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ABSTRACT 
 

The unique identity embryonic stem cells (ESCs) are featured by their pluripotency and self-

renewal ability. Oct4/Nanog transcriptional network and epigenetic regulation mainly control the 

ESC identity. However, there still are unknown factors which are required for ESC identity. Two 

proteins were studied in my project. The first one is a RNA-binding protein Lin28 which is used 

as a reprogramming factor. The second protein is a jumonji domain-containing factor Jmjd6 

which was previously shown as a histone arginine demethylase.  

 

In the first part, double knockdown Lin28a and Lin28b and subsequent gene expression 

microarray have indentified numerous potential Lin28 downstream genes in ESCs. My study has 

also revealed that Lin28 may regulate ESC self-renewal in both miRNA dependent and 

independent ways. 

 

In the second part, our results demonstrate that Jmjd6 is indispensible for the maintenance of 

ESC pluripotency and there may be a feedback loop between Jmjd6 and the key transcription 

factor Oct4 /Sox2. 
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1.1 Embryonic stem cell (ESC)’s identity and regulation 

 

1.1.1 Mammal development 

During the development process, a totipotent zygote undergoes gradual differentiation into the 

pre-implantation after cavitation at the 16-cell morula stage. The first cell fate decision occurs 

in which a population of cells grow into the inner cell mass (ICM) while the rest cells end up 

with the trophectoderm that surrounds the ICM (Hanna et al., 2010; Ralston and Rossant, 2005). 

The ICM cells are considered pluripotent as they have the ability to give rise to three germ 

layers: ectoderm, mesoderm and endoderm but not the trophectoderm (Alison et al., 2002). The 

cells undergo further differentiation and some of them become multipotent adult stem cells 

which defines by the limited capacity to form a fixed repertoire of cell types depending on 

which organ in the body they are acquired from (Jaenisch and Young, 2008).  

 

1.1.2 ESCs and their maintenance 

Mouse embryonic stem cells (ESCs) are the in vitro equivalent of the ICM, established by in 

vitro cultures of mouse blastocytes (Evans and Kaufman, 1981). ESC distinguishes from its in 

vivo counterpart by having unlimited self-renewal capacity while they can be induced to 

differentiate into a variety of cell types (Ng and Surani, 2011). The propagation of mouse ES 

cells require the leukaemia inhibitory factor (LIF), which engages a heterodimeric receptor 

complex includes two cytokine receptors, LIF receptor (LIFR) and gp130 (Davis et al., 1993). 

It acts by activating Janus-associated tyrosine kinases (JAK) that phosphorylate the receptor 

chains (Narazaki et al., 1994; Stahl et al., 1994). In the down- stream of JAK is the signal 
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transducer and activator of transcription (STAT) proteins (Ihle, 1996). In ES cells, JAK kinases 

predominantly activate STAT3 by triggering its recruitment tyrosine phosphorylation and 

dimerization (Niwa et al., 1998). The STAT3 dimers then translocate to the nucleus, where they 

control the transcription of self-renewal genes (Burdon et al., 2002). However, LIF/Stat3 

pathway alone is not sufficient to maintain ESCs as culturing of mESCs in serum-free medium 

supplemented with LIF still resulted in differentiation into neural cells (Ying et al., 2003). Bone 

morphogenetic protein 4 (Bmp4) , which was found to be the serum constituent that 

complements LIF, appear to be essential serum-derived factors by binding to BMP receptor 

(BMPR) and leading to phosphorylation of Smad proteins and activating expression of 

Inhibitor of differentiation (Id) proteins (Ying et al., 2003). Subsequently, Id proteins function 

as inhibitors of differentiation towards neural lineage. Therefore, LIF acts together with Bmp4 

in this way to enhance the pluripotent state and self-renewal ability of mESCs. 

 

1.1.3 Epigenetic regulation of ESCs 

The term “epigenetics” was originally coined by Waddington to explain the means by which 

complex multicellular organisms are formed by differentiation of totipotent cells in the embryo 

(Waddington, 1942). Epigenetics was commonly defined as “the study of changes in gene 

function that are mitotically and/or meiotically heritable and that do not entail a change in DNA 

sequence” (Wu and Morris, 2001). Generally speaking, classic epigenetic regulations of gene 

expression include DNA methylation, transcription factors, and chromatin variation through 

modifications of DNA-binding proteins such as histones, DNA methylation as well as post-

transcriptional regulation by non-coding RNAs (ncRNAs) (Goldberg et al., 2007).  
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1.1.4 The regulation of transcription factors in pluripotency 

Three transcription factors Oct4, Sox2, and Nanog are the core regulators that specify ES cell 

identity (Avilion et al., 2003; Chambers et al., 2003a; Lee et al., 2004; Mitsui et al., 2003a; 

Nichols et al., 1998; Scholer et al., 1990). Encoded by the Pou5f1 gene, Oct4 is a POU domain 

containing, octamer binding transcription factor (Okamoto et al., 1990) (Scholer et al., 1990) 

and is the most essential for early embryogenesis and for embryonic stem cell pluripotency. Its 

activity is crucial for the identity of the pluripotential founder cell population in the mammalian 

embryo (Nichols et al., 1998). Either deficient or over-expressed Oct4 in ESCs leads to 

differentiation towards trophectodermal lineage and mesodermal and endodermal lineages, 

including the primitive endoderm, respectively (Nichols et al., 1998; Niwa et al., 2000). Sox2 is 

a transcription factor with a HMG box DNA-binding domain that can heterodimerize with Oct4 

on DNA and affect the expression of a number of genes involved in embryonic development 

such as FGF4 and ZFP206 (Yu et al., 2009; Yuan et al., 1995) . Like Oct4, Sox2 is also critical 

for early embryogenesis and for embryonic stem cell pluripotency, and Sox2-null ESCs 

differentiate into trophectoderm cells (Avilion et al., 2003; Masui et al., 2007). Nanog is a NK2 

homeobox transcription factor that is highly expressed in the epiblast and ICM and absent from 

differentiated cells (Chambers et al., 2003b; Mitsui et al., 2003b). If Nanog was deleted, the 

ICM failed in developing to epiblast but to endoderm-like cells. Consistently, Nanog-deficient 

ES cells differentiated into endoderm lineage (Mitsui et al., 2003a), suggesting that Nanog is in 

the transcription factor hierarchy that defines ES cell identity. Genome-wide location analysis 

of Oct4, Sox2 and Nanog indicate that they co-target numerous genes, many of which encode 

developmentally important homeodomain transcription factors and regulators required in 

specialized regulatory circuits in ES cells (Boyer et al., 2005; Loh et al., 2006). Further studies 

have revealed that these three factors function to specify the ESC identity by activating 

transcription of regulating genes via recruitment of co-activators like p300, chromatin 
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remodelling complexes and the transcriptional machinery (Chen et al., 2008; Pardo et al., 2010; 

van den Berg et al., 2010; Young, 2011), and meanwhile repressing developmental genes by 

polycomb-group (PcG) complexes as well as other repressive complexes, such as NuRD, 

Sin3A and Pml complexes (Boyer et al., 2006; Lee et al., 2006; Liang et al., 2008; Pardo et al., 

2010; van den Berg et al., 2010). In addition, they also bind to their own promoters in an auto-

regulatory loop (Boyer et al., 2005). Marson’s group integrated the core auto-regulation with 

downstream targets and revealed the importance of these regulation, as illustrated in the Figure 

1 (Marson et al., 2008) . The autoregulatory circuitry may explain the mechanisms in which 

stem cell identity can be persistently maintained (Loh et al., 2006). And regulating Oct4, Sox2 

and Nanog levels and function may affect the developmental potential of ES cells (Chambers et 

al., 2003a; Mitsui et al., 2003a; Nichols et al., 1998; Niwa et al., 2000). 
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Figure 1. Multilevel regulatory network controlling ESC identity. Picture adapted from 

Marson et al., Cell 2008 (134):521-533.  



7 

 

1.1.5 Chromatin modification in ESCs 

In mammalian cells, chromatin is a complex structure comprised of DNA and associated 

proteins, and transcriptional activity is intertwined with modifications to the chromatin 

structure. Thus, the complete transcriptional regulatory networks in ES cells integrate the 

assembly, disassembly, and covalent modifications of chromatin and DNA (Li et al., 2007a). 

As the basic subunit of chromatin, nucleosome consists of an octamer of 2 copies each of the 

core histone proteins including H2A, H2B, H3, and H4 (Luger et al., 1997). Linker histones 

such as H1 and its isoforms are involved in chromatin compaction and sit at the base of the 

nucleosome near the DNA entry and exit binding to the linker region of the DNA (Zhou et al., 

1998). Posttranslational modifications occur in core histones such as acetylation, 

phosphorylation and methylation and the attachment of methyl groups occurs predominantly at 

specific lysine or arginine residues on histones H3 and H4 (Wood and Shilatifard, 2004). 

Normally, ESC chromatin is enriched in active marks (methylation of H3K4 and acetylation of 

H3 and H4) and deficient in silencing modifications (methylation of H3K9). Differentiation of 

ESCs is accomplished by global changes of histone modification pattern and transit to a less 

permissive chromatin state characterized by a decrease in H3K4me3 and an elevation of 

H3K9me (Meshorer et al., 2006). The so-called “bivalent domains” consisting of large regions 

of H3K27 methylation harboring smaller regions of H3K 4 methylation were identified as key 

developmental genes markers in embryonic stem cells, and histone methylation was shown to 

be notably weaker in differentiated cells. These may highlight the importance epigenetic 

regulation and suggest a novel chromatin-based mechanism for maintaining pluripotency 

(Bernstein et al., 2006).  
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1.1.6 DNA methylation in ESCS 

DNA methylation is the addition or removal of a methyl group symmetrically on CpG 

dinucleotides. It is a stable and heritable mark that is involved in gene silencing, and is critical 

for development. In pluripotent ESCs, the pluripotency markers Oct4, Nanog and Sox2 

promoter regions are unmethylated to keep an active statue, and will undergo methylation upon 

differentiation (Lagarkova et al., 2006; Yeo et al., 2007). DNA methyltransferases (Dnmts) are 

a family of proteins related to the establishment and maintenance of DNA methylation. Dnmt3a 

and Dnmt3b are de novo methytranferases responsible for remethylation in postimplantation 

mouse embryos and in germ cells (Okano et al., 1999). In differentiating ESCs, the two 

enzymes directly interact and function synergistically to methylate the promoters of the Oct4 

and Nanog genes (Li et al., 2007b).Dnmt1 maintains DNA methylation at hemi-methylated 

DNA after DNA replication during cell divisions (Chen and Li, 2004). The mutants of Dnmt3a 

and Dnmt3b lead to loss of methylation and developmental defects while mutant of Dnmt1 

results in embryonic lethality and loss of majority methylation as well (Li et al., 1992; Li et al., 

2007b). These studies show that global methylation may be indispensible for differentiation. 

 

1.1.7 MicroRNAs regulation in ESCs 

MicroRNA (miRNA) research is drawing increasing interest in stem cell field. miRNAs are 

small RNAs of ~22 nt that regulate target mRNAs through complementary base-pairing (Kim 

et al., 2009). miRNAs are generated mainly via two-step processing. In this canonical pathway, 

a newly transcript primary miRNA gene (pri-miRNA) is cropped into at least one hairpin 

structure precursor (pre-miRNA) and cleaved within the nucleus by an RNAseIII Drosa, co-

assisted by DGCR8/Pasha (Denli et al., 2004; Gregory et al., 2004; Landthaler et al., 2004; Lee 
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et al., 2003). Pre-miRNA is exported to the cytoplasm and gets processed by another RNAseIII, 

Dicer, to remove the “terminal loop region”, transforming into a mature miRNA (Bernstein et 

al., 2001; Grishok et al., 2001; Hutvágner et al., 2001; Ketting et al., 2001; Knight and Bass, 

2001; Lund et al., 2004). It is then cropped into the RNA-induced silencing complex (RISC) 

that contains the argonaute protein as the core component (Hammond et al., 2001; Mourelatos 

et al., 2002). Regulation of miRNA biogenesis can be achieved at multiple levels, including 

posttranscriptional level. 

Numbers of miRNAs are predominantly expressed in ESCs or developmental embryonic 

tissues (Houbaviy et al., 2005; Houbaviy et al., 2003; Suh et al., 2004). Dicer-deficient mice 

lead to lethality early in development (Bernstein et al., 2003).  Also, ESCs lacking miRNA-

processing enzymes are defective in both differentiation and proliferation (Kanellopoulou, 

2005; Murchison, 2005; Wang et al., 2007). A subset of miRNAs function to repress 

pluripotency by repressing transcription factors like Oct4, Sox2 and Klf4, or inducing 

differentiation by feedback regulations (Büssing et al., 2008; Xu et al., 2009b). In addition, 

genome-wide mappings of binding sites for key ES cell transcription factors were generated to 

incorporate miRNA gene regulation into the model of transcriptional regulatory circuitry of ES 

cells, which reveals highly overlapping occupancy of Oct4, Sox2, Nanog, and Tcf3 at miRNA 

promoters (Marson et al., 2008). All these imply miRNAs contribute to the control of early 

development and regulation of pluripotency. 

 

1.1.8 The establishment of iPSCs  

The dominant controlling status of epigenetic mechanisms in regulating ESCs makes the whole 

process seems reversible and it was soon proved by reprogramming with transferring the 
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nuclear of somatic cells into oocytes, or by fusion with ESCs (Cowan et al., 2005; Wilmut et al., 

1997). Moreover, the re-generation of pluripotency can further be simplified with the induction 

of only four transcription factors (Takahashi and Yamanaka, 2006). These induced pluripotent 

stem cells (iPSCs) resemble ESCs in their morphology, key markers gene expression, 

chromatin configuration (Takahashi and Yamanaka, 2006). Furthermore, they fulfill 

requirements of all standard pluripotency assays, including in vitro differentiation into three 

germ layers, teratoma formation, chimera formation, germline transmission and tetraploid 

embryo complementation (Feng et al., 2009; Jaenisch and Young, 2008). Human fibroblasts 

were reprogrammed using a different combination of OCT4, SOX2, NANOG and LIN28 (Yu 

et al., 2007). Since then, various reprogramming ways were presented and the core factors were 

proved to be replaceable expect Oct4. Most interestingly, miRNA was also revealed to play an 

equally important role in reprogramming. Mir-302 was implicated in reprogramming that could 

convert human cancer lines to cells that resembled ESCs (Lin et al., 2008). Later on, expression 

of the miR302/367 cluster was shown to reprogram rapidly and efficiently both mouse and 

human somatic cells to an iPSC state without a requirement for exogenous transcription factors. 

The resulting iPSCs exhibit characteristic gene expressions and functional properties of fully 

reprogrammed pluripotent cells. Moreover, the reprogramming efficiency is of >100-fold 

compared with OSKM, with approximately 10% of fibroblasts form iPSC colonies. The 

appearance of iPSC colonies and the activation of pluripotency markers also occur earlier by 

using the miR-302/367 cluster than OSKM. On the other hand, the down-regulation of some 

miRNAs can be beneficial such as let-7, the expression of which antagonise with the ESC 

pluripotency, which will be elaborate later. 

1.1.9 Aims of our study 
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As introduced above, the ESC identity is maintained by a complicated network in which 

numerous factors play roles. Here we aim to investigate the possible roles of two independent 

factors, Lin28 and Jmjd6 in regulating ESC identity.  
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2.1 Lin28: structure and functions 

2.1.1 Lin28’s role in development 

The heterochronic genes are the genetic hierarchy regulators that control the developmental 

sequence timing by specifying the temporal components of fates of cells in diverse tissues 

throughout the animal in the nematode C. elegans, which is used as a model for developmental 

sequence regulation (Ambros, 1989; Ambros and Horvitz, 1984). To make mutants of these 

heterochronic genes display development defects, where either precocious or retarded 

phenotypes observed as a result of certain cell fates occur abnormally early or late, respectively 

(Ambros and Horvitz, 1984). These mutants are influential as a majority of developmental 

events are affected, including cell division, cell cycles, sex determination and stage-specific 

terminal differentiation events (Ambros, 1989; Ambros and Horvitz, 1984). Lin28, a lineage 

timing regulator, is highly expressed in the first larval stage and down-regulated later that allow 

the transition to later stages. In the screen for heterochronic mutants in C.elegans, the mutant of 

Lin28 result in precocious development, where many developmental events specific to the 

second larval stage (L2) were skipped and the subsequent events were brought forward 

accordingly. and premature developmental progression (Ambros and Horvitz, 1984; Moss, 

1997). The lin-28 mutants were deformed and unable to lay eggs(Ambros and Horvitz, 1984; 

Euling and Ambros, 1996). These results demonstrate that Lin28 may govern the succession of 

cell fates in the larva.  

 

2.1.2  The expression of Lin28 
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Mammals and other animals possess two lin28-like genes, Lin28 (or Lin28a) and Lin28b 

(Balzer and Moss, 2007; Guo et al., 2006; Moss, 2003).Lin28 is highly-conserved protein and 

lin28 homologues have been identified in many diverse organisms. Lin28 is expressed in ESCs, 

spermatagonia and testis and some tissues and organs (Lee et al., 2005; Moss and Tang, 2003; 

Wang et al., 2001b; Yang and Moss, 2003). In developmental stages, Lin28 is strongly 

expressed throughout the whole embryo at E6.5, including the embryonic and extraembryonic 

ectoderm and endoderm (at protein level), and subsequently expressed in the ectoderm, 

endoderm and mesoderm at E7.5 (at protein level) (Moss and Tang, 2003; Yang and Moss, 

2003). Lin28 expression is reduced during differentiation of ES cells. In adult primary 

myoblasts, Lin28 is barely detectable during proliferation, but dramatically up-regulated during 

terminal differentiation. Little expression is detected in resting muscle, but strongly up-

regulated during regeneration of skeletal muscle fibers (Polesskaya et al., 2007).  

 

2.1.3 Lin28 as a RNA binding protein 

Both Lin28a and Lin28b protein contain a unique pairing of two RNA-binding domains: a cold-

shock domain (CSD) and retroviral-type CCHC zinc knuckles, illustrated as in Figure 2 (Moss, 

1997). Both domains are found in well-characterized RNA-binding proteins. 

 

Figure 2. The CSD and CCHC domains in Lin28. 
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Found in vertebrates and invertebrates, the CSD is the characteristic domain of Y-box proteins, 

including FRGY2 of Xenopus and YB-1 of humans, with a conserved all-β-strand fold that 

contains a defined ssDNA/RNA-binding epitope that is able to bind both single-stranded DNA 

and RNA (Schindelin et al., 1994; Schnuchel et al., 1993). This domain is named after the 

prokaryotic cold-shock protein (Csp) and is a key component of the eukaryotic Y-box family of 

proteins, where it is coupled to auxiliary domains (Sommerville and Ladomery, 1996). It 

resembles the RNA-recognition motif (RRM) domain that exists in many RNA-binding 

proteins but is more conserved (Graumann and Marahiel, 1998; Manival et al., 2001). The CSD 

can confer sequence-specific RNA binding and interacts with additional RNA-binding domains 

called basic/aromatic (BA) islands (Wistow, 1990). The CCHC zinc finger exists in 

nucleocapsid proteins of retroviruses where it participates in genome recognition for packaging 

into virions (Gorelick et al., 1988). Each zinc finger motif is notified by characteristically 

spaced cysteine and histidine residues in the order CCHC (Moss, 1997). In addition, there is an 

immediately C-terminal in the zinc finger motifs that consists of a cluster of basic residues. 

Such clusters in RNA-binding proteins are important for interaction with RNA (De Rocquigny 

et al., 1993; Lazinski et al., 1989). Both of these domains have been studied for their structures 

and RNA-binding abilities (Ramboarina et al., 2004; Yu et al., 2003). However, Lin28a/Lin28b 

is the only animal protein to have both of them at the same time. This combination of structures 

sequence homologies suggests that Lin28a/Lin28b encodes an RNA-binding protein.  

With the unique combination of these two RNA-binding domains, various targets of 

Lin28/Lin28b were increasingly found. Initial reports proposed that Lin28 protein may act to 

enhance the translation or stability of the lin-14 mRNA (Arasu et al., 1991; Pepper et al., 2004; 

Seggerson et al., 2002). It is also found that LIN28 is associated with mRNAs and enhances 

translation of Igf2 mRNA (Balzer and Moss, 2007; Polesskaya et al., 2007). However, the most 

notable target of both Lin28a and Lin28b would be the miRNA let-7, which has been proved to 
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be bound and blocked by Lin28a/Lin28b (Desjardins et al., 2012; Hagan et al., 2009; Heo et al., 

2008; Heo et al., 2009; Lightfoot et al., 2011; Loughlin et al., 2012; Mayr et al., 2012; Nam et 

al., 2011; Piskounova et al., 2011; Viswanathan et al., 2008). 

 

2.1.4 One main target of Lin28 

The lethal-7 (let-7) gene was initially discovered as a heterochronic switch gene that is 

essential for development in C. elegans. Loss of let-7 gene activity in C. elegans causes 

reiteration of larval cell fates during the adult stage, whereas increased let-7 gene dosage causes 

precocious expression of adult fates during larval stages (Reinhart et al., 2000; Sulston and 

Horvitz, 1977) . Afterwards, the highly conserved homologues of let-7 family were found in 

other animals (Lagos-Quintana et al., 2003; Lee et al., 2007; Pasquinelli et al., 2003; 

Pasquinelli et al., 2000). Let-7 plays  roles in a set of biological processes, such as the 

regulation of stem-cell differentiation in C.elegans, neuromusculature development, limb 

development in mouse, and cell proliferation and differentiation (Lancman et al., 2005; 

Pasquinelli et al., 2000). Moreover, let-7 was found to function as a tumor suppressor in many 

cancers in mammalians, where most or all let-7 family members appear to be down-regulated 

(Esquela-Kerscher and Slack, 2006; Shi et al., 2008). Let-7 also encodes a temporally regulated 

21-nucleotide RNA that is complementary to elements in the 3' untranslated regions of lin28 

genes in mammalians, rendering Lin28a/Lin28b become the main regulator to suppress its 

expression. 

The posttranscriptional regulation of let-7 by Lin-28a/Lin28b is required for normal 

development and contributes to the pluripotent state by preventing let-7-mediated 

differentiation of ESCs. The over-expression of Lin28 or repression of let-7 promotes 
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reprogramming of fibroblasts to iPSCs both in human and mouse (Martinez and Gregory, 2010; 

Melton et al., 2010; Yu et al., 2007).  

As described above, both Lin28a and Lin28b possess the two RNA-binding domains, CSD and 

CCHC, which are essential in binding to let-7. A recent study has demonstrated that, compared 

to the full-length protein, the isolated ZnF domains had four times less affinity for let-7, while 

250 times less affinity for the isolated CSD (Desjardins et al., 2012). Lin28a binds to the 

terminal loop of let-7 precursors and inhibit both pri-let-7 processing by Drosha and Dicer 

(Piskounova et al., 2008; Viswanathan et al., 2008). A terminal uridylytransferase (TUTase), 

Zinc finger CCHC domain-containing protein 11 (Zcchc11) (also known as TUTase4 or TUT4), 

is recruited together with Lin28a to interact with let-7. Two conserved regions in the let-7 

terminal loop that recognized by Lin28a have been implicated: a single cytosine region and a 

5’-GGAG-3’ motif (Hagan et al., 2009; Heo et al., 2009). Mutation of these regions has shown 

lower affinity of Lin28a. In spite of the high degree of homology, the way Lin28b regulate let-7 

is distinct from Lin28a. Lin28b sub-locates in nucleus and binds to pri-let-7 miRNAs to block 

processing by Microprocessor without recruiting Zcchc11.  
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Figure 3. The Lin28 regulation to let-7. Picture adapted from Viswanathan et al., Science 

2010 (320):97-100. 
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2.2 Materials and Methods 

 

2.2.1 Cell culture 

E14 mouse ES cells were cultured on 0.1% gelatin(Sigma)-coated plates and maintained in 5% 

CO2 incubator(Thermo) at 37
 o

C, using ESC medium containing 15% ES cell-qualified fetal 

bovine serum (FBS, Invitrogen), 1 mM sodium pyruvate (Invitrogen), 0.1 mM MEM non-

essential amino acid (Invitrogen), 0.055 mM β-mercaptoethanol (Sigma-Aldrich), 1000 

units/ml recombinant murine leukemia inhibitory factor (LIF)(Millipore), and topped up with  

Glasgow Minimum Essential Medium (GMEM) (Gibco Invitrogen). Medium was changed 

daily and passage was carried out once cells were about 80% confluent with following process: 

medium was removed and cells were washed twice with phosphate buffer saline (PBS), and 

then trypsinized using 0.05% trypsin for 5 min at 37
 o
C, and mechanical dissociation into single 

cells by pipetting. For retinoic acid (RA) treatment, LIF was removed from the medium and RA 

was added into the medium with 0.5 μM. 

HepG2 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)(Gibco Invitrogen) 

supplemented with 10% FBS, 60mM NaHCO3(Sigma), 1% Penicillin/Streptomycin 

(Pen/.Strep)(PAN Biotech GmbH) on non-gelatin-coated plates, Cell culture medium was 

changed every two days. Cells were passaged whenever necessary to maintain suitable 

confluency.  
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2.2.2 Design of short hairpin RNA (shRNA) and generation of RNAi (RNA interference) 

plasmid 

shRNAs were designed from the software available from Eurofins MWG Operon website and 

those with the proper length (about 19-nucleotide) and high scores (>5) were chosen. The 

chosen sequence was integrated into a shRNA oligonucleotide containing a 9-nucleotide loop, 

with BglII and HindIII sticky ends for cloning, according to the template specified in the 

pSUPER RNAi System manual (OligoEngine). A BLAST search was done to ensure specificity 

of the shRNA primers for Lin28a and Lin28b respectively. The shRNA sequences for Lin28a 

and Lin28b were as follows (only upper sequences are listed here):  

shRNA for Lin28a, 

gatccccGAACATGCAGAAGCGAAGAttcaagagaTCTTCGCTTCTGCATGTTCttttta 

shRNA for Lin28b, 

gatccccGAAGTGCCATTACTGTCAGttcaagagaCTGACAGTAATGGCACTTCttttta 

The forward and reverse oligonucleotides were annealed in annealing buffer (100 mM Tris-HCl, 

pH 8.0, 500 mM sodium chloride, 10 mM ethylenediaminetetraacetic acid [EDTA], 10 mM 

magnesium chloride) by immersing in boiling water for 5 min and left inside to cool overnight. 

The annealed oligonucleotides were ligated into pSUPER.puro vector predigested with  BglII 

and HindIII (New England Biolabs) with T4 DNA ligase (New England Biolabs) and 1×T4 

DNA ligase buffer (New England Biolabs).  

The ligated products were then transformed into competent DH5α Escherichia coli cells after 

cooling on ice for 30 min, heat shock at 42
o
C for 60 sec, cooling on ice for 2 min, and 

subsequent shaking in 1 ml of Lysogeny broth (LB) medium at 37
 o

C for 45 min before being 

evenly applied on ampicillin agar plates at 37
 o
C overnight. Single colonies were picked on the 
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next day and incubated overnight at 37
 o

C in 4 ml of LB medium containing ampicillin. 

Plasmid DNA was were extracted using the QIAprep Spin Miniprep Kit (Qiagen), and the 

plasmids with the presence of inserts was selected by digesting with restriction endonucleases 

EcoRI and XhoI (New England Biolabs) and comparing to a negative control (empty vector) 

upon 1% agarose gel electrophoresis. The sequencing PCR of selected plasmids were carried 

out with the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosciences), using 10 

pmol of primer and 300ng of DNA template and topped up to 10µl working volume with 

nuclease-free water (Ambion). The samples were then sent for sequencing to confirm the 

accuracy of the inserts. Cycling parameters were set according to manufacturer’s instructions 

for large DNA templates.  

The plasmid used in double knockdown trial was also constructed in pSUPER.puro. After 

plasmids contain Lin28a and Lin28b shRNAs were separately constructed, the shLin28a 

plasmid was then digested with XhoI and ClaI and the circular part was kept. Meanwhile, the 

shLin28b plasmid was digested with XhoI and BstBI, an isocaudarner of ClaI, and the linear 

part was collected and ligated to the circular Lin28a-containing plasmid, as shown in Figure 4. 

The combination of two shRNAs in one plasmid ensures the successful double knockdown. 
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Figure 4. The construction of simultaneous knockdown plasmid. 

 

2.2.3 Transfection and selection of transfected cells 

Transfection of shRNA plasmids was carried out according to the standard steps in the product 

manual instructions. 10µl Lipofectmine 2000 (Invireogen) was mixed with 250µl Opti-MEM I 

Reduced Serum Medium (Invitrogen) for 5 min before its combination of the other mixture of 4 

µg plasmid and 250 µl OptiMEM for 20 min. The final mixture was added into one well of a 6-

well plate presented with 2 ml ESC medium drop by drop, with the plate swirled all the time. 

The transfected cells were incubated 14-16 h before selection.  

Puromycin was diluted to 1.0 µg/ml in ESC medium to select transfected cells. Medium was 

changed every 24 h to maintain the antibiotic concentration. The cells were harvested after 72 h 

selection. 

 

2.2.4  RNA extraction, reverse transcription and real-time PCR 

Total RNA was extracted using TRIzol Reagent (Invitrogen) and purified using RNeasy Mini 

Kit (Qiagen) according to the provided protocols. RNA was dissolved in diethyl pyrocarbonate 

(DEPC)-treated water (Ambion). The Superscript III First-Strand Synthesis System with oligo 

(dT) priming primer (Invitrogen) were was used to convert mRNA to complementary DNA 

(cDNA).  

The cDNA obtained from reverse transcription was diluted in a 1-in-20 ratio with nuclease-free 

water (Ambion). Forward and reverse primers (Appendix Supplementary Table 1) were pre-
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mixed in a 1:1 proportion with 0.09 µl of the mixture being added into 10 µl of SYBR Green 

PCR Master Mix (Applied Biosciences), 8 µl of nuclease-free water (Ambion) and 2 µl of 

diluted cDNA for each well of a MicroAmp Optical 96-well Reaction Plate (Applied 

Biosystems). The reaction plate was sealed with MicroAmp Optical Adhesive Film (Applied 

Biosystems) and spun down at 1,000 rpm for 2 min at 4
 o
C.Real-time PCR was conducted using 

the ABI Prism 7300 Real-Time PCR system (Applied Biosystems) at default parameters. 

Specificity of real-time PCR primers were verified by dissociation curve analysis and running 

PCR products in gel electrophoresis, for which only one band of the right size should be 

observed. Relative expression levels of target genes from sample cDNA were normalized to β-

actin levels and reflected as a fold change compared to the control sample. 

Let-7 miRNA used for qRT-PCR validation after being tested can be used in mouse liver cells 

were. Reverse transcription RCR was performed from 10 ng of total RNA sample with miRNA 

specific RT primers provided in the TaqMan® MicroRNA Assays and reagents from the 

TaqMan® MicroRNA Reverse Transcription Kit (Applied Biosystems) according to the 

manufacturer’s instructions. The 5S rRNA was used as the control and the primer was 

purchased from Sigma-Proligo. Final volume was topped up with DEPC water to 10μl.  

Samples were mixed gently and spun down. The reaction mixture was incubated at 16 
o
C for 30 

min. The reverse transcription was then carried out at 42
 o

C for 30 min followed by 

denaturation at 85 
o
C for 5 min. 1.5 μl of RT reaction product was then mixed with TaqMan® 

2× Universal PCR Master Mix without AmpErase® UNG, miRNA-specific primer and probe 

mix from the TaqMan® MicroRNA Assays. The mixtures were incubated in a 96-well plate at 

95 
o
C for 10 min, followed by 40 cycles of 95

 o
C for 15 sec and 60

 o
C for 1 min, on an ABI 

Prism 7300 Real-Time PCR system (Applied Biosystems). The 5S primers and probe were 

designed and synthesized by Sigma-Proligo as followed:  
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5S forward: CGCCCGATCTCGTCTGAT;  

5S reverse: GGTCTCCCATCCAAGTACTAACCA;  

5S probe:  TCGGAAGCTAAGCAGGGTCGGGC. 

 The 5S cDNA was diluted 500 times before real-time PCR. The PCR products were further 

analyzed with the Applied Biosystems 7300 System SDS software (Applied Biosystems).  

 

Protein extraction and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

ESC medium was removed and cells were washed twice with cold PBS (1
st
 Base), after which 

the cells were scrapped in PBS and spun down at 3000rpm for 3 min at 4
 o

C. The cell pellet was 

subsequently washed two more times in PBS and resuspended in Laemmli sample buffer (50 

mM Tris-HCl, pH 6.8, 2% SDS, 5% glycerol, 1% β-mercaptoethanol, 5 mM EDTA, pH 8.0, 

0.002% bromophenol blue) with protease inhibitor cocktail (Roche) before heating at 95
oC

 for 5 

min. The cell lysate was then centrifuged at 14,000 rpm for 15 min. The supernatant, which 

contains total protein, was harvested. Equal amounts of protein were loaded into each well of a 

10% SDS polyacrylamide gel and ran in SDS-PAGE running buffer (25mM Tris, pH 8.3, 0.192 

M glycine, 0.1% SDS) at 120V. 

 

2.2.5 Western Blot  

Proteins migrating differentially according to molecular weight on SDS-PAGE gel were 

transferred to a methanol-activated polyvinylidene fluoride (PVDF) membrane (Bio-Rad) by 

running at 320 mA for 1 h in Western Blot transfer buffer (25 mM Tris, pH 8.3, 0.192 M 
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glycine). Successively, the membrane was blocked using PBST (0.1% Tween-20 (Sigma) in 

PBS) with 5% skimmed milk for 1 h at room temperature. The membrane was probed with 

primary antibody (diluted in PBST with 5% skimmed milk) at room temperature for 1 h. The 

membrane was then washed thrice in 0.1% PBST for 10 min each, probed with secondary 

antibody conjugated to horseradish peroxidase (GE Healthcare) at room temperature for 45 min. 

After washing three times with 0.1% PBST, the membrane was incubated in Imobilon Western 

Chemiluminescent HRP Substrate (Millipore) for 5 min. The chemiluminescent signal was then 

detected using CL-Xposure Film (Thermo Scientific) in a dark room. Antibody incubation and 

washing steps were performed on a shaker at 70 rpm. Primary antibodies used were: rabbit anti-

Lin28 (1:2000; 07-1385, Millipore), rabbit anti-Lin28b (1:1000; #4196, Cell signaling) mouse 

anti-β-actin (1:1000; sc-81178, Santa Cruz), goat anti-Oct4 (1: 2000; sc-8628, Santa Cruz), and 

rabbit serum anti-Nanog (1:1000). 

 

2.2.6 Gene expression microarray analysis 

RNA of Lin28 RNAi sample and control RNAi sample were harvested with TRIzol Reagent 

(Invitrogen) and purified with RNeasy Mini Kit (QIAgen). Isolated RNA was converted to 

sense strand cDNA incorporated with dUTP using the Ambion WT Expression Kit (Applied 

Biosciences), followed by fragmentation and biotin labeling with the Affymetrix GeneChip WT 

Terminal Labeling Kit (Affymetrix), and finally hybridized on the GeneChip Mouse Gene 1.0 

ST Array (Affymetrix). Log2 transformed gene expression of knocked-down samples and 

control were compared. Genes that displayed significant fold change (>1.5 or <0.8) between the 

replicates were selected for further analysis. Cluster 3.0 was utilized to perform hierarchical 

clustering on selected genes (Eisen et al., 1998). Data was adjusted to center genes and array by 
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mean, before being clustered with the Euclidean distance similarity metric and Average linkage 

clustering method. The results were then visualized using Java Treeview (Eisen et al., 1998). 

Genes from individual clusters were isolated and subjected to Gene Ontology (GO) analysis 

using the Generic GO Term Finder (Boyle et al., 2004) on the MGI – Mus musculus database 

for biological processes that were enriched among the genes. Bonferoni correction for p-value 

was applied and false discovery rate (FDR) was calculated. Only GO terms with corrected p-

values below the designated threshold (<0.01 for down-regulated genes, <0.02 for up-regulated 

genes in sample) were considered. 

 

2.2.7 Immunostaing 

ESCs were grown on coverslips placed in 24-well culture plates for a day before 

immunostaining. ESC medium was aspirated from wells and cells were washed twice with PBS. 

4% paraformaldehyde (PFA) was used to fix cells for 20 min at room temperature. The cells 

were permeabilized with PBS plus 0.5% Triton X-100 for 20 min after PFA was removed. Next, 

the cells were washed with 0.1% PBS plus Tween-20 (PBST) for 5 min on a belly-dancer 

rotator. This was followed by 30 min incubation in 3% bovine serum albumin (BSA). After that 

the cells were probed with Lin28a (1:500,07-1385, Millipore) and Lin28b (1:500; #4196,Cell 

signaling) antibody respectively diluted in 3% BSA for 1 h. The cells were then washed with 

0.1% PBST for 5 min for 4 times on the belly-dancer rotator before incubating with Alexa 

Fluor 568 goat anti-rabbit lgG antibody (Invitrogen) diluted to 1:1000 in 3% BSA for 30 min at 

room temperature. The cells were washed again with 0.1% PBST for 5 min on the belly-dancer 

rotator thrice. A drop of Vectashield mounting medium with 4', 6-diamidino-2-phenylindole 

(DAPI; Vector Laboratories) was placed on the microscope slide and the cover slip was sealed 
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with nail polish to keep the ES cells in contact with the mounting medium. Staining signal was 

then visualized. 

 

2.2.8 RNA immunoprecipitation (RIP) 

The RNA immunoprecipitation (RIP) was performed according to RNA-Binding Protein 

Immunoprecipitation Kit product manual (Millipore). ESCs were cultured in 10 cm plates and 

were scraped when about 80% confluent and washed with cold PBS twice. Complete RIP Lysis 

Buffer provided by kit was used to re-suspend the cells which were mixed homogeneously in 

the buffer by pipetting. Lysate was incubated on ice for 5 min to swell cells and then stored in -

80
 o
C. 

50 μl Magnetic beads were incubated with 5 μg Lin28 antibody (07-1385, Millipore) and IgG 

(12-370, Millipore) antibody respectively in 100 μl RIP Wash Buffer for 30 min after being 

washed twice with RIP Wash Buffer. Extra two washing were performed to minimize the 

background. The antibody-binding beads were then incubated with 900μl RIP 

Immunoprecipitation Buffer and 100 μl supernatant of newly thawed cell lysate prepared above 

in 4
 o
C overnight to undergo immunoprecipitation. Afterwards, the immunoprecipitated mixture 

was washed six times with RIP Wash Buffer. 

The RNA-protein complex was then eluted in 150 μl Proteinase K Buffer at 55
 o

C for 30 min 

with shaking to digest the protein. Supernatant was collected together with 250 μl RIP Wash 

Buffer and RNA was precipitated with 50 μl Salt Solution1, 15 μl Salt Solution 2 ,5 μl 

precipitate Enhancer and 850 μl absolute ethanol after phenol-chloroform extraction. The 

mixture was kept at -80
 o

C overnight and was washed with 75% ethanol before reverse 
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transcription. 
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2.3 Results 

2.3.1 Lin28a decreases upon ESC differentiation 

The regeneration of pluripotency of differentiated cells upon transfection with LIN28a and 

other three factors suggest a possible involvement of Lin28a in pluripotency regulation in 

mouse ESCs. To determine the expression profile of Lin28a upon differentiation of ESCs, E14 

mouse ESCs were induced to differentiate by culturing in retinoic acid (RA) and LIF 

withdrawal medium for periods of one day, two days and three days. LIF withdrawal medium 

was used here as LIF is an important constituent in ESC medium to maintain pluripotency in 

mESCs, without which the cells will differentiate (Nichols et al., 1996). Total RNA was 

extracted at the respective time points and real time-PCR was carried out to determine the 

levels of Lin28a mRNA relative to E14 cells cultured for the same time period in normal ES 

cell medium. 
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Figure 5. Expression of Lin28a upon ESC differentiation. mRNA of Lin28a was measured 

upon E14 cells were induced to differentiation by LIF removal and retinoic acid (RA) treatment. 

As Figure 5 presented, the expression level of Lin28a showed a drastic decrease upon cell 

differentiation and only 30% left was by Day3. This result may suggest Lin28 is related to ESC 

pluripotency. 

 

2.3.2 Both Lin28a and Lin28b are expressed in E14 cells 

Although the paralogous proteins Lin28a and Lin28b have a high degree of sequence identity 

and conserved domains, the Lin28b inclines to be more involved in carcinoma than Lin28a 

(Guo et al., 2006; Helland et al., 2011; King et al., 2011; Permuth-Wey et al., 2011). Their 

distinct expressions  in a variety of cells were revealed that they exert different mechanisms to 

function  (Piskounova et al., 2011). Our western results supported by in situ hybridization and 

immunostaining results confirmed the expression of the two proteins. Both Lin28a and Lin28b 

were expressed in E14 cells, whereas HepG2 only express Lin28b. Neither Lin28a nor Lin28b 

was observed in HCT116 while both of their mRNAs were detected, suggesting that they might 

be blocked at translational level. Immunofluorescence assay was used to examine the 

subcellular localization of the endogenous Lin28A and Lin28B proteins (Figure 6A). Lin28A 

was predominately localized to the cytoplasm of E14 cells, while Lin28B was localized to 

specific foci in the nuclei of HepG2 and E14 cells.  

 6A 
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6B 

 

6C 
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6D 

 

Figure 6. Expression of Lin28a and Lin28b/LIN28B in mouse ESCs and human cancer 

cells. (A) Protein of Lin28a and Lin28b/LIN28B from E14, HCT116, HepG2 cells determined 

by Western blot. (B-D)Immunofluorescence detection of Lin28a in E14, Lin28b in E14 and 

LIN28B in HepG2, respectively. DAPI was used to indicate the nucleus. Scale bars represent 

50 μm.  

 

2.3.3 Global gene level changes indicate Lin28 is essential for ESC in self-renewal. 
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To investigate the Lin28’s role in ESC, shRNAs of Lin28a and Lin28b were designed and 

transfected in ESC line E14 to knockdown Lin28a and Lin28b respectively. In addition, a 

simultaneous knockdown of these two genes was performed. As seen in Figure 7, double 

knockdown were more efficient than individual knockdown. This would probably result from 

the highly conserved sequence identity between Lin28a and Lin28b that makes it possible that 

one protein may complement in the absence of the other. Therefore, it is necessary to knock 

down these two genes simultaneously.  

 

Figure 7. Effects of Lin28a, Lin28b single and double knock-down on their own expression 

levels. E14 cells were transfected with mLin28a and mLin28b shRNAs, both independently and 

simultaneously. Cells were selected for 72 hours, before total RNA was extracted to test for the 

knockdown efficiency.  

Transcriptome from Lin28 double-knocked-down cells were compared to control cells 

transfected with empty pSUPER.puro vector, we found that  2182 genes were significantly 

different between the two, of which 671 were up-regulated (> 1.5-fold) and 1511 down-

regulated (<0.7-fold). We then randomly selected many genes from the list of up-regulated and 

down-regulated genes to do validation. Primers used for validation can be found in 
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Supplementary Table 8. Although the precise values of the fold change between the real time- 

PCR results and the microarray results differed, in general, the trend of up-regulation and 

down-regulation of the tested genes was consistent between both sets of data (Figure 8 BC). 

This implies that the direction of change of the genes can be inferred from the microarray data 

reliably. Hence, both up-regulated and down-regulated genes were separately examined for 

Gene Ontology terms related to biological processes that were enriched within the two groups. 
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Figure 8. Global gene expression change via microarray analysis on Lin28a and Lin28b 

simultaneous knockdown cells. (A) Up-regulated genes (red) and down-regulated genes 

(green) were subjected to Gene Ontology search for enriched biological process terms. Selected 

enriched terms are shown to reduce redundancy. (B) Validation of microarray for up-regulated 

genes. (C) Validation of microarray for down-regulated genes. (D)Detection of let-7 miRNA 

expression. 

For the down-regulated genes, many terms related to RNA metabolisms especially tRNA, 

including the term “tRNA metabolism” itself, were discovered to be enriched (Figure 8A), 

indicating the Lin28’s role as a RNA regulation protein. Given that the tRNAs are the main 

participants in the translation process, this result also support the previous observation that 

Lin28 functions as a translation enhancer (Peng et al., 2011b) by activating the tRNA 

metabolisms, which has never been studied before. The gene Zcchc11 (Zinc finger CCHC 

domain-containing protein 11) is in the down-regulation gene list, which is interesting because 

the protein Zcchc11 was reported to be recruited together with Lin28 in uridylating the pre-

miRNA, which then fails to be processed by Dicer and thus gets degraded by nuclease (s). The 

down-regulation of Zcchc11 may possibly imply the weakened ability to inhibit miRNA and it 

was proved by the increased fold of miRNA let-7a and let-7b in a miRNA real time -PCR 

(Figure 8D). Correspondently, a set of let-7 targets like c-Myc, Hmga2, K-Ras level decreased. 

Besides, Lin28 seemed to closely relate to glucose metabolism by including several relevant 

terms such as “glycolysis”, “glucose metabolism”, “glucose catabolism”, “hexose metabolism”. 

In fact, a recent study has revealed the Lin28/let-7 axis is an important modulators of glucose 

metabolism through interactions with the insulin-PI3K-mTOR pathway and T2D-associated 

genes identified in GWAS (Zhu et al., 2011). It would be interesting to investigate additional 

mechanisms and feedback that may exist. 



38 

 

Up-regulated genes yielded enrichment for biological process terms mainly related to 

development and cell growth. There were as many as 35 annotated genes involved in the term 

“development” and 22 for term “organogenesis”, and the number was at the top of all terms, 

hinting the essential role of Lin28 in development. Among them were some genes related to 

embryogenesis, gametogenesis, placentation and development of specific tissues. Besides, 

some genes notified for their roles in chromatin modification were also been up-regulated. 

Three DNA (cytosine-5) -methyltransferases (Dnmt3a, Dnmt3b and Dnmtl ) that are required 

for genome-wide de novo methylation and is essential for the establishment of DNA 

methylation patterns during development were up-regulated (Okano et al., 1999). 

Unexpectedly, although varieties of development related genes were influenced by Lin28 

double knockdown, none of the pluripotency marks--Oct4, Nanog, Sox2 was down-regulated. 

In consistent with this, nearly all the lineage markers (ectoderm, mesoderm, endoderm, 

trophectoderm) sustained their mRNA level. Therefore, Lin28 may not indispensable in 

regulating pluripotency, at least in mRNA level. 

Western blot was also performed to test whether pluripotency markers were affected in protein 

level. Cell lysate was denatured and protein among was quantified to 400μg protein loaded in 

to each well, both the double knockdown sample and control respectively. As shown in Figure 

9, there is no significant difference in protein level of both Oct4 and Nanog. 
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Figure 9. Western blot of Lin28a and Lin28b simultaneous knockdown in E14.  

 

2.3.4 Exploring other RNA targets of Lin28 

The two RNA-binding domains make it possible for Lin28 to have more RNA targets. And it 

has been reported that Lin28 may modulate cell proliferation by enhancing the translation of 

various cell-cycle regulators in mouse ESCs (Xu et al., 2009a). The cyclin family are a subset 

of proteins in the transition of cell cycles in association with cyclin-dependent kinase(Cdk)s. 

The enrichment of these cyclins indicates Lin28 may affect cell proliferation by binding to 

them. Hence RNA immunoprecipitation (RIP) was performed to pull down the RNA-protein 

complex and the sample would be sent for RNA-sequencing afterwards. However, as in our 
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result, the enrichment folds for the cyclins were not as high as published data (Figure 10). It is 

possible the RIP protocol needs a further optimization.  

 

Figure 10. Enrichment fold change of pluripotency markers and cell cycle regulators 

separated from Lin28-RNA complexes. Data was normalized with actin and compared with 

IgG RIP. 
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2.4 Discussion  

2.4.1 Lin28 may regulate the self-renewal of ESCs both in miRNA dependent and 

independent ways 

Here we demonstrate that both Lin28’s mammalian homologs, Lin28a and Lin28b, though with 

distinct subcellular locations, are both expressed in E14 cells. In fact, in spite of the high 

similarity, these two homologs seem to have their own preferred targets. Lin28a is 

predominately located in cytoplasm while Lin28b is expressed exclusively in nucleus. They 

both bind to pre-let-7 but in different ways. Lin28b was firstly found in human hepatocellular 

carcinoma and was more related to oncogenesis according to the previous studies (Guo et al., 

2006; Helland et al., 2011; King et al., 2011; Permuth-Wey et al., 2011; Yuan et al., 2012). In a 

screen trial of several human cancer cell lines, Lin28a and Lin28b were found mutually 

exclusive as no co-expression of them was observed (Piskounova et al., 2011). The mechanism 

of how cells choose to express one of them is not clear yet. However this probably implies 

Lin28 is dispensable in cancer cells. By comparison, ESCs in both human and mouse express 

these two together, reaffirming the essential role of Lin28 in ESCs. 

It is commonly considered that most of Lin28’s functions are linked to its miRNA target, let-7. 

Contrary to Lin28, the expression of let-7 is rarely detected in undifferentiated ESCs. But it 

increases drastically upon differentiation and is maintained at a certain level afterwards, as 

introduced above. In fact, let-7 targets several oncogenes like c-Myc, K-Ras, cyclin D1 and IL6 

and its loss has been linked to oncogenes (Iliopoulos et al., 2009; Kumar et al., 2007; Roush 

and Slack, 2008). A regulatory circuit made up of NF-κB, Lin28b, let-7 and IL6 was found in 

most cancer cells links inflammation to cellular transformation and is important for 

transformation and cancer cells growth (Iliopoulos et al., 2009). The majority of cancer cells 
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tested showed the characteristics of the inflammatory regulatory circuit, namely Lin28b 

overepxpression, let-7 downregulation, and high levels of IL6. The accumulation of IL6 in this 

circuit is required for sufficient binding to the IL6 receptor to cause phosphorylation and 

nuclear entry of the STAT3 transcription factor, which then promote transformation (Niu et al., 

2002). Moreover, the knock down of Lin28b by siRNA together with inhibition of NF-κB, 

which is a Lin28b activator, showed a significant suppression of tumor growth in all treated 

mice, proving the essential role of Lin28b in cancer cells by repressing let-7 (Iliopoulos et al., 

2009).  

Interestingly, though STAT3 contributes to the maintenance of ESCs, the mRNA level of 

neither STAT3 nor IL6 was not affected by Lin28a and Lin28b double knockdown and the 

evocable up-regulation of let-7 according to our result. However, other vital targets of let-7, 

including c-Myc, K-Ras and HMGA2, were down–regulated significantly. All of these targets 

were found to promote stem cells self-renewal but not pluripotency maintenance. In addition, 

though let-7’s expression is antagonistic with the cell’s stemness, there is no direct evidence 

that let-7 can cause differentiation in mammalians. In fact, in reprogramming human somatic 

cells using four factors including LIN28, it is discovered that LIN28 is not absolutely required 

for the initial reprogramming, nor is it subsequently required for the stable expansion of 

reprogrammed cell,  although LIN28 can influence the frequency of reprogramming (Yu et al., 

2007). Moreover, in our microarray result, none of the pluripotency markers was down-

regulated. These suggest that Lin28 is more necessary in regulating self-renewal of ESCs than 

in maintenance of pluripotency.  

Several reports also indicate that Lin28 can affect protein levels by working as transcription 

enhancers to regulate mRNA, where Lin28 function independent of let-7. Qiu and Peng 

reported that Lin28 can associate with Oct4 mRNA in human embryonic cells and directly 
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promote Oct4 translation (Peng et al., 2011a; Qiu et al., 2009). However, the western blot result 

upon Lin28a/Lin28b double knockdown in our mouse ESCs did not show any significant 

decrease, which may result from the different mechanisms between human and mouse. 

Meanwhile, both our RIP and the Xu group’s result showed an increase in cyclins that regulate 

cell proliferation, though not as strong as them (Xu et al., 2009a). Again our results suggest 

Lin28 tends to regulate ESCs self-renewal rather than pluripotency. 

However, it is still to be revealed whether Lin28 has other critical RNA targets. The molecular 

basis for interaction of let-7 with Lin28 has been well studied. The CSD domain recognizes the 

sequence consensus of NGNGAYNNN (Y=pyrimidine;N=any base) and inserts into the loop at 

one end of the stem-loop structure in pre-let-7. The CCHCx2 domain recognizes a GGAG 

motif at the other end. The sequence and distance of these domains are variable (Nam et al., 

2011). The identification of recognition site may shed light on the common characteristics of 

Lin28’s targets. The Lin28a protein has been purified and is to be used in the future to find 

more possible targets.  

In conclusion, the double knockdown Lin28a and Lin28b and subsequent gene expression 

microarray have indentified numerous potential Lin28 downstream genes in ESCs. Our study 

has also revealed that Lin28 may regulate ESC self-renewal in both miRNA dependent and 

independent ways. 
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2.5 Future work 

 

We have shown here that Lin28 may affect the ESC self-renewal according to the microarray 

result. However, though various genes undergo increased or decreased fold change, the 

mechanism behind this variation is not clear. Hence further study will be required to unravel 

the underlying mechanisms. 

In addition, Lin28 may have other RNA targets. To discover the potential targets, RIP is to be 

optimized and the resulting sample will be sent for high-throughput RNA sequencing. The 

identification of whole genome Lin28 targets will provide more insights into Lin28 functions in 

ESCs. 
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3 Chapter 3            

PROBING THE 

FUNCTIONS OF JMJD6 

IN MOUSE ESCs  
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3.1 Jmjd6: structure and function 

 

Originally identified as phosphatidylserine receptor (PSR), JmjC domain-containing protein 6 

(Jmjd6) is ubiquitously expressed throughout embryogenesis and in adult tissues, although at 

different levels (Cikala et al., 2004; Fadok et al., 2000). PSR was shown to be involved in 

recognition and engulfment of apoptotic cells (Fadok et al., 2000; Hong et al., 2004; Kunisaki 

et al., 2004; Li et al., 2003; Wang et al., 2003). However, a few other studies using PSR
-/-

 cells 

drew opposite conclusions since PSR
-/-

 cells are fully competent in clearing apoptotic cells 

(Bose et al., 2004; Cikala et al., 2004; Cui et al., 2004; Mitchell et al., 2002). Interestingly, 

PSR-null mice died at the perinatal stage (Bose et al., 2004; Kunisaki et al., 2004; Li et al., 

2003) . Moreover, PSR disruption leads to many developmental defects such as lung defects (Li 

et al., 2003); severe anaemia (Kunisaki et al., 2004); growth retardation and developmental 

defects of some organs (Bose et al., 2004). These suggest that PSR is involved in multiple 

biological processes although more studies are required to interpret the underlying molecular 

mechanisms. Jmjd6 was revealed with its recruitment of a JmjC domain, a motif belongs to the 

superfamily of the 2-oxoglutarate and Fe (II) dependent oxygenase , and conserved from S. 

cerevisiae to human. Jmjd6 functions as a dioxygenase that demethylates histone H3 at arginine 

2 and histone H4 at arginine3 in both biochemical and HeLa cell-based assays (Chang et al., 

2007). A histone H3 arginine 2 methylation antagonizes histone H3 lysine 4 methylation and 

inhibits the binding of MLL1 and WDR5 to the H3K4me marks in different organisms 

(Guccione et al., 2007; Hyllus et al., 2007; Iberg et al., 2008; Kunisaki et al., 2004).This 

highlights the importance of Jmjd6 in chromatin modification and gene regulation. More 

recently, Webby et al revealed that Jmjd6 serves as a dioxygenase to catalyse the lysyl-5-

hydroxylation of a RNA splicing-associated factor U2AF65 in HEK 293 cells (Webby et al., 
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2009). Furthermore, Jmjd6 interacts with many proteins which are connected with RNA 

metabolism, showing that Jmjd6 has multiple substrates besides histone (Webby et al., 2009). 

Taken together, these studies show that Jmjd6 participates in diverse cellular processes 

probably via histone modification and RNA metabolism, and thus may have played roles in 

ESCs.
 

 

Figure 11. The JmjC domain structure (Adapted from Robert et al., 2006). (a) The 3D 

image structure of the JmjC domain of JHMD3A/JMJD2A. The grey sheets are the eight β-

sheets of the cofactor-coordinating pocket, red ball represents the Fe (II) ion and αKG with 

blue. Green is the α-helical region combined with the zinc ion and purple is the zinc molecule. 

(b) A schematic illustration of the JmjC domain. It demonstrates the location of the Fe (II)-

binding and αKG-binding residues. 
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3.2 Material and methods 

3.2.1 Construction of over-expression plasmids 

PCR primers for Jmjd6 over-expression were designed using the coding sequence of mouse 

Jmjd6 with addition of a BglII and MulI restriction sites at the 5’ and 3’ end, respectively. The 

sequences of the PCR primers are:  

Forward: 5’- atataAGATCTatgaaccacaagagcaagaag-3’ 

Reverse: 5’ -tatatACGCGTtcacctggaggagctgcgctct-3’ 

PCR amplification was performed using Expand High Fidelity PCR System (Roche), with 

wild-type E14 cDNA as template. The PCR product was cloned into pPyCAGIP (Chambers et 

al., 2003). The presence of inserts was selected by digesting with restriction endonucleases 

BglII and MulI (New England Biolabs) followed by 1% agarose gel electrophoresis. The 

sequencing PCR for selected plasmids was carried out with the BigDye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosciences), using 10 pmol of primer and 300ng of DNA template 

and topped up to 10µl working volume with nuclease-free water (Ambion). The samples were 

then sent for sequencing to confirm the accuracy of the inserts. Cycling parameters were set 

according to manufacturer’s instructions for large DNA templates.  

Design of short hairpin RNA (shRNA) and generation of RNAi (RNA interference) plasmid 

The Jmjd6 shRNA was designed the same way as described for Lin28, The shRNA sequences 

for jmjd6 were as follows (only upper is listed here) 

shRNA for Jmjd6, 

gatccccAATGAAACCCTTTACCTAttcaagagaTAGGTAAAGGGTTTCATTGT tttta 
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3.2.2 Chromatin immunoprecipitation (ChIP) assay and ChIP-sequencing 

ES cells grown in 245 mm x 245 mm square culture dishes (Corning) were cross-linked with 1% 

formaldehyde for 10 min at room temperature on a shaker at150 rpm. The formaldehyde was 

quenched by shaking for another 5 min at room temperature after adding 0.2 M glycine. Cells 

were then washed twice with cold PBS, and harvested by scrapping and centrifuging at 

3000rpm for 15 min at 4
o
C. The cell pellet was further washed with cold PBS before being 

lysed in SDS cell lysis buffer (10 mM Tris-HCl, pH 8.0, 10 mM EDTA, 0.1 M NaCl, 0.25% 

Triton X-100) containing protease inhibitor cocktail (Roche) by re-suspension and rotation at 

4
o
C for 15 min. The cell nuclei were isolated upon centrifugation at 2,000 rpm for 10 min at 

4
o
C, and the nuclei pellet was lysed in nuclear lysis buffer (50 mM 4-[2-hydroxyethyl]-1-

piperazineethanesulfonic acid [HEPES]-KOH, pH 7.5, 150 mM NaCl, 2 mM EDTA, 1% Triton 

X-100, 0.1% sodium deoxycholate, 1% SDS) with protease inhibitor cocktail by rotating for 18 

min at 4
o
C. The chromatin was then extracted by spinning down at 20,000 rpm for 30 min at 

4
o
C. The chromatin pellet was then washed twice with ChIP buffer (50 mM HEPES-KOH, pH 

7.5, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS) 

containing protease inhibitor cocktail, by rotating at 4
o
C for 15 minutes each. 

Sonication was performed to break down the cDNA into proper size (about 500 bp) on the 

Vibra-Cell VCX750 (Sonics). The glass beads were removed by centrifuging at 20,000 rpm for 

45 min at 4
o
C and collecting the supernatant. Size of the sonicated chromatin was determined 

by de-crosslinking input DNA (100 µl chromatin extract, 90µl TE buffer [10 mM Tris-HCl, pH 

8.0, 1mM EDTA], 30 µl pronase, 200 µl ChIP elution buffer [50 mM Tris-HCl, pH 8.0, 10 mM 

EDTA, 1% SDS]) at 42
o
C for 2 h followed by 67

o
C for 6 h, precipitated out via phenol-
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chloroform extraction, and resolved through agarose gel electrophoresis. Average chromatin 

size was about 300 to 500 base pairs.  

Dynabeads Protein G (Invitrogen) beads were washed with ChIP buffer twice (5 min rotation at 

room temperature, centrifugation at 2,000 rpm for 1 min, each) before being coated with rabbit 

anti-Jmjd6 antibody or rabbit anti-mouse IgG antibody (Abcam) as control by incubating for 2 

hours at room temperature. The coated beads were then added to pre-cleared chromatin extract 

and rotated overnight at 4
o
C. After incubation, the beads were washed thrice with ChIP buffer, 

once with ChIP buffer plus 0.35 M NaCl, once with ChIP wash buffer (10 mM Tris-HCl, pH 

8.0, 250 mM LiCl, 1 mM EDTA, 0.5% Nonidet P-40 [NP-40], 0.5% sodium deoxycholate), and 

finally eluted in ChIP elution buffer (5mM Tris-HCl, pH 8.0, 10 mM EDTA, 1% SDS) while 

agitating at 1,400 rpm at 69
o
C for 45 min. The immunoprecipitated chromatin was then de-

crosslinked and isolated as above.  
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3.3 Results  

3.3.1 Knockdown of Jmjd6 leads to ESC differentiation 

To test Jmjd6 function in ES cells, RNA interference (RNAi) was used to knockdown Jmjd6 

transcript levels using constructs expressing Jmjd6 shRNAs. Down-regulation of Jmjd6 (Figure 

12A) consistently led to significant reduction of the transcription factors Oct4, Sox2 and Nanog 

which are critical for maintaining ES cell pluripotency and suppressing their differentiation 

(Figure 12B). This suggests Jmjd6 expression is required to maintain expression of key 

transcription factors necessary for ES pluripotency. Indeed, ES cells in which Jmjd6 was down-

regulated adopted a variety of morphologies characteristic of differentiating cells (Figure 12C).  

Thus it was expected that reduced expression of these genes would result in increased 

expression of marker genes for specific differentiated lineages. Indeed, qRT- PCR of transcripts 

following Jmjd6 RNAi revealed the anticipated expression of such germ layer markers. 

Expression of three endoderm markers, Gata6, Sox17, and FoxA2 expression increased by 2, 

3.8 and 4.9 fold respectively; the mesoderm marker Nkx2.5 increased 2 fold while others 

showed no significant change in expression level. Expression levels of three ectoderm markers 

showed no significant change (Figure 12D). Together these results indicate that concomitant 

with the loss of expression of pluripotency transcription factors, ES cells initiate differentiation 

into endoderm following Jmjd6 down-regulation. 
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12C 

 

 

12D 

 

Figure 12. Jmjd6 depletion directs ES cells to differentiation. (A) Transfection of Jmjd6 

shRNA but not GFP shRNA (negative control) downregulates Jmjd6 level. RNA was extracted 
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3 days after transfection and quantified by real-time PCR. The indicated transcript levels are 

plotted as percentages relative to those following transfection of empty vector control. Sample 

was assayed in duplicate and normalized to endogenous β–actin. (B) Jmjd6 knockdown results 

in decreased Nanog, Sox2 and Oct4 mRNA levels (C) Cell differentiation following Jmjd6 

depletion, compared by WT ES cells. Note stellate cells after Jmjd6 RNAi. (D) Jmjd6 depletion 

directs ES cells to express indicated ectodermal, endodermal (endo), mesodermal (meso) and 

trophectodermal (Tro) marker genes assessed by real-time PCR.  

 

3.3.2 Global gene level changes indicate Jmjd6 is essential for ESC in maintenance of 

pluripotency . 

The whole genome cDNA microarray hybridization was performed using Jmjd6 knockdown 

sample and the data was normalized to empty pSUPER.puro vector. The level of 1031 genes 

changed significantly, of which 370 were up-regulated (> 1.5-fold) and 661 were down-

regulated (<0.7-fold). Validation was done by randomly selecting genes from the list of up-

regulated and down-regulated genes, after which real time -PCR was carried out to examine the 

levels of the chosen genes in Jmjd6 knock-down cells relative to control cells. Although the 

precise values of the fold change between the qRT-PCR results and the microarray results 

differed, in general, the trend of up-regulation and down-regulation of the tested genes was 

consistent between both sets of data (Figure 13A B). This implies that the direction of change 

of the genes can be inferred from the microarray data reliably. As such, both up-regulated and 

down-regulated genes were separately interrogated for Gene Ontology terms related to 

biological processes that were enriched within the two groups (Figure 13 A; Appendix Table 

6,7).  
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Figure 13. Global gene expression changes via microarray analysis on Jmjd6-knocked-

down cells. (A) Up-regulated genes (green) and down-regulated genes (red) were subjected to 

Gene Ontology search for enriched biological process terms. Selected enriched terms are 

shown to reduce redundancy. (B) Validation of microarray data to ensure that microarray data 

were reliable.  

The GO items for up-regulated genes implicated that Jmjd6 was involved in various 

metabolisms including primary metabolism, cellular metabolism, macromolecule metabolism, 
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cellular macromolecule metabolism, cellular protein metabolism, protein metabolism as well as 

the term metabolism itself.  

As respect to the down-regulated genes, there are some aspects worthy notifying. Some of them 

are related to metabolisms, supporting an active role of Jmjd6 in metabolism. Though never 

been reported, the massive down-regulated (62) olfaction genes may imply a novel role of 

Jmjd6 in regulation perception of smell. Moreover, Jmjd6 seems to play a role in every aspect 

of epigenetic regulations as a set of genes critical in histone modification, DNA methylation, 

chromatin-remodeling as well as miRNA metabolism were down-regulated. Glp, G9a, Suv39h1, 

Suv39h2, Suz12, Setdb1, which are essential for repressive H3K9 methylation, were found to be 

down-regulated in mRNA level (Dodge et al., 2004; Pasini et al., 2004; Peters et al., 2001; 

Tachibana et al., 2002; Tachibana et al., 2005). Similarly, the mRNA level of Whsc1l1, Ezh2 

that are responsible for H3K27 methylation decreased (Angrand et al., 2001; O'Carroll et al., 

2001). Interestingly, the genes that regulate the active methylation of H3K4 were also found 

declined such as the nearly whole family of MLL (mixed-lineage leukemia) family (Mll1, Mll3, 

Mll5) and Whsc1l1 (Angrand et al., 2001; Goo et al., 2003; Heuser et al., 2009; Miller et al., 

2001). On the other hand, the HDAC family that responsible for the deacetylation of lysine 

residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4), including Hdac2, 

Hdac3, Hdac5, Hdac6, were down-regulated as well. Furthermore, nearly all members of 

chromodomain-helicase-DNA-binding protein (Chd) family, which are closely related to ESC 

pluripotency by maintaining open chromatin or by facilitating histone deacetylation, were 

down-regulated (Gaspar-Maia et al., 2009; Tong et al., 1998). Besides, the genes critical for 

DNA (or RNA) methylation (like Dnmt1, Dnmt3a, Dnmt3b, Setd6, Setd8, Rnmt, Tfb1m) and 

genes involved in chromatin remodeling (Lsh, Srg3, Atrx) were down-regulated upon Jmjd6 

knockdown (Garrick et al., 2006; Geiman and Muegge, 2000; Kim et al., 2001; Levy et al., 

2011; Okano et al., 1999; Pillutla et al., 1998; Xiao et al., 2005). The effect even includes the 
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miRNA metabolism. Dicer, which is essential in processing a mature miRNA, was down-

regulated (Hutvágner et al., 2001). These down-regulations in different epigenetic regulation 

mechanisms demonstrate a drastic change in ESC status, which is more likely to demonstrate 

the cell differentiation upon the knockdown of Jmjd6. 

3.3.3 Oct4 and sox2 bind to Jmjd6 intron 2. 

   The transcription factors Oct4, Sox2 and Nanog are master proteins that maintain ES cell 

identity and pluripotency. Since Jmjd6 appears to be a pluripotency factors, we asked whether 

Oct4, Sox2 and Nanog bind to the Jmjd6 genomic site. ChIP experiments were performed and 

the ChIP DNA was assayed using quantitative PCR. As expected, we found that Oct4 and Sox2, 

but not Nanog, bind to intron 2 region of Jmjd6. Oct4 ChIP and Sox2 ChIP revealed 3.5 and 4.2 

enrichment fold respectively, indicating that Oct4 and Sox2 interacts with this Jmjd6 intronic 

enhancer (Figure 14A B). 

14A 
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14B                                                                        

Figure 14. Oct4/Sox2 binding site within Jmjd6 gene and qRT-PCR of fold changes of 

pluripotency factors. Oct4 and Sox2 but not Nanog bind to Jmjd6 genomic site. (14A) 

Oct4/Sox2 binding region is shown in genome browser. (14B) Oct4, Sox2 ChIP and Nanog 

ChIP DNA was assayed by real-time PCR using primers located in Jmjd6 intron 2. Fold 
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enrichments were calculated from the apparent IP efficiency (ratio of ChIP enriched DNA over 

input) and normalized to the level at a control region defined as 1.0 for a given extract from a 

specific cell line. 

 

3.3.4 ES cells over-expressing Jmjd6 express higher-level of Nanog 

To test whether Jmjd6 over-expression helps sustain the pluripotent state, transformed ES cell 

lines were constructed stably expressing 26-fold elevated levels of Jmjd61 (Figure 15). The 

resulting ES cell line had typical ES cell morphologies (not shown), were AP positive (not 

shown). The expression level of Oct4 in these lines was comparable to control ES cells whereas 

Nanog was elevated to 2.3 fold (Figure 15), suggesting that Jmjd6 overexpression may help ES 

cells to resist differentiation. Interestingly, the Prmt6 level was downregulated dramatically to 

16% in the Jmjd6 overexpressing cells. Given that Prmt6 methylates histone H3 at arginine 2 

but Jmjd6 demethylates at the same site, it would be of interest studying the relationship 

between the two enzymes. 
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Figure 15. Jmjd6 overexpressing cells upregulate Nanog level. RNA level of Jmjd6 

overexpressing cells were compared with that of wild type ES cells. Fold changes are shown 
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3.4  Discussion 

3.4.1 The possible mechanism underlying Jmjd6 regulation of pluripotency 

JmjC-containing protein is one of major demethylase enzyme classes that catalyse lysine 

demethylation of histones through an oxidative reaction that requires iron Fe (Ⅱ) and α-

ketoglutarate (αKG) as cofactors (Tsukada et al., 2006). Compared to Lysine specific 

demethylase 1 (LSD1), which can only remove mono and dimethyl lysine modifications, the 

JmjC-domain-containing histone demethylases (JHDMs) can remove all three histone lysine-

methylation states (Klose et al., 2006a). Result from JmjC domain’s regulation in histone 

demethylase activity, Jumonji family proteins play a key role during embryogenesis and 

carcinogenesis through the regulation of chromatin structure and gene expression (Klose et al., 

2006a; Takeuchi et al., 2006). The majority members of the JmjC-domain-containing family 

are related to histone methylation, like JHDM1 to reverse H3K36, JHDM2A to reverse H3K9, 

JHDM3 and JMJD2A-D to demethylase H3K9 and H3K36 and Jmjd3 to reverse H3K27 

(possibly) (Boyer et al., 2006; Cloos et al., 2006; Fodor et al., 2006; Klose et al., 2006b; 

Tsukada et al., 2006; Whetstine et al., 2006; Yamane et al., 2006). Moreover, Jmjd1a and 

Jmjd2c have been shown to be bound by Oct4 and encoded for H3K9 demethylase that regulate 

the expression of pluropotency markers such as Nanog and Tcl1 in mouse ESCs (Loh et al., 

2007). Another comparative genomics analyses revealed the binding sites for Oct4, AP-1, and 

bHLH transcription factors within the promoter region locate 5' to exon 1B of human JMJD1C 

gene and were conserved in chimpanzee, cow, mouse and rat JMJD1C orthologs, indicating 

that POU5F1-mediated expression of JMJD1C histone demethylase is implicated in the 

reactivation of silenced genes in undifferentiated ES cells, pancreatic islet, and diffuse-type 

gastric cancer (Katoh, 2007). 
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Here we demonstrate as a member of JmjC-domain-containing protein family, Jmjd6 may also 

contribute to the maintenance of pluripotency of ESCs. This conclusion can be supported 

mainly by three aspects in our results, namely the down-regulation of pluripotency markers and 

up-regulation linage markers, the epigenetic status change towards differentiate cells and the 

binding of Oct4 and Sox2 to Jmjd6’s intronic region. The specific mechanism about how Jmjd6 

acts in the network remains to be elucidated. Nevertheless, models for transcriptional activation 

and repression can be inferred from other JmjC-domain-containing proteins. It is interesting 

that Oct4 binds to the intronic enhancer of Jmjd6 and the Oct4 mRNA level decreased upon 

Jmjd6 knockdown, which may implicate the possible regulation circuit between Jmjd6 and 

Oct4. Furthermore, as reported previously, methylation at H3 arginine 2 was found to abrogate 

trimethylation of H3K4 and methylation of histone H4 at arginine 3 (Kirmizis et al., 2007; 

Wang et al., 2001a). The loss of Jmjd6 leads to the reduction in H3R2 demethylation, which 

may in turn impede the active H3K4 methylation that finally decreases the pluripotency 

markers like Oct4 and Sox2. In addition, the decline of Oct4 and Sox2 expression in return 

lessens the Jmjd6 as the weakened binding strength, thus forming the feed-back loop, as 

illustrated in Figure 16. The massive decrease of methylases of H3K4 and the deacelases as 

well as the decline of Chd family may support conclusion.  
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Figure 16. The proposed regulation loop among pluripotency markers, Jmjd6, H3R2 

demethylation and the methylation of H3K4.  

 

The reversible process of epigenetic regulation makes it an attractive tool for researchers to 

master and control the process to some extent. Hence, to understand the whole epigenetic 

landscape may shed light on the total developmental process. Here we propose two critical 

genes that epigenetically regulate ESC identity either in self-renewal or pluripotency, indicating 

the significant role of various epigenetic ways for maintenance of ESC identity. We provided a 

good research model by which one single gene can affect ESC in more than one aspect. Lin28, 

which function by either miRNA-dependent or independent ways, contributes to the ESC self-

renewal. Jmjd6, a H3R2 demethylase, seems to maintain pluripotency by modifying histone 

and regulating transcription factor activity. These results also confirm the complex regulation 

network in ESC identity and may offer some new insights into epigenetic regulation in ESCs. 
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3.5 Future work 

Here we demonstrate that Jmjd6 may regulate ESC pluripotency. To fully understand how 

Jmjd6 regulates ESC identity, ChIP-seq will be performed to identify Jmjd6 direct targets. We 

will combine ChIP-seq results with gene expression microarray data so as to unravel the 

mechanism of Jmjd6 regulation of ESC identity.  
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APPENDICES 

 

Supplementary Table 1. Sequences of primer pairs for Lin28a, Lin28b, Jmjd6 and 

pluripotency genes, used for qPCR in Lin28a ,Lin28b and Jmjd6 knock-down assay. 

 

Gene Forward (5' - 3') Reverse (5' - 3') 

β-actin ACCAACTGGGACGACATGGAGAA TACGACCAGAGGCATACAGGGAC 

Lin28a GGGGCCGGCATCTGTAAGTGGTTCA CAGTGACACGGATGGATTCCAGACCCTTG 

Lin28b AAAAATCCCCCAAAGGCCTTGAGTCAATA ATCATCCTGGACTCTTCTTCTCGCACAGT 

Jmjd6 CGACTGGACCCGGCACAACTACTACGAGA CGGACCAGCCCTCTTGTGCATTGAG 

Pou5f1 TTGGGCTAGAGAAGGATGTGGTT GGAAAAGGGACTGAGTAGAGTGTGG 

Nanog GGTTGAAGACTAGCAATGGTCTGA TGCAATGGATGCTGGGATACTC 

Sox2 CCAGGAGAACCCCAAGATGCACAACT AAGCCTCCGGGAAGCGTGTACTTATCCTT 
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Supplementary Table 2. Sequences of primer pairs for germ layer markers and lineage 

markers, used for qPCR in Lin28a , Lin28b and Jmjd6 knock-down assay and embryoid body 

assay. 

 

Gene Forward (5' - 3') Reverse (5' - 3') 

Pax6 GGGCGCAGACGGCATGTATGATAAA AGTCGCATCTGAGCTTCATCCGAGTCTTC 

Nestin AGAGGAAGAGCAGCAAGGCCATGAC TCCCTGACTCTGCTCCTTCTTCTTCAT 

Rest CCCTTCCGTTGTAAGCCATGCCAGTATGA TGGTGCTTCAGGTGTGCCGTGTAGTGAT 

Gata6 TGTGCAATGCATGCGGTCTCTACAGCA TTCATAGCAAGTGGTCGAGGCACCC 

Sox17 TGAAAGGCGAGGTGGTGGCGAGTAG CAACGCCTTCCAAGACTTGCCTAGCATCT 

Foxa2 CCTACGCCAACATGAACTCGATGA GTAGAAAGGGAAGAGGTCCATGATCCACT 

Hand1 

CCTGCCCAAACGAAAAGGCTCAGGACCCA

A CGACCGCCATCCGTCTTTTTGAGTTCAGCC 

Gata2 GGCCTCTTCTTCTGCAGGGGGTAGTGTAG GCACATAGGAGGGATAGGTGGGTATCGG 

Nkx2-

5 GAAGGCAGTGGAGCTGGACAAAGCCGAGA GGAACCAGATCTTGACCTGCGTGGACGTG 

Bmp4 GTTCCTGGACACCTCATCACACGACTACT GTAACGATCGGCTGATTCTGACATGCT 

Cdx2 CGCAGAACTTTGTCAGTCCTCCGCAGTACC 

GTATTCGGCGGGGCTGCTGTAGCCCATAG

C 
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Supplementary 3 Sequences of primer pairs for cell cycle regulators, used for qPCR in Lin28 

RIP. 

 

  

Gene Forward (5' - 3') Reverse (5' - 3') 

CyclinA2 GCTCAAGACTCGACGGGTTGC GCTGCATTAAAAGCCAGGGCATC 

CyclinB1 TCCCTCGGTGGGATTCAAGTGC CAGGAGTGGCGCCTTGGTATGG 

Cdk4 GTACGGCTGATGGATGTCTGTGCTACTTC CAGGCCGCTTAGAAACTGACGCATTAG 
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Supplementary Table 4. Top 20 up-regulated genes upon Lin28a and Lin28b simultaneous 

knock-down, from microarray data. 

 

Ref_Seq Gene Symbol Log2 Fold Change 

NM_029755  Calcoco2 4.317535 

NM_207271  Tdpoz3 4.281335 

NM_009258  Spink3 3.874857 

NM_008009  Fgfbp1 3.812489 

NM_001163172  Tmem92-ps 3.719574 

NM_009705  Arg2 3.573322 

NM_001081306 Ptprz1 3.075732 

NM_029755  Calcoco2 3.029686 

NM_001081324 Neto2 2.970331 

NM_010156 Samd9l 2.935079 

NM_001142734 Gm8994 2.827043 

NM_175271  Lpar4 2.792043 

NM_177913 A430089I19Rik 2.771816 

NM_177913  A430089I19Rik 2.771816 

NM_177913  A430089I19Rik 2.771816 

NM_001034101 Gm13119 2.76148 

NM_177913  A430089I19Rik 2.75267 

NM_001113736  Gm13040 2.742504 

NM_177913  A430089I19Rik 2.723691 

NM_177187  D5Ertd577e 2.674249 
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Supplementary Table 5. Top 20 down-regulated genes upon Lin28a and Lin28b simultaneous 

knock-down, from microarray data. 

 

Ref_Seq Gene Symbol Log2 Fold Change 

NM_145833 Lin28a 0.202096593 

NM_019738 Nupr1 0.229213843 

NM_011498 Bhlhe40 0.29008016 

NM_028133 Egln3 0.300623711 

NM_019877 Copz2 0.310522728 

NM_026929 Chac1 0.314977186 

NM_178404 Zc3h6 0.316930571 

NM_013703 Vldlr 0.321999412 

NM_011990 Slc7a11 0.322809283 

NM_010243 Fut9 0.343306791 

NM_009127 Scd1 0.355756133 

NM_080470 Smc1b 0.363772573 

NM_146017 Gabrp 0.365494522 

NM_001081215 Ddx60 0.382403751 

NM_147041 Olfr57 0.384129932 

NM_018861 Slc1a4 0.386891248 

NM_001081027 Kcnt2 0.389124158 

NM_173866 Gpt2 0.393736736 

NM_029197 4930528F23Rik 0.394764418 

NM_177420 Psat1 0.421104729 
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Supplementary Table 6. Top 20 up-regulated genes upon Jmjd6 simultaneous knock-down, 

from microarray data. 

 

 

Ref_Seq Gene Symbol Log2 Fold Change 

NM_001160386  Dnahc7b 2.543609 

NM_146294 Olfr1167 2.439289 

NM_001011790 Olfr1382 2.412542 

NM_009245 Serpina1c 2.390137 

XM_975226 Naaladl2 2.322925 

NM_011190 Psme2 2.249713 

NM_001011757 Olfr663 2.221278 

NM_146566 Olfr830 2.165318 

NM_181754 Gpr141 2.145285 

ENSMUST00000103356 Gm1418 2.103497 

NM_029755 Calcoco2 2.093128 

ENSMUST00000098824 Gm10683 2.05128 

NM_010156 Samd9l 2.04904 

BC083121 5430413K10Rik 2.043052 

NM_011002 Olfr59 2.041484 

NM_153093 AF366264 2.037979 

ENSMUST00000103653 Gm16591 2.024393 

NM_029122 Iqca 2.019524 

AY053573 Rdh18-ps 1.999047 

NM_001105184 Vmn2r71 1.992955 
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Supplementary Table 7. Top 20 down-regulated genes upon Jmjd6 simultaneous knock-down, 

from microarray data. 

 

Ref_Seq Gene Symbol Log2 Fold Change 

NM_033398 Jmjd6 0.300942 

NR_033621 Olfr856-ps1 0.30312 

NM_009127 Scd1 0.399691 

NM_029870 A930001N09Rik 0.408027 

NM_013825 Ly75 0.435951 

NM_028430 Ppil6 0.436083 

NM_027870 Armcx3 0.439023 

NM_025799 Fuca2 0.443059 

NM_007696 Ovgp1 0.443424 

NM_029001 Elovl7 0.456033 

NM_001162917 Dennd4a 0.469317 

NM_177677 Dnajc5g 0.470971 

NM_027870 Armcx3 0.480057 

NM_001162917 Dennd4a 0.484761 

NM_172597 Txndc16 0.485575 

NM_001162917 Dennd4a 0.48783 

NM_178404 Zc3h6 0.49216 

NR_028528 Snord57 0.495453 

NM_010439 Hmgb1 0.496941 

NM_153526 Insig1 0.49743 
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Supplementary Table 8. Sequences of primer pairs used for qPCR in microarray validation. 

 

Gene Forward (5' - 3') Reverse (5' - 3') 

calcoco2 TGAAAAGTTCATCCCTCGACG TCCCCGGACTAAACCATCTTC 

Tdpoz3 TTTCATTGCCATTCATGCCTGT GCTGGCTAGATTCTAAGACCACA 

Fgfbp1 ACTCCACAGCCTCATCCT CTGCTCCTCCTCAGTCACAG 

Ptprz1 GCTTTGATGCGGACAGATTTTC GGAGGGGATGTCAATGATCCA 

Sp110 GTGAACATCGCCTATGCCATC CCGGAGGTTGACCTTGCTG 

Gm428 ACCCAACTGACTGCCTTA TCTGCTTTCTCCTTCCTG 

Cd80 ACCCCCAACATAACTGAGTCT TTCCAACCAAGAGAAGCGAGG 

Dnmt3l GCTCTAAGACCCTTGAAACCTTG GTCGGTTCACTTTGACTTCGTA 

Pramel6 ATGAGTGTTGACTCCCTACCC GTGAAGGCTACCTTGAACATCTC 

Nupr1 CCCTTCCCAGCAACCTCTAAA TCTTGGTCCGACCTTTCCGA 

Bhlhe40 ACGGAGACCTGTCAGGGATG GGCAGTTTGTAAGTTTCCTTGC 

Egln3 AGGCAATGGTGGCTTGCTATC GCGTCCCAATTCTTATTCAGGT 

Smc1b ACAAAGACGTGCATGGATTGC CCCTCATGGTTATCAATTCCAGC 

Ddx60 CTTGGGTCAGAGTTGCCCATA GCATAAAGACGAAGGATGTCAGA 

Prdm1 CTTCTCTTGGAAAAACGTGTGGG TCATATCAGCGTCCTCCATGT 

Zfy1 CAGATCAGAGCACTAGCATTCG CTGGCAGTGACATTCTGGTCT 

Sars CGGGTGGATAAAGGAGGGGA TGCCCGAAATCTGCATCGTC 

Rras GGGGCAAGAGGAATTTGGTG GGTCCTTGACTCTGAGGATCT 

Lefty1 CAAGACCCTTTCAGGACACC CCATCCCTTCCACATCAGC 

Xist CCATACCCTCATACCCTA TCTCTCAAACCACCACAC 



82 

 

 

Supplementary Table 9. Sequences of primer pairs used for qPCR in microarray validation. 

 

Gene Forward (5' - 3') Reverse (5' - 3') 

Sall1 CTCAACATTTCCAATCCGACCC GGCATCCTTGCTCTTAGTGGG 

Zfp143 GGCCATGCTACTCGGGTAAC TGTGCCTTCTGTTGATCTCCT 

Zfp459 GCAAAGACAAGGCTCTACTGG GGAGTGATTCACAATTAGTGGGC 

Rab7 AGGCTTGGTGCTACAGGAAAA CTTGGCCCGGTCATTCTTGT 

Sin3a AGTGTCAACGTGGTCGAGAG ATGCAGACGCTTCTTGCTTAC 

Ly75 CCTACGGGAGACCTTGTGAAT AGCAACTTCCAATCTGCTCATT 

Ovgp1 TACTGCCTACAAACTGGTGTGC TGCGTACAAAGAAAGGGGTCC 

Armcx3 CTGGAGCCTGCTATTGCATTT TCAGACCAGTCATTATACCTGGC 

Arf1 TGGGCGAAATTGTGACCACC TCCACTACGAAGATCAAGCCT 

Sat1 GAGAACACCCCTTCTACCACT GCCTCTGTAATCACTCATCACGA 


