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Summary 

The idea of Software Product Line (SPL) approach is to manage a family of similar 

software products in a reuse-based way. Reuse avoids repetitions, which helps reduce de-

velopment/maintenance effort, shorten time-to-market and improve overall quality of 

software. A number of open problems must be solved for SPL to have wide-spread impact 

on software practice. One of them is to understand and manage variability in software arte-

facts. To migrate from existing software products into SPL, one has to understand how 

they are similar and how they differ one from another. In current practice, such analysis is 

done mostly manually, with some help of clone detection tools. We propose higher level of 

automation, and a sandwich approach that consolidates feature knowledge from top-down 

domain analysis with bottom-up analysis of code similarities in subject software products. 

Our proposed method integrates model differencing, clone detection, and information re-

trieval techniques, which can provide a systematic means to reengineer the legacy software 

products into SPL based on automatic variability analysis. Once the variability among the 

different product variants have been recovered and understood, SPL core assets are built to 

facilitate reuse. In that area, our contribution is in proposing effective strategies for manag-

ing variability in core assets. We analyzed benefits and trade-offs involved in strategies 

based on applying multiple traditional variability techniques, and in applying a uniform 

variability technique of XML-based Variant Configuration Language (XVCL). Our pro-

posed strategies have been evaluated in an industrial project and a number of lab case stud-

ies. 



List of Tables 

viii 

List of Tables 

Table 4.1. Statistics of contextual differences in JavaIO 1.5 .............................................. 79 

Table 4.2. Statistics of contextual differences in JDT-model tests ..................................... 79 

Table 5.1. Feature sets of document viewers/editors ........................................................... 98 

Table 5.2. Nine product variants of Linux kernel ............................................................. 107 

Table 5.3. MAP and APCUI (Nq=30) at pd=0.1,…,0.5 ..................................................... 117 

Table 5.4. MAP and APCUI of direct application of LSI ................................................. 118 

Table 6.1. Variant features of TMS ................................................................................... 128 

Table 6.2. Feature dependency and interactions ............................................................... 128 

Table 6.3. Feature numbers for variability techniques used in TMP ................................ 130 

Table 6.4. Summary of variability technique in WFMS-PL ............................................. 135 

Table 6.5. The number of variation points per impact granularity level ........................... 136 

Table 6.6. The number of variation points in example features ........................................ 138 

Table 7.1. Managed variation points ................................................................................. 151 

Table 8.1. The feature table with renamed features for product variants .......................... 164 

Table 8.2. The actual and expected results of PFMs comparison for BDB-Java product 

variants .............................................................................................................................. 167 

Table 8.3. The implementation differences among product pairs ..................................... 171 



List of Figures  

xi 

List of Figures 

Figure 1.1 An overview of domain engineering and application engineering in extractive 

approach [94,133] ................................................................................................................. 3 

Figure 1.2. The sandwich approach to recovering the variability ......................................... 6 

Figure 2.1. The feature diagram of TBS system ................................................................. 14 

Figure 2.2. The legend for feature diagram of TBS system ................................................ 14 

Figure 2.3. The grammar for feature diagram of TBS system ............................................ 14 

Figure 2.4. The example of Type 1,2,3,4 clones ................................................................. 17 

Figure 2.5. Finding methods containing frequent item-sets of SCC ................................... 22 

Figure 2.6. The architecture of GenericDiff [173] .............................................................. 25 

Figure 3.1. The variants of WFMS product family ............................................................. 32 

Figure 3.2. Comparison of two PFMs ................................................................................. 33 

Figure 3.3. A Partial PFM of WFMS
Shandong

 ........................................................................ 36 

Figure 3.4. The meta-model of PFM ................................................................................... 36 

Figure 3.5. The precision and recall for change-type-centric strategy ................................ 49 

Figure 3.6. The precision for feature-centric strategy ......................................................... 50 

Figure 3.7. The recall for feature-centric strategy ............................................................... 50 

Figure 3.8. Reengineering product variants into SPL ......................................................... 53 

Figure 4.1. Differences of two clone fragments .................................................................. 58 

Figure 4.2. Can we pull-up these cloned methods? ............................................................ 60 

Figure 4.3. Differential statements ...................................................................................... 62 

Figure 4.4. Missing branch and statements ......................................................................... 63 

Figure 4.5. Inspecting contextual differences in CloneDiff Compare Editor ..................... 67 

Figure 4.6. Textual differences in Java Source Compare ................................................... 67 

Figure 4.7. Wala-PDG example: PipedWriter.write(int):void ............................................ 69 



List of Figures 

xii 

Figure 4.8. Differential statements ...................................................................................... 72 

Figure 4.9. Differential block .............................................................................................. 72 

Figure 4.10. Missing statements .......................................................................................... 73 

Figure 4.11. Missing block .................................................................................................. 73 

Figure 4.12. Partially-matched branches ............................................................................. 74 

Figure 4.13. PDG Viewer .................................................................................................... 76 

Figure 4.14. Cloned methods that have no contextual diffs ................................................ 82 

Figure 4.15. Differential typecast statements ...................................................................... 84 

Figure 4.16. Seed values ..................................................................................................... 85 

Figure 4.17. State machine .................................................................................................. 86 

Figure 4.18. Assume invariant ............................................................................................ 88 

Figure 5.1. A feature in Linux kernel .................................................................................. 99 

Figure 5.2. The concept lattice of document viewers/editors ............................................ 103 

Figure 5.3. The top 10 returned code units for the Intel microcode feature ....................... 110 

Figure 5.4. Distinct features of Linux kernel product variants ........................................... 113 

Figure 5.5. Distinct code units of Linux kernel product variants ....................................... 113 

Figure 5.6. Partition size by features ................................................................................. 114 

Figure 5.7. Partition size by code units .............................................................................. 115 

Figure 5.8. PRQ (Nq=10, 20, 30) at pd=0.1,…,0.5 ............................................................ 117 

Figure 5.9. PRQ values of direction application of LSI .................................................... 118 

Figure 6.1. The feature diagram of TMS........................................................................... 127 

Figure 6.2. The architecture of TMS ................................................................................. 127 

Figure 6.3.  Managing variant features with Java’s final-boolean mechanism ................. 131 

Figure 6.4. Reflection used in strategy pattern .................................................................. 131 

Figure 6.5. Using Ant to include optional features ........................................................... 132 



List of Figures  

xiii 

Figure 6.6. Using configurations files ............................................................................... 132 

Figure 6.7. Variability techniques per feature ................................................................... 134 

Figure 7.1. Overview of WFMS core assets in XVCL ..................................................... 144 

Figure 7.2. Detailed view of WFMS core assets in XVCL ............................................... 146 

Figure 7.3. Finding code of feature InitPayMode ............................................................. 148 

Figure 7.4. Finding feature interactions ............................................................................ 148 

Figure 8.1. The grammar of feature diagram of BDB Java .............................................. 161 

Figure 8.2. Feature code highlighting in CIDE ................................................................. 163 

Figure 8.3. Feature location in product variants ............................................................... 172 

Figure 8.4. The FCA for the features of 5 product variants .............................................. 173 

Figure 8.5. Separation of single feature by intersecting code difference sets in Concept 

Explorer............................................................................................................................. 174 

Figure 8.6. Managing fine-grained features in base components with preprocessor ........ 176 

Figure 8.7 A preprocessing solution to managing features in Berkeley DB ..................... 179 

Figure 8.8. Feature interactions ......................................................................................... 182 

  





Chapter 1 Introduction 

1 

1 Introduction 

The Software Product Line (SPL) approach aims at improving software productivity and 

quality by relying on much similarity that exists among software systems and relevant de-

velopment process [33]. The idea of SPL approach is to manage a family of similar prod-

ucts in a reuse-based way. In last two decades, SPL has been an active research area in 

software engineering [30,152]. The motivation of SPL lies in the fact that companies most 

of the time develop and maintain multiple variants of the same software system customized 

for the needs of different customers. All such system variants are similar, but they also dif-

fer in customer-specific features. This creates possibility for reuse. Reuse avoids repeti-

tions, which helps reduce development/maintenance effort, shorten time-to-market and 

improves overall quality of software [70]. 

In an SPL, core assets [13,127] are identified and built. Product variants are derived 

from core assets. Variability among variants is described in terms of features [81]. Ideally, 

by configuring required variant features, we would like to be able to derive a custom prod-

uct from SPL core assets in automated way. Before SPL has the actual impact on software 

practice, a number of open problems must be solved. Those open problems include how to 

discover the variability among the product variants, how to model variability and com-

monality, how to handle the variability and also how to evaluate the architecture of SPL. 

1.1 Research Problems 

To reengineer an existing family of legacy systems into SPL, several important prereq-

uisites must be satisfied [111]. First, variability among the product variants should be ex-

plicitly identified and must be systematically managed. Second, we should be able to de-

rive a new software product from reusable components, so–called SPL core assets. Thus, 

understanding the commonality and variability in existing software products constitutes the 

first step towards building core assets for reuse in SPL.  
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Given an existing family of legacy product variants, the first step in extractive approach 

[105] to building an SPL is to understand the variability among the products, as they pro-

vide a basis for scoping an SPL [111], and then to design first-cut SPL core assets. From 

our previous industrial case study on variability management [182] and a study of open-

source project [75], we found that it was rare that the legacy products have well-

documented artifacts describing variability in details. Considering WingSoft Financial 

Management System (WFMS) [176,182], the documents for the major versions were 

available, but for those minor versions the information could only be reverse-engineered 

from source or recalled by the original developers.  

In the thesis, we address the following research questions related to re-engineering lega-

cy code into SPL: 

RQ1. Given requirements for product variants, how do we identify the common and 

variant requirements among them?    

RQ2. How are the product variants different at the implement level? 

RQ3. Once we know the differences in feature and code in product variants, which 

variant features configure which code variants?  

Once the variability among the product variants has been identified, a wide range of var-

iability techniques can be applied to design SPL core assets. The role of variability tech-

niques is to make core assets reusable in multiple product variants. Due to variability in 

requirements of product variants, more often than not core assets should be adapted for 

systematic reuse, not developed or maintained individually. Variability should make such 

adaptive reuse easy. Examples of variability techniques include CPP [86,128,141], Java 

conditional compilation [197], commenting out feature code, design patterns [57], parame-

ter configuration files, and a build tool Ant [188], parameter configuration files. 
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Figure 1.1 An overview of domain engineering and application engineering in extrac-

tive approach [94,133] 

Figure 1.1 shows two phases of SPL engineering, namely domain engineering and ap-

plication engineering. Reengineering of existing product variants provides inputs for do-

main engineering. The feature diagram (variability model) [81] is created during domain 

analysis, and the core assets are created during domain implementation. During application 

engineering, developers select variant features for a new product they build and adapt core 

assets accordingly.  

Thus, RQ1 to RQ3 focus on the domain analysis and domain implementation. Here are 

the extra questions we address in the application engineering to generate products for new 

customers (after RQ3):  

RQ4. What variability techniques are used in industrial SPL? 

Our industrial studies revealed that multiple variability techniques are used to tackle dif-

ferent variability situations in SPL. We also analyzed the reasons for the necessity to use 

multiple variability techniques at the same time. The lessons of adopting multiple variabil-
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ity techniques show that in the long run, variability management with multiple variability 

techniques become difficult to comprehend and maintain for the programmers. To alleviate 

the problems of multiple variability techniques, we address the final research questions:  

RQ5. Can we use a single uniform variability technique instead of multiple tech-

niques? What are the necessary characteristics of such uniform technique and 

trade-off involved in using it? 

1.2 Sketch of the Solution 

To answer the RQ1, RQ2 and RQ3, we propose a sandwich approach [177], as shown in 

Figure 1.2, which consolidates feature knowledge from top-down domain analysis with 

bottom-up analysis of software clones in subject software product.  

To tackle RQ1, we present a model differencing based method to detect changes that 

occurred to product features in a family of product variants. The primary input to our 

method is a set of Product Feature Models (PFMs) [180]. A PFM captures all the features 

and their dependencies in a product variant. We then adapt GenericDiff [175], a general 

framework for model comparison, to compare pair-wisely these PFMs based on both lexi-

cal and structural (i.e., dependencies and relationships) similarities of features. We propose 

a catalog of feature changes that can evolve a PFM, e.g. rename feature, add leaf feature 

and so on. Based on the differencing report by GenericDiff, we also develop a tool for au-

tomatically inferring feature changes according to the catalog we propose.  

For RQ2, we use clone detection tool [11] to find the clone candidates that represent the 

similar variant features. We capture contextual information of clones from Program De-

pendence Graphs (PDGs) generated by Wala [204]. These PDGs encode data and control 

dependencies between program statements. We then use graph matching techniques Ge-

nericDiff to compute a precise characterization of clones in terms of the structural differ-

ences and differential properties between their PDGs, from which several patterns of con-
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textual differences are recognized [174]. The patterns of contextual differences include 

Missing Statement, Missing Branch and so on [174]. 

To answer RQ3, we correlate variability recovered from product features models (PFMs) 

with variability identified from the clones [179]. The underlying intuition of our approach 

is that the presence or absence of a feature in a product variant should be reflected in the 

presence or absence of certain design elements and code fragments. We propose to incor-

porate software differencing, Formal Concept Analysis (FCA), and IR techniques. Software 

differencing helps to identify distinct features (or code units) in a software product family, 

which represent corresponding features (or code units) across product variants. FCA then 

groups distinct features (or code units) into disjoint and minimal partitions by analyzing 

commonality and differences of product variants. Finally, given a feature partition and the 

corresponding code-unit partition, Latent Sematic Indexing [41] (LSI) is used to identify 

code units that implement a specific feature. 

For the RQ 4, we first analyze WFMS-PL variant features and present them as a feature 

diagram [81]. Then, we study variability techniques in WFMS, i.e. Java conditional compi-

lation, commenting out feature code, design patterns [57], parameter configuration files, 

and a build tool Ant. Finally, we analyze how the granularity and scope of features impact 

on WFMS components affects the effectiveness of variability techniques [182].  

For the RQ5, we conduct lab studies and collect inputs from Fudan Wingsoft Ltd [176], 

regarding the original WFMS core assets developed by Wingsoft using multiple variability 

techniques, and core assets in XVCL [71]. We compare the efforts in productivity during 

domain engineering (i.e., building and evolving core assets), and product derivation. In 

addition to the above comparative study, we also interview several Wingsoft engineers on 

the XVCL solution, and summarize their feedbacks and comments in terms of drawbacks 

and merits of XVCL solution.   
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Figure 1.2. The sandwich approach to recovering the variability 

1.3 Research Contribution 

Existing studies in SPL on domain analysis and requirement engineering to resolve the 

RQ1 are focused on developing modeling techniques, such as goal model [38] and feature 

model [83] to capture and analyze requirements, monitoring and tracing requirement 

changes [66,187] and reasoning about the consistency and configurability of requirement 

models [22,162]. However, there is a lack of tools that can automatically produce an accu-

rate report of the differences of product variants in terms of feature.  

Program differencing methods have long been used for identifying the textual, syntactic 

and semantic differences between programs [6,69,181], which can also be adopted to ad-

dress the RQ2 and report the differences between the product variants. However, using 

program differencing for that purpose would require a pair-wise comparison of any two 

code fragments of product variants, which is computationally costly. In our work, instead 

of applying program differencing techniques direct onto the implementation level, we use 

clone detection for a fast selection of highly similar code fragments that may indicate the 

variant features, and then use PDG differencing to compute a precise characterization of 

the differences of those clones.     

The RQ3 is essentially a feature location [44,142] or traceability [4,116] problem. Fea-

ture location techniques investigate how features are implemented in software artifacts, 
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such as code, test cases, by using static analysis, e.g. Latent Semantic Indexing (LSI) [113] 

and concept analysis [48], or dynamic analysis, e.g. execution scenarios [49] and trace in-

tersection [150]. These existing techniques are designed to locate the program elements of 

a particular feature in a single software system. As in the circumstance of SPL with multi-

ple product variants at hand, it is innovative to take into account these product variants for 

the feature location problem.  

As for variability techniques, previous studies [30,111] have introduced and described 

these traditional variability techniques, e.g. Java conditional compilation, commenting out 

feature code, design patterns [57], parameter configuration files, and a build tool Ant. The 

RQ4 and RQ5 indicate that the industry case study introducing how they can work together 

is still unavailable.   

To sum up, the potential contributions of this dissertation are listed as follows: 

1. We propose and implement the tool to automatically compute the difference of re-

quirements of the different product variants. We propose the concept of PFM [180] 

to model the hierarchy of features contained in products.   

2. We combine clone detection techniques and program differencing techniques for 

the purpose of comparing the similar but different variant features [174]. To better 

facilitate the comparison of clones based on Program Dependency Graph (PDG), 

we implement the tool called CloneDifferentiator [173,178]. 

3. Different from the previous study mainly on feature location in a single product, we 

focus on locating features by the help of knowledge of the commonality and varia-

bility among product variants. We also conduct an empirical study on the product 

family of Linux [195].  

4. We conduct a case study of WFMS, which is a widely-used financial system by 

major universities in China, to investigate the variability realization techniques 
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adopted in reality.  To some extent, our empirical study reflects the reality of varia-

bility management in the small-to-medium software companies.  

1.4 Outline 

The remainder of thesis is organized as follows: Chapter 2 discusses the related work. 

Chapter 3 describes the approach that we used to compute the differences of the require-

ments of the product variants. Chapter 4 presents the approach that we apply to compare 

the possible variant features – code clones to get their contextual differences. Chapter 5 

proposes the method that we adopt to recover the traceability from the variant features in 

requirements to the difference in code implementing. Chapter 6 summarizes the situation 

of variability management in real industrial environment. Chapter 7 describes the XVCL 

solution for variability management and compares it with the one in Chapter 6. Chapter 8 

evaluates the whole approach on an artificial product family derived from Berkeley DB. 

Finally, we conclude and summarize possible future research directions.  



Chapter 2 Preliminaries 

9 

2 Preliminaries  

This chapter describes the fundamental concepts and techniques on which our work is 

built on. First, the terms and notations in SPL are introduced and explained. Then the tech-

niques such as clone detection, program differencing and information retrieval techniques, 

which are used to resolve the research questions, are elaborated in detail. 

2.1 Terms and Notations in SPL 

As early as in 1970s, some researchers [64,127] proposed the concept “program families” 

to represent a set of related software products in the same application domain. In the pro-

gram families, the developers derive the new product by editing from the previous ones, 

rather than doing it from scratch. But the process of reusing the existing products for the 

new ones was still done in an ad-hoc way. Until in 1990s, the term “software product line” 

was officially presented by Software Engineering Institute, Carnegie Mellon University 

[14]. After that, considering the other business and organizational factors in the process of 

developing software families for many industrial companies, SEI proposed the term “soft-

ware product line” as an area referring to software development efforts involved in produc-

ing a set of similar but yet different product variants. After that, software product line has 

become a hot research area [30,152], and many frameworks and development process were 

presented for the sake of facilitating the ease of development and reducing the cost.  

As in automobile industry and many other manufacturing industries “product line” is a 

refining process to produce an end-product, the SPL also establishes the similar idea by 

mass customization for software products. Instead of individually developing each product 

for each customer from scratch, product line engineering develops related variants in a co-

ordinated fashion, developing commonalities between the products only once. Instead of 

developing a single one-size-fits-all solution that intends to cover all potential customer 
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needs in a mass market, software product lines provide tail-made solutions for different 

customers. 

2.1.1 Concepts in SPL 

Building SPL architecture with the core assets [13,127] also poses extra costs and risks. 

Usually there are three different approaches to build an SPL: the proactive approach, the 

reactive approach and the incremental approach. In the proactive one, domain engineers 

design and develop the core assets before generating the various products. In the reactive 

one, the core-asset base and variant features are identified and built as the SPL architecture 

from the existing product variants. For example, our industrial collaborator WingSoft Ltd 

[182] has many legacy product variants. Building SPL for WingSoft Ltd was adopting the 

reactive way. Actually, the third incremental approach is mixed by the process of develop-

ing the core asset base in stages and the process of develop more product at the same time.  

No matter what approach to build an SPL, feature is the first class citizen in the feature-

oriented software product line to constitute core assets. Usually, there are two kinds of 

views to represent features: In the view of the internal developers, a feature is often de-

fined as a program function which realizes a group of individual relevant requirements [87]. 

In the view of external customers, a feature is usually defined as a visible value, quality, or 

characteristic of software for the end-users [63,81]. In SPL, any product variant can be 

considered as a set of certain features added to the program base (or the core asset base 

[133]). The mandatory features refer to the commonly added functions or values shared by 

all the product variants. Variability existing among variants is described in terms of variant 

features [73,81]. SPL core assets include not only architecture and code components, but 

also documentation, models, test cases and many other software artifacts, which are rele-

vant to the program base plus variant features and mandatory features. 



Chapter 2 Preliminaries 

11 

Software product line engineering actually is a two-phase approach composed of do-

main engineering and application engineering. Application domain is a software area, 

which contains the common parts among the similar software systems. For example, those 

different financial software systems used by the companies are all in the same domain – 

financial domain. The task of domain engineering is to build the SPL architecture consist-

ing of a core-asset base and the variant features, while the application engineering focus on 

derivation of the new products by the different customizations of variant features applied 

onto the core-asset base. These two phases of engineering can have separated life cycles 

and be maintained by the different engineers, as in Fudan WingSoft Ltd. the core assets are 

maintained by domain engineers and the new product derivation are conducted by product 

engineers. In this dissertation, we resolve the key research questions throughout these two 

phases.  

Domain engineering consists of domain analysis, domain design, domain realization and 

domain testing [111]. Domain analysis aims at recognizing application domains, scoping 

and bounding them, and identifying commonality and variability among the systems in the 

domain. Thus, identifying the core-asset base and variant features among product variants 

is the domain analysis required in building the SPL in a reactive way [129]. However, the 

domain analysis is actually not limited in the requirements. Instead, the domain analysis 

should be conducted for all the artifacts in the SPL. For example, in Fudan WingSoft Ltd., 

the two product variants WFMS
Fudan 

(product variant for Fudan University) and 

WFMS
Shanghai

 (product variant for Shanghai Jiaotong University) in the WFMS family have 

two similar features DelegationLock and OperationLock respectively. Just from the re-

quirement level and design documents, there is no way to distinguish the fact how these 

two features are different; sometimes they can even be the renamed feature with the same 

functionality. But by comparing the implementation of these two features, it is possible to 
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tell how these features are similar and different. In this dissertation, we aim at discovering 

and validating the core-asset base and variant features not only from the requirements but 

also from the implementation of product variants. 

Application engineering is the process of deriving a single variant tailored to the re-

quirements of a specific customer from a software product line, based on the results of 

domain engineering. Variability among the product variants in a reactive product line must 

be identified, modularized or annotated, and evolved throughout the lifecycle of Software 

Product Line Engineering (SPLE). Such task is called as Variability Management (VM), 

which is one of the principles fundamental to successful software product line engineering 

[111]. In software product line engineering, each individual product variant should be not 

considered and managed by itself. The better way is to look at the product line as a whole -

--- the core-asset base and the variation among the individual products. Thus, the domain 

engineers usually would maintain an all-in-one solution to ease the configuration for any 

new customers. This all-in-one solution contains all the product variability by adopting the 

variability techniques.  

2.1.2 FODA and Feature Model 

Feature-oriented domain analysis (FODA) that our variability analysis is based on was 

first developed by the Software Engineering Institute in 1990 [81,82]. Originally, the 

FODA was one possible way towards product line. In the recently twenty years, it actually 

becomes more and more popular as a defacto prerequisite in constituting product line. In 

the report, the concept of feature model in domain engineering is to represent the so called 

features within the product family as well as the structural and semantic (require or ex-

clude) relationships between those features [81]. Since then, feature model has even been 

characterized as "the greatest contribution of domain engineering to software engineering" 

[36].
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A feature model is a tree-like hierarchy of features. The structural and semantic relation-

ships between a parent (or compound) feature and its child features (or subfeatures) can be 

specified as: 

• And — if the parent feature is selected, all the subfeatures should be also selected. 

• Alternative — if the parent feature is selected, only one among the exclusive subfea-

tures should be selected, 

• Or — if the parent feature is selected, at least one or at most all subfeatures can be se-

lected, 

• Mandatory — sometimes called “Compulsory”, referring to features that required 

“And” 

• Optional — features that are optional. 

In addition to the above parental relationships between features, there are cross-model 

constraints allowed. The most common are: 

• A requires B – The selection of A in a product implies the selection of B. 

• A excludes B – A and B cannot be part of the same product. 

Recently, to enhance the expressiveness, some work [36,37] proposed to make Or rela-

tionships with [n:m] cardinalities, which more specifically denotes that a minimum of n 

features and a maximum of m features can be selected. 

In addition to the basic or extended cardinality-based feature model, there are many sim-

ilar models proposed for better modeling the domain knowledge [153]. In this dissertation, 

we will use and focus on the basic or extended cardinality-based feature model. A feature 

diagram is a graphical representation of a feature model [81]. As shown in Figure 2.1, we 

use the FeatureIDE [91], a widely used tool in eclipse, to generate the feature diagram of 

the on-line Ticket Booking System (TBS). In Figure 2.2, we show the different types of the 

relationship among these features. 
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Figure 2.1. The feature diagram of TBS system  

 

Figure 2.2. The legend for feature diagram of TBS system  

  TBS : Enquiry+ Booking Security Payment+ :: _TBS ; 

 

 Enquiry : ANA | DLT | CCA | SIA ; 

 

 Security : Login* [Encryption] :: _Security ; 

 

 Encryption : MD5 | RSA ; 

 

 Payment : Master | Visa | AmericanExpress; 

Figure 2.3. The grammar for feature diagram of TBS system 

The feature Enquiry supports the online enquiry for the flight information. The subfea-

ture ANA is a function communicating with the interfaces provided by All Nippon Airline. 

This product family can also dynamically support other features DTL (for the Delta Air-

line), CCA (for the China Airline) and SIA (for the Singapore Airline) according to the dif-

ferent users’ requests.  And all the subfeatures are in the OR relationship. Any product in 

the family can support at least one or at most all of the following online payment methods 

(also OR relationship): Master, Visa and AmericanExpress. There are two optional subfea-

tures Login and Encryption under the feature Security. For the optional feature Encryption, 

Or Optional Alternative And Mandatory 
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it has two alternative subfeatures MD5 and RSA, one of which should be adopted for data 

encryption. 

For the ease of reasoning and presentation of the feature model, the grammar and propo-

sitional formula of feature model are also proposed. A grammar is a compact representa-

tion of a propositional formula [17]. As shown in Figure 2.3, model “Payment+” denotes 

one or more instances of non-terminal “Payment”; “Login*” denotes zero or more. “[Encryp-

tion]” denotes optional non-terminal “Encryption”. And for this grammar, there is also the 

corresponding propositional formula, considering the production r:P1|…|Pn, which has n 

patterns: P1…Pn. 

   Pattern                 Formula 

       r                r⇔choose1(P1,…,Pn) 

       r+               r⇔(P1∨…∨Pn) 

More mapping and details on the propositional formula of feature model are elaborated 

in [17]. Figure 2.1 provides the visual representation of feature model, while Figure 2.3 

lists the corresponding grammar based on propositional formula. Thus, all these studies on 

notation and formal specification of feature model facilitate the reasoning on feature model 

[22,162].  

2.2 Clone Detection 

Software cloning is an active field of research, which has intrigued the curiosity of re-

searchers for more than 20 years [101,144]. Most software cloning studies focus on the 

issues such as clone detection, origin of clones, clone classification and clone management. 

Some studies also focus on the aspect [95] or crosscutting concern mining [25] by using 

clone detection techniques. Similar to aspects or crosscutting concerns, the scattered fea-

tures can also be embodied in the duplicated code fragments. In this dissertation, we are 
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interested in finding those clones relevant to the features, and understanding the common-

ality and variability among the clone instances inside a clone class. 

Most of current available clone detention tools adopt the various techniques: textual 

comparison, token comparison, metric comparison, comparison of abstract syntax trees 

(AST), comparison of program dependency graphs (PDG) and other techniques. So far 

there are plenty of efforts that have been put into the comparison and evaluation of clone 

detection tools [21,145].  

The proper taxonomy or classification of clones will be helpful for the understanding of 

the reasons, actualities, essence (evil or not) of clones [74,84].  Most of current work on 

clone classification is based on the following several categories, which are taxonomies 

based on similarity, taxonomies based on similarity and location, taxonomies based on re-

factoring opportunities, and taxonomies based on high level structural similarities. 

2.2.1 Definition and taxonomy 

Software code clones are usually the embodiment of the sequences of duplicate code, 

which recur for multiple times within a program or across different programs. Early in 

1998, Baxter et al. [20] defined that a clone is “a program fragment that is identical to an-

other fragment”. Roy et al. [144] summarized the existing definitions of clone, and argued 

that these definitions carry some kind of vagueness. In this dissertation, we complete the 

definition of clones as “two or more clone fragments which satisfy some extent of similari-

ty based on the text, Abstract Syntax Tree (AST), Program Dependency Graph (PDG), 

metrics, program models or other representations of code”.   

The most well-known program-text clones can be compared on the basis of the program 

text that has been copied. We can distinguish the following types of clones accordingly 

[101] (see Figure 2.4, the central part is the original copy, and the rest parts are the cloned 

copies.):  
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• Type 1 is an exact copy without modifications (except for whitespace and comments). 

• Type 2 is a syntactically identical copy; only variable, type, or function identifiers have 

been changed. 

• Type 3 is a copy with further modifications; statements have been changed, added, or 

removed 

• Type 4: Functionally, if two blocks of code that conduct the same computation, but 

implemented through different syntactic variants.  For example, a bubble sort algorithm 

can be written in a for () loop or a do-while () loop. They have the similar or equivalent 

behavior, but not in the implementation. We can call these clones semantic clones [99, 

108]. 

 

 

Figure 2.4. The example of Type 1,2,3,4 clones 

From the above defined types of clones, we can find some several other kinds of clones 

which are ramifications of the four standard types of clones.  The clone term “exact 

if (a = b) { 

c = d * b; // Comment1‘ 

a = a + 1;} 

else 

c = d / a; //Comment2’ 

if (p = q) 

{ // Comment1’ 

y = x * q; 

z = z + 5; //Comment3 

} 

else 

y = x / p; //Comment4 

if (a = b) { 

c = d * b; // Comment1 

e = 1; // This statement is added 

 a = a + 1; } 

else 

c = d / a; //Comment2 

switch (a) { 

case : b {c = d * b; // Comment1 

a = a + 1; break;} 

default: 

c = d / a; //Comment2d 

} 

if (a = b) { 

c = d * b; // Comment1 

a =  a + 1;} 

else 

c = d / a; //Comment2 

Type 1 Type 2 

Type 3 Type 4 
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clones” refers to the Type 1 clone, which just has the modification to comments or 

whitespace. According to the rule whether the renaming of identifiers is systematic and 

symmetric, we can divide the Type 2 clones into parameterized clones [8] and renamed 

clones, these two kinds. As for the Type 3 clones, depending on whether the activity of 

renaming identifiers is conducted or not, we can divide them into near-miss clones [146] 

and gapped clones [166]. Near-miss clones can include all the Type 2 clones and some 

Type 3 clones with a slight modification within a statement(s) or even addition and dele-

tion of statement(s). The difference between near-miss clones and gapped clones is that the 

latter kind just has statement modification: statement insertion or statement deletion.   

From the perspective of patterns of recurring clones, structural clones [12] mean clones 

within a syntactic boundary following syntactic structure of a particular language. These 

boundaries can be function boundary, class boundary, file boundary, directory boundary 

etc. Structural clones can cover from Type 1 clones to Type 4 clones.  

As a special subclass of structural clone, function clones [108] refer to the clones that 

have the whole content of a certain function. According to its similarity level, a function 

clone can be any type of 1, 2, 3 and 4. 

[183] define chained method as a set of methods that hold dependency relations. For 

given chained methods, if each set of the corresponding methods is a code clone, they 

called the set of chained methods chained clone. From the definition, it can be concluded 

that chained clone should be a type of function clones.  

The non-contiguous clone is an alias for gapped clones [79]. In this kind of code dupli-

cation, the different clone instances may just have a few different statements embedded in 

the common lines of the clones. 

In some programs, it is very common that a small block of code recur so frequently that 

it exists in the multiple source files in an application. In [98], the author gives this kind of 
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clones a name, ubiquitous clones. For example, some flag setting statements or memories 

disposal statements can be the most usual candidates for this kind of clones. 

The term reordered clones refer to the clones that have some sequence changes of 

statements among the different instances as their feature. Given the similarity degree of 

them, reordered clones have the properties of gapped clones and belong to Type 3 clones, 

while from the semantic point of view, they have similarity on the semantic level of the 

codes. So they can be classified as Type 4 clones too. 

Another kind of complex clones may be important but not very well known----that is 

namely intertwined clones. An instance of this kind of clone may have the different parts 

of two code snippets. Put it in another way, it is the two separate different blocks of codes 

that entangle closely together to form a new single code portion. Discovering these clones 

is beyond the capability of most current code detection tools as this kind of clones can be a 

standard subclass of Type 4 clones.  

The recent work by Bellon et al. [21] reports a detailed quantitative evaluation of six 

clone detectors that rely on five different types of program representations. Roy and Cordy 

[145] present a controlled experiment that evaluates the potential of existing clone detec-

tion techniques in handling clones resulting from a set of hypothetical editing scenarios. 

Token-based clone detection tool is the fastest, most stable and popular clone detection 

approach. For example, CCFinder [80] divides the code into tokens and then applies the 

suffix-tree based sub-string matching algorithm is then used to find the similar sub-

sequences on the transformed token sequence. Tree and graph differencing techniques 

have been applied for the detection of clones. CloneDR [20] compares abstract syntax tree 

(AST) of similar code fragments (with same hash index) to determine clones. PDG-based 

detection tools [67,99,104,112] use subgraph isomorphism to detect similar code frag-

ments. As tree or graph differencing is computationally expensive, these techniques may 
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not scale to large systems. As a remedy, researchers have investigated reduced representa-

tions to approximate program syntax and semantics. Mayrand [120] identifies functions 

with similar code-metrics values as clones. Gabel et al. [55] encode PDGs in a vector space 

and then use Locality Sensitive Hashing [58] to cluster similar vectors. CloneMiner [12] 

exploits frequent item-set mining [61] to detect structural clones across larger program 

units. 

2.2.2 CloneMiner  

In this dissertation, we use the clone detection tool CloneAnalyzer [184] to find the sim-

ple clones as well as the higher level structural clones. Basit and Jarzabek [11] proposed a 

new clone type beyond the above introduced four clones from a higher perspective. After 

detecting clone classes (CC), they move on to the detection of higher level similarity pat-

terns which will present the possible recurring combinations of simple clones.   

Following is a list all the cloning abstractions detected by Clone Miner, apart from the 

simple clone classes (SCS) [184]:  

1. repeated groups of simple clones across different methods (simple clone structures or 

SCS across methods ) repeated groups of simple clones across different files (SCS 

across files)  

2. repeated groups of simple clones within a single file (SCS within files)  

3. method clone classes (MCC)  

4. file clone classes (FCC)  

5. repeated groups of method clones across different files (MCS across files)  

6. repeated groups of file clones across different directories (FCS across directories)  

7. repeated groups of file clones within a single directory (FCS within directories)  

8. repeated groups of file clones across different file groups (FCS across groups)  

9. repeated groups of file clones within a file group (FCS within groups)  
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Among the above defined structure clone types, in the sequential chapter, we will use 

CloneAnalyzer to identify the clones across the different methods, as we concern on the 

contextual differences of clones in their own methods.  

Detecting recurring groups of structural clones from the simple clones is essentially a 

Frequent Item-set Mining (FIM) problem. Basit applied the same data mining technique 

used for “market basket analysis”. The idea behind this analysis is to find the items that are 

usually purchased together by different customers from a departmental store. Originally, 

the input is a list of transactions, each of which consists a list of items bought by the cus-

tomer for the current transaction. And the output is groups of items which are often bought 

together. Thus, in our problem domain, analogically the input is a list of simple clone clas-

ses (or clone sets), and the output is groups of structural clones in which each such group 

consists of a list of simple clones appearing together.  

The direct application of FIM results in that many mined frequent item-sets are subsets 

of bigger frequent item-sets. Since our approach mainly considers those biggest frequent 

item-sets, to remove these subsets the algorithm of “Frequent Closed Itemset Mining” 

(FCIM) [61] is more suitable. In [12], the algorithm for finding files containing frequent 

item-sets of simple clone classes is listed. To differentiate the context of the feature rele-

vant code clones, it is helpful to know the information about the repeated groups of simple 

clones across different methods (SCS across methods). We list the similar algorithm to 

find methods containing the frequent item-sets in the following Figure 2.5. 
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Algorithm for finding methods containing the frequent item-set 

Procedure FindingFrequentItemSet 

Input: 

SCC: a list of simple clone classes,   

C: the minimum support count, or simply support, of a frequent 

item-set 

S: the minimum size of the item-set 

Output: 

result: a list of methods containing the recurring groups of simple 

clone classes. 

Body: 

1. FIsets = FIM(SCC , C, S) 

2. for each simple clone class sc   SCC do 

3.   for each frequent item-set fiset   FIsets do 

4.      mset = all methods that contain any instance of sc 

5.      for each method m   mset do 

6.         if fiset is a subset of the simple clones represented in    

sssssss  m, keep m in the result 

7.          else prune it 

8.      end for 

9.   end for 

10. end for 

11. Output the final list result 

Figure 2.5. Finding methods containing frequent item-sets of SCC  

2.3 Program Differencing 

For ease of program comprehension, the program differencing techniques are widely 

used for the analysis of changes made to a system. Maintainers often face the tasks involv-

ing analyses of two versions of a program: an old version and a new modified version, e.g. 

finding the differences for merging two versions in SVN tool. For the context of SPL in 

this dissertation, the program differencing techniques are also required to compare two 

product variants generated from the common assets, not only at requirements level but also 

at implementation level.  

In this dissertation, to compare the product variants in requirements and implementation, 

the program differencing technique is a core part required in our approach.  
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2.3.1 Status of the art 

The program differencing techniques can be further categorized into the following two 

types: text differencing, model differencing. In earliest decades, the text differencing tech-

nique was mainly used to compare programs since at that time a program was just seen as a 

block of text. The UNIX diff utility [124] is one of the most well-known and popular dif-

ferencing tools.  UNIX diff compares two input text files line by line and outputs differ-

ences due to insertion, remove and modification. However, such pure text differencing 

technique fails to take into account the structure and characteristics of programming lan-

guage, and overlook behavioral changes corresponding to textual modifications. For ex-

ample, diff may report changes with no effect on the program behavior, e.g. reordering of 

class members/methods and changes in comments.  

To abstract away the textual noise on the program behavior, the modern mainstream 

program differencing techniques are mostly based on model differencing algorithms, in 

which way the program artifacts are usually represented as some forms of models. Yang 

[181] developed a dynamic programming algorithm to compare the program based on the 

Abstract Syntax Tree. Apiwattanapong et al. [6] further compared object-oriented pro-

grams based on enhanced control flow graphs. Horwitz [69] examines the subgraph iso-

morphism of intra-method Program Dependency Graphs (PDGs) to detect semantic and 

textual differences, in terms of unmatched and changed program statements. Since Hor-

witz’s technique was proposed before the invention of Java, it was only defined for a sim-

plified C-like language, not suitable for the object oriented code. But the idea to compare 

the program based on PDG can be applied to the modern object oriented code. In this dis-

sertation, we adapt GenericDiff framework [175] for the comparison of PDGs of clones to 

detect the semantic differences of clones at the implementation (object oriented code) lev-

el. 
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Comparing artifacts and detecting their differences is a highly relevant task in software 

maintenance. Version control systems make use of the differencing algorithm to calculate 

the delta between a version and its revisions [123]. Xing and Stroulia [171] propose to 

support evolutionary software development by analyzing the evolution of software design 

models. Apiwattanpong et al. [6] analyze the impact of structural changes on test cases for 

the test case selection in regression testing. Kim and Notkin [97] utilize inductive learning 

to discover and represent systematic code changes. Person et al. [131] support the program 

equivalence checking and regression test generation based on differential symbolic execu-

tion.  

In the recent three years, Loh et al. [114] implemented the program differencing tool 

Logical Structural Diff (LSdiff) that infers systematic structural differences as logic rules. 

It groups the relevant differences as a single logic rule, and further identifies exceptions 

that imply missing or inconsistent updates. Maoz et al. [117] implemented the two algo-

rithms for addiff (activity diagram diff) based on binary decision diagrams (BDDs), and 

integrate it into an Eclipse plug-in. To compute, addiff represents each of the activity dia-

grams into a module in SMV (the input language in SMV model checker [201]), and ap-

plies symbolic model checking for comparison. Duley et al. [45] proposed the Vdiff, a po-

sition-independent differencing algorithm for Verilog Hardware Description Language 

(HDL). Different from the object-oriented code, in Verilog programs the relative ordering 

between the statements does not matter, and there are also many Boolean expressions to 

define circuitry. Vdiff extracts ASTs and builds the longest common sequence algorithm to 

align nodes by the same label. To complement syntactic differencing, it also adopts the 

modern SAT solver to compare semantic equivalence of two Boolean expressions.  
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2.3.2 GenericDiff 

 

Figure 2.6. The architecture of GenericDiff [175] 

In this dissertation, we need to compare the requirements as well as the object oriented 

code. Instead of using separated differencing algorithm for various software artifacts, we 

adopt the GenericDiff framework for model comparison [175]. In Figure 2.6, the input of 

the framework is two models, which can be transformed from source code, requirement 

specifications or UML diagrams. The output consists of symmetric differences between 

two compared models. Symmetric differences means if model a has one added element e 

than model b, the results report two symmetric items: (null, e, add) for model a and (e, 

null, delete) for model b. The process of the GenericDiff framework includes four major 

steps:  

1. Parsing the input models into two Typed Attributed Graphs (TAGs). The nodes 

and edges in TAGs mapped to the entity in the domain models can be defined ac-

cording to the domain-specific properties.  

2. Constructing a PairupGraph            . Suppose we have             and 

            for the two compare models, there exists           and 

         . Pairing up is guided by a set of user-defined feasibility predicate, 

in which the type compatibility, minimum attribute similarities and the topological 

constraints are included.  
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3. Propagating a random walk on the PairupGraph. This step is an iterative process 

that propagates the distance values from node pair to node pair based on graph 

structure. The tendency functions are also provided to define constant functions, or 

functions of the distance values between PairupGraph nodes/edges.  

4. Matching bipartite graphs from a rank vector of node pairs outputted by step 3. 

Each of node pairs inside this rank vector is assigned a numerical correspondence 

measure representing the matching quality. The stable-marriage algorithm (Gale-

Shapley algorithm) is applied to select the optimal matching pairs of nodes/edges. 

The interested readers can refer to [175] for the details in each step. Note that the report-

ed symmetric differences are some preliminary results, which entail the further interpreta-

tion with the domain knowledge. In Chapter 3 and chapter 4, how the symmetric differ-

ences are interpreted is elaborated.     

2.3.3 Clone detection vs. program differencing 

Program differencing techniques compare two programs at a time, already assuming that 

there is much similarity among them. However, these techniques are not suitable for clone 

detection in large systems. Using program differencing for that purpose would require a 

pair-wise comparison of any two code fragments which results in combinatorial explosion 

of such operation. AST- or PDG-matching based clone detection techniques [20,99] have 

all used some hash functions to prune the space of pair-wise differencing. Even then, they 

may still not scale well to large systems. In this dissertation, instead of applying program 

differencing techniques within clone detection process, we use clone detection for a fast 

selection of highly similar code fragments and then use PDG differencing to compute a 

precise characterization of the differences of those clones. 
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2.4 Information Retrieval for Feature Location 

The information retrieval techniques are widely used in the feature location area to iden-

tify the feature/concept-relevant resource [44,142]. In this dissertation, we are concerned 

about the variant features (variability) and the corresponding code among the product fea-

tures. We aim at using the commonality and variability analysis to facilitate feature loca-

tion job in the context of product family or product line.   

The software artifacts, such as requirement documents, source code, can be indexed into 

a document space according to the occurrences of terms within these artifacts. The query 

can be also indexed and projected onto this document space. By using similarity measure 

such as cosine similarity, the documents inside document space are compared with this 

indexed query to get a ranking list for matching.     

2.4.1 Vector Space Model 

In the Vector Space Model (VSM), documents and queries are represented as vectors of 

terms that occur within documents in a collection [65]. VSM begins with a term-document 

matrix, A, to record the occurrences of the m unique terms within a collection of n docu-

ments. In this term-document matrix, each term is represented by a row, and each docu-

ment is represented by a column, with each matrix cell,    , denoting a measure of the 

weight of the ith term in the jth document. As a document often only contains a small sub-

set of the total terms in the document collection, this term-document matrix is usually very 

large and very sparse. The weight     is actually defined according to the value of term 

frequency      for the ith term in the jth document. Specifically, we can write: 

                 

where a local term weight,       , denoting the relative frequency of the ith term in the 

jth document, and a global weight,      , denoting the relative frequency of the ith term 

within the entire collection of documents. 
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Some common local weighting functions [23] are listed as follow: 

 Binary:           if        or else 0  

 TermFrequency:               

 Log:                      

Some common global weighting functions [23] are listed as follow: 

 Binary:         

 Normal:       
 

√∑     
 

 

 

 Idf:            
 

     
,     is the number of documents in 

which the ith term occurs. 

In this dissertation, we use the TermFrequency as the local term weight and the Normal 

as the global weighting functions. From a geometric point of view, each column of the 

term-by-document matrix (the term vector owned by each document) denotes a point in the 

m-space of the terms. And totally this matrix has n points in this m-space of the terms. 

Thus, the similarity between two documents (two vectors) can be measured by the cosine 

of the angle between the two corresponding points in the m-space of the terms. Generally, 

the closer these two points are in the same (general) direction, the more similar these two 

documents are.  

2.4.2 Singular Value Decomposition 

In reality, VSM suffers from the two following drawbacks: 1. VSM ignores the possible 

semantic relationship among the terms; 2. VSM fails to do rank-reduced simplification. In 

the dictionary, there may be 50000 words. But actually people may only use a necessary 

subset like 5000 words as there are synonymity and polysemy among all the words. The 

dictionary case also holds for the collection of documents. Latent Semantic Indexing (LSI) 
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became an improvement over the simplistic point of view of term matching, taking account 

into term dependencies [41].  

The basic idea of LSI is to exploit the underlying “latent structure” in word usage pat-

tern by using statistical analysis on the co-occurrence of terms. Then the terms with the 

same or similar usage pattern may be synonyms or near- synonyms, which can be reduced 

to one concept. How to separate such a set of uncorrelated indexing factors or concepts is 

done by Singular Value Decomposition (SVD) [34].   

The LSI has the same steps with VSM for the construction of the term-document matrix 

A. The LSI applies SVD to decompose the matrix A into the product of three smaller ma-

trices : an m   r term-concept vector matrix  , an r   r singular values matrix  , and a r   

n concept-document vector matrix,  , which satisfy the following relations (r is the rank of 

matrix A):.    

          

               

                            where     

             

LSI allows the optimal approximation for the standard SVD by reducing the rank or 

truncating the singular value matrix   to size k   r [41].   

                 

By the above two steps of transformations, i.e. decomposition and approximation, the 

initially correlated terms are first grouped into a set of concepts at size of r, and then fur-

ther compressed into an even smaller set of concepts at size of k. The benefits of such pro-

cess is to capture most of the important underlying “latent structure” in the association of 

terms and documents, meanwhile to abstract way the noise due to the users’ different  

word usages that are sensitive to the word-based retrieval methods.  
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The challenges of using LSI are twofold: the costly computation of SVD and difficulty 

in determining the optimal value of k.  

The computation time for a standard SVD of an m   n matrix A is as follows: 

 Computation of  ,   and  :                

 Computation of   and  :          

The above time complexity is usually for the case      The more general time com-

plexity form should be                 . As we use k to approximate the rank r, the 

time complexity will further be reduced to                  accordingly.  

Thus, the choice of value of k is critical to the performance as well as accuracy of LSI. 

With much larger repositories (as much as 80,000 terms and 220,000 documents), Dumais 

et al. [46] reported that better results can be achieved when the concepts (the value of k) is 

between 235 and 250. But the above observation is especially reasonable for the retrieval 

on the natural language. As the collection of source code files may have a much larger vo-

cabulary, Poshyvanyk et al. [136] reported that when the value of k is 750, the overall rele-

vant factor for their 9 queries is better compared with k = 300 and 500. But after 750, the 

result is not stable: some queries got better results and some got worse. It will be desired to 

see more solid empirical study on choice of the size of concepts.     

In Chapter 5, we further explore the relationship between the size of the concepts and, 

the performance and the accuracy. Our empirical study sheds light on the optimal choice of 

the size of the concepts for the documents of source code.    
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3 Understanding Variability in Product Requirements 

This chapter is organized based on [180] to answer the RQ1 introduced in Section 1.1. 

We reviewed the related approaches to understand variant requirements, and proposed our 

model-differencing based approach to understand the commonality and variability between 

product variants at the requirement level. 

3.1 Introduction 

Product variants often evolve from an initial product developed for and successfully 

used by the first customer, for example WFMS [182] and PAT [157,158]. Figure 3.1 pre-

sents five product variants of the Wingsoft Financial Management System1 (WFMS) [182], 

spawned from WFMS
Fudan 

developed for Fudan University. The successful deployment of 

the initial product has attracted new customers, such as Zhejiang University and Shanghai 

University. WFMSes have now been used in over 100 universities in China.  

Initially, WFMS developers copy-pasted and modified existing product variants when 

building a new product variant. For example, WFMS
Chongqing

 was built by adapting 

WFMS
Fudan

 and WFMS
Zhejiang

. Such ad hoc reuse becomes problematic as the number of 

features and the number of product variants grows [126]. Not only do we have to maintain 

each product variant separately from others, but it also becomes difficult to find and adapt 

features for reuse in new products [182]. 

As these problems accumulate, it is worth reengineering product variants into a Soft-

ware Product Line (SPL) for systematic reuse [33]. Extractive reengineering [105] into 

SPL is a low cost approach in which the initial reusable core assets include only features 

                                                      

1 WFMS for Shanghai Jiaotong University: http://www.jdcw.sjtu.edu.cn/wingsoft/index.jsp 

http://www.jdcw.sjtu.edu.cn/wingsoft/index.jsp
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already implemented in existing product variants. The first step in extractive approach is 

therefore to understand common and variant features in existing product variants. 

WFMS
Zhejiang

WFMS
Shanghai

WFMS
Fudan

WFMS
Shandong

WFMS
Chongqing

Evolved 

From

Product 

Variant

 

Figure 3.1. The variants of WFMS product family 

At first glance, it seems to be an easy task to identify common and variant features in 

product variants. However, the problem is non-trivial for a big product family with many 

features that has been evolved for long time. During evolution, feature names and descrip-

tions as well as the dependencies and relationships between features might have been 

changed. New features might have been added and existing features might have been de-

leted. The features might have also been split or merged.  

The existing work on domain analysis and requirement engineering has been focused on 

developing modeling techniques, such as goal model [38] and feature model [81] to cap-

ture and analyze requirements, monitoring and tracing requirement changes [66,187], and 

reasoning about the consistency and configurability of requirement models [22,162]. How-

ever, there is a lack of automatic tools that can produce an accurate report of feature evolu-

tion in a family of product variants. 

To automatically identify how these product variants are different in features (see RQ1 

in Section 1.1), we present a model differencing based method to detect changes that oc-

curred to product features in a family of product variants. The primary input to our method 

is a set of Product Feature Models (PFMs). A PFM captures all the features and their de-

pendencies in a product variant (see Figure 3.3). The PFMs can be provided by system ex-
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perts of the subject product variants. They may also be reverse-engineered from the im-

plementations of product variants using feature location methods [3,48,100,134].   

We then adapt GenericDiff [175], a general framework for model comparison, to com-

pare pair-wisely these PFMs based on both lexical and structural (i.e., dependencies and 

relationships) similarities of features. We propose a catalog of feature changes that can 

evolve a PFM, namely rename feature, add leaf feature, remove leaf feature, move feature, 

split feature and merge features. Based on the differencing report by GenericDiff, we also 

developed a tool for automatically inferring feature changes according to the catalog we 

propose.   

FeeInfoAcquire

InitFeeInfo

LockFeeItem

ReadLatestPayment

OperationLock

FeeInfoAcquire

InitFeeInfo

LockFeeItem

DelegationLock

PFM
Fudan

 ...

 ...  ...

 ...

 ...  ...PFM
Shanghai

 

Figure 3.2. Comparison of two PFMs 

Figure 3.2 illustrates the partial PFMs (PFM
Fudan

 and PFM
Shanghai

) of two product variants 

WFMS
Fudan

 and WFMS
Shanghai

 in the WFMS family. Our approach reports that the feature 

ReadLatestPayment is only present in PFM
Shanghai

. Furthermore, it reports that the feature 

DelegationLock in PFM
Fudan

 and the feature OperationLock in PFM
Shanghai

 can be a) the 

same feature but with different names in two product variants or b) they can represent dif-

ferent features. 

The novelty and contributions of this work are listed as follows: 

1. We bridge the gap caused by a lack of automatic tools that can produce an accurate 

report of feature evolution in a family of product variants. 
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2. The existing domain analysis focuses mainly on change tracing and reasoning on the 

requirements, we propose a model-differencing based approach. 

3. The evaluation is conducted on real product line WFMS, and a controlled experi-

ment is also designed to evaluate the scalability of our method with a large volume 

of synthesized PFMs. And the preliminary results are promising.  

3.2 Related Work 

Goal model [38] is often used in requirement engineering to capture functional (hard) 

and non-functional (soft) requirements and their dependencies. Hassine et al. [66] applies 

slicing and dependency analysis to Use Case Map [26] to identify the impact of require-

ment changes on the system. Zowghi et al. [187] presents a logical framework for model-

ing and reasoning about the consistency and completeness of the requirements. Lormans 

[115] developed a methodology to monitor the evolution of requirements and reconstruct 

requirement traceability. 

Feature model [81] is commonly used to represent common and variant requirements in 

SPL. Thüm et al. [162] utilize SAT solver to classify the evolution of feature model based 

on how the configurability of the model has changed. Dhungana et al. [43] proposed a 

model-driven approach to product line evolution. Their approach supports merging of 

model fragments into a complete variability model as well as the consistency checking and 

co-evolution of models and architecture. 

The Product Feature Model (PFM) in this dissertation is similar to the hard-goal model, 

as a PFM captures the requirements of a particular product variant. However, our research 

goal is to support reengineering product variants into SPL. At requirement level, we would 

like to derive a domain feature model [83], representing configurable requirements in an 

SPL. In this sense, we refer to our input model as Product Feature Model. 
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Existing work on requirement and domain engineering has been focused on the model-

ing, management of, and reasoning about requirements and their evolution. In this work, 

we present a model-differencing based method to detect and analyze feature changes at 

requirement level in a family of product variants. This work enables the variability analysis 

and consolidation of product variants in the task of extractive reengineering into SPL. 

Researchers have also investigated the comparison and merging of other models. Xing 

and Stroulia developed UMLDiff [172] for comparing UML class models for supporting 

evolutionary development of object-oriented software design. Godfrey and Zou [60] use 

origin analysis to detect the merging and splitting of source-code entities at the file-

structure level. Demeyer et al. [42] propose a set of heuristics for detecting evolutions from 

refactorings by applying lightweight, object-oriented metrics to successive versions of a 

software system. 

 Nejati et al. [125] present an approach to matching and merging state chart specifica-

tions. Treude et al [163] use a high-dimensional search tree to efficiently compare models 

that can be represented as direct, typed graphs. GenericDiff used in this work is a general 

framework for comparing various types of models. In addition to product feature model, 

we have also applied GenericDiff to compare the implementation (e.g., Program Depend-

ence Graph) of product variants [174].  

Bruntink et al. [25] use clone detection to identify crosscutting concerns, which often 

implement distinct features. Feature location methods support the recovery of features 

from product implementations using information retrieval techniques [3,135] or scenario-

based dynamic analysis [48,100]. These approaches can be exploited to acquire product 

feature models from the implementations of product variants.  

Alves et al. [2] defines a catalog of feature model refactorings that can be enacted in the 

extractive reengineering into SPL. They assume that it is known where to apply these re-
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factorings in a software product family. The output of this work can be exploited to identi-

fy the opportunities in a family of product variants where such refactorings are applicable. 

3.3 Comparing PFMs 

In this part, we first define the Product Feature Model (PFM) (Section 3.3.1). We then 

summarize a catalog of feature changes (Section 3.3.2). We discuss how these evolutionary 

feature changes affect the PFMs lexically and structurally, by which the evolution history 

of a PFM can be expressed in a set of subsequent changes. Next, we present GenericDiff 

framework and describe how we configure GenericDiff to compare PFMs (Section 3.3.3). 

Finally, we analyze the differencing report by GenericDiff to infer the changes of product 

features as product variant evolves (Section 3.3.4). 

3.3.1 The meta-model of product feature model 

TuitionFeePayment

Login

OnlinePaymentAuthentication

SSO InitBasicInfo

WSPayment

FeePayment

Direct InitCsDbUser

Initiation

 

Figure 3.3. A Partial PFM of WFMS
Shandong
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Figure 3.4. The meta-model of PFM 

Figure 3.3 shows a partial PFM of the product variant WFMS
Shandong

 in the WFMS prod-

uct family [182]. The rectangle nodes denote features. This PFM has a root feature Tui-

tionFeePayment that refers to the whole system. The root feature is decomposed into two 



Chapter 3 Understanding Variability in Product Requirements 

37 

composite features, Login and FeePayment. The Login is decomposed into two composite 

features, Authentication and Initiation, which are further decomposed into leaf features that 

represent different authentication modes and initiation operations, respectively. The 

FeePayment is decomposed into two leaf features that represent two different payment 

methods, OnlinePayment and WSPayment. Such PFMs are the inputs to our approach. 

Figure 3.4 presents the meta-model of product feature model. The meta-model defines 

rules that must be followed to build correct PFMs. A PFM forms a hierarchy of product 

features. Each Feature in a PFM must be uniquely identifiable by its name property. Note 

that the feature name can be any free-form text that describes the feature. A PFM must 

have a RootFeature, which is a special CompositeFeature that represents the correspond-

ing product variant. A Feature can be decomposed into sub-features. A feature that has no 

sub-features is a LeafFeature; otherwise it is a CompositeFeature. The root feature has no 

parent feature, while a non-root feature must have a parent feature, i.e. belongs to a com-

posite feature.  

3.3.2 A catalog of feature changes  

We propose a catalog of feature changes that can evolve a PFM. We define four types of 

atomic changes, namely rename feature, add leaf feature, remove leaf feature, and move 

feature. Furthermore, we define four types of composite changes that can be composed of 

a sequence of atomic changes: add feature subtree, remove feature subtree, split feature, 

and merge feature. Note that this catalog of feature changes is sufficient to describe the 

evolution of PFMs. However, it is possible to define other types of feature changes. Our 

approach can be easily extended to handle the new types of feature changes.  

RenameFeature. A consistent naming scheme improves product maintainability, espe-

cially when feature names allude to the functions of the product. A feature may be re-

named to reflect the underlying implementation changes, the adoption of different technol-
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ogies, or the changes of application context. Renaming a feature f changes the name prop-

erty of the feature f in PFM. 

AddFeature. A product can be extended with new features. A new leaf feature nlf can be 

added to an existing feature f. This creates a new parent-subfeature relation from f to nlf. If 

f is a leaf feature, it becomes a composite feature after the addition. Adding a composite 

feature and its descendants, i.e., AddFeatureSubtree can be achieved by traversing the sub-

tree and adding leaf features in preorder. 

RemoveFeature. A product variant may not have some features. An existing leaf feature 

can be removed from a PFM. This removes the parent-subfeature relation between the re-

moved leaf feature and its parent composite feature. A composite feature may become a 

leaf feature after the removal. Removing a composite feature and its descendants, i.e., Re-

movingFeatureSubtree can be achieved by traversing the subtree and removing leaf fea-

tures in postorder. 

MoveFeature. The feature hierarchy may be reorganized. Moving a feature f (leaf or 

composite) from a source composite feature sf to a target feature tf changes the parent-

subfeature relation between sf (tf) and f. But moving does not affect the parent-subfeature 

relations between f and its sub-features. Moving a feature can be achieved by removing the 

feature from a PFM and then adding it somewhere else in the PFM. However, we consider 

move as an atomic change, since it better conveys the intention of the change (i.e., the re-

organization of feature hierarchy) than the separate addition and removal. 

SplitFeature. A feature f can be split into two or more sibling features (including f). If f 

is a composite feature, some of its sub-features will be distributed (i.e., moved) to its new 

sibling features. Splitting feature can be achieved by first adding new sibling features as 

leaf features and then moving some of the sub-features of f to the relevant new sibling fea-

tures. 
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MergeFeature. Two or more sibling features (including f) can be merged into a single 

feature f, as in opposite to splitting a feature. The sub-features of the merged sibling fea-

tures will become the sub-features of this single feature after the merging. Merging feature 

can be achieved by firstly moving all the sub-features of f’s sibling features to f and then 

removing these sibling features. 

3.3.3 The differencing of product feature models 

Given the PFMs              of N product variants, we apply GenericDiff to com-

pute pair-wisely the differences between the product feature models PFMi and PFMj 

(           ) of two product variants. In this chapter, we give an overview of Ge-

nericDiff framework. We explain how we configure GenericDiff to compare PFMs. The 

interested reader is referred to [175] for further information about GenericDiff framework. 

Figure 2.6 shows the architecture of GenericDiff. GenericDiff takes as input two models 

to be compared (in this work, i.e., Product Feature Models) and the specifications of do-

main-specific properties, pairup feasibility predicates, and random walk tendency functions 

(three concepts to be made clear below) for the comparison of input models. It casts the 

problem of model comparison as a problem of recognizing the Maximum Common Sub-

graph (MCS) of the two Typed Attributed Graphs (TAGs).  

Given two PFMs, PFM1 and PFM2, GenericDiff parses
(1)

 the input models into typed at-

tributed graphs, TAG1 and TAG2, according to the meta-model of PFMs (See Section 3.3.1). 

The TAG of a PFM forms a containment tree, such as the PFM shown in Figure 3.3. The 

TAG of a PFM consists of three types of graph nodes, corresponding to RootFeature, 

LeafFeature and CompositeFeature respectively. Graph edges represent parent-subfeature 

relations between features.  

A property of model elements and relations declares a characteristic of their instances. 

Given a meta-model, one needs to select a set of domain-specific properties for each ele-
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ment and relation type that characterize its instances. During the parsing process, Gener-

icDiff collects data from the selected properties of each model element and relation and 

represents them in a characteristic composite vector attribute associated with the corre-

sponding graph node and edge. This composite vector attribute is a compact representation 

of the properties of model elements and relations for efficient graph indexing and matching. 

A feature in PFM has three properties, namely, name, a parent feature, and a (possibly 

empty) set of sub-features. In the containment tree representation of PFM, we define, for a 

feature node f, a composite vector of two atomic vectors. One atomic vector represents the 

set of words in the name property of f. We choose the Jaccard coefficient, an efficient and 

commonly used metric to measure the similarity between two sets of words S1 and S2, i.e., 

          ⁄ . The other atomic vector is a numeric vector that stores the number of the 

sub-features of f. Given two such numeric vectors, [ ] and [  ], we choose Manhattan 

(Taxicab) distance, i.e., |    |, to measure their similarity. Manhattan distance did not 

take into account the direction of the path. The usage of Manhattan distance leads to a 

larger difference than the usage of Euclidean distance under the same case. The edges of 

the containment tree of PFM have no characteristic vectors, since they simply represent the 

parent-subfeature relations between features.  

Given two TAGs, corresponding to the two compared PFMs, GenericDiff constructs
(2)

 a 

PairupGraph, i.e., a product of the two compared model graphs. The PairupGraph encodes 

the graph structure of two compared models. A node (edge) of PairupGraph represents a 

pair of nodes (edges) of two compared model graphs. The construction of PairupGraph is 

guided by a set of user-specified pairup feasibility predicates to prune the search space 

according to domain-specific knowledge. For the comparison of PFMs, we simply define 

the type compatibility of graph nodes, i.e., [Feature, Feature]. Note that we define the type 
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compatibility in terms of the super-type Feature. Therefore, the mappings between graph 

nodes of different subtypes, such as LeafFeature and CompositeFeature, are allowed.  

The initial distance value of a pair of graph nodes (edges) is calculated as the Euclidean 

length of the normalized distance vector of the two graph nodes (edges). GenericDiff per-

forms a random walk
(3)

 on the PairupGraph, which is an iterative process that propagates 

the distance values from node pair to node pair based on graph structure. A random walk 

on a graph can be described by a probabilistic model that is defined by a set of random 

walk tendency functions. For the comparison of PFMs, we use the default random walk 

settings provided by GenericDiff framework that define the random walk tendency func-

tions as linear functions of the distance values of the relevant node and edge pairs. 

The random walk on the PairupGraph outputs a rank vector of graph node pairs, each of 

which is assigned a numerical correspondence measure, i.e., the measure of the quality of 

the match it represents. GenericDiff constructs a bipartite graph from this rank vector of 

node pairs and selects an optimal matching
(4)

 using Gale-Shapley algorithm. Finally, given 

a pair of matched graph nodes, GenericDiff builds a bipartite graph of their edges and uses 

Gale-Shapley algorithm [56] again to map their edges.  

3.3.4 Inferring changes to product features 

GenericDiff reports a symmetric difference between two compared models. For the 

comparison of two PFMs, PFM1 and PFM2, GenericDiff outputs a set M of corresponding 

(i.e., matched) features that exist in both PFMs, a set UM1 of features that are unique in 

PFM1, and a set UM2 of features that are unique in PFM2. Based on the differencing report 

by GenericDiff, we developed a tool for automatically inferring feature changes (as defined 

in Section 3.3.1) that can evolve PFM1 into PFM2 based on the effects of feature changes 

on the PFMs. 
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Let f be a feature, we define parent(f) returns the parent feature of f and name(f) returns 

the name property of f. Let         and         be a pair of matched features re-

ported by GenericDiff, i.e.,          , our tool reports an instance of a particular type of 

feature change (by tagging         with the corresponding change type) as follows: 

 if                                   

 Let                and               , if                           

 Let       , if                       and             ,                

and                and                  

                             

 Let       , if                       and             ,     

            and                and                  

                             

To detect feature renaming, our tool simply examines the name properties of a pair of 

matched features. To detect feature move, our tool examines whether the parent features of 

a pair of matched features are matched. To detect feature splitting and merging, our tool 

essentially examines if some sub-features of a pair of matched features are moved to some 

unmatched sibling features of this pair of matched features. Note that our tool does not re-

port the splitting/merging of leaf features, since there is no distinction between the effect of 

splitting a leaf feature and that of adding some new leaf features.  

All the pairs of matched features that have not been tagged with the above four types of 

changes will be tagged with unchanged. Finally, all the unmatched features in UM1 and 

UM2 (excluding those tagged with Split and Merge) are reported as features to be Removed 

and Added respectively. If a composite feature and all its descendants are tagged with Add 

(Remove), our tool reports an AddFeatureSubtree (RemoveFeatureSubtree). 
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3.4 Evaluation 

In this part, we present the empirical evaluation of the proposed approach. More specifi-

cally, we investigate two research questions: 1) How accurate is the proposed approach in 

detecting changes to product features during evolution? 2) How robust is the proposed ap-

proach when the PFMs undergo substantial amount of changes during the evolution pro-

cess?  

3.4.1 WFMS case study 

We have applied our approach to analyzing the feature evolution in the product family 

of WingSoft Financial Management Systems (WFMS). The first product of WFMS was 

developed in 2003 for Fudan University and it has evolved into a product family with more 

than 100 customers today. This product family includes 26 product variants. All the prod-

uct variants share 13 common features, such as Settlement, FileLog, but also differ in other 

features specific to a given customer, such as InitCsDbUser in WFMS
Shandong

 and Se-

lectByYear in WFMS
Shanghai

.  

Among all the WFMS product variants, WFMS
Chongqing

, WFMS
Shandong

, WFMS
Shanghai

 and 

WFMS
Zhejiang 

are four major variants. The other product variants have been derived from 

them with minor changes. Figure 3.1 shows the evolutionary dependencies among the first 

product WFMS
Fudan

 and these four major variants. Each of the four major product variants 

has on average 30 features and 50KLOC of Java code. The system expert of WFMS prod-

uct family provided us the PFMs for the four major product variants, which were then pair-

wisely compared and analyzed using the proposed model-differencing based approach. 

Overall, our approach reported pair-wisely seven or eight feature changes between the 

four major variants in the WFMS product family. We presented some examples of these 

feature changes in Section 3.1. Our approach reported one wrong feature matching (Se-

lectByYearOrder, SelectByYear) between WFMS
Chongqing

 and WFMS
Shanghai

. These two fea-
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tures are unique features in WFMS
Chongqing

 and WFMS
Shanghai

 respectively. However, due to 

their description and structural similarities, our approach reported them as the “same” fea-

ture being renamed. Furthermore, our approach missed one feature mapping (WSPayment, 

WebServicePayment) between WFMS
Shanghai

 and WFMS
Shandong

. Although the two features 

represent the similar functionality in two product variants, neither their descriptions nor 

their hierarchical dependencies with other features are similar enough for them to be rec-

ognized as a pair of corresponding features. 

Before we conducted our case study, we wondered to what extent the name or descrip-

tions of a feature may undergo a systematic renaming e.g. “FudanUniv ->ChongqingUniv”.  

The results showed renaming is just one type of evolution. We did not count what percent-

age of evolution is related to renaming. Our intuitive observation is that it only takes a 

small percentage. In addition, those renamed features are usually not related to the names 

of different product variants.  

The system expert of WFMS found the proposed approach useful in three ways. First, 

although it is possible for him to manually identify the changes to product features in this 

small-scale product family, the manual analysis would be ad-hoc and require a high famili-

arity with the subject product family and its evolution history. In contrast, our approach 

provides a systematic way to assist him in the analysis of feature evolution in a software 

product family. Second, our approach recovers the traceability of product features across 

product variants. This helps to understand variants of existing features and adapt “right” 

features for reuse in new products. Third, the reported feature changes reveal the inconsist-

encies of feature descriptions and dependencies in product variants. Understanding and 

reconciling these inconsistencies is the prerequisite to extractive reengineering for a do-

main model, representing the common and variant features of a software product family. 
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3.4.2 An empirical study with synthesized PFMs 

The WFMS case study demonstrates qualitatively the effectiveness of our approach in 

understanding feature evolution in a family of product variants. However, we would like to 

further investigate quantitatively how our method scales up to many product variants char-

acterized by many features that have changed over time. Inspired by Thüm et al’s recent 

work [162], in which the synthesized feature models were utilized to evaluate the classifi-

cation of feature model evolution, we have also designed a controlled experiment to evalu-

ate the performance of our approach with a large volume of synthesized PFMs. This exper-

iment allows us to better understand the strength and weakness of our approach. 

3.4.2.1 The generation of synthesized PFMs 

We based our experimentation on the combined feature model of eShop [122] and Home 

Integration System (HIS) [83] from the feature model repository of S.P.L.O.T [121]. Given 

this feature model, we developed a tool for generating PFMs in two phases. First, the tool 

instantiates the feature model to obtain an initial family of PFMs. Next, it iteratively se-

lects a PFM from this family and evolves the PFM by applying the six types of feature 

changes (as defined in Section 3.3.2). The evolution is performed according to the user-

defined intensity (the number of types of changes being applied) and scope (the percentage 

of features being changed). 

a) The selection of feature models.  

S.P.LO.T [121] is a benchmark for the research on Software Product Line. It documents 

a repository of feature models. Feature model [81] is a hierarchy of product features, simi-

lar to product feature model. But a PFM represents a concrete product, while a feature 

model represents all the products in an SPL. Feature model captures the variability among 

these products in terms of mandatory and optional features, which define the features that 

must or can be selectively included in a concrete product. It also allows the definition of 
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AND, OR or XOR constraints among the sub-features of a composite feature. AND indi-

cates that all the sub-features of a composite feature must be included in a product as a 

whole, while OR or XOR indicates that a subset of all the sub-features or only one sub-

feature can be included in a product.  

We selected the two largest feature models, namely eShop and HIS. eShop has 286 fea-

tures in total, among which there are 74 mandatory features, 81 optional features and 131 

OR-subfeatures under 39 different parent features. There are no XOR-features in eShop. 

HIS has 66 features in total, among which there are 44 mandatory features, 10 optional 

features and 12 XOR-subfeatures under 6 different parent features. We combined the two 

feature models, eShop and HIS into one. One may consider that the resulting feature model 

represents an artificial system that has eShop and HIS as its two subsystems.  

b) The randomized instantiation of PFMs 

Given the combined feature model of eShop and HIS, our date-generation tool first ap-

plies a randomized instantiation strategy to generate a family of PFMs from this feature 

model by randomly selecting features from the root feature down. The instantiation process 

takes as input three parameters, the size of the initial product family n (n=10 in this exper-

iment), the probability (αOR) of an optional or an OR-feature to be included in a PFM, and 

the probability (αXOR) of an alternative feature to be included. In this experiment, we con-

figure αOR and αXOR so that at least 70% of generated PFMs include at least 50% of all the 

features in the combined feature model of eShop and HIS [162].  

c) The randomized evolution of PFMs 

Given an initial family of randomly instantiated PFMs, our data-generation tool then it-

eratively selects a PFM from this family, evolves it by applying up to six types of feature 

changes (as defined Section 3.3.2) according to the user-defined evolution strategies, and 

adds the evolved PFM back to the PFM family. This process continues until the size of the 
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PFM family reaches the user-defined threshold K (K=20 in our experiment). This random-

ized evolution process makes the following assumptions:  

 We have studied the feature models listed in S.P.L.O.T repository and found that most 

feature models define features using phrases, such as “Tuition Fee Payment” in the ex-

ample given in Figure 3.3. Thus, we utilize WordNet [50] to mimic the renaming of 

features. We also use the Lucent lib to do some simple preprocess (e.g. stemming and 

removal of stop words) to the feature name, and feature descriptions. Such preprocess 

will improve the accuracy of the results.The data-generation tool alters the name of a 

feature by adding word, removing word, replacing word with synonyms, and reshuf-

fling the order of words. 

 The data-generation tool applies only the removal of a leaf feature at a time. The rea-

son is that removing an entire feature subtree usually results in a PFM that has much 

fewer features than others in the PFM family. This often renders it meaningless to use 

our approach, since such product variants can be considered as completely different 

products, while the goal of our work is to detect feature changes in a family of similar 

product variants. 

 The data-generation tool only applies the feature splitting and merging to composite 

features. Technically, if a leaf feature is split into two leaf features, it is considered as a 

new leaf feature being added. Similarly, merging two leaf features is considered as re-

moving one of the leaf features. 

The evolution of a PFM is performed according to the user-defined intensity (the num-

ber of types of changes being applied) and scope (the percentage of features being 

changed). More specifically, we have designed two evolution strategies: feature-centric 

and change-type-centric. With the feature-centric strategy, one can specify the percentage 

of features that will be changed during the evolution process, but the types of changes be-
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ing applied to each changed feature are freely chosen. In contrast, with the change-type-

centric strategy, one can specify several types of changes that will be applied to the fea-

tures of a PFM, but each type of changes can be applied to different sets of randomly cho-

sen features. In the next section, we discuss how we apply these two evolution strategies in 

our experiment. 

3.4.2.2 The performance of our technique 

The data-generation tool generates a family of PFMs, which are similar but also differ-

ent from each other. We randomly select S (S=10 in our experiment) pairs of PFMs from 

this PFM family and apply the approach presented in Section 3.3 to detect the feature 

changes between them. The data-generation tool records the change history that the PFMs 

have undergone during the randomized evolution process. This change history serves as an 

oracle to evaluate the accuracy and robustness of our approach.  

Given two PFMs, PFM1 and PFM2, we denote the recorded change history (i.e., ex-

pected changes) and the detected feature changes by our approach (i.e., reported changes) 

as Expected Change-Tuple Set ME={<f1, f2, changetype>} and Reported Change-Tuple Set 

MR={<f1, f2, changetype>} respectively, where f1 refers to a feature in PFM1, f2 is the corre-

sponding feature of f1 in PFM2, and changetype is the type of changes between the two 

features. The changetype can be unchanged, rename, move, split, or merge (See Section 

3.3.2 and Section 3.3.4). Since our objective in this experiment is to evaluate the accuracy 

of our approach in identifying corresponding features in two PFMs, we omit the addition 

and removal of features. We evaluate the accuracy of our approach in terms of the preci-

sion and recall: precision P is the percentage of correctly reported changes, i.e., 

|     | |  |⁄  and recall R is the percentage of changes reported, i.e., |     | |  |⁄ .  

a) The results of change-type-centric strategy 
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Figure 3.5. The precision and recall for change-type-centric strategy 

Figure 3.5 summarizes the precision and recall of our approach in an experiment in 

which a family of PFMs has been evolved according to change-type-centric strategy. In 

this experiment, all six types of changes (see Section 3.3.2) have been applied during the 

evolution process. We incrementally increased the scope, i.e., the percentage of features 

that will be changed by each type of changes, from 5% to 40%. We compute the precision 

and recall of our approach in S (S=10 in this experiment) comparisons and then take the 

arithmetic average value as reported in Figure 3.5.  

The accuracy of our approach degrades as the scope of changes increase. It seems that it 

hits the bottom at the scope of 30%, which is really a very intensive evolution. Since each 

of six types of changes have been applied to 30% of randomly chosen features, each fea-

ture of this PFM statistically undergoes about 1.8 times of different types of changes on 

average. If such intensive evolution happens to a real-world system, the original product 

and the resulting product would be deemed as two completely different products. 

b) The results of feature-centric strategy 

We have conducted another experiment in which a family of PFMs has been evolved 

according to feature-centric strategy. Figure 3.6 and Figure 3.7 summarizes the results. In 

this experiment, we first decide the scope of features to be changed and then increase the 

intensity of changes from one type of change to six types of changes. We run this experi-

ment at four increasing scopes, i.e., 10%, 20%, 30% and 40%. In general, the precision and 
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recall of our approach drop as the intensity and scope of changes increase. But it still re-

covers 86% of all the corresponding features at the precision of 81% in the worst scenario, 

in which 40% of features have been changed, each of which suffers three randomly chosen 

types of changes.  

 

Figure 3.6. The precision for feature-centric strategy 

 

Figure 3.7. The recall for feature-centric strategy 

One interesting observation in Figure 3.6 and Figure 3.7 is that when the scope (i.e., the 

percentage of feature to be changed) is fixed, the precision and recall of our approach by 

randomly applying five or six types of changes are actually better than that of applying 

three or four types of changes. We manually inspected the experimental data and found out 

that this is resulted from the removal of features. At the intensity of five or six types of 

changes, it is highly likely that the type of feature removal will be applied during the evo-

lution process. When a feature is removed, all the changes that have already been made to 

it will be lost. Thus, feature removals actually simplify the comparison. 



Chapter 3 Understanding Variability in Product Requirements 

51 

With feature-centric strategy, the scope of changes is fixed, which means that the rest of 

the features remain unchanged. In this case, even a simple name-based matching approach 

can recover at least 1-p% (let the scope of changes be p%) of all the corresponding fea-

tures. We comparatively study our approach against the simple name-based matching ap-

proach. Overall, our approach can recover more than 60% of the corresponding features 

that are missed by simple name-based matching. In a case in which 80% of features have 

been moved and/or renamed, the name-based matching only reports 27% of all the corre-

sponding features, while the recall of our approach is 67%. This is because our approach 

identifies corresponding features based on not only their names but also their structural 

context. 

c) Summary and limitation 

Overall, our approach is able to produce an accurate change reports between the PFMs 

of product variants, even the PFMs have undergone intensive evolution. We manually in-

spected our experimental data and identified two main causes of false positive (i.e., erro-

neously reported) changes and false negative (i.e., missed) changes using our approach. 

First, it is difficult for our approach to determine the correspondences between features 

with little or very similar structural context (i.e., dependencies and relationships with other 

features). For example, the leaf features become an issue, since they have no structural in-

formation other than their name property. Consider an example from eShop system. One 

product variant has a leaf feature Internal Tracking, while the other has a leaf feature Part-

ner Tracking. When comparing the PFMs of these two products, our approach reports that 

Internal Tracking and Partner Tracking are the “same” feature being renamed in different 

product variants. However, Internal Tracking and Partner Tracking are actually two alter-

native ways of shipment tracking, which should not be considered as the “same” feature. 
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Second, if product features suffer various types of changes at the same time, for exam-

ple, a feature f is moved to another composite feature, and then split into several features, 

finally it is renamed, and our approach may not recognize the correspondences between the 

origin feature f and the resulting feature, since their name properties and structure changed 

dramatically. Since we keep track of the change history of PFMs in the data-generation 

process, we consider such cases as missed changes. However, a human expert may deem 

such two features as two different features since they have been changed dramatically, 

even though one feature is the origin of the other. 

3.5 Application 

Having evaluated the quality and robustness of our approach, the next question we 

would like to address is “what is this good for?” In this part, we place the work presented 

in this chapter in the overall context of our research on extractive reengineering into SPL. 

We will briefly discuss three applications based on the results of this work. These applica-

tions are currently under development – to a different degree of maturity. 

The long-term objective of our research is to support reengineering a family of similar 

product variants into an SPL for systematic reuse. Figure 3.8 depicts the overall methodol-

ogy we have adopted for our work. The input to our methodology is the software artifacts 

of product variants at different levels of abstraction, for example, product feature model at 

requirement level, UML class model at architecture and design level, and Program De-

pendence Graph (PDG) at implementation level. The output of our reengineering method-

ology is a collection of core assets of an SPL, which may include domain feature model 

(FM) [81], Product Line Architecture (PLA) [33] and generic components (GenericComp) 

[138].  
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Figure 3.8. Reengineering product variants into SPL 

The successful recovery and understanding of commonalities and differences among the 

artifacts of product variants strides the first step towards our research objective. In this 

chapter, we presented our application of GenericDiff to detect changes to product features 

at requirement level. In the following work, we have also applied GenericDiff to compare 

software artifacts of product variants at design and implementation level.  

Based on the differences GenericDiff reports, we are currently investigating the use of 

model merging and data-mining techniques to reverse-engineer the configurable domain 

feature model, product line architecture and generic components. For example, we are us-

ing description logic [7] to model and reason about the conflicts and inconsistencies among 

product feature models and investigating the merging of PFMs of product variants using 

graph transformation tools, such as [147]. In addition to model merging, we are also inves-

tigating the recovery of the variability and other general constraints between product fea-

tures by mining association rules [27] or subtree patterns [31] from the differences among 

the PFMs of product variants.  

Last but not least, recovering traceability in software artifacts of product variants across 

requirement, design and implementation can provide important insights into the develop-

ment and maintenance of an SPL. Such traceability is also essential in the derivation of 

concrete products from an SPL. Researchers have investigated the use of information re-

trieval [3], scenario-based dynamic analysis [48], or the combination of both [135] for the 

recovery of traceability. However, existing work on traceability recovery analyzes only 
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artifacts of a single software system. In our problem setting, we have a family of similar 

product variants, which should be exploited. 

The ability to compare and identify the differences in a family of product variants at dif-

ferent levels of abstraction can assist the task of traceability recovery. The underlying intu-

ition is that the presence or absence of a feature in a product variant should be reflected in 

the presence or absence of certain design elements and code fragments. In our ongoing 

work, we are combining the information retrieval techniques with software differencing 

results to recovery feature–design element–code fragment traceability in a product variant 

family. 

3.6 Summary 

In this work, we presented our approach to understand feature evolution in a family of 

software product variants. We entail that features and their dependencies for each product 

variant are documented as product feature model. The innovation of our approach is to ex-

ploit model differencing technique (GenericDiff) to detect evolutionary changes to product 

features at requirement level. Based on the differences between product feature models as 

reported by GenericDiff, our approach automatically infers evolutionary changes that oc-

curred to product features of different product variants.  

We evaluated the effectiveness and scalability of our method using a real-world product 

family of financial systems as well as a large volume of systematically synthesized data. 

We showed that our method yields good results and scales to large systems.  

In the current study, we use the term “evolution” to assume that the product feature 

model may undergo long-term incremental changes. Note that the long-term incremental 

changes do not mean the great and dynamic changes. For the whole evaluation part, we are 

testing to what extent our approach can identify the evolutions among PFMs. Certainly, too 
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great evolutionary changes lead to the huge difference between two PFMs, and it may fail 

any differencing approach to find the possible evolution changes between these two PFMs.  

In the future, based on the results of this work, we plan to investigate merging tech-

niques to support the (semi-)automatic reconciliation of inconsistent product feature mod-

els. Furthermore, we also plan to exploit data mining techniques to discover the variability 

and other general constraints among product features. These techniques will lead to further 

automation of extractive reengineering of a family of similar product variants into an SPL. 
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4 Understanding Variability in Implementation of Product 
Variants  

This chapter shares materials with [174], which aims at resolving the problem RQ2 in-

troduced Section 1.1. We introduce the importance of understanding the differences of 

similar code in the context of product line and refactoring. We present a PDG-based differ-

encing approach on clone instances and evaluate it on two industrial products, namely Ja-

vaIO library and Eclipse JDT test library. 

4.1 Introduction 

Unlike the domain analysis at the requirement level, the analysis at the implementation 

level is more laborious and error-prone. Discovering the variability in the millions of lines 

of source code of the products leads to the costly computation. Furthermore, even if it is 

feasible to directly compare the millions of lines the source code, in what terms should the 

variability be considered? Should it be considered in terms of textual differences or differ-

ences in other representations? Just as the clones are used to identify the aspects [144], 

clones sometimes indicate the similar features. Based on the clone detection report, the 

developers are interested to know which features/components recur across product vari-

ants, and what differences among similar features/ components are induced by different 

contexts (see RQ2 in Section 1.1).  

However, for the RQ2, the common clone detectors provide little or no additional in-

formation to aid developers in understanding the contextual differences among the clone 

instances. To ease post-detection analysis of clones, researchers have investigated using 

textual differencing [79,85], code metrics [9,10], visualization [165], and query-based fil-

tering techniques [184]. However, these clone analysis methods analyze only the infor-

mation of clones themselves, ignoring the program context in which clones occur, and thus 

cannot identify contextual differences among clones shown in Figure 4.1. 
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 //Method FeeInfo.initInfo in  WFMSFudan 

… //clone section same as that in WFMSShanghai 

1． for (int i = 0; i < yearTemp.size(); i++) { 

2．      boolean ifTS = false;              //if the item is locked by Delegat… 

3.         … //clone section same as that in WFMSShanghai 

4.         rsGetFeeInfo = stmtGetFeeInfo.executeQuery(sqlGetFeeInfo); 

5.         if(Global.nTrim(rsGetFeeInfo.getString("bank_mark")).equals("Y")) 
ifTS = true;                      //if it is locked by Delegat… 

6.         … //clone section same as that in WFMSShanghai 

7.         feeInfo.add(yearFee); 
8.         if(ifTS) lockTags.add("Y");   //if it is locked by Delega… 

9.         } 

//Method FeeInfo.initInfo in  WFMSShanghai 

… //clone section same as that in WFMSFudan 
1. for (int i = 0; i < yearTemp.size(); i++) { 

2.       /* don't support Delegation Lock */ 

3.         … //clone section same as that in WFMSFudan 

4.         rsGetFeeInfo = stmtGetFeeInfo.executeQuery(sqlGetFeeInfo); 

5.        
6.         … //clone section same as that in WFMSFudan 

7.         feeInfo.add(yearFee); 

8.         java.sql.Statement stmtLock = conn.createStatement(); /* from this line, 
              the code is about Operation Lock*/ 

9.         String sqlLock = "select sysdate,billtime from lastbill”, … // more code 

Figure 4.1. Differences of two clone fragments 

To ease the post-detection analysis, we propose an approach and a tool called CloneDif-

ferentiator. First, we use clone detection tool [11] to find the clone candidates. We capture 

contextual information of clones from Program Dependence Graphs (PDGs) generated by 

Wala [204]. These PDGs encode data and control dependencies between program state-

ments. We then use graph matching techniques GenericDiff [175] to compute a precise 

characterization of clones in terms of the structural differences and differential properties 

between their PDGs, from which several patterns of contextual differences are recognized. 

The patterns of contextual differences include Differential Statement, Differential Block, 

Missing Statement, Missing Block, Missing Branch, PartialMatch Branch. Then CloneDif-

ferentiator allows developers to formulate queries to distill candidate clones for a given 

refactoring task, in terms of clones and their contextual differences that developers would 

like to inspect. It also allows developers to interactively inspect clones and their contextual 

differences in a GUI. 

Let us look at an example. As explained in Section 3.1 that comparison of PFMs may 

tell multiple possibilities for features like DelegationLock and OperationLock, Figure 4.1 



Chapter 4 Understanding Variability in Implementation of Product Variants 

59 

illustrates two cloned code fragments due to the variant feature DelegationLock and Oper-

ationLock in the method FeeInfo.initInfo() from WFMS
Fudan

 and WFMS
Shanghai

 respectively. 

The basic functionality of FeeInfo.initInfo() is to read data from database and initialize a 

new object of FeeInfo. In WFMS
Fudan

, FeeInfo.initInfo() further supports the delegation 

lock for the object of FeeInfo; while in WFMS
Shanghai

, FeeInfo.initInfo()  does not support 

the delegation lock but the operation lock. As shown at line 2, 5 and 8 of the upper code 

fragment in Figure 4.1, the delegation lock entails reading the value of field “bank_mark” 

from the database and then proceeds accordingly. Operation lock requires reading data 

from another table lastbill, as the code shown at line 8, 9 of the lower code fragment in 

Figure 4.1. Our clone differencing technique reports the differences between two clones as 

Missing Statement at line 2, Missing Branch at line 5 and Differential Block at line 8. Thus, 

the results complete the comparison of PFMs and shows that DelegationLock and Opera-

tionLock are different features rather than the renamed feature. 

With the support of CloneDifferentiator, developers no longer need to inspect all clones 

reported by clone detectors for a given refactoring task. They no longer need to manually 

explore contextual information of clones and determine their contextual differences. In-

stead, developers are now directly informed by contextual differences of clones, based on 

which they can query and filter clones in a task-oriented manner. We evaluated the effec-

tiveness of our approach and the CloneDifferentiator tool in two empirical studies aiming 

at refactoring JavaIO library and Eclipse JDT-model unit-test suites. Our studies show that 

CloneDifferentiator is able to distill a small number of useful clones for various refactoring 

tasks, and thus reduces the effort of post-detection analysis of clones for refactorings. 

We make the following contributions in this chapter: 

 We identify contextual differences of clones that must be identified and understood 

for correct reverse engineering and maintenance tasks. 
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 We present an automated approach to help developers distill useful clones for a giv-

en refactoring task by finding and analyzing contextual differences of clones. 

 We report two empirical studies and demonstrate the effectiveness of our approach 

for post-detection analysis of clones for refactorings. 

4.2 A Motivating Example in Refactoring 

Consider a developer John who would like to refactor Java NewIO library to remove 

code duplication. One of the specific refactorings that John is interested in is to pull up 

cloned methods from subclasses into superclass. That is, he is interested in cloned methods 

that occur in sibling classes and appear to perform same computation. 

John uses CloneMiner [12] for clone detection in Java NewIO. CloneMiner reports 98 

clone sets in Java NewIO library; each clone set consists of 2 – 50 cloned methods [184]. 

John then uses CloneAnalyzer [184] to inspect the detected clones in Java NewIO library. 

Although CloneAnalyzer provides a rich set of information about the detected clones, it 

offers little help in identifying candidate clones for his pull-up method refactoring. John 

has to manually inspect all clones one by one; he resorts to Java Source Compare of 

Eclipse IDE to determine the differences between cloned methods. 

class CharBuffer { 

char[ ] hb;
public final boolean hasArray () {
return (hb != null)  && !isReadOnly; } }

Buffer

CharBuffer

ByteBuffer

IntBuffer

DoubleBuffer

FloatBuffer

LongBuffer

ShortBuffer

class LongBuffer { 

long[ ] hb;
public final boolean hasArray () {
return (hb != null)  && !isReadOnly; } }

 

Figure 4.2. Can we pull-up these cloned methods? 

After inspecting 69 clone sets, John identifies a clone set of seven cloned methods (see 

Figure 4.2), which seems to be a good candidate for pull-up method refactoring. The meth-

od hasArray() is cloned in seven subclasses of the Buffer class. At the first glance it may 
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look that this clone could be removed by pulling up the cloned methods hasArray() to the 

superclass Buffer, because seven hasArray() methods are textually identical. However, 

when John tries to remove these cloned methods using the Eclipse’s Pull Up refactoring, 

Eclipse reports an error that field hb referred in the cloned methods has different data type 

in different subclasses. For example, as shown in Figure 4.2, the data type of CharBuff-

er.hb is char[], while the type of LongBuffer.hb is long[].  

Note that for the clarify of illustration we show closely the declaration of field hb and 

the method hasArray() that uses hb. However, in the source code of the buffer subclasses, 

the declaration of field hb is actually quite far away from (about 660 lines of codes in be-

tween) the declaration of method hasArray(). Furthermore, Java Source Compare com-

pares programs at textual level and cannot detect type difference of field hb of different 

subclasses. Consequently, John does not notice this important difference among the cloned 

methods until his attempt to pull-up them into the Buffer superclass fails. 

The type difference of field hb of different buffer subclasses prevents seven cloned 

methods hasArray() from being pulled up into the superclass Buffer, because pulling up 

hasArray() requires pulling up field hb at the same time. Unless John finds a way to 

properly deal with type difference of field hb (for example using generic type), pulling up 

hb into the superclass Buffer would lead to errors in other parts of buffer subclasses. 

4.3 Contextual Analysis of Clones 

The examples in Section 4.1 and 4.2 illustrate contextual analysis that developers have 

to do when performing refactorings affects clones. Our study suggests that in order to cor-

rectly understand clones before performing refactorings developers must examine several 

pieces of contextual information of clones, including program elements referenced in the 

cloned methods (e.g. fields being accessed in our motivating example), associated proper-
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ties of these program elements (e.g. data type of the field), and control and data flow sur-

rounding the cloned code fragments. 

Differences in the contextual information of clones may affect computation performed 

by clones, and thus must be identified and understood. The type difference between field 

hb of different buffer subclasses is a simple example of what we call differential state-

ments among seemingly similar (or even identical) code clones, i.e. statements that appear 

in similar control and data flow context in the cloned methods, but may perform different 

computation. 

PipedOutputStream (Java IO 1.5) 
36.    private PipedInputStream sink; 
101.    public void write(int b) throws IOException { 
102.       if(this.sink == null) 
103.          thr w  ew IOExcet    “…”   
104.          this.sink.receive(b); } 

PipedWriter (Java IO 1.5) 
25.    private PipedReader sink; 
103.    public void write(int c) throws IOException { 
104.       if(this.sink == null) 
105.          thr w  ew IOExcept    “…”   
106.          this.sink.receive(c); } 

Figure 4.3. Differential statements 

Figure 4.3 presents another example of differential statements from Java IO library. The 

overall control and data flow of the cloned methods are identical, but the two methods per-

form difference computation. This is because the two methods read different fields, 

PipedOutputStream.sink versus PipedWriter.sink, and the type of the two fields are also 

different, PipedInputStream versus PipedReader. Furthermore, the two methods invoke 

different methods, PipedInputStream.receive() versus PipedReader.receive(). In fact, many 

clones in Java IO library have such differential statements, which are resulted from pro-

cessing byte data and char data respectively. Note that examining only the cloned methods 

themselves cannot surface these differential statements, because the two methods are tex-

tually identical.  
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ObjectInputStream.read(byte[] buf, int off, int len) 

806.    if(buf==null) { 
807.       thr w  ew Nu  P   terExcept    “…” ;} 
809.    int endoff=off+len; 
810.    if(off<0||len<0||endoff>buf.length || endoff<0) { 
811.       throw new IndexOutOfBoundsException();}     

ObjectInputStream.readFully(byte[] buf, int off, int len) 

976.    int endoff=off+len; 
977.    if(off<0||len<0||endoff>buf.length || endoff<0) { 
978.       throw new IndexOutOfBoundsException();} 

Figure 4.4. Missing branch and statements 

Two other important types of contextual differences of clones are missing statements 

(i.e. statements that appear in some cloned methods but not others) and missing/partially-

matched branches (i.e. missing or inconsistent branches among cloned methods). Figure 

4.4 shows an example. The method read() checks if buf  is null, creates and throws a Null-

PointerException if buf is null, while readFully() does not have such explicit checking. 

Instead, readFully() implicitly throws a NullPointerException when deferencing a null buf. 

This example shows a common inconsistent program style in Java IO for validating input 

parameters and handling exceptions. Clearly, the method read()represents a better solution 

as it will fail as quickly as possible in the case of a null buffer. Furthermore, it allows em-

bedding a program-specific error message in the thrown exception. 

Once these contextual differences are identified, they can help distill useful clones for a 

given refactoring task. For example, developers who are interested in pulling-up cloned 

methods may formulate a query searching for cloned methods that are in sibling classes 

and have zero contextual differences. Note that the cloned methods shown in Figure 4.2 

and Figure 4.3 will not be returned by the query, because they have differential statements, 

even though they look identical. But they will be returned by the query searching for 

cloned method that can be replaced by generic methods. As another example, developers 

who are interested in reconcile small discrepancies among cloned methods may formulate 

a query searching for clones such as the one shown in Figure 4.4. They can remove the 
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differences resulted from inconsistent program styles and then extract parameter-validity-

checking logic into a utility method. 

Clearly, given large numbers of clones, manual contextual analysis of clones is imprac-

tical. Now the question becomes: how can we precisely capture contextual information of 

clones and automatically identify contextual differences of clones? 

4.4 The Approach 

We propose an automatic approach and tool called CloneDifferentiator that can help de-

velopers identify and analyze contextual differences of clones. In this section, we first give 

an overview of our CloneDifferentiator approach. And then we discuss how CloneDiffer-

entiator represents contextual information of clones, and how it computes contextual dif-

ferences of clones and what types of differences it reports. 

4.4.1 Overview 

CloneDifferentiator analyzes cloned methods detected by one of the existing code clone 

detectors. Clone detectors usually group cloned methods to form clone sets. The cloned 

methods called clone instances in each clone set are pair-wise similar to each other, ac-

cording to similarity metrics used by the clone detector.  Our CloneDifferentiator tool cur-

rently uses CloneMiner [11] for clone detection. It can detect the high level similarity, in-

cluding structural clones and gapped clones. We used the default setting up of CloneMiner 

(e.g. min-token length 30 for a clone). We used our approach to compare those clone 

method which contains the gapped clone. Actually, the structural clones reported by 

CloneMiner are generally more complicated than those reported by CCFinder [80] or 

CloneDR [20]. These complicated clones allow us to see the performance and limitation of 

our approach. However, it is important to note that our approach does not make any specif-

ic assumptions regarding clone detectors. 
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CloneDifferentiator raises the level of analysis of clones to Program Dependency Graph 

(PDG). It represents the contextual information of cloned methods using PDG. PDG al-

lows CloneDifferentiator to precisely capture the contextual information of clones, includ-

ing program elements being referenced in cloned methods, associated properties of these 

program elements, and data and control flow information in cloned methods. 

Given the PDGs of the cloned methods in a clone set, CloneDifferentiator then uses 

graph differencing algorithm to compare PDGs of clones. It automatically detects contex-

tual differences of clones, in terms of differential statements or blocks, missing statements 

or blocks, and missing or partially-matched branches. These contextual differences can be 

used to formulate queries for distilling useful clones for a given maintenance task. 

Our CloneDifferentiator tool [173,178] stores its contextual analysis results of clones in 

a relational database. Stored information includes PDGs of cloned methods and the in-

stances of different types of contextual differences of these clones. CloneDifferentiator is 

equipped with a set of simple filters for filtering clones based on the types and number of 

their contextual differences. Furthermore, it allows the developer to formulate task-specific 

queries in terms of which clones and what types of their contextual differences he would 

like to inspect. 

Finally, our CloneDifferentiator tool implements three views that allow developers to in-

teractively inspect cloned methods and their contextual differences: CloneDiff TreeView 

that summarizes cloned methods being analyzed and their contextual differences; PDG 

Viewer for graphically inspecting clones and their differences in PDG; CloneDiff Compare 

Editor for inspecting clones and their differences in an enhanced Eclipse compare editor. 
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4.4.2 Representing contextual information of clones as PDG 

Let us first discuss why we adopt PDG to represent contextual information of clones. 

We then describe the PDG representation that our current CloneDifferentiator tool adopts 

for contextual analysis of clones.  

4.4.2.1 Why PDG? 

A Program Dependence Graph (PDG) [35,52] is a static representation of the control 

and data flow through a program. It is commonly used for program optimization and slic-

ing. CloneDifferentiator adopts PDG as the representation of contextual information of 

clones, and computes contextual differences of clones at PDG level. This allows it to pro-

vide a precise characterization of contextual differences of clones than lexical or syntactic 

differencing techniques, because PDG abstracts away many textual and syntactic differ-

ences in contextual analysis of clones.  

Let us look at an example from our empirical studies of clones in Java IO library using 

CloneDifferentiator. Figure 4.5 presents the contextual differences of a pair of cloned 

methods listFiles(FilenameFilter) and listFiles(FileFilter) in a CloneDiff Compare Editor 

(see Section 4.4.4). 

CloneDifferentiator reports that the cloned code fragments (inside light-grey box) of the 

two methods have a pair of differential parameters (highlighted in light blue background). 

The two parameters declare different data types (FilenameFilter versus FileFilter). 

CloneDifferentiator also reports that the two cloned methods have a pair of differential 

method invocations (FilenameFilter.accept() versus FileFilter accept(), highlighted in red 

background). Furthermore, the method listFiles(Filenamefilter) has an additional array-

access statement (ss[i], highlighted in yellow double underline and italic font), i.e. a miss-

ing array-access statement that listFiles(FileFilter) does not have.  
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Figure 4.5. Inspecting contextual differences in CloneDiff Compare Editor 

 

Figure 4.6. Textual differences in Java Source Compare 

CloneDifferentiator also detects the difference in the control flow of the two methods: 

the program control flows from the matched branch statement (i<ss.length) directly to the 

unmatched branch (filter==null) in listFiles(Filename-Filter), while in listFile(FileFilter) 

the control flows first to the instantiation of a File object and then to the unmatched branch 

(filter==null). CloneDifferentiator reports this difference as partially-matched branches 

filter==null (highlighted in green and accent font in the two methods respectively). Note 

that it is more straightforward to inspect contextual differences resulted from control/data 

flow differences in PDG Viewer (see this example in Figure 4.13).  

Compared with the textual differencing results of the two cloned methods (see Figure 

4.6), the contextual differences that CloneDifferentiator reports is clearly much more pre-

cise. The textual differencing reports some textual differences between the code block (line 
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33–35) of listFiles(FileFilter) and the code block (line 34–35)  of listFiles(FilenameFilter). 

In contrast, such differences are abstracted away in PDGs and thus are not reported by 

CloneDifferentiator. On the other hand, because textual differencing compares clones as 

lines and chars, it cannot report the subtle difference in the branch statements filter==null 

and the difference in the actual methods being invoked filter.accept(), as reported by 

CloneDifferentiator. 

More importantly, the contextual differences of CloneDifferentiator can be directly que-

ried in a task-oriented manner. In contrast, because textual differences ignore semantic in-

formation to which they correspond, they have to be manually examined and interpreted. 

For example, textual differencing identifies the differences between FileFilter (line 28 of 

listFiles(FileFilter)) and FilenameFilter (line 29 of listFiles(FilenameFilter)). However, 

textual differencing cannot automatically determine that the detected textual difference is 

due to the type difference of two parameters. 

Syntactic differencing techniques, such as change distilling [53] that compares Abstract 

Syntax Tree (AST), are more robust than textual differencing, for example they can detect 

the type difference of the parameters of the two listFiles methods. However, syntactic dif-

ferencing is still sensitive to the arbitrary syntactic decisions a developer made while de-

veloping a program. For example, statements File f = new File(); v.add(f) and v.add(new 

File()) result in different ASTs, but they yields the same PDG. Furthermore, AST-based 

differencing techniques are agnostic of control and data flow through a program, and thus 

cannot detect contextual differences resulted from control and data flow, such as the dif-

ferences between the two filter==null statements in the two listFiles methods. 

4.4.2.2 Wala PDG 

In general, the nodes of a PDG consist of three categories of program statements con-

structed from the source code: simple statement, expressions, and control points. A control 
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point represents a point at which a program branches, loops, enters or exits a procedure. 

The edges of a PDG encode the data and control dependencies between program state-

ments. 

Our CloneDifferentiator tool uses Wala [204] to generate PDGs of cloned methods. Wa-

la is a static analysis library for Java. It is important to note that using Wala for PDG gen-

eration in our CloneDifferentiator tool is only an implementation choice because Wala is 

open source and publicly available. Furthermore, we conducted empirical studies on Java 

software systems. Our CloneDifferentiator approach is not limited to any specific PDG 

generation tools, nor is it limited to analyzing clones in Java software systems. 

LegendENTRY

FGET<this.sink : PipedReader>

NEW<IOException>

BRANCH<ne: this.sink : null>

THROW<$>
FGET<this.sink : PipedReader>

INVOKE<virtual : PipedReader.receive(I)V : void>

True

False

PARAM<c: I>

RETURN<void>

Operation

Parameter/Constant

Branch

Control dependence

Data dependence

 

Figure 4.7. Wala-PDG example: PipedWriter.write(int):void 

Given a Java software, Wala generates a system dependency graph that is composed of 

PDGs of all methods in the system and the inter-procedure dependencies of these PDGs. 

Because we are only interested in cloned methods, CloneDifferentiator outputs the PDG of 

each cloned method for the subsequent contextual differencing and analysis. Wala-PDG 

captures contextual information of cloned methods, including program elements referenced 

in cloned methods, associated properties of these program elements, and control and data 

flow in cloned methods.  

Wala-PDG supports three categories of bytecode-like program statements constructed 

from source code: simple statement, control point, and expression. Simple statement in-

cludes field read/write FGET/FPUT, method invocation INVOKE, unary and binary opera-
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tion (negate, add, minus, multiply), compare statement (>, <, !=), array load/store ARRAY-

LOAD/ARRAYSTORE, type checking INSTANCEOF, type casting CAST, object creation 

NEW, and exception throwing THROW. Control points include branching BRANCH and 

switching SWITCH. Expressions include parameter PARAM and constant CONST. Differ-

ent types of program statements consist of different sets of properties, such as identifier, 

data type, operator code, and operand. Figure 4.7 shows a partial Wala-PDG for the cloned 

method PipedWriter.write(int):void listed in Figure 4.3.   

4.4.3 Detecting contextual differences of clones by PDG differencing 

Given a clone set of n cloned methods {m1,…,mn}, let PDGi and PDGj be the PDGs of 

cloned methods mi and mj (           ), CloneDifferentiator applies graph differ-

encing algorithm to pair-wisely compare PDGi and PDGj and detect the contextual differ-

ences between the cloned methods mi and mj.  

CloneDifferentiator also uses GenericDiff [175] (a configurable graph matching frame-

work) for comparing Wala-PDGs. Inspired by [140], GenericDiff reports a domain inde-

pendent symmetric difference between two input PDG graphs: a set of matched graph 

nodes and edges that exist in both graphs, and two sets of unmatched graph nodes and edg-

es that exist only one of the two graphs. CloneDifferentiator interpret the GenericDiff’s 

PDG differencing results in terms of meaningful contextual differences of code clones: 

differential statements or blocks, missing statements or blocks, and missing or partially-

matched branches. Interested readers are referred to Section 2.3.2 and GenericDiff [175] 

for the details about we configure GenericDiff for comparing PDGs. 

In the rest of this part, we discuss these contextual differences and their impacts on the 

contextual analysis of code clones. We illustrate our discussion with examples from our 

empirical studies. 
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4.4.3.1 Differential statements or blocks 

Differential statements (blocks) represent a pair of Wala-PDG statements (blocks of 

statements), one from each cloned method, that appear in similar control and data flow 

context in the two cloned methods, but may perform different computation.  

Differential statements are resulted from the following three reasons: 

 The methods being invoked in method invocation (INVOKE) statements and the fields 

being accessed in field access (FGET/FPUT) statements can be different. Such differ-

ences reveal the use of different methods and fields for the same or similar purpose in 

cloned methods.  

 The operator-code of method invocation, binary operation, compare, and branch 

statements can be different. Furthermore, the data type of field-read/write, method in-

vocation, type checking, type casting, object creation, array-load/store, and parameter 

statements can be different. Different operator-codes or data types can result in differ-

ent program behavior.  

 The operand of binary-operation, compare, and branch elements or the value of con-

stant elements can be different. Different operands or values can affect the evaluation 

of dependent statements. 

Figure 4.8 presents an example of differential statements from our empirical study on 

JavaIO library. The overall control and data flow of the cloned methods readArray() and 

readOrdinaryObject() is similar. But CloneDifferentiator detects three pairs of differential 

statements between the two methods: the method being invoked in the two method-

invocation statements is different: Array.newInstance() versus Ob-

jectStreamClass.newInstance(); the operator-code of these two method invocations is dif-

ferent: static versus virtual; the constant operand of the branch statements is different: 

TC_ARRAY versus TC_OBJECT.  
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ObjectInputStream.readArray(boolean) 
1581. …… 
1582. if(bin.readByte() != TC_ARAY) 
1583.     throw new StreamCoruptedException() 
1592. array = Array.newInstance(ccl, len) 
1593. …… 

ObjectInputStream.readOrdinaryObject(boolean) 
1689. …… 
1690. if(bin.readByte() != TC_OBJECT) 
1691.     throw new StreamCoruptedException() 
1698. obj = desc.isInstantiable() ? desc.newInstance() …  
1699. …… 

Figure 4.8. Differential statements 

Differentiator blocks are similar to differential statements; the only difference is that a 

block consists of a sequence of statements, i.e. a subgraph of the PDG of the cloned meth-

ods.  

CreateMemberTests.test002() 
70. …… 
71. c  p  at   U  t    etC  p  at   U  t …  “E java”   
76. IField sibling = type  etF e d “j” ; 
77. type createF e d “  t   ”, sibling, true, null); 
78. …… 

CreateMemberTests.test003() 
89. …… 
90. c  p  at   U  t    etC  p  at   U  t …  “A    java”   
95. IMethod sibling =type  etMeth d “f  ”   ew Str   []   ; 
96. type createMeth d “Str    bar  ”, sibling, true, null); 
97. …… 

Figure 4.9. Differential block 

Figure 4.9 presents an example of the two cloned test methods from our empirical study 

on Eclipse JDT unit tests. Both test methods are used to test creating a member in a class. 

However, CloneDifferentiator detects that the cloned methods have a pair of differential 

blocks, which reveal the differences of the two test methods in retrieving and creating dif-

ferent types of class members. That is, test002() tests creating a field, while test003() tests 

creating a method. 

4.4.3.2 Missing statements or blocks 

Missing statements (blocks) represent statements (blocks of statements) that appear only 

in one of the cloned methods but not the other. 
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ObjectInputStream$BlockDataInputStream.peek() 
3960. if(blkmode) { 
3961.    return (end>=0) ? (buf[pos] & 0xFF) : -1; 
3962.   e se   …   

ObjectInputStream$BlockDataInputStream.read() 
3963. if(blkmode) { 
3964.    return (end>=0) ? (buf[pos++] & 0xFF) : -1; 
3965.   e se   …   

Figure 4.10. Missing statements 

Figure 4.10 presents an example of missing statement between the two cloned methods. 

CloneDifferentiator detects that one of the cloned method read() has two additional state-

ments (line 3964) that the method peek() does not have: a binary operation that adds pos by 

1 and a field-write statement that updates pos with the new value. These two missing 

statements reveal the key differences between read() and peek(): read() consumes the val-

ue, while peek() only returns the value in the stream buffer. 

SequenceInputStream. read (byte b[], int off, int len) 
181.    … //clone part 
187.    else if (len == 0) { 
188.      return 0; 
189.    } 
191.     int n = in.read(b, off, len); 
192.  if (n <= 0) { 
193.      nextStream(); 
194.      return read(b, off, len); 
195.  } 
196.    return n; 

PipedOutputStream. write(byte b[], int off, int len) 
122.   … //clone part 
129.   else if (len == 0) { 
130.      return 0; 
131.    } 
132.    sink.receive(b, off, len); 

Figure 4.11. Missing block 

Figure 4.11 shows an example of missing statements and block between the two cloned 

methods. CloneDifferentiator detects that one of the cloned methods SequenceIn-

putStream.read() has an additional block that the method PipedOutputStream.write() does 

not have, while PipedOutputStream.write() has some statements that SequenceIn-

putStream.read() does not have. The two methods share the logic of validating input pa-

rameters so that they are reported as cloned method by CloneMiner. However, the compu-
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tation of the two methods is in fact very different as indicated by missing statements and 

block. 

4.4.3.3 Missing or partially matched branches 

Missing branches represent control points that appear only in one of the cloned method 

but not the other, while partially matched branches reveal the inconsistencies between a 

sequence of control points between the cloned methods.  

ByteArrayInputStream.read(byte[] buf, int off, int len) 
160.     …… 
161.     } else if(off<0||len<0||len>buf.length-off) { 
162.         throw new IndexOutOfBoundsException();}} 
163.     …… 

StringBufferInputStream.read(byte[] buf, int off, int len)  
95.     …… 
96.     } else if(off<0||len<0|| 
97.                 off+len>buf.length||off+len<0) { 
98.         throw new IndexOutOfBoundsException();}} 
99.     …… 

Figure 4.12. Partially-matched branches 

Figure 4.4 presents an example of a common inconsistent program style in JavaIO that 

results in missing branch and statements between cloned methods. Figure 4.12 presents a 

typical example of another common inconsistent program style in Java IO that results in 

partially-matched branches when checking the validity of input parameters. In this exam-

ple, both cloned methods perform a sequence of validity checks of parameters off and len 

(line 160 versus lines 95/96). CloneDifferentiator detects that the cloned methods have 

partially-matched branches. These differences reveal similar but also different parameter 

validity checking of the two methods. The two methods have two pairs of matched branch 

statements (off<0 and len<0), but they check different expressions (len>buf.length-off ver-

sus off+len>buf.length) to ensure that the sum of off and len is less than the length of buf. 

Furthermore, StringBuffer-InputStream.read() has one more checking (off+len<0), which 

is unnecessary, since it always evaluates to false. 
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4.4.4 Tool Support 

Let us now discuss querying and visualization support that our CloneDifferentiator tool 

provides for distilling and inspecting clones and their contextual differences.  

Our CloneDifferentiator tool is equipped with a set of simple filters for filtering clones 

based on the types and numbers of their contextual differences. For example, one can easi-

ly find clones that have zero contextual difference or clones that have only differential 

constant statements with different values. Such clones are duplicated codes that can be re-

moved by refactorings [54], such as pull up method, parameterize method. The filters are 

backed up by the query language for the contextual differences or difference pattern, which 

is SQL. We store the clone code snippets, the PDGs of clone instances, and also the clone 

comparison results in the relational database. We then use SQL to express queries for the 

database. 

If the simple filters that CloneDifferentiator provides cannot meet the needs of develop-

ers for a refactoring task, CloneDifferentiator allows developers to formulate their own 

queries (SQL queries in current implementation), using contextual differences of clones as 

basic building blocks, for distilling candidate clones that are useful for the specific task at 

hand. Section 4.5.2 and 4.5.3 will review a few such queries for various refactoring tasks. 

In addition to filtering and querying clones and their contextual differences, our 

CloneDifferentiator tool supports the following three views, i.e. CloneDiff TreeView, PDG 

Viewer, and Compare Editor, for presenting and visually inspecting clones and their con-

textual differences. 

CloneDifferentiator lists clone sets returned by a query in CloneDiff TreeView. Clone 

sets can be easily navigated to through the tree. For each pair of cloned methods in a clone 

set, CloneDiff TreeView summarizes the types and number of contextual differences that 
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this clone pair has. Clone sets can be sorted by the signature of cloned methods and/or the 

types and number of their contextual differences.  

 

Figure 4.13. PDG Viewer 

Double-clicking a clone pair in CloneDiff TreeView opens a PDG Viewer that visualizes 

the unified PDG of the selected pair of cloned methods. PDG Viewer allows developers to 

graphically inspect PDGs of clones and their contextual differences, especially differences 

of data and control flow. For example, Figure 4.13 shows partially the unified PDG of the 

cloned methods listFiles(FilenameFilter) and listFiles(FileFilter). Black nodes/edges rep-

resent matched PDG statements and dependences that exist in both methods, while green 

and red nodes/edges represent unmatched statements and dependences that exist only in 

one of the two methods. We can clearly see the control- and data-flow differences between 

the two methods, which results in partially-matched branches filter==null. 

Although PDG Viewer provides an intuitive means to inspect contextual differences of 

clones, it often becomes difficult to inspect contextual differences in large PDGs. Further-

more, developers are most familiar with examining program differences in compare editor 

that present programs to be compared side by side. For that our CloneDifferentiator tool 

extends Eclipse compare editor into CloneDiff Compare Editor (see Figure 4.5). This edi-

tor displays the source code of the cloned methods side by side; it highlights code seg-

ments based on the detected contextual differences of the cloned methods, using different 
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fonts, backgrounds or underlines. Furthermore, CloneDiff Compare Editor can be config-

ured to highlight only specific type(s) of differences of interest to the user. Hovering 

mouse over a highlighted code segment pops up a short description that summarizes the 

contextual differences in the hovered code segment. 

Note that in this chapter we present clone examples in code snippets and highlight their 

contextual differences using grey background and bold font. Furthermore, when presenting 

examples of a type of contextual differences, we often highlight only differences of the 

specific type being discussed, ignore differences of other types. For example, as shown in 

Figure 4.8, the cloned method readOrdinaryObject() has several statements and control 

points (for example method invocation isInstantiable(), and branch 

desc.isInstantiable() ? … : …) that readArray() does not have. However, we do not high-

light these missing statements and branches in Figure 4.8. This in fact simulates the con-

figurable presentation of CloneDiff Compare Editor. 

Finally, as discussed above, our experience suggests that it is often more straightforward 

to visualize and inspect contextual differences of clones in CloneDiff Compare Editor than 

in PDG viewer. Thus, in this chapter we present and discuss clone examples using code 

snippets of cloned methods instead of their corresponding PDGs. However, it is important 

to note that the highlighted code segments are based on the differencing results of PDGs of 

cloned methods, instead of simply textual differencing. 

4.5 Evaluation 

We evaluated our CloneDifferentiator approach and tool on two Java software systems: 

JavaIO library [203] and Eclipse JDT-model unit tests [193]. JavaIO library 1.5 contains 

101 classes and 1038 methods. CloneDifferentiator uses CloneMiner for clone detection. 

CloneMiner detects 103 clone sets; each set consists of 2 – 15 cloned methods. JDT-model 

unit tests (jdt.core.tests.model) 3.6.1 contain 336 test suites and 10740 test methods. For 
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JDT-model unit tests, CloneMiner detects 961 clone sets; each set consists of 2 – 35 cloned 

methods.  

We then use CloneDifferentiator to identify and analyze contextual differences of these 

detected clones. Our evaluation aims at gaining insights into the following research ques-

tions: How often is contextual information of clones different? Do contextual differences 

of clones in different systems manifest different characteristics? Can contextual differences 

of clones help to distill useful clones in a task-oriented manner? 

In this section, we first analyze the statistics and characteristics of contextual differences 

of clones that CloneDifferentiator identifies in the clones of the two subject systems (Sec-

tion 4.5.2 and 4.5.3). And then, we demonstrate how we formulate queries of contextual 

differences of clones to distill candidate clones that are useful for various refactoring tasks 

aiming at reducing code duplication in the two subject systems (Section 4.5.2 and 4.5.3). 

4.5.1 Characteristics of contextual differences of clones 

Our results suggest that in both JavaIO library and JDT-model unit tests the detected 

cloned methods usually have various types and instances of contextual differences. The 

differences are usually subtle. The contextual differences of cloned methods of different 

systems may manifest different characteristics, due to different nature of the systems that 

results in clones. 

Table 4.1 reports the statistics of contextual differences of cloned methods in JavaIO. 

Each row in the table represents a type of contextual difference discussed in Section 4.4.3. 

Column “#diff” lists the number of instances of a particular type of contextual difference; 

column “#cloneset(cc)” lists the number of clone sets that have at least one instance of a 

particular type of contextual difference; column (#diff/#cc) lists the average number of 

instances of different types of contextual differences per clone set.  
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Table 4.1. Statistics of contextual differences in JavaIO 1.5 

Type # 

diff 

#cloneset(c

c) 

#diff/#

cc 

Differential Statemt 329 79 4.2 

Differential Block2 13 10 1.3 

Missing Statement 392 80 4.9 

Missing Block 68 44 1.6 

Missing Branch 26 18 1.5 

PartialMatch Brch 21 17 1.2 

Table 4.2. Statistics of contextual differences in JDT-model tests 

Type #diff #cloneset(c

c) 

#diff/#

cc 

Differential Statemt 7900 931 8.5 

Differential Block 101 90 1.1 

Missing Statement 6761 666 10.2 

Missing Block 1217 460 2.64 

Missing Branch 512 203 2.5 

PartialMatch Brch 13 12 1.1 

For example, the first row of Table 4.1 shows that CloneDifferentiator identifies 329 in-

stances of differential statements in 109 clone sets; on average one clone set has 3.0 in-

stances of differential statements. Note that one clone set can have more than one type of 

contextual differences. Therefore, the sum of column “#cloneset” is greater than the num-

ber of clone sets that CloneMiner reports. 

CloneDifferentiator reports in total 849 (sum(#diff)) instances of different types of con-

textual differences in the cloned methods of JavaIO library. For a particular type of contex-

tual difference, each clone set has on average at least one instance (#diff/#cc) of that type 

of difference, for example 1.2 instances of partially-matched branches per clone set. Each 

clone set has on average three (sum(#cc)/103) types and eight (sum(#diff)/103) instances 

of contextual differences.  

                                                      

2 In this evaluation, we consider a block that contains at least 6 unmatched statements as unmatched block. 

Such unmatched blocks usually span at least two lines of code, which is the minimum length of code fragments 

that clone detectors usually deal with [80]. 
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The most common type of contextual differences of the cloned methods of JavaIO are 

missing statements (392 instances), followed by differential statements (329 instances). 

These two types of contextual differences account for about 85% of all 849 instances of 

differences. Missing blocks (68 instances) and differential blocks (13 instances) account 

for about 10% of all 849 instances. Partially-matched branches (PartialMatch Brch, 21 in-

stances) and missing branches (26 instances) account for a very small percentage (5%) of 

all 849 instances. Overall, the differences between cloned methods of JavaIO are usually 

subtle, but sometimes the differences are significant. 

Table 4.2 presents the statistics of contextual differences of cloned methods in JDT-

model unit tests. The cloned methods of JDT-model unit tests have much more 

(sum(#diff)=16504) instances of contextual differences. This is not surprising because 

JDT-model-unit-tests is a much bigger project and it has nine times more clone sets than 

JavaIO. However, the percentages of different types of contextual differences in the cloned 

methods of JDT-model-unit-tests are roughly similar to those of JavaIO. Furthermore, the 

percentages of clone sets that have a particular type of contextual differences are also 

roughly similar to those of JavaIO. 

One important difference is that the clone methods of JDT-model unit tests has on aver-

age more types (sum(#cc)/961) and instances (sum(#diff)/961, #diff/#cc) of contextual dif-

ferences than the cloned methods of JavaIO. This is mainly because the JDT-model unit 

test methods are usually longer than the methods of JavaIO. 

The other difference is that almost all clone sets of JDT-model unit tests have differen-

tial statements (931/961, 96.8%). This is due to the existence of a large amount of differen-

tial constant statements. In fact, this reflects a common practice in writing unit tests in 

which similar tests are developed to test different input values (see examples in Section 

4.5.2 and 4.5.3). 
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4.5.2 Refactoring JavaIO library 

Let us now discuss our study on clone-based refactoring of JavaIO library. In this study, 

we are interested in identifying clones that can be refactored using Folwer’s refactorings 

(e.g. extract method, pull up method) or Java generics, thus reducing code duplication. 

4.5.2.1 Refactoring clones using Folwer’s refactorings 

Many Folwer’s refactorings are concerned with code duplication [54]. Folwer’s refac-

torings usually target at identical or almost identical cloned methods, which can be re-

moved by refactorings such as extract method, pull up method.  

To identify candidate clones for Folwer’s refactorings, we formulate the following two 

queries searching for: 

1. The cloned methods that have no contextual differences, i.e. the PDGs of such cloned 

methods are perfectly matched; 

2. One of the cloned methods is “part of” the other cloned methods, i.e., the PDG of one 

cloned methods is the subgraph of the PDG of the other. That is, only one of the clone 

methods has missing statements, blocks, and/or branches. 

The first query returns three pairs of cloned methods. For example, Figure 4.14 presents 

one pair of these cloned methods. The two methods perform identical computation. Both 

methods write the eight lower-order bits of the input argument to the output stream and 

ignore the 24 high-order bits. These cloned methods can be refactored by replacing the 

body of one method with a call to the other method. Note that CloneDifferentiator does not 

report that the cloned methods in Figure 4.14 have differential parameters, even though the 

identifier of the parameters is different (b vs. v). This is because the two parameters declare 

the same data type (int), and the simple identifier difference does not affect the computa-

tion performed by the cloned methods. 
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ObjectOutputStream$BlockDataOutputStream (Java IO 1.5) 

1767. public void write(int b) throws IOException { 
1768.     if(this.pos >= MAX_BLOCK_SIZE) 
1769.         this.drain(); 
1770.     this.buf[pos++]= (byte)b; } 

ObjectOutputStream$BlockDataOutputStream (Java IO 1.5) 

1874. public void writeByte(int v) throws IOException { 
1875.     if(this.pos >= MAX_BLOCK_SIZE) 
1876.         this.drain(); 
1877.     this.buf[pos++]= (byte)v; } 

Figure 4.14. Cloned methods that have no contextual diffs 

The second query returns one pair of cloned methods, PipedIn-

putStream.checkStateForReceive() and PipedReader. receive(int). Both PipedInputStream 

and PipedReader need to perform the same checking of pipe state in several places before 

starting receiving data. The developer of PipedInputStream recognized the repetition of 

this state checking and extracted the state checking logic into the method PipedIn-

putStream.checkStateForReceive(). In contrast, the developer of PipedReader did not ex-

tract the state checking logic from PipedReader.receive(int) into a separate method. As a 

result, CloneDifferentiator detects that the state checking method PipedIn-

putStream.checkState-ForReceive() is “part of” the method PipedReader. receive(int). 

Identifying this “part of” relation between the cloned methods suggests the opportunity to 

extract method.  

Overall, only a very few cloned methods in JavaIO library represents identical or almost 

identical code clones that can be removed by Folwer’s refactorings. 

4.5.2.2 Relaxed queries for Folwer’s refactorings 

To identify more candidate clones for Folwer’s refactorings, we relaxed the two queries 

given in the last section, by allowing the cloned methods to have a small number of con-

textual differences. In particular, relaxed queries allow the cloned methods to contain a 

maximum of six instances of differential statements, missing statements, missing branches, 

and/or partially-matched branches. 
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The relaxed queries return 21 more pairs of cloned methods. Four pairs of these cloned 

methods have only differential operator-code and/or operand statements. For example, the 

cloned methods LineNumberInputStream.-read(byte,int,int) and In-

putStream.read(byte,int,int) are all the same but a pair of differential operator-code (spe-

cial vs. virtual) method invocations (LineNumberInputStream.read() versus In-

putStream.read()). The class InputStream declares a template method [57] 

read(byte,int,int) that define the skeleton of reading bytes from the input stream. In-

putStream.read(byte,int,int) calls the abstract method InputStream.read(), and the sub-

classes of InputStream (e.g., LineNumberInputStream) must implement the abstract meth-

od InputStream.read() to read the next byte of data from a specific type of input stream. 

However, the subclass LineNumberInputStream duplicates the template method 

read(byte,int,int), which deviates from the intent of Template Method [57]. Clearly, this 

duplicate LineNumberInput-Stream.read(byte,int,int) should be removed. 

The remaining 17 pairs of cloned methods reveal two types of inconsistent program 

styles in JavaIO library. These inconsistent programming styles result in certain amount of 

missing statements, missing branches and/or partially-matched branches in the cloned 

methods. Figure 4.4 and Figure 4.12 present two examples of these two types of incon-

sistent program styles, i.e. different ways to validate the input parameters and handle ex-

ceptions. Investigating the cloned methods that have such inconsistent programming styles 

suggests that after we reconcile inconsistencies among these cloned methods, these cloned 

methods could also be refactored, for example, by extracting validity checking of input 

parameters into a utility method. 

4.5.2.3 Refactoring clones using Java generics 

Java generics support developing common data structures and algorithms that differ on-

ly in the set of types on which they operate.  



 

84 

To identify candidate clones that can be replaced with Java generic methods or classes, 

we formulate the following two queries based on the two characteristics of JavaIO library: 

1. JavaIO supports reading and writing data of different primitive data types (e.g., short, 

char, int, long, double). Thus, we formulate a query to identify cloned methods that 

have only differential typecasting statements; 

2. JavaIO supports reading and writing both byte (8-bit) data and char (16-bit) data. Thus, 

we formulate a query to identify cloned methods that have only differential field-

access and method-invocation statements. 

Bits.getChar(byte[] b, int off)  
26. return (char)((b[off+1]&0xFF)<<0) +   
27.    (b[off+1]&0xFF)<<8)); 

Bits.getShort(byte[] b, int off)  
31. return (short)((b[off+1]&0xFF)<<0) +   
32.    (b[off+1]&0xFF)<<8)); 

Figure 4.15. Differential typecast statements 

It is surprising that the first query returns only one pair of cloned methods 

Bits.getChar() and Bits.getShort() as shown in Figure 4.15. Our inspection of JavaIO li-

brary reveals that this is because JavaIO mainly relies on bitwise shift and logic operations 

instead of explicit typecasting for processing data of different primitive data types. 

The second query returns 26 pairs of cloned methods, including the cloned methods 

PipedOutputStream.write(int) and PipedWriter.write(int) listed in Figure 4.3. Although the 

two methods are textually identical, they actually have three instances of differential 

statements. Such differential statements also exist in other cloned methods returned by our 

query, such as methods connect(), flush(), close() of PipedOutputStream and PipedWriter. 

These differential statements reveal that the overall data and control flows are similar in 

many methods of two types of output classes (PipedOutputStream versus PipedReader), 

but the specific data operations are different.  
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In fact, these differential statements are resulted from parallel inheritance hierarchies in 

Java IO for processing byte data (input/output streams) and char data (readers/writers) re-

spectively. JavaIO initially supported only byte data. To support char data, a separate hier-

archy of classes was subsequently developed. The two parallel hierarchies share many sim-

ilar data structures and processing steps. They may be restructured into one hierarchy using 

Java generic classes. 

4.5.3 Refactoring Eclipse JDT-model unit tests 

Next, we discuss our study on clone-based refactoring of JDT-model unit tests. Unit 

tests typically contain groups of test methods that form variations for a common testing 

purpose and therefore are similar to each other. In this study, we are interested in identify-

ing clones that can be refactored using seed values, state machine, or assume/assert invari-

ants testing patterns [198], thus reducing code duplication among test methods and improv-

ing test-case reuse. 

4.5.3.1 Refactoring clones using seed values 

A traditional unit test method tests a unit with fixed input value. It is necessary to devel-

op several tests with variant input values to achieve a good coverage of the unit under test. 

These tests are often similar but also differ in the input values that are actually used.  

We would like to refactor such duplicated unit tests into parameterized unit tests, using 

seed-values [198] (a pattern for parameterized unit testing) to provide concrete input val-

ues. To that end, we formulate a query searching for cloned test methods that have only 

differential-operand and/or differential-constant-value statements.  

JavaSearchTests.testEnum06() 
3672.  eth d    etMeth d “setRole”   ew Str   []  “Z”    
3673. search(method, REFERENCES  …   

JavaSearchTests.testVarargs03() 
3702.  eth d    etMeth d “vargs”   ew Str   []  “QSt”    
3703. search(method, ALL_REFERENCES  …   

Figure 4.16. Seed values 
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Our query returns 173 pairs of cloned test methods in Eclipse JDT-model unit tests. Fig-

ure 4.16 presents one of them. The two methods test Java search API with different search 

entities (setRole versus vargs, and Z versus QSt) and search options (REFERENCES versus 

ALL_REFERENCES).  

Investigating these 173 cloned test methods returned by our query suggests that cloned 

test methods for testing searching and formatting features usually have differential-operand 

and/or differential-constant-value statements. Such cloned test methods may be parameter-

ized, using their differential operands and constant values as seed values, so that parame-

terized unit tests can verify the unit under test for a set of input values. 

4.5.3.2 Refactoring clones using state machine 

Eclipse JDT-model provides APIs for programmatically rewriting Java programs, such 

as creating a member (e.g. field or method) in a class. The corresponding unit tests for 

these APIs often share similar control and data flows but also differ in the program-

rewriting APIs under tests.  

We would like to refactor such cloned test methods into parameterized unit tests to en-

force the flow of testing logics, using state machine [198] (another pattern for parameter-

ized unit testing) to encapsulate program-rewriting APIs under test. To that end, we formu-

late a query searching for cloned methods that have differential method-invocation state-

ments and/or differential blocks of program-rewriting APIs.  

ASTRewritingStatementsTest.testSwitchStatement7() 
3956. L stRewr te   stRewr te   rewr te  etL stRewr te …  
3957. listRewrite.replace(assignment, switchCase, null); 
3959. String preview = evaluateRewrite(cu, rewrite); 

ASTRewritingStatementsTest.testSwitchStatement9() 
4098. L stRewr te   stRewr te   rewr te  etL stRewr te …  
4099. listRewrite.remove(assignment,  null); 
4100. listRewrite.insertAfter(switchCase,assignment,null): 
4102. String preview = evaluateRewrite(cu, rewrite); 

Figure 4.17. State machine 
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Our query returns 153 pairs of cloned test methods. Figure 4.9 presents an example of 

these cloned methods that tests different ways to create a class member (field versus meth-

od). Figure 4.17 presents another example that tests different ways (replace versus. remove 

then insertAfter) to rewrite switch statements in an AST.  

Investigating these 153 cloned test methods reveals that cloned test methods for testing 

program-rewriting APIs often invoke different program-rewriting APIs (e.g., createField, 

createMethod, remove, insert, copy, move, replace), or invoke some program-rewriting 

APIs in different order. The invocations of these program-rewriting APIs can be encapsu-

lated into state machines [198] that programmatically rewrite Java programs. Then, given 

state machines of a set of program rewriting APIs and a parameterized unit test, one can 

use testing framework, such as Pex [198], to instantiate sequences of state transitions for 

testing the relevant program-rewriting APIs. 

4.5.3.3 Refactoring clones using assume/assert invariants 

JDT-model unit tests often assert similar set of properties that a unit under test should 

hold before and after exercising the unit under test, for example whether the parent AST 

node is not null or the class contains a specific member.  

We would like to extract these similar assertions before and after exercising the unit un-

der test into assume/assert invariants. To that end, we formulate a query searching for 

cloned test methods that have at least two matched method-invocations of assertxxx() 

methods, as Eclipse JDT-model unit tests name assertion methods in form of assertxxx(). 

Our query returns 137 pairs of cloned test methods. Figure 4.18 presents one example. 

The two methods test the APIs of two different types of AST nodes, array creation versus 

switch statement. However, they share the same set of assertions about the AST under test, 

i.e. modificationCount > prevCount, x.getAST()==this.ast, and x.getParent()==null. 
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ASTTest.testArrayCreation() 
7994. final ArrayCreation x = this.ast.newArrayCreation(); 
7995. assertTrue(this.ast.modificationCount > previousCount); 
7997. assertTrue(x.getAST() == this.ast); 
7998. assertTrue(x.getParent ()== null); 

ASTTest.testSwitchStatement() 
5891. final SwitchStatemnt x = this.ast.newSwitchStatement(); 
5892. assertTrue(this.ast.modificationCount > previousCount); 
5894. assertTrue(x.getAST() == this.ast); 
5895. assertTrue(x.getParent() == null); 

Figure 4.18. Assume invariant 

Investigating these 137 cloned test methods reveals that cloned test methods for JDT 

AST/DOM APIs often contain similar set of assertions before and/or after exercising the 

AST/DOM API under test. These similar assertions may be extracted as assume and/or 

assert invariants. These invariants can not only remove duplicate assertions across test 

methods, but also better ensure consistent verifications of test assumptions and results. 

4.6 Related Work 

Researchers have presented many techniques to detect code clones [9,12,20,55,80,104]. 

Roy and Cordy [144] and Koschke [101] provide comprehensive surveys of existing clone 

detection techniques. Clone detectors typically report large number of clones in industrial 

systems, while it is common that only small number of them is actually useful for specific 

maintenance tasks, such as refactorings. 

The effectiveness of clone detection techniques has usually been evaluated in terms of 

precision and recall metrics of the detected clones, such as in the quantitative evaluation of 

clone detection techniques reported in Roy and Cordy [145] and Bellon et al. [21]. Howev-

er, the precision and recall metrics do not indicate the usefulness of the detected clones for 

a specific maintenance task. 

Researchers proposed clone analysis approaches to aiding the interpretation and man-

agement of software clones. For example, Genimi [165] uses a scatter plot to visualize 

code clones detected by CCFinder [80] and also computes several code metrics of clones 
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to aid clone analysis. Balazinska et al. [9, 10] define a clone classification based on the 

differences between the token sequences forming the clones. This clone classification 

helps to measure the reengineering opportunities of clones. CP-Miner [109] finds bugs 

based on inconsistent identifiers between clones. One major limitation of these clone anal-

ysis approaches is that they examine only the information of clones, ignoring contextual 

information in which clones occur.  

Other approaches perform simple syntactic analysis of clones to aid the understanding of 

clones. For example, Kapser and Godfrey [85] classify code clones through the syntactic 

analysis of locality of clones. Jiang et al. [77] consider the inner most syntactic constructs 

that enclose clones as contexts and identify three types of contextual inconsistencies in 

clones in an ad-hoc manner. In contrast, our CloneDifferentiator raises the contextual anal-

ysis of code clones to PDGs that capture much more contextual information than existing 

work. Furthermore, Clone-Differentiator exploits efficient graph differencing algorithm to 

systematically detect contextual differences of clones.  

Query-based approaches have been proposed for supporting program understanding. 

The underlying idea of these approaches is that software tools can automatically compute 

elementary information, and then developers can combine and query the elementary in-

formation in a task-oriented manner to assist a specific maintenance task at hand. For ex-

ample, Xing and Stroulia [172] proposed to detect change patterns in software evolution by 

querying the elementary design changes reported by UMLDiff. Zhang et al. [184] present 

the CloneAnalyzer tool that support query-based filtering of code clones. CloneAnalyzer 

does not support contextual analysis and differencing of clones as CloneDifferentiator 

does. 

CloneDifferentiator is a new application of GenericDiff for the purpose of comparing 

the PDGs of clones. CloneDifferentiator performs automatic contextual analysis of code 



 

90 

clones based on the PDG differencing results by GenericDiff. We present our CloneDiffer-

entiator tool in [173], which focuses on the implementation challenges and the visualiza-

tion features of the tool support. In contrast, this chapter describes the fundamental con-

cepts of our CloneDifferentiator approach, discusses in detail contextual differences of 

clones and their implications on understanding clones, and reports two empirical studies 

for evaluating our approach. 

4.7 Threats to Validity 

Our CloneDifferentiator tool currently uses CloneMiner [12] to detect cloned methods. 

The surveys [101,144] on clone detection tools suggest that clones reported by different 

techniques may vary due to the diverse nature of detection techniques and similarity met-

rics. The different model differencing or code detection tool may affect the accuracy of our 

results. However, the choice of one proper technique from the similar candidates (such as 

CloneMiner for clone detection, GenericDiff for model differencing) should not have fun-

damental impact on our approach. The reason is that the techniques we chose are modern, 

advanced and comparable to the others in their corresponding domain. To see the solid 

proof for our assumption, further studies are required to evaluate our approach with respect 

to different clone detection, or the different model differencing techniques. 

CloneDifferentiator now compares intra-method PDGs of cloned methods. It does not 

consider inter-method PDGs because it assumes that two different methods being invoked 

in cloned methods would perform different computation. This assumption holds in most 

cases and allows efficient contextual analysis of clones. CloneDifferentiator can be easily 

adapted to analyze inter-procedure PDGs around cloned methods, because inter-procedure 

PDGs are available in Wala, and GenericDiff can be easily configured to compare inter-

method PDGs.  
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In this chapter, we showed that contextual differences of clones are useful for distilling 

useful clones for refactorings aiming at reducing code duplication. Cloning information 

has also been used for other types of software maintenance tasks, such as bug detection 

[77,79,103]. Further studies are required to investigate the usefulness and effectiveness of 

Clone-Differentiator for other types of maintenance tasks. 

4.8 Summary 

Similar yet still different features may manifest as software clones in a single product or 

across several products. Understanding the differences among these clones provides one 

way of understanding implementations of variant features. Furthermore, programmers can-

not judge code clones without understanding differences. To perform maintenance tasks on 

clones, developers must examine the differences of clones induced by the program context 

in which clones occur.  

In this chapter, we proposed an automated approach to identify contextual differences of 

code clones by applying graph differencing algorithm to the PDGs of clones’ program con-

texts. We have implemented our approach in a tool called CloneDifferentiator. Our evalua-

tion demonstrated that CloneDifferentiator can effectively distill clones that are valid can-

didates for various refactoring tasks aiming at reducing code duplication. It helps to reduce 

effort of post-detection analysis of clones in a task oriented manner. 

In the future, we plan to conduct more empirical studies to enrich our taxonomy of con-

textual differences of clones. We believe this can open new opportunities to refine existing 

clone definitions from a new perspective (i.e., how clones are different). This can enhance 

the usefulness of cloning information in various software maintenance tasks.  
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5 Locating Features in Product Variants 

This chapter is based on [179], which focus on the last but not the least step RQ3 intro-

duced in Section 1.1 for variability analysis in domain engineering. We present the prob-

lem of feature location in product family. We reviewed the existing feature location ap-

proach for a single product, and proposed our model-differencing based approach to identi-

fying and locating features among product variants.  

5.1 Introduction 

Once the RQ1 and RQ2 are resolved, the differences among the various product variants 

are distinguished respectively in requirements and in implementation. But still, it is not 

known that which variant feature’ inclusion/exclusion enables/disables the corresponding 

code portion or method in the implementation. For example, suppose we represent the fea-

tures supported by a product as set f, then for WFMS
Fudan 

and WFMS
Shanghai

, we have fFudan 

and fShanghai respectively. Suppose we represent the code implementation as c, and then we 

also have cFudan and cShanghai. After RQ1 and RQ2 are resolved, the information at require-

ment level about f
 
Fudan - fShanghai and fShangha - f

 
Fudan is known. And it is also available that 

the information at implementation level about cFudan - cShanghai and cShangha - cFudan. But for a 

feature like DelegationLock in the set f
 
Fudan - fShanghai, it is still interesting to know the 

counterpart of feature-relevant code in the cFudan - cShanghai. Actually, the problem is called 

as “feature location” in the product variants. 

Ideally, by applying the information retrieval technique such as Latent Semantic Index-

ing (LSI), the method FeeInfo.initInfo() is retrieved respectively in PFM
Fudan

 and 

PFM
Shanghai

 for feature DelegationLock and OperationLock according to their own feature 

descriptions. By combing the knowledge of the domain analysis at requirement level (see 

Figure 3.2) and the clone analysis at implementation level (see Figure 4.1), we can further 
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infer that feature DelegationLock in PFM
Fudan

 and feature OperationLock in PFM
Shanghai

 

are two different features. And comparing these two cloned methods reveals that these two 

features DelegationLock and OperationLock have contextual differences represented by 

PDG, which actually is due to the variability.  

The above example is a simple illustration of the key idea of our approach to supporting 

effective feature location in a software product family to help domain analysis. However, 

situations are more complicated in real-world software product families. First, features and 

their implementations may evolve from one product variant to another. As a result, same 

features and code units may appear to be different in different product variants. How can 

we precisely determine correspondences between features (or code units) across product 

variants? Second, product variants share common features and their implementations. How 

can we systematically partition product variants so that each partition is disjoint and con-

sists of a minimal subset of features (or code units)? 

Besides, the recent large-scale empirical study [168] showed that IR-based approaches 

to feature location do not perform well on software data, even for a single software prod-

uct. Direct application of these approaches to a software product family will be even worse 

due to significant increase of search space. Furthermore, same features and their imple-

mentations may vary across product variants due to evolution and customization of differ-

ent product variants. This makes it difficult to first apply IR techniques for feature location 

in each product variant and then merge feature location results.  

In this chapter, we present a systematic approach to supporting Feature Location in 

Software Product Family (FL-SPF for short) that consists of a set of product variants sup-

porting overlapping but also different sets of features. Our goal is to identify common code 

units that implement overlapping features across product variants. Our approach effective-

ly incorporates software differencing, Formal Concept Analysis (FCA), and IR techniques. 
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Software differencing helps to identify distinct features (or code units) in a software prod-

uct family, which represent corresponding features (or code units) across product variants. 

FCA then groups distinct features (or code units) into disjoint and minimal partitions by 

analyzing commonality and differences of product variants. These two steps of analysis 

help to reduce search space for feature location in software product family. Finally, given a 

feature partition and the corresponding code-unit partition, Latent Sematic Indexing [41] 

(LSI) is used to identify code units that implement a specific feature. 

We have implemented our approach and conducted evaluation with nine product vari-

ants of Linux kernel. These nine Linux kernel product variants consist of 3146 features and 

about 342K code units (functions and data structures in our evaluation). Our evaluation 

shows that:  

 Software differencing can significantly reduce search space for feature location in 

software product family by determining distinct features (or code units) in software 

product family. In our evaluation we only need to deal with 966 distinct features and 

about 100K distinct code units in subsequent analysis;  

 FCA can effectively group features (or code units) into disjoint and minimal partitions. 

In our evaluation, the resulting partitions consist of only 8.914 (average standard 

deviation) features and 948.81540 code units; 

 Our approach always outperforms a direct application of IR technique in the subject 

product family: compared with the best performance of direct application of LSI, the 

worst performance of our approach still identifies relevant program elements for 

25.7% more features, achieves 32% higher mean average precision, and requires inves-

tigating 8% less code units before encountering the first relevant code unit. 
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5.2 Related Work 

Identifying code units (e.g. functions) that implement a specific feature in a software 

system is known as feature location [24,139]. A feature in a software system represents a 

distinct aspect of the system that is accessible to developers and users [81]. Software 

maintenance involves adding new features to a system, improving and reengineering exist-

ing features, and removing unwanted features (e.g. bugs). Feature location is one of the 

most important and common activities performed by developers during software mainte-

nance [44], because no maintenance task can be completed without first locating and un-

derstanding the code that is relevant to the task at hand.  

A comprehensive survey of feature location techniques can be found in [44]. Feature lo-

cation techniques mainly employ textual, static, and dynamic analysis. Textual approaches 

[118,119,134,135,148] analyze words in source code using IR techniques. Static analysis 

[62,102,164] examines structural information such as program convergence, control and 

data dependencies. Dynamic analysis [49,169,170] examines execution traces of feature-

specific execution scenarios. Hybrid approaches [47,68,135,136,185] combine two or more 

types of analysis with the goal of using one type of analysis to compensate for the limita-

tions of another, thus achieving better results.  

Our recent empirical study [168] investigates the effectiveness of 10 IR techniques on a 

very large Linux kernel dataset. This study suggests that one must exploit unique charac-

teristics of software data so that IR techniques may perform similarly well on software da-

ta, compared with on natural language articles that IR techniques are designed for. Inspired 

by this study, we proposed several new techniques for feature location. For example, based 

on the fact that features are not independent of each other, we proposed to combine IR 

techniques with graph matching to solve feature location as an iterative context-aware 

graph matching problem [130]. In this work, we propose to analyze commonalities and 
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differences of product variants in a software product family by software differencing and 

FCA techniques so that IR technique can achieve better results for feature location in soft-

ware product family.  

Software differencing plays a fundamental role in many software maintenance tasks, in-

cluding design evolution and variability analysis. For example, Xing and Stroulia present-

ed UMLDiff algorithm [172] for analyzing design evolution of object-oriented software. In 

our recent work [180], we compared product feature models to understand how product 

variants in a software product family evolve at requirement level. Duley et al. [45] pro-

posed to use lexical similarity and bipartite graph matching for differencing hardware pro-

grams. Such differencing techniques can help to identify distinct features (or code units) in 

software product family, and thus reduce search space for IR-based feature location.  

FCA has been used to aid feature location analysis. For example, to alleviate the diffi-

culty to formulate distinct feature-specific execution scenarios, Eisenbarth et al. [48] ap-

plied FCA to isolate features through analysis of overlapping scenarios. In fact, this in-

spired our feature location approach in software product family. We consider product vari-

ants as “scenarios” that support similar but also different sets of features. Thus, FCA can 

be applied to group features into disjoint, minimal partitions through analysis of common-

ality and differences of product variants. FCA has also been used for post-mortem analysis 

of feature location results. For example, Poshyvanyk and Marcus [134] use FCA to group 

IR-based feature location results according to common topics. Their goal is to reduce the 

interpretation effort of IR search results by providing additional structure on top of search 

results. In contrast, we use FCA to pre-processing input search space to which IR tech-

niques apply. 
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5.3 The Approach 

In this section, we describe input data for our approach. We also discuss how to identify 

distinct features (or code units) in software product family by software differencing, how 

to group features (or code units) into disjoint, minimal partitions by FCA, and how to ap-

ply LSI for feature location.  

5.3.1 A running example 

Consider a software product family of five document viewers and editors shown in Ta-

ble 5.1. The product Viewer1.0 (V1.0) is a simple text viewer that supports basic features 

such as file open and text viewer. Viewer2.0 (V2.0) is an advanced text viewer that supports 

not only basic features but also two more features (Find and Copy to Clipboard). Editor1.0 

is a simple editor that supports basic texting editing features such as Edit, Undo/Redo and 

Save. Editor1.1 (E1.1) does not support instable feature Undo/Redo; it ports feature Find 

from Viewer2.0 and extends it into an enhanced feature Find/Replace. Editor2.0 (E2.0) sup-

ports all basic texting editing features; it ports feature Copy from Viewer2.0 and extends it 

into an enhanced feature Copy/Cut; it also supports a new feature Paste. 

Table 5.1. Feature sets of document viewers/editors 

Products Features 

Viewer1.0 Base (Text Viewer, Open) 

Viewer2.0 Base, Find, Copy 

Editor1.0 Base, Edit, Save, Undo/Redo 

Editor1.1 Base, Edit, Save, Find/Replace 

Editor2.0 Base, Edit, Save, Undo/Redo, Copy/Cut, Paste 

5.3.2 Input data 

For a product variant in a software product family, our FL-SPF approach takes as input a 

set of features that the product variant supports, and a static program model built from the 

implementation of the product variant.  
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Each feature of a product variant is identified by a name and is described using some 

natural language description. Such feature information can be extracted from release notes, 

user manuals, or feature models of the software system. For example, Figure 5.1 shows a 

feature of Linux Kernel, expressed in Kconfig (feature modeling language of Linux Ker-

nel) [151]. It describes a feature that supports microcode patch loading for Intel processors 

(see Section 5.4.2).  

config CONFIG_MICROCODE_INTEL 

bool “Intel microcode patch loading support” 

depends on CONFIG_MICROCODE;   select FW_LOADER 

default y 

---help--- 

This option enables microcode patch loading support for Intel 
processors …  

Figure 5.1. A feature in Linux kernel 

The static program model of product implementation is a graph. The node set contains 

code units of interest for feature location such as functions and data structures. Each code 

unit is associated with a set of properties, such as identifier and comments. The edge set 

contains relations between code units, such as function call and data-structure usage. Such 

program models can be reverse-engineered from product implementation and have been 

widely used for program understanding and maintenance. 

5.3.3 Identifying distinct features (or code units) in Software Product Family by 
software differencing 

Due to evolution and customization of software products, product variants in a software 

product family may contain different versions or variants of the same features (or code 

units). FL-SPF uses software differencing techniques (for example [45] and [172]) to de-

termine correspondences of features (or code units) among product variants. Analyzing 

feature (or code-unit) correspondences allows FL-SPF to determine distinct features (or 
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code units) in the software product family. These distinct features (or code units) represent 

a set of corresponding features (or code units) across several product variants. They signif-

icantly reduce search space for feature location in software product family, because FL-

SPF no longer needs to deal with features and code units of each individual product vari-

ant. 

5.3.3.1 Differencing feature sets of product variants 

At feature level, FL-SPF examines lexical similarities of feature descriptions and uses 

bipartite matching to determine correspondences of features of two product variants.  

Given feature sets of two product variants F1 and F2, FL-SPF first identifies a subset of 

same-name features Fsn between the two sets F1 and F2. For those features that do not have 

same-name counterparts, i.e. f1F1\Fsn and f2F2\Fsn and f1.name≠f2.name, FL-ESPF com-

putes their lexical similarities pair-wisely using Longest Common Subsequence (LCS) of 

their feature descriptions. LCS considers ordering of words, which is important for names 

of program elements. While for information retrieval task, bags of word is more general. 

FL-ESPF then builds a bipartite graph (N1, N2, E): N1 and N2 are disjoint node sets and they 

represent features f1F1\Fsn and f2F2\Fsn respectively, and weighted edges in E represent 

lexical similarities between features f1F1\Fsn and f2F2\Fsn. FL-SPF selects an optimal 

matching between features f1F1\Fsn and f2F2\Fsn using state marriage algorithm [56].  

FL-SPF reports differencing results of feature sets F1 and F2 as three sets of features: a 

set of matched features F1^F2 (i.e. pairs of matched features, one from each product vari-

ant), and two sets of unmatched feature F1\F2 and F2\F1 (i.e. unmatched features that exist 

only in F1 but not in F2 or in F2 but not in F1).  

For example, consider Viewer2.0 (V2.0) and Editor1.1 (E1.1) in Table 5.1. The two prod-

uct variants have only one pair of same-name feature, i.e. V2.0.Base and E1.1.Base. FL-SPF 

further identifies the correspondence between feature V2.0.Find and feature 
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E1.1.Find/Replace based on lexical similarity of their descriptions and bipartite matching. 

Thus, FL-SPF reports that FV2.0^FE1.1={V2.0.Base_E1.1.Base, V2.0.Find_E1.1.Find/Replace}, 

FV2.0\FE1.1={V2.0.Copy}, and FE1.1\FV2.0={E1.1.Edit, E1.1.Save}.  

5.3.3.2 Differencing program models of product variants 

At implementation level, FL-SPF uses a variant of UMLDiff algorithm [171] to com-

pare program models of two product variants. Given two program models P1 and P2, UM-

LDiff determines correspondences of code units based on lexical similarity of their identi-

fiers and comments and structural similarity of their relationships with other elements.  

Based on UMLDiff’s differencing report, FL-SPF reports differencing results of pro-

gram models of two product variants as three sets of code units: a set of matched code 

units P1^P2 (i.e. pairs of matched code units, one from each product variant), and two sets 

of unmatched code units P1\P2 and P2\P1 (i.e. unmatched code units that exist only in P1 

but not in P2 or in P2 but not in P1). 

5.3.3.3 Identifying distinct features (or code units) 

The correspondence relations as defined by matched features (or code units) across 

product variants partition the union of feature sets (code-unit sets) of all product variants 

into a set of equivalence classes. Each equivalence class consists of a set of corresponding 

features (or code units) of several product variants; it represents a distinct feature (or code 

unit) in the software product family. 

For example, the software product family in our running example has five product vari-

ants that have in total 18 features. These 18 features of individual product variants can be 

represented as seven distinct features in the software product family, including 

Base={V1.0.Base, V2.0.Base, E1.0.Base, E1.1.Base, E2.0.Base}, Find/Replace={V2.0.Find, 

E1.1.Find/Replace}, Copy/Cut= {V2.0.Copy, E2.0.Copy/Cut}, Edit={E1.0.Edit, E1.1.Edit, 
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E2.0.Edit}, Save={E1.0.Save, E1.1.Save, E2.0.Save}, Undo/Redo={E1.0.Undo/Redo, 

E2.0.Undo/Redo}, Paste= {E2.0.Paste}. 

5.3.4 Grouping features (or code units) into disjoint, minimal partitions by FCA 

Product variants in a software product family support overlapping but also different sets 

of features. We use FCA technique to group features (or code units) in the software prod-

uct family into disjoint, minimal partitions through combination of commonalities and dif-

ferences of product variants. Such feature and code-unit partitions further reduce space for 

feature location in software product family, because FL-SPF no longer needs to perform 

feature location on the entire set of features and code units. 

5.3.4.1 Basic concepts of FCA 

FCA deals with a formal context (I, O, F) that defines a relation IOF between a set of 

objects O and a set of attributes F. A tuple c=(Oi, Fj) is a concept of a given formal context 

(I, O, F) iff OiO, FjF and every object o Oi has every attribute fFj. That is, the con-

cept c identifies a set of objects that share a set of common attribute. The set of objects Oi 

is called the extent of the concept c, and the set of attributes Fj is called the intent of c. The 

set of all concepts of a given formal context forms a partial order : c1=(O1,F1)  

c2=(O2,F2) iff O1O2 or equivalently F1F2. This partial order induces a concept lattice. 

Intuitively, the higher a concept is in the concept lattice, the more general its extent is (i.e. 

more objects) but the more specific its intent is (i.e. less common attributes).  

5.3.4.2 Determining feature-level partitions by FCA 

In our application of FCA, we define a formal context as follows. We consider product 

scenarios as objects in a formal context, and consider distinct features of the software 

product family as attributes. A relation between a product scenario and a distinct feature 

defines that the distinct feature can be found in the product scenario. 
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Such a formal context can be constructed based on differencing results of feature sets of 

product variants in the software product family. For any two product variants P1 and P2, 

we construct three product scenarios P1^P2, P1\P2, and P2\P1. A distinct feature can be 

found in the product scenario P1^P2 (or P1\P2, P2\P1) iff the feature of product variants rep-

resented by the distinct feature is in the matched feature set F1^F2 of two product variants 

(or unmatched sets F1/F2, F2/F1). Consider Viewer2.0 (V2.0) and Editor1.1 (E1.1) as an ex-

ample. Based on differencing results of feature sets of these two product variants, three 

product scenarios can be constructed as follows: V2.0^E1.1={Base, Find/Replace}, 

V2.0\E1.1={Copy/Cut}, and E1.1\V2.0={Edit, Save}. 

This formal context summarizes commonalities and differences among product variants. 

Given such a formal context, we use ConceptExplorer [192] to induce a concept lattice. 

Each concept in the lattice represents a partition of search space of the software product 

family; each partition shows how we can isolate certain features and their implementations 

through combination of product scenarios.  

 

Figure 5.2. The concept lattice of document viewers/editors 

Figure 5.2 presents the resulting concept lattice of our running example. This lattice has 

five levels and 20 concepts (i.e. nodes). The node associated with a set of features (grey 

box) represents the most general concept that has those features as its intent; while the 
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node associated with a set of product scenarios (white box) represents the most special 

concept that has those product scenarios as its extent. The intent and extent of a concept 

can be derived as follows: the extent of a concept is the union of all product scenarios at 

and below the concept node; the intent of the concept is the union of all features at and 

above the concept node. For example, the intent of concept Cx is feature set {Base, 

Find/Replace}, and the extent of Cx is product scenario set {V2.0^E1.1}. As another exam-

ple, the intent of concept Cy is {Find/Replace}, and the extent of Cy is {V2.0^E1.1, E1.1\V1.0, 

V2.0\E2.0, E1.1\E1.0, E1.1\E2.0}.  

In such a concept lattice, we are interested in concept nodes associated with a set of fea-

tures (for example the concept Cy). These concepts represent the most general set of prod-

uct scenarios that share the least common set of features, i.e. the finest-grained partitions of 

search space of the software product family. These concepts show how we can obtain a 

minimal subset of features and code units for feature location in the software product fami-

ly.  

Because we examines product scenarios (defining not only commonalities but also dif-

ferences of product variants), we are able to produce more fine-grained partitions of search 

space of a software product family than examining only commonalities of product variants. 

For example, examining only commonalities between Viewer2.0 and Editor1.1, we cannot 

separate feature Base from feature Find/Replace. However, by considering differences be-

tween several relevant product variants (i.e. features in V2.0 but not in E2.0, and features in 

E1.1 but in neither V1.0, E1.0, nor E2.0), we can then perfectly isolate feature Find/Replace. 

This is how we end up with the concept Cy in the lattice in Figure 5.2. 

5.3.4.3 Building code-unit level partitions 

Given a feature-level partition (i.e. a concept computed by FCA), FL-SPF first analyzes 

the relevant product scenarios to determine program models it has to compare. For exam-
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ple, given the concept Cy, FL-SPF will compare program models of Viewer2.0 and Edi-

tor1.1, Viewer2.0 and Editor2.0, Editor1.1 and Viewer1.0, Editor1.1 and Editor1.0, and 

Editor1.1 and Editor2.0. FL-SPF then determines distinct code units based on differencing 

results of program models (see Section 5.3.3), and build the corresponding code-unit level 

partition for locating implementations of the distinct features of the given feature-level par-

tition. For the concept Cy, its corresponding code-unit level partition will include distinct 

code units that are in both Viewer2.0 and Editor1.1 but in neither Viewer1.0, Editor1.0 nor 

Editor2.0. This code-unit level partition will be used for locating implementations of fea-

ture {Find/Replace}. 

5.3.5 Feature location by LSI 

Given a set of distinct features F and a set of distinct code units CU, FL-SPF uses LSI 

technique to identify code units in CU implementing features in F. Our application of LSI 

for feature location is similar to existing studies [119,168]. It involves extraction of bag-of-

word representation for features and code units, and retrieval of code units implementing a 

feature. 

5.3.5.1 Building feature queries 

As discussed in Section 5.3.3, a distinct feature represents a set of corresponding fea-

tures across several product variants. The name and description of these corresponding 

features may be different due to evolution and customization of product variants. Thus, 

given a distinct feature, FL-SPF needs to first merge name and description of these corre-

sponding features to generate name and description of the distinct feature. FL-SPF adopts a 

merging strategy similar to that of CVS for merging textual documents. However, FL-SPF 

does not attempt to resolve conflicts in feature descriptions. Instead, it simply retains all 

conflicting fragments of feature descriptions. 
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Then, FL-SPF converts each distinct feature into a bag of words as follows. It first ex-

tracts word tokens from the name and description of the distinct feature. It uses white 

space and underscore as delimiters. Then, it removes commonly used stop words of little 

meaning, e.g. is, are, will, have, etc. Finally, it reduce every word token to its root form, 

for example swap, swapping, swapped are reduced to the same root form swap. The bag-

of-words representation of distinct features will be used as feature queries to an IR engine. 

5.3.5.2 Building corpus of code units 

Similar to the processing of distinct features, given a distinct code unit that represents a 

set of corresponding code units across several product variants, FL-SPF first generates 

code fragments of the distinct code unit by merging code fragments of the corresponding 

code units. It uses the same merging strategy as that for merging feature descriptions.  

Then, FL-SPF converts each distinct code unit into a bag of words as follows. It first ex-

tracts word tokens involving string literals, variable names, function names, parameter 

names, and words in the source code comments. Then, it removes word tokens correspond-

ing to language keywords, e.g. if, else, while, for, etc. Finally, it also reduces every word 

token to its root form. The bag-of-words representation of distinct code units constitutes a 

corpus of code-unit documents for feature location. 

5.3.5.3 Code-units retrieval using LSI 

We feed bags-of-words of features and code units to an LSI engine for feature location. 

We use SemanticVectors [200] for LSI analysis. LSI engine first analyzes all bags of 

words to build a topic model. Then, it considers a feature query and every code-unit docu-

ment as a vector of weights; each weight is the likelihood for the query or a code unit be-

longing to a particular topic. It measures the similarities between the feature query and 

code-unit documents using cosine similarity of feature-query vector and code-unit vectors. 
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It finally returns a list of code units ordered based on their similarity scores against the fea-

ture query.  

5.4 Linux Kernel Dataset 

In this section, we summarize the Linux kernel dataset used for the evaluation of our ap-

proach. We describe how we extract from this dataset: 1) features with textual descriptions 

that can be used as queries for feature location; 2) code units that form corpus for feature 

location; and 3) ground truth links between features and their implementing code units for 

evaluating the effectiveness of our feature location approach. 

5.4.1 Dataset 

The Linux kernel [195] is an open source operating system kernel. It was originally de-

veloped for 32-bit x86-based PCs, but has since been evolved into a software product line 

[151], which consists of thousands of features that can be configured in order to generate 

specific kernel products for a vast combinations of architectures, subsystems, device driv-

ers, etc. 

Table 5.2. Nine product variants of Linux kernel 

Product Variants #Features #Code Units 

2.6.27.9 def 306 34060 

2.6.27.9 r1 403 44275 

2.6.27.9 r2 412 43913 

2.6.31.9 def 348 39565 

2.6.31.9 r1 458 55585 

2.6.31.9 r2 325 29936 

2.6.37 def 402 45312 

2.6.37 r1 164 17622 

2.6.37 r2 328 32461 

Total 3146 342729 

In this evaluation, we used nine product variants derived from three stable releases of 

the Linux kernel 2.6.27, 2.6.31, 2.6.37 released on December 14
th
, 2008, December 18

th
, 
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2009, and January 5
th
, 2011, respectively. These product variants were built for a Dell Pre-

cision M6400 workstation based on default and two random configurations shipped with 

each kernel release.  

We extract a dataset that contains 3146 features and 342729 code units (functions and 

data structures). These nine product variants comprise 35086 (averagestandard deviation) 

features and 3808110988 code units. Our statistics is consistent with earlier well-known 

study on Linux kernel evolution [59]. That is, although the full source tree of Linux kernel 

is very large, a specific kernel product (built for a specific platform, devices, features, etc.) 

is likely to comprise only a small portion of the full source tree. 

5.4.2 Extracting features sets 

The Linux kernel manages features using a feature modeling language (Kconfig) and its 

accompanied configuration tool [151]. Each feature defined in Kconfig model has a con-

figuration symbol, a short prompt, and a free-form textual description, together with other 

information such as datatype, default value of the feature, and dependencies between fea-

tures. 

Figure 5.1 lists a feature excerpt expressed in Kconfig. It defines a feature CON-

FIG_MICROCODE_INTEL (configuration symbol) that provides “Intel microcode patch load-

ing support” (short prompt). Its feature description states “This option enables microcode 

patch loading support for Intel processors. …”. This feature is of Boolean type and it is 

included in kernel products by default. Furthermore, it depends on another feature whose 

configuration symbol is CONFIG_MICROCODE, and selecting CONFIG_MICROCODE_INTEL 

requires selecting feature FW_LOADER as well. 

To build a specific kernel product, a user initializes and modifies a feature configuration 

based on the Kconfig model, using the accompanied Kconfig tool. In this evaluation, we 

built kernel products for a Dell Precision M6400 workstation based on default and two 
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random configurations shipped with each kernel release. The resulting kernel products 

constitute a software product family of nine product variants for evaluating the effective-

ness of our approach. 

We extended the Kconfig tool to extract the set of features that a specific kernel product 

supports. This tool extracts configuration symbol, short prompt and textual description of 

these features. The configuration symbol is treated as feature name, and short prompt and 

textual description is treated as feature description. Such sets of features of kernel products 

serve as feature-level input to our feature location approach. 

5.4.3 Reverse-engineering program models 

The feature configuration process by users results in a set of symbol-value pairs. These 

symbol-value pairs are used by Linux kernel in its makefiles and source code (as C prepro-

cessors) to control which directories, files, and conditional blocks are enabled for compila-

tion.  

For example, if the Intel microcode feature is selected for a kernel product (i.e. CON-

FIG_MICROCODE_INTEL=y), functions and data structures defined in microcode_intel.c will 

be compiled. Then, the built kernel product will support microcode patch loading for Intel 

processors. 

We developed the tool progmodel based on the C parser in the Sparse library [202] that 

has been integrated with Linux kernel build system. This allows progmodel to reverse-

engineer static program model of the kernel product, as it is built according to a feature 

configuration. Note that reverse-engineered program model consists of only code units that 

implement features that a specific kernel product supports. Such program models serve as 

implementation-level input to our feature location approach.  
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5.4.4 Establishing ground truth 

The Kconfig model, makefiles, and C preprocessors used by Linux kernel allow us to 

establish the ground truth links between features and their implementing code units. 

For example, by analyzing the usage of the configuration symbol CON-

FIG_MICROCODE_INTEL in the makefiles and source code, we can establish that this feature 

has 17 implementing code units, including functions such as collect_cpu_info(), re-

quest_microcode_fw(), init_intel_ microcode(), and data structures such as  micro-

code_intel and extended_signature. 

We developed a tool to automatically extract such ground truth links. The availability of 

this ground truth allows us to systematically evaluate the effectiveness of our approach to 

feature location in software product family with thousands of features and hundreds of 

thousands of code units. 

5.5 Results 

We now review measures used in our evaluation and then present the results of the ef-

fectiveness of our approach to feature location in software product family. 

5.5.1 Evaluation measures 

We use three measures to evaluate the effectiveness of our approach: Percentage of Rel-

evant Queries (PRQ), Mean Average Precision (MAP), and Average Percentage of Code 

Units Investigated (APCUI). These measures are commonly used to evaluate IR techniques 

[168].  

1. struct extended_signature  
2. struct extended_sigtable  
3. request_microcode_fw(int,struct device*)  
4. num_booting_cpus()  
5. get_ucode_fw(void*,void*,unsigned int)  
6. mtrr_cleanup(unsigned int)  
7. mtrr_trim_uncached_memory(unsigned long)  
8. _fsnotify_inode_delete(struct inode*)  
9. init_intel_microcode()  
10. get_ucode_user(void*,void*,unsigned int)  

Figure 5.3. The top 10 returned code units for the Intel microcode feature 
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Percentage of Relevant Queries (PRQ). This measure quantifies the percentage of the 

feature queries that can return at least one relevant code unit in returned code units: 
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where Q is the number of all feature queries, Nq is the length of the ordered list of code 

units returned by the query q, and r(i) is a binary function that returns 1 if the code unit at 

the position i is relevant to (i.e. in the ground truth of) the query q and return 0 otherwise, 

and B(.) is a Boolean function that return 1 if its parameter is not zero and 0 otherwise. 

Obviously, higher PRQ values mean better feature location results. 

Figure 5.3 presents the top 10 (i.e Nq=10) functions and data structures returned for the 

Intel microcode feature. Six of the 10 returned code units ranked 1
st
, 2

nd
, 3

rd
, 5

th
, 9

th
, and 

10
th
 are relevant,  i.e.                  , r(i)=1. Thus, ∑       

     , and B(.) returns 1 for the 

query of the Intel microcode feature. After we obtained B(.) values for all feature queries, 

we can easily compute the PRQ value. 

Mean Average Precision (MAP). MAP is the mean of average precision scores for a 

set of queries processed by an IR technique:     
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ture queries that return at least one relevant code unit, APq is the average precision score 

for the query q and defined as follows: 
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where Nq and r(i) have the same meaning as above, and P(i) is the precision for the code 

unit at the position i and defined as follows:      
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APq quantifies the precision of each code unit in the list based on the code unit’s rele-

vance and its position in the list, and then takes a weighted average of the precision of all 

code units in the list, giving more weights to relevant code units ranked higher.  
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For the query results of the Intel microcode feature,                   r(i)=1, then we 

have P(1)=1/1, P(2)=2/2, P(3)=3/3, P(4)=3/4, P(5)=4/5, P(6)=4/6, P(7)=4/7, P(8)=4/8, 

P(9)=5/9, P(10)=6/10. Thus, the average precision for this particular query result is 
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After we obtain the average precision for all features, we can easily compute the MAP 

value. Obviously, higher MAP values mean better feature location results. 

Average Percentage of Code Units Investigated (APCUI). This measure quantifies on 

average what percentages of the code units returned by a query need to be investigated be-

fore the first relevant document appears: 
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where Q is the number of feature queries that return at least one relevant code unit, and 

Iq is the smallest number such that r(Iq)=1^   {  …      }       . Obviously, smaller 

APCUI values mean better feature location results. 

For the query of the Intel microcode feature, a relevant code unit appears at the position 

1 in the list and thus Iq=1. Since the length of the list is 10 (i.e. Nq=10), the Iq/Nq value for 

this query is 1/10=0.1. After we obtain Iq/Nq values for all feature queries, we can easily 

compute APCUI value. 

5.5.2 Distinct features (or code units) in product family 

The product family used in this evaluation consists of nine Linux kernel product vari-

ants. These product variants have in total 3146 features and 342729 code units (functions 

and data structures) (see Table 5.2). However, not all these features (or code units) are 

unique in the product family, because these product variants share common features and 

implementations.  
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Figure 5.4 presents the analysis results of distinct features in this family of nine product 

variants. The vertical axis represents the number of distinct features. The horizontal axis 

represents the number of corresponding features, represented by a distinct feature, across 

product variants. Distinct code units in the product family manifest the similar distributions 

(see Figure 5.5). 

 

Figure 5.4. Distinct features of Linux kernel product variants 

 

Figure 5.5. Distinct code units of Linux kernel product variants 

Distinct-feature (or code-unit) analysis identifies 966 distinct features and 103419 dis-

tinct code units in the product family. That is, by identifying distinct features (or code 

units) in the product family, we can greatly reduce search space for feature location, from 
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dividual product variants to 103419 distinct code units of the product family (i.e. reduced 

by 69.8% at implementation level). 

Let us take a closer look at distinct features. 28.4% (274/966, the rightmost bar in Figure 

5.4) of distinct features represent features that are supported by only one of nine product 

variants. These uniquely supported features are optional features for an operating system. 

For example, only the product variant 2.6.31.9.r1 supports the feature “LBDAF support for 

large (2TB+) block devices and files”. The rest of 71.6% of distinct features represent fea-

tures that are supported by at least two product variants. Among these distinct features, 60 

distinct features (the leftmost bar in Figure 5.4) represent features that are supported by 

nine product variants. These commonly supported features usually deal with core architec-

ture and algorithms of an operating system. For example, the core feature CRYPTO_MD5, 

described as “MD5 message digest algorithm (RFC1321)”, is supported by each product.  

5.5.3 Disjoint, minimal feature (or code-unit) partitions 

Using FCA to group 966 distinct features and 103419 distinct code units among nine 

product variants generates 109 disjoint, minimal feature and code-unit partitions. Figure 

5.6 and Figure 5.7 summarize the number of partitions (vertical axis) that have different 

number of distinct features and code units (horizontal axis).  

 

Figure 5.6. Partition size by features 

0

5

10

15

20

25

30

1 2 3 4 5

6
-1

0

1
1

-2
0

2
1

-3
0

3
1

-5
0

5
3

6
1

8
8

27 

15 15 

4 
7 

17 

12 

4 5 
1 1 1 

N
u

m
b

er
 o

f 
P

ar
ti

ti
o

n
s 

Number of Features in Partition 



Chapter 5 Locating Features in Product Variants 

115 

 

Figure 5.7. Partition size by code units 
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topic-model construction. We want enough topics to capture real term relations, but not too 

many, or we may start modeling irrelevant details in the data [41]. 

As a result, in this work we cannot use a fixed number of topics for LSI analysis, be-

cause we apply LSI to feature (code-unit) partitions of different size. Thus, we use a factor 

pd (0<pd<1) and determine the number of topics that should be used by 

                   , where termd and docd are term and document dimensionality of 

term-document matrix generated by LSI. We examine the performance of our FL-SPF ap-

proach at pd=0.1, 0.2, 0.3, 0.4, and 0.5. 

In this evaluation, we focus on the top 30 code units returned by feature queries. This 

decision was mainly driven by the fact that the majority (about 70%) of Linux kernel fea-

tures declares 30 or less functions and/or data structures. Furthermore, similar to other 

studies [149], we believe that developers would highly unlikely to examine low-ranking 

code units.  

Figure 5.8 presents PRQ values for top 10, 20 and 30 returned code units at different pd. 

At pd=0.1, FL-SPF returns at least one relevant code unit in top 10 results for 48.3% of 

feature queries (i.e. 467 out of 966 distinct features). It returns relevant code units for 55.8% 

feature queries in top 20 results, i.e. 7.5% more relevant feature queries if we examine the 

11th – 20th returned code units. It returns relevant code units for 5.6% more feature que-

ries if we further examine the 21st – 30th returned code units. Clearly, our approach can 

return at least one relevant code unit in top 10 results for almost half of the features to be 

located. Examining more returned code units may find relevant code units for more fea-

tures. However, the chance becomes less towards lower-ranking code units. Similar phe-

nomenon can be observed at other pd values. 
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Figure 5.8. PRQ (Nq=10, 20, 30) at pd=0.1,…,0.5 
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pd>0.2. However, our approach can still return relevant code units for more feature queries 

(as manifested by increasing PRQ value from pd=0.2 to pd=0.3 in Figure 5.8).  

5.5.5 Comparison with direct application of LSI 

We comparatively investigate the performance of our approach against that of the direct 

application of LSI to the dataset of nine Linux kernel product variants. We use 500, 1000, 

and 1500 as the numbers of topics for LSI analysis in the direct application of LSI. We 

evaluate the performance of direct application of LSI in terms of the average PRQ, MAP, 

APCUI values of LSI for each product variant. 

 

Figure 5.9. PRQ values of direction application of LSI 
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of features and code units of a product variant. In fact, our attempt to apply LSI at 2000 

topics fails due to out of memory exception.  

An alternative way to improve PRQ is to examine more returned code units. As shown 

in Figure 5.9, in order to achieve same-level PRQ value as our approach (61.4% for 

PRQ30 at pd=0.1), we have to examine top 300 returned code units (61.3% at 1500 topics). 

However, as shown in Table 5.4, the improvement of PRQ from top 30 to top 300 returned 

code units comes with a significant degrade of the average MAP and APCUI values. The 

average MAP degrades from 32.7% for top 30 results to 14% for top 300 results; on aver-

age the number of code units that need to be investigated before encountering the first rel-

evant code unit increases from 8.4 (28.3% of top 30 results) to 54 (18.1% of top 300 re-

sults).  

In contrast, with our approach we do not need to pay this price. As shown in Figure 5.8 

and Table 5.3, at pd=0.1, our approach achieves PRQ=61.4%, MAP=43.1%, and APCUI= 

20.7% for top 30 returned code units. Note that this is the worst performance of our ap-

proach. But the MAP for top 30 results of our approach is still 31.8% ((43.1%-

32.7%)/32.7%) higher than that of top 30 results of direct application of LSI at 1500 topics. 

Furthermore, the number of code units that need to be investigated before encountering the 

first relevant code unit is about 8% (28.3%-20.7%) less with our approach.  

We also measure the performance of our approach at pd=0.1 for top 300 returned code 

units. The PRQ, MAP, and APCUI values are 80.6%, 24.3% and 11.1%, which means that, 

compared with top 300 results of direct application of LSI at 1500 topics, our approach 

returns at least one relevant code unit for 19% (80.6%-61.3%) more features, achieves 

71.45% ((24.3%-14%)/14%) higher mean average precision, and requires investigating 21 

less code units (|11.1%-18.2%|*300) before encountering first relevant code unit. 
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In addition to poorer performance, another disadvantage of direct application of LSI to 

each product variant is that feature location results in each product variant often vary great-

ly in terms of code units returned and their rankings. Take the Intel microcode feature as an 

example. It is supported in five out of nine product variants. Direct application of LSI re-

turns relevant code units in only two product variants (fails to return relevant code units in 

the other three produce variants): two code units ranked 1
st
 and 6

th
 for product variant 

2.6.37 r2, and one code units ranked at 1
st
 for 2.6.31 r2 in top 30 results. Given such fea-

ture location results, developers have to examine, merge, and propagate feature location 

results from each product variant in order to identify common implementations of a fea-

ture. 

In contrast to dealing with features and code units of each product variant, our approach 

performs feature locations for distinct features and distinct code units in software product 

family. Once the link between a distinct feature and a distinct code unit is identified, the 

links between features and code units in each product variant can be easily inferred. 

5.6 Threats to Validity 

Our approach uses software differencing techniques to determine distinct features and 

code units in software product family. The quality of differencing techniques may affect 

our approach. Empirical studies [45,171,180] has shown the accuracy and robustness of 

differencing techniques to be good in practice. Thus, the negative impact of software dif-

ferencing on our approach should be minor. 

Our evaluation uses nine product variants of Linux kernel. Linux kernel manages fea-

tures using Kconfig at feature level and using makefiles and C preprocessor at code level. 

However, it is important to note that our approach does not make any assumptions regard-

ing how product variants are generated and managed. It requires as input only feature sets 

and program models of product variants.  
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Our approach assumes that commonalities and differences between product variants can 

be determined statically, such as product variants of Linux kernel used in our evaluation. 

However, there exist systems that only behave differently depending on runtime parame-

ters. For such systems, we need to extend our approach with dynamic analysis techniques 

in order to obtain feature sets and program models of different product variants at runtime. 

Our approach partitions product variants through combination of their commonalities 

and differences. Further studies are required to investigate the impacts of the number of 

product variants and the differences among these product variants on the effectiveness of 

our approach.  

5.7 Summary 

In this chapter, we presented an approach to support effective feature location in soft-

ware product families. Our approach effectively exploits software differencing and FCA 

techniques to analyze commonalities and differences of product variants in a software 

product family, which greatly reduce the search space to which IR technique applies. The 

evaluation of our approach with a product family of nine Linux kernel product variants 

showed that our approach always significantly outperforms a direct application of IR tech-

nique in the subject product family. This result suggests that we can significantly improve 

IR-based feature location in software product family by partitioning product variants. Our 

approach is at the core of our ongoing work on reengineering legacy software product fam-

ily towards systematic reuse of overlapping feature across product variants.  
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6 Variability Management with Multiple Traditional Variability 
Techniques 

In the previous Chapter 3, 4 and 5, we focus on the variability analysis in the domain 

engineering. In this chapter, we aim at investigating the management of variant features by 

using variability techniques to configure different variant features for different product var-

iants in an industrial project [182].   

6.1 Introduction 

Even with identified variability between product variants available, the domain engi-

neers still face the challenge of managing the variability properly towards the SPL infra-

structure. How the variability is managed on earth in reality? To reveal the answer to the 

RQ4 mentioned in section 1.1, we conduct the empirical study in a software company 

based in Shanghai, China.  

The goal of this chapter is to evaluate strengths and weaknesses of variability techniques 

used in the existing Wingsoft Financial Management System Product Line (WFMS-PL). 

This industrial SPL, some of whose features are exampled in section 3.1, 4.1 and 5.1, is 

developed by Fudan Wingsoft Ltd., a small software company in China.  

We took the following steps in this study. We first analyzed WFMS variant features [73] 

and presented them as a feature diagram [83]. Then, we studied variability techniques in 

WFMS-PL, namely Java conditional compilation3, commenting out feature code, design 

patterns [57], parameter configuration files, and a build tool Ant [188]. Finally, we ana-

lyzed how the granularity and scope of feature impact on WFMS components affected the 

effectiveness of variability techniques. 

                                                      

3 Java does not formally have  conditional compilation, but you can implement the similar function [197]: 

http://c2.com/cgi/wiki?ConditionalCompilationInJava 

http://c2.com/cgi/wiki?ConditionalCompilationInJava
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We distinguish two types of features according to the granularity of their impact, namely 

fine-grained features affecting many system components, at many variation points, and 

course-grained features whose code is usually contained in files that are included into a 

custom product that needs such features. Mixed-granularity features involve both fine- and 

coarse-grained impact. Most of the WFMS features were fine-grained features, managed 

with conditional compilation and/or manually commenting out the feature code. 

Our study shows that different variability techniques have different, often complemen-

tary strengths and weaknesses, and their choice should be mainly driven by the granularity 

and scope of feature impact on product line components. Fundamental differences in capa-

bilities of variability techniques justify the use of multiple variability techniques. For ex-

ample, Ant is strong in configuring coarse-grained features, but weak in configuring fine-

grained features. Parameter configuration files define environmental variables and variant 

feature options, but require yet other techniques to perform the actual customizations in 

product line components. Design patterns reduce the coupling in code, making it easier to 

add, remove or change a variant feature. However, we found only few opportunities to ap-

ply design patterns in WFMS. Over-loading fields in order to use the same field for differ-

ent purposes usually helps only in configuring database schema. Conditional compilation 

is used as the main technique to control fine-grained variant features in Java source code, 

while commenting out feature code is heavily used in HTML and JSP files. In some situa-

tions, we suggest possible remedies to weaknesses of variability techniques used in 

WFMS-PL. 

Particularly, multiple variability techniques must be used to manage each of the mixed-

grained features. Our study reveals that while it is natural to match feature granularity with 

the proper variability techniques, over time the interplay between multiple variability tech-

niques may be difficult to comprehend.   
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Variability techniques used in WFMS-PL are simple, freely available and commonly 

used in Software Product Lines (SPL) to complement component/architecture-based ap-

proaches. As yet we do not have enough material to compare them with more advanced 

SPL approaches, such as GEARS [190], Pure [199] or XVCL [71], with possibly better 

results. We are going to conduct experiments to facilitate such comparison. 

In the past years, there were some case studies on variability techniques. These studies, 

however, usually focused on variation implementation with certain techniques like AspectJ 

[96], FOP [18,19,137] or XVCL [71]. The industrial case study presented in [160] aims at 

architecture-based variability realization in large companies. In this chapter, we analyze a 

real product line using a mixed set of light-weight variability techniques in a small compa-

ny. We believe Wingsoft choice of variability techniques was representative of the varia-

bility managemet in the small companies. Some other small companies may find our expe-

riences reported in this chapter useful, when migrating from existing product variants to-

wards the product-line architecture.  

6.2 An Overview of WFMS 

WFMS was developed in 2003 and evolved to an SPL with more than 100 customers 

today, including major universities in China such as Fudan University, Shanghai Jiaotong 

University, Zhejiang University. During its evolution, Wingsoft set up product architecture 

and was adopting variability techniques such as Java conditional compilation, Ant, pa-

rameter configuration files, and design patterns to manage product variability. 

The core assets of the WFMS-PL were designed and implemented by few domain engi-

neers. Domain engineers sometimes also played the role of an application engineers re-

sponsible for initial, program-level customization of core assets for a custom product. Ser-

vice engineers, familiar with financial business but with little or no programming 

knowledge, did final customer-side customizations and deployment. Service engineers 
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used readable parameter configuration files to do the customer-side customizations. Usual-

ly, application engineers provided only in-office application-specific implementations, and 

responded to requests of service engineers. Domain engineers maintained a WFMS prod-

uct for many customers delegating routine work to service engineers.  

WMFS consists of four subsystems, namely Financial Management Subsystem (FMS), 

Salary Management Subsystem (SMS), Reward Management Subsystem (RMS), and Tui-

tion Management Subsystem (TMS). We selected the TMS for our case study, as it in-

volved types of variability and variability techniques that were representative of the whole 

WFMS. TMS is a web-based portal for students to pay online their tuition fee, with func-

tions such as login, fee browsing, online payment, payment detail generation and bank set-

tlement. The code of TMS is 25% of the whole WFMS system. It comprised 58 Java 

source files, 99 JSP web pages, and several configuration files. 

A TMS feature diagram is shown in Figure 6.1. The minimum and maximum choices of 

OR-features are shown as numbers surrounded by square brackets. 80% of the 32 variant 

features can be selected for custom TMS. However, there are also some feature interac-

tions. For example, the selection of InitPayMode depends on the number of selected vari-

ant features under FeeItemSelection and the selection of Settlement depends on whether 

selected banks require settlement. TMS features include fine-, coarse, and mixed-grained 

feature.  
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Figure 6.1. The feature diagram of TMS 

As illustrated in Figure 6.2, the TMS is a web-based portal for students to pay their tui-

tion fee online, with functions such as login, service customization, on-line payment and 

history query. In addition, the TMS also provides accounting services (e.g., report genera-

tion and bill settlements) that interface universities with banking systems. TMS adopts a 

traditional 3-tier architecture, namely user interface, business logic and database access 

tier.  
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Figure 6.2. The architecture of TMS 
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Table 6.1. Variant features of TMS 

TMS Feature Name #VP #Size #AF Description 

Direct 1 7 1 The direct login mode 

IDCard 3 11 1 The login mode with ID number 

SSO 5 17 3 The single sign-on mode 

InitPayMode 9 16 4 Initiation of the payment mode 
InitCsDbUser 10 18 5 Initiation of user account of finance database 

InitStuState 10 37 3 Initiation of the student’s state 

WebServicePayment 18 2144 17 Providing web service of payment 

LockFeeItem 16 108 5 Locking fee items from being paid 

DelegationLock 8 10 2 Locking fee items whose payments are delegated to bank  

OperationLock 3 39 2 Locking fee items that are waiting for payment results 

ReadLatestPayment 10 90 6 Showing the result of last payment 
PayByItem 6 288 6 Selecting fee items by each item 

PayByYear 6 176 6 Selecting fee items by the year of item 

PayByYearOrder 6 603 6 Selecting fee items by the year order 

AllowException 6 69 3 Allowing exceptions some pay mode 

AdditionalCharge 7 15 3 Storing additional charge 

ABC 18 1451 18 The Agriculture Bank of China 

CCB 17 1043 17 The Construction Bank of China 

CMB 11 784 11 The Commercial Bank of  China 
ICBC 24 1339 24 The Industry and Commercial Bank of China 

CQUC 6 783 6 Office of Chongqing University in charge of fee payment 

CQZH 8 1038 8 Chongqing Sub-Brance of the Bank of China 

SCBC 7 546 7 Sichuan Sub-Branch of the Bank of China 

XSUC 6 844 6 Office of Southwest Normal University in charge of fee pay-

ment 

BankLog 13 111 11 Log interaction information with the banks 

DownloadDetail 3 136 3 Downloading payment details 
Settlement 13 487 13 Bank settlement 

Automatic 4 216 3 Automatic operation mode 

Manual 1 48 1 Manual operation mode 

SettleLog 9 153 4 Log settlement info. 

FileLog 7 103 6 Log information in files 

DBLog 6 79 4 Log information in database 

Table 6.2. Feature dependency and interactions 

Involving features Domain/Design level dependency Implementation  level interac-

tion  (in variation point) 

ABC, ICBC, AdditionalCharge If ABC or ICBC is selected, AdditionalCharge 

should be selected. 

N/A 

ABC, CMB, CQZH, Settlement If ABC or CMB or CQZH is selected, Settlement 

should be selected. 

N/A 

InitPayMode, 

PayByItem, 

PayByYear, 

PayByYearOrder, 

Number of the selected features among PayByItem, 

PayByYear and PayByYearOrder decides the selection 

of InitPayMode. If only one of them is selected, Init-

PayMode is not selected. 

N/A 

Direct, IDCard N/A 1 vp in FeeUser.java 

WebServicePayment, In-

itCsDbUser 

N/A 1 vp in user-defined configuration 

file 

WebServicePayment, 

PayByItem 

N/A 1 vp in FeeOrder.java 

ReadLastPayment, Operation-

Lock 

N/A 1 vp in DB schema 

BankLog, DBLog N/A 1 vp in DB schema 

TMS components are derived from corresponding TMS core assets which have been in-

strumented with variability techniques to accommodate variant features required in custom 

products. As shown in Figure 6.1, in TMS feature model, there are 32 variant features and 

9 mandatory features. Table 6.1 shows the impact of TMS features on core assets: #VP – 
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the number of variation points at which a feature affects core assets, #Size – LOC of fea-

ture implementation, #AF – the number of affected core assets. We see that most TMS fea-

tures have fine-grained impact on core assets.  

Feature dependencies constrain legal combinations of features that can be implemented 

in any custom product. For example, selection of one feature may entail selection of yet 

other features. In TMS, the feature ABC represents the system connected to the Agriculture 

Bank of China (ABC) and the feature Settlement means that a bank needs settlement for 

each payment. As feature ABC requires settlement for each payment therefore whenever 

we select the feature ABC, we must also select the feature Settlement. Inter-dependent fea-

tures tend to interact with core assets at the same variation points, and may also affect each 

other code. 

Table 6.2 shows that 18 out of 32 TMS variant feature involved in feature dependencies 

or interactions. The feature dependencies are imposed by the domain [51]: if the feature 

ABC is selected, the feature AddiotnalCharge should also be selected for that product. Fea-

ture interaction at the implementation level is due to certain design decision made during 

development or to the way that features are realized in the solution, e.g. two features’ code 

tangle together in one method, one parameter/attribute in configuration- file/DB-Schema is 

shared by two distinct features. Both feature dependencies and interactions further compli-

cate analysis, maintenance and reuse of both core assets and features. For example, if we 

use conditional compilation to manage the impact of feature interactions on core assets, 

then relevant variation points will include many options to choose from during customiza-

tion, with each option catering for a specific type of feature interaction. 

6.3 Variability Technique in TMS 

Wingsoft adopted simple, freely available variability techniques for TMS-PL. Different 

variability techniques have different, often complementary, strengths and weaknesses, and 



 

130 

their choice is mainly driven by the granularity and scope of feature impact on core assets. 

At Wingsoft, experienced domain engineers were selecting the right variation technique 

for features at hand.  

6.3.1 Review of variability technique in TMS  

In Table 6.3, column “# Features” indicates the number of features whose customiza-

tions involved a given technique. Ant, conditional compilation and commenting out variant 

feature code were most commonly used. Note that we found overloading fields were only 

used for database tables, and managed variants of 13 attributes in 4 tables. 

Table 6.3. Feature numbers for variability techniques used in TMP 

# Techniques # Features 

Conditional compilation & comment 31 
Ant 19 
Overloading fields 13 
configuration items 12 
Design Pattern & reflection 3 

 

Java conditional compilation and commenting out code: In Java, conditional compi-

lation is realized with final-boolean variables. If a final-boolean variable’s value is false, 

then the code in the statements under if is not compiled into the generated bytecode file. 

The effect is similar to #define and #ifdef C/C++ preprocessor directives [155]. Figure 6.3 

illustrates the usage of final-boolean variables to manage variant features in TMS class 

FeatureConfiguration. The limitation of Java’s conditional compilation is that it is limited 

to inner-method statements. It cannot handle the inclusion or exclusion of class methods or 

attributes. In WFMS, such cases were handled by manually commenting out the code that 

was not required in a given product variant. Commenting out was also used in non-Java 

files such as JSP files or SQL script. The main reason for such practice was that the engi-

neers at Fudan Wingsoft could not find flexible tools to manage variability in these files at 

that time.  
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public class FeatureConfiguration { 
// Configuration items 
public static final boolean DelegationLock = true; 
public static final boolean OperationLock = true; 

} 
1 
2 
3 
 

4 
5 
6 
 

7 
8 
9 

10 
11 
12 
13 
14 

public class FeeInfo {  
. . .  
public void initInfo(FeeUser user, boolean isPaidFeeInfo)                                           

throws Exception { 
//get each year’s fee items 
for( int i=0; i < yearTemp.size(); i++ ) {  

If ( FeatureConfiguration.DelegationLock 
&& FeatureConfiguration.OperationLock ) 
// Code when both features are selected 

else if ( FeatureConfiguration.DelegationLock ) 
// Code when delegationLock is selected 

else if ( FeatureConfiguration.OperationLock ) 
// Code when operationLock is selected 

} 
} 

} 

Figure 6.3.  Managing variant features with Java’s final-boolean mechanism 

Design patterns and reflection: [111] has described the use of the abstract factory pat-

tern in SPL. It also extended this concept using the dynamic abstract factory pattern, in 

which concrete factories were adapted to support new concrete products at run-time by 

adding Register and UnRegister operations to Abstract Factory for each abstract product. 

Although the most frequently used design patterns in TMS were AbstractFactory with 

FactoryMethod and Strategy, reflection mechanism, instead of operations returning name 

of product, is also used to dynamically instantiate proper concrete instances according to 

configuration options so that the specific class names can be abstracted from the source 

code. Then Ant can be used to control the inclusion and exclusion of a strategy subclass. 

Figure 6.4 shows the use of Strategy Pattern in TMS. 
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public class FeeOrder { 
private Initializer initializer; 
public init(FeeUser user, FeeInfo info,  

HttpServletRequest request) { 
Class c; 
try{ 

c = Class.forName( user.getPayMode() ); 
initializer = (Initializer) c.newInstance(); 
initializer.init ( . . .); 

} catch(Exception e ) { 
e.printStackTrace(); 

}  
} 

} 

Figure 6.4. Reflection used in strategy pattern 
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Overloaded Fields: Variant features affect TMS database schema. Overloading table 

fields helps to contain some of those impacts. For example, a table may have several fields 

named spec_1, spec_2 ... spec_n, and the same filed may be used to store bank card num-

ber in one product variant and ID card number in another one. There were also tables and 

fields that make sense for some product variants, but are useless for others. With overload-

ing fields, all the products could share the same DB schema, but still support different data 

structures required for variant features. Overloading fields was adopted for WFMS-PL da-

tabase.  
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<project name="webfee"  basedir="." default="main"> 
<target name="copy-src" depends="create-folders"> 

<!-- Copy java classes of Feature PayByItem --> 
<copy todir="${src.dir}"> 

<fileset dir="${core-src.dir}/${ PayByItem }"/> 
</copy> 

</target> 
<target name="copy-webpage"  

depends="create-folders"> 
<!-- Copy webpages of Feature PayByItem --> 
<copy todir="${web-root.dir}"> 

<fileset dir="${core-webpage.dir}/${PayByItem }"/> 
</copy> 

</target> 
<project> 

Figure 6.5. Using Ant to include optional features 
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<webFee> 
<paymode>PayByItem</paymode> 
<bank-info> 

<bankList> 
<bank>ICBC</bank>  
<bank>CCB</bank> 
<bank>CMB</bank> 

</bankList> 
<ICBC> 

<bankUrl>http: //mybank.icbc.com.cn/servlet/co..</bankUrl> 
<keyPath>C: /apache-tomcat-5.5.25/webapps/…</keyPath> 
<keyPass>12345678</keyPass> 
<merchantid>440220500001</merchantid> 

   </ICBC>  
</bank-info> 
<DownloadDetail>true</DownloadDetail> 
</webFee> 

Figure 6.6. Using configurations files 

Ant: An important class of configuration parameters was managed by Ant. [39] used 

Ant and configuration files to differentiate variability in process and variability in product. 

Lower layers always override the build.xml file of upper layers, by which only the 

build.xml of the leaf layer will take effect. By reading layer orders in configuration files, 
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the leaf layer can be determined. In WFMS, Ant was useful as a variability technique for 

coarse-grained variant features either. For instance, optional feature PayByItem of TMS 

was managed by Ant as shown in Figure 6.5. This feature was implemented by a Java class 

and a JSP file. The inclusion of this feature in a custom product was implemented by in-

cluding the relevant files in the path of javac command in the Ant configuration file. 

Parameter Configuration Files: In TMS, self-defined configuration files were also 

employed as a variability technique, as shown in Figure 6.6. Configuration files contained 

both data and control parameters. Data parameters, such as URLs of banking services and 

key path, are also widely used in single products. Control parameters were used to config-

ure feature selections and usually worked together with other variability techniques. For 

example, the parameter paymode in Figure 6.6, indicating the right sub-class to be initial-

ized, worked together with the reflection and the strategy pattern shown in Figure 6.4(see 

the underlined part). Another example of parameters working with other variability tech-

niques is the parameter DownloadDetail in Figure 6.6. A simple tool was implemented to 

read this parameter and generate Ant script shown in Figure 6.5 if the value is true. 

6.3.2 Summary of variability technique in TMS 

Figure 6.7 shows which variant features were managed using which variability tech-

niques. We do not show overloading fields which was used for variants in database table 

schema only and did not overlap with other techniques. More than 80% features (26 among 

32) were managed by more than one variability technique: 13 features were managed by 

three techniques and three features by four techniques. Design patterns were always used 

together with other techniques. Another interesting observation is that almost all features 

involved the use of conditional compilation and/or commenting out feature code, as in 

WFMS, like in many other SPLs, we saw many fine-grained features. 
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(a)Conditional Compilation&Comments  (b)Design Pattern   

(c)Parameter Configuration File                          (d)Ant

SelectByItem

SelectByYear

SelectByYearOrder

(a)

(b)

(d)

(abcd)

Direct

IDCard

DelegationLock

OperationLock

AllowException

AddtionalCharge

SSO 

ABC CCB

CMB ICBC

CQUC CQZH

SCBC XSUC

Settlement  Automate

SettleLog    FileLog

WebServicePayment
InitPayMode

InitCsDbUser

InitStuState

LockFeeItem

ReadLatestPayment

BankLog

DBLog

DownloadPaymentDetail

Manual

(cd)

(acd)

(ac)

 

Figure 6.7. Variability techniques per feature 

For mixed-granularity features, a combination of several variability techniques is usual-

ly used. For example, when we include a source files for a selected variant feature with 

Ant, we still need conditional compilation to configure corresponding caller in the base 

code. Table 6.4 summarizes the usage, scope, merit and drawbacks of various variability 

techniques used for different WFMS-PL variant features. It is interesting to have compari-

sons between the traditional approaches like the ones described in this chapter and more 

advanced ones like AspectJ [96], FOP [18,19] or XVCL [71]. In the next chapter, we dis-

cuss the XVCL-based solution of variability management in WFMS-PL. 

6.4 Evaluation of the WFMS-PL and Possible Improvements 

Projecting experiences from TMS study, we now evaluate WFMS-PL variability man-

agement strategies from the perspectives of granularity of feature impact, ease of applying, 

readability and managing the consistency between WFMS core assets and custom products.  

On overall, we found that the current WFMS-PL strategies for variability management 

properly matched the granularity feature of impact. The newcomers to the team could easi-

ly understand when and how to apply them. However, over time when the impact of many 
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features was accumulating, the readability of the WFMS-PL has suffered, and it was be-

coming difficult to trace features to code and manage features consistently. The detailed 

reasons and suggested remedies are given in the following paragraphs.  

6.4.1 Feature Granularity  

Feature granularity is a critical factor that guides selection of variability techniques. It 

depends on the properties of the variant points, which we will elaborate in the next para-

graph. In WFMS-PL, fine-grained features were managed by conditional compilation in 

Java code, and with commenting out code section in other WFMS artifacts. Ant was used 

to manage coarse-grained features at the level of package or class inclusion/exclusion level. 

Design pattern played the role of a class or method extension mechanism.  

Table 6.4. Summary of variability technique in WFMS-PL 

Variability 

technique 
Usage Scope Merits Drawbacks 

Conditional 

compilation 

& Comments 

Use Final-Boolean 

mechanism in Java or 

just simple natural lan-

guage comments   

Final-Boolean method is 

only used on inner-method 

statements. Comments can be 

adapted to all places   

Easy to learn 

Straightforward 

No need to install 

and master new tools 

and skills 

All maintain works and configura-

tions are manual, no tool support. 

If/elseif statements are exponential 

with the number of possible variants 

Design Pattern 

To gain good modu-

larization in OO source 
code,  

Class or method level 

Best to gain class level 
flexibility in OOP part of a 

product line. 

Providing Elegant 

code, 

High readability, 
Good Extendibil-

ity. 

Scope of application is narrow and 

always need the aids of other tech-
niques. 

Overloading 

Fields 

Make all customized 

products share the same 

attribute in database 

Database table schema 

Avoid trouble to 

change the name of 

attributes when select-

ing various products. 

Hard to maintain, if the corre-

sponding document is not available, 

very difficult to guess the meaning of 

the overloading fields. 

Configuration 

File 

Implement configura-

tion of  various parame-

ters due to variant feature 

selection or environmen-
tal change 

Give parameters of vari-

ant feature selections or 

environment 

Good mechanism 

to do feature configu-

ration 

It needs to cooperate with other 

methods and introduce non-traceability 

issue. 

For features having fine-grain im-
plementation fragment, configuration 

file is always not sufficient 

Ant 

Conditionally com-

pile java source files and 

make deployments 

System level customiza-

tion and deal with more than 

source code), can only cus-

tomize CGI features. 

Powerful and 

popular build tool, 

flexible to deliver 

product variants 

The finest granularity for ant is file 

level, so scope of application is nar-

row. 

In Table 6.5, we show the number of WFMS variation points for each feature impact 

granularity level. Fine-grained features, those features with fine impact, required small 

changes in Java expressions, statements, method signatures, comments (in Java code, JSP 

or HTML), database table scripts, and parameter configuration files. Medium-grained fea-
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tures required changes of Java methods or attributes, changes of database table scripts, and 

changes of configuration items in parameter configuration files. Coarse-grained features 

required inclusion or exclusion of product-specific source files. 

Fine-grained features trigger most of the problems. Conditional compilation and com-

menting out feature code was used to manage fine-grained features. A big problem is how 

to trace variant features down to the many variation points relevant to them. This problem 

aggravates when multiple variability techniques are used to manage a given feature. Some 

feature enhancements involve changes at many variation points that must be properly co-

ordinated. WFMS engineers often encountered the problems of inconsistent product re-

lease, e.g., a product variant was deployed with incorrect database schema.  

Fine-grained and coarse-grained features were most common. We try to analyze the rea-

sons as follows: Coarse-grained features are easy to configure. Whenever possible, domain 

engineers tried to contain the variant feature code in separate files which could then be in-

cluded into custom products that required those features. Wizards could be implemented to 

allow application/service engineers to easily include such features into custom products. 

Fine-grained features are attributed to the variability of the business flow or logic of the 

application itself and the inner incapability of programming languages.  

However, fine-grained features had to be accounted for the difficulty of consistent con-

figuration. They often affected coarse-grained features and the new variation points are 

injected into the source code of course-grained features. 

Table 6.5. The number of variation points per impact granularity level 

Granularity #Java #JSP 
#Conf. 
File 

#DB Schema #Total 

Finest 14 0 0 0 14 

Fine 67 43 3 3 116 

Medium 18 0 7 5 30 

Coarse 40 57 9 0 106 

#Total 139 100 19 8 266 
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6.4.2 Ease of application 

Customizations of core assets by configuring parameters and database schemas could be 

managed by service engineers who were in charge of deployment of a custom product on 

the customer site. Service engineers were familiar with general financial domain, user re-

quirements, and basic deployment operations, but did not know much about programming 

and internals of the WFMS-PL. Wizard-supported parameter configuration files provided 

an easy-to-use configuration capability for service engineers. 

Ease of application without involvement of any unconventional or proprietary tech-

niques was the most important reason for Fudan Wingsoft to adopt simple and commonly 

available variability techniques for WFMS-PL. This reduced the learning curve and the 

staff training cost, important factors for any small or middle-sized company. Unless cur-

rent techniques were found totally ineffective, Wingsoft would be chary of adopting new 

ones. WFMS-PL was constructed in lightweight, reactive way, which was in line with the 

company’s benefits so far.  

6.4.3 Readability 

Readability refers to the reading ease of the code for the programmers. Design patterns 

and Ant did not hinder readability, but conditional compilation, commenting our feature 

code and overloading fields made code difficult to understand for applications engineers 

and even domain engineers. In our project, 30% of code in class FeeOrder, 20% of code in 

FeeInfo and 35% of code in FeeUser was managed by Java conditional compilation. Given 

that there are no other techniques to manage fine-grained features, this problem is very 

hard to solve. If we keep the code of variant feature code embedded in the base code, the 

code is bound to become hard to read. 

One can consider Aspect-Oriented Programming (AOP) [96] or Feature-Oriented Pro-

gramming (FOP) [137] tool AHEAD [16] to separate features from the base code, but 
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these approaches pose new problems as demonstrated in [89] and [90]. To improve the 

readability of the code, a promising approach is to resort to visualization tool’s support 

such as CIDE [90] or XVCL-based Pre-processing [75, 76].    

6.4.4 Traceability and extensibility 

Traceability between features and their respective variation points has to do with both 

feature reuse and evolution. Here are some examples of problems:  

 Each feature may be addressed at many variation points scattered through many SPL 

core components. To reuse or modify the feature we must find and analyze code at all 

these points.   

 One SPL core component is usually affected by many features that may be managed by 

different possibly overlapping variability techniques. To reuse or modify the feature we 

must understand interactions among these techniques. 

Variability techniques described in this chapter provide a workable but not perfect solu-

tion for traceability problems. Table 6.6 shows features that involved several variability 

techniques, with their respective variation points spread across different WFMS-PL core 

components.  How to manage these variation points consistently was the issue of traceabil-

ity. The difficulty in traceability also brought in the problem of product extensibility at 

those variation points.  

Table 6.6. The number of variation points in example features 

Variant Feature Preprocessing 
Conf. 

Files 
Ant Total 

WebService-Payment 6 2 2 10 

ABC 2 1 3 6 

CCB 1 1 2 4 

CMB 2 1 2 5 

ICBC 1 2 3 6 

Even there is another kind of traceability problem, namely two-way propagation of 

changes, one of the problems that hinder reuse between SPL core components and custom-
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ized product variants [133]. We believe that the general traceability problem is difficult to 

address in the frame of variability techniques described in this chapter. A meta-level repre-

sentation of the SPL core components paves the way for more effective solutions to these 

problems [78]. They can capture and manage synchronously the overall impact of features 

on SPL core components [72].    

6.5 Summary 

In this chapter, we evaluated strengths and weaknesses of variability techniques used in 

the existing Wingsoft Financial Management System Product Line (WFMS-PL), devel-

oped by Fudan Wingsoft Ltd. Feature characteristics must be matched by the capabilities 

of a variability technique(s) used to manage a given feature. Fundamental differences in 

capabilities of variability techniques justify the usage of multiple variability techniques. 

Our study confirmed that different variability techniques have different, often comple-

mentary, strengths and weaknesses. Their choice should be mainly driven by the granulari-

ty and scope of feature impact on product line components. In some situations, we suggest 

possible remedies to weaknesses of variability techniques used in WFMS-PL. Our study 

reveals that while it is natural to match feature granularity with the proper variability tech-

nique, over time the inter-play between multiple variability techniques may be difficult to 

comprehend.  

Variability techniques used in WFMS-PL are simple, practical, commonly used in SPLs 

to complement component/architecture-based approaches. We hope our report will help 

companies to make more informed decisions when moving towards the product line ap-

proach. 
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7 Variability Management with Uniform Variability Technique---- 
XVCL 

This chapter is based on [176] to answer the RQ5 introduced in section 1.1. The investi-

gation summarized in Chapter 6 at Fudan Wingsoft Ltd revealed potential scalability prob-

lems of multiple variability techniques. As a remedy, we replaced multiple variability 

techniques originally used in WFMS-PL, with a single, uniform variability technique of 

XML-based Variant Configuration Language (XVCL). This chapter provides a proof-of-

concept that commonly used variability techniques can indeed be superseded by a subset of 

XVCL, in a simple and natural way.   

7.1 Introduction 

In previous chapter, we analyzed WFMS-PL, developed by Fudan Wingsoft Ltd in 

Shanghai. WFMSes provide web-based financial services for employees and students at 

universities in China. Following a common practice, Wingsoft set up product architecture, 

identified core assets for reuse, and then applied a range of common design-time variabil-

ity techniques, such as conditional compilation, commenting out feature code or configura-

tion parameters, to manage product-specific features in core assets. Variability techniques 

mark variation points in core assets to help developers perform customizations, manually 

or sometimes in an automated way.  

The preliminary results from WFMS-PL case study showed that coarse-grained features 

are easier to manage than fine-grained features [182]. Feature granularity depends to some 

extent on the design of core assets. Good architectural design can change feature granulari-

ty in our favor, increasing the number of coarse-grained features, and reducing the number 

of variation points in core assets for the features that remain fine-grained. However, the 

orthogonal separation of concerns (or features) to get the prefect modularity without fine-
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grained features is not always feasible [161]. Thus, proper variability techniques are more 

desired and important to manage features that still remain fine-grained or mixed-grained. 

As shown in previous chapter, variability technique must match the feature granularity. 

Therefore, it is common to use multiple variability techniques, for example, conditional 

compilation to handle fine-grained features and a build tool such as Ant to handle coarse-

grained features. Such variability techniques are easy to apply, and most of developers are 

familiar with them. However, as our study revealed [182], applying multiple variability 

techniques does not scale well, especially in cases of fine-grained features. While reuse 

and modification of fine-grained features is inherently difficult, applying multiple, often 

poorly compatible variability techniques aggravate the problems. In particular, it becomes 

increasingly difficult to find and understand already scattered feature code, and to coordi-

nate changes required at multiple variation points.  

As a remedy to the above problems, in the follow-up study we replaced variability tech-

niques originally used in the Fudan Wingsoft product line, with a single, uniform variabil-

ity technique of XVCL (XML-based Variant Configuration Language) [71]. XVCL applies 

generative mechanisms to organize software into highly some parameterizable meta-

components. These meta-components form SPL core assets that are adaptively reused in 

product derivation, the process that is automated by the XVCL Processor [72]. This chap-

ter serves as a proof-of-concept confirming that commonly used variability techniques can 

indeed be superseded by a subset of XVCL, in a simple and natural way. We also present 

an initial evaluation of benefits and trade-offs involved in adopting a uniform variability 

technique.  

A practical lesson learned from our study is that in small- to medium-size product lines, 

applying multiple variability techniques may be a viable solution, as it requires less train-

ing, and variability can still be effectively managed in that way. As the product line grows 
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in size and the impact of features on core assets becomes more complex, a company may 

experience problems. Then moving towards a uniform variability technique approach may 

be beneficial. However, this will require a more systematic approach to reuse, and training 

of SPL personnel. 

7.2 Problem of Adopting Multiple Variability Techniques 

Fine-grained features are the main source of problems for scalability of the multiple var-

iability techniques to managing SPL variability. Scattered impact of fine-grained features 

brings forth the difficulties to keep multiple variability techniques in synchronization one 

with another.  

Feature PayByItem in Figure 6.4, Figure 6.5 and Figure 6.6 illustrates the problem. In-

ter-related configuration parameters control both Ant and Java conditional compilation. If 

the payment mode is switched from PayByItem to PayByYear, then the Ant script must be 

changed accordingly, and variation points controlled by Java conditional compilation, the 

commented out code in DB scripts and JSP scripts have to be modified accordingly. 

As can be seen in Figure 6.7, 26 among 32 variant features were managed by more than 

one variation technique, 13 features - by three mechanisms, and 3 features - by four mech-

anisms. There are many examples of such interactions between variability techniques like 

that of Feature PayByItem in the original TMS core assets. Its maintenance and evolution 

entails the accurate understanding of multiple variability techniques, and familiarity with 

variant features and core assets.  

As the size of the system grows and the feature dependencies increase, the above incon-

veniences aggravate. These observations encouraged us to experiment with a strategy that 

employs a single variability technique with capabilities to manage all the variability situa-

tions found in TMS core assets in a uniform and traceable way.  



 

144 

7.3 Single Variability Technique Approach to TMS Core Assets 

XVCL [71,72,205], based on Frame Technology [15], is a generative language-

independent variability technique for SPLs.  

7.3.1 Variability technique of XVCL  

XVCL encapsulates core assets in meta-components called x-frames. Each variation 

point in core assets is marked with a suitable XVCL command, such as <adapt>, <insert-

before> <insert>, <insert-after> and <break>, to enable customizations. SPL variant 

features are formally mapped into all the relevant variation points in core assets by means 

of XVCL parameters and commands. The SPeCification x-frame, called SPC, sets values 

of XVCL parameters according to feature selection. XVCL Processor interprets x-frames 

starting from the SPC (Figure 7.1), traverses x-frames, propagates customization infor-

mation (parameters) to them, adapting visited x-frames accordingly, and emitting code for 

a custom product. XVCL mechanisms allow us to manage features with fine-, coarse- and 

mixed-grained impact on core assets. Due to its language-independence, any type of SPL 

core assets including Java code, JSP files, DB scripts, textual documents (e.g., in a textual 

file), test cases or even UML models in XMI can be consistently customized for any legal 

selection of features required in a custom product. 

7.3.2 TMS core assets instrumented with XVCL 

SPC

Settlement

OnlinePayment

Login

Config  

WebService

FeeUser

FeeInfo

FeeOrder 

DBSchema

WebFee

Agent Return SettleLog

ServiceManager

Level 1

Level 3

Level 2

 

Figure 7.1. Overview of WFMS core assets in XVCL 
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Figure 7.1 provides a snapshot of the WFMS core assets in XVCL representation, and 

Figure 7.2 expands some x-frames to highlight the working mechanism of XVCL. The 

SPC specifies which features we need in a custom WFMS product by setting values for 

XVCL parameters that correspond to selected features. Values of those parameters propa-

gate to x-frames below, navigating configuration and detailed customizations of core assets 

and features accordingly. Level 2 x-frames define architecture-level customizations, in 

terms of configuration of core assets for a custom WFMS product. Some of the coarse-

grained feature impacts are also addressed at Level 2. Level 3 x-frames contain the actual 

code of core assets and features, instrumented with XVCL commands to enable customiza-

tion of fine-grained features. 

Features that we want to select for a custom product are assigned non-empty string val-

ues, while features to be de-selected are assigned empty string values. Therefore, SPC 

shown in Figure 7.2 selects features IDCard and SSO (related to Login), and feature 

PayByItem (related to Paymode) for a custom product. It deselects feature Direct, 

PayByYear and PayByYearOrder.  

<select> commands mark variation points in x-frames below SPC. The value of an 

XVCL parameter that controls <select> identifies an <option> to be processed. <select 

PayByItem> in x-frame OnlinePayment at Level 2 illustrates a simple variation point af-

fected by one feature only, namely PayByItem. If feature PayByItem is selected, then the 

Processor emits feature code to the custom product; otherwise, <select> has no effect.  

<select Login> in x-frame FeeUser at Level 3 marks a variation point affected by three 

features, namely IDCard, SSO and Direct. Notation @v, where v is an XVCL parameter, 

means reference to v’s value, as assigned in respective <set> command. The value of Log-

in, <set> to be a concatenation of the three XVCL parameters corresponding to these fea-

tures, controls <select>, directing processing to the <option> corresponding to the particu-
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lar combination of selected features. Note that <option “IDCard+SSO”> is processed 

whenever the two interacting features IDCard and SSO are selected. Symbol ‘+’ is a sepa-

rator.  

XVCL parameters formally link together customizations of all the core assets affected 

by selected features, at all the relevant variation points. XVCL parameters set in SPC cre-

ate a bridge between features and WFMS core assets in XVCL. 
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 OnlinePayment    // x-frame at Level 2 
<set  Login= @IDCard+@SSO+@Direct/> 
 
<select PaytByItem > 

 <option "PaytByItem"> 
            <adapt  selFeeItem.jsp/>   

        <set PayMode = "PayByItem"/> 
    </select> 

<select PayByYear > 
<option "PayByYear"> 

    <adapt  selFee.jsp/>   
                <set PayMode = "PayByYear"/> 
    </select> 

<select PayByYearOrder > 
        <option "PayByYearOrder"> 

   <adapt  selFeeOrder.jsp/> 
   <set PayMode ="PayByYearOrder"/> 

  </select> 
  ... 

<adapt  FeeOrder /> 
<adapt  DBSchema/> 
<adapt  FeeUser/> 
... 

           

  

Level 3 

Level 1 

Level 2 

  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

  DBSchema // x-frame at Level 3 
create table userInfo( 

uniNo char(21),  
name char(30), 
password char(21), 
id_card  char(20), 
inYm  char(6), 

    banks  char(50), 
// If feature InitPayMode is selected,                                      

//the following field will be activated 
       <select InitPayMode >  
          <option "InitPayMode" >  
           payMode char(1) default 'F', 
      </select> 
    feeDBUser  char(50), 

 primary key(unino) 
); 

 

  

1 
2 
3 
 
4 
5 
6 
7 
8 
9 

10 
11 
12 
 

 FeeOrder // x-frame at Level 3 
public class FeeOrder { 

public init(FeeUser user, FeeInfo info,  
HttpServletRequest request) { 

...  
           try{ 
              @PayMode c = new  @PayMode(); 

c.init ( . . .); 
} catch(Exception e ) { 

e.printStackTrace(); 
}  

}.. . 
} 

 

  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
 

19 
20 

 FeeUser  // x-frame at Level 3 
public class FeeUser { 
… 

   public FeeUser() throws Exception { 
   . ..  

        <select Login >  
            <option "IDCard">  
           // only support variant feature IDCard  
           <option "IDCard+SSO"> 
           //support variant features IDCard and SSO 
        </select> 

} 

  … 
  public boolean login() throws Exception{ 
           … 
            <select InitPayMode >  
                <option "InitPayMode">  

                payMode = Global.nTrim 
               (rs.getString( "payMode" )).charAt( 0 ); 
           </select> 

   ....}  } 

 

  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

SPC 
//  Login feature group    

<set   IDCard = "IDCard"/> 
<set   SSO = "SSO"/> 
<set   Direct = ""/> 

//  Paymode feature group  
    <set  PaytByItem = "PayByItem"/> 

<set  PayByYear = ""/> 
<set  PayByYearOrder = ""/> 

    <set  InitPayMode = "InitPayMode"/> 
<adapt  OnlinePayment /> 
... 

 

 

Figure 7.2. Detailed view of WFMS core assets in XVCL 
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7.3.3 One variability technique instead of many 

Our example of Figure 7.2 also illustrates how a single variability technique can suc-

cessfully provide capabilities of many variability techniques. In x-frame FeeOrder, 

@PayMode c = new @PayMode replaces configuration files and applications of Strategy 

pattern in the original WFMS core assets in Figure 6.4, Figure 6.5 and Figure 6.6. Here, we 

need a parameterizable name of the class. Java generics support parametric types, but not 

class names. In the original WFMS core assets, Strategy pattern and configuration parame-

ter stored in a configuration file were used to mitigate the problem (Figure 6.4). Strategy 

pattern reads the name of a required class from the configuration file.  

In the original WFMS core assets, architecture-level configurations of core assets and 

coarse-grained features were done by Ant. For example, if we select feature PayByItem, 

Ant’s command <fileset dir> in Figure 6.5 includes file selFeeItem.jsp into the custom 

product. The same is achieved by <adapt> placed under <select> in x-frame OnlinePay-

ment. Of course, Ant has more capabilities than XVCL’s <adapt>, but in this context only 

Ant’s asset configuration capabilities are used.  

In x-frames DBSchema and FeeUser, we see how XVCL’s parameters and <select> re-

place conditional compilation and commenting out feature code. For example, feature Init-

PayMode affects DBSchema and FeeUser and is managed by conditional compilation and 

commenting out technique. Manual modification of the conditional compilation or com-

ments has to been done to include/exclude features. In XVCL on the other hand, variation 

points are inter-lined and customizations are automated.   

7.3.4 Feature queries 

Variability management with single variability technique also has the merits that tools 

can be implemented to help developers analyze, reuse and maintain features and core as-

sets. To reuse or maintain features, developers must be able to locate and analyze all the 
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variation points at which features affect core assets and each other. Variation points for 

fine-grained features spread through many core assets. Using a single, uniform variability 

technique such as XVCL allowed us to implement query tools that can help in feature code 

location and analysis. 

Developers specify features of interest in FQL (Feature Query Language) [75,76]. The 

tool evaluates queries and displays the results. In FQL, we can ask queries such as “which 

base components are affected by feature f and at which variation points?”, “which features 

interact with feature f?”, “in which base components and at which variation points feature 

f1 interacts with feature f2?”. FQL is an SQL-like notation. We write queries in terms of 

XVCL elements. 

Figure 7.3 shows a query to locate all the variation points at which feature InitPayMode 

affects WFMS-PL core assets.  

declare x-frame x; option o; 

select x, o  

where o.f-names = “InitPayMode”  

           and Contains (x,o)  

Figure 7.3. Finding code of feature InitPayMode 

Figure 7.4 shows a query that finds all the variation points at which features IDCard and 

SSO interact one with another. 

declare x-frame x; option o 

select x, o 

where o.f-names=“*IDCard*SSO*” 

         and Contains (x,o) 

Figure 7.4. Finding feature interactions 

We refer the reader to [75,76] for details of query-based feature analysis. 
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7.4 Evaluation 

What is the impact of replacing multiple variability techniques with a single one on SPL 

productivity? To answer this question we conducted lab studies and collected inputs from 

Fudan Wingsoft Ltd. regarding the original WFMS core assets developed by Wingsoft us-

ing multiple variability techniques, and core assets in XVCL. Below, we comment on 

productivity during domain engineering (i.e., building and evolving core assets), and prod-

uct derivation.  

7.4.1 Domain engineering effort 

The original WFMS core assets were built by gradual re-engineering of existing WFM-

Ses. Core components and their interfaces were stabilized first, and then variability tech-

niques were used to prepare them for ease of customization, as described in chapter 6. 

While it is difficult to precisely determine the effort to build core assets, we obtained some 

relevant information from Wingsoft engineers who were involved in re-engineering. Se-

lecting suitable variability techniques for various features was not difficult for experienced 

engineers. Also, each step of applying variability techniques was quite simple. New staff 

joining the Wingsoft team had no difficulty to understand the variability techniques used in 

WFMS core assets and their role. Some problems could be observed during evolution of 

the WFMS core assets. When multiple variability techniques were used together to accom-

plish a variability task, it might not be clear how to find all the relevant variation points, 

and understand the exact interplay between variability techniques. Still, given the size of 

WFMS core assets and relatively small number of features, the solutions adopted by Wing-

soft team were considered to be adequate for the purpose.  

To get insights into the effort of replacing multiple variability techniques with XVCL, 

the author and one engineer re-engineered the original WFMS core assets into XVCL rep-

resentation. The engineer from Fudan University was a WFMS expert, also participating in 
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maintenance of the original WFMS core assets. It took two weeks for them to replace mul-

tiple variability techniques with XVCL in core assets for TMS subsystem. Applying 

XVCL was greatly simplified, as core assets were already in place, and they preserved 

most of the variation points. The main task was to work out overall XVCL controls and 

then to replace multiple variability techniques with XVCL commands at respective varia-

tion points.  

Evolution of core assets involves adding new features and modifying features. The ef-

fort to evolve core assets depends on the number of variation points involved in change, 

and the complexity of finding, analyzing, changing variation points and tracing the impact 

of change. While the number of variation points in both solutions is almost the same, we 

assume that evolution of XVCL solution is easier than evolution of the original solution. 

This is due to uniform treatment of features, formal links between all the variation points 

relevant to a given feature, and feature query system. 

7.4.2 Product derivation and maintenance effort  

Deriving new products includes reuse of existing features, modifying features, and im-

plementing extra features required by customers. As before, the effort of each such task 

depends on the number of variation points involved in change, and the complexity of find-

ing, analyzing, changing variation points and tracing the impact of change.  

Table 7.1 summarizes statistics relevant to product derivation effort. “Managed variation 

points” means variation points that have to be revised manually when reusing or modifying 

features. “Managed variation points” is a subset of all the variation points at which one 

feature affects core assets. For example, among core assets affected by feature InitPay-

Mode are Java files and DB schema files. To reuse this feature in the original WFMS-PL, 

all affected files need to be manually changed. In the XVCL solution, once we <set> value 

of XVCL parameter InitPayMode in SPC (Figure 7.2), all the customizations for feature 
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InitPayMode spark from there, can be found by feature queries, and automatically per-

formed by the XVCL Processor. Feature InitPayMode requires only 1 managed variation 

point.  

Table 7.1. Managed variation points 

 #vari-

ation 

points 

#managed 

variation 

points 

# files containing 

managed variation 

points 

Original WFMS core assets 275 126 31 

XVCL WFMS core assets 275 40 6 

As another example, core assets affected by feature Settlement include seven Java files, 

four JSP scripts, one configuration file, and one file containing DB schema. To reuse fea-

ture Settlement in the original WFMS-PL, we must change code at eight variation points 

handled by conditional compilation, comments and Ant. We have 13 variation points, and 

8 managed variation points. The location of managed variation points as well as relation-

ship among them is not formally captured, therefore must be communicated via external 

documentation or re-discovered when needed. In XVCL solution, for the same feature 

there are also 13 variation points, but only 3 managed variation points (XVCL parameters 

for Settlement and for two dependent features). All the variation points are inter-linked via 

relevant XVCL parameters <set> in SPC, and reuse of the feature is automated by the 

XVCL Processor. 

7.4.3 Other inputs from Wingsoft 

Comments on code readability. Both XVCL representations and the original final-

boolean conditional compilation and commenting out applied variability techniques to em-

bed fine-grained feature code in the code of core assets at relevant variation points. About 

30% of code in class FeeOrder, 20% of code in FeeInfo and 35% of code in FeeUser was 

managed by final-boolean conditional compilation and commenting out (the similar per-

centage in XVCL representations). Wingsoft engineers were concerned about readability 
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and maintainability of the code, but they were also pleased with XVCL’s ability to mark 

traces of customizations relevant to a given feature and ease of finding all the variation 

points relevant to a given feature.  

Comments on copyright protection. In the original WFMS core assets, feature code is 

embedded in core assets, but only some features are needed in a custom product. Wingsoft 

engineers often included unnecessary feature code into a custom product because of time 

involved in feature removal, and also because such code might be useful in future en-

hancements of a custom product. When extra functionality is contained in files that are 

released in readable form (e.g., JSP or XML configuration files), this practice can some-

times create copyright problems, as other customers may use extra functionality that was 

not meant for them and they did not pay for. Such cases happened in Fudan Wingsoft ex-

perience.  

In XVCL, unwanted features are never included into a custom product, as the job of fea-

ture manipulation is consistently and automatically done by the XVCL Processor. Other 

than protecting copyrights, such precise and flexible control over feature inclu-

sion/exclusion to/from custom products also matters in situations when we need to build 

highly optimized products, for example embedded software.  

7.4.4 Evaluation summary 

Overall, it was felt that for small-to-medium systems such as WFMS (around 50KLOC), 

adopting multiple variability techniques is still practical. Variability techniques used in the 

original WFMS are simple and known to most of engineers. They came into engineers’ 

mind naturally, could be applied on the fly during core asset design, with minimum disrup-

tion of conventional programming. Multiple techniques provide an elementary infrastruc-

ture for SPL support. Handled by the experienced engineers, the original WFMS core as-

sets serve well for the derivation of almost 100 product variants.  
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As the size of core assets and the number of variant features grows, and feature interac-

tions get more complicated, problems may show up.  Feature reuse and maintenance may 

become more complex because of the many variation points at which feature code needs 

be understood. Manual customizations become time-consuming and error-prone, even for 

skilled domain engineers. Then, it may be worth to consider migrating to a uniform varia-

bility technique such as XVCL.  

In XVCL, for a feature reused as-is we need small number of managed variation points, 

at which we <set> XVCL parameters for that feature and its dependent features (in SPC). 

All the variation points for a given feature are formally linked to XVCL parameter repre-

senting that feature. The ability, which locates and analyzes traces of customizations for 

each feature, helps developers reuse and modify features with less errors and unwanted 

side-effects as compared to working with the original WFMS core assets. Reuse is auto-

mated by the XVCL Processor. 

However, the adoption of XVCL is not without pitfalls, some of which XVCL shares 

with other variability techniques. Much of the code of features still remains tangled with 

core assets, affecting readability. This is a big problem, but so far alternative approaches 

based on specification-based variation points such as AOP [96] or FOP [18] failed to pro-

vide an effective solution to fine-grained feature management in SPLs [89, 90] (we com-

ment further in Section 7.5). XVCL’s feature queries can help developers to identify varia-

tion points relevant to various features. However, the actual feature modifications are not 

easy if the number of variation points is large. Training must be provided for the team to 

learn a new technique. The correctness of transformations from XVCL representation to 

code can be checked only during compilation.  
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7.5 Related Work 

Managing variability is the essence of software Product Line (SPL) practice [32]. Varia-

bility techniques are one of the enablers of reuse-based derivation of products from reusa-

ble core assets. Productivity gains due to reuse to much extent depend on the effectiveness 

of product derivation. The importance of having adequate variability technique fitting spe-

cific needs of given SPL is stressed by SPL proponents and practitioners [15,33,86,160]. 

Deelstra et al. [40] identify the weakness of variability techniques as one of the obstacles 

that impedes implementing reuse strategies via the SPL approach in some industries.  

Karhinen et al. [86] analyzed problems of managing variability solely at the implemen-

tation level, for example, using conditional compilation or configuration management 

tools. Their experiences from Nokia projects indicate that managing features with #ifdefs 

while technically feasible, is inherently complex, error-prone and does not scale. They 

proposed to use design means to manage variability. Similar problems with conditional 

compilation were also reported in FAME-DBMS [143]. 

The architectural/component approach to SPL applies design means to manage variabil-

ity, in the attempt to modularize features as far as this is possible. Still, in most of applica-

tion domains many features remain fine-grained, with their impact scattered through core 

assets [86,90,182]. Such fine-grained feature must be managed with additional variability 

techniques such as described in Section 6.3 and Section 7.2. 

Industrial tools such as GEARS [190] and pure::variants [199] could certainly manage 

the WFMS SPL. However, we do not have hands-on experience with those tools or specif-

ic studies to provide detailed comparison. GEARS can handle configurable software arti-

facts – such as source code, test cases and requirement documents. Guided by the product 

feature profiles, which model optional and varying feature for each product, its configura-

tor automatically assembles and configures the software assets. Pure::variants captures the 
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problems (feature model) and the solutions (family model, which records the customized 

feature models for product variants) separately and independently, to reuse the solutions 

and of the feature models in new projects. Apart from the possibilities of the programming 

languages and tools in the original product, to generate the product variants it also provides 

additional possibilities like AspectC++ or PatternTransformer.  

The research community proposed Feature-Oriented Programming (FOP) [18] as an ap-

proach to feature management for SPL reuse. FOP is based on feature modularization, and 

a mechanism for feature composition into a base program. One of the motivations of FOP 

is to support SPLs. Mixin technique [154] has been widely used for FOP, with AHEAD 

[16] being its most advanced realization. AHEAD provides powerful solution for feature 

management in many situations, but is not geared for fine-grained features.  

A number of authors also proposed Aspect-Oriented Programming (AOP) [96] as a vari-

ability technique. Using AOP, features are modularized as aspects (advices and introduc-

tions) and then weaved (feature composition) into a base program. A recent study has re-

vealed difficulties in using AspectJ as a FOP realization technique [89].  Kästner and his 

colleagues concluded that the difficulties are attributed to the essential complexity of Fea-

ture-oriented refactoring of legacy applications and the fragility of Aspect’s point-cut. Fur-

thermore, readability and maintainability of the resulting code is undermined by the basic 

capabilities of AspectJ, even not with conditional extensions or homogeneous extensions. 

In view of the above findings, Kästner et al. [90] relaxed the requirement for feature 

modularization, and revisited the idea of keeping feature-related code together with the 

code of core assets. They proposed a tool called CIDE (Colored IDE) to visualize feature 

code in core assets. CIDE helps programmers find and manipulate feature code. As CIDE 

works on an abstract syntax tree, it cannot handle some fine-grained feature impacts. The 

granularity of CIDE is not as fine as that of C/C++ preprocessors. For example, according 
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to one return type per method in the AST syntax, developers cannot specify two alternative 

result types of a method. In contrast to CIDE, XVCL uses programming language-

independent representations to achieve similar goals.  

In CIDE, annotations may be validated to preserve language rules, while XVCL <se-

lect> commands may be placed in arbitrary program points, leading to syntactic errors in 

the generated code. Aligning XVCL representation with constructs of the underlying pro-

gramming language is possible and can alleviate some problems, but aligning is not en-

forced by the method. In addition, in some cases XVCL deliberately breaks such alignment 

for better flexibility in feature management. Validating meta-level transformations is the 

strength of CIDE, while simplicity, language-independence and the ability to handle any 

variability situations are strengths of XVCL. 

Apel et al. [5] further proposed a framework and tool chain, FEATUREHOUSE [194], which 

is a descendant of AHEAD program generator. Similar to XVCL, FEATUREHOUSE can serve 

as a uniform variability technique and support the composition of several different types of 

software artifacts. Yet different from XVCL’s mixing of meta-level commands and arti-

facts, it uses the superimposition technique FSTCOMPOSER, which is based on a general 

model of the structure of software artifacts, called the feature structure tree (FST). Based 

on the superimposition or merging of FSTs, the corresponding artifacts are changed ac-

cordingly via the support of FEATUREHOUSE.  

In FEATUREHOUSE, in virtue of the FST, the direct annotation in artifacts is avoided and 

the readability is not undermined. The trade-off is that it has to integrate the various adapt-

ers and computation rules for the different languages. Since no annotation inside the arti-

facts for feature code at arbitrary granularity, we find that FEATUREHOUSE has to adopt 

hook a method to deal with the fine-grained feature impact. Compared with XVCL, 
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FSTCOMPOSER in FEATUREHOUSE is flexible at supporting additional features. It cannot real-

ly change an existing fragment. But XVCL is flexible at in what can be variable. 

7.6 Summary 

This study was conducted jointly by Fudan Wingsoft Ltd., a software company based in 

Shanghai, researchers at Fudan University and National University of Singapore (NUS).   

In this chapter, as a remedy to the scalability problem of multiple variability techniques, 

we presented an approach based on a single, uniform variability technique of XVCL, capa-

ble of managing both fine-grained features, as well as features whose impact requires cus-

tomizations at the product architecture/component level. We evaluated the XVCL-based 

product line representation in lab experiments, and in Fudan Wingsoft Ltd, a company that 

initially used multiple variability techniques and then applied XVCL.  

Overall, for small-to-medium systems such as WFMS (around 50KLOC), multiple vari-

ability techniques are still practical. Handled by experienced engineers, the original WFMS 

core assets serves well for the derivation of almost 100 product variants. Common variabil-

ity techniques can be applied with minimum disruption of conventional programming. 

Multiple mechanisms provide an elementary infrastructure for SPL support.  

However, as the impact of features on core assets accumulates and gets more complex, 

understanding and synchronizing multiple, poorly compatible variability techniques may 

become difficult. We may have much manual, repetitive and error-prone work to do during 

reuse and evolution of core assets and features.  

This weakness of multiple variability technique approach is the strength of a uniform 

variability technique approach such as XVCL. XVCL captures customization knowledge 

in human-readable and machine-executable (by XVCL Processor) form. Therefore, feature 

reuse is simplified and automated. Knowledge of prior customizations helps in designing 

customization required by new features during SPL evolution. However, the design of re-
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usable core assets with a uniform variability technique requires more skill and effort. Both 

common variability techniques and XVCL keep fine-grained feature code embedded in 

core assets which hampers readability. XVCL tried to alleviate this problem with feature 

queries that navigate developers to all the variation points relevant to features. This is only 

a partial remedy to feature scattering. 
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8 Discovering and Managing Variability among Berkeley DB 
Product Variants 

We have shown how the problems of discovering and managing commonali-

ty/variability (see RQ1-5 in Section 1.1) are resolved in Chapter 3 - 7. For each of these 

problems, we evaluated the corresponding solution separately on different systems to make 

sure the solution is generally applicable.  

In this chapter we conduct an overall evaluation of our approach to reengineering legacy 

software product variants into Software Product Line. The techniques we used in Chapter 3 

- 7 are adopted to identify and manage the commonality, and variability among the product 

variants of Berkeley DB (BDB). Based on this, we can make claim that the solutions men-

tioned in Chapter 3 - 7 can integrate seamlessly to serve as a complete and systematic ap-

proach to reengineering legacy software product variants into Software Product Line. 

8.1 Generating Input (Product Variants) for the Overall Approach  

To conduct a controlled experiment on the application of our overall approach, a work-

bench which server as SPL to configure and generate the product variants is required. In 

this section, we introduce the target system (of the product variants) on which we evaluate 

our overall approach. We also discuss the workbench which has the ground truth on the 

knowledge of the variability and commonality of the target system. Finally, we introduce 

the generation of several product variants from the workbench.  

8.1.1 The target system 

The target system we choose for our case study should satisfy the following require-

ments: 

• It should be at least medium size, which can prove that our overall approach is scalable 

for real industrial software products.   
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• A well-known system is preferred, which can be easy to be understood and compared 

with similar work by other research groups.  

• The most important is that this system should be migrated into an SPL, and we have 

the knowledge of the variability and commonality in requirements and implementation. 

Furthermore, the variability techniques or SPL architecture should be deployed by the SPL 

to manage the variability.  

According to the above requirements, the WFMS we used for case study in Chapter 3, 6 

and 7 is not suitable. It is not public available, and the documentation on traceability be-

tween feature and code implementation for the existing product variants is not clear. Final-

ly, we choose the system Berkeley DB (BDB) Java Edition [189] for the case study of our 

overall approach.  

With a history of around 25 years, BDB was initially a part of the transition (1986 to 

1994) from 4.3 Berkeley Software Distribution (BSD, sometimes called Berkeley Unix) to 

4.4BSD. Now it has evolved into a software library that provides a high-performance em-

bedded database for key/value data.  

Berkeley DB Java Edition is an open source database engine, entirely implemented in 

Java. It can work as a standalone database (run as .jar file), or be embedded as a third party 

library in the Java application. Instead of being a relational engine, it provides the embed-

ded storage, with open interfaces designed for programmers, not for DBAs. 

The size of BDB Java is 84 KLOC, and the family of different BDB editions has been 

studied in [5,88,89,91,92,93,94,110,156]. Originally BDB Java was a single application, 

but Kästner and his colleagues have reengineered it as a Software Product Line (SPL) by 

adopting proper variability techniques such as AspectJ [96], CIDE [191] or FEATUREHOUSE 

[194]. Thus, the BDB Java satisfies the three requirements mentioned above, and we eval-
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uate the overall approach on several product variants of BDB Java system generated by the 

variability techniques applied on this BDB-SPL.  

SPL :  [Logging] ConcurrTrans Persistance [Statistics] BTree Ops [Memory_Budget] :: generat-
edSPL ; 

 

Logging : [Logging_Finer] [Logging_Config] [Logging_Severe] [Logging_Evictor] [Log-

ging_Cleaner] [Logging_Recovery] [Logging_DbLogHandler] [Logging_ConsoleHandler] [Log-

ging_Info] Logging_Base [Logging_FileHandler] [Logging_Fine] [Logging_Finest] :: _Logging ; 

 
ConcurrTrans : [Latches] [Transactions] [CheckLeaks] [FSync] :: _ConcurrTrans ; 

 

Persistance : [Checksum] IIO [Environment_Locking] Checkpointer [DiskFullErro] [File-

HandleCache] IICleaner :: _Persistance ; 

 

IIO : [SynchronizedIO] IO :: OldIO 
 | NIOAccess [DirectNIO] :: NewIO ; 

 

NIOAccess : ChunkedNIO 
 | NIO ; 

 

Checkpointer : [CP_Bytes] [CP_Time] [Checkpointer_Daemon] :: _Checkpointer ; 
 

IICleaner : [CleanerDaemon] Cleaner [LookAHEADCache] :: _IICleaner ; 

 
BTree : [INCompressor] [IEvictor] [Verifier] :: _BTree ; 

 

IEvictor : [Critical_Eviction] [EvictorDaemon] Evictor :: _IEvictor ; 
 

Ops : [DeleteOp] [RenameOp] [TruncateOp] :: _Ops ; 

 
%% //Semantic Dependencies 

 

Evictor or EvictorDaemon or LookAHEADCache implies Memory_Budget; 
Critical_Eviction implies INCompressor; 

CP_Bytes implies CP_Time; 
DeleteOp implies Evictor and INCompressor and Memory_Budget; 

Memory_Budget implies Evictor and Latches; 

TruncateOp implies DeleteOp; 
Verifier implies INCompressor; 

 

Figure 8.1. The grammar of feature diagram of BDB Java 

[89] shows the feature diagram of BDB Java. In this dissertation, we show its grammar 

in Figure 8.1 (see Section 2.1.2 about the grammar of feature diagram), as the grammar is 

more formal and clearer than the feature diagram. We highlight the variant features in the 

bold font in Figure 8.1, from which we can see BDB Java has around 50 features, inclusive 

of around 40 optional or alternative features.  

Some important information about feature particulars is listed as follows:  

• Number of features affecting over 10 class:  9 
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• Number of features affecting over 5 class (5 is exclusive): 7 + 9 

• Number of features with mixed-grained impact:  about 30  

Note that: mixed-grained impact means the duality of the fine grained impact (at state-

ment or even expression level) and the coarse grained impact (at method level or even 

class level). The interested readers can refer to [89,90] for more about feature particulars.   

8.1.2 The usage of CIDE 

CIDE (Colored Integrated Development Environment) is a software product line tool to 

manage the variability inside the core assets. It is annotative approach to com-

pose/decompose the feature code [191] (also see Section 7.5). Nevertheless, it follows the 

paradigm of virtual separation of concerns, which avoids the #if-def style annotation or 

the physical modularity of the feature code. Unlike using the #if-def block to enable or 

disable the feature code, in Figure 8.2 CIDE uses color to highlight the feature code and 

enable/disable it on the AST according to the selection of the corresponding feature.  

CIDE also allows the users to generate the product variant by selecting the desired fea-

tures and deselecting the unwanted features via its UI interface of product generation. For 

the selected features, CIDE applies the constrain checking to assure the generated product 

is valid.   
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Figure 8.2. Feature code highlighting in CIDE 

CIDE provides the knowledge of the feature to code traceability in the hovered box in 

its ColoredJaveEditor in Figure 8.2.  It also has two kinds of views, views on a feature and 

views on a variant for ease to trace the feature among several products or a product with 

several features [88].  

Although CIDE has the above merits in easy usage and complete knowledge of feature 

to code traceability, the major reason we prefer CIDE than other variability tools like As-

pectJ and FEATUREHOUSE is that the source code managed by CIDE is most close to the 

original source code.  To get the physical modularity for the variant features (especially 

those fine-grained features), AspectJ has to adopt the Aspect’s wormhole pattern [106], 

and FEATUREHOUSE has the similar placeholder (hook method) inside a method to insert the 

fine-grained feature’s code via calling the hook method [5].  

8.1.3 Randomly generated product variants 

To evaluate our overall approach, a set of similar but different product variants are 

needed. With the capability of variability management provided by CIDE, we can custom-

ize the feature selection for any new generated product. We adopt the random strategy for 

the selection of variant features. Due to the large percentage of invalid and meaningless 
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feature combination, we randomly generate over 40 products, and choose several repre-

sentative ones. The random generation strategy follows the heuristic rules below: 

• The different representative ones should have the different major features. The ma-

jor features include feature Transactions, Statistics, [Evictor, Latches, 

Memory_Budget] (we use “[]” to denote the mutual dependency among features), 

DeleteOp, Incompressor and Verifier. 

• The feature dependency listed in Figure 8.1 (or in [89]) must be satisfied for each of 

the generated variants. 

• The minor features should be uniformly distributed in these representative products, 

and any of the variant features should appear at least once in at least one product. 

Table 8.1. The feature table with renamed features for product variants 

Feature Product 1 Product 2 Product 3 Product 4 Product 5 

Base code      

Logging_Finer      

Logging_Config  

  
(Log-

ging_Custom

ize) 

   

Logging_Severe      

Logging_Evictor 
 

(Logging_ 

Expel) 

    

Logging_Cleaner  

  
(Log-

ging_Sweepe

r) 

   

Logging_Recovery       

Logging_DbLogHandler       

Logging_ConsoleHandler       

Logging_Info       

Logging_FileHandler       

Logging_Fine       

Logging_Finest       

Latches   (Locks)     

Transactions  
   

(Processing) 

  

CheckLeaks       

FSync       

Checksum  

     
(CheckTotali-

ty) 

SynchronizedIO       

IO       
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ChunkedNIO       

NIO  

     
(NewIO) 

DirectNIO      

Environment_Locking  

    
(Circumstanc

stanc-

es_Locking) 

 

CP_Bytes       

CP_Time       

Checkpointer_Daemon       

DiskFullErro       

FileHandleCache       

CleanerDaemon       

LookAheadCache  

    
(LookFor-

wardCache) 

 

Statistics  

     

(Datum) 

INCompressor       

Verifier    (Testify)    

Critical_Eviction       

EvictorDaemon       

Evictor  
 

(Expel) 

    

DeleteOp  

   
(ClearOp) 

  

RenameOp       

TruncateOp  

    
(DropOp) 

 

Memory_Budget       

# Total Features 19 17 22 26 20 

After the random generation of over 40 product variants, we still need to pick up several 

representative product variants for evaluation as the 40 products are too many and with 

unnecessary repetition. To simulate the real context of a software family, we filter those 

products with very little variant features or almost all variant features. Although the BDB 

Java allows the thousands of valid configurations of feature selection, in our preliminary 

evaluation of the overall approach we plan to use 5 product variants (we call them P1, P2, 

P3, P4 and P5 in Table 8.1). As WFMS maintains 5 or 6 major versions of its product to 

reduce the cost [182], a minimum of 5 representative products could be the starting point 

for us to analyze and manage the variability among them.   

We listed the feature table of the 5 product variants for the evaluation in Table 8.1. For 

product 1, it has no major feature Statistics, DeleteOp, Incompressor and Verifier. For 
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product 2, it has no major feature [Evictor, Latches, Memory_Budget] and DeleteOp. For 

product 3, it has no major feature Verifier, and this product is comparatively the most 

comprehensive one. For product 4, it has no major feature Transaction. Finally, the prod-

uct 5 has no major feature DeleteOp, Incompressor and Verifier.  

For the tree-like feature structure, namely Product Feature Models (PFMs) of these five 

product variants, we also applied the random renaming as we did in Section 3.4.2.1. As 

shown in Table 8.1, after renamed, the new feature’s name is in the bracket. We use the 

WordNet [50] to find the synonym for renaming, by which we can show that the feature 

matching among product variants does not rely on string matching.  

8.2 Analyzing Variability among Product Variants by the Sandwich 
Approach 

In this section, we adopt the techniques introduced in Chapter 3 to find the variability 

among the requirements of the product variants generated in previous section 8.1. We also 

apply the clone differencing techniques in Chapter 4 to recover the variability among the 

implementation of these product variants. Finally, we map variability at the requirement 

level to the variability at the implementation level by using techniques in Chapter 5.  By 

the above steps, we can have a comprehensive view on how the product variants are differ-

ent from each other in requirements and implementation.  

8.2.1 Understanding requirement variability in BDB-Java product variants 

We adopt the technique used in Section 3.3 to compare the PFMs of these five product 

variants. Briefly, we compare these PFMs based mainly on the structural information and 

slightly on the lexical similarity of feature name. As we have the ground truth of features 

contained in each product in Table 8.1, we can easily compare our reported results with the 

actual results in Table 8.2. 
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Table 8.2. The actual and expected results of PFMs comparison for BDB-Java product 

variants 

Left  

vs. 
Right 

The Actual Results The Expected Results 

#Valid Over-
lapped Fea-

tures 

# Valid Left 
Unique 

Features 

# Valid Right 
Unique 

Features 

#Overlapped 
Features 

#Left Unique 
Features 

#Right Unique 
Features 

P1 vs. P2 4 11 10 6 13 11 

P1 vs. P3 7 8 11 9 10 13 

P1 vs. P4 12 5 12 13 6 13 

P1 vs. P5 4 10 11 7 12 13 

P2 vs. P3 5 7 12 8 9 14 

P2 vs. P4 10 6 13 11 6 15 

P2 vs. P5 10 5 8 10 7 10 

P3 vs. P4 11 9 13 12 10 14 

P3 vs. P5 10 9 7 11 11 9 

P4 vs. P5 11 13 7 12 14 8 

In Table 8.2 which lists the 10 times of pair-wise comparison for 5 products, under the 

column “The Expected Results”, the column “#Overlapped Features” refers to the number 

of the features contained in both products, “#Left Unique Features” means the number of 

the features only exists in the left product. Similarly, “#Right Unique Features” means the 

number of the features only exists in the right product. Under the column “The Actual Re-

sults” we show the valid results from the actually reported candidate results. Simpler than 

the result type of the tuple                namely        used in Section 3.3.4 (see 

more result types like Split and Merge), for these 5 product we only define three result 

types          ,               and                . The reason is that there is 

not complicated evolution among these products such like splitting and merging features. 

Thus, we define type   for matched features,     for the left unmatched feature (or the 

left unique feature) and     for the right unmatched feature (or the right unique feature).  

As shown in Table 8.2, the overall accuracy of the reported results is good. Averagely, 

we can recover over 80% correct results. Furthermore, there are some interesting observa-

tions as follows: 

Observation 1: if two products share more overlapped features, usually the results may 

be better. For example, product 1 and 4 share about 50%-66% common features, and the 
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results have only one missing                    (see Table 8.1), one missing 

                            and one missing                        .  

The reason is that the same feature Locks/Latches have different structural or neighbour 

information and the lexical similarity is not high enough. Thus, our algorithm fails to 

match them. But our algorithm indeed considers the actually different features Disk-

FullErro and FileHandleCache the same, since these two features have very alike matched 

neighbour structure. Actually, the same feature of Environment_Locking in product 1 and 

Circumstances_Locking in product 4 is matched due to the above reason. The intuition be-

hind this observation is that more overlapped common features between two products usu-

ally lead to the more similar structure between their PFMs, which further help in our 

matching algorithm relying mainly on structural information.  

Observation 2: if two products share not many overlapped features, usually the results 

may be still acceptable. For example, product 2 and 3 share about 33% common features. 

Still, the results miss                     

                   ,                              

and                                               . The first two of the 

above three missing pairs are due to renaming. And the last missing pair is because of the 

unmatched structure of feature Checkpointer_Daemon and its neighbors. The results also 

have 2 left unmatched features and 2 other right unmatched features. The reason is that our 

algorithm mistakenly matches <NIO, ChunkedIO> as a pair, and <RenameOp, ClearOp> 

as a pair. But actually they are four distinct features. The explanation for this observation is 

that without structural similarity the comparison can only rely on lexical similarity. Since 

there is no intensive renaming among products, the lexical similarity still achieves the ac-

ceptable accuracy for the result.  
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Note that feature Logging_Finest in product 2 will not be matched with feature Log-

ging_Fine or Logging_Finer in product 3, although their names are similar and have the 

same parent feature. Actually, we apply some checking between the comparisons. In Table 

8.1 product 1 has Logging_Finer and Logging_Finest at the same time, and product 4 has 

Logging_Fine and Logging_Finest at the same time. Thus, we can infer that these three 

features are distinct features, not renamed features.  

Note that the above results are from direct comparison of tree-like PFMs. If we take the 

feature descriptions into accounts, the results may even be improved to a completely cor-

rect level.  

8.2.2 Understanding implementation variability in BDB-Java product variants 

To understand the variability at the implementation level, we adopt the cloned detection 

and software differencing techniques. The cloned detection technique is used to find the 

coarse-grained feature code, while the differencing technique we introduced in Section 4.4 

is mainly used to find the fine-grained feature code.  

The coarse-grained feature code means the feature relevant code that is at the file or 

method level. If a class/method is not reported as the clone class/method between two 

product variants, it is usually because this class/method is related to a feature only support-

ed by one product variant. In the scenario of comparing variants P1 and P2, the class 

FSyncManager in P1 is not reported as a clone class with any class in P2. FSyncManager 

is the relevant code of feature FSync, which is supported by P1 and not by P2. Except 

those getter and setter methods, none of methods in FSyncManager is reported as a clone 

method with any method in P2. 

The fine-grained feature code means the feature relevant code that is at the code block, 

statement (and branch) or expression level. Sometimes, the impact of a fine-grained feature 

may only exist at the statement or expression level. For example, the feature Log-
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ging_ConsoleHandler supported by P5 only has the impact at the statement and branch 

level. As this logging feature is a crosscutting concern to many functions, this feature’s 

code is scattered in different methods. Since one missing statement or branch does not 

change the result of clone detection (it may create gapped clones, which are also clones, 

see Section 2.2.1), feature Logging_ConsoleHandler ‘s code are scattered in clones. By 

comparing these instances of gapped clones, we can identify the feature code. 

Actually, the differences between two product variants come from two parts: 

• The variant features that are only supported by one of the two compared product vari-

ants.  For any two compared product variants, actually we have found the differences at the 

feature level in In Table 8.2, from which we can know the information like       , the set 

of features that are in P1 not in P2 (P1-P2). Thus, the relevant feature code of features in 

       are in       , the set of code fragments that are in P1 not in P2 (P1-P2).  

• The variant features that are supported by both product variants. Even if a feature is 

supported by two product variants, more often than not it may still have the different fea-

ture code. The reason is because of the feature interaction or feature dependency. For ex-

ample, P1 and P3 both have feature Latches, but they have the different feature code of 

Latches due to feature interaction. As P3 supports feature Statistics and P1 does not, the 

code relevant to both Latches and Statistics is supported in P3, not in P1.  

Note that the differences that come from the above two parts may be at any granularity 

level. In Table 8.3, we show the implementation differences between any pairs of these 5 

product variants.  

The results show that the differences are mainly the fine-grained feature code. This phe-

nomenon is consistent with the previous literatures [90,161]. The BDB Java has many fine-

grained features [90], and this can be generalized to the point that many concerns (features) 
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are usually tangled and scattered across the system [161]. That is the reason why orthogo-

nal separation concerns to design all features as coarse-grained is not feasible.  

Another important observation is that a small size of a feature difference set may not 

lead to a small size of an implementation difference set. For example, the feature differ-

ence set        (see #Right Unique Features at P2 vs. P5 in Table 8.2 ) has only 10 vari-

ants inside, but it contains over 100 additional methods, around 1000 addition statements 

and 100 additional branches in       . We manually checked and found that around half of 

these implementation differences are due to a major feature Latches. Similarly, a large size 

of feature difference set like        (see #Right Unique Features at P3 vs. P4 in Table 8.2) 

does not necessarily have a large size of   implementation difference set. It is because none 

of the 14 features in        is a major feature. 

Table 8.3. The implementation differences among product pairs 

 #Additional 

Classes 

# Additional 

Methods 

# Additional  

Blocks 

#Additional 

Statements  

#Additional 

Branches 

#Additional 

Expressions 

P1 – P2 17 106 47 1036 106 23 

P2 – P1 18 82 20 429 45 47 

P1 – P3 0 15 12 137 9 1 

P3 – P1 13 98 23 480 50 54 

P1 – P4 8 53 29 172 17 56 

P4 – P1 20 113 21 475 46 57 

P1 – P5 2 29 16 179 10 6 

P5 – P1 15 81 16 383 32 53 

P2 – P3 5 25 6 140 12 2 

P3 – P2 18 132 44 1090 114 31 

P2 – P4 7 43 32 181 21 55 

P4 – P2 19 127 51 1091 111 32 

P2 – P5 5 32 10 171 18 0 

P5 – P2 18 108 37 982 101 23 

P3 – P4 9 59 34 246 30 58 

P4 – P3 8 36 15 206 18 6 

P3 – P5 3 57 17 231 28 13 

P5 – P3 3 26 6 92 9 7 

P4 – P5 7 68 21 276 23 12 

P5 – P4 8 60 29 177 16 58 

8.2.3 Understanding implementation variability in BDB-Java product variants 

Consider a simplified illustrative example shown in Figure 8.3(a). The product variant 

PA supports feature f1, f2 and f3, implemented by code units I1, I2 and I3 respectively. PB 

supports f1, f2’ (renamed or modified of f2) and f4, implemented by I1, I2’ and I4 respective-
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ly. PC supports f1, f3’ and f5, implemented by I1, I3’ and I5 respectively. f1 exemplifies basic 

features that are commonly available in product variants, such as core algorithms or utility 

functions for implementing other advanced features.    

 

Figure 8.3(a). Feature location in product variants 

 

Figure 8.3(b) Results of 

differencing and FCA 

analysis 

Figure 8.3(c). Features 

and implementaiton 

partitions for IR 

Our approach introduced in Section 5.3 effectively incorporates Formal Concept Analy-

sis (FCA), and IR techniques.  As we found the feature and implementation differences 

among these variants, Figure 8.3 (b) shows the results of applying FCA to the three prod-

uct variants shown in Figure 8.3(a). This essentially generates five partitions of features 

and their corresponding implementations as shown in Figure 8.3(c). Finally, given a fea-

ture partition and the corresponding code-unit partition, Latent Sematic Indexing [41] (LSI) 

is used to identify code units that implement a specific feature [118, 119, 134]. 
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For the feature differences we identify in Section 8.2.1, after we consider the feature de-

scriptions, we can manually validate the differences to get completely correct results. From 

these trustable feature differences, we can apply FCA to them to separate single feature, 

which makes the usage of information retrieval as an optional step. For the FCA on BDB 

Java, 41 variant features are the attributes, 20 difference sets are the objects. Finally, FCA 

will generate 136 concepts.  

As can be seen in Figure 8.4, we may mainly concern with the 23 concepts that own at-

tributes (features). 11 out 41 features can be ideally separated into a partition with only one 

feature. For example, for feature Verifier, which exists in P2 and P4, we get the intersec-

tion of       ,       ,       ,       ,       ,        in Figure 8.5. Intuitively, the above 

intersection means that the code of feature Verifier should exist in P4, not P5 or P3 or P1, 

and P2, not P5 or P3 or P1. Thus, by intersecting these code difference sets, we can sepa-

rate feature Verifier into a minimal equivalent partition (see Section 5.3.4).  Then consider-

ing the acceptable size of this partition, it is not laborious to identify which code fragments 

belong to feature Verifier and which code fragments are feature interactions existing in P2 

and P4. 

 

Figure 8.4. The FCA for the features of 5 product variants 
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There are also 8 concepts (partitions) with 2 attributes (features). Actually, in this BDB 

Java case study, there is no concept (partition) with many features inside like that in the 

Linux product family (see Section 5.5.3). Therefore, it is not necessary to apply infor-

mation retrieval technique to the feature and the corresponding partition, as the code cor-

pus of the partition is not large enough for information retrieval to perform well.  

The drawbacks of our sandwich variability-recovery approach are that the feature de-

pendency and interaction are still hard to identify from the implementation level. First the 

product variants may not cover all the code affected by feature interactions. Besides, our 

current approach to find the feature interaction is still in an ad-hoc way.  

 

Figure 8.5. Separation of single feature by intersecting code difference sets in Concept 

Explorer 

8.3 Managing Variability in B-DB by XVCL 

After we identify those variant features in requirements as well as their corresponding 

code, it is desired to design reusable, customizable components and plug in the variant fea-

tures as the users wish. In this section, we first briefly compare XVCL with preprocessing. 
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Then we explore the application of XVCL as a uniform variability technique for the code 

differences of BDB Java variants found in Section 8.2.  

8.3.1 Preprocessing as a Variation Mechanism 

It is useful to categorize features that differentiate product variants as follows: Fine-

grained features affect many base components, at many variation points; coarse-grained 

features can be contained in base components that are included into a custom product that 

needs such features; mixed-grained features involve both fine- and coarse-grained impact.  

Coarse-grained features can be easily accommodated into product variants with #in-

clude directives placed in base components, or using a build tool such as make. Fine-

grained feature code is kept together with the base code under conditional compilation di-

rectives (e.g., #ifdef). Each variation point in the base code (i.e., point affected by some 

features) corresponds – in more or less explicit way - to a specific combination of features 

that affect that point.  

In our model preprocessing notation, <select-option> commands mark variation points. 

Suppose features A, B, C and D can be optionally included into product variants, members 

of some software Product Line. Suppose further that Base_X and Base_Y are two reusable 

base components (source files) for that Product Line. Feature A interacts with Base_X as 

shown in Figure 8.6, Base_X contains <select> command with <option A> that marks that 

variation point. This is a simple case of a feature affecting the base code without interac-

tions with other features. Such cases are also easily handled by preprocessing directives 

#ifdef.  

The above solution is put to work by means of parameters and expressions. Each feature 

is represented by a parameter. For example, parameter a represents feature A, b – feature 

B, and so on. The top-most SPeCification file, SPC, <set>s values of parameters and in 

that way specifies which features we need in a product variant. In Figure 8.6, we wish to 
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select features A and D, so parameter a is <set> to “A” and d is <set> to “D”. Parameters 

for unwanted features are <set> to null string “ ”. Notation @v means a reference to varia-

ble v. 

To derive a product variant that implements selected features, base components are pro-

cessed starting with SPC, in depth-first order via <adapt> links. During this traversal, the 

Processor interprets commands and emits code contained in base components to the output 

files, just as any preprocessor does. <adapt> is analogous to cpp’s #include.  

During processing, values of parameters propagate down to the <adapt>ed base compo-

nents, and are used to identify <option>s relevant to selected features. Features that affect 

a base component at a given variation point are identified by parameter v that controls <se-

lect>. In SPC of Figure 8.6, we selected features A and D, so in Base_X, parameter v is 

<set> to “A”, and code under <option A> is included into the product variant.   

SPC  // specifies feature selection for a PL member

<set a = “A” />

<set d = “D” />

<set b = “”/> <set c = “”/> <set e = “”/>

<adapt BaseManager/>

BaseManager

<adapt Base_X />

<adapt Base_Y />

<adapt any other base code files />

Base_X

public class Base_X {

…some code for Base_X

<set v = @a /> 

<select v >  // variation point at which feature interaction 

// occurs

<option A> code for feature A

<otherwise> If feature A is not selected, do something else

</select>

…some code for Base_X

<set v = ..>

<select v > // another variation point in Base_X

Base_Y

public class Base_Y {

…some code for Base_Y

<set v = @a+@c+@d /> 

<select v >  // variation point at which feature interaction 

// occurs

<option A> code for feature A

<option A+D> code for feature interaction A and D

<option A+C+D> code for feature interaction A, C and D

<otherwise>

</select>

… some code for Base_Y

<set v = .. >

<select v > // another variation point in Base_Y

<adapt>

<adapt>
<adapt>

 

Figure 8.6. Managing fine-grained features in base components with preprocessor 
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Base_Y includes a variation point with interacting features A, C and D. As we selected 

features A and D, parameter v is <set> to “A+D” in Base_Y, where the value of v is de-

fined as concatenation (operator ‘+’) of values of parameters a, c, and d.  

Effectively, each variation point is clearly marked with names of features that affect that 

point, and interact at that point. All the variation points that are associated with a certain 

feature are inter-linked by means of parameters with global scope. 

Our <select> is analogous to the #if .. #elif .. #else .. #endif directive. It is functionally 

equivalent to #ifdef, but avoids problems of nested #if’s analyzed in [155]. <set> com-

mand is analogous to the #define directive except that values propagate globally across 

base components. In cpp, parameters set at the command line also propagate to all the pre-

processed files. Expressions at <option>s may not have direct counterpart in some prepro-

cessing systems, but this is a minor extension, and can be easily implemented to any pre-

processor. 

As not all the combinations of features can be legally selected for any given custom 

product, it is a good practice to validate a given feature selection before the customization 

process starts. Such validation can be done using formal methods Z, Alloy and OWL DL 

[159,167].  

8.3.2 Preprocessing problems in Berkeley DB 

We use Berkeley DB to illustrate common preprocessing problems in handling product 

variants. Many features can be optionally included into custom DB systems. In that sense, 

Berkeley DB forms a Product Line, whose members implement different selections of fea-

tures. Berkeley DB designers chose to use runtime mechanisms to accommodate required 

features into a custom DB system. In earlier studies, Berkeley DB was converted into a 

Product Line in which features were managed at the construction time (i.e., before execu-
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tion) with AspectJ [89] and CIDE [90]. In our study, we also managed features at the de-

sign-time with a preprocessing notation described in Section 8.3.1.  

8.3.2.1 Overview of our study 

The Berkeley DB consists of five subsystems, namely access methods to create and ac-

cess the database, B
+
-tree to store data as key/value pairs, caching and buffering to in-

crease database performance, concurrency and transaction to handle concurrent and roll-

back facility, and a persistence layer. These five subsystems are designed with 232 base 

components that form an architecture shared by all the DB system variants. Two of those 

files, namely FileProcessor, and LogBuffer are shown in Figure 8.7. In our experiment, 

we did not change the original design of the Berkeley DB. 

38 features such as IO, LookAheadCache or DiskFullHandler can be optionally 

included into custom DB system variants. Berkeley DB designers used runtime mecha-

nisms to configure features into custom DB products. For example, settings for 

LookAheadCache feature are stored in an environmental property file (called 

je.properties), and developers can change this file to include and re-configure the behavior 

of this feature. 
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SPC

// Set of all features in the problem space
<set all_features=“IO,EvcitorDaemon,LookAheadCache, 

DiskFullHandler,Evictor,MemoryBudget ..."/>

// Create meta-variable for each feature and initialize it to empty string

<while all_features>

<set @all_features=""/>

</while>

// List of features selected to generate a PL variant
<set selected_features=“IO, LookAheadCache, DiskFullHandler, Evictor"/>

// Set the meta-variable for selected features to its own string

<while selected_features>

<set @selected_features=@selected_features/>

</while>

<adapt BaseManager/>

BaseManager

<adapt x-frame="FileProcessor"/>

<adapt x-frame=“ LogBuffer"/> 

…

<set v=@Evictor/>

<select v> 
<option Evictor>

<adapt x-frame=“Evictor"/>

…

</select>

FileProcessor

public class FileProcessor .. {

...

<set v = @LookAheadCache/>

<select v>

<option LookAheadCache >

// LookAheadCache -related code

</select>

...

}

LogBuffer

public class LogBuffer.. {

...

<set v = @DiskFullHandler/>

<select v>

<option DiskFullHandler >

// DiskFullHandler-related code

</select>

...

}

Evictor

public class Evictor. {

. ..

<set v= @CriticalEviction+@MemoryBudget />

<select v>

<option CriticalEviction >

// CriticalEviction-related code

<option CriticalEviction+MemoryBudget >

// Feature interaction code

</select>

…

}

<adapt>

<adapt>
<adapt>

<adapt>

 

Figure 8.7 A preprocessing solution to managing features in Berkeley DB 

In our study, we addressed 22 Berkeley DB features ranging from simple to complex. 

First, we analyzed the semantics of the features we decided to work with, and the way they 

affected the base DB code. We converted original runtime strategies for feature manage-

ment to equivalent preprocessing strategies, in a similar way as Kastner et al. converted 

them to AOP. For that, we instrumented each base component affected by features with 

preprocessing commands to manage feature impact on the base code.  

Our preprocessing representation for Berkeley DB, shown in Figure 8.7, follows con-

ventions described in Section 8.3.1. Parameter features_selected in SPC specifies features 

to be included in a required DB variant, in case of our example, features IO, 

LookAheadCache and DiskFullHandler. SPC adapts BaseManager, which in turn 
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adapts all DB base components. BaseManager plays the role of an integrator/composer of 

a custom DB variant in terms of its base components, propagating customizations for se-

lected features to the base components. For clarity, in Figure 8.7, we have shown only two 

of such base components, namely FileProcessor and LogBuffer.  

In addition, BaseManager also <adapt>s feature-specific base components. This is be-

cause for some of the features, besides adding small fragments of code at variation points 

in base components upon feature selection, we must also add new files to the DB base. 

Class Evictor in Figure 8.7 exemplifies this situation, and so does feature Statistics 

that adds classes StatsConfig and BtreeStats to the DB base (not shown in Figure 8.7.) 

8.3.2.2 Patterns of feature impact on DB base components 

Features that affect small number of base components at small number of variation 

points, and without interacting with other features are easily handled by preprocessing. 

Such features may require adding new classes to the DB base, e.g., features Evictor and 

Statistics, or adding member variables and methods to classes. Each such feature im-

pact is handled by placing these member variables and methods within <select-option> 

block in affected base components.  

Among 22 features in DB that we addressed in the experiment, five were preprocessing-

friendly. 

First type of complication occurs when the number of variation points at which features 

affect a given base component grows. The impact may come from one or more features. 

Then, the base code becomes densely populated with <select>s, which is one of the often 

mentioned drawbacks of using preprocessing to handle product variants. Among other ex-

amples, 12 features affect base component Environmentimpl inducing 38 variation 

points, and 10 feature affect file FileManager, inducing 40 variation points. The number 

of variation points per class ranges from 1 to 35, with average 5.72. 
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Further complications appear when the impact of one feature becomes scattered over 

many variation points, and spreads through many base components. For example, feature 

MemoryBudget affects 32 DB base components at a total of 190 variation points, Sta-

tistics (34 variation points), CheckSum and Evictor (each with 27 variation 

points), and CriticalEviction (23 variation points). When modifying scattered fea-

tures, we must propagate changes to all the relevant variation points. Maintenance be-

comes difficult and error-prone. 

Feature dependencies and interactions bring new dimension of difficulties for prepro-

cessing. A feature f1 depends on feature f2  if f1 refers to code of  f2, or if the presence or 

absence of f2 in a product variant affects implementation of f1.  

Feature dependencies cause feature interactions. In preprocessing solution, feature inter-

actions show as variation points with <option>s labeled with names of interacting features, 

or - in more complex interaction situations - as multiple <option>s under a <select>  

command.  

Figure 8.8 shows an example of feature interactions in which feature CriticalEvic-

tion interacts with feature Evictor, and feature MemoryBudget interacts with fea-

ture CriticalEviction. The net result of those interactions shows at variation points 

in file Evictor. If we select feature CriticalEviction, method doCriticalEviction 

must be included into the Evictor. If at the same time we select feature MemoryBudget, 

method doCriticalEviction must be modified with code related to that feature. 

Feature code scattering and feature interactions lead to hidden dependencies among 

many variation points. These dependencies have to be understood to modify code without 

unwanted side-effects. Figure 8.8 shows an example of a hidden dependency induced by 

feature interactions. Features CriticalEviction and MemoryBudget affect the 

Evictor, which is only included if the Evictor feature is selected. Therefore, once the 
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variation point that includes the Evictor is removed, all variation points introduced by the 

features CriticalEviction and MemoryBudget in file Evictor will be automatical-

ly affected. 

Evictor 

public class Evictor { 

… 

<set v= @CriticalEviction+@MemoryBudget /> 

 
<select v> 

    <option CriticalEviction> 

      public void doCriticalEviction ( ) 

          throws DatabaseException { 

   doEvict(SOURCE_CRITICAL, true); 
   } 

   <option CriticalEviction+MemoryBudget> 

public void doCriticalEviction ( ) 

        throws DatabaseException { 

MemoryBudget mb = envImpl.getMemoryBudget(); 
                long currentUsage  = mb.getCacheMemoryUsage(); 

               long maxMem = mb.getCacheBudget(); 

           … 
} 

</select> 

… 

Figure 8.8. Feature interactions 

8.4 Summary 

In this chapter, we evaluate our sandwich variability- recovery approach for a set of sim-

ilar products of Berkeley DB Java Edition. Although these product variants are artificially 

randomly generated from the original all-in-one version provide by CIDE [191], we still 

follow some heuristic rules to make the product variants more real.  

Given these product variants, we build Product Feature Models (PFMs) and compare 

them pair-wisely. The results showed that our PFMs comparison algorithm can achieve a 

reasonably good accuracy. If we consider the feature descriptions, we can get almost com-

pletely correct results.  

After we compare the PFMs from requirements, we also compare the source code of 

these product variants. We apply the clone detection and software differencing techniques 

to find the fine-grained and coarse-grained feature-relevant code. We use clone detection 

to filter out the non-cloned classes or methods as additional classes or methods (coarse-
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grained feature-relevant code) among variants, and use CloneDifferentiator to identify the 

PDGs’ differences as additional blocks, statements, branches or expressions methods (fine-

grained feature-relevant code). The comparison is also done pair-wisely.  

To bridge the feature differences with the code differences, we use the FCA and IR 

techniques. The FCA helps generate the disjoint, minimal equivalent partitions of the fea-

tures and code units. From the feature partitions, we know which features are owned by 

which intersections of scenarios. Here, the scenario means a difference set of a comparison 

of two product variants. According to the intersection of scenarios, we can get the results 

of the intersection of code units. The results of the intersection of code units contain the 

corresponding feature relevant code. The results of FAC for BDB Java product variants 

show that most features are contained in small partitions that have only 1 or 2 features. The 

above ideal separation of features makes application of IR as an optional step. 

After we have identified the commonality and variability, pre-processing directives can 

be viewed as kind of a variability technique that extends conventional programs by adding 

configuration knowledge to them. The XVCL subset – XCpp, which is a meta-data, uses 

queries to analyse the configuration information. XCpp approach can be useful add-in 

technique for other systems that work with meta-data: Pragmas in Smalltalk contain extra 

information that can be interpreted by tools. Java and JEE annotations [196] contain meta-

data that extends program behaviour (for example, weaving AOP’s advices can be ex-

pressed in some annotation systems). Annotations can be analysed for understanding in 

XCpp-like fashion. 

XCpp described in this paper can be improved by providing more synthetic, visual 

presentations of features under analysis. Integrating XCpp feature analysis with analysis of 

the base/feature code would be beneficial, but such a system would substantially diverge 
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from pre-processors, making the solution language-dependent.  Nevertheless, this is an 

interesting avenue to explore.  

We presented XCpp system that helps one manage scattered feature code and feature in-

teractions, improving readability of programs manipulated by pre-processors. XCpp ap-

plies queries to help developers navigate through feature-related code, showing features 

under analysis, while hiding other features. We analysed pre-processing problems and il-

lustrated XCpp benefits in a study of a sizable Berkeley DB system. 
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9 Conclusion and Future Work 

Software maintenance usually takes 70% of overall project costs. A common miscon-

ception about maintenance cost is that people thought maintenance merely includes bug 

fixing. However, one study indicated that the majority, over 80%, of the maintenance ef-

fort is used for non-corrective actions [132]. Actually, much of the maintenance efforts are 

due to adaptive or managerial maintenance – costs of modifying a software solution to al-

low it to remain effective in a changing business environment, or maintaining multiple ver-

sions for various customers in sync.  

This dissertation aspires to contribute to this line of research by automatically reverse-

engineering a family of software legacy systems into SPL to reduce the maintenance ef-

forts. Specifically, we focus on resolving the problems of discovering and managing prod-

uct variability respectively in two phases of engineering, namely domain engineering and 

application engineering. This dissertation can be regards as a compilation of the author’s 

work on discovering variability at different levels, and managing variability by different 

variability techniques. The content and materials of the dissertation are also organized 

along this line: discovering the variability in requirements, discovering the variability in 

implementation, locating variant features (mapping variability in requirements to variabil-

ity in implementation), evaluating various traditional variability techniques, and finally 

evaluating XVCL for variability management.  

9.1 Summary of the Dissertation 

Understanding of how features evolved in product variants is a prerequisite to transition 

from ad hoc to systematic SPL reuse. In Chapter 3, we propose a method that assists ana-

lysts in detecting changes to product features during evolution. We first entail that features 

and their inter-dependencies for each product variant are documented as product feature 
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model. We then apply model differencing algorithm to identify evolutionary changes that 

occurred to features of different product variants. We evaluate the effectiveness of our ap-

proach on a family of medium-size financial systems. We also investigate the scalability of 

our approach with synthetic data. The evaluation demonstrates that our approach yields 

good results and scales to large systems.  

In Chapter 4, we present an automated approach to identify contextual differences of 

software clones, which contain the potential variant features. We represent clone contexts 

as program dependence graphs. We then apply graph differencing technique to identify 

seven types of elementary contextual differences that may affect the computation per-

formed by clones. Based on these elementary contextual differences, developers can define 

queries to automatically distill clones relevant to a given maintenance task. We have im-

plemented our approach in a tool called CloneDifferentiator. We evaluate CloneDifferenti-

ator in two empirical studies aiming at refactoring Java IO library and Eclipse unit test 

suites.  

In Chapter 5, we discuss problems that hinder direct application of IR techniques to 

identify feature-relevant code units in a collection of product variants. To counter these 

problems, we present an approach to support effective feature location in product variants. 

The novelty of our approach is that we exploit commonalities and differences of product 

variants by software differencing and FCA techniques so that IR technique can achieve 

satisfactory results for feature location in product variants. We have implemented our ap-

proach and conducted evaluation with a collection of nine Linux kernel product variants. 

Our evaluation shows that our approach always significantly outperforms a direct applica-

tion of IR technique in the subject product variants. 

In Chapter 6, we investigate the variability management in industrial product. Fudan 

Wingsoft Ltd. developed a product Line of Wingsoft Financial Management Systems 
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(WFMS-PL) providing web-based financial services for employees and students at univer-

sities in China. The company uses a wide range of variation mechanisms such as condi-

tional compilation and configuration files to manage WFMS variant features. We study 

this existing product line and find that most variant features have fine-grained impact on 

product line components. Our study also shows that different variability techniques have 

different, often complementary, strengths and weaknesses, and their choice should be 

mainly driven by the granularity and scope of feature impact on product line components.  

Chapter 7 follows up our earlier study of an SPL at Fudan Wingsoft Ltd that reveals po-

tential scalability problems of multiple variability techniques. As a remedy to the above 

problems, in the follow-up study we replace multiple traditional variability techniques 

originally used in the Fudan Wingsoft product line, with a single, uniform variability tech-

nique of XML-based Variant Configuration Language (XVCL). This chapter provides a 

proof-of-concept that commonly used variation techniques can indeed be superseded by a 

subset of XVCL, in a simple and natural way. We describe the essence of the XVCL solu-

tion, and evaluate the benefits and trade-offs involved in multiple variability techniques 

solution and single variability technique - XVCL solution. 

Chapter 8 integrates all the previously adopted techniques to conduct a preliminary 

evaluation of our overall approach to discover and manage variability inside a family of 

Berkeley DB Java products. We follow some heuristic rules to generate five major BDB 

Java product variants from CIDE [191], which cover all the variant features. For these var-

iants, we apply the PFM comparison technique used in Chapter 3 to discover the variability 

in requirements. Then we apply the clone detection and clone differencing techniques used 

in Chapter 4 to discover the variability in implementation. To bridge these two levels of 

differences, we used FCA and IR techniques in Chapter 5 to facilitate locating variant fea-

tures. Finally, we discuss about the pre-processing and XVCL, and evaluate XCpp 
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(XVCL-based Pre-processing) as variability technique to manage the variability in BDB 

Java product family. Overall, the results showed that our sandwich approach can help au-

tomatically and systematically identify the variability across product variants with reason-

ably good accuracy, and XCpp can help mitigate the problems of variability management 

with meta-data and query system.    

9.2 Contributions and Perspective 

The contribution of this dissertation is mainly twofold. There are many existing estab-

lished studies on SPL practice [111], variability modeling [152] and variability techniques 

[28,29]. In this dissertation, our intention is not to invent new variability modeling meth-

ods, variability techniques, and software process towards SPL. We propose a systematic 

and automatic approach to reengineering software product variants into SPL. Thus, funda-

mentally the thesis contributes to systematic reuse of legacy products.  

We also bridge the work of variability recovery with variability management. The 

knowledge we found in variability recovery like the granularity of the variant features can 

better provide guidelines in the variability management. We investigate the merits and 

drawbacks of various traditional variability techniques. As the different granularity of fea-

tures matches the different variability techniques, the knowledge of granularity is im-

portant to the success of the application of variability techniques. Thus, another major con-

tribution is information integration for the variability analysis and variability management.    

In this dissertation we are doing much work from the perspective of reverse-

engineering. Our study relies on the techniques such as model differencing, software clone 

detection, formal concept analysis, and information retrieval. All these techniques are usu-

ally applicable to mass of data, aiming to dig out useful information from the data. We are 

one of earliest groups who propose the integration of clone detection with model differenc-

ing, which compares the PSGs of clone instances to help understand clones. We are also 
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one of earliest groups who propose to locate variant features by considering the variability 

and commonality inside a family of product variants.  

Early studies [8,20,107] indicated that 5%-10% of clones are a kind of homogeneous 

crosscutting concerns. And these concerns sometimes are the variant features for the sys-

tem. The unmatched code units in clone detection may imply the potential existing of 

coarse-grained feature impact, and the differences among clone instances of two products 

may imply the existing of fine-grain feature impact. XVCL, which was mainly used for 

clone management or code reduction [72], is also applied in our study for the variability 

management. Thus, from this view, we compare XVCL with Pre-processing and a meta-

level configuration tool as a variability technique in this dissertation.   

9.3 Future Work Plan  

The current concern of variability analysis in the dissertation is to identify the variant 

features’ relevant requirements and code units. Our work still remains at the stage of com-

paring product variant in requirements and implementation. We have not figured out what 

knowledge can be further unveiled from the current matching results, and in what way.  

In the following-up study, we may focus on the recovery of the feature dependencies 

and feature interactions. The feature dependencies refer to the features’ inter-relationship 

in requirements, such as one feature requires or excludes another feature. Our current 

PFMs comparison only reports the matched and unmatched features, but fails to report 

what possible relationship exists among these matched features. The association rules min-

ing techniques [1] or sub-tree mining techniques [31] may be helpful for this problem do-

main. From the matching result, we may further report that information such as which fea-

ture always appears together with some other feature(s), and which features never appear 

together. 
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For the current feature location in a set of product variants, we have not systematically 

investigated the impact of feature interaction. Feature interactions refer to tangling of two 

features’ code units. Although the current results show that the accuracy is still acceptable, 

we hold the position that the feature interactions indeed affect the results and complicated 

the feature location in product variants. The future plan for this study is to examine the 

extent to which the tangling code of interacted features will affect the results of our ap-

proach.  

We are also interested to use the variability analysis to help raise the level of variability 

modeling. In another branch study of our group, we have developed an architecture varia-

bility management method and a tool [186]. By the high level’s architecture variability 

management, architecture design and customizations become more intuitive. Additionally, 

the maintenance efforts are reduced. Now, the current results of our sandwich approach to 

variability analysis have the potential to be clustered or grouped to a higher level, even to 

the architecture.  
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