proposed algorithm is also applied to a set of medical and natural im-

ages. As mentioned above, according to the Gini index, the wavelet domain is

the sparsest domain for these images. Therefore, the Gini index of the wavelet

coefficients is maximized in Wavelets domain subject to the observations in the

Fourier domain. Results are compared with those obtained from minimizing `1

and `0.5 norms of the wavelets coefficients. Table 3.7 presents the PSNR (2.13)

of the reconstructed images using different approaches. It is observed that, for
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all the test images, the Gini index-based reconstruction is superior, in terms of a

significantly improved PSNR, to reconstruction from norms minimization.

Input Data Reconstructed image PSNR
Image name % of TV `1 `0 GI

Samples min. min. min. max.
Boat 50% 31.77 32.23 32.84 34.71
Hill 39% 31.51 25.52 30.57 33.12
Man 38% 30.35 30.55 30.52 34.64
MRI 27% 32.66 34.11 36.84 42.98

Peppers 39% 32.90 29.66 30.96 31.82
CT image 27% 36.07 33.61 32.61 35.81

Table 3.7: PSNR of the reconstructed images.

In contrast, the `0.5 norm suggests that the gradient domain is the sparsest

for medical and natural images. This is the reason for including the TV minimiza-

tion reconstruction results for comparison. According to table 3.7, the GI-based

method is inferior to TV minimization in terms of improved PSNR for the CT and

Pepper test images. However, for some of the images, such as the Hill, the per-

formance of the TV minimization method is comparable to ours. In fact, figures

3.10, 3.11 and 3.12 show that the perceptual contrast is better in the GI-based

method than that of TV minimization. Moreover, TV minimization results in

blurred images, affecting the visual quality, which, in medical images, may lead

to loss of important minutiae, such as small vessels.
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(a) Boat, 512× 512 (b) Man, 512× 512

(c) Peppers, 256× 256 (d) Hill, 512× 512

(e) MRI , 512× 512 (f) CT , 256× 256

Figure 3.7: Original test images [1].
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(a) Original Phantom (b) Gradient of Phantom image

(c) Total Variation reconstruction

Figure 3.8: Phantom image of size n = 256× 256, sampled over 9 radial lines.
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(a) `1 reconstruction (b) `p reconstruction

(c) GI Reconstruction

Figure 3.9: Phantom image of size n = 256× 256, sampled over 9 radial lines.
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(a) TV reconstruction

(b) GI reconstruction

Figure 3.10: TV vs. GI reconstruction of the Hill image (zoomed in).
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(a) TV reconstruction

(b) GI reconstruction

Figure 3.11: TV vs. GI reconstruction of the Peppers image (zoomed in).
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(a) TV reconstruction

(b) GI reconstruction

Figure 3.12: TV vs. GI reconstruction of the CT image.
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3.3.3 Robustness

To test the robustness of the Gini index as a measure of sparsity, 100 random

signals are generated of size n = 1000 with k = 100, which means that 90% of

each signal component is randomly chosen to be zero. The signals have been

then corrupted with different levels of white Gaussian noise. m = 280 number of

samples (where m is arbitrary) is used to reconstruct the noisy signals. Entries of

the sampling matrices Φ of size m× n has been randomly selected from a mean-

zero Gaussian distribution. As explained above, the Gini index is maximized using

the SPSA algorithm for reconstruction. The reconstructed signals are compared

with those obtained from the currently used methods in the literature. Figure

3.13 shows the MSE (2.12) of the reconstructed signals vs. SNR of the noise.

It is observed that GI-based method is superior to the `1 and `p norm-based

approaches, in general, and more significantly so when a higher amount of noise is

present. Moreover, it is observed in figure 3.13 that in presence of higher amount

of noise, `1 norm-based reconstruction sometimes outperforms that of the `0.5

norm. This could be due to the sensitivity of `0.5 to the small values of the signal

which could make this norm unstable in the presence of noise.

Finally, the performance of the GI-based method is tested against those of TV

`1 and `0.5 norms, as applied to the earlier test images which are now corrupted

with white Gaussian noise. Sampling is in the Fourier domain, and reconstruction,

in the wavelet domain. Table 3.8 shows the PSNR of the noisy image and of the

reconstructed images using the different methods. It can be seen that the Gini

index-based reconstruction is superior to those of norms minimization in terms of

a significantly improved PSNR for all the test images.
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Figure 3.13: MSE of the reconstructed signals vs. SNR of the noise.

Input Data Reconstructed image PSNR
Image name % of noisy image TV `0 GI

Samples min. min. max.
Boat 50% 25.36 26.92 27.23 29.81
Hill 39% 26.12 27.82 26.78 27.65
Man 38% 26.44 25.72 27.86 29.01
MRI 27% 27.11 30.42 27.33 32.28

Peppers 39% 25.55 25.81 24.28 25.83
CT image 27% 26.73 28.91 28.61 29.10

Table 3.8: PSNR of the reconstructed noisy images.
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3.4 Summary

In this chapter, the use of the Gini index (GI) as a sparsity measure in recon-

struction of signals/images from compressive samples, is explored. Through sev-

eral examples, it is illustrated that the GI, which is a quasi-convex function of

its arguments, is a more reliable and robust alternative to the currently popular

`p (pseudo-) norm-based (for 0 < p ≤ 1) sparsity measures. Furthermore, the

proposed GI-based stochastic optimization method to reconstruction signals and

images is shown to be superior over other commonly used norm-based minimiza-

tion methods, in both noise-free and noisy settings.
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Chapter 4

Reconstruction of Sequences of

Sparse Signals

4.1 Introduction

In this chapter the problem of reconstruction of time varying sparse signals from

a series of linear measurements, particularly those closely related such as video

and MRI signals, is investigated.

In its noiseless formulation, the problem can be posed as follows:

let f (t) := [f
(t)
1 , f

(t)
2 , · · · , f (t)

n ] ∈ Rn be the slowly time-varying signal of interest

at epoch t and S(t) := {k ∈ {1, · · · , n} : f
(t)
k 6= 0} denote its support. At each

time instant, the signal of interest is measured using a sampling matrix (Φ(t) of

size m × n) and y(t) = Φ(t)f (t) is the observation vector, which is assumed to

be incoherent with respect to the sparsity basis of the signal. The measurement

matrix could be fixed (i.e. Φ(t) = Φ) or it may be changing with time.
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The problem, at each time t, is then to recover the original signal, f (t), from

the corresponding compressive samples (y(t)), assuming that the signal of interest

is sparse. The static version of the above problem has been thoroughly studied,

however, few works have focused on sequences of sparse signals.

A naive approach for reconstruction of the dynamic signal, would be to use

the simple CS at each time frame separately. Equivalently, at each time instant, t,

we find a g which is an estimate of f (t), as a solution to the following optimization

problem:

f (t) = arg min{
∥∥ŝ∥∥

`1
}

subject to Φ(t)ŝ = y(t) (4.1)

From the CS literature, it is known that for perfect recovery of f (t), we need

m & |S(t)| log n compressive samples, where |S(t)| is the cardinality of the support

at time t [2]. However this approach does not make any use of the fact that the

signal of interest changes slowly over time.

In [41], on the other hand, the authors use this property to propose a way to

dynamically update the solution of the above minimization (4.1), without directly

solving it. The proposed dynamic update scheme systematically breaks down the

solution update into a small number of linear steps. However, this approach

merely uses past reconstructions to speed up the current optimization and does

not improve the reconstruction error and therefore the number of samples needed

is equal to the conventional CS [17].

Authors of [10], discussed the problem of reconstructing a signal when some
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priori information exists about the signal ( their method is referred to as priori-

CS ). Their method can be applied to the problem of sparse sequence reconstruc-

tion as follows:

f (t) = arg min{
∥∥ŝ∥∥

`1
} (4.2)

subject to Φ(t)ŝ = y(t),

‖ŝ− f (t−1)‖`1 ≤ ε

The assumption is that `1 of difference signal, (‖f (t) − f (t−1)‖`1) would be

small, if the support is changing slowly over time. However, this assumption is

not always valid as values and locations of the non-zero elements (spikes) of a

sparse signal will typically change over time.

Recently Vaswani and Lu [17], proposed the modified-CS which uses the sup-

port of the previous time instant (S(t−1)) as an estimated support of the signal of

interest (f (t)) at current time and then use this estimate for reconstruction of f (t),

by finding a signal which satisfies the observations and is sparsest outside S(t−1).

This is equivalent to solving the following optimization problem:

f (t) = arg min{
∥∥ŝ|Ŝ(t−1)

∥∥
`1
} (4.3)

subject to Φ(t)ŝ = y(t)

where Ŝ(t−1) := {k ∈ {1, · · · , n} : f
(t−1)
k = 0}, is the complement of S(t−1) and

ŝ|Ŝ(t−1) := {gi : i ∈ Ŝ(t−1)}.
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It is shown in [17], that under fairly general conditions, the number of samples

needed would be less than the conventional CS. The main assumption in this

method is that non-zero elements, stay on the same location in the signal/image

of the subsequent time instant. However, it is observed that in many real world

scenarios (e.g. figures 4.12 and 4.13 ), non-zero elements do not stay in the extract

location and move to its vicinity.

In next section a method is introduced which is able to achieve exact recon-

struction from even fewer number of samples than the modified-CS by extracting

more priori information from the previous reconstructed signal than just the es-

timated support. In section 4.2, we provide details of the proposed approach for

extracting priori knowledge from reconstructed signals of previous time instants

and explain how the extracted priori knowledge is incorporated into the recon-

struction process. The experimental results are presented and analyzed in section

4.3, where the application of the developed method in wire-less enabled ECG

sensors and real MRI imaging modalities, is explored.

4.2 Proposed Approach

To guide the reconstruction process, the proposed approach makes use of critical

a priori knowledge including the estimated support of the signal of interest. The

idea is based on the observation that in many real world signals & images, the

pattern of sparsity changes slowly and smoothly with time. For example from the

sequence of MRI images in figures 4.13 and 4.12, it can be seen that sparsity, which

is in the spatial domain, changes smoothly from each slice to the other. Therefore,
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the conjecture is that we should be able to extract some priori information about

sparsity of f (t) from f (t−1). More specifically, we try to estimate the probability of

each element of f (t) having a non-zero value, from f (t−1). For the signal of interest

at time t (f (t)), let pi be the probability of its ith element having a non-zero value,

pi := P (fi > 0) and let p := [p1, p2, · · · , pn] ∈ Rn be the sparsity probability

vector. In the proposed method, probability vector p for the current signal (f (t))

is estimated from the reconstructed signal of the previous time instant (f (t−1))

and then is used to aid the reconstruction of f (t). This is discussed in detail in

the following sub-sections.

4.2.1 Estimation of sparsity probability vector

In this sub-section, estimation of the sparsity probability model for a signal at

time t, from the reconstructed signal at time t − 1, is discussed. Based on the

assumption that sparsity changes smoothly with time, given a spike in the signal

at time t−1, there is a good chance that either it remains in the same location, or

shifts to some point in the same vicinity in the next time frame (t). Similarly, at

time t it is expected that zeros appear in the vicinity of zeros at time t− 1. More

specifically, suppose there is a spike in the ith location of f (t−1). In the next time

instant, there is a very high probability this spike remains in the same location

but also some possibility that it moves to some other point in the vicinity. Thus,

the probability of the spike appearing at the each location decreases as we get

farther from (i). This motivated us to use a Gaussian distribution (figure 4.1(a))

to provide an estimate of the probability of the progression of a spike in the next

time frame.
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(a) Probability of progression of a spike in the next time instant.
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(b) Estimation of p(t) from f (t−1), with σ = 2.

Figure 4.1: Illustration of estimation of sparsity probability.
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Thus the probability of jth element of f (t) being non-zero (p
(t)
j ) is the accumu-

lated probability of the spikes of f (t−1) moving to location j at time t as follows:

p
(t)
j =

∑
i∈S(t−1)

1√
2πσ2

e−(j−i)2/2σ2

(4.4)

where S(t−1) is the support of f (t−1) and σ2 is the variance of the Gaussian

distribution which is set proportional to the signal’s rate of change with time.

Figure 4.1(b) shows a syntactic signal f (t−1) together with the probability of the

elements of f (t) being non-zero in the next time frame (p(t)) which is the dashed red

line. From this figure and equation (4.4), it can be seen that the maximum value

of p
(t)
j is 1. This coincides with the locations where in the previous time instant,

f
(t−1)
j and all elements in its vicinity ([j− 3σ, j+ 3σ]) are non-zero. Similarly, p

(t)
j

is 0, if there is not any spike in this span.

The above formulation can be easily extended for 2D images using a 2D

Gaussian distribution. As an example, figure 4.2 shows the estimated sparsity

probability for an MRI image of t = 3 (figure 4.2(c)) from the previous frame

t = 2 (figure 4.2(a)). It should be mentioned that if no priori knowledge on the

sparsity of the signal of interest is available, including at t = 1 where there is no

previous time instant to estimate the probability from, pi is set to 0.5.

83



CHAPTER 4. RECONSTRUCTION OF SEQUENCES OF SPARSE
SIGNALS

(a) f (2) (b) f (3)

(c) Estimated Sparsity of f (3) from f (2)

Figure 4.2: Illustration of estimated sparsity model for an MRI image.
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4.2.2 Reconstruction using the sparsity probability model

In this sub-section, the problem of recovering a signal f using its sparsity prob-

ability model, is discussed. More specifically, let p := [p1, p2, · · · , pn] ∈ Rn be

the priori knowledge of the signal of interest’s sparsity, where pi := P (fi > 0) is

the probability of fi having a non-zero value. It is clear that if pi = 0, then fi

is always 0, while if pi = 1, then it is known beforehand that f has a spike at

location i (though its value is unknown). pi = 0.5 basically means that no priori

information of fi sparsity is available and it is as likely as not to have a non-zero

value.

In order to incorporate the probability model of the signal into the process

of reconstruction, a weighted `1 norm minimization(4.5) is proposed, where the

weights are adjusted according to the probability of each entry being non-zero:

min ||Wŝ||`1 subject to Φ(t)ŝ = y (4.5)

where W = diag([w1, w2, · · · , wn]). Intuitively, a smaller weight should be given

to those entries with higher probability of being non-zero while those elements

with small probability should be penalized with larger weights. Intuitively, to

reward and penalize the elements uniformly, a linear function is used. Thus, the

choice of the weight for each element is:

wi = 2(1− pi) (4.6)

Figure 4.3 shows the chosen weight with respect to the value of the probability.
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It can be seen that as the probability of an element being non-zero, increases, its

weight decreases accordingly. notice that if pi = 0.5 then wi = 1 and wi < 1 when

pi > 0.5 (similarly if pi < 0.5 then wi > 1).
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Figure 4.3: Chosen weight (wi) vs. probability (pi).

It should be noted that the weighted `1 approach (4.5), could be seen as a

generalized `1 minimization, since when no priori information of the sparsity is

available (which means for all elements pi = 0.5), it reduces to the conventional

`1 minimization as all weights would be equal.

Remark 2: It is possible to draw a parallel between the proposed method

and the modified-CS [17], where it is assumed that a part of the support is known

a priori. If we set the probability of the known part of the support pi = 1, then

it follows that wi = 0 and for the other elements of the signal, since there is no

information available on their sparsity, we set pi = 0.5 and therefore wi = 1.

Thus, solving the weighted `1 in (4.5) with the above described weights is in fact

equivalent to solving (4.3).
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Condition for perfect reconstruction using weighted `1

In this sub-section a necessary and sufficient condition of the sampling matrix

null space for the unique recovery of a sparse signal, is described. The proof is

inspired by [10].

Lemma: Let the signal of interest be x∗ with the support S, solving the

weighted `1 minimization (4.5) we can recover x∗ uniquely if and only if

‖(Wr)|Ŝ‖1 > ‖(Wr)|S‖1 (4.7)

where r ∈ null(A) \ {0} and Ŝ is the complement of the support of x∗.

Proof: x∗ is recovered uniquely from (4.5) if for all x that Ax = y we have

‖Wx∗‖1 < ‖Wx‖1. Since x = x∗ + r then

‖Wx‖1 = ‖W(x∗ + r)‖1 = ‖(Wx∗)|S + (Wr)|S‖1 + ‖(Wx∗)|Ŝ + (Wr)|Ŝ‖1

= ‖(Wx∗)|S + (Wr)|S‖1 + ‖(Wr)|Ŝ‖1

> ‖(Wx∗)‖1 − ‖(Wr)|S‖1 + ‖(Wr)|Ŝ‖1

Therefore ‖(Wx)‖1 − ‖(Wx∗)‖1 > ‖(Wr)|Ŝ‖1 − ‖(Wr)|S‖1. If ‖(Wr)|Ŝ‖1 −

‖(Wr)|S‖1 > 0 then ‖Wx‖1−‖Wx∗‖1 > 0 which means ‖Wx‖1 > ‖Wx∗‖1 and

x∗ is the unique minimizer of (4.5).

Now we show necessity by contradiction. Assume for r ∈ null(A) \ {0},

we have ‖(Wr)|Ŝ‖1 ≤ ‖(Wr)|S‖1. Now let x∗|S = −r|S and x∗|Ŝ = 0. Then,

‖W(x∗ + r)‖1 = ‖(Wr)|Ŝ‖1 ≤ ‖(Wr)|S‖1 = ‖Wx∗‖. Therefore x∗ can not be

recovered uniquely from (4.5).
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The null space condition in equation (4.7) is equal to

∑
i∈Ŝ

wi|ri| >
∑
j∈S

wj|rj|

and with the weights set according to (4.6), the above condition becomes:

∑
i∈Ŝ

(
1− pi

)
|ri| >

∑
j∈S

(
1− pj

)
|rj| (4.8)

If we compare this to the null-space property of the conventional `1 minimization

which is ∑
i∈Ŝ

|ri| >
∑
j∈S

|rj|

and recalling that
(
1− pi

)
> 1 if pi < 0.5 and

(
1− pi

)
< 1 if pi > 0.5, it can be

seen that conditions for weighted `1 recovery is more relaxed than the `1 provided

that spikes appear in the locations with the highest probabilities.

4.2.3 Reconstruction of the sequences of sparse signals

In the earlier sub-sections, we introduced the proposed method for estimating the

sparsity probability model and explained its use for reconstruction. We call the

method for reconstruction of sequences of sparse signals, the Weighted CS, and it

is summarized in Algorithm 7 below.

Remark 3: It should be noted that at time t = 1, if no priori knowledge of

the signal is available, we solve using `1 minimization thus requiring more samples

to achieve a perfect reconstruction.
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Input: Φ(t) and y(t).
Output: g(t).
while t ≤ tmax do

1) If t = 1 then g(1) = arg min{
∥∥ŝ∥∥

`1
subject to Φ(1)ŝ = y(1)};

2) t = t+ 1;

3) S(t−1) := {k ∈ {1, · · · , n} : s
(t−1)
k 6= 0}

4) Compute p(t) := [p
(t)
1 , · · · , p

(t)
n ] from (4.4).

5) Compute W(t) from (4.6).

6) g(t) = arg min{
∥∥W(t)ŝ

∥∥
`1

subject to Φ(t)ŝ = y(t)};

7) Go to step 2

end

Algorithm 7: Reconstruction of a sequences of sparse signals varying with time
using Weighted-CS.

4.3 Experimental Results

We carried out a number of experiments on synthetic 1D data, real ECG signals

and MRI images, in order to compare the reconstruction ability of the proposed

Weighted CS method with that of `1 minimization [36], `p minimization , priori-

CS [10] and the modified-CS [17].

4.3.1 One-Dimensional Synthetic Signals

Using a probability model of size n = 100, we randomly selected 70 elements and

set them to 0.01 while the remaining 30 elements were set to a random number

between zero and one (figure 4.4). Next, 100 random signals were generated
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Figure 4.4: Probability of having a non-zero value.

according to this probability model, with the probability of each element having

a non-zero value. The value of the non-zero spikes are also chosen randomly. We

then use different number of samples (m) and for each m, we randomly select the

elements of the sampling matrix A (of size m × n) from a zero-mean Gaussian

distribution. The probability of exact reconstruction for each method is estimated

by counting the number of times that the error is less than 10−5.

It should be noted that in the modified-CS method, elements with pi > 0.5

are considered as the known support. Frequency of success for each sampling

rate is shown figure 4.5. It can be seen that Weighted-CS outperforms the other

methods in achieving perfect reconstruction with a smaller number of samples.
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Figure 4.5: Percentage of perfect recovery vs. number of samples taken.

4.3.2 ECG remote sensing

The electrocardiograph (ECG) is considered as one of the most important diag-

nostic tools for assessing the electrical and muscular functions of the heart and

thus have an important role in the battle against cardiovascular diseases which

are among the top causes of death in the world.

While resting ECG monitoring is a standard practice in hospitals, major ef-

forts have been underway to realize wireless-enabled low-power ECG monitoring.

However, these ambulatory monitoring devices face many technical challenges in-

cluding limited wireless connectivity, short battery life and etc [42].

State-of-the art ECG monitors fall short because either they transmit the

uncompressed ECG data over wireless network, which puts much pressure on
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Figure 4.6: Block diagram of ECG monitoring devices.

wireless links; or they compress the data in a compression unit after collecting and

storing the full data on the chip, which leads to bulkiness and power inefficiency.

In these approaches the signal of interest is first fully sampled according to the

Nyquist rate. It is then compressed by using the thresholding-based Wavelet

transform (DWT) algorithm [43] before being encrypted for transmission (figure

4.6(a)).

An alternative approach however, would be to use CS, based on the fact that

the ECG signal is largely compressible and thus sparse. Compressive sensing

employs linear sampling operators that map the signal into a relatively small di-

mensional space which result in a small number of measurements that can be

wirelessly transmitted to the remote tele-cardiology center. The full signal can

be recovered then from a much smaller set of measurements than the number of

Nyquist-rate samples using complex, yet computationally feasible and numerically

stable, non-linear methods. In addition to unifying the sampling and compres-
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sion phases, under fairly general conditions, the measurements obtained using

compressive sensing are considered to be encrypted [44] thus providing a com-

putational guarantee of secrecy. Hence, compressive sensing basically swaps the

burden of computation from the sampling device to the receiver end where more

resources are available.

In recent works [45], [42], it has been found that compressed sensing based

methods used in ECG sampling devices are inferior in terms of compression per-

formance compared to wavelet transform based compression methods. Unsurpris-

ingly, these compressive sensing based methods were found to exhibit the best

overall energy efficiency. However, these recent works were carried out using `1

minimization with pursuit algorithm [2] as the default basis without attempt-

ing to exploit the highly structured nature and quasi-periodic property of ECG

signals [42].

Digitized ECG signals are generally processed in non-overlapping windows of n

samples (figure 4.7) due to the limited on-chip memory and real-time computing

constraints. We use the Gini index, which has been shown to be an effective

measure of sparsity [46], to find the sparse transform domain for ECG signals.

Table 4.1 shows the Gini index values in different transform domains for an ECG

signal. It can be seen that ECG is sparsest in Wavelet domain (since the Gini

index is closest to 1). However it is known that Wavelets and the spatial domain

which is sampling domain, are not incoherent. Therefore, we select DCT transform

which is the second sparsest domain, as the sparse basis.
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Spatial DCT DFT Wavelets
GI 0.2922 0.6948 0.7909 0.8332

Table 4.1: Comparison of the Gini Index (GI) of an ECG signal in different
transform domains .
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Figure 4.7: (a) An ECG signal (38 second); (b) A window (2 second) of an ECG
signal.
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Figure 4.8 shows the DCT transform of an ECG signal in three consecutive

windows. It can be seen that frequencies which exist in these windows are very

similar to each other and if there is a change from one window to the other, the

change is smooth.
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Figure 4.8: DCT transform of 3 ECG windows of size N = 720.

Twenty-four ECG recordings from the MIT-BIH Arrhythmia database [47]

have been used to compare the performance of the Weighted-CS with the other

state-of-the-art compressive sensing and non-compressive sensing based algorithms.

The ECG signals were digitized at above-Nyquist sampling rate of 360 Hz for the

duration of 38 seconds. The processing window of 2 seconds with length of n =

720 ECG samples, was used for all algorithms (figure 4.7).
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Figure 4.9: Estimation of p(t) from DCT (f (t−1)), with σ = 10.

PRD =

∥∥ŝ− f (t)
∥∥
`2∥∥f (t)∥∥

`2

∗ 100 (4.9)

The ECG signals are then reconstructed from different number of samples

using Algorithm 7 and the results are compared with two compressive sensing-

based methods, namely modified-CS and `1 minimization. We have also compared

the results against the state-of-the-art ECG Discrete Wavelet Transform (DWT)

compression technique [43] which has been shown to outperform the embedded

zerotree wavelet (EZW) and the set partitioning in hierarchical trees (SPIHT)

based methods at a lower cost [48].

It should be noted that in modified-CS and Weighted-CS, reconstruction is
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based on the priori knowledge which is extracted from the reconstructed signal of

the previous time instant. Therefore, in the very first time window of each ECG

signal we use 70% of the samples so that we can fully recover the signal without

using any priori knowledge. The percentage of samples taken as indicated in figure

4.10 is for the second window onwards.

The performance measure used is the percentage root-mean-square difference

(PRD) (Eqn.(4.9)) which is widely used to quantify the error the original and

reconstructed signals. The average reconstruction error for 24 signals over 15

windows are presented in figure 4.10 for all methods. It can be seen that Weighted-

CS performance is comparable with DWT and superior to the other methods in

terms of PRD. It should be noted, however that DWT method tends to eliminate

the high frequency elements of the signal, which could potentially lead to loss of

some important diagnostic features. As an example, figure 4.11 shows a segment

of the reconstructed signals from 20% of samples using DWT and Weighted-CS

methods. It can be seen that DWT fails to fully recover the amplitude of the peaks

which is considered as an important feature for cardiac condition detection [49].

It should be also noted that while the percentage of samples indicated in figure

4.10 for DWT refers only to the number of samples that need to be transmitted,

the whole signal should be first stored on the memory of the sampling device for

the Wavelet transform operation. On the other hand, the proposed method only

requires the compressive measurements to be stored and transmitted.
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Figure 4.10: PRD vs. number of samples taken for ECG signals.

400 450 500 550 600 650

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

 

 

Weighted−C

DWT

Original Signal

Figure 4.11: A segment of the reconstructed signals.
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Figure 4.12: Sample images of MRI sequences.
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Figure 4.13: Sample images of MRI sequences.
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4.3.3 Sequences of MRI Images

Magnetic Resonance Imaging (MRI) is an essential medical imaging tool bur-

dened by its intrinsic slow data acquisition process. Since data acquisition is

sequential in MR imaging modalities, the scan time (time to get enough data to

accurately reconstruct one frame) is reduced if fewer measurements are needed

for reconstruction. Therefore, goal of many researchers is to employ a smaller set

of samples than normally required to reconstruct the original images. However,

when k-space is under sampled, the Nyquist criterion is violated, and conventional

Fourier reconstructions exhibit aliasing artifacts.

Much of the current CS-based works in the literature are, mostly concerned

with reconstruction of static MRI images. However, in many important and chal-

lenging MRI applications, such as volumetric (3D) MRI or real-time MRI (refers

to the continuous monitoring of moving objects in real time), instead of just one

image slice, we are dealing with sequences of MRI images which are closely re-

lated to each other. Real-time MRI, for example, currently is only possible with

low image quality or limited rate of slices per second due to the time-consuming

scanning process [50]. To the best of our knowledge, only a few works have devel-

oped reconstruction methods for sequences of MRI images (e.g. [51], [50]). These

observations motivate us to apply the Weighted-CS, to the problem of sequences

of MRI images.

We tested the proposed algorithm on 5 sequences of MRI images of the foot,

knee, ankle, neck (all of size 512 × 512 × 20 ) and skull base (512 × 512 × 40 ),

obtained from [52]. Figures 4.13 and 4.12, show some of these MRI images.

For the first image in each sequence, t = 1, since no priori knowledge is
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available, 30% of samples are taken along 150 radial lines in the Fourier domain

(see sampling mask in figure 4.14(a)) while in the successive frames, only 10% of

samples are taken along 50 radial lines (figure 4.14(b)) . The reconstruction is

carried out in the Wavelet domain which is assumed to be the sparse domain.

(a) (b)

Figure 4.14: Sampling mask for (a) t=1 (b) subsequent frames.

Figures 4.15, 4.16 and 4.17, compares the reconstruction performance of the

Weighted-CS with σ set to 12 for MRI sequences with those obtained using the

modified-CS, priori-CS and `1 minimization (CS). It can be seen that the proposed

method out-performs the other methods significantly in terms of the improved

PSNR.
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Figure 4.15: PSNR of the reconstructed images vs. time.
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Figure 4.16: PSNR of the reconstructed images vs. time.
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(a) Ankle MRI Sequence

Figure 4.17: PSNR of the reconstructed images vs. time.

4.3.4 Choice of σ

It should be noted that when σ approaches zero, the Gaussian distribution narrows

to a spike and thus the proposed Weighted-CS method retrieves the same results

as the modified-CS. Figures 4.20 and 4.19, show the reconstruction error as a

function of σ for the ECG signals and MRI images used in experiments discussed

in sections 3.2 and 3.3. It can be seen that as σ increases, the performance

improves and is the lowest possible for a range of σ up to a certain point beyond

which the error begins to increase and becomes significantly high as σ becomes

too large. Choosing a large σ is however counter to the initial assumption that

sparsity changes smoothly with time. It can be seen from the figures that if σ is
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Figure 4.18: MSE of the reconstructed foot/knee images at t = 2 vs. σ.

chosen in a reasonable range, the algorithm is not very sensitive to value of σ. For

a particular class of signals or images, a single choice of σ would work well for all

signals/images in that class.

Figure 4.20(a) shows the reconstruction MSE for one ECG dataset. It can be

seen that any σ ∈ [12, 17] would lead to a reasonable reconstruction MSE of less

than 0.001. Based on this plot, we choose σ to be 15 for all ECG signals in the

experiments. Judging from the reconstruction MSE of the other ECG datasets

presented in figure 4.20(b), it is evident that this value of σ leads to minimal error

in the other ECG datasets as well. For the MRI images, figure 4.18 shows the

MSE error of foot/knee images at t = 2. Here any σ ∈ [10, 18] would lead to a

reasonable reconstruction MSE of less than 0.001 and so we select a σ of 12 to

be used in all succeeding foot/knee MRI images. Figure 4.19(a) and (b), confirm

that this value is indeed a proper choice for the other image frames.

106



CHAPTER 4. RECONSTRUCTION OF SEQUENCES OF SPARSE
SIGNALS

0 10 20 30 40 50 60
     0

     0.1

     0.2

     0.3

   0.4

    0.5

    0.6

σ

M
S
E

t=3

t=4

t=5

t=6

(a) Foot images

0 10 20 30 40 50 60

σ

     0

     0.1

     0.2

     0.3

   0.4

    0.5

    0.6

M
S
E

    0.8

    0.7
t=3

t=4

t=5

t=6

(b) Knee images

Figure 4.19: MSE of the reconstructed signal vs. σ.
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Figure 4.20: MSE of the reconstructed signal vs. σ.
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4.4 Summary

In this chapter, problem of reconstructing time sequences of sparse signals from a

limited number of linear observations was investigated. Based on the assumption

that sparsity changes smoothly with time, a Weighted-CS method, is proposed.

This new method extracts some a priori information from the reconstructed signal

of the previous time instant and then uses a weighted-`1 minimization to incorpo-

rate this information into the reconstruction process. It is shown, through exten-

sive experiments that the proposed Weighted-CS method can achieve a significant

reduction in the number of samples needed compared to the other state-of-art CS

algorithms. Lastly, the application of the Weighted-CS in ECG monitoring and

real-MRI sampling is explored. Through extensive experimental results on ECG

signals and MRI images, it is shown that the proposed algorithm achieves supe-

rior performance compared to other the state-of-the-art methods, while imposing

significantly less load on the sampling device in terms of memory and energy

consumption.
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Conclusions and Future Work

In this thesis, efficient and practical methods for reconstruction of high dimen-

sional signals from compressive measurements have been presented. This work

opens up some interesting issues for further investigation.

This final chapter concludes the thesis with a review of the main research

contributions and description of the proposed new directions for future research.

5.1 Recovery algorithms

From the detailed review of the recent signal reconstruction methods from com-

pressive samples presented in chapter 2, it is evident that the current widely used

`1-based recovery method, suffers from two main limitations:

• The underlying convex optimization, requires relatively high memory usage

and computational cost [11] [12].

• The `1 norm does not provide a sufficiently close approximation to `0 [15].
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To tackle the above mentioned constraints, an iterative stochastic approximation-

based method as a fast and robust algorithm to achieve as close as possible to

`0-norm, using `p-norm (0 < p ≤ 1), is proposed and developed. The performance

of this algorithm is validated by experimental results on 1D signals and images

and is compared against the state-of-the-art convex, greedy and non-convex based

CS methods. Moreover, this approach is shown to be robust to noise.

Future work: Much of the work in the field of compressive sensing is focused

on reconstruction algorithms and not much has been done in the field of choos-

ing/designing the sampling domain and matrices. Throughout this thesis random

matrices whose entries are drawn i.i.d. from Gaussian distribution have been used

to sample the signals of interest. It would be of practical interest to investigate

the effect of sampling matrices, drawn from other random distributions, on the re-

construction results. Moreover, an interesting and challenging would be to explore

the synthesis of measuring metrics for compressive sampling of signals belonging

to a special class, using some test signals belonging to that class. It is expected

that using a specially designed sampling domain, increases the performance of the

proposed algorithms significantly.

5.2 Measures of Sparsity

The Gini index (GI) is explored as an alternative measure of sparsity to the cur-

rently popular `p(pseudo-) norm-based (for 0 < p ≤ 1) measures and its superior

robustness and reliability is demonstrated, through extensive experiments. A GI-
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based stochastic optimization method is proposed and developed to reconstruct

signals from compressive measurements, from significantly smaller number of sam-

ples required in the current state-of-the-art CS methods. The robustness of the

proposed algorithm in dealing with measurements corrupted with noise is also

demonstrated.

Future work: As it is mentioned in chapter 3, the existing constraints of null

space (NS) and restricted isometry properties (RIP) of Φ for unique reconstruction

[3], [18] of k-sparse signals from compressive samples are not applicable to GI. A

natural next step of this work would be to develop mathematical results that deal

with conditions on the measurement matrix Φ for recovering uniquely the original

signals from compressive samples when GI is invoked as a sparsity measure. In

view of the promising experimental results and and quasi-convexity of GI, it is

conjectured that more flexible and less restrictive NS- and RIP-like properties

of Φ may lead to a unique reconstruction of k-sparse signals. This is left as a

challenging problem.

Moreover, through extensive experiments on random signals, the successful

recovery rate vs. number of samples taken using the GI (figure 3.4), is illus-

trated. An interesting and challenging problem, would be to develop the theoret-

ical bounds on the number of needed samples, under which exact reconstruction

is possible with GI as a sparsity measure.
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5.3 Reconstruction of Dynamic Signals

For reconstructing sequences of time-varying sparse signals, a method based on

the assumption that sparsity changes slowly and smoothly with time is proposed

and developed. This method, first extracts a probability model of the signal of

interest from the reconstructed signal of the previous time instant. It then in-

corporates this extracted priori-knowledge into the reconstruction process, using

a weighted-`1-based method. Compared against the other state-of-art CS meth-

ods, it is shown that the proposed approach requires significantly smaller number

samples for a perfect reconstruction. Lastly, the potential application of the devel-

oped method in low power ECG wireless-enabled monitoring devices and medical

imaging modalities is examined and promising results are obtained.

Future work: One immediate extension of this work would be to use different

measures of sparsity such as `p, 0 < p < 1 [15] or GI [46], to further reduce the

number of samples needed. It should be mentioned that incorporation of priori-

knowledge into the GI-maximization process is specifically challenging, as the

extension of the weighted-`1 method to GI index is not trivial. This is left as a

challenging problem.

Another interesting challenge would be to investigate the incorporation of the

extracted probability model into the measuring process instead of the reconstruc-

tion process. This can be done by designing adaptive measurement matrices, that

are denser in the locations where higher amount of change is expected.

In the work presented in chapter 4, the extracted probability model is used

to reconstruct the signal of interest from small number of samples, however it

should be possible to use the extracted model for other purposes such as back-
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ground/foreground detection or object tracking in image sequences. Other poten-

tial areas of applications, such as the ones mentioned, are to be explored.

Motivated by the encouraging simulation results obtained for the ECG signals,

the next step would be actual real-time implementation of the proposed method

on embedded platforms.
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