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SUMMARY

This thesis contains two topics on local theta correspondence.

The first topic is on the relationship between derived functor modules

and local theta correspondences. Derived functor construction can trans-

fer representations between different real forms of a complex Lie group.

On the other hand, representations of different real forms also could be

constructed by theta correspondences of different real reductive dual pairs

(with same complexification). We first observe an equation on the image of

Hecke-algebras for see-saw pair, ω(U(g)H) = ω(U(h′)G
′
), which generalize

the correspondence of infinitesimal characters. Then, we use it to study

the U(g)K-actions on the isotypic components of theta lifts and show that

the derived (Zuckerman) functor modules of theta lifts of one dimensional

representations (characters) are determined by their K-spectrums. We

identify families of derived functor modules constructed in Enright(1985),

Frajria(1991), Wallach(1994) and Wallach-Zhu (2004) with theta lifts of

unitary characters. One can rephrase the results in following form: the

derived functor modules of theta lifts of unitary characters are again (pos-

sibly direct sum of ) theta lifts of (other) characters (of possibly another

real form). By a restriction method, we also extend the theorem to theta

lifts of unitary highest weight modules as in a joint work with Loke and

Tang. All these results suggest that theta liftings and derived functors are

compatible operations.

In the second topic, we study invariants of theta lifts. Fixing a good K-

invariant filtration on a finite length (g, K)-module, the associated sheaf of

corresponding graded module is a KC-equivariant coherent sheaf supported
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on a union of nilpotent KC-orbit(s) in p∗. The fiber of the associated sheaf

at a point in general position is a rational representation of its stabilizer in

KC, called the isotropic representation at this point. The (genuine) virtual

character of the isotropic representation is an invariant. We calculated the

isotropic representations for theta lifts of unitary characters and unitary

highest weight modules under certain natural filtrations. As corollaries, we

recovered associated varieties and associated cycles of these representations.

Our result show that, outside the stable range, sometimes theta lifting

and taking associated cycle are compatible, while sometimes they are not

compatible.

Furthermore, we show that some families of unitary representations,

obtained by two step theta liftings, are “height-3” representations satisfying

a prediction of Vogan: the K-spectrums are isomorphic to the spaces of

global sections of certain KC-equivariant algebraic vector bundles defined

by their isotropic representations.

Since our calculations also suggest that there could be a notion of “lift-

ing” of isotropic representations compatible with theta lifting of representa-

tions. We propose a precise conjecture in the general cases, of an inductive

nature. A positive answer to these questions may contribute to a better

understanding of unipotent representations constructed by iterated theta

liftings.
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Chapter 1

Introduction

In this thesis, we focus on the “singular” part of the set of irreducible

representations of real classical groups. We study two topics both aim to

understand the role of irreducible (unitary) representations constructed by

local theta correspondence in the general theories of the representations of

real reductive groups.

The first topic is on the relationship between certain derived functor

constructions and local theta lifts. We studied the transfer of represen-

tations between different real forms of a complex classical Lie group via

derived functors of Zuckerman functors. The main result is that the de-

rived functor module of the theta lift (or, more generally, the irreducible

component of the maximal Howe quotient) of a character is characterized

by its K-spectrum (and its infinitesimal character).

The second topic is about the invariants of theta lifts. This part is build

on a joint work with Loke and Tang [LMT11a]. We computed the isotropic

representations of the theta lifts of unitary characters and unitary lowest

weight modules under a natural good filtration. Then we recovered the

Associated cycles of these representations. Furthermore, we showed that

stable range double theta lifts of unitary characters are height-3 represen-

tations satisfying a prediction of Vogan: their K-spectrums are isomorphic

to the spaces of global sections of certain KC-equivariant vector bundles

defined by their isotropic representations.

In Chapter 2, we introduce notations and some necessary facts for later

exploration. Most material in Chapter 2 may be known to experts. So

the reader may safely skip this chapter at first and read it when we refer

it in other chapters. In Chapter 3 and Chapter 4, we discuss above two

topics respectively. For the statement and discussions of main results of

each topics, see Introductions of these chapters.

1
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Chapter 2

Preliminaries

2.1 Notation

We will introduce notation for the whole thesis, basically following Harish-

Chandra’s convention.

We use capital letters, for example G, denote real Lie groups. g0 =

Lie(G) denote the (real) Lie algebra of G and g := (g0)C := g0 ⊗R C be

the complexification of g0. KG (or simply K) denote certain maximal com-

pact subgroup of G. For real Lie group we always assume G is reductive.

We follow Wallach’s definition [Wal88, Section 2.1] of real reductive group.

Let g0 = k0 ⊕ p0 be the Cartan decomposition of g0 respect to KG and

g = k ⊕ p be the complexification of this decomposition. The universal

algebra (over C) of g is denote by U(g). The adjoint representations of G

(resp. its derivative) on g0, g and U(g) are denoted by Ad (resp. ad). For

real reductive Lie group G, Ĝ denote the isomorphism class of irreducible

admissible representations. For an isomorphism class σ of representation,

Vσ denote a vector space realize σ; σ∗ and V ∗
σ denote their dual (contragre-

dient). Sometimes we may simply write σ for Vσ, without explicitly fixing

a realization of σ.

For a vector space V , the symmetric algebra of V is denote by S(V ).

If V is finite dimensional, C[V ] ∼= S(V ∗) denote the polynomial ring (ring

of regular functions) on V . There has natural grading on S(V ). Sd(V )

denote the space of all elements with degree d and Sd(V ) denote the space

of all elements with degree ≤ d.

Here variety means abstract variety, i.e. integral separated scheme of

finite type over algebraically closed field k1 (c.f. [Har77, Section II.4]).

Since we will only study variety, we not distinguish algebraic subsets of

1We only use C actually.

3
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variety and the corresponding reduced subschemes. The structure sheaf of

a scheme X is denoted by OX , the stalk at x ∈ X of a sheaf L is denoted

by Lx. In particular, the local ring at x is denoted by OX,x (or simply Ox).

For an open set U ⊂ X, L (U) denote the space of sections on U . For any

morphism f : Y → X, f∗ and f
∗ denote the direct image and inverse image

functors. For a locally closed set Z ⊂ X, iZ : Z → X denote the inclusion

and k[Z] = i∗ZOX(Z) denote the ring of regular functions on Z.

For a variety X with G-action, we say G act linearly (or geometrically)

on k[X] if it act by the translation action induced from the G-action on X.

We will use boldface letter to denote an array of numbers. We will

ignore zeros in the tail of an array of integers and write (a1, · · · , ak, 0, · · · 0)
by (a1, · · · , ak). Two array of numbers can be add or subtract coordinate-

wise. (a,b) denote the array obtained by appending b to a. ar denote the

array of integers by reverse the order of a. An array of “1”(resp. “0”) with

length p is denoted by 1p(resp. 0p). We assign lexicographical order on the

set of arrays and a ≥ 0 means all entries of a are non-negative.

In,m denote the matrix of size n×m with 1 on the diagonal. Im := Im,m

denote the identity matrix of size m×m.

2.2 (g, K)-module

Let g be a complex Lie algebra and K be a compact Lie group such that

k = Lie(K)C is a complex Lie subalgebra of g. The pair (g, K) is a special

case of Harish-Chandra pairs .

Definition 1. A (g, K)-module is a pair (π, V ) with V a complex vector

space, π : g∪K → EndC(V ) a representation of g andK satisfying following

conditions:

(1) dim span { π(K)v } <∞ for any v ∈ V ;

(2) π(k)π(X) = π(AdkX)π(k) for all k ∈ K,X ∈ g;

(3) The action of K on V is continuos. The differential of K-action is the

restriction of g-representation on k, i.e.

π(X)v = lim
t→0

1

t
(π(exp(tX))v − v) ∀v ∈ V,X ∈ k0.

Let C (g, K) be the category of (g, K)-module.
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For any σ ∈ K̂, let V (σ) be the σ-isotypic component of V . A (g, K)-

module is an admissible representation if V (σ) is finite dimension for all

σ ∈ K̂.

For a continuous (under certain topology) representation (π,V) of G ,

let

VK := { v ∈ V | dim span { π(K)v } <∞}

be the space of K-finite vectors of V, which is a (g, K)-module called the

Harish-Chandra module of V . By Harish-Chandra’s theory, the Harish-

Chandra module of irreducible unitary representation is an irreducible ad-

missible (g, K)-module. Two irreducible unitary representations are iso-

morphic if and only if there Harish-Chandra modules are isomorphic. More-

over, every irreducible admissible (g, K)-module is the Harish-Chandra

module of an irreducible Hilbert space representation. Since (g, K)-module

play an importent role in the representation theory of real reductive groups,

we will focus on (g, K)-modules.

Later we will use following theorems from Harish-Chandra, Lepowsky

and McCollum [LM73].

Theorem 2 (c.f. [Wal88, Section 3.5.4 and Section 3.9]). Let G be a real

reductive group, K be its maximal compact subgroup.

1. Let W be an admissible (g, K)-module, γ ∈ K̂. X be an U(g)K and

K-invariant subspace of the γ isotypic componentW (γ). Then (U(g)X)(γ) =

X ⊂ W (γ).

2. Let V and W be two irreducible (g, K)-modules. Let γ ∈ K̂ such that

V (γ) and W (γ) both nonzero. Then V and W are equivalent as (g, K)-

module if and only if V (γ) and W (γ) are equivalent as U(g)K-module.

2.3 Local Theta correspondence

In this section, we review Howe’s definition [How89b] of (local) theta cor-

respondence (over R). We follow Howe’s notation.

2.3.1 Reductive dual pairs

Let k be a local field, W be an symplectic space over k, Sp(W ) be the

symplectic group of W which is the subgroup of GL(W ) preserves a non-

degenerate symplectic form on W . A pair of subgroup (G,G′) in Sp(W ) is

called reductive dual pair [How79b] over k, if

(i) G is centralizer of G′ in Sp(W ) and vice versa;
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(ii) G and G′ act on W absolute reductively, i.e. under any field ex-

tension, W decompose into direct sum of irreducible G-modules (or

G′-modules).

Every reductive dual pair (G,G′) can be decompose into direct sum of

irreducible reductive dual pairs: it is a decomposition of symplectic space

W =
⊕s

i=1Wi such G = G1× · · ·×Gs, G = G′
1× · · ·×G′

s and (Gi, G
′
i) are

irreducible reductive dual pairs in Sp(Wi). We listed irreducible reductive

dual pairs over C (resp. R) in Table 2.1 (resp. Table 2.2, where H is the

set of quaternions).

G G′ Sp(W )
Type I Sp(2n,C) O(m,C) Sp(2nm,C)
Type II GL(n,C) GL(m,C) Sp(2nm,C)

Table 2.1: Irreducible reductive dual pairs over C

G G′ Sp(W )
Sp(2n,R) O(p, q,R) Sp(2n(p+ q),R)

Type I Sp(2n,C) O(m,C) Sp(4nm,R)
U(r, s) U(p, q) Sp(2(p+ q)(r + s),R)
O∗(2n) Sp(p, q) Sp(4n(p+ q),R)
GL(n,R) GL(m,R) Sp(2nm,R)

Type II GL(n,C) GL(m,C) Sp(4nm,R)
GL(n,H) GL(m,H) Sp(8nm,R)

Table 2.2: Irreducible reductive dual pairs over R

From the classification of irreducible reductive dual pairs, or else, we

have following observations. For any real symplectic spaceW , defineWC =

W ⊗R C and extend the real symplectic form C-linearly to WC. For real

reductive dual pair (G,G′) in Sp(W ), let GC and G′
C the complexification

of G and G′. Then (GC, G
′
C) form a complex dual pair in Sp(WC). One

the other hand, we call a real symplectic subspace W of WC a real from

of WC if dimRW = dimCWC and the symplectic form restricted on W

is non-degenerate. Suppose (GC, G
′
C) is a complex dual pair in complex

symplectic group Sp(WC), let G = GC ∩ Sp(W ) and G′ = G′
C ∩ Sp(W ). By

a proper choice of real form W , (G,G′) will be a real reductive dual pair

in Sp(W ). We call (G,G′) a real form of (GC, G
′
C) since G,G

′, Sp(W ) are

real froms of complex Lie group GC, G
′
C, Sp(WC) respectively.
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2.3.2 Definition of theta correspondence

Write Sp for the big symplectic group Sp(W ) containing G and G′. S̃p

denote the metaplectic cover of Sp. Fix a unitary character of R, let ω be

the oscillator representation of S̃p and Y ∞ be the space of smooth vectors.

Denote R(Ẽ) the infinitesimal equivalente classes of continuous irreducible

admissible representation of Ẽ on locally convex topological vector spaces.

Let R(Ẽ;Y ∞) be the subset of R(Ẽ) which can be realized as a quotient

of Y ∞ by an Ẽ-invariant closed subspace.

For a reductive dual pair (G,G′) in Sp, choose a maximal compact

subgroup U of Sp such that K = U ∩ G and K ′ = U ∩ G′ are maximal

compact subgroups of G and G′ respectively. Let Y be the space of Ũ-

finite vectors in Y ∞. For any subgroup E of G such that KE := E ∩ U

is a maximal compact subgroup of E, let R(e, K̃E;Y ) be the infinitesimal

equivalent classes of irreducible (e, K̃E)-modules which can be realized as

a quotient of Y . All elements in R(Ẽ;Y ∞) and R(e, K̃E;Y ) are genuine

representations of the double covering in the sense that the centers of Ẽ

and K̃ act non-trivially.

Clearly taking Harish-Chandra module gives a inclusion R(Ẽ;Y ∞) ↪→
R(e, K̃E;Y ). For ρ ∈ R(G̃;Y ∞) (view as smooth representation of G̃

in the sense of Casselman-Wallach), let ρ0 be the corresponding (g, K̃)-

module. Define

Ω∞
Y ∞,ρ = Y ∞

/ ∩
T∈Hom

G̃
(Y ∞,ρ)

Ker (T )

and

ΩY ,ρ0 = Y

/ ∩
T∈Hom

g,K̃
(Y ,ρ0)

Ker (T ) .

By Lemma 5 in Section 2.3.3, as (g, K̃)× (g′, K̃ ′)-module,

ΩY ,ρ0
∼= ρ0 ⊗Θ(ρ0).

Howe [How89b] proved that Θ(ρ0) is a finite length (g′, K̃ ′)-module with

infinitesimal character and it has a unique irreducible quotient θ(ρ0). Note

that the restriction to Y induces an injection

HomG̃(Y
∞, ρ) → Homg,K̃(Y , ρ0).

Therefore, the space of K̃×K̃ ′-finite vectors in Ω∞
Y ∞,ρ is a quotient of ΩY ,ρ0
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and

Ω∞
Y ∞,ρ = ρ ⊗̂Θ∞(ρ)

where Θ∞(ρ) is a finite length smooth G̃′-module and ⊗̂ denote projective

tensor product2. Clearly, the Harish-Chandra module of Θ∞(ρ) is a non-

zero quotient of Θ(ρ0) and Θ∞(ρ) has a unique irreducible quotient θ∞(ρ)

with Harish-Chandra module θ(ρ0). However, the relationship between

Ω∞
Y ∞,ρ and ΩY ,ρ0 are subtle. It is not known in general at least to the

author.

Definition 3. We define the theta lifting map

θ : R(g, K̃;Y ) → R(g′, K̃ ′;Y )

by ρ0 7→ θ(ρ0). We also have the smooth version of theta lifting map:

θ∞ : R(G̃;Y ∞) → R(G̃′;Y ∞)

defined by ρ 7→ θ∞(ρ).

For any ρ0 ∈ R(g, K̃;Y ), Θ(ρ0) is usually called the maximal Howe

quotient . ρ0 7→ Θ(ρ0) defines a map

Θ: R(g, K̃;Y ) → C (g′, K̃ ′)

whose image is in the subcategory of finite length (g′, K̃ ′)-modules. We call

Θ the full theta lifting map. Similarly, ρ 7→ Θ∞(ρ) defines map

Θ∞ : R(G̃;Y ∞) → C (G̃′).

Here C (G̃′) denote the category of Casselman-Wallach G̃′-representation

and the image of Θ∞ is in the subcategory of finite length Casselman-

Wallach G̃′-representations..

Since the role of G and G′ are symmetric, we will abuse notation by

using same symbols for maps from G̃′-modules to G̃-modules. In this thesis,

we will focus on the algebraic version of theta lifting, i.e. θ and Θ.

2Actually, both ρ and Θ(ρ) will be nuclear spaces, there is only one reasonable
topological tensor product.
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2.3.3 A lemma from Moeglin Vigneras and Wald-

spurger

In this section, we prove a lemma essentially34 from Moeglin, Vigneras and

Waldspurger [MVW87] for completeness. This lemma explains why ΩY ,ρ0

is a tensor product.

At first, we review some basic properties of (g, K)-modules. For any

(g, K)-module V , V =
⊕

τ∈K̂ V (τ) where V (τ) is the τ -isotypic component.

In particular, a vector v ∈ V has finite K-support, i.e., v is a finite sum

of vectors vτ ∈ V (τ). There is a natural projection pτ of V to V (τ),

which could be realized by integration against the complex conjugation of

characters χτ of τ over K. Now for any v ∈ V , integrate against

χv =
∑
vτ ̸=0

χτ (2.1)

on K is a projection onto Uv
∼=
⊕

vτ ̸=0 U(τ) fixing v. We call it pv.

For (g, K)-module U , define Ǔ to be the subspace HomC(U,C)K−finite of

allK-finite vectors in HomC(U,C). If U is admissible, then HomC(U, V )K−finite
∼=

Ǔ ⊗ V for any vector space V and (Ǔ)ˇ∼= U . If U is an irreducible (g, K)-

module, Homg,K(U,U) ∼= C.

To prove the main result, we need following lemma.

Lemma 4. Let U be an irreducible admissible (g, K)-module. Let V be a

(g, K)-submodule in U ⊗W where W is some vector space. Then there is

a subspace U ′ of W such that V = U ⊗ U ′.

Proof. Let U ′ = { w ∈ W | U ⊗ Cw ⊂ V }. It is a subspace of W and

U ⊗ U ′ ⊂ V . By quotient out of U ⊗ U ′ and viewing V/(U ⊗ U ′) as a

submodule of U ⊗W/U ′, we only have to prove that V = 0 if U ′ = 0.

Suppose that V ̸= 0. Since V =
⊕

τ∈K̂ V (τ), there is a τ ∈ K̂ such

that the τ isotypic component V (τ) ̸= 0. In particular, there is some

0 ̸= v ∈ V (τ) such that v =
∑s

i=1 ui ⊗ u′i with { ui } linearly independent

and u′1 ̸= 0. Note that U(g)K and K act on the U(τ) isotypic component

irreducibly since U is irreducible admissible. The subalgebra generated by

U(g)K and K actions in EndC(U(τ)) is the whole algebra (by Jacobson

Density Theorem). In particular, there is a finite combination π of U(g)K

3They proved the lemma in p-adic case. They only need a projection to the space of
K-fixed vector. In our case, we have to project to K-isotypic component first.

4I learned the argument from Gordan Savin.
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and K such that

π · ui =

u1 if i = 1,

0 if i ̸= 1.

Hence u1⊗u′1 = π ·v ∈ V . Since U is irreducible, u1 generate U . Therefore

0 ̸= u′1 ∈ U ′, which is contradict to U ′ = 0.

Let V be a (g, K)-module and U be an irreducible admissible (g, K)-

module. Define a (g, K)-module (c.f. Section 3.2),

ΩV,U = V/NV,U , where NV,U =
∩

T∈Homg,K(V,U)

Ker (T ).

Lemma 5. Then the maximal quotient ΩV,U
∼= U⊗U ′ with U ′ ∼= Homg,K(U,ΩV,U).

Moreover, Homg,K(V, V ) act on U ′ by composition.

Proof. Replacing V by V/NV,U , we can assume

NV,U =
∩

T∈Homg,K(V,U)

Ker (T ) = 0,

i.e. V = ΩV,U . Let Ǔ ∼= Hom(U,C)K−finite be the dual of U in the category

of (g, K)-modules. Let W = (Ǔ ⊗ V )g,K be the co-invariant of (g, K) in

Ǔ ⊗ V , which is the maximal quotient ΩǓ⊗V,C by definition. Let p : Ǔ ×
V ⊗C → (Ǔ⊗V )g,K = W be the corresponding projection. Define ϕ : V →
HomC(Ǔ ,W ) by v 7→ (ǔ 7→ p(ǔ⊗ v)).

For any v ∈ V , let χv be the projection defined by (2.1). Now

ϕ(v)(ǔ) =p(ǔ⊗ v) = p

(
ǔ⊗

∫
K

χv(k)k · v dk
)

=p

(
(

∫
K

χv(k
−1)k · ǔ dk)⊗ v

)
∈ W.

Since χτ (k
−1) is the character of the dual τ ∗ of τ , ϕ(v) is in the space

HomC(Ǔv,W ) ⊂ HomC(Ǔ ,W )5. Here Ǔv =
⊕

vτ ̸=0 U(τ̌) is finite dimension.

So ϕ(v) is K-finite and ϕ factor through U ⊗W ∼= HomC(Ǔ ,W )K−finite.

One the other hand, ϕ is injective. In fact, by assumption NV,U = 0, for

each 0 ̸= v ∈ V , there is T ∈ Homg,K(V, U) such that T (v) ̸= 0. So there is

a ǔ ∈ Ǔ such that ǔ(T (v)) ̸= 0. Notice that f : Ǔ ⊗V id⊗T−−−→ Ǔ ⊗U paring−−−→ C

factor through W and let f̄ : W → C satisfies f̄ ◦ p = paring ◦ (id⊗T ). We

have ϕ(v) ̸= 0 since f̄(ϕ(v)(ǔ)) ̸= 0.

Now we can view V as a (g, K)-submodule of U⊗W via ϕ. By Lemma 4,

5The inclusion is given by pre-composite with the projection onto Ǔv
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V = U ⊗ U ′, where U ′ is for some subspace of W .

Now, W = (Ǔ ⊗V )g,K ∼= (Ǔ ⊗U ⊗U ′)g,K ∼= U ′ ∼= Homg,K(U,U ⊗U ′) ∼=
Homg,K(U, V ). So we conclude that V ∼= U ⊗ Homg,K(U, V ). It is clear

that Homg,K(V, V ) act on the second factor.

2.3.4 Models of oscillator representation and U(g)H-
action

We will give some remarks on (Fock) models of oscillator representation

following from Howe [How89a] and J. Adams’ notes [Ada07], which is due

to Steve Kudla. Due to these remarks, we will prove following Proposition.

Proposition 6. Let (G,G′) and (H,H ′) be a see-saw pair in Sp(W ) such

that H ≤ G and G′ ≤ H ′. Let ω be an oscillator representation of S̃p(W ),

then as subalgebras of EndC(Y ),

ω(U(g)HC) = ω(U(g)H) = ω(U(h′)G′
) = ω(U(h′)G′

C). (2.2)

Moreover, there exist a map Ξ: U(g)HC → U(h′)G′
C (independent of real

forms, may not unique and not be algebra homomorphism) such that ω(x) =

ω(Ξ(x)).

Remark:

1. The above proposition provides a tool to translate the Hecke-algebra,

U(g)H , actions from one side to the other side in see-saw pair. We will

use this proposition to study the derived functor modules of theta lifts in

Chapter 3.

2. If (H,H ′) = (G,G′), Proposition 44 will implies the well know for-

mula Z(g) = Z(g′), which will lead the correspondence of infinitesimal

characters, see [Prz96].

3. In Lee, Nishiyama and Wachi’s paper [LNW08], they also observed

(3.6) and use it to study a generalization of Capelli identity.

Let WC be a complex symplectic space with non-degenerate symplectic

form ⟨ , ⟩. Fix a non-trivial character ψ of C where view C as an abelian

complex Lie algebra. More precisely, ψ(z) = λz for some λ ∈ C×.

Define

Ω(WC) := T (WC)/I

where

T (WC) =
⊕
j∈N

WC ⊗ · · · ⊗WC︸ ︷︷ ︸
j times
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is the tensor algebra of WC and I is the two side ideal in T (WC) generated

by

{ v ⊗ w − w ⊗ v − ψ(⟨v, w⟩) } .

Ω(WC) has a natural filtration induced by the natural filtration on T (WC).

Let Ωj(WC) be the space of elements of degree less and equal to j and

Ωj(WC) be image of T j(WC). The corresponding graded algebra of Ω(WC)

will isomorphic to C[WC]. Let e = WC ⊕ L be the Heisenberg Lie algebra

of WC, where L ∼= C1 is the center of h. Let [v, w] = vw − wv be the

commutator and {v, w} = vw+wv be the anti-commutator . Now [v, w] =

⟨v, w⟩ 1 for any v, w ∈ WC. The complex symplectic group Sp(WC) has a

natural action on T (WC) and therefore induce an action on Ω(WC). Let

sp = sp(WC) be the complex Lie algebra of Sp(WC).

Lemma 7 ([Ada07, Section 2]). (i) Ω(WC) ∼= U(e)/⟨1 − ψ(1)⟩;

(ii) Ω1(WC) ∼= e;

(iii) Ω1(WC)/Ω0(WC) ∼= WC;

(iv) Ω2(WC)/Ω1(WC) ∼= S2(WC) ∼= sp(WC) via the action of Ω2(WC) on

Ω1(WC)/Ω
0(WC) ∼= WC;

More precisely, sp(WC) ∋ x = {a, b} ∈ S2(WC) act on c ∈ WC
∼=

Ω1(WC) by x(c) = [{a, b}, c]/λ;

(v) Ω2(WC) ∼= sp⋉ h is a semi-direct product of Lie algebra.

Fix a complex polarization of WC, i.e. a decomposition WC = X ⊕ Y

such that X and Y are maximal isotropic subspaces in WC. Define

Y := Ω(WC)/Ω(WC)X. (2.3)

Since Y ∼= X∗,

Y ∼= S(Y ) ∼= S[X∗] ∼= C[X].

Let Ω(WC) act on Y ∼= Ω(WC)/Ω(WC)X by left multiplication. One can

verify that, Y act on Y by multiplying linear polynomials, and X act on

Y by differentiation. So Ω(WC) act on Y as polynomial coefficients dif-

ferential operators. Moreover, Ω(WC) act irreducibly and faithfully on Y .

By this representation, Ω(WC) isomorphic to as subalgebra (Weyl algebra)

End◦ ⊂ EndC(Y ) as in [How89a]. The inclusion sp = S2(WC) ⊂ Ω2(WC)

induces map

ωC : U(sp) → Ω(WC) ∼= End◦.
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Therefore ωC is a representation of U(sp) on Y . In fact, it will realize the

Fock module of the oscillator representation (as the notation already sug-

gested). Keep in mind that the Lie algebra sp has following decomposition

into Lie subalgebras:

sp = S2(WC) = X ⊗ Y ⊗⊕S2(Y )⊕ S2(X).

In Howe’s notation [How89b], sp(1,1) := X ⊗ Y , sp(2,0) := S2(Y ) and

sp(0,2) := S2(X).

Let (GC, G
′
C) be a complex dual pair in Sp(WC). Then g and g′ are

naturally embedded in sp ⊂ Ω2(WC). Moreover, by classical invariant

theory [How89a],

ωC(U(g)) = Ω(WC)
G′
C and ωC(U(g′)) = Ω(WC)

GC . (2.4)

From now on, we will take ψ(z) = λz with λ =
√
−1. Let W be a

real symplectic subspace of WC such that (W )C = WC and the symplectic

form ⟨ , ⟩ restricted on W is non-degenerate. Fix a complex polarization

WC = X ⊕ Y . It called totally complex polarization [Ada07] if X ∩W = 0.

This is equivalent to choose a complex structure J ∈ sp(W ) on W (so

J2 = −id and J is the operator of multiplication by i). We associate a

non-degenerate Hermitian form ( , ) on W , such that ⟨v, w⟩ = Im (v, w),

i.e. (v, w) = ⟨Jv, w⟩+ i ⟨v, w⟩. Extend J to WC = (W )C linearly, X will be

the i-eigen space of J and Y will be the −i-eigen space. By the definition

of totally complex polarization, we have

X ⊕ Y = WC =W ⊕ iW,

and the projection to W gives an R-linear isomorphism X → W , one can

directly check that this map is C-linear if we view W as complex vector

space WC with structure J .

Now let u := X ⊗ Y and u0 := u ∩ sp(W ). Then u ∼= gl(WC) is the

complex Lie algebra of the general linear group of complex vector space

WC and u(WC) is the real Lie algebra of unitary group U(WC) preserving

form ( , ). In fact, u = spJ is the set of elements in sp which commute

with J . So for any x ∈ u(WC), (xv, w) + (v, xw) = ⟨Jxv, w⟩ + i ⟨xv, w⟩ +
⟨Jv, xw⟩+ i ⟨v, xw⟩ = 0.

When ( , ) is positive definite, u0 is the Lie algebra of the maximal

compact subgroup Ũ(WC) in S̃p(W ) and Y will be the Fock model of

the oscillator representation of S̃p(W ) attached to the unitary character
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R ∋ x 7→ eλx. Moreover, Y ⊗ X ∩ sp(W ) ∼= u(WC) is the Lie algebre of

corresponding maximal compact subgroup.

Following lemma is a rephrase of the equation (2.4) in [How89b] and

one can check it case by case according to the classification of irreducible

reductive dual pairs. We omit the proof, but give some examples in the

end of this section.

Lemma 8. Fix a complex dual pair (GC, G
′
C) in Sp(WC). For every real

form (G,G′), there is a real formW ofWC such that ( , ) is positive definite

on WC and

g0 = sp(W ) ∩ g, g′0 = sp(W ) ∩ g′,

where g, g′, g0, g
′
0 and sp(W ) are view as Lie subalgebras of sp(WC).

Proof of Proposition 6. By classical invariant theorem (2.4),

ωC(U(g)) = Ω(WC)
G′
C .

Note that all groups act on U(sp) and Ω(WC) reductively. So

ωC(U(g)HC) = ωC(U(g))HC = (Ω(WC)
G′
C)HC = (Ω(WC)

HC)G
′
C = ωC(U(m′)G

′
C).

For every real form (G,G′) of (GC, G
′
C), it is clear that

U(g)H = U(g)HC

by the classification of irreducible reductive dual pairs. Since oscillator

representation ω of sp(W ) on the Fock space Y (c.f. (2.3)) factor through

ωC (see following diagram), the choice of Ξ(x) could be made independent

of real forms via ωC.

g⊕ g′ �
�

// sp(WC)
ωC //

ω

&&MM
MMM

MMM
MM

Ω(WC)

left multiplication

��

g0 ⊕ g′0
?�

OO

� � // sp(W )
?�

OO

ω // EndC(Y )

In the rest of this section, we give an explicit construction of W for

different real form of pair (O(m,C), Sp(2n,C)) appeared in Section 3.5.

Let U ∼= Cm be a complex symmetric space with orthonormal basis

{ ai } and V ∼= Cn ⊕ (Cn)∗ be a complex symplectic space with symplectic

basis { bi, ci } where bi span a maximal isotropic subspace and ci are the
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corresponding dual vectors. Let WC = U ⊗ V . g = so(U) and g′ = sp(V )

be the subalgebra of sp(WC).

The map ι : g → sp is given by

g =
∧2(U) → sp = S2(U ⊗ V )

[u1, u2] 7→
n∑

j=1

{u1 ⊗ bj, u2 ⊗ cj}.

The map ι′ : g′ → sp is given by

g′ = S2(V ) → sp = S2(U ⊗ V )

{v1, v2} 7→
m∑
j=1

{ai ⊗ v1, ai ⊗ v2}.

For p, q, r, s ∈ N such that p + q = dimU = m and 2(r + s) = dimV ,

let

uj =

aj j ≤ p

iaj j > p
, ej =

1√
2

bj − icj j ≤ r

ibj + cj j > r
, fj =

1√
2

−ibj + cj j ≤ r

bj + icj j > r
,

U0 =spanR { ui } , V0 =spanR { ej, fj }

and W = U0 ⊗ V0 = spanR { ui ⊗ ej, ui ⊗ fj }.

By definition, { ui ⊗ ej, ui ⊗ fj } form a symplectic basis of W . Define

a complex structure J on W by

J(ui ⊗ ej) = −ui ⊗ fj and J(uj ⊗ fj) = ui ⊗ ej.

Then the i-eigenspace is X = span { ai ⊗ bj } and −i-eigenspace space is

Y = span { ai ⊗ cj }. Denote u = X ⊗ Y ⊂ sp(WC). Then

g ∩ sp(W ) =so(p, q), g′ ∩ sp(W ) =sp(2n),

u ∩ g ∩ sp(W ) =so(p)⊕ so(q), u ∩ g′ ∩ sp(W ) =u(r, s).

On the other hand, define another complex structure Jc on W by

Jc(ui ⊗ ej) =

−ui ⊗ fj j ≤ r

ui ⊗ ej j > r
, Jc(ui ⊗ fj) =

ui ⊗ ej j ≤ r

ui ⊗ fj j > r
.
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Then

Xc =span { ai ⊗ bj | j ≤ r } ∪ { ai ⊗ cj | j > r } and

Yc =span { ai ⊗ cj | j ≤ r } ∪ { ai ⊗ bj | j > r } .

The corresponding form ( , )c on W
C is positive definite and uc = Xc ⊗ Yc

is the complexification of the Lie algebra of a maximal compact subgroup

of Sp(W ).

In Chapter 3, we will study two real forms in a complex group simul-

taneously. We will choose two real forms W1 and W2 of WC. Then define

gj = g ∩ sp(Wj) and g′j = g ∩ sp(Wj) for j = 1, 2. We also will choose uj

such that gj ∩ uj is a maximal compact Lie subalgebra of gj.

In Section 3.5.1, we will let:

• W1 is defined by p = m, q = 0, r = r, s = s. Let u1 = uc.

• W2 is defined by p = p, q = q, r = n, s = 0. Let u2 = u.

In Section 3.5.2 we will let:

• W1 is defined by p = p, q = q, r = n, s = 0. Let u1 = u = uc.

• W2 is defined by p = p+ r, q = q − r, r = n, s = 0. Let u2 = u = uc.

2.3.5 Compact dual pairs

Now we will summarize some well known facts about compact dual pairs

and their relationship with classical invariant theory. All these results could

be found in Howe’s work [How89a] [How95] and is fundamental for local

theta correspondence over R.

A real reductive dual pair (G,G′) is called a compact dual pair , if one of

G is compact. We list all irreducible compact dual pairs over R in Table 2.3.

Here n2 or n1 could be 0, which is the only case that both G and G′ are

compact.

G G′ = K ′ KC G′
C = K ′

C

Case R Sp(2n,R) O(m) GL(n,C) O(m,C)
Case C U(n1, n2) U(m) GL(n1,C)×GL(n2,C) GL(m,C)
Case H O∗(2n) Sp(m) GL(n,C) Sp(m,C)

Table 2.3: Compact dual pairs



2.3. LOCAL THETA CORRESPONDENCE 17

2.3.5.1 Parametrization of irreducible modules

We adopt the usual convention to parametrize irreducible representations

of the compact classical groups (c.f. [How95] or [GW09]).

Write τµG for the element in Ĝ corresponding to parameter µ where G

could be a compact group in Table 2.3, its double covering or its complex-

ification6.

Û(m) is parametrized by arrays of integers

(a1, · · · , am),

where ai are non-increasing strings of integers (may be negative). Fixing a

standard root system of U(m), for such array µ, τµU(m) denote the irreducible

U(m)-module with highest weight µ.

Since O(m) and Sp(2m) are subgroups of U(m) and U(2m) their irre-

ducible representations can be constructed by restriction.

Ô(m) is parametrized by non-increasing arrays of integers

(a1, · · · , ak, ϵ, · · · ϵ︸ ︷︷ ︸
m−2k

, 0, · · · , 0︸ ︷︷ ︸
k

)

where 2k ≤ m and ak > 0 (resp. ak ≥ 2) if ϵ = 0 (resp. = 1). τµO(m) denote

the irreducible O(m)-module generated by the highest weight vector in

τµU(m).

Ŝp(m) is parametrized by non-increasing arrays of non-negative integer

(a1, · · · , am)

which corresponding to the highest weight under standard basis. τµSp(m) de-

note the irreducible Sp(m)-module generated by the highest weight vector

in τ
(a1,··· ,am,0,···0)
U(2m) .

Note that the double covering G̃ is depends on dual pairs. The maximal

compact subgroup Ũ(N) in the metaplectic group S̃p(2N,R) and the double

6In this case, it means an irreducible holomorphic representation
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cover G̃ of a compact subgroup G in U(N) are given by following pullback.

0 // Z/2Z // G̃

��

π //

��

G

��

// 0

0 // Z/2Z // Ũ(N) //

��

U(N)

det
��

// 0

0 // Z/2Z // C× s // C× // 0

,

where s : C× → C× is the square map z 7→ z2 and Z/2Z is the center of

S̃p(N, 2R). Note that G̃ ⊂ C× × G, we always choose the projection onto

C× to be the fixed genuine character of G̃ later.

For dual pair (U(n),U(m)) in Sp(2nm,R), Ũ(m) is isomorphic to fol-

lowing pullback

Ũ(m) //

��

U(m)

detn

��

C× s // C×

;

and so, Ũ(m) ∼= Z/2Z×U(m) if n is even; Ũ(m) is a connected double cover

if n is odd. Moreover Ũ(m) are isomorphism for n with same parity. In all

cases, to describe the genuine representation of Ũ(m) it is enough describe

the action of u(m). So, we aslo parametrize irreducible representations

of Ũ(m) by heights weights: it is array of non-increasing integers (resp.

half-integer) with length m, if n is even (resp. odd).

Genuine irreducible representations of Õ(m)(resp. S̃p(m)) are also con-

structed by restricting to irreducible modules generated by highest weight

vectors of irreducible Ũ(m)-modules (resp. Ũ(2m)-module). But, as con-

vention, define a map Ô(m) → ̂̃
O(m) by τµO(m) 7→ (τµO(m) ◦ π) ⊗ ς and

identify genuine Õ(m)-module with O(m)-module, where ς is a fixed char-

acter and π : Õ(m) → O(m) is the natural projection. Similarly identify

S̃p(m)-module with Sp(m)-module.

We identify locally finite representations of compact groups with ra-

tional representations of their complexifications. Furthermore, we will

use same notation to indicate the representations of Lie algebras of these

groups. An array of integers will also identify with Young digram such that

the n-th entry is the length of n-th row in the diagram.

In general, for any subgroup G in Sp, we will identify genuine represen-

tation of G̃ with G-module by twisting with certain genuine character of G̃
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(if it exists7).

2.3.5.2 Explicit decomposition for compact dual pairs

Now we can state the well known theorem says that Y decompose into

direct sums under compact dual pair actions.

Theorem 9 ([KV78] [How89a]). Let (G,G′) be a compact dual pair with

G′ compact. Let K be the maximal compact subgroup of G. Then

Y =
⊕

τµ
G̃′∈R(G̃′;Y )

LG̃(µ)⊗ τµ
G̃′

where τµ
G̃′ run over the set of irreducible G̃′-modules occur in R(G̃′;Y ) and

LG̃(µ) is the irreducible unitary lowest weight (g, K̃)-module corresponding

to parameter µ.

The explicit descriptions are as following.

(i) For dual pair (U(r, s),U(m)) in Sp(2(r + s)m,R),

Y =
⊕
µ

LŨ(r,s)(µ)⊗ τ
µ+ r−s

2
1m

Ũ(m)
.

Here µ run over the set of arrays (a1, · · · , ak, 0, · · · , 0,−bl, · · · ,−b1)
such that k ≤ r, l ≤ s and aj, bj are non-increasing string of positive

integers and zeros between ak and −bl are added if necessary to make µ

of length m. LŨ(r,s)(µ) is the irreducible unitary lowest weight (gl(r+

s,C), Ũ(r)× Ũ(s))-module with lowest Ũ(r)× Ũ(s)-type

τ
(a1,··· ,ak,0,··· ,0)+m

2

Ũ(r)
⊗
(
τ
(b1,··· ,bl,0,··· ,0)+m

2

Ũ(s)

)∗
.

(ii) For dual pair (Sp(2n,R),O(m)) in Sp(2nm,R),

Y =
⊕
µ

LS̃p(2n,R)(µ)⊗ τµO(m).

Here µ run over the set of all arrays with length less than min(n,m)

such that τµO(m) make sense. LS̃p(2n,R)(µ) is the irreducible lowest

weight (sp(2n,C), Ũ(m))-module with lowest Ũ(m)-type τ
µ+m

2
1n

Ũ(n)
. More-

over, the above description fix the choice of the genuine character of

Õ(m) implicitly.

7In fact, except for Sp(2n,R) in dual pair (Sp(2n,R),O(p, q)) such that p+ q is odd,
genuine character(s) always exist
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(iii) For dual pair (O∗(2n), Sp(m)) in Sp(4nm,R),

Y =
⊕
µ

LÕ∗(2n)(µ)⊗ τµSp(m).

Here µ run over the set of all decreasing non-negative integers with

length less than min { n,m }. LÕ∗(2n) is the irreducible lowest weight

module of (so(2n,C), Ũ(n)) with lowest Ũ(n)-type τµ+m1n

Ũ(n)
. Since S̃p(m)

isomorphic to Sp(m) direct product with the center, there is a unique

genuine character of S̃p(m) and above description will not cause am-

biguity.

2.3.6 Theta lifts of characters

We are interested in the theta lifts of one dimensional representations.

Although they are simple, the study of these representations can lead deep

results. In this section, let ρ be a genuine character of G̃, we will give some

properties of its (full) theta lift.

We still adopt Howe’s notation [How89b] and let M ′ be the subgroup

in Sp such that (K,M ′) is a compact dual pair and M ′ is Hermitian sym-

metric.

Lemma 10. The maximal Howe quotient Θ(ρ) is K̃-multiplicity free for

any character ρ ∈ R(g′, K̃ ′;Y ). Moreover, Θ(ρ′) is isomorphic to the

Harish-Chandra module (space of K̃ ′-finite vectors) of Θ∞(ρ′).

Proof. For any K̃-type τ occur in Θ(ρ), L(τ ′) := Θ(τ) is a lowest weight

(m′, M̃
′(1,1))-module with lowest M̃

′(1,1)-type τ ′ determined by τ . Let q′ =

m′(1,1) ⊕m′(0,2). Then L(τ ′) is a quotient of the generalized Verma module

V (τ ′) = U(m′) ⊗q′ τ
′. On the other hand m′ = m′(2,0) + q′ = g′ + q′ and

k′ = g′ ∩ q′. Therefore V (τ ′) ∼= U(g′)⊗U(k′) τ
′ as (g′, K̃ ′)-module. Now, by

a see-saw pair argument,

dimHomK̃(Θ(ρ), τ) =dimHomg′,K̃′(L(τ
′), ρ)

≤ dimHomg′,K̃′(V (τ ′), ρ) = dimHomg′,K̃′(U(g′)⊗U(k′) τ
′, ρ)

=dimHomK̃′(τ
′, ρ)

(2.5)

By the structure of dual pairs, m′(1,1) always is a product of unitary Lie

algebra and one can view (m′(1,1), K̃ ′) as a Harish-Chandra pair with K̃ ′

maximal compact. Therefore the lemma follows since dimHomK̃′(τ ′, ρ) ≤
dim ρ = 1
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The second claim hold by apply following automatic continuity theorem

to the pair M ′ and G′.

This theorem is due to van den Ban-Delorme and Brylinski-Delorme[BD92]

and I learned it from Sun [Sun11].

Theorem 11. Let G be a real reductive group and θ be a Cartan involu-

tion respect to maximal compact subgroup K. Let σ be a involution on G

commute with θ. Let H be an open subgroup of the σ-fixed point group Gσ.

Now KH = H∩K is a maximal compact subgroup of H. Let E be a finitely

generated admissible (g, K)-module and ρ : H → C× be a character of H.

Then the restriction induces a linear isomorphism

HomH(E
∞, ρ) ∼= Homh,KH

(E, ρ)

where E∞ denote the Casselman-Wallach globalization of E.

The next lemma is essentially from Huang and Zhu [ZH97].

Lemma 12. Let (G,G′) be a type-I dual pair in the stable range such that

G′ is the smaller group (except for (G,G′) = (O(2n, 2n), Sp(2n,R)). Then

for every genuine unitary character ρ of G̃′, Θ(ρ) = θ(ρ) is irreducible and

unitarizable.

Proof. Clearly, we only need to prove Θ(ρ) = θ(ρ) since the irreducibility

and unitarity of θ(ρ) is know by[Li89] (the ideas could be at least trace back

to the late 1970s [How79a] [How80]). We will prove that a K̃-type τ occur

in θ(ρ) if and only if HomK̃′(τ ′, ρ) ̸= 0, and then, Θ(ρ) is the (g, K̃)-module

of θ∞(ρ) by (2.5) and its multiplicity freeness. The “only if” part is from

the proof of Lemma 10. The proof of “if” part is from [Li90] and [NZ04].

Since ρ : G̃′ → C× is an unitary character, Li’s construction of θ(ρ) in

stable range defines a G̃ invariant form on Y ∞ as following:

(Φ1,Φ2)ρ =

∫
G̃′
(Φ1, ρ(g)ω(g)Φ2) dg ∀Φ1,Φ2 ∈ Y ∞

where ( , ) denote the Hermitian inner product on Y ∞. The above inte-

gration is well defined by the stable range condition (Corollary 3.3 [Li89]).

Let Rρ be the radical of form ( , )ρ. Then θ∞(ρ) ∼= Y ∞/Rρis non-zero

and irreducible. Moreover, θ∞(ρ) is unitary under the form ( , )ρ.

Let Pτ ′ be the projection to lowest K̃ ′-type τ ′ in L(τ ′). View L(τ ′) as a

M̃ ′-submodule of Y ∞ by embedding into τ ⊗ L(τ ′) ⊂ Y ∞ via tensor with
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a fixed vector in τ . Let { vj } be a orthonormal basis of τ ′ ⊂ L(τ ′). Let

ψ(g) = Tr(Pτ ′π(g)Pτ ′) =
dim τ ′∑
j=1

(ω(g)vj, vj) ∀g ∈ G̃′.

We will show that the integration

∫
G̃′
ψ(g)ρ(g)dg =

dim τ ′∑
j=1

∫
G̃′
(ω(g)ρ(g)vj, vj)dg

=
dim τ ′∑
j=1

∫
G̃′
(vj, ω(g)ρ(g)vj)dg =

dim τ ′∑
j=1

(vj, vj)ρ.

(2.6)

is non-zero. Therefore there is some vj ̸∈ Rρ and the image of vj in Y ∞/Rρ

will generate a non-zero subspace with K̃-type τ . This will finish the proof.

Now we are going to prove (2.6) is non-zero. Fix an Iwasawa decompo-

sition

M̃ ′ = M̃
′(1,1)AN,

where M̃
′(1,1) is a maximal compact subgroup of M̃ , A is split torus and N

is a unipotent group. We may assume A′ = A ∩ G̃′ is a split torus of G̃′.

Then by Lemma 3.3 [Li90],

ψ(k1ak2) =

∫
M̃

′(1,1)

(
τ ′(m−1k2k1m)ξ, ξ

)
ϕ(a,m)dm ∀k1, k2 ∈ M̃

′(1,1), a ∈ A

where ϕ(a,m) is a positive (analytic) function on A × M̃
′(1,1) and ξ is a

unit lowest weight vector of τ ′.

Let G̃′ = K̃ ′A′N ′ be an Iwasawa decomposition of G̃′. Then G̃′ =

K̃ ′A+K̃ ′ where A+ is a subset of A′ ⊂ A. Now the Haar measure on G̃′

can be written as dx = δ(a)dk1 da dk2 with the Jacobian δ a nonnegative

function on A+. Since ρ is a unitary character, ρ(a) = 1 for any a ∈ A′

and so,∫
G̃′
ψ(x)ρ(x) dx

=

∫
A+

∫
K̃′×K̃′

ψ(k1ak2)ρ(k1ak2)δ(a) dk1 dk2 da

=

∫
A+

∫
K̃′×K̃′

∫
M̃ ′(1,1)

(τ ′(m−1k2k1m)ξ, ξ)ϕ(a,m)ρ(k1k2)δ(a) dk1 dk2 da

=

∫
A+

∫
M̃ ′(1,1)

(∫
K̃

(τ ′(m−1km)ξ, ξ)ρ(k)dk

)
ϕ(a,m)δ(a) dmda

(2.7)
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Let Pρ be the projection map to ρ isotypic component in τ ′. Then∫
K̃

(τ ′(m−1km)ξ, ξ)ρ(k) dk = ∥Pρτ
′(m)ξ∥2

is nonnegative and not identically zero on M̃
′(1,1) since τ ′ is irreducible and

ρ occur in τ ′. Hence the integration (2.6) is nonzero, since the integrand is

smooth nonnegative and not identically zero.

2.3.7 Moment maps

In this section, we will define moments maps for dual pairs. We first define

moment maps for compact dual pairs, and then define the moment map

of non-compact dual pair by moment maps of compact dual pairs via di-

amond dual pair. In the end of this section, we will review the notion of

theta lifting of nilpotent orbits and study some geometric properties of the

corresponding double fibration.

2.3.7.1 Moment map for compact dual pairs and classical invari-

ant theory

As discussed in Section 2.3.4, the space of Ũ finite vectors of the oscillator

representation Y could be view as the ring of polynomials on a 1
2
(dimRW )-

dimensional complex vector space WC corresponding to a fixing totally

complex polarization of the real symplectic space W . Then double covers

of compact groups K in reductive dual pairs act on Y linearly up to a

twisting of genuine character. Here, we let the complexification KC of K

act on Y = C[WC] linearly.

Now consider a compact dual pair (G,G′) with G′ compact. In this

case, K ′ = G′ and G are all Hermitian symmetric. This means, there is a

K-invariant decomposition

g = k⊕ p+ ⊕ p−

with p = p+ ⊕ p−. Now p− act on Y by K ′
C-invariant degree 2 differ-

ential operators and p+ act on Y by multiplying K ′
C-invariant degree 2

polynomials. Let

H =
{
f ∈ C[WC]

∣∣ X · f = 0,∀X ∈ p−
}
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be the space of harmonics of K ′, which is all polynomials killed by p− and

I = (C[WC])K
′
C

be the space of K ′
C-invariant polynomials.

The moment maps ϕ : WC → (p+)∗ is a KC ×K ′
C-equivalent map. The

inverse image N := ϕ−1(0) of 0 ∈ (p+)∗ is called the null cone. By iden-

tifying WC and (p+)∗ with certain vector spaces of matrix, we summarize

the data in Table 2.4.

Case WC (p+)∗ ϕ action on WC Stable

R Mn,m Symn A 7→ AAT kAk′−1 m ≥ 2n

C Mn1+n2,m Mn1,n2

(
A
B

)
7→ ABT

(
k1Ak

′−1

k2Bk
′T

)
m ≥ n1 + n2

H Mn,2m Altn A 7→ AJAT kAk′−1 m ≥ n

Table 2.4: Moment maps for compact dual pairs
Here A ∈ WC, k ∈ KC and k′ ∈ K ′

C for Case R and H;
(A,B) ∈ Mn1,m×Mn2,m = Mn1+n2,m, (k1, k2) ∈ GL(n1,C)×
GL(n2,C), k′ ∈ GL(m,C) for Case C;
Symn denote the space of n × n-symmetric matrix and Altn
denote the space of n× n-anti-symmetric matrix.

Lemma 13 ([How89a][How95]). The moment map is induced by the mor-

phism of C-algebra

ϕ∗ : S(p+) → C[WC]K
′
C .

We have the following statements.

(a) ϕ∗ is an isomorphism from p+ to the K ′
C-invariant degree 2 polynomials

in C[WC]. Later we will identify p+ as its image in C[WC].

(b) First Fundamental Theorem of classical invariant theory: ϕ∗ is surjec-

tive. Hence ϕ : W → WC/K ′
C ↪→ (p+)∗ factor through the categori-

cal quotient (affine-quotient) WC/K ′
C, which is a closed sub-variety of

(p+)∗.

(c) Let C[N ] be the ring of regular functions on the null-cone N and

i∗N : C[WC] → C[N ] be the restriction map. By Kostant [Kos63],

C[WC] = H⊕ p+C[WC].

Therefore, i∗N |H is surjective.

(d) The C-linear map H ⊗ I → C[WC] given by multiplication is always

surjective.
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(e) Under “Stable” condition listed in Table 2.4, the quotient map has fol-

lowing properties:

(i) S(p+) ∼= I and ϕ is a surjection onto (p+)∗.

(ii) The map H⊗I → C[WC] is an isomorphism. Therefore, ϕ : WC →
(p+)∗ is a flat morphism.

(iii) i∗N : H → C[N ] is an isomorphism of KC ×K ′
C-module.

(iv) KC has an open dense orbit N in N consists of all full rank

matrices.

2.3.7.2 Moment map for general dual pairs

The moment map for general dual pairs could be define via compact dual

pairs.

We adapt the notation in [How89b]. Recall the diamond dual pairs in

Figure 2.1. The pairs of groups similarly placed in the two diamonds are

reductive dual pairs.

M (1,1)

⊆⊆

M ′(1,1)

⊇ ⊇

K

⊆
M

⊆

M ′

⊇
K ′

⊇
G G′

Figure 2.1: Diamond dual pairs

Note that (M,K ′) is a compact dual pair, denote the “p+”(resp. p−)

part of m to be m(2,0) (resp. m(0,2)), therefore we have a moment map

ϕ : WC → m(2,0). Fact 3 in Howe’s paper[How89b] states that in sp, we

have

m(2,0) ⊕m(0,2) = p⊕m(0,2). (2.8)

The projection of p into m(2,0) under the decomposition of the left hand

side of (4.6) is a K-equivariant isomorphism. We will identify p with m(2,0)

via this projection. Therefore, we get the moment map for G:

ϕ : WC → (m(2,0))∗ ∼= p∗.

We define the moment map ϕ′ : WC → p′∗ for G′ similarly via pair (K,M ′).

By identifying WC, p∗ and p′∗ with space of matrices, we list the explicit
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formula in Table 2.5 for some non-compact dual pairs8.

G G′ WC p∗ p′∗

w ∈ W ϕ(w) ϕ′(w)

Sp(2n,R) O(p, q)
Mp,n ×Mq,n Symn × Symn Mp,q

(A,B) (ATA,BTB) ABT

U(n1, n2) U(p, q)
Mp,n1 ×Mp,n2 ×Mq,n1 ×Mq,n2 Mn1,n2 ×Mn2,n1 Mp,q ×Mq,p

(A,B,C,D) (ATB,DTC) (ACT , DBT )

O∗(2n) Sp(p, q)
M2p,n ×M2q,n Altn ×Altn M2p,2q

(A,B) (ATJ2pA,BTJ2qB) ABT

Table 2.5: Moment maps for non-compact dual pairs

2.3.7.3 Theta lifting of nilpotent orbits

In this section, we will discuses the notion of theta lifting of nilpotent orbits,

this notion is studied by many authors and usually appeared as “resolution

of singularity”, some related papers includes [NOZ06] [DKP05][Oht91]. We

retain the notation in Section 2.3.7.2. To simplify the notation, we will

identify g with its dual g∗ by trace form, and so, identify p∗ with p in this

section.

First recall the definition of “nilpotent”. Let a reductive algebraic group

G act linearly on a vector space V , then a element in V is called a nilpotent

element if the closure of its G-orbit contains zero and the orbit is called an

nilpotent orbit . The union of all nilpotent orbit is called null-cone, denote

by NV . Also let NG(V ) be the set of nilpotent orbits in V with respect to

the G action.

Since the reductive group KC (resp. K ′
C) act on p (resp. p′) linearly,

we have null-cone Np (resp. Np′) and set of nilpotent orbites NKC
(p) (resp.

NK′
C
(p′)). For a non-compact dual pair (G,G′), moment maps ϕ, ϕ′ gives

following double fibration:

WC

ϕ

~~~~
~~
~~
~~
~

ϕ′

  
BB

BB
BB

BB
B

p p′

For every nilpotent K ′
C-orbit O′ in p′, ϕ(ϕ′−1(O′)) is a (non-empty

Zariski) closed KC-invariant subset of p.9 When ϕ(ϕ′−1(O′)) is the clo-

8In Table 2.5 J2p =

(
0 Ip

−Ip 0

)
9Obviously, 0 is in the set, i.e. it is non-empty. The claim of Zariski closeness is from

the fact that ϕ is factor through the affine quotient of K ′
C and the image of the affine

quotient is an closed subset of p by classical invariant theory
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sure of a single KC-orbit O, it is nature to define O to be the theta lifts

of O′. While, in general, ϕ(ϕ′−1(O′)) may have several (finite many) open

orbits, then it is not clear how to define the notion of theta lift for such

nilpotent orbit properly. Fortunately, for a K ′
C-orbit O′, ϕ(ϕ′−1(O′)) is al-

ways the closure of a single KC-orbit when (G,G′) is a non-compact real

reductive dual pair in stable range with G′ the smaller member.

We recode above discussion in the following definition.

Definition 14 (c.f. [Oht91] [DKP05][NOZ06]). For any nilpotentK ′
C-orbit

O′ in p′, a nilpotent KC-orbit O is called the theta lift of nilpotent orbit O′

if ϕ(ϕ′−1(O′)) equal to the closure of O.

When (G,G′) is a non-compact real reductive dual pair in stable range

with G′ the smaller member, we have an injective map

θ : NK′
C
(p′) → NKC

(p)

defined by O′ 7→ O.

Moreover, we extend θ linearly to the spaces of cycles (formal sums) of

nilpotent orbits, also denote it by θ.

Remark: One can define the notion of theta lifting for nilpotent G′-

orbit in g′0
∗ to nilpotent G-orbit in g∗0 in a similarly way. Daszkiewicz,

Kraśkiewicz and Przebinda [DKP05], showed that the two notion of theta

lifts of nilpotent orbits are compatible under Kostant-Sekiguchi correspon-

dence in stable range. Furthermore, they gives examples to show that the

relationship could be tricky outside the stable range.

In the rest of this section, we will study the structure of isotropic groups

(stabilizers) for Type I dual pairs in stable range. One may obtain the re-

sults from the classification of unipotent orbits and the explicit construction

of theta lifts of orbits[Oht91]. But, we will prove these results from prop-

erties of null-cone and classical invariant theory. I learnt this conceptually

simpler method from [Nis07].

Firstly, we review the constructions of moment map in [DKP05]. For a

Z/4Z-graded

U = U0 ⊕ U1 ⊕ U2 ⊕ U3, (2.9)

let

End(U)a = {X ∈ End(U) | X(Ub) ⊂ Ua+b ∀ b } .

If ⟨ , ⟩ is a sesqui-linear form on U . Define S ∈ End(V )0 by Sv = (−1)av
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for all v ∈ Ua. Define

g(U)a = {X ∈ End(U)a | ⟨Xu, v⟩+ ⟨Sau,Xv⟩ = 0, ∀u, v ∈ U } ,

G(U)0 = { g ∈ End(U)0 ∩GL(U) | ⟨gu, gv⟩ = ⟨u, v⟩ , ∀u, v ∈ U } .

For dual pairs in Table 2.5, define U to be a Z/4Z graded space as

in Table 2.6. Associate an form ⟨, ⟩ on U . For Case C, the form ⟨ , ⟩ is

zero. For Case R (resp. H), ⟨ , ⟩ is non-degenerate and symmetric (resp.

skew-symmetric) on U0, U2; ⟨ , ⟩ is non-degenerate skew-symmetric (resp.

symmetric) on U1 ⊕ U3 and U1, U3 are isotropic subspace.

U0 U1 U2 U3

Case R Cp Cn Cq Cn

Case C Cp Cn1 Cq Cn2

Case H C2p Cn C2q Cn

Table 2.6: Z/4Z graded vector space for Type I dual pairs.

Let Ueven = U0 ⊕ U2 and Uodd = U1 ⊕ U3. Then

WC ∼=g(U)1, p⊕ p′ ∼=g(U)2 ∼= g(Ueven)2 ⊕ g(Uodd)2, KC ×K ′
C
∼=G(U)0.

Moreover, under above identification, x 7→ x2 gives themoment map (where

△ : WC → WC ×WC is the diagonal map)

ϕ× ϕ′ ◦ △ : WC ∼= g(U)1 → g(U)2 ∼= p⊕ p′.

For a type I dual pairs (G,G′) we say it is in stable range with G′ the

smaller member if it satisfies conditions in Table 2.7. The conditions is

equivalent to say the reductive dual pair (K,M ′) in the diamond dual

pairs(Figure 2.1), form an Stable compact dual pair(see Table 2.4).

G G′ Stable range V V ′

Case R O(p, q) Sp(2n,R) p, q ≥ 2n Ueven Uodd

Sp(2n,R) O(p, q) n ≥ p+ q Uodd Ueven

Case C U(p, q) U(n1, n2) p, q ≥ n1 + n2 Ueven Uodd

Case H Sp(p, q) O∗(2n) p, q ≥ n Ueven Uodd

O∗(2n) Sp(p, q) n ≥ 2(p+ q) Uodd Ueven

Table 2.7: Stable range for Type I dual pairs

Therefore, we have following facts.

Lemma 15. For real reductive dual pairs (G,G′) and V, V ′ in Table 2.7.

(i) The map ϕ′ : WC → p′ is a flat morphism.



2.3. LOCAL THETA CORRESPONDENCE 29

(ii) The null-cone ϕ′−1(0) has an dense KC-orbit N .

(iii) For a element X ∈ N , X has full rank as element

HomC(V, V
′)⊕HomC(V

′, V ). This means X|V (equivalently, X|′V ) is
surjection (injection) for case R and H; X|V is surjection and X|V ′

injection for C.

Lemma 16. Let O′ ⊂ p′ be an K ′
C nilpotent orbit in p′. Then O′ admit

theta lift.

Moreover, let x′ ∈ O′ ∈ p′.

(i) ϕ′−1(x′) has an open dense KC-orbit X ;

(ii) let X ∈ X , X|V ∈ HomC(V, V
′) is a surjection;

(iii) let x = ϕ(X), then x generate nilpotent KC-orbit O in p such that

O = ϕ(ϕ′−1(O′)).

Proof. All the claims could be checked by the explicit description of nilpo-

tent orbits and moment map (c.f. [DKP05, Table 4]). Part (i) and (iii) also

a could be proved by deformation method (see [Nis07, Theorem 2.4], except

for p or q = 2n in case R). For part (ii), since having full rank is an open

condition, i.e. there is an open subset B, such that B ∩ N ̸= ∅ and X has

full rank for any X ∈ B. On the other hand, note that ϕ′ is a flat morphism

(so is open map); and D := K ′
CX is dense in ϕ′−1(O). So D = ϕ′−1(O′).

Since O′ is nilpotent, N ⊂ ϕ′−1(0) ⊂ D. Therefore B ∩ D ̸= ∅. Since D
is an orbit, all points X in D satisfies X has full rank. This finished the

proof.

Now fix X ∈ X , and let x′ = ϕ′(X) ∈ O′ and x = ϕ(X) as in Lemma 16.

Let

Kx =StabKC
(x) K ′

x′ =StabK′
C
(x′) SX =StabKC×K′

C
(X).

We define a group homomorphism

α : Kx → K ′
x′ such that α(k)Xv = Xkv, ∀v ∈ V, k ∈ Kx. (2.10)

Let k′ = α(k), it is routine to check k′ is well defined. First notice that

k′ as an linear map on V ′ is unique if it exist, since X|V is surjective. For

Case R and H, we have non-degenerate form on V and V ′.

(a) k′ is well defined, i.e. for any v ∈ KerX, Xkv = 0: We only need

to show ⟨Xkv,Xv2⟩ = 0. Since k stabilize x = XX|V , ⟨Xkv,Xv2⟩ =
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(−1)s ⟨XXkv, v2⟩ = (−1)s ⟨kXXv, v2⟩ = 0 where s ∈ Z/2Z depend on

the parity of V .

(b) To show k′ ∈ G(V )0, we only need to show ⟨k′Xv1, k′Xv2⟩ = ⟨Xv1, Xv2⟩.
In fact, ⟨k′Xv1, k′Xv2⟩ = (−1)s ⟨XXkv1, kv2⟩ = (−1)s ⟨kXXv1, kv2⟩ =
⟨XXv1, v2⟩ = ⟨Xv1, Xv2⟩.

(c) k′ ∈ K ′
x′ . We only need to show, for all v′1 = Xv1, v

′
2 ∈ V ′, we have

⟨k′X2v′1, v
′
2⟩ = ⟨X2k′v′1, v

′
2⟩. In fact, ⟨k′X2v′1, v

′
2⟩ = ⟨XkXv′1, v′2⟩ =

⟨XkX2v1, v
′
2⟩ = ⟨X3kv1, v

′
2⟩ = ⟨X2k′Xv1, v

′
2⟩ = ⟨X2k′v′1, v

′
2⟩.

For Case C,

(a) k′ is well defined. For any v ∈ V such that Xv = 0, X|V ′(Xkv) =

kX2v = 0. So Xkv = 0, since X|V ′ is injective.

(b) k′ is in K ′
C, since it is invertible by the definition.

(c) k′ ∈ Kx′ . In fact, for any v′ = Xv ∈ V ′, k′X2v′ = XkX2v = X3kv =

X2k′Xv = X2k′v′.

Let Kx ×α K
′
x′ = { (k, k′) | α(k) = k′ } ⊂ Kx × K ′

x′ be following pull

back.

Kx ×α K
′
x′

��

// Kx

α

��

K ′
x′ K ′

x′

Lemma 17. We have following equation describe the structure of SX , with

α defined in (2.10):

SX = Kx ×α K
′
x′ ⊂ Kx ×K ′

x′ .

Proof. Let (k, k′) ∈ SX , i.e k
′Xk−1 = X. By the definition of α, k′Xk =

k′α(k−1)X and X is surjective. Hence k′ = α(k), i.e. SW ⊂ Kx ×αK
′
x. On

the other hand, Kx ×α K
′
x′ ⊂ SW is also clear by the definition of α. This

finished the proof.

2.4 Basic facts about derived functors

In this section, we review basic facts about the derived functors on the cate-

gory of (g, K)-modules. We follow Vogan[Vog81] and Borel-Wallach[BW00].
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2.4.1 Zuckerman functor

For V ∈ C (g, K), let K0 be the identity component of K. Define

Cq(g, k;V ) :=Homk(
∧q

(g/k), V ),

Cq(g, K;V ) :=HomK(
∧q

(g/k), V ) = Cq(g, k;V )K/K0

.

The relative Lie algebra cohomology Hq(g, k;V )(resp. Hq(g, K;V )) is the

cohomology of above chain complex Cq(g, k;V ) (resp. Cq(p, K;V )) with

the chain map induced from the Koszul complex of g. Clearly

Hq(g, K;V ) = Hq(g, k;V )K/K0

(2.11)

since taking K/K0 invariant is a exact functor.

Let M be a subgroup of K. Zuckerman functor Γg,K
g,M : C (g,M) →

C (g, K) is the right adjoint functor of the forgetful functor F g,M
g,K : C (g, K) →

C (g,M). This functor is only left exact and usually will be zero on mod-

ules in C (g,M). Therefore, we consider the right derived functors of Γ and

they can construct interesting objects in C (g, K). Let RqΓg,K
g,M be the q-th

right derived functor of Γg,K
g,M . They can be realized by relative Lie algebra

cohomology.

First note that, a (g,M)-module can be view as (k,M)-module via

forgetful functor F k,M
g,M . As (k, K)-module, there is a canonical isomorphism:

RqΓg,K
g,MV

∼= RqΓk,K
k,MV.

Let H(K) =
⊕

γ∈K̂ V
∗
γ ⊗ Vγ be the Hecke algebra of K consists of all

K-finite functions on K under left and right translation. Now, for any

(π, V ) ∈ C (g,M),

Γg,K
g,MV =

(
(V ⊗H(K))k

)M
=
⊕
γ∈K̂

Homk,M(Vγ, V )⊗ Vγ, (2.12)

RqΓg,K
g,MV =Hq(k,M ;V ⊗H(K)) =

⊕
γ∈K̂

Hq(k,M ;V ⊗ V ∗
γ )⊗ Vγ, (2.13)

where H(K) is view as an (k,M)-module via left regular action. Above

map is K-module morphism with K act by left translation on H(K), the

g structure on V could be defined functorially.

If K is connected, Γg,K
g,MV could be view as the subspace of all v ∈ V

such that the action of k can be globalize to K. Now Γg,K
g,MV has g-structure

inherited from V , since this subspace is g-invariant. While K is not always
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connected, the calculation could be reduced to the connected case. By

Frobenius reciprocity,

Homk,M(Vγ, V ) =Homk,M(Vγ,
⊕

Vi∈M̂K0

Homk(Vi, V )⊗ Vi)

=Homk,K(Vγ, Ind
K
MK0Γ

g,MK0

k,M V ).

Let M1 = K0 ∩ M . Since M/M1 is a finite group, Γk,K0

k,M1
V ⊂ V is M -

invariant with M -action inherited from V and Γg,MK0

g,M V ∼= Γg,K0

g,M1
V . Above

calculation implies

Γg,K
g,MV = IndK

MK0Γ
g,K0

g,M1
(V ).

Since IndK
MK0 is exact, we get

RqΓg,K
g,MV = IndK

MK0

(
RqΓg,K0

g,M1
(V )
)
.

Combining above equation with (2.11) and (2.13), the computation of the

K-spectrum of (RqΓg,K
g,M)V is reduced to calculate cohomology Hq(k,m;V ⊗

V ∗
γ ) for γ ∈ K̂0. In fact, M will always intersect all connected components

of K in our application. So we will assume from now on this is true. In

this case,

RqΓg,K
g,MV = RqΓg,K0

g,M1
(V ).

When g, K and M is clear in the context, we will denote Γg,K
g,M and Γk,K

k,M

by Γ; denote their right derived functors by Γq.

2.4.2 A decomposition of derived functor module

The derived functor module ΓqV is not irreducible in general. In this

section, we will describe a direct sum decomposition of the derived functor

module under following assumptions (c.f. [WZ04]):

(A1) There is a real reductive group K1 such that k1 = Lie(K1) is a real

form of k. Moreover, M is a maximal compact subgroup of K1, i.e.

(K1,M) form a symmetric pair of non-compact type;

(A2) (π, V ) ∈ C (g,M) can be decompose into a direct sum of irreducible

unitarizable (k,M)-modules, say

V =
⊕
j

Vj,
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such that each Vj is the Harish-Chandra module of an irreducible

unitary K1-representation.

For (π, V ) ∈ C (g,M), let H(K,V ) := V ⊗ H(K) be the space of K-

finite function on K with value in V . The (k,M)-module structure on it is

given by π tensor with left translation. Define a g structure µ on H(K,V )

as following

(µ(X)f)(k) = π(AdkX)f(k) ∀k ∈ K,X ∈ g, f ∈ H(K,V ).

One can check that µ is a Lie algebra action and commutes with the (k,M)-

action. Moreover, the induced g-action on ΓqV is compatible with the

induced K-action from right translations on H(K,V ). This construction

gives the (g, K)-module structure on ΓqV .

By Wigner’ Lemma (c.f. [BW00, Theorem 5.3]), Hq(k,M ;Vj ⊗ V ∗
γ )

vanish if Vj and Vγ have different infinitesimal characters (or central char-

acters). So we decompose H(K,V ) into direct sum of Ω(V ) and Ω′(V )

with

Ω(V ) =
⊕
γ∈K̂

⊕
Vγ∈K̂Vj

Vj ⊗ V ∗
γ ⊗ Vγ (2.14)

Ω′(V ) =
⊕
γ∈K̂

⊕
Vγ ̸∈K̂Wj

Vj ⊗ V ∗
γ ⊗ Vγ (2.15)

where K̂Vj
is the set of irreducible K-modules having the same infinitesimal

character and central character as Vj. Then

ΓqV = Hq(k,M ;V ⊗H(K)) = Hq(k,M ; Ω(V )).

Now recall following theorem on the cohomology of unitarizable (g, K)-

module. Fix a G-invariant and Cartan involution invariant non-degenerate

symmetric bilinear form B(·, ·) on g such that restrict on k(resp. p) is

negative (resp. positive) definite. Let C =
∑
ysy

′
s be the Casimir element

in U(g)g, where { ys } is a basis of g and { y′s } is its dual basis with respect

to B(·, ·).

Theorem 18 (Proposition II.3.1[BW00]). Let (π, V ) be a unitarizable (g, k)-

module and (ρ,E) a finite dimensional G-module. Let C be the Casimir

element. Assume that π(C) = s · Id, ρ(C) = r · Id.

(a) If r ̸= s, then Hq(g, k;V ⊗ E) = 0 for all q’s.
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(b) If r = s, then all co-chains are closed, harmonic, and we have

Hq(g, k;V ⊗ E) = Homk(
∧q

p, V ⊗ E) ∀q ∈ N.

For (k,M)-module Vj and finite dimensional K1-module10 Vγ, the con-

dition Vγ ∈ K̂Vj
implies C has same the scaler action on them. Therefore

ΓqV =
(
Homm(

∧q
k/m,Ω(V ))

)M/M0

= HomM(
∧q

k/m,Ω(V )).

There is an (g, K)-module structure on Ω(V ) by the projection of µ. The

g-module structure on ΓqV is given by post composition.

Definition 19. Now for any M -submodule W ∈
∧q(k/m), define

ΓW (V ) = HomM(W,Ω(V )), (2.16)

which is a (g, K)-submodule of ΓqV since M -action commute with g and

K actions on Ω(V ).

Now decompose
∧q k/m =

⊕
Wi as direct sum of irreducibleM -modules,

we have following decomposition of ΓqV into direct sum of (g, K)-modules:

ΓqV =
⊕

ΓWi
V. (2.17)

2.4.3 Aq(λ) and Vogan-Zuckerman’s Theorem

Vogan and Zuckerman have classified irreducible unitary representations

with non-zero cohomology in [VZ84] in terms of Aq(λ). In this section, we

will review their main theorems and compute the cohomology of a family

of representations which we will use later.

Temporarily, let G be a real connected semisimple Lie group and θ be

a Cartan involution on g. Fix a θ-stable fundamental Cartan subalgebra h

of g, such that t = h ∩ k is the Cartan subalgebra of k. Fixing a θ-stable

parabolic subalgebra q = l⊕ u compatible with h. Fix a θ-stable system of

positive roots compatible with q (such that all roots in q is non-negative).

Denote the half sum of roots in a h-invariant subspace n ⊂ g by ρ(n) and

the half sum of all positive roots by ρ.

Definition 20 ([VZ84, Section 5]). A character λ : l → C is called admis-

sible if

10holomorphically extend K-module to KC-module and then restriction to K1.
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(a) λ is the differential of a unitary character of the analytic subgroup L

of l;

(b) ⟨α, λ|t⟩ ≥ 0 for all α ∈ ∆(u), where ⟨, ⟩ is the pairing on the restricted

root system of t.

Let Aq(λ) = RS
q (λ) be the cohomologically induced module, where S =

dim u ∩ k, c.f. [Vog81].

Let

µ(q, λ) = λ|t + 2ρ(u ∩ p) (2.18)

and identify it with the k-module of highest weight µ(q, λ). Such Aq(λ) is

unique in the following sense:

Theorem 21 (Vogan-Zuckerman [VZ84] Theorem 5.3). Aq(λ) is the unique

irreducible g-module with the following properties:

(a) The restriction of Aq(λ) to k contains µ(q, λ);

(b) Z(g) acts by χλ+ρ in Aq(λ)

(c) If the representation of k of highest weight σ occurs in Aq(λ) restricted

to k, then

σ = λ|t + 2ρ(µ ∩ p) +
∑

β∈∆(u∩p)

nββ,

with nβ are non-negative integers.

There is a simple criterion to detect Aq(λ) among unitary representa-

tions.

Theorem 22 ([VZ84] Proposition 6.1). Assume that λ is an admissible

character of l and zero on the orthogonal complement of t in h. Let X be

an irreducible unitary (g, K)-module. Then X ∼= Aq(λ) if

(a) The k-type µ(q, λ) occurs in X.

(b) X has infinitesimal character λ+ ρ.

The cohomology of Aq(λ) is computed as following.

Theorem 23 (Vogan-Zuckerman [VZ84]). Let R = dim u ∩ p and F be

a finite dimensional irreducible represntation of g with highest weight γ.

Then

Hq(g, k;Aq(λ)⊗ F ∗) ∼= Hj−R(l, l ∩ t,C) ∼= Homl∩t(
∧j−R

(l ∩ p),C)
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if γ = λ|h; and
Hq(g, k;Aq(λ)⊗ F ∗) = 0,

otherwise.

All irreducible unitary representations with non-zero cohomology are

certain Aq(λ) by following theorem.

Theorem 24 ([VZ84, Theorem 5.6]). Let X be an irreducible unitarizable

(g, K)-module, and F an irreducible finite dimensional representation of G.

Suppose H∗(g, K;X⊗F ) ̸= 0. Then there is a θ-stable parabolic subalgebra

q = l+ u of g, such that

(a) F/uF is a one dimensional unitary representation of L; let −λ : l → C

for its differential.

(b) X ∼= Aq(λ).

In the rest of this section, we will apply above theorems to compute

the cohomology of the Harish-Chandra modules of unitary Lowest weight

modules of Ũ(r, s). The result will be used in section 3.5.1.

Let p, q, r, s be positive integers such that p ≤ r and q ≤ s. Let

µ = (a1, · · · , ap,−bq, · · · ,−b1)

such that a1 ≥ · · · ≥ ap ≥ 0 and b1 ≥ · · · ≥ bq ≥ 0. Let LŨ(r,s)(µ) be the

lowest weight (u(r+s,C), Ũ(r)×Ũ(s))-module with lowest Ũ(r)×Ũ(s)-type

τ := τ
(a1,··· ,ap,0,··· ,0)+m

2

Ũ(r)
⊗ τ

(0,··· ,0,−bq ,··· ,−b1)−m
2

Ũ(s)
.

In fact, LŨ(r,s)(µ) is the theta lift of Ũ(m)-module τ
µ+ r−s

2

Ũ(m)
via compact dual

pair (U(r, s),U(m)) (See Section 2.3.5) and so, it is unitarizable. Let

a′i =ai − (s− q) b′i = bi − (r − p)

λ =(a′1, · · · , a′q, 0, · · · , 0,−b′q, · · · ,−b′1) +
p− q

2
.

Temporally let g = gl(r + s,C), k = gl(r,C) ⊕ gl(s,C). Note that g, k

here will be k,m in previous sections.

Lemma 25. Let Γ := Γ
gl(r+s,C),Ũ(r+s)

gl(r+s,C),Ũ(r)×Ũ(s)
. Then

ΓjLŨ(r,s)(µ) =

τλŨ(r+s)
if j = rs− (r − p)(s− q);

0 otherwise.
(2.19)
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Moreover, there is a unique irreducible gl(r,C) ⊕ gl(s,C)-submodule Wp,q

in
∧

g/k with highest weight 2ρ(u ∩ p) (see. (2.20)). For any irreducible

submodule W ⊂
∧
g/k,

ΓWLŨ(r,s)(µ) =

Γrs−(r−p)(s−q)LŨ(r,s)(µ) if W = Wp,q;

0 otherwise.

Proof. We use array of integers present weights under the standard root

systems. Let

ρm = (
m− 1

2
,
m− 3

2
, · · · , −m+ 1

2
)

be the half sum of positive roots in gl(m,C). Denote a[j1 : j2] the subarray

of a consisting entries with index from j1 to j2 (if j2 < j1 the order is

reversed). Let a = (a1, · · · , ap) and b = (b1, · · · , bq). Then infinitesimal

character of LŨ(r,s)(µ), via Harish-Chandra morphism, is

χ :=(ρn−m[n−m : s− q + 1], a[p : 1] + ρm[p : 1] +
r − s

2
,

− b[1 : q] +
r − s

2
+ ρm[m : p+ 1], ρn−m[s− q : 1])

Under Weyl group translation, infinitesimal character χ is conjugate to,

(µ+
r − s

2
+ ρm, ρn−m),

which could be obtained directly from the correspondence of infinitesimal

characters for dual pairs (c.f. [Prz96]). Note that an unitary representation

has non-zero cohomology only if its infinitesimal character is regular by

Theorem 24 of Vogan-Zuckerman. Therefore ΓqLŨ(r,s)(µ) is non-zero only

if

ap ≥ s− q ≥ 0 and bq ≥ r − p ≥ 0.

One may prove the lemma by Enright-Wallach’s work[EW80]. But I

prefer to apply Vogan-Zuckerman’s theorem 23.

Let x = (p, · · · , 1︸ ︷︷ ︸
p

, 0, · · · , 0,−1, · · · ,−q︸ ︷︷ ︸
q

) ∈ t, define θ-stable parabolic

subalgebra q = l⊕ u by x, i.e.

l :=Zg(x) = gl(1,C)p ⊕ gl(r − p+ s− q,C)⊕ gl(1,C)q,

u :=
∑

α(x)>0

gα.

Now
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R =dim u ∩ p = rs− (r − p)(s− q),

2ρ(u ∩ p) =(s− q, · · · , s− q︸ ︷︷ ︸
p

, 0, · · · , 0,−(r − p), · · · ,−(r − p)︸ ︷︷ ︸
q

)

+ (q, · · · , q︸ ︷︷ ︸
r

,−p, · · · ,−p︸ ︷︷ ︸
s

).

(2.20)

Clearly λ is an admissible character (c.f. Definition 20). Since λ +

2ρ(u ∩ p) is the highest weight of τ and λ + ρ(u ∩ p) is the infinitesimal

character of L(µ),

LŨ(r,s)(µ)
∼= Aq(λ)

by Proposition 6.1 [VZ84] and LŨ(r,s)(µ) is unitarizable.

Now l∩p ∼= Cr−p⊗Cs−q as l∩ k ∼= gl(1,C)p⊕gl(r−p,C)⊗gl(s− q,C)⊕
gl(1,C)q module, where gl(1,C) act trivially; gl(r−p,C) and gl(s−q,C) act
by standard representation. The skew-duality (c.f. [How95, Theorem 4.1])

implies that, as l ∩ k-module∧j
l ∩ p =

∑
|D|=j

τDgl(r−p,C) ⊗ τD
⊤

gl(s−q,C),

where D ranges over all Young digrams of size j with at most r − p rows

and at most s− q columns, and D⊤ is the transpose of D.

Let F be the representation of g with highest weight λ, then F ∗ has

highest weight −w0λ, where w0 is the longest element in the Weyl group

of g. So F ∗ has lowest weight −λ. Hence

Hj(g, k, LŨ(r,s)(µ)⊗ F ∗) =Homk(
∧j

p, LŨ(r,s)(µ)⊗ F ∗)

=Homl∩k(
∧j−R

l ∩ p,C) =

C if j = R,

0 otherwise.

The k-module with highest weight 2ρ(u∩ p) is multiplicity one in
∧
p. Let

Wp,q be such k-module, it is generated by the one-dimensional l∩ k-module∧R u ∩ p ⊂
∧R p. Now, by the proof of Proposition 3.6 in [VZ84],

Homk(
∧R

p, LŨ(r,s)(µ)⊗ F ∗) = Homk(Wp,q, LŨ(r,s)(µ)⊗ F ∗) = C.

This finish the proof of the lemma.
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2.5 Invariants of representations

Let G be a real reductive Lie group. Let g = Lie(G)C, g = k ⊕ p under

certain Cartan involution and K be the corresponding maximal compact

subgroup of G. Let GC (resp. KC) be the complexification of G (resp. K).

Although some invariants could be defined in general setting, we will only

consider (g, K)-modules of finite length. We follow Vogan’s paper [Vog91].

We review some commutative algebra (c.f. Section 6 [MR89]) first.

Let R be a commutative Noetherian ring and M be a finitely generated

R-module. Define following invariants of M .

Associated variety

V(M) = { P ∈ SpecR | P ⊃ Ann R(M) } .

Support Let MP be the localization of M at prime P ⊂ R.

Supp(M) = { P ∈ Spec (R) |MP ̸= 0 } .

Set of associated primes

Ass(M) = { P ∈ SpecR | ∃x ∈M s.t. Ann R(m) = P }

= { P ∈ SpecR |M contains a submodule isomorphic to R/P } .

In our case, we have

V(M) = Supp(M) ⊃ Ass(M).

For any ideal I of R, V(I) is the closed subscheme of SpecR defined by

I. Ass(M) is a finite subset of Supp(M) and the set of minimal elements

in Ass(M) and Supp(M) coincide. A prime in Ass(M) is called a isolated

prime if it is minimal under inclusion relation. Call primes in Ass(M) which

are not isolated associated primes embedded primes . Let P1, · · · , Pr be the

set of isolated associated primes of M . Then the varieties V(Pi) defined by

Pi form the set of irreducible components of V(M). In particular,

V(M) =
∪
i

V(Pi). (2.21)

Note that M is Noetherian, so there exist a finite filtration M1 ⊂ · · · ⊂
Ml = M such that Mj/Mj−1

∼= R/P for some P ∈ SpecR. For every
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isolated associated prime P ∈ Ass(M) define the multiplicity of M at P to

be

m(P,M) := # { j |Mj/Mj−1
∼= R/P } . (2.22)

In fact, for any P ∈ SpecR, define m(P,M) to be the length of MP as

RP -module, which is consistent with (2.22) if P is a minimal prime. So

m(P,M) is independent of the choice of filtrations.

We look the definition geometrically. Weakening the the requirement

of the filtration, now, we only require Mj/Mj−1 is generically reduced11

12 along prime P . Let Mj be the associated coherent sheave of Mj on

SpecR. Then there is a dense open set U ⊂ V(P ) = Spec (R/P ) such that

(Mj/Mj−1)|U is free and m(P,M) is equal to the sum of ranks of fibers in

U , i.e.

m(P,M) =
∑
j

dimR/Iλ Mj/(IλMj +Mj−1) (2.23)

where λ(= Iλ) ∈ U is a closed point (maximal ideal).

Define the characteristic cycle of M

Ch(M) =
r∑

i=1

m(Pi,M)V(Pi), (2.24)

which is a finer invariant than V(M) by (2.21).

Let Uj(g) be the linear subset of U(g) generated by X1X2 · · ·Xk where

X1, · · · , Xk ∈ g and k ≤ j. This gives a natural filtration of U(g). Let

Gr jU(g) = Uj(g)/Uj−1(g), then GrU(g) =
⊕

j Gr jU(g) ∼= S(g). Let

σ : U(g) → GrU(g) = S(g) be the symbol map and identify S(g) with

the polynomial ring on g∗. For a two sided ideal I in U(g), define

V(I) := V(Gr I) = { x ∈ g∗ | σ(u)(x) = 0 ∀u ∈ I } .

Now let V be a (g, K)-module of finite length. It is also an U(g)-module.

Definition 26. Define the complex associated variety of V to be

VC(V ) = V(Ann U(g)(V )) ⊂ g∗. (2.25)

When V is an irreducible g-module, a deep theorem of Borho-Brylinski

[BB85] and Joseph[Jos85] says that VC(V ) is the closure of a single nilpotent

11Reduced on an open dense subset of V(P ).
12In fact, all modules we studied are reduced long P . So they can be view as module

over R/P .
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coadjoint GC-orbit in g∗.

Now we can define associated variety and associated cycle of a (g, K)-

module. A filtration Vj ⊂ Vj+1 ⊂ · · · ⊂ V of (g, K)-module V is called

good if it satisfies

Up(g) · Vq ⊂Vp+q

K · Vn ⊂Vn
V−n =0 for n sufficiently large;∪

n

Vn =V ;

dimVn <∞;

Up(g) · Vq =Vp+q for all q sufficiently large and all p ≥ 0

(2.26)

Under a good filtration, GrV :=
⊕

Vn/Vn−1 is finite generated S(g)-
module with equivariant KC-action. On the other hand, a (g, K)-module

have a good filtration if and only if it is finitely generated by definition.

Now we always assume filtrations are good.

Since k act on GrV trivially, Supp(GrV ) ⊂ (g/k)∗.

Definition 27. View GrV as an S(p)-module, define the associated variety

of V to be

V(V ) = Supp(GrV ) ⊂ p∗ ⊂ g∗.

Here we identify (g/k)∗ ⊂ g∗ with p∗ via Cartan decomposition g = k⊕ p.

Define the nilpotent cone in g∗ to be

N :=
{
x ∈ g∗

∣∣ p(x) = 0, for all p ∈ S+(g)G
}

where S+(g)G is the set of GC-invariant polynomials on g∗ without constant

term. Let { O1, · · · ,Or } be the set of open KC-orbits in V(V ). We have

V(V ) =
r∪

j=1

Oj ⊂ N ∩ p∗,

Although the closure of eachKC-orbitOj may be reducible, the multiplicity

along the irreducible components of Oj are the same, since GrV is KC-

equivariant. Let m(Oi, V ) be the common multiplicity.

Definition 28. Define the associated cycle of V to be

AC(V ) := Ch(GrV ) =
∑
i

m(Oi, V )[Oi].
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Following theorem proved by Vogan shows the relationship between the

complex associated variety and associated variety.

Theorem 29 (Theorem 8.4 [Vog91]). Let V be an irreducible (g, K)-module.

Let O be the open dense nilpotent GC-orbit in VC(V ). Then

(i) V(V ) ⊂ VC(V ) ∩ p∗;

(ii) O ∩ p∗ is a finite union of KC-orbit O1, · · · Os, each orbit has dimen-

sion 1
2
dimO;

(iii) Some of the Oi are contained in V(V ); they are precisely the KC-orbits

of maximal dimension in V(V ), i.e.

V(V ) =
∪

Oi⊂V(V )

Oi.

Now we explain why these invariants reflect the “size” of a (g, K)-

module. Define the Gelfand-Kirillov dimension

dimV := dimGrV = dimV(V ) =
1

2
dimVC(V ).

Now there is a unique polynomial Q(t) such that following formal series13,

called Hilbert-Poincare series of GrV satisfies

P (V ; t) =
∞∑
n=0

(dimVn/Vn−1)t
n =

Q(t)

(1− t)dimV
and Q(1) ̸= 0.

Moreover deg V := Q(1) is an integer called its Bernstein degree. The

Bernstein degree could be recovered from associated cycle:

deg V =
∑
i

m(Oi, V ) degOi,

where degOi is the degree of Oi as projective sub-variety of Pp∗.

To capture the information on K-spectrums, we define the isotropic

representations. Let M := GrV , Vogan shows (c.f. Lemma 2.11 [Vog91])

thatM always have a finite filtration {Mj } by (S(g), K)-submodules such

that each Mj/Mj−1 is generically reduced along every minimal prime in

V(M). Let λ be a element in the open orbit O of V(V ). The isotropic

subgroup Kλ = StabKC
(λ) is the stabilizer of P . Now the fiber of Mj/Mj−1

13It reflects the growth of dimension with respect to degree.
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at λ,

Mj/(IλMj +Mj−1),

is a finite dimensional rational Kλ-module.

Definition 30. Define the isotropic representation of M at λ to be the

genuine virtual character

χ(λ,M) =
∑
j

Mj/(IλMj +Mj−1).

Clearly,

dimχ(λ,M) = m(O, V ).

Although, Vogan has proved more general statement, to motivate the

further discussion, we only need the following form.

Theorem 31 (Theorem 4.6, Theorem 4.11 [Vog91]). Let V be an irre-

ducible (g, K)-module and O = KC ·λ be a KC orbit whose closure contains

an irreducible component of V(V ). Then either

a) V(V ) = O or

b) ∂O has codimension one in O.

If ∂O has codimension at least 2 in O, let Vχ be a completely reducible

representation of Kλ which has character χ(λ,X). Then there is a finitely

generated (S(g), K)-module Q supported on ∂O such that

V = IndKC

Kλ
(Vχ)−Q

as a virtual representation of KC.

This theorem suggests that up to an error Q the K-spectrum of V is

controlled by its isotropic representation. Furthermore, Vogan defined a

notion of “admissible data” corresponding to certain nilpotent KC-orbits

and then conjectured that for each such data there is an unipotent repre-

sentations attached to it such that its K-spectrum could be recovered by

the admissible data.

Now we state the conjecture more precisely. For a nilpotent element

λ ∈ p∗, Kλ is the stabilizer of λ in KC. Let kλ = Lie(Kλ)C. An rational

representation χ of Kλ is called admissible if restricted on the connected

component of Kλ,

χ(exp(x)) = det(Ad(exp(x/2)|(k/k(λ))∗)) · id ∀x ∈ k(λ).
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The pair (λ, χ) is called admissible data. An KC-orbit in p∗ is called an

admissible orbit if there exist an admissible data attached to it.

Conjecture 32 (Conjecture 12.1 [Vog91]). Let O be a GC nilpotent orbit

in g∗ such that ∂O has codimension at least 4 in O. Let V be an irreducible

unipotent (g, K)-module attached to O. Then there exist admissible data

(λ, χ) with λ ∈ O ∩ p∗ such that, as a representation of KC

V ∼= IndKC

Kλ
(χ). (2.27)

By Theorem 31, the associated cycle of V should be dimχ · [KC · λ].
However, the notion “unipotent representation” is not properly defined.

So, instead of trying to prove above conjecture, we show some families of

representations satisfied equation (2.27).

2.6 Representations of algebraic groups

Now we review some basic facts about the representations of algebraic

groups. Most of them are natural and similar to the corresponding theory

of compact Lie groups. However, the proof of some theorems are not trivial.

The author think the textbooks of Borel[Bor91], Grosshans[Gro97], Popov

et al. [PV94], Jantzen[Jan87] and Mumford et al.[MFK94] are very useful

references. All groups below are assume to be linear algebraic group scheme

over a algebraically closed field k and all group action on scheme are assume

to be morphisms. Since all schemes appeared in our application are certain

subset of vector spaces over C, we will assume all schemes are reduced,

separated schemes and of finite type over an algebraically closed field k

from now on. While, we would like to point out that, in fact, most theorems

are proved for (reduced) schemes over (even non-algebraically closed) field

k. For any algebraic group scheme G, a rational representation of G on

vector space V is a group homomorphism G→ GL(V ) such that it is also

a morphism between schemes. We will assume all G-modules are rational.

2.6.1 Quotients

Definition 33 (Definition 0.5-0.6 [MFK94], Section 4 [PV94]). Let G be

a algebraic group over k, X be an algebraic variety over k and G act on X

rationally.

(a) An algebraic variety Y together with a morphism πY : X → Y is called

categorical quotient for the acton of G on X if it satisfies following
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universal property: for any morphism πZ : X → Z, which is constant

on the orbits of G, there is a unique morphism α : Y → Z such that

πZ = α ◦ πY .

(b) (Y, πY ) in (a) is called geometric quotient if it further satisfies:

(i) the morphism πY is surjective;

(ii) the morphism πY is open;

(iii) fibers are precisely the G-orbit.

(iv) for all open set U ⊂ Y , the morphism π∗
Y : k[U ] → k[π−1

Y (U)]G is

an isomorphism.

From now on, we assume all groups are linear algebraic groups over a

fixed algebraic closed field k, i.e. closed subgroups of the general linear

groups. For applications here, k = C.

When X is an affine variety and G is reductive, k[X]G is finitely gen-

erated. Define the affine quotient of X to be the affine variety X/G :=

Spec k[X]G and the affine quotient map πX/G : X → X/G is given by em-

bedding k[X]G ↪→ k[X].

Theorem 34 ([PV94, Section 4.4]). (i) The pair (X/G, πX/G) is a cat-

egorical quotient for the action of G on X.

(ii) For any open subset U ⊂ X/G is a categorical quotient for the

action of G on π−1
X/G(U).

(iii) For G-invariant closed set Z ∈ X, πX/G(Z) is closed in X/G.

(iv) The pair (X/G, πX/G) is a geometric quotient if and only if all

orbits of G in X are closed.

2.6.2 Homogenous spaces

For a closed subgroup H in G, the homogenous space G/H is the geometric

quotient for the right translation of H on G.

The homogenous space G/H is always quasi-projective. Following the-

orem listed some sufficient conditions for it to be affine.

Theorem 35. When H is reductive, G/H is affine. When G is a reductive

groups, the homogeneous space G/H is affine if and only if H is reductive.

In our application, G/H is quasi-affine, i.e. a open subset of an affine

variety. Such H is called a observable subgroup. In fact, there will be a

rational representation V (some spaces of matrices) of G and H will be the

stabilizer of a point v ∈ V (c.f. Chapter 1[Gro97] for equivalent definitions
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and properties of observable subgroups. Now G/H is isomorphic to orbit

G · v ⊂ V , which is an opens dense subset in it closure G · v.

2.6.3 Induced modules and their associated sheaves

In this section, let H be a closed subgroup of a linear algebraic group G.

Definition 36. For any H-module V , define the induced module of V to

be the space of H-invariants in k[G]⊗ V , i.e.

IndG
HV := (k[G]⊗ V )H ,

where H act by right translation and G act by left translation on k[G].

By definition, IndG
H is a functor from the category of rationalH-modules

to the category of rational G-module. Moreover, it also has a k[G]H-module

structure with k[G]H act on IndG
HV by multiplication on the factor k[G].

Therefore, we can view IndG
HW as a (k[G]H , G)-module.

Theorem 37 (Section 6 [Gro97]). Let V be a H-module, W be a G-module

and W |H be the restriction of W to H.

(a) (Frobenius Reciprocity)

HomG(W, Ind
G
HV ) ∼= HomH(W |H , V ).

(b) (Induction by stage) Let L be closed subgroups of G such that H <

L < G. Then, there is a k[G]L ⊂ k[G]H-equivariant isomorphism of

G-modules:

IndG
L(Ind

L
HV ) ∼= IndG

HV.

(c) k[G]H ⊗W ∼= IndG
H(W |H).

(d) IndG
GW

∼= W as G-module.

(e) (tensor identity) There is a (k[G]H , G)-equivariant isomorphism

(IndG
HV )⊗W ∼= IndG

H(V ⊗W |H).

(f) (the transfer principle) (k[G]⊗W )G ∼= W as G-module. The space of

invariants is taking with respect to the diagonal G-action in which G

acton k[G] by left translation. And the resulting module inherent the

G-module structure from right translation.
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(g) The induction functor is left exact, i.e. for exact sequence of H-module

0 → V1 → V2 → V3, we have

0 → IndG
HV1 → IndG

HV2 → IndG
HV3.

(h) The quotient space G/H is affine if and only if the induction functor

is exact.

For a H-module V , we can associate a quasi-coherent sheaf L on G/H

such that,for any affine open set U ⊂ G/H,

L G/H
V (U) =

(
k[π−1

G/H(U)]⊗ V
)H

.

When G/H and V is fixed, we write L G/H
V simply by LV or L . Then the

induction functor is same as the global section functor, i.e.

IndG
HV = H0(G/H,LV ). (2.28)

Moreover, when V is finite dimensional H-module, LV is locally free of

finite rank, therefore is a coherent sheaf. In fact, for any affine open set

U ⊂ G/H, LV (U) ∼= k[U ] ⊗ V (c.f. [CPS83, Corollary 2.10], or [Jan87,

Section 5.9]).

Note that part (h) of Theorem 37 is a consequence of (2.28). Combining

Theorem 35 and Theorem 37 (h), the induction functor is exact if G and

H are reductive.

We should point out that, we also can view the quasi-coherent sheaf L

as the sheaf of regular sections of the vector bundle p : G ×H V → G/H,

where G×H V is the (geometric) quotient of G× V by diagonal H action.

And than, for any open subset U of G/H, L (U) ∼= Γ(U,G ×H V ) where

Γ(U,G×H V ) denote the set of morphisms14 s from U to G×H V such that

p ◦ s = idU .

LetX be a variety with G action and E be a quasi-coherent OX-module.

Let V(E ) = SpecS(E ) be the vector bundle associated to E , where S(E )

is the symmetric algebra of E over OX . A action G action on V(E ), G ×
V(E ) → V(E ), is given by anOX-algebra homomorphism S(E ) → p∗(OG⊗k

S(E )), where p : G×X → X defines the action of G on X.

Definition 38 ([CPS83, Definition (2.3)]). A quasi-coherent (X,G)-module

is a quasi-coherent OX-module E equipped with a left action of G on V(E )

14May view as regular sections.
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such that the OX-algebra homomorphism S(E ) → p∗(OG ⊗k S(E )) carries

E into p∗(OG ⊗k E ).

We will use following equivalence of categories frequently later.

Theorem 39 ([CPS83, Theorem 2.7] imprimitivity theorem). Let H be a

closed subgroup of an affine algebraic k-group scheme G. Let X = G/H

and e = H/H ∈ G/H. Then

V 7→ L G/H
V and E 7→ k ⊗OX,e

Ee

define an equivalence between the category of rational H-modules and that of

quasi-coherent (X,G)-modules. In particular, every quasi-coherent (X,G)-

module is induced.

Theorem 40 ([CPS83, Theorem 4.4] Mackey decomposition theorem). Let

L be a closed subgroup of G. Suppose the L-orbit Ω ⊂ G/H of e = H/H is

open in G/H.

(a) If Ω = G/H, then, as L-module,

Hn(G/H,L G/H
V ) ∼= Hn(L/(L ∩H),L L/(L∩H)

V ), ∀n ≥ 0. (2.29)

In particular, for n = 0, we have

IndG
HV

∼= IndL
L∩HV. (2.30)

(b) Otherwise, let d := codim(G/H−Ω) be the codimension of the boundary

of Ω. Then (2.29) hold for 0 ≤ n ≤ d − 1. In particular, (2.30) holds

when d ≥ 2.



Chapter 3

Derived functor modules of

local theta lifts

3.1 Introduction

In this Chapter, we will study some families of small representations ob-

tained by taking derived functors on certain theta lifts. The main objective

is to show these representations are again certain theta lifts. This project

is motivated by the work of Wallach and Zhu [WZ04].

Let g0 be the Lie algebra of a real reductive group G, K be a maximal

compact subgroup of G. Let g be the complexification of g0. We focus on

admissible (g, K)-modules. Let C (g, K) be the category of (g, K)-modules.

Let M be a subgroup of K. Zuckerman functor Γg,K
g,M is the functor from

C (g,M) to C (g, K) right adjoint to the forgetful functor. This functor is

only left exact and usually will be zero on modules in C (g,M). Its right

derived functor RjΓg,K
g,M constructs interesting representations.

Using derived functors, we can transfer representations between differ-

ent real forms of a complex reductive group as following. Let g be a complex

Lie algebra of complex reductive group GC; g1 and g2 be two different real

forms of g; θ1 and σ1(resp. θ2 and σ2) be Cartan involution and complex

conjugation on g for g1(resp. g2); Gi be the maximal subgroups of GC

with Lie algebra gi; Ki be corresponding maximal compact subgroup and

ki = Lie(Ki)C. Assume all these involutions are commute to each other, i.e.

σ1σ2 = σ2σ1, θ1θ2 = θ2θ1, θ1σ2 = σ2θ1, θ2σ1 = σ1θ2. (3.1)

The diagram, see Figure 3.1, consisting of four diamonds may be helpful

to understand the relationship between the algebras defined above (c.f.

[WZ04]).

49
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g
σ1

��
��
� σ2

??
??

?

g1
θ1
��
�

σ2
???

?
g2

σ1���
� θ2??

?

k1
σ2

??
? g1 ∩ g2

θ1
��
� θ2??

?
k2

σ1��
�

k1 ∩ g2

θ2
??

?
k2 ∩ g1

θ1
��
�

k1 ∩ k2

Figure 3.1: A diamond of Lie algebras

Let M = K1 ∩K2. Composing the forgetful functor

Fg,M
g,K1

: C (g, K1) → C (g,M)

and derived functors

RjΓg,K2

g,M : C (g,M) → C (g, K2),

produce a family of functors

Γj := RjΓg,K2

g,M ◦ Fg,M
g,K1

: C (g, K1) → C (g, K2).

This procedure construct (g, K2)-modules (locallyK2- finite) from a (g, K1)-

module (locally K1-finite). We call it transfer of K-types .

On the other hand, theta lifting also constructs representations for dif-

ferent real forms. Let G be a classical group in a real reductive dual pair

(G,G′) ⊂ Sp(W ) where W is a real symplectic space. Choose a maximal

compact subgroup U in Sp := Sp(W ) such that intersection with G and G′

give their maximal compact subgroup K and K ′. Let S̃p be the metaplectic

cover of Sp. For any subgroup E ⊂ Sp, let Ẽ be its inverse image in S̃p

of the projection S̃p → Sp, which is certain double cover of E. Let Y be

the Harish-Chandra module (Fock model) of the oscillator representation

ω of the metaplectic group S̃p with respect to its maximal compact sub-

group Ũ. For any subgroup E of Sp such that KE := E ∩ U is a maximal

compact subgroup of E, let e be the Lie algebra of E and R(e, K̃E;Y )

be the infinitesimal equivalent classes of irreducible (e, K̃E)-modules which

can be realized as a quotient of Y . Howe [How89b] constructs a bijection

θ : R(g, K̃;Y ) → R(g′, K̃ ′;Y ). This map is called theta lifting. By abuse

notion, we also call its inverse θ.
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Now let G1 and G2 be two real forms of a classical complex Lie group

GC satisfying conditions defining Γj. We will exhibit some relationships be-

tween transfer of K-type (taking derived functor module) and theta lifting.

The naive guess is that they “commute” with each other. More precisely,

for dual pairs (Gi, G
′
i) (i = 1, 2), we are seeking and some operations filling

the gap in the following commutative diagram.

R(g′, K̃ ′
1)

θ //

?
��

R(g, K̃1)
� � // C (g, K̃1)

Γj

��

R(g′, K̃ ′
2)

θ // R(g, K̃2)
� � // C (g, K̃2)

However, the actual relationship is more subtle, as following example

suggests.

Example 41 (Theorem 56). Fix integers m,n, r, s such that m ≤ n = r+s.

For integer p, q such that p + q = m, let θp,q be the theta lifting map from

O(p, q) to S̃p(2n,R). Let Γj = RjΓ
sp(2n,C),Ũ(n)

sp(2n,C),Ũ(r)·Ũ(s)
◦ F sp(2n,C),Ũ(r)·Ũ(s)

sp(2n,C),Ũ(n)
. Then,

as (sp(2n,C), Ũ(n))-module,

Γj(θm,0(detϵ)) =
⊕

p≤r,q≤s
j=rs−(r−p)(s−q)

θp,q(1ξ,η). (3.2)

Here ξ ≡ ϵ−(s−q), η ≡ ϵ−(r−p) (mod 2), detϵ is the trivial or determinate

representation of O(p, q) depends on the parity of ϵ, 1ξ,η are characters of

O(p, q) determined by 1ξ,η|O(p)×O(q) = detξ ⊗ detη.

Wallach and Zhu [WZ04] conjectured equation (3.2) for ϵ = 0 by K-

spectrum comparison. The motivation of this study is to prove their con-

jecture. For similar results of other dual pairs, see Theorem 58 and Theo-

rem 60.

For any ρ ∈ R(g′, K̃ ′;Y ), denote its maximal Howe quotient by Θ(ρ).

The following is our key theorem.

Theorem A. Let G′
1 and G′

2 be two real forms of a classical complex lie

group G′
C such that (Gi, G

′
i)i=1,2 form reductive dual pairs. Let ρ1 and ρ2

be characters of G̃′
1 and G̃′

2 respectively; τ1 be an irreducible (k2, K̃1 ∩ K̃2)-

module; τ2 be an irreducible K̃2-module. Suppose that:

(a) Ann U(g′)(ρ1) = Ann U(g′)(ρ2).

(b) There is 0 ̸= T ∈ Homk2,K̃1∩K̃2
(Θ(ρ1), τ2), such that τ2 occur both in

the image of ΓjT : ΓjΘ(ρ1) → ΓjVτ1 and Θ(ρ2).
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Then (g, K̃2)-modules ΓjΘ(ρ1) and Θ(ρ2) have an isomorphic irreducible

subquotient with common K̃2-type τ2.

Remark:

1. Theorem A implies that theK-spectrum and infinitesimal characters

determined the derived functor modules of theta lifts of characters. On

the other hand, if g′ is a semisimple Lie algebra, i.e. so and sp, the only

character of g′ is the trivial representation; therefore, condition (a) is always

satisfied.

2. Example 41 is a consequence of Theorem A.

3. The K-spectrum of derived functor modules were already calculated

in many cases, for example Enright et al.[EPWW85], Frajria [Fra91], Wal-

lach [Wal94] and Wallach and Zhu [WZ04]. Their calculations will provide

families of examples for Theorem A, although they are not originally pre-

sented in this way,.

The proof of above theorem combines following observations:

(a) Equation (3.6) on the Hecke-algebra actions, which may have po-

tential usage beyond Theorem A.

(b) A result on the algebra of invariant differential operators which goes

back to Helgason, and Lemma 45.

(c) The g-actions on the derived functor modules (3.8) is defined in a

functorial way.

3.2 A space with U(g)H action

In this section, we will review the well known see-saw pair argument and

exhibit an additional Hecke-algebra module structure on the multiplicity

space.

Let G be a real reductive group and K = KG be a maximal compact

subgroup of G. If H is a subgroup of G, we always assume that KH :=

H ∩ KG is a maximal compact subgroup of H. For every such Harish-

Chandra pair (g, K), C (g, K) denote the category of (g, K)-modules (not

necessary admissible). For every V ∈ C (g, KG), we can view it as an

element in C (h, KH) via forgetful functor.

Definition 42. Let V be an (g, KG)-module and U be an irreducible

(h, KH)-module. Define

ΩV,U = V/NV,U , where NV,U =
∩

T∈Homh,KH
(V,U)

Ker (T ).
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Clearly, ΩV,U is an (h, KH)-module by definition. Additionally, ΩV,U

has an has a natural Homh,KH
(V, V )-action defined by

S(v) = S(v) ∀ v ∈ V/NV,U , S ∈ Homh,KH
(V, V ),

where v denote the image of v ∈ V in quotient V/NV,U . For all T ∈
Homh,KH

(V, U), T ◦S ∈ Homh,KH
(V, U). So the action is well defined, since

for every v ∈ NV,U , T ◦ S(v) = 0, i.e. S(v) ∈ NV,U . In particular, U(g)H

act on ΩV,U via U(g)H → Homh,KH
(V, V ).

By imitating a proof of Moeglin et al. [MVW87, Lemma III.4, Chapter

2], as Homh,KH
(V, V )× (h, KH)-module

ΩV,U
∼= U ⊗ U ′, where U ′ ∼= Homh,KH

(U,ΩV,U),

(h, KH) act on U and U(g)H act on U ′ (by post-composition) (c.f. Lemma 5,

Section 2.3.3).

Remark: This is a generalization of Howe’s construction of maximal

quotient:

1. When V := Y is a Fock model of the oscillator representation, G =

S̃p, K = Ũ′ and (H,H ′) are reductive dual pairs in S̃p, U ′ is the maximal

Howe quotient Θ(U) of U . It is a (h′, K ′
H)-module, since H ′ commute with

H.

2. WhenH := K is the maximal compact subgroup ofG, V is an (g, K)-

module, U is an irreducible K-module occur in V , ΩV,U
∼= U⊗HomK(U, V )

isomorphic to the U -isotypic component of V . Later we will use a classi-

cal result of Hraish-Chandra and Lepowsky-McCollum [LM73] (c.f. Sec-

tion 2.2) asserts that: the isomorphism class of irreducible admissible

(g, K)-module V is determined by the U(g)K action on HomK(U, V ), if

HomK(U, V ) ̸= 0. On the other hand, HomK(U,ΩV,U) is naturally isomor-

phic to the dual of HomK(ΩV,U , U). Therefore it is equivalent to known

U(g)K actions on the HomK(ΩV,U , U).

The following equation is the key property of ΩV,U :

Homh,KH
(V, U) ∼= Homh,KH

(ΩV,U , U), (3.3)

where Homh,KH
(V, V ) act on Homk,KH

(V, U) by pre-composition and the

isomorphism is Homh,KH
(V, V )-equivariant.

Equation 3.3 leads the well known see-saw pair argument. A pair of

reductive dual pairs (G,G′) and (H,H ′) in a symplectic group are called

a see-saw pair if H ≤ G and (therefore) H ′ ≥ G. It can be represented
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by following diagram, in which groups connected by straight lines form

reductive dual pairs.

G

BB
BB

BB
BB

H ′

H

}}}}}}}}
G′

.

As in [How89b], we choose a maximal compact subgroup U in Sp(W ) such

that intersection with G, G′, H and H ′ give their maximal compact sub-

groups. We fix the oscillator representation1 ω and fix a Fock module Y

with respect to U (c.f. Section 2.3.4). ,

For any reductive dual pair (G,G′) and representation ρ ∈ R(g′, K̃G′ ;Y ),

the space realizing ρ by Vρ. Since Vρ can be realized as a quotient of the

oscillator representation ω, we have

ΩY ,Vρ
∼= Θ(ρ)⊗ Vρ

where the (g, K̃G)-module Θ(ρ) is the maximal Howe quotient. Abuse of

notation, Θ also denote the maximal quotient from H to H ′.

Lemma 43. For any τ ∈ R(h, K̃H ;Y ) and ρ ∈ R(g′, K̃G′ ;Y ),

Homh,K̃H
(Θ(ρ), Vτ ) ∼= Hom(h,K̃H)×(g′,K̃G′ )

(Y , Vτ⊗Vρ) ∼= Homg′,K̃G′
(Θ(τ), Vρ),

(3.4)

where the first isomorphism is U(g)H-equivariant and the second isomor-

phism is U(h′)G′
-equivariant.

Proof. It is clear from following calculation,

Homh,K̃H
(Θ(ρ), Vτ )

∼=Hom(h,K̃H)×(g′,K̃G′ )
(Θ(ρ)⊗ Vρ, Vτ ⊗ Vρ)

(by Schur’s lemma)

∼=Hom(h,K̃H)×(g′,K̃G′ )
(Y /NY ,Vρ , Vτ ⊗ Vρ)

∼=Hom(h,K̃H)×(g′,K̃G′ )
(Y , Vτ ⊗ Vρ)

∼=Homg′,K̃G′
(Θ(τ), Vρ).

(3.5)

Above proof is formal and lemma is actually true for any “see-saw pairs”

of mutual commuting subgroups setting in a bigger group when certain from

of Schur’s lemma valide .

1By choosing an unitary character of R.
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Recall following Proposition.

Proposition 44 (Proposition 6, Chapter 2). Let (G,G′) and (H,H ′) be

a see-saw pair in Sp(W ) such that H < G and G′ < H ′. Let ω be an

oscillator representation of S̃p(W ), then as a subalgebra of EndC(Y ),

ω(U(g)HC) = ω(U(g)H) = ω(U(h′)G′
) = ω(U(h′)G′

C). (3.6)

Moreover, there exist a map Ξ: U(g)HC → U(h′)G′
C (independent of real

forms, may not unique and not be algebra homomorphism) such that ω(x) =

ω(Ξ(x)).

Observe that there is an joint action U(g)H and U(h′)G′
on

Hom(h,K̃H)×(g′,K̃G′ )
(Y , Vτ ⊗ Vρ).

In the case of theta correspondence over R, Proposition 44 will implie that

U(g)H and U(h′)G′
actions on the two sides of equation (3.4) determine

each other.

3.3 Line bundles on symmetric spaces and

Theta lifts of characters

In this section, we first present a theorem of Helgason [Hel64], describing

the space of invariant differential operators on symmetric spaces. Helga-

son’s original version [Hel64] and Shimura’s extension [Shi90, Theorem 2.4]

treat the case of connected semisimple Lie group G with H a maximal

compact subgroup in G. See [Shi90], [Wal92] or [Zhu03] for reference. We

can reform their results and obtain following slightly generalized version,

Lemma 45, where G could be non-connected and reductive2, and H could

be non-compact. We also would like to point out that the right hand side

of (3.7) is the space of G-invariant differential operators on a twisted line

bundle.

Following lemma was also proved appeared in Section 8 of [Lep77]. But

for completeness, we also give a proof in Appendix 3.A.

Lemma 45. Let G be a real reductive group such that all simple factors

of g are classical Lie algebras. Let H be a symmetric subgroup of G in the

sense that there is an involution σ on g0 such that H is the subgroup of

G with Lie algebra h0 = gσ0 and meet all the connected component of G.

2We adapt Wallach’s definition of real reductive group (c.f. [Wal88, Section 2.1]).
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Let Z(g) = U(g)G be the G-invariant subalgebra3 in U(g). For an one-

dimensional representation ρ of H, let Jρ = Ann U(h)(ρ) be the annihilator

ideal of ρ in U(h). Then the natural homomorphism of ring

Z(g) // U(g)H/(JρU(g) ∩ U(g)H) (3.7)

is surjective.

Following lemma is immediate from above lemma (c.f. [Zhu03, Theorem

3.2]).

Lemma 46. Let G and H be in the setting of Lemma 45, V be a (g, K)-

module and ρ be a character of (h, KH). Then the U(g)H actions on

Homh,KH
(V, Vρ) (or ΩV,Vρ) is determined by the Z(g) action on V and the

annihilator ideal Jρ = Ann U(h)(ρ) of ρ.

Proof. Let 0 ̸= T ∈ Homh,KH
(V, Vρ). For any x ∈ U(g)H , choose z ∈ Z(g)

such that x− z = ju for some j ∈ Jρ and u ∈ U(g). Therefore, T (x− z) =

Tju = jTu = 0, i.e. Tx = Tz. This finished the proof.

Now we retain the notations in Section 3.2. Let (G,G′) and (H,H ′)

from a see-saw pairs such that H is a symmetric subgroup of G. Then G′ is

automatically a symmetric subgroup of H ′ by the classification of reductive

dual pairs.

Theorem 47. Let ρ ∈ R(g′, K̃ ′;Y ) be a character and τ ∈ R(h, K̃H ;Y ).

Then the U(g)H action on Homh,K̃H
(Θ(ρ), Vτ ) is a character determined by

the character

χτ : Z(h) → Homh,K̃H
(τ, τ) = C

and the annihilator ideal Jρ = Ann U(g′)(ρ) of ρ.

Note that χτ may be slightly weaker than infinitesimal character since

Z(g) may be a proper subalgebra of the center of U(g) by remarks after

Lemma 45.

Proof. By Proposition 44, for any x ∈ U(g)H , there is a x′ ∈ U(h′)G′
such

that ω(x) = ω(x′). Now choose z′ ∈ Z(h′) such that x′ − z′ ∈ JρU(h′) by
Lemma 45.

3Our definition of Z(g) could be smaller than the center of U(g), for example,
U(so(2n,C))O(2n), which is the only “unusual” situation we will see in the context of
theta correspondence.
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Then again by Proposition 44, we can find z ∈ Z(h) such that ω(z) =

ω(z′). For any 0 ̸= T ∈ Hom(h,K̃H)×(g′,K̃G′ )
(Y , Vτ ⊗ Vρ), by Lemma 43,

T◦ω(x) = T◦ω(x′) = T◦ω(x′−z′)+T◦ω(z′) = T◦ω(z) = τ(z)◦T = χτ (z)T.

The Lemma follows.

Furthermore, by Proposition 44, the choice of elements in above proof

could be made independent of real forms. This is a crucial to us.

3.4 Transfer of K-types and the proof of The-

orem A

We retain the notations in Section 3.1 and recall some basic facts of de-

rived functor modules (c.f. [BW00, Section I.8] or [Wal88, Chapter 6] and

Section 2.4).

First note, for any V ∈ C (g,M), as K-module,

Rj(Γg,K
g,M)V = Rj(Γk,K

k,M)V.

Set Γj = RjΓk,K
k,M = Rj(Γg,K

g,M).

Let U ∈ C (k,M). Suppose x ∈ Homk,M(V, V ) and T ∈ Homk,M(V, U)

such that T ◦ x = cT with some constant c ∈ C. Then, for ΓjT ∈
HomK(Γ

jV,ΓjU), we have

ΓjT ◦ Γjx = Γj(T ◦ x) = ΓjcT = cΓjT.

On the other hand, g-module structure on ΓjV is defined functorially.

For x ∈ U(g)K , which gives a (k,M)-equivariant map x : V → V , x action

on ΓjV is given by

Γjx : ΓjV → ΓjV. (3.8)

We summarise above discussion as following lemma.

Lemma 48. Let U ∈ C (k,M), V ∈ C (g,M), T ∈ Homk,M(V, U) and

x ∈ U(g)K. Suppose that x act on T by c, i.e. T◦x = cT with some constant

c ∈ C. Then x act on ΓjT by c. In particular, ΓjV has infinitesimal

character if V has infinitesimal character.

Remark: Following the discussion in [WZ04], for any irreducible (g, K1)-

module, ΓjV has infinitesimal character since V has infinitesimal charac-

ter. Therefore every (g, K)-module generated by a finite dimensional K-
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invariant subspace is admissible, and so has finite length4. Let Ann U(g)(V )

be the annihilator ideals of V in U(g). Then Ann U(g)(Γ
jV ) ⊃ Ann U(g)(V )

and ΓiV has Gelfand-Kirillov dimension less than or equal to that of V .

Let (GC, G
′
C) be a complex dual pair in Sp(WC) for some complex sym-

plectic space WC. For i = 1, 2, let gi be real forms of g with complex

conjugation σi and Cartan involution θi and satisfies equation 3.1. Let G′
i

be real forms of G′
C such that (Gi, G

′
i) form reductive dual pairs and Yi be

corresponding Fock modules. Consider following composition of transfer of

K-types and big theta lifting:

R(g′, K̃ ′
1;Y1)

Θ // R(g, K̃1;Y1)
Γj

// C (g, K̃2)

ρ � // Θ(ρ) � // ΓjΘ(ρ).

One may hope Γj(Θ(ρ)) = Θ(Γ′j(ρ)) for some map Γ′ : R(g′, K̃ ′
1;Y1) →

R(g′, K̃ ′
2;Y2). However, example 41 already shows that the situation is

much more subtle than this. As the example suggested, ΓjΘ(ρ) could be

non-zero and reducible for several j. Moreover, the composition compo-

nents of ΓjΘ(ρ) could be theta lifts from different G′
2s.

Let ρ1 and ρ2 be characters of G̃1 and G̃2 respectively, τ1 be an ir-

reducible (k2, K̃1 ∩ K̃2)-module and τ2 an irreducible K̃2-module satisfies

conditions in Theorem A. Now we prove our main theorem.

Proof of Theorem A. Let Vτ1 be a (k2, K̃1 ∩ K̃2)-module of type τ1. Let

0 ̸= T ∈ Homk2,K̃1∩K̃2
(Θ(ρ1), Vτ2)

be a map in assumption (b). Since τ2 occur in the image of T , we can fix an

irreducible K̃2-submodule Uτ2 of type τ2 in ΓjΘ(ρ1) such that ΓjT (Uτ2) ̸= 0.

Let

U := U(g)Uτ2 ⊂ ΓjΘ(ρ1)

be the admissible (g, K̃2)-submodule of ΓjV generated by Uτ2 . View ΓjT |U
as a non-zero element in HomK̃2

(U, Vτ2) by restriction and post-composite

the projection form ΓjVτ1 to the irreducible K̃2-module Vτ2 := ΓjT (Uτ2).

Let H be the maximal subgroup in G1 with Lie algebra k2 ∩ g1, which

is generated by exp(k2 ∩ g1) and K1 ∩K2. Clearly, Lie(H)C = k2 by equa-

tion 3.1. In our setting, K̃1 ∩ K̃2 meet all the connected component of K̃1,

K̃2 and G̃. Moreover the action of double covers (e.g. G̃) on Lie algebras

4Note there is only finite many isomorphism classes of irreducible (g,K)-module
having a fixed infinitesimal character.
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(e.g. g) factor through the linear group (e.g. G). Therefore, as subalgebras

in U(sp),

U(g)H̃ =U(g)H = U(g)K2 = U(g)K̃2 and

U(k2)H̃ =U(k2)H = U(k2)K2 = Z(k2).
(3.9)

Since Vτ2 is an irreducible K̃2-submodule in ΓjVτ1 , Z(k2) act on Vτ2 , Vτ1

and ΓjVτ1 by same character (c.f. Lemma 48). By Theorem 47, U(g)K̃2

act on Homk2,K̃1
(V, Vτ1) and HomK̃2

(Θ(ρ2), Vτ2) by the same character. By

Lemma 48, U(g)K̃2 act on ΓjT |U also by this character.

On the other hand, HomK̃2
(U, Vτ2) is naturally isomorphic to the dual

of HomK̃2
(Uτ2 , U(τ2)) as U(g)K-module. The irreducible U(g)K̃2-submodule

CΓjT |U ⊂ HomK̃2
(U, Vτ2) in correspond to an U(g)K̃2-invariant irreducible

quotient in HomK̃2
(Uτ2 , U(τ2)), with U(g)K̃2 action same as on Θ(ρ2)(τ2)

(note that Θ(ρ2) is multiplicity free, hence HomK̃2
(Vτ2 ,Θ(ρ2)) is already an

irreducible U(g)K̃2-module).

Hence U has an irreducible quotient contains Uτ2 . Moreover it is iso-

morphic to the irreducible subquotient of Θ(ρ2) containing K̃2-type τ2 by

a one-one correspondence between irreducible (g, K)-modules and U(g)K-
structure on K-isotypic components (c.f. Theorem 2).

3.5 Examples

We retain the notation in Section 3.4. In this section, we will apply Theo-

rem A and give families of examples on transfer of K-types.

In all these examples, (Gi, G
′
i) are reductive dual pairs in stable range,

ρ1 is certain unitary characters of G′
1 and θ(ρ1) = Θ(ρ1) is an unitary rep-

resentation of (g, K̃1). Moreover, θ(ρ1) is discrete decomposable in sense of

Kobayashi [Kob98] and decomposed into direct sum of irreducible unitary

(k2, K̃1 ∩ K̃2)-modules. Therefore by the discussions in Section 2.4 (also

see [WZ04]), ΓjV has following decomposition

ΓjV =
⊕
Wi

ΓWi
V, (3.10)

where
∧j k2/m =

⊕
Wi as direct sum of irreducible modules of M . We

will show that ΓWi
V is either zero or a theta lift (so irreducible). Therefore

equation 3.10 solved the possible reducibility of ΓjV in all our cases.

In section 3.5.1, we will study the transfer of singular unitary lowest

weight modules which are theta lifts of unitary character. In Section 3.5.2,
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we will discuss another type of examples initiated by a joint work with

Loke and Tang [LMT11b]. As corollaries of these examples provide some

examples beyond derived functor modules of theta lifts of characters.

3.5.1 Transfer of unitary lowest weight modules lifted

from unitary characters

In analogy to the cohomological induction, the derived functor modules

of singular unitary lowest weight modules have been studied in [EW80]

[Fra91] [Wal94] [WZ04].

To have unitary lowest weight modules, g should be Hermitian sym-

metric. We will study three families of examples where g has root systems

of A, C, D respectively.

G := G1 H G′
1 H ′ G′

p,q Sp

Type A U(n, n) U(r, s)×U(s, r) U(m) U(m)×U(m) U(p, q) Sp(4nm,R)
Type C Sp(2n,R) U(r, s) O(m) U(m) O(p, q) Sp(2nm,R)
Type D O∗(2n) U(r, s) Sp(m) U(2m) Sp(p, q) Sp(4nm,R)

Table 3.1: Transfer of unitary lowest weight modules

Follow notation in Table 3.1. Let σ be the involution of G1 = G such

that H := Gσ
1
∼= U(r, s). H ′ is the centralizer of H in Sp. Then (G1, G

′
1)

and (H,H ′) form a see-saw pair in Sp. Fix a Cartan involution θ of Sp

commute with σ such that K1 = U∩G1 is a maximal compact subgroup of

G1 and G
′
1 ⊂ U. Let Y be the Fock module of the oscillator representation

ω of S̃p which is a (sp, Ũ)-module. Let G2 = Gσθ
C be the set of σθ fixed

points in GC. Then K2 := Gσ
2 is a maximal compact subgroup of G2, k2 = h

and M := K1 ∩K2 = Hθ is the maximal compact subgroup of H. Let

Γj = RjΓg,K̃2

g,M̃
= RjΓk2,K̃2

k2,M̃
.

By above construction, we have G2
∼= G1

∼= G. Let θp,q (resp. θm,0) be

the theta lifting from G′
p,q (resp. G′

1
∼= G′

m,0) to G2 (resp. G1). We can

summarise the main result in this section as following form. For precise

statements in each cases, see Theorem 56, Theorem 58 and Theorem 60

Theorem. Let (G1, G
′
1) be in stable range. Let ρ be an unitary character

of G′
1 which is trivial restricted on g′.

Γjθm,0(ρ) =
⊕

θp,q(ρp,q)
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where p, q run over a subset of positive integers such that p + q = m and

ρp,q are unitary characters of G′
p,q determined by p, q and ρ.

Remark:

1. Since G ∼= G1
∼= G2, the above theorem could be view as an con-

struction of G-modules from lowest weight G-modules. If we consider the

derived functor Γj in all degrees together , there is a simple formula⊕
j∈N

Γjθm,0(ρ) ∼=
⊕

p+q=m

θp,q(ρp,q).

2. When ρ corresponde to the trivial representation ofG′
1, Frajria [Fra91]

studied Γjθ(ρ) for its first non-zero degree. He proved such ΓjV is irre-

ducible and unitarizable and expect these examples could be fit in the dual

pair correspondence. Wallach and Zhu made a precise conjecture [WZ04,

Conjecture 5.1] on the decomposition of Γjθ(ρ) for Type C.

3. As an exploration of general cases, we also studied the transfer of

unitary lowest weight module lifted from arbitrary finite dimensional repre-

sentations of G′
1 for Type C. However, currently, we do not known whether

they are certain theta lifts.

Before go to case by case calculations, we supply a proof on the decom-

position of θ(ρ). It is a consequence of the direct sum decomposition of Y

under compact dual pairs (c.f. Theorem 9 in Section 2.3.5) and well known

to experts.

Temporally drop the assumption that (G1, G
′
1) is in the stable range.

Note that (G1, G
′
1) and (H,H ′) are compact dual pairs, let ρ ∈ R(G̃′

1;Y )

be a finite dimensional irreducible genuine representation of G̃′
1, then Θ(ρ)

is an unitary lowest weight (g, K̃1)-module.

Lemma 49. Under (h, M̃)-action, Θ(ρ) decompose into direct sum of ir-

reducible unitary lowest modules:

Θ(ρ) =
⊕

τµ
H̃′∈R(H̃′;Y )

nµLH̃(µ).

Here nµ = dimHomG̃′(ρ, τ
µ

H̃′) = dimHomG̃′(τ
µ

H̃′ , ρ) is the multiplicity of

LH̃(µ) occur in Θ(ρ). In particular, nµ = 0 if LH̃(µ) dose not occur in the

decomposition of Θ(ρ).

Proof. Since Θ(ρ) ⊗ ρ can be identify with the ρ-isotypic subspace of Y

which is the image of a G̃′-equivariant projection, the H̃ ′-invariant decom-
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position Y =
⊕

µ∈R(H̃′;Y ) LH̃(µ)⊗ τµ
H̃′ induce the decomposition of

Θ(ρ)⊗ ρ = Y (ρ) =
⊕

τµ
H̃′∈R(H̃′;Y )

LH̃(µ)⊗ HomG̃′(ρ, τ
µ

H̃′)⊗ ρ. (3.11)

Projection to a particular vector of ρ, for example the highest weight vector,

(3.11) implies the desired decomposition of Θ(ρ). This proved the Lemma.

As a corollary of Lemma 49, we have.

Lemma 50. As K̃2-module,

ΓjΘ(ρ) =
⊕

τµ
H̃′∈R(H̃′;Y )

nµΓ
jLH̃(µ).

Now we begin the case by case calculation.

3.5.1.1 Type C

The main object is to prove example 41. We retain the notation in Sec-

tion 3.4. Now (G1, G
′
1) = (Sp(2n,R),O(m)) and (H,H ′) = (U(r, s),U(m))

with r + s = m. G2
∼= Sp(2n,R), K2

∼= U(n) and M ∼= U(r) × U(s),

G′
2 = O(p, q) such that m = p + q, r ≥ p, s ≥ q. So (Gi, G

′
i) are all in the

stable range. Let θp,q be the theta lifting form O(p, q) to Sp(2n,R). We

will only assume ρ is an irreducible finite dimensional representation of G′
1

at first.

Now let

µ := (a1, · · · , ap,−bq, · · · ,−b1) = (a,−br),

and { ai }, { bi } are non-increasing non-negative integers. Recall the de-

scription of ΓjLŨ(r,s)(µ).

Lemma 51 (Lemma 25, Section 2.4.3). Let a′ := a − (s − q)1p, b′ :=

b− (r − p)1q and

Γ(µ) = (a′,0,−b′r).

Then ΓjLŨ(r,s)(µ) ̸= 0 only if a′ ≥ 0 b′ ≥ 0, i.e. ap ≥ s− q, bq ≥ r− p. In
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this case,

ΓjLŨ(n)(µ) =

ΓWp,qLŨ(n)(µ) = τ
Γ(µ)+ p−q

2

Ũ(n)
if j = rs− (r − p)(s− q)

0 otherwise.

(3.12)

whereWp,q ⊂
∧j h/m is the unique irreducible U(r)×U(s)-module in

∧
h/m

with isomorphic to

τ
((s−q)1p,0)

U(r) ⊗ τ
(0,−(r−p)1q)

U(s) .

For p, q such that r ≥ p, s ≥ q, let

M0
p,q =

{
µ = (a1, · · · , ap,−bq, · · · ,−b1)

∣∣∣∣∣ a1 ≥ · · · ≥ ap ≥ 0,

b1 ≥ · · · ≥ bq ≥ 0

}
,

Mp,q =

{
µ = (a1, · · · , ap,−bq, · · · ,−b1)

∣∣∣∣∣ a1 ≥ · · · ≥ ap ≥ s− q,

b1 ≥ · · · ≥ bq ≥ r − p

}
.

Now M0
p,q form a collection of disjoint subsets of the heights weight of

gl(m,C) such that

Θ(ρ) =
⊕
r≥p
s≥q

⊕
µ∈M0

p,q

HomÕ(m)(ρ, τ
µ+ r−s

2
1m

Ũ(m)
)⊗ LŨ(r,s)(µ). (3.13)

For µ ∈ M0
p,q, ΓWp,qL(µ) ̸= 0 if and only if µ ∈ Mp,q.

Definition 52. We call a set X of (g, K)-modules has disjoint K-spectrums

if any σ ∈ K̂ only occur in at most one (g, K)-module in X .

Remark: A example of X is the set of irreducible subquotients of de-

generate principle series.

Proposition 53. Fix ρ ∈ R(G′
1;Y ).

(i) As (g, K̃2)-module

ΓjΘ(ρ) =
⊕

W⊂
∧jp

W irreducible

ΓWΘ(ρ) =
⊕

j=rs−(r−p)(s−q)

ΓWp,qΘ(ρ).

(ii) As Ũ(n)-module,

ΓWp,qΘ(ρ) =
⊕

µ∈Mp,q

nµτ
Γ(µ)+ p−q

2

Ũ(n)
.

where nµ = dimHomÕ(m)(ρ, τ
µ+ r−s

2
1m

Ũ(m)
).
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(iii) ΓWp,qΘ(ρ) is non-zero and of finite length.

(iv) The set of subquotients of ΓWp,qΘ(ρ) for all p, q have disjoint K-types.

Proof. Part (i) and (ii) are clear from Lemma 51.

To prove (iii), we need following theorem on the stability of branching

from Sato [Sat94].

Theorem 54. Let Λ+ be the lattice of highest weight of U(m) such that,

for λ ∈ Λ+, λ ≥ 0. Let Λ+(O(m)) be the subset of Λ+ such that τµU(m) has

O(m) invariant, which is the subset of Λ+ with even entries :

Λ+(O(m)) =
{
λ ∈ Λ+

∣∣ λ ∈ (2N)m
}
.

For any λ ∈ Λ+ and ρ ∈ Ô(m), let m(λ, ρ) = dimHomO(m)(τ
λ
U(m), ρ).

Then, there exists ηM ∈ Λ+(O(m)) such that

m(λ+ ηM , ρ) = m(λ+ ηM + η, ρ), ∀ η ∈ Λ+(O(m)).

The integer m(λ+ ηM , ρ) does not depend on the choice of ηM . Denote the

integer by m([λ], ρ) and call it the stable branching coefficient. Moreover,

m([λ], ρ) ≥ m(λ, ρ).

To show ΓWp,qV is nonzero. We only have to show there is a µ ∈
Mp,q such that m(µ, ρ) ̸= 0. Note that there always exist a µ, such that

m(µ, ρ) ≥ 1 by the construction of irreducible O(m)-module (c.f. [GW09]).

Nowm(µ+2γ, ρ) ≥ m(µ, ρ) ≥ 1 for γ ≫ 0 sufficiently large. Choose γ such

that (µ+2γ)[p]−(µ+2γ)[p+ 1] ≫ 0. Notice thatm(µ+2k1m, ρ) = m(µ, ρ)

for any k ∈ Z, since it just twist τµU(m) by det2 (trivial when restrict on

O(m)). Therefore µ′ = µ+ 2γ − 2⌊ (µ+2γ)p+(µ+2γ)p+1

4
⌋1m will be an element

in Mp,q such that m(µ′, ρ) ≥ 1. This proves first part of (iii). We will

show ΓWp,q is finite length in the proof of (iv).

Now we prove (iv). Note that, as U(g)H̃ × (h, M̃)-module,

Θ(ρ) =
⊕

Homh,M̃(LH̃(µ),Θ(ρ))⊗ LH̃(µ). (3.14)

By Lemma 51, as U(g)K̃2 × K̃2-module, (note that U(g)K̃2 = U(g)H̃)

ΓWp,qΘ(ρ) =
⊕

µ∈Mp,q

Homh,M̃(LH̃(µ),Θ(ρ))⊗ τ
Γ(µ)+ p−q

2

Ũ(n)
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Recall Lemma 43, as ω(U(g)H) = ω(U(h′)G′
1) module,

Homh,M̃(Θ(ρ), LH̃(µ))
∼= HomG̃′

1
(τµ

H̃′ , ρ).

Since Õ(m) is the maximal compact subgroup of G̃L(m,R), by viewing

τµ
H̃′ as an irreducible G̃L(m,R)-module, we conclude that U(h′)G′

act on

HomG̃′
1
(τµ

H̃′ , ρ) irreducibly. Hence U(g)H̃ act on Homh,M̃(LH̃(µ),Θ(ρ)) irre-

ducibly.

On the other hand, non-zero Γ∗LH̃(µ) are different for different µ since

they have different central character and infinitesimal characters. Hence

the K̃2-isotypic components in Γ∗Θ(ρ) has irreducible (K̃2,U(g)K̃2)-action.

This implies the disjointness of K-spectrum.

Note that all sub-quotients in ΓjΘ(ρ) have the same infinitesimal char-

acter and central character. Therefore ΓjΘ(ρ) has finite length, since it is

K2-admissible. In particular ΓWp,qΘ(ρ) has finite length.

Let 1ξ,η be the character of O(p, q) which is detξ ⊗detη when restricted

on O(p) × O(q). These provide all of the four characters of O(p, q) repre-

sented by 1ξ,η with ξ, η ∈ Z/2Z when p, q are both non-zero (i.e. O(p, q) is

non-compact). When one of p, q is zero, O(p, q) is compact and it only has

two characters: trivial and the determinate. By twisting genuine charac-

ters, we identify O(p, q)-module with Õ(p, q) such that following description

of theta lifting of 1ξ,η holds.

Theorem 55 ([KR90], [Zhu92], [HZ02, Theorem 2.3] or Section 2.3.6).

Suppose p + q ≤ n. Let θp,q(1ξ,η) be the theta lifting of 1ξ,η. Then the

Ũ(n)-types in θp,q(1ξ,η) are exactly of following form:

τ
(a1,··· ,aq ,0,··· ,0,−bq ,··· ,−b1)+

p−q
2

Ũ(n)

where a1 ≥ · · · ≥ ap ≥ 0, b1 ≥ · · · ≥ bq ≥ 0, aj ≡ ξ (mod 2) and bj ≡ η

(mod 2).

Remark: By Li’s work [Li89], θp,q(1ξ,η) are all different irreducible uni-

tary representations of S̃p(2n,R). In particular θp,q(1ξ,η) and θq,p(1ξ,η) are

different although O(p, q) ∼= O(q, p). This difference come from the two

different choices of unitary characters of R when we define oscillator repre-

sentation.

Theorem 56. Let Γp,q := ΓWp,q , we have

Γp,qθ
m,0(1ϵ,ϵ) ∼= θp,q(1ξ,η)
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where ξ = ϵ− (s− q) (mod 2) and η = ϵ− (r − p) (mod 2). Moreover,

Γjθm,0(1ϵ,ϵ) =
⊕

j=rs−(r−p)(s−q),
p≤r, q≤s

Γp,qθ
m,0(1ϵ,ϵ) ∼=

⊕
j=rs−(r−p)(s−q),

p≤r, q≤s

θp,q(1ξ,η).

Proof. Let G′
2 = O(p, q). Note that all modules are K̃2-multiplicity free.

Combine Theorem A and the description of K̃2-spectrum of θp,q(1ξ,η) fin-

ished the proof.

Remark: Here θm,0(10,0) is the dual of L(−m
2
Λ1) in [WZ04]. By changing

the of positive root system to the negative one, we can see above the-

orem confirm the Conjecture 5.1 in [WZ04]. Theorem 56 implies that

Γp,qθ
m,0(1ϵ,ϵ) is irreducible and unitarizable since θp,q(1ξ,η) is by Li’s work [Li89]

of theta lifting in stable range. While there are some criterions for the irre-

ducibility and unitarity of derived functor modules [EPWW85][Fra91][Wal94][WZ04],

our approach is conceptually simpler. Moreover, these criterions seems not

applicable to the lifts of determinate since the original lowest weight mod-

ules do not have scaler K-type.

3.5.1.2 Type D

We consider Type D root system first since it is simpler. Now (G1, G
′
1) =

(O∗(2n), Sp(m)) and n ≥ 2m. H ∼= U(r, s) with r + s = n. (G2, G
′
2) =

(O∗(2n), Sp(p, q)) with p+ q = m. Since S̃p(p, q) ∼= Z/2Z × Sp(p, q), there

is only one genuine character 1, which is trivial when restrict on sp(p, q).

Moreover Õ∗(2n) ∼= Z/2Z×O∗(2n), we identify the genuine representations

of G̃j with Gj by twist with the unique genuine character (or equivalently,

by restrict on the identity component of Õ∗(2n)). We use similar convention

for S̃p(p, q)-module. Let

Γj = RjΓ
so(2n,C),U(n)
so(2n,C),U(r)×U(s).

Let θp,q be the theta lifting from Sp(p, q) to O∗(2n). Following lemma on

the K-spectrum implies Theorem 58 by the same argument in previous

section.

Lemma 57. (i) The U(n)-type ocurre in θp,q(1) has exactly the form

τµU(n), where

µ = (a1, a1, a2, a2, · · · , ap, ap,0n−2(p+q),−bq,−bq, · · · ,−b2,−b2,−b1,−b1)+(p−q)1n
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and a1 ≥ · · · ap ≥ 0, b1 ≥ · · · bq ≥ 0.

(ii) As (gl(n,C),U(r)× U(s))-module,

θm,0(1) =
⊕
2p≤r
2q≤s

⊕
µ∈M0

p,q

LU(r,s)(µ)

where

M0
p,q =

{
µ =

(a1, a1, a2, a2, · · · ap, ap,
−bq,−bq, · · · ,−b1,−b1)

∣∣∣∣∣ a1 ≥ · · · ≥ ap ≥ 0,

b1 ≥ · · · ≥ bq ≥ 0

}

and LU(r,s)(µ) is with respect to dual pair (U(r, s),U(2m)).

Theorem 58. Let Γp,q = ΓW2p,2q . Then

Γp,qθ
m,0(1) ∼= θp,q(1)

and

Γjθm,0(1) =
⊕

j=rs−(r−2p)(s−2q),
2p≤r, 2q≤s

Γp,qθ
m,0(1) ∼=

⊕
j=rs−(r−2p)(s−2q),

2p≤r, 2q≤s

θp,q(1).

Proof. By Lemma 57 and same argument as previous section.

3.5.1.3 Type A

Let (G1, G
′
1) = (U(n′

1, n
′
2),U(m)) such that n′

1, n
′
2 ≥ m. SetH = U(r1, s1)×

U(s2, r2) such that r1 + s2 = n′
1 and s1 + r2 = n′

2. Let n1 = r1 + s1,

n2 = r2 + s2. and (G2, G
′
2) = (U(n1, n2),U(p, q)) with p + q = m. Also

assume stable range condition n1, n2 ≥ m. We will transfer Ũ(n′
1, n

′
2) rep-

resentation into Ũ(n1, n2) representation. By identify genuine character of

Ũ(p, q) with its restriction on Lie algebra, for integer or half-integer α, let

detα be the genuine character of Ũ(p, q) which restrict on gl(p + q,C) has

(highest) weight α1p+q. Let θp,qn1,n2
be the theta lifting of from U(p, q) to

U(n1, n2).

There are two sources of complexity for pair (U(n1, n2),U(m)): (i) n1

and n2 could be different; (ii) there are infinite many unitary characters of

U(m). In fact, the set of unitary characters of U(m) is isomorphic to Z

(the Pontryagin dual of U(1)). The theta lifts varies in a tricky way when

n1 − n2 and unitary character changes(c.f. [PT02]). Here we only consider

a very special unitary character.
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Lemma 59. (i) The Ũ(n1)×Ũ(n2)-type occur in θ
p,q
n1,n2

(detα) are of form

τµ1

Ũ(n1)
⊗ τµ2

Ũ(n2)
where

µ1 =(a,0,−bt) +
p− q

2
1n1 µ2 =(c,0,−dt) +

q − p

2
1n2

and a,d (resp. b, c) are arrays of decreasing non-negative integers of

length p (resp. q) such that

c =
n1 − n2

2
+ b+ α1q

d =
n1 − n2

2
+ a− α1p.

(ii) Suppose α =
n′
1−n′

2

2
, then θm,0

n′
1,n

′
2
(detα) is a lowest weight module with

scaler K-type. As u(r1, s1)× u(s2, r2)-module

θm,0(detα) =
⊕
p,q

⊕
µ1,µ2

LŨ(r1,s1)
(µ1)⊗ LŨ(s2,r2)

(µ2)

where

µ1 =(a,−bt) µ2 =(c,−dt)

such that a (resp. b) is array of decreasing non-negative integers of

length p (resp. q) and a = d and b = c. Here p, q run over non-

negative integers such that p+ q = m, p ≤ r1, r2 and q ≤ s1, s2. Such

p, q exists by the “stable range” assumption, i.e. n1, n2, n
′
1, n

′
2 ≥ m.

Theorem 60. Let α =
n′
1−n′

2

2
and Γp,q = ΓWp,q⊗Wq,p, then

Γp,qθ
m,0
n′
1,n

′
2
(detα) ∼= θp,qn1,n2

(detα).

and

Γjθm,0
n′
1,n

′
2
(detα) =

⊕
p≤r1,r2
q≤s1,s2

Γp,qθ
m,0
n′
1,n

′
2
(detα) ∼=

⊕
p≤r1,r2
q≤s1,s2

θp,qn1,n2
(detα).

In particular, let n1 = n2 = n′
1 = n′

2 = n, r1 = r2 = r, s1 = s2 = s and

θp,q(1) := θp,qn,n(det
0). Then

Γjθm,0(1) =
⊕

j=2(rs−(r−p)(s−q)),
p≤r,q≤s

Γp,qθ
m,0(1) ∼=

⊕
j=2(rs−(r−p)(s−q)),

p≤r,q≤s

θp,q(1)
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3.5.2 Transfer of theta lifts of unitary characters and

unitary lowest weight module of Hermitian sym-

metric groups

In this section we first study the transfer of theta lifts of characters from

non-compact groups. As an application and an extension of these results,

we discuss the transfer of unitary lowest weight modules via a restriction

method from [LMT11b].

3.5.2.1 Notation

We will consider series of reductive groups in Table 3.2, where (Gp,q, G′)

form a reductive dual pair.

Gp,q G′ Stable range j0
Case R O(p, q) Sp(2n,R) p, q ≥ 2n,max { p, q } > 2n nr
Case C U(p, q) U(n1, n2) p, q ≥ n1 + n2 (n1 + n2)r
Case H Sp(p, q) O∗(2n) p, q ≥ n 2nr

Table 3.2: List of dual pairs I

First recall that the double covering of G′ is depends on the parity of

p+ q. We use the restriction on g′ to parametrize genuine (g′, K̃ ′)-module

since G′ is always connected in our case.

Fix integers r, r′ such that r + r′ = q. Define

LG̃′(µ) := θ(τµ
G̃r′,0) (3.15)

to be the theta lift of τµ
G̃r′,0 from G̃r′,0 to G̃′. Here we use letter L to

emphasis that LG̃′(µ) is a lowest weight module.

Warning: Although Gr′ := Gr′,0 ∼= G0,r′ , the theta lifting maps for

pairs (Gr′,0, G′) and (G0,r′ , G′) are different. The two theta lifting maps are

dual to each other (see [Prz88, Theorem 5.5] ): LG̃′(µ) is the theta lift of

τµ
G̃r′ from Gr′ to G′ if and only if the contragredient

(
LG̃′(µ)

)∗
is the theta

lift of (τµ
G̃r′ )

∗ from Gr′ to G′. In case R and H, G̃r′-module is self-dual i.e.

(τµ
G̃r′ )

∗ = τµ
G̃r′ .

Let θp,q (resp. Θp,q) be the theta lifting (resp. full theta lifting map)

from G′ to Gp,q. Consider a symmetric subgroup H of Gp,q in the form of

H1 ×H2
∼= Gp,r ×G0,r′ . Let h := h1 ⊕ h2 := Lie(H1)C ⊕ Lie(H2)C. Assume

the corresponding involution defining H commute with the fixed Cartan

involution for Gp,q. Let KH1 = Gp,0 × G0,r be the corresponding maximal

compact subgroup of H1. Meanwhile, H2 = G0,r′ is already compact.
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Let Y be the Fock model for pair (Gp,q, G′). When restricted on the

pair (H1 ×H2, G
′ ×G′),

Y = Y1 ⊗ Y2

where Yj is the Fock model of reductive dual pair (Hj, G
′) with j = 1, 2.

Fix a character ρ ∈ R(g′, K̃ ′;Y ). (LG′(µ)⊗ ρ)|g′ determines a genuine

G̃′-module, where G̃′ is the double covering of G′ defined by pair (Gp,r, G′).

Definition 61. We define the (h1, G̃
p,0 × G̃0,r)-module

Θp,r
ρ (µ) :=

Θp,r(LG̃′(µ)⊗ ρ) if LG̃′(µ)⊗ ρ ∈ R(g′, K̃ ′;Y1);

0 otherwise.
(3.16)

We define θp,rρ (µ) in a same way, so θp,rρ (µ) is the unique irreducible quotient

of Θp,r
ρ (µ) if it is non-zero.

When ρ|g′ is trivial, θp,rρ (µ) is the two step theta lift of τµ
G̃r′,0 if it is

non-zero. In this case we omit the subscript ρ and so we have Θp,r(µ) =

Θp,r(LG̃′(µ)) and θp,r(µ) = θp,r(LG̃′(µ)).

3.5.2.2 Restriction method.

The following lemma is from Loke.

Lemma 62 (Lemma 4.2.1 [LL06]). Let ρ be a character in R(g′, K̃ ′;Y ).

Then,

(i) As (h1, K̃H1)× H̃2-modules,

Θp,q(ρ) =
⊕

(τµ
H̃2

)∗∈R(H̃2;Y2)

Θp,r
ρ (µ)⊗ (τµ

H̃2
)∗, (3.17)

(ii) τµ
H̃2

↔ Θp,r
ρ (µ) is an one-one correspondence and there is a correspon-

dence of their infinitesimal characters, which is independent of real

forms.

When ρ is an unitary character and (Gp,q, G′) is in the stable range,

(iii) Θp,r
ρ (µ) = θp,rρ (µ) is irreducible and unitarizable if it is non-zero.

Proof. Since H̃2 is compact, Θp,q(ρ) can be decompose into H̃2-isotypic

component, i.e.

Θp,q(ρ) =
⊕
τ∈ ̂̃

H2

A(τ)⊗ τ,
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where A(τ) ∼= HomH̃2
(τ,Θp,q(ρ)). The projection into H̃2-isotypic com-

ponent τ will give rise a non-zero map from Y2 to τ , hence τ runs over

R(H̃2;Y2). Now we show that A((τµ
H̃2
)∗) ∼= Θp,r

ρ (µ). Consider commuta-

tive diagram (3.18). All arrows are (h1, K̃H1) × H̃2 × (g′, K̃ ′) equivariant.

Y1 ⊗ Y2
// //

� _

∼=
����

Θp,q(ρ)⊗ ρ // //

(( ((

A(τµ
H̃2

)⊗ (τµ
H̃2

)∗ ⊗ ρ

Y1 ⊗
⊕

(τµ
H̃2

)∗ ∈ R(H̃2;Y2)

L∗
G̃′(µ)⊗ (τµ

H̃2
)∗ // // Y1 ⊗ L∗

G̃′(µ)⊗ (τµ
H̃2

)∗ // //

η
66 66mmmmmmmmmmmmmmmmmm

Θp,r
ρ (µ)⊗ ρ⊗ (τµ

H̃2
)∗

η̄

OOOO�
�
�
�

(3.18)

Map η factor through η̄ by the definition of maximal Howe quotient Θp,r
ρ (µ)

and following natural isomorphism5

Homg′,K̃′(Y1 ⊗ L∗
G̃′(µ), ρ) ∼= Homg′,K̃′(Y1, LG̃′(µ)⊗ ρ). (3.19)

On the other hand, ⊕
(τµ

H̃2
)∗∈R(H̃2;Y2)

Θp,r
ρ (µ)⊗ (τµ

H̃2
)∗ ⊗ ρ

is a quotient of Y such that g′ act by character ρ and Θp,q(ρ) is the maximal

one. So there is a natural surjection from left hand side of (3.17) to its

right hand side. This implies A((τµ
H̃2
)∗) ∼= Θp,r

ρ (µ).

For (ii), the correspondence is one-one since theta lifting map is an

bijection. The correspondence of infinitesimal characters is from the in-

finitesimal character correspondence of theta lifting [Prz96].

Now let ρ be a unitary character and (Gp,q, G′) be in the stable range.

Θp,q(ρ) = θp,q(ρ) is an unitary representation (c.f. Section 2.3.6). Clearly

Θp,r
ρ (µ) is unitarizable with unitary structure inherent from θp,q(ρ). There-

fore it is a direct sum of its irreducible component, since it has finite length.

On the other hand, Howe’s theory of theta lifting says Θp,r
ρ (µ) has only one

irreducible quotient. This implies that Θp,r
ρ (µ) is irreducible and isomorphic

to θp,rρ (µ). This complete the proof of the lemma.

The following lemma is easy consequence.

5In general, Homg,K(V ⊗ U,W ) ∼= Homg,K(V,HomC(U,W )K−finite). In our case,
HomC(U, ρ)K−finite

∼= U∗ ⊗ ρ since ρ is a character.
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Lemma 63. As G̃p,0 × G̃0,q module Θp,q(ρ),

Θp,q(ρ) =
⊕
ν∈Λ

τ
ξ(ν)

G̃p,0
⊗ τ ν

G̃0,q

where Λ is a set of array of (half-)integers parametrizing G̃0,q-modules and

ξ maps ν into another array of (half-)integers correspond to G̃p,0-module.

As G̃p,0 × G̃0,r-module,

Θp,r
ρ (µ) =

⊕
ν∈Λ,τν′

G̃0,r∈
̂̃
G0,r

τ
ξ(ν)

G̃p,0
⊗τ ν′

G̃0,r ·dimHomG̃0,r×G̃0,r′ (τ
ν′

G̃0,r ⊗(τµ
G̃0,r′ )

∗, τ ν
G̃0,q),

where the dimension of the Hom-space is the multiplicity of K-type.

Remark: It is difficult to calculate the explicitK-type formula for Θp,r
ρ (µ)

in general, since it is equivalent to the branching problem of finite dimen-

sional representations. However, one can show the occurrence of some

special K-type by above lemma. Combining with its unitarizability and

informations on infinitesimal characters, this is enough for us to show that

θp,rρ (µ) is certain Aq(λ) with non-zero cohomology by [VZ84].

For now on, let ρ be an unitary character in R(g′, K̃ ′;Y ) and (G,G′)

is in the stable range. Let G1 = Gp,q, G′
1 = G′

2 = G′. Construct G2 as

in Section 3.5.1 such that G2
∼= Gp+r,q−r, its maximal compact subgroup

K2
∼= Gp+r,0 × G0,q−r and Lie(K2)C = h. Now M := H ∩K2 = KH1 ×H2

is the maximal compact subgroup of H. Recall that

Γj = Rj(Γg,K̃2

g,M̃
) ◦ Fg,M̃

g,K̃1
: C (g, K̃1) → C (g, K̃2). (3.20)

Let Γj
c ≜ Rj(Γh1,G̃p+r,0

h1,K̃H1

). Then

Rj(Γh,K̃2

h,M̃
)(θp,rρ (µ)⊗ (τµ

H̃2
)∗) =Rj(Γh1⊕h2,G̃p+r,0×H̃2

h1⊕h2,K̃H1
×H̃2

)(θp,rρ (µ)⊗ (τµ
H̃2
)∗)

∼=Γj
c(θ

p,r
ρ (µ))⊗ (τµ

H̃2
)∗

by the definition of Zuckerman functor and the fact that H̃2 is already

compact. Therefore, by Lemma 62, as K̃2-module,

Γjθp,q(ρ) =
⊕

τµ
H̃2

∈R(H̃2;Y2)

Γj
c(θ

p,r
ρ (µ))⊗ (τµ

H̃2
)∗.

Since θp,rρ (µ) is unitarizable, Γj
c(θ

p,r
ρ (µ)) is non-zero, only if θp,rρ (µ) is certain

Aq(λ) and its infinitesimal character should be non-singular by [VZ84].
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3.5.2.3 Statement of the main theorem

For simplicity6, we will only consider the case that ρ|g′ is trivial. This

condition implies that p + q will be even in Case R and Case C. We also

only stay in the stable range, hence θp,q(1) is non-zero and unitary. Recall

Definition 61, we have θp,r(µ).

Now we state the main theorem in this section.

Theorem 64. Assume p + q is even in case R and case C. Let θp,q(1) be

the theta lifts of trivial representation of G′.

(i) If (Gp+r,q−r, G′) is outside the stable range, then Γjθp,q(1) = 0.

(ii) If (Gp+r,q−r, G′) is in the stable range, then

Γjθp,q(1) =

θp+r,q−r(1) if j = j0

0 j < j0,

where j0 = nr, (n1 + n2)r and 2nr in case R,C and H respectively as

listed in Table 3.2.

Proof. By Theorem A and K-spectrum comparison, the theorem follows.

Remark:

1. We will provide the K-spectrum data case by case in the end of this

section.

2. For all cases, G̃′ ∼= Z/2Z×G′. Let ς ′ be the unique genuine character

of G̃′ trivial on G′. We identify the genuine G̃′-module with the G′-module

ς ′ ⊗ V , i.e. θp,q(1) means θp,q(ς ′).

3. The infinitesimal character of θp,r(µ) and therefore Γj
c(θ

p,r(µ)) is de-

termined by µ. So the Kc-module Γj
c(θ

p,r(µ)) is determined7 by µ if it is

non-zero. On the other hand, the infinitesimal character correspondence

between h1 and h2-module is independent of real form. Therefore, if the

derived functor module is non-zero, the K-type satisfied the correct con-

strain, so it is reasonable to expect the transfer of θp,r(1) is some copies of

θp+r,q−r(1). Careful computations are needed to determine the multiplicity

for each degree j.

6Trivial representation is the only unitary character of Sp(2n,R)(or O∗(2n,R)). How-
ever, powers of determinate form a finite family of unitary character of U(n1, n2).

7For case R, up to determinate character
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4. We will identify θp,r(µ) as Aq(λ) when its infinitesimal characters is

non-singular. The θ-stable parabolic q is independent of µ and λ. Now

Γjθp,r(µ) is mj copies of K-module with highest weight λ where

mj = dimHoml∩k(
∧j−j0

(l ∩ p),C)

and j0 = dim u ∩ p (c.f. [VZ84] or Appendix 2.4). Hence, in fact, Γjθp,q(1)

will be mj copies of θp+r,q−r(1). We only state the result for the first

non-zero degree j0, since derived functor modules of higher degree do not

construct any new objects.

5. The result of case R may consider as a generalization of an example

of Enright et al. [EPWW85, Section 8]. They studied the transfer of ladder

representation of SO(2, 2n), which is theta lift of the trivial representation

from SL(2,R) = Sp(2,R).

By a restriction argument, we obtain a result on the transfer of theta

lifts of lowest weight modules, see Corollary 65.

Corollary 65. Let Γj be the derived functor transfers G̃p,r-module to G̃p+t,r−t-

module as in8 (3.20). Suppose (Gp,r+r′ , G′) is in the stable range such that

p+ r + r′ is even in Case R and C. Then, for 0 < t ≤ r,

(i) if (Gp+t,r+r′−t, G′) is not in the stable range, Γjθp,r(µ) = 0;

(ii) if (Gp+t,r+r′−t, G′) is in the stable range,

Γjθp,r(µ) =

θp+t,r−t(µ) if j = j0

0 otherwise,

where j0 = nt, (n1 + n2)t and 2nt in case R,C and H respectively.

Proof. The proof is exactly same as in [LMT11b]. For completeness we

repeat the proof here. By Lemma 62,

θp,r(µ) = HomG̃0,r′ ((τ
µ

G̃0,r′ )
∗, θp,r+r′(1)),

where the gp,r-module structure is from θp,r+r′(1). Therefore

Γjθp,r(µ) ∼=HomG̃0,r′ ((τ
µ

G̃0,r′ )
∗,Γjθp,r+r′(1))

=HomG̃0,r′ ((τ
µ

G̃0,r′ )
∗, θp+t,r+r′−t(1)) = θp+t,r−t(µ).

8Replace q, r by r, t respectively.
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Above equation is an (Lie(Gp+t,r−t)C, G̃
p+t,r−t)-module isomorphism, be-

cause its action commute with G̃0,r′ .

Now we provide data for the proof of Theorem 64.

3.5.2.4 Case R

This case is treated in [LMT11b].

First we write the double cover of O(p, q) explicitly 9. We have

Õ(p+ q,C) ∼=
{
(g, ε) ∈ Õ(p+ q,C)× C×

∣∣∣ det(g) = εn
}
.

Define ς : Õ(p + q,C) → C× by (g, ε) 7→ ε, which is a genuine character of

Õ(p+ q,C) and its restriction on Õ(p, q) is also a genuine character.

We identify the set of genuine representation Õ(p, q) with the set of

representations of O(p, q) by map π 7→ ς ⊗ π. Since ς is actually a genuine

character on Õ(p+ q,C), we have:

ς ⊗ ΓjV = Γj(ς ⊗ V ),

and both side factor through corresponding linear group. Therefore, we

reduce the transfer problem to the linear group.

Note that p+q is even, S̃p(2n,R) = Sp(2n,R)×Z/2Z is a trivial central

extension of Sp(2n,R). Let ς ′ be the unique genuine character of S̃p(2n,R).

Again we will identify the genuine representation π′ of S̃p(2n,R) with the

representation π′ ⊗ ς ′ of Sp(2n,R). Now consider the transfer of the theta

lifts θp,q(1).

Lemma 66. (i) As O(p)×O(q)-module,

θp,q(1) =
⊕

a=(a1,··· ,an)

detpτ
(a− p−q

2
1n,0p−n)

O(p) ⊗ τ
(a,0q−n)

O(q) , (3.21)

9One may also use co-cycle c(g, h) = (det(g), det(h))nR to define the double cover,
where( , )R is the Hilbert symbole of R, i.e. (a, b)R is 1 if a or b positive, is −1 otherwise.

Then Õ(p + q,C) = O(p + q,C) × µ2 (µ2 = { ±1 }) with group law (g1, ϵ1)(g2, ϵ2) =

(g1g2, c(g1, g2)ϵ1ϵ2). Define Õ(p, q) to be the inverse image of O(p, q) ⊂ O(p + q,C).
Define

χ0(g, ϵ) =

{
ϵ if det(g) > 0,

−ϵi if det(g) < 0.
ς(g, ϵ) =

{
ϵ if n is even;

χ0(g, ϵ)
−1 if n is odd.

In particular, the double covering of O(p, q) and generic character ς only depends on
the dimension of the symplectic space.
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where the direct sum is run over a = (a1, · · · , an) such that ai are

non-negative integers and a1 ≥ · · · ≥ an ≥ min
{

p−q
2
, 0
}
.

(ii) Restrict on (so(p+ r),O(p)×O(r))×O(r′),

θp,q(1) =
⊕

µ∈Ô(r′)

θp,r(µ)⊗ τµO(r′)

where µ = (µ1, · · · , µn), θ
p,r(µ) is irreducible unitarizable or zero de-

pending on whether τµO(r′) occur in some τ
(a,0q−n)

O(q) of (3.21).

(iii) Let l = p+r−r′

2
and

ξ(µ) = (µ− l1n,0).

Then θp,r(µ) have regular infinitesimal character if and only if r′ ≥ 2n

and µn ≥ l.

(iv) When θp,r(µ) has regular infinitesimal character, as so(p+r,C)-module,

θp,r(µ) =

Aq(ξ(µ)) if p > 2n,

Aq(ξ(µ))⊕ Aq′(ξ
′(µ)) if p = 2n,

where Aq′(ξ
′(µ)) is the conjugate of Aq(ξ(µ)) by an element in O(2n)\

SO(2n).

(v) Under the assumption of (iv), if W is an irreducible O(p) × O(r)-

submodule of
∧j p with highest weight (l1n,0p−n),

ΓW (θp,r(µ)) = detnτ
ξ(µ)
O(p+r).

In fact, such module fist occur in
∧nr p and occur in

∧nr+j p with

multiplicity mnr+j = dim(Homl∩k(
∧j l ∩ p,C)) (c.f. [VZ84]).

3.5.2.5 Case H

In this case, both S̃p(p, q) and Õ∗(2n) are trivial coverings. Hence, there is

only one genuine character of both group. We also reduce to linear groups

as in Section 3.5.2.4.

Lemma 67. (i) As Sp(p)× Sp(q)-module,

θp,q(1) =
⊕

a=(a1,··· ,an)

τ
(a−(p−q)1n,0p−n)

Sp(p) ⊗ τ
(a,0q−n)

Sp(q) . (3.22)
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(ii) Restrict on (sp(p+ r), Sp(p)× Sp(r))× Sp(r′),

θp,q(1) =
⊕

µ∈Ŝp(r′)

θp,r(µ)⊗ τµO(r′)

where µ = (µ1, · · · , µn), θ
p,r(µ) is irreducible unitarizable or zero de-

pending on whether τµSp(r′) occur in some τ
(a,0q−n)

Sp(q) .

(iii) Let l = p+ r − r′ and

ξ(µ) = (µ− l1n,0).

Then θp,r(µ) have regular infinitesimal character if and only if r′ ≥ n

and µn ≥ l.

(iv) When θp,r(µ) has regular infinitesimal character, as sp(p+r,C)-module,

θp,r(µ) = Aq(ξ(µ)).

(v) Under the assumption of (iv), if W is an irreducible Sp(p) × Sp(r)-

submodule of
∧j p with highest weight (2r1n,0p−n),

ΓW (θp,r(µ)) = τ
ξ(µ)
Sp(p+r).

In fact, such module fist occur in
∧2nr p and occur in

∧2nr+j p with

multiplicity m2nr+j = dim(Homl∩k(
∧j l ∩ p,C)) (c.f. [VZ84]).

3.5.2.6 Case C

Note that p+ q is even and Ũ(n1, n2) ∼= Z/2Z × U(n1, n2).

Lemma 68. (i) As Ũ(p)× Ũ(q)-module

θn1,n2(1) =
⊕
a,b

τ
(a− p−q

2
,0,−(bt− p−q

2
))+

n1−n2
2

Ũ(p)
⊗ τ

(b,0,−at)+
n2−n1

2

Ũ(q)
(3.23)

where a (resp. b) are arrays of decreasing non-negative integers of

length l (resp. n) such that b− p−q
2

and a− p−q
2

are also non-negative.

(ii) Restrict on (u(p+ r), Ũ(p)× Ũ(r))× Ũ(r′),

θp,q(1) =
⊕

µ∈̂̃
U(r′)

θp,r(µ)⊗ (τµ
Ũ(r′)

)∗
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where θp,r(µ) is irreducible unitarizable or zero depending on whether

(τµ
Ũ(r′)

)∗ occur in some τ
(b,0,−at)+

n2−n1
2

Ũ(q)
appeared in (3.23).

(iii) Let l = p+r−r′

2
.For µ = (a,0,−bt) + n1−n2

2
, let

ξ(µ) = (a− l1n1 ,0p−(n1+n2),−(bt − l1n2),0r) +
n1 − n2

2
.

Then θp,r(µ) have regular infinitesimal character if and only if r′ ≥
n1 + n2, an1 ≥ l and bn2 ≥ l.

(iv) When θp,r(µ) has regular infinitesimal character, as u(p+r,C)-module,

θp,r(µ) = Aq(ξ(µ)).

(v) Under the assumption of (iv), let W be a irreducible U(p) × U(r)-

submodule of
∧j p with highest weight (r1n1 ,0p−(n1+n2),−r1n2)⊗(n2−

n1)1r. Then

ΓW (θp,r(µ)) = τ
ξ′(µ)
U(p+r),

where ξ′(µ) = (a − l1n1 ,0p+r−(n1+n2),−(bt − l1n2)) +
n1−n2

2
is the

highest weight10. In fact, such module fist occur in
∧(n1+n2)r p.

3.A A surjectivity result of Helgason

In this section, we prove Lemma 45. The proof is essentially just repeat

Shimura’s argument[Shi90].

Proof of Lemma 45. We first reduce the problem to the case that H is

compact.

Note that, there always exist another real form g′0 of g such that k0 ≜
h∩g′0 is compact. This can be down as following. Extend σ to an involution

on g. There exist a Cartan involution θ of g (view as real Lie algebra)

commute with σ. Let g′0 = gσθ. Now σ is a Cartan involution on g′0 and

k′0 = g′0
σ = h ∩ gθ is compact with complexification h.

Note that G is a covering, say p : G → GR, of in an open subgroup GR

of the real points of certain affine algebraic group GC defined over R (c.f.

[Wal88, Section 2.1]).

Let KH be the maximal compact subgroup of H respect to Cartan

involution θ. Clearly Lie(KH) = gθ0 ⊂ k0. Now let G′ be the subgroup

of GC generated by p(KH) and exp(g0). Then the group generated by

10ξ′(µ) is conjugate to ξ(µ) under Weyl group action
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p(KH) and exp(k0) is the maximal compact subgroup K ′ of G′ respect to

the Cartan involution σ.

The character ρ of H induce a character of U(h). By possibly going

to certain covering of K ′ (by abuse of notation we still call it K ′ and G′

denote the corresponding covering), we may extend ρ to a character of K ′.

Therefore, we constructed a real from G′ of g such that

U(g)G = U(g)G′
and U(g)H = U(g)K′

Hence we only have to prove

U(g)G′ → U(g)K′
/(JρU(g) ∩ U(g)K′

)

is surjective. This is Lemma 71 which we will prove later.

From now on, let G be a real reductive group. Let g0 be its Lie algebra,

Let σ be a Cartan involution on g0 such that g0 decompose into k0 ⊕ p0

under σ. Let ρ be a character of K. Although Theorem 70 below is proved

for connected semi-simple group in [Shi90, Section 2], Shimura’s argument

also work for our case.

Now we repeat Shimura’s proof here. Let C∞(G) be the set of C∞

functions on G. Define

C∞(ρ) = { f ∈ C∞(G) | f(kg) = ρ(k)f(g) } .

View C∞(G) as a right U(g)-module where element in U(g) act on C∞(G)

as right invariant differential operator. Let D(ρ) be the subalgebra of U(g)
which maps C∞(ρ) into itself. Let D(ρ) be the image of D(ρ) in the ring

of right invariant differential operators. Then

[f · (AdkB)](g) =
d

dt

∣∣∣∣
t=0

f(exp(tAdkB)g)

=
d

dt

∣∣∣∣
t=0

f(k exp(tB)k−1g)

=ρ(k)[f ·B](k−1g), ∀f ∈ C∞(ρ), k ∈ K,B ∈ g0.

(3.24)

Above equation still true for B ∈ U(g). For any B ∈ U(g)K , [f · B](g) =

ρ(k)[f ·B](k−1g). Therefore, U(g)K preserve the space C∞(ρ), i.e. U(g)K ⊂
D(ρ).

For any X ∈ k0 and f ∈ C∞(ρ), we have [f · X](g) = ρ(X)f . In

particular, fB = ρ(B)f for all B ∈ U(t) and f ∈ C∞(ρ).
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Let Jρ = Ann U(k)(ρ) be the annihilator ideal of ρ in U(k).
Let ψ : S(g) → U(g) be the symmetrization map (c.f. [Shi90, Section 1])

characterized by the property that ψ(Xr) = Xr for every X ∈ g. ψ is G-

equivariant, i.e. ψ(Ad(g)B) = Ad(g)ψ(B) for all B ∈ S(g).

Proposition 69 (Proposition 2.1 and Proposition 2.3 [Shi90]). (1) An el-

ement B ∈ U(g) annihilates C∞(ρ) if and only if B ∈ Jρ U(g).

(2) D(ρ) = U(g)K + Jρ U(g).

(3) The natural map of D(ρ) onto D(ρ) gives an isomorphism of U(g)K/(U(g)K∩
Jρ U(g)) onto D(ρ).

(4) The symmetrization map ψ gives a C-linear bijection from S(p)K to

D(ρ).

Proof. It is clear that JρU(g) annihilate C∞(ρ). To prove the converse,

recall that the map K × p0 → G given by (k,X) 7→ k exp(X) is a diffeo-

morphism. Therefore the map given by

h 7→ (fh : k exp(X) 7→ ρ(k)h(X)) ∀h ∈ C∞(p0)

is a C-linear bijection between C∞(p0) and C
∞(ρ). Identify S(p) with the

space of complex coefficient differential operators on C∞(p0). Now it is

easy to see that

[fh · ψ(B)](e) = [h ·B](0) ∀B ∈ S(p), (3.25)

where e is the identity of G. By PBW-theorem,

Ur(g) =
⊕
s+t≤r

ψ(Ss(k))ψ(St(p)). (3.26)

Suppose T ∈ D(ρ) ∩ Ur(g), T =
∑

iCiψ(Bi) with Ci ∈ U(k) and {Bi } a

basis of Sr(p). If T annihilate C∞(ρ), 0 = [fh · T ](1) =
∑

i ρ(Ci)[h ·Bi](0).

Since Bi is linearly independent, by choosing suitable h, we have ρ(Ci) = 0

for every i. Therefore T ∈ JρU(g). This proves (1).
By equation 3.24, [f · (AdkB)](g) = [f · B](g) if B ∈ D(ρ) and f ∈

C∞(ρ), i.e. B − AdkB annihilate C∞(ρ). Take the Haar measure on K

such that the total measure of K is 1. Then B −
∫
K
AdkB dk ∈ JρU(g).

This proves (2). (3) is clear from (1) and (2).

Again by PBW-theorem, U(g) = U(k) ⊗ ψ(S(p)). For any X ∈ U(g),
there is Ci ∈ U(k) and Bi ∈ S(p) such that X =

∑
iCiψ(Bi). Now f ·X =
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∑
i ρ(Ci)f ·Bi and f · (AdkX) =

∑
i ρ(Ci)f · (AdkBi). Hence, by averaging

on K, one can see S(p)K is surjective to D(ρ) since U(g)K is surjective to

D(ρ). By equation (3.25) and suitable choice of h, one conclude that ψ is

injective. This proves (4).

Theorem 70 (Theorem 2.4 [Shi90]). Suppose that

ψ(Sr(g)
G) + kU(g) ⊃ ψ(Sr(p)

K) ∀r ∈ N. (3.27)

Then Z(g) maps onto U(g)K/(Jρ U(g) ∩ U(g)K).

Proof. Since U(g)K/(Jρ U(g) ∩ U(g)K) ∼= D(ρ), we will prove Z(g) maps

onto D(ρ). Prove by induction on r that ψ(Sr(p)
K) action on C∞(ρ) can

be obtained from ψ(Sr(g)
G). Let B ∈ ψ(Sr(p)

K). By (3.27), there is

T ∈ ψ(Sr(g)
G) such that B − T ∈ kU(g). By PBW-theorem, Ur(g) =

ψ(Sr(p)) ⊕ kUr−1(g). Therefore B − T ∈ kUr−1(g). Applying (3.26) to

Ur−1(g), we have B − T =
∑

iQiψ(Pi) with Pi ∈ Sr−1(p) and Qi ∈ U(k).
It is clear that B − T act on C∞(ρ) by

∑
i ρ(Qi)ψ(Pi). Note that Pi and∫

K
AdkPi dk ∈ Sr−1(p)

K has same action on C∞(ρ) which can be obtained

from ψ(Sr−1(g)
G) by the induction hypothesis. Therefore B action can be

obtained from ψ(Sr(g)
G) and this complete the proof.

Helgason (Proposition 7.4 and Theorem 7.5 (i) in [Hel64]) essentially

proved equation (3.27) is true if G is connected classical semisimple Lie

group.A later paper of Helgason [Hel92] implies equation (3.27) is true for

connected semisimple Lie group if and only if G does not contain any simple

factor of the following exceptional types: e6(−14), e6(−26), e7(−25) and e8(−24).

Now extend this result to the reductive dual pair setting as following.

Let g0 be a reductive Lie algebra with all simple factors classical. Let G0

be the connected component of G and K0 the connected component of K,

which is also a maximal compact subgroup of G0. We have g0 = c0 ⊕ gs0

where gs0 = [g0, g0] is the semisimple part of g0 and c0 is the center of g0.

gs0 has Cartan decomposition gs0 = ks0 ⊕ ps0. Moreover c0 = t0 ⊕ a0 with

t0 = c0 ∩ k0 and a0 = c0 ∩ p0.

Now S(g) = S(c)⊗S(gs) and S(p) = S(a)⊗S(ps). SinceG0 is generated

by exp(g0),

S(g)G0

=S(g)g0 = S(c)⊗ S(gs)gs ;

S(p)K0

=S(p)k0 = S(a)⊗ S(ps)ks0 .
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Therefore, by Helgason’s result,

ψ(Sr(g)
g0) + kU(g) ⊃ ψ(Sr(p)

k0).

Since G is generated byK and exp(g0), Sr(g)
G = (Sr(g)

g0)K . Averaging

over K we conclude equation (3.27) holds. In fact, for any P ∈ Sr(p)
K ⊂

Sr(p)
k0 , there exist P ′ ∈ Sr(g)

g0 such that ψ(P ) = ψ(P ′)+XB with X ∈ k

and B ∈ U(g). We have

ψ(P ) = ψ(

∫
K

AdkP dk) =

∫
K

[Adkψ(P
′)+(AdkX)(AdkB) ]dk ⊂ ψ(Sr(g)

G)+kU(g)

since
∫
K
AdkP

′ dk ∈ Sr(g)
G.

Combine above argument with Theorem 70, we get following lemma

and finished the prove of Lemma 45.

Lemma 71. Lemma 45 holds when H is compact.



Chapter 4

Lifting of invariants under

local theta correspondence

4.1 Introduction

Irreducible representations of real reductive groups are parametrized by

Langlands parameters, which could be think as the finest invariants con-

taining complete informations. But, Langlands parameters are difficult

to calculate, especially for theta lifts. On the other hand, we can define

coarser invariants. These invariants not only are easier to be calculated in

some cases but also directly provide some informations about a represen-

tation. Here, we study some invariants reflect the “size” and K-spectrums

of representations.

For compact group, the dimension of an irreducible module is an in-

variant which measures its “size”. For an infinite-dimensional irreducible

module of a non-compact real reductive group, by taking a filtration of

the module, one can define invariants by commutative ring theory, such as

the Gelfand-Kirillov dimension, the associated variety and the associated

cycle, estimating the growth of dimensions when degree increases.

To state the main theorems we briefly review the definition of associ-

ated cycle. Let V be a finitely generated admissible (g, K)-module. Taking

a “good filtration” on V , which is K-invariant, the graded module GrV

will be a finitely generated S(p)-module with compatible K-action. The

associated cycle AC(V ) of V is defined to be the N-linear combination of

the isolated primes of GrV , where the coefficient of each prime is its multi-

plicity in GrV . Since GrV has K-equivariant action, AC(V ) is a N-linear

combinations of KC-coadjoint orbits in p∗ (c.f. [Vog91] or Section 2.5). We

can view the definition of AC(V ) geometrically. The localization of GrV

83
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is a KC-equivariant coherent sheaf, say V on p∗. The KC-coadjoint orbits

appeared in AC(V ) are the open KC-orbits in the support of V and their

multiplicities are the dimension of the fiber at points in these orbits (may

have to taking some graded module of V ). Moreover, the fiber at a point in

general position is a representation of its isotropy subgroup, which is called

the isotropy representation at this point. Clearly, isotropy representations

contains even finer information than associated cycles.

The associated cycles of theta lifts have been calculated by several au-

thors. The result related to our later discussion includes1: theta lifts of

unitary characters [Tra04] [Yan11], unitary lowest weight modules con-

structed from compact dual pairs [NOT01][Yam01] and their theta lifts in

the stable range [NZ04]. These results all suggests that theta lifting and

taking associated cycle “commute” with each other. For theta lifting of

a stable range dual pair (G,G′) with G′ the smaller member, the notion

of theta lifting (c.f. Section 2.3.7.3) of unipotent coadjoint orbits is well

defined2 and gives a map

θ : NK′
C
(p′∗) → NKC

(p∗),

from the sets of unipotent orbits (or their formal sums) in p′∗ to which in

p∗. Recall that ρ′∗ denote contragredient of ρ′. Now “commute” means, for

G̃′-module ρ′,

AC(θ(ρ′)) = θ(AC(ρ′∗)). (4.1)

Nishiyama and Zhu [NZ04] verified above equation for stable range theta

lifts of unitary lowest weight modules. Our calculation will show that,

for unitary lowest weight modules, (4.1) also could be true outside stable

range sometimes (c.f. the Case I in Section 4.6). On the other hand, we

also have examples outside stable range violate (4.1). In fact, for Case II

in Section 4.6, (4.44) implies that multiplicity of θp,r(LG̃′(µ)) is equal to

dim(As ⊗ τ)G
r′−r

which is usually not equal to the multiplicity of LG̃′(µ)

described in Section 4.4.

Now we summarise our theorems in the following form. For the precise

statements of theorems in each cases, see Theorem 80, Theorem 81 and

Theorem 84.

Theorem. Let (G,G′) be a real reductive dual pair in certain good range3

1May not be complete.
2Out side the stable range, it may not be well defined for certain nilpotent orbit.
3Stable range for finte dimensional unitary module; Case I in Table 4.2 for unitary

lowest weight module.
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and ρ′ ∈ R(g′, K̃ ′;Y ) be a finite dimensional unitary module or an unitary

lowest weight module. Then,

(i) there is an nilpotent K ′
C-orbit O′ ⊂ p′∗ such that the associated

variety V(ρ′∗) = O′;

(ii) O′ has theta lift O = θ(O′) ⊂ p∗ and V(θ(ρ′)) = O;

(iii) for x′ ∈ O, let K ′
x′-module χx′ be the isotropy representation of

Gr ρ′∗; there is a point x ∈ O and a homomorphism α : Kx → K ′
x′, such

that the isotropy representation of Gr θ(ρ′) at point x is

χx
∼= χx′ ◦ α,

up to a twisting;

(iv) in particular, the multiplicity of associated cycle is preserved, i.e.

AC(θ(ρ′)) = θ(AC(ρ′∗)).

Remark:

1. As suggested by the formulation of the theorem, instead of calculat-

ing the associated cycle directly, we actually calculated the isotropy repre-

sentation of the theta lift θ(ρ′) in terms of the isotropy representation of

ρ′.

2. For finite dimensional unitary representations, O′ is the zero orbit

and AC(ρ′) = AC(ρ′∗) = dim ρ′ · { 0 }.
3. When ρ′ is an unitary character, part (ii) and (iv) is more or less

known to experts, see [Prz91][Prz93] and part (iii) seems implicitly assumed

in [Yan11]. In Section 4.5, we will give an unified proof for all dual pairs

in stable range.

4. For an unitary lowest weight module, which is a theta lift of a finite

dimensional unitary module, its associated cycle was calculated in [NOT01]

and its isotropy representation was calculated in [Yam01]. The correspond-

ing orbit is called holomorphic orbits.

5. The theta lifts of holomorphic orbits were studied in [NOZ06]. The

associated cycle of stable range theta lifts of unitary lowest weight modules

were calculated in [NZ04]. In Section 4.6, we will calculate their isotropy

representations (possibly outside the stable range) and recover Nishiyama-

Zhu’s results.

6. Our calculation is based on a geometric method inspired by Nishiyama

and Zhu’s work [NZ04].

7. See Remark 1 after Theorem 81 for the twisting of characters.
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8. When ρ′ is the unitary lowest weight module, ρ′ is a unitary highest

weight module. It is easy to calculate the invariants of ρ′∗ in terms of

invariants of ρ′, see Remark 5 after Theorem 84.

Now we highlight the strategies to obtain theorems in above form. We

first identify the graded module of theta lift with the space of E-invariant

sections of an E-equivariant sheaf, see (4.11), (4.28) and (4.34), where E

is a reductive group. The nilpotent orbit will correspond to an E-quotient

of the base space. Then we calculate the isotropy representation in terms

of the E-invariants of the fiber of the quotient map, see (4.13), (4.30) and

(4.41). Under a “good range”, its fiber will be a single orbit under the

isotropy group action. Then we obtain (iii) by some form of reciprocity

formula, see Lemma 79. For some the bad cases, i.e. non-Tube type domain

for unitary lowest weight module and Case II for its theta lift, we have to

adapt one more step of fibration.

Furthermore, Vogan [Vog91, Theorem 4.11] show that the K-spectrum

of an irreducible (g, K)-modules is controlled by the space of global sections

of certain equivariant (algebraic) vector bundle (determined by the isotropy

representation) over the open orbit in its associated variety, up to an error

come from the boundary. Vogan expect that [Vog91, Conjecture 12.1], for

certain pair4 of orbit and isotropy representation (O, χ), there always exits
an unipotent representation, say V , such that its K-spectrum is exactly

given by the space of global sections, i.e., as K-module,

V ∼= IndKC

Kx
χ, (4.2)

where x is an element in O, Kx is the isotropy group of x, χ is a rational

representation of (possible double covering of) Kx.

We will show that some families of representation we mentioned in

the Theorem satisfies equation (4.2). Especially, we highlight following

three families: (a) stable range theta lifts of unitary characters; (b) Some

singular unitary lowest weight modules; and (c) stable range theta lifts of

these singular unitary lowest weight moudles.

We obtain these results by geometric method, without using any explicit

branching formula. It is worthy of note that, while our approach appears

in an algebraic geometric form, the results are essentially based on K-

spectrum formulas obtained by analytic constructions back to Howe [How83],

Li [Li89] and Huang-Zhu [ZH97] (c.f. Section 2.3.6).

We should point out that: family (a) is calculated in Yang’s thesis[Yan11].

4Called admissible data. See Section 2.5.
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He showed that they are “unipotent” representations attached to nilpotent

orbits of height 2. Height means number of columns in the Young diagram5

parameterization of the nilpotent orbit. We believe that family (c) is new.

Some representations in this family which are two-step theta lifts of unitary

characters, could be positive examples for Vogan’s prediction and should

be unipotent representations attached to nilpotent orbits of height 3, in

Yang’s sense. We omite the verification of the admissibility of orbit data6,

since it is less enlightening7 before one can proving a theorem in a general

setting. See Conjecture 72 and its remarks .

Our results suggest that equations of form (4.2) may not only hold

for unipotent representations, but also hold for much more general cases.

Theta lifting seems be an efficient tool to construct such representations.

Based on our results of associated cycles, isotropy representations and

K-spectrum equations, we would like to pose following conjecture for the

general cases.

Conjecture 72. Suppose (G,G′) is under stable range with G′ the smaller

member and ρ′ is a genuine unitary representation of G̃′. Let θ(ρ′) be its

theta lift. Let
{
O′

j

}
be the set of open orbits in V(ρ′∗) such that

V(ρ′∗) =
∪
j

O′
j.

Suppose x′j ∈ O′
j and χx′

j
is the isotropy representation of the isotropy

subgroup K ′
x′
j
= StabK′

C
(x′j). Then,

(i) for each j, there is a point xj ∈ Oj := θ(O′
j) and a homomorphism8

αj : Kxj
→ K ′

x′
j
such that the isotropy representation of Kxj

,

χxj
∼= α∗

j (χx′
j
),

up to a twisting of certain character; here α∗
j is the functor maps virtual

characters of K ′
x′
j
to virtual characters of Kxj

by pre-composition, may

consider it as the “lifting map” between spaces of isotropy representations;

(ii) if ρ′ satisfies the K-spectrum equation (4.2), θ(ρ′) also satisfies the

K-spectrum equation.

5Nilpotent coadjoint KC-orbits of classical Lie algebra are usually parametrized by
signed Young-diagram. One can write done the explicit parameter for all nilpotent orbits
appeared here. The theta lifting of nilpotent orbits is corresponding to a column adding
operation on the diagram. But, we omit the descriptions of Young-diagrams here, since
they are irrelevant to our geometric approach.

6It is down in [LMT11a] for pair (O(p, q), Sp(2n,R)).
7At least to the author.
8See Lemma 17 for its definition.
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As a consequence of (i), theta lifting and taking associated cycle commutes:

AC(θ(ρ′)) = θ(AC(ρ′∗)). (4.3)

Remark:

1. Nishiyama and Zhu speculated (4.3) (without contragredient) in

their paper [NZ04], and it is probably also be expected by other experts.

2. Currently, there is no evidence that above guess is true in the gen-

erality that the associated variety of the original representation contains

several open orbits.

3. Above conjecture has an inductive natural. Philosophically, theta

correspondence should be able to construct unipotent representations of

classical groups by an iterating process9, for example see [Bry03] and

[He07]. The author hope that above speculation is at least true for it-

erated stable range theta lifts of unitary characters. It would provide more

evidences to this philosophy and may contribute to a better understanding

of unipotent representations.

4. The proof of K-spectrum equation (4.2) may rely on some deep an-

alytic results, especially some automatic continuity theorem in a general

setting.

5. See Section 2.3.7.3 for the construction of theta lifts of nilpotent

orbits and the map αj : Kxj
→ K ′

xj
.

The organization of this chapter is as follows. In Section 4.2, we will

study natural filtrations on theta lifts and show they are “good filtrations”.

After that, we supply some technical lemmas. Then, we investigate the

isotropy representations together with K-spectrum equations (4.2) for uni-

tary lowest weight modules, theta lifting of unitary characters and theta

lifts of unitary lowest weight modules in Section 4.4, Section 4.5 and Sec-

tion 4.6 respectively.

4.2 Natural filtrations on theta lifts

Let (G,G′) be a non-compact reductive dual pair in Sp := Sp(W ). A

maximal compact subgroup U of Sp(W ) is fixed by choosing a compatible

complex structure WC of W , i.e. the symplectic form is the imaginary part

of the positive definite Hermition form on WC. U could be chosen such

that K = G∩U (resp. K ′ = G′ ∩U) is a maximal compact subgroup of G

(resp. G′).

9Here, we studied one-step and two-step theta liftings.
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Let Y be the Fock model of the oscillator representation of S̃p. Then Y

is isomorphic to the space of polynomials onWC. Suppose ρ′ ∈ R(g′, K̃ ′;Y ),

let ρ be its maximal Howe quotient Θ(ρ′) or its theta lift θ(ρ′). Let

η : Y → ρ⊗ ρ′ (4.4)

be the unique (up to scaler) (g, K̃)× (g′, K̃ ′)-equivariant quotient map .

Let σ′ be the lowest degree K̃ ′-type of ρ′. Let ν be the map defined by

composition of η and the projection to a fixed one-dimensional subspace of

the σ′-isotypic component.10 Note that Y has a natural filtration { Yj },
where Yj is the space of polynomials of by degree less than or equal to j.

Let j0 = deg σ′ = min { j | η(Yj) ̸= 0 }. We will choose the one-dimensional

subspace in σ′-isotypic component such that it has lowest degree, i.e. we

require11 ν(Yj0) ̸= 0. The filtration on Y induce a filtration on ρ via ν.

We call the filtration on ρ the natural filtration.

Note that Y = Yeven ⊕ Yodd as irreducible (sp, Ũ)-module, where Yeven

and Yodd are direct sum of even degree and odd degree polynomials respec-

tively. η vanish12 on one of Yeven and Yodd. In particular, this means

ν(Y2j+j0) = ν(Y2j+j0+1). (4.5)

Therefore we will concentrate on the degrees with same parity of j0.

Let

Fj =ν(Y2j+j0) Gj =Uj(g)ν(Yj0)

A priori, Fj and Gj are two filtrations on ρ. We review the following lemma,

claim that they are same filtration.

Lemma 73 (c.f. Section 3.3 [NZ04], Lemma 4.1 [LMT11a]). We have

Fj = Gj.

10This procedure is achievable: picking up the σ′-isotypic component by integrating
against its character over K̃; then project to a one-dimensional subspace by a combina-
tion of action of U(g′)K′ × K̃ ′ action, since U(g′)K′ × K ′ act irreducibly on the finite
dimensional σ′-isotypic component.

11Actually lowest degree K-type is multiplicity one [He00, Theorem 13.5], so whole
σ′-isotypic component is in the image of joint harmonics under η. But, in fact, the
later statement and argument on filtrations still valid for any K̃ ′ by providing this
requirement.

12Without going though Howe’s proof of duality theorem, one can prove the claim
as following: by the Howe-duality, Θ(ρ′) has a irreducible quotient map; if η is non-
vanishing on both components, pre-composite with projection maps will lead to two
different non-zero quotient; this lead a contradiction.
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Therefore, Fj is a good filtration of ρ, since Gj is good by definition.

Before proving the lemma, recall the diamond dual pairs introduced by

Howe [How89b] (c.f. Figure 2.1). We follow Howe’s notation [How89b]. Let

g = k⊕ p under Cartan decomposition. Let M be the subgroup of Sp such

that (M,K ′) form a compact dual pair. Now M is Hermitian symmetric,

m = m(1,1) ⊕m2,0 ⊕m(0,2). Here m(1,1) correspond to the maximal compact

subgroup of m and act on Y by degree preserving operator. m(2,0) and m(0,2)

are abelian Lie subalgebra of m acting on Y by K ′-invariant quadratic

polynomials and differential operators respectively.

Fact 3 in Howe’s paper[How89b] states that in sp, we have

m(2,0) ⊕m(0,2) = p⊕m(0,2). (4.6)

The projection of p to m(2,0) with respect to the left hand side of (4.6) is a

K-isomorphism. We will identify p with m(2,0) via this projection.

Proof of Lemma 73. The map ν factors through the σ′-type K̃ ′-covariant

space Yσ′ of Y . Let Y (σ′), Y d(σ′) and Yj(σ
′) = ⊕d≤jY d(σ) be the σ′-

isotypic components of Y , Y d and Yj respectively. Since K̃ ′ action is

reductive on Y and preserves degree, Y (σ′) maps bijectively onto the

covariant Yσ′ . Moreover Y d(σ′) = Y d ∩ Y (σ′) and Yj(σ
′) = Yj ∩ Y (σ′).

Hence

ν(Y2j+j0(σ
′)) = Fj. (4.7)

Let H(σ′) be the σ′-isotypic component in the space of harmonic H(K ′)

for K̃ ′. By [How89a], we have H(σ′) ⊂ Y j0 and

Y (σ′) = U(m(2,0))H(σ′). (4.8)

Since m(2,0) act by degree two polynomials, Y j(σ′) = 0 if j ̸≡ j0 (mod 2).

This leads yet another proof of (4.5). It follows from (4.7) and (4.8) that

ν(Uj(m
(2,0))H(σ′)) = Fj.

Prove Gj = Fj by induction. First, we have G0 = F0 by definition; Now

suppose Gj−1 = Fj−1 = ν(Y ′), where Y ′ = Y2(j−1)+j0 . Since Gj ⊆ Fj, it is

suffices to show that Fj ⊆ Gj. By (4.6), Y ′+m(2,0)Y ′ = Y ′+ pY ′. Hence

Fj = ν(Uj(m
(2,0))H(σ′)) ⊆ ν(Y ′ +m(2,0)Y ′) = ν(Y ′ + pY ′) = ν(Y ′) + pν(Y ′)

= Gj−1 + pGj−1 ⊆ Gj.

This completes the proof of the lemma.
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In the rest of the section, we adapt the notation in Section 4.6 and

study filtrations on Θp,r(µ). Now ρ′ is a character. Fix a linear functional

λ ∈ τµ
K̃r′ and let pr be the projection to K̃r′-invariant space. Define

ι : Θp,q(ρ′) → Θp,q(ρ′)⊗ τµ
K̃r′ →

(
Θp,q(ρ′)⊗ τµ

K̃r′

)K̃r′

∼= Θp,r(µ)

by v 7→ pr(v ⊗ λ). Let ν ′ = ι ◦ ν.
Let l0 be the minimal l such that ι(Fl) ̸= 0. Let j0 be the minimal j

such that ν ′(Y ) ̸= 0. Define

F ′
j = ι(Fj+l0) = ν ′(Y2j+j0) and G′

j = Uj(g1)ι(Fl0) = Uj(g1)ν
′(Yj0).

Here F ′
j is the filtration of Θp,r(µ) inherited form the natural filtration of

Θp,q(ρ′). The following lemma shows that F ′
j and G

′
j are same filtration.

Lemma 74 (Lemma 7.1,[LMT11a]). We have F ′
j = G′

j. Therefore, F ′
j is

a good filtration of Θp,r(µ).

Proof. Clearly G′
j ⊆ F ′

j . It remains to show that G′
j ⊇ F ′

j .

We decompose W =W ′×W ′′ where W ′ and W ′′ are symplectic spaces

associated with pair (Gp,r, G′) and (Kr′ , G′) respectively. The Fock model

has decomposition Y = Y ′ ⊗ Y ′′ with Y ′ = C[W ′C] and Y ′ = C[W ′′C].

The Lie algebra g′ acts on both Y ′⊗Y ′′ diagonally. Denote Y ′
d (resp. Y ′′

d )

the natural filtration on Y ′ (resp. Y ′′). Clearly,

Yd =
∑

a+b=d

Y ′
a ⊗ Y ′′

b . (4.9)

Decompose Y ′′ =
⊕

µ′ L∗
G̃′(µ

′)⊗(τµ
′

K̃r′ )
∗ under (Kr′ , G′) action. Let pr2 : Y ′′ →

L∗
G̃′(µ)⊗ (τµ

K̃r′ )
∗ be the projection to (τµ

K̃r′ )
∗ isotypic component, ν1 : Y ′ →

Θp,r(µ)⊗ (LG̃′(µ)⊗ ρ′) be the unique non-zero quotient map by Howe and

Π: (LG̃′(µ)⊗ ρ′)⊗ L∗
G̃′(µ) → ρ′ be the g′-equivariant paring.

In the proof of Lemma 62, we have shown that the following diagram

commutes,

Y

∼=
��

ν //

ν′

,,
Θp,q(ρ′) ι // Θp,r(µ)

Y ′ ⊗ Y ′′
ν1⊗pr2

// Θp,r(µ)⊗ (LG̃′(µ)⊗ ρ′)⊗ L∗
G̃′(µ)⊗ (τµ

K̃r′ )
∗
id⊗Π⊗id

// Θp,r(µ)⊗ (τµ
K̃r′ )

∗

OO

i.e. ν ′ factor through (id⊗ Π⊗ id) ◦ (ν1 ⊗ pr2).
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Let σ′ be the K ′-type of lowest degree for LG̃′(µ) ⊗ ρ′. Let j′0 be the

degree of σ′ in Y ′ and let j′′0 be the degree of τµ
K̃r′ in Y ′′. Then, j0 = j′0+j

′′
0

by (4.9). Since pr2(Y
′′
j′′0
) = σ′∗ ⊗ τµ

K̃r′ , ν
′(Y ′

2j+j′0
⊗Y ′′

j′′0
) = G′

j by Lemma 73.

Let ϵ = 0, 1. Then pr2(Y
′′
2j′′+j′′0+ϵ) = pr2(Uj′′(p

′)Y ′′
j′′0
), by [How89a]. Now

we prove the theorem by induction. The base case is true by definition.

Now assume it is hold for j − 1. Since the maps Π is g′-equivariant and p′

act by scaler13,

ν ′(Y ′
a+j′0

⊗ Y ′′
2b+j′′0+ϵ) =ν

′(Y ′
a+j′0

⊗ Ub(p
′)Y ′′

j0
)

=ν ′(Ub(p
′)Y ′

a+j′0
⊗ Y ′′

j0
+ Ya+2b+j0−2)

⊆ν ′(Y ′
a+2b+j′0

⊗ Y ′′
j0
+ Ya+2b+j0−2)

⊆G′
⌊a/2⌋+b +G′

⌊a/2⌋+b−1 ⊆ G′
⌊a/2⌋+b.

Hence, F ′
j = ν ′(Y2j+j0) ⊆ G′

j by (4.9).

4.3 Some technical lemmas

In this section, we will prove some technical lemmas, which will be used

freely in our latter discussion. In this section, let field k = C, although these

lemmas usually hold for much more general fields, such as algebraically

closed fields of characteristic 0.

Following lemma is about the inverse images of associated sheaves.

Section 5.17 [Jan87] gives a similar statement for locally trivial quotient

G→ G/H.

Lemma 75. Let L be a subgroup of G and V is a finite dimensional H-

module. Let ϕ : L/(L ∩H) → G/H be the L-equivariant morphism defined

by L ↪→ G. Assume ϕ(L) is a closed(or open) sub-variety of G/H, then

ϕ∗L G/H
V

∼= L L/(L∩H)
V |L∩H

.

Proof. Since ϕ∗L G/H
V is a quasi-coherent (L/(L∩H), L)-module with fiber

at e = H/H isomorphic to V |L∩H , the equation holds by the equivalence

of categories between rational L∩H-modules and (L/(L∩H), L)-modules

(c.f. Theorem 39).

Actually, we can construct the isomorphism directly as following. For

an affine cover { U ′ } of L/(L∩H), we may assume that ϕ(U ′) ⊂ U , where

U is certain affine open subset of G/H such that L (U) ∼= k[U ]⊗ V , since

13Act by zero if ρ′ is unitary.
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L G/H
V is locally free14. Therefore

(ϕ∗LV )(U
′) = k[U ′]⊗k[U ] (k[U ]⊗ V ) ∼= k[U ′]⊗ V ∼= L L/(L∩H)

V |L∩H
(U ′)

gives the isomorphism between sheaves.

Now let X be an affine variety with G action, G has an open orbit O
in X generated by x ∈ X. Let H = StabG(x) be the stabilizer of x ∈ X.

So we have following commutative diagram of inclusions.

G/H O � �
iG/H

// X

x
/ �

ix

>>~~~~~~~~?�

OO

Let A be a (k[X], G)-module and A be its associated qusi-coherent sheaf

on X. The fiber of A at x, V = i∗xA = A/IxA, is a rational H-

module15. Let L be the associated qusi-coherent sheaf on G/H. Then

by equivalence of categories, i∗G/HA ∼= L . Now we have a natural map

A → (iG/H)∗(iG/H)
∗A = (iG/H)∗L and it induce a map between their

global sections:

ϱ : A→ IndG
HV = ((iG/H)

∗L )(X).

Since X is affine, following lemma is trivial from the equivalence of cat-

egories between the category of k[X]-modules and the category of qusi-

coherent sheaves on X[Har77, Corollay 5.5]. We highlight it since we will

use it later.

Lemma 76. If ϱ : A→ IndG
HV an isomorphism, A ∼= (iG/H)∗L .

Consider following fiber product, where f : Y → X is a morphism be-

tween varieties such that X is affine, x ∈ X is a closed point and Fx is the

scheme theoretical fiber of x.

Fx

g

��

iFx // Y

f
��

x
ix // X

We have following lemma of fibers.

Lemma 77 ([Har77, Chapter III, Corollary 9.4]). Suppose that F is a

quasi-coherent sheaf on X and k(x) is the residual field of x. Then there

14See the proof of [CPS83, Lemma 2.5]
15Ix is the ideal correspond to x
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are natural homomorphism

F (Y )⊗k[X] k(x) = i∗x f∗F
∼= g∗ i

∗
Fx

F = (i∗Fx
F )(Fx).

Now, we state a lemma for the reducibility of the fiber. It is familiar to

algebraic geometer.

Lemma 78. Let ϕ : Y → X be a G-equivariant morphism between vari-

eties. Suppose x ∈ X generate an open G-orbit in the image of ϕ. Then

its scheme theoretical fiber is reduced. In particular, if X, Y are affine,

k[ϕ−1(x)] = k[Y ]/Ixk[Y ],

where Ix is the corresponding maximal ideal in k[X].

Proof. Let O = G · x be the G-orbit. We can reduce the problem to O, Y ,

since reducibility is a local property. Since ϕ is a map between variety Y

and O over C, its scheme theoretical fibers are reduced for points in general

position. On the other hand, ϕ is KC-equivariant, and O is open dense in

O. So the scheme theoretical fiber should be reduced over all points in O,

especially for x.

Now we consider a very special form of reciprocity formula.

Lemma 79. Let G,H be two affine algebraic group, α : G → H be a ho-

momorphism. Let G×αH be the fiber product as in following diagram, i.e.

G×α H = { (g, h) ∈ G×H | α(g) = h }.

G×α H //

��

H

G α // H

Let χ be a rational α(H)-module. Then as G-module,

(
IndG×H

G×αH
C ⊗ χ

)H ∼= χ ◦ α.

Proof. Note that, via g 7→ (g, α(g)), G isomorphic to G×α H, i.e.

id× α ◦ △ : G
∼= // G×α H .
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Now the lemma holds by following computation using Theorem 37 (f).(
IndG×H

G×αH
C ⊗ χ

)H
=
(
(k[G]⊗ k[H])G×αH ⊗ χ

)H
=((k[G]⊗ k[H]× χ)H)G×αH

(since G×α H and H action commutes)

= (k[G]⊗ χ)G×αH = (k[G]⊗ χ)id×α◦△G

=(k[G]⊗ χ ◦ α)G = χ ◦ α.

4.4 Isotropy representations of unitary low-

est weight modules

In this section, we review the associated cycles and isotropy representations

of unitary lowest weight modules obtained by theta lifting. All results in

this section was computed in [NOT01] and [Yam01]. Our calculation is

essentially same as [Yam01]. We include the material for completeness

and for showing that the calculation could be fitted into a general pattern

similar to other case.

4.4.1 Statement of the theorem

We retain the notation in Section 2.3.5.2: (G,G′) is a compact dual pair,

with G′ = K ′ a compact group; G is Hermitian symmetric with Cartan

decomposition g = k⊕ p and p = p+ ⊕ p−. See Table 4.1

G G′ = K ′ Stable range
Case R Sp(2n,R) O(m) n ≥ m
Case C U(n1, n2) U(m) n1, n2 ≥ m
Case H O∗(2n) Sp(m) n ≥ 2m

Table 4.1: Compact dual pairs for unitary lowest weight modules

Let LG̃(µ) be the theta lift of finite dimensional G̃′-module τµ
G̃′ . So the

unitary lowest weight (g, K̃)-module

LG̃(µ)
∼=
(
Y ⊗ (τµ

G̃′)
∗
)K̃′

(4.10)

with (g, K̃) act on Y . Recall that p+ act on Y by multiply K ′
C-invariant

quadratic polynomial and p− act on Y by K ′
C-invariant quadratic differen-
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tial operators. Define the filtration on LG̃(µ) by the natural filtration on

Y , it is clear that this filtration is good by above description of g action.

Passing to the graded module, p− action is trivial. Fix a genuine characters

ς ⊗ ς ′ of K̃ × K̃ ′ such that the covering groups act on Y by linear action

tensor with this character.

Recall the moment map

ϕ : WC → (p+)∗ is defined by ϕ∗ : S(p+) → C[WC].

and (ϕ, ϕ(WC)) is the categorical quotient of WC under K ′
C action (c.f.

Section 2.3.7). Twiste the corresponding graded module GrLG̃µ, define

(S(p+), KC)-module

A :=ς∗ ⊗GrLG̃(µ)
∼=
(
C[WC]⊗C ς

′ ⊗ (τµ
K̃′)

∗
)K̃′

∼=
(
C[WC]⊗C τ

∗)K′
C ,

(4.11)

Here

(a)

τ = ς ′∗ ⊗ τµ
K̃′ ; (4.12)

(b) p− act on C[WC] (so on A) trivially;

(c) f ∈ p+ act on C[WC] by multiplying ϕ∗(f), a degree 2 K ′
C-invariant

polynomial.

By direct computation, ϕ(WC) has an open dense KC-orbit
16, say O.

On the other hand, Ann S(p+)A contains the ideal defining the closed variety

ϕ(WC), since 0 = ϕ∗(f) ∈ C[WC] if f |O = 0. So we can view A as a C[O]-

module. Let A be the associated coherent sheaf of A on O. Fix an element

x ∈ O, we will calculate the fiber χx of A at x and show it is non-zero.

Above discussion lead the first part of the main theorem of is section

Theorem 80. (i) Let LG̃(µ) be the theta lifting of G̃′-module τµ
G̃′. Then

AC(LG̃(µ)) = dimχx[O].

Here χx is the isotropy representation of ς∗⊗LG̃(µ) at x ∈ O under certain

filtration.

16Note that G′ does not have non-compact part, so we may define ϕ′ : WC → 0. In
this sense, O is the theta lift of the zero orbit.
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(ii) If (G,G′) is in the stable range with G′ the smaller member,

χx
∼= τ ∗ ◦ α = (ς ′∗ ⊗ τµ

K̃′) ◦ α.

The homomorphism α : Kx → K ′
C is defined by (4.17), (4.19) and (4.22)

for each cases.

(iii) The K-spectrum equation (4.2),

A = IndKC

Kx
χx,

holds except for m ≥ n in case R; m ≥ n1 = n2 in case C; n is even and

2m ≥ n in case H.

We first discusse when (4.2) holds. Let N = ϕ−1(O). Note that

IndKC

Kx
χx = (C[N ]⊗ τ ∗)K

′
C .

Therefore, if ∂N =WC\N has codimension greater or equal to 2, C[WC] =

C[N ] via restriction map and (4.2) holds. On the other hand, ∂N has

codimension 1 only happens when Imϕ contains invertible matrixes as de-

scribed in (iii) of the theorem. In these cases, f = 1/ϕ∗(det) is a K ′
C-

invariant rational function in C[N ]\C[WC]. So C[N ] ⊃ (C[WC])[f ]. Hence

IndKC

Kx
χx ⊃ (C[WC]⊗ τ ∗)K

′
C [f ] ⊋ A.

Now we begin to calculate χx. The stable range case is given by (4.14).

For non-stable range case, see (4.18), (4.20), (4.21), (4.23) and (4.24).

Consider following diagram

y

��
==

==
==

==
=

// Fx
//

��

WC

ϕ

��}}{{
{{
{{
{{
{

x
ix // O // (p+)∗

Let

Ix =
{
x(f)− f

∣∣ f ∈ p+
}
S(p+) ⊂ S(p+)

be the maximal ideal defining x ∈ O ⊂ (p+)∗. Let Fx = ϕ−1(x) be the fiber

of x in WC. Let Cx be the residual field at x isomorphic to C. Since O is

dense in ϕ(WC), by Lemma 78

C[Fx] = Cx ⊗S(p+) C[WC] = C[WC]/ϕ∗(Ix)C[W
C].
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Since element in p+x is K ′
C invariant,

χx =Cx ⊗S(p+) A = A/IxA

=
(
C[WC]⊗C τ

∗)K′
C /Ix

(
C[WC]⊗C τ

∗)K′
C

=
(
C[WC]⊗C τ

∗/
(
ϕ∗(Ix)C[W

C]⊗C τ
∗))K′

C

(taking K ′
C-invariant is an exact functor)

=
(
(C[WC]/ϕ∗(Ix)C[W

C])⊗C τ
∗)K′

C

(modules over C are flat)

= (C[Fx]⊗ τ ∗)K
′
C

(4.13)

Remark:

1. In the stable range case and Tube type case, on can show that Fx

has an single orbit under Kx ×K ′
C action, i.e. Fx is a homogenous space.

Fix a point y ∈ Fx and let Sy = StabKC×K′
C
(y) be the isotropy subgroup of

y, then

C[Fx] = Ind
Kx×K′

C

Sy
C.

2. When (G,G′) is in stable range, we define a map α : Kx → K ′
C such

that Sy = Kx ⊗α K
′
C. Then, by Lemma 79,

χx = (Ind
Kx×K′

C

Sy
C ⊗ τ ∗)K

′
C = τ ∗ ◦ α (4.14)

3. Outside stable range, when the symmetric domain is non-Tube type,

Fx is not an single Kx×K ′
C orbit. Let Lx be the Levi subgroup of Kx. We

will define an closed sub-variety Vz ⊂ Fx such that Fx = (LxK
′
C) · Vz. We

will show that Vz is a fiber of certain Lx × K ′
C-equivariant fibration, and

then calculate17 the explicit form of χx under Lx-action.

4.4.2 Case by Case Computations

In this section, we calculate χx case by case. Fix an l-dimensional subspace

Cl of Cn, define Pl,n to be the parabolic subgroup in GL(n,C) preserve Cl,

i.e.

Pn,l
∼=

{(
a b

0 c

) ∣∣∣∣∣ a ∈ GL(l,C), b ∈Mn,n−l, c ∈ GL(n− l,C)

}
=(GL(l,C)×GL(n− l,C))⋉Nn,l,

(4.15)

17One should be careful when applying “FrobeniusReciprocity”: for H < G, it is not
obvious that a function on a H-invariant subset can always be extended correctly to a
function on G. That is why we use fibration to avoid this problem.
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where Nn,l is the unipotent radical of Pn,l. Define

αn,l : Pn,l → GL(l,C) (4.16)

to be the projection

(
a b

0 c

)
7→ a.

4.4.2.1 Case R

We have

(G,G′) = (Sp(2n,R),O(m))

WC ∼= Mn,m, (p+)∗ ∼= Symn,

∀A ∈ WC (k, k′) ∈ KC ×K ′
C

ϕ(A) = AAT KC ×K ′
C
∼= GL(n,C)×O(m,C),

(k, k′) · A = kAk′−1.

Stable range (n ≥ m): Let

y =In,m, x =ϕ(y) =

(
Im 0

0 0

)
.

Then,

Kx = { g ∈ Pn,m | αn,m(g) ∈ O(m,C) }
∼= (O(m,C)×GL(n−m,C))⋉Nn,m,

and

α = αn,m. (4.17)

Non-stable range Tube type (n < m): Let

y =In,m, x =ϕ(y) = In.

Then

Kx
∼=O(n)

Sy = { (o, oo1) ∈ GL(n,C)×O(m,C) | o ∈ O(n), o1 ∈ O(m− n) }
∼=△O(n)×O(m− n)
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Therefore,

χx =
(
Ind

Sx×K′
C

Sy
C ⊗ τ ∗

)K′
C ∼= (τ ∗)O(m−n). (4.18)

4.4.2.2 Case C

We have

(G,G′) = (U(n1, n2),U(m)),

WC =Mn1,m ×Mn2,m (p+)∗ =Mn1,n2 ,

KC
∼= GL(n1,C)×GL(n2,C), K ′

C
∼= GL(m,C),

∀(A,B) ∈ WC (k, k′) ∈ KC ×K ′
C,

ϕ((A,B)) = ABT , (k, k′) · (A,B) = (k1Ak
′−1, k2Bk

′T ).

Stable range (n1, n2 ≥ m): Let

y =(In1,m, In2,m), x =ϕ(y) =

(
Im 0

0 0

)
.

Then

Kx =
{
(g1, g2) ∈ Pn1,m × Pn2,m

∣∣ αn1,m(g1) = ((αn2,m(g2))
−1)T

}
∼=(△GL(m)×GL(n1 −m)×GL(n2 −m))⋉ (Nn1,m ×Nn2,m)

and α : Kx → GL(m) is defined by

Kx ∋ (g1, g2) 7→ αn1,m(g1). (4.19)

Non-stable range Tube type (m ≥ n1 = n2 = n): Let

y =(In,m, In,m), x =In.

Then

Kx =
{
(g, g−1T ) ∈ GL(n,C)×GL(n,C)

}
∼= △GL(n,C),

Sy =
{
(g, g−1T , gg1) ∈ KC ×K ′

C

∣∣∣ g ∈ GL(n), g1 ∈ GL(m− n)
}

∼=△GL(n,C)×GL(m− n,C).

Therefore

χx
∼= (τ ∗)GL(m−n,C). (4.20)
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Non-stable range non-Tube type (m,n1 > n2): Without loss of gener-

ality, we may assume n1 > n2. Let x = In1,n2 ,

Vz =

{
(

(
In2 0

0 y0

)
, In2,m)

∣∣∣∣∣ y0 ∈Mn1−n2,m−n2

}

and pr : Mn1,m × Mn2,m → Mn1,n2 × Mn2,m be the map (A,B) 7→
(ABT , B). Let z = (In1,n2 , In2,m). Then Vz = pr|−1

Fx
(z) ∼= Mn1−n2,m−n2 .

Moreover,

Kx =
{
(g, g1) ∈ Pn1,n2 ×GL(n2,C)

∣∣ αn1,n2(g) = (g−1
1 )T

}
Lx =△GL(n2,C)×GL(n1 − n2,C).

Clearly, pr is Lx × K ′
C-equivariant and Fx = pr−1(Oz), where Oz is

the Lx ×K ′
C-orbit of z. Then we have following diagram.

Mn1−n2,m−n2

∼= // Vz
� � iVz //

��

⌟

Fx
� � //

pr|Fx
����

⌟

Mn1,m ×Mn2,m

pr

��

WC

z �
� iz // Oz

� � //Mn1,n2 ×Mn2,m

Now pr∗(OFx) is an (Oz, Lx)-module (c.f. Section 2.6.3), whose fiber

at z equals to i∗z(pr|Fx)∗(OFx) = (pr|Fx)∗i
∗
Vz
(OFx) = C[Vz]. Therefore

C[Fx] = pr∗(OFx)(Oz) = Ind
Lx×K′

C

Sz
C[Vz],

where

Sz =

{
(gg1, (g

−1)T , gg2, )

∈ Lx ×K ′
C

∣∣∣∣∣ g ∈ GL(n2,C), g1 ∈ GL(n1 − n2,C),

g2 ∈ GL(m− n2,C)

}
∼=△GL(n2,C)×GL(n1 − n2,C)×GL(m− n2,C).

Hence, as Lx-module,

χx = (τ ∗ ⊗ C[Mn1−n2,m−n2 ])
△GL(m−n2,C) (4.21)

where GL(n1 − n2) × GL(m − n2) act on C[Mn1−n2,m−n2 ]
∼= C[Vz]

linearly.
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4.4.2.3 Case H

We have

(G,G′) = (O∗(2n), Sp(m)),

WC ∼= Mn,2m, p+ ∼= Altn,

KC
∼= GL(n,C), K ′

C
∼= Sp(2m,C),

∀A ∈ WC, (k, k′) ∈ KC ×K ′
C,

ϕ(A) = AJ2mA
T , (k, k′) · A = kAk′

−1
,

where J2m =

(
0 Im

−Im 0

)
is the matrix defining the symplectic form of

C2m.

Stable range (n ≥ 2m): Let

y =In,2m x =ϕ(y) =

(
J 0

0 0

)
.

Then,

Kx = { g ∈ Pn,2m | αn,2m(g) ∈ Sp(2m,C) }
∼=(Sp(2m,C)×GL(n− 2m))⋉Nn,2m

and

α = αn,2m. (4.22)

Non-stable range Tube type (2l = n ≤ 2m): Let

y =

(
Il 0 0

0 0 Il

)
, x =ϕ(y) = J2l.

Then

Kx
∼=Sp(2l,C),

Sy = { (g, g g1) ∈ KC ×K ′
C | g ∈ Sp(2l,C), g1 ∈ Sp(2m− 2l,C) }

∼=△Sp(2l,C)× Sp(2m− 2l,C).

Therefore,

χx
∼= (τ ∗)Sp(2m−2l,C). (4.23)

Non-stable range non-Tube type (2l + 1 = n < 2m): Choose the sym-

plectic form on C2m such that first l-coordinate and last l-coordinate



4.4. ISOTROPY REP. OF UNI. LOWEST WEIGHT MODULES 103

pairs. Let

x =

(
J2l 0

0 0

)
,

Vz =


Il 0 0

0 0 Il

0 y0 0


∣∣∣∣∣∣∣ y0 ∈M1,2m−2l.


and pr : M2l+1,2m → M2l,2m be the projection deleting last row of a

the matrix. Let

z = pr(Vz) =

(
Il 0 0

0 0 Il

)
∈M2l,2m.

Then Vz = pr|−1
Fx
(z) ∼= C2m−2l. Moreover,

Kx
∼= { g ∈ P2l+1,2l | α2l+1,2l(g) ∈ Sp(2l,C) }
∼= (Sp(2l,C)×GL(1,C))⋉N2l+1,2l

Lx
∼=Sp(2l,C)×GL(1,C).

Clearly, pr is Lx × K ′
C-equivariant and Fx = pr−1(Oz), where Oz is

the Lx ×K ′
C-orbit of z. Then we have following diagram.

C2m−2l
∼= // Vz

⌟

� � iVz //

��

Fx

⌟

� � //

pr|Fx
����

M2l+1,2m

pr

��

WC

z �
� iz // Oz

� � //M2l,2m

Now pr∗(OFx) is an (Oz, Lx)-module (c.f. Section 2.6.3), whose fiber

at z equals to C[Vz]. Therefore

C[Fx] = Ind
Lx×K′

C

Sz
C[Vz],

where

Sz =

{
(g, g1g2) ∈ Lx ×K ′

C

∣∣∣∣∣ α2l+1,2l(g) = JT
2l(g

−1
1 )TJ2l ∈ Sp(2l,C),

g2 ∈ Sp(2m− 2l,C)

}
∼=△Sp(2l,C)×GL(1,C)× Sp(2m− 2l,C).

Finally, we have, as Lx-module

χx
∼= (τ ∗ ⊗ C[C2m−2l])△Sp(2m−2l,C) (4.24)
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where GL(1,C)× Sp(2m− 2l) act on C[C2m−2l] ∼= C[Vz] linearly.

4.5 Isotropy representations of theta lifts of

unitary characters

Let (G,G′) be a non-compact real reductive dual pair in the stable range

with G′ the smaller member. We will study the associated cycle, isotropy

representations and equation (4.2) for theta lifts of genuine unitary char-

acters of G′ in this section.

Let ρ′ be a genuine unitary character of G̃′ and

ν : Y → θ(ρ′)⊗ ρ′ ∼= θ(ρ′)

be the unique (up to scaler) non-zero quotient map. Gr θ(ρ′) be the graded

module of θ(ρ′) under the natural filtration defined in Section 4.2. Now

Gr θ(ρ′) is a (S(p), K̃)-module. Note that the action of K̃ and K̃ ′ on the

Fock space C[WC] is are just certain twist of the linear action by characters,

say ς ⊗ ς ′, where ς (resp. ς ′) is a genuine character of K̃ (resp. K̃ ′). Define

a (S(p), KC)-module18

A := Gr θ(ρ′)⊗ ς∗. (4.25)

We may identify the underlying spaces of A and which of Gr θ(ρ′), so the

KC-action on A is induced from the linear action on C[WC] and S(p)-action
on A is same as on Gr θ(ρ′).

Recall the double fibration (c.f. Section 2.3.7.3)

p∗ WCϕ
oo

ϕ′
// p′∗.

Since we are in the stable range, the null-cone ϕ′−1(0) has an open KC-orbit

N and

O = ϕ(N ) = θ({ 0 })

is the theta lifts of the { 0 }-orbit of G′. We are going to prove following

theorem.

Theorem 81. Fix a point x ∈ O. Let Kx = StabKC
(x) be the isotropy sub-

group of x. Then the isotropy representation of A at point x is isomorphic

to

χx = (ς ′ ⊗ ρ′∗) ◦ α,

18K̃ action factor through K. Then holomorphic extend the K-action to KC.
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where α : Kx → K ′
C is certain surjective group homomorphism. In particu-

lar, the associated cycle

AC(θ(ρ′)) = [O].

Moreover, as (S(p), KC)-module,

A ∼= IndKC

Sx
χx,

where the S(p) action on the right hand side is via the restriction map

S(p) = C[p∗] → C[O] = C[KC/Sx].

Remark:

1. One can define a double covering ϖ : K̃C → KC extending the cov-

ering K̃ → K. Let K̃x be the preimage of Kx. Then,

(i) K̃x is the isotropy subgroup of x in K̃C;

(ii) by (4.25), the isotropy representation of K̃x isomorphic to

χ̃x = χx ◦ϖ ⊗ ς;

(iii) as (S(p), K̃C)-module,

Gr θ(ρ) ∼=
(
IndK̃C

K̃x
(χx ◦ϖ)

)
⊗ ς = IndK̃C

K̃x
χ̃x.

2. In Section 4.6, we will explicitly give α, ς, ς ′ and so calculate χx for

reductive dual pairs in Table 4.2, since results in Section 4.6 are build on

the results of these cases.

In the rest of this section we are going to prove Theorem 81 by showing:

as (S(p), KC)-module, A isomorphic to the space of regular sections of an

algebraic line bundle on O.

I� _

��

0

))SS
SSSS

SSSS
SSSS

SSS

H � � //� s

ι
%% %%K

KK
KK

KK
KK

KK
K C[WC] Gr ν // //

����

Gr θ(ρ′)

C[N ]

Gr ν

66 66mmmmmmmm π // //
(
C[N ]⊗ ρ′∗

)K̃′
?�
∼=ξ

OOOO�
�
�

(4.26)

Consider the diagram (4.26). Here

I := ϕ∗(p′)C[WC]
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is the ideal generated by p′ in C[WC] and H is the space of harmonics of K ′.

Since (G,G′) is in the stable range, I is precisely the ideal of polynomials

vanishing on the null cone N = ϕ′−1(0), i.e. the middle-vertical line in

(4.26) is exact. On the other hand, p′ ⊂ g′ acts trivially19 on ρ′. Therefore

it act trivially on Gr θ(ρ′) and Gr ν factor through C[N ]. Denote Gr ν the

corresponding map from C[N ] to Gr θ(ρ′).

Lemma 82. There is a (S(p), K̃)-module isomorphism

ξ :
(
C[N ]⊗ ρ′

∗)K̃′

→ Gr θ(ρ′).

Moreover, let IO ⊂ S(p) be the ideal of regular functions vanishing on

O. Then IO ⊂ Ann S(p)Gr θ(ρ′).

Proof. Since K̃ ′ act on θ(ρ′) ⊗ ρ′ by ρ′, Gr ν factor through the ρ′ coin-

variants of K̃ ′. Therefore Gr ν factor through the (S(p), K̃)-equivariant

projection

π : C[N ] →
(
C[N ]⊗ ρ′

∗)K̃′

.

Let ξ :
(
C[N ]⊗ ρ′∗

)K̃′

→ A be the (S(p), K̃)-map such that ξ ◦ π = Gr ν.

Now we prove ξ is injective by K̃-type comparison. Let H be the space

of Harmonic with respect to KC. Recall that ι : H ↪→ C[WC] → C[N ] is an

K̃× M̃ ′(1,1)-isomorphism and, as K̃× M̃
′(1,1)-module, H =

⊕
µ τ

µ

K̃
⊗ τµ

M̃ ′(1,1)

is multiplicity free. On the other hand20, a K̃-type τµ
K̃
occur in θ(ρ′) if and

only if τµ
M̃ ′(1,1) has a K̃

′-quotient to ρ′, and the HomK̃′(τ
µ

M̃ ′(1,1) , ρ
′) is at most

dimension one. Therefore, by the multiplicity freeness of θ(ρ′),

θ(ρ′) ∼= (H⊗ ρ′
∗
)K̃

′ ∼= (C[N ]⊗ ρ′
∗
)K̃

′

as K̃-module.

For the second statement, note that f ∈ S(p) act on C[WC], by multi-

plying ϕ∗(f) = f ◦ ϕ. Hence ϕ∗(f) ∈ I kills Gr θ(ρ) if f ∈ IO.

Now twiste every terms in (4.26) by ς∗ and we insist KC ×K ′
C act on

C[WC] linearly in the following calculation. Define, a character of K ′
C,

χ′ = ς ′ ⊗ ρ′
∗
. (4.27)

19Note that ρ′ is unitary character, the split trous has trivial action.
20see Section 2.3.6.
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Then Lemma 82 implies

A ∼= (C[N ]⊗ ς ′ ⊗ ρ′
∗
)K̃

′
= (C[N ]⊗ χ′)K

′
C , (4.28)

and A is an C[O]-module. Let A be the associated coherent sheaf of A on

O. For a point x ∈ O, let Ix ⊂ S(p) be the maximal ideal correspond to

x and Fx = ϕ−1(x) ∩ N be its fiber in N . Fixing an element y ∈ Fx, let

Sy = StabKC×K′
C
(y) be the isotropy subgroup of y. One can easily verify

case by case of following fact21.

Lemma 83. The fiber Fx is a single Kx-orbit. Moreover, there is a sur-

jective homomorphism α : Kx → K ′
C such that

Sy = Kx ×α K
′
C = { (k, α(x)) ∈ Kx ×K ′

C } .

Above definitions are summarized in diagram (4.29).

(Sx ×K ′
C)/Sy Fx

� � //

��

⌟

N � � // N
ϕ|N
��

� � //WC

ϕ

��

x �
�

// O � � iO // O � � // p∗

(4.29)

Since x has an open dense orbit O in O, the scheme theoretic fiber

Spec
(
C[N ]/ϕ∗(Ix)C[N ]

)
is reduced and equal to C[Fx] by the Lemma 78.

Hence the isotropy representation

χx =A/IxA =
(
C[N ]⊗ χ′)K′

C /
(
Ix

(
C[N ]⊗ χ′)K′

C

)
=
(
C[N ]/ϕ∗(Ix)C[N ]⊗ χ′)K′

C

=(C[Fx]⊗ ρ∗)K
′
C

(by the exactness of taking K ′
C-invariant, same argument as in (4.13))

=
(
Ind

Kx×K′
C

Kx×αK′
C

C ⊗ χ′
)K′

C

(Fx = (Kx ×K ′
C)/(Kx ×α K

′
C) is a homogenous space)

=χ′ ◦ α.

(by Lemma 79)

(4.30)

Proof of Theorem 81. We first show that, the associated cycle AC(θ(ρ′)) =

[O]. Form the second part of Lemma 82, Supp(A) ⊂ O. Since the fiber of

21For the definition of α see also Section 2.3.7.3.
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A at x, χx = χ′ ◦ α ̸= 0, O ⊂ Supp(A). Hence Supp(A) = O. Now the

claim follows from the definition of associated cycle and dimχ′ = 1.

Let L be the sheaf on KC/Kx
∼= O associated with Kx-module χx.

The natural map

ϱ : A→ IndKC

Kx
χx = L (O)

could be constructed explicitly by following evaluation map

h 7→ (k 7→ h(k · y) ∈ χx), ∀h ∈ A = (C[N ]⊗ χ)K
′
C , k ∈ KC.

It is an injection, since KCK
′
Cy = N = ϕ−1(O) is an open dense subset

in N . Now one can verify case by case that ϱ is an isomorphism by KC-

spectrum comparison as in Yang’s thesis [Yan11]. Furthermore,

A = (iO)∗L (4.31)

by Lemma 76.

Remark:

1. There is a simpler way to check the KC-module isomorphism ϱ for

a large class of dual pairs as following. Note that N is a normal variety

and the boundary of the open KC ×K ′
C-orbit N has codimension at least

2 in most of cases, which is true at least for pairs listed in Table 4.2 (for

Case R we need p, q > 2n), c.f. Appendix of [NOZ06]. In these cases,

C[N ] = C[N ] = C[ϕ−1(O)]. Therefore,

A =
(
C[ϕ−1(O)]⊗ χ′)K′

C

=A (O) = L (O)

=IndKC

Kx
χx.

2. On the other hand, the validity of Theorem 81 implies that

A ∼= (C[N ]⊗ χ′)K
′
C (4.32)

always holds, although the boundary of N may not have codimension 2.

We will use this observation in Section 4.6.
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4.6 Isotropy representations of theta lifts of

unitary lowest weight module

In this section, we study invariants of theta lifts of lowest weight modules.

Unexplained notation is same as in Section 3.5.2.

We consider dual pairs listed in Table 4.2.

Gp,q G′ Stable range Case I codim ∂N0 ≥ 2

Case R O(p, q) Sp(2n,R)
p, q ≥ 2n

max { p, q } > 2n
r ≥ n n > r′

Case C U(p, q) U(n1, n2) p, q ≥ n1 + n2 r ≥ n1, n2
max { n1, n2 } >
min { r′, n1, n2 }

Case H Sp(p, q) O∗(2n) p, q ≥ n 2r ≥ n
n > 2r′

or n is odd

Table 4.2: List of dual pairs II

4.6.1 Statment of the main theorem

Let G = Gp,q such that the dual pair (G,G′) is in stable range. Fix integers

r, r′ such that r + r′ = q. Let G1 = Gp,r and Kr′ = Gr′,0. Let Kp,r ∼=
Gp,0 × G0,r be the maximal compact subgroup of G1. Let g1 = Lie(G1)C

and p1 = p ∩ g1 be the non-compact part of g1.

For a genuine K̃r′-representation τµ
K̃r′ , let LG̃′(µ) be the theta lift of

τµ
K̃r′ with respect to the compact dual pair (Kr′ , G̃′). Let θp,q(ρ′) be the

theta lifts of a genuine unitary G̃′-character ρ′ with respect to dual pair

(G,G′).

Recall the (g1, K̃
p,r)-module in Definition 61

θp,r(µ) := θp,rρ′ (LG̃′(µ)) ∼=
(
θp,q(ρ′)⊗ τµ

K̃r′

)K̃r′

. (4.33)

It is the two-step theta lifts of τµ
K̃r′ up to the twisting of ρ′. The object of

this section is to study the invariants of θp,r(µ).

The natural filtration on θp,q(ρ′) induced a filtration on θp,r(µ). Lemma 74

shows it is a good filtration. As (S(p1), K̃p,r)-module,

Gr θp,r(µ) ∼= (Gr θp,q(ρ′)⊗ τµ
K̃r′ )

K̃r′

.

Twisting with the genuine character ς∗|K̃p,r as in Section 4.5, define a
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(S(p1), Kp,r
C )-module

A(µ) :=ς∗|K̃p,r ⊗ θp,r(µ) ∼= (ς∗|K̃p,r ⊗Gr θp,q(ρ′)⊗ τµ
K̃r′ )

K̃r′

∼=(ς∗|K̃p,rK̃r′ ⊗Gr θp,q(ρ′)⊗ (ς|K̃r′ ⊗ τµ
K̃r′ ))

K̃r′

∼= (A⊗ τ)K
r′
C ,

(4.34)

where A is defined by (4.25) and

τ = ς|K̃r′ ⊗ τµ
K̃r′ (4.35)

is a rational Kr′
C -module.

Let

pr1 : p
∗ → p∗1 (4.36)

be the projection induced by p1 ↪→ p. Now we state the main theorem of

this section.

Theorem 84. Suppose that θp,r(µ) is non-zero. Let O be the associated

variety of θp,q(ρ′). Then

(i) pr1(O) has an open dense Kp,r
C -orbit, say O1, i.e. O1 = pr1(O);

(ii) let O′ be the dense K ′
C-orbit in the associated variety22 of L∗

G̃′(µ), then

O1 is the theta lift of O′ with respect to the dual pair (Gp,r, G′);

(iii) the associated variety

V(θp,r(µ)) = O1.

Suppose r satisfies “Case I” condition in Table 4.2. Fixing a point x′ ∈ O′,

let K ′
x′ = StabK′

C
(x′) be the isotropy subgroup of x, χx′ be the isotropy

representation of L∗
G̃′(µ) (c.f. Theorem 80). Then

(iv) There is a point x1 ∈ O1, a map β : Kp,r
x1

→ K ′
x′ ↪→ K ′

C, such that23

χx1 = (χx′ ⊗ χ′) ◦ β. (4.37)

(v) In particular, the associated cycle

AC(θp,rρ′ (LG̃′(µ)) = dimχx′ [O1] = θ(AC(L∗
G̃′(µ))).

22For the associated variety of unitary lowest weight module see Section 4.4
23see (4.27) for the definition of χ′.
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Under Case I, further assume “codim ∂N0 ≥ 2” (see Table 4.2) is satisfied.

Then

(vi) as (S(p1), Kp,r
C )-module

A(µ) ∼= IndKC

Kp,r
x1
χx1 .

Remark:

1. Same as remark 1 after Theorem 81, twisting back ς|K̃p,r , one can get

corresponding results of isotropy representation and K-spectrum equation

of θp,r(µ).

2. The condition codim∂N0 ≥ 2 is exactly the condition for LG̃(µ)

satisfies the K-spectrum equation.

3. Case I condition includes the cases that (Gp,r, G′) is in the stable

range. But it also includes some non-stable range cases, for example, it is

outside the stable range if 2n > r ≥ n for Case R.

4. When “Case I” condition is not satisfied we call it Case II. In Case

II, χx′ is more complicate. The calculation and results are similar to the

non-Tube type domain case for unitary lowest weight modules (c.f. [Yam01]

or Section 4.4).

5. We discuss the relationships between invariants of L∗
G̃′(µ) and in-

variants of LG̃′(µ). We need a real Chevalley involution, see [Ada12].

There is an involution C on G̃′ and g′ such which translate LG̃′(µ) into

L∗
G̃′(µ). Assume Siegel parabolic has form

(
∗ ∗
0 ∗

)
. One could let C(g) = gT .

It translate p′+ into p−. For any x′ ∈ p+, then C(x′) ∈ p−. Clearly

K ′
C(x′) = C(K ′

x′). Let λx′ be the isotropy representation of LG̃′(µ) at x′.

The isotropy representations of L∗
G̃′(µ) at C(x

′) is given by λx′ ◦C. In par-

ticular, AC(L∗
G̃′(µ)) = C(AC(LG̃′(µ))), where C translate K ′

C-orbits and

preserve multiplicities.

4.6.2 proof of Theorem 84: general part

Now we begin to prove Theorem 84. We will first discus the part of proof

holds for all pairs based on some geometry properties of moment maps.

Then we supply data to justify these properties case by case in the next

section.

Observe that, the pair (K,M ′) among diamond dual pairs of (Gp,q, G′)

(c.f. [How89b], or Figure 2.1) is a direct sum of irreducible reductive dual

pairs (Gp,0, G′) ⊕ (G0,q, G′), we may write the WC = W+ × W− where
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W+ (resp. W−) corresponds to pair (Gp,0, G′) (resp. (G0,q, G′)). Let

ϕ′+ : W+ → p+ (resp. ϕ′− : W− → p−) be the corresponding moment

map. The moment map24

ϕ′ : WC =W+ ×W− → (p′+)∗ × (p′−)∗ = p′∗

is given by ϕ′+ × ϕ′−. Furthermore, W− = W−
1 ×W−

2 , where W−
1 and W−

2

correspond to pair (G0,r, G′) and (G0,r′ , G′) respectively. Let ϕ′−
i : W

−
i →

(p−)∗ be corresponding moment maps, then ϕ′− = ϕ′−
1 +ϕ′−

2 . The complex

vector space associated with dual pair (Gp,r, G′) will be W1 = W+ ×W−
1 .

Let ϕ1 : W1 → p∗1 be the corresponding moment map.

We omit the case by case verification of part (i): pr1(O) has open Kp,r-

orbit O1, since it will be clear when we explicitly write done an element

x1 ∈ O1 later.

Recall that O′ is the open dense K ′
C-orbit in the associated variety of

L∗
G̃′(µ). By results in Section 4.4,

O′ = ϕ′−
2 (W−

2 ).

Now we show that O1 is the theta lift of O′. Consider commutative25

diagram (4.38), where pr := id× pr− is the obvious projection and N+
=

(ϕ′+)−1(0) (resp. N−
= (ϕ′−)−1(0)) is the null-cone in W+ (resp. W−).

W+ ×W−
1 ×W−

2 =WC

pr=id×pr−

����

N+ ×N−
? _oo

pr
����

ϕ
// // O

pr1
����

W+ ×W−
1 =W1 N+ × pr(N−

)? _oo
ϕ1

// // O1

(4.38)

Note that

N−
=
{
(B1, B2) ∈ W−

1 ×W−
2

∣∣∣ ϕ′−
1 (B1) + ϕ′−

2 (B2) = 0
}
. (4.39)

So

pr−(N−
) = (ϕ′−

1 )
−1(−ϕ′−

2 (W
−
2 )) = (ϕ′−

1 )
−1(ϕ′−

2 (W
−
2 )).

24G′ is Hermitian symmetric, we have decomposition p = p+ ⊕ p−
25the commutativity and surjectivity in the diagram could be verified by the explicit

construction of moment map
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Hence

O1 = pr1(O) =pr1 ◦ ϕ(N ) = ϕ1 ◦ (id× pr−)(N )

=ϕ1(N
+ × (ϕ′−

1 )
−1(O′))

=ϕ1((ϕ
′+)−1(0)× (ϕ′−

1 )
−1(O′)) = ϕ1(ϕ

′
1
−1
(O′)),

i.e. O1 is the theta lift of O′ by definition (c.f Definition 14).

Let

O0 :=pr−1
1 (O1) ∩ O N0 :=ϕ

−1(O0) ∩N = (pr1 ◦ ϕ)−1(O1) ∩N .

Fix a element x1 ∈ O1. We summarize above notations by commutative

diagram26 (4.40).

Fx1
//

pr1

��

⌟

iFx1

%%

O0
//

pr1

��

⌟

O

iO
��

// O //

pr1
��

p∗

pr1

��

x1 // O1
// O1 O1

// p∗1

(4.40)

Let Ix1 be the maximal ideal in S(p1) defining x1. Now the isotropy

representation of Kp,r
x1

is

χx1 :=A(µ)/Ix1A(µ)

(Ix1 is Kr′

C invariant and taking Kr′

C -invariants is exact)

= (A/Ix1A⊗ τ)K
r′
C

(4.41)

with A/Ix1A = ((i∗Fx1
)L )(Fx1) by Lemma 77 and equation (4.31).

Before calculate χx1 explicitly, assume that:

(codimN0 ≥ 2) the boundary ∂N0 = N \ N0 has codimension at least 2

in N .

We now show that the K-spectrum equation (4.2) holds under this condi-

tion. Note that N is smooth, by a long spectral sequence of local cohomol-

ogy as in the proof of [CPS83, Theorem 4.4] or otherwise, C[N ] ∼= C[N0].

26The square with “⌟” in its center is a fiber product.
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Now, by Theorem 39 of the equivalence of categories,

A =(C[N ]⊗ χ′)
K′
C = (C[N0]⊗ χ′)

K′
C

=A (O0) = L (O0) = Ind
Kp,r
C

Kp,r
x1
((i∗Fx1

)L )(Fx1).

Therefore27, as (S(p1), Kp,r
C )-module,

A(µ) ∼=
(
Ind

Kp,r
C

Kp,r
x1
((i∗Fx1

)L )(Fx1)⊗ τ
)Kr′

C

∼= Ind
Kp,r
C

Kp,r
x1

(
((i∗Fx1

)L )(Fx1)⊗ τ
)Kr′

C ∼= Ind
Kp,r
C

Kp,r
x1
χx1 .

An explicitly calculation28 show that condition (codim ≥ 2) holds if r′

satisfies the conditions listed in Table 4.2.

In the rest of this section, we describes the method calculating χx1 .

Case I: Consider following diagram.

Fx′
∼ // Yz

� � //

��
<<

<<
<<

< Y
pr

!!C
CC

CC
CC

� � //

��

N

##F
FF

FF
FF

� � //

��

WC=W+ ×W−
1 ×W−

2
pr

!!D
DD

DD
D

ϕ

��

z �
�

// Zx1

ϕ1

��

� � // pr(N )

��

� � //WC
1 = W+ ×W−

1

ϕ1

��

Fx1

  B
BB

BB
BB
� � // O0

""F
FF

FF
FF

� � // p∗
pr1

!!C
CC

CC
CC

x1
� �

ix1

// O1
� � // p∗1

Let Y be the fiber of x1 for map (pr1 ◦ ϕ)|N and Zx1 be the fiber of x1

for map ϕ1|pr(N ).

Since A = (C[N ]⊗ χ′)K
′
C ,

A/Ix1A = (C[Y ]⊗ χ′)K
′
C . (4.42)

On the other hand, Zx1 is a single K
p,r
x1

×K ′
C-orbit, let z ∈ Zx1 with isotropy

subgroup Sz = StabKp,r
x1

×K′
C
z. Let Yz = pr−1(z) ∩ Y . So

C[Y ] ∼= Ind
Kp,r

x1
×K′

C

Sz
C[Yz]. (4.43)

Consider projection pr−2 : W
− = W−

1 ×W−
2 → W−

2 . Note that in Case

I, ϕ−
1 : W

−
1 → (p′−)∗ is a surjection. So pr−2 (N

−
) = O′

by (4.39). Hence,

27By Theorem 37 (b)
28codim∂N0 equals to n − r′ + 1 in Case R; n2 + 1 if r′ ≤ n2 ≤ n1, n1 − n2 + 1 if

n2 < n1 and r′ < n1 in Case C; 2n−4r′+1 if 2r′ < n, 3 if n = 2l−1 l < r, r′ in Case H.
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x′ := ϕ−
2 (z) ∈ p′− generate O′ under K ′

C-action. Let Fx′ := (ϕ−
2 )

−1(x′) be

the fiber studied in Section 4.4. Then Yz = { z } × Fx′ . Moreover, there is

a map

β : Kp,r
x1

// //K ′
x′
� � // K ′

C

such that Sz = Kp,r
x1

×β K
′
C. Now, by (4.41), (4.42), (4.43) and Lemma 79,

χx1 =
(
(C[Y ]⊗ χ′)K

′
C ⊗ τ

)Kr′
C

=
(
(Ind

Kp,r
x1

×K′
C

Sz
C[Yz]⊗ τ)K

r′
C ⊗ χ′

)K′
C

=
(
Ind

Kp,r
x1

×K′
C

Sz
(C[Fx′ ]⊗ τ)K

r′
C ⊗ χ′

)K′
C

=
(
Ind

Kp,r
x1

×K′
C

Kp,r
x1

×βK
′
C

χx′ ⊗ χ′
)K′

C

=(χx′ ⊗ χ′) ◦ β.

(4.44)

Here χx′ is the isotropy representation of the twisted unitary lowest weight

representation ς ′ ⊗ L∗
G̃′(µ) (c.f. (4.13).).

Notice that the pair (G0,r′ , G′) correspond to the dual of the pair (Gr′,0, G′)

in Section 4.4. Our definition of τ in (4.35) is consistent with (4.12) if we

“dual” everything simultaneously, especially the moment map ϕ−
2 maps

W−
2 into (p−)∗.

Case II: fix a point x1 ∈ O1. Consider following commutative diagram

Y

��

//

⌟

N //

��

WC

ϕ◦pr
��

x1 // O1
// p∗1

In this case, the fiber Nx1 := (pr1 ◦ ϕ|N )−1(x1) will not be a single

Kp,r
x1

×Kr′
C ×K ′

C-orbit. But there is a nice sub-variety Ns such that

Nx1 = Lx1K
r′

CK
′
C · Ns,

where Lx1 is a Levi-subgroup of Kp,r
x1

. Moreover, Ns = π−1(xs) is the fiber
29

of some Lx1 ×Kr′
C ×K ′

C-equivariant projection π : Nx1 →Ms with xs ∈Ms

and Ns is isomorphic to the null-cone of a smaller dual pair30 (Gs, G
′
s). The

isotropy subgroup Sxs = StabLx1×K′
C
×Kr′

C

xs isomorphic to Lx1×K ′
sC×K

r′−r
C ,

29See commutative diagram (4.45)
30still in stable range
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where Kr′−r
C and K ′

sC are the compact part of the smaller dual pair.

Ns
//

��

⌟

Nx1

π

��

xs //Ms

(4.45)

Therefore,

A/Ix1A
∼= (C[Nx1 ]⊗ χ)K

′
C ∼= (Ind

Lx1×Kr′
C
×K′

C

Sxs
C[Ns]⊗ χ′)K

′
C

and

χx1 =A(µ)/Ix1A(µ) = (A/Ix1A⊗ τ)K
r′
C

=

(
(Ind

Lx1×Kr′
C
×K′

C

Sxs
C[Ns]⊗ χ′)K

′
C ⊗ τ

)Kr′
C

=
(
(C[Ns]⊗ χ′|K′

sC
)K

′
sC ⊗ τ

)Kr′−r
C

=(As ⊗ τ)K
r′−r
C ,

(4.46)

where As is the twisted graded module of the theta lift of the same unitary

character with respect to a smaller dual pair (Gs, G
′
s) of same type.31

4.6.3 Proof of Theorem 84: case by case computation

4.6.3.1 Case R: (O(p, q), Sp(2n,R))

In this section, we let

(G,G′) = (O(p, q), Sp(2n,R)), G1 = O(p, r)

KC = O(p,C)×O(q,C) K ′
C = GL(n,C),

Kp,r
C = O(p,C)×O(r,C) Kr′

C = O(r′,C)

WC =Mp,n ×Mq,n, W1 =Mp,n ×Mr,n,

p∗ =Mp,q, p1 =Mp,r, p′∗ = Symn × Symn,

∀(A,B) ∈Mp,n ×Mq,n, (a, b, k′) ∈ O(p,C)×O(q,C)×GL(n,C),

ϕ(A,B) = ABT , ϕ′(A,B) = (ATA,BTB),

pr(A,B) = (A,B1), pr1(AB
T ) = ABT

1 ,

ϕ′−
1 (B) = BT

1 B1, ϕ′−
2 (B) = BT

2 B2

31“of same type” means still in the same family of dual pair listed in Table 4.2.
Moreover the discriminate of Gs is same as G, hence we can identify the sets of genuine
unitary characters of G′ and G′

s naturally.
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(a, b, k′) · (A,B) = (aAk′
−1
, bBk′

T
),

ς = det
n
2 ⊗ det−

n
2 ς ′ = det

p−q
2

where B =

(
B1

B2

)
with B1 ∈Mr,n and B2 ∈Mr′,n. The K̃ × K̃ ′-action on

the Fock-space Y ∼= C[WC] by

(((a, b), k′) · f)(A,B) =(det
n
2 a)(det−

n
2 b)(det

p−q
2 k′)f(a−1Ak′, b−1B(k′

−1
)T ) ∀f ∈ Y .

Now we calculate the isotropy representation of θp,q(1). Let

Ep,n =

 In

0p−2n√
−1In

 (4.47)

be the matrix formed by n linearly independent null column vectors. Let

y =(Ep,n, Eq,n) ∈ N , x :=ϕ(y) = Ep,nE
T
q,n

The KC-orbit O := KC · x ⊂ p∗ is an open dense subset of ϕ(N ), consisted

of rank n matrixes in Mp,q such that the column and row vectors are all

null.

Let Pp,n ⊂ O(p,C) be the stabilizer of the isotropic subspace spanned

by the columns of Ep,n. Then
32

Pp,n
∼= (GL(n,C)×O(p− 2n,C))⋉Np,n,

with Np,n its unipotent radical. Let

αp,n : Pp,n → GL(n,C)

by quotient out of O(p−2n,C)⋉Np,n. Similarly, define Pq,n and αq,n. Now

Kx =
{
(o1, o2) ∈ Pp,n × Pq,n

∣∣ αp,n(o1) = ((αq,n(o2))
−1)T ∈ GL(n,C)

}
(4.48)

Define

α : Kx → K ′
C = GL(n,C) by (o1, o2) 7→ αp,n(o1).

32by fix an isotropic subspace dual to the column space of Ep,n
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Therefore, the isotropy representation

χx
∼= det

p−q
2 ◦ α : Kx → GL(1,C)

and

A = ς∗ ⊗Gr θp,q(1) ∼= IndKC

Kx
(det

p−q
2 ◦ α).

Now consider the theta lifts of lowest weight module Let E1 be the

first r rows of Eq,n and E2 be the last r′ rows of Eq,n. In all the cases,

x1 = pr1(x) = Ep,nE
T
1 generate a dense Kp,r

C -orbit in pr1(O).

Now we calculate isotropy representation χx1 case by case.

Case I (r ≥ n) ϕ′−
1 (N−

) is surjection to Symmetric matrix of rank less or

equal to j = min { r′, n }. Let

z = (Az, B1,z), where33 Az = Ep,n, B1,z =

(
Ij 0

0 Er−j,n−j

)
.

Now x′ = −BT
1 B1 = −

(
Ij 0

0 0

)
.

Yz =
{
(Ay, B1,y, B2)

∣∣ BT
2 B2 = x′

} ∼= Fx′ ⊂Mr′,n.

Define

β : Kp,r
x1

→ K ′
C by (o1, o2) 7→ αp,n(o1).

Case II (r < n) We will change of basis in Cp such that the first r-coordinate

are isotropic and dual to the last r-coordinate. Let x1 = Ip,r. Then

x1 generate open dense Kp,r
C -orbit in pr1(O).

Kp,r
x1

= { (o1, o2) ∈ Pp,r ×O(r,C) | αp,r(o1) = o2 ∈ O(r,C) }

Let Lp,r
∼= GL(r,C)×O(p′,C) be the Levi subgroup of Pp,r. Then

Lx1 = Lp,r ×αp,r O(r,C) ∼= △O(r)×O(p− 2r) (4.49)

is a Levi subgroup of Kp,r
x1

.

Consider the projection π : Nx1 ↪→WC →Mr,n ×Mr,q−r =M s by

Mr,n ×Mp−r,n ×Mr,n ×Mq−r ∋ (

(
A1

∗

)
,

(
∗
B2

)
) 7→ (A1, A1B

T
2 ).

33See (4.47) for the definition of E∗,∗



4.6. ISO. REP. OF LIFTS — LOWEST WEIGHT MODULE 119

Now π is an L×K ′
C ×Kr′

C -equivariant map. Let,

xs = (Ir,n, iIr,q−r).

Then π(Nx1) is an Lx1 ×Kr′ ×K ′
C-orbit of xs,

π−1(xs) =

 (

Ir 0

0 As

0 0

 ,

 Ir 0

iIr 0

0 Bs


T

)

∣∣∣∣∣∣∣∣ (As, Bs) ∈ Ns

 ∼= Ns

where Ns is the null cone for pair

(Gs, G
′
s) = (O(p− 2r, q − 2r), Sp(2(n− r),R)) .

Finally, the isotropic subgroup of xs is

Sxs
∼=△O(r,C)×O(p− 2r,C)×GL(n− r,C)×O(2− 2r,C)

∼=L×GL(n− r,C)×O(q − 2r,C).

4.6.3.2 Case C: (U(p, q),U(n1, n2))

In this section, we let

(G,G′) = (U(p, q),U(n1, n2)), G1 = U(p, r)

KC = GL(p,C)×GL(q,C) K ′
C = GL(n1,C)×GL(n2,C),

Kp,r
C = O(p,C)×O(r,C) Kr′

C = O(r′,C)

WC =Mp,n1 ×Mp,n2 ×Mq,n1 ×Mq,n2 , W1 =Mp,n1 ×Mp,n2 ×Mr,n1 ×Mr,n2 ,

p =Mp,q ×Mq,p, p1 =Mp,r ×Mr,p, p′ =Mn1,n2 ×Mn2,n1 ,

∀(A,B,C,D) ∈ WC, (a, b, k′1, k
′
2) ∈ KC ×K ′

C,

ϕ(A,B,C,D) = (ACT , DBT ), ϕ′(A,B,C,D) = (ATB,DTC),

pr(A,B,C,D) = (A,B,C1, D1), pr1(AC
T , DBT ) = (ACT

1 , D1B
T ),

ϕ′−
1 (C,D) = DT

1 C1, ϕ′−
2 (C,D) = DT

2 C2

(a, b, k′1, k
′
2) · (A,B,C,D)= (aAk′−1

1 , aT
−1
Bk′T1 , bCk

′T
1 , b

T−1
Dk′−1

1 ),

ς = det
n1−n2

2 ⊗ det−
n1−n2

2 ς ′ = det
p−q
2 ⊗ det−

p−q
2

where C =

(
C1

C2

)
, D =

(
D1

D2

)
with C1 ∈ Mr,n1 , C2 ∈ Mr′,n1 , D1 ∈ Mr,n2 ,

D2 ∈Mr′,n2 .

Assume p+q is even, we calculate the isotropic representation of θp,q(1).
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Let

y :=(
(
A B

)
,
(
C D

)
) = (Ip,n1+n2 , Iq,n1+n2),

x :=ϕ(y) = (

(
In1 0

0 0

)
,

0n1 0 0

0 In2 0

0 0 0

).

The KC-orbit O := KC · x ⊂ p∗ is an open dense subset of ϕ(N ), consist of

pairs of matrices of rank n1 and n2 respectively and multiply them in two

ways both give 0.

Let Pp,n ⊂ GL(p,C) be the stabilizer of the span of first n coordinates.

Pp,n
∼= (GL(n,C)×O(p− 2n,C))⋉Np,n,

with Np,n its unipotent radical. Let

αp,n1+n2 : Pp,n1+n2 → GL(n1 + n2,C).

Then

Kx =
{
(g1, g2) ∈ Pp,n1+n2 × Pq,n1+n2

∣∣ αp,n1+n2(g1) = (αq,n1+n2(g2)
T )−1 ∈ K ′

C

}
Define

α : Kx ↠ K ′
C by (g1, g2) 7→ αp,n1+n2(g1).

Therefore, the isotropic representation

χx
∼= (det

p−q
2 ⊗ det−

p−q
2 ) ◦ α : Kx → GL(1,C)

and

A = ς∗ ⊗Gr θp,q(1) ∼= IndKC

Kx
((det

p−q
2 ⊗ det−

p−q
2 ) ◦ α).

Now consider the theta lifts of lowest weight module. Without loss of

generality, we assume n1 ≥ n2.

Case I (r ≥ n1, n2) In this case, the map ϕ−
1 : (C1, D1) 7→ CT

1 D1, is sur-
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jective to the space of matrices Mn1,n2 . Let

j = min { r′, n1, n2 } ,

z = (Az, Bz, C1,z, D1,z), where(
Az Bz

)
= Ip,n1+n2 , C1,z =

(
0

Ir−n2+j,n1

)
, D1,z = Ir,n2 .

So

x′ =− ϕ−
1 (z) = −DT

1,zC1,z = −

(
0n2−j 0

0 Ij,n1−n2+j,

)

Yz =

{(
Az, Bz,

(
C1,z

C2

)
,

(
D1,z

D2

)) ∣∣∣∣∣ CT
2 D2 = x′

}
∼= Fx′ ⊂ p′−.

Define

β : Kp,r
x1

→ K ′
C by (g1, g2) 7→ αp,n1+n2(g1) ∈ GL(n1,C)×GL(n2,C).

Case II (n1, n2 ≥ r) For simplicity, we only consider n1, n2 ≥ r. In this

case, let

x1 =
(
Ip,r,

(
0r Ir 0

))
∈Mp,r ×Mr,q.

Then x1 generate the open Kp,r
C -orbit in pr1(O). Now

Kp,r
x1

= { (g, g1) ∈ Pp,2r ×GL(r,C) | αp,2r(g) = △g1 ∈ GL(2r,C) } .

The Levi subgroup of Kp,r
x1

,

Lx1
∼=△GL(r,C)×GL(p− 2r,C).

Define

π : Nx1 ↪→ WC →Ms :=M2r,n1 ×M2r,n2 ×M2r,q−r ×M2r,q−r,

by ((
A1 B1

∗ ∗

)
,

(
∗ ∗
C2 D2

))
7→ (A1, B1, A1C

T
2 , B2D

T
2 ).

Let

xs = (Ir,n1 , Ir,n2 , iIr,q−r, iIr,q−r)
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Then

π−1(xs) =


Ir 0 0 0

0 0 Ir 0

0 As 0 Bs


 Ir 0 Ir 0

iIr 0 iIr 0

0 Cs 0 Ds


∣∣∣∣∣∣∣ (As, Bs, Cs, Ds) ∈ Ns


where Ns is the null cone with respect to pair

(Gs, G
′
s) = (U(p− 2r, q − 2r),U(n1 − r, n2 − r)).

The isotropic subgroup of xs is

Sxs
∼=△GL(r,C)×GL(q − 2r,C)×GL(n1 − r,C)

×GL(n2 − r,C)×GL(q − 2r,C)

∼=Lx1 ×GL(n1 − r,C)×GL(n2 − r,C)×GL(q − 2r,C).

4.6.3.3 Case H: (Sp(p, q),O∗(2n))

In this section, we let

(G,G′) = (Sp(p, q),O∗(2n)), G1 = Sp(p, r)

KC = Sp(2p,C)× Sp(2q,C) K ′
C = GL(n,C),

Kp,r
C = Sp(2p,C)× Sp(2r,C) Kr′

C = Sp(2r′,C)

WC =M2p,n ×M2q,n, W1 =M2p,n ×M2r,n,

p =M2p,2q, p1 =M2p,2r, p′ = Altn,n × Altn,n,

∀(A,B) ∈M2p,n ×M2q,n, (a, b, k′) ∈ Sp(2p,C)× Sp(2q,C)×GL(n,C),

ϕ(A,B) = ABT , ϕ′(A,B) = (ATJ2pA,B
TJ2qB),

pr(A,B) = (A,B1), pr1(AB
T ) = ABT

1 ,

ϕ′−
1 (B) = BT

1 J2rB1, ϕ′−
2 (B) = BT

2 J2r′B2

(a, b, k′) · (A,B) = (aAk′
−1
, bBk′

T
),

ς = det
n
2 ⊗ det−

n
2 ς ′ = detp−q

where B =

(
B1

B2

)
with B1 ∈ M2r,n and B2 ∈ M2r′,n. The K̃ × K̃ ′-action

on the Fock-space Y ∼= C[WC] by

(((a, b), k′) · f)(A,B) =(det
n
2 a)(det−

n
2 b)(detp−qk′)f(a−1Ak′, b−1B(k′

−1
)T ) ∀f ∈ Y .
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Now we calculate the isotropic representation of θp,q(1). Temporally, let

J2q =

(
0 Iq

−Iq 0

)
be the symplectic form on C2q,

y =(I2p,n, I2q,n) ∈ N , x =ϕ(y) = I2p,nI
T
2q,n =

(
In 0

0 0

)
.

The KC-orbit O := KC · x ⊂ p∗ is an open dense subset of ϕ(N ), consisted

of rank n matrixes in M2p,2q such that the column and row vectors are

all null. Let P2p,n ⊂ Sp(2p,C) be the stabilizer of the isotropic subspace

spanned by the columns of I2p,n. Then
34

P2p,n
∼= (GL(n,C)× Sp(2p− 2n,C))⋉N2p,n,

with N2p,n its unipotent radical. Let

α2p,n : P2p,n → GL(n,C)

by quotient out of O(p − 2n,C) ⋉ N2p,n. Similarly, define P2q,n and α2q,n.

Now

Kx =
{
(g1, g2) ∈ P2p,n × P2p,n

∣∣ α2p,n(g) = (αT
2q,n)

−1
}
.

Define

α : Kx → K ′
C = GL(n,C) by (g1, g2) 7→ α2p,n(g1).

Therefore, the isotropic representation

χx
∼= det(p−q) ◦ α : Kx → GL(1,C)

and

A = ς∗ ⊗Gr θp,q(1) ∼= IndKC

Kx
(det(p−q) ◦ α).

Now consider the theta lifts of lowest weight module.

Case I 2r ≥ n In this case, ϕ′−
1 : B1 7→ BT

1 J2rB1 ∈ Altn is surjective. Let

j = min { r′, ⌊n/2⌋ }. Then 2r − 2j ≥ 2(n − 2j) ≥ 0. Choose the

form on C2q = C2j ⊕ C2r−2j ⊕ C2r′ be J2j ⊕ J2r−2j ⊕ J2r′ . Let

z = (Az, B1,z), where Az = I2p,n, B1,z =

(
I2j 0

0 I2r−2j,n−2j

)
.

34by fix an isotropic subspace dual to the column space of I2p,n
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Now

x′ =ϕ−
2 (z) = −ϕ−

1 (z) = −BT
1,zJB1,z =

(
J2j 0

0 0

)
,

Yz =
{
(Az, B1,z, B2)

∣∣ BT
2 J2r′B2 = x′

} ∼= Fx′ ⊂M2r′,n.

Note that x1 = ABT
1,z. Let SB1,z = StabK′

C
×Sp(2r)(B1,z). Then

Kp,r
x1

=
{
(g, g1) ∈ P2p,n × Sp(2r,C)

∣∣ (α2p,n(g), g1) ∈ SB1,z

}
,

and define

β : Kp,r
x1

→ K ′
x′ = StabK′

C
(x′) ↪→ K ′

C by (g, g2) 7→ α2p,n(g).

Case II 2r < n In this case, 2r′ > n. Let the symplectic form on C2q

be J2r ⊕ J2r ⊕ J2q−4r. Fix symplectic form on C2p such that first

2r-coordinates and last 2r-coordinates pair. Then

x1 =

(
I2r

0

)

generate the open dense Kp,r
C -orbit in pr1(O). Now

Kp,r
x1

= P2p,2r ×α2p,2r Sp(2r,C).

Let L2p,2r
∼= GL(2r,C)×Sp(2p−4r,C) be the Levi subgroup of P2p,2r.

The Levi subgroup of Kp,r
x1

,

Lx1 = { (g1, g2) ∈ L2p,2r × Sp(2r,C) | α2p,2r(g1) = g2 }
∼=△Sp(2r,C)× Sp(2p− 4r,C).

Consider the projection π : Nx1 ↪→ WC → Ms := M2r,n ×M2r,2q−2r

by

M2r,n×M2p−4r,n×M2r,n×M2q−2r,n ∋

((
A1

∗

)
,

(
∗
B2

))
7→ (A1, A1B

T
2 ).

Now π is an Lx1 ×K ′
C ×Kr′

C -equivariant map. Let,

xs = (I2r,n, iI2r,2q−2r).
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Then π(Nx1) is an Lx1 ×Kr′ ×K ′
C-orbit of xs,

π−1(xs) =



I2r 0

0 As

0 0

 ,

 I2r 0

iI2r 0

0 Bs



∣∣∣∣∣∣∣ (As, Bs) ∈ Ns

 ∼= Ns

where Ns is the null cone for pair

(Gs, G
′
s) = (Sp(2p− 4r, 2q − 4r),O∗(2(n− 2r))) .

Finally, the isotropic subgroup of xs is

Sxs
∼=△Sp(2r,C)× Sp(2p− 4r,C)×GL(n− 2r,C)× Sp(2q − 4r,C)

∼=Lx1 ×GL(n− 2r,C)× Sp(2q − 4r,C).
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isotropic representation, 43
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OX , 4

rational representation, 44
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of complex dual pair, 6
of symplectic space, 6

reductive dual pair, 5
R(e, Ẽ;Y ), 7

R(Ẽ;Y ∞), 7

see-saw pair, 53
stable branching coefficient, 64
Support, 39
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theta lift

nilpotent orbit, 27
Theta Lifting, 8
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