

REENGINEERING LEGACY SOFTWARE
PRODUCTS INTO SOFTWARE PRODUCT LINE

YINXING XUE

(B.Eng. Wuhan University, China)

(M.Eng. Wuhan University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

Jan 2013

REENGINEERING LEGACY SOFTWARE
PRODUCTS INTO SOFTWARE PRODUCT LINE

Approved by:

A/P Stan Jarzabek, Advisor

A/P Jingsong Dong

A/P Siau-Cheng Khoo,

External Referee: Michael W. Godfrey

Date : Jan. 2013

Acknowledgements

During my journey of pursuing a Ph.D., first I would like to thank my supervisor, A/P

Stan Jarzabek. He brought me into the domain of software product line and software

maintenance. And thanks to his guidance and encouragement, I found the suitable topic

and learned the methods to do research. Besides, Prof. Stan also taught me a lot in academ-

ic writing, from which I will benefit for all my life.

I would also like to thank Dr Zhenchang Xing, who I worked close with. He taught me

in some many aspects: paper writing, presentation skills, or even programming skills.

Without his help, I think I would have more lessons in my Ph.D. study. And in the process

of implementing our research tools, he even gave me very detailed technical help, which

took much time from him.

Thanks to my families’ support, I can focus on my research. Especially, I would thank

my wife, who encouraged me a lot when my research progress did go well. And my par-

ents also supported and encouraged me a lot. They also helped to take care of my daughter

when I was busy with my research work. For my daughter, I also wish my Ph.D thesis is a

gift to her and she will be interested in science.

I would also like to thank the thesis committee members, A/P Jingsong Dong, A/P S

Siau-Cheng Khoo, for their time in reading and commenting on my thesis. I also appreciate

the efforts from the co-authors of the papers I have written as part of this thesis: Prof. Xing

Pen (Fudan University, Shanghai), Mr Pengfei Ye (SAP Shanghai), and Prof. Hongyu

Zhang (Qsinghua University, Beijing) for their feedback and input.

Finally, it was not about the outcome of obtaining a PhD but instead it was about the

process of getting there! Thanks to the help from my supervisors, families and friends, I

can say the following sentence to myself:

"All those years he suffered, those were the best years of his life because they made him

who he was." ------------ Movie quote from: Little Miss Sunshine (2006)

Table of Contents

i

Table of Contents

Summary ... vii

List of Tables ... viii

List of Figures ... xi

1 Introduction ... 1

1.1 Research Problems .. 1

1.2 Sketch of the Solution ... 4

1.3 Research Contribution ... 6

1.4 Outline .. 8

2 Preliminaries ... 9

2.1 Terms and Notations in SPL .. 9

2.1.1 Concepts in SPL .. 10

2.1.2 FODA and Feature Model ... 12

2.2 Clone Detection ... 15

2.2.1 Definition and taxonomy ... 16

2.2.2 CloneMiner ... 20

2.3 Program Differencing ... 22

2.3.1 Status of the art .. 23

2.3.2 GenericDiff ... 25

2.3.3 Clone detection vs. program differencing ... 26

2.4 Information Retrieval for Feature Location ... 27

2.4.1 Vector Space Model .. 27

Table of Contents

ii

2.4.2 Singular Value Decomposition ... 28

3 Understanding Variability in Product Requirements 31

3.1 Introduction ... 31

3.2 Related Work ... 34

3.3 Comparing PFMs .. 36

3.3.1 The meta-model of product feature model .. 36

3.3.2 A catalog of feature changes ... 37

3.3.3 The differencing of product feature models .. 39

3.3.4 Inferring changes to product features .. 41

3.4 Evaluation .. 43

3.4.1 WFMS case study ... 43

3.4.2 An empirical study with synthesized PFMs .. 45

3.5 Application ... 52

3.6 Summary .. 54

4 Understanding Variability in Implementation of Product Variants 57

4.1 Introduction ... 57

4.2 A Motivating Example in Refactoring ... 60

4.3 Contextual Analysis of Clones .. 61

4.4 The Approach .. 64

4.4.1 Overview ... 64

4.4.2 Representing contextual information of clones as PDG .. 66

4.4.3 Detecting contextual differences of clones by PDG differencing 70

4.4.4 Tool Support.. 75

Table of Contents

iii

4.5 Evaluation .. 77

4.5.1 Characteristics of contextual differences of clones ... 78

4.5.2 Refactoring JavaIO library .. 81

4.5.3 Refactoring Eclipse JDT-model unit tests ... 85

4.6 Related Work... 88

4.7 Threats to Validity .. 90

4.8 Summary .. 91

5 Locating Features in Product Variants .. 93

5.1 Introduction ... 93

5.2 Related Work... 96

5.3 The Approach .. 98

5.3.1 A running example .. 98

5.3.2 Input data ... 98

5.3.3 Identifying distinct features (or code units) in Software Product Family by software

differencing ... 99

5.3.4 Grouping features (or code units) into disjoint, minimal partitions by FCA 102

5.3.5 Feature location by LSI ... 105

5.4 Linux Kernel Dataset .. 107

5.4.1 Dataset ... 107

5.4.2 Extracting features sets.. 108

5.4.3 Reverse-engineering program models ... 109

5.4.4 Establishing ground truth .. 110

5.5 Results .. 110

5.5.1 Evaluation measures .. 110

Table of Contents

iv

5.5.2 Distinct features (or code units) in product family .. 112

5.5.3 Disjoint, minimal feature (or code-unit) partitions .. 114

5.5.4 Performance of our FL-SPF approach ... 115

5.5.5 Comparison with direct application of LSI ... 118

5.6 Threats to Validity .. 120

5.7 Summary .. 121

6 Variability Management with Multiple Traditional Variability techniques

 123

6.1 Introduction ... 123

6.2 An Overview of WFMS ... 125

6.3 Variability Technique in TMS ... 129

6.3.1 Review of variability technique in TMS ... 130

6.3.2 Summary of variability technique in TMS .. 133

6.4 Evaluation of the WFMS-PL and Possible Improvements 134

6.4.1 Feature Granularity ... 135

6.4.2 Ease of application .. 137

6.4.3 Readability .. 137

6.4.4 Traceability and extensibility .. 138

6.5 Summary .. 139

7 Variability Management with Uniform Variability technique---- XVCL 141

7.1 Introduction ... 141

7.2 Problem of Adopting Multiple Variability Techniques 143

7.3 Single Variability Technique Approach to TMS Core Assets 144

Table of Contents

v

7.3.1 Variability technique of XVCL ... 144

7.3.2 TMS core assets instrumented with XVCL ... 144

7.3.3 One variability technique instead of many .. 147

7.3.4 Feature queries .. 147

7.4 Evaluation .. 149

7.4.1 Domain engineering effort .. 149

7.4.2 Product derivation and maintenance effort .. 150

7.4.3 Other inputs from Wingsoft .. 151

7.4.4 Evaluation summary .. 152

7.5 Related Work... 154

7.6 Summary .. 157

8 Discovering and Managing Variability among Berkeley DB Product

Variants .. 159

8.1 Generating Input (Product Variants) for the Overall Approach 159

8.1.1 The target system .. 159

8.1.2 The usage of CIDE .. 162

8.1.3 Randomly generated product variants ... 163

8.2 Analyzing Variability among Product Variants by the Sandwich

Approach ... 166

8.2.1 Understanding requirement variability in BDB-Java product variants 166

8.2.2 Understanding implementation variability in BDB-Java product variants 169

8.2.3 Understanding implementation variability in BDB-Java product variants 171

8.3 Managing Variability in B-DB by XVCL ... 174

8.3.1 Preprocessing as a Variation Mechanism .. 175

8.3.2 Preprocessing problems in Berkeley DB ... 177

Table of Contents

vi

8.4 Summary .. 182

9 Conclusion and Future Work ... 185

9.1 Summary of the Dissertation .. 185

9.2 Contributions and Perspective ... 188

9.3 Future Work Plan ... 189

Bibliography .. 191

Summary

vii

Summary

The idea of Software Product Line (SPL) approach is to manage a family of similar

software products in a reuse-based way. Reuse avoids repetitions, which helps reduce de-

velopment/maintenance effort, shorten time-to-market and improve overall quality of

software. A number of open problems must be solved for SPL to have wide-spread impact

on software practice. One of them is to understand and manage variability in software arte-

facts. To migrate from existing software products into SPL, one has to understand how

they are similar and how they differ one from another. In current practice, such analysis is

done mostly manually, with some help of clone detection tools. We propose higher level of

automation, and a sandwich approach that consolidates feature knowledge from top-down

domain analysis with bottom-up analysis of code similarities in subject software products.

Our proposed method integrates model differencing, clone detection, and information re-

trieval techniques, which can provide a systematic means to reengineer the legacy software

products into SPL based on automatic variability analysis. Once the variability among the

different product variants have been recovered and understood, SPL core assets are built to

facilitate reuse. In that area, our contribution is in proposing effective strategies for manag-

ing variability in core assets. We analyzed benefits and trade-offs involved in strategies

based on applying multiple traditional variability techniques, and in applying a uniform

variability technique of XML-based Variant Configuration Language (XVCL). Our pro-

posed strategies have been evaluated in an industrial project and a number of lab case stud-

ies.

List of Tables

viii

List of Tables

Table 4.1. Statistics of contextual differences in JavaIO 1.5 .. 79

Table 4.2. Statistics of contextual differences in JDT-model tests 79

Table 5.1. Feature sets of document viewers/editors ... 98

Table 5.2. Nine product variants of Linux kernel ... 107

Table 5.3. MAP and APCUI (Nq=30) at pd=0.1,…,0.5 ... 117

Table 5.4. MAP and APCUI of direct application of LSI ... 118

Table 6.1. Variant features of TMS ... 128

Table 6.2. Feature dependency and interactions ... 128

Table 6.3. Feature numbers for variability techniques used in TMP 130

Table 6.4. Summary of variability technique in WFMS-PL ... 135

Table 6.5. The number of variation points per impact granularity level 136

Table 6.6. The number of variation points in example features .. 138

Table 7.1. Managed variation points ... 151

Table 8.1. The feature table with renamed features for product variants 164

Table 8.2. The actual and expected results of PFMs comparison for BDB-Java product

variants .. 167

Table 8.3. The implementation differences among product pairs 171

List of Figures

xi

List of Figures

Figure 1.1 An overview of domain engineering and application engineering in extractive

approach [94,133] ... 3

Figure 1.2. The sandwich approach to recovering the variability ... 6

Figure 2.1. The feature diagram of TBS system ... 14

Figure 2.2. The legend for feature diagram of TBS system .. 14

Figure 2.3. The grammar for feature diagram of TBS system .. 14

Figure 2.4. The example of Type 1,2,3,4 clones ... 17

Figure 2.5. Finding methods containing frequent item-sets of SCC 22

Figure 2.6. The architecture of GenericDiff [173] .. 25

Figure 3.1. The variants of WFMS product family ... 32

Figure 3.2. Comparison of two PFMs ... 33

Figure 3.3. A Partial PFM of WFMS
Shandong

 .. 36

Figure 3.4. The meta-model of PFM ... 36

Figure 3.5. The precision and recall for change-type-centric strategy 49

Figure 3.6. The precision for feature-centric strategy ... 50

Figure 3.7. The recall for feature-centric strategy ... 50

Figure 3.8. Reengineering product variants into SPL ... 53

Figure 4.1. Differences of two clone fragments .. 58

Figure 4.2. Can we pull-up these cloned methods? .. 60

Figure 4.3. Differential statements .. 62

Figure 4.4. Missing branch and statements ... 63

Figure 4.5. Inspecting contextual differences in CloneDiff Compare Editor 67

Figure 4.6. Textual differences in Java Source Compare ... 67

Figure 4.7. Wala-PDG example: PipedWriter.write(int):void .. 69

List of Figures

xii

Figure 4.8. Differential statements .. 72

Figure 4.9. Differential block .. 72

Figure 4.10. Missing statements .. 73

Figure 4.11. Missing block .. 73

Figure 4.12. Partially-matched branches ... 74

Figure 4.13. PDG Viewer .. 76

Figure 4.14. Cloned methods that have no contextual diffs .. 82

Figure 4.15. Differential typecast statements .. 84

Figure 4.16. Seed values ... 85

Figure 4.17. State machine .. 86

Figure 4.18. Assume invariant .. 88

Figure 5.1. A feature in Linux kernel .. 99

Figure 5.2. The concept lattice of document viewers/editors .. 103

Figure 5.3. The top 10 returned code units for the Intel microcode feature 110

Figure 5.4. Distinct features of Linux kernel product variants ... 113

Figure 5.5. Distinct code units of Linux kernel product variants 113

Figure 5.6. Partition size by features ... 114

Figure 5.7. Partition size by code units .. 115

Figure 5.8. PRQ (Nq=10, 20, 30) at pd=0.1,…,0.5 .. 117

Figure 5.9. PRQ values of direction application of LSI .. 118

Figure 6.1. The feature diagram of TMS... 127

Figure 6.2. The architecture of TMS ... 127

Figure 6.3. Managing variant features with Java’s final-boolean mechanism 131

Figure 6.4. Reflection used in strategy pattern .. 131

Figure 6.5. Using Ant to include optional features ... 132

List of Figures

xiii

Figure 6.6. Using configurations files ... 132

Figure 6.7. Variability techniques per feature ... 134

Figure 7.1. Overview of WFMS core assets in XVCL ... 144

Figure 7.2. Detailed view of WFMS core assets in XVCL ... 146

Figure 7.3. Finding code of feature InitPayMode ... 148

Figure 7.4. Finding feature interactions .. 148

Figure 8.1. The grammar of feature diagram of BDB Java .. 161

Figure 8.2. Feature code highlighting in CIDE ... 163

Figure 8.3. Feature location in product variants ... 172

Figure 8.4. The FCA for the features of 5 product variants .. 173

Figure 8.5. Separation of single feature by intersecting code difference sets in Concept

Explorer... 174

Figure 8.6. Managing fine-grained features in base components with preprocessor 176

Figure 8.7 A preprocessing solution to managing features in Berkeley DB 179

Figure 8.8. Feature interactions ... 182

Chapter 1 Introduction

1

1 Introduction

The Software Product Line (SPL) approach aims at improving software productivity and

quality by relying on much similarity that exists among software systems and relevant de-

velopment process [33]. The idea of SPL approach is to manage a family of similar prod-

ucts in a reuse-based way. In last two decades, SPL has been an active research area in

software engineering [30,152]. The motivation of SPL lies in the fact that companies most

of the time develop and maintain multiple variants of the same software system customized

for the needs of different customers. All such system variants are similar, but they also dif-

fer in customer-specific features. This creates possibility for reuse. Reuse avoids repeti-

tions, which helps reduce development/maintenance effort, shorten time-to-market and

improves overall quality of software [70].

In an SPL, core assets [13,127] are identified and built. Product variants are derived

from core assets. Variability among variants is described in terms of features [81]. Ideally,

by configuring required variant features, we would like to be able to derive a custom prod-

uct from SPL core assets in automated way. Before SPL has the actual impact on software

practice, a number of open problems must be solved. Those open problems include how to

discover the variability among the product variants, how to model variability and com-

monality, how to handle the variability and also how to evaluate the architecture of SPL.

1.1 Research Problems

To reengineer an existing family of legacy systems into SPL, several important prereq-

uisites must be satisfied [111]. First, variability among the product variants should be ex-

plicitly identified and must be systematically managed. Second, we should be able to de-

rive a new software product from reusable components, so–called SPL core assets. Thus,

understanding the commonality and variability in existing software products constitutes the

first step towards building core assets for reuse in SPL.

2

Given an existing family of legacy product variants, the first step in extractive approach

[105] to building an SPL is to understand the variability among the products, as they pro-

vide a basis for scoping an SPL [111], and then to design first-cut SPL core assets. From

our previous industrial case study on variability management [182] and a study of open-

source project [75], we found that it was rare that the legacy products have well-

documented artifacts describing variability in details. Considering WingSoft Financial

Management System (WFMS) [176,182], the documents for the major versions were

available, but for those minor versions the information could only be reverse-engineered

from source or recalled by the original developers.

In the thesis, we address the following research questions related to re-engineering lega-

cy code into SPL:

RQ1. Given requirements for product variants, how do we identify the common and

variant requirements among them?

RQ2. How are the product variants different at the implement level?

RQ3. Once we know the differences in feature and code in product variants, which

variant features configure which code variants?

Once the variability among the product variants has been identified, a wide range of var-

iability techniques can be applied to design SPL core assets. The role of variability tech-

niques is to make core assets reusable in multiple product variants. Due to variability in

requirements of product variants, more often than not core assets should be adapted for

systematic reuse, not developed or maintained individually. Variability should make such

adaptive reuse easy. Examples of variability techniques include CPP [86,128,141], Java

conditional compilation [197], commenting out feature code, design patterns [57], parame-

ter configuration files, and a build tool Ant [188], parameter configuration files.

Chapter 1 Introduction

3

Figure 1.1 An overview of domain engineering and application engineering in extrac-

tive approach [94,133]

Figure 1.1 shows two phases of SPL engineering, namely domain engineering and ap-

plication engineering. Reengineering of existing product variants provides inputs for do-

main engineering. The feature diagram (variability model) [81] is created during domain

analysis, and the core assets are created during domain implementation. During application

engineering, developers select variant features for a new product they build and adapt core

assets accordingly.

Thus, RQ1 to RQ3 focus on the domain analysis and domain implementation. Here are

the extra questions we address in the application engineering to generate products for new

customers (after RQ3):

RQ4. What variability techniques are used in industrial SPL?

Our industrial studies revealed that multiple variability techniques are used to tackle dif-

ferent variability situations in SPL. We also analyzed the reasons for the necessity to use

multiple variability techniques at the same time. The lessons of adopting multiple variabil-

4

ity techniques show that in the long run, variability management with multiple variability

techniques become difficult to comprehend and maintain for the programmers. To alleviate

the problems of multiple variability techniques, we address the final research questions:

RQ5. Can we use a single uniform variability technique instead of multiple tech-

niques? What are the necessary characteristics of such uniform technique and

trade-off involved in using it?

1.2 Sketch of the Solution

To answer the RQ1, RQ2 and RQ3, we propose a sandwich approach [177], as shown in

Figure 1.2, which consolidates feature knowledge from top-down domain analysis with

bottom-up analysis of software clones in subject software product.

To tackle RQ1, we present a model differencing based method to detect changes that

occurred to product features in a family of product variants. The primary input to our

method is a set of Product Feature Models (PFMs) [180]. A PFM captures all the features

and their dependencies in a product variant. We then adapt GenericDiff [175], a general

framework for model comparison, to compare pair-wisely these PFMs based on both lexi-

cal and structural (i.e., dependencies and relationships) similarities of features. We propose

a catalog of feature changes that can evolve a PFM, e.g. rename feature, add leaf feature

and so on. Based on the differencing report by GenericDiff, we also develop a tool for au-

tomatically inferring feature changes according to the catalog we propose.

For RQ2, we use clone detection tool [11] to find the clone candidates that represent the

similar variant features. We capture contextual information of clones from Program De-

pendence Graphs (PDGs) generated by Wala [204]. These PDGs encode data and control

dependencies between program statements. We then use graph matching techniques Ge-

nericDiff to compute a precise characterization of clones in terms of the structural differ-

ences and differential properties between their PDGs, from which several patterns of con-

Chapter 1 Introduction

5

textual differences are recognized [174]. The patterns of contextual differences include

Missing Statement, Missing Branch and so on [174].

To answer RQ3, we correlate variability recovered from product features models (PFMs)

with variability identified from the clones [179]. The underlying intuition of our approach

is that the presence or absence of a feature in a product variant should be reflected in the

presence or absence of certain design elements and code fragments. We propose to incor-

porate software differencing, Formal Concept Analysis (FCA), and IR techniques. Software

differencing helps to identify distinct features (or code units) in a software product family,

which represent corresponding features (or code units) across product variants. FCA then

groups distinct features (or code units) into disjoint and minimal partitions by analyzing

commonality and differences of product variants. Finally, given a feature partition and the

corresponding code-unit partition, Latent Sematic Indexing [41] (LSI) is used to identify

code units that implement a specific feature.

For the RQ 4, we first analyze WFMS-PL variant features and present them as a feature

diagram [81]. Then, we study variability techniques in WFMS, i.e. Java conditional compi-

lation, commenting out feature code, design patterns [57], parameter configuration files,

and a build tool Ant. Finally, we analyze how the granularity and scope of features impact

on WFMS components affects the effectiveness of variability techniques [182].

For the RQ5, we conduct lab studies and collect inputs from Fudan Wingsoft Ltd [176],

regarding the original WFMS core assets developed by Wingsoft using multiple variability

techniques, and core assets in XVCL [71]. We compare the efforts in productivity during

domain engineering (i.e., building and evolving core assets), and product derivation. In

addition to the above comparative study, we also interview several Wingsoft engineers on

the XVCL solution, and summarize their feedbacks and comments in terms of drawbacks

and merits of XVCL solution.

6

PFM Comparison

Clone Differentiating

Bottom-up Analysis

Top-down Analysis

Mapping

Variability by IR

Figure 1.2. The sandwich approach to recovering the variability

1.3 Research Contribution

Existing studies in SPL on domain analysis and requirement engineering to resolve the

RQ1 are focused on developing modeling techniques, such as goal model [38] and feature

model [83] to capture and analyze requirements, monitoring and tracing requirement

changes [66,187] and reasoning about the consistency and configurability of requirement

models [22,162]. However, there is a lack of tools that can automatically produce an accu-

rate report of the differences of product variants in terms of feature.

Program differencing methods have long been used for identifying the textual, syntactic

and semantic differences between programs [6,69,181], which can also be adopted to ad-

dress the RQ2 and report the differences between the product variants. However, using

program differencing for that purpose would require a pair-wise comparison of any two

code fragments of product variants, which is computationally costly. In our work, instead

of applying program differencing techniques direct onto the implementation level, we use

clone detection for a fast selection of highly similar code fragments that may indicate the

variant features, and then use PDG differencing to compute a precise characterization of

the differences of those clones.

The RQ3 is essentially a feature location [44,142] or traceability [4,116] problem. Fea-

ture location techniques investigate how features are implemented in software artifacts,

Chapter 1 Introduction

7

such as code, test cases, by using static analysis, e.g. Latent Semantic Indexing (LSI) [113]

and concept analysis [48], or dynamic analysis, e.g. execution scenarios [49] and trace in-

tersection [150]. These existing techniques are designed to locate the program elements of

a particular feature in a single software system. As in the circumstance of SPL with multi-

ple product variants at hand, it is innovative to take into account these product variants for

the feature location problem.

As for variability techniques, previous studies [30,111] have introduced and described

these traditional variability techniques, e.g. Java conditional compilation, commenting out

feature code, design patterns [57], parameter configuration files, and a build tool Ant. The

RQ4 and RQ5 indicate that the industry case study introducing how they can work together

is still unavailable.

To sum up, the potential contributions of this dissertation are listed as follows:

1. We propose and implement the tool to automatically compute the difference of re-

quirements of the different product variants. We propose the concept of PFM [180]

to model the hierarchy of features contained in products.

2. We combine clone detection techniques and program differencing techniques for

the purpose of comparing the similar but different variant features [174]. To better

facilitate the comparison of clones based on Program Dependency Graph (PDG),

we implement the tool called CloneDifferentiator [173,178].

3. Different from the previous study mainly on feature location in a single product, we

focus on locating features by the help of knowledge of the commonality and varia-

bility among product variants. We also conduct an empirical study on the product

family of Linux [195].

4. We conduct a case study of WFMS, which is a widely-used financial system by

major universities in China, to investigate the variability realization techniques

8

adopted in reality. To some extent, our empirical study reflects the reality of varia-

bility management in the small-to-medium software companies.

1.4 Outline

The remainder of thesis is organized as follows: Chapter 2 discusses the related work.

Chapter 3 describes the approach that we used to compute the differences of the require-

ments of the product variants. Chapter 4 presents the approach that we apply to compare

the possible variant features – code clones to get their contextual differences. Chapter 5

proposes the method that we adopt to recover the traceability from the variant features in

requirements to the difference in code implementing. Chapter 6 summarizes the situation

of variability management in real industrial environment. Chapter 7 describes the XVCL

solution for variability management and compares it with the one in Chapter 6. Chapter 8

evaluates the whole approach on an artificial product family derived from Berkeley DB.

Finally, we conclude and summarize possible future research directions.

Chapter 2 Preliminaries

9

2 Preliminaries

This chapter describes the fundamental concepts and techniques on which our work is

built on. First, the terms and notations in SPL are introduced and explained. Then the tech-

niques such as clone detection, program differencing and information retrieval techniques,

which are used to resolve the research questions, are elaborated in detail.

2.1 Terms and Notations in SPL

As early as in 1970s, some researchers [64,127] proposed the concept “program families”

to represent a set of related software products in the same application domain. In the pro-

gram families, the developers derive the new product by editing from the previous ones,

rather than doing it from scratch. But the process of reusing the existing products for the

new ones was still done in an ad-hoc way. Until in 1990s, the term “software product line”

was officially presented by Software Engineering Institute, Carnegie Mellon University

[14]. After that, considering the other business and organizational factors in the process of

developing software families for many industrial companies, SEI proposed the term “soft-

ware product line” as an area referring to software development efforts involved in produc-

ing a set of similar but yet different product variants. After that, software product line has

become a hot research area [30,152], and many frameworks and development process were

presented for the sake of facilitating the ease of development and reducing the cost.

As in automobile industry and many other manufacturing industries “product line” is a

refining process to produce an end-product, the SPL also establishes the similar idea by

mass customization for software products. Instead of individually developing each product

for each customer from scratch, product line engineering develops related variants in a co-

ordinated fashion, developing commonalities between the products only once. Instead of

developing a single one-size-fits-all solution that intends to cover all potential customer

10

needs in a mass market, software product lines provide tail-made solutions for different

customers.

2.1.1 Concepts in SPL

Building SPL architecture with the core assets [13,127] also poses extra costs and risks.

Usually there are three different approaches to build an SPL: the proactive approach, the

reactive approach and the incremental approach. In the proactive one, domain engineers

design and develop the core assets before generating the various products. In the reactive

one, the core-asset base and variant features are identified and built as the SPL architecture

from the existing product variants. For example, our industrial collaborator WingSoft Ltd

[182] has many legacy product variants. Building SPL for WingSoft Ltd was adopting the

reactive way. Actually, the third incremental approach is mixed by the process of develop-

ing the core asset base in stages and the process of develop more product at the same time.

No matter what approach to build an SPL, feature is the first class citizen in the feature-

oriented software product line to constitute core assets. Usually, there are two kinds of

views to represent features: In the view of the internal developers, a feature is often de-

fined as a program function which realizes a group of individual relevant requirements [87].

In the view of external customers, a feature is usually defined as a visible value, quality, or

characteristic of software for the end-users [63,81]. In SPL, any product variant can be

considered as a set of certain features added to the program base (or the core asset base

[133]). The mandatory features refer to the commonly added functions or values shared by

all the product variants. Variability existing among variants is described in terms of variant

features [73,81]. SPL core assets include not only architecture and code components, but

also documentation, models, test cases and many other software artifacts, which are rele-

vant to the program base plus variant features and mandatory features.

Chapter 2 Preliminaries

11

Software product line engineering actually is a two-phase approach composed of do-

main engineering and application engineering. Application domain is a software area,

which contains the common parts among the similar software systems. For example, those

different financial software systems used by the companies are all in the same domain –

financial domain. The task of domain engineering is to build the SPL architecture consist-

ing of a core-asset base and the variant features, while the application engineering focus on

derivation of the new products by the different customizations of variant features applied

onto the core-asset base. These two phases of engineering can have separated life cycles

and be maintained by the different engineers, as in Fudan WingSoft Ltd. the core assets are

maintained by domain engineers and the new product derivation are conducted by product

engineers. In this dissertation, we resolve the key research questions throughout these two

phases.

Domain engineering consists of domain analysis, domain design, domain realization and

domain testing [111]. Domain analysis aims at recognizing application domains, scoping

and bounding them, and identifying commonality and variability among the systems in the

domain. Thus, identifying the core-asset base and variant features among product variants

is the domain analysis required in building the SPL in a reactive way [129]. However, the

domain analysis is actually not limited in the requirements. Instead, the domain analysis

should be conducted for all the artifacts in the SPL. For example, in Fudan WingSoft Ltd.,

the two product variants WFMS
Fudan

(product variant for Fudan University) and

WFMS
Shanghai

 (product variant for Shanghai Jiaotong University) in the WFMS family have

two similar features DelegationLock and OperationLock respectively. Just from the re-

quirement level and design documents, there is no way to distinguish the fact how these

two features are different; sometimes they can even be the renamed feature with the same

functionality. But by comparing the implementation of these two features, it is possible to

12

tell how these features are similar and different. In this dissertation, we aim at discovering

and validating the core-asset base and variant features not only from the requirements but

also from the implementation of product variants.

Application engineering is the process of deriving a single variant tailored to the re-

quirements of a specific customer from a software product line, based on the results of

domain engineering. Variability among the product variants in a reactive product line must

be identified, modularized or annotated, and evolved throughout the lifecycle of Software

Product Line Engineering (SPLE). Such task is called as Variability Management (VM),

which is one of the principles fundamental to successful software product line engineering

[111]. In software product line engineering, each individual product variant should be not

considered and managed by itself. The better way is to look at the product line as a whole -

--- the core-asset base and the variation among the individual products. Thus, the domain

engineers usually would maintain an all-in-one solution to ease the configuration for any

new customers. This all-in-one solution contains all the product variability by adopting the

variability techniques.

2.1.2 FODA and Feature Model

Feature-oriented domain analysis (FODA) that our variability analysis is based on was

first developed by the Software Engineering Institute in 1990 [81,82]. Originally, the

FODA was one possible way towards product line. In the recently twenty years, it actually

becomes more and more popular as a defacto prerequisite in constituting product line. In

the report, the concept of feature model in domain engineering is to represent the so called

features within the product family as well as the structural and semantic (require or ex-

clude) relationships between those features [81]. Since then, feature model has even been

characterized as "the greatest contribution of domain engineering to software engineering"

[36].

Chapter 2 Preliminaries

13

A feature model is a tree-like hierarchy of features. The structural and semantic relation-

ships between a parent (or compound) feature and its child features (or subfeatures) can be

specified as:

• And — if the parent feature is selected, all the subfeatures should be also selected.

• Alternative — if the parent feature is selected, only one among the exclusive subfea-

tures should be selected,

• Or — if the parent feature is selected, at least one or at most all subfeatures can be se-

lected,

• Mandatory — sometimes called “Compulsory”, referring to features that required

“And”

• Optional — features that are optional.

In addition to the above parental relationships between features, there are cross-model

constraints allowed. The most common are:

• A requires B – The selection of A in a product implies the selection of B.

• A excludes B – A and B cannot be part of the same product.

Recently, to enhance the expressiveness, some work [36,37] proposed to make Or rela-

tionships with [n:m] cardinalities, which more specifically denotes that a minimum of n

features and a maximum of m features can be selected.

In addition to the basic or extended cardinality-based feature model, there are many sim-

ilar models proposed for better modeling the domain knowledge [153]. In this dissertation,

we will use and focus on the basic or extended cardinality-based feature model. A feature

diagram is a graphical representation of a feature model [81]. As shown in Figure 2.1, we

use the FeatureIDE [91], a widely used tool in eclipse, to generate the feature diagram of

the on-line Ticket Booking System (TBS). In Figure 2.2, we show the different types of the

relationship among these features.

14

Figure 2.1. The feature diagram of TBS system

Figure 2.2. The legend for feature diagram of TBS system

 TBS : Enquiry+ Booking Security Payment+ :: _TBS ;

 Enquiry : ANA | DLT | CCA | SIA ;

 Security : Login* [Encryption] :: _Security ;

 Encryption : MD5 | RSA ;

 Payment : Master | Visa | AmericanExpress;

Figure 2.3. The grammar for feature diagram of TBS system

The feature Enquiry supports the online enquiry for the flight information. The subfea-

ture ANA is a function communicating with the interfaces provided by All Nippon Airline.

This product family can also dynamically support other features DTL (for the Delta Air-

line), CCA (for the China Airline) and SIA (for the Singapore Airline) according to the dif-

ferent users’ requests. And all the subfeatures are in the OR relationship. Any product in

the family can support at least one or at most all of the following online payment methods

(also OR relationship): Master, Visa and AmericanExpress. There are two optional subfea-

tures Login and Encryption under the feature Security. For the optional feature Encryption,

Or Optional Alternative And Mandatory

Chapter 2 Preliminaries

15

it has two alternative subfeatures MD5 and RSA, one of which should be adopted for data

encryption.

For the ease of reasoning and presentation of the feature model, the grammar and propo-

sitional formula of feature model are also proposed. A grammar is a compact representa-

tion of a propositional formula [17]. As shown in Figure 2.3, model “Payment+” denotes

one or more instances of non-terminal “Payment”; “Login*” denotes zero or more. “[Encryp-

tion]” denotes optional non-terminal “Encryption”. And for this grammar, there is also the

corresponding propositional formula, considering the production r:P1|…|Pn, which has n

patterns: P1…Pn.

 Pattern Formula

 r r⇔choose1(P1,…,Pn)

 r+ r⇔(P1∨…∨Pn)

More mapping and details on the propositional formula of feature model are elaborated

in [17]. Figure 2.1 provides the visual representation of feature model, while Figure 2.3

lists the corresponding grammar based on propositional formula. Thus, all these studies on

notation and formal specification of feature model facilitate the reasoning on feature model

[22,162].

2.2 Clone Detection

Software cloning is an active field of research, which has intrigued the curiosity of re-

searchers for more than 20 years [101,144]. Most software cloning studies focus on the

issues such as clone detection, origin of clones, clone classification and clone management.

Some studies also focus on the aspect [95] or crosscutting concern mining [25] by using

clone detection techniques. Similar to aspects or crosscutting concerns, the scattered fea-

tures can also be embodied in the duplicated code fragments. In this dissertation, we are

16

interested in finding those clones relevant to the features, and understanding the common-

ality and variability among the clone instances inside a clone class.

Most of current available clone detention tools adopt the various techniques: textual

comparison, token comparison, metric comparison, comparison of abstract syntax trees

(AST), comparison of program dependency graphs (PDG) and other techniques. So far

there are plenty of efforts that have been put into the comparison and evaluation of clone

detection tools [21,145].

The proper taxonomy or classification of clones will be helpful for the understanding of

the reasons, actualities, essence (evil or not) of clones [74,84]. Most of current work on

clone classification is based on the following several categories, which are taxonomies

based on similarity, taxonomies based on similarity and location, taxonomies based on re-

factoring opportunities, and taxonomies based on high level structural similarities.

2.2.1 Definition and taxonomy

Software code clones are usually the embodiment of the sequences of duplicate code,

which recur for multiple times within a program or across different programs. Early in

1998, Baxter et al. [20] defined that a clone is “a program fragment that is identical to an-

other fragment”. Roy et al. [144] summarized the existing definitions of clone, and argued

that these definitions carry some kind of vagueness. In this dissertation, we complete the

definition of clones as “two or more clone fragments which satisfy some extent of similari-

ty based on the text, Abstract Syntax Tree (AST), Program Dependency Graph (PDG),

metrics, program models or other representations of code”.

The most well-known program-text clones can be compared on the basis of the program

text that has been copied. We can distinguish the following types of clones accordingly

[101] (see Figure 2.4, the central part is the original copy, and the rest parts are the cloned

copies.):

Chapter 2 Preliminaries

17

• Type 1 is an exact copy without modifications (except for whitespace and comments).

• Type 2 is a syntactically identical copy; only variable, type, or function identifiers have

been changed.

• Type 3 is a copy with further modifications; statements have been changed, added, or

removed

• Type 4: Functionally, if two blocks of code that conduct the same computation, but

implemented through different syntactic variants. For example, a bubble sort algorithm

can be written in a for () loop or a do-while () loop. They have the similar or equivalent

behavior, but not in the implementation. We can call these clones semantic clones [99,

108].

Figure 2.4. The example of Type 1,2,3,4 clones

From the above defined types of clones, we can find some several other kinds of clones

which are ramifications of the four standard types of clones. The clone term “exact

if (a = b) {

c = d * b; // Comment1‘

a = a + 1;}

else

c = d / a; //Comment2’

if (p = q)

{ // Comment1’

y = x * q;

z = z + 5; //Comment3

}

else

y = x / p; //Comment4

if (a = b) {

c = d * b; // Comment1

e = 1; // This statement is added

 a = a + 1; }

else

c = d / a; //Comment2

switch (a) {

case : b {c = d * b; // Comment1

a = a + 1; break;}

default:

c = d / a; //Comment2d

}

if (a = b) {

c = d * b; // Comment1

a = a + 1;}

else

c = d / a; //Comment2

Type 1 Type 2

Type 3 Type 4

18

clones” refers to the Type 1 clone, which just has the modification to comments or

whitespace. According to the rule whether the renaming of identifiers is systematic and

symmetric, we can divide the Type 2 clones into parameterized clones [8] and renamed

clones, these two kinds. As for the Type 3 clones, depending on whether the activity of

renaming identifiers is conducted or not, we can divide them into near-miss clones [146]

and gapped clones [166]. Near-miss clones can include all the Type 2 clones and some

Type 3 clones with a slight modification within a statement(s) or even addition and dele-

tion of statement(s). The difference between near-miss clones and gapped clones is that the

latter kind just has statement modification: statement insertion or statement deletion.

From the perspective of patterns of recurring clones, structural clones [12] mean clones

within a syntactic boundary following syntactic structure of a particular language. These

boundaries can be function boundary, class boundary, file boundary, directory boundary

etc. Structural clones can cover from Type 1 clones to Type 4 clones.

As a special subclass of structural clone, function clones [108] refer to the clones that

have the whole content of a certain function. According to its similarity level, a function

clone can be any type of 1, 2, 3 and 4.

[183] define chained method as a set of methods that hold dependency relations. For

given chained methods, if each set of the corresponding methods is a code clone, they

called the set of chained methods chained clone. From the definition, it can be concluded

that chained clone should be a type of function clones.

The non-contiguous clone is an alias for gapped clones [79]. In this kind of code dupli-

cation, the different clone instances may just have a few different statements embedded in

the common lines of the clones.

In some programs, it is very common that a small block of code recur so frequently that

it exists in the multiple source files in an application. In [98], the author gives this kind of

Chapter 2 Preliminaries

19

clones a name, ubiquitous clones. For example, some flag setting statements or memories

disposal statements can be the most usual candidates for this kind of clones.

The term reordered clones refer to the clones that have some sequence changes of

statements among the different instances as their feature. Given the similarity degree of

them, reordered clones have the properties of gapped clones and belong to Type 3 clones,

while from the semantic point of view, they have similarity on the semantic level of the

codes. So they can be classified as Type 4 clones too.

Another kind of complex clones may be important but not very well known----that is

namely intertwined clones. An instance of this kind of clone may have the different parts

of two code snippets. Put it in another way, it is the two separate different blocks of codes

that entangle closely together to form a new single code portion. Discovering these clones

is beyond the capability of most current code detection tools as this kind of clones can be a

standard subclass of Type 4 clones.

The recent work by Bellon et al. [21] reports a detailed quantitative evaluation of six

clone detectors that rely on five different types of program representations. Roy and Cordy

[145] present a controlled experiment that evaluates the potential of existing clone detec-

tion techniques in handling clones resulting from a set of hypothetical editing scenarios.

Token-based clone detection tool is the fastest, most stable and popular clone detection

approach. For example, CCFinder [80] divides the code into tokens and then applies the

suffix-tree based sub-string matching algorithm is then used to find the similar sub-

sequences on the transformed token sequence. Tree and graph differencing techniques

have been applied for the detection of clones. CloneDR [20] compares abstract syntax tree

(AST) of similar code fragments (with same hash index) to determine clones. PDG-based

detection tools [67,99,104,112] use subgraph isomorphism to detect similar code frag-

ments. As tree or graph differencing is computationally expensive, these techniques may

20

not scale to large systems. As a remedy, researchers have investigated reduced representa-

tions to approximate program syntax and semantics. Mayrand [120] identifies functions

with similar code-metrics values as clones. Gabel et al. [55] encode PDGs in a vector space

and then use Locality Sensitive Hashing [58] to cluster similar vectors. CloneMiner [12]

exploits frequent item-set mining [61] to detect structural clones across larger program

units.

2.2.2 CloneMiner

In this dissertation, we use the clone detection tool CloneAnalyzer [184] to find the sim-

ple clones as well as the higher level structural clones. Basit and Jarzabek [11] proposed a

new clone type beyond the above introduced four clones from a higher perspective. After

detecting clone classes (CC), they move on to the detection of higher level similarity pat-

terns which will present the possible recurring combinations of simple clones.

Following is a list all the cloning abstractions detected by Clone Miner, apart from the

simple clone classes (SCS) [184]:

1. repeated groups of simple clones across different methods (simple clone structures or

SCS across methods) repeated groups of simple clones across different files (SCS

across files)

2. repeated groups of simple clones within a single file (SCS within files)

3. method clone classes (MCC)

4. file clone classes (FCC)

5. repeated groups of method clones across different files (MCS across files)

6. repeated groups of file clones across different directories (FCS across directories)

7. repeated groups of file clones within a single directory (FCS within directories)

8. repeated groups of file clones across different file groups (FCS across groups)

9. repeated groups of file clones within a file group (FCS within groups)

Chapter 2 Preliminaries

21

Among the above defined structure clone types, in the sequential chapter, we will use

CloneAnalyzer to identify the clones across the different methods, as we concern on the

contextual differences of clones in their own methods.

Detecting recurring groups of structural clones from the simple clones is essentially a

Frequent Item-set Mining (FIM) problem. Basit applied the same data mining technique

used for “market basket analysis”. The idea behind this analysis is to find the items that are

usually purchased together by different customers from a departmental store. Originally,

the input is a list of transactions, each of which consists a list of items bought by the cus-

tomer for the current transaction. And the output is groups of items which are often bought

together. Thus, in our problem domain, analogically the input is a list of simple clone clas-

ses (or clone sets), and the output is groups of structural clones in which each such group

consists of a list of simple clones appearing together.

The direct application of FIM results in that many mined frequent item-sets are subsets

of bigger frequent item-sets. Since our approach mainly considers those biggest frequent

item-sets, to remove these subsets the algorithm of “Frequent Closed Itemset Mining”

(FCIM) [61] is more suitable. In [12], the algorithm for finding files containing frequent

item-sets of simple clone classes is listed. To differentiate the context of the feature rele-

vant code clones, it is helpful to know the information about the repeated groups of simple

clones across different methods (SCS across methods). We list the similar algorithm to

find methods containing the frequent item-sets in the following Figure 2.5.

22

Algorithm for finding methods containing the frequent item-set

Procedure FindingFrequentItemSet

Input:

SCC: a list of simple clone classes,

C: the minimum support count, or simply support, of a frequent

item-set

S: the minimum size of the item-set

Output:

result: a list of methods containing the recurring groups of simple

clone classes.

Body:

1. FIsets = FIM(SCC , C, S)

2. for each simple clone class sc SCC do

3. for each frequent item-set fiset FIsets do

4. mset = all methods that contain any instance of sc

5. for each method m mset do

6. if fiset is a subset of the simple clones represented in

sssssss m, keep m in the result

7. else prune it

8. end for

9. end for

10. end for

11. Output the final list result

Figure 2.5. Finding methods containing frequent item-sets of SCC

2.3 Program Differencing

For ease of program comprehension, the program differencing techniques are widely

used for the analysis of changes made to a system. Maintainers often face the tasks involv-

ing analyses of two versions of a program: an old version and a new modified version, e.g.

finding the differences for merging two versions in SVN tool. For the context of SPL in

this dissertation, the program differencing techniques are also required to compare two

product variants generated from the common assets, not only at requirements level but also

at implementation level.

In this dissertation, to compare the product variants in requirements and implementation,

the program differencing technique is a core part required in our approach.

Chapter 2 Preliminaries

23

2.3.1 Status of the art

The program differencing techniques can be further categorized into the following two

types: text differencing, model differencing. In earliest decades, the text differencing tech-

nique was mainly used to compare programs since at that time a program was just seen as a

block of text. The UNIX diff utility [124] is one of the most well-known and popular dif-

ferencing tools. UNIX diff compares two input text files line by line and outputs differ-

ences due to insertion, remove and modification. However, such pure text differencing

technique fails to take into account the structure and characteristics of programming lan-

guage, and overlook behavioral changes corresponding to textual modifications. For ex-

ample, diff may report changes with no effect on the program behavior, e.g. reordering of

class members/methods and changes in comments.

To abstract away the textual noise on the program behavior, the modern mainstream

program differencing techniques are mostly based on model differencing algorithms, in

which way the program artifacts are usually represented as some forms of models. Yang

[181] developed a dynamic programming algorithm to compare the program based on the

Abstract Syntax Tree. Apiwattanapong et al. [6] further compared object-oriented pro-

grams based on enhanced control flow graphs. Horwitz [69] examines the subgraph iso-

morphism of intra-method Program Dependency Graphs (PDGs) to detect semantic and

textual differences, in terms of unmatched and changed program statements. Since Hor-

witz’s technique was proposed before the invention of Java, it was only defined for a sim-

plified C-like language, not suitable for the object oriented code. But the idea to compare

the program based on PDG can be applied to the modern object oriented code. In this dis-

sertation, we adapt GenericDiff framework [175] for the comparison of PDGs of clones to

detect the semantic differences of clones at the implementation (object oriented code) lev-

el.

24

Comparing artifacts and detecting their differences is a highly relevant task in software

maintenance. Version control systems make use of the differencing algorithm to calculate

the delta between a version and its revisions [123]. Xing and Stroulia [171] propose to

support evolutionary software development by analyzing the evolution of software design

models. Apiwattanpong et al. [6] analyze the impact of structural changes on test cases for

the test case selection in regression testing. Kim and Notkin [97] utilize inductive learning

to discover and represent systematic code changes. Person et al. [131] support the program

equivalence checking and regression test generation based on differential symbolic execu-

tion.

In the recent three years, Loh et al. [114] implemented the program differencing tool

Logical Structural Diff (LSdiff) that infers systematic structural differences as logic rules.

It groups the relevant differences as a single logic rule, and further identifies exceptions

that imply missing or inconsistent updates. Maoz et al. [117] implemented the two algo-

rithms for addiff (activity diagram diff) based on binary decision diagrams (BDDs), and

integrate it into an Eclipse plug-in. To compute, addiff represents each of the activity dia-

grams into a module in SMV (the input language in SMV model checker [201]), and ap-

plies symbolic model checking for comparison. Duley et al. [45] proposed the Vdiff, a po-

sition-independent differencing algorithm for Verilog Hardware Description Language

(HDL). Different from the object-oriented code, in Verilog programs the relative ordering

between the statements does not matter, and there are also many Boolean expressions to

define circuitry. Vdiff extracts ASTs and builds the longest common sequence algorithm to

align nodes by the same label. To complement syntactic differencing, it also adopts the

modern SAT solver to compare semantic equivalence of two Boolean expressions.

Chapter 2 Preliminaries

25

2.3.2 GenericDiff

Figure 2.6. The architecture of GenericDiff [175]

In this dissertation, we need to compare the requirements as well as the object oriented

code. Instead of using separated differencing algorithm for various software artifacts, we

adopt the GenericDiff framework for model comparison [175]. In Figure 2.6, the input of

the framework is two models, which can be transformed from source code, requirement

specifications or UML diagrams. The output consists of symmetric differences between

two compared models. Symmetric differences means if model a has one added element e

than model b, the results report two symmetric items: (null, e, add) for model a and (e,

null, delete) for model b. The process of the GenericDiff framework includes four major

steps:

1. Parsing the input models into two Typed Attributed Graphs (TAGs). The nodes

and edges in TAGs mapped to the entity in the domain models can be defined ac-

cording to the domain-specific properties.

2. Constructing a PairupGraph . Suppose we have and

 for the two compare models, there exists and

 . Pairing up is guided by a set of user-defined feasibility predicate,

in which the type compatibility, minimum attribute similarities and the topological

constraints are included.

26

3. Propagating a random walk on the PairupGraph. This step is an iterative process

that propagates the distance values from node pair to node pair based on graph

structure. The tendency functions are also provided to define constant functions, or

functions of the distance values between PairupGraph nodes/edges.

4. Matching bipartite graphs from a rank vector of node pairs outputted by step 3.

Each of node pairs inside this rank vector is assigned a numerical correspondence

measure representing the matching quality. The stable-marriage algorithm (Gale-

Shapley algorithm) is applied to select the optimal matching pairs of nodes/edges.

The interested readers can refer to [175] for the details in each step. Note that the report-

ed symmetric differences are some preliminary results, which entail the further interpreta-

tion with the domain knowledge. In Chapter 3 and chapter 4, how the symmetric differ-

ences are interpreted is elaborated.

2.3.3 Clone detection vs. program differencing

Program differencing techniques compare two programs at a time, already assuming that

there is much similarity among them. However, these techniques are not suitable for clone

detection in large systems. Using program differencing for that purpose would require a

pair-wise comparison of any two code fragments which results in combinatorial explosion

of such operation. AST- or PDG-matching based clone detection techniques [20,99] have

all used some hash functions to prune the space of pair-wise differencing. Even then, they

may still not scale well to large systems. In this dissertation, instead of applying program

differencing techniques within clone detection process, we use clone detection for a fast

selection of highly similar code fragments and then use PDG differencing to compute a

precise characterization of the differences of those clones.

Chapter 2 Preliminaries

27

2.4 Information Retrieval for Feature Location

The information retrieval techniques are widely used in the feature location area to iden-

tify the feature/concept-relevant resource [44,142]. In this dissertation, we are concerned

about the variant features (variability) and the corresponding code among the product fea-

tures. We aim at using the commonality and variability analysis to facilitate feature loca-

tion job in the context of product family or product line.

The software artifacts, such as requirement documents, source code, can be indexed into

a document space according to the occurrences of terms within these artifacts. The query

can be also indexed and projected onto this document space. By using similarity measure

such as cosine similarity, the documents inside document space are compared with this

indexed query to get a ranking list for matching.

2.4.1 Vector Space Model

In the Vector Space Model (VSM), documents and queries are represented as vectors of

terms that occur within documents in a collection [65]. VSM begins with a term-document

matrix, A, to record the occurrences of the m unique terms within a collection of n docu-

ments. In this term-document matrix, each term is represented by a row, and each docu-

ment is represented by a column, with each matrix cell, , denoting a measure of the

weight of the ith term in the jth document. As a document often only contains a small sub-

set of the total terms in the document collection, this term-document matrix is usually very

large and very sparse. The weight is actually defined according to the value of term

frequency for the ith term in the jth document. Specifically, we can write:

where a local term weight, , denoting the relative frequency of the ith term in the

jth document, and a global weight, , denoting the relative frequency of the ith term

within the entire collection of documents.

28

Some common local weighting functions [23] are listed as follow:

 Binary: if or else 0

 TermFrequency:

 Log:

Some common global weighting functions [23] are listed as follow:

 Binary:

 Normal:

√∑

 Idf:

, is the number of documents in

which the ith term occurs.

In this dissertation, we use the TermFrequency as the local term weight and the Normal

as the global weighting functions. From a geometric point of view, each column of the

term-by-document matrix (the term vector owned by each document) denotes a point in the

m-space of the terms. And totally this matrix has n points in this m-space of the terms.

Thus, the similarity between two documents (two vectors) can be measured by the cosine

of the angle between the two corresponding points in the m-space of the terms. Generally,

the closer these two points are in the same (general) direction, the more similar these two

documents are.

2.4.2 Singular Value Decomposition

In reality, VSM suffers from the two following drawbacks: 1. VSM ignores the possible

semantic relationship among the terms; 2. VSM fails to do rank-reduced simplification. In

the dictionary, there may be 50000 words. But actually people may only use a necessary

subset like 5000 words as there are synonymity and polysemy among all the words. The

dictionary case also holds for the collection of documents. Latent Semantic Indexing (LSI)

Chapter 2 Preliminaries

29

became an improvement over the simplistic point of view of term matching, taking account

into term dependencies [41].

The basic idea of LSI is to exploit the underlying “latent structure” in word usage pat-

tern by using statistical analysis on the co-occurrence of terms. Then the terms with the

same or similar usage pattern may be synonyms or near- synonyms, which can be reduced

to one concept. How to separate such a set of uncorrelated indexing factors or concepts is

done by Singular Value Decomposition (SVD) [34].

The LSI has the same steps with VSM for the construction of the term-document matrix

A. The LSI applies SVD to decompose the matrix A into the product of three smaller ma-

trices : an m r term-concept vector matrix , an r r singular values matrix , and a r

n concept-document vector matrix, , which satisfy the following relations (r is the rank of

matrix A):.

 where

LSI allows the optimal approximation for the standard SVD by reducing the rank or

truncating the singular value matrix to size k r [41].

By the above two steps of transformations, i.e. decomposition and approximation, the

initially correlated terms are first grouped into a set of concepts at size of r, and then fur-

ther compressed into an even smaller set of concepts at size of k. The benefits of such pro-

cess is to capture most of the important underlying “latent structure” in the association of

terms and documents, meanwhile to abstract way the noise due to the users’ different

word usages that are sensitive to the word-based retrieval methods.

30

The challenges of using LSI are twofold: the costly computation of SVD and difficulty

in determining the optimal value of k.

The computation time for a standard SVD of an m n matrix A is as follows:

 Computation of , and :

 Computation of and :

The above time complexity is usually for the case The more general time com-

plexity form should be . As we use k to approximate the rank r, the

time complexity will further be reduced to accordingly.

Thus, the choice of value of k is critical to the performance as well as accuracy of LSI.

With much larger repositories (as much as 80,000 terms and 220,000 documents), Dumais

et al. [46] reported that better results can be achieved when the concepts (the value of k) is

between 235 and 250. But the above observation is especially reasonable for the retrieval

on the natural language. As the collection of source code files may have a much larger vo-

cabulary, Poshyvanyk et al. [136] reported that when the value of k is 750, the overall rele-

vant factor for their 9 queries is better compared with k = 300 and 500. But after 750, the

result is not stable: some queries got better results and some got worse. It will be desired to

see more solid empirical study on choice of the size of concepts.

In Chapter 5, we further explore the relationship between the size of the concepts and,

the performance and the accuracy. Our empirical study sheds light on the optimal choice of

the size of the concepts for the documents of source code.

Chapter 3 Understanding Variability in Product Requirements

31

3 Understanding Variability in Product Requirements

This chapter is organized based on [180] to answer the RQ1 introduced in Section 1.1.

We reviewed the related approaches to understand variant requirements, and proposed our

model-differencing based approach to understand the commonality and variability between

product variants at the requirement level.

3.1 Introduction

Product variants often evolve from an initial product developed for and successfully

used by the first customer, for example WFMS [182] and PAT [157,158]. Figure 3.1 pre-

sents five product variants of the Wingsoft Financial Management System1 (WFMS) [182],

spawned from WFMS
Fudan

developed for Fudan University. The successful deployment of

the initial product has attracted new customers, such as Zhejiang University and Shanghai

University. WFMSes have now been used in over 100 universities in China.

Initially, WFMS developers copy-pasted and modified existing product variants when

building a new product variant. For example, WFMS
Chongqing

 was built by adapting

WFMS
Fudan

 and WFMS
Zhejiang

. Such ad hoc reuse becomes problematic as the number of

features and the number of product variants grows [126]. Not only do we have to maintain

each product variant separately from others, but it also becomes difficult to find and adapt

features for reuse in new products [182].

As these problems accumulate, it is worth reengineering product variants into a Soft-

ware Product Line (SPL) for systematic reuse [33]. Extractive reengineering [105] into

SPL is a low cost approach in which the initial reusable core assets include only features

1 WFMS for Shanghai Jiaotong University: http://www.jdcw.sjtu.edu.cn/wingsoft/index.jsp

http://www.jdcw.sjtu.edu.cn/wingsoft/index.jsp

32

already implemented in existing product variants. The first step in extractive approach is

therefore to understand common and variant features in existing product variants.

WFMS
Zhejiang

WFMS
Shanghai

WFMS
Fudan

WFMS
Shandong

WFMS
Chongqing

Evolved

From

Product

Variant

Figure 3.1. The variants of WFMS product family

At first glance, it seems to be an easy task to identify common and variant features in

product variants. However, the problem is non-trivial for a big product family with many

features that has been evolved for long time. During evolution, feature names and descrip-

tions as well as the dependencies and relationships between features might have been

changed. New features might have been added and existing features might have been de-

leted. The features might have also been split or merged.

The existing work on domain analysis and requirement engineering has been focused on

developing modeling techniques, such as goal model [38] and feature model [81] to cap-

ture and analyze requirements, monitoring and tracing requirement changes [66,187], and

reasoning about the consistency and configurability of requirement models [22,162]. How-

ever, there is a lack of automatic tools that can produce an accurate report of feature evolu-

tion in a family of product variants.

To automatically identify how these product variants are different in features (see RQ1

in Section 1.1), we present a model differencing based method to detect changes that oc-

curred to product features in a family of product variants. The primary input to our method

is a set of Product Feature Models (PFMs). A PFM captures all the features and their de-

pendencies in a product variant (see Figure 3.3). The PFMs can be provided by system ex-

Chapter 3 Understanding Variability in Product Requirements

33

perts of the subject product variants. They may also be reverse-engineered from the im-

plementations of product variants using feature location methods [3,48,100,134].

We then adapt GenericDiff [175], a general framework for model comparison, to com-

pare pair-wisely these PFMs based on both lexical and structural (i.e., dependencies and

relationships) similarities of features. We propose a catalog of feature changes that can

evolve a PFM, namely rename feature, add leaf feature, remove leaf feature, move feature,

split feature and merge features. Based on the differencing report by GenericDiff, we also

developed a tool for automatically inferring feature changes according to the catalog we

propose.

FeeInfoAcquire

InitFeeInfo

LockFeeItem

ReadLatestPayment

OperationLock

FeeInfoAcquire

InitFeeInfo

LockFeeItem

DelegationLock

PFM
Fudan

 ...

 ...

PFM
Shanghai

Figure 3.2. Comparison of two PFMs

Figure 3.2 illustrates the partial PFMs (PFM
Fudan

 and PFM
Shanghai

) of two product variants

WFMS
Fudan

 and WFMS
Shanghai

 in the WFMS family. Our approach reports that the feature

ReadLatestPayment is only present in PFM
Shanghai

. Furthermore, it reports that the feature

DelegationLock in PFM
Fudan

 and the feature OperationLock in PFM
Shanghai

 can be a) the

same feature but with different names in two product variants or b) they can represent dif-

ferent features.

The novelty and contributions of this work are listed as follows:

1. We bridge the gap caused by a lack of automatic tools that can produce an accurate

report of feature evolution in a family of product variants.

34

2. The existing domain analysis focuses mainly on change tracing and reasoning on the

requirements, we propose a model-differencing based approach.

3. The evaluation is conducted on real product line WFMS, and a controlled experi-

ment is also designed to evaluate the scalability of our method with a large volume

of synthesized PFMs. And the preliminary results are promising.

3.2 Related Work

Goal model [38] is often used in requirement engineering to capture functional (hard)

and non-functional (soft) requirements and their dependencies. Hassine et al. [66] applies

slicing and dependency analysis to Use Case Map [26] to identify the impact of require-

ment changes on the system. Zowghi et al. [187] presents a logical framework for model-

ing and reasoning about the consistency and completeness of the requirements. Lormans

[115] developed a methodology to monitor the evolution of requirements and reconstruct

requirement traceability.

Feature model [81] is commonly used to represent common and variant requirements in

SPL. Thüm et al. [162] utilize SAT solver to classify the evolution of feature model based

on how the configurability of the model has changed. Dhungana et al. [43] proposed a

model-driven approach to product line evolution. Their approach supports merging of

model fragments into a complete variability model as well as the consistency checking and

co-evolution of models and architecture.

The Product Feature Model (PFM) in this dissertation is similar to the hard-goal model,

as a PFM captures the requirements of a particular product variant. However, our research

goal is to support reengineering product variants into SPL. At requirement level, we would

like to derive a domain feature model [83], representing configurable requirements in an

SPL. In this sense, we refer to our input model as Product Feature Model.

Chapter 3 Understanding Variability in Product Requirements

35

Existing work on requirement and domain engineering has been focused on the model-

ing, management of, and reasoning about requirements and their evolution. In this work,

we present a model-differencing based method to detect and analyze feature changes at

requirement level in a family of product variants. This work enables the variability analysis

and consolidation of product variants in the task of extractive reengineering into SPL.

Researchers have also investigated the comparison and merging of other models. Xing

and Stroulia developed UMLDiff [172] for comparing UML class models for supporting

evolutionary development of object-oriented software design. Godfrey and Zou [60] use

origin analysis to detect the merging and splitting of source-code entities at the file-

structure level. Demeyer et al. [42] propose a set of heuristics for detecting evolutions from

refactorings by applying lightweight, object-oriented metrics to successive versions of a

software system.

 Nejati et al. [125] present an approach to matching and merging state chart specifica-

tions. Treude et al [163] use a high-dimensional search tree to efficiently compare models

that can be represented as direct, typed graphs. GenericDiff used in this work is a general

framework for comparing various types of models. In addition to product feature model,

we have also applied GenericDiff to compare the implementation (e.g., Program Depend-

ence Graph) of product variants [174].

Bruntink et al. [25] use clone detection to identify crosscutting concerns, which often

implement distinct features. Feature location methods support the recovery of features

from product implementations using information retrieval techniques [3,135] or scenario-

based dynamic analysis [48,100]. These approaches can be exploited to acquire product

feature models from the implementations of product variants.

Alves et al. [2] defines a catalog of feature model refactorings that can be enacted in the

extractive reengineering into SPL. They assume that it is known where to apply these re-

36

factorings in a software product family. The output of this work can be exploited to identi-

fy the opportunities in a family of product variants where such refactorings are applicable.

3.3 Comparing PFMs

In this part, we first define the Product Feature Model (PFM) (Section 3.3.1). We then

summarize a catalog of feature changes (Section 3.3.2). We discuss how these evolutionary

feature changes affect the PFMs lexically and structurally, by which the evolution history

of a PFM can be expressed in a set of subsequent changes. Next, we present GenericDiff

framework and describe how we configure GenericDiff to compare PFMs (Section 3.3.3).

Finally, we analyze the differencing report by GenericDiff to infer the changes of product

features as product variant evolves (Section 3.3.4).

3.3.1 The meta-model of product feature model

TuitionFeePayment

Login

OnlinePaymentAuthentication

SSO InitBasicInfo

WSPayment

FeePayment

Direct InitCsDbUser

Initiation

Figure 3.3. A Partial PFM of WFMS
Shandong

+Name

PFM

LeafFeature CompositeFeature

+Name : string

Feature

+compose

1

+composed

*

+parent

1

+sub-features

1..*

RootFeature

Figure 3.4. The meta-model of PFM

Figure 3.3 shows a partial PFM of the product variant WFMS
Shandong

 in the WFMS prod-

uct family [182]. The rectangle nodes denote features. This PFM has a root feature Tui-

tionFeePayment that refers to the whole system. The root feature is decomposed into two

Chapter 3 Understanding Variability in Product Requirements

37

composite features, Login and FeePayment. The Login is decomposed into two composite

features, Authentication and Initiation, which are further decomposed into leaf features that

represent different authentication modes and initiation operations, respectively. The

FeePayment is decomposed into two leaf features that represent two different payment

methods, OnlinePayment and WSPayment. Such PFMs are the inputs to our approach.

Figure 3.4 presents the meta-model of product feature model. The meta-model defines

rules that must be followed to build correct PFMs. A PFM forms a hierarchy of product

features. Each Feature in a PFM must be uniquely identifiable by its name property. Note

that the feature name can be any free-form text that describes the feature. A PFM must

have a RootFeature, which is a special CompositeFeature that represents the correspond-

ing product variant. A Feature can be decomposed into sub-features. A feature that has no

sub-features is a LeafFeature; otherwise it is a CompositeFeature. The root feature has no

parent feature, while a non-root feature must have a parent feature, i.e. belongs to a com-

posite feature.

3.3.2 A catalog of feature changes

We propose a catalog of feature changes that can evolve a PFM. We define four types of

atomic changes, namely rename feature, add leaf feature, remove leaf feature, and move

feature. Furthermore, we define four types of composite changes that can be composed of

a sequence of atomic changes: add feature subtree, remove feature subtree, split feature,

and merge feature. Note that this catalog of feature changes is sufficient to describe the

evolution of PFMs. However, it is possible to define other types of feature changes. Our

approach can be easily extended to handle the new types of feature changes.

RenameFeature. A consistent naming scheme improves product maintainability, espe-

cially when feature names allude to the functions of the product. A feature may be re-

named to reflect the underlying implementation changes, the adoption of different technol-

38

ogies, or the changes of application context. Renaming a feature f changes the name prop-

erty of the feature f in PFM.

AddFeature. A product can be extended with new features. A new leaf feature nlf can be

added to an existing feature f. This creates a new parent-subfeature relation from f to nlf. If

f is a leaf feature, it becomes a composite feature after the addition. Adding a composite

feature and its descendants, i.e., AddFeatureSubtree can be achieved by traversing the sub-

tree and adding leaf features in preorder.

RemoveFeature. A product variant may not have some features. An existing leaf feature

can be removed from a PFM. This removes the parent-subfeature relation between the re-

moved leaf feature and its parent composite feature. A composite feature may become a

leaf feature after the removal. Removing a composite feature and its descendants, i.e., Re-

movingFeatureSubtree can be achieved by traversing the subtree and removing leaf fea-

tures in postorder.

MoveFeature. The feature hierarchy may be reorganized. Moving a feature f (leaf or

composite) from a source composite feature sf to a target feature tf changes the parent-

subfeature relation between sf (tf) and f. But moving does not affect the parent-subfeature

relations between f and its sub-features. Moving a feature can be achieved by removing the

feature from a PFM and then adding it somewhere else in the PFM. However, we consider

move as an atomic change, since it better conveys the intention of the change (i.e., the re-

organization of feature hierarchy) than the separate addition and removal.

SplitFeature. A feature f can be split into two or more sibling features (including f). If f

is a composite feature, some of its sub-features will be distributed (i.e., moved) to its new

sibling features. Splitting feature can be achieved by first adding new sibling features as

leaf features and then moving some of the sub-features of f to the relevant new sibling fea-

tures.

Chapter 3 Understanding Variability in Product Requirements

39

MergeFeature. Two or more sibling features (including f) can be merged into a single

feature f, as in opposite to splitting a feature. The sub-features of the merged sibling fea-

tures will become the sub-features of this single feature after the merging. Merging feature

can be achieved by firstly moving all the sub-features of f’s sibling features to f and then

removing these sibling features.

3.3.3 The differencing of product feature models

Given the PFMs of N product variants, we apply GenericDiff to com-

pute pair-wisely the differences between the product feature models PFMi and PFMj

() of two product variants. In this chapter, we give an overview of Ge-

nericDiff framework. We explain how we configure GenericDiff to compare PFMs. The

interested reader is referred to [175] for further information about GenericDiff framework.

Figure 2.6 shows the architecture of GenericDiff. GenericDiff takes as input two models

to be compared (in this work, i.e., Product Feature Models) and the specifications of do-

main-specific properties, pairup feasibility predicates, and random walk tendency functions

(three concepts to be made clear below) for the comparison of input models. It casts the

problem of model comparison as a problem of recognizing the Maximum Common Sub-

graph (MCS) of the two Typed Attributed Graphs (TAGs).

Given two PFMs, PFM1 and PFM2, GenericDiff parses
(1)

 the input models into typed at-

tributed graphs, TAG1 and TAG2, according to the meta-model of PFMs (See Section 3.3.1).

The TAG of a PFM forms a containment tree, such as the PFM shown in Figure 3.3. The

TAG of a PFM consists of three types of graph nodes, corresponding to RootFeature,

LeafFeature and CompositeFeature respectively. Graph edges represent parent-subfeature

relations between features.

A property of model elements and relations declares a characteristic of their instances.

Given a meta-model, one needs to select a set of domain-specific properties for each ele-

40

ment and relation type that characterize its instances. During the parsing process, Gener-

icDiff collects data from the selected properties of each model element and relation and

represents them in a characteristic composite vector attribute associated with the corre-

sponding graph node and edge. This composite vector attribute is a compact representation

of the properties of model elements and relations for efficient graph indexing and matching.

A feature in PFM has three properties, namely, name, a parent feature, and a (possibly

empty) set of sub-features. In the containment tree representation of PFM, we define, for a

feature node f, a composite vector of two atomic vectors. One atomic vector represents the

set of words in the name property of f. We choose the Jaccard coefficient, an efficient and

commonly used metric to measure the similarity between two sets of words S1 and S2, i.e.,

 ⁄ . The other atomic vector is a numeric vector that stores the number of the

sub-features of f. Given two such numeric vectors, [] and [], we choose Manhattan

(Taxicab) distance, i.e., | |, to measure their similarity. Manhattan distance did not

take into account the direction of the path. The usage of Manhattan distance leads to a

larger difference than the usage of Euclidean distance under the same case. The edges of

the containment tree of PFM have no characteristic vectors, since they simply represent the

parent-subfeature relations between features.

Given two TAGs, corresponding to the two compared PFMs, GenericDiff constructs
(2)

 a

PairupGraph, i.e., a product of the two compared model graphs. The PairupGraph encodes

the graph structure of two compared models. A node (edge) of PairupGraph represents a

pair of nodes (edges) of two compared model graphs. The construction of PairupGraph is

guided by a set of user-specified pairup feasibility predicates to prune the search space

according to domain-specific knowledge. For the comparison of PFMs, we simply define

the type compatibility of graph nodes, i.e., [Feature, Feature]. Note that we define the type

Chapter 3 Understanding Variability in Product Requirements

41

compatibility in terms of the super-type Feature. Therefore, the mappings between graph

nodes of different subtypes, such as LeafFeature and CompositeFeature, are allowed.

The initial distance value of a pair of graph nodes (edges) is calculated as the Euclidean

length of the normalized distance vector of the two graph nodes (edges). GenericDiff per-

forms a random walk
(3)

 on the PairupGraph, which is an iterative process that propagates

the distance values from node pair to node pair based on graph structure. A random walk

on a graph can be described by a probabilistic model that is defined by a set of random

walk tendency functions. For the comparison of PFMs, we use the default random walk

settings provided by GenericDiff framework that define the random walk tendency func-

tions as linear functions of the distance values of the relevant node and edge pairs.

The random walk on the PairupGraph outputs a rank vector of graph node pairs, each of

which is assigned a numerical correspondence measure, i.e., the measure of the quality of

the match it represents. GenericDiff constructs a bipartite graph from this rank vector of

node pairs and selects an optimal matching
(4)

 using Gale-Shapley algorithm. Finally, given

a pair of matched graph nodes, GenericDiff builds a bipartite graph of their edges and uses

Gale-Shapley algorithm [56] again to map their edges.

3.3.4 Inferring changes to product features

GenericDiff reports a symmetric difference between two compared models. For the

comparison of two PFMs, PFM1 and PFM2, GenericDiff outputs a set M of corresponding

(i.e., matched) features that exist in both PFMs, a set UM1 of features that are unique in

PFM1, and a set UM2 of features that are unique in PFM2. Based on the differencing report

by GenericDiff, we developed a tool for automatically inferring feature changes (as defined

in Section 3.3.1) that can evolve PFM1 into PFM2 based on the effects of feature changes

on the PFMs.

42

Let f be a feature, we define parent(f) returns the parent feature of f and name(f) returns

the name property of f. Let and be a pair of matched features re-

ported by GenericDiff, i.e., , our tool reports an instance of a particular type of

feature change (by tagging with the corresponding change type) as follows:

 if

 Let and , if

 Let , if and ,

and and

 Let , if and ,

 and and

To detect feature renaming, our tool simply examines the name properties of a pair of

matched features. To detect feature move, our tool examines whether the parent features of

a pair of matched features are matched. To detect feature splitting and merging, our tool

essentially examines if some sub-features of a pair of matched features are moved to some

unmatched sibling features of this pair of matched features. Note that our tool does not re-

port the splitting/merging of leaf features, since there is no distinction between the effect of

splitting a leaf feature and that of adding some new leaf features.

All the pairs of matched features that have not been tagged with the above four types of

changes will be tagged with unchanged. Finally, all the unmatched features in UM1 and

UM2 (excluding those tagged with Split and Merge) are reported as features to be Removed

and Added respectively. If a composite feature and all its descendants are tagged with Add

(Remove), our tool reports an AddFeatureSubtree (RemoveFeatureSubtree).

Chapter 3 Understanding Variability in Product Requirements

43

3.4 Evaluation

In this part, we present the empirical evaluation of the proposed approach. More specifi-

cally, we investigate two research questions: 1) How accurate is the proposed approach in

detecting changes to product features during evolution? 2) How robust is the proposed ap-

proach when the PFMs undergo substantial amount of changes during the evolution pro-

cess?

3.4.1 WFMS case study

We have applied our approach to analyzing the feature evolution in the product family

of WingSoft Financial Management Systems (WFMS). The first product of WFMS was

developed in 2003 for Fudan University and it has evolved into a product family with more

than 100 customers today. This product family includes 26 product variants. All the prod-

uct variants share 13 common features, such as Settlement, FileLog, but also differ in other

features specific to a given customer, such as InitCsDbUser in WFMS
Shandong

 and Se-

lectByYear in WFMS
Shanghai

.

Among all the WFMS product variants, WFMS
Chongqing

, WFMS
Shandong

, WFMS
Shanghai

 and

WFMS
Zhejiang

are four major variants. The other product variants have been derived from

them with minor changes. Figure 3.1 shows the evolutionary dependencies among the first

product WFMS
Fudan

 and these four major variants. Each of the four major product variants

has on average 30 features and 50KLOC of Java code. The system expert of WFMS prod-

uct family provided us the PFMs for the four major product variants, which were then pair-

wisely compared and analyzed using the proposed model-differencing based approach.

Overall, our approach reported pair-wisely seven or eight feature changes between the

four major variants in the WFMS product family. We presented some examples of these

feature changes in Section 3.1. Our approach reported one wrong feature matching (Se-

lectByYearOrder, SelectByYear) between WFMS
Chongqing

 and WFMS
Shanghai

. These two fea-

44

tures are unique features in WFMS
Chongqing

 and WFMS
Shanghai

 respectively. However, due to

their description and structural similarities, our approach reported them as the “same” fea-

ture being renamed. Furthermore, our approach missed one feature mapping (WSPayment,

WebServicePayment) between WFMS
Shanghai

 and WFMS
Shandong

. Although the two features

represent the similar functionality in two product variants, neither their descriptions nor

their hierarchical dependencies with other features are similar enough for them to be rec-

ognized as a pair of corresponding features.

Before we conducted our case study, we wondered to what extent the name or descrip-

tions of a feature may undergo a systematic renaming e.g. “FudanUniv ->ChongqingUniv”.

The results showed renaming is just one type of evolution. We did not count what percent-

age of evolution is related to renaming. Our intuitive observation is that it only takes a

small percentage. In addition, those renamed features are usually not related to the names

of different product variants.

The system expert of WFMS found the proposed approach useful in three ways. First,

although it is possible for him to manually identify the changes to product features in this

small-scale product family, the manual analysis would be ad-hoc and require a high famili-

arity with the subject product family and its evolution history. In contrast, our approach

provides a systematic way to assist him in the analysis of feature evolution in a software

product family. Second, our approach recovers the traceability of product features across

product variants. This helps to understand variants of existing features and adapt “right”

features for reuse in new products. Third, the reported feature changes reveal the inconsist-

encies of feature descriptions and dependencies in product variants. Understanding and

reconciling these inconsistencies is the prerequisite to extractive reengineering for a do-

main model, representing the common and variant features of a software product family.

Chapter 3 Understanding Variability in Product Requirements

45

3.4.2 An empirical study with synthesized PFMs

The WFMS case study demonstrates qualitatively the effectiveness of our approach in

understanding feature evolution in a family of product variants. However, we would like to

further investigate quantitatively how our method scales up to many product variants char-

acterized by many features that have changed over time. Inspired by Thüm et al’s recent

work [162], in which the synthesized feature models were utilized to evaluate the classifi-

cation of feature model evolution, we have also designed a controlled experiment to evalu-

ate the performance of our approach with a large volume of synthesized PFMs. This exper-

iment allows us to better understand the strength and weakness of our approach.

3.4.2.1 The generation of synthesized PFMs

We based our experimentation on the combined feature model of eShop [122] and Home

Integration System (HIS) [83] from the feature model repository of S.P.L.O.T [121]. Given

this feature model, we developed a tool for generating PFMs in two phases. First, the tool

instantiates the feature model to obtain an initial family of PFMs. Next, it iteratively se-

lects a PFM from this family and evolves the PFM by applying the six types of feature

changes (as defined in Section 3.3.2). The evolution is performed according to the user-

defined intensity (the number of types of changes being applied) and scope (the percentage

of features being changed).

a) The selection of feature models.

S.P.LO.T [121] is a benchmark for the research on Software Product Line. It documents

a repository of feature models. Feature model [81] is a hierarchy of product features, simi-

lar to product feature model. But a PFM represents a concrete product, while a feature

model represents all the products in an SPL. Feature model captures the variability among

these products in terms of mandatory and optional features, which define the features that

must or can be selectively included in a concrete product. It also allows the definition of

46

AND, OR or XOR constraints among the sub-features of a composite feature. AND indi-

cates that all the sub-features of a composite feature must be included in a product as a

whole, while OR or XOR indicates that a subset of all the sub-features or only one sub-

feature can be included in a product.

We selected the two largest feature models, namely eShop and HIS. eShop has 286 fea-

tures in total, among which there are 74 mandatory features, 81 optional features and 131

OR-subfeatures under 39 different parent features. There are no XOR-features in eShop.

HIS has 66 features in total, among which there are 44 mandatory features, 10 optional

features and 12 XOR-subfeatures under 6 different parent features. We combined the two

feature models, eShop and HIS into one. One may consider that the resulting feature model

represents an artificial system that has eShop and HIS as its two subsystems.

b) The randomized instantiation of PFMs

Given the combined feature model of eShop and HIS, our date-generation tool first ap-

plies a randomized instantiation strategy to generate a family of PFMs from this feature

model by randomly selecting features from the root feature down. The instantiation process

takes as input three parameters, the size of the initial product family n (n=10 in this exper-

iment), the probability (αOR) of an optional or an OR-feature to be included in a PFM, and

the probability (αXOR) of an alternative feature to be included. In this experiment, we con-

figure αOR and αXOR so that at least 70% of generated PFMs include at least 50% of all the

features in the combined feature model of eShop and HIS [162].

c) The randomized evolution of PFMs

Given an initial family of randomly instantiated PFMs, our data-generation tool then it-

eratively selects a PFM from this family, evolves it by applying up to six types of feature

changes (as defined Section 3.3.2) according to the user-defined evolution strategies, and

adds the evolved PFM back to the PFM family. This process continues until the size of the

Chapter 3 Understanding Variability in Product Requirements

47

PFM family reaches the user-defined threshold K (K=20 in our experiment). This random-

ized evolution process makes the following assumptions:

 We have studied the feature models listed in S.P.L.O.T repository and found that most

feature models define features using phrases, such as “Tuition Fee Payment” in the ex-

ample given in Figure 3.3. Thus, we utilize WordNet [50] to mimic the renaming of

features. We also use the Lucent lib to do some simple preprocess (e.g. stemming and

removal of stop words) to the feature name, and feature descriptions. Such preprocess

will improve the accuracy of the results.The data-generation tool alters the name of a

feature by adding word, removing word, replacing word with synonyms, and reshuf-

fling the order of words.

 The data-generation tool applies only the removal of a leaf feature at a time. The rea-

son is that removing an entire feature subtree usually results in a PFM that has much

fewer features than others in the PFM family. This often renders it meaningless to use

our approach, since such product variants can be considered as completely different

products, while the goal of our work is to detect feature changes in a family of similar

product variants.

 The data-generation tool only applies the feature splitting and merging to composite

features. Technically, if a leaf feature is split into two leaf features, it is considered as a

new leaf feature being added. Similarly, merging two leaf features is considered as re-

moving one of the leaf features.

The evolution of a PFM is performed according to the user-defined intensity (the num-

ber of types of changes being applied) and scope (the percentage of features being

changed). More specifically, we have designed two evolution strategies: feature-centric

and change-type-centric. With the feature-centric strategy, one can specify the percentage

of features that will be changed during the evolution process, but the types of changes be-

48

ing applied to each changed feature are freely chosen. In contrast, with the change-type-

centric strategy, one can specify several types of changes that will be applied to the fea-

tures of a PFM, but each type of changes can be applied to different sets of randomly cho-

sen features. In the next section, we discuss how we apply these two evolution strategies in

our experiment.

3.4.2.2 The performance of our technique

The data-generation tool generates a family of PFMs, which are similar but also differ-

ent from each other. We randomly select S (S=10 in our experiment) pairs of PFMs from

this PFM family and apply the approach presented in Section 3.3 to detect the feature

changes between them. The data-generation tool records the change history that the PFMs

have undergone during the randomized evolution process. This change history serves as an

oracle to evaluate the accuracy and robustness of our approach.

Given two PFMs, PFM1 and PFM2, we denote the recorded change history (i.e., ex-

pected changes) and the detected feature changes by our approach (i.e., reported changes)

as Expected Change-Tuple Set ME={<f1, f2, changetype>} and Reported Change-Tuple Set

MR={<f1, f2, changetype>} respectively, where f1 refers to a feature in PFM1, f2 is the corre-

sponding feature of f1 in PFM2, and changetype is the type of changes between the two

features. The changetype can be unchanged, rename, move, split, or merge (See Section

3.3.2 and Section 3.3.4). Since our objective in this experiment is to evaluate the accuracy

of our approach in identifying corresponding features in two PFMs, we omit the addition

and removal of features. We evaluate the accuracy of our approach in terms of the preci-

sion and recall: precision P is the percentage of correctly reported changes, i.e.,

| | | |⁄ and recall R is the percentage of changes reported, i.e., | | | |⁄ .

a) The results of change-type-centric strategy

Chapter 3 Understanding Variability in Product Requirements

49

Figure 3.5. The precision and recall for change-type-centric strategy

Figure 3.5 summarizes the precision and recall of our approach in an experiment in

which a family of PFMs has been evolved according to change-type-centric strategy. In

this experiment, all six types of changes (see Section 3.3.2) have been applied during the

evolution process. We incrementally increased the scope, i.e., the percentage of features

that will be changed by each type of changes, from 5% to 40%. We compute the precision

and recall of our approach in S (S=10 in this experiment) comparisons and then take the

arithmetic average value as reported in Figure 3.5.

The accuracy of our approach degrades as the scope of changes increase. It seems that it

hits the bottom at the scope of 30%, which is really a very intensive evolution. Since each

of six types of changes have been applied to 30% of randomly chosen features, each fea-

ture of this PFM statistically undergoes about 1.8 times of different types of changes on

average. If such intensive evolution happens to a real-world system, the original product

and the resulting product would be deemed as two completely different products.

b) The results of feature-centric strategy

We have conducted another experiment in which a family of PFMs has been evolved

according to feature-centric strategy. Figure 3.6 and Figure 3.7 summarizes the results. In

this experiment, we first decide the scope of features to be changed and then increase the

intensity of changes from one type of change to six types of changes. We run this experi-

ment at four increasing scopes, i.e., 10%, 20%, 30% and 40%. In general, the precision and

50

recall of our approach drop as the intensity and scope of changes increase. But it still re-

covers 86% of all the corresponding features at the precision of 81% in the worst scenario,

in which 40% of features have been changed, each of which suffers three randomly chosen

types of changes.

Figure 3.6. The precision for feature-centric strategy

Figure 3.7. The recall for feature-centric strategy

One interesting observation in Figure 3.6 and Figure 3.7 is that when the scope (i.e., the

percentage of feature to be changed) is fixed, the precision and recall of our approach by

randomly applying five or six types of changes are actually better than that of applying

three or four types of changes. We manually inspected the experimental data and found out

that this is resulted from the removal of features. At the intensity of five or six types of

changes, it is highly likely that the type of feature removal will be applied during the evo-

lution process. When a feature is removed, all the changes that have already been made to

it will be lost. Thus, feature removals actually simplify the comparison.

Chapter 3 Understanding Variability in Product Requirements

51

With feature-centric strategy, the scope of changes is fixed, which means that the rest of

the features remain unchanged. In this case, even a simple name-based matching approach

can recover at least 1-p% (let the scope of changes be p%) of all the corresponding fea-

tures. We comparatively study our approach against the simple name-based matching ap-

proach. Overall, our approach can recover more than 60% of the corresponding features

that are missed by simple name-based matching. In a case in which 80% of features have

been moved and/or renamed, the name-based matching only reports 27% of all the corre-

sponding features, while the recall of our approach is 67%. This is because our approach

identifies corresponding features based on not only their names but also their structural

context.

c) Summary and limitation

Overall, our approach is able to produce an accurate change reports between the PFMs

of product variants, even the PFMs have undergone intensive evolution. We manually in-

spected our experimental data and identified two main causes of false positive (i.e., erro-

neously reported) changes and false negative (i.e., missed) changes using our approach.

First, it is difficult for our approach to determine the correspondences between features

with little or very similar structural context (i.e., dependencies and relationships with other

features). For example, the leaf features become an issue, since they have no structural in-

formation other than their name property. Consider an example from eShop system. One

product variant has a leaf feature Internal Tracking, while the other has a leaf feature Part-

ner Tracking. When comparing the PFMs of these two products, our approach reports that

Internal Tracking and Partner Tracking are the “same” feature being renamed in different

product variants. However, Internal Tracking and Partner Tracking are actually two alter-

native ways of shipment tracking, which should not be considered as the “same” feature.

52

Second, if product features suffer various types of changes at the same time, for exam-

ple, a feature f is moved to another composite feature, and then split into several features,

finally it is renamed, and our approach may not recognize the correspondences between the

origin feature f and the resulting feature, since their name properties and structure changed

dramatically. Since we keep track of the change history of PFMs in the data-generation

process, we consider such cases as missed changes. However, a human expert may deem

such two features as two different features since they have been changed dramatically,

even though one feature is the origin of the other.

3.5 Application

Having evaluated the quality and robustness of our approach, the next question we

would like to address is “what is this good for?” In this part, we place the work presented

in this chapter in the overall context of our research on extractive reengineering into SPL.

We will briefly discuss three applications based on the results of this work. These applica-

tions are currently under development – to a different degree of maturity.

The long-term objective of our research is to support reengineering a family of similar

product variants into an SPL for systematic reuse. Figure 3.8 depicts the overall methodol-

ogy we have adopted for our work. The input to our methodology is the software artifacts

of product variants at different levels of abstraction, for example, product feature model at

requirement level, UML class model at architecture and design level, and Program De-

pendence Graph (PDG) at implementation level. The output of our reengineering method-

ology is a collection of core assets of an SPL, which may include domain feature model

(FM) [81], Product Line Architecture (PLA) [33] and generic components (GenericComp)

[138].

Chapter 3 Understanding Variability in Product Requirements

53

Product Variants SPL Assets

PFMs

Architectures

PDGs

G
e

n
e

ric
D

iff

Model Merging

Variability/Constraint Mining

Extractive Reengineering into SPL

FM

PLA

GenericComp

Figure 3.8. Reengineering product variants into SPL

The successful recovery and understanding of commonalities and differences among the

artifacts of product variants strides the first step towards our research objective. In this

chapter, we presented our application of GenericDiff to detect changes to product features

at requirement level. In the following work, we have also applied GenericDiff to compare

software artifacts of product variants at design and implementation level.

Based on the differences GenericDiff reports, we are currently investigating the use of

model merging and data-mining techniques to reverse-engineer the configurable domain

feature model, product line architecture and generic components. For example, we are us-

ing description logic [7] to model and reason about the conflicts and inconsistencies among

product feature models and investigating the merging of PFMs of product variants using

graph transformation tools, such as [147]. In addition to model merging, we are also inves-

tigating the recovery of the variability and other general constraints between product fea-

tures by mining association rules [27] or subtree patterns [31] from the differences among

the PFMs of product variants.

Last but not least, recovering traceability in software artifacts of product variants across

requirement, design and implementation can provide important insights into the develop-

ment and maintenance of an SPL. Such traceability is also essential in the derivation of

concrete products from an SPL. Researchers have investigated the use of information re-

trieval [3], scenario-based dynamic analysis [48], or the combination of both [135] for the

recovery of traceability. However, existing work on traceability recovery analyzes only

54

artifacts of a single software system. In our problem setting, we have a family of similar

product variants, which should be exploited.

The ability to compare and identify the differences in a family of product variants at dif-

ferent levels of abstraction can assist the task of traceability recovery. The underlying intu-

ition is that the presence or absence of a feature in a product variant should be reflected in

the presence or absence of certain design elements and code fragments. In our ongoing

work, we are combining the information retrieval techniques with software differencing

results to recovery feature–design element–code fragment traceability in a product variant

family.

3.6 Summary

In this work, we presented our approach to understand feature evolution in a family of

software product variants. We entail that features and their dependencies for each product

variant are documented as product feature model. The innovation of our approach is to ex-

ploit model differencing technique (GenericDiff) to detect evolutionary changes to product

features at requirement level. Based on the differences between product feature models as

reported by GenericDiff, our approach automatically infers evolutionary changes that oc-

curred to product features of different product variants.

We evaluated the effectiveness and scalability of our method using a real-world product

family of financial systems as well as a large volume of systematically synthesized data.

We showed that our method yields good results and scales to large systems.

In the current study, we use the term “evolution” to assume that the product feature

model may undergo long-term incremental changes. Note that the long-term incremental

changes do not mean the great and dynamic changes. For the whole evaluation part, we are

testing to what extent our approach can identify the evolutions among PFMs. Certainly, too

Chapter 3 Understanding Variability in Product Requirements

55

great evolutionary changes lead to the huge difference between two PFMs, and it may fail

any differencing approach to find the possible evolution changes between these two PFMs.

In the future, based on the results of this work, we plan to investigate merging tech-

niques to support the (semi-)automatic reconciliation of inconsistent product feature mod-

els. Furthermore, we also plan to exploit data mining techniques to discover the variability

and other general constraints among product features. These techniques will lead to further

automation of extractive reengineering of a family of similar product variants into an SPL.

Chapter 4 Understanding Variability in Implementation of Product Variants

57

4 Understanding Variability in Implementation of Product
Variants

This chapter shares materials with [174], which aims at resolving the problem RQ2 in-

troduced Section 1.1. We introduce the importance of understanding the differences of

similar code in the context of product line and refactoring. We present a PDG-based differ-

encing approach on clone instances and evaluate it on two industrial products, namely Ja-

vaIO library and Eclipse JDT test library.

4.1 Introduction

Unlike the domain analysis at the requirement level, the analysis at the implementation

level is more laborious and error-prone. Discovering the variability in the millions of lines

of source code of the products leads to the costly computation. Furthermore, even if it is

feasible to directly compare the millions of lines the source code, in what terms should the

variability be considered? Should it be considered in terms of textual differences or differ-

ences in other representations? Just as the clones are used to identify the aspects [144],

clones sometimes indicate the similar features. Based on the clone detection report, the

developers are interested to know which features/components recur across product vari-

ants, and what differences among similar features/ components are induced by different

contexts (see RQ2 in Section 1.1).

However, for the RQ2, the common clone detectors provide little or no additional in-

formation to aid developers in understanding the contextual differences among the clone

instances. To ease post-detection analysis of clones, researchers have investigated using

textual differencing [79,85], code metrics [9,10], visualization [165], and query-based fil-

tering techniques [184]. However, these clone analysis methods analyze only the infor-

mation of clones themselves, ignoring the program context in which clones occur, and thus

cannot identify contextual differences among clones shown in Figure 4.1.

58

 //Method FeeInfo.initInfo in WFMSFudan

… //clone section same as that in WFMSShanghai

1． for (int i = 0; i < yearTemp.size(); i++) {

2． boolean ifTS = false; //if the item is locked by Delegat…

3. … //clone section same as that in WFMSShanghai

4. rsGetFeeInfo = stmtGetFeeInfo.executeQuery(sqlGetFeeInfo);

5. if(Global.nTrim(rsGetFeeInfo.getString("bank_mark")).equals("Y"))
ifTS = true; //if it is locked by Delegat…

6. … //clone section same as that in WFMSShanghai

7. feeInfo.add(yearFee);
8. if(ifTS) lockTags.add("Y"); //if it is locked by Delega…

9. }

//Method FeeInfo.initInfo in WFMSShanghai

… //clone section same as that in WFMSFudan
1. for (int i = 0; i < yearTemp.size(); i++) {

2. /* don't support Delegation Lock */

3. … //clone section same as that in WFMSFudan

4. rsGetFeeInfo = stmtGetFeeInfo.executeQuery(sqlGetFeeInfo);

5.
6. … //clone section same as that in WFMSFudan

7. feeInfo.add(yearFee);

8. java.sql.Statement stmtLock = conn.createStatement(); /* from this line,
 the code is about Operation Lock*/

9. String sqlLock = "select sysdate,billtime from lastbill”, … // more code

Figure 4.1. Differences of two clone fragments

To ease the post-detection analysis, we propose an approach and a tool called CloneDif-

ferentiator. First, we use clone detection tool [11] to find the clone candidates. We capture

contextual information of clones from Program Dependence Graphs (PDGs) generated by

Wala [204]. These PDGs encode data and control dependencies between program state-

ments. We then use graph matching techniques GenericDiff [175] to compute a precise

characterization of clones in terms of the structural differences and differential properties

between their PDGs, from which several patterns of contextual differences are recognized.

The patterns of contextual differences include Differential Statement, Differential Block,

Missing Statement, Missing Block, Missing Branch, PartialMatch Branch. Then CloneDif-

ferentiator allows developers to formulate queries to distill candidate clones for a given

refactoring task, in terms of clones and their contextual differences that developers would

like to inspect. It also allows developers to interactively inspect clones and their contextual

differences in a GUI.

Let us look at an example. As explained in Section 3.1 that comparison of PFMs may

tell multiple possibilities for features like DelegationLock and OperationLock, Figure 4.1

Chapter 4 Understanding Variability in Implementation of Product Variants

59

illustrates two cloned code fragments due to the variant feature DelegationLock and Oper-

ationLock in the method FeeInfo.initInfo() from WFMS
Fudan

 and WFMS
Shanghai

 respectively.

The basic functionality of FeeInfo.initInfo() is to read data from database and initialize a

new object of FeeInfo. In WFMS
Fudan

, FeeInfo.initInfo() further supports the delegation

lock for the object of FeeInfo; while in WFMS
Shanghai

, FeeInfo.initInfo() does not support

the delegation lock but the operation lock. As shown at line 2, 5 and 8 of the upper code

fragment in Figure 4.1, the delegation lock entails reading the value of field “bank_mark”

from the database and then proceeds accordingly. Operation lock requires reading data

from another table lastbill, as the code shown at line 8, 9 of the lower code fragment in

Figure 4.1. Our clone differencing technique reports the differences between two clones as

Missing Statement at line 2, Missing Branch at line 5 and Differential Block at line 8. Thus,

the results complete the comparison of PFMs and shows that DelegationLock and Opera-

tionLock are different features rather than the renamed feature.

With the support of CloneDifferentiator, developers no longer need to inspect all clones

reported by clone detectors for a given refactoring task. They no longer need to manually

explore contextual information of clones and determine their contextual differences. In-

stead, developers are now directly informed by contextual differences of clones, based on

which they can query and filter clones in a task-oriented manner. We evaluated the effec-

tiveness of our approach and the CloneDifferentiator tool in two empirical studies aiming

at refactoring JavaIO library and Eclipse JDT-model unit-test suites. Our studies show that

CloneDifferentiator is able to distill a small number of useful clones for various refactoring

tasks, and thus reduces the effort of post-detection analysis of clones for refactorings.

We make the following contributions in this chapter:

 We identify contextual differences of clones that must be identified and understood

for correct reverse engineering and maintenance tasks.

60

 We present an automated approach to help developers distill useful clones for a giv-

en refactoring task by finding and analyzing contextual differences of clones.

 We report two empirical studies and demonstrate the effectiveness of our approach

for post-detection analysis of clones for refactorings.

4.2 A Motivating Example in Refactoring

Consider a developer John who would like to refactor Java NewIO library to remove

code duplication. One of the specific refactorings that John is interested in is to pull up

cloned methods from subclasses into superclass. That is, he is interested in cloned methods

that occur in sibling classes and appear to perform same computation.

John uses CloneMiner [12] for clone detection in Java NewIO. CloneMiner reports 98

clone sets in Java NewIO library; each clone set consists of 2 – 50 cloned methods [184].

John then uses CloneAnalyzer [184] to inspect the detected clones in Java NewIO library.

Although CloneAnalyzer provides a rich set of information about the detected clones, it

offers little help in identifying candidate clones for his pull-up method refactoring. John

has to manually inspect all clones one by one; he resorts to Java Source Compare of

Eclipse IDE to determine the differences between cloned methods.

class CharBuffer {

char[] hb;
public final boolean hasArray () {
return (hb != null) && !isReadOnly; } }

Buffer

CharBuffer

ByteBuffer

IntBuffer

DoubleBuffer

FloatBuffer

LongBuffer

ShortBuffer

class LongBuffer {

long[] hb;
public final boolean hasArray () {
return (hb != null) && !isReadOnly; } }

Figure 4.2. Can we pull-up these cloned methods?

After inspecting 69 clone sets, John identifies a clone set of seven cloned methods (see

Figure 4.2), which seems to be a good candidate for pull-up method refactoring. The meth-

od hasArray() is cloned in seven subclasses of the Buffer class. At the first glance it may

Chapter 4 Understanding Variability in Implementation of Product Variants

61

look that this clone could be removed by pulling up the cloned methods hasArray() to the

superclass Buffer, because seven hasArray() methods are textually identical. However,

when John tries to remove these cloned methods using the Eclipse’s Pull Up refactoring,

Eclipse reports an error that field hb referred in the cloned methods has different data type

in different subclasses. For example, as shown in Figure 4.2, the data type of CharBuff-

er.hb is char[], while the type of LongBuffer.hb is long[].

Note that for the clarify of illustration we show closely the declaration of field hb and

the method hasArray() that uses hb. However, in the source code of the buffer subclasses,

the declaration of field hb is actually quite far away from (about 660 lines of codes in be-

tween) the declaration of method hasArray(). Furthermore, Java Source Compare com-

pares programs at textual level and cannot detect type difference of field hb of different

subclasses. Consequently, John does not notice this important difference among the cloned

methods until his attempt to pull-up them into the Buffer superclass fails.

The type difference of field hb of different buffer subclasses prevents seven cloned

methods hasArray() from being pulled up into the superclass Buffer, because pulling up

hasArray() requires pulling up field hb at the same time. Unless John finds a way to

properly deal with type difference of field hb (for example using generic type), pulling up

hb into the superclass Buffer would lead to errors in other parts of buffer subclasses.

4.3 Contextual Analysis of Clones

The examples in Section 4.1 and 4.2 illustrate contextual analysis that developers have

to do when performing refactorings affects clones. Our study suggests that in order to cor-

rectly understand clones before performing refactorings developers must examine several

pieces of contextual information of clones, including program elements referenced in the

cloned methods (e.g. fields being accessed in our motivating example), associated proper-

62

ties of these program elements (e.g. data type of the field), and control and data flow sur-

rounding the cloned code fragments.

Differences in the contextual information of clones may affect computation performed

by clones, and thus must be identified and understood. The type difference between field

hb of different buffer subclasses is a simple example of what we call differential state-

ments among seemingly similar (or even identical) code clones, i.e. statements that appear

in similar control and data flow context in the cloned methods, but may perform different

computation.

PipedOutputStream (Java IO 1.5)
36. private PipedInputStream sink;
101. public void write(int b) throws IOException {
102. if(this.sink == null)
103. thr w ew IOExcet “…”
104. this.sink.receive(b); }

PipedWriter (Java IO 1.5)
25. private PipedReader sink;
103. public void write(int c) throws IOException {
104. if(this.sink == null)
105. thr w ew IOExcept “…”
106. this.sink.receive(c); }

Figure 4.3. Differential statements

Figure 4.3 presents another example of differential statements from Java IO library. The

overall control and data flow of the cloned methods are identical, but the two methods per-

form difference computation. This is because the two methods read different fields,

PipedOutputStream.sink versus PipedWriter.sink, and the type of the two fields are also

different, PipedInputStream versus PipedReader. Furthermore, the two methods invoke

different methods, PipedInputStream.receive() versus PipedReader.receive(). In fact, many

clones in Java IO library have such differential statements, which are resulted from pro-

cessing byte data and char data respectively. Note that examining only the cloned methods

themselves cannot surface these differential statements, because the two methods are tex-

tually identical.

Chapter 4 Understanding Variability in Implementation of Product Variants

63

ObjectInputStream.read(byte[] buf, int off, int len)

806. if(buf==null) {
807. thr w ew Nu P terExcept “…” ;}
809. int endoff=off+len;
810. if(off<0||len<0||endoff>buf.length || endoff<0) {
811. throw new IndexOutOfBoundsException();}

ObjectInputStream.readFully(byte[] buf, int off, int len)

976. int endoff=off+len;
977. if(off<0||len<0||endoff>buf.length || endoff<0) {
978. throw new IndexOutOfBoundsException();}

Figure 4.4. Missing branch and statements

Two other important types of contextual differences of clones are missing statements

(i.e. statements that appear in some cloned methods but not others) and missing/partially-

matched branches (i.e. missing or inconsistent branches among cloned methods). Figure

4.4 shows an example. The method read() checks if buf is null, creates and throws a Null-

PointerException if buf is null, while readFully() does not have such explicit checking.

Instead, readFully() implicitly throws a NullPointerException when deferencing a null buf.

This example shows a common inconsistent program style in Java IO for validating input

parameters and handling exceptions. Clearly, the method read()represents a better solution

as it will fail as quickly as possible in the case of a null buffer. Furthermore, it allows em-

bedding a program-specific error message in the thrown exception.

Once these contextual differences are identified, they can help distill useful clones for a

given refactoring task. For example, developers who are interested in pulling-up cloned

methods may formulate a query searching for cloned methods that are in sibling classes

and have zero contextual differences. Note that the cloned methods shown in Figure 4.2

and Figure 4.3 will not be returned by the query, because they have differential statements,

even though they look identical. But they will be returned by the query searching for

cloned method that can be replaced by generic methods. As another example, developers

who are interested in reconcile small discrepancies among cloned methods may formulate

a query searching for clones such as the one shown in Figure 4.4. They can remove the

64

differences resulted from inconsistent program styles and then extract parameter-validity-

checking logic into a utility method.

Clearly, given large numbers of clones, manual contextual analysis of clones is imprac-

tical. Now the question becomes: how can we precisely capture contextual information of

clones and automatically identify contextual differences of clones?

4.4 The Approach

We propose an automatic approach and tool called CloneDifferentiator that can help de-

velopers identify and analyze contextual differences of clones. In this section, we first give

an overview of our CloneDifferentiator approach. And then we discuss how CloneDiffer-

entiator represents contextual information of clones, and how it computes contextual dif-

ferences of clones and what types of differences it reports.

4.4.1 Overview

CloneDifferentiator analyzes cloned methods detected by one of the existing code clone

detectors. Clone detectors usually group cloned methods to form clone sets. The cloned

methods called clone instances in each clone set are pair-wise similar to each other, ac-

cording to similarity metrics used by the clone detector. Our CloneDifferentiator tool cur-

rently uses CloneMiner [11] for clone detection. It can detect the high level similarity, in-

cluding structural clones and gapped clones. We used the default setting up of CloneMiner

(e.g. min-token length 30 for a clone). We used our approach to compare those clone

method which contains the gapped clone. Actually, the structural clones reported by

CloneMiner are generally more complicated than those reported by CCFinder [80] or

CloneDR [20]. These complicated clones allow us to see the performance and limitation of

our approach. However, it is important to note that our approach does not make any specif-

ic assumptions regarding clone detectors.

Chapter 4 Understanding Variability in Implementation of Product Variants

65

CloneDifferentiator raises the level of analysis of clones to Program Dependency Graph

(PDG). It represents the contextual information of cloned methods using PDG. PDG al-

lows CloneDifferentiator to precisely capture the contextual information of clones, includ-

ing program elements being referenced in cloned methods, associated properties of these

program elements, and data and control flow information in cloned methods.

Given the PDGs of the cloned methods in a clone set, CloneDifferentiator then uses

graph differencing algorithm to compare PDGs of clones. It automatically detects contex-

tual differences of clones, in terms of differential statements or blocks, missing statements

or blocks, and missing or partially-matched branches. These contextual differences can be

used to formulate queries for distilling useful clones for a given maintenance task.

Our CloneDifferentiator tool [173,178] stores its contextual analysis results of clones in

a relational database. Stored information includes PDGs of cloned methods and the in-

stances of different types of contextual differences of these clones. CloneDifferentiator is

equipped with a set of simple filters for filtering clones based on the types and number of

their contextual differences. Furthermore, it allows the developer to formulate task-specific

queries in terms of which clones and what types of their contextual differences he would

like to inspect.

Finally, our CloneDifferentiator tool implements three views that allow developers to in-

teractively inspect cloned methods and their contextual differences: CloneDiff TreeView

that summarizes cloned methods being analyzed and their contextual differences; PDG

Viewer for graphically inspecting clones and their differences in PDG; CloneDiff Compare

Editor for inspecting clones and their differences in an enhanced Eclipse compare editor.

66

4.4.2 Representing contextual information of clones as PDG

Let us first discuss why we adopt PDG to represent contextual information of clones.

We then describe the PDG representation that our current CloneDifferentiator tool adopts

for contextual analysis of clones.

4.4.2.1 Why PDG?

A Program Dependence Graph (PDG) [35,52] is a static representation of the control

and data flow through a program. It is commonly used for program optimization and slic-

ing. CloneDifferentiator adopts PDG as the representation of contextual information of

clones, and computes contextual differences of clones at PDG level. This allows it to pro-

vide a precise characterization of contextual differences of clones than lexical or syntactic

differencing techniques, because PDG abstracts away many textual and syntactic differ-

ences in contextual analysis of clones.

Let us look at an example from our empirical studies of clones in Java IO library using

CloneDifferentiator. Figure 4.5 presents the contextual differences of a pair of cloned

methods listFiles(FilenameFilter) and listFiles(FileFilter) in a CloneDiff Compare Editor

(see Section 4.4.4).

CloneDifferentiator reports that the cloned code fragments (inside light-grey box) of the

two methods have a pair of differential parameters (highlighted in light blue background).

The two parameters declare different data types (FilenameFilter versus FileFilter).

CloneDifferentiator also reports that the two cloned methods have a pair of differential

method invocations (FilenameFilter.accept() versus FileFilter accept(), highlighted in red

background). Furthermore, the method listFiles(Filenamefilter) has an additional array-

access statement (ss[i], highlighted in yellow double underline and italic font), i.e. a miss-

ing array-access statement that listFiles(FileFilter) does not have.

Chapter 4 Understanding Variability in Implementation of Product Variants

67

Figure 4.5. Inspecting contextual differences in CloneDiff Compare Editor

Figure 4.6. Textual differences in Java Source Compare

CloneDifferentiator also detects the difference in the control flow of the two methods:

the program control flows from the matched branch statement (i<ss.length) directly to the

unmatched branch (filter==null) in listFiles(Filename-Filter), while in listFile(FileFilter)

the control flows first to the instantiation of a File object and then to the unmatched branch

(filter==null). CloneDifferentiator reports this difference as partially-matched branches

filter==null (highlighted in green and accent font in the two methods respectively). Note

that it is more straightforward to inspect contextual differences resulted from control/data

flow differences in PDG Viewer (see this example in Figure 4.13).

Compared with the textual differencing results of the two cloned methods (see Figure

4.6), the contextual differences that CloneDifferentiator reports is clearly much more pre-

cise. The textual differencing reports some textual differences between the code block (line

68

33–35) of listFiles(FileFilter) and the code block (line 34–35) of listFiles(FilenameFilter).

In contrast, such differences are abstracted away in PDGs and thus are not reported by

CloneDifferentiator. On the other hand, because textual differencing compares clones as

lines and chars, it cannot report the subtle difference in the branch statements filter==null

and the difference in the actual methods being invoked filter.accept(), as reported by

CloneDifferentiator.

More importantly, the contextual differences of CloneDifferentiator can be directly que-

ried in a task-oriented manner. In contrast, because textual differences ignore semantic in-

formation to which they correspond, they have to be manually examined and interpreted.

For example, textual differencing identifies the differences between FileFilter (line 28 of

listFiles(FileFilter)) and FilenameFilter (line 29 of listFiles(FilenameFilter)). However,

textual differencing cannot automatically determine that the detected textual difference is

due to the type difference of two parameters.

Syntactic differencing techniques, such as change distilling [53] that compares Abstract

Syntax Tree (AST), are more robust than textual differencing, for example they can detect

the type difference of the parameters of the two listFiles methods. However, syntactic dif-

ferencing is still sensitive to the arbitrary syntactic decisions a developer made while de-

veloping a program. For example, statements File f = new File(); v.add(f) and v.add(new

File()) result in different ASTs, but they yields the same PDG. Furthermore, AST-based

differencing techniques are agnostic of control and data flow through a program, and thus

cannot detect contextual differences resulted from control and data flow, such as the dif-

ferences between the two filter==null statements in the two listFiles methods.

4.4.2.2 Wala PDG

In general, the nodes of a PDG consist of three categories of program statements con-

structed from the source code: simple statement, expressions, and control points. A control

Chapter 4 Understanding Variability in Implementation of Product Variants

69

point represents a point at which a program branches, loops, enters or exits a procedure.

The edges of a PDG encode the data and control dependencies between program state-

ments.

Our CloneDifferentiator tool uses Wala [204] to generate PDGs of cloned methods. Wa-

la is a static analysis library for Java. It is important to note that using Wala for PDG gen-

eration in our CloneDifferentiator tool is only an implementation choice because Wala is

open source and publicly available. Furthermore, we conducted empirical studies on Java

software systems. Our CloneDifferentiator approach is not limited to any specific PDG

generation tools, nor is it limited to analyzing clones in Java software systems.

LegendENTRY

FGET<this.sink : PipedReader>

NEW<IOException>

BRANCH<ne: this.sink : null>

THROW<$>
FGET<this.sink : PipedReader>

INVOKE<virtual : PipedReader.receive(I)V : void>

True

False

PARAM<c: I>

RETURN<void>

Operation

Parameter/Constant

Branch

Control dependence

Data dependence

Figure 4.7. Wala-PDG example: PipedWriter.write(int):void

Given a Java software, Wala generates a system dependency graph that is composed of

PDGs of all methods in the system and the inter-procedure dependencies of these PDGs.

Because we are only interested in cloned methods, CloneDifferentiator outputs the PDG of

each cloned method for the subsequent contextual differencing and analysis. Wala-PDG

captures contextual information of cloned methods, including program elements referenced

in cloned methods, associated properties of these program elements, and control and data

flow in cloned methods.

Wala-PDG supports three categories of bytecode-like program statements constructed

from source code: simple statement, control point, and expression. Simple statement in-

cludes field read/write FGET/FPUT, method invocation INVOKE, unary and binary opera-

70

tion (negate, add, minus, multiply), compare statement (>, <, !=), array load/store ARRAY-

LOAD/ARRAYSTORE, type checking INSTANCEOF, type casting CAST, object creation

NEW, and exception throwing THROW. Control points include branching BRANCH and

switching SWITCH. Expressions include parameter PARAM and constant CONST. Differ-

ent types of program statements consist of different sets of properties, such as identifier,

data type, operator code, and operand. Figure 4.7 shows a partial Wala-PDG for the cloned

method PipedWriter.write(int):void listed in Figure 4.3.

4.4.3 Detecting contextual differences of clones by PDG differencing

Given a clone set of n cloned methods {m1,…,mn}, let PDGi and PDGj be the PDGs of

cloned methods mi and mj (), CloneDifferentiator applies graph differ-

encing algorithm to pair-wisely compare PDGi and PDGj and detect the contextual differ-

ences between the cloned methods mi and mj.

CloneDifferentiator also uses GenericDiff [175] (a configurable graph matching frame-

work) for comparing Wala-PDGs. Inspired by [140], GenericDiff reports a domain inde-

pendent symmetric difference between two input PDG graphs: a set of matched graph

nodes and edges that exist in both graphs, and two sets of unmatched graph nodes and edg-

es that exist only one of the two graphs. CloneDifferentiator interpret the GenericDiff’s

PDG differencing results in terms of meaningful contextual differences of code clones:

differential statements or blocks, missing statements or blocks, and missing or partially-

matched branches. Interested readers are referred to Section 2.3.2 and GenericDiff [175]

for the details about we configure GenericDiff for comparing PDGs.

In the rest of this part, we discuss these contextual differences and their impacts on the

contextual analysis of code clones. We illustrate our discussion with examples from our

empirical studies.

Chapter 4 Understanding Variability in Implementation of Product Variants

71

4.4.3.1 Differential statements or blocks

Differential statements (blocks) represent a pair of Wala-PDG statements (blocks of

statements), one from each cloned method, that appear in similar control and data flow

context in the two cloned methods, but may perform different computation.

Differential statements are resulted from the following three reasons:

 The methods being invoked in method invocation (INVOKE) statements and the fields

being accessed in field access (FGET/FPUT) statements can be different. Such differ-

ences reveal the use of different methods and fields for the same or similar purpose in

cloned methods.

 The operator-code of method invocation, binary operation, compare, and branch

statements can be different. Furthermore, the data type of field-read/write, method in-

vocation, type checking, type casting, object creation, array-load/store, and parameter

statements can be different. Different operator-codes or data types can result in differ-

ent program behavior.

 The operand of binary-operation, compare, and branch elements or the value of con-

stant elements can be different. Different operands or values can affect the evaluation

of dependent statements.

Figure 4.8 presents an example of differential statements from our empirical study on

JavaIO library. The overall control and data flow of the cloned methods readArray() and

readOrdinaryObject() is similar. But CloneDifferentiator detects three pairs of differential

statements between the two methods: the method being invoked in the two method-

invocation statements is different: Array.newInstance() versus Ob-

jectStreamClass.newInstance(); the operator-code of these two method invocations is dif-

ferent: static versus virtual; the constant operand of the branch statements is different:

TC_ARRAY versus TC_OBJECT.

72

ObjectInputStream.readArray(boolean)
1581. ……
1582. if(bin.readByte() != TC_ARAY)
1583. throw new StreamCoruptedException()
1592. array = Array.newInstance(ccl, len)
1593. ……

ObjectInputStream.readOrdinaryObject(boolean)
1689. ……
1690. if(bin.readByte() != TC_OBJECT)
1691. throw new StreamCoruptedException()
1698. obj = desc.isInstantiable() ? desc.newInstance() …
1699. ……

Figure 4.8. Differential statements

Differentiator blocks are similar to differential statements; the only difference is that a

block consists of a sequence of statements, i.e. a subgraph of the PDG of the cloned meth-

ods.

CreateMemberTests.test002()
70. ……
71. c p at U t etC p at U t … “E java”
76. IField sibling = type etF e d “j” ;
77. type createF e d “ t ”, sibling, true, null);
78. ……

CreateMemberTests.test003()
89. ……
90. c p at U t etC p at U t … “A java”
95. IMethod sibling =type etMeth d “f ” ew Str [] ;
96. type createMeth d “Str bar ”, sibling, true, null);
97. ……

Figure 4.9. Differential block

Figure 4.9 presents an example of the two cloned test methods from our empirical study

on Eclipse JDT unit tests. Both test methods are used to test creating a member in a class.

However, CloneDifferentiator detects that the cloned methods have a pair of differential

blocks, which reveal the differences of the two test methods in retrieving and creating dif-

ferent types of class members. That is, test002() tests creating a field, while test003() tests

creating a method.

4.4.3.2 Missing statements or blocks

Missing statements (blocks) represent statements (blocks of statements) that appear only

in one of the cloned methods but not the other.

Chapter 4 Understanding Variability in Implementation of Product Variants

73

ObjectInputStream$BlockDataInputStream.peek()
3960. if(blkmode) {
3961. return (end>=0) ? (buf[pos] & 0xFF) : -1;
3962. e se …

ObjectInputStream$BlockDataInputStream.read()
3963. if(blkmode) {
3964. return (end>=0) ? (buf[pos++] & 0xFF) : -1;
3965. e se …

Figure 4.10. Missing statements

Figure 4.10 presents an example of missing statement between the two cloned methods.

CloneDifferentiator detects that one of the cloned method read() has two additional state-

ments (line 3964) that the method peek() does not have: a binary operation that adds pos by

1 and a field-write statement that updates pos with the new value. These two missing

statements reveal the key differences between read() and peek(): read() consumes the val-

ue, while peek() only returns the value in the stream buffer.

SequenceInputStream. read (byte b[], int off, int len)
181. … //clone part
187. else if (len == 0) {
188. return 0;
189. }
191. int n = in.read(b, off, len);
192. if (n <= 0) {
193. nextStream();
194. return read(b, off, len);
195. }
196. return n;

PipedOutputStream. write(byte b[], int off, int len)
122. … //clone part
129. else if (len == 0) {
130. return 0;
131. }
132. sink.receive(b, off, len);

Figure 4.11. Missing block

Figure 4.11 shows an example of missing statements and block between the two cloned

methods. CloneDifferentiator detects that one of the cloned methods SequenceIn-

putStream.read() has an additional block that the method PipedOutputStream.write() does

not have, while PipedOutputStream.write() has some statements that SequenceIn-

putStream.read() does not have. The two methods share the logic of validating input pa-

rameters so that they are reported as cloned method by CloneMiner. However, the compu-

74

tation of the two methods is in fact very different as indicated by missing statements and

block.

4.4.3.3 Missing or partially matched branches

Missing branches represent control points that appear only in one of the cloned method

but not the other, while partially matched branches reveal the inconsistencies between a

sequence of control points between the cloned methods.

ByteArrayInputStream.read(byte[] buf, int off, int len)
160. ……
161. } else if(off<0||len<0||len>buf.length-off) {
162. throw new IndexOutOfBoundsException();}}
163. ……

StringBufferInputStream.read(byte[] buf, int off, int len)
95. ……
96. } else if(off<0||len<0||
97. off+len>buf.length||off+len<0) {
98. throw new IndexOutOfBoundsException();}}
99. ……

Figure 4.12. Partially-matched branches

Figure 4.4 presents an example of a common inconsistent program style in JavaIO that

results in missing branch and statements between cloned methods. Figure 4.12 presents a

typical example of another common inconsistent program style in Java IO that results in

partially-matched branches when checking the validity of input parameters. In this exam-

ple, both cloned methods perform a sequence of validity checks of parameters off and len

(line 160 versus lines 95/96). CloneDifferentiator detects that the cloned methods have

partially-matched branches. These differences reveal similar but also different parameter

validity checking of the two methods. The two methods have two pairs of matched branch

statements (off<0 and len<0), but they check different expressions (len>buf.length-off ver-

sus off+len>buf.length) to ensure that the sum of off and len is less than the length of buf.

Furthermore, StringBuffer-InputStream.read() has one more checking (off+len<0), which

is unnecessary, since it always evaluates to false.

Chapter 4 Understanding Variability in Implementation of Product Variants

75

4.4.4 Tool Support

Let us now discuss querying and visualization support that our CloneDifferentiator tool

provides for distilling and inspecting clones and their contextual differences.

Our CloneDifferentiator tool is equipped with a set of simple filters for filtering clones

based on the types and numbers of their contextual differences. For example, one can easi-

ly find clones that have zero contextual difference or clones that have only differential

constant statements with different values. Such clones are duplicated codes that can be re-

moved by refactorings [54], such as pull up method, parameterize method. The filters are

backed up by the query language for the contextual differences or difference pattern, which

is SQL. We store the clone code snippets, the PDGs of clone instances, and also the clone

comparison results in the relational database. We then use SQL to express queries for the

database.

If the simple filters that CloneDifferentiator provides cannot meet the needs of develop-

ers for a refactoring task, CloneDifferentiator allows developers to formulate their own

queries (SQL queries in current implementation), using contextual differences of clones as

basic building blocks, for distilling candidate clones that are useful for the specific task at

hand. Section 4.5.2 and 4.5.3 will review a few such queries for various refactoring tasks.

In addition to filtering and querying clones and their contextual differences, our

CloneDifferentiator tool supports the following three views, i.e. CloneDiff TreeView, PDG

Viewer, and Compare Editor, for presenting and visually inspecting clones and their con-

textual differences.

CloneDifferentiator lists clone sets returned by a query in CloneDiff TreeView. Clone

sets can be easily navigated to through the tree. For each pair of cloned methods in a clone

set, CloneDiff TreeView summarizes the types and number of contextual differences that

76

this clone pair has. Clone sets can be sorted by the signature of cloned methods and/or the

types and number of their contextual differences.

Figure 4.13. PDG Viewer

Double-clicking a clone pair in CloneDiff TreeView opens a PDG Viewer that visualizes

the unified PDG of the selected pair of cloned methods. PDG Viewer allows developers to

graphically inspect PDGs of clones and their contextual differences, especially differences

of data and control flow. For example, Figure 4.13 shows partially the unified PDG of the

cloned methods listFiles(FilenameFilter) and listFiles(FileFilter). Black nodes/edges rep-

resent matched PDG statements and dependences that exist in both methods, while green

and red nodes/edges represent unmatched statements and dependences that exist only in

one of the two methods. We can clearly see the control- and data-flow differences between

the two methods, which results in partially-matched branches filter==null.

Although PDG Viewer provides an intuitive means to inspect contextual differences of

clones, it often becomes difficult to inspect contextual differences in large PDGs. Further-

more, developers are most familiar with examining program differences in compare editor

that present programs to be compared side by side. For that our CloneDifferentiator tool

extends Eclipse compare editor into CloneDiff Compare Editor (see Figure 4.5). This edi-

tor displays the source code of the cloned methods side by side; it highlights code seg-

ments based on the detected contextual differences of the cloned methods, using different

Chapter 4 Understanding Variability in Implementation of Product Variants

77

fonts, backgrounds or underlines. Furthermore, CloneDiff Compare Editor can be config-

ured to highlight only specific type(s) of differences of interest to the user. Hovering

mouse over a highlighted code segment pops up a short description that summarizes the

contextual differences in the hovered code segment.

Note that in this chapter we present clone examples in code snippets and highlight their

contextual differences using grey background and bold font. Furthermore, when presenting

examples of a type of contextual differences, we often highlight only differences of the

specific type being discussed, ignore differences of other types. For example, as shown in

Figure 4.8, the cloned method readOrdinaryObject() has several statements and control

points (for example method invocation isInstantiable(), and branch

desc.isInstantiable() ? … : …) that readArray() does not have. However, we do not high-

light these missing statements and branches in Figure 4.8. This in fact simulates the con-

figurable presentation of CloneDiff Compare Editor.

Finally, as discussed above, our experience suggests that it is often more straightforward

to visualize and inspect contextual differences of clones in CloneDiff Compare Editor than

in PDG viewer. Thus, in this chapter we present and discuss clone examples using code

snippets of cloned methods instead of their corresponding PDGs. However, it is important

to note that the highlighted code segments are based on the differencing results of PDGs of

cloned methods, instead of simply textual differencing.

4.5 Evaluation

We evaluated our CloneDifferentiator approach and tool on two Java software systems:

JavaIO library [203] and Eclipse JDT-model unit tests [193]. JavaIO library 1.5 contains

101 classes and 1038 methods. CloneDifferentiator uses CloneMiner for clone detection.

CloneMiner detects 103 clone sets; each set consists of 2 – 15 cloned methods. JDT-model

unit tests (jdt.core.tests.model) 3.6.1 contain 336 test suites and 10740 test methods. For

78

JDT-model unit tests, CloneMiner detects 961 clone sets; each set consists of 2 – 35 cloned

methods.

We then use CloneDifferentiator to identify and analyze contextual differences of these

detected clones. Our evaluation aims at gaining insights into the following research ques-

tions: How often is contextual information of clones different? Do contextual differences

of clones in different systems manifest different characteristics? Can contextual differences

of clones help to distill useful clones in a task-oriented manner?

In this section, we first analyze the statistics and characteristics of contextual differences

of clones that CloneDifferentiator identifies in the clones of the two subject systems (Sec-

tion 4.5.2 and 4.5.3). And then, we demonstrate how we formulate queries of contextual

differences of clones to distill candidate clones that are useful for various refactoring tasks

aiming at reducing code duplication in the two subject systems (Section 4.5.2 and 4.5.3).

4.5.1 Characteristics of contextual differences of clones

Our results suggest that in both JavaIO library and JDT-model unit tests the detected

cloned methods usually have various types and instances of contextual differences. The

differences are usually subtle. The contextual differences of cloned methods of different

systems may manifest different characteristics, due to different nature of the systems that

results in clones.

Table 4.1 reports the statistics of contextual differences of cloned methods in JavaIO.

Each row in the table represents a type of contextual difference discussed in Section 4.4.3.

Column “#diff” lists the number of instances of a particular type of contextual difference;

column “#cloneset(cc)” lists the number of clone sets that have at least one instance of a

particular type of contextual difference; column (#diff/#cc) lists the average number of

instances of different types of contextual differences per clone set.

Chapter 4 Understanding Variability in Implementation of Product Variants

79

Table 4.1. Statistics of contextual differences in JavaIO 1.5

Type #

diff

#cloneset(c

c)

#diff/#

cc

Differential Statemt 329 79 4.2

Differential Block2 13 10 1.3

Missing Statement 392 80 4.9

Missing Block 68 44 1.6

Missing Branch 26 18 1.5

PartialMatch Brch 21 17 1.2

Table 4.2. Statistics of contextual differences in JDT-model tests

Type #diff #cloneset(c

c)

#diff/#

cc

Differential Statemt 7900 931 8.5

Differential Block 101 90 1.1

Missing Statement 6761 666 10.2

Missing Block 1217 460 2.64

Missing Branch 512 203 2.5

PartialMatch Brch 13 12 1.1

For example, the first row of Table 4.1 shows that CloneDifferentiator identifies 329 in-

stances of differential statements in 109 clone sets; on average one clone set has 3.0 in-

stances of differential statements. Note that one clone set can have more than one type of

contextual differences. Therefore, the sum of column “#cloneset” is greater than the num-

ber of clone sets that CloneMiner reports.

CloneDifferentiator reports in total 849 (sum(#diff)) instances of different types of con-

textual differences in the cloned methods of JavaIO library. For a particular type of contex-

tual difference, each clone set has on average at least one instance (#diff/#cc) of that type

of difference, for example 1.2 instances of partially-matched branches per clone set. Each

clone set has on average three (sum(#cc)/103) types and eight (sum(#diff)/103) instances

of contextual differences.

2 In this evaluation, we consider a block that contains at least 6 unmatched statements as unmatched block.

Such unmatched blocks usually span at least two lines of code, which is the minimum length of code fragments

that clone detectors usually deal with [80].

80

The most common type of contextual differences of the cloned methods of JavaIO are

missing statements (392 instances), followed by differential statements (329 instances).

These two types of contextual differences account for about 85% of all 849 instances of

differences. Missing blocks (68 instances) and differential blocks (13 instances) account

for about 10% of all 849 instances. Partially-matched branches (PartialMatch Brch, 21 in-

stances) and missing branches (26 instances) account for a very small percentage (5%) of

all 849 instances. Overall, the differences between cloned methods of JavaIO are usually

subtle, but sometimes the differences are significant.

Table 4.2 presents the statistics of contextual differences of cloned methods in JDT-

model unit tests. The cloned methods of JDT-model unit tests have much more

(sum(#diff)=16504) instances of contextual differences. This is not surprising because

JDT-model-unit-tests is a much bigger project and it has nine times more clone sets than

JavaIO. However, the percentages of different types of contextual differences in the cloned

methods of JDT-model-unit-tests are roughly similar to those of JavaIO. Furthermore, the

percentages of clone sets that have a particular type of contextual differences are also

roughly similar to those of JavaIO.

One important difference is that the clone methods of JDT-model unit tests has on aver-

age more types (sum(#cc)/961) and instances (sum(#diff)/961, #diff/#cc) of contextual dif-

ferences than the cloned methods of JavaIO. This is mainly because the JDT-model unit

test methods are usually longer than the methods of JavaIO.

The other difference is that almost all clone sets of JDT-model unit tests have differen-

tial statements (931/961, 96.8%). This is due to the existence of a large amount of differen-

tial constant statements. In fact, this reflects a common practice in writing unit tests in

which similar tests are developed to test different input values (see examples in Section

4.5.2 and 4.5.3).

Chapter 4 Understanding Variability in Implementation of Product Variants

81

4.5.2 Refactoring JavaIO library

Let us now discuss our study on clone-based refactoring of JavaIO library. In this study,

we are interested in identifying clones that can be refactored using Folwer’s refactorings

(e.g. extract method, pull up method) or Java generics, thus reducing code duplication.

4.5.2.1 Refactoring clones using Folwer’s refactorings

Many Folwer’s refactorings are concerned with code duplication [54]. Folwer’s refac-

torings usually target at identical or almost identical cloned methods, which can be re-

moved by refactorings such as extract method, pull up method.

To identify candidate clones for Folwer’s refactorings, we formulate the following two

queries searching for:

1. The cloned methods that have no contextual differences, i.e. the PDGs of such cloned

methods are perfectly matched;

2. One of the cloned methods is “part of” the other cloned methods, i.e., the PDG of one

cloned methods is the subgraph of the PDG of the other. That is, only one of the clone

methods has missing statements, blocks, and/or branches.

The first query returns three pairs of cloned methods. For example, Figure 4.14 presents

one pair of these cloned methods. The two methods perform identical computation. Both

methods write the eight lower-order bits of the input argument to the output stream and

ignore the 24 high-order bits. These cloned methods can be refactored by replacing the

body of one method with a call to the other method. Note that CloneDifferentiator does not

report that the cloned methods in Figure 4.14 have differential parameters, even though the

identifier of the parameters is different (b vs. v). This is because the two parameters declare

the same data type (int), and the simple identifier difference does not affect the computa-

tion performed by the cloned methods.

82

ObjectOutputStream$BlockDataOutputStream (Java IO 1.5)

1767. public void write(int b) throws IOException {
1768. if(this.pos >= MAX_BLOCK_SIZE)
1769. this.drain();
1770. this.buf[pos++]= (byte)b; }

ObjectOutputStream$BlockDataOutputStream (Java IO 1.5)

1874. public void writeByte(int v) throws IOException {
1875. if(this.pos >= MAX_BLOCK_SIZE)
1876. this.drain();
1877. this.buf[pos++]= (byte)v; }

Figure 4.14. Cloned methods that have no contextual diffs

The second query returns one pair of cloned methods, PipedIn-

putStream.checkStateForReceive() and PipedReader. receive(int). Both PipedInputStream

and PipedReader need to perform the same checking of pipe state in several places before

starting receiving data. The developer of PipedInputStream recognized the repetition of

this state checking and extracted the state checking logic into the method PipedIn-

putStream.checkStateForReceive(). In contrast, the developer of PipedReader did not ex-

tract the state checking logic from PipedReader.receive(int) into a separate method. As a

result, CloneDifferentiator detects that the state checking method PipedIn-

putStream.checkState-ForReceive() is “part of” the method PipedReader. receive(int).

Identifying this “part of” relation between the cloned methods suggests the opportunity to

extract method.

Overall, only a very few cloned methods in JavaIO library represents identical or almost

identical code clones that can be removed by Folwer’s refactorings.

4.5.2.2 Relaxed queries for Folwer’s refactorings

To identify more candidate clones for Folwer’s refactorings, we relaxed the two queries

given in the last section, by allowing the cloned methods to have a small number of con-

textual differences. In particular, relaxed queries allow the cloned methods to contain a

maximum of six instances of differential statements, missing statements, missing branches,

and/or partially-matched branches.

Chapter 4 Understanding Variability in Implementation of Product Variants

83

The relaxed queries return 21 more pairs of cloned methods. Four pairs of these cloned

methods have only differential operator-code and/or operand statements. For example, the

cloned methods LineNumberInputStream.-read(byte,int,int) and In-

putStream.read(byte,int,int) are all the same but a pair of differential operator-code (spe-

cial vs. virtual) method invocations (LineNumberInputStream.read() versus In-

putStream.read()). The class InputStream declares a template method [57]

read(byte,int,int) that define the skeleton of reading bytes from the input stream. In-

putStream.read(byte,int,int) calls the abstract method InputStream.read(), and the sub-

classes of InputStream (e.g., LineNumberInputStream) must implement the abstract meth-

od InputStream.read() to read the next byte of data from a specific type of input stream.

However, the subclass LineNumberInputStream duplicates the template method

read(byte,int,int), which deviates from the intent of Template Method [57]. Clearly, this

duplicate LineNumberInput-Stream.read(byte,int,int) should be removed.

The remaining 17 pairs of cloned methods reveal two types of inconsistent program

styles in JavaIO library. These inconsistent programming styles result in certain amount of

missing statements, missing branches and/or partially-matched branches in the cloned

methods. Figure 4.4 and Figure 4.12 present two examples of these two types of incon-

sistent program styles, i.e. different ways to validate the input parameters and handle ex-

ceptions. Investigating the cloned methods that have such inconsistent programming styles

suggests that after we reconcile inconsistencies among these cloned methods, these cloned

methods could also be refactored, for example, by extracting validity checking of input

parameters into a utility method.

4.5.2.3 Refactoring clones using Java generics

Java generics support developing common data structures and algorithms that differ on-

ly in the set of types on which they operate.

84

To identify candidate clones that can be replaced with Java generic methods or classes,

we formulate the following two queries based on the two characteristics of JavaIO library:

1. JavaIO supports reading and writing data of different primitive data types (e.g., short,

char, int, long, double). Thus, we formulate a query to identify cloned methods that

have only differential typecasting statements;

2. JavaIO supports reading and writing both byte (8-bit) data and char (16-bit) data. Thus,

we formulate a query to identify cloned methods that have only differential field-

access and method-invocation statements.

Bits.getChar(byte[] b, int off)
26. return (char)((b[off+1]&0xFF)<<0) +
27. (b[off+1]&0xFF)<<8));

Bits.getShort(byte[] b, int off)
31. return (short)((b[off+1]&0xFF)<<0) +
32. (b[off+1]&0xFF)<<8));

Figure 4.15. Differential typecast statements

It is surprising that the first query returns only one pair of cloned methods

Bits.getChar() and Bits.getShort() as shown in Figure 4.15. Our inspection of JavaIO li-

brary reveals that this is because JavaIO mainly relies on bitwise shift and logic operations

instead of explicit typecasting for processing data of different primitive data types.

The second query returns 26 pairs of cloned methods, including the cloned methods

PipedOutputStream.write(int) and PipedWriter.write(int) listed in Figure 4.3. Although the

two methods are textually identical, they actually have three instances of differential

statements. Such differential statements also exist in other cloned methods returned by our

query, such as methods connect(), flush(), close() of PipedOutputStream and PipedWriter.

These differential statements reveal that the overall data and control flows are similar in

many methods of two types of output classes (PipedOutputStream versus PipedReader),

but the specific data operations are different.

Chapter 4 Understanding Variability in Implementation of Product Variants

85

In fact, these differential statements are resulted from parallel inheritance hierarchies in

Java IO for processing byte data (input/output streams) and char data (readers/writers) re-

spectively. JavaIO initially supported only byte data. To support char data, a separate hier-

archy of classes was subsequently developed. The two parallel hierarchies share many sim-

ilar data structures and processing steps. They may be restructured into one hierarchy using

Java generic classes.

4.5.3 Refactoring Eclipse JDT-model unit tests

Next, we discuss our study on clone-based refactoring of JDT-model unit tests. Unit

tests typically contain groups of test methods that form variations for a common testing

purpose and therefore are similar to each other. In this study, we are interested in identify-

ing clones that can be refactored using seed values, state machine, or assume/assert invari-

ants testing patterns [198], thus reducing code duplication among test methods and improv-

ing test-case reuse.

4.5.3.1 Refactoring clones using seed values

A traditional unit test method tests a unit with fixed input value. It is necessary to devel-

op several tests with variant input values to achieve a good coverage of the unit under test.

These tests are often similar but also differ in the input values that are actually used.

We would like to refactor such duplicated unit tests into parameterized unit tests, using

seed-values [198] (a pattern for parameterized unit testing) to provide concrete input val-

ues. To that end, we formulate a query searching for cloned test methods that have only

differential-operand and/or differential-constant-value statements.

JavaSearchTests.testEnum06()
3672. eth d etMeth d “setRole” ew Str [] “Z”
3673. search(method, REFERENCES …

JavaSearchTests.testVarargs03()
3702. eth d etMeth d “vargs” ew Str [] “QSt”
3703. search(method, ALL_REFERENCES …

Figure 4.16. Seed values

86

Our query returns 173 pairs of cloned test methods in Eclipse JDT-model unit tests. Fig-

ure 4.16 presents one of them. The two methods test Java search API with different search

entities (setRole versus vargs, and Z versus QSt) and search options (REFERENCES versus

ALL_REFERENCES).

Investigating these 173 cloned test methods returned by our query suggests that cloned

test methods for testing searching and formatting features usually have differential-operand

and/or differential-constant-value statements. Such cloned test methods may be parameter-

ized, using their differential operands and constant values as seed values, so that parame-

terized unit tests can verify the unit under test for a set of input values.

4.5.3.2 Refactoring clones using state machine

Eclipse JDT-model provides APIs for programmatically rewriting Java programs, such

as creating a member (e.g. field or method) in a class. The corresponding unit tests for

these APIs often share similar control and data flows but also differ in the program-

rewriting APIs under tests.

We would like to refactor such cloned test methods into parameterized unit tests to en-

force the flow of testing logics, using state machine [198] (another pattern for parameter-

ized unit testing) to encapsulate program-rewriting APIs under test. To that end, we formu-

late a query searching for cloned methods that have differential method-invocation state-

ments and/or differential blocks of program-rewriting APIs.

ASTRewritingStatementsTest.testSwitchStatement7()
3956. L stRewr te stRewr te rewr te etL stRewr te …
3957. listRewrite.replace(assignment, switchCase, null);
3959. String preview = evaluateRewrite(cu, rewrite);

ASTRewritingStatementsTest.testSwitchStatement9()
4098. L stRewr te stRewr te rewr te etL stRewr te …
4099. listRewrite.remove(assignment, null);
4100. listRewrite.insertAfter(switchCase,assignment,null):
4102. String preview = evaluateRewrite(cu, rewrite);

Figure 4.17. State machine

Chapter 4 Understanding Variability in Implementation of Product Variants

87

Our query returns 153 pairs of cloned test methods. Figure 4.9 presents an example of

these cloned methods that tests different ways to create a class member (field versus meth-

od). Figure 4.17 presents another example that tests different ways (replace versus. remove

then insertAfter) to rewrite switch statements in an AST.

Investigating these 153 cloned test methods reveals that cloned test methods for testing

program-rewriting APIs often invoke different program-rewriting APIs (e.g., createField,

createMethod, remove, insert, copy, move, replace), or invoke some program-rewriting

APIs in different order. The invocations of these program-rewriting APIs can be encapsu-

lated into state machines [198] that programmatically rewrite Java programs. Then, given

state machines of a set of program rewriting APIs and a parameterized unit test, one can

use testing framework, such as Pex [198], to instantiate sequences of state transitions for

testing the relevant program-rewriting APIs.

4.5.3.3 Refactoring clones using assume/assert invariants

JDT-model unit tests often assert similar set of properties that a unit under test should

hold before and after exercising the unit under test, for example whether the parent AST

node is not null or the class contains a specific member.

We would like to extract these similar assertions before and after exercising the unit un-

der test into assume/assert invariants. To that end, we formulate a query searching for

cloned test methods that have at least two matched method-invocations of assertxxx()

methods, as Eclipse JDT-model unit tests name assertion methods in form of assertxxx().

Our query returns 137 pairs of cloned test methods. Figure 4.18 presents one example.

The two methods test the APIs of two different types of AST nodes, array creation versus

switch statement. However, they share the same set of assertions about the AST under test,

i.e. modificationCount > prevCount, x.getAST()==this.ast, and x.getParent()==null.

88

ASTTest.testArrayCreation()
7994. final ArrayCreation x = this.ast.newArrayCreation();
7995. assertTrue(this.ast.modificationCount > previousCount);
7997. assertTrue(x.getAST() == this.ast);
7998. assertTrue(x.getParent ()== null);

ASTTest.testSwitchStatement()
5891. final SwitchStatemnt x = this.ast.newSwitchStatement();
5892. assertTrue(this.ast.modificationCount > previousCount);
5894. assertTrue(x.getAST() == this.ast);
5895. assertTrue(x.getParent() == null);

Figure 4.18. Assume invariant

Investigating these 137 cloned test methods reveals that cloned test methods for JDT

AST/DOM APIs often contain similar set of assertions before and/or after exercising the

AST/DOM API under test. These similar assertions may be extracted as assume and/or

assert invariants. These invariants can not only remove duplicate assertions across test

methods, but also better ensure consistent verifications of test assumptions and results.

4.6 Related Work

Researchers have presented many techniques to detect code clones [9,12,20,55,80,104].

Roy and Cordy [144] and Koschke [101] provide comprehensive surveys of existing clone

detection techniques. Clone detectors typically report large number of clones in industrial

systems, while it is common that only small number of them is actually useful for specific

maintenance tasks, such as refactorings.

The effectiveness of clone detection techniques has usually been evaluated in terms of

precision and recall metrics of the detected clones, such as in the quantitative evaluation of

clone detection techniques reported in Roy and Cordy [145] and Bellon et al. [21]. Howev-

er, the precision and recall metrics do not indicate the usefulness of the detected clones for

a specific maintenance task.

Researchers proposed clone analysis approaches to aiding the interpretation and man-

agement of software clones. For example, Genimi [165] uses a scatter plot to visualize

code clones detected by CCFinder [80] and also computes several code metrics of clones

Chapter 4 Understanding Variability in Implementation of Product Variants

89

to aid clone analysis. Balazinska et al. [9, 10] define a clone classification based on the

differences between the token sequences forming the clones. This clone classification

helps to measure the reengineering opportunities of clones. CP-Miner [109] finds bugs

based on inconsistent identifiers between clones. One major limitation of these clone anal-

ysis approaches is that they examine only the information of clones, ignoring contextual

information in which clones occur.

Other approaches perform simple syntactic analysis of clones to aid the understanding of

clones. For example, Kapser and Godfrey [85] classify code clones through the syntactic

analysis of locality of clones. Jiang et al. [77] consider the inner most syntactic constructs

that enclose clones as contexts and identify three types of contextual inconsistencies in

clones in an ad-hoc manner. In contrast, our CloneDifferentiator raises the contextual anal-

ysis of code clones to PDGs that capture much more contextual information than existing

work. Furthermore, Clone-Differentiator exploits efficient graph differencing algorithm to

systematically detect contextual differences of clones.

Query-based approaches have been proposed for supporting program understanding.

The underlying idea of these approaches is that software tools can automatically compute

elementary information, and then developers can combine and query the elementary in-

formation in a task-oriented manner to assist a specific maintenance task at hand. For ex-

ample, Xing and Stroulia [172] proposed to detect change patterns in software evolution by

querying the elementary design changes reported by UMLDiff. Zhang et al. [184] present

the CloneAnalyzer tool that support query-based filtering of code clones. CloneAnalyzer

does not support contextual analysis and differencing of clones as CloneDifferentiator

does.

CloneDifferentiator is a new application of GenericDiff for the purpose of comparing

the PDGs of clones. CloneDifferentiator performs automatic contextual analysis of code

90

clones based on the PDG differencing results by GenericDiff. We present our CloneDiffer-

entiator tool in [173], which focuses on the implementation challenges and the visualiza-

tion features of the tool support. In contrast, this chapter describes the fundamental con-

cepts of our CloneDifferentiator approach, discusses in detail contextual differences of

clones and their implications on understanding clones, and reports two empirical studies

for evaluating our approach.

4.7 Threats to Validity

Our CloneDifferentiator tool currently uses CloneMiner [12] to detect cloned methods.

The surveys [101,144] on clone detection tools suggest that clones reported by different

techniques may vary due to the diverse nature of detection techniques and similarity met-

rics. The different model differencing or code detection tool may affect the accuracy of our

results. However, the choice of one proper technique from the similar candidates (such as

CloneMiner for clone detection, GenericDiff for model differencing) should not have fun-

damental impact on our approach. The reason is that the techniques we chose are modern,

advanced and comparable to the others in their corresponding domain. To see the solid

proof for our assumption, further studies are required to evaluate our approach with respect

to different clone detection, or the different model differencing techniques.

CloneDifferentiator now compares intra-method PDGs of cloned methods. It does not

consider inter-method PDGs because it assumes that two different methods being invoked

in cloned methods would perform different computation. This assumption holds in most

cases and allows efficient contextual analysis of clones. CloneDifferentiator can be easily

adapted to analyze inter-procedure PDGs around cloned methods, because inter-procedure

PDGs are available in Wala, and GenericDiff can be easily configured to compare inter-

method PDGs.

Chapter 4 Understanding Variability in Implementation of Product Variants

91

In this chapter, we showed that contextual differences of clones are useful for distilling

useful clones for refactorings aiming at reducing code duplication. Cloning information

has also been used for other types of software maintenance tasks, such as bug detection

[77,79,103]. Further studies are required to investigate the usefulness and effectiveness of

Clone-Differentiator for other types of maintenance tasks.

4.8 Summary

Similar yet still different features may manifest as software clones in a single product or

across several products. Understanding the differences among these clones provides one

way of understanding implementations of variant features. Furthermore, programmers can-

not judge code clones without understanding differences. To perform maintenance tasks on

clones, developers must examine the differences of clones induced by the program context

in which clones occur.

In this chapter, we proposed an automated approach to identify contextual differences of

code clones by applying graph differencing algorithm to the PDGs of clones’ program con-

texts. We have implemented our approach in a tool called CloneDifferentiator. Our evalua-

tion demonstrated that CloneDifferentiator can effectively distill clones that are valid can-

didates for various refactoring tasks aiming at reducing code duplication. It helps to reduce

effort of post-detection analysis of clones in a task oriented manner.

In the future, we plan to conduct more empirical studies to enrich our taxonomy of con-

textual differences of clones. We believe this can open new opportunities to refine existing

clone definitions from a new perspective (i.e., how clones are different). This can enhance

the usefulness of cloning information in various software maintenance tasks.

Chapter 5 Locating Features in Product Variants

93

5 Locating Features in Product Variants

This chapter is based on [179], which focus on the last but not the least step RQ3 intro-

duced in Section 1.1 for variability analysis in domain engineering. We present the prob-

lem of feature location in product family. We reviewed the existing feature location ap-

proach for a single product, and proposed our model-differencing based approach to identi-

fying and locating features among product variants.

5.1 Introduction

Once the RQ1 and RQ2 are resolved, the differences among the various product variants

are distinguished respectively in requirements and in implementation. But still, it is not

known that which variant feature’ inclusion/exclusion enables/disables the corresponding

code portion or method in the implementation. For example, suppose we represent the fea-

tures supported by a product as set f, then for WFMS
Fudan

and WFMS
Shanghai

, we have fFudan

and fShanghai respectively. Suppose we represent the code implementation as c, and then we

also have cFudan and cShanghai. After RQ1 and RQ2 are resolved, the information at require-

ment level about f

Fudan - fShanghai and fShangha - f

Fudan is known. And it is also available that

the information at implementation level about cFudan - cShanghai and cShangha - cFudan. But for a

feature like DelegationLock in the set f

Fudan - fShanghai, it is still interesting to know the

counterpart of feature-relevant code in the cFudan - cShanghai. Actually, the problem is called

as “feature location” in the product variants.

Ideally, by applying the information retrieval technique such as Latent Semantic Index-

ing (LSI), the method FeeInfo.initInfo() is retrieved respectively in PFM
Fudan

 and

PFM
Shanghai

 for feature DelegationLock and OperationLock according to their own feature

descriptions. By combing the knowledge of the domain analysis at requirement level (see

Figure 3.2) and the clone analysis at implementation level (see Figure 4.1), we can further

94

infer that feature DelegationLock in PFM
Fudan

 and feature OperationLock in PFM
Shanghai

are two different features. And comparing these two cloned methods reveals that these two

features DelegationLock and OperationLock have contextual differences represented by

PDG, which actually is due to the variability.

The above example is a simple illustration of the key idea of our approach to supporting

effective feature location in a software product family to help domain analysis. However,

situations are more complicated in real-world software product families. First, features and

their implementations may evolve from one product variant to another. As a result, same

features and code units may appear to be different in different product variants. How can

we precisely determine correspondences between features (or code units) across product

variants? Second, product variants share common features and their implementations. How

can we systematically partition product variants so that each partition is disjoint and con-

sists of a minimal subset of features (or code units)?

Besides, the recent large-scale empirical study [168] showed that IR-based approaches

to feature location do not perform well on software data, even for a single software prod-

uct. Direct application of these approaches to a software product family will be even worse

due to significant increase of search space. Furthermore, same features and their imple-

mentations may vary across product variants due to evolution and customization of differ-

ent product variants. This makes it difficult to first apply IR techniques for feature location

in each product variant and then merge feature location results.

In this chapter, we present a systematic approach to supporting Feature Location in

Software Product Family (FL-SPF for short) that consists of a set of product variants sup-

porting overlapping but also different sets of features. Our goal is to identify common code

units that implement overlapping features across product variants. Our approach effective-

ly incorporates software differencing, Formal Concept Analysis (FCA), and IR techniques.

Chapter 5 Locating Features in Product Variants

95

Software differencing helps to identify distinct features (or code units) in a software prod-

uct family, which represent corresponding features (or code units) across product variants.

FCA then groups distinct features (or code units) into disjoint and minimal partitions by

analyzing commonality and differences of product variants. These two steps of analysis

help to reduce search space for feature location in software product family. Finally, given a

feature partition and the corresponding code-unit partition, Latent Sematic Indexing [41]

(LSI) is used to identify code units that implement a specific feature.

We have implemented our approach and conducted evaluation with nine product vari-

ants of Linux kernel. These nine Linux kernel product variants consist of 3146 features and

about 342K code units (functions and data structures in our evaluation). Our evaluation

shows that:

 Software differencing can significantly reduce search space for feature location in

software product family by determining distinct features (or code units) in software

product family. In our evaluation we only need to deal with 966 distinct features and

about 100K distinct code units in subsequent analysis;

 FCA can effectively group features (or code units) into disjoint and minimal partitions.

In our evaluation, the resulting partitions consist of only 8.914 (average standard

deviation) features and 948.81540 code units;

 Our approach always outperforms a direct application of IR technique in the subject

product family: compared with the best performance of direct application of LSI, the

worst performance of our approach still identifies relevant program elements for

25.7% more features, achieves 32% higher mean average precision, and requires inves-

tigating 8% less code units before encountering the first relevant code unit.

96

5.2 Related Work

Identifying code units (e.g. functions) that implement a specific feature in a software

system is known as feature location [24,139]. A feature in a software system represents a

distinct aspect of the system that is accessible to developers and users [81]. Software

maintenance involves adding new features to a system, improving and reengineering exist-

ing features, and removing unwanted features (e.g. bugs). Feature location is one of the

most important and common activities performed by developers during software mainte-

nance [44], because no maintenance task can be completed without first locating and un-

derstanding the code that is relevant to the task at hand.

A comprehensive survey of feature location techniques can be found in [44]. Feature lo-

cation techniques mainly employ textual, static, and dynamic analysis. Textual approaches

[118,119,134,135,148] analyze words in source code using IR techniques. Static analysis

[62,102,164] examines structural information such as program convergence, control and

data dependencies. Dynamic analysis [49,169,170] examines execution traces of feature-

specific execution scenarios. Hybrid approaches [47,68,135,136,185] combine two or more

types of analysis with the goal of using one type of analysis to compensate for the limita-

tions of another, thus achieving better results.

Our recent empirical study [168] investigates the effectiveness of 10 IR techniques on a

very large Linux kernel dataset. This study suggests that one must exploit unique charac-

teristics of software data so that IR techniques may perform similarly well on software da-

ta, compared with on natural language articles that IR techniques are designed for. Inspired

by this study, we proposed several new techniques for feature location. For example, based

on the fact that features are not independent of each other, we proposed to combine IR

techniques with graph matching to solve feature location as an iterative context-aware

graph matching problem [130]. In this work, we propose to analyze commonalities and

Chapter 5 Locating Features in Product Variants

97

differences of product variants in a software product family by software differencing and

FCA techniques so that IR technique can achieve better results for feature location in soft-

ware product family.

Software differencing plays a fundamental role in many software maintenance tasks, in-

cluding design evolution and variability analysis. For example, Xing and Stroulia present-

ed UMLDiff algorithm [172] for analyzing design evolution of object-oriented software. In

our recent work [180], we compared product feature models to understand how product

variants in a software product family evolve at requirement level. Duley et al. [45] pro-

posed to use lexical similarity and bipartite graph matching for differencing hardware pro-

grams. Such differencing techniques can help to identify distinct features (or code units) in

software product family, and thus reduce search space for IR-based feature location.

FCA has been used to aid feature location analysis. For example, to alleviate the diffi-

culty to formulate distinct feature-specific execution scenarios, Eisenbarth et al. [48] ap-

plied FCA to isolate features through analysis of overlapping scenarios. In fact, this in-

spired our feature location approach in software product family. We consider product vari-

ants as “scenarios” that support similar but also different sets of features. Thus, FCA can

be applied to group features into disjoint, minimal partitions through analysis of common-

ality and differences of product variants. FCA has also been used for post-mortem analysis

of feature location results. For example, Poshyvanyk and Marcus [134] use FCA to group

IR-based feature location results according to common topics. Their goal is to reduce the

interpretation effort of IR search results by providing additional structure on top of search

results. In contrast, we use FCA to pre-processing input search space to which IR tech-

niques apply.

98

5.3 The Approach

In this section, we describe input data for our approach. We also discuss how to identify

distinct features (or code units) in software product family by software differencing, how

to group features (or code units) into disjoint, minimal partitions by FCA, and how to ap-

ply LSI for feature location.

5.3.1 A running example

Consider a software product family of five document viewers and editors shown in Ta-

ble 5.1. The product Viewer1.0 (V1.0) is a simple text viewer that supports basic features

such as file open and text viewer. Viewer2.0 (V2.0) is an advanced text viewer that supports

not only basic features but also two more features (Find and Copy to Clipboard). Editor1.0

is a simple editor that supports basic texting editing features such as Edit, Undo/Redo and

Save. Editor1.1 (E1.1) does not support instable feature Undo/Redo; it ports feature Find

from Viewer2.0 and extends it into an enhanced feature Find/Replace. Editor2.0 (E2.0) sup-

ports all basic texting editing features; it ports feature Copy from Viewer2.0 and extends it

into an enhanced feature Copy/Cut; it also supports a new feature Paste.

Table 5.1. Feature sets of document viewers/editors

Products Features

Viewer1.0 Base (Text Viewer, Open)

Viewer2.0 Base, Find, Copy

Editor1.0 Base, Edit, Save, Undo/Redo

Editor1.1 Base, Edit, Save, Find/Replace

Editor2.0 Base, Edit, Save, Undo/Redo, Copy/Cut, Paste

5.3.2 Input data

For a product variant in a software product family, our FL-SPF approach takes as input a

set of features that the product variant supports, and a static program model built from the

implementation of the product variant.

Chapter 5 Locating Features in Product Variants

99

Each feature of a product variant is identified by a name and is described using some

natural language description. Such feature information can be extracted from release notes,

user manuals, or feature models of the software system. For example, Figure 5.1 shows a

feature of Linux Kernel, expressed in Kconfig (feature modeling language of Linux Ker-

nel) [151]. It describes a feature that supports microcode patch loading for Intel processors

(see Section 5.4.2).

config CONFIG_MICROCODE_INTEL

bool “Intel microcode patch loading support”

depends on CONFIG_MICROCODE; select FW_LOADER

default y

---help---

This option enables microcode patch loading support for Intel
processors …

Figure 5.1. A feature in Linux kernel

The static program model of product implementation is a graph. The node set contains

code units of interest for feature location such as functions and data structures. Each code

unit is associated with a set of properties, such as identifier and comments. The edge set

contains relations between code units, such as function call and data-structure usage. Such

program models can be reverse-engineered from product implementation and have been

widely used for program understanding and maintenance.

5.3.3 Identifying distinct features (or code units) in Software Product Family by
software differencing

Due to evolution and customization of software products, product variants in a software

product family may contain different versions or variants of the same features (or code

units). FL-SPF uses software differencing techniques (for example [45] and [172]) to de-

termine correspondences of features (or code units) among product variants. Analyzing

feature (or code-unit) correspondences allows FL-SPF to determine distinct features (or

100

code units) in the software product family. These distinct features (or code units) represent

a set of corresponding features (or code units) across several product variants. They signif-

icantly reduce search space for feature location in software product family, because FL-

SPF no longer needs to deal with features and code units of each individual product vari-

ant.

5.3.3.1 Differencing feature sets of product variants

At feature level, FL-SPF examines lexical similarities of feature descriptions and uses

bipartite matching to determine correspondences of features of two product variants.

Given feature sets of two product variants F1 and F2, FL-SPF first identifies a subset of

same-name features Fsn between the two sets F1 and F2. For those features that do not have

same-name counterparts, i.e. f1F1\Fsn and f2F2\Fsn and f1.name≠f2.name, FL-ESPF com-

putes their lexical similarities pair-wisely using Longest Common Subsequence (LCS) of

their feature descriptions. LCS considers ordering of words, which is important for names

of program elements. While for information retrieval task, bags of word is more general.

FL-ESPF then builds a bipartite graph (N1, N2, E): N1 and N2 are disjoint node sets and they

represent features f1F1\Fsn and f2F2\Fsn respectively, and weighted edges in E represent

lexical similarities between features f1F1\Fsn and f2F2\Fsn. FL-SPF selects an optimal

matching between features f1F1\Fsn and f2F2\Fsn using state marriage algorithm [56].

FL-SPF reports differencing results of feature sets F1 and F2 as three sets of features: a

set of matched features F1^F2 (i.e. pairs of matched features, one from each product vari-

ant), and two sets of unmatched feature F1\F2 and F2\F1 (i.e. unmatched features that exist

only in F1 but not in F2 or in F2 but not in F1).

For example, consider Viewer2.0 (V2.0) and Editor1.1 (E1.1) in Table 5.1. The two prod-

uct variants have only one pair of same-name feature, i.e. V2.0.Base and E1.1.Base. FL-SPF

further identifies the correspondence between feature V2.0.Find and feature

Chapter 5 Locating Features in Product Variants

101

E1.1.Find/Replace based on lexical similarity of their descriptions and bipartite matching.

Thus, FL-SPF reports that FV2.0^FE1.1={V2.0.Base_E1.1.Base, V2.0.Find_E1.1.Find/Replace},

FV2.0\FE1.1={V2.0.Copy}, and FE1.1\FV2.0={E1.1.Edit, E1.1.Save}.

5.3.3.2 Differencing program models of product variants

At implementation level, FL-SPF uses a variant of UMLDiff algorithm [171] to com-

pare program models of two product variants. Given two program models P1 and P2, UM-

LDiff determines correspondences of code units based on lexical similarity of their identi-

fiers and comments and structural similarity of their relationships with other elements.

Based on UMLDiff’s differencing report, FL-SPF reports differencing results of pro-

gram models of two product variants as three sets of code units: a set of matched code

units P1^P2 (i.e. pairs of matched code units, one from each product variant), and two sets

of unmatched code units P1\P2 and P2\P1 (i.e. unmatched code units that exist only in P1

but not in P2 or in P2 but not in P1).

5.3.3.3 Identifying distinct features (or code units)

The correspondence relations as defined by matched features (or code units) across

product variants partition the union of feature sets (code-unit sets) of all product variants

into a set of equivalence classes. Each equivalence class consists of a set of corresponding

features (or code units) of several product variants; it represents a distinct feature (or code

unit) in the software product family.

For example, the software product family in our running example has five product vari-

ants that have in total 18 features. These 18 features of individual product variants can be

represented as seven distinct features in the software product family, including

Base={V1.0.Base, V2.0.Base, E1.0.Base, E1.1.Base, E2.0.Base}, Find/Replace={V2.0.Find,

E1.1.Find/Replace}, Copy/Cut= {V2.0.Copy, E2.0.Copy/Cut}, Edit={E1.0.Edit, E1.1.Edit,

102

E2.0.Edit}, Save={E1.0.Save, E1.1.Save, E2.0.Save}, Undo/Redo={E1.0.Undo/Redo,

E2.0.Undo/Redo}, Paste= {E2.0.Paste}.

5.3.4 Grouping features (or code units) into disjoint, minimal partitions by FCA

Product variants in a software product family support overlapping but also different sets

of features. We use FCA technique to group features (or code units) in the software prod-

uct family into disjoint, minimal partitions through combination of commonalities and dif-

ferences of product variants. Such feature and code-unit partitions further reduce space for

feature location in software product family, because FL-SPF no longer needs to perform

feature location on the entire set of features and code units.

5.3.4.1 Basic concepts of FCA

FCA deals with a formal context (I, O, F) that defines a relation IOF between a set of

objects O and a set of attributes F. A tuple c=(Oi, Fj) is a concept of a given formal context

(I, O, F) iff OiO, FjF and every object o Oi has every attribute fFj. That is, the con-

cept c identifies a set of objects that share a set of common attribute. The set of objects Oi

is called the extent of the concept c, and the set of attributes Fj is called the intent of c. The

set of all concepts of a given formal context forms a partial order : c1=(O1,F1)

c2=(O2,F2) iff O1O2 or equivalently F1F2. This partial order induces a concept lattice.

Intuitively, the higher a concept is in the concept lattice, the more general its extent is (i.e.

more objects) but the more specific its intent is (i.e. less common attributes).

5.3.4.2 Determining feature-level partitions by FCA

In our application of FCA, we define a formal context as follows. We consider product

scenarios as objects in a formal context, and consider distinct features of the software

product family as attributes. A relation between a product scenario and a distinct feature

defines that the distinct feature can be found in the product scenario.

Chapter 5 Locating Features in Product Variants

103

Such a formal context can be constructed based on differencing results of feature sets of

product variants in the software product family. For any two product variants P1 and P2,

we construct three product scenarios P1^P2, P1\P2, and P2\P1. A distinct feature can be

found in the product scenario P1^P2 (or P1\P2, P2\P1) iff the feature of product variants rep-

resented by the distinct feature is in the matched feature set F1^F2 of two product variants

(or unmatched sets F1/F2, F2/F1). Consider Viewer2.0 (V2.0) and Editor1.1 (E1.1) as an ex-

ample. Based on differencing results of feature sets of these two product variants, three

product scenarios can be constructed as follows: V2.0^E1.1={Base, Find/Replace},

V2.0\E1.1={Copy/Cut}, and E1.1\V2.0={Edit, Save}.

This formal context summarizes commonalities and differences among product variants.

Given such a formal context, we use ConceptExplorer [192] to induce a concept lattice.

Each concept in the lattice represents a partition of search space of the software product

family; each partition shows how we can isolate certain features and their implementations

through combination of product scenarios.

Figure 5.2. The concept lattice of document viewers/editors

Figure 5.2 presents the resulting concept lattice of our running example. This lattice has

five levels and 20 concepts (i.e. nodes). The node associated with a set of features (grey

box) represents the most general concept that has those features as its intent; while the

104

node associated with a set of product scenarios (white box) represents the most special

concept that has those product scenarios as its extent. The intent and extent of a concept

can be derived as follows: the extent of a concept is the union of all product scenarios at

and below the concept node; the intent of the concept is the union of all features at and

above the concept node. For example, the intent of concept Cx is feature set {Base,

Find/Replace}, and the extent of Cx is product scenario set {V2.0^E1.1}. As another exam-

ple, the intent of concept Cy is {Find/Replace}, and the extent of Cy is {V2.0^E1.1, E1.1\V1.0,

V2.0\E2.0, E1.1\E1.0, E1.1\E2.0}.

In such a concept lattice, we are interested in concept nodes associated with a set of fea-

tures (for example the concept Cy). These concepts represent the most general set of prod-

uct scenarios that share the least common set of features, i.e. the finest-grained partitions of

search space of the software product family. These concepts show how we can obtain a

minimal subset of features and code units for feature location in the software product fami-

ly.

Because we examines product scenarios (defining not only commonalities but also dif-

ferences of product variants), we are able to produce more fine-grained partitions of search

space of a software product family than examining only commonalities of product variants.

For example, examining only commonalities between Viewer2.0 and Editor1.1, we cannot

separate feature Base from feature Find/Replace. However, by considering differences be-

tween several relevant product variants (i.e. features in V2.0 but not in E2.0, and features in

E1.1 but in neither V1.0, E1.0, nor E2.0), we can then perfectly isolate feature Find/Replace.

This is how we end up with the concept Cy in the lattice in Figure 5.2.

5.3.4.3 Building code-unit level partitions

Given a feature-level partition (i.e. a concept computed by FCA), FL-SPF first analyzes

the relevant product scenarios to determine program models it has to compare. For exam-

Chapter 5 Locating Features in Product Variants

105

ple, given the concept Cy, FL-SPF will compare program models of Viewer2.0 and Edi-

tor1.1, Viewer2.0 and Editor2.0, Editor1.1 and Viewer1.0, Editor1.1 and Editor1.0, and

Editor1.1 and Editor2.0. FL-SPF then determines distinct code units based on differencing

results of program models (see Section 5.3.3), and build the corresponding code-unit level

partition for locating implementations of the distinct features of the given feature-level par-

tition. For the concept Cy, its corresponding code-unit level partition will include distinct

code units that are in both Viewer2.0 and Editor1.1 but in neither Viewer1.0, Editor1.0 nor

Editor2.0. This code-unit level partition will be used for locating implementations of fea-

ture {Find/Replace}.

5.3.5 Feature location by LSI

Given a set of distinct features F and a set of distinct code units CU, FL-SPF uses LSI

technique to identify code units in CU implementing features in F. Our application of LSI

for feature location is similar to existing studies [119,168]. It involves extraction of bag-of-

word representation for features and code units, and retrieval of code units implementing a

feature.

5.3.5.1 Building feature queries

As discussed in Section 5.3.3, a distinct feature represents a set of corresponding fea-

tures across several product variants. The name and description of these corresponding

features may be different due to evolution and customization of product variants. Thus,

given a distinct feature, FL-SPF needs to first merge name and description of these corre-

sponding features to generate name and description of the distinct feature. FL-SPF adopts a

merging strategy similar to that of CVS for merging textual documents. However, FL-SPF

does not attempt to resolve conflicts in feature descriptions. Instead, it simply retains all

conflicting fragments of feature descriptions.

106

Then, FL-SPF converts each distinct feature into a bag of words as follows. It first ex-

tracts word tokens from the name and description of the distinct feature. It uses white

space and underscore as delimiters. Then, it removes commonly used stop words of little

meaning, e.g. is, are, will, have, etc. Finally, it reduce every word token to its root form,

for example swap, swapping, swapped are reduced to the same root form swap. The bag-

of-words representation of distinct features will be used as feature queries to an IR engine.

5.3.5.2 Building corpus of code units

Similar to the processing of distinct features, given a distinct code unit that represents a

set of corresponding code units across several product variants, FL-SPF first generates

code fragments of the distinct code unit by merging code fragments of the corresponding

code units. It uses the same merging strategy as that for merging feature descriptions.

Then, FL-SPF converts each distinct code unit into a bag of words as follows. It first ex-

tracts word tokens involving string literals, variable names, function names, parameter

names, and words in the source code comments. Then, it removes word tokens correspond-

ing to language keywords, e.g. if, else, while, for, etc. Finally, it also reduces every word

token to its root form. The bag-of-words representation of distinct code units constitutes a

corpus of code-unit documents for feature location.

5.3.5.3 Code-units retrieval using LSI

We feed bags-of-words of features and code units to an LSI engine for feature location.

We use SemanticVectors [200] for LSI analysis. LSI engine first analyzes all bags of

words to build a topic model. Then, it considers a feature query and every code-unit docu-

ment as a vector of weights; each weight is the likelihood for the query or a code unit be-

longing to a particular topic. It measures the similarities between the feature query and

code-unit documents using cosine similarity of feature-query vector and code-unit vectors.

Chapter 5 Locating Features in Product Variants

107

It finally returns a list of code units ordered based on their similarity scores against the fea-

ture query.

5.4 Linux Kernel Dataset

In this section, we summarize the Linux kernel dataset used for the evaluation of our ap-

proach. We describe how we extract from this dataset: 1) features with textual descriptions

that can be used as queries for feature location; 2) code units that form corpus for feature

location; and 3) ground truth links between features and their implementing code units for

evaluating the effectiveness of our feature location approach.

5.4.1 Dataset

The Linux kernel [195] is an open source operating system kernel. It was originally de-

veloped for 32-bit x86-based PCs, but has since been evolved into a software product line

[151], which consists of thousands of features that can be configured in order to generate

specific kernel products for a vast combinations of architectures, subsystems, device driv-

ers, etc.

Table 5.2. Nine product variants of Linux kernel

Product Variants #Features #Code Units

2.6.27.9 def 306 34060

2.6.27.9 r1 403 44275

2.6.27.9 r2 412 43913

2.6.31.9 def 348 39565

2.6.31.9 r1 458 55585

2.6.31.9 r2 325 29936

2.6.37 def 402 45312

2.6.37 r1 164 17622

2.6.37 r2 328 32461

Total 3146 342729

In this evaluation, we used nine product variants derived from three stable releases of

the Linux kernel 2.6.27, 2.6.31, 2.6.37 released on December 14
th
, 2008, December 18

th
,

108

2009, and January 5
th
, 2011, respectively. These product variants were built for a Dell Pre-

cision M6400 workstation based on default and two random configurations shipped with

each kernel release.

We extract a dataset that contains 3146 features and 342729 code units (functions and

data structures). These nine product variants comprise 35086 (averagestandard deviation)

features and 3808110988 code units. Our statistics is consistent with earlier well-known

study on Linux kernel evolution [59]. That is, although the full source tree of Linux kernel

is very large, a specific kernel product (built for a specific platform, devices, features, etc.)

is likely to comprise only a small portion of the full source tree.

5.4.2 Extracting features sets

The Linux kernel manages features using a feature modeling language (Kconfig) and its

accompanied configuration tool [151]. Each feature defined in Kconfig model has a con-

figuration symbol, a short prompt, and a free-form textual description, together with other

information such as datatype, default value of the feature, and dependencies between fea-

tures.

Figure 5.1 lists a feature excerpt expressed in Kconfig. It defines a feature CON-

FIG_MICROCODE_INTEL (configuration symbol) that provides “Intel microcode patch load-

ing support” (short prompt). Its feature description states “This option enables microcode

patch loading support for Intel processors. …”. This feature is of Boolean type and it is

included in kernel products by default. Furthermore, it depends on another feature whose

configuration symbol is CONFIG_MICROCODE, and selecting CONFIG_MICROCODE_INTEL

requires selecting feature FW_LOADER as well.

To build a specific kernel product, a user initializes and modifies a feature configuration

based on the Kconfig model, using the accompanied Kconfig tool. In this evaluation, we

built kernel products for a Dell Precision M6400 workstation based on default and two

Chapter 5 Locating Features in Product Variants

109

random configurations shipped with each kernel release. The resulting kernel products

constitute a software product family of nine product variants for evaluating the effective-

ness of our approach.

We extended the Kconfig tool to extract the set of features that a specific kernel product

supports. This tool extracts configuration symbol, short prompt and textual description of

these features. The configuration symbol is treated as feature name, and short prompt and

textual description is treated as feature description. Such sets of features of kernel products

serve as feature-level input to our feature location approach.

5.4.3 Reverse-engineering program models

The feature configuration process by users results in a set of symbol-value pairs. These

symbol-value pairs are used by Linux kernel in its makefiles and source code (as C prepro-

cessors) to control which directories, files, and conditional blocks are enabled for compila-

tion.

For example, if the Intel microcode feature is selected for a kernel product (i.e. CON-

FIG_MICROCODE_INTEL=y), functions and data structures defined in microcode_intel.c will

be compiled. Then, the built kernel product will support microcode patch loading for Intel

processors.

We developed the tool progmodel based on the C parser in the Sparse library [202] that

has been integrated with Linux kernel build system. This allows progmodel to reverse-

engineer static program model of the kernel product, as it is built according to a feature

configuration. Note that reverse-engineered program model consists of only code units that

implement features that a specific kernel product supports. Such program models serve as

implementation-level input to our feature location approach.

110

5.4.4 Establishing ground truth

The Kconfig model, makefiles, and C preprocessors used by Linux kernel allow us to

establish the ground truth links between features and their implementing code units.

For example, by analyzing the usage of the configuration symbol CON-

FIG_MICROCODE_INTEL in the makefiles and source code, we can establish that this feature

has 17 implementing code units, including functions such as collect_cpu_info(), re-

quest_microcode_fw(), init_intel_ microcode(), and data structures such as micro-

code_intel and extended_signature.

We developed a tool to automatically extract such ground truth links. The availability of

this ground truth allows us to systematically evaluate the effectiveness of our approach to

feature location in software product family with thousands of features and hundreds of

thousands of code units.

5.5 Results

We now review measures used in our evaluation and then present the results of the ef-

fectiveness of our approach to feature location in software product family.

5.5.1 Evaluation measures

We use three measures to evaluate the effectiveness of our approach: Percentage of Rel-

evant Queries (PRQ), Mean Average Precision (MAP), and Average Percentage of Code

Units Investigated (APCUI). These measures are commonly used to evaluate IR techniques

[168].

1. struct extended_signature
2. struct extended_sigtable
3. request_microcode_fw(int,struct device*)
4. num_booting_cpus()
5. get_ucode_fw(void*,void*,unsigned int)
6. mtrr_cleanup(unsigned int)
7. mtrr_trim_uncached_memory(unsigned long)
8. _fsnotify_inode_delete(struct inode*)
9. init_intel_microcode()
10. get_ucode_user(void*,void*,unsigned int)

Figure 5.3. The top 10 returned code units for the Intel microcode feature

Chapter 5 Locating Features in Product Variants

111

Percentage of Relevant Queries (PRQ). This measure quantifies the percentage of the

feature queries that can return at least one relevant code unit in returned code units:

∑ (∑

)

where Q is the number of all feature queries, Nq is the length of the ordered list of code

units returned by the query q, and r(i) is a binary function that returns 1 if the code unit at

the position i is relevant to (i.e. in the ground truth of) the query q and return 0 otherwise,

and B(.) is a Boolean function that return 1 if its parameter is not zero and 0 otherwise.

Obviously, higher PRQ values mean better feature location results.

Figure 5.3 presents the top 10 (i.e Nq=10) functions and data structures returned for the

Intel microcode feature. Six of the 10 returned code units ranked 1
st
, 2

nd
, 3

rd
, 5

th
, 9

th
, and

10
th
 are relevant, i.e. , r(i)=1. Thus, ∑

 , and B(.) returns 1 for the

query of the Intel microcode feature. After we obtained B(.) values for all feature queries,

we can easily compute the PRQ value.

Mean Average Precision (MAP). MAP is the mean of average precision scores for a

set of queries processed by an IR technique:
∑

, where Q is the number of fea-

ture queries that return at least one relevant code unit, APq is the average precision score

for the query q and defined as follows:

∑ ()

∑

where Nq and r(i) have the same meaning as above, and P(i) is the precision for the code

unit at the position i and defined as follows:
∑

.

APq quantifies the precision of each code unit in the list based on the code unit’s rele-

vance and its position in the list, and then takes a weighted average of the precision of all

code units in the list, giving more weights to relevant code units ranked higher.

112

For the query results of the Intel microcode feature, r(i)=1, then we

have P(1)=1/1, P(2)=2/2, P(3)=3/3, P(4)=3/4, P(5)=4/5, P(6)=4/6, P(7)=4/7, P(8)=4/8,

P(9)=5/9, P(10)=6/10. Thus, the average precision for this particular query result is

 .

After we obtain the average precision for all features, we can easily compute the MAP

value. Obviously, higher MAP values mean better feature location results.

Average Percentage of Code Units Investigated (APCUI). This measure quantifies on

average what percentages of the code units returned by a query need to be investigated be-

fore the first relevant document appears:

∑

where Q is the number of feature queries that return at least one relevant code unit, and

Iq is the smallest number such that r(Iq)=1^ { … } . Obviously, smaller

APCUI values mean better feature location results.

For the query of the Intel microcode feature, a relevant code unit appears at the position

1 in the list and thus Iq=1. Since the length of the list is 10 (i.e. Nq=10), the Iq/Nq value for

this query is 1/10=0.1. After we obtain Iq/Nq values for all feature queries, we can easily

compute APCUI value.

5.5.2 Distinct features (or code units) in product family

The product family used in this evaluation consists of nine Linux kernel product vari-

ants. These product variants have in total 3146 features and 342729 code units (functions

and data structures) (see Table 5.2). However, not all these features (or code units) are

unique in the product family, because these product variants share common features and

implementations.

Chapter 5 Locating Features in Product Variants

113

Figure 5.4 presents the analysis results of distinct features in this family of nine product

variants. The vertical axis represents the number of distinct features. The horizontal axis

represents the number of corresponding features, represented by a distinct feature, across

product variants. Distinct code units in the product family manifest the similar distributions

(see Figure 5.5).

Figure 5.4. Distinct features of Linux kernel product variants

Figure 5.5. Distinct code units of Linux kernel product variants

Distinct-feature (or code-unit) analysis identifies 966 distinct features and 103419 dis-

tinct code units in the product family. That is, by identifying distinct features (or code

units) in the product family, we can greatly reduce search space for feature location, from

dealing with 3146 features of individual product variants to 966 distinct features of the

product family (i.e. reduced by 69.3% at feature level), and from 342729 code units of in-

0

100

200

300

60
23

45 49 63 58

204 190

274

#D
is

ti
n

ct
 F

ea
tu

re
s

Corresponding Features Exist in

0

10000

20000

30000

6328
3029 4140 5576

10086
6203

16774

22262

29021

#D
is

ti
n

ct
 C

o
d

e
U

n
it

 s

Corresponding Code Units Exist in

114

dividual product variants to 103419 distinct code units of the product family (i.e. reduced

by 69.8% at implementation level).

Let us take a closer look at distinct features. 28.4% (274/966, the rightmost bar in Figure

5.4) of distinct features represent features that are supported by only one of nine product

variants. These uniquely supported features are optional features for an operating system.

For example, only the product variant 2.6.31.9.r1 supports the feature “LBDAF support for

large (2TB+) block devices and files”. The rest of 71.6% of distinct features represent fea-

tures that are supported by at least two product variants. Among these distinct features, 60

distinct features (the leftmost bar in Figure 5.4) represent features that are supported by

nine product variants. These commonly supported features usually deal with core architec-

ture and algorithms of an operating system. For example, the core feature CRYPTO_MD5,

described as “MD5 message digest algorithm (RFC1321)”, is supported by each product.

5.5.3 Disjoint, minimal feature (or code-unit) partitions

Using FCA to group 966 distinct features and 103419 distinct code units among nine

product variants generates 109 disjoint, minimal feature and code-unit partitions. Figure

5.6 and Figure 5.7 summarize the number of partitions (vertical axis) that have different

number of distinct features and code units (horizontal axis).

Figure 5.6. Partition size by features

0

5

10

15

20

25

30

1 2 3 4 5

6
-1

0

1
1

-2
0

2
1

-3
0

3
1

-5
0

5
3

6
1

8
8

27

15 15

4
7

17

12

4 5
1 1 1

N
u

m
b

er
 o

f
P

ar
ti

ti
o

n
s

Number of Features in Partition

Chapter 5 Locating Features in Product Variants

115

Figure 5.7. Partition size by code units

On average each partition consists of about only 1% (8.914, averagestandard devia-

tion) of all distinct features, and about only 1% (948.81540) of all distinct code units.

78% of these 109 partitions (the sum of the six leftmost bars in Figure 5.6) consist of 10 or

fewer features; 77.0% of these 109 partitions (the sum of the four leftmost bars in Figure

5.7) consist of 1000 or fewer code units. This shows that by grouping features and code

units into disjoint, minimal partitions we can further significantly reduce search space for

feature location.

For example, the smallest 27 partitions consist of only one feature (the leftmost bar in

Figure 5.6) and 2 – 640 code units. These 27 partitions represent features and the relevant

implementing code units that are perfectly isolated by analyzing commonalities and differ-

ences of product variants. Even the two largest partitions (the two rightmost bars in Figure

5.6 and Figure 5.7) consist of 88 features and 7784 code units, and 61 features and 8249

code units, respectively, i.e. less than 9% of all distinct features and less than 8% of all

distinct code units.

5.5.4 Performance of our FL-SPF approach

LSI groups related terms into topics based on their co-occurrence in the documents in a

corpus. A major control parameter to LSI is the number of topics that should be used for

0

10

20

30

1
-1

0
0

1
0

1-
2

00

2
0

1-
5

00

5
0

1-
1

K

1
K

-2
K

2
K

-3
K

3
K

-4
K

4
K

-5
K

5
K

-6
K

6
K

-7
K

7
K

-8
K

8
K

-9
K

22
19

25

18

9 9

1 2 0 2 1 1

N
u

m
b

er
 o

f
P

ar
ti

ti
o

n
s

Number of Code Units in Partition

116

topic-model construction. We want enough topics to capture real term relations, but not too

many, or we may start modeling irrelevant details in the data [41].

As a result, in this work we cannot use a fixed number of topics for LSI analysis, be-

cause we apply LSI to feature (code-unit) partitions of different size. Thus, we use a factor

pd (0<pd<1) and determine the number of topics that should be used by

 , where termd and docd are term and document dimensionality of

term-document matrix generated by LSI. We examine the performance of our FL-SPF ap-

proach at pd=0.1, 0.2, 0.3, 0.4, and 0.5.

In this evaluation, we focus on the top 30 code units returned by feature queries. This

decision was mainly driven by the fact that the majority (about 70%) of Linux kernel fea-

tures declares 30 or less functions and/or data structures. Furthermore, similar to other

studies [149], we believe that developers would highly unlikely to examine low-ranking

code units.

Figure 5.8 presents PRQ values for top 10, 20 and 30 returned code units at different pd.

At pd=0.1, FL-SPF returns at least one relevant code unit in top 10 results for 48.3% of

feature queries (i.e. 467 out of 966 distinct features). It returns relevant code units for 55.8%

feature queries in top 20 results, i.e. 7.5% more relevant feature queries if we examine the

11th – 20th returned code units. It returns relevant code units for 5.6% more feature que-

ries if we further examine the 21st – 30th returned code units. Clearly, our approach can

return at least one relevant code unit in top 10 results for almost half of the features to be

located. Examining more returned code units may find relevant code units for more fea-

tures. However, the chance becomes less towards lower-ranking code units. Similar phe-

nomenon can be observed at other pd values.

Chapter 5 Locating Features in Product Variants

117

Figure 5.8. PRQ (Nq=10, 20, 30) at pd=0.1,…,0.5

Figure 5.8 shows that PRQ values increase as pd increases from 0.1 to 0.3. This can be

attributed to the fact that more important term relations are captured as the number of top-

ics to be modeled by LSI increases. As a result, our approach returns at least one relevant

code unit for more feature queries. However, higher number of topics does not always re-

sult in better PRQ. PRQ values become stable at pd=0.4 and start dropping at pd=0.5. This

is because LSI starts modeling peculiarities of data rather than important term relations in

documents as the number of topics keeps increasing [41]. Consequently, it fails to return

relevant code units for some features.

Table 5.3. MAP and APCUI (Nq=30) at pd=0.1,…,0.5

 0.10 0.20 0.30 0.40 0.50

MAP30 0.431 0.476 0.483 0.479 0.475

APCUI30 0.207 0.158 0.153 0.157 0.153

Table 5.3 presents MAP values and APCUI values for top 30 returned code units at dif-

ferent pd. As pd increases from 0.1 to 0.2, we achieve higher MAP value and lower APCUI

value, which indicates that FL-SPF returns more relevant code units, and it ranks relevant

code units higher in the results and thus less code units to be investigated before encounter-

ing the first relevant code unit. MAP and APCUI values remain stable at pd>0.2, which

shows that the impact of increasing pd on MAP and APCUI becomes less significant at

0.483

0.551

0.611 0.601 0.598

0.558

0.608

0.671 0.669
0.654 0.614

0.643

0.701 0.702 0.688

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.10 0.20 0.30 0.40 0.50

P
R

Q

pd

PRQ10 PRQ20 PRQ30

118

pd>0.2. However, our approach can still return relevant code units for more feature queries

(as manifested by increasing PRQ value from pd=0.2 to pd=0.3 in Figure 5.8).

5.5.5 Comparison with direct application of LSI

We comparatively investigate the performance of our approach against that of the direct

application of LSI to the dataset of nine Linux kernel product variants. We use 500, 1000,

and 1500 as the numbers of topics for LSI analysis in the direct application of LSI. We

evaluate the performance of direct application of LSI in terms of the average PRQ, MAP,

APCUI values of LSI for each product variant.

Figure 5.9. PRQ values of direction application of LSI

Table 5.4. MAP and APCUI of direct application of LSI

#Topics 500 1000 1500

MAP30 0.327 0.344 0.327

MAP300 0.115 0.133 0.14

APCUI30 0.292 0.284 0.283

APCUI300 0.236 0.202 0.182

Figure 5.9 presents the average PRQ values at 500, 1000, and 1500 topics. The best av-

erage PRQ value of direct application of LSI for top 30 returned code units is 35.7% at

1500 topics. This PRQ is much lower than the worst PRQ value of our approach for top 30

returned code units (61.4% for PRQ30 at pd=0.1, see Figure 5.8). One way to improve

PRQ is to increase the number of topics to be modeled by LSI. However, it is not always

feasible to increase the number of topics for direct application of LSI, because it requires

significant increase in memory and runtime for constructing topic models of the entire set

0.224

0.305
0.357

0.478

0.57
0.613

0.1

0.2

0.3

0.4

0.5

0.6

0.7

500.00 1000.00 1500.00

P
R

Q

of topics

PRQ30 PRQ300

Chapter 5 Locating Features in Product Variants

119

of features and code units of a product variant. In fact, our attempt to apply LSI at 2000

topics fails due to out of memory exception.

An alternative way to improve PRQ is to examine more returned code units. As shown

in Figure 5.9, in order to achieve same-level PRQ value as our approach (61.4% for

PRQ30 at pd=0.1), we have to examine top 300 returned code units (61.3% at 1500 topics).

However, as shown in Table 5.4, the improvement of PRQ from top 30 to top 300 returned

code units comes with a significant degrade of the average MAP and APCUI values. The

average MAP degrades from 32.7% for top 30 results to 14% for top 300 results; on aver-

age the number of code units that need to be investigated before encountering the first rel-

evant code unit increases from 8.4 (28.3% of top 30 results) to 54 (18.1% of top 300 re-

sults).

In contrast, with our approach we do not need to pay this price. As shown in Figure 5.8

and Table 5.3, at pd=0.1, our approach achieves PRQ=61.4%, MAP=43.1%, and APCUI=

20.7% for top 30 returned code units. Note that this is the worst performance of our ap-

proach. But the MAP for top 30 results of our approach is still 31.8% ((43.1%-

32.7%)/32.7%) higher than that of top 30 results of direct application of LSI at 1500 topics.

Furthermore, the number of code units that need to be investigated before encountering the

first relevant code unit is about 8% (28.3%-20.7%) less with our approach.

We also measure the performance of our approach at pd=0.1 for top 300 returned code

units. The PRQ, MAP, and APCUI values are 80.6%, 24.3% and 11.1%, which means that,

compared with top 300 results of direct application of LSI at 1500 topics, our approach

returns at least one relevant code unit for 19% (80.6%-61.3%) more features, achieves

71.45% ((24.3%-14%)/14%) higher mean average precision, and requires investigating 21

less code units (|11.1%-18.2%|*300) before encountering first relevant code unit.

120

In addition to poorer performance, another disadvantage of direct application of LSI to

each product variant is that feature location results in each product variant often vary great-

ly in terms of code units returned and their rankings. Take the Intel microcode feature as an

example. It is supported in five out of nine product variants. Direct application of LSI re-

turns relevant code units in only two product variants (fails to return relevant code units in

the other three produce variants): two code units ranked 1
st
 and 6

th
 for product variant

2.6.37 r2, and one code units ranked at 1
st
 for 2.6.31 r2 in top 30 results. Given such fea-

ture location results, developers have to examine, merge, and propagate feature location

results from each product variant in order to identify common implementations of a fea-

ture.

In contrast to dealing with features and code units of each product variant, our approach

performs feature locations for distinct features and distinct code units in software product

family. Once the link between a distinct feature and a distinct code unit is identified, the

links between features and code units in each product variant can be easily inferred.

5.6 Threats to Validity

Our approach uses software differencing techniques to determine distinct features and

code units in software product family. The quality of differencing techniques may affect

our approach. Empirical studies [45,171,180] has shown the accuracy and robustness of

differencing techniques to be good in practice. Thus, the negative impact of software dif-

ferencing on our approach should be minor.

Our evaluation uses nine product variants of Linux kernel. Linux kernel manages fea-

tures using Kconfig at feature level and using makefiles and C preprocessor at code level.

However, it is important to note that our approach does not make any assumptions regard-

ing how product variants are generated and managed. It requires as input only feature sets

and program models of product variants.

Chapter 5 Locating Features in Product Variants

121

Our approach assumes that commonalities and differences between product variants can

be determined statically, such as product variants of Linux kernel used in our evaluation.

However, there exist systems that only behave differently depending on runtime parame-

ters. For such systems, we need to extend our approach with dynamic analysis techniques

in order to obtain feature sets and program models of different product variants at runtime.

Our approach partitions product variants through combination of their commonalities

and differences. Further studies are required to investigate the impacts of the number of

product variants and the differences among these product variants on the effectiveness of

our approach.

5.7 Summary

In this chapter, we presented an approach to support effective feature location in soft-

ware product families. Our approach effectively exploits software differencing and FCA

techniques to analyze commonalities and differences of product variants in a software

product family, which greatly reduce the search space to which IR technique applies. The

evaluation of our approach with a product family of nine Linux kernel product variants

showed that our approach always significantly outperforms a direct application of IR tech-

nique in the subject product family. This result suggests that we can significantly improve

IR-based feature location in software product family by partitioning product variants. Our

approach is at the core of our ongoing work on reengineering legacy software product fam-

ily towards systematic reuse of overlapping feature across product variants.

Chapter 6 Variability Management with Multiple Traditional Variability Techniques

123

6 Variability Management with Multiple Traditional Variability
Techniques

In the previous Chapter 3, 4 and 5, we focus on the variability analysis in the domain

engineering. In this chapter, we aim at investigating the management of variant features by

using variability techniques to configure different variant features for different product var-

iants in an industrial project [182].

6.1 Introduction

Even with identified variability between product variants available, the domain engi-

neers still face the challenge of managing the variability properly towards the SPL infra-

structure. How the variability is managed on earth in reality? To reveal the answer to the

RQ4 mentioned in section 1.1, we conduct the empirical study in a software company

based in Shanghai, China.

The goal of this chapter is to evaluate strengths and weaknesses of variability techniques

used in the existing Wingsoft Financial Management System Product Line (WFMS-PL).

This industrial SPL, some of whose features are exampled in section 3.1, 4.1 and 5.1, is

developed by Fudan Wingsoft Ltd., a small software company in China.

We took the following steps in this study. We first analyzed WFMS variant features [73]

and presented them as a feature diagram [83]. Then, we studied variability techniques in

WFMS-PL, namely Java conditional compilation3, commenting out feature code, design

patterns [57], parameter configuration files, and a build tool Ant [188]. Finally, we ana-

lyzed how the granularity and scope of feature impact on WFMS components affected the

effectiveness of variability techniques.

3 Java does not formally have conditional compilation, but you can implement the similar function [197]:

http://c2.com/cgi/wiki?ConditionalCompilationInJava

http://c2.com/cgi/wiki?ConditionalCompilationInJava

124

We distinguish two types of features according to the granularity of their impact, namely

fine-grained features affecting many system components, at many variation points, and

course-grained features whose code is usually contained in files that are included into a

custom product that needs such features. Mixed-granularity features involve both fine- and

coarse-grained impact. Most of the WFMS features were fine-grained features, managed

with conditional compilation and/or manually commenting out the feature code.

Our study shows that different variability techniques have different, often complemen-

tary strengths and weaknesses, and their choice should be mainly driven by the granularity

and scope of feature impact on product line components. Fundamental differences in capa-

bilities of variability techniques justify the use of multiple variability techniques. For ex-

ample, Ant is strong in configuring coarse-grained features, but weak in configuring fine-

grained features. Parameter configuration files define environmental variables and variant

feature options, but require yet other techniques to perform the actual customizations in

product line components. Design patterns reduce the coupling in code, making it easier to

add, remove or change a variant feature. However, we found only few opportunities to ap-

ply design patterns in WFMS. Over-loading fields in order to use the same field for differ-

ent purposes usually helps only in configuring database schema. Conditional compilation

is used as the main technique to control fine-grained variant features in Java source code,

while commenting out feature code is heavily used in HTML and JSP files. In some situa-

tions, we suggest possible remedies to weaknesses of variability techniques used in

WFMS-PL.

Particularly, multiple variability techniques must be used to manage each of the mixed-

grained features. Our study reveals that while it is natural to match feature granularity with

the proper variability techniques, over time the interplay between multiple variability tech-

niques may be difficult to comprehend.

Chapter 6 Variability Management with Multiple Traditional Variability Techniques

125

Variability techniques used in WFMS-PL are simple, freely available and commonly

used in Software Product Lines (SPL) to complement component/architecture-based ap-

proaches. As yet we do not have enough material to compare them with more advanced

SPL approaches, such as GEARS [190], Pure [199] or XVCL [71], with possibly better

results. We are going to conduct experiments to facilitate such comparison.

In the past years, there were some case studies on variability techniques. These studies,

however, usually focused on variation implementation with certain techniques like AspectJ

[96], FOP [18,19,137] or XVCL [71]. The industrial case study presented in [160] aims at

architecture-based variability realization in large companies. In this chapter, we analyze a

real product line using a mixed set of light-weight variability techniques in a small compa-

ny. We believe Wingsoft choice of variability techniques was representative of the varia-

bility managemet in the small companies. Some other small companies may find our expe-

riences reported in this chapter useful, when migrating from existing product variants to-

wards the product-line architecture.

6.2 An Overview of WFMS

WFMS was developed in 2003 and evolved to an SPL with more than 100 customers

today, including major universities in China such as Fudan University, Shanghai Jiaotong

University, Zhejiang University. During its evolution, Wingsoft set up product architecture

and was adopting variability techniques such as Java conditional compilation, Ant, pa-

rameter configuration files, and design patterns to manage product variability.

The core assets of the WFMS-PL were designed and implemented by few domain engi-

neers. Domain engineers sometimes also played the role of an application engineers re-

sponsible for initial, program-level customization of core assets for a custom product. Ser-

vice engineers, familiar with financial business but with little or no programming

knowledge, did final customer-side customizations and deployment. Service engineers

126

used readable parameter configuration files to do the customer-side customizations. Usual-

ly, application engineers provided only in-office application-specific implementations, and

responded to requests of service engineers. Domain engineers maintained a WFMS prod-

uct for many customers delegating routine work to service engineers.

WMFS consists of four subsystems, namely Financial Management Subsystem (FMS),

Salary Management Subsystem (SMS), Reward Management Subsystem (RMS), and Tui-

tion Management Subsystem (TMS). We selected the TMS for our case study, as it in-

volved types of variability and variability techniques that were representative of the whole

WFMS. TMS is a web-based portal for students to pay online their tuition fee, with func-

tions such as login, fee browsing, online payment, payment detail generation and bank set-

tlement. The code of TMS is 25% of the whole WFMS system. It comprised 58 Java

source files, 99 JSP web pages, and several configuration files.

A TMS feature diagram is shown in Figure 6.1. The minimum and maximum choices of

OR-features are shown as numbers surrounded by square brackets. 80% of the 32 variant

features can be selected for custom TMS. However, there are also some feature interac-

tions. For example, the selection of InitPayMode depends on the number of selected vari-

ant features under FeeItemSelection and the selection of Settlement depends on whether

selected banks require settlement. TMS features include fine-, coarse, and mixed-grained

feature.

Chapter 6 Variability Management with Multiple Traditional Variability Techniques

127

[1..2]

BankLog

DateSubmit

TuitionFeePayment

Login

OnlinePayment

Validation

SSOIDCardDirect

Initiation

InitStuState

InitCsDbUser

InitPayMode

InitBasicInfo

[1..3]

FeeInfoAcquire

InitFeeInfo

LockFeeItem

ReadLatestPayment

DelegationLock OperationLock

[1..2]

OrderGeneration

OrderConfirmFeeItemSelection

SelectByItem

SelectByYear

SelectByYearOrder

AllowException

AdditionalCharge

BankInteraction

Procedure

BillGeneration ResultReturn

SupportedBanks

ABC

CQUCICBC

CCB

CMB

CQZH

SCBC

XSUC

[1..*]

WebServicePayment

FeePayment
DownloadPaymentDetail

PaymentHistoryQuery
HelpInfo

Settlement

Automatic Manual

OperatingMode
SettleStrategy

SettleLog

DBLogFileLog

[1..2]

Figure 6.1. The feature diagram of TMS

As illustrated in Figure 6.2, the TMS is a web-based portal for students to pay their tui-

tion fee online, with functions such as login, service customization, on-line payment and

history query. In addition, the TMS also provides accounting services (e.g., report genera-

tion and bill settlements) that interface universities with banking systems. TMS adopts a

traditional 3-tier architecture, namely user interface, business logic and database access

tier.

UI Layer

• Webpages

• UI parts

BL Layer

• Data process

• Business rule

DB Layer

• Data persistency

• Log backup

Login

Initialization

Service customization

Bank connection

Online payment

Payment Settlement

Data access and backup

Settlement log

History query

Figure 6.2. The architecture of TMS

128

Table 6.1. Variant features of TMS

TMS Feature Name #VP #Size #AF Description

Direct 1 7 1 The direct login mode

IDCard 3 11 1 The login mode with ID number

SSO 5 17 3 The single sign-on mode

InitPayMode 9 16 4 Initiation of the payment mode
InitCsDbUser 10 18 5 Initiation of user account of finance database

InitStuState 10 37 3 Initiation of the student’s state

WebServicePayment 18 2144 17 Providing web service of payment

LockFeeItem 16 108 5 Locking fee items from being paid

DelegationLock 8 10 2 Locking fee items whose payments are delegated to bank

OperationLock 3 39 2 Locking fee items that are waiting for payment results

ReadLatestPayment 10 90 6 Showing the result of last payment
PayByItem 6 288 6 Selecting fee items by each item

PayByYear 6 176 6 Selecting fee items by the year of item

PayByYearOrder 6 603 6 Selecting fee items by the year order

AllowException 6 69 3 Allowing exceptions some pay mode

AdditionalCharge 7 15 3 Storing additional charge

ABC 18 1451 18 The Agriculture Bank of China

CCB 17 1043 17 The Construction Bank of China

CMB 11 784 11 The Commercial Bank of China
ICBC 24 1339 24 The Industry and Commercial Bank of China

CQUC 6 783 6 Office of Chongqing University in charge of fee payment

CQZH 8 1038 8 Chongqing Sub-Brance of the Bank of China

SCBC 7 546 7 Sichuan Sub-Branch of the Bank of China

XSUC 6 844 6 Office of Southwest Normal University in charge of fee pay-

ment

BankLog 13 111 11 Log interaction information with the banks

DownloadDetail 3 136 3 Downloading payment details
Settlement 13 487 13 Bank settlement

Automatic 4 216 3 Automatic operation mode

Manual 1 48 1 Manual operation mode

SettleLog 9 153 4 Log settlement info.

FileLog 7 103 6 Log information in files

DBLog 6 79 4 Log information in database

Table 6.2. Feature dependency and interactions

Involving features Domain/Design level dependency Implementation level interac-

tion (in variation point)

ABC, ICBC, AdditionalCharge If ABC or ICBC is selected, AdditionalCharge

should be selected.

N/A

ABC, CMB, CQZH, Settlement If ABC or CMB or CQZH is selected, Settlement

should be selected.

N/A

InitPayMode,

PayByItem,

PayByYear,

PayByYearOrder,

Number of the selected features among PayByItem,

PayByYear and PayByYearOrder decides the selection

of InitPayMode. If only one of them is selected, Init-

PayMode is not selected.

N/A

Direct, IDCard N/A 1 vp in FeeUser.java

WebServicePayment, In-

itCsDbUser

N/A 1 vp in user-defined configuration

file

WebServicePayment,

PayByItem

N/A 1 vp in FeeOrder.java

ReadLastPayment, Operation-

Lock

N/A 1 vp in DB schema

BankLog, DBLog N/A 1 vp in DB schema

TMS components are derived from corresponding TMS core assets which have been in-

strumented with variability techniques to accommodate variant features required in custom

products. As shown in Figure 6.1, in TMS feature model, there are 32 variant features and

9 mandatory features. Table 6.1 shows the impact of TMS features on core assets: #VP –

Chapter 6 Variability Management with Multiple Traditional Variability Techniques

129

the number of variation points at which a feature affects core assets, #Size – LOC of fea-

ture implementation, #AF – the number of affected core assets. We see that most TMS fea-

tures have fine-grained impact on core assets.

Feature dependencies constrain legal combinations of features that can be implemented

in any custom product. For example, selection of one feature may entail selection of yet

other features. In TMS, the feature ABC represents the system connected to the Agriculture

Bank of China (ABC) and the feature Settlement means that a bank needs settlement for

each payment. As feature ABC requires settlement for each payment therefore whenever

we select the feature ABC, we must also select the feature Settlement. Inter-dependent fea-

tures tend to interact with core assets at the same variation points, and may also affect each

other code.

Table 6.2 shows that 18 out of 32 TMS variant feature involved in feature dependencies

or interactions. The feature dependencies are imposed by the domain [51]: if the feature

ABC is selected, the feature AddiotnalCharge should also be selected for that product. Fea-

ture interaction at the implementation level is due to certain design decision made during

development or to the way that features are realized in the solution, e.g. two features’ code

tangle together in one method, one parameter/attribute in configuration- file/DB-Schema is

shared by two distinct features. Both feature dependencies and interactions further compli-

cate analysis, maintenance and reuse of both core assets and features. For example, if we

use conditional compilation to manage the impact of feature interactions on core assets,

then relevant variation points will include many options to choose from during customiza-

tion, with each option catering for a specific type of feature interaction.

6.3 Variability Technique in TMS

Wingsoft adopted simple, freely available variability techniques for TMS-PL. Different

variability techniques have different, often complementary, strengths and weaknesses, and

130

their choice is mainly driven by the granularity and scope of feature impact on core assets.

At Wingsoft, experienced domain engineers were selecting the right variation technique

for features at hand.

6.3.1 Review of variability technique in TMS

In Table 6.3, column “# Features” indicates the number of features whose customiza-

tions involved a given technique. Ant, conditional compilation and commenting out variant

feature code were most commonly used. Note that we found overloading fields were only

used for database tables, and managed variants of 13 attributes in 4 tables.

Table 6.3. Feature numbers for variability techniques used in TMP

Techniques # Features

Conditional compilation & comment 31
Ant 19
Overloading fields 13
configuration items 12
Design Pattern & reflection 3

Java conditional compilation and commenting out code: In Java, conditional compi-

lation is realized with final-boolean variables. If a final-boolean variable’s value is false,

then the code in the statements under if is not compiled into the generated bytecode file.

The effect is similar to #define and #ifdef C/C++ preprocessor directives [155]. Figure 6.3

illustrates the usage of final-boolean variables to manage variant features in TMS class

FeatureConfiguration. The limitation of Java’s conditional compilation is that it is limited

to inner-method statements. It cannot handle the inclusion or exclusion of class methods or

attributes. In WFMS, such cases were handled by manually commenting out the code that

was not required in a given product variant. Commenting out was also used in non-Java

files such as JSP files or SQL script. The main reason for such practice was that the engi-

neers at Fudan Wingsoft could not find flexible tools to manage variability in these files at

that time.

Chapter 6 Variability Management with Multiple Traditional Variability Techniques

131

1
2
3
4
5

public class FeatureConfiguration {
// Configuration items
public static final boolean DelegationLock = true;
public static final boolean OperationLock = true;

}
1
2
3

4
5
6

7
8
9

10
11
12
13
14

public class FeeInfo {
. . .
public void initInfo(FeeUser user, boolean isPaidFeeInfo)

throws Exception {
//get each year’s fee items
for(int i=0; i < yearTemp.size(); i++) {

If (FeatureConfiguration.DelegationLock
&& FeatureConfiguration.OperationLock)
// Code when both features are selected

else if (FeatureConfiguration.DelegationLock)
// Code when delegationLock is selected

else if (FeatureConfiguration.OperationLock)
// Code when operationLock is selected

}
}

}

Figure 6.3. Managing variant features with Java’s final-boolean mechanism

Design patterns and reflection: [111] has described the use of the abstract factory pat-

tern in SPL. It also extended this concept using the dynamic abstract factory pattern, in

which concrete factories were adapted to support new concrete products at run-time by

adding Register and UnRegister operations to Abstract Factory for each abstract product.

Although the most frequently used design patterns in TMS were AbstractFactory with

FactoryMethod and Strategy, reflection mechanism, instead of operations returning name

of product, is also used to dynamically instantiate proper concrete instances according to

configuration options so that the specific class names can be abstracted from the source

code. Then Ant can be used to control the inclusion and exclusion of a strategy subclass.

Figure 6.4 shows the use of Strategy Pattern in TMS.

1
2
3

4
5
6
7
8
9

10
11
12
13

public class FeeOrder {
private Initializer initializer;
public init(FeeUser user, FeeInfo info,

HttpServletRequest request) {
Class c;
try{

c = Class.forName(user.getPayMode());
initializer = (Initializer) c.newInstance();
initializer.init (. . .);

} catch(Exception e) {
e.printStackTrace();

}
}

}

Figure 6.4. Reflection used in strategy pattern

132

Overloaded Fields: Variant features affect TMS database schema. Overloading table

fields helps to contain some of those impacts. For example, a table may have several fields

named spec_1, spec_2 ... spec_n, and the same filed may be used to store bank card num-

ber in one product variant and ID card number in another one. There were also tables and

fields that make sense for some product variants, but are useless for others. With overload-

ing fields, all the products could share the same DB schema, but still support different data

structures required for variant features. Overloading fields was adopted for WFMS-PL da-

tabase.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

<project name="webfee" basedir="." default="main">
<target name="copy-src" depends="create-folders">

<!-- Copy java classes of Feature PayByItem -->
<copy todir="${src.dir}">

<fileset dir="${core-src.dir}/${ PayByItem }"/>
</copy>

</target>
<target name="copy-webpage"

depends="create-folders">
<!-- Copy webpages of Feature PayByItem -->
<copy todir="${web-root.dir}">

<fileset dir="${core-webpage.dir}/${PayByItem }"/>
</copy>

</target>
<project>

Figure 6.5. Using Ant to include optional features

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

<webFee>
<paymode>PayByItem</paymode>
<bank-info>

<bankList>
<bank>ICBC</bank>
<bank>CCB</bank>
<bank>CMB</bank>

</bankList>
<ICBC>

<bankUrl>http: //mybank.icbc.com.cn/servlet/co..</bankUrl>
<keyPath>C: /apache-tomcat-5.5.25/webapps/…</keyPath>
<keyPass>12345678</keyPass>
<merchantid>440220500001</merchantid>

 </ICBC>
</bank-info>
<DownloadDetail>true</DownloadDetail>
</webFee>

Figure 6.6. Using configurations files

Ant: An important class of configuration parameters was managed by Ant. [39] used

Ant and configuration files to differentiate variability in process and variability in product.

Lower layers always override the build.xml file of upper layers, by which only the

build.xml of the leaf layer will take effect. By reading layer orders in configuration files,

Chapter 6 Variability Management with Multiple Traditional Variability Techniques

133

the leaf layer can be determined. In WFMS, Ant was useful as a variability technique for

coarse-grained variant features either. For instance, optional feature PayByItem of TMS

was managed by Ant as shown in Figure 6.5. This feature was implemented by a Java class

and a JSP file. The inclusion of this feature in a custom product was implemented by in-

cluding the relevant files in the path of javac command in the Ant configuration file.

Parameter Configuration Files: In TMS, self-defined configuration files were also

employed as a variability technique, as shown in Figure 6.6. Configuration files contained

both data and control parameters. Data parameters, such as URLs of banking services and

key path, are also widely used in single products. Control parameters were used to config-

ure feature selections and usually worked together with other variability techniques. For

example, the parameter paymode in Figure 6.6, indicating the right sub-class to be initial-

ized, worked together with the reflection and the strategy pattern shown in Figure 6.4(see

the underlined part). Another example of parameters working with other variability tech-

niques is the parameter DownloadDetail in Figure 6.6. A simple tool was implemented to

read this parameter and generate Ant script shown in Figure 6.5 if the value is true.

6.3.2 Summary of variability technique in TMS

Figure 6.7 shows which variant features were managed using which variability tech-

niques. We do not show overloading fields which was used for variants in database table

schema only and did not overlap with other techniques. More than 80% features (26 among

32) were managed by more than one variability technique: 13 features were managed by

three techniques and three features by four techniques. Design patterns were always used

together with other techniques. Another interesting observation is that almost all features

involved the use of conditional compilation and/or commenting out feature code, as in

WFMS, like in many other SPLs, we saw many fine-grained features.

134

(a)Conditional Compilation&Comments (b)Design Pattern

(c)Parameter Configuration File (d)Ant

SelectByItem

SelectByYear

SelectByYearOrder

(a)

(b)

(d)

(abcd)

Direct

IDCard

DelegationLock

OperationLock

AllowException

AddtionalCharge

SSO

ABC CCB

CMB ICBC

CQUC CQZH

SCBC XSUC

Settlement Automate

SettleLog FileLog

WebServicePayment
InitPayMode

InitCsDbUser

InitStuState

LockFeeItem

ReadLatestPayment

BankLog

DBLog

DownloadPaymentDetail

Manual

(cd)

(acd)

(ac)

Figure 6.7. Variability techniques per feature

For mixed-granularity features, a combination of several variability techniques is usual-

ly used. For example, when we include a source files for a selected variant feature with

Ant, we still need conditional compilation to configure corresponding caller in the base

code. Table 6.4 summarizes the usage, scope, merit and drawbacks of various variability

techniques used for different WFMS-PL variant features. It is interesting to have compari-

sons between the traditional approaches like the ones described in this chapter and more

advanced ones like AspectJ [96], FOP [18,19] or XVCL [71]. In the next chapter, we dis-

cuss the XVCL-based solution of variability management in WFMS-PL.

6.4 Evaluation of the WFMS-PL and Possible Improvements

Projecting experiences from TMS study, we now evaluate WFMS-PL variability man-

agement strategies from the perspectives of granularity of feature impact, ease of applying,

readability and managing the consistency between WFMS core assets and custom products.

On overall, we found that the current WFMS-PL strategies for variability management

properly matched the granularity feature of impact. The newcomers to the team could easi-

ly understand when and how to apply them. However, over time when the impact of many

Chapter 6 Variability Management with Multiple Traditional Variability Techniques

135

features was accumulating, the readability of the WFMS-PL has suffered, and it was be-

coming difficult to trace features to code and manage features consistently. The detailed

reasons and suggested remedies are given in the following paragraphs.

6.4.1 Feature Granularity

Feature granularity is a critical factor that guides selection of variability techniques. It

depends on the properties of the variant points, which we will elaborate in the next para-

graph. In WFMS-PL, fine-grained features were managed by conditional compilation in

Java code, and with commenting out code section in other WFMS artifacts. Ant was used

to manage coarse-grained features at the level of package or class inclusion/exclusion level.

Design pattern played the role of a class or method extension mechanism.

Table 6.4. Summary of variability technique in WFMS-PL

Variability

technique
Usage Scope Merits Drawbacks

Conditional

compilation

& Comments

Use Final-Boolean

mechanism in Java or

just simple natural lan-

guage comments

Final-Boolean method is

only used on inner-method

statements. Comments can be

adapted to all places

Easy to learn

Straightforward

No need to install

and master new tools

and skills

All maintain works and configura-

tions are manual, no tool support.

If/elseif statements are exponential

with the number of possible variants

Design Pattern

To gain good modu-

larization in OO source
code,

Class or method level

Best to gain class level
flexibility in OOP part of a

product line.

Providing Elegant

code,

High readability,
Good Extendibil-

ity.

Scope of application is narrow and

always need the aids of other tech-
niques.

Overloading

Fields

Make all customized

products share the same

attribute in database

Database table schema

Avoid trouble to

change the name of

attributes when select-

ing various products.

Hard to maintain, if the corre-

sponding document is not available,

very difficult to guess the meaning of

the overloading fields.

Configuration

File

Implement configura-

tion of various parame-

ters due to variant feature

selection or environmen-
tal change

Give parameters of vari-

ant feature selections or

environment

Good mechanism

to do feature configu-

ration

It needs to cooperate with other

methods and introduce non-traceability

issue.

For features having fine-grain im-
plementation fragment, configuration

file is always not sufficient

Ant

Conditionally com-

pile java source files and

make deployments

System level customiza-

tion and deal with more than

source code), can only cus-

tomize CGI features.

Powerful and

popular build tool,

flexible to deliver

product variants

The finest granularity for ant is file

level, so scope of application is nar-

row.

In Table 6.5, we show the number of WFMS variation points for each feature impact

granularity level. Fine-grained features, those features with fine impact, required small

changes in Java expressions, statements, method signatures, comments (in Java code, JSP

or HTML), database table scripts, and parameter configuration files. Medium-grained fea-

136

tures required changes of Java methods or attributes, changes of database table scripts, and

changes of configuration items in parameter configuration files. Coarse-grained features

required inclusion or exclusion of product-specific source files.

Fine-grained features trigger most of the problems. Conditional compilation and com-

menting out feature code was used to manage fine-grained features. A big problem is how

to trace variant features down to the many variation points relevant to them. This problem

aggravates when multiple variability techniques are used to manage a given feature. Some

feature enhancements involve changes at many variation points that must be properly co-

ordinated. WFMS engineers often encountered the problems of inconsistent product re-

lease, e.g., a product variant was deployed with incorrect database schema.

Fine-grained and coarse-grained features were most common. We try to analyze the rea-

sons as follows: Coarse-grained features are easy to configure. Whenever possible, domain

engineers tried to contain the variant feature code in separate files which could then be in-

cluded into custom products that required those features. Wizards could be implemented to

allow application/service engineers to easily include such features into custom products.

Fine-grained features are attributed to the variability of the business flow or logic of the

application itself and the inner incapability of programming languages.

However, fine-grained features had to be accounted for the difficulty of consistent con-

figuration. They often affected coarse-grained features and the new variation points are

injected into the source code of course-grained features.

Table 6.5. The number of variation points per impact granularity level

Granularity #Java #JSP
#Conf.
File

#DB Schema #Total

Finest 14 0 0 0 14

Fine 67 43 3 3 116

Medium 18 0 7 5 30

Coarse 40 57 9 0 106

#Total 139 100 19 8 266

Chapter 6 Variability Management with Multiple Traditional Variability Techniques

137

6.4.2 Ease of application

Customizations of core assets by configuring parameters and database schemas could be

managed by service engineers who were in charge of deployment of a custom product on

the customer site. Service engineers were familiar with general financial domain, user re-

quirements, and basic deployment operations, but did not know much about programming

and internals of the WFMS-PL. Wizard-supported parameter configuration files provided

an easy-to-use configuration capability for service engineers.

Ease of application without involvement of any unconventional or proprietary tech-

niques was the most important reason for Fudan Wingsoft to adopt simple and commonly

available variability techniques for WFMS-PL. This reduced the learning curve and the

staff training cost, important factors for any small or middle-sized company. Unless cur-

rent techniques were found totally ineffective, Wingsoft would be chary of adopting new

ones. WFMS-PL was constructed in lightweight, reactive way, which was in line with the

company’s benefits so far.

6.4.3 Readability

Readability refers to the reading ease of the code for the programmers. Design patterns

and Ant did not hinder readability, but conditional compilation, commenting our feature

code and overloading fields made code difficult to understand for applications engineers

and even domain engineers. In our project, 30% of code in class FeeOrder, 20% of code in

FeeInfo and 35% of code in FeeUser was managed by Java conditional compilation. Given

that there are no other techniques to manage fine-grained features, this problem is very

hard to solve. If we keep the code of variant feature code embedded in the base code, the

code is bound to become hard to read.

One can consider Aspect-Oriented Programming (AOP) [96] or Feature-Oriented Pro-

gramming (FOP) [137] tool AHEAD [16] to separate features from the base code, but

138

these approaches pose new problems as demonstrated in [89] and [90]. To improve the

readability of the code, a promising approach is to resort to visualization tool’s support

such as CIDE [90] or XVCL-based Pre-processing [75, 76].

6.4.4 Traceability and extensibility

Traceability between features and their respective variation points has to do with both

feature reuse and evolution. Here are some examples of problems:

 Each feature may be addressed at many variation points scattered through many SPL

core components. To reuse or modify the feature we must find and analyze code at all

these points.

 One SPL core component is usually affected by many features that may be managed by

different possibly overlapping variability techniques. To reuse or modify the feature we

must understand interactions among these techniques.

Variability techniques described in this chapter provide a workable but not perfect solu-

tion for traceability problems. Table 6.6 shows features that involved several variability

techniques, with their respective variation points spread across different WFMS-PL core

components. How to manage these variation points consistently was the issue of traceabil-

ity. The difficulty in traceability also brought in the problem of product extensibility at

those variation points.

Table 6.6. The number of variation points in example features

Variant Feature Preprocessing
Conf.

Files
Ant Total

WebService-Payment 6 2 2 10

ABC 2 1 3 6

CCB 1 1 2 4

CMB 2 1 2 5

ICBC 1 2 3 6

Even there is another kind of traceability problem, namely two-way propagation of

changes, one of the problems that hinder reuse between SPL core components and custom-

Chapter 6 Variability Management with Multiple Traditional Variability Techniques

139

ized product variants [133]. We believe that the general traceability problem is difficult to

address in the frame of variability techniques described in this chapter. A meta-level repre-

sentation of the SPL core components paves the way for more effective solutions to these

problems [78]. They can capture and manage synchronously the overall impact of features

on SPL core components [72].

6.5 Summary

In this chapter, we evaluated strengths and weaknesses of variability techniques used in

the existing Wingsoft Financial Management System Product Line (WFMS-PL), devel-

oped by Fudan Wingsoft Ltd. Feature characteristics must be matched by the capabilities

of a variability technique(s) used to manage a given feature. Fundamental differences in

capabilities of variability techniques justify the usage of multiple variability techniques.

Our study confirmed that different variability techniques have different, often comple-

mentary, strengths and weaknesses. Their choice should be mainly driven by the granulari-

ty and scope of feature impact on product line components. In some situations, we suggest

possible remedies to weaknesses of variability techniques used in WFMS-PL. Our study

reveals that while it is natural to match feature granularity with the proper variability tech-

nique, over time the inter-play between multiple variability techniques may be difficult to

comprehend.

Variability techniques used in WFMS-PL are simple, practical, commonly used in SPLs

to complement component/architecture-based approaches. We hope our report will help

companies to make more informed decisions when moving towards the product line ap-

proach.

Chapter 7 Variability Management with Uniform Variability Technique---- XVCL

141

7 Variability Management with Uniform Variability Technique----
XVCL

This chapter is based on [176] to answer the RQ5 introduced in section 1.1. The investi-

gation summarized in Chapter 6 at Fudan Wingsoft Ltd revealed potential scalability prob-

lems of multiple variability techniques. As a remedy, we replaced multiple variability

techniques originally used in WFMS-PL, with a single, uniform variability technique of

XML-based Variant Configuration Language (XVCL). This chapter provides a proof-of-

concept that commonly used variability techniques can indeed be superseded by a subset of

XVCL, in a simple and natural way.

7.1 Introduction

In previous chapter, we analyzed WFMS-PL, developed by Fudan Wingsoft Ltd in

Shanghai. WFMSes provide web-based financial services for employees and students at

universities in China. Following a common practice, Wingsoft set up product architecture,

identified core assets for reuse, and then applied a range of common design-time variabil-

ity techniques, such as conditional compilation, commenting out feature code or configura-

tion parameters, to manage product-specific features in core assets. Variability techniques

mark variation points in core assets to help developers perform customizations, manually

or sometimes in an automated way.

The preliminary results from WFMS-PL case study showed that coarse-grained features

are easier to manage than fine-grained features [182]. Feature granularity depends to some

extent on the design of core assets. Good architectural design can change feature granulari-

ty in our favor, increasing the number of coarse-grained features, and reducing the number

of variation points in core assets for the features that remain fine-grained. However, the

orthogonal separation of concerns (or features) to get the prefect modularity without fine-

142

grained features is not always feasible [161]. Thus, proper variability techniques are more

desired and important to manage features that still remain fine-grained or mixed-grained.

As shown in previous chapter, variability technique must match the feature granularity.

Therefore, it is common to use multiple variability techniques, for example, conditional

compilation to handle fine-grained features and a build tool such as Ant to handle coarse-

grained features. Such variability techniques are easy to apply, and most of developers are

familiar with them. However, as our study revealed [182], applying multiple variability

techniques does not scale well, especially in cases of fine-grained features. While reuse

and modification of fine-grained features is inherently difficult, applying multiple, often

poorly compatible variability techniques aggravate the problems. In particular, it becomes

increasingly difficult to find and understand already scattered feature code, and to coordi-

nate changes required at multiple variation points.

As a remedy to the above problems, in the follow-up study we replaced variability tech-

niques originally used in the Fudan Wingsoft product line, with a single, uniform variabil-

ity technique of XVCL (XML-based Variant Configuration Language) [71]. XVCL applies

generative mechanisms to organize software into highly some parameterizable meta-

components. These meta-components form SPL core assets that are adaptively reused in

product derivation, the process that is automated by the XVCL Processor [72]. This chap-

ter serves as a proof-of-concept confirming that commonly used variability techniques can

indeed be superseded by a subset of XVCL, in a simple and natural way. We also present

an initial evaluation of benefits and trade-offs involved in adopting a uniform variability

technique.

A practical lesson learned from our study is that in small- to medium-size product lines,

applying multiple variability techniques may be a viable solution, as it requires less train-

ing, and variability can still be effectively managed in that way. As the product line grows

Chapter 7 Variability Management with Uniform Variability Technique---- XVCL

143

in size and the impact of features on core assets becomes more complex, a company may

experience problems. Then moving towards a uniform variability technique approach may

be beneficial. However, this will require a more systematic approach to reuse, and training

of SPL personnel.

7.2 Problem of Adopting Multiple Variability Techniques

Fine-grained features are the main source of problems for scalability of the multiple var-

iability techniques to managing SPL variability. Scattered impact of fine-grained features

brings forth the difficulties to keep multiple variability techniques in synchronization one

with another.

Feature PayByItem in Figure 6.4, Figure 6.5 and Figure 6.6 illustrates the problem. In-

ter-related configuration parameters control both Ant and Java conditional compilation. If

the payment mode is switched from PayByItem to PayByYear, then the Ant script must be

changed accordingly, and variation points controlled by Java conditional compilation, the

commented out code in DB scripts and JSP scripts have to be modified accordingly.

As can be seen in Figure 6.7, 26 among 32 variant features were managed by more than

one variation technique, 13 features - by three mechanisms, and 3 features - by four mech-

anisms. There are many examples of such interactions between variability techniques like

that of Feature PayByItem in the original TMS core assets. Its maintenance and evolution

entails the accurate understanding of multiple variability techniques, and familiarity with

variant features and core assets.

As the size of the system grows and the feature dependencies increase, the above incon-

veniences aggravate. These observations encouraged us to experiment with a strategy that

employs a single variability technique with capabilities to manage all the variability situa-

tions found in TMS core assets in a uniform and traceable way.

144

7.3 Single Variability Technique Approach to TMS Core Assets

XVCL [71,72,205], based on Frame Technology [15], is a generative language-

independent variability technique for SPLs.

7.3.1 Variability technique of XVCL

XVCL encapsulates core assets in meta-components called x-frames. Each variation

point in core assets is marked with a suitable XVCL command, such as <adapt>, <insert-

before> <insert>, <insert-after> and <break>, to enable customizations. SPL variant

features are formally mapped into all the relevant variation points in core assets by means

of XVCL parameters and commands. The SPeCification x-frame, called SPC, sets values

of XVCL parameters according to feature selection. XVCL Processor interprets x-frames

starting from the SPC (Figure 7.1), traverses x-frames, propagates customization infor-

mation (parameters) to them, adapting visited x-frames accordingly, and emitting code for

a custom product. XVCL mechanisms allow us to manage features with fine-, coarse- and

mixed-grained impact on core assets. Due to its language-independence, any type of SPL

core assets including Java code, JSP files, DB scripts, textual documents (e.g., in a textual

file), test cases or even UML models in XMI can be consistently customized for any legal

selection of features required in a custom product.

7.3.2 TMS core assets instrumented with XVCL

SPC

Settlement

OnlinePayment

Login

Config

WebService

FeeUser

FeeInfo

FeeOrder

DBSchema

WebFee

Agent Return SettleLog

ServiceManager

Level 1

Level 3

Level 2

Figure 7.1. Overview of WFMS core assets in XVCL

Chapter 7 Variability Management with Uniform Variability Technique---- XVCL

145

Figure 7.1 provides a snapshot of the WFMS core assets in XVCL representation, and

Figure 7.2 expands some x-frames to highlight the working mechanism of XVCL. The

SPC specifies which features we need in a custom WFMS product by setting values for

XVCL parameters that correspond to selected features. Values of those parameters propa-

gate to x-frames below, navigating configuration and detailed customizations of core assets

and features accordingly. Level 2 x-frames define architecture-level customizations, in

terms of configuration of core assets for a custom WFMS product. Some of the coarse-

grained feature impacts are also addressed at Level 2. Level 3 x-frames contain the actual

code of core assets and features, instrumented with XVCL commands to enable customiza-

tion of fine-grained features.

Features that we want to select for a custom product are assigned non-empty string val-

ues, while features to be de-selected are assigned empty string values. Therefore, SPC

shown in Figure 7.2 selects features IDCard and SSO (related to Login), and feature

PayByItem (related to Paymode) for a custom product. It deselects feature Direct,

PayByYear and PayByYearOrder.

<select> commands mark variation points in x-frames below SPC. The value of an

XVCL parameter that controls <select> identifies an <option> to be processed. <select

PayByItem> in x-frame OnlinePayment at Level 2 illustrates a simple variation point af-

fected by one feature only, namely PayByItem. If feature PayByItem is selected, then the

Processor emits feature code to the custom product; otherwise, <select> has no effect.

<select Login> in x-frame FeeUser at Level 3 marks a variation point affected by three

features, namely IDCard, SSO and Direct. Notation @v, where v is an XVCL parameter,

means reference to v’s value, as assigned in respective <set> command. The value of Log-

in, <set> to be a concatenation of the three XVCL parameters corresponding to these fea-

tures, controls <select>, directing processing to the <option> corresponding to the particu-

146

lar combination of selected features. Note that <option “IDCard+SSO”> is processed

whenever the two interacting features IDCard and SSO are selected. Symbol ‘+’ is a sepa-

rator.

XVCL parameters formally link together customizations of all the core assets affected

by selected features, at all the relevant variation points. XVCL parameters set in SPC cre-

ate a bridge between features and WFMS core assets in XVCL.

1
2

3
4
5
6
7
8
9

10
11
12
13
14
\15
16
17
18
19
20
21

 OnlinePayment // x-frame at Level 2
<set Login= @IDCard+@SSO+@Direct/>

<select PaytByItem >

 <option "PaytByItem">
 <adapt selFeeItem.jsp/>

 <set PayMode = "PayByItem"/>
 </select>

<select PayByYear >
<option "PayByYear">

 <adapt selFee.jsp/>
 <set PayMode = "PayByYear"/>
 </select>

<select PayByYearOrder >
 <option "PayByYearOrder">

 <adapt selFeeOrder.jsp/>
 <set PayMode ="PayByYearOrder"/>

 </select>
 ...

<adapt FeeOrder />
<adapt DBSchema/>
<adapt FeeUser/>
...

Level 3

Level 1

Level 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 DBSchema // x-frame at Level 3
create table userInfo(

uniNo char(21),
name char(30),
password char(21),
id_card char(20),
inYm char(6),

 banks char(50),
// If feature InitPayMode is selected,

//the following field will be activated
 <select InitPayMode >
 <option "InitPayMode" >
 payMode char(1) default 'F',
 </select>
 feeDBUser char(50),

 primary key(unino)
);

1
2
3

4
5
6
7
8
9

10
11
12

 FeeOrder // x-frame at Level 3
public class FeeOrder {

public init(FeeUser user, FeeInfo info,
HttpServletRequest request) {

...
 try{
 @PayMode c = new @PayMode();

c.init (. . .);
} catch(Exception e) {

e.printStackTrace();
}

}.. .
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20

 FeeUser // x-frame at Level 3
public class FeeUser {
…

 public FeeUser() throws Exception {
 . ..

 <select Login >
 <option "IDCard">
 // only support variant feature IDCard
 <option "IDCard+SSO">
 //support variant features IDCard and SSO
 </select>

}

 …
 public boolean login() throws Exception{
 …
 <select InitPayMode >
 <option "InitPayMode">

 payMode = Global.nTrim
 (rs.getString("payMode")).charAt(0);
 </select>

 } }

1
2
3
4
5
6
7
8
9

10
11
12

SPC
// Login feature group

<set IDCard = "IDCard"/>
<set SSO = "SSO"/>
<set Direct = ""/>

// Paymode feature group
 <set PaytByItem = "PayByItem"/>

<set PayByYear = ""/>
<set PayByYearOrder = ""/>

 <set InitPayMode = "InitPayMode"/>
<adapt OnlinePayment />
...

Figure 7.2. Detailed view of WFMS core assets in XVCL

Chapter 7 Variability Management with Uniform Variability Technique---- XVCL

147

7.3.3 One variability technique instead of many

Our example of Figure 7.2 also illustrates how a single variability technique can suc-

cessfully provide capabilities of many variability techniques. In x-frame FeeOrder,

@PayMode c = new @PayMode replaces configuration files and applications of Strategy

pattern in the original WFMS core assets in Figure 6.4, Figure 6.5 and Figure 6.6. Here, we

need a parameterizable name of the class. Java generics support parametric types, but not

class names. In the original WFMS core assets, Strategy pattern and configuration parame-

ter stored in a configuration file were used to mitigate the problem (Figure 6.4). Strategy

pattern reads the name of a required class from the configuration file.

In the original WFMS core assets, architecture-level configurations of core assets and

coarse-grained features were done by Ant. For example, if we select feature PayByItem,

Ant’s command <fileset dir> in Figure 6.5 includes file selFeeItem.jsp into the custom

product. The same is achieved by <adapt> placed under <select> in x-frame OnlinePay-

ment. Of course, Ant has more capabilities than XVCL’s <adapt>, but in this context only

Ant’s asset configuration capabilities are used.

In x-frames DBSchema and FeeUser, we see how XVCL’s parameters and <select> re-

place conditional compilation and commenting out feature code. For example, feature Init-

PayMode affects DBSchema and FeeUser and is managed by conditional compilation and

commenting out technique. Manual modification of the conditional compilation or com-

ments has to been done to include/exclude features. In XVCL on the other hand, variation

points are inter-lined and customizations are automated.

7.3.4 Feature queries

Variability management with single variability technique also has the merits that tools

can be implemented to help developers analyze, reuse and maintain features and core as-

sets. To reuse or maintain features, developers must be able to locate and analyze all the

148

variation points at which features affect core assets and each other. Variation points for

fine-grained features spread through many core assets. Using a single, uniform variability

technique such as XVCL allowed us to implement query tools that can help in feature code

location and analysis.

Developers specify features of interest in FQL (Feature Query Language) [75,76]. The

tool evaluates queries and displays the results. In FQL, we can ask queries such as “which

base components are affected by feature f and at which variation points?”, “which features

interact with feature f?”, “in which base components and at which variation points feature

f1 interacts with feature f2?”. FQL is an SQL-like notation. We write queries in terms of

XVCL elements.

Figure 7.3 shows a query to locate all the variation points at which feature InitPayMode

affects WFMS-PL core assets.

declare x-frame x; option o;

select x, o

where o.f-names = “InitPayMode”

 and Contains (x,o)

Figure 7.3. Finding code of feature InitPayMode

Figure 7.4 shows a query that finds all the variation points at which features IDCard and

SSO interact one with another.

declare x-frame x; option o

select x, o

where o.f-names=“*IDCard*SSO*”

 and Contains (x,o)

Figure 7.4. Finding feature interactions

We refer the reader to [75,76] for details of query-based feature analysis.

Chapter 7 Variability Management with Uniform Variability Technique---- XVCL

149

7.4 Evaluation

What is the impact of replacing multiple variability techniques with a single one on SPL

productivity? To answer this question we conducted lab studies and collected inputs from

Fudan Wingsoft Ltd. regarding the original WFMS core assets developed by Wingsoft us-

ing multiple variability techniques, and core assets in XVCL. Below, we comment on

productivity during domain engineering (i.e., building and evolving core assets), and prod-

uct derivation.

7.4.1 Domain engineering effort

The original WFMS core assets were built by gradual re-engineering of existing WFM-

Ses. Core components and their interfaces were stabilized first, and then variability tech-

niques were used to prepare them for ease of customization, as described in chapter 6.

While it is difficult to precisely determine the effort to build core assets, we obtained some

relevant information from Wingsoft engineers who were involved in re-engineering. Se-

lecting suitable variability techniques for various features was not difficult for experienced

engineers. Also, each step of applying variability techniques was quite simple. New staff

joining the Wingsoft team had no difficulty to understand the variability techniques used in

WFMS core assets and their role. Some problems could be observed during evolution of

the WFMS core assets. When multiple variability techniques were used together to accom-

plish a variability task, it might not be clear how to find all the relevant variation points,

and understand the exact interplay between variability techniques. Still, given the size of

WFMS core assets and relatively small number of features, the solutions adopted by Wing-

soft team were considered to be adequate for the purpose.

To get insights into the effort of replacing multiple variability techniques with XVCL,

the author and one engineer re-engineered the original WFMS core assets into XVCL rep-

resentation. The engineer from Fudan University was a WFMS expert, also participating in

150

maintenance of the original WFMS core assets. It took two weeks for them to replace mul-

tiple variability techniques with XVCL in core assets for TMS subsystem. Applying

XVCL was greatly simplified, as core assets were already in place, and they preserved

most of the variation points. The main task was to work out overall XVCL controls and

then to replace multiple variability techniques with XVCL commands at respective varia-

tion points.

Evolution of core assets involves adding new features and modifying features. The ef-

fort to evolve core assets depends on the number of variation points involved in change,

and the complexity of finding, analyzing, changing variation points and tracing the impact

of change. While the number of variation points in both solutions is almost the same, we

assume that evolution of XVCL solution is easier than evolution of the original solution.

This is due to uniform treatment of features, formal links between all the variation points

relevant to a given feature, and feature query system.

7.4.2 Product derivation and maintenance effort

Deriving new products includes reuse of existing features, modifying features, and im-

plementing extra features required by customers. As before, the effort of each such task

depends on the number of variation points involved in change, and the complexity of find-

ing, analyzing, changing variation points and tracing the impact of change.

Table 7.1 summarizes statistics relevant to product derivation effort. “Managed variation

points” means variation points that have to be revised manually when reusing or modifying

features. “Managed variation points” is a subset of all the variation points at which one

feature affects core assets. For example, among core assets affected by feature InitPay-

Mode are Java files and DB schema files. To reuse this feature in the original WFMS-PL,

all affected files need to be manually changed. In the XVCL solution, once we <set> value

of XVCL parameter InitPayMode in SPC (Figure 7.2), all the customizations for feature

Chapter 7 Variability Management with Uniform Variability Technique---- XVCL

151

InitPayMode spark from there, can be found by feature queries, and automatically per-

formed by the XVCL Processor. Feature InitPayMode requires only 1 managed variation

point.

Table 7.1. Managed variation points

 #vari-

ation

points

#managed

variation

points

files containing

managed variation

points

Original WFMS core assets 275 126 31

XVCL WFMS core assets 275 40 6

As another example, core assets affected by feature Settlement include seven Java files,

four JSP scripts, one configuration file, and one file containing DB schema. To reuse fea-

ture Settlement in the original WFMS-PL, we must change code at eight variation points

handled by conditional compilation, comments and Ant. We have 13 variation points, and

8 managed variation points. The location of managed variation points as well as relation-

ship among them is not formally captured, therefore must be communicated via external

documentation or re-discovered when needed. In XVCL solution, for the same feature

there are also 13 variation points, but only 3 managed variation points (XVCL parameters

for Settlement and for two dependent features). All the variation points are inter-linked via

relevant XVCL parameters <set> in SPC, and reuse of the feature is automated by the

XVCL Processor.

7.4.3 Other inputs from Wingsoft

Comments on code readability. Both XVCL representations and the original final-

boolean conditional compilation and commenting out applied variability techniques to em-

bed fine-grained feature code in the code of core assets at relevant variation points. About

30% of code in class FeeOrder, 20% of code in FeeInfo and 35% of code in FeeUser was

managed by final-boolean conditional compilation and commenting out (the similar per-

centage in XVCL representations). Wingsoft engineers were concerned about readability

152

and maintainability of the code, but they were also pleased with XVCL’s ability to mark

traces of customizations relevant to a given feature and ease of finding all the variation

points relevant to a given feature.

Comments on copyright protection. In the original WFMS core assets, feature code is

embedded in core assets, but only some features are needed in a custom product. Wingsoft

engineers often included unnecessary feature code into a custom product because of time

involved in feature removal, and also because such code might be useful in future en-

hancements of a custom product. When extra functionality is contained in files that are

released in readable form (e.g., JSP or XML configuration files), this practice can some-

times create copyright problems, as other customers may use extra functionality that was

not meant for them and they did not pay for. Such cases happened in Fudan Wingsoft ex-

perience.

In XVCL, unwanted features are never included into a custom product, as the job of fea-

ture manipulation is consistently and automatically done by the XVCL Processor. Other

than protecting copyrights, such precise and flexible control over feature inclu-

sion/exclusion to/from custom products also matters in situations when we need to build

highly optimized products, for example embedded software.

7.4.4 Evaluation summary

Overall, it was felt that for small-to-medium systems such as WFMS (around 50KLOC),

adopting multiple variability techniques is still practical. Variability techniques used in the

original WFMS are simple and known to most of engineers. They came into engineers’

mind naturally, could be applied on the fly during core asset design, with minimum disrup-

tion of conventional programming. Multiple techniques provide an elementary infrastruc-

ture for SPL support. Handled by the experienced engineers, the original WFMS core as-

sets serve well for the derivation of almost 100 product variants.

Chapter 7 Variability Management with Uniform Variability Technique---- XVCL

153

As the size of core assets and the number of variant features grows, and feature interac-

tions get more complicated, problems may show up. Feature reuse and maintenance may

become more complex because of the many variation points at which feature code needs

be understood. Manual customizations become time-consuming and error-prone, even for

skilled domain engineers. Then, it may be worth to consider migrating to a uniform varia-

bility technique such as XVCL.

In XVCL, for a feature reused as-is we need small number of managed variation points,

at which we <set> XVCL parameters for that feature and its dependent features (in SPC).

All the variation points for a given feature are formally linked to XVCL parameter repre-

senting that feature. The ability, which locates and analyzes traces of customizations for

each feature, helps developers reuse and modify features with less errors and unwanted

side-effects as compared to working with the original WFMS core assets. Reuse is auto-

mated by the XVCL Processor.

However, the adoption of XVCL is not without pitfalls, some of which XVCL shares

with other variability techniques. Much of the code of features still remains tangled with

core assets, affecting readability. This is a big problem, but so far alternative approaches

based on specification-based variation points such as AOP [96] or FOP [18] failed to pro-

vide an effective solution to fine-grained feature management in SPLs [89, 90] (we com-

ment further in Section 7.5). XVCL’s feature queries can help developers to identify varia-

tion points relevant to various features. However, the actual feature modifications are not

easy if the number of variation points is large. Training must be provided for the team to

learn a new technique. The correctness of transformations from XVCL representation to

code can be checked only during compilation.

154

7.5 Related Work

Managing variability is the essence of software Product Line (SPL) practice [32]. Varia-

bility techniques are one of the enablers of reuse-based derivation of products from reusa-

ble core assets. Productivity gains due to reuse to much extent depend on the effectiveness

of product derivation. The importance of having adequate variability technique fitting spe-

cific needs of given SPL is stressed by SPL proponents and practitioners [15,33,86,160].

Deelstra et al. [40] identify the weakness of variability techniques as one of the obstacles

that impedes implementing reuse strategies via the SPL approach in some industries.

Karhinen et al. [86] analyzed problems of managing variability solely at the implemen-

tation level, for example, using conditional compilation or configuration management

tools. Their experiences from Nokia projects indicate that managing features with #ifdefs

while technically feasible, is inherently complex, error-prone and does not scale. They

proposed to use design means to manage variability. Similar problems with conditional

compilation were also reported in FAME-DBMS [143].

The architectural/component approach to SPL applies design means to manage variabil-

ity, in the attempt to modularize features as far as this is possible. Still, in most of applica-

tion domains many features remain fine-grained, with their impact scattered through core

assets [86,90,182]. Such fine-grained feature must be managed with additional variability

techniques such as described in Section 6.3 and Section 7.2.

Industrial tools such as GEARS [190] and pure::variants [199] could certainly manage

the WFMS SPL. However, we do not have hands-on experience with those tools or specif-

ic studies to provide detailed comparison. GEARS can handle configurable software arti-

facts – such as source code, test cases and requirement documents. Guided by the product

feature profiles, which model optional and varying feature for each product, its configura-

tor automatically assembles and configures the software assets. Pure::variants captures the

Chapter 7 Variability Management with Uniform Variability Technique---- XVCL

155

problems (feature model) and the solutions (family model, which records the customized

feature models for product variants) separately and independently, to reuse the solutions

and of the feature models in new projects. Apart from the possibilities of the programming

languages and tools in the original product, to generate the product variants it also provides

additional possibilities like AspectC++ or PatternTransformer.

The research community proposed Feature-Oriented Programming (FOP) [18] as an ap-

proach to feature management for SPL reuse. FOP is based on feature modularization, and

a mechanism for feature composition into a base program. One of the motivations of FOP

is to support SPLs. Mixin technique [154] has been widely used for FOP, with AHEAD

[16] being its most advanced realization. AHEAD provides powerful solution for feature

management in many situations, but is not geared for fine-grained features.

A number of authors also proposed Aspect-Oriented Programming (AOP) [96] as a vari-

ability technique. Using AOP, features are modularized as aspects (advices and introduc-

tions) and then weaved (feature composition) into a base program. A recent study has re-

vealed difficulties in using AspectJ as a FOP realization technique [89]. Kästner and his

colleagues concluded that the difficulties are attributed to the essential complexity of Fea-

ture-oriented refactoring of legacy applications and the fragility of Aspect’s point-cut. Fur-

thermore, readability and maintainability of the resulting code is undermined by the basic

capabilities of AspectJ, even not with conditional extensions or homogeneous extensions.

In view of the above findings, Kästner et al. [90] relaxed the requirement for feature

modularization, and revisited the idea of keeping feature-related code together with the

code of core assets. They proposed a tool called CIDE (Colored IDE) to visualize feature

code in core assets. CIDE helps programmers find and manipulate feature code. As CIDE

works on an abstract syntax tree, it cannot handle some fine-grained feature impacts. The

granularity of CIDE is not as fine as that of C/C++ preprocessors. For example, according

156

to one return type per method in the AST syntax, developers cannot specify two alternative

result types of a method. In contrast to CIDE, XVCL uses programming language-

independent representations to achieve similar goals.

In CIDE, annotations may be validated to preserve language rules, while XVCL <se-

lect> commands may be placed in arbitrary program points, leading to syntactic errors in

the generated code. Aligning XVCL representation with constructs of the underlying pro-

gramming language is possible and can alleviate some problems, but aligning is not en-

forced by the method. In addition, in some cases XVCL deliberately breaks such alignment

for better flexibility in feature management. Validating meta-level transformations is the

strength of CIDE, while simplicity, language-independence and the ability to handle any

variability situations are strengths of XVCL.

Apel et al. [5] further proposed a framework and tool chain, FEATUREHOUSE [194], which

is a descendant of AHEAD program generator. Similar to XVCL, FEATUREHOUSE can serve

as a uniform variability technique and support the composition of several different types of

software artifacts. Yet different from XVCL’s mixing of meta-level commands and arti-

facts, it uses the superimposition technique FSTCOMPOSER, which is based on a general

model of the structure of software artifacts, called the feature structure tree (FST). Based

on the superimposition or merging of FSTs, the corresponding artifacts are changed ac-

cordingly via the support of FEATUREHOUSE.

In FEATUREHOUSE, in virtue of the FST, the direct annotation in artifacts is avoided and

the readability is not undermined. The trade-off is that it has to integrate the various adapt-

ers and computation rules for the different languages. Since no annotation inside the arti-

facts for feature code at arbitrary granularity, we find that FEATUREHOUSE has to adopt

hook a method to deal with the fine-grained feature impact. Compared with XVCL,

Chapter 7 Variability Management with Uniform Variability Technique---- XVCL

157

FSTCOMPOSER in FEATUREHOUSE is flexible at supporting additional features. It cannot real-

ly change an existing fragment. But XVCL is flexible at in what can be variable.

7.6 Summary

This study was conducted jointly by Fudan Wingsoft Ltd., a software company based in

Shanghai, researchers at Fudan University and National University of Singapore (NUS).

In this chapter, as a remedy to the scalability problem of multiple variability techniques,

we presented an approach based on a single, uniform variability technique of XVCL, capa-

ble of managing both fine-grained features, as well as features whose impact requires cus-

tomizations at the product architecture/component level. We evaluated the XVCL-based

product line representation in lab experiments, and in Fudan Wingsoft Ltd, a company that

initially used multiple variability techniques and then applied XVCL.

Overall, for small-to-medium systems such as WFMS (around 50KLOC), multiple vari-

ability techniques are still practical. Handled by experienced engineers, the original WFMS

core assets serves well for the derivation of almost 100 product variants. Common variabil-

ity techniques can be applied with minimum disruption of conventional programming.

Multiple mechanisms provide an elementary infrastructure for SPL support.

However, as the impact of features on core assets accumulates and gets more complex,

understanding and synchronizing multiple, poorly compatible variability techniques may

become difficult. We may have much manual, repetitive and error-prone work to do during

reuse and evolution of core assets and features.

This weakness of multiple variability technique approach is the strength of a uniform

variability technique approach such as XVCL. XVCL captures customization knowledge

in human-readable and machine-executable (by XVCL Processor) form. Therefore, feature

reuse is simplified and automated. Knowledge of prior customizations helps in designing

customization required by new features during SPL evolution. However, the design of re-

158

usable core assets with a uniform variability technique requires more skill and effort. Both

common variability techniques and XVCL keep fine-grained feature code embedded in

core assets which hampers readability. XVCL tried to alleviate this problem with feature

queries that navigate developers to all the variation points relevant to features. This is only

a partial remedy to feature scattering.

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

159

8 Discovering and Managing Variability among Berkeley DB
Product Variants

We have shown how the problems of discovering and managing commonali-

ty/variability (see RQ1-5 in Section 1.1) are resolved in Chapter 3 - 7. For each of these

problems, we evaluated the corresponding solution separately on different systems to make

sure the solution is generally applicable.

In this chapter we conduct an overall evaluation of our approach to reengineering legacy

software product variants into Software Product Line. The techniques we used in Chapter 3

- 7 are adopted to identify and manage the commonality, and variability among the product

variants of Berkeley DB (BDB). Based on this, we can make claim that the solutions men-

tioned in Chapter 3 - 7 can integrate seamlessly to serve as a complete and systematic ap-

proach to reengineering legacy software product variants into Software Product Line.

8.1 Generating Input (Product Variants) for the Overall Approach

To conduct a controlled experiment on the application of our overall approach, a work-

bench which server as SPL to configure and generate the product variants is required. In

this section, we introduce the target system (of the product variants) on which we evaluate

our overall approach. We also discuss the workbench which has the ground truth on the

knowledge of the variability and commonality of the target system. Finally, we introduce

the generation of several product variants from the workbench.

8.1.1 The target system

The target system we choose for our case study should satisfy the following require-

ments:

• It should be at least medium size, which can prove that our overall approach is scalable

for real industrial software products.

160

• A well-known system is preferred, which can be easy to be understood and compared

with similar work by other research groups.

• The most important is that this system should be migrated into an SPL, and we have

the knowledge of the variability and commonality in requirements and implementation.

Furthermore, the variability techniques or SPL architecture should be deployed by the SPL

to manage the variability.

According to the above requirements, the WFMS we used for case study in Chapter 3, 6

and 7 is not suitable. It is not public available, and the documentation on traceability be-

tween feature and code implementation for the existing product variants is not clear. Final-

ly, we choose the system Berkeley DB (BDB) Java Edition [189] for the case study of our

overall approach.

With a history of around 25 years, BDB was initially a part of the transition (1986 to

1994) from 4.3 Berkeley Software Distribution (BSD, sometimes called Berkeley Unix) to

4.4BSD. Now it has evolved into a software library that provides a high-performance em-

bedded database for key/value data.

Berkeley DB Java Edition is an open source database engine, entirely implemented in

Java. It can work as a standalone database (run as .jar file), or be embedded as a third party

library in the Java application. Instead of being a relational engine, it provides the embed-

ded storage, with open interfaces designed for programmers, not for DBAs.

The size of BDB Java is 84 KLOC, and the family of different BDB editions has been

studied in [5,88,89,91,92,93,94,110,156]. Originally BDB Java was a single application,

but Kästner and his colleagues have reengineered it as a Software Product Line (SPL) by

adopting proper variability techniques such as AspectJ [96], CIDE [191] or FEATUREHOUSE

[194]. Thus, the BDB Java satisfies the three requirements mentioned above, and we eval-

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

161

uate the overall approach on several product variants of BDB Java system generated by the

variability techniques applied on this BDB-SPL.

SPL : [Logging] ConcurrTrans Persistance [Statistics] BTree Ops [Memory_Budget] :: generat-
edSPL ;

Logging : [Logging_Finer] [Logging_Config] [Logging_Severe] [Logging_Evictor] [Log-

ging_Cleaner] [Logging_Recovery] [Logging_DbLogHandler] [Logging_ConsoleHandler] [Log-

ging_Info] Logging_Base [Logging_FileHandler] [Logging_Fine] [Logging_Finest] :: _Logging ;

ConcurrTrans : [Latches] [Transactions] [CheckLeaks] [FSync] :: _ConcurrTrans ;

Persistance : [Checksum] IIO [Environment_Locking] Checkpointer [DiskFullErro] [File-

HandleCache] IICleaner :: _Persistance ;

IIO : [SynchronizedIO] IO :: OldIO
 | NIOAccess [DirectNIO] :: NewIO ;

NIOAccess : ChunkedNIO
 | NIO ;

Checkpointer : [CP_Bytes] [CP_Time] [Checkpointer_Daemon] :: _Checkpointer ;

IICleaner : [CleanerDaemon] Cleaner [LookAHEADCache] :: _IICleaner ;

BTree : [INCompressor] [IEvictor] [Verifier] :: _BTree ;

IEvictor : [Critical_Eviction] [EvictorDaemon] Evictor :: _IEvictor ;

Ops : [DeleteOp] [RenameOp] [TruncateOp] :: _Ops ;

%% //Semantic Dependencies

Evictor or EvictorDaemon or LookAHEADCache implies Memory_Budget;
Critical_Eviction implies INCompressor;

CP_Bytes implies CP_Time;
DeleteOp implies Evictor and INCompressor and Memory_Budget;

Memory_Budget implies Evictor and Latches;

TruncateOp implies DeleteOp;
Verifier implies INCompressor;

Figure 8.1. The grammar of feature diagram of BDB Java

[89] shows the feature diagram of BDB Java. In this dissertation, we show its grammar

in Figure 8.1 (see Section 2.1.2 about the grammar of feature diagram), as the grammar is

more formal and clearer than the feature diagram. We highlight the variant features in the

bold font in Figure 8.1, from which we can see BDB Java has around 50 features, inclusive

of around 40 optional or alternative features.

Some important information about feature particulars is listed as follows:

• Number of features affecting over 10 class: 9

162

• Number of features affecting over 5 class (5 is exclusive): 7 + 9

• Number of features with mixed-grained impact: about 30

Note that: mixed-grained impact means the duality of the fine grained impact (at state-

ment or even expression level) and the coarse grained impact (at method level or even

class level). The interested readers can refer to [89,90] for more about feature particulars.

8.1.2 The usage of CIDE

CIDE (Colored Integrated Development Environment) is a software product line tool to

manage the variability inside the core assets. It is annotative approach to com-

pose/decompose the feature code [191] (also see Section 7.5). Nevertheless, it follows the

paradigm of virtual separation of concerns, which avoids the #if-def style annotation or

the physical modularity of the feature code. Unlike using the #if-def block to enable or

disable the feature code, in Figure 8.2 CIDE uses color to highlight the feature code and

enable/disable it on the AST according to the selection of the corresponding feature.

CIDE also allows the users to generate the product variant by selecting the desired fea-

tures and deselecting the unwanted features via its UI interface of product generation. For

the selected features, CIDE applies the constrain checking to assure the generated product

is valid.

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

163

Figure 8.2. Feature code highlighting in CIDE

CIDE provides the knowledge of the feature to code traceability in the hovered box in

its ColoredJaveEditor in Figure 8.2. It also has two kinds of views, views on a feature and

views on a variant for ease to trace the feature among several products or a product with

several features [88].

Although CIDE has the above merits in easy usage and complete knowledge of feature

to code traceability, the major reason we prefer CIDE than other variability tools like As-

pectJ and FEATUREHOUSE is that the source code managed by CIDE is most close to the

original source code. To get the physical modularity for the variant features (especially

those fine-grained features), AspectJ has to adopt the Aspect’s wormhole pattern [106],

and FEATUREHOUSE has the similar placeholder (hook method) inside a method to insert the

fine-grained feature’s code via calling the hook method [5].

8.1.3 Randomly generated product variants

To evaluate our overall approach, a set of similar but different product variants are

needed. With the capability of variability management provided by CIDE, we can custom-

ize the feature selection for any new generated product. We adopt the random strategy for

the selection of variant features. Due to the large percentage of invalid and meaningless

164

feature combination, we randomly generate over 40 products, and choose several repre-

sentative ones. The random generation strategy follows the heuristic rules below:

• The different representative ones should have the different major features. The ma-

jor features include feature Transactions, Statistics, [Evictor, Latches,

Memory_Budget] (we use “[]” to denote the mutual dependency among features),

DeleteOp, Incompressor and Verifier.

• The feature dependency listed in Figure 8.1 (or in [89]) must be satisfied for each of

the generated variants.

• The minor features should be uniformly distributed in these representative products,

and any of the variant features should appear at least once in at least one product.

Table 8.1. The feature table with renamed features for product variants

Feature Product 1 Product 2 Product 3 Product 4 Product 5

Base code

Logging_Finer

Logging_Config

(Log-

ging_Custom

ize)

Logging_Severe

Logging_Evictor

(Logging_

Expel)

Logging_Cleaner

(Log-

ging_Sweepe

r)

Logging_Recovery

Logging_DbLogHandler

Logging_ConsoleHandler

Logging_Info

Logging_FileHandler

Logging_Fine

Logging_Finest

Latches (Locks)

Transactions

(Processing)

CheckLeaks

FSync

Checksum

(CheckTotali-

ty)

SynchronizedIO

IO

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

165

ChunkedNIO

NIO

(NewIO)

DirectNIO

Environment_Locking

(Circumstanc

stanc-

es_Locking)

CP_Bytes

CP_Time

Checkpointer_Daemon

DiskFullErro

FileHandleCache

CleanerDaemon

LookAheadCache

(LookFor-

wardCache)

Statistics

(Datum)

INCompressor

Verifier (Testify)

Critical_Eviction

EvictorDaemon

Evictor

(Expel)

DeleteOp

(ClearOp)

RenameOp

TruncateOp

(DropOp)

Memory_Budget

Total Features 19 17 22 26 20

After the random generation of over 40 product variants, we still need to pick up several

representative product variants for evaluation as the 40 products are too many and with

unnecessary repetition. To simulate the real context of a software family, we filter those

products with very little variant features or almost all variant features. Although the BDB

Java allows the thousands of valid configurations of feature selection, in our preliminary

evaluation of the overall approach we plan to use 5 product variants (we call them P1, P2,

P3, P4 and P5 in Table 8.1). As WFMS maintains 5 or 6 major versions of its product to

reduce the cost [182], a minimum of 5 representative products could be the starting point

for us to analyze and manage the variability among them.

We listed the feature table of the 5 product variants for the evaluation in Table 8.1. For

product 1, it has no major feature Statistics, DeleteOp, Incompressor and Verifier. For

166

product 2, it has no major feature [Evictor, Latches, Memory_Budget] and DeleteOp. For

product 3, it has no major feature Verifier, and this product is comparatively the most

comprehensive one. For product 4, it has no major feature Transaction. Finally, the prod-

uct 5 has no major feature DeleteOp, Incompressor and Verifier.

For the tree-like feature structure, namely Product Feature Models (PFMs) of these five

product variants, we also applied the random renaming as we did in Section 3.4.2.1. As

shown in Table 8.1, after renamed, the new feature’s name is in the bracket. We use the

WordNet [50] to find the synonym for renaming, by which we can show that the feature

matching among product variants does not rely on string matching.

8.2 Analyzing Variability among Product Variants by the Sandwich
Approach

In this section, we adopt the techniques introduced in Chapter 3 to find the variability

among the requirements of the product variants generated in previous section 8.1. We also

apply the clone differencing techniques in Chapter 4 to recover the variability among the

implementation of these product variants. Finally, we map variability at the requirement

level to the variability at the implementation level by using techniques in Chapter 5. By

the above steps, we can have a comprehensive view on how the product variants are differ-

ent from each other in requirements and implementation.

8.2.1 Understanding requirement variability in BDB-Java product variants

We adopt the technique used in Section 3.3 to compare the PFMs of these five product

variants. Briefly, we compare these PFMs based mainly on the structural information and

slightly on the lexical similarity of feature name. As we have the ground truth of features

contained in each product in Table 8.1, we can easily compare our reported results with the

actual results in Table 8.2.

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

167

Table 8.2. The actual and expected results of PFMs comparison for BDB-Java product

variants

Left

vs.
Right

The Actual Results The Expected Results

#Valid Over-
lapped Fea-

tures

Valid Left
Unique

Features

Valid Right
Unique

Features

#Overlapped
Features

#Left Unique
Features

#Right Unique
Features

P1 vs. P2 4 11 10 6 13 11

P1 vs. P3 7 8 11 9 10 13

P1 vs. P4 12 5 12 13 6 13

P1 vs. P5 4 10 11 7 12 13

P2 vs. P3 5 7 12 8 9 14

P2 vs. P4 10 6 13 11 6 15

P2 vs. P5 10 5 8 10 7 10

P3 vs. P4 11 9 13 12 10 14

P3 vs. P5 10 9 7 11 11 9

P4 vs. P5 11 13 7 12 14 8

In Table 8.2 which lists the 10 times of pair-wise comparison for 5 products, under the

column “The Expected Results”, the column “#Overlapped Features” refers to the number

of the features contained in both products, “#Left Unique Features” means the number of

the features only exists in the left product. Similarly, “#Right Unique Features” means the

number of the features only exists in the right product. Under the column “The Actual Re-

sults” we show the valid results from the actually reported candidate results. Simpler than

the result type of the tuple namely used in Section 3.3.4 (see

more result types like Split and Merge), for these 5 product we only define three result

types , and . The reason is that there is

not complicated evolution among these products such like splitting and merging features.

Thus, we define type for matched features, for the left unmatched feature (or the

left unique feature) and for the right unmatched feature (or the right unique feature).

As shown in Table 8.2, the overall accuracy of the reported results is good. Averagely,

we can recover over 80% correct results. Furthermore, there are some interesting observa-

tions as follows:

Observation 1: if two products share more overlapped features, usually the results may

be better. For example, product 1 and 4 share about 50%-66% common features, and the

168

results have only one missing (see Table 8.1), one missing

 and one missing .

The reason is that the same feature Locks/Latches have different structural or neighbour

information and the lexical similarity is not high enough. Thus, our algorithm fails to

match them. But our algorithm indeed considers the actually different features Disk-

FullErro and FileHandleCache the same, since these two features have very alike matched

neighbour structure. Actually, the same feature of Environment_Locking in product 1 and

Circumstances_Locking in product 4 is matched due to the above reason. The intuition be-

hind this observation is that more overlapped common features between two products usu-

ally lead to the more similar structure between their PFMs, which further help in our

matching algorithm relying mainly on structural information.

Observation 2: if two products share not many overlapped features, usually the results

may be still acceptable. For example, product 2 and 3 share about 33% common features.

Still, the results miss

 ,

and . The first two of the

above three missing pairs are due to renaming. And the last missing pair is because of the

unmatched structure of feature Checkpointer_Daemon and its neighbors. The results also

have 2 left unmatched features and 2 other right unmatched features. The reason is that our

algorithm mistakenly matches <NIO, ChunkedIO> as a pair, and <RenameOp, ClearOp>

as a pair. But actually they are four distinct features. The explanation for this observation is

that without structural similarity the comparison can only rely on lexical similarity. Since

there is no intensive renaming among products, the lexical similarity still achieves the ac-

ceptable accuracy for the result.

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

169

Note that feature Logging_Finest in product 2 will not be matched with feature Log-

ging_Fine or Logging_Finer in product 3, although their names are similar and have the

same parent feature. Actually, we apply some checking between the comparisons. In Table

8.1 product 1 has Logging_Finer and Logging_Finest at the same time, and product 4 has

Logging_Fine and Logging_Finest at the same time. Thus, we can infer that these three

features are distinct features, not renamed features.

Note that the above results are from direct comparison of tree-like PFMs. If we take the

feature descriptions into accounts, the results may even be improved to a completely cor-

rect level.

8.2.2 Understanding implementation variability in BDB-Java product variants

To understand the variability at the implementation level, we adopt the cloned detection

and software differencing techniques. The cloned detection technique is used to find the

coarse-grained feature code, while the differencing technique we introduced in Section 4.4

is mainly used to find the fine-grained feature code.

The coarse-grained feature code means the feature relevant code that is at the file or

method level. If a class/method is not reported as the clone class/method between two

product variants, it is usually because this class/method is related to a feature only support-

ed by one product variant. In the scenario of comparing variants P1 and P2, the class

FSyncManager in P1 is not reported as a clone class with any class in P2. FSyncManager

is the relevant code of feature FSync, which is supported by P1 and not by P2. Except

those getter and setter methods, none of methods in FSyncManager is reported as a clone

method with any method in P2.

The fine-grained feature code means the feature relevant code that is at the code block,

statement (and branch) or expression level. Sometimes, the impact of a fine-grained feature

may only exist at the statement or expression level. For example, the feature Log-

170

ging_ConsoleHandler supported by P5 only has the impact at the statement and branch

level. As this logging feature is a crosscutting concern to many functions, this feature’s

code is scattered in different methods. Since one missing statement or branch does not

change the result of clone detection (it may create gapped clones, which are also clones,

see Section 2.2.1), feature Logging_ConsoleHandler ‘s code are scattered in clones. By

comparing these instances of gapped clones, we can identify the feature code.

Actually, the differences between two product variants come from two parts:

• The variant features that are only supported by one of the two compared product vari-

ants. For any two compared product variants, actually we have found the differences at the

feature level in In Table 8.2, from which we can know the information like , the set

of features that are in P1 not in P2 (P1-P2). Thus, the relevant feature code of features in

 are in , the set of code fragments that are in P1 not in P2 (P1-P2).

• The variant features that are supported by both product variants. Even if a feature is

supported by two product variants, more often than not it may still have the different fea-

ture code. The reason is because of the feature interaction or feature dependency. For ex-

ample, P1 and P3 both have feature Latches, but they have the different feature code of

Latches due to feature interaction. As P3 supports feature Statistics and P1 does not, the

code relevant to both Latches and Statistics is supported in P3, not in P1.

Note that the differences that come from the above two parts may be at any granularity

level. In Table 8.3, we show the implementation differences between any pairs of these 5

product variants.

The results show that the differences are mainly the fine-grained feature code. This phe-

nomenon is consistent with the previous literatures [90,161]. The BDB Java has many fine-

grained features [90], and this can be generalized to the point that many concerns (features)

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

171

are usually tangled and scattered across the system [161]. That is the reason why orthogo-

nal separation concerns to design all features as coarse-grained is not feasible.

Another important observation is that a small size of a feature difference set may not

lead to a small size of an implementation difference set. For example, the feature differ-

ence set (see #Right Unique Features at P2 vs. P5 in Table 8.2) has only 10 vari-

ants inside, but it contains over 100 additional methods, around 1000 addition statements

and 100 additional branches in . We manually checked and found that around half of

these implementation differences are due to a major feature Latches. Similarly, a large size

of feature difference set like (see #Right Unique Features at P3 vs. P4 in Table 8.2)

does not necessarily have a large size of implementation difference set. It is because none

of the 14 features in is a major feature.

Table 8.3. The implementation differences among product pairs

 #Additional

Classes

Additional

Methods

Additional

Blocks

#Additional

Statements

#Additional

Branches

#Additional

Expressions

P1 – P2 17 106 47 1036 106 23

P2 – P1 18 82 20 429 45 47

P1 – P3 0 15 12 137 9 1

P3 – P1 13 98 23 480 50 54

P1 – P4 8 53 29 172 17 56

P4 – P1 20 113 21 475 46 57

P1 – P5 2 29 16 179 10 6

P5 – P1 15 81 16 383 32 53

P2 – P3 5 25 6 140 12 2

P3 – P2 18 132 44 1090 114 31

P2 – P4 7 43 32 181 21 55

P4 – P2 19 127 51 1091 111 32

P2 – P5 5 32 10 171 18 0

P5 – P2 18 108 37 982 101 23

P3 – P4 9 59 34 246 30 58

P4 – P3 8 36 15 206 18 6

P3 – P5 3 57 17 231 28 13

P5 – P3 3 26 6 92 9 7

P4 – P5 7 68 21 276 23 12

P5 – P4 8 60 29 177 16 58

8.2.3 Understanding implementation variability in BDB-Java product variants

Consider a simplified illustrative example shown in Figure 8.3(a). The product variant

PA supports feature f1, f2 and f3, implemented by code units I1, I2 and I3 respectively. PB

supports f1, f2’ (renamed or modified of f2) and f4, implemented by I1, I2’ and I4 respective-

172

ly. PC supports f1, f3’ and f5, implemented by I1, I3’ and I5 respectively. f1 exemplifies basic

features that are commonly available in product variants, such as core algorithms or utility

functions for implementing other advanced features.

Figure 8.3(a). Feature location in product variants

Figure 8.3(b) Results of

differencing and FCA

analysis

Figure 8.3(c). Features

and implementaiton

partitions for IR

Our approach introduced in Section 5.3 effectively incorporates Formal Concept Analy-

sis (FCA), and IR techniques. As we found the feature and implementation differences

among these variants, Figure 8.3 (b) shows the results of applying FCA to the three prod-

uct variants shown in Figure 8.3(a). This essentially generates five partitions of features

and their corresponding implementations as shown in Figure 8.3(c). Finally, given a fea-

ture partition and the corresponding code-unit partition, Latent Sematic Indexing [41] (LSI)

is used to identify code units that implement a specific feature [118, 119, 134].

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

173

For the feature differences we identify in Section 8.2.1, after we consider the feature de-

scriptions, we can manually validate the differences to get completely correct results. From

these trustable feature differences, we can apply FCA to them to separate single feature,

which makes the usage of information retrieval as an optional step. For the FCA on BDB

Java, 41 variant features are the attributes, 20 difference sets are the objects. Finally, FCA

will generate 136 concepts.

As can be seen in Figure 8.4, we may mainly concern with the 23 concepts that own at-

tributes (features). 11 out 41 features can be ideally separated into a partition with only one

feature. For example, for feature Verifier, which exists in P2 and P4, we get the intersec-

tion of , , , , , in Figure 8.5. Intuitively, the above

intersection means that the code of feature Verifier should exist in P4, not P5 or P3 or P1,

and P2, not P5 or P3 or P1. Thus, by intersecting these code difference sets, we can sepa-

rate feature Verifier into a minimal equivalent partition (see Section 5.3.4). Then consider-

ing the acceptable size of this partition, it is not laborious to identify which code fragments

belong to feature Verifier and which code fragments are feature interactions existing in P2

and P4.

Figure 8.4. The FCA for the features of 5 product variants

174

There are also 8 concepts (partitions) with 2 attributes (features). Actually, in this BDB

Java case study, there is no concept (partition) with many features inside like that in the

Linux product family (see Section 5.5.3). Therefore, it is not necessary to apply infor-

mation retrieval technique to the feature and the corresponding partition, as the code cor-

pus of the partition is not large enough for information retrieval to perform well.

The drawbacks of our sandwich variability-recovery approach are that the feature de-

pendency and interaction are still hard to identify from the implementation level. First the

product variants may not cover all the code affected by feature interactions. Besides, our

current approach to find the feature interaction is still in an ad-hoc way.

Figure 8.5. Separation of single feature by intersecting code difference sets in Concept

Explorer

8.3 Managing Variability in B-DB by XVCL

After we identify those variant features in requirements as well as their corresponding

code, it is desired to design reusable, customizable components and plug in the variant fea-

tures as the users wish. In this section, we first briefly compare XVCL with preprocessing.

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

175

Then we explore the application of XVCL as a uniform variability technique for the code

differences of BDB Java variants found in Section 8.2.

8.3.1 Preprocessing as a Variation Mechanism

It is useful to categorize features that differentiate product variants as follows: Fine-

grained features affect many base components, at many variation points; coarse-grained

features can be contained in base components that are included into a custom product that

needs such features; mixed-grained features involve both fine- and coarse-grained impact.

Coarse-grained features can be easily accommodated into product variants with #in-

clude directives placed in base components, or using a build tool such as make. Fine-

grained feature code is kept together with the base code under conditional compilation di-

rectives (e.g., #ifdef). Each variation point in the base code (i.e., point affected by some

features) corresponds – in more or less explicit way - to a specific combination of features

that affect that point.

In our model preprocessing notation, <select-option> commands mark variation points.

Suppose features A, B, C and D can be optionally included into product variants, members

of some software Product Line. Suppose further that Base_X and Base_Y are two reusable

base components (source files) for that Product Line. Feature A interacts with Base_X as

shown in Figure 8.6, Base_X contains <select> command with <option A> that marks that

variation point. This is a simple case of a feature affecting the base code without interac-

tions with other features. Such cases are also easily handled by preprocessing directives

#ifdef.

The above solution is put to work by means of parameters and expressions. Each feature

is represented by a parameter. For example, parameter a represents feature A, b – feature

B, and so on. The top-most SPeCification file, SPC, <set>s values of parameters and in

that way specifies which features we need in a product variant. In Figure 8.6, we wish to

176

select features A and D, so parameter a is <set> to “A” and d is <set> to “D”. Parameters

for unwanted features are <set> to null string “ ”. Notation @v means a reference to varia-

ble v.

To derive a product variant that implements selected features, base components are pro-

cessed starting with SPC, in depth-first order via <adapt> links. During this traversal, the

Processor interprets commands and emits code contained in base components to the output

files, just as any preprocessor does. <adapt> is analogous to cpp’s #include.

During processing, values of parameters propagate down to the <adapt>ed base compo-

nents, and are used to identify <option>s relevant to selected features. Features that affect

a base component at a given variation point are identified by parameter v that controls <se-

lect>. In SPC of Figure 8.6, we selected features A and D, so in Base_X, parameter v is

<set> to “A”, and code under <option A> is included into the product variant.

SPC // specifies feature selection for a PL member

<set a = “A” />

<set d = “D” />

<set b = “”/> <set c = “”/> <set e = “”/>

<adapt BaseManager/>

BaseManager

<adapt Base_X />

<adapt Base_Y />

<adapt any other base code files />

Base_X

public class Base_X {

…some code for Base_X

<set v = @a />

<select v > // variation point at which feature interaction

// occurs

<option A> code for feature A

<otherwise> If feature A is not selected, do something else

</select>

…some code for Base_X

<set v = ..>

<select v > // another variation point in Base_X

Base_Y

public class Base_Y {

…some code for Base_Y

<set v = @a+@c+@d />

<select v > // variation point at which feature interaction

// occurs

<option A> code for feature A

<option A+D> code for feature interaction A and D

<option A+C+D> code for feature interaction A, C and D

<otherwise>

</select>

… some code for Base_Y

<set v = .. >

<select v > // another variation point in Base_Y

<adapt>

<adapt>
<adapt>

Figure 8.6. Managing fine-grained features in base components with preprocessor

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

177

Base_Y includes a variation point with interacting features A, C and D. As we selected

features A and D, parameter v is <set> to “A+D” in Base_Y, where the value of v is de-

fined as concatenation (operator ‘+’) of values of parameters a, c, and d.

Effectively, each variation point is clearly marked with names of features that affect that

point, and interact at that point. All the variation points that are associated with a certain

feature are inter-linked by means of parameters with global scope.

Our <select> is analogous to the #if .. #elif .. #else .. #endif directive. It is functionally

equivalent to #ifdef, but avoids problems of nested #if’s analyzed in [155]. <set> com-

mand is analogous to the #define directive except that values propagate globally across

base components. In cpp, parameters set at the command line also propagate to all the pre-

processed files. Expressions at <option>s may not have direct counterpart in some prepro-

cessing systems, but this is a minor extension, and can be easily implemented to any pre-

processor.

As not all the combinations of features can be legally selected for any given custom

product, it is a good practice to validate a given feature selection before the customization

process starts. Such validation can be done using formal methods Z, Alloy and OWL DL

[159,167].

8.3.2 Preprocessing problems in Berkeley DB

We use Berkeley DB to illustrate common preprocessing problems in handling product

variants. Many features can be optionally included into custom DB systems. In that sense,

Berkeley DB forms a Product Line, whose members implement different selections of fea-

tures. Berkeley DB designers chose to use runtime mechanisms to accommodate required

features into a custom DB system. In earlier studies, Berkeley DB was converted into a

Product Line in which features were managed at the construction time (i.e., before execu-

178

tion) with AspectJ [89] and CIDE [90]. In our study, we also managed features at the de-

sign-time with a preprocessing notation described in Section 8.3.1.

8.3.2.1 Overview of our study

The Berkeley DB consists of five subsystems, namely access methods to create and ac-

cess the database, B
+
-tree to store data as key/value pairs, caching and buffering to in-

crease database performance, concurrency and transaction to handle concurrent and roll-

back facility, and a persistence layer. These five subsystems are designed with 232 base

components that form an architecture shared by all the DB system variants. Two of those

files, namely FileProcessor, and LogBuffer are shown in Figure 8.7. In our experiment,

we did not change the original design of the Berkeley DB.

38 features such as IO, LookAheadCache or DiskFullHandler can be optionally

included into custom DB system variants. Berkeley DB designers used runtime mecha-

nisms to configure features into custom DB products. For example, settings for

LookAheadCache feature are stored in an environmental property file (called

je.properties), and developers can change this file to include and re-configure the behavior

of this feature.

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

179

SPC

// Set of all features in the problem space
<set all_features=“IO,EvcitorDaemon,LookAheadCache,

DiskFullHandler,Evictor,MemoryBudget ..."/>

// Create meta-variable for each feature and initialize it to empty string

<while all_features>

<set @all_features=""/>

</while>

// List of features selected to generate a PL variant
<set selected_features=“IO, LookAheadCache, DiskFullHandler, Evictor"/>

// Set the meta-variable for selected features to its own string

<while selected_features>

<set @selected_features=@selected_features/>

</while>

<adapt BaseManager/>

BaseManager

<adapt x-frame="FileProcessor"/>

<adapt x-frame=“ LogBuffer"/>

…

<set v=@Evictor/>

<select v>
<option Evictor>

<adapt x-frame=“Evictor"/>

…

</select>

FileProcessor

public class FileProcessor .. {

...

<set v = @LookAheadCache/>

<select v>

<option LookAheadCache >

// LookAheadCache -related code

</select>

...

}

LogBuffer

public class LogBuffer.. {

...

<set v = @DiskFullHandler/>

<select v>

<option DiskFullHandler >

// DiskFullHandler-related code

</select>

...

}

Evictor

public class Evictor. {

. ..

<set v= @CriticalEviction+@MemoryBudget />

<select v>

<option CriticalEviction >

// CriticalEviction-related code

<option CriticalEviction+MemoryBudget >

// Feature interaction code

</select>

…

}

<adapt>

<adapt>
<adapt>

<adapt>

Figure 8.7 A preprocessing solution to managing features in Berkeley DB

In our study, we addressed 22 Berkeley DB features ranging from simple to complex.

First, we analyzed the semantics of the features we decided to work with, and the way they

affected the base DB code. We converted original runtime strategies for feature manage-

ment to equivalent preprocessing strategies, in a similar way as Kastner et al. converted

them to AOP. For that, we instrumented each base component affected by features with

preprocessing commands to manage feature impact on the base code.

Our preprocessing representation for Berkeley DB, shown in Figure 8.7, follows con-

ventions described in Section 8.3.1. Parameter features_selected in SPC specifies features

to be included in a required DB variant, in case of our example, features IO,

LookAheadCache and DiskFullHandler. SPC adapts BaseManager, which in turn

180

adapts all DB base components. BaseManager plays the role of an integrator/composer of

a custom DB variant in terms of its base components, propagating customizations for se-

lected features to the base components. For clarity, in Figure 8.7, we have shown only two

of such base components, namely FileProcessor and LogBuffer.

In addition, BaseManager also <adapt>s feature-specific base components. This is be-

cause for some of the features, besides adding small fragments of code at variation points

in base components upon feature selection, we must also add new files to the DB base.

Class Evictor in Figure 8.7 exemplifies this situation, and so does feature Statistics

that adds classes StatsConfig and BtreeStats to the DB base (not shown in Figure 8.7.)

8.3.2.2 Patterns of feature impact on DB base components

Features that affect small number of base components at small number of variation

points, and without interacting with other features are easily handled by preprocessing.

Such features may require adding new classes to the DB base, e.g., features Evictor and

Statistics, or adding member variables and methods to classes. Each such feature im-

pact is handled by placing these member variables and methods within <select-option>

block in affected base components.

Among 22 features in DB that we addressed in the experiment, five were preprocessing-

friendly.

First type of complication occurs when the number of variation points at which features

affect a given base component grows. The impact may come from one or more features.

Then, the base code becomes densely populated with <select>s, which is one of the often

mentioned drawbacks of using preprocessing to handle product variants. Among other ex-

amples, 12 features affect base component Environmentimpl inducing 38 variation

points, and 10 feature affect file FileManager, inducing 40 variation points. The number

of variation points per class ranges from 1 to 35, with average 5.72.

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

181

Further complications appear when the impact of one feature becomes scattered over

many variation points, and spreads through many base components. For example, feature

MemoryBudget affects 32 DB base components at a total of 190 variation points, Sta-

tistics (34 variation points), CheckSum and Evictor (each with 27 variation

points), and CriticalEviction (23 variation points). When modifying scattered fea-

tures, we must propagate changes to all the relevant variation points. Maintenance be-

comes difficult and error-prone.

Feature dependencies and interactions bring new dimension of difficulties for prepro-

cessing. A feature f1 depends on feature f2 if f1 refers to code of f2, or if the presence or

absence of f2 in a product variant affects implementation of f1.

Feature dependencies cause feature interactions. In preprocessing solution, feature inter-

actions show as variation points with <option>s labeled with names of interacting features,

or - in more complex interaction situations - as multiple <option>s under a <select>

command.

Figure 8.8 shows an example of feature interactions in which feature CriticalEvic-

tion interacts with feature Evictor, and feature MemoryBudget interacts with fea-

ture CriticalEviction. The net result of those interactions shows at variation points

in file Evictor. If we select feature CriticalEviction, method doCriticalEviction

must be included into the Evictor. If at the same time we select feature MemoryBudget,

method doCriticalEviction must be modified with code related to that feature.

Feature code scattering and feature interactions lead to hidden dependencies among

many variation points. These dependencies have to be understood to modify code without

unwanted side-effects. Figure 8.8 shows an example of a hidden dependency induced by

feature interactions. Features CriticalEviction and MemoryBudget affect the

Evictor, which is only included if the Evictor feature is selected. Therefore, once the

182

variation point that includes the Evictor is removed, all variation points introduced by the

features CriticalEviction and MemoryBudget in file Evictor will be automatical-

ly affected.

Evictor

public class Evictor {

…

<set v= @CriticalEviction+@MemoryBudget />

<select v>

 <option CriticalEviction>

 public void doCriticalEviction ()

 throws DatabaseException {

 doEvict(SOURCE_CRITICAL, true);
 }

 <option CriticalEviction+MemoryBudget>

public void doCriticalEviction ()

 throws DatabaseException {

MemoryBudget mb = envImpl.getMemoryBudget();
 long currentUsage = mb.getCacheMemoryUsage();

 long maxMem = mb.getCacheBudget();

 …
}

</select>

…

Figure 8.8. Feature interactions

8.4 Summary

In this chapter, we evaluate our sandwich variability- recovery approach for a set of sim-

ilar products of Berkeley DB Java Edition. Although these product variants are artificially

randomly generated from the original all-in-one version provide by CIDE [191], we still

follow some heuristic rules to make the product variants more real.

Given these product variants, we build Product Feature Models (PFMs) and compare

them pair-wisely. The results showed that our PFMs comparison algorithm can achieve a

reasonably good accuracy. If we consider the feature descriptions, we can get almost com-

pletely correct results.

After we compare the PFMs from requirements, we also compare the source code of

these product variants. We apply the clone detection and software differencing techniques

to find the fine-grained and coarse-grained feature-relevant code. We use clone detection

to filter out the non-cloned classes or methods as additional classes or methods (coarse-

Chapter 8 Discovering and Managing Variability among Berkeley DB Product Variants

183

grained feature-relevant code) among variants, and use CloneDifferentiator to identify the

PDGs’ differences as additional blocks, statements, branches or expressions methods (fine-

grained feature-relevant code). The comparison is also done pair-wisely.

To bridge the feature differences with the code differences, we use the FCA and IR

techniques. The FCA helps generate the disjoint, minimal equivalent partitions of the fea-

tures and code units. From the feature partitions, we know which features are owned by

which intersections of scenarios. Here, the scenario means a difference set of a comparison

of two product variants. According to the intersection of scenarios, we can get the results

of the intersection of code units. The results of the intersection of code units contain the

corresponding feature relevant code. The results of FAC for BDB Java product variants

show that most features are contained in small partitions that have only 1 or 2 features. The

above ideal separation of features makes application of IR as an optional step.

After we have identified the commonality and variability, pre-processing directives can

be viewed as kind of a variability technique that extends conventional programs by adding

configuration knowledge to them. The XVCL subset – XCpp, which is a meta-data, uses

queries to analyse the configuration information. XCpp approach can be useful add-in

technique for other systems that work with meta-data: Pragmas in Smalltalk contain extra

information that can be interpreted by tools. Java and JEE annotations [196] contain meta-

data that extends program behaviour (for example, weaving AOP’s advices can be ex-

pressed in some annotation systems). Annotations can be analysed for understanding in

XCpp-like fashion.

XCpp described in this paper can be improved by providing more synthetic, visual

presentations of features under analysis. Integrating XCpp feature analysis with analysis of

the base/feature code would be beneficial, but such a system would substantially diverge

184

from pre-processors, making the solution language-dependent. Nevertheless, this is an

interesting avenue to explore.

We presented XCpp system that helps one manage scattered feature code and feature in-

teractions, improving readability of programs manipulated by pre-processors. XCpp ap-

plies queries to help developers navigate through feature-related code, showing features

under analysis, while hiding other features. We analysed pre-processing problems and il-

lustrated XCpp benefits in a study of a sizable Berkeley DB system.

Chapter 9 Conclusion and Future Work

185

9 Conclusion and Future Work

Software maintenance usually takes 70% of overall project costs. A common miscon-

ception about maintenance cost is that people thought maintenance merely includes bug

fixing. However, one study indicated that the majority, over 80%, of the maintenance ef-

fort is used for non-corrective actions [132]. Actually, much of the maintenance efforts are

due to adaptive or managerial maintenance – costs of modifying a software solution to al-

low it to remain effective in a changing business environment, or maintaining multiple ver-

sions for various customers in sync.

This dissertation aspires to contribute to this line of research by automatically reverse-

engineering a family of software legacy systems into SPL to reduce the maintenance ef-

forts. Specifically, we focus on resolving the problems of discovering and managing prod-

uct variability respectively in two phases of engineering, namely domain engineering and

application engineering. This dissertation can be regards as a compilation of the author’s

work on discovering variability at different levels, and managing variability by different

variability techniques. The content and materials of the dissertation are also organized

along this line: discovering the variability in requirements, discovering the variability in

implementation, locating variant features (mapping variability in requirements to variabil-

ity in implementation), evaluating various traditional variability techniques, and finally

evaluating XVCL for variability management.

9.1 Summary of the Dissertation

Understanding of how features evolved in product variants is a prerequisite to transition

from ad hoc to systematic SPL reuse. In Chapter 3, we propose a method that assists ana-

lysts in detecting changes to product features during evolution. We first entail that features

and their inter-dependencies for each product variant are documented as product feature

186

model. We then apply model differencing algorithm to identify evolutionary changes that

occurred to features of different product variants. We evaluate the effectiveness of our ap-

proach on a family of medium-size financial systems. We also investigate the scalability of

our approach with synthetic data. The evaluation demonstrates that our approach yields

good results and scales to large systems.

In Chapter 4, we present an automated approach to identify contextual differences of

software clones, which contain the potential variant features. We represent clone contexts

as program dependence graphs. We then apply graph differencing technique to identify

seven types of elementary contextual differences that may affect the computation per-

formed by clones. Based on these elementary contextual differences, developers can define

queries to automatically distill clones relevant to a given maintenance task. We have im-

plemented our approach in a tool called CloneDifferentiator. We evaluate CloneDifferenti-

ator in two empirical studies aiming at refactoring Java IO library and Eclipse unit test

suites.

In Chapter 5, we discuss problems that hinder direct application of IR techniques to

identify feature-relevant code units in a collection of product variants. To counter these

problems, we present an approach to support effective feature location in product variants.

The novelty of our approach is that we exploit commonalities and differences of product

variants by software differencing and FCA techniques so that IR technique can achieve

satisfactory results for feature location in product variants. We have implemented our ap-

proach and conducted evaluation with a collection of nine Linux kernel product variants.

Our evaluation shows that our approach always significantly outperforms a direct applica-

tion of IR technique in the subject product variants.

In Chapter 6, we investigate the variability management in industrial product. Fudan

Wingsoft Ltd. developed a product Line of Wingsoft Financial Management Systems

Chapter 9 Conclusion and Future Work

187

(WFMS-PL) providing web-based financial services for employees and students at univer-

sities in China. The company uses a wide range of variation mechanisms such as condi-

tional compilation and configuration files to manage WFMS variant features. We study

this existing product line and find that most variant features have fine-grained impact on

product line components. Our study also shows that different variability techniques have

different, often complementary, strengths and weaknesses, and their choice should be

mainly driven by the granularity and scope of feature impact on product line components.

Chapter 7 follows up our earlier study of an SPL at Fudan Wingsoft Ltd that reveals po-

tential scalability problems of multiple variability techniques. As a remedy to the above

problems, in the follow-up study we replace multiple traditional variability techniques

originally used in the Fudan Wingsoft product line, with a single, uniform variability tech-

nique of XML-based Variant Configuration Language (XVCL). This chapter provides a

proof-of-concept that commonly used variation techniques can indeed be superseded by a

subset of XVCL, in a simple and natural way. We describe the essence of the XVCL solu-

tion, and evaluate the benefits and trade-offs involved in multiple variability techniques

solution and single variability technique - XVCL solution.

Chapter 8 integrates all the previously adopted techniques to conduct a preliminary

evaluation of our overall approach to discover and manage variability inside a family of

Berkeley DB Java products. We follow some heuristic rules to generate five major BDB

Java product variants from CIDE [191], which cover all the variant features. For these var-

iants, we apply the PFM comparison technique used in Chapter 3 to discover the variability

in requirements. Then we apply the clone detection and clone differencing techniques used

in Chapter 4 to discover the variability in implementation. To bridge these two levels of

differences, we used FCA and IR techniques in Chapter 5 to facilitate locating variant fea-

tures. Finally, we discuss about the pre-processing and XVCL, and evaluate XCpp

188

(XVCL-based Pre-processing) as variability technique to manage the variability in BDB

Java product family. Overall, the results showed that our sandwich approach can help au-

tomatically and systematically identify the variability across product variants with reason-

ably good accuracy, and XCpp can help mitigate the problems of variability management

with meta-data and query system.

9.2 Contributions and Perspective

The contribution of this dissertation is mainly twofold. There are many existing estab-

lished studies on SPL practice [111], variability modeling [152] and variability techniques

[28,29]. In this dissertation, our intention is not to invent new variability modeling meth-

ods, variability techniques, and software process towards SPL. We propose a systematic

and automatic approach to reengineering software product variants into SPL. Thus, funda-

mentally the thesis contributes to systematic reuse of legacy products.

We also bridge the work of variability recovery with variability management. The

knowledge we found in variability recovery like the granularity of the variant features can

better provide guidelines in the variability management. We investigate the merits and

drawbacks of various traditional variability techniques. As the different granularity of fea-

tures matches the different variability techniques, the knowledge of granularity is im-

portant to the success of the application of variability techniques. Thus, another major con-

tribution is information integration for the variability analysis and variability management.

In this dissertation we are doing much work from the perspective of reverse-

engineering. Our study relies on the techniques such as model differencing, software clone

detection, formal concept analysis, and information retrieval. All these techniques are usu-

ally applicable to mass of data, aiming to dig out useful information from the data. We are

one of earliest groups who propose the integration of clone detection with model differenc-

ing, which compares the PSGs of clone instances to help understand clones. We are also

Chapter 9 Conclusion and Future Work

189

one of earliest groups who propose to locate variant features by considering the variability

and commonality inside a family of product variants.

Early studies [8,20,107] indicated that 5%-10% of clones are a kind of homogeneous

crosscutting concerns. And these concerns sometimes are the variant features for the sys-

tem. The unmatched code units in clone detection may imply the potential existing of

coarse-grained feature impact, and the differences among clone instances of two products

may imply the existing of fine-grain feature impact. XVCL, which was mainly used for

clone management or code reduction [72], is also applied in our study for the variability

management. Thus, from this view, we compare XVCL with Pre-processing and a meta-

level configuration tool as a variability technique in this dissertation.

9.3 Future Work Plan

The current concern of variability analysis in the dissertation is to identify the variant

features’ relevant requirements and code units. Our work still remains at the stage of com-

paring product variant in requirements and implementation. We have not figured out what

knowledge can be further unveiled from the current matching results, and in what way.

In the following-up study, we may focus on the recovery of the feature dependencies

and feature interactions. The feature dependencies refer to the features’ inter-relationship

in requirements, such as one feature requires or excludes another feature. Our current

PFMs comparison only reports the matched and unmatched features, but fails to report

what possible relationship exists among these matched features. The association rules min-

ing techniques [1] or sub-tree mining techniques [31] may be helpful for this problem do-

main. From the matching result, we may further report that information such as which fea-

ture always appears together with some other feature(s), and which features never appear

together.

190

For the current feature location in a set of product variants, we have not systematically

investigated the impact of feature interaction. Feature interactions refer to tangling of two

features’ code units. Although the current results show that the accuracy is still acceptable,

we hold the position that the feature interactions indeed affect the results and complicated

the feature location in product variants. The future plan for this study is to examine the

extent to which the tangling code of interacted features will affect the results of our ap-

proach.

We are also interested to use the variability analysis to help raise the level of variability

modeling. In another branch study of our group, we have developed an architecture varia-

bility management method and a tool [186]. By the high level’s architecture variability

management, architecture design and customizations become more intuitive. Additionally,

the maintenance efforts are reduced. Now, the current results of our sandwich approach to

variability analysis have the potential to be clustered or grouped to a higher level, even to

the architecture.

Bibliography

191

Bibliography

1. Agrawal, R., Imielinski, T. and Swami, A.N., "Mining Association Rules between Sets of Items in Large

Databases", in Proceeding of ACM SIGMOD Conference, pp. 207-216, 1993.

2. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P. and Lucena, C.J.P., "Refactoring product lines",

in Proceeding of International Conference on Generative Programming and Component Engineering, pp.

201-210, 2006.

3. Antoniol, G. and Guéhéneuc, Y. G., "Feature identification: an epidemiological metaphor", IEEE Transac-

tions on Software Engineerin, vol. 32, no. 9, pp. 627-641, 2006.

4. Antoniol, G., Canfora, G., Casazza, G., Lucia, A.D. and Merlo, E., "Recovering traceability links between

code and documentation", IEEE Transactions on Software Engineering, vol.28, no.10, pp.970-983, Octo-

ber 2002.

5. Apel, S., Kästner, C. and Lengauer, C. "FEATURE-HOUSE: Language-independent, automated software

composition", in Proceedings of International Conference on Software Enginnerring, pp. 221-231, 2009.

6. Apiwattanapong, T., Orso, A. and Harrold, M.J., "JDiff: A differencing technique and tool for object-

oriented programs". Automated Software Engineering, vol. 14, no. 1, pp. 3-36, 2007.

7. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D. and Patel-Schneider, P.F., The Description Logic

Handbook: Theory, Implementation, Applications. Cambridge University Press, Cambridge, UK, 2003.

8. Baker. B., "On finding duplication and near-duplication in large software systems", In Proceedings of

Working Conference on Reverse Engineering, pp. 86-95, Toronto, Ontario, Canada, July 1995.

9. Balazinska, M., Merlo, E., Dagenais, M., Lague, B. and Kontogiannis, K., "Measuring clone based reengi-

neering opportunities", in Proceedings of Software Metrics Symposium, pp. 292-303, USA, 1999.

10. Balazinska. M., Merlo, E., Dagenais, M., Lague, B. and Kontogiannis, K., "Advanced clone-analysis to

support object-oriented system refactoring", in Proceedings of Working Conferencing on Reverse Engi-

neering, pp. 98-107, 2000.

11. Basit, A.H. and Jarzabek, S., "Detecting higher-level similarity patterns in programs", In Proceedings of

European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, pp. 156-165, 2005

12. Basit, H.A. and Jarzabek, S., "A data mining approach for detecting higher-level clones", IEEE Transac-

tions on Software Engineerin, vol. 35, no. 4, pp. 497-514, 2009.

13. Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice. Boston, MA: Addison-Wesley,

1998

14. Bass, L., Clements, P., Cohen, S., Northrop, L., and Withey, J., "Product line practice workshop report",

Technical Report, CMU/SEI-97-TR-003, 1997.

15. Bassett, P., Framing Software Reuse - Lessons from Real World, Prentice Hall, 1997.

16. Batory, D., "Feature-oriented programming and the AHEAD tool suite", in Proceeding of International

Conference on Software Engineering, pp. 702-703, 2004.

17. Batory, D., "Feature models, grammars, and propositional formulas", in Proceedings of Software Product

Line Conference, pp. 7-20, 2005.

Bibliography

192

18. Batory, D., Sarvela, J. N. and Rauschmayer, A., "Scaling step-wise refinement", IEEE Transactions on

Software Engineering, vol. 30, no. 6, 2004.

19. Batory, D., Sarvela, J.N. and Rauschmayer, A. "Scaling step-wise refinement", in Proceedings of Interna-

tional Conference on Software Enginnerring, pp. 187-197, USA, 2003.

20. Baxter, I.D., Yahin, A., Marcelo,L., Sant'Anna,M. and Bier, L., "Clone detection using abstract syntax

trees", in Proceedings of International Conference on Software Maintenance, pp. 368-377, 1998.

21. Bellon, S., Koschke, R., Antoniol,G., Krinke,J. and Merlo, E., "Comparison and evaluation of clone detec-

tion Tools", IEEE Transactions on Software Engineering, vol.33, no.9, pp. 577-591, 2007.

22. Benavides, D., Martin-Arroyo, P.T. and Cortes, A.R, "Automated reasoning on feature models", in Pro-

ceedings of International Conference on Advanced Information Systems Engineering, pp. 491-503, 2005.

23. Berry, M. W., and Browne, M., "Understanding search engines: mathematical modeling and text retrieval",

Society for Industrial and Applied Mathematics, 2005.

24. Biggerstaff, T., "A perspective of generative reuse", Annals of Software Engineering, vol. 5, no.1, pp. 169-

226, 1998.

25. Bruntink, M., Deursen, A., Engelen, R. and Tourwé, T., "On the use of clone detection for identifying

crosscutting concern code". IEEE Transactions on Software Engineering, vol.31, no.10, pp. 804-818, 2005.

26. Buhr, R. J. A. and Casselman, R. S., Use Case Maps for Object-Oriented Systems. Prentice Hall, 1996.

27. Buneman, P. and Jajodia S., Mining Association Rules between Sets of Items in Large Databases, Wash-

ington, D.C., 1993.

28. Chen, K. and Rajlich, V., "Case study of feature location using dependence graph", in Proceedings of

International Conference on Program Comprehension, pp. 241-249, 2000.

29. Chen, L. and Babar, M.A., "Variability management in software product lines: an investigation of con-

temporary industrial challenges", in Proceeding of Software Product Line Conference, pp. 166-180, 2010.

30. Chen, L., Babar, M.A. and Ali, N., "Variability management in software product lines: a systematic re-

view", in Proceedings of Software Product Line Conference, pp. 81-90, 2009.

31. Chi, Y., Muntz, R., Nijssen, S. and Kok, J.N., "Frequent Subtree Mining - An Overview", Fundamenta

Informaticae, vol. 66, no. 1-2, pp.161-198, January 2005.

32. Clements, P. and Muthig, D. (Editors) Proc. Workshop on Variability Management at 10th Software Prod-

uct Line Conf. Fraunhofer IESE-Report No 152.06/E Version 1.0, Germany, October 15, 2006

33. Clements, P. and Northrop, L., Software Product Lines: Practices and Patterns, Addison-Wesley, 2002.

34. Cullum, J. K. and Willoughby, R. A., Lanczos Algorithms for Large Symmetric Eigenvalue Computations,

vol. 1: Theory. Chapter 5: “Real rectangular matrices,” Brikhauser, Boston, MA, 1985.

35. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N. and Zadeck, F.K., "Efficiently computing static sin-

gle assignment form and the control dependence graph", ACM Transactions on Programming Languages

and Systems, vol.13, no. 4, pp. 451-490, 1991.

36. Czarnecki, K. and Eisenecker, U., Generative Programming Methods, Tools, and Applications. Addison-

Wesley, Boston, MA, 2000.

37. Czarnecki, K., Helsen, S. and Eisenecker, U., "Formalizing cardinality-based feature models and their

specialization", Software Process Improvement and Practice, vol. 10, no. 1, 2005.

Bibliography

193

38. Dardenne, A., Lamsweerde, A. and Fickas, S., "Goal-directed requirements acquisition", Science of Com-

puter Programming, vol. 20, pp.1-2, April 1993.

39. Díaz, O., Trujillo, S. and Anfurrutia F.I., "Supporting production strategies as refinements of the produc-

tion process", in Proceedings of Software Product Line Conference, pp: 210-221, 2005.

40. Deelstra, S., Sinnema, M. and Bosch, J., "Experiences in software product families: problems and issues

during product derivation", in Proceedings of Software Product Line Conference, pp. 165-182, 2004.

41. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R., "Indexing by latent

semantic analysis", Journal of the American Society for Information Science and Technology, vol. 41, pp.

391–407. 1990.

42. Demeyer, S., Ducasse, S. and Nierstrasz, O., "Finding refactorings via change metrics", in Proceeeding of

International Conference on Object Oriented Programming, Systems, Languages and Applications, pp.

166-177, 2000.

43. Dhungana, D., Neumayer, T., Grünbacher, P. and Rabiser, R., "Supporting evolution in model-based

product line engineering", in Proceeeding of Software Product Line Conference, pp. 319-328, 2008.

44. Dit, B., Revelle, M., Gethers, M. and Poshyvanyk, D., "Feature location in source code: A taxonomy and

survey", Journal of Software Maintenance: Research and Practice, 2011.

45. Duley, A., Spandikow, C. and Kim, M., "A program differencing algorithm for verilog HDL", in Proceed-

ing of International Conference on Automated Software Engineering, pp. 477-486, 2010.

46. Dumais, S. T, "LSI meets TREC: A status report", in Proceeding of The First Text REtrieval Conference,

D. Harman, Ed. Pp. 137-152. 1992.

47. Eaddy, M., Aho, A. V., Antoniol, G., and Guéhéneuc, Y. G., "CERBERUS: Tracing requirements to

source code using information retrieval, dynamic analysis, and program analysis", in Proceedings of In-

ternational Conference on Program Comprehension, pp. 53-62, Netherlands, 2008.

48. Eisenbarth, T., Koschke, R., and Simon, D., "Locating features in source code", IEEE Transactions on

Software Engineering, vol. 29, no. 7, pp. 210 – 224, 2003.

49. Eisenberg, A. D. and De Volder, K., "Dynamic feature traces: finding features in unfamiliar code", in Pro-

ceedings of International Conference on Software Maintenance, pp. 337-346, 2005.

50. Fellbaum, C., WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press, 1998.

51. Ferber, S., Haag, J. and Savolainen, J., "Feature interaction and dependencies: modeling features for reen-

gineering a legacy product line", in Proceedings of Software Product Line Conference, pp. 235-256, 2002.

52. Ferrante, J., Ottenstein, K.J. and Warren, J.D., "The program dependence graph and its use in optimiza-

tion", ACM Transactions on Programming Languages and Systems, vol. 9, no. 3, pp. 319-349, 1987.

53. Fluri. B., Wuersch M., Plnzger M. and Gall H., "Change distilling: Tree differencing for fine-grained

source code change extraction", IEEE Transactions on Software Engineerin, vol. 33, no. 11, pp. 725-743,

2007.

54. Fowler, M., Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.

55. Gabel, M., Jiang, L. and Su, Z., "Scalable detection of semantic clones", in Proceedings of International

Conference on Software Enginnerring, pp. 321-330, 2008.

Bibliography

194

56. Gale, D. and Shapley, L.S., "College admissions and the stability of marriage", American Mathematical,

vol. 69, pp. 9-14, 1962.

57. Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns. Addison-Wesley Professional, 1995.

58. Gionis, A.; Indyk, P. and Motwani, R. "Similarity search in high dimensions via hashing", in Proceedings

of Very Large Database Conference, pp. 518 – 529, 1999.

59. Godfrey, M. and Tu, Q., "Evolution in open source software: a case study", in Proceedings of Internation-

al Conference on Software Maintenance, pp.131-140, 2000.

60. Godfrey, M. and Zou, L., "Using origin analysis to detect merging and splitting of source code entities",

IEEE Transactions on Software Engineering, vol. 31, no. 2, pp. 166-181, 2005.

61. Grahne, G., and Zhu, J., "Efficiently using prefix-trees in mining frequent itemsets", in Proceeding of the

First IEEE ICDM Workshop on Frequent Itemset Mining Implementations, 2003.

62. Grant, S., Cordy, J. R., and Skillicorn, D. B., "Automated concept location using independent component

analysis", in Proceedings of Working Conferencing on Reverse Engineering, pp. 138 - 142, Belgium, 2008.

63. Griss, M.L., Favaro, J. and d’Alessandro M., "Integrating feature modeling with the RSEB", in Proceed-

ings of International Conference on Software Reuse, pp. 76-85, 1998.

64. Habermann, A. N., Flon, L., and Cooprider, L., "Modularization and hierarchy in a family of operating

systems", Communications of the ACM, vol. 19, no. 5, pp. 66–272, 1976.

65. Harman, D, Ranking algorithms In Information Retrieval: Data Structures and Algorithms. Prentice-Hall,

pp. 363–392. 1992.

66. Hassine, J., Rilling, J., Hewitt, J. and Dssouli, R., "Change impact analysis for requirement evolution us-

ing use case maps", in Proceeding of International Workshop on Principles of Software Evolution, pp. 81-

90, 2005.

67. Higo, Y. and Kusumoto, S., "Enhancing quality of code clone detection with program dependency graph",

in Proceedings of Working Conferencing on Reverse Engineering, pp. 315-316, 2009.

68. Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the neighborhood with Dora to expedite software

maintenance", in Proceedings of International Conference on Automated Software Engineering, pp. 14-23,

2007.

69. Horwitz, S., "Identifying the semantic and textual differences between two versions of a program", in Pro-

ceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 234-

245, 1990.

70. Jacobson, I., Griss, M. and Jonsson. P., Software Reuse: Architecture, Process and Organization for Busi-

ness Success. Addison Wesley Professional, 1997.

71. Jarzabek, S., Bassett, P., Zhang, H. and Zhang, W., "Xvcl: Xml-based variant configuration language", in

Proceeding of International Conference on Software Engineering, pp: 810–811, USA, 2003.

72. Jarzabek, S., Effective Software Maintenance and Evolution: Reuse-based Approach, CRC Press Taylor &

Francis, 2007.

73. Jarzabek, S., Ong, W.C. and Zhang, H., "Handling variant requirements in domain modeling". Journal of

Systems and Software, vol. 68, no. 3, 2003.

Bibliography

195

74. Jarzabek, S., Xue, Y., "Are clones harmful for maintenance? ", in Proceeding of International Worshop on

Software Cloning, pp. 73-74, 2010.

75. Jarzabek, S., Xue, Y., Zhang, H. and Lee, Y., "Avoiding some common preprocessing pitfalls with feature

queries", in Proceeding of Asia-Pacific Software Engineering Conference, pp. 283-290, 2009.

76. Jarzabek, S., Zhang, H., Lee, Y., Xue, Y. and Shaikh, N., "Increasing usability of preprocessing for feature

management in product lines with queries", in Proceeding of International Conference on Software Engi-

neering Companion, pp. 215-218, 2009.

77. Jiang, L., Su, Z. and Chiu, E., "Context-based detection of clone-related bugs", In Proceedings of Europe-

an Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, pp. 55-64, 2007.

78. Jirapanthong, W. and Zisman, A. "XTraQue: Traceability for product line systems", Software and System

Modeling, vol. 8, issue 1, pp: 117-144, 2009.

79. Jürgens, E., Deissenboeck, F., Hummel, B. and Wagner, S., "Do code clones matter? ", in Proceedings of

International Conference on Software Engineering, pp. 485-495, 2009.

80. Kamiya, T., Kusumoto, S. and Inoue, K., "CCFinder: A multilinguistic token-based code clone detection

system for large scale source code", IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654-

670, 2002.

81. Kang, K., Cohen, S., Hess, J., Nowak, W. and Peterson, S., "Feature-Oriented Domain Analysis (FODA)

feasibility study", Technical Report. Software Engineering Institute, Carnegie Mellon University, 1990.

82. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E. and Huh, M., "FORM: A feature-oriented reuse method

with domain-specific reference architectures". Annals of Software Engineering, vol. 5, pp.143-168, 2004.

83. Kang, K.C., Lee, J. and Donohoe, P., "Feature-oriented project line engineering". IEEE Software., vol. 19,

no. 4, pp. 58-65, 2002.

84. Kapser, C. and Godfrey, M.W., ""Cloning considered harmful" considered harmful", in Proceedings of

Working Conferencing on Reverse Engineering, pp. 19-28, 2006.

85. Kapser, C. and Godfrey, M.W., "Aiding comprehension of cloning through categorization", in Proceeding

of International Workshop on Principles of Software Evolution, pp. 85-94, 2004.

86. Karhinen, A., Ran, A. and Tallgren, T., "Configuring designs for reuse", in Proceedings of International

Conference on Software Enginnerring, pp. 701-710, 1997.

87. Karlsson, J., Olsson, S. and Ryan, K., "Improved practical support for large-scale requirements prioritiz-

ing”, Requirements Engineering Journal, vol. 2, no. 1, pp.51-66, 1997.

88. Kästner, C., and Apel, S. (2008a). "Integrating compositional and annotative ap-proaches for product line

engineering", in Proceeding of GPCE Workshop on Modulariza-tion, Composition and Generative Tech-

niques for Product Line Engineering, pp. 35–40, 2008.

89. Kästner, C., Apel, S. and Batory, D., "A case study implementing features using AspectJ", in Proceedings

of Software Product Line Conference, pp.223-232, Japan, 2007.

90. Kästner, C., Apel, S. and Kuhlemann, M., "Granularity in software product lines", in Proceedings of In-

ternational Conference on Software Enginnerring, pp. 311-320, 2008.

Bibliography

196

91. Kästner, C., Apel, S., and Kuhlemann, M. (2009a). "A model of refactoring physically and virtually sepa-

rated features", in Proceeding of International Conference on Generative Programming and Component

Engineering, pp. 157–166, 2009.

92. Kästner, C., Apel, S., Trujillo, S., Kuhlemann, M., and Batory, D. (2009b). "Guaranteeing syntactic cor-

rectness for all product line variants: A language-independent approach", in Proceeding of International

Conference on Objects, Models, Components, Patterns (TOOLS EUROPE), vol. 33 of Lecture Notes in

Business Information Processing, pp.175–194. Berlin/Heidelberg: Springer-Verlag, 2009.

93. Kästner, C., Apel, S., ur Rahman, S. S., Rosenmüller, M., Batory, D., and Saake, G. (2009c). "On the im-

pact of the optional feature problem: Analysis and case studies". in Proceedings of Software Product Line

Conference, pp. 181–190, 2009.

94. Kästner, C., Aspect-Oriented Refactoring of Berkeley DB. Master’s thesis (Diplomarbeit), University of

Magdeburg, 2007.

95. Kellens, A., Mens, K. and Tonella, P., "A survey of automated code-level aspect mining techniques",

Transactions on Aspect Oriented Software Development, vol. 4, pp. 145-164, 2007.

96. Kiczales, G, Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J-M. and Irwin, J., "Aspect-

Oriented Programming", in Proceeding of European Conference on Object-Oriented Programming, pp.

220-242, Finland, 1997.

97. Kim, M. and Notkin, D., "Discovering and representing systematic code changes", in Proceedings of In-

ternational Conference on Software Enginnerring, pp. 309-319, 2009.

98. Kim, M., Sazawal,V., Notkin, D. and Murphy, G.C.. "An empirical study of code clone genealogies", In

Proceedings of European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, pp. 187-196, 2005.

99. Komondoor, R., and Horwitz, S., "Using slicing to identify duplication in source code", in Proceedings of

International Symposium on Static Analysis, pp. 40-56, 2001.

100. Koschke, R. and Quante, J., "On dynamic feature location", in Proceeding of International Conference

on Automated Software Engineering, pp. 86-95, 2005.

101. Koschke, R., "Survey of research on software clones", Duplication, Redundancy, and Similarity in Soft-

ware, 2006.

102. Kothari, J., Denton, T., Mancoridis, S., and Shokoufandeh, A., "Reducing program comprehension effort

in evolving software by recognizing feature implementation convergence", in Proceedings of International

Conference on Program Comprehension, pp. 17-26 , Canada, 2007.

103. Krinke, J., "A study of consistent and inconsistent changes to code clones", in Proceedings of Working

Conferencing on Reverse Engineering, pp. 170-178, 2007.

104. Krinke, J., "Identifying similar code with program dependence graphs", in Proceedings of Working Con-

ferencing on Reverse Engineering, pp. 301-310, 2001.

105. Krueger, C.W., "Practical strategies and techniques for adopting software product lines", in Proceedings of

International Conference on Software Resue, pp. 349-350, 2002.

106. Laddad, R., AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publications, 2003.

Bibliography

197

107. Lague, B., Proulx, D., Mayrand, J., Merlo, E.M. and Hudepohl, J., "Assessing the benefits of incorporating

function clone detection in a development process", In Proceedings of the International Conference on

Software Maintenance, pp. 314–321. IEEE Computer Society, 1997.

108. Lanubile, F. and Mallardo, T., "Finding function clones in web applications", In Proceedings of European

Conference on Software Maintenance and Reengineering, pp. 379-386, Benevento, Italy, March 2003.

109. Li,Z., Lu,S., Myagmar, S. and Zhou, Y., "CP-Miner: Finding copy-paste and related bugs in large-scale

software code", IEEE Transactions on Software Engineering, vol. 32, no. 3, pp. 176-192, 2006.

110. Liebig, J., Apel, S., Lengauer, C., Kästner, C. and Schulze, M., "An analysis of the variability in forty

preprocessor-based software product lines", in Proceeding of International Conference on Software Engi-

neering, pp. 105-114, 2010.

111. Linden, F., Schmid, K. and Rommes, E., Software Product Lines in Action: The Best Industrial Practice in

Product Line Engineering. Springer, 2007.

112. Liu, C., Chen, C., Han, J. and Yu, P.S., "GPLAG: Detection of software plagiarism by program depend-

ence graph analysis", in Proceedings of ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, pp. 872-881, USA, 2006.

113. Liu, D., Marcus, A., Poshyvanyk, D. and Rajlich, V., "Feature location via information retrieval based

filtering of a single scenario execution trace", in Proceedings of International Conference on Automated

Software Engineering, pp: 234-243, 2007.

114. Loh, A. and Kim, M., "LSdiff: a program differencing tool to identify systematic structural differences", in

Proceedings of International Conference on Software Engineering Companion, pp. 263-266, 2010.

115. Lormans, M., "Monitoring requirements evolution using views", in Proceeeding of European Conference

on Software Maintenance and Reengineering, pp. 349–352, 2007.

116. Lucia, A.D., Fasano, F., Oliveto, R. and Tortora, G., "Recovering traceability links in software artifact

management systems using information retrieval methods", ACM Transaction on Software Engineering

and Methodology, vol. 16, no. 4, 2007.

117. Maoz, S., Ringert, J.O. and Rumpe, B., "ADDiff: semantic differencing for activity diagrams", in Pro-

ceeding of ACM SIGSOFT Foundation of Software Engineering, pp. 179-189, 2011.

118. Marcus A. and Maletic, J.I., "Recovering documentation-to-source-code traceability links using Latent

Semantic Indexing", in Proceeding of International Conference on Software Engineering, pp.125-137,

2003.

119. Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An information retrieval approach to concept loca-

tion in source code", in Proceedings of Working Conferencing on Reverse Engineering, pp.214-223, Neth-

erlands, 2004.

120. Mayrand, J., Leblanc, C. and Merlo, E., "Experiment on the automatic detection of function clones in a

software system using metrics", in Proceedings of International Conference on Software Maintenance, pp.

244, 1996.

121. Mendonca, M., Branco, M. and Cowan, D., "S.P.L.O.T. - software product lines online tools", in Proceed-

ing of ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and

Applications, pp. 761-762, 2009.

Bibliography

198

122. Mendonca, M., Wasowski, A., Czarnecki, K. and Cowan, D., "Efficient compilation techniques for large

scale feature models", in Proceeding of International Conference on Generative Programming and Com-

ponent Engineering, pp. 13-22, ACM, 2008.

123. Mens, T., "A state-of-the-art survey on software merging", IEEE Transactions on Software Engineerin,

vol. 28, no. 5, pp. 449-462, 2002.

124. Myers, E.W., "An O(ND) difference algorithm an its variations", Algorithmica, vol. 1, no. 2, pp. 251–266,

1986.

125. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M. and Zave, P., "Matching and merging of

statecharts specifications", in Proceedings of International Conference on Software Engineering, pp. 54 –

64, 2007.

126. Ommering, R.C., "Building product populations with sofware components", in Proceeding of Internation-

al Conference on Software Engineering, pp. 255-265, 2002.

127. Parnas, D. L., "On the design and development of program families", IEEE Transactions on Software

Engineering, vol. 2, no. 1, pp. 1-9, 1976.

128. Pearse, T. T., and Oman, P. W., "Experiences developing and maintainingsoftware in a multi-platform

environment", in Proceedings of International Conference on Software Maintenance, pp. 270–277. 1997.

129. Pettersson, U. and Jarzabek, S., "Industrial experience with building a web portal product line using a

lightweight, reactive approach", in Proceeding of European Software Engineering Conference and ACM

SIGSOFT Symposium on the Foundations of Software Engineering, pp. 326-335, 2005.

130. Peng, X., Xing, Z., Tan, X., Yu, Y. and Zhao, W., "Iterative context-aware feature location", in Proceed-

ing of International Conference on Software Engineering, pp. 900-903, 2011.

131. Person, S.J., Differential Symbolic Execution, Doctor’s thesis, University of Lincoln, Nebraska, 2009.

132. Pigoski, Thomas M., Practical Software Maintenance. New York: John Wiley & Sons, 1996.

133. Pohl, K., Böckle, G. and van der Linden, F.J., Software Product Line Engineering: Foundations, Princi-

ples and Techniques. Springer, 1 edition, September 2005.

134. Poshyvanyk, D. and Marcus, D., "Combining formal concept analysis with information retrieval for con-

cept location in source code", in Proceedings of International Conference on Program Comprehension, pp.

37-48, Canada, 2007.

135. Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and Rajlich, V., "Feature location using

probabilistic ranking of methods based on execution scenarios and information retrieval", IEEE Transac-

tions on Software Engineering, vol. 33, no. 6, pp. 420-432, June 2007.

136. Poshyvanyk, D., Marcus, A., Rajlich, V., Guéhéneuc, Y.-G. and Antoniol, G., "Combining probabilistic

ranking and latent semantic indexing for feature identification", in Proceeding of International Conference

on Program Comprehension, pp. 137-148, 2006.

137. Prehofer, C., "Feature-Oriented Programming: A fresh look at objects", in Proceeding of European Con-

ference on Object-Oriented Programming, pp. 419-443, 1997.

138. Rajapakse, D.C. and Jarzabek, S., "Towards generic representation of web applications: solutions and

trade-offs", Software Practice and Experience, vol. 39, no. 5, pp. 501-530, 2009.

139. Rajlich, V. and Wilde, N., "The role of concepts in program comprehension", in Proceeding of Interna-

tional Workshop on Program Comprehension, pp. 271-278, 2002.

Bibliography

199

140. Ramalingam, G. and Reps, T., "Semantics of program representation graphs", Technical Report, Universi-

ty of Wisconsin Madison, 1989.

141. Refstrup, J. G., "Adapting to change: Architecture, processes and tools: A closer look at HP’s experience

in evolving the Owen software product line", in Proceeding of Software Product Line Conference, Key-

note presentation, 2009

142. Revelle, M. and Poshyvanyk, D., "An exploratory study on assessing feature location techniques", in Pro-

ceedings of International Conference on Program Comprehension, pp. 218-222, 2009.

143. Rosenmüller, M., Siegmund, N., Schirmeier, H., Sincero, J., Apel, S., Leich, T., Spinczyk, O. and Saake,

G., "FAME-DBMS: Tailor-made data management solutions for embedded systems", in Proceeding of

Software Engineering for Tailor-made Data Management, pp. 1-6, 2008.

144. Roy, C.K. and Cordy, J.R., "A survey on software clone detection research", Technical Report 2007-541,

Queen’s University, 2007.

145. Roy, C.K. and Cordy, J.R., "Scenario-based comparison of clone detection techniques", in Proceedings of

International Conference on Program Comprehension, pp. 153-162, 2008.

146. Roy, C.K., "Detection and analysis of near-miss software clones", in Proceedings of International Confer-

ence on Software Maintenance, pp. 447-450, 2009.

147. Segura, S., Benavides, D., Ruiz-Cortés, A., and Trinidad, P., "Automated merging of feature models using

graph transformations", Generative and Transformational Techniques in Software Engineering II, pp. 489

- 505, 2007.

148. Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-Shanker, K., "Using natural language program

analysis to locate and understand action-oriented concerns", in in Proceedings of Conference on Aspect

Oriented Software Development, pp. 212-224, 2007.

149. Silverstein, C., Henzinger, M.R., Marais, H. and Moricz, M., "Analysis of a very large web search engine

query log". SIGIR Forum, vol. 33, no.1, pp. 6-12, 1999.

150. Simmons, S., Edwards, D., Wilde, N., Homan, J., and Groble, M., "Industrial tools for the feature location

problem: an exploratory study", Journal of Software Maintenance: Research and Practice, vol. 18, no. 6,

pp. 457-474, 2006.

151. Sincero, J. and Schröder-Preikschat, W., "The Linux kernel configurator as a feature modeling tool". in

Proceeding of Software Product Line Conference, pp. 257-260, 2008.

152. Sinnema, M. and Deelstra, S., "Classifying variability modeling techniques", Information & Software

Technology, vol. 49, no. 7, pp. 717-739, 2007.

153. Sinnema, M., Deelstra, S., Nijhuis, J. and Bosch, J., "COVAMOF: A framework for modeling variability

in software product families", in Proceedings of Software Product Line Conference, pp. 197–213, 2004.

154. Smaragdakis, Y. and Batory, D., "Mixin layers: an object-oriented implementation technique for refine-

ments and collaboration-based designs ", ACM Transaction on Software Engineering and Methodology,

vol. 11, no. 2, pp. 215-255, 2002.

155. Spencer, H. and Collyer, G., "#ifdef considered harmful, or portability experience with C news," USENIX,

Summer Technical Conference, pp. 185-197, San Antonio, Texas, June, 1992.

Bibliography

200

156. Steimann, F., Pawlitzki, T., Apel, S., and Kästner, C., "Types and modularity for implicit invocation with

implicit announcement", ACM Transactions on Software Engineering and Methodology, vol. 20, no. 1,

2010.

157. Sun, J., Liu, Y. and Dong, J.S., "Model Checking CSP Revisited: Introducing a Process Analysis Toolkit",

in Proceeding of International Symposium on Leveraging Applications of Formal Methods, Verification

and Validation,, pp. 307-322, 2008.

158. Sun, J., Liu, Y., Dong, J.S. and Pang, J., "PAT: Towards Flexible Verification under Fairness", in Pro-

ceeding of International Conference on Computer Aided Verification, pp. 709-714, 2009.

159. Sun, J., Zhang, H., Li, Y. and Wang, H., "Formal Semantics and Verification for Feature Modeling", in

Proceeding of International Conference on Engineering of Complex Computer Systems, pp. 303-312,

2005.

160. Svahnberg, M., Gurp, J. and Bosch, J., "A taxonomy of variability realization techniques", Software: Prac-

tice and Experience, vol. 35, no. 8, 2005.

161. Tarr, P., Ossher, H., Harrison, W. and Sutton Jr. S.M., "N Degrees of Separation: Multi-Dimensional Sep-

aration of Concerns", in Proceeding of International Conference on Software Engineering, pp. 107-119,

1999.

162. Thüm, T., Batory, D., and Kästner, C., "Reasoning about edits to feature models", in Proceedings of Inter-

national Conference on Software Enginnerring, pp. 254-264, 2009.

163. Treude, C., Berlik, S., Wenzel, S. and Kelter, U, "Difference computation of large models", in Proceeding

of European Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of

Software Engineering, pp. 295-304, 2007.

164. Trifu, M, "Using dataflow information for concern identification in object-oriented software systems", In

Proceedings of European Conference on Software Maintenance and Reengineering, pp. 193-202, 2008.

165. Ueda, Y., Kamiya, S., Kusumoto, S. and Inoue, K., "Gemini: Maintenance support environment based on

code clone analysis", in Proceedings of IEEE International Software Metrics Symposium, pp. 67-76, 2002.

166. Ueda, Y., Kamiya, T., Kusumoto, S. and Inoue. K., "On detection of gapped code clones using gap loca-

tions", In Proceedings of Asia-Pacific Software Engineering Conference, pp. 327-336, Australia, 2002.

167. Wang, H., Li, Y., Sun, J., Zhang, H. and Pan, J., "Verifying Feature Models using OWL", Journal of Web

Semantics, vol. 5, no. 2, Elsevier, pp. 117-129, 2007.

168. Wang, S., Lo, D., Xing, Z. and Jiang, L., "Concern localization using information retrieval: An empirical

study on Linux kernel", in Proceedings of Working Conferencing on Reverse Engineering, pp. 92-96,

2011.

169. Wilde, N. and Scully, M., "Software reconnaissance: mapping program features to code", Software

Maintenance: Research and Practice, vol. 7, pp. 49-62, 1995.

170. Wong, E., Gokhale, S, Horgan, J. and Trivedi, K., "Locating program features using execution slices". In

Proceedings of IEEE Symposium on Application-Specific Systems and Software Engineering Technology,

pp.194–203, 1999.

171. Xing, Z. and Stroulia, E., "Differencing logical UML models", Journal of Automated Software Engineer-

ing, vol. 14, no. 2, pp. 215-259, 2007.

Bibliography

201

172. Xing, Z. and Stroulia, E., "Refactoring detection based on UMLDiff change-facts queries", in Proceedings

of Working Conferencing on Reverse Engineering, pp. 263-274, 2006.

173. Xing, Z., Xue, Y. and Jarzabek, S, "CloneDifferentiator: Analyzing clones by differentiation", in Proceed-

ing of International Conference on Automated Software Engineering, pp. 576-579, 2011.

174. Xing, Z., Xue, Y. and Jarzabek, S., "Distilling useful clones by contextual differencing ", Technical Report,

National University of Singapore, 2012.

175. Xing, Z.: GenericDiff, "A general framework for model comparison", in Proceeding of International Con-

ference on Automated Software Engineering, pp. 135-138, 2010.

176. Xue, Y., Jarzabek, S., Ye, P., Peng, X. and Zhao, W., "Scalability of variability management: An example

of industrial practice and some improvements", in Proceeding of International Conference on Software

Engineering and Knowledge Engineering, pp. 705-710, 2011.

177. Xue, Y., "Reengineering legacy software products into software product line based on automatic variabil-

ity analysis", in Proceeding of International Conference on Software Engineering, pp. 1114-1117, 2011.

178. Xue, Y., Xing, Z. and Jarzabek, S., "CloneDiff: Semantic differencing of clones", in Proceeeding of Inter-

national Workshop on Software Cloneing, pp. 83-84, 2011.

179. Xue, Y., Xing, Z. and Jarzabek, S., "Feature location in a collection of product variants", in Proceedings of

Working Conferencing on Reverse Engineering, to appear, 2012.

180. Xue, Y., Xing, Z. and Jarzabek, S., "Understanding feature evolution in a family of product variants", in

Proceedings of Working Conference on Reverse Engineering, pp. 109-118, 2010.

181. Yang, W., “Identifying syntactic differences between two programs”, Software Practice and Experience,

vol. 21, no. 7, pp. 739-755, 1991.

182. Ye, P., Peng, X, Xue, Y. and Jarzabek, S, "A case study of variation mechanism in an industrial product

line", in Proceeding of International Conference on Software Reuse, pp. 126-136, USA, 2009.

183. Yoshida, N., Higo, Y., Kamiya, T., Kusumoto, S. and Inoue, K., "On refactoring support based on code

clone dependency relation", in Proceedings of International Software Metrics Symposium, pp. 16, 2005.

184. Zhang, Y., Basit, H.A., Jarzabek, S., Anh, D. and Low, M., "Query-based filtering and graphical view

generation for clone analysis", in Proceedings of International Conference on Software Maintenance, pp.

376-385, 2008.

185. Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., "SNIAFL: Towards a static non-interactive approach

to feature location", ACM Transaction on Software Engineering and Methodology, vol. 15, no. 2, pp. 195-

226, 2006.

186. Zhu, J., Peng, X., Jarzabek, S., Xing, Z., Xue, Y. and Zhao, W., "Improving product line architecture de-

sign and customization by raising the level of variability modeling", in Proceedings of International Con-

ference on Software Reuse, pp. 151-166, 2011.

187. Zowghi, D. and Offen, R., "A logical framework for modeling and reasoning about the evolution of re-

quirements", in Proceeding of International Requirements Engineering Conference, pp. 247–259, 1997.

188. Ant : http://ant.apache.org/

189. Berkeley DB Java Edition, 2012. http://www.oracle.com/database/berkeley-db/je/index.html

190. BigLever. GEARS. http://www.biglever.com/, 2009.

Bibliography

202

191. CIDE: http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/, 2012

192. Concept Explorer: http://sourceforge.net/projects/conexp/, 2011

193. Eclipse JDT project, http://www.eclipse.org/jdt/, 2010

194. FEATUREHOUSE: http://www.infosun.fim.uni-passau.de/spl/apel/FH/

195. Linux Kernel, http://www.kernel.org/

196. Java Annotation: http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

197. Java Conditional Compilation: http://c2.com/cgi/wiki?ConditionalCompilationInJava

198. Parameterized Test Patterns for Microsoft Pex, http://research.microsoft.com/en-

us/projects/pex/patterns.pdf, 2011.

199. Pure systems. pure::variants. http://www.puresystems.com, 2009

200. Semantic Vectors: http://code.google.com/p/semanticvectors/, 2011

201. SMV model checker. http://www.cs.cmu.edu/~modelcheck/smv.html.

202. Sparse: https://sparse.wiki.kernel.org/index.php/Main_Page#Sparse_-_a_Semantic_Parser_for_C, 2011

203. Sun Java IO, http://java.sun.com/javase/6/docs/api/java/io/, 2010

204. WALA:http://wala.sourceforge.net/wiki/index.php/Main_Page, 2010

205. XVCL (XML-based Variant Configuration Language) method and tool for managing software changes

during evolution and reuse, http://xvcl.comp.nus.edu.sg

